Microminiature coaxial cable and methods manufacture
Bongianni, Wayne L.
1986-01-01
A coaxial cable is provided having a ribbon inner conductor surrounded by a dielectric and a circumferential conductor. The coaxial cable may be microminiature comprising a very thin ribbon strip conductor from between 5 to 15 .mu.m thick and from 150 to 200 .mu.m wide, having a surrounding foamed dielectric or parylene applied thereon by a vapor plasma process and an outer conductor of an adhering high conductivity metal vacuum deposited on the dielectric. Alternately the foam dielectric embodiment may have a contiguous parylene coating applied adjacent the inner conductor or the outer conductor or both. Also, the cable may be fabricated by forming a thin ribbon of strip conductive material into an inner conductor, applying thereabout a dielectric by spraying on a solution of polystyrene and polyethylene and then vacuum depositing and adhering high conductivity metal about the dielectric. The cable strength may be increased by adding glass microfilament fibers or glass microballoons to the solution of polystyrene and polyethylene. Further, the outer conductive layer may be applied by electroless deposition in an aqueous solution rather than by vacuum deposition. A thin coating of parylene is preferably applied to the outer conductor to prevent its oxidation and inhibit mechanical abrasion.
Microminiature coaxial cable and method of manufacture
Bongianni, W.L.
1989-03-28
A coaxial cable is provided having a ribbon inner conductor surrounded by a dielectric and a circumferential conductor. The coaxial cable may be microminiature comprising a very thin ribbon strip conductor from between 5 to 15 [mu]m thick and from 150 to 200 [mu]m wide, having a surrounding foamed dielectric or parylene applied thereon by a vapor plasma process and an outer conductor of an adhering high conductivity metal vacuum deposited on the dielectric. Alternately, the foam dielectric embodiment may have a contiguous parylene coating applied adjacent the inner conductor or the outer conductor or both. Also, the cable may be fabricated by forming a thin ribbon of strip conductive material into an inner conductor, applying thereabout a dielectric by spraying on a solution of polystyrene and polyethylene and then vacuum depositing and adhering high conductivity metal about the dielectric. The cable strength may be increased by adding glass microfilament fibers or glass microspheres to the solution of polystyrene and polyethylene. Further, the outer conductive layer may be applied by electroless deposition in an aqueous solution rather than by vacuum deposition. A thin coating of parylene is preferably applied to the outer conductor to prevent its oxidation and inhibit mechanical abrasion. 2 figs.
Microminiature coaxial cable and method of manufacture
Bongianni, Wayne L.
1989-01-01
A coaxial cable is provided having a ribbon inner conductor surrounded by a dielectric and a circumferential conductor. The coaxial cable may be microminiature comprising a very thin ribbon strip conductor from between 5 to 15 .mu.m thick and from 150 to 200 .mu.m wide, having a surrounding foamed dielectric or parylene applied thereon by a vapor plasma process and an outer conductor of an adhering high conductivity metal vacuum deposited on the dielectric. Alternately, the foam dielectric embodiment may have a contiguous parylene coating applied adjacent the inner conductor or the outer conductor or both. Also, the cable may be fabricated by forming a thin ribbon of strip conductive material into an inner conductor, applying thereabout a dielectric by spraying on a solution of polystyrene and polyethylene and then vacuum depositing and adhering high conductivity metal about the dielectric. The cable strength may be increased by adding glass microfilament fibers or glass microspheres to the solution of polystyrene and polyethylene. Further, the outer conductive layer may be applied by electroless deposition in an aqueous solution rather than by vacuum deposition. A thin coating of parylene is preferably applied to the outer conductor to prevent its oxidation and inhibit mechanical abrasion.
Microminiature coaxial cable and methods of manufacture
Bongianni, W.L.
1983-12-29
A coaxial cable is provided having a ribbon inner conductor surrounded by a dielectric and a circumferential conductor. The coaxial cable may be microminiature comprising a very thin ribbon strip conductor from between 5 to 15 ..mu..m thick and from 150 to 200 ..mu..m wide, having a surrounding foamed dielectric or parylene applied thereon by a vapor plasma process and an outer conductor of an adhering high conductivity metal vacuum deposited on the dieleectric. Alternately the foam dielectric embodiment may have a contiguous parylene coating applied adjacent the inner conductor or the outer conductor or both. Also, the cable may be fabricated by forming a thin ribbon of strip conductive material into an inner conductor, applying thereabout a dielectric by spraying on a solution of polystyrene and polyethylene and then vacuum depositing and adhering high conductivity metal about the dielectric. The cable strength may be increased by adding glass microfilament fibers or glass microballoons to the solution of polystyrene and polyethylene. Further, the outer conductive layer may be applied by electroless deposition in an aqueous solution rather than by vacuum deposition. A thin coating of parylene is preferably applied to the outer conductor to prevent its oxidation and inhibit mechanical abrasion.
Microminiature coaxial cable and methods manufacture
Bongianni, W.L.
1986-04-08
A coaxial cable is provided having a ribbon inner conductor surrounded by a dielectric and a circumferential conductor. The coaxial cable may be microminiature comprising a very thin ribbon strip conductor from between 5 to 15 [mu]m thick and from 150 to 200 [mu]m wide, having a surrounding foamed dielectric or parylene applied thereon by a vapor plasma process and an outer conductor of an adhering high conductivity metal vacuum deposited on the dielectric. Alternately the foam dielectric embodiment may have a contiguous parylene coating applied adjacent the inner conductor or the outer conductor or both. Also, the cable may be fabricated by forming a thin ribbon of strip conductive material into an inner conductor, applying thereabout a dielectric by spraying on a solution of polystyrene and polyethylene and then vacuum depositing and adhering high conductivity metal about the dielectric. The cable strength may be increased by adding glass microfilament fibers or glass microballoons to the solution of polystyrene and polyethylene. Further, the outer conductive layer may be applied by electroless deposition in an aqueous solution rather than by vacuum deposition. A thin coating of parylene is preferably applied to the outer conductor to prevent its oxidation and inhibit mechanical abrasion. 2 figs.
Characterization of Glass Fiber Separator Material for Lithium Batteries
NASA Technical Reports Server (NTRS)
Subbarao, S.; Frank, H.
1984-01-01
Characterization studies were carried out on a glass fiber paper that is currently employed as a separator material for some LiSOCl2 primary cells. The material is of the non-woven type made from microfilaments of E-type glass and contains an ethyl acrylate binder. Results from extraction studies and tensile testing revealed that the binder content and tensile strength of the paper were significantly less than values specified by the manufacturer. Scanning electron micrographs revealed the presence of clusters of impurities many of which were high in iron content. Results of emission spectroscopy revealed high overall levels of iron and leaching, followed by atomic absorption measurements, revealed that essentially all of this iron is soluble in SOCl2.
Kojo, Kei H; Yasuhara, Hiroki; Hasezawa, Seiichiro
2014-01-01
Precise division plane determination is essential for plant development. At metaphase, a dense actin microfilament meshwork appears on both sides of the cell center, forming a characteristic cortical actin microfilament twin peak pattern in BY-2 cells. We previously reported a strong correlation between altered cortical actin microfilament patterning and an oblique mitotic spindle orientation, implying that these actin microfilament twin peaks play a role in the regulation of mitotic spindle orientation. In the present study, time-sequential observation was used to reveal the progression from oblique phragmoplast to oblique cell plate orientation in cells with altered cortical actin microfilament patterning. In contrast to cells with normal actin microfilament twin peaks, oblique phragmoplast reorientation was rarely observed in cells with altered cortical actin microfilament patterning. These results support the important roles of cortical actin microfilament patterning in division plane orientation.
Kojo, Kei H; Yasuhara, Hiroki; Hasezawa, Seiichiro
2014-06-18
Precise division plane determination is essential for plant development. At metaphase, a dense actin microfilament meshwork appears on both sides of the cell center, forming a characteristic cortical actin microfilament twin peak pattern in BY-2 cells. We previously reported a strong correlation between altered cortical actin microfilament patterning and an oblique mitotic spindle orientation, implying that these actin microfilament twin peaks play a role in the regulation of mitotic spindle orientation. In the present study, time-sequential observation was used to reveal the progression from oblique phragmoplast to oblique cell plate orientation in cells with altered cortical actin microfilament patterning. In contrast to cells with normal actin microfilament twin peaks, oblique phragmoplast reorientation was rarely observed in cells with altered cortical actin microfilament patterning. These results support the important roles of cortical actin microfilament patterning in division plane orientation.
Microfilament distribution in protonemata of the moss Ceratodon
NASA Technical Reports Server (NTRS)
Walker, L. M.; Sack, F. D.
1995-01-01
Microfilaments were visualized in dark-grown protonemata of the moss Ceratodon to assess their possible role in tip growth and gravitropism. The relative effectiveness of rhodamine phalloidin (with or without m-maleimidobenzoyl-N-hydroxysuccinimide ester (MBS)) and of immunofluorescence (using the C4 antibody) was evaluated for actin localization in the same cell type. Using immunofluorescence, microfilaments were primarily in an axial orientation within the apical cell. However, a more complex network of microfilaments was observed using rhodamine phalloidin after MBS pretreatment, especially when viewed by confocal laser scanning microscopy. This method revealed a rich three dimensional network of fine microfilaments throughout the apical cell, including the extreme apex. Although there were numerous internal microfilaments, peripheral microfilaments were more abundant. No major redistribution of microfilaments was detected after gravistimulation. The combination of MBS, rhodamine phalloidin, and confocal laser scanning microscopy preserves and reveals microfilaments remarkably well and documents perhaps the most extensive F-actin network visualized to date in any tip-growing cell.
NASA Astrophysics Data System (ADS)
Abdolahad
2015-01-01
Cancerous transformation may be dependent on correlation between electrical disruptions in the cell membrane and mechanical disruptions of cytoskeleton structures. Silicon nanotube (SiNT)-based electrical probes, as ultra-accurate signal recorders with subcellular resolution, may create many opportunities for fundamental biological research and biomedical applications. Here, we used this technology to electrically monitor cellular mechanosensing. The SiNT probe was combined with an electrically activated glass micropipette aspiration system to achieve a new cancer diagnostic technique that is based on real-time correlation between mechanical and electrical behaviour of single cells. Our studies demonstrated marked changes in the electrical response following increases in the mechanical aspiration force in healthy cells. In contrast, such responses were extremely weak for malignant cells. Confocal microscopy results showed the impact of actin microfilament remodelling on the reduction of the electrical response for aspirated cancer cells due to the significant role of actin in modulating the ion channel activity in the cell membrane.Cancerous transformation may be dependent on correlation between electrical disruptions in the cell membrane and mechanical disruptions of cytoskeleton structures. Silicon nanotube (SiNT)-based electrical probes, as ultra-accurate signal recorders with subcellular resolution, may create many opportunities for fundamental biological research and biomedical applications. Here, we used this technology to electrically monitor cellular mechanosensing. The SiNT probe was combined with an electrically activated glass micropipette aspiration system to achieve a new cancer diagnostic technique that is based on real-time correlation between mechanical and electrical behaviour of single cells. Our studies demonstrated marked changes in the electrical response following increases in the mechanical aspiration force in healthy cells. In contrast, such responses were extremely weak for malignant cells. Confocal microscopy results showed the impact of actin microfilament remodelling on the reduction of the electrical response for aspirated cancer cells due to the significant role of actin in modulating the ion channel activity in the cell membrane. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr06102k
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berliner, J.A.; Bennett, K.; de Vellis, J.
Hydrocortisone induced cell spreading and the formation of microfilaments in C6 cells with a time course similar to that found for the induction of GPDH. Cytochalasin B caused a rapid and reversible cell rounding and microfilament breakdown. Breakdown of both sheath and network microfilaments occurred within 1 hour; after removal of cytochalasin B, reversal of morphological effects began within 30 min. High calcium was found to block reversal of the cytochalasin B induced alteration, but did not affect shape or microfilaments in non-cytochalasin B treated cells. It is concluded that since microfilament induction occurs late and the block in synthesismore » of GPDH by cytochalasin B occurs within hours after addition, microfilaments induced by hydrocortisone are probably not important in the sequence of events leading to GPDH induction. But, however, microfilaments present in uninduced cells may be important in the sequence of GPDH induction, since treatment with cytochalasin B rapidly breaks these down and also inhibits GPDH induction by hydrocortisone.« less
Method and apparatus for testing microfilaments
Schleitweiler, Patrick M.; Merten, Jr., Charles W.
1995-08-01
A method and apparatus are disclosed for testing tensile strength of microfilaments. Fibers as small as 0.001 inch in diameter and 0.04 inches in length have been tested, although the method and apparatus of the invention are capable of testing fibers of smaller diameter and length. The invention utilizes a method wherein one or both ends of a microfilament is gripped using resin which is softened sufficiently to accept an end of the microfilament and then allowed to harden. The invention also employs the use of a translation stage capable of controlled three-dimensional movement suited to facilitating gripping of the microfilament.
Method and apparatus for testing microfilaments
Schleitweiler, P.M.; Merten, C.W. Jr.
1995-08-01
A method and apparatus are disclosed for testing tensile strength of microfilaments. Fibers as small as 0.001 inch in diameter and 0.04 inches in length have been tested, although the method and apparatus of the invention are capable of testing fibers of smaller diameter and length. The invention utilizes a method wherein one or both ends of a microfilament is gripped using resin which is softened sufficiently to accept an end of the microfilament and then allowed to harden. The invention also employs the use of a translation stage capable of controlled three-dimensional movement suited to facilitating gripping of the microfilament. 2 figs.
Krüger-Genge, A; Fuhrmann, R; Jung, F; Franke, R P
2015-01-01
The evaluation of the interaction of human, venous endothelial cells (HUVEC) with body foreign materials on the cellular level cannot be performed in vivo, but is investigated in vitro under standard culture conditions. To maintain the vitality, proliferation and morphology of HUVEC seeded on body foreign substrates over days, the cell culture medium is usually exchanged every second day. It is well known, that alterations in the microenvironment of cells bear the risk of influencing cell morphology and function. In the current study the influence of cell culture medium exchange on HUVEC cytoskeletal microfilament structure and function was investigated. HUVEC in the third passage were seeded on extracellular matrix (ECM) - which was secreted from bovine corneal endothelial cells on glass- until functional confluence was reached. The experiment started 11 days after HUVEC seeding with an exchange of the cell culture medium followed by a staining of the actin microfilaments with phalloidin-rhodamin 1.5 and 5 minutes after medium exchange. The microfilaments were documented by use of an Olympus microscope (IMT-2) equipped with a UV lamp and online connected to a TV chain (Sony XC 50 ST/monochrome) implying an OPTIMAS - Image analysis system. Prostacyclin was analysed in the cell culture supernatant. 1.5 min after culture medium exchange in the functionally confluent cultures a slight disturbance of the actin microfilament structure with a broadening of the marginal filament band, a partial disconnection of cell-cell contacts and the appearance of intercellular fenestrations were observed. 5 minutes after medium exchange a redevelopment of the slightly disturbed microfilament structure with a condensation and narrowing of the marginal filament band was seen. 12 h later a further consolidation of the microfilament structure occurred. In addition, a perturbation of the cultured HUVEC occurred after cell culture medium exchange. The prostacyclin concentration in the supernatant increased significantly after 1.5 min to 466 ± 543 pg·mL-1 (p < 0.001) and after 5 min to 408 ± 458 pg·mL-1 (p < 0.001), while in control cells the prostacyclin concentration did not change remaining in the range of 50 ± 48.9 pg·mL-1. This study revealed that the exchange of the cell culture medium led to a rapid disturbance of the HUVEC with stress fiber formation, disconnection of cell-cell contacts and an altered prostacyclin secretion, which had regressed nearly completely after 12 hours. Therefore, the evaluation of HUVEC on body foreign materials should be performed not earlier than 12 hours after cell culture medium exchange to avoid a misinterpretation of the endothelial cell morphological state. This procedure minimizes the risk of a misinterpretation of the endothelial cell morphology - caused by the culture medium exchange and not by the interaction between biomaterials and HUVEC.
Effect of hydrocortisone on cell morphology in C6 cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berliner, J.A.; Bennett, K.; de Vellis, J.
Hydrocortisone has been found to induce cell spreading in rat glial C6 cells by 24 hours after its addition. This spreading phenomenon is correlated with an increase in the fraction of the peripheral cytoplasm occupied by microfilaments. Cytochalasin B causes disorganization of microfilaments in the peripheral cytoplasm of the cells. Additionally, it also prevents cell spreading in response to hormonal stimulation. High levels of calcium prevent recovery of normal microfilament organization and cell spreading following removal of cytochalasin B, but have no effect on normal microfilament organization alone. Additionally both the hydrocortisone induced spreading of C6 cells and increases inmore » peripheral microfilaments are shown to be dependent on RNA and protein synthesis. The levels of protein co-electrophorescing with actin are not affected by hydrocortisone.« less
Actin cytoskeleton rearrangements in Arabidopsis roots under stress and during gravitropic response
NASA Astrophysics Data System (ADS)
Pozhvanov, Gregory; Medvedev, Sergei; Suslov, Dmitry; Demidchik, Vadim
Among environmental factors, gravity vector is the only one which is constant in direction and accompanies the whole plant ontogenesis. That said, gravity vector can be considered as an essential factor for correct development of plants. Gravitropism is a plant growth response against changing its position relative to the gravity vector. It is well estableshed that gravitropism is directed by auxin redistribution across the gravistimulated organ. In addition to auxin, actin cytoskeleton was shown to be involved in gravitropism at different stages: gravity perception, signal transduction and gravitropic bending formation. However, the relationship between IAA and actin is still under discussion. In this work we studied rearrangements of actin cytoskeleton during root gravitropic response. Actin microfilaments were visualized in vivo in GFP-fABD2 transgenic Arabidopsis plants, and their angle distribution was acquired from MicroFilament Analyzer software. The curvature of actin microfilaments in root elongation zone was shown to be increased within 30-60 min of gravistimulation, the fraction of axially oriented microfilaments decreased with a concomitant increase in the fraction of oblique and transversally oriented microfilaments. In particular, the fraction of transversally oriented microfilaments (i.e. parallel to the gravity vector) increased 3-5 times. Under 10 min of sub-lethal salt stress impact, actin microfilament orientations widened from an initial axial orientation to a set of peaks at 15(°) , 45(°) and 90(°) . We conclude that the actin cytoskeleton rearrangements observed are associated with the regulation of basic mechanisms of cell extension growth by which the gravitropic bending is formed. Having common stress-related features, gravity-induced actin cytoskeleton rearrangement is slower but results in higher number of g-vector-parallel microfilaments when compared to salt stress-induced rearrangement. Also, differences in gravistimulated root growth between wild type and GFP-fABD2 plants are discussed. Project was supported by the OPTEC / Carl Zeiss Personal grant to G.P. (2012), grants of Russian Foundation for Basic Research (11-04-00701a, 14-04-01624a) and by the grant of St.-Petersburg State University (1.38.233.2014).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Tong; Gu, YuanTong, E-mail: yuantong.gu@qut.edu.au
As all-atom molecular dynamics method is limited by its enormous computational cost, various coarse-grained strategies have been developed to extend the length scale of soft matters in the modeling of mechanical behaviors. However, the classical thermostat algorithm in highly coarse-grained molecular dynamics method would underestimate the thermodynamic behaviors of soft matters (e.g. microfilaments in cells), which can weaken the ability of materials to overcome local energy traps in granular modeling. Based on all-atom molecular dynamics modeling of microfilament fragments (G-actin clusters), a new stochastic thermostat algorithm is developed to retain the representation of thermodynamic properties of microfilaments at extra coarse-grainedmore » level. The accuracy of this stochastic thermostat algorithm is validated by all-atom MD simulation. This new stochastic thermostat algorithm provides an efficient way to investigate the thermomechanical properties of large-scale soft matters.« less
Chaffey, Nigel; Barlow, Peter; Sundberg, Björn
2002-03-01
The involvement of microfilaments and microtubules in the development of the radial and axial components of secondary xylem (wood) in hybrid aspen (Populus tremula L. x P. tremuloides Michx.) was studied by indirect immunofluorescent localization techniques. In addition to cambial cells, the differentiated cell types considered were early- and late-wood vessel elements, axial parenchyma, normal-wood fibers and gelatinous fibers, and contact and isolation ray cells. Microfilaments were rare in ray cambial cells, but were abundant and axially arranged in their derivatives once cell elongation had begun, and persisted in that orientation in mature ray cells. Microfilaments were axially arranged in fusiform cambial cells and persisted in that orientation in all xylem derivatives of those cells. Microtubules were randomly oriented in ray and fusiform cells of the cambial zone. Dense arrays of parallel-aligned microtubules were oriented near axially in the developing gelatinous fibers, but at a wide range of angles in normal-wood fibers. Ellipses of microfilaments were associated with pit development in fiber cells and isolation ray cells. Rings of co-localized microtubules and microfilaments were associated with developing inter-vessel bordered pits and vessel-contact ray cell contact pits, and, in the case of bordered pits, these rings decreased in diameter as the over-arching pit border increased in size. Although only microtubules were seen at the periphery of the perforation plate of vessel elements, a prominent meshwork of microfilaments overlaid the perforation plate itself. A consensus view of the roles of the cytoskeleton during wood formation in angiosperm trees is presented.
Coordination of microtubule and microfilament dynamics by Drosophila Rho1, Spire and Cappuccino.
Rosales-Nieves, Alicia E; Johndrow, James E; Keller, Lani C; Magie, Craig R; Pinto-Santini, Delia M; Parkhurst, Susan M
2006-04-01
The actin-nucleation factors Spire and Cappuccino (Capu) regulate the onset of ooplasmic streaming in Drosophila melanogaster. Although this streaming event is microtubule-based, actin assembly is required for its timing. It is not understood how the interaction of microtubules and microfilaments is mediated in this context. Here, we demonstrate that Capu and Spire have microtubule and microfilament crosslinking activity. The spire locus encodes several distinct protein isoforms (SpireA, SpireC and SpireD). SpireD was recently shown to nucleate actin, but the activity of the other isoforms has not been addressed. We find that SpireD does not have crosslinking activity, whereas SpireC is a potent crosslinker. We show that SpireD binds to Capu and inhibits F-actin/microtubule crosslinking, and activated Rho1 abolishes this inhibition, establishing a mechanistic basis for the regulation of Capu and Spire activity. We propose that Rho1, cappuccino and spire are elements of a conserved developmental cassette that is capable of directly mediating crosstalk between microtubules and microfilaments.
Yan, Mengfei; Zhu, Liqi; Yang, Qian
2014-11-19
Porcine circovirus-associated disease (PCVAD) is caused by a small pathogenic DNA virus, Porcine circovirus type 2 (PCV2), and is responsible for severe economic losses. PCV2-associated enteritis appears to be a distinct clinical manifestation of PCV2. Most studies of swine enteritis have been performed in animal infection models, but none have been conducted in vitro using cell lines of porcine intestinal origin. An in vitro system would be particularly useful for investigating microfilaments, which are likely to be involved in every stage of the viral lifecycle. We confirmed that PCV2 infects the intestinal porcine epithelial cell line IPEC-J2 by means of indirect immunofluorescence, transmission electron microscopy, flow cytometry and qRT-PCR. PCV2 influence on microfilaments in IPEC-J2 cells was detected by fluorescence microscopy and flow cytometry. We used Cytochalasin D or Cucurbitacin E to reorganize microfilaments, and observed changes in PCV2 invasion, replication and release in IPEC-J2 cells by qRT-PCR. PCV2 infection changes the ultrastructure of IPEC-J2 cells. PCV2 copy number in IPEC-J2 cells shows a rising trend as infection proceeds. Microfilaments are polymerized at 1 h p.i., but densely packed actin stress fibres are disrupted and total F-actin increases at 24, 48 and 72 h p.i. After Cytochalasin D treatment, invasion of PCV2 is suppressed, while invasion is facilitated by Cucurbitacin E. The microfilament drugs have opposite effects on viral release. PCV2 infects and proliferates in IPEC-J2 cells, demonstrating that IPEC-J2 cells can serve as a cell intestinal infection model for PCV2 pathogenesis. Furthermore, PCV2 rearranges IPEC-J2 microfilaments and increases the quantity of F-actin. Actin polymerization may facilitate the invasion of PCV2 in IPEC-J2 cells and the dissolution of cortical actin may promote PCV2 egress.
Motility and centrosomal organization during sea urchin and mouse fertilization
NASA Technical Reports Server (NTRS)
Schatten, Heide; Schatten, Gerald
1986-01-01
It is noted that microfilaments are essential for incorporation of sperm in sea urchins and for pronuclear apposition in mice. The ability of sea urchin sperm to fertilize eggs is lowered by latrunculin, giving evidence that acrosomal microfilaments are of importance to the process of fertilization. Due to the uncertainty regarding the presence of microfilaments in various mammalian sperm, it is interesting that latrunculin does not noticeably affect the ability of mouse sperm to fertilize oocytes. The movements of the sperm and egg nuclei at the time of sea urchin fertilization are dependent on microtubules arranged into a radial monastral array (the sperm aster). In the mouse egg, microtubule activity is also required during pronuclear apposition, but they are arranged by a number of egg cytoplasmic sites. Results of the investigations show that both microtubules and microfilaments are necessary for the successful completion of fertilization in both mice and sea urchins, but at different stages. Also, it is demonstrated that centrosomes are contributed by the sperm in the process of sea urchin fertilization, but in mammals they may be inherited maternally.
Wu, Yaqin; Zhuang, Jiabao; Zhao, Dan; Zhang, Fuqiang; Ma, Jiayin; Xu, Chun
2017-10-01
This study aimed to explore the mechanism of the stretch-induced cell realignment and cytoskeletal rearrangement by identifying several mechanoresponsive genes related to cytoskeletal regulators in human PDL cells. After the cells were stretched by 1, 10 and 20% strains for 0.5, 1, 2, 4, 6, 12 or 24 h, the changes of the morphology and content of microfilaments were recorded and calculated. Meanwhile, the expression of 84 key genes encoding cytoskeletal regulators after 6 and 24 h stretches with 20% strain was detected by using real-time PCR array. Western blot was applied to identify the protein expression level of several cytoskeletal regulators encoded by these differentially expressed genes. The confocal fluorescent staining results confirmed that stretch-induced realignment of cells and rearrangement of microfilaments. Among the 84 genes screened, one gene was up-regulated while two genes were down-regulated after 6 h stretch. Meanwhile, three genes were up-regulated while two genes were down-regulated after 24 h stretch. These genes displaying differential expression included genes regulating polymerization/depolymerization of microfilaments (CDC42EP2, FNBP1L, NCK2, PIKFYVE, WASL), polymerization/depolymerization of microtubules (STMN1), interacting between microfilaments and microtubules (MACF1), as well as a phosphatase (PPP1R12B). Among the proteins encoded by these genes, the protein expression level of Cdc42 effector protein-2 (encoded by CDC42EP2) and Stathmin-1 (encoded by STMN1) was down-regulated, while the protein expression level of N-WASP (encoded by WASL) was up-regulated. The present study confirmed the cyclic stretch-induced cellular realignment and rearrangement of microfilaments in the human PDL cells and indicated several force-sensitive genes with regard to cytoskeletal regulators.
Regulation of the position of statoliths in Chara rhizoids.
Hejnowicz, Z; Sievers, A
1981-01-01
The behavior of statoliths in rhizoids differently oriented with respect to the gravity vector indicates that there are cytoskeleton elements which exert forces on the statoliths, mostly in the longitudinal directions. Compared to the sum of the forces acting on a statolith, the gravitational force is a relatively small component, i.e., less than 1/5 of the cytoskeleton force. The balance is disturbed by displacing the rhizoid from the normal vertical orientation. It is also reversibly disturbed by cytochalasin B such that some statoliths move against the gravity force. Phalloidin stabilizes the position of the statoliths against cytochalasin B. We infer that microfilaments are involved in controlling the position of statoliths, and that there is a considerable tension on these microfilaments. The vibration frequency of the microfilaments corresponding to this tension is in the ultrasonic range.
Analysis of early medieval glass beads - Glass in the transition period
NASA Astrophysics Data System (ADS)
Šmit, Žiga; Knific, Timotej; Jezeršek, David; Istenič, Janka
2012-05-01
Glass beads from graves excavated in Slovenia and dated archaeologically to the 7th-10th century AD were analysed by the combined PIXE-PIGE method. The results indicate two groups of glass; natron glass made in the Roman tradition and glass made with alkalis from the ash of halophytic plants, which gradually replaced natron glass after c. 800 AD. The alkalis used in the second group of glass seem to be in close relation to a variant of the Venetian white glass that appeared several centuries later. The origin of this glass may be traced to glass production in Mesopotamia and around the Aral Sea. All the mosaic beads with eye decoration, as well as most of the drawn-segmented and drawn-cut beads analysed, are of plant-ash glass, which confirms their supposed oriental origin.
Percival, J M; Thomas, G; Cock, T A; Gardiner, E M; Jeffrey, P L; Lin, J J; Weinberger, R P; Gunning, P
2000-11-01
The nonmuscle actin cytoskeleton consists of multiple networks of actin microfilaments. Many of these filament systems are bound by the actin-binding protein tropomyosin (Tm). We investigated whether Tm isoforms could be cell cycle regulated during G0 and G1 phases of the cell cycle in synchronised NIH 3T3 fibroblasts. Using Tm isoform-specific antibodies, we investigated protein expression levels of specific Tms in G0 and G1 phases and whether co-expressed isoforms could be sorted into different compartments. Protein levels of Tms 1, 2, 5a, 6, from the alpha Tm(fast) and beta-Tm genes increased approximately 2-fold during mid-late G1. Tm 3 levels did not change appreciably during G1 progression. In contrast, Tm 5NM gene isoform levels (Tm 5NM-1-11) increased 2-fold at 5 h into G1 and this increase was maintained for the following 3 h. However, Tm 5NM-1 and -2 levels decreased by a factor of three during this time. Comparison of the staining of the antibodies CG3 (detects all Tm 5NM gene products), WS5/9d (detects only two Tms from the Tm 5NM gene, Tm 5NM-1 and -2) and alpha(f)9d (detects specific Tms from the alpha Tm(fast) and beta-Tm genes) antibodies revealed 3 spatially distinct microfilament systems. Tm isoforms detected by alpha(f)9d were dramatically sorted from isoforms from the Tm 5NM gene detected by CG3. Tm 5NM-1 and Tm 5NM-2 were not incorporated into stress fibres, unlike other Tm 5NM isoforms, and marked a discrete, punctate, and highly polarised compartment in NIH 3T3 fibroblasts. All microfilament systems, excluding that detected by the WS5/9d antibody, were observed to coalign into parallel stress fibres at 8 h into G1. However, Tms detected by the CG3 and alpha(f)9d antibodies were incorporated into filaments at different times indicating distinct temporal control mechanisms. Microfilaments in NIH 3T3 cells containing Tm 5NM isoforms were more resistant to cytochalasin D-mediated actin depolymerisation than filaments containing isoforms from the alpha Tm(fast) and beta-Tm genes. This suggests that Tm 5NM isoforms may be in different microfilaments to alpha Tm(fast) and beta-Tm isoforms even when present in the same stress fibre. Staining of primary mouse fibroblasts showed identical Tm sorting patterns to those seen in cultured NIH 3T3 cells. Furthermore, we demonstrate that sorting of Tms is not restricted to cultured cells and can be observed in human columnar epithelial cells in vivo. We conclude that the expression and localisation of Tm isoforms are differentially regulated in G0 and G1 phase of the cell cycle. Tms mark multiple microfilament compartments with restricted tropomyosin composition. The creation of distinct microfilament compartments by differential sorting of Tm isoforms is observable in primary fibroblasts, cultured 3T3 cells and epithelial cells in vivo. Copyright 2000 Wiley-Liss, Inc.
Evaluation of Glass Fiber Reinforced Concrete Panels for Use in Military Construction.
1984-06-01
AD-A158 134 UNCLASSIFIED EVALUATION OF GLASS FIBER REINFORCED CONCRETE PANELS FOR USE IN MILITARY. . (U) CONSTRUCTION ENGINEERING RESEARCH LAB...Construction Engineering Research Laboratory i=h-C=iU. TECHNICAL REPORT M-85/15 June 1985 AD-A158 134 0~- 8 Evaluation of Glass Fiber ...Reinforced Concrete Panels for Use in Military Construction by Gilbert R. Williamson Glass fiber reinforced concrete (GFRC) materials are investigated
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davison, Claire C.
1972-09-01
Glass beads from archaeological sites of sub-Saharan Africa were analyzed by neutron activation and by X-ray fluorescence, and the results interpreted archaeologically. The glass beads from Igbo Ukwu (Nigeria), dated approximately to the ninth century A.D., were mostly soda-lime glasses, but a few potassium glasses were found. The glass artifacts from Ife (Nigeria), dated to approximately the tenth to twelfth centuries A.D., were mostly potassium glasses , with some soda-lime glasses. Some close resemblances were found between the glasses of the two sites . Evidence for glassworking which exists at Ife is interpreted as evidence of reworking, rather than manufacturemore » from raw materials. A European provenience is suggested for the potassium glasses, but the provenience of the soda-lime glasses i s unclear.« less
NASA Astrophysics Data System (ADS)
Woodhouse, Francis; Goldstein, Raymond
2013-03-01
Cytoplasmic streaming is the ubiquitous phenomenon of deliberate, active circulation of the entire liquid contents of a plant or animal cell by the walking of motor proteins on polymer filament tracks. Its manifestation in the plant kingdom is particularly striking, where many cells exhibit highly organised patterns of flow. How these regimented flow templates develop is biologically unclear, but there is growing experimental evidence to support hydrodynamically-mediated self-organisation of the underlying microfilament tracks. Using the spirally-streaming giant internodal cells of the characean algae Chara and Nitella as our prototype, we model the developing sub-cortical streaming cytoplasm as a continuum microfilament suspension subject to hydrodynamic and geometric forcing. We show that our model successfully reproduces emergent streaming behaviour by evolving from a totally disordered initial state into a steady characean ``conveyor belt'' configuration as a consequence of the cell geometry, and discuss applicability to other classes of steadily streaming plant cells.
Contribution of cytoskeletal elements to the axonal mechanical properties
2013-01-01
Background Microtubules, microfilaments, and neurofilaments are cytoskeletal elements that affect cell morphology, cellular processes, and mechanical structures in neural cells. The objective of the current study was to investigate the contribution of each type of cytoskeletal element to the mechanical properties of axons of dorsal root and sympathetic ganglia cells in chick embryos. Results Microtubules, microfilaments, and neurofilaments in axons were disrupted by nocodazole, cytochalasin D, and acrylamide, respectively, or a combination of the three. An atomic force microscope (AFM) was then used to compress the treated axons, and the resulting corresponding force-deformation information was analyzed to estimate the mechanical properties of axons that were partially or fully disrupted. Conclusion We have found that the mechanical stiffness was most reduced in microtubules-disrupted-axons, followed by neurofilaments-disrupted- and microfilaments-disrupted-axons. This suggests that microtubules contribute the most of the mechanical stiffness to axons. PMID:24007256
Depleted UF6 Internet Resources
been used to color glass for almost 2 millennia. A uranium-colored glass object was found near Naples , Italy, and dated to about 79 A.D. Uranium oxide added to glass produces a yellow to greenish hue. more Board Defense Nuclear Facilities Safety Board (DNFSB) The Defense Nuclear Facilities Safety Board
The effects of boric acid and phosphoric acid on the compressive strength of glass-ionomer cements.
Prentice, Leon H; Tyas, Martin J; Burrow, Michael F
2006-01-01
Both boric acid (H3BO3) and phosphoric acid (H3PO4) are components of dental cements, commonly incorporated into glass (as ingredients in the melt) and occasionally added to the powder or liquid components. This study investigated the effect of boric acid addition to an experimental glass-ionomer powder and the effect of phosphoric acid addition to a glass-ionomer liquid on the 24-h compressive strength. Boric acid powder was added in various concentrations to an experimental glass-ionomer powder and, separately, phosphoric acid was added to an experimental glass-ionomer liquid. Powders and liquids were dosed into capsules at various powder:liquid ratios and cements thus formed were assessed for 24-h compressive strength. Incorporation of boric acid in glass-ionomer powder resulted in a pronounced decrease (p < 0.05 at 1% boric acid) in compressive strength. Addition of phosphoric acid produced initially stronger cements (up to 13% increase at 1% phosphoric acid) before also declining. The incorporation of less than 2% w/w phosphoric acid in glass-ionomer liquids may improve cement strengths without compromising clinical usefulness. The incorporation of boric acid in glass-ionomer cements is contraindicated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bennett, K.; de Vellis, J.
The hydrocortisone (HC) induction of glycerol phosphate dehydrogenase in rat glial C6 cells was inhibited reversibly and in a dose-dependent manner by cytochalasin B (CB). Addition of sodium pyruvate to the culture medium did not reverse the inhibitory effect of CB, suggesting that CB did not act by blocking glucose transport. CB had no effect on basal level GPDH, and total cellular RNA, DNA or protein content. Colcemid had no effect on the induction, suggesting that the integrity of microtubules is not necessary for the induction process. CB did not alter the rate of degradation of induced GPDH nor didmore » it act as an inhibitor of general protein synthesis. CB appears to specifically inhibit GPDH synthesis whether it was given before, simultaneously or after the addition of HC to the cultures. This effect of CB is correlated with a marked decrease, up to 60 percent, in specific nuclear binding of (/sup 3/H)-HC added to the culture media, even though total cell uptake of (/sup 3/H)-HC was unaffected. According to the current model of HC action, the nuclear effect of CB would result in reduced synthesis of mRNA for GPDH. Since CB dissociated microfilaments in C6 cells, we hypothesize that microfilaments may play a role in the hormonal induction process.« less
Jo, Sinae; Kang, Seunggu
2013-05-01
The effect of TiO2 on the degree of crystallization, thermal properties and microstructure for MgO-Al2O3-SiO2 glass-ceramics system containing 0-13 wt% TiO2 and 0-1.5 wt% B2O3 in which the cordierite is the main phase was studied. Using Kissinger and Augis-Bennett equations, the activation energy, 510 kJ/mol and Avrami constant, 1.8 were calculated showing the surface-oriented crystallization would be preferred. The alpha-cordierite phase was generated in the glass-ceramics of containing TiO2 of 0-5.6 wt%. However, for the glass-ceramics of TiO2 content above 7 wt%, an alpha-cordierite disappeared and micro-cordierite phase was formed. The glass-ceramics of no TiO2 added had spherical crystals of few tens nanometer size spread in the matrix. As TiO2 content increased up to 5.6 wt%, a lump of dendrite was formed. In the glass-ceramics containing TiO2 7-13 wt%, in which the main phase is micro-cordierite, the dendrite crystal disappeared and a few hundred nanometer sized crystal particles hold tightly each other were generated. The thermal conductivity of glass-ceramics of both a-cordierite and micro-cordierite base decreased with TiO2 contend added. The thermal conductivity of glass-ceramics of 1.5 wt% TiO2 added was 3.4 W/mK which is 36% higher than that of glass-ceramics of no TiO2 added. The sintering temperature for 1.5 wt% TiO2 glass-ceramics was 965 degrees C which could be concluded as to apply to LTCC process for LED packaging.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-01-12
... manufacturer of inner glass ply fracture. We are issuing this AD to detect and correct damage to the cockpit...: Discussion We received reports from the windshield manufacturer of inner glass ply fractures found on 19... reports from the windshield manufacturer of inner glass ply fracture. We are issuing this AD to detect and...
NASA Astrophysics Data System (ADS)
Palomar, Teresa; Garcia-Heras, Manuel; Sabio, Rafael; Rincon, Jesus-Maria; Villegas, Maria-Angeles
This paper presents the results derived from an archaeometric study undertaken on glass samples from the Roman town of Augusta Emerita (Mérida, Spain). The main goal of the research was to provide for the first time some compositional and technological insights into the glass finds unearthed in this town. Glass samples from different sites and chronology, either from inside or from outside the perimeter of the ancient town and from the first to the sixth century AD, were analyzed and characterized through optical microscopy (OM), scanning electron microscopy (SEM), energy dispersive X-ray microanalysis (EDS), X-ray fluorescence (XRF) spectrometry and VIS spectrophotometry. Resulting data indicated that all the samples studied were natron-based soda lime silicate glasses, even though two chronological and compositionally distinct groups were distinguished. One composed of Early Empire glasses and a second one composed of glasses from the fourth century AD onward, which was characterized by the presence of the so-called HIMT (high iron, manganese, and titanium) glasses. Comparison with coeval glasses suggested that Augusta Emerita shared the same trade glass circles than other contemporary Roman towns, within the frame of a secondary production scale. Finally, some outstanding differences connected to composition and chronology were found, since Late Roman glasses presented a higher and distinct degree of alteration than Early Empire ones.
Wang, Feixiang; Jia, Yali; Liu, Jiajing; Zhai, Jinglei; Cao, Ning; Yue, Wen; He, Huixia; Pei, Xuetao
2017-06-01
Alzheimer's disease (AD) is an incurable neurodegenerative disease and many types of stem cells have been used in AD therapy with some favorable effects. In this study, we investigated the potential therapeutical effects of human dental pulp stem cells (hDPSCs) on AD cellular model which established by okadaic acid (OA)-induced damage to human neuroblastoma cell line, SH-SY5Y, in vitro for 24 h. After confirmed the AD cellular model, the cells were co-culture with hDPSCs by transwell co-culture system till 24 h for treatment. Then the cytomorphology of the hDPSCs-treated cells were found to restore gradually with re-elongation of retracted dendrites. Meanwhile, Cell Counting Kit-8 assay and Hoechst 33258 staining showed that hDPSCs caused significant increase in the viability and decrease in apoptosis of the model cells, respectively. Observation of DiI labeling also exhibited the prolongation dendrites in hDPSCs-treated cells which were obviously different from the retraction dendrites in AD model cells. Furthermore, specific staining of α-tubulin and F-actin demonstrated that the hDPSCs-treated cells had the morphology of restored neurons, with elongated dendrites, densely arranged microfilaments, and thickened microtubular fibrils. In addition, results from western blotting revealed that phosphorylation at Ser 396 of Tau protein was significantly suppressed by adding of hDPSCs. These results indicate that hDPSCs may promote regeneration of damaged neuron cells in vitro model of AD and may serve as a useful cell source for treatment of AD. © 2017 International Federation for Cell Biology.
Collings, David A; Harper, John D I; Vaughn, Kevin C
2003-12-01
We have investigated changes in the distribution of peroxisomes through the cell cycle in onion ( Allium cepa L.) root meristem cells with immunofluorescence and electron microscopy, and in leek ( Allium porrum L.) epidermal cells with immunofluorescence and peroxisomal-targeted green fluorescent protein. During interphase and mitosis, peroxisomes distribute randomly throughout the cytoplasm, but beginning late in anaphase, they accumulate at the division plane. Initially, peroxisomes occur within the microtubule phragmoplast in two zones on either side of the developing cell plate. However, as the phragmoplast expands outwards to form an annulus, peroxisomes redistribute into a ring immediately inside the location of the microtubules. Peroxisome aggregation depends on actin microfilaments and myosin. Peroxisomes first accumulate in the division plane prior to the formation of the microtubule phragmoplast, and throughout cytokinesis, always co-localise with microfilaments. Microfilament-disrupting drugs (cytochalasin and latrunculin), and a putative inhibitor of myosin (2,3-butanedione monoxime), inhibit aggregation. We propose that aggregated peroxisomes function in the formation of the cell plate, either by regulating hydrogen peroxide production within the developing cell plate, or by their involvement in recycling of excess membranes from secretory vesicles via the beta-oxidation pathway. Differences in aggregation, a phenomenon which occurs in onion, some other monocots and to a lesser extent in tobacco BY-2 suspension cells, but which is not obvious in the roots of Arabidopsis thaliana (L.) Heynh., may reflect differences within the primary cell walls of these plants.
Prediction of glass durability as a function of environmental conditions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jantzen, C M
1988-01-01
A thermodynamic model of glass durability is applied to natural, ancient, and nuclear waste glasses. The durabilities of over 150 different natural and man-made glasses, including actual ancient Roman and Islamic glasses (Jalame ca. 350 AD, Nishapur 10-11th century AD and Gorgon 9-11th century AD), are compared. Glass durability is a function of the thermodynamic hydration free energy, ..delta..G/sub hyd/, which can be calculated from glass composition and solution pH. The durability of the most durable nuclear waste glasses examined was /approximately/10/sup 6/ years. The least durable waste glass formulations were comparable in durability to the most durable simulated medievalmore » window glasses of /approximately/10/sup 3/ years. In this manner, the durability of nuclear waste glasses has been interpolated to be /approximately/10/sup 6/ years and no less than 10/sup 3/ years. Hydration thermodynamics have been shown to be applicable to the dissolution of glass in various natural environments. Groundwater-glass interactions relative to geologic disposal of nuclear waste, hydration rind dating of obsidians, andor other archeological studies can be modeled, e.g., the relative durabilities of six simulated medieval window glasses have been correctly predicted for both laboratory (one month) and burial (5 years) experiments. Effects of solution pH on glass dissolution has been determined experimentally for the 150 different glasses and can be predicted theoretically by hydration thermodynamics. The effects of solution redox on dissolution of glass matrix elements such as SI and B have shown to be minimal. The combined effects of solution pH and Eh have been described and unified by construction of thermodynamically calculated Pourbaix (pH-Eh) diagrams for glass dissolution. The Pourbaix diagrams have been quantified to describe glass dissolution as a function of environmental conditions by use of the data derived from hydration thermodynamics. 56 refs., 7 figs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kincs, J.; Cho, J.; Bloyer, D.
1994-09-01
The T{sub g}`s and heat capacity functions have been measured for a series of Na{sub 2}S + B{sub 2}S{sub 3} glasses for the first time. Unlike the alkali borates, T{sub g} decreases rapidly as Na{sub 2}S is added to B{sub 2}S{sub 3}. This effect, even in the presence of a rapidly increasing fraction of tetrahedrally coordinated borons, has been associated with the ``over crosslinking`` effect of the sulfide ion. Unlike the borate glasses where each added oxygen produces two tetrahedral borons, the conversion rate for the thioborates is between four and six. This behavior is suggested to result in themore » formation of local tightly-bonded molecular-like structures that exhibit less long-range network bonding than the alkali borite glasses. A a result, T{sub g} decreases with added alkali in alkali thioborates rather than increases as in the alkali borate glasses. The change in heat capacity at T{sub g}, {Delta}C{sub p}(T{sub g}) has been carefully measured and is found to also decrease dramatically as alkali sulfide is added to the glass. Again this effect is opposite to the trends observed for the alkali borate glasses. The decreasing {Delta}C{sub p}(T{sub g}) occurs even in the presence of a decreasing T{sub g}. The authors have tentatively associated the diminishing {Delta}C{sub p}(T{sub g}) values to the decreasing density of the configurational states above T{sub g}. This is attributed to the high coordination number and site specificity caused by the added alkali sulfide. The glassy state heat capacities were analyzed and found to reach {approximately}90% of the classical limiting DuLong-Petit value just below T{sub g} for all glasses. This was used to suggest that the diminishing {Delta}C{sub p}(T{sub g}) values are associated with a unique behavior in the system to become a liquid with very little change in the density of configurational states.« less
Wang, Her-Yung; Chen, Jyun-Sheng
2010-01-01
In this study, controlled low-strength concrete (CLSC) is mixed using different water-to-binder (W/B) ratios (1.1, 1.3 and 1.5) and various percentages of sand substituted by waste LCD glass sand (0%, 10%, 20% and 30%). The properties of the fresh concrete, including compressive strength, electrical resistivity, ultrasonic pulse velocity, permeability ratio and shrinking of the CLSC, are examined. Results show that increases in amount of waste glass added result in better slump and slump flow, longer initial setting time and smaller unit weight. Compressive strength decreases with increasing W/B ratio and greater amounts of waste glass added. Both electrical resistivity and ultrasonic pulse velocity increase with increases in amount of waste glass and decreases in W/B ratio. On the contrary, the permeability ratio increases with increases in W/B ratio, but decreases with greater amounts of waste glass added. CLSC specimens cured for different durations show little changes in length with shrinkage below 0.025%. Our findings reveal that CLSC mixed using waste LCD glass in place of sand can meet design requirements. Recycling of waste LCD glass not only offers an economical substitute for aggregates, but also an ecological alternative for waste management. 2009 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Cosyns, P.; Cagno, S.; Janssens, K.; Nys, K.
LA-ICP-MS is a well acquainted technique for the quantification of a wide range of minor and trace elements present in the glass matrix. The benefit to understand the changes in technological processes or the added value in assessing the provenance and chronology of the raw glass material is however rarely discussed. By selecting a set of 197 Roman black glass artifacts dating between the 1st and 5th century AD we aimed to contribute to this issue. The obtained data on the production of glass artifacts helps better understand the constantly evolving patterns in glass consumption throughout the Roman imperial period. The key trace elements linked with the sand generally show the use of Levantine and Egyptian raw glass to produce black glass artifacts and result in well defined clusters. These indications are evidence for the use of different raw glasses in the Roman Empire and therefore featuring the work of diverse workshops over time. Specific trace elements such as copper, cobalt and lead reflect the application of recycling glass in Roman times.
ATP and microfilaments in cellular oxidant injury.
Hinshaw, D. B.; Armstrong, B. C.; Burger, J. M.; Beals, T. F.; Hyslop, P. A.
1988-01-01
Oxidant injury produces dramatic changes in cytoskeletal organization and cell shape. ATP synthetic pathways are major targets of oxidant injury resulting in rapid depletion of cellular ATP following oxidant exposure. The relation of ATP depletion to the changes in microfilament organization seen following H2O2 exposure were examined in the P388D1 cell line. Three hours of glucose depletion alone resulted in a decline in cellular ATP levels to less than 10% of controls, which was comparable to ATP levels in cells 30 to 60 minutes after exposure to 5 mM H2O2 in the presence of glucose. Adherent cells stained with rhodamine phalloidin, a probe specific for polymerized (F) actin, revealed a progressive shortening of microfilaments into globular aggregates within cells depleted of glucose over 3 hours, a pattern similar to earlier observations of H2O2-injured cells after 1 hour. The changes in cellular ATP associated with glucose depletion or H2O2 exposure were then correlated with G actin content measured by the DNAse 1 inhibition assay. No real differences in G actin content as a percentage of total actin were seen in P388D1 cells following 3 hours of glucose depletion or 30 to 60 minutes after exposure to 5 mM H2O2. But 2 to 3 hours after exposure to H2O2 there was a progressive decrease in G actin as a percentage of total actin within the cells. Transmission electron microscopy of cells depleted of glucose for 3 h or 1 hour after exposure to H2O2 revealed the presence of side-to-side aggregates or bundles of microfilaments within the cells. These observations suggest that declining levels of ATP either from metabolic inhibition or H2O2 injury are correlated with the fragmentation and shortening of microfilaments into aggregates. No net change in monomeric or polymeric actin was necessary for this to occur. However, at later time points after H2O2 exposure some actin assembly did occur. Images p[484]-a p481-a p482-a Figure 2 Figure 3 PMID:3414780
Effects of adding LiBF4 on the glass-transition kinetics of 1,2-propanediol
NASA Astrophysics Data System (ADS)
Terashima, Yukio; Takeda, Kiyoshi
2017-11-01
By applying an isoconversional method to differential-scanning calorimetry (DSC) data, we have discovered that the addition of LiBF4 significantly affects the activation energy Eα of the glass transition of 1,2-propanediol. Depending upon its concentration, the dynamics of the glass transition are affected more by adding LiBF4 at an early stage of the glass-to-liquid transition rather than at later stages. As the mole fraction x of LiBF4 increases, the value of Eα initially increases, but it decreases dramatically during the glass transition. The abrupt decline in Eα suggests that the addition of LiBF4 breaks cooperative rearranging motions into smaller parts. The expansion of cooperativity, and its fragmentation with increasing temperature, can be explained in terms of competition between the hydrogen-bond networks of the alcohol solvent and the ionic interactions due to the added salt. The variability of Eα with temperature is found to correlate exponentially with the dynamic fragility.
Sodalite as a vehicle to increase Re retention in waste glass simulant during vitrification
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luksic, Steven A.; Riley, Brian J.; Parker, Kent E.
Technetium retention during Hanford waste vitrification can be increased by inhibiting technetium volatility from the waste glass melter. Incorporating technetium into a mineral phase, such as sodalite, is one way to achieve this. Rhenium-bearing sodalite was tested as a vehicle to transport perrhenate (ReO4-), a nonradioactive surrogate for pertechnetate (TcO4-), into high-level (HLW) and low-activity waste (LAW) glasses. After melting feeds of these two glasses, the retention of rhenium was measured and compared with the rhenium retention in glass prepared from a feed containing Re2O7 as a standard. The rhenium retention was 21% higher for HLW glass and 85% highermore » for LAW glass when added to samples in the form of sodalite as opposed to when it was added as Re2O7, demonstrating the efficacy of this type of an approach.« less
Production of coloured glass-ceramics from incinerator ash using thermal plasma technology.
Cheng, T W; Huang, M Z; Tzeng, C C; Cheng, K B; Ueng, T H
2007-08-01
Incineration is a major treatment process for municipal solid waste in Taiwan. It is estimated that over 1.5 Mt of incinerator ash are produced annually. This study proposes using thermal plasma technology to treat incinerator ash. Sintered glass-ceramics were produced using quenched vitrified slag with colouring agents added. The experimental results showed that the major crystalline phases developed in the sintered glass-ceramics were gehlenite and wollastonite, but many other secondary phases also appeared depending on the colouring agents added. The physical/mechanical properties, chemical resistance and toxicity characteristic leaching procedure of the coloured glass-ceramics were satisfactory. The glass-ceramic products obtained from incinerator ash treated with thermal plasma technology have great potential for building applications.
Cytochalasin D does not inhibit gravitropism in roots
NASA Technical Reports Server (NTRS)
Staves, M. P.; Wayne, R.; Leopold, A. C.
1997-01-01
It is generally thought that sedimenting plastids are responsible for gravity sensing in higher plants. We directly tested the model generated by the current statolith hypothesis that the gravity sensing that leads to gravitropism results from an interaction between the plastids and actin microfilaments. We find that the primary roots of rice, corn, and cress undergo normal gravitropism and growth even when exposed to cytochalasin D, a disruptor of actin microfilaments. These results indicate that an interaction between amyloplasts and the actin cytoskeleton is not critical for gravity sensing in higher plants and weaken the current statolith hypothesis.
Containerless Manufacture of Glass Optical Fibers
NASA Technical Reports Server (NTRS)
Naumann, R. J.; Ethridge, E. C.
1985-01-01
Contamination and crystallization reduced in proposed process. Solid optical fiber drawn from an acoustically levitated lump of molten glass. New material added in solid form, melted and then moved into main body of molten glass. Single axis acoustic levitation furnances levitate glass melts at temperature up to about 700 degrees C. Processing in unit limited to low-melting temperature glasses.
NASA Astrophysics Data System (ADS)
Constantinescu, Bogdan; Cristea-Stan, Daniela; Szőkefalvi-Nagy, Zoltán; Kovács, Imre; Harsányi, Ildikó; Kasztovszky, Zsolt
2018-02-01
Combined external milli-beam Particle Induced X-ray Emission (PIXE) and Prompt Gamma Activation Analysis (PGAA) analysis was applied to characterize the composition of paste and colorants from some fragments of Byzantine bracelets (10th-12th Centuries AD), late medieval (17th-18th Centuries AD) and modern Murano glass pieces. As fluxes, PGAA revealed the samples are soda-lime glass, except four samples - two medieval vessel white shards and two dark Byzantine fragments of bracelets - which have potash flux. Aluminium was detected in various proportions in all samples indicating different sources for the added sand. The presence of Magnesium is relevant only in one bracelet fragment suggesting the use of plant (wood?) ash and confirming that the Byzantine bracelet is manufactured from the mixture of both types of glass (natron and plant ash based). PGAA also indicated the presence of low quantities of Cadmium, high level of Arsenic and Lead (possibly lead arsenate) in one medieval sample and of ZnO in Murano glass, and of CoO traces (maximum 0.1%) in all blue-colored Byzantine, late medieval to modern Murano glass artefacts. PIXE confirmed the use of small quantities of CoO for blue color, indicated Manganese combined with Iron for dark glass, Copper for green, Lead, Tin and an Arsenic compound (orpiment?) for yellow and in the case of modern Murano glass Selenium and Cadmium to obtain a reddish color. Despite PIXE - PIGE combination is probably the best one for glass analysis, our external milli-PIXE - PGAA methods proved to be adequate complementary tools to determine many chemical elements from glass composition - Si, Na, K, Ca, Al, Mg, various metallic oxides.
Consumer perception of risk associated with filters contaminated with glass fibers.
Cummings, K M; Hastrup, J L; Swedrock, T; Hyland, A; Perla, J; Pauly, J L
2000-09-01
The filters in Eclipse, a new cigarette-like smoking article marketed by R. J. Reynolds Tobacco Company, are contaminated with glass fibers, fragments, and particles. Reported herein are the results of a study in which consumers were questioned about their opinions as to whether exposure to glass fibers in such a filter poses an added health risk beyond that from smoking and whether the manufacturer has an obligation to inform consumers about the glass contamination problem. The study queried 137 adults who were interviewed while waiting at a Division of Motor Vehicles office in Erie County, New York in 1997. All but one person expressed the view that the presence of glass fibers on the filters poses an added health risk beyond that associated with exposure to tobacco smoke alone. Nearly all expressed the position that the cigarette manufacturer has a duty to inform the public about the potential for glass exposure.
Fabrication of glass microspheres with conducting surfaces
Elsholz, William E.
1984-01-01
A method for making hollow glass microspheres with conducting surfaces by adding a conducting vapor to a region of the glass fabrication furnace. As droplets or particles of glass forming material pass through multiple zones of different temperature in a glass fabrication furnace, and are transformed into hollow glass microspheres, the microspheres pass through a region of conducting vapor, forming a conducting coating on the surface of the microspheres.
Fabrication of glass microspheres with conducting surfaces
Elsholz, W.E.
1982-09-30
A method for making hollow glass microspheres with conducting surfaces by adding a conducting vapor to a region of the glass fabrication furnace. As droplets or particles of glass forming material pass through multiple zones of different temperature in a glass fabrication furnace, and are transformed into hollow glass microspheres, the microspheres pass through a region of conducting vapor, forming a conducting coating on the surface of the microspheres.
Induction of Plant Curvature by Magnetophoresis and Cytoskeletal Changes during Root Graviresponse
NASA Technical Reports Server (NTRS)
Hasenstein, Karl H.; Kuznetsov, Oleg A.; Blancaflor, Eilson B.
1996-01-01
High gradient magnetic fields (HGMF) induce curvature in roots and shoots. It is considered that this response is likely to be based on the intracellular displacement of bulk starch (amyloplasts) by the ponderomotive force generated by the HGMF. This process is called magnetophoresis. The differential elongation during the curvature along the concave and convex flanks of growing organs may be linked to the microtubular and/or microfilament cytoskeleton. The possible existence of an effect of the HGMF on the cytoskeleton was tested for, but none was found. The application of cytoskeletal stabilizers or depolymerizers showed that neither microtubules, nor microfilaments, are involved in the graviresponse.
NASA Technical Reports Server (NTRS)
Hilaire, E.; Paulsen, A. Q.; Brown, C. S.; Guikema, J. A.; Spooner, B. S. (Principal Investigator)
1995-01-01
The cytoskeleton of columella cells is believed to be involved in maintaining the developmental polarity of cells observed as a reproducible positioning of cellular organelles. It is also implicated in the transduction of gravitropic signals. Roots of sweet clover (Melilotus alba L.) seedlings were treated with a microfilament disrupter, cytochalasin D, on a slowly rotating horizontal clinostat (2 rpm). Electron micrographs of treated columella cells revealed several ultrastructural effects including repositioning of the nucleus and the amyloplasts and the formation of endoplasmic reticulum (ER) whorls. However, experiments performed during fast clinorotation (55 rpm) showed an accumulation (but no whorling) of a disorganized ER network at the proximal and distal pole and a random distribution of the amyloplasts. Therefore, formation of whorls depends upon the speed of clinorotation, and the overall impact of cytochalasin D suggests the necessity of microfilaments in organelle positioning. Interestingly, a similar drug treatment performed in microgravity aboard the US Space Shuttle Endeavour (STS-54, January 1993) caused a displacement of ER membranes and amyloplasts away from the distal plasma membrane. In the present study, we discuss the role of microfilaments in maintaining columella cell polarity and the utility of clinostats to simulate microgravity.
Microfilament-Eruption Mechanism for Solar Spicules
NASA Technical Reports Server (NTRS)
Sterling, Alphonse C.; Moore, Ronald L.
2017-01-01
Recent studies indicate that solar coronal jets result from eruption of small-scale filaments, or "minifilaments" (Sterling et al. 2015, Nature, 523, 437; Panesar et al. ApJL, 832L, 7). In many aspects, these coronal jets appear to be small-scale versions of long-recognized large-scale solar eruptions that are often accompanied by eruption of a large-scale filament and that produce solar flares and coronal mass ejections (CMEs). In coronal jets, a jet-base bright point (JBP) that is often observed to accompany the jet and that sits on the magnetic neutral line from which the minifilament erupts, corresponds to the solar flare of larger-scale eruptions that occurs at the neutral line from which the large-scale filament erupts. Large-scale eruptions are relatively uncommon (approximately 1 per day) and occur with relatively large-scale erupting filaments (approximately 10 (sup 5) kilometers long). Coronal jets are more common (approximately 100s per day), but occur from erupting minifilaments of smaller size (approximately 10 (sup 4) kilometers long). It is known that solar spicules are much more frequent (many millions per day) than coronal jets. Just as coronal jets are small-scale versions of large-scale eruptions, here we suggest that solar spicules might in turn be small-scale versions of coronal jets; we postulate that the spicules are produced by eruptions of "microfilaments" of length comparable to the width of observed spicules (approximately 300 kilometers). A plot of the estimated number of the three respective phenomena (flares/CMEs, coronal jets, and spicules) occurring on the Sun at a given time, against the average sizes of erupting filaments, minifilaments, and the putative microfilaments, results in a size distribution that can be fitted with a power-law within the estimated uncertainties. The counterparts of the flares of large-scale eruptions and the JBPs of jets might be weak, pervasive, transient brightenings observed in Hinode/CaII images, and the production of spicules by microfilament eruptions might explain why spicules spin, as do coronal jets. The expected small-scale neutral lines from which the microfilaments would be expected to erupt would be difficult to detect reliably with current instrumentation, but might be apparent with instrumentation of the near future. A full report on this work appears in Sterling and Moore 2016, ApJL, 829, L9.
Mingfei, Xing; Yaping, Wang; Jun, Li; Hua, Xu
2016-03-15
In this study, a novel process for detoxification and reutilization of waste cathode ray tube (CRT) funnel glass was developed by carbon thermal reduction enhanced acid leaching process. The key to this process is removal of lead from the CRT funnel glass and synchronous preparation of glass microspheres. Carbon powder was used as an isolation agent and a reducing agent. Under the isolation of the carbon powder, the funnel glass powder was sintered into glass microspheres. In thermal reduction, PbO in the funnel glass was first reduced to elemental Pb by carbon monoxide and then located on the surface of glass microspheres which can be removed easily by acid leaching. Experimental results showed that temperature, carbon adding amount and holding time were the major parameters that controlled lead removal rate. The maximum lead removal rate was 94.80% and glass microspheres that measured 0.73-14.74μm were obtained successfully by setting the temperature, carbon adding amount and holding time at 1200°C, 10% and 30min, respectively. The prepared glass microspheres may be used as fillers in polymer materials and abrasive materials, among others. Accordingly, this study proposed a practical and economical process for detoxification and recycling of waste lead-containing glass. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Shi, Huan; Feng, Ke-qin; Wang, Hai-bo; Chen, Chang-hong; Zhou, Hong-ling
2016-05-01
To effectively reuse high-titanium blast furnace slag (TS), foam glass-ceramics were successfully prepared by powder sintering at 1000°C. TS and waste glass were used as the main raw materials, aluminium nitride (AlN) as the foaming agent, and borax as the fluxing agent. The influence of the amount of AlN added (1wt%-5wt%) on the crystalline phases, microstructure, and properties of the produced foam glass-ceramics was studied. The results showed that the main crystal phases were perovskite, diopside, and augite. With increasing AlN content, a transformation from diopside to augite occurred and the crystallinity of the pyroxene phases slightly decreased. Initially, the average pore size and porosity of the foam glass-ceramics increased and subsequently decreased; similarly, their bulk density and compressive strength decreased and subsequently increased. The optimal properties were obtained when the foam glass-ceramics were prepared by adding 4wt% AlN.
Wang, Yu; Zhu, Jianxin
2012-05-15
This paper presents a novel process of extracting lead oxide nanoparticles from cathode-ray tube (CRT) funnel glass using self-propagating high-temperature synthesis (SHS) method. The impacts of added amount of funnel glass on the extraction ratio of lead, the lead extraction velocity and the micromorphology, as well as particle size of extracted nanoparticles were investigated. We found that self-propagating reaction in the presence of Mg and Fe(2)O(3) could separate lead preferentially and superfine lead oxide nanoparticles were obtained from a collecting chamber. The separation ratio was related closely to the amount of funnel glass added in the original mixture. At funnel glass addition of no more than 40wt.%, over 90wt.% of lead was recovered from funnel glass. High extraction yield reveals that the network structure of funnel glass was fractured due to the dramatic energy generated during the SHS melting process. The PbO nanoparticles collected show good dispersion and morphology with a mean grain size of 40-50nm. Copyright © 2012 Elsevier B.V. All rights reserved.
Monolithically integrated solid state laser and waveguide using spin-on glass
Ashby, C.I.H.; Hohimer, J.P.; Neal, D.R.; Vawter, G.A.
1995-10-31
A monolithically integrated photonic circuit is disclosed combining a semiconductor source of excitation light with an optically active waveguide formed on the substrate. The optically active waveguide is preferably formed of a spin-on glass to which are added optically active materials which can enable lasing action, optical amplification, optical loss, or frequency conversion in the waveguide, depending upon the added material. 4 figs.
Chen, Mengjun; Zhang, Fu-Shen; Zhu, Jianxin
2009-01-30
Cathode ray tube (CRT) is the first and foremost problem that must be solved in electronic waste disposal, and the key of which lies in the detoxification and reutilization of lead-contained funnel glass. In this study, a novel and effective process for funnel glass of dismantled CRT treatment was developed. The key point of the process was to recover metallic lead from the funnel glass and to prepare foam glass synchronously. Experimental results showed that lead recovery rate increased first with the increase of temperature, carbon adding amount, and holding time, then reached a plateau value, but pressure was on the contrary. The optimum temperature, pressure, carbon adding amount and holding time for lead recovery were 1000 degrees C, 1000 Pa, 5% and 4h, respectively, and the maximum lead recovery rate was 98.6%. In the pyrovacuum process, lead in the funnel glass was firstly detached and changed to PbO, then reduced and evaporated, and was recovered in the form of pure metal with a purity of 99.3%. The residue porous glass was environmentally acceptable for construction application.
Crystallization of a barium-aluminosilicate glass
NASA Technical Reports Server (NTRS)
Drummond, C. H., III; Lee, W. E.; Bansal, N. P.; Hyatt, M. J.
1989-01-01
The crystallization of a celsian glass composition was investigated as a possible high-temperature ceramic matrix material. Heat treatments invariably resulted in crystallization of the hexaclesian phase unless a flux, such as lithia, was added or a nucleating agent used (e.g., celsian seeds). TEM analysis revealed complex microstructures. Glasses with Mo additions contained hexacelsian, mullite, and an Mo-rich glass. Li2O additions stabilized celsian but mullite and Mo-rich glass were still present.
Geochemistry of glass and olivine from Keanakako`i Tephra at Kilauea Volcano, Hawai`i
NASA Astrophysics Data System (ADS)
Garcia, M. O.; Mucek, A. E.; Swanson, D.
2011-12-01
Kilauea Volcano is well known for its frequent quiescent eruptions. However, it also has an underappreciated explosive past. Recent field work has documented many details of the Keanakako`i Tephra, which was generated during a period of explosive activity when few lava flows were erupted. The dominantly phreatomagmatic eruptions, which produced the Keanakako`i Tephra, began late in, or completely after, the formation of Kilauea Caldera (ca. 1500 CE) and continued sporadically until 1823. Thereafter, effusive eruptions outside the caldera resumed and have continued to the present.The Keanakako`i deposits provide an opportunity to examine the restoration of Kilauea's magmatic plumbing following caldera formation. Glassy products with variable amounts of olivine dominate from ca. 1500 A.D. to the late 1600 A.D., whereas lithic-rich deposits with sparse glass are common in the 1700 A.D. deposits, which include the deadly explosive activity of A.D. 1790. Glass compositions from tephra and basalt flows show remarkable MgO variations (4-11 wt percent), larger than those observed in glasses from subsequent eruptions. Some units have variable MgO indicating a zoned magma reservoir, whereas some others have variable incompatible element ratios suggesting magma mixing. The highest MgO values (>10 wt percent) are from 1500 A.D. and 1823 deposits. The range of parental magma compositions based on tephra glasses erupted over a 300 year period is comparable to those observed for the first 15 years of the Pu`u `O`o eruption and about half of the variation observed for summit eruptions from 1832 to 1982. The limited range in tephra parental magma compositions may be related to a lower magma production rate during the period the tephra was erupted.
1977-01-01
Cationic local anesthetics have been reported to influence cellular responses to surface stimuli by interfering with the function of microtubules and microfilaments. Since unimpaired microtubule and microfilament functions are required by human polymorphonuclear leukocytes in order to respond normally to surface stimulation, we have studied effects of the local anesthetic, tetracaine on the function and morphology of these cells in vitro. Tetracaine (0.25--1.0 mM) significantly reduced extracellular release of the lysosomal enzymes, beta-glucuronidase and lysozyme from polymorphonuclear leukocytes exposed to serum-treated zymosan (a particulate stimulus), zymosan- treated serum (a soluble stimulus), and to the surface-active lectin, concanavalin A. Tetracaine also significantly reduced superoixde anion production (superoxide dismutase-inhibitable cytochrome c reduction) by these cells. Tetrancaine was not cytotoxic and its effects could be reversed completely by washing cells once with buffer. Electron microscope examination of tetracaine-treated cells revealed marked alterations of surface membranes. Microtubules and microfilaments appeared normal in "resting" polymorphonuclear leukocytes, but the increase in microtubules normally observed in stimulated cells was not seen after tetracaine treatment. These results suggest that tetracaine interferes with those interactions between immune reactants and the polymorphonuclear leukocyte cell surface which provoke exocytosis and increased oxidative metabolism. PMID:195003
Cytoskeleton in Mast Cell Signaling
Dráber, Pavel; Sulimenko, Vadym; Dráberová, Eduarda
2012-01-01
Mast cell activation mediated by the high affinity receptor for IgE (FcεRI) is a key event in allergic response and inflammation. Other receptors on mast cells, as c-Kit for stem cell factor and G protein-coupled receptors (GPCRs) synergistically enhance the FcεRI-mediated release of inflammatory mediators. Activation of various signaling pathways in mast cells results in changes in cell morphology, adhesion to substrate, exocytosis, and migration. Reorganization of cytoskeleton is pivotal in all these processes. Cytoskeletal proteins also play an important role in initial stages of FcεRI and other surface receptors induced triggering. Highly dynamic microtubules formed by αβ-tubulin dimers as well as microfilaments build up from polymerized actin are affected in activated cells by kinases/phosphatases, Rho GTPases and changes in concentration of cytosolic Ca2+. Also important are nucleation proteins; the γ-tubulin complexes in case of microtubules or Arp 2/3 complex with its nucleation promoting factors and formins in case of microfilaments. The dynamic nature of microtubules and microfilaments in activated cells depends on many associated/regulatory proteins. Changes in rigidity of activated mast cells reflect changes in intermediate filaments build up from vimentin. This review offers a critical appraisal of current knowledge on the role of cytoskeleton in mast cells signaling. PMID:22654883
Mitochondrial respiration is sensitive to cytoarchitectural breakdown.
Kandel, Judith; Angelin, Alessia A; Wallace, Douglas C; Eckmann, David M
2016-11-07
An abundance of research suggests that cellular mitochondrial and cytoskeletal disruption are related, but few studies have directly investigated causative connections between the two. We previously demonstrated that inhibiting microtubule and microfilament polymerization affects mitochondrial motility on the whole-cell level in fibroblasts. Since mitochondrial motility can be indicative of mitochondrial function, we now further characterize the effects of these cytoskeletal inhibitors on mitochondrial potential, morphology and respiration. We found that although they did not reduce mitochondrial inner membrane potential, cytoskeletal toxins induced significant decreases in basal mitochondrial respiration. In some cases, basal respiration was only affected after cells were pretreated with the calcium ionophore A23187 in order to stress mitochondrial function. In most cases, mitochondrial morphology remained unaffected, but extreme microfilament depolymerization or combined intermediate doses of microtubule and microfilament toxins resulted in decreased mitochondrial lengths. Interestingly, these two particular exposures did not affect mitochondrial respiration in cells not sensitized with A23187, indicating an interplay between mitochondrial morphology and respiration. In all cases, inducing maximal respiration diminished differences between control and experimental groups, suggesting that reduced basal respiration originates as a largely elective rather than pathological symptom of cytoskeletal impairment. However, viability experiments suggest that even this type of respiration decrease may be associated with cell death.
Wicks, George G.
1997-01-01
A thin, room-temperature-curing, ceramic composite for coating and patching etal substrates comprises a sol gel silica glass matrix filled with finely ground particles or fibers, preferably alumina. The sol gel glass is made by adding ethanol to water to form a first mixture, then separately adding ethanol to tetraethyl orthosilicate to form a second mixture, then slowly adding the first to the second mixture to make a third mixture, and making a slurry by adding the finely ground particles or fibers to the third mixture. The composite can be applied by spraying, brushing or trowelling. If applied to patch fine cracks, densification of the ceramic composite may be obtained to enhance sealing by applying heat during curing.
Wicks, G.G.
1997-01-21
A thin, room-temperature-curing, ceramic composite for coating and patching metal substrates comprises a sol gel silica glass matrix filled with finely ground particles or fibers, preferably alumina. The sol gel glass is made by adding ethanol to water to form a first mixture, then separately adding ethanol to tetraethyl orthosilicate to form a second mixture, then slowly adding the first to the second mixture to make a third mixture, and making a slurry by adding the finely ground particles or fibers to the third mixture. The composite can be applied by spraying, brushing or trowelling. If applied to patch fine cracks, densification of the ceramic composite may be obtained to enhance sealing by applying heat during curing.
Lim, Ho-Nam; Kim, Seong-Hwan; Yu, Bin; Lee, Yong-Keun
2009-01-01
The purpose of this study was to determine the influence of incrementally added uncured HEMA in experimental HEMA-added glass ionomer cement (HAGICs) on the mechanical and shear bond strength (SBS) of these materials. Increasing contents of uncured HEMA (10-50 wt.%) were added to a commercial glass ionomer cement liquid (Fuji II, GC, Japan), and the compressive and diametral tensile strengths of the resulting HAGICs were measured. The SBS to non-precious alloy, precious alloy, enamel and dentin was also determined after these surfaces were subjected to either airborne-particle abrasion (Aa) or SiC abrasive paper grinding (Sp). Both strength properties of the HAGICs first increased and then decreased as the HEMA content increased, with a maximum value obtained when the HEMA content was 20% for the compressive strength and 40% for the tensile strength. The SBS was influenced by the HEMA content, the surface treatment, and the type of bonding surface (p<0.05). These results suggest that addition of an appropriate amount of HEMA to glass ionomer cement would increase diametral tensile strength as well as bond strength to alloys and teeth. These results also confirm that the optimal HEMA content ranged from 20 to 40% within the limitations of this experimental condition. PMID:19668995
Optical, Thermal, and Mechanical Characterization of Ga2 Se3 -Added GLS Glass.
Ravagli, Andrea; Craig, Christopher; Alzaidy, Ghada A; Bastock, Paul; Hewak, Daniel W
2017-07-01
Gallium lanthanum sulfide glass (GLS) has been widely studied in the last 40 years for middle-infrared applications. In this work, the results of the substitution of selenium for sulphur in GLS glass are described. The samples are prepared via melt-quench method in an argon-purged atmosphere. A wide range of compositional substitutions are studied to define the glass-forming region of the modified material. The complete substitution of Ga 2 S 3 by Ga 2 Se 3 is achieved by involving new higher quenching rate techniques compared to those containing only sulfides. The samples exhibiting glassy characteristics are further characterized. In particular, the optical and thermal properties of the sample are investigated in order to understand the role of selenium in the formation of the glass. The addition of selenium to GLS glass generally results in a lower glass transition temperature and an extended transmission window. Particularly, the IR edge is found to be extended from about 9 µm for GLS glass to about 15 µm for Se-added GLS glass defined by the 50% transmission point. Furthermore, the addition of selenium does not affect the UV edge dramatically. The role of selenium is hypothesized in the glass formation to explain these changes. © 2017 University of Southampton. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Technical Reports Server (NTRS)
Mooney, D. J.; Langer, R.; Ingber, D. E.
1995-01-01
This study was undertaken to analyze how cell binding to extracellular matrix produces changes in cell shape. We focused on the initial process of cell spreading that follows cell attachment to matrix and, thus, cell 'shape' changes are defined here in terms of alterations in projected cell areas, as determined by computerized image analysis. Cell spreading kinetics and changes in microtubule and actin microfilament mass were simultaneously quantitated in hepatocytes plated on different extracellular matrix substrata. The initial rate of cell spreading was highly dependent on the matrix coating density and decreased from 740 microns 2/h to 50 microns 2/h as the coating density was lowered from 1000 to 1 ng/cm2. At approximately 4 to 6 hours after plating, this initial rapid spreading rate slowed and became independent of the matrix density regardless of whether laminin, fibronectin, type I collagen or type IV collagen was used for cell attachment. Analysis of F-actin mass revealed that cell adhesion to extracellular matrix resulted in a 20-fold increase in polymerized actin within 30 minutes after plating, before any significant change in cell shape was observed. This was followed by a phase of actin microfilament disassembly which correlated with the most rapid phase of cell extension and ended at about 6 hours; F-actin mass remained relatively constant during the slow matrix-independent spreading phase. Microtubule mass increased more slowly in spreading cells, peaking at 4 hours, the time at which the transition between rapid and slow spreading rates was observed. However, inhibition of this early rise in microtubule mass using either nocodazole or cycloheximide did not prevent this transition. Use of cytochalasin D revealed that microfilament integrity was absolutely required for hepatocyte spreading whereas interference with microtubule assembly (using nocodazole or taxol) or protein synthesis (using cycloheximide) only partially suppressed cell extension. In contrast, cell spreading could be completely inhibited by combining suboptimal doses of cytochalasin D and nocodazole, suggesting that intact microtubules can stabilize cell form when the microfilament lattice is partially compromised. The physiological relevance of the cytoskeleton and cell shape in hepatocyte physiology was highlighted by the finding that a short exposure (6 hour) of cells to nocodazole resulted in production of smaller cells 42 hours later that exhibited enhanced production of a liver-specific product (albumin). These data demonstrate that spreading and flattening of the entire cell body is not driven directly by net polymerization of either microfilaments or microtubules.(ABSTRACT TRUNCATED AT 400 WORDS).
Lin, Deng-Fong; Luo, Huan-Lin; Lin, Kuo-Liang; Liu, Zhe-Kun
2017-07-01
Applying sewage sludge ash (SSA) to produce reclaimed tiles is a promising recycling technology in resolving the increasing sludge wastes from wastewater treatment. However, performance of such reclaimed tiles is inferior to that of original ceramic tiles. Many researchers have therefore tried adding various industrial by-products to improve reclaimed tile properties. In this study, multiple materials including waste glass and waste foundry sand (WFS) were added in an attempt to improve physical and mechanical properties of reclaimed tiles with SSA. Samples with various combinations of clay, WFS, waste glass and SSA were made with three kiln temperatures of 1000°C, 1050°C, and 1100°C. A series of tests on the samples were next conducted. Test results showed that waste glass had positive effects on bending strength, water absorption and weight loss on ignition, while WFS contributed the most in reducing shrinkage, but could decrease the tile bending strength when large amount was added at a high kiln temperature. This study suggested that a combination of WFS from 10% to 15%, waste glass from 15% to 20%, SSA at 10% at a kiln temperature between 1000°C and 1050°C could result in quality reclaimed tiles with a balanced performance.
77 FR 21422 - Airworthiness Directives; The Boeing Company Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-10
... the fail-safe interlayer of certain No. 2 and No. 3 glass windows, which could result in loss of the... would hinder the internal or external detailed inspections for fail-safe interlayer cracks, glass pane... this AD only if the non-clear damage hinders the inspection for fail-safe interlayer cracks, glass pane...
Glass fiber addition strengthens low-density ablative compositions
NASA Technical Reports Server (NTRS)
Chandler, H. H.
1974-01-01
Approximately 15% of E-glass fibers was added to compositions under test and greatly improved char stability. Use of these fibers also reduced thermal strains which, in turn, minimized char shrinkage and associated cracks, subsurface voids, and disbonds. Increased strength allows honeycomb core reinforcement to be replaced by equivalent amount of glass fibers.
Lead recovery from waste CRT funnel glass by high-temperature melting process.
Hu, Biao; Hui, Wenlong
2018-02-05
In this research, a novel and effective process for waste CRT funnel glass treatment was developed. The key to this process is removal of lead from the CRT funnel glass by high-temperature melting process. Sodium carbonate powder was used as a fusion agent, sodium sulfide serves as a catalytic agent and carbon powder acts as reducing agent. Experimental results showed that lead recovery rate increased with an increase in the amount of added sodium carbonate, sodium sulfide, carbonate, temperature and holding time initially, and then reached a stable value. The maximum lead recovery rate was approximately 94%, when the optimum adding amount of sodium carbonate, sodium sulfide, carbonate, temperature and holding time were 25%, 8%, 3.6%, 1200°C and 120min, respectively. In the high-temperature melting process, lead silicate in the funnel glass was firstly reduced, and then removed. The glass slag can be made into sodium and potassium silicate by hydrolysis process. This study proposed a practical and economical process for recovery of lead and utilization of waste glass slag. Copyright © 2017 Elsevier B.V. All rights reserved.
Making MgO/SiO2 Glasses By The Sol-Gel Process
NASA Technical Reports Server (NTRS)
Bansal, Narottam P.
1989-01-01
Silicon dioxide glasses containing 15 mole percent magnesium oxide prepared by sol-gel process. Not made by conventional melting because ingredients immiscible liquids. Synthesis of MgO/SiO2 glass starts with mixing of magnesium nitrate hexahydrate with silicon tetraethoxide, both in alcohol. Water added, and transparent gel forms. Subsequent processing converts gel into glass. Besides producing glasses of new composition at lower processing temperatures, sol-gel method leads to improved homogeneity and higher purity.
Optical properties of BaO added bioactive Na2O-CaO-P2O5 glasses
NASA Astrophysics Data System (ADS)
Edathazhe, Akhila B.; Shashikala, H. D.
2018-04-01
This paper deals with the effect of BaO addition on the optical properties of bioactive Na2O-CaO-P2O5 glasses for biomedical optics applications. The phosphate glasses with composition (26-x)Na2O-xBaO-29CaO-45P2O5 (x = 0, 5, 10, 15 mol%) have been prepared by melt-quenching technique at 1100°C. The refractive index of glasses increased with BaO content. The optical band gap and Urbach energy of synthesized glasses were derived from the optical absorption spectra by using UV-Visible spectrometer. The addition of 5 mol% of BaO increased the band gap energy of glasses due to the formation of ionic cross-links in the glass structure. The defect and interstitial bonds formation in theglasses decreased with BaO additions as indicated by reductions in the Urbach energy values. No such variations in the band gap and Urbach energy values of glasses were observed with BaO content from 5 to 15 mol%. The molar and oxide ion polarizability values were calculated from the band gap and molar volume of glasses. The increase in the calculated optical basicity and metallization criteria of glasses supported the rise in band gap energy values with BaO additions. As the melting temperature of glasses decreased from 1200 to 1100°C, the refractive index increased as supported by the measured density values. The band gap energy is not changed with melting temperature. The Urbach energy decreased with decrease in melting temperature in case of BaO-free Na2O-CaO-P2O5 glasses, whereas it increased in case of BaO added glasses due to the role of BaO as modifying oxide.
Tu, Wei-Wei; Ji, Lin-Dan; Qian, Hai-Xia; Zhou, Mi; Zhao, Jin-Shun; Xu, Jin
2016-11-01
Tributyltin (TBT) has been widely used for various industrial purposes, and it has toxic effects on multiple organs and tissues. Previous studies have found that TBT could induce cytoskeletal disruption, especially of the actin filaments. However, the underlying mechanisms remain unclear. The aim of the present study was to determine whether TBT could induce microfilament disruption using HL7702 cells and then to assess for the total levels of various microfilament-associated proteins; finally, the involvement of the MAPK pathway was investigated. The results showed that after TBT treatment, F-actin began to depolymerize and lost its characteristic filamentous structure. The protein levels of Ezrin and Cofilin remained unchanged, the actin-related protein (ARP) 2/3 levels decreased slightly, and the vasodilator-stimulated phosphoprotein (VASP) decreased dramatically. However, the phosphorylation levels of VASP increased 2.5-fold, and the ratio of phosphorylated-VASP/unphosphorylated-VASP increased 31-fold. The mitogen-activated protein kinases (MAPKs) ERK and JNK were discovered to be activated. Inhibition of ERK and JNK not only largely diminished the TBT-induced hyperphosphorylation of VASP but also recovered the cellular morphology and rescued the cells from death. In summary, this study demonstrates that TBT-induced disruption of actin filaments is caused by the hyperphosphorylation of VASP through MAPK pathways. © 2015 Wiley Periodicals, Inc. Environ Toxicol 31: 1530-1538, 2016. © 2015 Wiley Periodicals, Inc.
Bismuth silicate glass containing heavy metal oxide as a promising radiation shielding material
NASA Astrophysics Data System (ADS)
Elalaily, Nagia A.; Abou-Hussien, Eman M.; Saad, Ebtisam A.
2016-12-01
Optical and FTIR spectroscopic measurements and electron paramagnetic resonance (EPR) properties have been utilized to investigate and characterize the given compositions of binary bismuth silicate glasses. In this work, it is aimed to study the possibility of using the prepared bismuth silicate glasses as a good shielding material for γ-rays in which adding bismuth oxide to silicate glasses causes distinguish increase in its density by an order of magnitude ranging from one to two more than mono divalent oxides. The good thermal stability and high density of the bismuth-based silicate glass encourage many studies to be undertaken to understand its radiation shielding efficiency. For this purpose a glass containing 20% bismuth oxide and 80% SiO2 was prepared using the melting-annealing technique. In addition the effects of adding some alkali heavy metal oxides to this glass, such as PbO, BaO or SrO, were also studied. EPR measurements show that the prepared glasses have good stability when exposed to γ-irradiation. The changes in the FTIR spectra due to the presence of metal oxides were referred to the different housing positions and physical properties of the respective divalent Sr2+, Ba2+ and Pb2+ ions. Calculations of optical band gap energies were presented for some selected glasses from the UV data to support the probability of using these glasses as a gamma radiation shielding material. The results showed stability of both optical and magnetic spectra of the studied glasses toward gamma irradiation, which validates their irradiation shielding behavior and suitability as the radiation shielding candidate materials.
Research on the Technology of Producing Building Stone by Using Blast Furnace Slag
NASA Astrophysics Data System (ADS)
Yan, Bingji; Zhang, Jianliang; Guo, Hongwei; Shi, Zhiwen; Liu, Feng
During production of a large quantity of steel, slag is produced at the same time. This paper chooses blast furnace slag (BFS) as the main material for the research. The purpose of the research is to explore its optimal physicochemical properties and the use of BFS in building stone field. The paper elaborates the experimentation process of producing glass-ceramics and presents the results. The results show that SiO2 content in BFS and amount of Cr2O3 and Fe2O3 added as nucleating agents have certain effect on the properties of glass-ceramics. The results also show that the exothermic peak temperature of base glass is the lowest when adding 20% SiO2 to the BFS, and 2% Cr2O3 and 3% Fe2O3 as nucleating agents, which makes easy crystallization and optimal properties of the glass-ceramics.
Remedial processing of oil shale fly ash (OSFA) and its value-added conversion into glass-ceramics.
Zhang, Zhikun; Zhang, Lei; Li, Aimin
2015-12-01
Recently, various solid wastes such as sewage sludge, coal fly ash and slag have been recycled into various products such as sintered bricks, ceramics and cement concrete. Application of these recycling approaches is much better and greener than conventional landfills since it can solve the problems of storage of industrial wastes and reduce exploration of natural resources for construction materials to protect the environment. Therefore, in this study, an attempt was made to recycle oil shale fly ash (OSFA), a by-product obtained from the extracting of shale oil in the oil shale industry, into a value-added glass-ceramic material via melting and sintering method. The influence of basicity (CaO/SiO2 ratio) by adding calcium oxide on the performance of glass-ceramics was studied in terms of phase transformation, mechanical properties, chemical resistances and heavy metals leaching tests. Crystallization kinetics results showed that the increase of basicity reduced the activation energies of crystallization but did not change the crystallization mechanism. When increasing the basicity from 0.2 to 0.5, the densification of sintering body was enhanced due to the promotion of viscous flow of glass powders, and therefore the compression strength and bending strength of glass-ceramics were increased. Heavy metals leaching results indicated that the produced OSFA-based glass-ceramics could be taken as non-hazardous materials. The maximum mechanical properties of compression strength of 186 ± 3 MPa, bending strength of 78 ± 6 MPa, good chemical resistances and low heavy metals leaching concentrations showed that it could be used as a substitute material for construction applications. The proposed approach will be one of the potential sustainable solutions in reducing the storage of oil shale fly ash as well as converting it into a value-added product. Copyright © 2015 Elsevier Ltd. All rights reserved.
Molecular mechanisms controlling pavement cell shape in Arabidopsis leaves.
Qian, Pingping; Hou, Suiwen; Guo, Guangqin
2009-08-01
Pavement cells have an interlocking jigsaw puzzle-shaped leaf surface pattern. Twenty-three genes involved in the pavement cell morphogenesis were discovered until now. The mutations of these genes through various means lead to pavement cell shape defects, such as loss or lack of interdigitation, the reduction of lobing, gaps between lobe and neck regions in pavement cells, and distorted trichomes. These phenotypes are affected by the organization of microtubules and microfilaments. Microtubule bands are considered corresponding with the neck regions of the cell, while lobe formation depends on patches of microfilaments. The pathway of Rho of plant (ROP) GTPase signaling cascades regulates overall activity of the cytoskeleton in pavement cells. Some other proteins, in addition to the ROPs, SCAR/WAVE, and ARP2/3 complexes, are also involved in the pavement cell morphogenesis.
Rediscovering ancient glass technologies through the examination of opacifier crystals
NASA Astrophysics Data System (ADS)
Lahlil, S.; Biron, I.; Galoisy, L.; Morin, G.
2008-07-01
The aim of the study is to understand how antimonate opacifying crystals were obtained throughout history. Two archaeological glass productions opacified with calcium and lead antimonates are studied in this paper, in order to rediscover ancient opaque glass technologies: Roman mosaic tesserae (1st cent. B.C. 4th cent. A.D.) and Nevers lampworking glass (18th cent. A.D.). The fine examination of crystalline phases and of the vitreous matrix is undertaken using various and complementary techniques. Results are compared with a modern reference production, for which the technological process is well known. We demonstrate that Ca-antimonate opacifiers in Roman mosaic tesserae, as well as in Nevers lampworking glass, were obtained by in situ crystallization. Nevertheless, Roman and Nevers glass would have undergone different firing processes. We propose that the addition of previously synthesized crystals or the use of “anime” could be the process used to obtain Pb-antimonate opacified glass, for both productions studied. We demonstrate that CaO, PbO and Sb2O3 concentrations in the bulk compositions and in the matrices, and their evolution with the crystallinity ratio, offer robust criteria for the distinction of the opacification process used. Also, the different crystalline structures help to provide information on the experimental conditions.
2011-06-01
metallic glass easier to create and more stable once formed, thus improving the corrosion resistance. Adding titanium will enable the formation of...glass easier to create and more stable once formed, thus improving the corrosion resistance. Adding titanium will enable the formation of an extremely...research, it was hypothesized that additions of titanium could enable the formation of a protective titanium oxide film on the surface of the alloy
Kroeger, Donald M.; Koch, Carl C.
1986-01-01
A metallic glass alloy that is either iron-based or nickel-based or based on a mixture of iron and nickel, containing lesser amounts of elements selected from the group boron, silicon carbon and phosphorous to which is added an amount of a ductility enhancing element selected from the group cerium, lanthanum, praseodymium and neodymium sufficient to increase ductility of the metallic glass upon annealing.
NASA Astrophysics Data System (ADS)
Zhou, Hong-ling; Feng, Ke-qin; Chen, Chang-hong; Yan, Zi-di
2018-06-01
Foamed glass-ceramics doped with cerium oxide (CeO2) were successfully prepared from high-titanium blast furnace slag by one-step sintering. The influence of CeO2 addition (1.5wt%-3.5wt%) on the crystalline phases, microstructure, and properties of foamed glass-ceramics was studied. Results show that CeO2 improves the stability of the glass phase and changes the two-dimensional crystallization mechanism into three-dimensional one. XRD analysis indicates the presence of Ca(Mg, Fe)Si2O6 and Ca(Ti, Mg, Al)(Si, Al)2O6 in all sintered samples. Added with CeO2, TiCeO4 precipitates, and crystallinity increases, leading to increased thickness of pore walls and uniform pores. The comprehensive properties of foamed glass-ceramics are better than that of samples without CeO2. In particular, the sample added with a suitable amount of CeO2 (2.5wt%) exhibits bulk density that is similar to and compressive strength (14.9 MPa) that is more than twice of foamed glass-ceramics without CeO2.
NASA Astrophysics Data System (ADS)
Peake, James R. N.; Freestone, Ian C.
Opaque red glass has been extensively studied over the years, but its compositional complexity and variability means that the way in which it was manufactured is still not fully understood. Previous studies have suggested the use of metallurgical by-products in its manufacture, but until now the evidence has been limited. SEM-EDS analysis of glass beads from the early Anglo-Saxon cemetery complex at Eriswell, southeast England, has provided further insights into the production and technology of opaque red glass, which could only have been possible through invasive sampling. The matrix of the red glasses contains angular particles of slag, the main phases of which typically correspond to either fayalite (Fe2SiO4) or kirschsteinite (CaFeSiO4), orthosilicate (olivine-type) minerals characteristic of some copper- and iron-smelting slags. This material appears to have been added in part as a reducing agent, to promote the precipitation of sub-micrometer particles of the colorant phase, copper metal. Its use represents a sophisticated, if empirical, understanding of materials and can only have resulted through deliberate experimentation with metallurgical by-products by early glass workers. Slag also seems to have been added as a source of iron to colour `black' glass. The compositions of the opaque red glasses appear to be strongly paralleled by Merovingian beads from northern Europe and Anglo-Saxon beads from elsewhere in England, suggesting that this technology is likely to have been quite widespread.
Recent developments in the fabrication of infrared fiber Bragg gratings
NASA Astrophysics Data System (ADS)
Busse, Lynda; Florea, Catalin; Shaw, Brandon; Sanghera, Jas; Nguyen, Vinh; Chin, Geoff; Aggarwal, Ishwar
2012-02-01
We report on the study of adding metal dopants in chalcogenide glasses to enhance the photosensitivity of the fiber core versus cladding compositions, with goal to enable high reflectivity gratings in infrared-transmitting fibers. Results for the optical and thermal properties of these glasses will be presented, as well as for gratings formation in the glasses using various writing wavelengths for the different doped compositions.
Economic manufacturing of bulk metallic glass compositions by microalloying
Liu, Chain T.
2003-05-13
A method of making a bulk metallic glass composition includes the steps of:a. providing a starting material suitable for making a bulk metallic glass composition, for example, BAM-11; b. adding at least one impurity-mitigating dopant, for example, Pb, Si, B, Sn, P, to the starting material to form a doped starting material; and c. converting the doped starting material to a bulk metallic glass composition so that the impurity-mitigating dopant reacts with impurities in the starting material to neutralize deleterious effects of the impurities on the formation of the bulk metallic glass composition.
Actin microfilaments in presumptive statocytes of root caps and coleoptiles
NASA Technical Reports Server (NTRS)
White, R. G.; Sack, F. D.
1990-01-01
Rhodamine-phalloidin was used to determine the distribution of actin microfilament bundles (mfb) in cells thought to be the site of gravity perception (statocytes) in coleoptiles and root caps of Zea mays and Hordeum vulgare. In coleoptile cells, amyloplasts were usually observed in close proximity to thick mfb, which often appeared to divide into finer mfb adjacent to individual amyloplasts. The nucleus in these cells was surrounded by an extensive network of mfb, which were connected to thicker transvacuolar mfb. Columella cells of the root cap contained an extensive reticulum of fine mfb throughout the protoplast, but lacked the much thicker mfb seen in coleoptile cells. The distribution and extent of mfb observed in fixed cells correlates with patterns of streaming and amyloplast movement seen in living cells. A possible role for actin mfb in the perception of gravity is discussed.
Choi, Tong-Il; Hong, Eui-Ju; Ryu, Si-Yun; Sim, Cheolho; Chae, Joon-Seok; Kim, Hyeon-Cheol; Park, Jinho; Choi, Kyoung-Seong; Yu, Do-Hyeon; Yoo, Jae-Gyu; Park, Bae-Keun
2018-04-01
To survey the prevalence of Sarcocystis infections, 210 heart samples were collected from Korean native cattle ( Bos taurus coreanae ) at an abattoir in Daejeon Metropolitan City, Republic of Korea. Sarcocysts were detected form 31 specimens (14.8%) and identified as Sarcocystis cruzi via transmission electron microscopy. The wall of S. cruzi has flattened protrusions that did not contain fibrils or microfilaments. The protrusions arose irregularly from the base, contained a fine granular substance, lacked internal microfilaments, and measured approximately 0.21-1.25 μm in length and 0.05-0.07 μm in width. Sequence analysis revealed 99.5% homology to S. cruzi . This is the first report on the prevalence of S. cruzi in native cattle from the Republic of Korea.
Zhao, Wenpeng; Qian, Huiming; Zhang, Ruisan; Gao, Xingchun; Gou, Xingchun
2017-07-01
Cancer is one of the most serious diseases that endanger human health in the world today, and the incidence and mortality of cancer increases year by year. Invasion and metastasis is the most prominent feature of malignant tumors, but also becomes the primary factor of threatening patient's health. Tumor cell invasion and metastasis which closely related to the dynamic changes of the cytoskeleton is an important factor influencing the survival of patients. Therefore, inhibition of tumor cell invasion and metastasis is a key strategy for the treatment of cancer. MACF1 is a microtubule microfilament cross-linking factor that plays an important role in cell polarization, cell migration, and maintenance of tissue integrity. A lot of studies have shown that microRNAs play an important role in tumorigenesis, invasion and metastasis. Therefore, we propose the following scientific assumptions: MACF1, an important molecule in adjusting the invasion and metastasis of tumor cells, regulates microfilaments, microtubules participating in cytoskeleton dynamics to promote malignant tumor cell migration and invasion; MicroRNA targeting MACF1 can decrease the expression of MACF1 and thus disrupt the dynamic balance of microtubule or microfilaments as an effective way to inhibit the invasion and metastasis of tumor cells. So we can use it as a new target for clinical early diagnosis and treatment of malignant tumor invasion and metastasis. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Schatten, H.; Hedrick, J.; Chakrabarti, A.
1998-01-01
Insect cell cultures derived from Drosophila melanogaster are increasingly being used as an alternative system to mammalian cell cultures, as they are amenable to genetic manipulation. Although Drosophila cells are an excellent tool for the study of genes and expression of proteins, culture conditions have to be considered in the interpretation of biochemical results. Our studies indicate that significant differences occur in cytoskeletal structure during the long-term culture of the Drosophila-derived cell lines Schneider Line-1 (S1) and Kc23. Scanning, transmission-electron, and immunofluorescence microscopy studies reveal that microfilaments, microtubules, and centrosomes become increasingly different during the culture of these cells from 24 h to 7-14 days. Significant cytoskeletal changes are observed at the cell surface where actin polymerizes into microfilaments, during the elongation of long microvilli. Additionally, long protrusions develop from the cell surface; these protrusions are microtubule-based and establish contact with neighboring cells. In contrast, the microtubule network in the interior of the cells becomes disrupted after four days of culture, resulting in altered transport of mitochondria. Microtubules and centrosomes are also affected in a small percent of cells during cell division, indicating an instability of centrosomes. Thus, the cytoskeletal network of microfilaments, microtubules, and centrosomes is affected in Drosophila cells during long-term culture. This implies that gene regulation and post-translational modifications are probably different under different culture conditions.
Role of the microtubule cytoskeleton in gravisensing Chara rhizoids.
Braun, M; Sievers, A
1994-04-01
The arrangement of the microtubule cytoskeleton in tip-growing and gravisensing Chara rhizoids has been documented by immunofluorescence microscopy. Predominantly axially oriented undulating bundles of cortical microtubules were found in the basal zone of the rhizoids and colocalized with the microfilament bundles underlying the cytoplasmic streaming. Microtubules penetrate the subapical zone, forming a three-dimensional network that envelops the nucleus and organelles. Microtubules are present up to 5 to 10 microns basal from the apical cytoplasmic region containing the statoliths. No microtubules were found in the apical zone of the rhizoid which is the site of tip growth and gravitropism. Depolymerization of microtubules by application of oryzalin does not affect cytoplasmic streaming and gravitropic growth until the relatively stationary and polarly organized apical and subapical cytoplasm is converted into streaming cytoplasm. When the statoliths and the apical cytoplasm are included in the cytoplasmic streaming, tip growth and gravitropism are stopped. Oryzalin-induced disruption of the microtubule cytoskeleton also results in a rearrangement of the dense network of apical and subapical microfilaments into thicker bundles, whereas disruption of the microfilament cytoskeleton by cytochalasin D had no effect on the organization of the microtubule cytoskeleton. It is, therefore, concluded that the arrangement of microtubules is essential for the polar cytoplasmic zonation and the functionally polar organization of the actin cytoskeleton which is responsible for the motile processes in rhizoids. Microtubules are not involved in the primary events of gravitropism in Chara rhizoids.
NASA Astrophysics Data System (ADS)
Ramasamy, Parthiban; Stoica, Mihai; Taghvaei, A. H.; Prashanth, K. G.; Ravi Kumar, Eckert, Jürgen
2016-02-01
The crystallization kinetics of [(Fe0.5Co0.5)0.75B0.2Si0.05]96Nb4 and {[(Fe0.5Co0.5)0.75B0.2Si0.05]0.96Nb0.04}99.5Cu0.5 bulk metallic glasses were evaluated using differential scanning calorimetry under non-isothermal condition. The fully glassy rods with diameters up to 2 mm were obtained by copper mold injection casting. Both glasses show good thermal stability, but the addition of only 0.5% Cu completely changes the crystallization behavior. The average activation energy required for crystallization decreases from 645 kJ/mol to 425 kJ/mol after Cu addition. Upon heating, the Cu-free alloy forms only the metastable Fe23B6 phase. In contrast, two well-separated exothermic events are observed for the Cu-added bulk glassy samples. First, the (Fe,Co) phase nucleates and then (Fe,Co)2B and/or (Fe,Co)3B crystallize from the remaining glassy matrix. The Cu-added alloy exhibits a lower coercivity and a higher magnetic saturation than the base alloy, both in as-cast as well as in annealed condition. Besides, the Cu-added glassy sample with 2 mm diameter exhibits a maximum compressive fracture strength of 3913 MPa together with a plastic strain of 0.6%, which is highest plastic strain ever reported for 2 mm diameter ferromagnetic bulk metallic glass sample. Although Cu addition improves the magnetic and mechanical properties of the glass, it affects the glass-forming ability of the base alloy.
Mohammadkhah, Ali; Marquardt, Laura M; Sakiyama-Elbert, Shelly E; Day, Delbert E; Harkins, Amy B
2015-04-01
Much work has focused on developing synthetic materials that have tailored degradation profiles and physical properties that may prove useful in developing biomaterials for tissue engineering applications. In the present study, three different composite sheets consisting of biodegradable poly-ε-caprolactone (PCL) and varying types of bioactive glass were investigated. The three composites were composed of 50wt.% PCL and (1) 50wt.% 13-93 B3 borate glass particles, (2) 50wt.% 45S5 silicate glass particles, or (3) a blend of 25wt.% 13-93 B3 and 25wt.% 45S5 glass particles. Degradation profiles determined for each composite showed the composite that contained only 13-93 B3 borate glass had a higher degradation rate compared to the composite containing only 45S5 silicate glass. Uniaxial tensile tests were performed on the composites to determine the effect of adding glass to the polymer on mechanical properties. The peak stress of all of the composites was lower than that of PCL alone, but 100% PCL had a higher stiffness when pre-reacted in cell media for 6weeks, whereas composite sheets did not. Finally, to determine whether the composite sheets would maintain neuronal growth, dorsal root ganglia isolated from embryonic chicks were cultured on composite sheets, and neurite outgrowth was measured. The bioactive glass particles added to the composites showed no negative effects on neurite extension, and neurite extension increased on PCL:45S5 PCL:13-93 B3 when pre-reacted in media for 24h. This work shows that composite sheets of PCL and bioactive glass particles provide a flexible biomaterial for neural tissue engineering applications. Copyright © 2015 Elsevier B.V. All rights reserved.
Metallic glass composition. [That does not embrittle upon annealing
Kroeger, D.M.; Koch, C.C.
1984-09-14
This patent pertains to a metallic glass alloy that is either iron-based or nickel-based or based on a mixture of iron and nickel, containing lesser amounts of elements selected from the group boron, silicon, carbon and phosphorous to which is added an amount of a ductility-enhancing element selected from the group cerium, lanthanum, praseodymium and neodymium sufficient to increase ductility of the metallic glass upon annealing.
Pick, E.
1974-01-01
The effect of a number of drugs on the production of macrophage migration inhibitory factor (MIF) by antigen-stimulated sensitized guinea-pig lymph node cells was studied. The drugs were present during the entire culture period and eliminated from supernatants by dialysis. It was found that MIF secretion is inhibited by exogenous dibutyryl cyclic AMP and by theophylline and chlorphenesin, two agents raising the endogenous level of cyclic AMP. On the other hand, isoproterenol, which stimulates cyclic AMP generation in several tissues, did not block MIF production. The formation of the mediator was also suppressed by the microfilament-affecting drug, cytochalasin B. The microtubular disruptive agents, colchicine and vinblastine sulphate, did not influence MIF production. It is concluded that: (a) endogenous cyclic AMP may act as a regulator of MIF production; (b) the activity of contractile microfilaments is probably required for MIF formation; and (c) microtubules are not involved in the secretory process. PMID:4369184
Tephrostratigraphy of Changbaishan volcano, northeast China, since the mid-Holocene
NASA Astrophysics Data System (ADS)
Sun, Chunqing; Liu, Jiaqi; You, Haitao; Nemeth, Karoly
2017-12-01
A detailed tephrostratigraphy of an active volcano is essential for evaluating its eruptive history, forecasting future eruptions and correlation with distal tephra records. Changbaishan volcano is known for its Millennium eruption (ME, AD 940s; VEI 7) and the ME tephra has been detected in Greenland ice cores ∼9000 km from the vent. However, the pre-Millennium (pre-ME) and post-Millennium (post-ME) eruptions are still poorly characterized. In this study, we present a detailed late Holocene eruptive sequence of Changbaishan volcano based on single glass shard compositions from tephra samples collected from around the caldera rim and flanks. Tephra ages are constrained by optically stimulated luminescence (OSL) and AMS 14C dates. Tephra from the mid-Holocene pre-ME eruption can be divided into two pyroclastic fall subunits, and it cannot be correlated with any known Changbaishan-sourced tephra recorded in the Japan Sea based on major element composition of glass shards, such as the B-J (Baegdusan-Japan Basin) and B-V (Baegdusan-Vladivostok-oki) tephras. ME pyroclastic fall deposits from the caldera rims and volcanic flanks can be correlated to the juvenile pumice lapilli or blocks within the pyroclastic density current (PDC) deposits deposited in the valleys around the volcano based on glass shard compositions. Our results indicate that the glass shard compositions of proximal ME tephra are more varied than previously thought and can be correlated with distal ME tephra. In addition, widely-dispersed mafic scoria was ejected by the ME Plinian column and deposited on the western and southern summits and the eastern flank of the volcano. Data for glass from post-ME eruptions, such as the historically-documented AD 1403, AD 1668 and AD 1702 eruptions, are reported here for the first time. Except for the ME, other Holocene eruptions, including pre-ME and post-ME eruptions, had the potential to form widely-distributed tephra layers around northeast Asia, and our dataset provides a proximal reference for tephra and cryptotephra studies in surrounding areas.
Roman mosaic glass: a study of production processes, using PIXE spectrometry
NASA Astrophysics Data System (ADS)
Fleming, S. J.; Swann, C. P.
1999-04-01
The most attractive Roman glass produced during the early part of the 1st century A.D. was mosaic ware - bowls and dishes molded from arrays of multi-colored canes that created abstract floral and geometric designs. Yet ancient literature tells us little about the organization of the glassworking industry in which such wares were produced. We have focused upon two kinds of mosaic decoration that include a component of white glass in their cane construction and have purple glass as their matrix. A consistent pattern in the minor levels of lead in each kind of glass suggests that they were the products of two separate workshops, each with separate sources of supply for their glass stock.
ERIC Educational Resources Information Center
Ruiz, Michael J.; Perkins, James
2016-01-01
We safely remove the outer glass bulb from an incandescent lamp and burn up the tungsten filament after the glass is removed. This demonstration dramatically illustrates the necessity of a vacuum or inert gas for the environment surrounding the tungsten filament inside the bulb. Our approach has added historical importance since the incandescent…
Hydrogen speciation in hydrated layers on nuclear waste glass
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aines, R.D.; Weed, H.C.; Bates, J.K.
1987-01-15
The hydration of an outer layer on nuclear waste glasses is known to occur during leaching, but the actual speciation of hydrogen (as water or hydroxyl groups) in these layers has not been determined. As part of the Nevada Nuclear Waste Storage Investigations Project, we have used infrared spectroscopy to determine hydrogen speciations in three nuclear waste glass compositions (SRL-131 & 165, and PNL 76-68), which were leached at 90{sup 0}C (all glasses) or hydrated in a vapor-saturated atmosphere at 202{sup 0}C (SRL-131 only). Hydroxyl groups were found in the surface layers of all the glasses. Molecular water was foundmore » in the surface of SRL-131 and PNL 76-68 glasses that had been leached for several months in deionized water, and in the vapor-hydrated sample. The water/hydroxyl ratio increases with increasing reaction time; molecular water makes up most of the hydrogen in the thick reaction layers on vapor-phase hydrated glass while only hydroxyl occurs in the least reacted samples. Using the known molar absorptivities of water and hydroxyl in silica-rich glass the vapor-phase layer contained 4.8 moles/liter of molecular water, and 0.6 moles water in the form hydroxyl. A 15 {mu}m layer on SRL-131 glass formed by leaching at 90{sup 0}C contained a total of 4.9 moles/liter of water, 2/3 of which was as hydroxyl. The unreacted bulk glass contains about 0.018 moles/liter water, all as hydroxyl. The amount of hydrogen added to the SRL-131 glass was about 70% of the original Na + Li content, not the 300% that would result from alkali=hydronium ion interdiffusion. If all the hydrogen is then assumed to be added as the result of alkali-H{sup +} interdiffusion, the molecular water observed may have formed from condensation of the original hydroxyl groups.« less
Lian, Hua-Yu; Jiao, Guang-Zhong; Wang, Hui-Li; Tan, Xiu-Wen; Wang, Tian-Yang; Zheng, Liang-Liang; Kong, Qiao-Qiao; Tan, Jing-He
2014-09-01
Although fusion of nucleoli was observed during pronuclear development of zygotes and the behavior of nucleoli in pronuclei has been suggested as an indicator of embryonic developmental potential, the mechanism for nucleolar fusion is unclear. Although both cytoskeleton and the nucleolus are important cellular entities, there are no special reports on the relationship between the two. Role of cytoskeleton in regulating fusion of nucleoli was studied using the activated mouse oocyte model. Mouse oocytes were cultured for 6 h in activating medium (Ca²⁺-free CZB medium containing 10 mM SrCl₂) supplemented with or without inhibitors for cytoskeleton or protein synthesis before pronuclear formation, nucleolar fusion, and the activity of maturation-promoting factor (MPF) were examined. Whereas treatment with microfilament inhibitor cytochalasin D or B or intermediate filament inhibitor acrylamide suppressed nucleolar fusion efficiently, treatment with microtubule inhibitor demecolcine or nocodazole or protein synthesis inhibitor cycloheximide had no effect. The cytochalasin D- or acrylamide-sensitive temporal window coincided well with the reported temporal window for nucleolar fusion in activated oocytes. Whereas a continuous incubation with demecolcine prevented pronuclear formation, pronuclei formed normally when demecolcine was excluded during the first hour of activation treatment when the MPF activity dropped dramatically. The results suggest that 1) microfilaments and intermediate filaments but not microtubules support nucleolar fusion, 2) proteins required for nucleolar fusion including microfilaments and intermediate filaments are not de novo synthesized, and 3) microtubule disruption prevents pronuclear formation by activating MPF. © 2014 by the Society for the Study of Reproduction, Inc.
Bellon, Alfredo; Ortíz-López, Leonardo; Ramírez-Rodríguez, Gerardo; Antón-Tay, Fernando; Benítez-King, Gloria
2007-04-01
Melatonin increases neurite formation in N1E-115 cells through microtubule enlargement elicited by calmodulin antagonism and vimentin intermediate filament reorganization caused by protein kinase C (PKC) activation. Microfilament rearrangement is also a necessary process in growth cone formation during neurite outgrowth. In this work, we studied the effect of melatonin on microfilament rearrangements present at early stages of neurite formation and the possible participation of PKC and the Rho-associated kinase (ROCK), which is a downstream kinase in the PKC signaling pathway. The results showed that 1 nm melatonin increased both the number of cells with filopodia and with long neurites. Similar results were obtained with the PKC activator phorbol 12-myristate 13-acetate (PMA). Both melatonin and PMA increased the quantity of filamentous actin. In contrast, the PKC inhibitor bisindolylmaleimide abolished microfilament organization elicited by either melatonin or PMA, while the Rho inhibitor C3, or the ROCK inhibitor Y27632, abolished the bipolar neurite morphology of N1E-115 cells. Instead, these inhibitors prompted neurite ramification. ROCK activity measured in whole cell extracts and in N1E-115 cells was increased in the presence of melatonin and PMA. The results indicate that melatonin increases the number of cells with immature neurites and suggest that these neurites can be susceptible to differentiation by incoming extracellular signals. Data also indicate that PKC and ROCK are involved at initial stages of neurite formation in the mechanism by which melatonin recruits cells for later differentiation.
Extraction of heavy metal ions from waste colored glass through phase separation.
Chen, Danping; Masui, Hirotsugu; Miyoshi, Hiroshi; Akai, Tomoko; Yazawa, Tetsuo
2006-01-01
A new method utilizing phase separation phenomena for the extraction of heavy metal ions used as colorants in colored glass is proposed. Colored soda-lime-silica glass containing Co or Cr as a colorant was remelted with B2O3 to yield soda-lime-borosilicate glass. The soda-lime-borosilicate glass thus obtained was leached in 1M nitric acid at 90 degrees C to dissolve the borate phase. All cations (Na, Ca, Cr and Co) concentrated in the borate phase are successfully leached out with the dissolution of the borate phase, when the amount of the B2O3 added to the glass and heat treatment conditions are properly chosen. Porous silicate glass powders with high SiO2 purity are obtained as the result of the leaching. Porous glass can also be formed as bulk material by controlling the composition of additives during the remelting.
Iodine Solubility in Low-Activity Waste Borosilicate Glass at 1000 °C
DOE Office of Scientific and Technical Information (OSTI.GOV)
Riley, Brian J.; Schweiger, Michael J.; Kim, Dong-Sang
2014-04-30
The purpose of this study was to determine the solubility of iodine in a low-activity waste borosilicate glass when heated inside an evacuated and sealed fused quartz ampoule. The iodine was added to glass frit as KI in quantities of 100–24000 ppm iodine (by mass), each mixture was added to an ampoule, the ampoule was heated at 1000 °C for 2 h and then air quenched. In samples with ≥12000 ppm iodine, low viscosity salt phases were observed on the surface of the melts during cooling that solidified into a white coating upon cooling. These salts were identified as mixturesmore » of KI, NaI, and Na2SO4 with X-ray diffraction (XRD). The iodine concentrations in glass specimens were analyzed with inductively-coupled plasma mass spectrometry and the overall iodine solubility was determined to be 10000 ppm by mass. Several crystalline inclusions of iodine sodalite, Na8(AlSiO4)6I2, were observed in the 24000 ppm specimen and were verified with micro-XRD and wavelength dispersive spectroscopy.« less
Iodine solubility in a low-activity waste borosilicate glass at 1000°C
Riley, Brian J.; Schweiger, Michael J.; Kim, Dong-Sang; ...
2014-04-30
The purpose of this study was to determine the solubility of iodine in a low-activity waste borosilicate glass when heated inside an evacuated and sealed fused quartz ampoule. The iodine was added to glass frit as KI in quantities of 100–24000 ppm iodine (by mass), each mixture was added to an ampoule, the ampoules were heated at 1000 °C for 2h, and then air quenched. In samples with ≥12000 ppm iodine, low viscosity salt phases were observed on the surface of the melts during cooling that solidified into a white coating upon cooling. These salts were identified as mixtures ofmore » KI, NaI, and Na 2SO 4 with X-ray diffraction (XRD). The iodine concentrations in glass specimens were analyzed with inductively-coupled plasma mass spectrometry and the overall iodine solubility was determined to be 10000 ppm by mass. Several crystalline inclusions of iodine sodalite, Na 8(AlSiO 4) 6I 2, were observed in the 24000 ppm specimen as determined by micro-XRD and wavelength dispersive spectroscopy.« less
Raman and Infrared Spectroscopy of Yttrium Aluminum Borate Glasses and Glass-ceramics
NASA Technical Reports Server (NTRS)
Bradley, J.; Brooks, M.; Crenshaw, T.; Morris, A.; Chattopadhyay, K.; Morgan, S.
1998-01-01
Raman spectra of glasses and glass-ceramics in the Y2O3-Al2O3-B2O3 system are reported. Glasses with B2O3 contents ranging from 40 to 60 mole percent were prepared by melting 20 g of the appropriate oxide or carbonate powders in alumina crucibles at 1400 C for 45 minutes. Subsequent heat treatments of the glasses at temperatures ranging from 600 to 800 C were performed in order to induce nucleation and crystallization. It was found that Na2CO3 added to the melt served as a nucleating agent and resulted in uniform bulk crystallization. The Raman spectra of the glasses are interpreted primarily in terms of vibrations of boron - oxygen structural groups. Comparison of the Raman spectra of the glass-ceramic samples with spectra of aluminate and borate crystalline materials reveal that these glasses crystallize primarily as yttrium aluminum borate, YAl3(BO3)4.
Single Mode Optical Waveguide Design Study.
1981-11-23
AD-I7g62 CORNING GLASS WORKS NY FIG 20/6 ADA0 21 SINGLE MODE OPTICAL WAVEGUIDE DESIGN STUDY.(U) NOV 81 V A BHAGAVATJLA. D B KECK, R A WESTWIG N00173...Ralph A. Westwig Corning Glass Works ’ 1 / Research and Development-Division Sullivan Park Corning, New York Th document ha bern c -yro vd Spubc rlea...Authors: Venkata A. Bhagavatula Donald B. Keck Ralph A. Westwig Corning Glass Works Research and Development Division Sullivan Park Corning, New York 11
Ash from a pulp mill boiler--characterisation and vitrification.
Ribeiro, Ana S M; Monteiro, Regina C C; Davim, Erika J R; Fernandes, M Helena V
2010-07-15
The physical, chemical and mineralogical characterisation of the ash resulting from a pulp mill boiler was performed in order to investigate the valorisation of this waste material through the production of added-value glassy materials. The ash had a particle size distribution in the range 0.06-53 microm, and a high amount of SiO(2) (approximately 82 wt%), which was present as quartz. To favour the vitrification of the ash and to obtain a melt with an adequate viscosity to cast into a mould, different amounts of Na(2)O were added to act as fluxing agent. A batch with 80 wt% waste load melted at 1350 degrees C resulting in a homogeneous transparent green-coloured glass with good workability. The characterisation of the produced glass by differential thermal analysis and dilatometry showed that this glass presents a stable thermal behaviour. Standard leaching tests revealed that the concentration of heavy metals in the leaching solution was lower than those allowed by the Normative. As a conclusion, by vitrification of batch compositions with adequate waste load and additive content it is possible to produce an ash-based glass that may be used in similar applications as a conventional silicate glass inclusively as a building ecomaterial. 2010 Elsevier B.V. All rights reserved.
Hot water, fresh beer, and salt
NASA Astrophysics Data System (ADS)
Crawford, Frank S.
1990-11-01
In the ``hot chocolate effect'' the best musical scales (those with the finest tone quality, largest range, and best tempo) are obtained by adding salt to a glass of hot water supersaturated with air. Good scales can also be obtained by adding salt to a glass of freshly opened beer (supersaturated with CO2) provided you first (a) get rid of much of the excess CO2 so as to produce smaller, hence slower, rising bubbles, and (b) get rid of the head of foam, which damps the standing wave and ruins the tone quality. Finally the old question, ``Do ionizing particles produce bubbles in fresh beer?'' is answered experimentally.
NASA Astrophysics Data System (ADS)
Liu, Hong-pan; Huang, Xiao-feng; Ma, Li-ping; Chen, Dan-li; Shang, Zhi-biao; Jiang, Ming
2017-03-01
CaO-Al2O3-SiO2 (CAS) glass-ceramics were prepared via a melting method using naturally cooled yellow phosphorus furnace slag as the main raw material. The effects of the addition of Fe2O3 on the crystallization behavior and properties of the prepared glass-ceramics were studied by differential thermal analysis, X-ray diffraction, and scanning electron microscopy. The crystallization activation energy was calculated using the modified Johnson-Mehl-Avrami equation. The results show that the intrinsic nucleating agent in the yellow phosphorus furnace slag could effectively promote the crystallization of CAS. The crystallization activation energy first increased and then decreased with increasing amount of added Fe2O3. At 4wt% of added Fe2O3, the crystallization activation energy reached a maximum of 676.374 kJ·mol-1. The type of the main crystalline phase did not change with the amount of added Fe2O3. The primary and secondary crystalline phases were identified as wollastonite (CaSiO3) and hedenbergite (CaFe(Si2O6)), respectively.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Surendran, K.P.; Mohanan, P.; Sebastian, M.T.
2004-11-01
The effect of glass additives on the densification, phase evolution, microstructure and microwave dielectric properties of Ba(Mg{sub 1/3}Ta{sub 2/3})O{sub 3} (BMT) was investigated. Different weight percentages of quenched glass such as B{sub 2}O{sub 3}, SiO{sub 2}, B{sub 2}O{sub 3}-SiO{sub 2}, ZnO-B{sub 2}O{sub 3}, 5ZnO-2B{sub 2}O{sub 3}, Al{sub 2}O{sub 3}-SiO{sub 2}, Na{sub 2}O-2B{sub 2}O{sub 3}.10H{sub 2}O, BaO-B{sub 2}O{sub 3}-SiO{sub 2}, MgO-B{sub 2}O{sub 3}-SiO{sub 2}, PbO-B{sub 2}O{sub 3}-SiO{sub 2}, ZnO-B{sub 2}O{sub 3}-SiO{sub 2} and 2MgO-Al{sub 2}O{sub 3}-5SiO{sub 2} were added to calcined BMT precursor. The sintering temperature of the glass-added BMT samples were lowered down to 1300 deg. C compared to solid-statemore » sintering where the temperature was 1650{sup o}C. The formation of high temperature satellite phases such as Ba{sub 5}Ta{sub 4}O{sub 15} and Ba{sub 7}Ta{sub 6}O{sub 22} were found to be suppressed by the glass addition. Addition of glass systems such as B{sub 2}O{sub 3}, ZnO-B{sub 2}O{sub 3}, 5ZnO-2B{sub 2}O{sub 3} and ZnO-B{sub 2}O{sub 3}-SiO{sub 2} improved the densification and microwave dielectric properties. Other glasses were found to react with BMT to form low-Q phases which prevented densification. The microwave dielectric properties of undoped BMT with a densification of 93.1% of the theoretical density were {epsilon}r=24.8, {tau}f=8ppm/{sup o}C and Q{sub u}xf=80,000GHz. The BMT doped with 1.0wt% of B{sub 2}O{sub 3} has Q{sub u}xf=124,700GHz, {epsilon}r=24.2, and {tau}f=-1.3ppm/ deg/ C. The unloaded Q factor of 0.2wt% ZnO-B{sub 2}O{sub 3}-doped BMT was 136,500GHz while that of 1.0wt% of 5ZnO-2B{sub 2}O{sub 3} added ceramic was Q{sub u}xf=141,800GHz. The best microwave quality factor was observed for ZnO-B{sub 2}O{sub 3}-SiO{sub 2} (ZBS) glass-added ceramics which can act as a perfect liquid-phase medium for the sintering of BMT. The microwave dielectric properties of 0.2wt% ZBS-added BMT dielectric was Q{sub u}xf=152,800GHz, {epsilon}r=25.5, and {tau}f=-1.5ppm/ deg. C.« less
Redox-dependent solubility of technetium in low activity waste glass
NASA Astrophysics Data System (ADS)
Soderquist, Chuck Z.; Schweiger, Michael J.; Kim, Dong-Sang; Lukens, Wayne W.; McCloy, John S.
2014-06-01
The solubility of technetium was measured in a Hanford low activity waste (LAW) glass simulant, to investigate the extent that technetium solubility controls the incorporation of technetium into LAW glass. A series of LAW glass samples, spiked with 500-6000 ppm of Tc as potassium pertechnetate, were melted at 1000 °C in sealed fused quartz ampoules. Technetium solubility was determined in the quenched bulk glass to be 2000-2800 ppm, with slightly reducing conditions due to choice of milling media resulting in reductant contamination and higher solubility. The chemical form of technetium obtained by X-ray absorption near edge spectroscopy is mainly isolated, octahedrally-coordinated Tc(IV), with a minority of Tc(VII) in some glasses and TcO2 in two glasses. The concentration and speciation of technetium depends on glass redox and amount of technetium added. Salts formed at the top of higher technetium loaded glasses during the melt. The results of this study show that technetium solubility should not be a factor in technetium retention during melting of Hanford LAW glass.
Teloplasm formation in a leech, Helobdella triserialis, is a microtubule-dependent process.
Astrow, S H; Holton, B; Weisblat, D A
1989-10-01
Fertilized eggs of the leech Helobdella triserialis undergo a cytoplasmic reorganization which generates domains of nonyolky cytoplasm, called teloplasm, at the animal and vegetal poles. The segregation of teloplasm to one cell of the eight-cell embryo is responsible for a unique developmental fate of that cell, i.e., to give rise to segmental ectoderm and mesoderm. We have studied the cytoplasmic movements that generate teloplasm using time-lapse video microscopy; the formation and migration of rings of nonyolky cytoplasm were visualized using transmitted light, while the movements of mitochondria into these rings were monitored with epifluorescence after labeling embryos with rhodamine 123, a fluorescent mitochondrial dye. To examine the likelihood that cytoskeletal elements play a role in the mechanism of teloplasm formation in Helobdella, we examined the distribution of microtubules and microfilaments during the first cell cycle by indirect immunofluorescence and rhodamine-phalloidin labeling, respectively. The cortex of the early embryo contained a network of microtubules many of which were oriented parallel to the cell surface. As teloplasm formation ensued, microtubule networks became concentrated in the animal and the vegetal cortex relative to the equatorial cortex. More extensive microtubule arrays were found within the rings of teloplasm. Actin filaments appeared in the form of narrow rings in the cortex, but these varied apparently randomly from embryo to embryo in terms of number, size, and position. The role of microtubules and microfilaments in teloplasm formation was tested using depolymerizing agents. Teloplasm formation was blocked by microtubule inhibitors, but not by microfilament inhibitors. These results differ significantly from those obtained in embryos of the oligochaete Tubifex hattai, suggesting that the presumably homologous cytoplasmic reorganizations seen in these two annelids have different cytoskeletal dependencies.
Milograna, Sarah Ribeiro; Ribeiro, Márcia Regina; Baqui, Munira Muhammad Abdel; McNamara, John Campbell
2014-12-01
The binding of red pigment concentrating hormone (RPCH) to membrane receptors in crustacean chromatophores triggers Ca²⁺/cGMP signaling cascades that activate cytoskeletal motors, driving pigment granule translocation. We investigate the distributions of microfilaments and microtubules and their associated molecular motors, myosin and dynein, by confocal and transmission electron microscopy, evaluating a functional role for the cytoskeleton in pigment translocation using inhibitors of polymer turnover and motor activity in vitro. Microtubules occupy the chromatophore cell extensions whether the pigment granules are aggregated or dispersed. The inhibition of microtubule turnover by taxol induces pigment aggregation and inhibits re-dispersion. Phalloidin-FITC actin labeling, together with tannic acid fixation and ultrastructural analysis, reveals that microfilaments form networks associated with the pigment granules. Actin polymerization induced by jasplaquinolide strongly inhibits RPCH-induced aggregation, causes spontaneous pigment dispersion, and inhibits pigment re-dispersion. Inhibition of actin polymerization by latrunculin-A completely impedes pigment aggregation and re-dispersion. Confocal immunocytochemistry shows that non-muscle myosin II (NMMII) co-localizes mainly with pigment granules while blebbistatin inhibition of NMMII strongly reduces the RPCH response, also inducing spontaneous pigment dispersion. Myosin II and dynein also co-localize with the pigment granules. Inhibition of dynein ATPase by erythro-9-(2-hydroxy-3-nonyl) adenine induces aggregation, inhibits RPCH-triggered aggregation, and inhibits re-dispersion. Granule aggregation and dispersion depend mainly on microfilament integrity although microtubules may be involved. Both cytoskeletal polymers are functional only when subunit turnover is active. Myosin and dynein may be the molecular motors that drive pigment aggregation. These mechanisms of granule translocation in crustacean chromatophores share various features with those of vertebrate pigment cells. Copyright © 2014 Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Sawyer, S. J.; Norvell, S. M.; Ponik, S. M.; Pavalko, F. M.
2001-01-01
Disruption of microfilaments in human umbilical vein endothelial cells (HUVEC) with cytochalasin D (cytD) or latrunculin A (latA) resulted in a 3.3- to 5.7-fold increase in total synthesis of prostaglandin E(2) (PGE(2)) and a 3.4- to 6.5-fold increase in prostacyclin (PGI(2)) compared with control cells. Disruption of the microtubule network with nocodazole or colchicine increased synthesis of PGE(2) 1.7- to 1.9-fold and PGI(2) 1.9- to 2.0-fold compared with control cells. Interestingly, however, increased release of PGE(2) and PGI(2) from HUVEC into the media occurred only when microfilaments were disrupted. CytD treatment resulted in 6.7-fold more PGE(2) and 3.8-fold more PGI(2) released from HUVEC compared with control cells; latA treatment resulted in 17.7-fold more PGE(2) and 11.2-fold more PGI(2) released compared with control cells. Both increased synthesis and release of prostaglandins in response to all drug treatments were completely inhibited by NS-398, a specific inhibitor of cyclooxygenase-2 (COX-2). Disruption of either microfilaments using cytD or latA or of microtubules using nocodazole or colchicine resulted in a significant increase in COX-2 protein levels, suggesting that the increased synthesis of prostaglandins in response to drug treatments may result from increased activity of COX-2. These results, together with studies demonstrating a vasoprotective role for prostaglandins, suggest that the cytoskeleton plays an important role in maintenance of endothelial barrier function by regulating prostaglandin synthesis and release from HUVEC.
Corrosion resistance of ceramic refractories to simulated waste glasses at high temperature
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xing, S.B.; Lin, Y.; Mohr, R.K.
1996-08-01
In many vitrification processes, refractory materials are used to contain the waste glass melt. The corrosive nature of the high-temperature melt consumes the waste feed materials but also limits refractory life. As vitrification is applied to more diverse waste streams, and particularly in higher-temperature applications, increasingly severe demands are placed on the refractory materials. A variety of potential refractory materials including Fused-cast AZS, Monofrax K3, Monofrax E, and the Corhart refractories ER1195, ER2161, C1215, C1215Z, Rechrome, and T1186, were subjected to corrosion testing at 1,450 C using the ASTM C-621 procedure. A series of simulated waste glasses was used whichmore » included F, Cl, S, Cu, Zn, Pb; these minor components were found to cause significant, and in some cases drastic, increases in corrosion rates. The corrosion tests were conducted over a range of time intervals extending to 144 hrs in order to investigate the kinetics of the corrosion processes. The change of the concentrations of constituents in the glass was monitored by compositional analysis of glass samples and correlated to the observed extent of corrosion; typically, components of the material under test increase with time while key minor components, such as Co and Pb, decrease. The rate of corrosion of high-zirconia refractories was slowed considerably by adding zirconia to the waste glass composition; this has the added benefit of improving the aqueous leach resistance of the waste form that is produced.« less
Zhang, Jing; Wu, Na; Gao, Na; Yan, Wenli; Sheng, Ziyang; Fan, Dongying; An, Jing
2016-05-01
Bleeding is a clinical characteristic of severe dengue and may be due to increased vascular permeability. However, the pathogenesis of severe dengue remains unclear. In this study, we showed that the Rac1-microfilament signal pathway was involved in the process of DENV serotype 2 (DENV2) infection in EAhy926 cells. DENV2 infection induced dynamic changes in actin organization, and treatment with Cytochalasin D or Jasplakinolide disrupted microfilament dynamics, reduced DENV2 entry, and inhibited DENV2 assembly and maturation. Rac1 activities decreased during the early phase and gradually increased by the late phase of infection. Expression of the dominant-negative form of Rac1 promoted DENV2 entry but inhibited viral assembly, maturation and release. Our findings demonstrated that Rac1 plays an important role in the DENV2 life cycle by regulating actin reorganization in EAhy926 cells. This finding provides further insight into the pathogenesis of severe dengue.
Gleason, Evanna L; Hogan, Jessica C; Stephens, Jacqueline M
2004-12-17
Signal transducers and activators of transcriptions (STATs) are a family of latent transcription factors which are activated by a variety of growth factors and cytokines in many cell types. However, the mechanism by which these transcription factors translocate to the nucleus is poorly understood. The goal of this study was to determine the requirement of microfilaments and microtubules for cytokine induced STAT activation in cultured adipocytes. We used seven different actin-specific and microtubule-specific agents that are well-established effectors of these cytoskeletal networks. Our results clearly demonstrate that inhibition of microfilaments or the prevention of microtubule polymerization has no effect on the ability of STATs to be tyrosine phosphorylated or to translocate to the nucleus. However, we observed that paclitaxel, a microtubule stabilizer, resulted in a significant decrease in the nuclear translocation of STATs without affecting the cytosolic tyrosine phosphorylation of these transcription factors. In summary, our results demonstrate that the dynamic instability, but not the polymerization, of microtubules contributes to nuclear translocation of STAT proteins in adipocytes.
Triggering signaling pathways using F-actin self-organization.
Colin, A; Bonnemay, L; Gayrard, C; Gautier, J; Gueroui, Z
2016-10-04
The spatiotemporal organization of proteins within cells is essential for cell fate behavior. Although it is known that the cytoskeleton is vital for numerous cellular functions, it remains unclear how cytoskeletal activity can shape and control signaling pathways in space and time throughout the cell cytoplasm. Here we show that F-actin self-organization can trigger signaling pathways by engineering two novel properties of the microfilament self-organization: (1) the confinement of signaling proteins and (2) their scaffolding along actin polymers. Using in vitro reconstitutions of cellular functions, we found that both the confinement of nanoparticle-based signaling platforms powered by F-actin contractility and the scaffolding of engineered signaling proteins along actin microfilaments can drive a signaling switch. Using Ran-dependent microtubule nucleation, we found that F-actin dynamics promotes the robust assembly of microtubules. Our in vitro assay is a first step towards the development of novel bottom-up strategies to decipher the interplay between cytoskeleton spatial organization and signaling pathway activity.
Triggering signaling pathways using F-actin self-organization
Colin, A.; Bonnemay, L.; Gayrard, C.; Gautier, J.; Gueroui, Z.
2016-01-01
The spatiotemporal organization of proteins within cells is essential for cell fate behavior. Although it is known that the cytoskeleton is vital for numerous cellular functions, it remains unclear how cytoskeletal activity can shape and control signaling pathways in space and time throughout the cell cytoplasm. Here we show that F-actin self-organization can trigger signaling pathways by engineering two novel properties of the microfilament self-organization: (1) the confinement of signaling proteins and (2) their scaffolding along actin polymers. Using in vitro reconstitutions of cellular functions, we found that both the confinement of nanoparticle-based signaling platforms powered by F-actin contractility and the scaffolding of engineered signaling proteins along actin microfilaments can drive a signaling switch. Using Ran-dependent microtubule nucleation, we found that F-actin dynamics promotes the robust assembly of microtubules. Our in vitro assay is a first step towards the development of novel bottom-up strategies to decipher the interplay between cytoskeleton spatial organization and signaling pathway activity. PMID:27698406
Lifeact-mEGFP Reveals a Dynamic Apical F-Actin Network in Tip Growing Plant Cells
Hepler, Peter K.; Bezanilla, Magdalena
2009-01-01
Background Actin is essential for tip growth in plants. However, imaging actin in live plant cells has heretofore presented challenges. In previous studies, fluorescent probes derived from actin-binding proteins often alter growth, cause actin bundling and fail to resolve actin microfilaments. Methodology/Principal Findings In this report we use Lifeact-mEGFP, an actin probe that does not affect the dynamics of actin, to visualize actin in the moss Physcomitrella patens and pollen tubes from Lilium formosanum and Nicotiana tobaccum. Lifeact-mEGFP robustly labels actin microfilaments, particularly in the apex, in both moss protonemata and pollen tubes. Lifeact-mEGFP also labels filamentous actin structures in other moss cell types, including cells of the gametophore. Conclusions/Significance Lifeact-mEGFP, when expressed at optimal levels does not alter moss protonemal or pollen tube growth. We suggest that Lifeact-mEGFP represents an exciting new versatile probe for further studies of actin's role in tip growing plant cells. PMID:19478943
Jacques, Eveline; Lewandowski, Michal; Buytaert, Jan; Fierens, Yves; Verbelen, Jean-Pierre; Vissenberg, Kris
2013-01-01
The plant cytoskeleton plays a crucial role in the cells’ growth and development during different developmental stages and it undergoes many rearrangements. In order to describe the arrangements of the F-actin cytoskeleton in root epidermal cells of Arabidopsis thaliana, the recently developed software MicroFilament Analyzer (MFA) was exploited. This software enables high-throughput identification and quantification of the orientation of filamentous structures on digital images in a highly standardized and fast way. Using confocal microscopy and transgenic GFP-FABD2-GFP plants the actin cytoskeleton was visualized in the root epidermis. MFA analysis revealed that during the early stages of cell development F-actin is organized in a mainly random pattern. As the cells grow, they preferentially adopt a longitudinal organization, a pattern that is also preserved in the largest cells. In the evolution from young to old cells, an approximately even distribution of transverse, oblique or combined orientations is always present besides the switch from random to a longitudinal oriented actin cytoskeleton. PMID:23656865
Loss of halogens from crystallized and glassy silicic volcanic rocks
Noble, D.C.; Smith, V.C.; Peck, L.C.
1967-01-01
One hundred and sixty-four F and Cl analyses of silicic welded tuffs and lavas and glass separates are presented. Comparison of the F and Cl contents of crystallized rocks with those of nonhydrated glass and hydrated glassy rocks from the same rock units shows that most of the halogens originally present were lost on crystallization. An average of about half of the F and four-fifths of the Cl originally present was lost. Analyses of hydrated natural glasses and of glassy rocks indicate that in some cases significant amounts of halogens may be removed from or added to hydrated glass through prolonged contact with ground water. The data show that the original halogen contents of the groundmass of a silicic volcanic rock can be reliably determined only from nonhydrated glass. ?? 1967.
Moshaverinia, Alireza; Ansari, Sahar; Movasaghi, Zanyar; Billington, Richard W; Darr, Jawwad A; Rehman, Ihtesham U
2008-10-01
The objective of this study was to enhance the mechanical strength of glass-ionomer cements, while preserving their unique clinical properties. Copolymers incorporating several different segments including N-vinylpyrrolidone (NVP) in different molar ratios were synthesized. The synthesized polymers were copolymers of acrylic acid and NVP with side chains containing itaconic acid. In addition, nano-hydroxyapatite and fluoroapatite were synthesized using an ethanol-based sol-gel technique. The synthesized polymers were used in glass-ionomer cement formulations (Fuji II commercial GIC) and the synthesized nanoceramic particles (nano-hydroxy or fluoroapatite) were also incorporated into commercial glass-ionomer powder, respectively. The synthesized materials were characterized using FTIR and Raman spectroscopy and scanning electron microscopy. Compressive, diametral tensile and biaxial flexural strengths of the modified glass-ionomer cements were evaluated. After 24h setting, the NVP modified glass-ionomer cements exhibited higher compressive strength (163-167 MPa), higher diametral tensile strength (DTS) (13-17 MPa) and much higher biaxial flexural strength (23-26 MPa) in comparison to Fuji II GIC (160 MPa in CS, 12MPa in DTS and 15 MPa in biaxial flexural strength). The nano-hydroxyapatite/fluoroapatite added cements also exhibited higher CS (177-179 MPa), higher DTS (19-20 MPa) and much higher biaxial flexural strength (28-30 MPa) as compared to the control group. The highest values for CS, DTS and BFS were found for NVP-nanoceramic powder modified cements (184 MPa for CS, 22 MPa for DTS and 33 MPa for BFS) which were statistically higher than control group. It was concluded that, both NVP modified and nano-HA/FA added glass-ionomer cements are promising restorative dental materials with improved mechanical properties.
Hot water, fresh beer, and salt
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crawford, F.S.
1990-11-01
In the hot chocolate effect'' the best musical scales (those with the finest tone quality, largest range, and best tempo) are obtained by adding salt to a glass of hot water supersaturated with air. Good scales can also be obtained by adding salt to a glass of freshly opened beer (supersaturated with CO{sub 2}) provided you first (a) get rid of much of the excess CO{sub 2} so as to produce smaller, hence slower, rising bubbles, and (b) get rid of the head of foam, which damps the standing wave and ruins the tone quality. Finally the old question, Domore » ionizing particles produce bubbles in fresh beer '' is answered experimentally.« less
Evaluation of the gamma radiation shielding parameters of bismuth modified quaternary glass system
NASA Astrophysics Data System (ADS)
Kaur, Parminder; Singh, K. J.; Thakur, Sonika
2018-05-01
Glasses modified with heavy metal oxides (HMO) are an interesting area of research in the field of gamma-ray shielding. Bismuth modified lithium-zinc-borate glasses have been studied whereby bismuth oxide is added from 0 to 50 mol%. The gamma ray shielding properties of the glasses were evaluated at photon energy 662 keV with the help of XMuDat computer program by using the Hubbell and Seltzer database. Various gamma ray shielding parameters such as attenuation coefficient, shield thickness in terms of half and tenth value layer, effective atomic number have been studied in this work. A useful comparison of this glass system has been made with standard radiation shielding concretes viz. ordinary, barite and iron concrete. The glass samples containing 20 to 50 mol% bismuth oxide have shown better gamma ray shielding properties and hence have the potential to become good radiation absorbers.
The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...
Subpicosecond pulses from a neodymium-glass laser with a solid-liquid phototropic shutter
NASA Astrophysics Data System (ADS)
Altshuler, G. B.; Dulneva, E. G.; Karasev, V. B.; Okishev, A. V.; Telegin, L. S.
1985-02-01
Subpicosecond, spectrally limited pulses were generated in a mode-locked silicate-Nd-glass laser by means of a phototropic shutter. The shutter featured molecules of an organic dye added to a matrix composed of an isobutyl alcohol-filled quartz micropore glass plate. A coating on the inner surface of one of the cell windows was 0.99 reflective at the lasing wavelength. Single pulses with 0.5-1 psec length were generated, validating the use of a solid-liquid shutter for producing subpicosecond pulses with a Nd-glass laser. Furthermore, the liquid component permitted output powers of up to 5 W/sq cm without eliciting thermooptical effects.
DSC and Raman studies of silver borotellurite glasses
NASA Astrophysics Data System (ADS)
Kaur, Amandeep; Khanna, Atul; Gonzàlez, Fernando
2016-05-01
Silver borotellurite glasses of composition: xAg2O-yB2O3-(100-x-y)TeO2 (x=20-mol%, y = 0, 10, 20 and 30-mol%) were prepared and characterized by density, X-ray diffraction (XRD), differential scanning calorimetry, and Raman spectroscopy. XRD confirmed the amorphous structure of all samples. Density of glasses decreases while the glass transition temperature increases with increase in B2O3 content from 10 to 30-mol%. Raman study shows that coordination number of Te with oxygen decreases steadily from 3.42 to 3.18 on adding B2O3 due to the transformation of TeO4 into TeO3 units.
Enhancement of thermal neutron shielding of cement mortar by using borosilicate glass powder.
Jang, Bo-Kil; Lee, Jun-Cheol; Kim, Ji-Hyun; Chung, Chul-Woo
2017-05-01
Concrete has been used as a traditional biological shielding material. High hydrogen content in concrete also effectively attenuates high-energy fast neutrons. However, concrete does not have strong protection against thermal neutrons because of the lack of boron compound. In this research, boron was added in the form of borosilicate glass powder to increase the neutron shielding property of cement mortar. Borosilicate glass powder was chosen in order to have beneficial pozzolanic activity and to avoid deleterious expansion caused by an alkali-silica reaction. According to the experimental results, borosilicate glass powder with an average particle size of 13µm showed pozzolanic activity. The replacement of borosilicate glass powder with cement caused a slight increase in the 28-day compressive strength. However, the incorporation of borosilicate glass powder resulted in higher thermal neutron shielding capability. Thus, borosilicate glass powder can be used as a good mineral additive for various radiation shielding purposes. Copyright © 2017 Elsevier Ltd. All rights reserved.
Nandini, Suresh; Ballal, Suma; Kandaswamy, Deivanayagam
2007-02-01
The prolonged setting time of mineral trioxide aggregate (MTA) is the main disadvantage of this material. This study analyzes the influence of glass-ionomer cement on the setting of MTA using laser Raman spectroscopy (LRS). Forty hollow glass molds were taken in which MTA was placed. In Group I specimens, MTA was layered with glass-ionomer cement after 45 minutes. Similar procedures were done for Groups II and III at 4 hours and 3 days, respectively. No glass ionomer was added in Group IV, which were then considered as control samples. Each sample was scanned at various time intervals. At each time interval, the interface between MTA and glass-ionomer cement was also scanned (excluding Group IV). The spectral analysis proved that placement of glass-ionomer cement over MTA after 45 minutes did not affect its setting reaction and calcium salts may be formed in the interface of these two materials.
NASA Astrophysics Data System (ADS)
Borodi, G.; Bolundut, L. C.; Pascuta, P.
2017-12-01
The effect of replacing B2O3 with Er2O3 on the thermal properties and crystallization behaviour of B2O3-ZnO glasses were investigated by Differential Thermal Analysis (DTA) and X-ray Diffraction Analysis (XRD) measurements. DTA measurements reveal that the temperature of vitreous transition and the glass stability increase with the increasing in concentration the erbium ions added in the samples. The fragility index of the glasses increases also, when the dopant concentration from the studied samples increases. The glass was obtained from kinetically strong-glass-forming liquid (KS type glass). The most stable sample from the thermal point of view seems to be the sample that contains 10 mol% of Er2O3. The XRD patterns of the heat-treated samples at 860°C show new crystalline phases that contain erbium when the concentration of Er2O3 in the samples is higher than 3 mol%.
Liu, Jie; Ren, Xi; Guo, Xiaowei; Sun, Huanbo; Tang, Yong; Luo, Zhenghui; Zhang, Qiong; Zhang, Dongxia; Huang, Yuesheng; Zhang, Jiaping
2016-04-01
To explore the effects of direct current electric fields on directional migration and arrangement of dermal fibroblasts in neonatal BALB/c mice and the related mechanisms. Twelve neonatal BALB/c mice were divided into 4 batches. The skin on the back of 3 neonatal mice in each batch was obtained to culture fibroblasts. Fibroblasts of the second passage were inoculated in 27 square cover slips with the concentration of 5 × 10(4) cells per mL. (1) Experiment 1. Six square cover slips inoculated with fibroblasts of the second passage were divided into electric field group (EF) and sham electric field group (SEF), with 3 cover slips in each group. The cover slips were put in live cell imaging workstation. The cells in group EF was treated with electric power with EF intensity of 200 mV/mm, while simulating process without actual power was given to SEF group (the same below) for 6 h. Cell proliferation rate was subsequently counted. (2) Experiment 2. Six cover slips were divided and underwent the same processes as in experiment 1. Cell movement locus within EF hour (EFH) 6, direction change of cell migration at EFH 0 (immediately), 1, 2, 3, 4, 5, and 6 which was denoted as cos(α), cell migration velocity within EFH 6, direction change of long axis of cell within EFH 6, and direction change of cell arrangement at EFH 0, 1, 2, 3, 4, 5, and 6 which was denoted as polarity value cos[2(θ-90)] were observed under live cell imaging workstation. After EFH 6, the morphological changes in microtubules and microfilaments were observed with immunofluorescent staining. (3) Experiment 3. Six cover slips were divided into cytochalasin D group (treated with 1 μmol/L cytochalasin D for 10 min) and colchicine group (treated with 5 μmol/L colchicine for 10 min), with 3 cover slips in each group. The morphological changes in microfilaments and microtubules were observed with the same method as in experiment 2. (4) Experiment 4. Nine cover slips were divided into control group (no reagent was added), cytochalasin D group and colchicine group (added with the same reagents as in experiment 3), with 3 cover slips in each group. Cells in the 3 groups were exposed to an EF of 200 mV/mm for 6 h. Cell movement locus within EFH 6, cell migration velocity within EFH 6, cell polarity values at EFH 0, 3, and 6, and morphological changes of cells at EFH 0 and 6 were observed. Data were processed with independent samples t-test, one-way analysis of variance, and LSD test. (1) There was no statistically significant difference in cell proliferation rate in group EF and group SEF (t=-0.24, P﹥0.05). (2) Within EFH 6, cells in group EF migrated towards the anode of EF, while cells in group SEF moved randomly. At EFH 0, the values of cos(α) of cells in the 2 groups were both 0. The absolute value of cos(α) of cells in group EF (-0.57 ± 0.06) was significantly higher than that in group SEF (0.13 ± 0.09, t=6.68, P<0.01) at EFH 1, and it was still higher than that in group SEF from EFH 2 to 6 (with t values from 5.33 to 6.83, P values below 0.01). Within EFH 6, migration velocity of cells in group EF was (0.308 ± 0.019) μm/min, which was significantly higher than that in group SEF [(0.228 ± 0.021) μm/min, t=-2.76, P<0.01]. Within EFH 6, long axis of cells in group EF was perpendicular to the direction of EF, while arrangement of cells in group SEF was irregular. Cell polarity values in group EF were significantly higher than that in group SEF from EFH 2 to 6 (with t values from -7.52 to -0.90, P values below 0.01). At EFH 6, the morphology of microfilaments and microtubules of cells in EF group was similar to that in SEF group. (3) The fluorescent intensity of microfilaments of cells in cytochalasin D group became weakened, and the filamentary structure became fuzzy. The microtubules of cells in colchicine group became fuzzy with low fluorescent intensity. (4) Within EFH 6, cells in control group migrated towards the anode of EF, while cells in cytochalasin D group and colchicine group moved randomly. Within EFH 6, there was statistically significant difference in migration velocity of cells in the 3 groups (F=6.36, P<0.01). Migration velocity of cells in cytochalasin D group and colchicine group was significantly slower than that in control group (P<0.05 or P<0.01). At EFH 0, 3, and 6, cell polarity values in the 3 groups were close (with F values from 0.99 to 1.51, P values above 0.05). At EFH 0, cells in control group were spindle; cells in cytochalasin D group were polygonal or in irregular shapes; cells in colchicine group were serrated circle or oval. At EFH 6, no morphological change was observed in cells in control group; cells in cytochalasin D group were spindle with split ends on both ends; cells in colchicine group were serrated oval. The physiologic strength of exogenous direct current EF can induce directional migration and alignment of dermal fibroblasts in neonatal BALB/c mice. Microfilaments and microtubules are necessary skeleton structure for cell directional migration induced by EF, while they are not necessary for cell directional arrangement induced by EF.
A Comparative Study of Production of Glass Microspheres by using Thermal Process
NASA Astrophysics Data System (ADS)
Lee, May Yan; Tan, Jully; Heng, Jerry YY; Cheeseman, Christopher
2017-06-01
Microspheres are spherical particles that can be distinguished into two categories; solid or hollow. Microspheres typical ranges from 1 to 200 μm in diameter. Microsphere are made from glass, ceramic, carbon or plastic depending on applications. Solid glass microsphere is manufactured by direct burning of glass powders while hollow glass microspheres is produced by adding blowing agent to glass powder. This paper presented the production of glass microspheres by using the vertical thermal flame (VTF) process. Pre-treated soda lime glass powder with particle sized range from 90 to 125μm was used in this work. The results showed that glass microspheres produced by two passes through the flame have a more spherical shape as compared with the single pass. Under the Scanning Electron Microscope (SEM), it is observed that there is a morphology changed from uneven surface of glass powders to smooth spherical surface particles. Qualitative analysis for density of the pre-burned and burned particles was performed. Burned particles floats in water while pre-burned particles sank indicated the change of density of the particles. Further improvements of the VTF process in terms of the VTF set-up are required to increase the transformation of glass powders to glass microspheres.
Prabhu, M; Ruby Priscilla, S; Kavitha, K; Manivasakan, P; Rajendran, V; Kulandaivelu, P
2014-01-01
Silica and phosphate based bioactive glass nanoparticles (58SiO2-33CaO-9P2O5) with doping of neem (Azadirachta indica) leaf powder and silver nanoparticles were prepared and characterised. Bioactive glass nanoparticles were produced using sol-gel technique. In vitro bioactivity of the prepared samples was investigated using simulated body fluid. X-ray diffraction (XRD) pattern of prepared glass particles reveals amorphous phase and spherical morphology with a particle size of less than 50 nm. When compared to neem doped glass, better bioactivity was attained in silver doped glass through formation of hydroxyapatite layer on the surface, which was confirmed through XRD, Fourier transform infrared (FTIR), and scanning electron microscopy (SEM) analysis. However, neem leaf powder doped bioactive glass nanoparticles show good antimicrobial activity against Staphylococcus aureus and Escherichia coli and less bioactivity compared with silver doped glass particles. In addition, the biocompatibility of the prepared nanocomposites reveals better results for neem doped and silver doped glasses at lower concentration. Therefore, neem doped bioactive glass may act as a potent antimicrobial agent for preventing microbial infection in tissue engineering applications.
Prabhu, M.; Ruby Priscilla, S.; Kavitha, K.; Manivasakan, P.; Rajendran, V.; Kulandaivelu, P.
2014-01-01
Silica and phosphate based bioactive glass nanoparticles (58SiO2-33CaO-9P2O5) with doping of neem (Azadirachta indica) leaf powder and silver nanoparticles were prepared and characterised. Bioactive glass nanoparticles were produced using sol-gel technique. In vitro bioactivity of the prepared samples was investigated using simulated body fluid. X-ray diffraction (XRD) pattern of prepared glass particles reveals amorphous phase and spherical morphology with a particle size of less than 50 nm. When compared to neem doped glass, better bioactivity was attained in silver doped glass through formation of hydroxyapatite layer on the surface, which was confirmed through XRD, Fourier transform infrared (FTIR), and scanning electron microscopy (SEM) analysis. However, neem leaf powder doped bioactive glass nanoparticles show good antimicrobial activity against Staphylococcus aureus and Escherichia coli and less bioactivity compared with silver doped glass particles. In addition, the biocompatibility of the prepared nanocomposites reveals better results for neem doped and silver doped glasses at lower concentration. Therefore, neem doped bioactive glass may act as a potent antimicrobial agent for preventing microbial infection in tissue engineering applications. PMID:25276834
Gusev-Meridiani-Type Soil Component Dissolved in Some Shock Glasses in Shergottites
NASA Technical Reports Server (NTRS)
Ross, D. K.; Rao, M. N.; Nyquist, L. E.; Shi, C. Y.; Sutton, S.; Harrison, D. H.
2015-01-01
Modal analysis, based on APXS, MiniTES and Mossbauer results obtained at Gusev and Meridiani sites on Mars, indicates that Martian soils consist predominantly of igneous minerals such as olivine, pyroxene and feldspar (approximately70 - 80%), with the balance consisting of alteration minerals such as sulfates, silica and chlorides]. These studies also showed that soil alteration did not occur in-situ and igneous and alteration components are derived from different sources. Below, we analyse the chemical abundance data obtained from shock glasses in shergottites using mass balance mixing models. In these models, the two main end members used are (a) host rock chemical composition and (b) the GM soils average composition as the second component. Here, we consider the S-bearing phases as indicators of added alteration phases in the shock glasses and GM soils. Although the S-bearing phase in shock glasses occurs as micron sized sulfide blebs, we showed in earlier abstracts that sulfur was originally present as sulfate in impact glass-precursor materials and was subsequently reduced to sulfide during shock melting. This conclusion is based on results obtained from S-K XANES studies, Fe/S atomic ratios in sulfide blebs and 34S/32S isotopic measurements in these sulfide blebs. Additionally, sulfur in several EET79001 Lith. A glasses is found to correlate positively with Al2O3 and CaO (and negatively with FeO and MgO), suggesting the presence of Al- and Ca- sul-fate-bearing phases. The distribution of the 87Sr/86Sr iso-topic ratios determined in Lith. A glasses (,27 &,188 and,54) indicate that Martian soil gypsum and host rock material were mixed with each other in the glass precursors. In some vugs in Lith A glass,27 detected gypsum laths. Furthermore, the Martian regolith-de-rived component (where sulfur typically occurs as sul-fate) is identified in these glasses by determining neutron produced isotopic excesses/deficits in 80Kr and 149Sm isotopes. Moreover, the suggestion that the large amount of sulfur found in,507 was sourced from pyrrhotite in the host rock, would require that excessive quantities of host rock would need to be stripped of sulfur to make this sulfide-rich glass. These results provide ample evidence that S occurred as sulfate and was added to glass precursor materials prior to impact shock.
Limapornvanich, Araya; Jitpukdeebodintra, Suwanna; Hengtrakool, Chanothai; Kedjarune-Leggat, Ureporn
2009-09-01
This study aimed to evaluate the effect of adding chitosan (CS) to conventional glass ionomer cement (GIC) on protein release and its cytotoxicity. Bovine serum albumin (BSA) was used as the released protein from two glass ionomer formulations. One (GIC+BSA) contained fluoro-aluminosilicate glass mixed with BSA, and another (GIC:CS+BSA) used a similar glass and BSA with 20% chitosan. Six disc specimens per group (10mm in diameter, 2mm in height) were prepared and placed in phosphate buffer saline, which was replaced at various times over 2 weeks. The released protein was determined by a BCA assay. Cytotoxicity of the extracts from these materials for 1, 2 and 7 days to dental pulp cells was evaluated using MTT assay. The GIC:CS+BSA released a burst of BSA in the first 6h, and slowly released at different rates over the 2 weeks. GIC+BSA showed a similar result, but protein could not be detected at the 12h. The protein release rate of GIC:CS+BSA was significantly greater than GIC+BSA (P<0.01); nearly three times higher. The released BSA had the same molecular weight as evaluated by SDS-PAGE. From the MTT assay, the percentages of viable cells were significantly different and can be arranged as: GIC:CS+BSA>GIC:CS>GI+BSA>GI and the cytotoxicity was increased by time of extraction. Chitosan added in glass ionomer cement can prolong release of BSA as well as not increasing the toxicity to pulp cells. This material may be useful for protein delivery.
40 CFR 63.3161 - How do I demonstrate initial compliance?
Code of Federal Regulations, 2012 CFR
2012-07-01
... operations plus all coatings and thinners, except for deadener materials and for adhesive and sealer materials that are not components of glass bonding systems, used in coating operations added to the affected..., density, and volume used must be determined for each material added to the tank or system during each...
40 CFR 63.3161 - How do I demonstrate initial compliance?
Code of Federal Regulations, 2010 CFR
2010-07-01
... operations plus all coatings and thinners, except for deadener materials and for adhesive and sealer materials that are not components of glass bonding systems, used in coating operations added to the affected..., density, and volume used must be determined for each material added to the tank or system during each...
40 CFR 63.3161 - How do I demonstrate initial compliance?
Code of Federal Regulations, 2014 CFR
2014-07-01
... operations plus all coatings and thinners, except for deadener materials and for adhesive and sealer materials that are not components of glass bonding systems, used in coating operations added to the affected..., density, and volume used must be determined for each material added to the tank or system during each...
20. MAIN MEETING ROOM, NORTHEAST CORNER. The stairway against the ...
20. MAIN MEETING ROOM, NORTHEAST CORNER. The stairway against the north wall on the men's side is original to 1812-13. The glass vestibule partition was added in 1885. It is believed the east stair was added at that time. - Twelfth Street Meeting House, 20 South Twelfth Street, Philadelphia, Philadelphia County, PA
Jacques, Eveline; Wells, Darren M; Bennett, Malcolm J; Vissenberg, Kris
2015-01-01
High-resolution imaging of cytoskeletal structures paves the way for standardized methods to quantify cytoskeletal organization. Here we provide a detailed description of the analysis performed to determine the microtubule patterns in gravistimulated roots, using the recently developed software tool MicroFilament Analyzer.
Vitrification of ion exchange resins
Cicero-Herman, Connie A.; Workman, Rhonda Jackson
2001-01-01
The present invention relates to vitrification of ion exchange resins that have become loaded with hazardous or radioactive wastes, in a way that produces a homogenous and durable waste form and reduces the disposal volume of the resin. The methods of the present invention involve directly adding borosilicate glass formers and an oxidizer to the ion exchange resin and heating the mixture at sufficient temperature to produce homogeneous glass.
Ultra-Thin Coatings Beautify Art
NASA Technical Reports Server (NTRS)
2013-01-01
The craftsmen in the Roman Empire who constructed the Lycurgus Cup 17 centuries ago probably didn't think their artifact would survive for nearly 2,000 years as a prized possession. And they certainly couldn't have known that the technology they used to make it would eventually become an important part of space exploration. Carved from one solid mass, the cup is one of the few complete glass objects from that period, and the only one made from dichroic glass. Meaning "two-colored" in Greek, dichroic glass was originally created by adding trace amounts of gold and silver to a large volume of glass melt. The resulting medium partially reflects the light passing through it, causing an observer to see different colors depending on the direction of the light source. The Lycurgus Cup, for example, is famous for appearing green in daylight and red when lit at night, symbolic of the ripening grapes used to fill it with wine. NASA revitalized the production of dichroic glass in the 1950s and 1960s as a means of protecting its astronauts. Ordinary clear substances cannot protect human vision from the harsh rays of unfiltered sunlight, and everything from the human body to spacecraft sensors and computers are at risk if left unprotected from the radiation that permeates space. The microscopic amounts of metal present in dichroic glass make it an effective barrier against such harmful radiation. While the ancient manufacturing technique called for adding metals to glass melt, NASA developed a process in which metals are vaporized by electron beams in a vacuum chamber and then applied directly to surfaces in an ultra-thin film. The vapor condenses in the form of crystal structures, and the process is repeated for up to several dozen coatings. The resulting material, still only about 30 millionths of an inch thick, is sufficient to reflect radiation even while the glass, or polycarbonate, as in the case of space suit helmets, remains transparent to the human eye.
[Production of glass in early middle ages].
Zimmermann, Martin
2011-01-01
For the production of glass three ingredients are necessary: sand, a flux to reduce the melting-temperature and calcium to reduce the danger of glass corrosion. The first objects of glass were made with calcium-rich ashes of halophytic plants, until, in the first millennium BC, the glassmakers began to use natron as a flux adding calcium deliberately or choosing a calcium-rich sand. Natron, a mineral applied to fertilize or to preserve, as a spice, a detergent or part of medical and cosmetic articles, was exploited in the regions south and east of the Mediterranean, so the Central European glassmakers had to import natron or the prefabricated raw glass for their work. Beginning in the 8th century AD in Central Europe the flux changed again: The glassmakers increasingly used ashes from wood growing in their native regions so becoming independent of the necessity to import the raw materials. There are various reasons for this change: First, the Mediterranean was no longer the trade area it had been at the time of the antique Roman Empire due to the activities of the Byzantine navy. Then, the climatic change in the 8th century and political upheavals during the 9th century in Egypt--being the main supplier of natron--caused a decrease in exploitation and trade with this good. Finally, the Egyptian state established a monopoly on the natron production, causing a permanent price increase. Nevertheless, during the Early Middle Ages natron was imported into Europe, although not necessarily for glass production. The article shows that glassmakers of Central Europe were able to produce glass since the end of the Western Roman Empire on the basis of the transfer of raw materials and know-how from the East. From the 8th century onwards they emancipated themselves from the dependency on imports by discovering and using native materials for glass production.
[Computer eyeglasses--aspects of a confusing topic].
Huber-Spitzy, V; Janeba, E
1997-01-01
With the coming into force of the new Austrian Employee Protection Act the issue of the so called "computer glasses" will also gain added importance in our country. Such glasses have been defined as vision aids to be exclusively used for the work on computer monitors and include single-vision glasses solely intended for reading computer screen, glasses with bifocal lenses for reading computer screen and hard-copy documents as well as those with varifocal lenses featuring a thickened central section. There is still a considerable controversy among those concerned as to who will bear the costs for such glasses--most likely it will be the employer. Prescription of such vision aids will be exclusively restricted to ophthalmologists, based on a thorough ophthalmological examination under adequate consideration of the specific working environment and the workplace requirements of the individual employee concerned.
Demonstration of sulfur solubility determinations in high waste loading, low-activity waste glasses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fox, K. M.
2016-04-25
A method recommended by Pacific Northwest National Laboratory (PNNL) for sulfate solubility determinations in simulated low-activity waste glasses was demonstrated using three compositions from a recent Hanford high waste loading glass study. Sodium and sulfate concentrations in the glasses increased after each re-melting step. Visual observations of the glasses during the re-melting process reflected the changes in composition. The measured compositions showed that the glasses met the targeted values. The amount of SO 3 retained in the glasses after washing was relatively high, ranging from 1.6 to 2.6 weight percent (wt %). Measured SnO 2 concentrations were notably low inmore » all of the study glasses. The composition of the wash solutions should be measured in future work to determine whether SnO 2 is present with the excess sulfate washed from the glass. Increases in batch size and the amount of sodium sulfate added did not have a measureable impact on the amount of sulfate retained in the glass, although this was tested for only a single glass composition. A batch size of 250 g and a sodium sulfate addition targeting 7 wt %, as recommended by PNNL, will be used in future experiments.« less
Wicks, G.G.
1999-04-06
A method is described for encapsulating and immobilizing waste for disposal. Waste, preferably, biologically, chemically and radioactively hazardous, and especially electronic wastes, such as circuit boards, are placed in a crucible and heated by microwaves to a temperature in the range of approximately 300 C to 800 C to incinerate organic materials, then heated further to a temperature in the range of approximately 1100 C to 1400 C at which temperature glass formers present in the waste will cause it to vitrify. Glass formers, such as borosilicate glass, quartz or fiberglass can be added at the start of the process to increase the silicate concentration sufficiently for vitrification.
Dissolution-resistance of glass-added hydroxyapatite composites
NASA Astrophysics Data System (ADS)
Seo, Dong Seok; Lee, Jong Kook
2009-04-01
Hydroxyapatite (HA) has generated a great deal of interest as a promising implant material. However, its poor mechanical properties induced by severe dissolution in biological milieu limit medical applications and lead to clinical failure. In this study, HA ceramics with 30P2O5-30CaO-40Na2O glass (1.0 wt.% and 2.5 wt.%) were prepared to improve the resistance of monophase HA. The monophase HA sintered body showed microstructural degradation due to grain boundary dissolution in buffered water. However, the dissolution-resistance of HA/glass composites was significantly improved and showed no apparent evidence of dissolution. This suggests that a less soluble glass phase should be placed at grain boundaries to protect HA from dissolution.
DSC and Raman studies of silver borotellurite glasses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaur, Amandeep; Khanna, Atul, E-mail: atul.phy@gndu.ac.in; Gonzàlez, Fernando
2016-05-23
Silver borotellurite glasses of composition: xAg{sub 2}O-yB{sub 2}O{sub 3}-(100-x-y)TeO{sub 2} (x=20-mol%, y = 0, 10, 20 and 30-mol%) were prepared and characterized by density, X-ray diffraction (XRD), differential scanning calorimetry, and Raman spectroscopy. XRD confirmed the amorphous structure of all samples. Density of glasses decreases while the glass transition temperature increases with increase in B{sub 2}O{sub 3} content from 10 to 30-mol%. Raman study shows that coordination number of Te with oxygen decreases steadily from 3.42 to 3.18 on adding B{sub 2}O{sub 3} due to the transformation of TeO{sub 4} into TeO{sub 3} units.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Y. T.; Cao, C. R.; Huang, K. Q.
2014-08-04
The glass-forming ability (GFA) of an alloy, closely related to its ability to resist crystallization, is a crucial issue in condensed matter physics. So far, the studies on GFA are mostly statistical and empirical guides. Benefiting from the ultrahigh thermal stability of ultrathin metallic glassy film and high resolution spherical aberration-corrected transmission electron microscope, the crystallization of atomically thin ZrCu and its microalloyed ZrCuAl glasses with markedly different GFA was investigated at the atomic scale. We find the Zr diffusivity estimated from the density of nuclei is dramatically decreased by adding of Al, which is the major reason for themore » much better GFA of the ZrCuAl metallic glass.« less
Dhaneshwar, Amrut D; Chaurasiya, Ram Saran; Hebbar, H Umesh
2014-01-01
In the current study, reverse micellar extraction (RME) for the purification of stem bromelain was successfully achieved using the sodium bis(2-ethylhexyl) sulfosuccinate (AOT)/isooctane system. A maximum forward extraction efficiency of 58.0% was obtained at 100 mM AOT concentration, aqueous phase pH of 8.0 and 0.2 M NaCl. Back extraction studies on altering stripping phase pH and KCl concentration, addition of counter-ion and iso-propyl alcohol (IPA) and mechanical agitation with glass beads indicated that IPA addition and agitation with glass beads have significant effects on extraction efficiency. The protein extraction was higher (51.9%) in case of the IPA (10% v/v) added system during back extraction as compared to a cetyltrimethylammonium bromide (100 mM) added system (9.42%). The central composite design technique was used to optimize the back extraction conditions further. Concentration of IPA, amount of glass beads, mixing time, and agitation speed (in rpm) were the variables selected. IPA concentration of 8.5% (v/v), glass bead concentration of 0.6 (w/v), and mixing time of 45 min at 400 rpm resulted in higher back extraction efficiency of 45.6% and activity recovery of 88.8% with purification of 3.04-fold. The study indicated that mechanical agitation using glass beads could be used for destabilizing the reverse micelles and release of bromelain back into the fresh aqueous phase. © 2014 American Institute of Chemical Engineers.
Tuning the Pitch of a Wine Glass by Playing with the Liquid inside
ERIC Educational Resources Information Center
Courtois, Matthieu; Guirao, Boris; Fort, Emmanuel
2008-01-01
It is well known that the pitch of the sound produced by an excited glass shell can be tuned by adding some liquid in it. In this paper, it will be proved that the distribution of the liquid inside the shell plays a crucial role in this frequency shift. Thus it provides another way to tune the pitch of the sound by modifying the liquid…
Caliendo, Cinzia; Hamidullah, Muhammad
2016-01-01
The propagation of surface acoustic Love modes along ZnO/glass-based structures was modeled and analysed with the goal of designing a sensor able to detect changes in the environmental parameters, such as liquid viscosity changes and minute amounts of mass supported in the viscous liquid medium. Love mode propagation was modeled by numerically solving the system of coupled electro-mechanical field equations and Navier–Stokes equations. The phase and group velocities and the attenuation of the acoustic wave propagating along the 30° tilted c-axis ZnO/glass structure contacting a viscous non-conductive liquid were calculated for different ZnO guiding layer thicknesses, added mass thicknesses, and liquid viscosity and density. The three sensor responses, i.e., the wave phase and group velocity, and attenuation changes are calculated for different environmental parameters and related to the sensor velocity and attenuation sensitivities. The resulted sensitivities to liquid viscosity and added mass were optimized by adjusting the ZnO guiding layer thickness corresponding to a sensitivity peak. The present analysis is valuable for the manufacture and application of the ZnO-glass structure Love wave sensors for the detection of liquid properties, such as viscosity, density and mass anchored to the sensor surface. PMID:27918419
Quintaes, Késia Diego; Almeyda Haj-Isa, Niurka M; Morgano, Marcelo Antônio
2005-12-01
Food fortification is an interesting strategy to treat and prevent iron anemia. This study aims to quantify the iron in yoghurt, with gelatin and sugar and without, prepared in iron and glass containers. Sensorial test was use to evaluate the acceptance and preference of the both products. The yoghurt was prepared in containers of iron and glass with UHT milk, powder milk and natural industrialized yoghurt. After fermentation, half of the product received addition of sugar and strawberry flavor gelatin. The collected samples get the total iron quantified by ICP OES. Sensorial analysis involving 105 consumers was use to determine the acceptance and preference of the products. 0,018 and 0,882mg of iron per 100g added in the natural yoghurt prepared in the glass and in the iron pots, respectively. The yoghurt with gelatin presented 0,037 and 1,302mg of iron per 100g when prepared in the glass and in the iron pots, respectively. The preference was low for the yoghurt prepared in the iron pot (29,5%), but when added strawberry gelatin it was about 51,5%. The yoghurt prepared in iron pots, is easily home made and adds important amount of iron. Add gelatin and sugar can favored its consumption.
Electrical Characteristics of MnO2 Doped Bismuth Borate Glass Systems
NASA Astrophysics Data System (ADS)
Nissar, Umair; Ahmad, Javed; Rana, Anwar Manzoor; Bukhari, S. H.; Jamil, M. T.; Khan, J. Alam; Shakeel, R.; Nadeem, M. Y.
2018-02-01
Transparent glasses have a large number of applications in the industry of electronics as well as optical devices. xMnO2-(25- x) Bi2O3-75H3BO3 (0 ≤ x ≤ 1.5 mol.%) transparent glasses have been prepared via melt-quench technique and characterized using dc electrical measurements, and by analyzing x-ray diffraction and Fourier transform infrared (FTIR) spectra. These characteristics were examined to understand the role of modifier oxides, i.e., Bi2O3 and MnO2 in the B2O3 glass network. Adding MnO2 into a glass network causes structural changes, which are responsible for any variations in electrical characteristics of bismuth borate glasses. Manganese bismuth borate glasses (MBBG) show Ohmic conduction at low fields; however, glasses with higher manganese content seem to conduct through bulk limited Poole-Frenkel mechanism. FTIR spectroscopy analyses depict the presence of BO3 and BO4 groups along with B-O-B and Bi-O-Bi bonding vibrations. Glasses with higher MnO2 content also show Mn-O bond vibrations. The reduction of BO4 groups and increase of BO3 units lead to the formation of non-bridging oxygens (NBOs) which are responsible for the variations in the electrical properties of these glasses.
ERIC Educational Resources Information Center
Pines, Maya
Provides information on cellular morphology and physiology, including general cell characteristics, the nucleus, ribosomes, endoplasmic reticulum, Golgi apparatus, lysosomes, mitochondria, microtubules, microfilaments, and membranes. Focuses on membranes which are postulated to play an important role in many aspects of health and disease.…
Actin Polymerization Is Essential for Pollen Tube GrowthV⃞
Vidali, Luis; McKenna, Sylvester T.; Hepler, Peter K.
2001-01-01
Actin microfilaments, which are prominent in pollen tubes, have been implicated in the growth process; however, their mechanism of action is not well understood. In the present work we have used profilin and DNAse I injections, as well as latrunculin B and cytochalasin D treatments, under quantitatively controlled conditions, to perturb actin microfilament structure and assembly in an attempt to answer this question. We found that a ∼50% increase in the total profilin pool was necessary to half-maximally inhibit pollen tube growth, whereas a ∼100% increase was necessary for half-maximal inhibition of cytoplasmic streaming. DNAse I showed a similar inhibitory activity but with a threefold more pronounced effect on growth than streaming. Latrunculin B, at only 1–4 nM in the growth medium, has a similar proportion of inhibition of growth over streaming to that of profilin. The fact that tip growth is more sensitive than streaming to the inhibitory substances and that there is no correlation between streaming and growth rates suggests that tip growth requires actin assembly in a process independent of cytoplasmic streaming. PMID:11514633
Chen, Haiqi; Li, Michelle W.M.
2018-01-01
Drebrin is a family of actin-binding proteins with two known members called drebrin A and E. Apart from the ability to stabilize F-actin microfilaments via their actin-binding domains near the N-terminus, drebrin also regulates multiple cellular functions due to its unique ability to recruit multiple binding partners to a specific cellular domain, such as the seminiferous epithelium during the epithelial cycle of spermatogenesis. Recent studies have illustrated the role of drebrin E in the testis during spermatogenesis in particular via its ability to recruit branched actin polymerization protein known as actin-related protein 3 (Arp3), illustrating its involvement in modifying the organization of actin microfilaments at the ectoplasmic specialization (ES) which includes the testis-specific anchoring junction at the Sertoli-spermatid (apical ES) interface and at the Sertoli cell-cell (basal ES) interface. These data are carefully evaluated in light of other recent findings herein regarding the role of drebrin in actin filament organization at the ES. We also provide the hypothetical model regarding its involvement in germ cell transport during the epithelial cycle in the seminiferous epithelium to support spermatogenesis. PMID:28865027
Chirality of the cytoskeleton in the origins of cellular asymmetry
2016-01-01
Self-assembly of two important components of the cytoskeleton of eukaryotic cells, actin microfilaments and microtubules (MTs) results in polar filaments of one chirality. As is true for bacterial flagella, in actin microfilaments, screw direction is important for assembly processes and motility. For MTs, polar orientation within the cell is paramount. The alignment of these elements in the cell cytoplasm gives rise to emergent properties, including the potential for cell differentiation and specialization. Complex MTs with a characteristic chirality are found in basal bodies and centrioles; this chirality is preserved in cilia. In motile cilia, it is reflected in the direction of the effective stroke. The positioning of the basal body or cilia on the cell surface depends on polarity proteins. In evolution, survival depends on global polarity information relayed to the cell in part by orientation of the MT and actin filament cytoskeletons and the chirality of the basal body to determine left and right coordinates within a defined anterior–posterior cell and tissue axis. This article is part of the themed issue ‘Provocative questions in left–right asymmetry’. PMID:27821520
Cytoskeletal changes in oocytes and early embryos during in vitro fertilization process in mice.
Gumus, E; Bulut, H E; Kaloglu, C
2010-02-01
The cytoskeleton plays crucial roles in the development and fertilization of germ cells and in the early embryo development. The growth, maturation and fertilization of oocytes require an active movement and a correct localization of cellular organelles. This is performed by the re-organization of microtubules and actin filaments. Therefore, the aim of the present study was to determine the changes in cytoskeleton during in vitro fertilization process using appropriate immunofluorescence techniques. While the chromatin content was found to be scattered throughout the nucleus during the oocyte maturation period, it was seen only around nucleolus following the completion of the maturation. Microtubules, during oocyte maturation, were regularly distributed throughout the ooplasm which was then localized in the subcortical region of oocytes. Similarly microfilaments were scattered throughout the ooplasm during the oocyte maturation period whereas they were seen in the subcortical region around the polar body and above the meiotic spindle throughout the late developmental stages. In conclusion, those changes occurred in microtubules and microfilaments might be closely related to the re-organization of the genetic material during the oocyte maturation and early embryo development.
NASA Astrophysics Data System (ADS)
Zhao, Dandan; Fang, Lihua; Tang, Dian; Zhang, Teng
2016-09-01
In solid oxide fuel cell (SOFC) stacks, the volatile boron species present in the sealing glass often react with the lanthanum-containing cathode, degrading the activity of the cathode (this phenomenon is known as boron poisoning). In this work, we report that this detrimental reaction can be effectively reduced by doping bismuth-containing borosilicate sealing glass-ceramic with a niobium dopant. The addition of Nb2O5 not only condenses the [SiO4] structural units in the glass network, but also promotes the conversion of [BO3] to [BO4]. Moreover, the Nb2O5 dopant enhances the formation of boron-containing phases (Ca3B2O6 and CaB2Si2O8), which significantly reduces the volatility of boron compounds in the sealing glass, suppressing the formation of LaBO3 in the reaction couple between the glass and the cathode. The reported results provide a new approach to solve the problem of boron poisoning.
HLW Melter Control Strategy Without Visual Feedback VSL-12R2500-1 Rev 0
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kruger, A A.; Joseph, Innocent; Matlack, Keith S.
2012-11-13
Plans for the treatment of high level waste (HL W) at the Hanford Tank Waste Treatment and Immobilization Plant (WTP) are based upon the inventory of the tank wastes, the anticipated performance of the pretreatment processes, and current understanding of the capability of the borosilicate glass waste form [I]. The WTP HLW melter design, unlike earlier DOE melter designs, incorporates an active glass bubbler system. The bubblers create active glass pool convection and thereby improve heat and mass transfer and increase glass melting rates. The WTP HLW melter has a glass surface area of 3.75 m{sup 2} and depth ofmore » ~ 1.1 m. The two melters in the HLW facility together are designed to produce up to 7.5 MT of glass per day at 100% availability. Further increases in HL W waste processing rates can potentially be achieved by increasing the melter operating temperature above 1150°C and by increasing the waste loading in the glass product. Increasing the waste loading also has the added benefit of decreasing the number of canisters for storage.« less
High refractive index gold nanoparticle doped Bi2O3-B2O3 glasses for THz frequencies
NASA Astrophysics Data System (ADS)
Singla, Shivani; Achanta, Venu Gopal; Mahendru, Nancy; Prabhu, Shriganesh S.; Falconieri, Mauro; Sharma, Gopi
2017-10-01
Direct incorporation of gold nanoparticles from suspensions in 30%Bi2O3:70%B2O3 glass was achieved. This method has advantage over traditional methods where a gold salt is added to the precursor mixture and gold nanoparticles are obtained with subsequent heat treatment, eventually inducing crystallization with associated scattering of light and hence resulting in reduced optical quality of material. X-ray diffraction and differential thermal analysis were carried out in order to confirm the amorphous nature of the material and thermal properties of the prepared glasses, respectively. The size of the gold nanoparticles in the prepared glass matrix was measured using scanning electron microscopy. Optical characterization of prepared glass samples in ultraviolet-visible and terahertz regions was performed using ellipsometry, UV-VIS spectrophotometry and THz-time-domain spectroscopy. Comparison was made between glasses with and without gold nanoparticles and the effect of gold nanoparticle concentration on their optical behaviour is studied. These glasses are found to have high refractive index in the THz region making them suitable for photonic applications.
Isotopic Analysis of Uranium in NIST SRM Glass by Femtosecond Laser Ablation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duffin, Andrew M.; Hart, Garret L.; Hanlen, Richard C.
We employed femtosecond Laser Ablation Multicollector Inductively Coupled Mass Spectrometry for the 11 determination of uranium isotope ratios in a series of standard reference material glasses (NIST 610, 612, 614, and 12 616). This uranium concentration in this series of SRM glasses is a combination of isotopically natural uranium in 13 the materials used to make the glass matrix and isotopically depleted uranium added to increase the uranium 14 elemental concentration across the series. Results for NIST 610 are in excellent agreement with literature values. 15 However, other than atom percent 235U, little information is available for the remaining glasses.more » We present atom 16 percent and isotope ratios for 234U, 235U, 236U, and 238U for all four glasses. Our results show deviations from the 17 certificate values for the atom percent 235U, indicating the need for further examination of the uranium isotopes in 18 NIST 610-616. Our results are fully consistent with a two isotopic component mixing between the depleted 19 uranium spike and natural uranium in the bulk glass.« less
Peng, ChiehFu Jeff; Wikramanayake, Athula H.
2013-01-01
Pattern formation along the animal-vegetal (AV) axis in sea urchin embryos is initiated when canonical Wnt (cWnt) signaling is activated in vegetal blastomeres. The mechanisms that restrict cWnt signaling to vegetal blastomeres are not well understood, but there is increasing evidence that the egg’s vegetal cortex plays a critical role in this process by mediating localized “activation” of Disheveled (Dsh). To investigate how Dsh activity is regulated along the AV axis, sea urchin-specific Dsh antibodies were used to examine expression, subcellular localization, and post-translational modification of Dsh during development. Dsh is broadly expressed during early sea urchin development, but immunolocalization studies revealed that this protein is enriched in a punctate pattern in a novel vegetal cortical domain (VCD) in the egg. Vegetal blastomeres inherit this VCD during embryogenesis, and at the 60-cell stage Dsh puncta are seen in all cells that display nuclear β-catenin. Analysis of Dsh post-translational modification using two-dimensional Western blot analysis revealed that compared to Dsh pools in the bulk cytoplasm, this protein is differentially modified in the VCD and in the 16-cell stage micromeres that partially inherit this domain. Dsh localization to the VCD is not directly affected by disruption of microfilaments and microtubules, but unexpectedly, microfilament disruption led to degradation of all the Dsh pools in unfertilized eggs over a period of incubation suggesting that microfilament integrity is required for maintaining Dsh stability. These results demonstrate that a pool of differentially modified Dsh in the VCD is selectively inherited by the vegetal blastomeres that activate cWnt signaling in early embryos, and suggests that this domain functions as a scaffold for localized Dsh activation. Localized cWnt activation regulates AV axis patterning in many metazoan embryos. Hence, it is possible that the VCD is an evolutionarily conserved cytoarchitectural domain that specifies the AV axis in metazoan ova. PMID:24236196
Cellular target of weak magnetic fields: ionic conduction along actin filaments of microvilli.
Gartzke, Joachim; Lange, Klaus
2002-11-01
The interaction of weak electromagnetic fields (EMF) with living cells is a most important but still unresolved biophysical problem. For this interaction, thermal and other types of noise appear to cause severe restrictions in the action of weak signals on relevant components of the cell. A recently presented general concept of regulation of ion and substrate pathways through microvilli provides a possible theoretical basis for the comprehension of physiological effects of even extremely low magnetic fields. The actin-based core of microfilaments in microvilli is proposed to represent a cellular interaction site for magnetic fields. Both the central role of F-actin in Ca2+ signaling and its polyelectrolyte nature eliciting specific ion conduction properties render the microvillar actin filament bundle an ideal interaction site for magnetic and electric fields. Ion channels at the tip of microvilli are connected with the cytoplasm by a bundle of microfilaments forming a diffusion barrier system. Because of its polyelectrolyte nature, the microfilament core of microvilli allows Ca2+ entry into the cytoplasm via nonlinear cable-like cation conduction through arrays of condensed ion clouds. The interaction of ion clouds with periodically applied EMFs and field-induced cation pumping through the cascade of potential barriers on the F-actin polyelectrolyte follows well-known physical principles of ion-magnetic field (MF) interaction and signal discrimination as described by the stochastic resonance and Brownian motor hypotheses. The proposed interaction mechanism is in accord with our present knowledge about Ca2+ signaling as the biological main target of MFs and the postulated extreme sensitivity for coherent excitation by very low field energies within specific amplitude and frequency windows. Microvillar F-actin bundles shielded by a lipid membrane appear to function like electronic integration devices for signal-to-noise enhancement; the influence of coherent signals on cation transduction is amplified, whereas that of random noise is reduced.
Jaidka, Shipra; Somani, Rani; Singh, Deepti J; Shafat, Shazia
2016-04-01
To comparatively evaluate the compressive strength, diametral tensile strength, and shear bond strength of glass ionomer cement type IX, chlorhexidine-incorporated glass ionomer cement, and triclosan-incorporated glass ionomer cement. In this study, glass ionomer cement type IX was used as a control. Chlorhexidine diacetate, and triclosan were added to glass ionomer cement type IX powder, respectively, in order to obtain 0.5, 1.25, and 2.5% concentrations of the respective experimental groups. Compressive strength, diametral tensile strength, and shear bond strength were evaluated after 24 h using Instron Universal Testing Machine. The results obtained were statistically analyzed using the independent t-test, Dunnett test, and Tukey test. There was no statistical difference in the compressive strength, diametral tensile strength, and shear bond strength of glass ionomer cement type IX (control), 0.5% triclosan-glass ionomer cement, and 0.5% chlorhexidine-glass ionomer cement. The present study suggests that the compressive strength, diametral tensile strength, and shear bond strength of 0.5% triclosan-glass ionomer cement and 0.5% chlorhexidine-glass ionomer cement were similar to those of the glass ionomer cement type IX, discernibly signifying that these can be considered as viable options for use in pediatric dentistry with the additional value of antimicrobial property along with physical properties within the higher acceptable range.
NASA Astrophysics Data System (ADS)
Celtek, M.; Sengul, S.
2018-03-01
In the present work, the glass formation process and structural properties of Zr50Cu50-xCox (0 ≤ x ≤ 50) bulk metallic glasses were investigated by a molecular dynamics simulation with the many body tight-binding potentials. The evolution of structure and glass formation process with temperature were discussed using the coordination number, the radial distribution functions, the volume-temperature curve, icosahedral short-range order, glass transition temperature, Voronoi analysis, Honeycutt-Andersen pair analysis technique and the distribution of bond-angles. Results indicate that adding Co causes similar responses on the nature of the Zr50Cu50-xCox (0 ≤ x ≤ 50) alloys except for higher glass transition temperature and ideal icosahedral type ordered local atomic environment. Also, the differences of the atomic radii play the key role in influencing the atomic structure of these alloys. Both Cu and Co atoms play a significant role in deciding the chemical and topological short-range orders of the Zr50Cu50-xCox ternary liquids and amorphous alloys. The glass-forming ability of these alloys is supported by the experimental observations reported in the literature up to now.
Soda-based glass fabricated from Thailand quartz sands doped with silver compound
NASA Astrophysics Data System (ADS)
Won-in, Krit; Dararutana, Pisutti
2012-10-01
Yellow colored glass which used for luxury art glass in ancient time was fabricated by the addition of silver compound into the molten glass. It was proved that it was actually silver nanoparticle technology. In this work, the SiO2-(Na2O,K2O)-CaO-B2O3-Al2O3-MgO glass system was prepared in the laboratory scale based on local quartz sands from Trat Province, eastern area of Thailand as the silica raw material. Various concentrations of silver nitrate were added. After the complete conventional melting process, the bubble-free yellow glasses were yielded. Physical and optical properties such as density, refractive index and optical absorption spectra were measured. Scanning electron microscope coupled with energy dispersive spectroscopy was carried out to study their morphology. The refractive indices and densities were increased as the increase of the silver contents. Electron micrographs showed the presence of silver nanoparticle in the glass matrix. UV-VIS spectra were in good agreement with that found from SEM measurements and corresponded with the universally accepted. It was also showed that the more brilliance on the surface of the glass products was obtained after firing with a gas torch.
[Effect of K2O addition on the crystallization property of dental glass-ceramics].
Liu, Xiao-Qiu; Song, Wen-Zhi; Sun, Hong-Chen; Yang, Hai-Bin; Zou, Guang-Tian; Wang, Jing-Yun; Ye, Chang-Li
2006-10-01
To evaluate the effect of K2O addition on the crystallization property of dental glass-ceramics in the Li2O-SiO2-Al2O3-P2O5-ZnO system. Different content of K2O was added into Li2O-SiO2-Al2O3-P2O5-ZnO glass system. The heat-treated system of the glass-ceramics was determined by differential thermal analyses (DTA), then the crystallization components and the microstmcture of the glass-ceramics with different content of K2O were investigated from X-ray diffraction (XRD) analyses and scanning electron microscopy (SEM). Addition of K2O helped to reduce the viscosity of the glass system and improved crystallization. More lithium disilicate crystals appeared after heated-treatment of the glass system which contained 5.3 wt% addition of K2O, and the homogeneously lath-shaped crystals were 4 gm in length. Certain content of K2O can improve the crystallization property of dental glass-ceramics in the Li2O-SiO2-Al2O3-P2O5-ZnO system.
NASA Astrophysics Data System (ADS)
Chandel, Namrata; Mehta, Neeraj
2018-04-01
In this study, we prepared novel selenium rich multi-component glasses by incorporating In, Cd and Sb as foreign elements in an Sn containing Sesbnd Te system in order to study their metal-induced effects on the thermal properties of the parent ternary glass. In particular, we determined the thermodynamic parameters of Se80Te18Sn2 and Se80Te8Sn2M10 (M = Cd, In, Sb) glassy semiconductors in a non-isothermal environment using the differential scanning calorimetry. Calorimetric measurements were obtained in the glass transition regions for Se80Te18Sn2 and Se80Te8Sn2M10 (M = Cd, In, Sb) glasses to determine their thermodynamic parameters such as the specific heat, enthalpy, and entropy during glass transition. We analyzed the variation in the specific heat before and after the heat capacity jump in these alloys. The metal-induced effects of foreign elements on the thermodynamic properties of the parent glass were also investigated in terms of the influence of the elemental specific heat of the added elemental metal as well as the thermal stability and glass-forming ability of the glasses.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-04-07
... are proposing this AD to detect and correct cracking in the fail-safe interlayer of certain No. 2 and... to detect and correct cracking in the fail-safe interlayer of certain No. 2 and No. 3 glass windows... cracking in the fail-safe interlayer of certain No. 2 and No. 3 glass windows, which could result in loss...
Computational Analysis of Effect of Transient Fluid Force on Composite Structures
2013-12-01
as they well represent an E-glass fiber reinforced composite frequently used in research and industrial applications. The fluid domain was sized...provide unique perspectives on peak stress ratios . The two models both share increased structural rigidity. The cylinder is reinforced by... Poisson ratio of 0.3 and Young’s modulus of 20 GPa were added to the transient structural engineering data cell (Figure 69). 78 Figure 69. E-Glass
DOE Office of Scientific and Technical Information (OSTI.GOV)
Amoroso, J.; Peeler, D.; Edwards, T.
2012-05-11
A recommendation to eliminate all characterization of pour stream glass samples and the glass fabrication and Product Consistency Test (PCT) of the sludge batch qualification sample was made by a Six-Sigma team chartered to eliminate non-value-added activities for the Defense Waste Processing Facility (DWPF) sludge batch qualification program and is documented in the report SS-PIP-2006-00030. That recommendation was supported through a technical data review by the Savannah River National Laboratory (SRNL) and is documented in the memorandums SRNL-PSE-2007-00079 and SRNL-PSE-2007-00080. At the time of writing those memorandums, the DWPF was processing sludge-only waste but, has since transitioned to a coupledmore » operation (sludge and salt). The SRNL was recently tasked to perform a similar data review relevant to coupled operations and re-evaluate the previous recommendations. This report evaluates the validity of eliminating the characterization of pour stream glass samples and the glass fabrication and Product Consistency Test (PCT) of the sludge batch qualification samples based on sludge-only and coupled operations. The pour stream sample has confirmed the DWPF's ability to produce an acceptable waste form from Slurry Mix Evaporator (SME) blending and product composition/durability predictions for the previous sixteen years but, ultimately the pour stream analysis has added minimal value to the DWPF's waste qualification strategy. Similarly, the information gained from the glass fabrication and PCT of the sludge batch qualification sample was determined to add minimal value to the waste qualification strategy since that sample is routinely not representative of the waste composition ultimately processed at the DWPF due to blending and salt processing considerations. Moreover, the qualification process has repeatedly confirmed minimal differences in glass behavior from actual radioactive waste to glasses fabricated from simulants or batch chemicals. In contrast, the variability study has significantly added value to the DWPF's qualification strategy. The variability study has evolved to become the primary aspect of the DWPF's compliance strategy as it has been shown to be versatile and capable of adapting to the DWPF's various and diverse waste streams and blending strategies. The variability study, which aims to ensure durability requirements and the PCT and chemical composition correlations are valid for the compositional region to be processed at the DWPF, must continue to be performed. Due to the importance of the variability study and its place in the DWPF's qualification strategy, it will also be discussed in this report. An analysis of historical data and Production Records indicated that the recommendation of the Six Sigma team to eliminate all characterization of pour stream glass samples and the glass fabrication and PCT performed with the qualification glass does not compromise the DWPF's current compliance plan. Furthermore, the DWPF should continue to produce an acceptable waste form following the remaining elements of the Glass Product Control Program; regardless of a sludge-only or coupled operations strategy. If the DWPF does decide to eliminate the characterization of pour stream samples, pour stream samples should continue to be collected for archival reasons, which would allow testing to be performed should any issues arise or new repository test methods be developed.« less
Wicks, George G.
1999-01-01
A method for encapsulating and immobilizing waste for disposal. Waste, preferably, biologically, chemically and radioactively hazardous, and especially electronic wastes, such as circuit boards, are placed in a crucible and heated by microwaves to a temperature in the range of approximately 300.degree. C. to 800.degree. C. to incinerate organic materials, then heated further to a temperature in the range of approximately 1100.degree. C. to 1400.degree. C. at which temperature glass formers present in the waste will cause it to vitrify. Glass formers, such as borosilicate glass, quartz or fiberglass can be added at the start of the process to increase the silicate concentration sufficiently for vitrification.
The Development of Fibrous Glasses Having High Elastic Moduli
1955-11-01
silica. WADC TR 55-290 5 Compositions Nos. 5 - 8 were the initial introductions of TiO2 into the compositions. The TiO2 was added as Na 2 O.TiO2...Compositions Nos. 25 - 37 and Nos. 48 - 59 were in the three component field CaO - Na20. 6 A12 0 3 - TiO2 . The lowest liquidus glasses containing Ti02...study of the substitution of TiO2 and Zr02 for A01. 5 in Ca 386. Glasses in which more than 5% of the total acidic components (AlO 1.5 + TiO2 + ZrO2
NASA Astrophysics Data System (ADS)
Ibrahim, Nurul Farhana; Mohamad, Hasmaliza; Noor, Siti Noor Fazliah Mohd
2016-12-01
The present work aims to study the effects of using different milling media on bioactive glass produced through melt-derived method for biomaterial application. The bioactive glass powder based on SiO2-CaO-Na2O-P2O5 system was fabricated using two different types of milling media which are tungsten carbide (WC) and zirconia (ZrO2) balls. However, in this work, no P2O5 was added in the new composition. XRF analysis indicated that tungsten trioxide (WO3) was observed in glass powder milled using WC balls whereas ZrO2 was observed in glass powder milled using ZrO2 balls. Amorphous structure was detected with no crystalline peak observed through XRD analysis for both glass powders. FTIR analysis confirmed the formation of silica network with the existence of functional groups Si-O-Si (bend), Si-O-Si (tetrahedral) and Si-O-Si (stretch) for both glass powders. The results revealed that there was no significant effect of milling media on amorphous silica network glass structure which shows that WC and zirconia can be used as milling media for bioactive glass fabrication without any contamination. Therefore, the fabricated BG can be tested safely for bioactivity assessment in biological fluids environment.
NASA Astrophysics Data System (ADS)
Boudon, Georges; Balcone-Boissard, Hélène; Villemant, Benoît.; Ucciani, Guillaume; Cioni, Raffaello
2010-05-01
Somma-Vesuvius activity started 35 ky ago and is characterized by numerous eruptions of variable composition and eruptive style, sometimes interrupted by long periods of unrest. The main explosive eruptions are represented by four plinian eruptions: Pomici di Base eruption (22 cal ky), Mercato (~8900 cal BP), Avellino (4365 cal BP) and Pompeii (79 AD). The 79 AD eruption embodies the most famous eruption since it's responsible of the destruction of Pompeii and Herculanum and it's the first described eruption. The Avellino eruption represents the last plinian event that preceded the Pompeii eruption. The eruptive sequence is similar to the 79 AD plinian eruption, with an opening phase preceding a main plinian fallout activity which ended by a phreatomagmatic phase. The fallout deposit displays a sharp colour contrast from white to grey pumice, corresponding to a magma composition evolution. We focus our study on the main fallout deposit that we sampled in detail in the Traianello quarry, 9 km North-North East of the crater, to investigate the degassing processes during the eruption, using volatile content and textural observations. Density and vesicularity measurements were obtained on a minimum of 100 pumice clasts sampled in 10 stratigraphic levels in the fallout deposit. On the basis of the density distribution, bulk geochemical data, point analytical measurements on glasses (melt inclusions and residual glass) and textural observations were obtained simultaneously on a minimum of 5 pumice clasts per eruptive unit. The glass composition, in particular the Na/K ratio, evolves from Na-rich phonolite for white pumices to a more K-rich phonolite for grey pumices. The pre-eruptive conditions are constrained by systematic Cl measurements in melt inclusions and matrix glass of pumice clasts. The entire magma was saturated relative to sub-critical fluids (a Cl-rich H2O vapour phase and a brine), with a Cl melt content buffered at ~6000 ppm, and a mean pre-eruptive H2O content depending of the magma composition. Most of the pumices of the different eruptive units show that H2O degassing during the eruption followed a typical closed-system evolution as expected for plinian eruption. Contrary to H2O, Cl was not efficiently degassed during the plinian phase of the eruption: the matrix glass composition remains close to the pre-eruptive content. Compared to the 79AD eruption the degassing processes showed by the whole Avellino plinian phase is more homogeneous and similar to the white pumice phase of the Pompeii eruption whereas the open-system degassing mode identified from the grey pumices of the 79AD eruption is not represented during the Avellino eruption.
A-thermal elastic behavior of silicate glasses.
Rabia, Mohammed Kamel; Degioanni, Simon; Martinet, Christine; Le Brusq, Jacques; Champagnon, Bernard; Vouagner, Dominique
2016-02-24
Depending on the composition of silicate glasses, their elastic moduli can increase or decrease as function of the temperature. Studying the Brillouin frequency shift of these glasses versus temperature allows the a-thermal composition corresponding to an intermediate glass to be determined. In an intermediate glass, the elastic moduli are independent of the temperature over a large temperature range. For sodium alumino-silicate glasses, the a-thermal composition is close to the albite glass (NaAlSi3O8). The structural origin of this property is studied by in situ high temperature Raman scattering. The structure of the intermediate albite glass and of silica are compared at different temperatures between room temperature and 600 °C. When the temperature increases, it is shown that the high frequency shift of the main band at 440 cm(-1) in silica is a consequence of the cristobalite-like alpha-beta transformation of 6-membered rings. This effect is stronger in silica than bond elongation (anharmonic effects). As a consequence, the elastic moduli of silica increase as the temperature increases. In the albite glass, the substitution of 25% of Si(4+) ions by Al(3+) and Na(+) ions decreases the proportion of SiO2 6-membered rings responsible for the silica anomaly. The effects of the silica anomaly balance the anharmonicity in albite glass and give rise to an intermediate a-thermal glass. Different networks, formers or modifiers, can be added to produce different a-thermal glasses with useful mechanical or chemical properties.
Side-branch wire entrapment during bifurcation PCI: avoidance and management.
Burns, Andrew T; Gutman, Jack; Whitbourn, Rob
2010-02-15
An LAD/D1 bifurcation intervention was complicated by side-branch wire entrapment and unravelling requiring goose-neck snare removal. Residual microfilaments were retrieved from the main branch after further balloon inflations with a satisfactory final angiographic result and one-year follow-up. Various methods are available to avoid and deal with this complication.
Coffee-rings and glasses: Colloids out of equilibrium
NASA Astrophysics Data System (ADS)
Yunker, Peter Joseph
This thesis describes experiments that utilize colloids to explore nonequilibrium phenomena. Specifically, the deposition of particles during evaporation and the glass transition are explored. In the first set of experiments, we found that particle shape has a profound effect on particle deposition. We evaporated drops of colloidal suspensions containing micron-sized particles that range in shape from isotropic spheres to very anisotropic ellipsoids. For sessile drops, i.e., drops sitting on a solid surface, spheres are deposited in a ring-like stain, while ellipsoids are deposited uniformly. We also confined drops between glass plates and allowed them to evaporate. During evaporation, colloidal particles coat the air-water interface, forming colloidal monolayer membranes (CMMs). As particle anisotropy increases, CMM bending rigidity was found to increase. This increase in bending rigidity provides a new mechanism that produces a uniform deposition of ellipsoids and a heterogeneous deposition of spheres. In the second set of experiments, we employed colloidal suspensions to investigate the character of glassy materials. "Anisotropic glasses'' were investigated with ellipsoidal particles confined to two-dimensional chambers at high packing fractions; this system enabled the study of the effects of particle shape on the vibrational properties of colloidal glasses. Low frequency modes in glasses composed of slightly anisotropic particles are found to have predominantly rotational character. Conversely, low frequency modes in glasses of highly anisotropic particles exhibit a mix of rotational and translational character. Aging effects in glasses were explored using suspensions of temperature-sensitive microgel spheres. We devised a method to rapidly quench from liquid to glass states, and then observed the resultant colloidal glasses as they aged. Particle rearrangements in glasses occur collectively, i.e., many particles move in a correlated manner. During aging, we observed that the size of these collective rearrangements increases. Thus, the slowing dynamics of aging appear governed by growing correlated domains of particles required for relaxation. Using the same microgel particles, the transformation of a crystal into a glass due to added disorder was investigated by adding smaller particles into a quasi-two-dimensional colloidal crystal. The crystal-glass transition bears structural signatures similar to those of the crystal-fluid transition, but also exhibits a sharp change in dynamic heterogeneity which ``turns-on'' abruptly as a function of increasing disorder. Finally, we investigated the influence of morphology and size on the vibrational properties of disordered clusters of colloidal particles. Spectral features of cluster vibrational modes are found to depend strongly on the average number of nearest neighbors but only weakly on the number of particles in each glassy cluster. The scaling of the median phonon frequency with nearest neighbor number is reminiscent of athermal simulations of the jamming transition.
Immobilization of Energetics on Live Fire Ranges (CU-1229). Revision 1.0
2004-07-31
Its cost ultimately may be prohibitive for large scale application in some areas, but its humic composition should aid adsorption of energetics and/or...acetonitrile) to sterile glass bottles, evaporating the solvent under a stream of nitrogen, adding a known volume of CaCl2, and sonicating/mixing until all...filtration)- Same as (a) above, except that the cleared supernatant was passed through a 0.45 µm glass fiber syringe filter prior to scintillation counting
Nondestructive Redox Quantification Reveals Glassmaking of Rare French Gothic Stained Glasses
2017-01-01
The sophisticated colors of medieval glasses arise from their transition metal (TM) impurities and capture information about ancient glassmaking techniques. Beyond the glass chemical composition, the TM redox is also a key factor in the glass color, but its quantification without any sampling is a challenge. We report a combination of nondestructive and noninvasive quantitative analyses of the chemical composition by particle-induced X-ray emission–particle-induced γ-ray emission mappings and of the color and TM element speciation by optical absorption spectroscopy performed on a red-blue-purple striped glass from the stained glass windows of the Sainte-Chapelle in Paris, France, during its restoration. These particular glass pieces must have been produced as a single shot, which guarantees that the chemical variations reflect the recipe in use in a specific medieval workshop. The quantitative elemental mappings demonstrate that the colored glass parts are derived from the same base glass, to which TMs were deliberately added. Optical absorption spectra reveal the origin of the colors: blue from CoII, red from copper nanoparticles, and purple from MnIII. Furthermore, the derivation of the quantitative redox state of each TM in each color shows that the contents of Fe, Cu, and Mn were adjusted to ensure a reducing glass matrix in the red stripe or a metastable overoxidized glass in the purple stripe. We infer that the agility of the medieval glassmaker allowed him to master the redox kinetics in the glass by rapid shaping and cooling to obtain a snapshot of the thermodynamically unstable glass colors. PMID:28494150
The influence of precursor addition order on the porosity of sol-gel bioactive glasses.
Fernando, Delihta; Colon, Pierre; Cresswell, Mark; Journet, Catherine; Pradelle-Plasse, Nelly; Jackson, Phil; Grosgogeat, Brigitte; Attik, Nina
2018-06-16
The superior textural properties of sol-gel derived bioactive glasses compared to conventional melt quench glasses accounts for their accelerated bioactivity in vitro. Several studies have explored ways to improve the surface properties of sol-gel glasses in order to maximise their efficiency for bone and tooth regeneration. In this study, we investigated the effect of order of network modifying precursor addition on the textural properties of sol-gel derived bioactive glasses. The effect of precursor addition order on the glass characteristics was assessed by switching the order of network modifying precursor (calcium acetate monohydrate and sodium acetate anhydrous) addition for a fixed composition of bioactive glass (75SiO 2 :5CaO:10Na 2 O:10P 2 O 5 ). The results of this study showed that the order of precursor addition does influence the porosity of these glasses. For the glasses of a fixed composition and preparation conditions we achieved a doubling of surface area, a 1.5 times increase in pore volume and a 1.2 times decrease in pore size just by the mixing the network modifying precursors and adding them together in the sol-gel preparation. This simple and straightforward route adaptation to the preparation of bioactive glasses would allow us to enhance the textural properties of existing and novel composition of bioactive glasses and thus accelerate their bioactivity. Copyright © 2018 The Academy of Dental Materials. Published by Elsevier Inc. All rights reserved.
Xing, Mingfei; Wang, Jingyu; Fu, Zegang; Zhang, Donghui; Wang, Yaping; Zhang, Zhiyuan
2018-04-05
In this study, a novel process for the extraction of heavy metal Ba and Sr from waste CRT panel glass and synchronous preparation of high silica glass powder was developed by glass phase separation. CRT panel glass was first remelted with B 2 O 3 under air atmosphere to produce alkali borosilicate glass. During the phase separation process, the glass separated into two interconnected phases which were B 2 O 3 -rich phase and SiO 2 -rich phase. Most of BaO, SrO and other metal oxides including Na 2 O, K 2 O, Al 2 O 3 and CaO were mainly concentrated in the B 2 O 3 -rich phase. The interconnected B 2 O 3 -rich phase can be completely leached out by 5mol/L HNO 3 at 90 ℃. The remaining SiO 2 -rich phase was porous glasses consisting almost entirely of silica. The maximum Ba and Sr removal rates were 98.84% and 99.38% and high silica glass powder (SiO 2 purity > 90 wt%) was obtained by setting the temperature, B 2 O 3 added amount and holding time at 1000-1100 ℃, 20-30% and 30 min, respectively. Thus this study developed an potential economical process for detoxification and reclamation of waste heavy metal glasses. Copyright © 2017 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Imrich, K.J.; Bickford, D.F.; Wicks, G.G.
1997-06-27
A study was undertaken to evaluate a variety of materials and coatings for the DWPF pour spout bellows liner. The intent was to identify materials that would minimize or eliminate adherence of glass on the bellows liner wall and help minimize possible pluggage during glass pouring operations in DWPF. Glass has been observed adhering to the current bellow`s liner, which is made of 304L stainless steel. Materials were identified which successfully allowed molten glass to hit these surfaces and not adhere. Results of this study suggest that if these materials are used in the pouring system glass could still fallmore » into the canister without appreciable plugging, even if an unstable glass stream is produced. The materials should next be evaluated under the most realistic DWPF conditions possible. Other findings of this study include the following: (1) increasing coupon thickness produced a favorable increase in the glass sticking temperature; (2) highly polished surfaces, with the exception of the oxygen-free copper coupon coated with Armoloy dense chromium, did not produce a significant improvement in the glass sticking temperature, increasing angle of contact of the coupon to the falling glass did not yield a significant performance improvement; (3) electroplating with gold and silver and various diffusion coatings did not produce a significant increase in the glass sticking temperature. However, they may provide added oxidation and corrosion resistance for copper and bronze liners. Boron nitride coatings delaminated immediately after contact with the molten glass.« less
Crew/Automation Interaction in Space Transportation Systems: Lessons Learned from the Glass Cockpit
NASA Technical Reports Server (NTRS)
Rudisill, Marianne
2000-01-01
The progressive integration of automation technologies in commercial transport aircraft flight decks - the 'glass cockpit' - has had a major, and generally positive, impact on flight crew operations. Flight deck automation has provided significant benefits, such as economic efficiency, increased precision and safety, and enhanced functionality within the crew interface. These enhancements, however, may have been accrued at a price, such as complexity added to crew/automation interaction that has been implicated in a number of aircraft incidents and accidents. This report briefly describes 'glass cockpit' evolution. Some relevant aircraft accidents and incidents are described, followed by a more detailed description of human/automation issues and problems (e.g., crew error, monitoring, modes, command authority, crew coordination, workload, and training). This paper concludes with example principles and guidelines for considering 'glass cockpit' human/automation integration within space transportation systems.
Smartphone Magnification Attachment: Microscope or Magnifying Glass
NASA Astrophysics Data System (ADS)
Hergemöller, Timo; Laumann, Daniel
2017-09-01
Today smartphones and tablets do not merely pervade our daily life, but also play a major role in STEM education in general, and in experimental investigations in particular. Enabling teachers and students to make use of these new techniques in physics lessons requires supplying capable and affordable applications. Our article presents the improvement of a low-cost technique turning smartphones into powerful magnifying glasses or microscopes. Adding only a 3D-printed clip attached to the smartphone's camera and inserting a small glass bead in this clip enables smartphones to take pictures with up to 780x magnification (see Fig. 1). In addition, the construction of the smartphone attachments helps to explain and examine the differences between magnifying glasses and microscopes, and shows that the widespread term "smartphone microscope" for this technique is inaccurate from a physics educational perspective.
Method of producing a ceramic fiber-reinforced glass-ceramic matrix composite
NASA Technical Reports Server (NTRS)
Bansal, Narottam P. (Inventor)
1994-01-01
A fiber-reinforced composite composed of a BaO-Al2O3-2SiO2 (BAS) glass ceramic matrix is reinforced with CVD silicon carbide continuous fibers. A slurry of BAS glass powders is prepared and celsian seeds are added during ball melting. The slurry is cast into tapes which are cut to the proper size. Continuous CVD-SiC fibers are formed into mats of the desired size. The matrix tapes and the fiber mats are alternately stacked in the proper orientation. This tape-mat stack is warm pressed to produce a 'green' composite. The 'green' composite is then heated to an elevated temperature to burn out organic constituents. The remaining interim material is then hot pressed to form a silicon carbide fiber-reinforced celsian (BAS) glass-ceramic matrix composite which may be machined to size.
Influence of Glass Fiber on Fresh and Hardened Properties of Self Compacting Concrete
NASA Astrophysics Data System (ADS)
Bharathi Murugan, R.; Haridharan, M. K.; Natarajan, C.; Jayasankar, R.
2017-07-01
The practical need of self-compacting concrete (SCC) is increasing due to increase in the infrastructure competence all over the world. The effective way of increasing the strength of concrete and enhance the behaviour under extreme loading (fire) is the keen interest. Glass fibers were added for five different of volume fractions (0%, 0.1%, 0.3%, 0.5% and 0.6%) to determine the optimum percentage of glass fiber without compensating the fresh properties and enhanced hardened properties of SCC concrete. The fresh state of concrete is characterized by slump flow, T-50cm slump flow, and V-funnel and L- box tests. The results obtained in fresh state are compared with the acceptance criteria of EFNARC specification. Concrete specimens were casted to evaluate the hardened properties such as compressive strength, split tensile strength, flexural strength and modulus of elasticity. Incorporation the glass fiber into SCC reduces the workability but within the standard specification. The hardened properties of SCC glass fiber reinforced concrete were enhanced, due to bridging the pre-existing micro cracks in concrete by glass fiber addition.
Development of dense glass-ceramic from recycled soda-lime-silicate glass and fly ash for tiling
NASA Astrophysics Data System (ADS)
Mustaffar, Mohd Idham; Mahmud, Mohamad Haniza; Hassan, Mahadi Abu
2017-12-01
Dense glass-ceramics were prepared by sinter-crystallization process from a combination of soda-lime-silicate glass waste and fly ash. Bentonite clay that acted as a binder was also added in a prepared formulation. The powder mixture of soda-lime glass, fly ash and bentonite clay were compacted by using uniaxial hydraulic press machine and sintered at six (6) various temperatures namely 750, 800, 850, 900, 950 and 1000 °C. The heating rate and sintering time were set at 5 °C/min and 30 minutes respectively. The results revealed that modulus of rupture (MOR), density and linear shrinkage increase first from 750 to 800 °C but decrease later after 800 to 1000 °C. In the meantime, water absorption was showing completely an opposite trend. The glass-ceramic sintered at 800 °C was found to have the best combination of physical-mechanical properties and has the potential to be applied in the construction industry particularly as floor and wall tiles because of the simple manufacturing process at low temperature.
Stober, Thomas; Rammelsberg, P
2005-01-01
The purpose of this study was to evaluate the clinical performance of two adhesively retained composite core materials and compare them with a metal-added glass ionomer. The main objective evaluated was total or partial loss of build-ups during the treatment prior to crown cementation. In 187 patients, 315 vital and non-vital teeth were built up after randomisation with either Rebilda D (RD), Rebilda SC (RSC) or Ketac Silver Aplicap (KSA). The composites were applied in the total-etch-technique with the corresponding dentin bonding agent. The metal-added glass ionomer was used with a conditioner. One group of patients was treated by experienced dentists, the other by dental students, in order to evaluate the effects of different levels of experience. Data were analysed using Mann-Whitney-U-Test and binomial logistic regression. The early failure rate (partial or total loss) of core build-ups before crown cementation was significantly higher for KSA (28.8%), as compared to RSC (15.3%, p=0.037) and RD (15%, p=0.025). Most failures were observed during the removal of the temporary crowns. The rate of replacements was between 3.0 (RD/dentists) and 20.4% (KSA/students). Furthermore, we found that build-ups made by students had a significantly higher risk of loss than those made by dentists (p=0.028). Adhesively retained self-curing composites show a better clinical short-term performance and can be recommended as core build-up materials.
NASA Astrophysics Data System (ADS)
Gupta, Nupur; Khanna, Atul; Gonzàlez, Fernando; Iordanova, Reni
2017-05-01
Tellurite and borotellurite glasses containing Bi2O3 and TiO2 were prepared and structure-property correlations were carried out by density measurements, X-ray Diffraction (XRD), Differential Scanning Calorimetry (DSC), Raman and UV-visible spectroscopy. Titanium tellurite glasses require high melt-cooling rates and were fabricated by splat quenching. On adding B2O3, the glass forming ability (GFA) enhances, and glasses could be synthesized at lower quenching rates. The density of glasses shows a direct correlation with molecular mass of the constituents. UV-visible studies were used to determine the optical band gap and refractive index. Raman studies found that the co-ordination number of tellurium ions with oxygen (NTe-O) decreases with the increase in B2O3 as well as Bi2O3 content while, TiO2 produce only a small decrease in NTe-O, which explains the lower GFA of titanium tellurite glasses that do not contain Bi2O3 and B2O3. DSC studies show that the glass transition temperature (Tg) increases with B2O3 and TiO2 concentrations and that Tg correlates well with bond enthalpy of the metal oxides.
McCloy, John S; Riley, Brian J; Goel, Ashutosh; Liezers, Martin; Schweiger, Michael J; Rodriguez, Carmen P; Hrma, Pavel; Kim, Dong-Sang; Lukens, Wayne W; Kruger, Albert A
2012-11-20
The immobilization of technetium-99 ((99)Tc) in a suitable host matrix has proven to be a challenging task for researchers in the nuclear waste community around the world. In this context, the present work reports on the solubility and retention of rhenium, a nonradioactive surrogate for (99)Tc, in a sodium borosilicate glass. Glasses containing target Re concentrations from 0 to 10,000 ppm [by mass, added as KReO(4) (Re(7+))] were synthesized in vacuum-sealed quartz ampules to minimize the loss of Re from volatilization during melting at 1000 °C. The rhenium was found as Re(7+) in all of the glasses as observed by X-ray absorption near-edge structure. The solubility of Re in borosilicate glasses was determined to be ~3000 ppm (by mass) using inductively coupled plasma optical emission spectroscopy. At higher rhenium concentrations, additional rhenium was retained in the glasses as crystalline inclusions of alkali perrhenates detected with X-ray diffraction. Since (99)Tc concentrations in a glass waste form are predicted to be <10 ppm (by mass), these Re results implied that the solubility should not be a limiting factor in processing radioactive wastes, assuming Tc as Tc(7+) and similarities between Re(7+) and Tc(7+) behavior in this glass system.
Biological Impact of Bioactive Glasses and Their Dissolution Products.
Hoppe, Alexander; Boccaccini, Aldo R
2015-01-01
For many years, bioactive glasses (BGs) have been widely considered for bone tissue engineering applications due to their ability to bond to hard as well as soft tissue (a property termed bioactivity) and for their stimulating effects on bone formation. Ionic dissolution products released during the degradation of the BG matrix induce osteogenic gene expression leading to enhanced bone regeneration. Recently, adding bioactive metallic ions (e.g. boron, copper, cobalt, silver, zinc and strontium) to silicate (or phosphate and borate) glasses has emerged as a promising route for developing novel BG formulations with specific therapeutic functionalities, including antibacterial, angiogenic and osteogenic properties. The degradation behaviour of BGs can be tailored by adjusting the glass chemistry making these glass matrices potential carrier systems for controlled therapeutic ion release. This book chapter summarises the fundamental aspects of the effect of ionic dissolution products from BGs on osteogenesis and angiogenesis, whilst discussing novel BG compositions with controlled therapeutic ion release. © 2015 S. Karger AG, Basel.
NASA Astrophysics Data System (ADS)
Aytug, Tolga; Simpson, John T.; Lupini, Andrew R.; Trejo, Rosa M.; Jellison, Gerald E.; Ivanov, Ilia N.; Pennycook, Stephen J.; Hillesheim, Daniel A.; Winter, Kyle O.; Christen, David K.; Hunter, Scott R.; Haynes, J. Allen
2013-08-01
We describe the formation and properties of atomically bonded, optical quality, nanostructured thin glass film coatings on glass plates, utilizing phase separation by spinodal decomposition in a sodium borosilicate glass system. Following deposition via magnetron sputtering, thermal processing and differential etching, these coatings are structurally superhydrophilic (i.e., display anti-fogging functionality) and demonstrate robust mechanical properties and superior abrasion resistance. After appropriate chemical surface modification, the surfaces display a stable, non-wetting Cassie-Baxter state and exhibit exceptional superhydrophobic performance, with water droplet contact angles as large as 172°. As an added benefit, in both superhydrophobic and superhydrophilic states these nanostructured surfaces can block ultraviolet radiation and can be engineered to be anti-reflective with broadband and omnidirectional transparency. Thus, the present approach could be tailored toward distinct coatings for numerous markets, such as residential windows, windshields, specialty optics, goggles, electronic and photovoltaic cover glasses, and optical components used throughout the US military.
Aytug, Tolga; Simpson, John T; Lupini, Andrew R; Trejo, Rosa M; Jellison, Gerald E; Ivanov, Ilia N; Pennycook, Stephen J; Hillesheim, Daniel A; Winter, Kyle O; Christen, David K; Hunter, Scott R; Haynes, J Allen
2013-08-09
We describe the formation and properties of atomically bonded, optical quality, nanostructured thin glass film coatings on glass plates, utilizing phase separation by spinodal decomposition in a sodium borosilicate glass system. Following deposition via magnetron sputtering, thermal processing and differential etching, these coatings are structurally superhydrophilic (i.e., display anti-fogging functionality) and demonstrate robust mechanical properties and superior abrasion resistance. After appropriate chemical surface modification, the surfaces display a stable, non-wetting Cassie-Baxter state and exhibit exceptional superhydrophobic performance, with water droplet contact angles as large as 172°. As an added benefit, in both superhydrophobic and superhydrophilic states these nanostructured surfaces can block ultraviolet radiation and can be engineered to be anti-reflective with broadband and omnidirectional transparency. Thus, the present approach could be tailored toward distinct coatings for numerous markets, such as residential windows, windshields, specialty optics, goggles, electronic and photovoltaic cover glasses, and optical components used throughout the US military.
Experimental input for the design of metallic glass/crystalline composites
NASA Astrophysics Data System (ADS)
Hutchinson, Nicholas Willis
Bulk metallic glasses often exhibit exceptional strength and large elastic strains, but the structural applications of bulk metallic glasses are limited by their extremely low tensile ductility. Below the glass transition temperature of the alloy, plastic deformation occurs primarily in narrow shear bands, which propagate unimpeded through the monolithic glass structure, resulting in catastrophic failure under tensile loading. A number of studies have added crystalline reinforcements to the glassy matrix in an effort to block shear band propagation and increase ductility. The reinforcements in these bulk metallic glass matrix composites (BMGMC's) can be added as ex situ particles or fibers infiltrated by the glass-forming liquid [1], or can be formed in situ, either via devitrification of the glass during post-processing [2] or as a second phase that precipitates from the melt during solidification [3]. The size, distribution, and mechanical properties of the reinforcement phase have significant impact on the ductility of the composite. However, surprisingly little quantitative microstructural information is available for BMGMC's, particularly those formed by precipitation from the melt. In this work, we examine two in situ BMGMC's in which a ductile crystalline phase precipitates during solidification of the melt, resulting in a complex dendritic structure embedded in a continuous glass matrix. A 3D serial sectioning process was used to image the microstructure at regular intervals by removing slices of material using a dual beam focused ion-scanning electron microscope (FIB). Due to the complex nature of the microstructure, measurements of key features were conducted using a 3D measurement method that was developed for this purpose. Experiments were also conducted to provide experimental input for the development and tuning of finite element models. Changes in the elastic modulus of the composite were evaluated over a range of stresses that encompassed the yield point of the composite. An interesting increase in the modulus was observed prior to yielding. The work is concluded with a study of the accumulation of strain within the composite microstructure during tensile loading. The strain was determined and evaluated by a digital image correlation method. [1] R. B. Dandliker, R. D. Conner, and W. L. Johnson, "Melt infiltration casting of bulk metallic-glass matrix composites," J. Mater. Res., vol. 13, no. 10, pp. 2896--2901, 1998. [2] J. Eckert, J. Das, S. Pauly, and C. Duhamel, "Mechanical Properties of Bulk Metallic Glasses and Composites," J. Mater. Res., vol. 22, no. 2, pp. 285--301, 2007. [3] D. C. Hofmann, J.-Y. Suh, A. Wiest, G. Duan, M.-L. Lind, M. D. Demetriou, and W. L. Johnson, "Designing metallic glass matrix composites with high toughness and tensile ductility.," Nature, vol. 451, no. 7182, pp. 1085--9, Feb. 2008.
Rabanus, J P; Gelderblom, H R; Schuppan, D; Becker, J
1991-05-01
The ultrastructural localization of collagens type V and VI in normal human gingival mucosa was investigated by immunoelectron microscopy. Twenty biopsies were fixed in dimethylsuberimidate and shock-frozen in slush nitrogen. Collagen type V was mainly located to meshworks of uniform nonstriated microfibrils of 12 to 20 nm width, which preferentially appeared in larger spaces between cross-striated major collagen fibrils. Occasionally single microfibrils of collagen type V fanned out from the ends of major collagen fibrils, which may indicate a role as a core fibril. Collagen type V was not found in the subepithelial basement membrane and the immediately adjacent stroma. Collagen type VI was detected in a loose reticular network of unbanded microfilaments that were morphologically distinguishable by knoblike protrusions every 100-110 nm. These microfilaments were found in the vicinity, but not as an intrinsic component, of the subepithelial basement membrane. Single filaments of collagen type VI filaments appeared to form bridges between neighboring cross-striated major collagen fibrils, suggesting an interconnecting role for this collagen type. The method presented appears to be excellently suited to study the normal and pathological supramolecular organization of the oral extracellular matrix.
Stanley, H P; Lambert, C C
1985-11-01
Sertoli cells in the ratfish entirely surround a clone of spermatids to form a spermatocyst. As spermiogenesis proceeds within the cyst cavity, the acrosome areas become apposed to the Sertoli cell plasma membrane lining the spermatocyst. The spermatids elongate and are gathered into an increasingly compact bundle oriented with acrosomal tips directed toward the Sertoli cell base. As all acrosome areas move closer together, Sertoli cell microfilaments oriented parallel to the long spermatid axis appear and increase in concentration. Actin and myosin were demonstrated in the microfilament area with fluorescent antibodies and NBD-Phallacidin. Simultaneously, endocytosis of Sertoli cell membrane between spermatid attachment sites removes the intervening membrane and allows the latter sites to approach each other. Sertoli cell endocytosis is spatially and temporally related to a unique projection at the basal rim of each acrosome. During midspermiogenesis, structured intercellular material appears between the Sertoli cell and the acrosomal region of each spermatid. Its periodicity is closely related to periodic arrangement of Sertoli cell actin and material within the spermatids. These attachment sites move together upon endocytosis, gathering a clone of spermatids into a closely packed bundle.
Lin, Ling; Yang, Xiao-Mei; Li, Jun; Zhang, Yan-Li; Qin, Wenxin; Zhang, Zhi-Gang
2014-09-10
Mammalian enabled (MENA), usually known as a direct regulator of microfilament polymerization and bundling, promotes metastasis in various cancers. Here we focus on the role of MENA in hepatocellular carcinoma (HCC) metastasis and the relevant mechanism from the view of RhoA activity regulation. By HCC tissue microarray analysis, we found that MENA expression was positively associated with satellite lesions (P<0.01) and vascular invasion (P<0.01). Cases with membrane reinforcement of MENA staining in HCC tissues had significantly higher rates of early recurrence in the intermediate MENA expression group. Knockdown of MENA significantly suppressed HCC cell migration and invasion in vitro, as well as their intrahepatic and distant metastasis in vivo. Knockdown of MENA also decreased filopodia and stress fibers in SMMC-7721 cells. Furthermore, a decrease of RhoA activity was detected by a pull-down assay in SMMC-7721-shMENA cells. The ROCK inhibitor, Y-27632, suppressed migration of both MENA knockdown SMMC-7721 cells and control cells, but diminished their difference. Thus, our findings suggest that MENA promotes HCC cell motility by activating RhoA. Copyright © 2014 Elsevier Inc. All rights reserved.
Yang, ChangGeng; Wu, Fan; Lu, Xing; Jiang, Ming; Liu, Wei; Yu, Lijuan; Tian, Juan; Wen, Hua
2017-07-17
Growth arrest specific 2 (gas2) gene is a component of the microfilament system that plays a major role in the cell cycle, regulation of microfilaments, and cell morphology during apoptotic processes. However, little information is available on fish gas2. In this study, the tilapia (Oreochromis niloticus) gas2 gene was cloned and characterized for the first time. The open reading frame was 1020 bp, encoding 340 amino acids; the 5'-untranslated region (UTR) was 140 bp and the 3'-UTR was 70 bp, with a poly (A) tail. The highest promoter activity occurred in the regulatory region (-3000 to -2400 bp). The Gas2-GFP fusion protein was distributed within the cytoplasm. Quantitative reverse transcription-polymerase chain reaction and western blot analyses revealed that gas2 gene expression levels in the liver, muscle, and brain were clearly affected by low temperature stress. The results of gas2 RNAi showed decreased expression of the gas2 and P53 genes. These results suggest that the tilapia gas2 gene may be involved in low temperature stress-induced apoptosis.
ENDOCYTOSIS IN CHANG LIVER CELLS
Wagner, Roger; Rosenberg, Murray; Estensen, Richard
1971-01-01
The addition of 0.08 M sucrose to a culture medium containing Chang-strain human liver cells causes intense cytoplasmic vacuolation. Electron microscopy of these cells grown inferritin, time-lapse cinematography, and radioautography reveal that the vacuoles arise by endocytosis and that the sucrose is taken into the cell and localized in the vacuoles. Tracer studies demonstrate that sucrose-3H provides a marker for quantitation of endocytosis and that it neither induces nor stimulates endocytosis. Electron micrographs of vacuolated liver cells show microfilaments in close proximity to the inside of the plasma membrane, in the pseudopodia, and to the cytoplasmic side of the membrane surrounding endocytosis vacuoles. Cytochalasin B (CB), a mold metabolite that inhibits various types of cell motility, has a dose-dependent inhibitory effect on the uptake of sucrose-3H by these cells. This inhibition is accompanied by a cessation of the movement of ruffles and pseudopodia on the surface of the cells and the formation of blebs which arise from the cell's surface. These morphological changes are quickly reversible upon removal of CB. Alterations in the appearance and location of microfilaments are also observed in CB-treated cells. PMID:4329157
Mechanisms involved in the blood-testis barrier increased permeability induced by EMP.
Wang, Xiao-Wu; Ding, Gui-Rong; Shi, Chang-Hong; Zeng, Li-Hua; Liu, Jun-Ye; Li, Jing; Zhao, Tao; Chen, Yong-Bin; Guo, Guo-Zhen
2010-09-30
The blood-testis barrier (BTB) plays an important role in male reproductive system. Lots of environmental stimulations can increase the permeability of BTB and then result in antisperm antibody (AsAb) generation, which is a key step in male immune infertility. Here we reported the results of male mice exposed to electromagnetic pulse (EMP) by measuring the expression of tight-junction-associated proteins (ZO-1 and Occludin), vimentin microfilaments, and transforming growth factor-beta (TGF-beta3) as well as AsAb level in serum. Male BALB/c mice were sham exposed or exposed to EMP at two different intensities (200kV/m and 400kV/m) for 200 pulses. The testes were collected at different time points after EMP exposure. Immunofluorescence histocytochemistry, western blotting, laser confocal microscopy and RT-PCR were used in this study. Compared with sham group, the expression of ZO-1 and TGF-beta3 significantly decreased accompanied with unevenly stained vimentin microfilaments and increased serum AsAb levels in EMP-exposed mice. These results suggest a potential BTB injury and immune infertility in male mice exposed to a certain intensity of EMP. Copyright 2010 Elsevier Ireland Ltd. All rights reserved.
The thermal degradation of 5 alpha (H)-cholestane during closed-system pyrolysis
NASA Astrophysics Data System (ADS)
Abbott, Geoffrey D.; Bennett, Barry; Stuart Fetch, G.
1995-06-01
Involatile hydrocarbons were identified following the heating of 5α(H)-cholestane in water with reaction vessel walls composed of 316 grade stainless steel and borosilicate glass. These analyses were compared with the hydrocarbon product compositions from closed-system pyrolysis experiments with no added water. Unsaturated hydrocarbons dominate their saturated counterparts following hydrous pyrolysis in both stainless steel-316 and borosilicate glass. In the absence of added water the converse is true in that saturated components dominate the hydrocarbon mixture. Backbone rearrangement in the steroid nucleus leading to spirosterene formation was only observed under aqueous conditions in both borosilicate glass and stainless steel-316 vessels. These comparisons demonstrate that water, as opposed to reaction vessel surface catalytic effects, plays a central role in mediating hydrocarbon degradation during closed-system hydrous pyrolysis. 5α(H)-cholestane degradation under aqueous conditions is a complex composite of dissociative and rearrangement processes. These include (I) carbon-carbon bond cleavage in the sidechains as well as the ring system, (2) dehydrogenation, and (3) backbone rearrangement. These laboratory experiments provide a product description of the involatile hydrocarbons which will be the basis for a mechanistic study of 5α(H)-cholestane degradation in hot water.
Glass corrosion in natural environments
NASA Technical Reports Server (NTRS)
Thorpe, Arthur N.; Barkatt, Aaron
1992-01-01
Experiments carried out during the progress period are summarized. Experiments carried out involving glass samples exposed to solutions of Tris have shown the appearance of 'spikes' upon monitoring glass dissolution as a function of time. The periodic 'spikes' observed in Tris-based media were interpreted in terms of cracking due to excessive stress in the surface region of the glass. Studies of the interactions of silicate glasses with metal ions in buffered media were extended to systems containing Al. Caps buffer was used to establish the pH. The procedures used are described and the results are given. Preliminary studies were initiated as to the feasibility of adding a slowly dissolving solid compound of the additive to the glass-water system to maintain a supply of dissolved additive. It appears that several magnesium compounds have a suitable combination of solubility and affinity towards silicate glass surfaces to have a pronounced retarding effect on the extraction of uranium from the glass. These preliminary findings raise the possibility that introducing a magnesium source into geologic repositories for nuclear waste glass in the form of a sparingly soluble Mg-based backfill material may cause a substantial reduction in the extent of long-term glass corrosion. The studies described also provide mechanistic understanding of the roles of various metal solutes in the leachant. Such understanding forms the basis for developing long-term predictions of nuclear waste glass durability under repository conditions. From what is known about natural highly reduced glasses such as tektites, it is clear that iron is dissolved as ferrous iron with little or no ferric iron. The reducing conditions were high enough to cause metallic iron to exsolve out of the glass in the form of submicroscopic spherules. As the nuclear waste glass is much less reduced, a study was initiated on other natural glasses in addition to the nuclear waste glass. Extensive measurements were carried out on these glasses in order to characterize their magnetic properties. Results of these studies are described.
Non-stationary filtration mode during chemical reactions with the gas phase
NASA Astrophysics Data System (ADS)
Zavialov, Ivan; Konyukhov, Andrey; Negodyaev, Sergey
2015-04-01
An experimental and numerical study of filtration accompanied by chemical reactions between displacing fluid and solid skeleton is considered. Glass balls (400-500 μm in diameter) were placed in 1 cm gap between two glass sheets and were used as model porous medium. The baking soda was added to the glass balls. The 70% solution of acetic acid was used as the displacer. The modeling porous medium was saturated with a mineral oil, and then 70% solution of colored acetic acid was pumped through the medium. The glass balls and a mineral oil have a similar refractive index, so the model porous medium was optically transparent. During the filtration, the gas phase was generated by the chemical reactions between the baking soda and acetic acid, and time-dependent displacement of the chemical reaction front was observed. The front of the chemical reaction was associated with the most intensive gas separation. The front moved, stopped, and then moved again to the area where it had been already. We called this process a secondary oxidation wave. To describe this effect, we added to the balance equations a term associated with the formation and disappearance of phases due to chemical reactions. The equations were supplemented by Darcy's law for multiphase filtration. Nonstationarity front propagation of the chemical reaction in the numerical experiment was observed at Damköhler numbers greater than 100. The mathematical modelling was agreed well with the experimental results.
Structure of semiconducting versus fast-ion conducting glasses in the Ag-Ge-Se system.
Zeidler, Anita; Salmon, Philip S; Whittaker, Dean A J; Piarristeguy, Andrea; Pradel, Annie; Fischer, Henry E; Benmore, Chris J; Gulbiten, Ozgur
2018-01-01
The transition from a semiconductor to a fast-ion conductor with increasing silver content along the Ag x (Ge 0.25 Se 0.75 ) (100- x ) tie line (0≤ x ≤25) was investigated on multiple length scales by employing a combination of electric force microscopy, X-ray diffraction, and neutron diffraction. The microscopy results show separation into silver-rich and silver-poor phases, where the Ag-rich phase percolates at the onset of fast-ion conductivity. The method of neutron diffraction with Ag isotope substitution was applied to the x =5 and x =25 compositions, and the results indicate an evolution in structure of the Ag-rich phase with change of composition. The Ag-Se nearest-neighbours are distributed about a distance of 2.64(1) Å, and the Ag-Se coordination number increases from 2.6(3) at x =5 to 3.3(2) at x =25. For x =25, the measured Ag-Ag partial pair-distribution function gives 1.9(2) Ag-Ag nearest-neighbours at a distance of 3.02(2) Å. The results show breakage of Se-Se homopolar bonds as silver is added to the Ge 0.25 Se 0.75 base glass, and the limit of glass-formation at x ≃28 coincides with an elimination of these bonds. A model is proposed for tracking the breakage of Se-Se homopolar bonds as silver is added to the base glass.
Structure of semiconducting versus fast-ion conducting glasses in the Ag–Ge–Se system
2018-01-01
The transition from a semiconductor to a fast-ion conductor with increasing silver content along the Agx(Ge0.25Se0.75)(100−x) tie line (0≤x≤25) was investigated on multiple length scales by employing a combination of electric force microscopy, X-ray diffraction, and neutron diffraction. The microscopy results show separation into silver-rich and silver-poor phases, where the Ag-rich phase percolates at the onset of fast-ion conductivity. The method of neutron diffraction with Ag isotope substitution was applied to the x=5 and x=25 compositions, and the results indicate an evolution in structure of the Ag-rich phase with change of composition. The Ag–Se nearest-neighbours are distributed about a distance of 2.64(1) Å, and the Ag–Se coordination number increases from 2.6(3) at x=5 to 3.3(2) at x=25. For x=25, the measured Ag–Ag partial pair-distribution function gives 1.9(2) Ag–Ag nearest-neighbours at a distance of 3.02(2) Å. The results show breakage of Se–Se homopolar bonds as silver is added to the Ge0.25Se0.75 base glass, and the limit of glass-formation at x≃28 coincides with an elimination of these bonds. A model is proposed for tracking the breakage of Se–Se homopolar bonds as silver is added to the base glass. PMID:29410843
DOE Office of Scientific and Technical Information (OSTI.GOV)
Govindaraju, Nirmal; Liu, Wenning N.; Sun, Xin
Hermetic gas seals are critical components for planar solid oxide fuel cells. This article focuses on comparative evaluation of a glass-ceramic developed by the Pacific Northwest National Laboratory (PNNL) and a self-healing glass seal developed by the University of Cincinnati. The stress and strain levels in the Positive electrode-Electrolyte-Negative electrode (PEN) seal in one cell stack are evaluated using a multi-physics simulation package developed at PNNL. Simulations were carried out with and without consideration of clamping force and stack body force, respectively. The results indicate that the overall stress and strain levels are dominated by the thermal expansion mismatches betweenmore » the different cell components. Further, compared with glass-ceramic seal, the self-healing glass seal results in much lower steady state stress due to its much lower stiffness at the operating temperature of SOFC, and also exhibits much shorter relaxation times due to high creep rate. It is also noted that the self-healing glass seal will experience continuing creep deformation under the operating temperature of SOFC therefore resulting in possible overflow of the sealing materials. Further stopper material may need to be added to maintain its geometric stability during operation.« less
Investigation of mechanical properties of hemp/glass fiber reinforced nano clay hybrid composites
NASA Astrophysics Data System (ADS)
Unki, Hanamantappa Ningappa; Shivanand, H. K.; Vidyasagar, H. N.
2018-04-01
Over the last twenty to thirty years composite materials have been used in engineering field. Composite materials possess high strength, high strength to weight ratio due to these facts composite materials are becoming popular among researchers and scientists. The major proportion of engineering materials consists of composite materials. Composite materials are used in vast applications ranging from day-to-day household articles to highly sophisticated applications. In this paper an attempt is made to prepare three different composite materials using e-glass and Hemp. In this present investigation hybrid composite of Hemp, Glass fiber and Nano clay will be prepared by Hand-layup technique. The glass fiber used in this present investigation is E-glass fiber bi-directional: 90˚ orientation. The composite samples will be made in the form of a Laminates. The wt% of nanoclay added in the preparation of sample is 20 gm constant. The fabricated composite Laminate will be cut into corresponding profiles as per ASTM standards for Mechanical Testing. The effect of addition of Nano clay and variation of Hemp/glass fibers will be studied. In the present work, a new Hybrid composite is developed in which Hemp, E glass fibers is reinforced with epoxy resin and with Nano clay.
Bioactive and biocompatible pieces of HA/sol-gel glass mixtures obtained by the gel-casting method.
Padilla, S; Sánchez-Salcedo, S; Vallet-Regí, M
2005-10-01
Hydroxyapatite (HA)/glass mixtures have shown a faster bioactive behaviour than HA itself. On the other hand, the gel-casting method is a simple and reproducible colloidal method to produce ceramic pieces with complex shapes. In this work, pieces of HA/glass mixtures were prepared by the gel-casting method. A study for obtaining concentrated slurries of these mixtures is reported; the bioactivity and biocompatibility of the obtained pieces have been studied also. The influence of pH, dispersant concentration, the content and milling of glass, and the way to prepare the suspensions were investigated. The lowest viscosity and better rheological properties were achieved with the lowest glass content, when the glass was added after the dispersion of the HA powder and when the glass was not milled after calcination. Fluid suspensions with a high solid content (50 vol.%) could be prepared and well-shaped pieces were obtained from these slurries. These pieces showed in vitro bioactive behavior in simulated body fluid; additionally, the proliferation and spreading assays with osteoblastic cells (HOS) showed that the pieces are biocompatible. The results obtained indicate that the gel-casting of HA/glass mixtures produces bioactive and biocompatible pieces with the required shapes. Therefore, these materials could be good candidates for clinical applications and scaffolds for tissue engineering. (c) 2005 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Hashim, M. F. Abu; Abdullah, M. M. A.; Ghazali, C. M. R.; Hussin, K.; Binhussain, M.
2017-04-01
This study investigated the use of a novel white clay geopolymer as a filler to produce high strength glass reinforced epoxy pipe. It was found that using white clay geopolymer as filler gives better compressive strength to the glass reinforced epoxy pipe. The disadvantages of current glass reinforced epoxy pipes such low compressive strength which can be replaced by the composite pipes. Geopolymerization is an innovative technology that can transform several aluminosilicate materials into useful products called geopolymers or inorganic polymers. A series of glass reinforced epoxy pipe and glass reinforced epoxy pipe filled with 10 - 40 weight percentages white clay geopolymer filler with 4 Molarity and 8 Molarity were prepared. Morphology of white clay geopolymer filler surface was indicates using scanning electron microscopy. The additions of white clay geopolymer filler for both 4 Molarity and 8 Molarity show higher compressive strength than glass reinforced epoxy pipe without any geopolymer filler. The compressive test of these epoxy geopolymer pipe samples was determined using Instron Universal Testing under compression mode. Nonetheless, the compressive strength of glass reinforced epoxy pipe with white clay geopolymer filler continues to drop when added to 40 wt% of the geopolymer filler loading for both 4 Molarity and 8 Molarity. These outcomes showed that the mixing of geopolymer materials in epoxy system can be attained in this research.
1979-01-01
Previous studies (Holmes, K.V., and P.W. Choppin. J. Exp. Med. 124:501- 520; J. Cell Biol. 39:526-543) showed that infection of baby hamster kidney (BHK21-F) cells with the parainfluenza virus SV5 causes extensive cell fusion, that nuclei migrate in the syncytial cytoplasm and align in tightly-packed rows, and that microtubules are involved in nuclear movement and alignment. The role of microtubules, 10-nm filaments, and actin-containing microfilaments in this process has been investigated by immunofluorescence microscopy using specific antisera, time-lapse cinematography, and electron microscopy. During cell fusion, micro tubules and 10-nm filaments from many cells form large bundles which are localized between rows of nuclei. No organized bundles of actin fibers were detected in these areas, although actin fibers were observed in regions away from the aligned nuclei. Although colchicine disrupts microtubules and inhibits nuclear movement, cytochalasin B (CB; 20-50 microgram/ml) does not inhibit cell fusion or nuclear movement. However, CB alters the shape of the syncytium, resulting in long filamentous processes extending from a central region. When these processes from neighboring cells make contact, fusion occurs, and nuclei migrate through the channels which are formed. Electron and immunofluorescence microscopy reveal bundles of microtubules and 10-nm filaments in parallel arrays within these processes, but no bundles of microfilaments were detected. The effect of CB on the structural integrity of microfilaments at this high concentration (20 microgram/ml) was demonstrated by the disappearance of filaments interacting with heavy meromyosin. Cycloheximide (20 microgram/ml) inhibits protein synthesis but does not affect cell fusion, the formation of microtubules and 10-nm filament bundles, or nuclear migration and alignment; thus, continued protein synthesis is not required. The association of microtubules and 10-nm filaments with nuclear migration and alignment suggests that microtubules and 10-nm filaments are two components in a system which serves both cytoskeletal and force-generating functions in intracellular movement and position of nuclei. PMID:227913
Wang, Yan-Xia; Xiang, Cheng; Liu, Bo; Zhu, Yong; Luan, Yong; Liu, Shu-Tian; Qin, Kai-Rong
2016-12-28
In vivo studies have demonstrated that reasonable exercise training can improve endothelial function. To confirm the key role of wall shear stress induced by exercise on endothelial cells, and to understand how wall shear stress affects the structure and the function of endothelial cells, it is crucial to design and fabricate an in vitro multi-component parallel-plate flow chamber system which can closely replicate exercise-induced wall shear stress waveforms in artery. The in vivo wall shear stress waveforms from the common carotid artery of a healthy volunteer in resting and immediately after 30 min acute aerobic cycling exercise were first calculated by measuring the inner diameter and the center-line blood flow velocity with a color Doppler ultrasound. According to the above in vivo wall shear stress waveforms, we designed and fabricated a parallel-plate flow chamber system with appropriate components based on a lumped parameter hemodynamics model. To validate the feasibility of this system, human umbilical vein endothelial cells (HUVECs) line were cultured within the parallel-plate flow chamber under abovementioned two types of wall shear stress waveforms and the intracellular actin microfilaments and nitric oxide (NO) production level were evaluated using fluorescence microscope. Our results show that the trends of resting and exercise-induced wall shear stress waveforms, especially the maximal, minimal and mean wall shear stress as well as oscillatory shear index, generated by the parallel-plate flow chamber system are similar to those acquired from the common carotid artery. In addition, the cellular experiments demonstrate that the actin microfilaments and the production of NO within cells exposed to the two different wall shear stress waveforms exhibit different dynamic behaviors; there are larger numbers of actin microfilaments and higher level NO in cells exposed in exercise-induced wall shear stress condition than resting wall shear stress condition. The parallel-plate flow chamber system can well reproduce wall shear stress waveforms acquired from the common carotid artery in resting and immediately after exercise states. Furthermore, it can be used for studying the endothelial cells responses under resting and exercise-induced wall shear stress environments in vitro.
Method for solidification of radioactive and other hazardous waste
Anshits, Alexander G.; Vereshchagina, Tatiana A.; Voskresenskaya, Elena N.; Kostin, Eduard M.; Pavlov, Vyacheslav F.; Revenko, Yurii A.; Tretyakov, Alexander A.; Sharonova, Olga M.; Aloy, Albert S.; Sapozhnikova, Natalia V.; Knecht, Dieter A.; Tranter, Troy J.; Macheret, Yevgeny
2002-01-01
Solidification of liquid radioactive waste, and other hazardous wastes, is accomplished by the method of the invention by incorporating the waste into a porous glass crystalline molded block. The porous block is first loaded with the liquid waste and then dehydrated and exposed to thermal treatment at 50-1,000.degree. C. The porous glass crystalline molded block consists of glass crystalline hollow microspheres separated from fly ash (cenospheres), resulting from incineration of fossil plant coals. In a preferred embodiment, the porous glass crystalline blocks are formed from perforated cenospheres of grain size -400+50, wherein the selected cenospheres are consolidated into the porous molded block with a binder, such as liquid silicate glass. The porous blocks are then subjected to repeated cycles of saturating with liquid waste, and drying, and after the last cycle the blocks are subjected to calcination to transform the dried salts to more stable oxides. Radioactive liquid waste can be further stabilized in the porous blocks by coating the internal surface of the block with metal oxides prior to adding the liquid waste, and by coating the outside of the block with a low-melting glass or a ceramic after the waste is loaded into the block.
López-Delgado, Aurora; Tayibi, Hanan; Pérez, Carlos; Alguacil, Francisco José; López, Félix Antonio
2009-06-15
A solid waste coming from the secondary aluminium industry was successfully vitrified in the ternary CaO-Al(2)O(3)-SiO(2) system at 1500 degrees C. This waste is a complex material which is considered hazardous because of its behaviour in the presence of water or moisture. In these conditions, the dust can generate gases such as H(2), NH(3), CH(4), H(2)S, along with heat and potential aluminothermy. Only silica sand and calcium carbonate were added as external raw materials to complete the glasses formula. Different nominal compositions of glasses, with Al(2)O(3) ranging between 20% and 54%, were studied to determine the glass forming area. The glasses obtained allow the immobilisation of up to 75% of waste in a multicomponent oxide system in which all the components of the waste are incorporated. The microhardness Hv values varied between 6.05 and 6.62GPa and the linear thermal expansion coefficient, alpha, varied between (62 and 139)x10(-7)K(-1). Several glasses showed a high hydrolytic resistance in deionised water at 98 degrees C.
The correlation between fragility, density, and atomic interaction in glass-forming liquids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Lijin; Guan, Pengfei, E-mail: pguan@csrc.ac.cn; Wang, W. H.
2016-07-21
The fragility that controls the temperature-dependent viscous properties of liquids as the glass transition is approached, in various glass-forming liquids with different softness of the repulsive part of atomic interactions at different densities, is investigated by molecular dynamic simulations. We show that the landscape of fragility in purely repulsive systems can be separated into three regions denoted as R{sub I,} R{sub II}, and R{sub III}, respectively, with qualitatively disparate dynamic behaviors: R{sub I} which can be described by “softness makes strong glasses,” R{sub II} where fragility is independent of softness and can only be tuned by density, and R{sub III}more » with constant fragility, suggesting that density plays an unexpected role for understanding the repulsive softness dependence of fragility. What is more important is that we unify the long-standing inconsistence with respect to the repulsive softness dependence of fragility by observing that a glass former can be tuned more fragile if nonperturbative attraction is added into it. Moreover, we find that the vastly dissimilar influences of attractive interaction on fragility could be estimated from the structural properties of related zero-temperature glasses.« less
Adenovirus type 5 intrinsic adsorption rates measured by surface plasmon resonance.
Roper, D Keith; Nakra, Shamit
2006-01-01
Intrinsic adsorption rates of whole adenovirus type 5 (Ad5) onto a diethylaminoethyl (DEAE) anion exchange surface are measured for the first time by surface plasmon resonance (SPR). Fitting SPR sensorgrams to a two-compartment mass transport reaction model distinguishes intrinsic adsorption rates from slow diffusive Ad5 mass transport. Ad5 is a widely used viral vector for gene therapy that binds electrostatically to surfaces of cells and synthetics such as membranes, chromatographic resins, and glass. Increasing NaCl concentration from 4.8 to 14.4mM shifts binding of whole Ad5 from diffusion control to a regime where both sorption and diffusion affect binding. Intrinsic adsorption rates for Ad5-DEAE interaction are 16 times faster than intrinsic adsorption rates for Ad5 fiber knob interacting with soluble extracellular domain of coxsackievirus adenovirus receptors (s-CAR).
Proverbio, Edoardo
The experiences that in 1758 led John Dollond to create the first achromatic telescope highlighted the serious difficulties related to the production of lenses with a correction for chromatic aberration. These difficulties were due to the lack of suitable tools for measuring the refraction index and for verifying the curvatures of the lenses of such optical instruments. To this was added what was perhaps the greatest difficulty: i.e., that of acquiring the kinds of glass, the so-called "common" (crown) glass and "lead" (flint) glass, of which the lenses had to be made. If the theoretical works of Alexis Clairaut, of Samuel Klingenstierna, and of Ruggiero Boscovich furnished the theoretical basis for producing such lenses, and subsequently--after Boscovich's discovery of the role of the eyepieces--for creating also achromatic eyepieces, the greatest challenge from the practical point of view was that of the availability of the flint glass. In this first part of the article there is then a study of the numerous attempts and directions pursued by Clairaut and his valid collaborators--Anthéaulme, George father and son, Charles François de l'Etang, and Claude Siméon Passemant--in order to find common glass and lead glass, and to produce the first achromatic lenses and binoculars in France. An analysis follows of the experiences conducted by Boscovich, first in Vienna, and then in Milan and Venice-Murano, addressed to the production of flint glass.
Determination of chemical speciations of cerium in nuclear waste glasses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gong, Meiling; Li, Hong
1996-12-31
Cerium oxides have been widely used as a surrogate for plutonium in the investigation of the melt and durability behavior of simulated nuclear waste glasses. It is well known that there is a cerous-ceric equilibrium in silicate glasses under normal melting conditions. The position of this equilibrium depends on glass composition, melting temperature, furnace atmosphere, and possibly the total amounts of cerium in glass. The oxidation state of cerium affects total solubility of cerium in glass, solubilities of other components in glass, viscosities and liquidus temperatures of the melts, and the chemical durability of the glasses. A procedure was developedmore » for the determination of the ceric and cerous distribution. The glass was ground to small particles of less than 300 meshes and was dissolved in mixture of HF and H{sub 2}SO{sub 4}. The ceric oxide was graduately reduced to cerous species in the presence of HF acid during the dissolution. To compensate the change of the equilibrium during the dissolution, a calibration curve is made with a mixture of standard solution of ceric sulphate and one gram of glass of the same composition containing no cerium. Boric acid was added to complex the fluoride ions, and the resultant solution was titrated potentiometrically with 0.01 N ferrous ammonium sulphate solution. The corrected ceric concentration was obtained on the calibration curve. The total cerium content in the above solution was analyzed using ICP-AES and the cerous content was the difference between the total Ce and Ce(+4).« less
METHOD OF PREPARING RADIOACTIVE CESIUM SOURCES
Quinby, T.C.
1963-12-17
A method of preparing a cesium-containing radiation source with physical and chemical properties suitable for high-level use is presented. Finely divided silica is suspended in a solution containing cesium, normally the fission-product isotope cesium 137. Sodium tetraphenyl boron is then added to quantitatively precipitate the cesium. The cesium-containing precipitate is converted to borosilicate glass by heating to the melting point and cooling. Up to 60 weight percent cesium, with a resulting source activity of up to 21 curies per gram, is incorporated in the glass. (AEC)
Single Mode Optical Waveguide Design Investigation.
1981-07-10
AD-AI04 584 CORNING GLASS WORKS NY F/G 20/6 SINGLE MODE OPTICAL WAVEGUIDE DESIGN INVESTIGATION. (7 N JUL 81 V A BHAGAVATJLA, R A WESTWIG. D B KECK...Contract N00173-8O-C-0563 / V. A./Bhagavatula R. A..Westwig D. B.!Keck Corning Glass Works Corning, New York H> July 1,0, 1981 CL 8m NA Single Mode Optical...Waveguide Design Inve-tigation Progress Report 3 1. Sumpry 1.1 ,A total of six fibers have been fabricated with parameters fitting the design matrix
Mie resonances to tailor random lasers
NASA Astrophysics Data System (ADS)
García, P. D.; Ibisate, M.; Sapienza, R.; Wiersma, D. S.; López, C.
2009-07-01
In this paper, we present an optical characterization of photonic glass-based random lasers. We show how the resonant behavior of diffuse light transport through such systems can tailor the lasing emission when a gain medium is added to the glass. A DNA-based organic dye is used as gain medium. The resonances in the transport mean-free path influence the lasing wavelength of the random laser. The laser wavelength is therefore controlled by the sphere diameter. Furthermore, the existence of Mie resonances reduces the necessary pump energy to reach the lasing threshold.
Reinforcing effect of discontinuous microglass fibers on resin-modified glass ionomer cement.
Garoushi, Sufyan; Vallittu, Pekka K; Lassila, Lippo
2018-06-08
This study investigated the reinforcing effect of discontinuous-glass fiber fillers with different loading-fractions on selected mechanical properties and wear of resin-modified glass ionomer cement (RMGIC). Experimental fiber-reinforced RMGIC (Exp-RMGIC) was prepared by adding discontinuous-glass fiber of 200-500 µm in length to the powder of RMGIC (GC Fuji II LC) with different weight ratios (15, 20, 25 and 30 wt%). Mechanical properties and wear were determined for each experimental and control material. Scanning electron microscopy was used to evaluate the microstructure of the Exp-RMGICs. Wear pattern was analyzed by a three-dimensional (3D) noncontact optical profilometer. Fiber-reinforced RMGIC (30 wt%) had significantly higher mechanical performance of fracture toughness (1.9 MPa•m 1/2 ), flexural strength (90.3 MPa), and diametral tensile strength (31 MPa) (p<0.05) compared to unreinforced material (0.8 MPa•m 1/2 , 51.9 and 20.7 MPa). The use of discontinuous-glass fiber fillers with RMGIC matrix is novel reinforcement and yielded superior toughening and flexural performance compared to conventional RMGIC.
Bejarano, Julian; Caviedes, Pablo; Palza, Humberto
2015-03-11
Metal doping of bioactive glasses based on ternary 60SiO2-36CaO-4P2O5 (58S) and quaternary 60SiO2-25CaO-11Na2O-4P2O5 (NaBG) mol% compositions synthesized using a sol-gel process was analyzed. In particular, the effect of incorporating 1, 5 and 10 mol% of CuO and ZnO (replacing equivalent quantities of CaO) on the texture, in vitro bioactivity, and cytocompatibility of these materials was evaluated. Our results showed that the addition of metal ions can modulate the textural property of the matrix and its crystal structure. Regarding the bioactivity, after soaking in simulated body fluid (SBF) undoped 58S and NaBG glasses developed an apatite surface layer that was reduced in the doped glasses depending on the type of metal and its concentration with Zn displaying the largest inhibitions. Both the ion release from samples and the ion adsorption from the medium depended on the type of matrix with 58S glasses showing the highest values. Pure NaBG glass was more cytocompatible to osteoblast-like cells (SaOS-2) than pure 58S glass as tested by 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay. The incorporation of metal ions decreased the cytocompatibility of the glasses depending on their concentration and on the glass matrix doped. Our results show that by changing the glass composition and by adding Cu or Zn, bioactive materials with different textures, bioactivity and cytocompatibility can be synthesized.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rah, Jeong-Eun; Oh, Do Hoon; Kim, Jong Won
Purpose: To evaluate the suitability of the GD-301 glass dosimeter for in vivo dose verification in proton therapy. Methods and Materials: The glass dosimeter was analyzed for its dosimetrics characteristic in proton beam. Dosimeters were calibrated in a water phantom using a stairlike holder specially designed for this study. To determine the accuracy of the glass dosimeter in proton dose measurements, we compared the glass dosimeter and thermoluminescent dosimeter (TLD) dose measurements using a cylindrical phantom. We investigated the feasibility of the glass dosimeter for the measurement of dose distributions near the superficial region for proton therapy plans with amore » varying separation between the target volume and the surface of 6 patients. Results and Discussion: Uniformity was within 1.5%. The dose-response has good linearity. Dose-rate, fading, and energy dependence were found to be within 3%. The beam profile measured using the glass dosimeter was in good agreement with the profile obtained from the ionization chamber. Depth-dose distributions in nonmodulated and modulated proton beams obtained with the glass dosimeter were estimated to be within 3%, which was lower than those with the ionization chamber. In the phantom study, the difference of isocenter dose between the delivery dose calculated by the treatment planning system and that measured by the glass dosimeter was within 5%. With in vivo dosimetry, the calculated surface doses overestimated measurements by 4%-16% using glass dosimeter and TLD. Conclusion: It is recommended that bolus be added for these clinical cases. We also believe that the glass dosimeter has considerable potential for use with in vivo patient proton dosimetry.« less
Rah, Jeong-Eun; Oh, Do Hoon; Kim, Jong Won; Kim, Dae-Hyun; Suh, Tae-Suk; Ji, Young Hoon; Shin, Dongho; Lee, Se Byeong; Kim, Dae Yong; Park, Sung Yong
2012-10-01
To evaluate the suitability of the GD-301 glass dosimeter for in vivo dose verification in proton therapy. The glass dosimeter was analyzed for its dosimetrics characteristic in proton beam. Dosimeters were calibrated in a water phantom using a stairlike holder specially designed for this study. To determine the accuracy of the glass dosimeter in proton dose measurements, we compared the glass dosimeter and thermoluminescent dosimeter (TLD) dose measurements using a cylindrical phantom. We investigated the feasibility of the glass dosimeter for the measurement of dose distributions near the superficial region for proton therapy plans with a varying separation between the target volume and the surface of 6 patients. Uniformity was within 1.5%. The dose-response has good linearity. Dose-rate, fading, and energy dependence were found to be within 3%. The beam profile measured using the glass dosimeter was in good agreement with the profile obtained from the ionization chamber. Depth-dose distributions in nonmodulated and modulated proton beams obtained with the glass dosimeter were estimated to be within 3%, which was lower than those with the ionization chamber. In the phantom study, the difference of isocenter dose between the delivery dose calculated by the treatment planning system and that measured by the glass dosimeter was within 5%. With in vivo dosimetry, the calculated surface doses overestimated measurements by 4%-16% using glass dosimeter and TLD. It is recommended that bolus be added for these clinical cases. We also believe that the glass dosimeter has considerable potential for use with in vivo patient proton dosimetry. Copyright © 2012 Elsevier Inc. All rights reserved.
Lah, J; Kim, D; Park, S
2012-06-01
To evaluate the suitability of the GD-301 glass dosimeter for use in in vivo dose verification in proton therapy. The glass dosimeter was analyzed for its dosimetric characteristic in proton beam. Dosimeters were calibrated in a water phantom using a stair-like holder specially designed for this study. To determine the accuracy of the glass dosimeter in proton dose measurements, we compared the glass dosimeter and TLD dose measurements of plan delivery using a cylindrical phantom. We investigated the feasibility of the glass dosimeter for the measurement of dose distributions near the superficial region for proton therapy plans with a varying separation between the target volume and the surface of 6 patients. Uniformity was within 1.5%. The dose-response has a good linear. Dose-rate, fading, and energy dependence were found to be within 3%. The beam profile measured using the glass dosimeter was in good agreement with the profile obtained from the ionization chamber. Depth-dose distributions in non-modulated and modulated proton beams obtained with the glass dosimeter were estimated to be within 3%, which was lower than those with the ionization chamber. In the phantom study, the difference of isocenter dose between the delivery dose calculated by the Eclipse and that of the measured by the glass dosimeter was within 5%. In vivo dosimetry of patients, given the results of the glass dosimeter and TLD measurements, calculated doses on the surface of the patient are typically overestimated between 4% and 16%. As such, it is recommended that bolus be added for these clinical cases. We also believe that the glass dosimeter has considerable potential to be used for in vivo patient proton dosimetry. © 2012 American Association of Physicists in Medicine.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Okada, Takashi, E-mail: t-okada@u-fukui.ac.jp; Yonezawa, Susumu
2013-08-15
Highlights: • We recovered Pb from cathode ray tube funnel glass using reduction melting process. • We modified the melting process to achieve Pb recovery with low energy consumption. • Pb in the funnel glass is efficiently recovered at 1000 °C by adding Na{sub 2}CO{sub 3}. • Pb remaining in the glass after reduction melting is extracted with 1 M HCl. • 98% of Pb in the funnel glass was recovered by reduction melting and HCl leaching. - Abstract: Lead can be recovered from funnel glass of waste cathode ray tubes via reduction melting. While low-temperature melting is necessary formore » reduced energy consumption, previously proposed methods required high melting temperatures (1400 °C) for the reduction melting. In this study, the reduction melting of the funnel glass was performed at 900–1000 °C using a lab-scale reactor with varying concentrations of Na{sub 2}CO{sub 3} at different melting temperatures and melting times. The optimum Na{sub 2}CO{sub 3} dosage and melting temperature for efficient lead recovery was 0.5 g per 1 g of the funnel glass and 1000 °C respectively. By the reduction melting with the mentioned conditions, 92% of the lead in the funnel glass was recovered in 60 min. However, further lead recovery was difficult because the rate of the lead recovery decreased as with the recovery of increasing quantity of the lead from the glass. Thus, the lead remaining in the glass after the reduction melting was extracted with 1 M HCl, and the lead recovery improved to 98%.« less
Synthesis and characterization of chitosan-polyvinyl alcohol-bioactive glass hybrid membranes.
Dias, Luisa L S; Mansur, Herman S; Donnici, Claudio Luis; Pereira, Marivalda M
2011-01-01
The tissue engineering strategy is a new approach for the regeneration of cementum, which is essential for the regeneration of the periodontal tissue. This strategy involves the cell cultures present in this tissue, called cementoblasts, and located on an appropriate substrate for posterior implantation in the regeneration site. Prior studies from our research group have shown that the proliferation and viability of cementoblasts increase in the presence of the ionic dissolution products of bioactive glass particles. Therefore, one possible approach to obtaining adequate substrates for cementoblast cultures is the development of composite membranes containing bioactive glass. In the present study, composite films of chitosan-polyvinyl alcohol-bioactive glass containing different glass contents were developed. Glutaraldehyde was also added to allow for the formation of cross-links and changes in the degradation rate. The glass phase was introduced in the material by a sol-gel route, leading to an organic-inorganic hybrid. The films were characterized by Fourier-transformed infrared spectroscopy (FTIR), scanning electron microscopy (SEM) with electron dispersive spectroscopy (EDS) and X-ray diffraction (XRD) analysis. Bioactivity tests were also conducted by immersion of the films in simulated body fluid (SBF). Films containing up to 30% glass phase could be obtained. The formation of calcium phosphate was observed after the immersion of the films. A calcium phosphate layer formed more quickly on materials containing higher bioactive glass contents. In the hybrid containing 23% bioactive glass, a complete layer was formed after 24 h immersion, showing the high bioactivity of this material. However, despite the higher in vitro bioactivity, the film with 23% glass showed lower mechanical properties compared with films containing up to 17% glass.
Mechanical Characterization of 3D Woven Carbon Composite
2017-09-18
Woven Carbon/Glass Hybrid Spar Cap for Wind Turbine Rotor Blade,” Journal of Solar Engineering: Volume 128, November 2006, pp. 562-573. 2. In Tenax...A86AD439 Lead Wire Resistance (Ω, nominal) : 1 Significance : ASTM D7078 specifies that strength, strain and modulus be reported to three significant...0.05 Strain Gage Model / Batch No. : CEA-06-250UW-350 / A86AD438 Lead Wire Resistance (Ω, nominal) : 1 Significance : ASTM D7078 specifies that
Constance I. Millar; John C. King; Robert D. Westfall; Harry A. Alden; Diane L. Delany
2006-01-01
Deadwood tree stems scattered above treeline on tephra-covered slopes of Whitewing Mtn (3051 m) and San Joaquin Ridge (3122 m) show evidence of being killed in an eruption from adjacent Glass Creek Vent, Inyo Craters. Using tree-ring methods, we dated deadwood to AD 815-1350 and infer from death dates that the eruption occurred in late summer AD 1350. Based on wood...
Little Red School House, New York City.
ERIC Educational Resources Information Center
Pearson, Clifford A.
2001-01-01
Discusses how architects successfully added a new 10,000 square-foot building, complete with glass-fronted library and skylit art room, to two existing structures built at different times and with different floor heights. Photos and a floorplan are included. (GR)
Experimental facility for testing nuclear instruments for planetary landing missions
NASA Astrophysics Data System (ADS)
Golovin, Dmitry; Mitrofanov, Igor; Litvak, Maxim; Kozyrev, Alexander; Sanin, Anton; Vostrukhin, Andrey
2017-04-01
The experimental facility for testing and calibration of nuclear planetology instruments has been built in the frame of JINR and Space Research Institute (Moscow) cooperation. The Martian soil model from silicate glass with dimensions 3.82 x 3.21 m and total weight near 30 tons has been assembled in the facility. The glass material was chosen for imitation of dry Martian regolith. The heterogeneous model has been proposed and developed to achieve the most possible similarity with Martian soil in part of the average elemental composition by adding layers of necessary materials, such as iron, aluminum, and chlorine. The presence of subsurface water ice is simulated by adding layers of polyethylene at different depths inside glass model assembly. Neutron generator was used as a neutron source to induce characteristic gamma rays for testing active neutron and gamma spectrometers to define elements composition of the model. The instrumentation was able to detect gamma lines attributed to H, O, Na, Mg, Al, Si, Cl, K, Ca and Fe. The identified elements compose up to 95 wt % of total mass of the planetary soil model. This results will be used for designing scientific instruments to performing experiments of active neutron and gamma ray spectroscopy on the surface of the planets during Russian and international missions Luna-Glob, Luna-Resource and ExoMars-2020.
Sua-iam, Gritsada; Makul, Natt
2013-10-15
For several decades, cathode ray tubes (CRTs) were the primary display component of televisions and computers. The CRT glass envelope contains sufficient levels of lead oxide (PbO) to be considered hazardous, and there is a need for effective methods of permanently encapsulating this material during waste disposal. We examined the effect of adding limestone powder (LS) on the fresh and cured properties of self-compacting concrete (SCC) mixtures containing waste CRT glass. The SCC mixtures were prepared using Type 1 Portland cement at a constant cement content of 600 kg/m(3) and a water-to-cement ratio (w/c) of 0.38. CRT glass waste cullet was blended with river sand in proportions of 20 or 40% by weight. To suppress potential viscosity effects limestone powder was added at levels of 5, 10, or 15% by weight. The slump flow time, slump flow diameter, V-funnel flow time, Marsh cone flow time, and setting time of the fresh concrete were tested, as well as the compressive strength and ultrasonic pulse velocity of the hardened concrete. Addition of limestone powder improved the fresh and hardened properties. Pb leaching levels from the cured concrete were within US EPA allowable limits. Copyright © 2013 Elsevier Ltd. All rights reserved.
Remarkably stable amorphous metal oxide grown on Zr-Cu-Be metallic glass
Lim, Ka Ram; Kim, Chang Eun; Yun, Young Su; Kim, Won Tae; Soon, Aloysius; Kim, Do Hyang
2015-01-01
In the present study, we investigated the role of an aliovalent dopant upon stabilizing the amorphous oxide film. We added beryllium into the Zr50Cu50 metallic glass system, and found that the amorphous oxide layer of Be-rich phase can be stabilized even at elevated temperature above Tg of the glass matrix. The thermal stability of the amorphous oxide layer is substantially enhanced due to Be addition. As confirmed by high-temperature cross-section HR-TEM, fully disordered Be-added amorphous layer is observed, while the rapid crystallization is observed without Be. To understand the role of Be, we employed ab-initio molecular dynamics to compare the mobility of ions with/without Be dopant, and propose a disordered model where Be dopant occupies Zr vacancy and induces structural disorder to the amorphous phase. We find that the oxygen mobility is slightly suppressed due to Be dopant, and Be mobility is unexpectedly lower than that of oxygen, which we attribute to the aliovalent nature of Be dopant whose diffusion always accompany multiple counter-diffusion of other ions. Here, we explain the origin of superior thermal stability of amorphous oxide film in terms of enhanced structural disorder and suppressed ionic mobility due to the aliovalent dopant. PMID:26658671
Remarkably stable amorphous metal oxide grown on Zr-Cu-Be metallic glass.
Lim, Ka Ram; Kim, Chang Eun; Yun, Young Su; Kim, Won Tae; Soon, Aloysius; Kim, Do Hyang
2015-12-14
In the present study, we investigated the role of an aliovalent dopant upon stabilizing the amorphous oxide film. We added beryllium into the Zr50Cu50 metallic glass system, and found that the amorphous oxide layer of Be-rich phase can be stabilized even at elevated temperature above Tg of the glass matrix. The thermal stability of the amorphous oxide layer is substantially enhanced due to Be addition. As confirmed by high-temperature cross-section HR-TEM, fully disordered Be-added amorphous layer is observed, while the rapid crystallization is observed without Be. To understand the role of Be, we employed ab-initio molecular dynamics to compare the mobility of ions with/without Be dopant, and propose a disordered model where Be dopant occupies Zr vacancy and induces structural disorder to the amorphous phase. We find that the oxygen mobility is slightly suppressed due to Be dopant, and Be mobility is unexpectedly lower than that of oxygen, which we attribute to the aliovalent nature of Be dopant whose diffusion always accompany multiple counter-diffusion of other ions. Here, we explain the origin of superior thermal stability of amorphous oxide film in terms of enhanced structural disorder and suppressed ionic mobility due to the aliovalent dopant.
Mechanisms of the cytopathic action of actin-ADP-ribosylating toxins.
Aktories, K; Wegner, A
1992-10-01
Clostridium botulinum C2 toxin, Clostridium perfringens iota toxin, and Clostridium spiroforme toxin ADP-ribosylate actin monomers. Toxin-induced ADP-ribosylation disturbs the cellular equilibrium between monomeric and polymeric actin and traps monomeric actin in its unpolymerized form, thereby depolymerizing actin filaments and destroying the microfilament network. Furthermore, the toxins ADP-ribosylate gelsolin actin complexes. These modifications may contribute to the cytopathic action of the toxins.
Retrieval of Water Channels by Endocytosis in Renal Epithelia.
1998-07-01
1983) and conformational changes ( DiBona , 1983) during enhanced water flow. Following cessation of hormone actions or receptor down regulation...and DiBona , 1982; Pearl and Taylor, 1983; Hays et al., 1994). In our studies, we report the role of proteins associated with microfilaments that may...vasopressin-activated transport. Proc. Soc. Exptl. Biol. Med. Invited Review. (Accepted). DiBona , D.R. 1983. Cytoplasmic involvement in ADH-mediated osmosis
Small Molecule Injection into Single-Cell C. elegans Embryos via Carbon-Reinforced Nanopipettes
Morton, Diane G.; Fellman, Shanna M.; Chung, SueYeon; Soltani, Mohammad; Kevek, Joshua W.; McEuen, Paul M.; Kemphues, Kenneth J.; Wang, Michelle D.
2013-01-01
The introduction of chemical inhibitors into living cells at specific times in development is a useful method for investigating the roles of specific proteins or cytoskeletal components in developmental processes. Some embryos, such as those of Caenorhabditis elegans, however, possess a tough eggshell that makes introducing drugs and other molecules into embryonic cells challenging. We have developed a procedure using carbon-reinforced nanopipettes (CRNPs) to deliver molecules into C. elegans embryos with high temporal control. The use of CRNPs allows for cellular manipulation to occur just subsequent to meiosis II with minimal damage to the embryo. We have used our technique to replicate classical experiments using latrunculin A to inhibit microfilaments and assess its effects on early polarity establishment. Our injections of latrunculin A confirm the necessity of microfilaments in establishing anterior-posterior polarity at this early stage, even when microtubules remain intact. Further, we find that latrunculin A treatment does not prevent association of PAR-2 or PAR-6 with the cell cortex. Our experiments demonstrate the application of carbon-reinforced nanopipettes to the study of one temporally-confined developmental event. The use of CRNPs to introduce molecules into the embryo should be applicable to investigations at later developmental stages as well as other cells with tough outer coverings. PMID:24086620
Small molecule injection into single-cell C. elegans embryos via carbon-reinforced nanopipettes.
Brennan, Lucy D; Roland, Thibault; Morton, Diane G; Fellman, Shanna M; Chung, SueYeon; Soltani, Mohammad; Kevek, Joshua W; McEuen, Paul M; Kemphues, Kenneth J; Wang, Michelle D
2013-01-01
The introduction of chemical inhibitors into living cells at specific times in development is a useful method for investigating the roles of specific proteins or cytoskeletal components in developmental processes. Some embryos, such as those of Caenorhabditis elegans, however, possess a tough eggshell that makes introducing drugs and other molecules into embryonic cells challenging. We have developed a procedure using carbon-reinforced nanopipettes (CRNPs) to deliver molecules into C. elegans embryos with high temporal control. The use of CRNPs allows for cellular manipulation to occur just subsequent to meiosis II with minimal damage to the embryo. We have used our technique to replicate classical experiments using latrunculin A to inhibit microfilaments and assess its effects on early polarity establishment. Our injections of latrunculin A confirm the necessity of microfilaments in establishing anterior-posterior polarity at this early stage, even when microtubules remain intact. Further, we find that latrunculin A treatment does not prevent association of PAR-2 or PAR-6 with the cell cortex. Our experiments demonstrate the application of carbon-reinforced nanopipettes to the study of one temporally-confined developmental event. The use of CRNPs to introduce molecules into the embryo should be applicable to investigations at later developmental stages as well as other cells with tough outer coverings.
F-actin distribution and function during sexual development in Eimeria maxima.
Frölich, Sonja; Wallach, Michael
2015-06-01
To determine the involvement of the actin cytoskeleton in macrogametocyte growth and oocyst wall formation, freshly purified macrogametocytes and oocysts were stained with Oregon Green 514 conjugated phalloidin to visualize F-actin microfilaments, while Evans blue staining was used to detect type 1 wall forming bodies (WFB1s) and the outer oocyst wall. The double-labelled parasites were then analysed at various stages of sexual development using three-dimensional confocal microscopy. The results showed F-actin filaments were distributed throughout the entire cytoplasm of mature Eimeria maxima macrogametocytes forming a web-like meshwork of actin filaments linking the type 1 WFBs together into structures resembling 'beads on a string'. At the early stages of oocyst wall formation, F-actin localization changed in alignment with the egg-shaped morphology of the forming oocysts with F-actin microfilaments making direct contact with the WFB1s. In tissue oocysts, the labelled actin cytoskeleton was situated underneath the forming outer layer of the oocyst wall. Treatment of macrogametocytes in vitro with the actin depolymerizing agents, Cytochalasin D and Latrunculin, led to a reduction in the numbers of mature WFB1s in the cytoplasm of the developing macrogametocytes, indicating that the actin plays an important role in WFB1 transport and oocyst wall formation in E. maxima.
Altered osteoblast structure and function in parabolic flight
NASA Astrophysics Data System (ADS)
Zhong-Quan, Dai; Ying-Hui, Li; Fen, Yang; Bai, Ding; Ying-Jun, Tan
Introduction Bone loss has a significant impact on astronauts during spaceflight being one of the main obstacles preventing interplanetary missions However the exact mechanism is not well understood In the present study we investigated the effects of acute gravitational changes generated by parabolic flight on the structure and function of osteoblasts ROS17 2 8 carried by airbus A300 Methods The alteration of microfilament cytoskeleton was observed by the Texas red conjugated Phalloidin and Alexa Fluor 488 conjugated DNase I immunofluorescence stain ALP activity and expression COL1A1 expression osteocalcin secrete which presenting the osteoblast function were detected by modified calcium and cobalt method RT-PCR and radioimmunity methods respectively Results The changed gravity induced the reorganization of microfilament cytoskeleton of osteoblast After 3 hours parabolic flight F-actin of osteoblast cytoskeleton became more thickness and directivity whereas G-actin reduced and relatively concentrated at the edge of nucleus observed by confocal fluorescence microscopy This phenomenon is identical with structure alternation observed in hypergravity but the osteoblast function decrease The excretion of osteocalcin the activity and mRNA expression of ALP decrease but the COL1A1 expression has no changes These results were similar to the changes in simulated or real microgravity Conclusion Above results suggest that short time gravity alternative change induce osteoblast structure and function
NASA Astrophysics Data System (ADS)
Li, Nan; Mruk, Dolores D.; Chen, Haiqi; Wong, Chris K. C.; Lee, Will M.; Cheng, C. Yan
2016-07-01
Perfluorooctanesulfonate (PFOS) is an environmental toxicant used in developing countries, including China, as a stain repellent for clothing, carpets and draperies, but it has been banned in the U.S. and Canada since the late 2000s. PFOS perturbed the Sertoli cell tight junction (TJ)-permeability barrier, causing disruption of actin microfilaments in cell cytosol, perturbing the localization of cell junction proteins (e.g., occluden-ZO-1, N-cadherin-ß-catenin). These changes destabilized Sertoli cell blood-testis barrier (BTB) integrity. These findings suggest that human exposure to PFOS might induce BTB dysfunction and infertility. Interestingly, PFOS-induced Sertoli cell injury associated with a down-regulation of the gap junction (GJ) protein connexin43 (Cx43). We next investigated if overexpression of Cx43 in Sertoli cells could rescue the PFOS-induced cell injury. Indeed, overexpression of Cx43 in Sertoli cells with an established TJ-barrier blocked the disruption in PFOS-induced GJ-intercellular communication, resulting in the re-organization of actin microfilaments, which rendered them similar to those in control cells. Furthermore, cell adhesion proteins that utilized F-actin for attachment became properly distributed at the cell-cell interface, resealing the disrupted TJ-barrier. In summary, Cx43 is a good target that might be used to manage PFOS-induced reproductive dysfunction.
Saito, Chieko; Morita, Miyo T.; Kato, Takehide; Tasaka, Masao
2005-01-01
We developed an adequate method for the in vivo analysis of organelle dynamics in the gravity-perceptive cell (endodermis) of the Arabidopsis thaliana inflorescence stem, revealing behavior of amyloplasts and vacuolar membranes in those cells. Amyloplasts in the endodermis showed saltatory movements even before gravistimulation by reorientation, and these movements were confirmed as microfilament dependent. From our quantitative analysis in the wild type, the gravity-oriented movement of amyloplasts mainly occurred during 0 to 3 min after gravistimulation by reorientation, supporting findings from our previous physiological study. Even after microfilament disruption, the gravity-oriented movement of amyloplasts remained. By contrast, in zig/sgr4 mutants, where a SNARE molecule functioning in vacuole biogenesis has been disrupted, the movement of amyloplasts in the endodermis is severely restricted both before and after gravistimulation by reorientation. Here, we describe vacuolar membrane behavior in these cells in the wild-type, actin filament–disrupted, and zig/sgr4 mutants and discuss its putatively important features for the perception of gravity. We also discuss the data on the two kinds of movements of amyloplasts that may play an important role in gravitropism: (1) the leading edge amyloplasts and (2) the en mass movement of amyloplasts. PMID:15689424
Takeuchi, Miyuki; Karahara, Ichirou; Kajimura, Naoko; Takaoka, Akio; Murata, Kazuyoshi; Misaki, Kazuyo; Yonemura, Shigenobu; Staehelin, L. Andrew; Mineyuki, Yoshinobu
2016-01-01
The preprophase band (PPB) is a cytokinetic apparatus that determines the site of cell division in plants. It originates as a broad band of microtubules (MTs) in G2 and narrows to demarcate the future division site during late prophase. Studies with fluorescent probes have shown that PPBs contain F-actin during early stages of their development but become actin depleted in late prophase. Although this suggests that actins contribute to the early stages of PPB formation, how actins contribute to PPB-MT organization remains unsolved. To address this question, we used electron tomography to investigate the spatial relationship between microfilaments (MFs) and MTs at different stages of PPB assembly in onion cotyledon epidermal cells. We demonstrate that the PPB actins observed by fluorescence microscopy correspond to short, single MFs. A majority of the MFs are bound to MTs, with a subset forming MT-MF-MT bridging structures. During the later stages of PPB assembly, the MF-mediated links between MTs are displaced by MT-MT linkers as the PPB MT arrays mature into tightly packed MT bundles. On the basis of these observations, we propose that the primary function of actins during PPB formation is to mediate the initial bundling of the PPB MTs. PMID:27053663
Actin dynamics in Amoeba proteus motility.
Pomorski, P; Krzemiński, P; Wasik, A; Wierzbicka, K; Barańska, J; Kłopocka, W
2007-01-01
We studied the distribution of the endogenous Arp2/3 complex in Amoeba proteus and visualised the ratio of filamentous (F-actin) to total actin in living cells. The presented results show that in the highly motile Amoeba proteus, Arp2/3 complex-dependent actin polymerisation is involved in the formation of the branching network of the contractile layer, adhesive structures, and perinuclear cytoskeleton. The aggregation of the Arp2/3 complex in the cortical network, with the exception of the uroid and advancing fronts, and the spatial orientation of microfilaments at the leading edge suggest that actin polymerisation in this area is not sufficient to provide the driving force for membrane displacement. The examined proteins were enriched in the pinocytotic pseudopodia and the perinuclear cytoskeleton in pinocytotic amoebae. In migrating amoebae, the course of changes in F-actin concentration corresponded with the distribution of tension in the cell cortex. The maximum level of F-actin in migrating amoebae was observed in the middle-posterior region and in the front of retracting pseudopodia. Arp2/3 complex-dependent actin polymerisation did not seem to influence F-actin concentration. The strongly condensed state of the microfilament system could be attributed to strong isometric contraction of the cortical layer accompanied by its retraction from distal cell regions. Isotonic contraction was limited to the uroid.
Tetraethyl orthosilicate-based glass composition and method
Wicks, George G.; Livingston, Ronald R.; Baylor, Lewis C.; Whitaker, Michael J.; O'Rourke, Patrick E.
1997-01-01
A tetraethyl orthosilicate-based, sol-gel glass composition with additives selected for various applications. The composition is made by mixing ethanol, water, and tetraethyl orthosilicate, adjusting the pH into the acid range, and aging the mixture at room temperature. The additives, such as an optical indicator, filler, or catalyst, are then added to the mixture to form the composition which can be applied to a substrate before curing. If the additive is an indicator, the light-absorbing characteristics of which vary upon contact with a particular analyte, the indicator can be applied to a lens, optical fiber, reagant strip, or flow cell for use in chemical analysis. Alternatively, an additive such as alumina particles is blended into the mixture to form a filler composition for patching cracks in metal, glass, or ceramic piping.
Cytotoxicity assessment of modified bioactive glasses with MLO-A5 osteogenic cells in vitro.
Modglin, Vernon C; Brown, Roger F; Jung, Steven B; Day, Delbert E
2013-05-01
The primary objective of this study was to evaluate in vitro responses of MLO-A5 osteogenic cells to two modifications of the bioactive glass 13-93. The modified glasses, which were designed for use as cell support scaffolds and contained added boron to form the glasses 13-93 B1 and 13-93 B3, were made to accelerate formation of a bioactive hydroxyapatite surface layer and possibly enhance tissue growth. Quantitative MTT cytotoxicity tests revealed no inhibition of growth of MLO-A5 cells incubated with 13-93 glass extracts up to 10 mg/ml, moderate inhibition of growth with 13-93 B1 glass extracts, and noticeable inhibition of growth with 13-93 B3 glass extracts. A morphology-based biocompatibility test was also performed and yielded qualitative assessments of the relative biocompatibilities of glass extracts that agree with those obtained by the quantitative MTT test. However, as a proof of concept experiment, when MLO-A5 cells were seeded onto 13-93 B3 scaffolds in a dynamic in vitro environment, cell proliferation occurred as evidenced by qualitative and quantitative MTT labeling of scaffolds. Together these results demonstrate the in vitro toxicity of released borate ion in static experiments; however borate ion release can be mitigated in a dynamic environment similar to the human body where microvasculature is present. Here we argue that despite toxicity in static environments, boron-containing 13-93 compositions may warrant further study for use in tissue engineering applications.
Recycling of glass: accounting of greenhouse gases and global warming contributions.
Larsen, Anna W; Merrild, Hanna; Christensen, Thomas H
2009-11-01
Greenhouse gas (GHG) emissions related to recycling of glass waste were assessed from a waste management perspective. Focus was on the material recovery facility (MRF) where the initial sorting of glass waste takes place. The MRF delivers products like cullet and whole bottles to other industries. Two possible uses of reprocessed glass waste were considered: (i) remelting of cullet added to glass production; and (ii) re-use of whole bottles. The GHG emission accounting included indirect upstream emissions (provision of energy, fuels and auxiliaries), direct activities at the MRF and bottle-wash facility (combustion of fuels) as well as indirect downstream activities in terms of using the recovered glass waste in other industries and, thereby, avoiding emissions from conventional production. The GHG accounting was presented as aggregated global warming factors (GWFs) for the direct and indirect upstream and downstream processes, respectively. The range of GWFs was estimated to 0-70 kg CO(2)eq. tonne( -1) of glass waste for the upstream activities and the direct emissions from the waste management system. The GWF for the downstream effect showed some significant variation between the two cases. It was estimated to approximately -500 kg CO(2)-eq. tonne(- 1) of glass waste for the remelting technology and -1500 to -600 kg CO(2)-eq. tonne(-1) of glass waste for bottle re-use. Including the downstream process, large savings of GHG emissions can be attributed to the waste management system. The results showed that, in GHG emission accounting, attention should be drawn to thorough analysis of energy sources, especially electricity, and the downstream savings caused by material substitution.
Cao, Sumei; Ding, Shushu; Liu, Yingzi; Zhu, Anwei; Shi, Guoyue
2017-08-01
Hurdles of nanopore modification and characterization restrain the development of glass capillary-based nanopore sensing platforms. In this article, a simple but effective biomimetic mineralization method was developed to decorate glass nanopore with a thin film of bovine serum albumin-protected Au nanocluster (BSA-Au NC). The BSA-Au NC film emitted a strong red fluorescence whereby nondestructive characterization of Au film decorated at the inner surface of glass nanopore can be facilely achieved by a fluorescence microscopy. Besides, the BSA molecules played dual roles in the fabrication of functionalized Au thin film in glass nanopore: they not only directed the synthesis of fluorescent Au thin film but also provided binding sites for recognition, thus achieving synthesis-modification integration. This occurred due to the ionized carboxyl groups (-COO - ) of a BSA coating layer on Au NCs which can interacted with arginine (Arg) via guanidinium groups. The added Arg selectively led to the change in the charge and ionic current of BSA-Au NC film-decorated glass nanopore. Such ionic current responses can be used for quantifying Arg with a detection limit down to 1 fM, which was more sensitive than that of previous sensing systems. Together, the designed method exhibited great promise in providing a facile and controllable solution for glass nanopore modification, characterization, and sensing.
Elaboration And Characterization Of Foam Glass Based On Cullet With Addition Of Soluble Silicates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ayadi, A.; Stiti, N.; Benhaoua, F.
2011-01-17
The politics of the energy saving and of the acoustic comfort buildings is at the heart of the research of new compounds permitting to improve the materials performance actually commercialised. With this aim in view, we'll purpose to elaborate a porous material (foam glass) with addition of soluble silicates (up to 40%) of which the principal material is the waste glass in order to recycle it and improving the present laws about the waste products in closed circuit: (Finished products (leftarrow) waste products (leftarrow) finished products). The investigations have shown that grinding waste glass to particle size less than 0.1more » mm and adding 1% of Ca CO{sub 3} content provide production of material with the following properties: particle density 0,5 g/cm{sup 3}, strength 17,50 MPa and water adsorption 95%, the temperature for foaming ranges were determined at 850 deg. C. The microstructures are homogenous, with pore sizes up to 2 mm. The addition of soluble silicates (up to 40%) has resulted in the foam glass of very high porosity. The foam glass is counted among the new glass products meeting certain requirements sought comfort in the building industry in particular (thermal and acoustic insulation). The product obtained present of excellent properties thermal ({lambda} = 0,031 W/m deg. C) and acoustic (R = 15 dB).« less
Elaboration And Characterization Of Foam Glass Based On Cullet With Addition Of Soluble Silicates
NASA Astrophysics Data System (ADS)
Ayadi, A.; Stiti, N.; Benhaoua, F.; Boumchedda, K.; Lerari, Y.
2011-01-01
The politics of the energy saving and of the acoustic comfort buildings is at the heart of the research of new compounds permitting to improve the materials performance actually commercialised. With this aim in view, we'll purpose to elaborate a porous material (foam glass) with addition of soluble silicates (up to 40%) of which the principal material is the waste glass in order to recycle it and improving the present laws about the waste products in closed circuit: (Finished products ← waste products← finished products). The investigations have shown that grinding waste glass to particle size less than 0.1 mm and adding 1% of Ca CO3 content provide production of material with the following properties: particle density 0,5 g/cm3, strength 17,50 MPa and water adsorption 95%, the temperature for foaming ranges were determined at 850° C. The microstructures are homogenous, with pore sizes up to 2 mm. The addition of soluble silicates (up to 40%) has resulted in the foam glass of very high porosity. The foam glass is counted among the new glass products meeting certain requirements sought comfort in the building industry in particular (thermal and acoustic insulation). The product obtained present of excellent properties thermal (λ = 0,031 W/m° C) and acoustic (R = 15 dB).
Immobilization of radioactive iodine in silver aluminophosphate glasses.
Lemesle, Thomas; Méar, François O; Campayo, Lionel; Pinet, Olivier; Revel, Bertrand; Montagne, Lionel
2014-01-15
Silver aluminophosphate glasses have been investigated as matrices for the immobilization of radioactive iodine. In this study, up to 28mol% AgI have been incorporated without volatilization thanks to a low temperature synthesis protocol. Alumina was added in the composition in order to increase the glass transition temperature for a better thermal stability in a repository conditions. Two series of glasses have been investigated, based on AgPO3 and Ag5P3O10 compositions, and with 0-5mol% Al2O3. We report (31)P, (27)Al and (109)Ag NMR study of these glasses, including advanced measurement of the connectivities through {(27)Al}-(31)P cross-polarization and (31)P-(31)P double-quantum correlation. We confirm that AgI is inserted in the aluminophosphate glasses and does not form clusters. AgI does not induce any modification of the glass polymerization but only an expansion of the network. Despite no evidence for crystallization could be obtained from XRD, NMR revealed that the introduction of AgI induces an exclusion of alumina from the network, leading to the crystallization of aluminophosphate phases such as Al(PO3)3 or AlPO4. As a consequence, despite NMR gives evidence for the presence of aluminophosphate bonds, only a limited effect of alumina addition on thermal properties is observed. Copyright © 2013 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yongsiri, Ploypailin; Sirisoonthorn, Somnuk; Pengpat, Kamonpan, E-mail: kamonpan.p@cmu.ac.th
Highlights: • The KNN–SiO{sub 2} doped Er{sub 2}O{sub 3} glass-ceramics was prepared by incorporation method. • High dielectric constant (458.41 at 100 kHz) and low loss (0.0005) could be obtained. • TEM and SEM confirmed the existence of KNN crystals embedded in glass matrix. • The Er{sub 2}O{sub 3} dopant causes insignificant effect on modifying E{sub g} value. - Abstract: In this study, transparent glass-ceramics from potassium sodium niobate (KNN)-silicate glass system doped with erbium oxide (Er{sub 2}O{sub 3}) were successfully prepared by incorporation method. KNN was added in glass batches as heterogeneous nucleating agent. The KNN powder was mixedmore » with SiO{sub 2} and Er{sub 2}O{sub 3} dopant with KNN and Er{sub 2}O{sub 3} content varied between 70–80 and 0.5–1.0 mol%, respectively. Each batch was subsequently melted at 1300 °C for 15 min in a platinum crucible using an electric furnace. The quenched glasses were then subjected to heat treatment at various temperatures for 4 h. XRD results showed that the prepared glass ceramics contained crystals of KNN solid solution. In contrary, dielectric constant (ϵ{sub r}) and dielectric loss (tan δ) were found to increase with increasing heat treatment temperature. Additionally, optical properties such as absorbance and energy band gap have been investigated.« less
Improvement of the stability of hydroxyapatite through glass ceramic reinforcement.
Ha, Na Ra; Yang, Zheng Xun; Hwang, Kyu Hong; Kim, Tae Suk; Lee, Jong Kook
2010-05-01
Hydroxyapatite has achieved significant application in orthopedic and dental implants due to its excellent biocompatibility. Sintered hydroxyapatites showed significant dissolution, however, after their immersion in water or simulated body fluid (SBF). This grain boundary dissolution, even in pure hydroxyapatites, resulted in grain separation at the surfaces, and finally, in fracture. In this study, hydroxyapatite ceramics containing apatite-wollastonite (AW) or calcium silicate (SG) glass ceramics as additives were prepared to prevent the dissolution. AW and SG glass ceramics were added at 0-7 wt% and powder-compacted uniaxially followed by firing at moisture conditions. The glass phase was incorporated into the hydroxyapatite to act as a sintering aid, followed by crystallization, to improve the mechanical properties without reducing the biocompatibility. As seen in the results of the dissolution test, a significant amount of damage was reduced even after more than 14 days. TEM and SEM showed no decomposition of HA to the secondary phase, and the fracture toughness increased, becoming even higher than that of the commercial hydroxyapatite.
Zhang, Qi; Du, Xinhang; Tan, Shengwei; Tang, Dian; Chen, Kongfa; Zhang, Teng
2017-07-13
Nb 2 O 5 is added to a borosilicate sealing system to improve the thermo-mechanical stability of the sealing interface between the glass and Fe-Cr metallic interconnect (Crofer 22APU) in solid oxide fuel cells (SOFCs). The thermo-mechanical stability of the glass/metal interface is evaluated experimentally as well as by using a finite element analysis (FEA) method. The sealing glass doped with 4 mol.% Nb 2 O 5 shows the best thermo-mechanical stability, and the sealing couple of Crofer 22APU/glass/GDC (Gd 0.2 Ce 0.8 O 1.9 ) remains intact after 50 thermal cycles. In addition, all sealing couples show good joining after being held at 750 °C for 1000 h. Moreover, the possible mechanism on the thermo-mechanical stability of sealing interface is investigated in terms of stress-based and energy-based perspectives.
Abdelghany, A M; ElBatal, H A; EzzElDin, F M
2015-10-05
Glasses of lithium fluoroborate of the composition LiF 15%-B2O3 85% with increasing CuO as added dopant were prepared and characterized by combined optical and FTIR spectroscopy before and after gamma irradiation. The optical spectrum of the undoped glass reveals strong UV absorption with two distinct peaks at about 235 and 310 nm and with no visible bands. This strong UV absorption is related to the presence of unavoidable trace iron impurity (Fe(3+)) within the materials used for the preparation of this glass. After irradiation, the spectrum of the undoped glass shows a decrease of the intensity of the UV bands together with the resolution of an induced visible broad band centered at about 520 nm. The CuO doped glasses reveal the same UV absorption beside a very broad visible band centered at 780 nm and this band shows extension and splitting to several component peaks with higher CuO contents. Upon gamma irradiation, the spectra of all CuO-doped glasses reveal pronounced decrease of their intensities. The response of irradiation on the studied glasses is correlated with suggested photochemical reactions together with some shielding effect of the copper ions. The observed visible band is related to the presence of copper as distorted octahedral Cu(2+) ions. Infrared absorption spectra of the prepared glasses show repetitive characteristic triangular and tetrahedral borate units similar to that published from alkali or alkaline earth oxides B2O3 glasses. A suggested formation of (BO3/2F) tetrahedral units is advanced through action of LiF on B2O3 and these suggested units showing the same position and number as BO4 tetrahedra. Copyright © 2015 Elsevier B.V. All rights reserved.
Electrophoretic Deposition of Chitosan/45S5 Bioactive Glass Composite Coatings Doped with Zn and Sr
Miola, Marta; Verné, Enrica; Ciraldo, Francesca Elisa; Cordero-Arias, Luis; Boccaccini, Aldo R.
2015-01-01
In this research work, the original 45S5 bioactive glass was modified by introducing zinc and/or strontium oxide (6 mol%) in place of calcium oxide. Sr was added for its ability to stimulate bone formation and Zn for its role in bone metabolism, antibacterial properties, and anti-inflammatory effect. The glasses were produced by means of melting and quenching process. SEM and XRD analyses evidenced that Zr and Sr introduction did not modify the glass structure and morphology while compositional analysis (EDS) demonstrated the effective incorporation of these elements in the glass network. Bioactivity test in simulated body fluid (SBF) up to 1 month evidenced a reduced bioactivity kinetics for Zn-doped glasses. Doped glasses were combined with chitosan to produce organic/inorganic composite coatings on stainless steel AISI 316L by electrophoretic deposition (EPD). Two EPD processes were considered for coating development, namely direct current EPD (DC-EPD) and alternating current EPD (AC-EPD). The stability of the suspension was analyzed and the deposition parameters were optimized. Tape and bending tests demonstrated a good coating-substrate adhesion for coatings containing 45S5-Sr and 45S5-ZnSr glasses, whereas the adhesion to the substrate decreased by using 45S5-Zn glass. FTIR analyses demonstrated the composite nature of coatings and SEM observations indicated that glass particles were well integrated in the polymeric matrix, the coatings were fairly homogeneous and free of cracks; moreover, the AC-EPD technique provided better results than DC-EPD in terms of coating quality. SEM, XRD analyses, and Raman spectroscopy, performed after bioactivity test in SBF solution, confirmed the bioactive behavior of 45S5-Sr-containing coating while coatings containing Zn exhibited no hydroxyapatite formation. PMID:26539431
Electrical mobility of silver ion in Ag2O-B2O3-P2O5-TeO2 glasses.
Sklepić, Kristina; Vorokhta, Maryna; Mošner, Petr; Koudelka, Ladislav; Moguš-Milanković, Andrea
2014-10-16
The effect of adding TeO(2) into (100 - x)[0.5Ag(2)O - 0.1B(2)O(3) - 0.4P(2)O(5)] - xTeO(2), with 0-80 mol % TeO(2) glass, on the structural changes and electrical properties has been investigated. DSC and thermodilatomery were used to study their thermal behavior, structure was studied by Raman spectroscopy, and electrical properties have been studied by impedance spectroscopy over a wide temperature and frequency range. The introduction of TeO(2) as a third glass former to the glass network causes the structural transformation from TeO(3) (tp) to TeO(4) (tbp) which contributes to the changes in conductivity. The glasses with low TeO(2) content show only a slow decrease in dc conductivity with addition of TeO(2) due to the increase of the number of nonbridging oxygens, which increases the mobility of Ag(+) ions. The steep decrease in conductivity for glasses containing more than 40 mol % TeO(2) is a result of decrease of the Ag(2)O content and stronger cross-linkage in glass network through the formation of more Te-(eq)O(ax)-Te bonds in TeO(4) tbp units. The glasses obey ac conductivity scaling with respect to temperature, implying that the dynamic process is not temperature dependent. On the other hand, the scaling of the spectra for different glass compositions showed the deviations from the Summerfield scaling because of the local structural disorder which occurs as a result of the structural modifications in the tellurite glass network.
Analytical characterization of glass tesserae from mosaics of early Christian basilicas in Albania
NASA Astrophysics Data System (ADS)
Vataj, Esmeralda; Hobdari, Elio; Röhrs, Stefan; Vandenabele, Peter; Civici, Nikolla
2017-01-01
The present paper constitutes the first archaeometric study of the glass mosaic tesserae recovered from the archaeological excavation of the mosaics at the Early Christian basilicas in Bylis, Lin and Elbasan, belonging to fifth to sixth century AD. The main objective of the study is the characterization of the materials, glass matrix, colourants and opacifiers used for their production. A multi-analytical approach, which includes optical microscopy, scanning electron microscopy equipped with energy-dispersive spectrometer, micro-X-ray fluorescence and Raman spectroscopy, is used during the investigation of 72 tesserae of different colours collected from the three sites. All the tesserae are opaque and have heterogeneous surfaces with several bubbles and crystalline inclusions. Most of the glass tesserae have the characteristic soda-lime-silica composition, and low concentrations of potash and magnesium indicate natron as soda source, which is typical for the Roman glass. Compounds containing Mn, Fe, Cu, Co, Pb and Sn are used as colourants in the tesserae of different colours. Mineral inclusions are mostly composed of undissolved raw materials, i.e., silicon-, calcium- and tin-rich particles. It is interesting to notice that SnO2 has been used as opacifier in all the tesserae. Thin layers of Au foil placed between two transparent glasses are identified in the gold-coloured tesserae.
Oleophobic optical coating deposited by magnetron PVD
NASA Astrophysics Data System (ADS)
Bernt, D.; Ponomarenko, V.; Pisarev, A.
2016-09-01
Thin oxinitride films of Zn-Sn-O-N and Si-Al-O-N were deposited on glass by reactive magnetron sputtering at various nitrogen-to-oxygen ratios. Nitrogen added to oxygen led to decrease of the surface roughness and increase of oleophobic properties studied by the oil-drop test. The best oleophobity was obtained for Zn-Sn-O-N oxinitride at Zn:Sn=1:1 and N:O=1:2. Improved oleophobic properties were also demonstrated if the oxinitride film was deposited on top of the multilayer coating as the final step in the industrial cycle of production of energy efficient glass.
48 CFR 825.104 - Nonavailable articles.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 48 Federal Acquisition Regulations System 5 2010-10-01 2010-10-01 false Nonavailable articles. 825... SOCIOECONOMIC PROGRAMS FOREIGN ACQUISITION Buy American Act-Supplies 825.104 Nonavailable articles. The following items are added to the list of nonavailable articles contained in FAR 25.104: Glass, lead Insulin...
48 CFR 825.104 - Nonavailable articles.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 48 Federal Acquisition Regulations System 5 2013-10-01 2013-10-01 false Nonavailable articles. 825... SOCIOECONOMIC PROGRAMS FOREIGN ACQUISITION Buy American Act-Supplies 825.104 Nonavailable articles. The following items are added to the list of nonavailable articles contained in FAR 25.104: Glass, lead Insulin...
48 CFR 825.104 - Nonavailable articles.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 48 Federal Acquisition Regulations System 5 2014-10-01 2014-10-01 false Nonavailable articles. 825... SOCIOECONOMIC PROGRAMS FOREIGN ACQUISITION Buy American Act-Supplies 825.104 Nonavailable articles. The following items are added to the list of nonavailable articles contained in FAR 25.104: Glass, lead Insulin...
48 CFR 825.104 - Nonavailable articles.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 48 Federal Acquisition Regulations System 5 2011-10-01 2011-10-01 false Nonavailable articles. 825... SOCIOECONOMIC PROGRAMS FOREIGN ACQUISITION Buy American Act-Supplies 825.104 Nonavailable articles. The following items are added to the list of nonavailable articles contained in FAR 25.104: Glass, lead Insulin...
48 CFR 825.104 - Nonavailable articles.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 48 Federal Acquisition Regulations System 5 2012-10-01 2012-10-01 false Nonavailable articles. 825... SOCIOECONOMIC PROGRAMS FOREIGN ACQUISITION Buy American Act-Supplies 825.104 Nonavailable articles. The following items are added to the list of nonavailable articles contained in FAR 25.104: Glass, lead Insulin...
NASA Technical Reports Server (NTRS)
O'Brien, T. Kevin; Czabaj, Michael W.; Hinkley, Jeffrey A.; Tsampas, Spiros; Greenhalgh, Emile S.; McCombe, Gregory; Bond, Ian P.; Trask, Richard
2013-01-01
A study was undertaken to develop a prototype method for adding through-thickness hollow glass tubes infused with uncured resin and hardener in a carbon Z-pin through-thickness reinforcement field embedded in a composite laminate. Two types of tube insertion techniques were attempted in an effort to ensure the glass tubes survived the panel manufacturing process. A self-healing resin was chosen with a very low viscosity, two component, liquid epoxy resin system designed to be mixed at a 2-to-1 ratio of epoxy to hardener. IM7/8552 carbon epoxy double cantilever beam (DCB) specimens were cut from the hybrid Z-pin and glass tube reinforced panels and tested. In-situ injection of resin and hardener directly into glass tubes, in a staggered pattern to allow for 2-to-1 ratio mixing, resulted in partial healing of the fracture plane, but only if the injection was performed while the specimen was held at maximum load after initial fracture. Hence, there is some potential for healing delamination via resin and hardener delivered through a network of through-thickness glass tubes, but only if the tubes are connected to a reservoir where additional material may be injected as needed.
Wang, Fengchao; Cai, Muzhi; Chen, Rong; Jing, Xufeng; Li, Bingpeng; Tian, Ying; Zhang, Junjie; Xu, Shiqing
2015-11-05
In this work, the thermal and spectroscopic properties of Er(3+)-doped oxyfluorite glass based on AMCSBYT (AlF3-MgF2-CaF2-SrF2-BaF2-YF3-TeO2) system for different TeO2 concentrations from 6 to 21 mol% is reported. After adding a suitable content of TeO2, the thermal ability of glass improves significantly whose ΔT and S can reach to 118 °C and 4.47, respectively. The stimulated emission cross-section reaches to 7.80×10(-21) cm(2) and the fluorescence lifetime is 12.18 ms. At the same time, the bandwidth characteristics reach to 46.41×10(-21) cm(2) nm and the gain performance is 63.73×10(-21) cm(2) ms. These results show that the optical performances of this oxyfluorite glass are very well. Hence, AMCSBYT glass with superior performances might be a useful material for applications in optical amplifier around 1.53 μm. Copyright © 2015 Elsevier B.V. All rights reserved.
Control of Silver Diffusion in Low-Temperature Co-Fired Diopside Glass-Ceramic Microwave Dielectrics
Chou, Chen-Chia; Chang, Chun-Yao; Chen, Guang-Yu; Feng, Kuei-Chih; Tsao, Chung-Ya
2017-01-01
Electrode material for low-temperature co-fired diopside glass-ceramic used for microwave dielectrics was investigated in the present work. Diffusion of silver from the electrode to diopside glass-ceramics degrades the performance of the microwave dielectrics. Two approaches were adopted to resolve the problem of silver diffusion. Firstly, silicon-oxide (SiO2) powder was employed and secondly crystalline phases were chosen to modify the sintering behavior and inhibit silver ions diffusion. Nanoscale amorphous SiO2 powder turns to the quartz phase uniformly in dielectric material during the sintering process, and prevents the silver from diffusion. The chosen crystalline phase mixing into the glass-ceramics enhances crystallinity of the material and inhibits silver diffusion as well. The result provides a method to decrease the diffusivity of silver ions by adding the appropriate amount of SiO2 and appropriate crystalline ceramics in diopside glass-ceramic dielectric materials. Finally, we used IEEE 802.11a 5.8 GHz as target specification to manufacture LTCC antenna and the results show that a good broadband antenna was made using CaMgSi2O6 with 4 wt % silicon oxide. PMID:29286330
Shafrir, Shai N; Romanofsky, Henry J; Skarlinski, Michael; Wang, Mimi; Miao, Chunlin; Salzman, Sivan; Chartier, Taylor; Mici, Joni; Lambropoulos, John C; Shen, Rui; Yang, Hong; Jacobs, Stephen D
2009-12-10
We report on magnetorheological finishing (MRF) spotting experiments performed on glasses and ceramics using a zirconia-coated carbonyl-iron (CI)-particle-based magnetorheological (MR) fluid. The zirconia-coated magnetic CI particles were prepared via sol-gel synthesis in kilogram quantities. The coating layer was approximately 50-100 nm thick, faceted in surface structure, and well adhered. Coated particles showed long-term stability against aqueous corrosion. "Free" nanocrystalline zirconia polishing abrasives were cogenerated in the coating process, resulting in an abrasive-charged powder for MRF. A viable MR fluid was prepared simply by adding water. Spot polishing tests were performed on a variety of optical glasses and ceramics over a period of nearly three weeks with no signs of MR fluid degradation or corrosion. Stable material removal rates and smooth surfaces inside spots were obtained.
Tetraethyl orthosilicate-based glass composition and method
Wicks, G.G.; Livingston, R.R.; Baylor, L.C.; Whitaker, M.J.; O`Rourke, P.E.
1997-06-10
A tetraethyl orthosilicate-based, sol-gel glass composition with additives selected for various applications is described. The composition is made by mixing ethanol, water, and tetraethyl orthosilicate, adjusting the pH into the acid range, and aging the mixture at room temperature. The additives, such as an optical indicator, filler, or catalyst, are then added to the mixture to form the composition which can be applied to a substrate before curing. If the additive is an indicator, the light-absorbing characteristics of which vary upon contact with a particular analyte, the indicator can be applied to a lens, optical fiber, reagent strip, or flow cell for use in chemical analysis. Alternatively, an additive such as alumina particles is blended into the mixture to form a filler composition for patching cracks in metal, glass, or ceramic piping. 12 figs.
New surface smoothing technologies for manufacturing of complex shaped glass components
NASA Astrophysics Data System (ADS)
Henkel, Sebastian; Schwager, Anne-Marie; Bliedtner, Jens; Götze, Kerstin; Rädlein, Edda; Schulze, Christian; Gerhardt, Martin; Fuhr, Michael
2017-10-01
The production of complex glass components with 2.5D or 3D-structures involves great effort and the need for advanced CNC-technology. Especially the final surface treatment, for generation of transparent surfaces, represents a timeconsuming and costly process. The ultrasonic-assisted grinding procedure is used to generate arbitrary shaped components and freeform-surfaces. The special kinematic principle, containing a high-frequency tool oscillation, enables efficient manufacturing processes. Surfaces produced in this way allow for application of novel smoothing methods, providing considerable advantages compared to classic polishing. It is shown, that manufacturing of transparent glass surfaces with low roughness down to Rq = 10 nm is possible, using an ultra-fine grinding process. By adding a CO2-laser polishing process, roughness can be reduced even further with a very short polishing time.
NASA Technical Reports Server (NTRS)
Wiesner, Valerie L.; Bansal, Narottam P.
2015-01-01
Particulates, like sand and volcanic ash, threaten the development of robust environmental barrier coatings (EBCs) that protect next-generation silicon-based ceramic matrix composite (CMC) turbine engine components from harsh combustion environments during service. The siliceous particulates transform into molten glassy deposits of calcium-magnesium aluminosilicate (CMAS) when ingested by an aircraft engine operating at temperatures above 1200C. In this study, a sample of desert sand was melted into CMAS glass to evaluate high-temperature interactions between the sand glass and an advanced EBC material. Desert sand glass was added to the surface of hot-pressed EBC substrates, which were then heated in air at temperatures ranging from 1200C to 1500C. Scanning electron microscopy and X-ray energy-dispersive spectroscopy were used to evaluate microstructure and phase compositions of specimens and the CMASEBC interface after heat treatments.
Iniaghe, Paschal O; Adie, Gilbert U
2015-11-01
Cathode ray tubes are image display units found in computer monitors and televisions. In recent years, cathode ray tubes have been generated as waste owing to the introduction of newer and advanced technologies in image displays, such as liquid crystal displays and high definition televisions, among others. Generation and subsequent disposal of end-of-life cathode ray tubes presents a challenge owing to increasing volumes and high lead content embedded in the funnel and neck sections of the glass. Disposal in landfills and open dumping are anti-environmental practices considering the large-scale contamination of environmental media by the potential of toxic metals leaching from glass. Mitigating such environmental contamination will require sound management strategies that are environmentally friendly and economically feasible. This review covers existing and emerging management practices for end-of-life cathode ray tubes. An in-depth analysis of available technologies (glass smelting, detoxification of cathode ray tube glass, lead extraction from cathode ray tube glass) revealed that most of the techniques are environmentally friendly, but are largely confined to either laboratory scale, or are often limited owing to high cost to mount, or generate secondary pollutants, while a closed-looped method is antiquated. However, recycling in cementitious systems (cement mortar and concrete) gives an added advantage in terms of quantity of recyclable cathode ray tube glass at a given time, with minimal environmental and economic implications. With significant quantity of waste cathode ray tube glass being generated globally, cementitious systems could be economically and environmentally acceptable as a sound management practice for cathode ray tube glass, where other technologies may not be applicable. © The Author(s) 2015.
Khajuria, Rajat R; Singh, Rishav; Barua, Pranamee; Hajira, Nausheen; Gupta, Naveen; Thakkar, Rohit R
2017-08-01
The present study is undertaken to examine the film thickness of three most commonly used luting cements and to determine their usage as a luting agent. This study was carried out strictly according to the guidelines of American Dental Association (ADS) specification no. 8. Two glass slabs of 5 cm in length and 2 cm in width were used. One glass slab was kept over the other glass slab and the space between the two glass slabs was measured using metallurgical microscope at the power of 10*. Two brands of glass ionomer cement (GIC) and one dual-cured resin cement were used in this study. The test cement is sandwiched between two glass slabs. A static load of 15 kg was applied using universal testing machine on the glass slabs for 1 hour and the space present between the two glass slabs was measured using metallurgical microscope at the power of 10*. Greatest film thickness was found in group III (Paracore) followed by group II (micron) and lowest in group I (GC luting and lining cement). All the tested samples can be used for luting purposes. Greatest film thickness was observed in Paracore followed by micron and lowest in GC luting and lining cement. This suggests that the 25 to 27°C is ideal for mixing of the cement when used for luting consistency. The cement with film thickness more than 30 urn should never be used for luting purposes. The dentist should choose the luting cement with utmost care noting the film thickness and bond strength of the cement. The cement with low exothermic heat production and good bond strength should be encouraged.
High chloride content calcium silicate glasses.
Chen, Xiaojing; Karpukhina, Natalia; Brauer, Delia S; Hill, Robert G
2017-03-08
Chloride is known to volatilize from silicate glass melts and until now, only a limited number of studies on oxychloride silicate glasses have been reported. In this paper we have synthesized silicate glasses that retain large amounts of CaCl 2 . The CaCl 2 has been added to the calcium metasilicate composition (CaO·SiO 2 ). Glasses were produced via a melt quench route and an average of 70% of the chloride was retained after melting. Up to 31.6 mol% CaCl 2 has been successfully incorporated into these silicate glasses without the occurrence of crystallization. 29 Si MAS-NMR spectra showed the silicon being present mainly as a Q 2 silicate species. This suggests that chloride formed Cl-Ca(n) species, rather than Si-Cl bonds. Upon increasing the CaCl 2 content, the T g reduced markedly from 782 °C to 370 °C. Glass density and glass crystallization temperature decreased linearly with an increase in the CaCl 2 content. However, both linear regressions revealed a breakpoint at a CaCl 2 content just below 20 mol%. This might be attributed to a significant change in the structure and is also correlated with the nature of the crystallizing phases formed upon heat treatment. The glasses with less than 19.2 mol% CaCl 2 crystallized to wollastonite, whilst the compositions with CaCl 2 content equal to or greater than 19.2 mol% are thought to crystallize to CaCl 2 . In practice, the crystallization of CaCl 2 could not occur until the crystallization temperature fell below the melting point of CaCl 2 . The implications of the results along with the high chloride retention are discussed.
NASA Astrophysics Data System (ADS)
Othman, H. A.; Arzumanyan, G. M.; Möncke, D.
2016-12-01
Undoped, singly Sm doped, Ce doped, and Sm/Ce co-doped lithium alumino-phosphate glasses with different alkaline earth modifiers were prepared by melt quenching. The structure of the prepared glasses was investigated by FT-IR and Raman, as well as by optical spectroscopy. The effect of the optical basicity of the host glass matrix on the added active dopants was studied, as was the effect doping had on the phosphate structural units. The optical edge shifts toward higher wavelengths with an increase in the optical basicity due to the increased polarizability of the glass matrix, but also with increasing CeO2 concentration as a result of Ce3+/Ce4+ inter valence charge transfer (IV-CT) absorption. The optical band gap for direct and indirect allowed transitions was calculated for the undoped glasses. The glass sample containing Mg2+ modifier ions is found to have the highest value (4.16 eV) for the optical band gap while Ba2+ has the lowest value (3.61 eV). The change in the optical band gap arises from the structural changes and the overall polarizability (optical basicity). Refractive index, molar refractivity Rm and molar polarizability αm values increase with increasing optical basicity of the glasses. The characteristic absorption peaks of Sm3+ were also investigated. For Sm/Ce co-doped glasses, especially at high concentration of CeO2, the absorption of Ce3+ hinders the high energy absorption of Sm3+ and this effect becomes more obvious with increasing optical basicity.
Fabrication of Glassy and Crystalline Ferroelectric Oxide by Containerless Processing
NASA Astrophysics Data System (ADS)
Yoda, Shinichi
1. Instruction Much effort has been devoted to forming bulk glass from the melt of ferroelectric crystalline materials without adding any network-forming oxides such as SiO2 due to the potential for producing transparent glass ceramics with high dielectric constant and enhanced piezoelectric, pyroelectric and electro-optic effects. However, they require a higher cooling rate than glass formed by conventional techniques. Therefore, only amorphous thin-films have been formed, using rapid quenching with a cooling rate >105 K/s. The containerless processing is an attractive synthesis technique as it can prevent melt contamination, minimize heterogeneous nucleation, and allow melt to achieve deep undercooling for forming metastable phase and glassy material. Recently a new ferroelectric materiel, monoclinic BaTi2 O5 , with Currie temperature as 747 K was reported. In this study, we fabricated a bulk BaTi2 O5 glass from melt using containerless processing to study the phase relations and ferroelectric properties of BaTi2 O5 . To our knowledge, this was the first time that a bulk glass of ferroelectric material was fabricated from melt without adding any network-forming oxide. 2. Experiments BaTi2 O5 sphere glass with 2mm diameter was fabricated using containerless processing in an Aerodynamic Levitation Furnace (ALF). The containerless processing allowed the melt to achieve deep undercooling for glass forming. High purity commercial BaTiO3 and TiO2 powders were mixed with a mole ratio of 1:1 and compressed into rods and then sintered at 1427 K for 10 h. Bulk samples with a mass of about 20 mg were cut from the rod, levitated with the ALF, and then melted by a CO2 laser beam. After quenching with a cooling rate of about 1000 K/s, 2 mm diameter sphere glass could be obtained. To analyze the glass structure, a high-energy x-ray diffraction experiment was performed using an incident photon energy of 113.5 keV at the high-energy x-ray diffraction beamline BL04B2 of SPring-8, with a two-axis diffractometer for the disordered materials. The glass-transition behavior was studied by Differential Scanning Calorimetry (DSC) with a heating rate of 10 K/min from room temperature to 1600 K. The structure changes during heating were characterized by powder x-ray diffraction in the temperature range from room temperature to 1100 K. For electrical property measurements, we cut and ground the samples into disks of 0.3 to 0.4 mm thickness and measured the dielectric constant and impedance from room temperature to 1123 K at a heating rate of 3 K/s using Ag electrodes. 3. Results Above the glass transition temperature (972 K), three successive phase transitions, from glass to a metastable α-phase at 972 K, then to a metastable β-phase at 1038 K, and finally to a stable monoclinic γ-phase above 1100 K, were observed. At the crystallization temperature of α-phase, the permittivity jumped instantaneously by more than one order of magnitude, reaching a peak of 1.4 x 107 . This interesting phenomenon, occurring near the crystallization temperature, has important technical implications for obtaining an excellent dielectric glassceramics through controlled crystallization of BaTi2 O5 glass 504b030414000600080000002100828abc13fa0000001c020000130000005b436f6e74656e745f54797065735d2e78
... to do. Wondering if adding a glass of wine or beer might help lower your blood glucose if it is high? The effects of alcohol can be unpredictable and it is not recommended as a treatment for high blood glucose. The risks likely outweigh any benefit that may be seen in blood glucose alone. ...
NASA Astrophysics Data System (ADS)
Manghnani, M. H.; Hushur, A.; Williams, Q. C.; Dingwell, D. B.
2010-12-01
The density, compressibility and viscosity of silicate melts are important in understanding the thermodynamic and fluid dynamic properties of magmatic systems. Knowledge of the compressibility of silicate melts at 1 bar is an important component in the construction of accurate pressure-volume-temperature equations of state. In light of this, the velocity (nVp, Vp, Vs) and refractive index n of four anhydrous haplogranitic glasses and liquids with similar alkali abundances, but different cations, are measured at high temperature by Brillouin scattering spectroscopy through the glass transition temperature (Tg) in both platelet and back scattering geometry. The compositions of four haplogranites are 5 wt% of the components Li2O, Na2O, K2O and F each added to a base of haplogranitic (HPG8) composition. The glass transition temperature Tg of different haplogranite samples at the GHz frequency of the Brillouin probe are determined from the change in slope of the temperature-dependent longitudinal or transverse sound velocity. HPG8-Li5 has the lowest glass transition temperature (466°C), while HPG8-K5 has the highest glass transition temperature (575°C). Our Brillouin results, when compared with DSC measurements, show lower Tg values. This raises the possibility of a role of either heating rates or a frequency dependence of the glass transition in explaining the discrepancies in Tg values derived from the two methods. The sound velocity (nVp, Vp, Vs) shows markedly different temperature dependences (including differences in sign) below Tg depending on their different alkali contents. The unrelaxed elastic moduli of three haplogranitic glasses with added Li2O, Na2O and F components have been obtained as a function of temperature. The unrelaxed bulk modulus, shear modulus and Poisson’s ratio show strong compositional dependences at ambient temperature. On heating, The K initially decreases with increasing temperature up to ~ 135°C, then increases up to Tg, and then shows negative temperature dependences for HPG8-Na5. The slope changes from -0.0043(18) GPa/°C below 135°C to 0.0040(5) GPa/°C between 135°C and Tg. In the case of HPG8-Li5, both K and G decrease with increasing temperature.. For HPG8-F5, the K shows a markedly positive temperature dependence below Tg, and a very small temperature dependence above Tg. The shear modulus G shows a slight positive temperature dependence below Tg, and a larger negative temperature dependence above Tg. The Poisson’s ratios of HPG8-Li5 and HPG8-F5 glasses increase monotonically in the measured temperature range, while the Poisson’s ratio of HPG8-Na5 shows a distinct minimum at 135°C. Our results thus provide constraints on the visco-elastic properties of model granitic systems at a range of temperatures above and below their glass transition temperature.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kruger, Albert A.; Pegg, I. L.; Callow, R. A.
2013-11-13
The principal objective of this work was to determine the glass production rate increase and ancillary effects of adding more bubbler outlets to the current WTP HLW melter baseline. This was accomplished through testing on the HLW Pilot Melter (DM1200) at VSL. The DM1200 unit was selected for these tests since it was used previously with several HLW waste streams including the four tank wastes proposed for initial processing at Hanford. This melter system was also used for the development and optimization of the present baseline WTP HLW bubbler configuration for the WTP HLW melter, as well as for MACTmore » testing for both HLW and LAW. Specific objectives of these tests were to: Conduct DM1200 melter testing with the baseline WTP bubbling configuration and as augmented with additional bubblers. Conduct DM1200 melter testing to differentiate the effects of total bubbler air flow and bubbler distribution on glass production rate and cold cap formation. Collect melter operating data including processing rate, temperatures at a variety of locations within the melter plenum space, melt pool temperature, glass melt density, and melter pressure with the baseline WTP bubbling configuration and as augmented with additional bubblers. Collect melter exhaust samples to compare particulate carryover for different bubbler configurations. Analyze all collected data to determine the effects of adding more bubblers to the WTP HLW melter to inform decisions regarding future lid re-designs. The work used a high aluminum HLW stream composition defined by ORP, for which an appropriate simulant and high waste loading glass formulation were developed and have been previously processed on the DM1200.« less
Aluminum elution and precipitation in glass vials: effect of pH and buffer species.
Ogawa, Toru; Miyajima, Makoto; Wakiyama, Naoki; Terada, Katsuhide
2015-02-01
Inorganic extractables from glass vials may cause particle formation in the drug solution. In this study, the ability of eluting Al ion from borosilicate glass vials, and tendencies of precipitation containing Al were investigated using various pHs of phosphate, citrate, acetate and histidine buffer. Through heating, all of the buffers showed that Si and Al were eluted from glass vials in ratios almost the same as the composition of borosilicate glass, and the amounts of Al and Si from various buffer solutions at pH 7 were in the following order: citrate > phosphate > acetate > histidine. In addition, during storage after heating, the Al concentration at certain pHs of phosphate and acetate buffer solution decreased, suggesting the formation of particles containing Al. In citrate buffer, Al did not decrease in spite of the high elution amount. Considering that the solubility profile of aluminum oxide and the Al eluting profile of borosilicate glass were different, it is speculated that Al ion may be forced to leach into the buffer solution according to Si elution on the surface of glass vials. When Al ions were added to the buffer solutions, phosphate, acetate and histidine buffer showed a decrease of Al concentration during storage at a neutral range of pHs, indicating the formation of particles containing Al. In conclusion, it is suggested that phosphate buffer solution has higher possibility of forming particles containing Al than other buffer solutions.
Blue light emission from trivalent cerium doped in sol-gel silica glass
NASA Astrophysics Data System (ADS)
Tokumitsu, Seika; Murakami, Yukon; Oda, Hisaya; Kawabe, Yutaka
2017-02-01
Rare earths in glass matrices are promising for active optical devices as amplifiers and lasers. Emission originating from d-f transitions in sol-gel glass has not been studied very often, while those based on f-f transitions were widely utilized. However, d-f emission in rare earths is very important because of their strong oscillator strength and broad emission widths suitable for the application to scintillators and solid-state lasers. Co-doping of aluminum in sol-gel synthesis was known to be effective for the emission enhancement of trivalent terbium and europium. Recently, we applied aluminum co-doping to cerium and europium systems in sol-gel glass to succeed in the observation of strong blue light emission originating from d-f transitions. Glass samples were prepared with conventional sol-gel process where tetramethylorthosilicate was hydrolyzed in the mixture of water, ethanol and dimethylformamide with nitric acid catalyst. After adding cerium nitrate and aluminum nitrate, the solution experienced drying followed by calcination at 1,050°C under air environment. When molar ratio of cerium to silicon was adjusted at 0.1% and Al concentration was varied in 0.1 2.0%, transparent glass products showed bright and broad blue photoluminescence under UV illumination. The fluorescence lifetimes were found to be about 50 90 ns, indicating that the emission was due to d-f transitions. Considering the simplicity of the process, blue phosphors based on sol-gel glass will be very promising for future applications.
NASA Astrophysics Data System (ADS)
Senning, Eric Nicolas
Novel experiments that probe the dynamics of intracellular species, including the center-of-mass displacements and internal conformational transitions of biological macromolecules, have the potential to reveal the complex biochemical mechanisms operating within the cell. This work presents the implementation and development of Fourier imaging correlation spectroscopy (FICS), a phase-selective approach to fluorescence spectroscopy that measures the collective coordinate fluctuations of fluorescently labeled microscopic particles. In FICS experiments, a spatially modulated optical grating excites a fluorescently labeled sample. Phase-synchronous detection of the fluorescence, with respect to the phase of the exciting optical grating, can be used to monitor the fluctuations of partially averaged spatial coordinates. These data are then analyzed by two-point and four-point time correlation functions to provide a statistically meaningful understanding of the dynamics under observation. FICS represents a unique route to elevate signal levels, while acquiring detailed information about molecular coordinate trajectories. Mitochondria of mammalian cells are known to associate with cytoskeletal proteins, and their motions are affected by the stability of microtubules and microfilaments. Within the cell it is possible to fluorescently label the mitochondria and study its dynamic behavior with FICS. The dynamics of S. cerevisiae yeast mitochondria are characterized at four discrete length scales (ranging from 0.6--1.19 mum) and provide detailed information about the influence of specific cytoskeletal elements. Using the microtubule and microfilament destabilizing agents, Nocodazole and Latrunculin A, it is determined that microfilaments are required for normal yeast mitochondrial motion while microtubules have no effect. Experiments with specific actin mutants revealed that actin is responsible for enhanced mobility on length scales greater than 0.6 mum. The versatility of FICS expands when individual molecules are labeled with fluorescent chromophores. In recent experiments on the tetrameric fluorescent protein DsRed, polarization-modulated FICS (PM-FICS) is demonstrated to separate conformational dynamics from molecular translational dynamics. The optical switching pathways of DsRed, a tetrameric complex of fluorescent protein subunits, are examined. An analysis of PM-FICS coordinate trajectories, in terms of 2D spectra and joint probability distributions, provides detailed information about the transition pathways between distinct dipole-coupled DsRed conformations. This dissertation includes co-authored and previously published material.
Montazerian, Maziar; Yekta, Bijan Eftekhari; Marghussian, Vahak Kaspari; Bellani, Caroline Faria; Siqueira, Renato Luiz; Zanotto, Edgar Dutra
2015-10-01
In this study, 10 mol% ZrO2 was added to a 27CaO-5P2O5-68SiO2 (mol%) base composition synthesized via a simple sol-gel method. This composition is similar to that of a frequently investigated bioactive gel-glass. The effects of ZrO2 on the in vitro bioactivity and MG-63 cell proliferation of the glass and its derivative polycrystalline (glass-ceramic) powder were investigated. The samples were characterized using thermo-gravimetric and differential thermal analysis (TG/DTA), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and scanning electron microscopy (SEM) coupled to energy dispersive X-ray spectroscopy (EDS). Release of Si, Ca, P and Zr into simulated body fluid (SBF) was determined by inductively coupled plasma (ICP). Upon heat treatment at 1000 °C, the glass powder crystallized into an apatite-wollastonite-zirconia glass-ceramic powder. Hydroxycarbonate apatite (HCA) formation on the surface of the glass and glass-ceramic particles containing ZrO2 was confirmed by FTIR and SEM. Addition of ZrO2 to the base glass composition decreased the rate of HCA formation in vitro from one day to three days, and hence, ZrO2 could be employed to control the rate of apatite formation. However, the rate of HCA formation on the glass-ceramic powder containing ZrO2 crystal was equal to that in the base glassy powder. Tests with a cultured human osteoblast-like MG-63 cells revealed that the glass and glass-ceramic materials stimulated cell proliferation, indicating that they are biocompatible and are not cytotoxic in vitro. Moreover, zirconia clearly increased osteoblast proliferation over that of the Zr-free samples. This increase is likely associated with the lower solubility of these samples and, consequently, a smaller variation in the media pH. Despite the low solubility of these materials, bioactivity was maintained, indicating that these glassy and polycrystalline powders are potential candidates for bone graft substitutes and bone cements with the special feature of radiopacity. Copyright © 2015 Elsevier B.V. All rights reserved.
Effect of HSP27 on Human Breast Tumor Cell Growth and Motility.
1997-09-01
the small heat shock protein, Hsp27 , on growth and motility characteristics of human mammary tumor cell lines. Since Hsp27 regulates actin...microfilament dynamics, we hypothesize that cells expressing high levels of Hsp27 will show increased motility and altered chemotactic properties, in addition to...significantly elevated levels of Hsp27 has proven to be daunting. Down regulation of Hsp27 levels in MCF7 cells using antisense technology has also
Vasopressin Receptor Signaling and Cycling of Water Channels in Renal Epithelia
1992-08-22
as well as renal model epithelia, including amphibian urinary bladder tissue (Bentley, 1958; DiBona , 1981; Hays, 1983; Mia et al., 1987). The increase...propagation of numerous microvilli on the membrane surface (Davis et al., 1974; DiBona , 1981; Mia et al., 1983, 1988; Mills and Malik, 1978; Spinelli et...fusion events are dependent very likely on the presence of cytosolic microtubules and microfilaments (Taylor et al., 1973; Hardy and DiBona , 1982; Hays
Potential of Prolamins from Maize and Sorghum to Form Gluten-like Structures in Wheat-free Bread
USDA-ARS?s Scientific Manuscript database
Prolamins from maize (zeins) are known to form viscoelastic, extensible, cohesive dough when mixed together with starch and water above their glass transition temperature (Tg, approximately 28 °C). By adding hydroxypropyl methylcellulose (HPMC, a surface-active hydrocolloid) to this formulation, lea...
Li, Nan; Mruk, Dolores D.; Chen, Haiqi; Wong, Chris K. C.; Lee, Will M.; Cheng, C. Yan
2016-01-01
Perfluorooctanesulfonate (PFOS) is an environmental toxicant used in developing countries, including China, as a stain repellent for clothing, carpets and draperies, but it has been banned in the U.S. and Canada since the late 2000s. PFOS perturbed the Sertoli cell tight junction (TJ)-permeability barrier, causing disruption of actin microfilaments in cell cytosol, perturbing the localization of cell junction proteins (e.g., occluden-ZO-1, N-cadherin-ß-catenin). These changes destabilized Sertoli cell blood-testis barrier (BTB) integrity. These findings suggest that human exposure to PFOS might induce BTB dysfunction and infertility. Interestingly, PFOS-induced Sertoli cell injury associated with a down-regulation of the gap junction (GJ) protein connexin43 (Cx43). We next investigated if overexpression of Cx43 in Sertoli cells could rescue the PFOS-induced cell injury. Indeed, overexpression of Cx43 in Sertoli cells with an established TJ-barrier blocked the disruption in PFOS-induced GJ-intercellular communication, resulting in the re-organization of actin microfilaments, which rendered them similar to those in control cells. Furthermore, cell adhesion proteins that utilized F-actin for attachment became properly distributed at the cell-cell interface, resealing the disrupted TJ-barrier. In summary, Cx43 is a good target that might be used to manage PFOS-induced reproductive dysfunction. PMID:27436542
The Role of Microfilaments in Early Meiotic Maturation of Mouse Oocytes
NASA Astrophysics Data System (ADS)
Calarco, Patricia G.
2005-04-01
Mouse oocyte microfilaments (MF) were perturbed by depolymerization (cytochalasin B) or stabilization (jasplakinolide) and correlated meiotic defects examined by confocal microscopy. MF, microtubules, and mitochondria were vitally stained; centrosomes ([gamma]-tubulin), after fixation. MF depolymerization by cytochalasin in culture medium did not affect central migration of centrosomes, mitochondria, or nuclear breakdown (GVBD); some MF signal was localized around the germinal vesicle (GV). In maturation-blocking medium (containing IBMX), central movement was curtailed and cortical MF aggregations made the plasma membrane wavy. Occasional long MF suggested that not all MF were depolymerized. MF stabilization by jasplakinolide led to MF aggregations throughout the cytoplasm. GVBD occurred (unless IBMX was present) but no spindle formed. Over time, most oocytes constricted creating a dumbbell shape with MF concentrated under one-half of the oocyte cortex and on either side of the constriction. In IBMX medium, the MF-containing half of the dumbbell over time sequestered the GV, MF, mitochondria, and one to two large cortical centrosomes; the non-MF half appeared empty. Cumulus processes contacted the oocyte surface (detected by microtubule content) and mirrored MF distribution. Results demonstrated that MF play an essential role in meiosis, primarily through cortically mediated events, including centrosome localization, spindle (or GV) movement to the periphery, activation of (polar body) constriction, and establishment of oocyte polarity. The presence of a cortical “organizing pole” is hypothesized.
Regulation of vacuolar H{sup +}-ATPase in microglia by RANKL
DOE Office of Scientific and Technical Information (OSTI.GOV)
Serrano, Eric M.; Ricofort, Ryan D.; Zuo, Jian
2009-11-06
Vacuolar H{sup +}-ATPases (V-ATPases) are large electrogenic proton pumps composed of numerous subunits that play vital housekeeping roles in the acidification of compartments of the endocytic pathway. Additionally, V-ATPases play specialized roles in certain cell types, a capacity that is linked to cell type selective expression of isoforms of some of the subunits. We detected low levels of the a3 isoform of the a-subunit in mouse brain extracts. Examination of various brain-derived cell types by immunoblotting showed a3 was expressed in the N9 microglia cell line and in primary microglia, but not in other cell types. The expression of a3more » in osteoclasts requires stimulation by Receptor Activator of Nuclear Factor {kappa}B-ligand (RANKL). We found that Receptor Activator of Nuclear Factor {kappa}B (RANK) was expressed by microglia. Stimulation of microglia with RANKL triggered increased expression of a3. V-ATPases in microglia were shown to bind microfilaments, and stimulation with RANKL increased the proportion of V-ATPase associated with the detergent-insoluble cytoskeletal fraction and with actin. In summary, microglia express the a3-subunit of V-ATPase. The expression of a3 and the interaction between V-ATPases and microfilaments was modulated by RANKL. These data suggest a novel molecular pathway for regulating microglia.« less
Mazars, C; Thion, L; Thuleau, P; Graziana, A; Knight, M R; Moreau, M; Ranjeva, R
1997-11-01
Using Nicotiana plumbaginifolia constitutively expressing the recombinant bioluminescent calcium indicator, aequorin, it has been previously demonstrated that plant cells react to cold-shock by an immediate rise in cytosolic calcium. Such an opportune system has been exploited to address the regulatory pathway involved in the calcium response. For this purpose, we have used protoplasts derived from N. plumbaginifolia leaves that behave as the whole plant but with a better reproducibility. By both immunodetecting cytoskeletal components on membrane ghosts and measuring the relative change in cytosolic calcium, we demonstrate that the organization of the cytoskeleton has profound influences on the calcium response. The disruption of the microtubule meshwork by various active drugs, such as colchicin, oryzalin and vinblastin, leads to an important increase in the cytosolic calcium (up to 400 nM) in cold-shocked protoplasts over control. beta-Lumicolchicin, an inactive analogue of colchicin, is ineffective either on cytoplasmic calcium increase or on microtubule organization. A microfilament disrupting drug, cytochalasin D, exerts a slight stimulatory effect, whereas the simultaneous disruption of microtubule and microfilament meshworks results in a dramatic increase in the calcium response to cold-shock. The results described in the present paper illustrate the role of the intracellular organization and, more specifically, the role of cytoskeleton in controlling the intensity of calcium response to an extracellular stimulus.
The recycling of comminuted glass-fiber-reinforced resin from electronic waste.
Duan, Huabo; Jia, Weifeng; Li, Jinhui
2010-05-01
The reuse of comminuted glass-fiber-reinforced resin with various granularities gathered from printed circuit manufacturing residues was investigated. As fillers, these residues were converted into polymeric composite board by an extrusion and injection process using polypropylene as a bonding agent. The mechanical properties of the reproduced composite board were examined by considering the effects of mass fraction and glass-fiber distribution. Interfacial-layer micrograph analysis of the composite material fracture surface was used to study the fiber reinforcement mechanism. Results showed that using comminuted glass-fiber-reinforced resin as a filler material greatly enhanced the performance properties of the composite board. Although the length and diameter of filler varied, these variations had no appreciable effect on the mechanical properties of the processed board. Maximum values of 48.30 MPa for flexural strength, 31.34 MPa for tensile strength, and 31.34 J/m for impact strength were achieved from a composite board containing mass fractions of 30, 10, and 20% glass-fiber-reinforced resin waste, respectively. It was found that the maximum amount of recyclate that could be added to a composite board was 30% of weight. Beyond these percentages, the materials blend became unmanageable and the mixture less amenable to impregnation with fiber. Presented studies indicated that comminuted glass-fiber-reinforced resin waste-filled polypropylene composites are promising candidates for structural applications where high stiffness and fracture resistance are required.
NASA Astrophysics Data System (ADS)
Nava Sai Divya, A.; Raghu Kumar, B., Dr; Lakshmi Narayana, G., Dr
2017-09-01
The main objective of this work is to investigate the effect of additives on tensile behaviour of fiber glass fabric at lamina level to explore an alternative skin material for the outer body of aerospace applications and machines. This experimental work investigates the effect of silica concentration in epoxy resin lapox L-12 on the tensile properties of glass fabric lamina of 4H-satin weave having 3.6 mm thickness. The lamina was prepared by using hand lay-up method and tests were conducted on it. Various tensile properties values obtained from experimentation were compared for four glass fiber lamina composites fabricated by adding the silica powder to resin bath. The effect of variations in silica concentration (0% SiO2, 5% SiO2, 10% SiO2 and 15% SiO2) on the tensile properties of prepared material revealed that maximum stiffness was obtained at 15% and yield strength at 10% SiO2 concentration in glass fiber lamina. Increasing the silica concentration beyond 10% had led to deterioration in the material properties. The experimentation that was carried out on test specimen was reasonably successful as the effect of silica powder as an additive in glass fiber lamina enhanced the mechanical properties up to certain limit. The underpinning microscopic behaviour at the source of these observations will be investigated in a follow up work.
NASA Astrophysics Data System (ADS)
Parveeen, B.; Caton-Rose, P.; Costa, F.; Jin, X.; Hine, P.
2014-05-01
Long glass fibre (LGF) composites are extensively used in manufacturing to produce components with enhanced mechanical properties. Long fibres with length 12 to 25mm are added to a thermoplastic matrix. However severe fibre breakage can occur in the injection moulding process resulting in shorter fibre length distribution (FLD). The majority of this breakage occurs due to the melt experiencing extreme shear stress during the preparation and injection stage. Care should be taken to ensure that the longer fibres make it through the injection moulding process without their length being significantly degraded. This study is based on commercial 12 mm long glass-fibre reinforced polypropylene (PP) and short glass fibre Nylon. Due to the semi-flexiable behaviour of long glass fibres, the fibre orientation distribution (FOD) will differ from the orientation distribution of short glass fibre in an injection molded part. In order to investigate the effect the change in fibre length has on the fibre orientation distribution or vice versa, FOD data was measured using the 2D section image analyser. The overall purpose of the research is to show how the orientation distribution chnages in an injection moulded centre gated disc and end gated plaque geometry and to compare this data against fibre orientation predictions obtained from Autodesk Moldflow Simulation Insight.
Subramaniam, P; Girish Babu, K L; Neeraja, G; Pillai, S
Propolis is a natural resinous substance produced by honey bees. The antimicrobial effects of glass ionomer cement have been shown to improve with the addition of propolis; however its effect on the physicomechanical properties of the cement is not known. The purpose of this study was to evaluate the compressive strength and solubility of conventional restorative glass ionomer cement following the addition of propolis. Twenty half cylindrical samples were prepared with conventional restorative glass ionomer cement formed the control group. Another twenty samples were prepared with propolis added to conventional restorative glass ionomer cement formed the experimental group. The compressive strength was assessed using universal testing machine. To assess solubility, the samples were immersed in deionised water at room temperature, for 7 days. The solubility was measured as a difference in the weight of the sample; prior to immersion and following immersion at the end of each day. The control group had a significantly higher mean compressive strength of 146.26 Mpa as compared to the experimental group (135.06 Mpa). The solubility between the groups was significant. In comparison to the control group, incorporation of propolis to conventional restorative glass ionomer cement decreased the compressive strength significantly. The solubility of the cement in the experimental group increased significantly over 7day period as compared to the control group.
Subramaniam, P; Girish Babu, K L; Neeraja, G; Pillai, S
Propolis is a natural resinous substance produced by honey bees. The antimicrobial effects of glass ionomer cement have been shown to improve with the addition of propolis; however its effect on the physicomechanical properties of the cement is not known. The purpose of this study was to evaluate the compressive strength and solubility of conventional restorative glass ionomer cement following the addition of propolis. Twenty half cylindrical samples were prepared with conventional restorative glass ionomer cement formed the control group. Another twenty samples were prepared with propolis added to conventional restorative glass ionomer cement formed the experimental group. The compressive strength was assessed using universal testing machine. To assess solubility, the samples were immersed in deionised water at room temperature, for 7 days. The solubility was measured as a difference in the weight of the sample; prior to immersion and following immersion at the end of each day. The control group had a significantly higher mean compressive strength of 146.26 Mpa as compared to the experimental group (135.06 Mpa). The solubility between the groups was significant. In comparison to the control group, incorporation of propolis to conventional restorative glass ionomer cement decreased the compressive strength significantly. The solubility of the cement in the experimental group increased significantly over 7day period as compared to the control group.
Effects of sintering atmosphere on the physical and mechanical properties of modified BOF slag glass
NASA Astrophysics Data System (ADS)
Dai, Wen-bin; Li, Yu; Cang, Da-qiang; Zhou, Yuan-yuan; Fan, Yong
2014-05-01
This study proposes an efficient way to utilize all the chemical components of the basic oxygen furnace (BOF) slag to prepare high value-added glass-ceramics. A molten modified BOF slag was converted from the melting BOF slag by reducing it and separating out iron component in it, and the modified BOF slag was then quenched in water to form glasses with different basicities. The glasses were subsequently sintered in the temperature range of 600-1000°C in air or nitrogen atmosphere for 1 h. The effects of different atmospheres on the physical and mechanical properties of sintered samples were studied by using differential scanning calorimetry (DSC), X-ray diffraction (XRD) and scanning electron microscopy (SEM) and by conducting experiment on evaluating the sintering shrinkage, water absorption and bulk density. It is found that the kinetics of the sintering process is significantly affected by sintering atmosphere. In particular, compared with sintering in air atmosphere, sintering in N2 atmosphere promotes the synergistic growth of pyroxene and melilite crystalline phases, which can contribute to better mechanical properties and denser microstructure.
Ultrathin Fluidic Laminates for Large-Area Façade Integration and Smart Windows.
Heiz, Benjamin P V; Pan, Zhiwen; Lautenschläger, Gerhard; Sirtl, Christin; Kraus, Matthias; Wondraczek, Lothar
2017-03-01
Buildings represent more than 40% of Europe's energy demands and about one third of its CO 2 emissions. Energy efficient buildings and, in particular, building skins have therefore been among the key priorities of international research agendas. Here, glass-glass fluidic devices are presented for large-area integration with adaptive façades and smart windows. These devices enable harnessing and dedicated control of various liquids for added functionality in the building envelope. Combining a microstructured glass pane, a thin cover sheet with tailored mechanical performance, and a liquid for heat storage and transport, a flat-panel laminate is generated with thickness adapted to a single glass sheet in conventional windows. Such multimaterial devices can be integrated with state-of-the-art window glazings or façades to harvest and distribute thermal as well as solar energy by wrapping buildings into a fluidic layer. High visual transparency is achieved through adjusting the optical properties of the employed liquid. Also secondary functionality, such as chromatic windows, polychromatism, or adaptive energy uptake can be generated on part of the liquid.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marcial, Jose; Hrma, Pavel R; Schweiger, Michael J
2010-08-11
The behavior of melter feed (a mixture of nuclear waste and glass-forming additives) during waste-glass processing has a significant impact on the rate of the vitrification process. We studied the effects of silica particle size and sucrose addition on the volumetric expansion (foaming) of a high-alumina feed and the rate of dissolution of silica particles in feed samples heated at 5°C/min up to 1200°C. The initial size of quartz particles in feed ranged from 5 to 195 µm. The fraction of the sucrose added ranged from 0 to 0.20 g per g glass. Extensive foaming occurred only in feeds withmore » 5-μm quartz particles; particles >150 µm formed clusters. Particles of 5 µm completely dissolved by 900°C whereas particles >150 µm did not fully dissolve even when the temperature reached 1200°C. Sucrose addition had virtually zero impact on both foaming and the dissolution of silica particles.« less
Scaling of wet granular flows in a rotating drum
NASA Astrophysics Data System (ADS)
Jarray, Ahmed; Magnanimo, Vanessa; Ramaioli, Marco; Luding, Stefan
2017-06-01
In this work, we investigate the effect of capillary forces and particle size on wet granular flows and we propose a scaling methodology that ensures the conservation of the bed flow. We validate the scaling law experimentally by using different size glass beads with tunable capillary forces. The latter is obtained using mixtures of ethanol-water as interstitial liquid and by increasing the hydrophobicity of glass beads with an ad-hoc silanization procedure. The scaling methodology in the flow regimes considered (slipping, slumping and rolling) yields similar bed flow for different particle sizes including the angle of repose that normally increases when decreasing the particle size.
Optimization of Water Output by Experimental Analysis on Passive Solar Still
NASA Astrophysics Data System (ADS)
Parekh, Winners; Patel, Mrugen; Patel, Nikunj; Prajapati, Jaimin; Patel, Maitrik
2018-02-01
This paper presents experimental analysis obtained using the single slope passive solar still. The experiments were conducted in Ahmedabad (23°03’ N, 72°40’ E) using a passive solar still with different water depths and basin materials. Salt was added to study the effect of salinity of water on solar distillation. An extra clear glass is used as cover plate as it transmits 91% light into solar still. Rubber plate and Styrofoam were used as insulating material. So, the productivity of solar still was determined by increasing the temperature of water in the basin and glass temperature.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shafrir, Shai N.; Romanofsky, Henry J.; Skarlinski, Michael
2009-12-10
We report on magnetorheological finishing (MRF) spotting experiments performed on glasses and ceramics using a zirconia-coated carbonyl-iron (CI)-particle-based magnetorheological (MR) fluid. The zirconia-coated magnetic CI particles were prepared via sol-gel synthesis in kilogram quantities. The coating layer was {approx}50-100 nm thick, faceted in surface structure, and well adhered. Coated particles showed long-term stability against aqueous corrosion. ''Free'' nanocrystalline zirconia polishing abrasives were cogenerated in the coating process, resulting in an abrasive-charged powder for MRF. A viable MR fluid was prepared simply by adding water. Spot polishing tests were performed on a variety of optical glasses and ceramics over a periodmore » of nearly three weeks with no signs of MR fluid degradation or corrosion. Stable material removal rates and smooth surfaces inside spots were obtained.« less
Detonation Velocity-Diameter Relation in Gelled Explosive with Inert Inclusions
NASA Astrophysics Data System (ADS)
Higgins, Andrew; Loiseau, Jason; Mi, Xiaocheng
2017-06-01
The detonation velocity is measured in a gelled explosive that has been sensitized via the addition of glass microballoons (GMBs) and additionally diluted via the inclusion of large scale (300-700 micron) inert inclusions. The base explosive is nitromethane that has been gelled via the addition of poly(methyl methacrylate) and then sensitized via hot-spot inducing glass microballoons. Inert inclusions (e.g., glass, steel beads) are then added to the explosive to make a heterogeneous explosive with heterogeneities that are at a scale disparate from those of the microballoons. This system has the potential to be a synthetic explosive that can be tuned to have the properties of more complex commercial blasting agents. The velocity-diameter relation is studied using weak confinement (polyvinyl chloride) and time-of-arrival gages. The results are also used to further explore the phenomenon of anomalous scaling between axisymmetric charges (cylinders) and two-dimensional (slab) charges.
Reactions in glass-ionomer cements: IV. Effect of chelating comonomers on setting behavior.
Wilson, A D; Crisp, S; Ferner, A J
1976-01-01
The oscillating rheometer is a valuable instrument for studying the effects of additives on the setting behavior of a cement system. Using this instrument, it was found that certain chelating comonomers, the hydroxycarboxylic acids, could improve the setting characteristics of the glass-ionomer cement system when added to the PAA solution. The acid chelates probably assign the extraction of metal ions from the glass and also tend to hold them in solution, preventing premature ion binding of the polyanion chains. The effect is to increase the rate of hardening without reducing the working time, which may indeed by slightly increased. Tartaric acid, the most effective of the comonomers, can form a chelate bridge between aluminum atoms, and this metal complex probably acts as a flexible bridge structure linking polyanion chains. This mechanism offers some steric advantages over a simple salt bridge.
Glass ceramic toughened with tetragonal zirconia
Keefer, K.D.
1984-02-10
A phase transformation-toughened glass ceramic and a process for making it are disclosed. A mixture of particulate network-forming oxide, network-modifying oxide, and zirconium oxide is heated to yield a homogeneous melt, and this melt is then heat treated to precipitate an appreciable quantity of tetragonal zirconia, which is retained at ambient temperature to form a phase transformation-toughened glass ceramic. Nuclearing agents and stabilizing agents may be added to the mixture to facilitate processing and improve the ceramic's properties. Preferably, the mixture is first melted at a temperature from 1200 to 1700/sup 0/C and is then heat-treated at a temperature within the range of 800 to 1200/sup 0/C in order to precipitate tetragonal ZrO/sub 2/. The composition, as well as the length and temperature of the heat treatment, must be carefully controlled to prevent solution of the precipitated tetragonal zirconia and subsequent conversion to the monoclinic phase.
Glass ceramic toughened with tetragonal zirconia
Keefer, Keith D.; Michalske, Terry A.
1986-01-01
A phase transformation-toughened glass ceramic and a process for making it are disclosed. A mixture of particulate network-forming oxide, network-modifying oxide, and zirconium oxide is heated to yield a homogeneous melt, and this melt is then heat-treated to precipitate an appreciable quantity of tetragonal zirconia, which is retained at ambient temperature to form a phase transformation-toughened glass ceramic. Nucleating agents and stabilizing agents may be added to the mixture to facilitate processing and improve the ceramic's properties. Preferably, the mixture is first melted at a temperature from 1200.degree. to 1700.degree. C. and is then heat-treated at a temperature within the range of 800.degree. to 1200.degree. C. in order to precipitate tetragonal ZrO.sub.2. The composition, as well as the length and temperature of the heat-treatment, must be carefully controlled to prevent solution of the precipitated tetragonal zirconia and subsequent conversion to the monoclinic phase.
Diopside-Fluorapatite-Wollastonite Based Bioactive Glasses and Glass-ceramics =
NASA Astrophysics Data System (ADS)
Kansal, Ishu
Bioactive glasses and glass-ceramics are a class of biomaterials which elicit special response on their surface when in contact with biological fluids, leading to strong bonding to living tissue. This particular trait along with good sintering ability and high mechanical strength make them ideal materials for scaffold fabrication. The work presented in this thesis is directed towards understanding the composition-structure-property relationships in potentially bioactive glasses designed in CaO-MgO-P2O5-SiO2-F system, in some cases with added Na2O. The main emphasis has been on unearthing the influence of glass composition on molecular structure, sintering ability and bioactivity of phosphosilicate glasses. The parent glass compositions have been designed in the primary crystallization field of the pseudo-ternary system of diopside (CaO•MgO•2SiO2) - fluorapatite (9CaO•3P2O5•CaF2) - wollastonite (CaO•SiO2), followed by studying the impact of compositional variations on the structure-property relationships and sintering ability of these glasses. All the glasses investigated in this work have been synthesized via melt-quenching route and have been characterized for their molecular structure, sintering ability, chemical degradation and bioactivity using wide array of experimental tools and techniques. It has been shown that in all investigated glass compositions the silicate network was mainly dominated by Q2 units while phosphate in all the glasses was found to be coordinated in orthophosphate environment. The glass compositions designed in alkali-free region of diopside - fluorapatite system demonstrated excellent sintering ability and good bioactivity in order to qualify them as potential materials for scaffold fabrication while alkali-rich bioactive glasses not only hinder the densification during sintering but also induce cytotoxicity in vitro, thus, are not ideal candidates for in vitro tissue engineering. One of our bioglass compositions with low sodium content has been tested successfully both in vivo and in preliminary clinical trials. But this work needs to be continued and deepened. The dispersing of fine glass particles in aqueous media or in other suitable solvents, and the study of the most important factors that affect the rheology of the suspensions are essential steps to enable the manufacture of porous structures with tailor-made hierarchical pores by advanced processing techniques such as Robocasting.
Advanced Doubling Adding Method for Radiative Transfer in Planetary Atmospheres
NASA Astrophysics Data System (ADS)
Liu, Quanhua; Weng, Fuzhong
2006-12-01
The doubling adding method (DA) is one of the most accurate tools for detailed multiple-scattering calculations. The principle of the method goes back to the nineteenth century in a problem dealing with reflection and transmission by glass plates. Since then the doubling adding method has been widely used as a reference tool for other radiative transfer models. The method has never been used in operational applications owing to tremendous demand on computational resources from the model. This study derives an analytical expression replacing the most complicated thermal source terms in the doubling adding method. The new development is called the advanced doubling adding (ADA) method. Thanks also to the efficiency of matrix and vector manipulations in FORTRAN 90/95, the advanced doubling adding method is about 60 times faster than the doubling adding method. The radiance (i.e., forward) computation code of ADA is easily translated into tangent linear and adjoint codes for radiance gradient calculations. The simplicity in forward and Jacobian computation codes is very useful for operational applications and for the consistency between the forward and adjoint calculations in satellite data assimilation.
Preparation of glass-forming materials from granulated blast furnace slag
NASA Astrophysics Data System (ADS)
Alonso, M.; Sáinz, E.; Lopez, F. A.
1996-10-01
Glass precursor materials, to be used for the vitrification of hazardous wastes, have been prepared from blast furnace slag powder through a sol-gel route. The slag is initially reacted with a mixture of alcohol (ethanol or methanol) and mineral acid (HNO3 or H2SO4) to give a sol principally consisting of Si, Ca, Al, and Mg alkoxides. Gelation is carried out with variable amounts of either ammonia or water. The gelation rate can be made as fast as desired by adding excess hydrolizing agent or else by distilling the excess alcohol out of the alkoxide solution. The resulting gel is first dried at low temperature and ground. The powder thus obtained is then heat treated at several temperatures. The intermediate and final materials are characterized by thermal analysis, infrared (IR) spectroscopy, X-ray diffraction, scanning electron microscopy (SEM), and chemical analysis. From the results, the operating conditions yielding a variety of glass precursors differing in their composition are established. The method, in comparison with direct vitrification of slag, presents a number of advantages: (1) the glass precursor obtained devitrifies at higher temperatures; (2) it enables the adjustment, to a certain extent, of the chemical composition of the glass precursor; and (3) it permits recovering marketable materials at different stages of the process.
NASA Astrophysics Data System (ADS)
Okada, Takashi; Nishimura, Fumihiro; Xu, Zhanglian; Yonezawa, Susumu
2018-06-01
We propose a method of reduction-melting at 1000 °C, using a sodium-based flux, to recover lead from cathode-ray tube funnel glass. To recover the added sodium from the treated glass, we combined a reduction-melting process with a subsequent annealing step at 700 °C, generating water-soluble sodium compounds in the molten glass. Using this combined process, this study compares lead removal behavior and the generation of water-soluble sodium compounds (sodium silicates and carbonates) in order to gain fundamental information to enhance the recovery of both lead and sodium. We find that lead removal increases with increasing melting time, whereas the generation efficiency of water-soluble sodium increases and decreases periodically. In particular, near 90% lead removal, the generation of water-soluble sodium compounds decreased sharply, increasing again with the prolongation of melting time. This is due to the different crystallization and phase separation efficiencies of water-soluble sodium in molten glass, whose structure continuously changes with lead removal. Previous studies used a melting time of 60 min in the processes. However, in this study, we observe that a melting time of 180 min enhances the water-soluble sodium generation efficiency.
[Effect of nano-hydroxyapatite to glass ionomer cement].
Mu, Ya-Bing; Zang, Guang-Xiang; Sun, Hong-Chen; Wang, Cheng-Kun
2007-12-01
To investigate the mechanical character, microleakage and mineralizing potential of nano-hydroxyapatite (nano-HAP)-added glass ionomer cement(GIC). 8% nano-HAP were incorporated into GIC as composite, and pure GIC as control. Both types of material were used to make 20 cylinders respectively in order to detect three-point flexural strength and compressive strength. Class V cavities were prepared in 120 molars extracted for orthodontic treatment, then were filled by two kinds of material. The microleakage at the composite-dentine interface was observed with confocal laser scanning microscope (CLSM) after stained with 1% rhodamin-B-isothiocyanate for 24 hours. Class V cavities were prepared in the molars of 4 healthy dogs, filled with composite, and the same molars in the other side were filled with GIC as control. The teeth were extracted to observe the mineralizing property with polarimetric microscope in 8 weeks after filling. Three-point flexural strength and compressive of nano-HAP-added GIC were increased compared with pure GIC (P < 0.001, P < 0.05). The nanoleakages and microleakages appeared at the material-dentine interface in the two groups, but there were more microleakages in control group than in experiment group (P = 0.004). New crystals of hydroxyapatite were formed into a new mineralizing zone at the interface of tooth and nano-HAP-added GIC, while there was no hydroxyapatite crystals formed at the interface of tooth and pure GIC. 8% nano-HAP-added GIC can tightly fill tooth and have mineralizing potential, and can be used as liner or filling material for prevention.
NASA Astrophysics Data System (ADS)
Fredrickx, Peggy
2004-10-01
This dissertation addresses the application of Transmission Electron Microscopy (TEM) to historic objects, concentrating on colour-causing nanoparticles in vitreous materials and pigments with the focus on substrates in lake pigments used in thin glaze layers, and on manuscript illustrations. TEM is well suited for archaeometry: it gives chemical elemental information, imaging and diffraction information and the amount of material needed is minimal. Sample preparation techniques suitable for historic materials are discussed. Nanoparticles can be incorporated in glass through staining. Yellow coloured glass plates contain Ag particles. Baking temperatures and different Ag-salts determine the density of the nanoparticles. Dense layers cause more saturated colours. Red glass plates can be obtained by staining with Cu-salts. Metallic Cu particles have a diameter of about 24 nm. Comparison with XRF results suggests that often a combination of Cu and Ag was used for warmer colours. Red glass can be "flashed" to the substrate glass. Then, the colour is also caused by metallic Cu particles. The red layer often displays a band structure of stacked red and transparent bands. In the transparent bands, no nanoparticles have been found. In lustre-ware, Ag and metallic Cu occur. Their distribution throughout the material determines the colour of the fragment. In both there is a dense top layer with particles of sizes smaller than 15 nm. If this top layer consists of Ag particles, the resulting colour is golden. In one sample, under this top layer the amount of Cu particles increases. This underlying layer causes the colour to redden. Particles are mainly between 5 and 15 nm in diameter. Using reconstructions, it has been demonstrated that TEM can detect and identify a stacking of thin layers in parchment decorations. A pink powder sample from Pompeii consists of a basis of allophane type clay. The lake substrates consist of Al, O, S and their amorphous structure does not seem to be noticeably changed by the addition of organic colourants. Hydrocerussite crystals (i.e. the main component of lead white) have been added to some historic glaze layers. Further it was confirmed that sometimes crystalline CaSO4 particles were added to lakes.
Siczek, Krzysztof; Fichna, Jakub; Zatorski, Hubert; Karolewicz, Bożena; Klimek, Leszek; Owczarek, Artur
2018-03-01
Recent findings indicating the anti-inflammatory action of silver preparations through modulation of the gut microbiota and apoptosis of inflammatory cells predestine silver use in inflammatory bowel disease (IBD). The aim of our study was to validate the possibility of effective silver release from silver-coated glass beads for anti-inflammatory local application in the lower sections of the gastrointestinal (GI) tract. Silver-coated glass beads were prepared using magnetron method. Release of silver from the silver-coated glass bead surface was carried out in BIO-DIS reciprocating cylinder apparatus. Erosion of silver coating and indirect estimation of the silver release dynamics was assessed using scanning electron microscope. Rectal suppositories containing silver-coated glass beads were prepared using five different methods (M1-M5) and X-ray scanned for their composition. The XR microanalysis and the chemical composition analysis evidenced for a rapid (within 30 min) release of nearly 50% of silver from the coating of the glass beads, which remained stable up to 24 h of incubation. The most homogeneous distribution of beads in the entire volume of the suppository was obtained for formulation M5, where the molten base was poured into mold placed in an ice bath, and the beads were added after 10 s. Our study is the first to present the concept of enclosing silver-coated glass beads in the lipophilic suppository base to attenuate inflammation in the lower GI tract and promises efficient treatment with reduced side effects.
Structure of the Extended Emission in the Infrared Celestial Background,
1986-09-30
the energy cascade to smaller sizes due to turbulence. Such a steep function would predict little energy in microfilaments at the resolution of a meter...Neugebauer, H.H. Aumann, N. Boggess, J.P. Emerson, J.R. Fuck , B.T. Soifer and R.G. Walker, "IRAS Observations of the Diffuse Infrared Background", Astrophys. J...Astrcphys., Vol. 100, 116, 1981. " 80. Little , S.J. and S.D. Price, "Infrared Mapping of the Galactic Plane. IV. The Galactic Center", Astron. J., Vol
Vasopressin Receptor Signaling and Cycling of Water Channels in Renal Epithelia.
1994-08-31
bladder (Bentley, 1958; DiBona et al., 1969; Hays, 1983; Mia et al., 1983, 1987, 1991a and others). ADH stimulates water reabsorption in this tissue...out of a continuous phase of microridges (Davis et al., 1974; DiBona , 1978, 1981; Dratwa et al., 1979; Mills and Malick, 1978; Mia et al., 1983, 1988a...be directed by dynamic actions of the microtubules and microfilaments (Hays et al., 1982; Taylor et al., 1973; Hardy and DiBona , 1982; Pearl and Taylor
Enamel for high-temperature superalloys
NASA Technical Reports Server (NTRS)
Levin, H.; Lent, W. E.
1977-01-01
Desired optical and high temperature enamel properties are obtained with glasses prepared from the system Li2O-ZrO2-nSiO2. Molar compositions range from n=4 to n=1.3, to which are added minor amounts in varying combinations of alumina, alkali fluorides, boric oxide, alkali oxides, and akaline earth oxides.
Release of bound procyanidins from cranberry pomace by alkaline hydrolysis
USDA-ARS?s Scientific Manuscript database
Procyanidins in plant products are present as extractable or unextractable/bound forms. We optimized alkaline hydrolysis conditions to liberate bound procyanidins from dried cranberry pomace. Five mL of sodium hydroxide (2, 4, or 6N) was added to 0.5 g of cranberry pomace in screw top glass tubes,...
Application of zinc oxide quantum dots in food safety
USDA-ARS?s Scientific Manuscript database
Zinc oxide quantum dots (ZnO QDs) are nanoparticles of purified powdered ZnO. The ZnO QDs were directly added into liquid foods or coated on the surface of glass jars using polylactic acid (PLA) as a carrier. The antimicrobial activities of ZnO QDs against Listeria monocytogenes, Salmonella Enteriti...
High thermal behavior of a new glass ceramic developed from silica xerogel/SnO{sub 2} composite
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aripin, H., E-mail: aripin@unsil.ac.id; Mitsudo, Seitaro, E-mail: mitsudo@fir.u-fukui.ac.jp; Sudiana, I. Nyoman, E-mail: sudiana75@yahoo.com
2016-02-08
In this investigation, a new glass ceramics have been produced by mixing SnO{sub 2} and amorphous silica xerogel (ASX) extracted from sago waste ash. The composition has been prepared by adding 10 mol% of SnO{sub 2} into SX. The samples have been dry pressed and sintered in the temperature range between 800 °C and 1500 °C. The effects of temperature on the crystallization of silica xerogel after adding SnO{sub 2} and their relationship to bulk density have been studied. The crystallization process of the silica xerogel/SnO{sub 2} composite has been examined by an X-ray diffraction (XRD) and the bulk density hasmore » been characterized on the basis of the experimental data obtained using Archimedes′ principle. It has been found that an addition of SnO{sub 2} confers an appreciable effect on the grain and from the interpretation of XRD patterns allow one to explain the increase in the density by an increased crystallite size of SnO{sub 2} in the composite.« less
High thermal behavior of a new glass ceramic developed from silica xerogel/SnO2 composite
NASA Astrophysics Data System (ADS)
Aripin, H.; Mitsudo, Seitaro; Sudiana, I. Nyoman; Priatna, Edvin; Sabchevski, Svilen
2016-02-01
In this investigation, a new glass ceramics have been produced by mixing SnO2 and amorphous silica xerogel (ASX) extracted from sago waste ash. The composition has been prepared by adding 10 mol% of SnO2 into SX. The samples have been dry pressed and sintered in the temperature range between 800 °C and 1500 °C. The effects of temperature on the crystallization of silica xerogel after adding SnO2 and their relationship to bulk density have been studied. The crystallization process of the silica xerogel/SnO2 composite has been examined by an X-ray diffraction (XRD) and the bulk density has been characterized on the basis of the experimental data obtained using Archimedes' principle. It has been found that an addition of SnO2 confers an appreciable effect on the grain and from the interpretation of XRD patterns allow one to explain the increase in the density by an increased crystallite size of SnO2 in the composite.
Trinchera, Alessandra; Allegra, Maria; Rea, Elvira; Roccuzzo, Giancarlo; Rinaldi, Simona; Sequi, Paolo; Intrigliolo, Francesco
2011-10-01
A glass-matrix fertiliser (GMF), a by-product from ceramic industries, releases nutrients only in the presence of complexing solutions, similar to those exuded by plant roots. This ensures a slow release of nutrients over time, limiting the risk of their loss in the environment. With the aim to improve fertiliser performance, GMF was mixed with vine vinasse (DVV), pastazzo (a by-product of the citrus processing industry, PAS) or green compost (COMP) and nutrient release was evaluated by citric and chloridric acid extraction, at different concentrations. Theoretical and actual nutrients release were compared to evaluate possible synergistic effects due to the organic component added to the mineral fertiliser: phosphorus (+7.1%), K (+4.8%), Fe (+8.5%) and Zn (+5.5%) were released more efficiently by 2% citric acid from GMF + DVV, while Ca availability was increased (+5.3%) by 2% citric acid from GMF + PAS mixture. Both DVV and COMP increased by 12-18% the Fe release from GFM matrix. Organic biomasses added to GMF increased the release of some macro and micronutrients through an 'activation effect', which suggests the employment of these organo-mineral fertilisers also in short-cycle crops production. Moreover, the re-use of some agro-industrial organic residues gives another 'adding value' to this novel organo-mineral fertilfertilisers. Copyright © 2011 Society of Chemical Industry.
Ferraz, M P; Fernandes, M H; Santos, J D; Monteiro, F J
2001-07-01
Human osteoblastic bone marrow derived cells were cultured for 28 days onto the surface of a glass reinforced hydroxyapatite (HA) composite and a commercial type HA plasma sprayed coatings, both in the "as-received" condition and after an immersion treatment with culture medium during 21 days. Cell proliferation and differentiation were analyzed as a function of the chemical composition of the coatings and the immersion treatment. Cell attachment, growth and differentiation of osteoblastic bone marrow cells seeded onto "as-received" plasma sprayed coatings were strongly affected by the time-dependent variation of the surface structure occurring during the first hours of culture. Initial interactions leading to higher amounts of adsorbed protein and zeta potential shifts towards negative charges appeared to result in surface structures with better biological performance. Cultures grown onto the pretreated coatings showed higher rate of cell proliferation and increased functional activity, as compared to those grown onto the corresponding "as-received" materials. However, the cell behavior was similar in the glass composite and HA coatings. The results showed that the glass composites present better characteristics for bone cell growth and function than HA. In addition, this work also provide evidence that the biological performance of the glass composites can be modulated and improved by manipulations in the chemical composition, namely in the content of glass added to HA. Copyright 2001 Kluwer Academic Publishers
Glass Ceramic Waste Forms for Combined CS+LN+TM Fission Products Waste Streams
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crum, Jarrod V.; Turo, Laura A.; Riley, Brian J.
2010-09-23
In this study, glass ceramics were explored as an alternative waste form for glass, the current baseline, to be used for immobilizing alkaline/alkaline earth + lanthanide (CS+LN) or CS+LN+transition metal (TM) fission-product waste streams generated by a uranium extraction (UREX+) aqueous separations type process. Results from past work on a glass waste form for the combined CS+LN waste streams showed that as waste loading increased, large fractions of crystalline phases precipitated upon slow cooling.[1] The crystalline phases had no noticeable impact on the waste form performance by the 7-day product consistency test (PCT). These results point towards the development ofmore » a glass ceramic waste form for treating CS+LN or CS+LN+TM combined waste streams. Three main benefits for exploring glass ceramics are: (1) Glass ceramics offer increased solubility of troublesome components in crystalline phases as compared to glass, leading to increased waste loading; (2) The crystalline network formed in the glass ceramic results in higher heat tolerance than glass; and (3) These glass ceramics are designed to be processed by the same melter technology as the current baseline glass waste form. It will only require adding controlled canister cooling for crystallization into a glass ceramic waste form. Highly annealed waste form (essentially crack free) with up to 50X lower surface area than a typical High-Level Waste (HLW) glass canister. Lower surface area translates directly into increased durability. This was the first full year of exploring glass ceramics for the Option 1 and 2 combined waste stream options. This work has shown that dramatic increases in waste loading are achievable by designing a glass ceramic waste form as an alternative to glass. Table S1 shows the upper limits for heat, waste loading (based on solubility), and the decay time needed before treatment can occur for glass and glass ceramic waste forms. The improvements are significant for both combined waste stream options in terms of waste loading and/or decay time required before treatment. For Option 1, glass ceramics show an increase in waste loading of 15 mass % and reduction in decay time of 24 years. Decay times of {approx}50 years or longer are close to the expected age of the fuel that will be reprocessed when the modified open or closed fuel cycle is expected to be put into action. Option 2 shows a 2x to 2.5x increase in waste loading with decay times of only 45 years. Note that for Option 2 glass, the required decay time before treatment is only 35 years because of the waste loading limits related to the solubility of MoO{sub 3} in glass. If glass was evaluated for similar waste loadings as those achieved in Option 2 glass ceramics, the decay time would be significantly longer than 45 years. These glass ceramics are not optimized, but already they show the potential to dramatically reduce the amount of waste generated while still utilizing the proven processing technology used for glass production.« less
Central Campus Construction Progress
2017-03-17
NASA's Kennedy Space Center in Florida is a premier, multi-user spaceport with ongoing construction adding new, ultra-modern facilities. A key element of the Central Campus makeover is a new, seven-story, 200,000-square-foot headquarters building that has taken shape in the heart of the spaceport. The headquarters building's glass facade, as seen from NASA Causeway, is complete. The exterior skin of the building also is nearly finished. The remainder of the glass components are being installed on each floor. Construction of interior walls and utilities on most floors is well underway. Construction of the headquarters building is targeted for completion in November 2017 and employees are expected to be able to move in soon after.
Characterization of Hybrid Epoxy Nanocomposites
Simcha, Shelly; Dotan, Ana; Kenig, Samuel; Dodiuk, Hanna
2012-01-01
This study focused on the effect of Multi Wall Carbon Nanotubes (MWCNT) content and its surface treatment on thermo-mechanical properties of epoxy nanocomposites. MWCNTs were surface treated and incorporated into two epoxy systems. MWCNT's surface treatments were based on: (a) Titania coating obtained by sol-gel process and (b) a nonionic surfactant. Thermo-mechanical properties improvement was obtained following incorporation of treated MWCNT. It was noticed that small amounts of titania coated MWCNT (0.05 wt %) led to an increase in the glass transition temperature and stiffness. The best performance was achieved adding 0.3 wt % titania coated MWCNT where an increase of 10 °C in the glass transition temperature and 30% in storage modulus were obtained. PMID:28348313
Simulated annealing in networks for computing possible arrangements for red and green cones
NASA Technical Reports Server (NTRS)
Ahumada, Albert J., Jr.
1987-01-01
Attention is given to network models in which each of the cones of the retina is given a provisional color at random, and then the cones are allowed to determine the colors of their neighbors through an iterative process. A symmetric-structure spin-glass model has allowed arrays to be generated from completely random arrangements of red and green to arrays with approximately as much disorder as the parafoveal cones. Simulated annealing has also been added to the process in an attempt to generate color arrangements with greater regularity and hence more revealing moirepatterns than than the arrangements yielded by quenched spin-glass processes. Attention is given to the perceptual implications of these results.
Aqueous Alteration of Basaltic Glass Under a Simulated Mars Atmosphere
NASA Technical Reports Server (NTRS)
Bullock, M. A.; Moore, J. M.
2005-01-01
For the past several years we have been performing experiments designed to produce brines under Mars-simulated conditions. Previously, we had generated and analyzed Mars-analog brines by allowing a mixture of minerals derived from SNC mineralogy to soak in pure water under a synthetic current-Mars atmosphere and under a gas similar to the present Mars atmosphere but with added acidic gases. The latest version of these experiments incubates basaltic glass, obtained from recent Kilauea flows (Mother's Day flow in December 2002), in pure water under a present-day Mars analog atmosphere at 25 C. This abstract and our presentation will discuss the composition of these Mars-analog brines and implications for Mars surface chemistry.
Gao, Ying; Mruk, Dolores D.; Lui, Wing-yee; Lee, Will M.; Cheng, C. Yan
2016-01-01
During the release of sperm at spermiation, a biologically active F5-peptide, which can disrupt the Sertoli cell tight junction (TJ) permeability barrier, is produced at the site of the degenerating apical ES (ectoplasmic specialization). This peptide coordinates the events of spermiation and blood-testis barrier (BTB) remodeling at stage VIII of the epithelial cycle, creating a local apical ES-BTB axis to coordinate cellular events across the epithelium. The mechanism(s) by which F5-peptide perturbs BTB restructuring, and its involvement in apical ES dynamics remain unknown. F5-peptide, besides perturbing BTB integrity, was shown to induce germ cell release from the epithelium following its efficient in vivo overexpression in the testis. Overexpression of F5-peptide caused disorganization of actin- and microtubule (MT)-based cytoskeletons, mediated by altering the spatiotemporal expression of actin binding/regulatory proteins in the seminiferous epithelium. F5-peptide perturbed the ability of actin microfilaments and/or MTs from converting between their bundled and unbundled/defragmented configuration, thereby perturbing adhesion between spermatids and Sertoli cells. Since apical ES and basal ES/BTB are interconnected through the underlying cytoskeletal networks, this thus provides an efficient and novel mechanism to coordinate different cellular events across the epithelium during spermatogenesis through changes in the organization of actin microfilaments and MTs. These findings also illustrate the potential of F5-peptide being a male contraceptive peptide for men. PMID:27611949
Bis-enoxacin Inhibits Bone Resorption and Orthodontic Tooth Movement
Toro, E.J.; Zuo, J.; Guiterrez, A.; La Rosa, R.L.; Gawron, A.J.; Bradaschia-Correa, V.; Arana-Chavez, V.; Dolce, C.; Rivera, M.F.; Kesavalu, L.; Bhattacharyya, I.; Neubert, J.K.; Holliday, L.S.
2013-01-01
Enoxacin inhibits binding between the B-subunit of vacuolar H+-ATPase (V-ATPase) and microfilaments, and also between osteoclast formation and bone resorption in vitro. We hypothesized that a bisphosphonate derivative of enoxacin, bis-enoxacin (BE), which was previously studied as a bone-directed antibiotic, might have similar activities. BE shared a number of characteristics with enoxacin: It blocked binding between the recombinant B-subunit and microfilaments and inhibited osteoclastogenesis in cell culture with IC50s of about 10 µM in each case. BE did not alter the relative expression levels of various osteoclast-specific proteins. Even though tartrate-resistant acid phosphatase 5b was expressed, proteolytic activation of the latent pro-enzyme was inhibited. However, unlike enoxacin, BE stimulated caspase-3 activity. BE bound to bone slices and inhibited bone resorption by osteoclasts on BE-coated bone slices in cell culture. BE reduced the amount of orthodontic tooth movement achieved in rats after 28 days. Analysis of these data suggests that BE is a novel anti-resorptive molecule that is active both in vitro and in vivo and may have clinical uses. Abbreviations: BE, bis-enoxacin; V-ATPase, vacuolar H+-ATPase; TRAP, tartrate-resistant acid phosphatase; αMEM D10, minimal essential media, alpha modification with 10% fetal bovine serum; SDS-PAGE, sodium dodecyl sulfate-polyacrylamide gel electrophoresis; RANKL, receptor activator of nuclear factor kappa B-ligand; NFATc1, nuclear factor of activated T-cells; ADAM, a disintegrin and metalloprotease domain; OTM, orthodontic tooth movement. PMID:23958763
Onishi, Sachiko; Yokoyama, Toshifumi; Chin, Keigi; Yuji, Midori; Inamoto, Tetsurou; Qi, Wang-Mei; Warita, Katsuhiko; Hoshi, Nobuhiko; Kitagawa, Hiroshi
2007-05-01
The differentiation process of immature microvillous epithelial cells to M cells and the fate of M cells in the follicle-associated epithelium (FAE) of the mucosa-associated lymphoid tissues are still unclear. In this study, the differentiation process and the fate of M cells were clarified in rat Peyer's patches under a transmission electron microscope. Almost all immature epithelial cells were found to possess long, slender microvilli, which gradually shortened, thickened and dispersed as the immature epithelial cells migrated away from the crypt orifices. These morphological changes started in the centers and moved to the peripheries of the apical surfaces of epithelial cells, accompanied by the protrusion of apical cytoplasm out of the terminal web. During these changes, the bundles of microfilaments of microvilli never shortened, and both small vesicles in the apical cytoplasm and tiny invaginations of the apical membranes were found. The intraepithelial migrating cells gradually accumulated to form typical intraepithelial pockets. In all FAE, there was no morphological sign of cell death in M cells. The rearrangement of microfilament bundles, the reconstruction of microvilli and the disappearance of pockets resulted in the transformation of M cells into microvillous epithelial cells. These serial ultrastructural changes suggest that M cells are a temporal and transitional cell type caused by the active engulfment of luminal substances and that when the engulfment ceases, the M cells transform into mature microvillous epithelial cells.
Andreeva, Zornitza; Barton, Deborah; Armour, William J; Li, Min Y; Liao, Li-Fen; McKellar, Heather L; Pethybridge, Kylie A; Marc, Jan
2010-10-01
The phospholipase protein superfamily plays an important role in hormonal signalling and cellular responses to environmental stimuli. There is also growing evidence for interactions between phospholipases and the cytoskeleton. In this report we used a pharmacological approach to investigate whether inhibiting a member of the phospholipase superfamily, phospholipase C (PLC), affects microtubules and actin microfilaments as well as root growth and morphology of Arabidopsis thaliana seedlings. Inhibiting PLC activity using the aminosteroid U73122 significantly inhibited root elongation and disrupted root morphology in a concentration-dependent manner, with the response being saturated at 5 μM, whereas the inactive analogue U73343 was ineffective. The primary root appeared to lose growth directionality accompanied by root waving and formation of curls. Immunolabelling of roots exposed to increasingly higher U73122 concentrations revealed that the normal transverse arrays of cortical microtubules in the elongation zone became progressively more disorganized or depolymerized, with the disorganization appearing within 1 h of incubation. Likewise, actin microfilament arrays also were disrupted. Inhibiting PLC using an alternative inhibitor, neomycin, caused similar disruptions to both cytoskeletal organization and root morphology. In seedlings gravistimulated by rotating the culture plates by 90°, both U73122 and neomycin disrupted the normal gravitropic growth of roots and etiolated hypocotyls. The effects of PLC inhibitors are therefore consistent with the notion that, as with phospholipases A and D, PLC likewise interacts with the cytoskeleton, alters growth morphology, and is involved in gravitropism.
Moorman, J P; Bobak, D A; Hahn, C S
1996-06-01
The small G-protein Rho regulates the actin microfilament-dependent cytoskeleton. Exoenzyme C3 of Clostridium botulinum ADP-ribosylates Rho at Asn41, a modification that functionally inactivates Rho. Using a Sindbis virus-based transient gene expression system, we studied the role of Rho in murine EL4 T lymphoma cells. We generated a double subgenomic infectious Sindbis virus (dsSIN:C3) recombinant which expressed C3 in >95% of EL4 cells. This intracellular C3 resulted in modification and inactivation of virtually all endogenous Rho. dsSIN:C3 infection led to the formation of multinucleate cells, likely by inhibiting the actin microfilament-dependent step of cytokinesis. Intriguingly, in spite of the inhibition of cytokinesis, karyokinesis continued, with the result that cells containing a nuclear DNA content as high as 16N (eight nuclei) were observed. In addition, dsSIN:C3-mediated inactivation of Rho was a potent activator of apoptosis in EL4 cells. To discern whether the formation of multinucleate cells was responsible for the activation of apoptosis, 5-fluorouracil (5-FUra) was used to induce cell cycle arrest. As expected, EL4 cells treated with 5-FUra were prevented from forming multinucleate cells upon infection with dsSIN:C3. dsSIN:C3 infection, however, still caused marked apoptosis in 5-FUra-treated cells, indicating that this activation of apoptosis was independent of multinucleate cell formation.
Arabidopsis FH1 Formin Affects Cotyledon Pavement Cell Shape by Modulating Cytoskeleton Dynamics.
Rosero, Amparo; Oulehlová, Denisa; Stillerová, Lenka; Schiebertová, Petra; Grunt, Michal; Žárský, Viktor; Cvrčková, Fatima
2016-03-01
Plant cell morphogenesis involves concerted rearrangements of microtubules and actin microfilaments. We previously reported that FH1, the main Arabidopsis thaliana housekeeping Class I membrane-anchored formin, contributes to actin dynamics and microtubule stability in rhizodermis cells. Here we examine the effects of mutations affecting FH1 (At3g25500) on cell morphogenesis and above-ground organ development in seedlings, as well as on cytoskeletal organization and dynamics, using a combination of confocal and variable angle epifluorescence microscopy with a pharmacological approach. Homozygous fh1 mutants exhibited cotyledon epinasty and had larger cotyledon pavement cells with more pronounced lobes than the wild type. The pavement cell shape alterations were enhanced by expression of the fluorescent microtubule marker GFP-microtubule-associated protein 4 (MAP4). Mutant cotyledon pavement cells exhibited reduced density and increased stability of microfilament bundles, as well as enhanced dynamics of microtubules. Analogous results were also obtained upon treatments with the formin inhibitor SMIFH2 (small molecule inhibitor of formin homology 2 domains). Pavement cell shape in wild-type (wt) and fh1 plants in some situations exhibited a differential response towards anti-cytoskeletal drugs, especially the microtubule disruptor oryzalin. Our observations indicate that FH1 participates in the control of microtubule dynamics, possibly via its effects on actin, subsequently influencing cell morphogenesis and macroscopic organ development. © The Author 2016. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Multifunctional Nanocomposites for Improved Sustainability and Protection of Facilities
2015-05-01
ballistic panels. In addition, the team’s work tested various options for adding self - healing , CNT reinforcement, EMI shielding, and self ...and functional- ization methods; introducing a self - healing agent directly to the matrix or contained in embedded hollow glass fibers; using layers...using CNT sheet reinforcement ...................... 23 5 Ballistic Testing of Self - Healing GFRP Panel
Impedance spectroscopy study of SiO2-Li2O:Nd2O3 glasses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pereia, R.; Gozzo, C B; Guedes, I.
2014-01-01
In the present study, neodymium-doped lithium silicate glasses have been prepared by the conventional melt-quenching technique. The dielectric properties, electric modulus and electrical conductivity of SiO2-Li2O (SiLi-0Nd) and SiO2-Li2O:Nd2O3 (SiLi-1.35Nd) have been studied from 1 Hz to 1 MHz in the 333 423 K temperature range. At a given temperature and frequency, we observe that the resistivity increases while the conductivity accordingly decreases when neodymium ions are added to the glass matrix. The activation energy of two distinct regions was evaluated from the ln( dc)=f(1/T) plot and was found to be E1(T<363K)=0.61(0.66)eV and E2(T>363K)=1.26(1.09)eV for SiLi-0Nd (SiLi-1,35Nd). The dielectric constantmore » ( Re) decreases while the dielectric loss (tan ( )) increases under Nd2O3 doping. We also observe that for both glasses, Re and tan ( ) tend to increase with increasing temperature and decrease with increasing frequency.« less
Hu, Biao; Hui, Wenlong
2017-09-01
Waste cathode ray tube (CRT) funnel glass is the key and difficult points in waste electrical and electronic equipment (WEEE) disposal. In this paper, a novel and effective process for the detoxification and reutilization of waste CRT funnel glass was developed by generating lead sulfide precipitate via a high-temperature melting process. The central function in this process was the generation of lead sulfide, which gathered at the bottom of the crucible and was then separated from the slag. Sodium carbonate was used as a flux and reaction agent, and sodium sulfide was used as a precipitating agent. The experimental results revealed that the lead sulfide recovery rate initially increased with an increase in the amount of added sodium carbonate, the amount of sodium sulfide, the temperature, and the holding time and then reached an equilibrium value. The maximum lead sulfide recovery rate was approximately 93%, at the optimum sodium carbonate level, sodium sulfide level, temperature, and holding time of 25%, 8%, 1200°C, and 2h, respectively. The glass slag can be made into sodium and potassium silicate by hydrolysis in an environmental and economical process. Copyright © 2017 Elsevier Ltd. All rights reserved.
Exploring high-strength glass-ceramic materials for upcycling of industrial wastes
NASA Astrophysics Data System (ADS)
Back, Gu-Seul; Park, Hyun Seo; Seo, Sung Mo; Jung, Woo-Gwang
2015-11-01
To promote the recycling of industrial waste and to develop value-added products using these resources, the possibility of manufacturing glass-ceramic materials of SiO2-CaO-Al2O3 system has been investigated by various heat treatment processes. Glass-ceramic materials with six different chemical compositions were prepared using steel industry slags and power plant waste by melting, casting and heat treatment. The X-ray diffraction results indicated that diopside and anorthite were the primary phases in the samples. The anorthite phase was formed in SiO2-rich material (at least 43 wt%). In CaO-rich material, the gehlenite phase was formed. By the differential scanning calorimetry analyses, it was found that the glass transition point was in the range of 973-1023 K, and the crystallization temperature was in the range of 1123-1223 K. The crystallization temperature increased as the content of Fe2O3 decreased. By the multi-step heat treatment process, the formation of the anorthite phase was enhanced. Using FactSage, the ratio of various phases was calculated as a function of temperature. The viscosities and the latent heats for the samples with various compositions were also calculated by FactSage. The optimal compositions for glass-ceramics materials were discussed in terms of their compressive strength, and micro-hardness.
NASA Astrophysics Data System (ADS)
Marzouk, M. A.; ElBatal, F. H.; ElBadry, K. M.; ElBatal, H. A.
2017-01-01
Sodium metaphosphate glasses with successive increasing added Bi2O3 contents (5-40%) were prepared to improve their chemical stability and increase their optical and thermal properties through the additional building BiO6 and BiO3 units. The optical spectrum of the base metaphosphate glass reveals strong UV absorption due to the presence of trace iron (Fe3 +) ions present as impurities. Glasses containing additional 5, 7.5 and 10% Bi2O3 show further band around 406 nm which can be related to absorption of Bi3 + ions. With increasing the Bi2O3 content, this near visible band is observed to disappear indicating peculiar behavior needing further work. Gamma irradiation causes only minor changes in the position of the strong UV peaks but an obvious induced visible broad band centered at 452-460 nm in the base and Bi2O3 containing glasses. This induced band is related to the generation of phosphorus oxygen hole center or non bridging oxygen hole center as revealed by various authors. FTIR results reveal characteristic vibrational bands due to phosphate groups and with the addition of Bi2O3, some interference of Bisbnd O vibrational units are expected. Gamma irradiation causes limited changes in the IR spectra due to suggested shielding effect of the heavy metal oxide Bi2O3.
NASA Astrophysics Data System (ADS)
Eldred, Benjamin Todd
This dissertation consists of two major sections. The first section concerns the wetting of single crystal mullite by borosilicate and yttrium-aluminosilicate glasses. The borosilicate glass showed poor wetting and interacted only moderately with the substrate. The yttrium-aluminosilicate glass interacted strongly with mullite and showed very good wetting. Balanced chemical equations between each glass and mullite were derived from EDS data. Wetting was found to be dependent on the crystallographic orientation of the substrate, in agreement with previous studies of the surface energy of mullite. The second section concerns the wetting phenomena of steels containing aluminum and titanium. A modified sessile drop technique was used to investigate the wetting of steels containing aluminum and/or titanium as a function of furnace atmosphere. It was found that the steel chemistry and furnace atmosphere had little effect on wetting except in the case of a particular ultra-low carbon steel containing both aluminum and titanium. This steel was found to show significantly lower contact angles than any other steel tested when it was in an atmosphere of pure hydrogen. As nitrogen was added to the atmosphere, the contact angle increased monotonically and irreversibly. The interaction between aluminum, titanium, and nitrogen is explained in terms of first-order interaction coefficients available in thermodynamic literature.
Yuan, Kun; Wang, Fu; Gao, Jing; Sun, Xiang; Deng, Zai-Xi; Wang, Hui; Jin, Lei; Chen, Ji-Hua
2014-01-01
The purpose of this study was to investigate the effect of zircon-based tricolor pigments (praseodymium zircon yellow, ferrum zircon red, and vanadium zircon blue) on the color, thermal property, crystalline phase composition, microstructure, flexural strength, and translucency of a novel dental lithium disilicate glass-ceramic. The pigments were added to the glass frit, milled, pressed, and sintered. Ninety monochrome samples were prepared and the colors were analyzed. The effect of the pigments on thermal property, crystalline phase composition, and microstructure were determined by differential scanning calorimetry (DSC), X-ray diffraction (XRD), and scanning electron microscopy (SEM), respectively. Addition of the pigments resulted in the acquisition of subtractive primary colors as well as tooth-like colors, and did not demonstrate significant effects on the thermal property, crystalline phase composition, microstructure, and flexural strength of the experimental glass-ceramic. Although significant differences (p < 0.01) were observed between the translucencies of the uncolored and 1.0 wt % zircon-based pigment colored ceramics, the translucencies of the latter were sufficient to fabricate dental restorations. These results indicate that the zircon-based tricolor pigments can be used with dental lithium disilicate glass-ceramic to produce abundant and predictable tooth-like colors without significant adverse effects, if mixed in the right proportions. Copyright © 2013 Wiley Periodicals, Inc.
Transport of human adenoviruses in porous media
NASA Astrophysics Data System (ADS)
Kokkinos, Petros; Syngouna, Vasiliki I.; Tselepi, Maria A.; Bellou, Maria; Chrysikopoulos, Constantinos V.; Vantarakis, Apostolos
2015-04-01
Groundwater may be contaminated with infective human enteric viruses from various wastewater discharges, sanitary landfills, septic tanks, agricultural practices, and artificial groundwater recharge. Coliphages have been widely used as surrogates of enteric viruses, because they share many fundamental properties and features. Although a large number of studies focusing on various factors (i.e. pore water solution chemistry, fluid velocity, moisture content, temperature, and grain size) that affect biocolloid (bacteria, viruses) transport have been published over the past two decades, little attention has been given toward human adenoviruses (hAdVs). The main objective of this study was to evaluate the effect of pore water velocity on hAdV transport in water saturated laboratory-scale columns packed with glass beads. The effects of pore water velocity on virus transport and retention in porous media was examined at three pore water velocities (0.39, 0.75, and 1.22 cm/min). The results indicated that all estimated average mass recovery values for hAdV were lower than those of coliphages, which were previously reported in the literature by others for experiments conducted under similar experimental conditions. However, no obvious relationship between hAdV mass recovery and water velocity could be established from the experimental results. The collision efficiencies were quantified using the classical colloid filtration theory. Average collision efficiency, α, values decreased with decreasing flow rate, Q, and pore water velocity, U, but no significant effect of U on α was observed. Furthermore, the surface properties of viruses and glass beads were used to construct classical DLVO potential energy profiles. The results revealed that the experimental conditions of this study were unfavorable to deposition and that no aggregation between virus particles is expected to occur. A thorough understanding of the key processes governing virus transport is pivotal for public health protection.
Zhang, Xiaoyuan; Cheng, Shaoan; Liang, Peng; Huang, Xia; Logan, Bruce E
2011-01-01
The combined use of brush anodes and glass fiber (GF1) separators, and plastic mesh supporters were used here for the first time to create a scalable microbial fuel cell architecture. Separators prevented short circuiting of closely-spaced electrodes, and cathode supporters were used to avoid water gaps between the separator and cathode that can reduce power production. The maximum power density with a separator and supporter and a single cathode was 75 ± 1 W/m(3). Removing the separator decreased power by 8%. Adding a second cathode increased power to 154 ± 1 W/m(3). Current was increased by connecting two MFCs connected in parallel. These results show that brush anodes, combined with a glass fiber separator and a plastic mesh supporter, produce a useful MFC architecture that is inherently scalable due to good insulation between the electrodes and a compact architecture. Copyright © 2010 Elsevier Ltd. All rights reserved.
Recovery of fissile materials from nuclear wastes
Forsberg, Charles W.
1999-01-01
A process for recovering fissile materials such as uranium, and plutonium, and rare earth elements, from complex waste feed material, and converting the remaining wastes into a waste glass suitable for storage or disposal. The waste feed is mixed with a dissolution glass formed of lead oxide and boron oxide resulting in oxidation, dehalogenation, and dissolution of metal oxides. Carbon is added to remove lead oxide, and a boron oxide fusion melt is produced. The fusion melt is essentially devoid of organic materials and halogens, and is easily and rapidly dissolved in nitric acid. After dissolution, uranium, plutonium and rare earth elements are separated from the acid and recovered by processes such as PUREX or ion exchange. The remaining acid waste stream is vitrified to produce a waste glass suitable for storage or disposal. Potential waste feed materials include plutonium scrap and residue, miscellaneous spent nuclear fuel, and uranium fissile wastes. The initial feed materials may contain mixtures of metals, ceramics, amorphous solids, halides, organic material and other carbon-containing material.
Kim, Sun-Il; Wu, Yuanzheng; Kim, Ka-Lyun; Kim, Geun-Joong; Shin, Hyun-Jae
2013-06-01
An efficient method for Pichia cell disruption that employs an aminopropyl magnesium phyllosilicate (AMP) clay-assisted glass beads mill is presented. AMP clay is functionalized nanocomposite resembling the talc parent structure Si8Mg6O20(OH)4 that has been proven to permeate the bacterial membrane and cause cell lysis. The recombinant capsid protein of cowpea chlorotic mottle virus (CCMV) expressed in Pichia pastoris GS115 was used as demonstration system for their ability of self-assembly into icosahedral virus-like particles (VLPs). The total protein concentration reached 4.24 mg/ml after 4 min treatment by glass beads mill combined with 0.2 % AMP clay, which was 11.2 % higher compared to glass beads mill only and the time was half shortened. The stability of purified CCMV VLPs illustrated AMP clay had no influence on virus assembly process. Considering the tiny amount added and simple approach of AMP clay, it could be a reliable method for yeast cell disruption.
Microleakage under orthodontic bands cemented with nano-hydroxyapatite-modified glass ionomer.
Enan, Enas T; Hammad, Shaza M
2013-11-01
To estimate the in vivo effect of nano-hydroxyapatite (HA) modification of banding glass-ionomer cement on microleakage under orthodontic bands. Eighty noncarious premolars scheduled for extraction in 20 orthodontic patients were randomly divided into four groups. Grouping was based on the ratio of nano-HA (0%, 5%, 10%, 15% by weight) added to the luting glass-ionomer cement (GIC) Ketac-Cem, which was used for cementation of prefabricated micro-etched orthodontic bands. Dye penetration method was used for microleakage evaluation at the cement-band and cement-enamel interfaces. Statistical evaluation was performed with a Kruskal-Wallis test and a Mann-Whitney U-test, and a Bonferroni-adjusted significance level was calculated. Bands cemented with conventional GIC showed the highest microleakage scores in comparison to those cemented with nano-HA-modified GIC. No significant difference was found between teeth banded with 10% and 15% modified GIC. Modification of the banding GIC with 15% nano-HA revealed a positive effect on reducing microleakage around orthodontic bands.
NASA Astrophysics Data System (ADS)
Ahrenberg, M.; Shoifet, E.; Whitaker, K. R.; Huth, H.; Ediger, M. D.; Schick, C.
2012-03-01
Physical vapor deposition can be used to produce thin films with interesting material properties including extraordinarily stable organic glasses. We describe an ac chip calorimeter for in situ heat capacity measurements of as-deposited nanometer thin films of organic glass formers. The calorimetric system is based on a differential ac chip calorimeter which is placed in the vacuum chamber for physical vapor deposition. The sample is directly deposited onto one calorimetric chip sensor while the other sensor is protected against deposition. The device and the temperature calibration procedure are described. The latter makes use of the phase transitions of cyclopentane and the frequency dependence of the dynamic glass transition of toluene and ethylbenzene. Sample thickness determination is based on a finite element modeling of the sensor sample arrangement. In the modeling, a layer of toluene was added to the sample sensor and its thickness was varied in an iterative way until the model fit the experimental data.
Differential AC chip calorimeter for in situ investigation of vapor deposited thin films
NASA Astrophysics Data System (ADS)
Ahrenberg, Mathias; Schick, Christoph; Huth, Heiko; Schoifet, Evgeni; Ediger, Mark; Whitaker, Katie
2012-02-01
Physical vapor deposition (PVD) can be used to produce thin films with particular material properties like extraordinarily stable glasses of organic molecules. We describe an AC chip calorimeter for in-situ heat capacity measurements of as-deposited nanometer thin films of organic glass formers. The calorimetric system is based on a differential AC chip calorimeter which is placed in the vacuum chamber for physical vapor deposition. The sample is directly deposited onto one calorimetric chip sensor while the other sensor is protected against deposition. The device and the temperature calibration procedure are described. The latter makes use of the phase transitions of cyclopentane and the frequency dependence of the dynamic glass transition of toluene and ethylbenzene. Sample thickness determination is based on a finite element modeling (FEM) of the sensor sample arrangement. A layer of toluene was added to the sample sensor and its thickness was varied in an iterative way until the model fits the experimental data.
Low-weight, low-cost, low-cycle time, replicated glass mirrors
NASA Astrophysics Data System (ADS)
Egerman, Robert; De Smitt, Steven; Strafford, David
2010-07-01
ITT has patented and continues to develop processes to fabricate low-cost borosilicate mirrors that can be used for both ground and space-based optical telescopes. Borosilicate glass is a commodity and is the material of choice for today's flat-panel televisions and monitors. Supply and demand has kept its cost low compared to mirror substrate materials typically found in telescopes. The current technology development is on the path to having the ability to deliver imaging quality optics of up to 1m (scalable to 2m) in diameter in three weeks. For those applications that can accommodate the material properties of borosilicate glasses, this technology has the potential to revolutionize ground and space-based astronomy. ITT Corporation has demonstrated finishing a planar, 0.6m borosilicate, optic to <100 nm-rms. This paper will provide an historical overview of the development in this area with an emphasis on recent technology developments to fabricate a 0.6m parabolic mirror under NASA Earth Science Technology Office (ESTO) grant #NNX09AD61G.
An investigation of waste glass-based geopolymers supplemented with alumina
NASA Astrophysics Data System (ADS)
Christiansen, Mary U.
An increased consideration of sustainability throughout society has resulted in a surge of research investigating sustainable alternatives to existing construction materials. A new binder system, called a geopolymer, is being investigated to supplement ordinary portland cement (OPC) concrete, which has come under scrutiny because of the CO2 emissions inherent in its production. Geopolymers are produced from the alkali activation of a powdered aluminosilicate source by an alkaline solution, which results in a dense three-dimensional matrix of tetrahedrally linked aluminosilicates. Geopolymers have shown great potential as a building construction material, offering similar mechanical and durability properties to OPC. Additionally, geopolymers have the added value of a considerably smaller carbon footprint than OPC. This research considered the compressive strength, microstructure and composition of geopolymers made from two types of waste glass with varying aluminum contents. Waste glass shows great potential for mainstream use in geopolymers due to its chemical and physical homogeneity as well as its high content of amorphous silica, which could eliminate the need for sodium silicate. However, the lack of aluminum is thought to negatively affect the mechanical performance and alkali stability of the geopolymer system. 39 Mortars were designed using various combinations of glass and metakaolin or fly ash to supplement the aluminum in the system. Mortar made from the high-Al glass (12% Al2O3) reached over 10,000 psi at six months. Mortar made from the low-Al glass (<1% Al2O3) did not perform as well and remained sticky even after several weeks of curing, most likely due to the lack of Al which is believed to cause hardening in geopolymers. A moderate metakaolin replacement (25-38% by mass) was found to positively affect the compressive strength of mortars made with either type of glass. Though the microstructure of the mortar was quite indicative of mechanical performance, composition was also found to be important. The initial stoichiometry of the bulk mixture was maintained fairly closely, especially in mixtures made with fine glass. This research has shown that glass has great potential for use in geopolymers, when care is given to consider the compositional and physical properties of the glass in mixture design.
DOE Office of Scientific and Technical Information (OSTI.GOV)
MARCIAL J; KRUGER AA; HRMA PR
2010-07-28
The behavior of melter feed (a mixture of nuclear waste and glass-forming additives) during waste-glass processing has a significant impact on the rate of the vitrification process. We studied the effects of silica particle size and sucrose addition on the volumetric expansion (foaming) of a high-alumina feed and the rate of dissolution of silica particles in feed samples heated at 5 C/min up to 1200 C. The initial size of quartz particles in feed ranged from 5 to 195 {micro}m. The fraction of the sucrose added ranged from 0 to 0.20 g per g glass. Extensive foaming occurred only inmore » feeds with 5-{micro}m quartz particles; particles {ge}150 {micro}m formed clusters. Particles of 5 {micro}m completely dissolved by 900 C whereas particles {ge}150 {micro}m did not fully dissolve even when the temperature reached 1200 C. Sucrose addition had virtually zero impact on both foaming and the dissolution of silica particles. Over 100 sites in the United States are currently tasked with the storage of nuclear waste. The largest is the Hanford Site located in southeastern Washington State with 177 subterranean tanks containing over fifty-million gallons of nuclear waste from plutonium production from 1944 through 1987. This waste will be vitrified at the Hanford Tank Waste Treatment and Immobilization Plant. In the vitrification process, feed is charged into a melter and converted into glass to be ultimately stored in a permanent repository. The duration of waste-site cleanups by the vitrification process depends on the rate of melting, i.e., on the rate of the feed-to-glass conversion. Foaming associated with the melting process and the rate of dissolution of quartz particles (silica being the major glass-forming additive) are assumed to be important factors that influence the rate of melting. Previous studies on foaming of high-alumina feed demonstrated that varying the makeup of a melter feed has a significant impact on foaming. The volume of feeds that contained 5-{micro}m quartz particles substantially increased because of foaming. The extent of foaming decreased as the particle size of quartz increased. Moreover, samples containing quartz particles 195 {micro}m formed agglomerates at temperatures above 900 C that only slowly dissolved in the melt. This study continues previous work on the feed-melting process, specifically on the effects of the size of silica particles on the formation of nuclear-waste glasses to determine a suitable range of silica particle sizes that causes neither excessive foaming nor undesirable agglomeration. Apart from varying the silica-particle size, carbon was added in the form of sucrose. Sucrose has been used to accelerate the rate of melting. In this study, we have observed its impact on feed foaming and quartz dissolution.« less
NASA Astrophysics Data System (ADS)
Seward, R. J.; Reed, M. H.; Grist, H. R.; Fridriksson, T.; Danielsen, P.; Thorhallsson, S.; Elders, W. A.; Fridleifsson, G. O.
2011-12-01
In July of 2011 a fluid inclusion tool (FIT) was deployed in well RN-17b of the Reykjanes geothermal system, Iceland, with the goal of sampling fluids in situ at the deepest feed point in the well. The tool consists of a perforated stainless steel pipe containing eight stainless steel mesh canisters, each loaded with 10mm-scale blocks of thermally fractured quartz. Except for one control canister, in each canister the fractured quartz blocks were surrounded by a different grain size of SiO¬2 glass that ranged in size from 10μm-scale glass wool to cm-scale glass shards. The FIT was left in the well on a wireline at a depth of 2768m and retrieved after three weeks. The fluid at 2768m depth is known from November 2010 well logs to have a temperature of about 330°C and pressure of 170 bars, a pressure ~40 bar too high for boiling at that temperature. After retrieval, quartz in all of the canisters contained liquid-dominated fluid inclusions, but their quantity and size differed by canister. Groups of inclusions occur in healed fractures and both healed and open fracture surfaces are visible within single quartz blocks. Measurements on a heating and cooling stage yield approximant inclusion homogenization temperatures of 332°C and freezing points of -2.0°C. These measurements and a pressure of 170 bars yield trapping temperatures of 335°C and a NaCl weight percent of 3.4, both of which match known values, thus verifying that the device trapped fluids as intended. In upcoming studies, these fluids will be analyzed using bulk methods and LA-ICP-MS on individual inclusions. The glass added to the quartz blocks in the canisters allowed the Reykjanes fluids to precipitate enough quartz to heal fractures and trap fluids despite the fluid undersaturation in quartz. Almost all of the glass that was added to the canisters, 27 to 66 grams in each (except glass wool), was consumed in the experiment. Remaining glass was in the non-mesh bottom caps of the canisters where fluid flux may have been minimal, indicating that most of the dissolved SiO2 was carried away with flowing fluid. This may explain why not all fractures were healed, as they were in our previous closed-system laboratory experiments. Upon recovery from the well, the FIT and the canister contents were covered in fine black particles, the greatest quantity by far occurring in canisters that had contained glass wool as the SiO2 source. Preliminary SEM-EDS analyses show that the particles contain silica, iron, magnesium, and small amounts of zinc sulfide. The precipitation of sulfides from the fluid sampled in the quartz fractures provides a valuable constraint on interpretation of the fluid inclusion compositions.
Degradation of glass artifacts: application of modern surface analytical techniques.
Melcher, Michael; Wiesinger, Rita; Schreiner, Manfred
2010-06-15
A detailed understanding of the stability of glasses toward liquid or atmospheric attack is of considerable importance for preserving numerous objects of our cultural heritage. Glasses produced in the ancient periods (Egyptian, Greek, or Roman glasses), as well as modern glass, can be classified as soda-lime-silica glasses. In contrast, potash was used as a flux in medieval Northern Europe for the production of window panes for churches and cathedrals. The particular chemical composition of these potash-lime-silica glasses (low in silica and rich in alkali and alkaline earth components), in combination with increased levels of acidifying gases (such as SO(2), CO(2), NO(x), or O(3)) and airborne particulate matter in today's urban or industrial atmospheres, has resulted in severe degradation of important cultural relics, particularly over the last century. Rapid developments in the fields of microelectronics and computer sciences, however, have contributed to the development of a variety of nondestructive, surface analytical techniques for the scientific investigation and material characterization of these unique and valuable objects. These methods include scanning electron microscopy in combination with energy- or wavelength-dispersive spectrometry (SEM/EDX or SEM/WDX), secondary ion mass spectrometry (SIMS), and atomic force microscopy (AFM). In this Account, we address glass analysis and weathering mechanisms, exploring the possibilities (and limitations) of modern analytical techniques. Corrosion by liquid substances is well investigated in the glass literature. In a tremendous number of case studies, the basic reaction between aqueous solutions and the glass surfaces was identified as an ion-exchange reaction between hydrogen-bearing species of the attacking liquid and the alkali and alkaline earth ions in the glass, causing a depletion of the latter in the outermost surface layers. Although mechanistic analogies to liquid corrosion are obvious, atmospheric attack on glass ("weathering") is much more complex due to the multiphase system (atmosphere, water film, glass surface, and bulk glass) and added complexities (such as relative humidity and atmospheric pollutant concentration). Weathered medieval stained glass objects, as well as artifacts under controlled museum conditions, typically have less transparent or translucent surfaces, often with a thick weathering crust on top, consisting of sulfates of the glass constituents K, Ca, Na, or Mg. In this Account, we try to answer questions about glass analysis and weathering in three main categories. (i) Which chemical reactions are involved in the weathering of glass surfaces? (ii) Which internal factors (such as the glass composition or surface properties) play a dominant role for the weathering process? Can certain environmental or climatic factors be identified as more harmful for glasses than others? Is it possible to set up a quantitative relationship or at least an approximation between the degree of weathering and the factors described above? (iii) What are the consequences for the restoration and conservation strategies of endangered glass objects? How can a severe threat to precious glass objects be avoided, or at least minimized, to preserve these artifacts of our cultural heritage for future generations?
Nuvvula, S; Alahari, S; Kamatham, R; Challa, R R
2015-02-01
To determine the effect of three-dimensional (3D) audiovisual (AV) distraction in reducing dental anxiety of children. A randomised clinical trial with a parallel design carried out on 90 children (49 boys and 41 girls) aged between 7 and 10 years (mean age of 8.4 years) to ascertain the comparative efficacy of audio (music) and AV (3D video glasses) distraction in reducing the dental anxiety of children during local analgesia (LA) administration. Ninety children were randomly divided into three groups; control (basic behaviour guidance techniques without distraction), audio (basic techniques plus music) and AV (basic techniques plus 3D AV) distraction groups. All the children experienced LA administration with/without distraction and the anxiety was assessed using a combination of measures: MCDAS(f) (self-report), pulse rate (physiological), behaviour (using Wright's modification of Frankl behaviour rating scale and Houpt scale) and preferences of children. All 90 children completed the study. A highly significant reduction in the anxiety of audiovisual group as reported by the MCDAS(f) values (p<0.001) and Houpt scale (p=0.003); whereas pulse rate showed statistically significant increase (p<0.001) in all the three groups irrespective of distraction. The child preferences also affirmed the usage of 3D video glasses. LA administration with music or 3D video glasses distraction had an added advantage in a majority of children with 3D video glasses being superior to music. High levels of satisfaction from children who experienced treatment with 3D video glasses were also observed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jantzen, C.; Johnson, F.
2012-06-05
During melting of HLW glass, the REDOX of the melt pool cannot be measured. Therefore, the Fe{sup +2}/{Sigma}Fe ratio in the glass poured from the melter must be related to melter feed organic and oxidant concentrations to ensure production of a high quality glass without impacting production rate (e.g., foaming) or melter life (e.g., metal formation and accumulation). A production facility such as the Defense Waste Processing Facility (DWPF) cannot wait until the melt or waste glass has been made to assess its acceptability, since by then no further changes to the glass composition and acceptability are possible. therefore, themore » acceptability decision is made on the upstream process, rather than on the downstream melt or glass product. That is, it is based on 'feed foward' statistical process control (SPC) rather than statistical quality control (SQC). In SPC, the feed composition to the melter is controlled prior to vitrification. Use of the DWPF REDOX model has controlled the balanjce of feed reductants and oxidants in the Sludge Receipt and Adjustment Tank (SRAT). Once the alkali/alkaline earth salts (both reduced and oxidized) are formed during reflux in the SRAT, the REDOX can only change if (1) additional reductants or oxidants are added to the SRAT, the Slurry Mix Evaporator (SME), or the Melter Feed Tank (MFT) or (2) if the melt pool is bubble dwith an oxidizing gas or sparging gas that imposes a different REDOX target than the chemical balance set during reflux in the SRAT.« less
Jo, Sinae; Kang, Seunggu
2013-11-01
Low-melting zinc-borate glass was added to the cordierite/Al2O3 composite in order to improve the sintering facility of Al2O3 and formation of nano-sized spinel crystal of high thermal conductivity. Increasing the ZnO/B2O3 ratio in the zinc-borate glass increased the ZnAl2O4 spinel and decreased the Al4B2O9 crystal peak intensities in X-ray diffraction pattern. The XRD peak intensities of the ZnAl2O4 spinel and Al4B2O9 crystals in the specimen containing 10 wt% zinc-borate glass (10G series) are higher than that of the specimen containing 5 wt% zinc-borate glass (5G series). The microstructures of most 10G series specimens had the flower-shaped crystal which was composed of 50 nm wide and 250 nm long needle-like crystals and identified as ZnAl2O4 spinel phase. The thermal conductivity of the 10G series specimen was higher than that of the 5G series in any ZnO/B2O3 ratio due to the formation of plenty of nano-sized ZnAl2O4 spinel of high thermal conductivity. Particularly, the thermal conductivity of the cordierite/Al2O3 composite containing 10 wt% zinc-borate glass of ZnO/B2O3 weight ratio = 1.5 was 3.8 W/Km which is much higher than that of the published value (3.0 W/Km).
Effects of inhibitors on 1-methyladenine induced maturation of starfish oocytes
NASA Astrophysics Data System (ADS)
Lee, Harold H.; Xu, Quanhan
1986-12-01
1-methladenine (1-MA) induces starfish oocytes maturation via surface reaction followed by the appearance of a cytoplasmic maturation factor which in turn induces germinal vesicle breakdown (GVBD) to resume meiosis. Cellular mechanisms involved in GVBD were investigated by microinjection of metabolic inhibitors. Colchicine (Co) inhibited maturation, cytochalasin-B (CB) delayed GVBD and actinomycin-D-(Act-D) and puromycin (Pu) had no effect. It appears that the microtubule and the microfilament systems are associated with the nuclear membrane dissolution during the process of oocyte maturation of starfish.
Buchen, B; Hejnowicz, Z; Braun, M; Sievers, A
1991-01-01
In-vivo videomicroscopy of Chara rhizoids under 10(-4)g demonstrated that gravity affected the velocities of cytoplasmic streaming. Both, the acropetal and basipetal streaming velocities increased on the change to microgravity. The endogenous difference in the velocities of the oppositely directed cytoplasmic streams was maintained under microgravity, yet the difference was diminished as the basipetal streaming velocity increased more than the acropetal streaming velocity. Direction and structure of microfilaments labeled by rhodamine-phalloidin had not changed after 6 min of microgravity.
Elastohydrodynamics of microfilament under distributed body actuation
NASA Astrophysics Data System (ADS)
Singh, T. Sonamani; Yadava, R. D. S.
2018-05-01
The dynamics of an active filament in low Reynolds (Re) number regime is analyzed under distributed body actuation represented by the sliding filament model. The governing elastohydrodynamic equations are formulated by assuming the resistive force theory (RFT). The effect of geometric nonlinearity in bending stiffness on the propulsive thrust has been analyzed where the former is introduced by cross-sectional tapering. Two types of boundary conditions (clamped-free and hinged-free) are analyzed. A comparison with the uniform filament dynamics reveals that the tapering enhances the thrust under both types of boundary conditions.
1987-01-01
DiBona , D.R., M.M. Civan, and A. Leaf. The cellular specificity of the effect of vasopressin on toad urinary bladder. J. Membr. Biol. 1:79-91, 1969. 30...Chem. 240:4524-4526, 1965. 62. Hardy, M.A., and D.R. DiBona . Microfilaments and the hydrosmotic action of vasopressin in toad urinary bladder. Am. J... DiBona , D.R., M.M. Civan, and A. Leaf. The cellular specificity of the effect of vasopressin on toad urinary bladder. J. Membr. Biol. 1:79-91, 1969. 30
Lin, Jun; Zhu, Jiajun; Gu, Xiaoxia; Wen, Wenjian; Li, Qingshan; Fischer-Brandies, Helge; Wang, Huiming; Mehl, Christian
2011-03-01
This study aimed to investigate the fluoride release properties and the effect on bond strength of two experimental adhesive cements. Synthesized particles of nano-fluorapatite (nano-FA) or nano-fluorohydroxyapatite (nano-FHA) were incorporated into a resin-modified glass ionomer cement (Fuji Ortho LC) and characterized using X-ray diffraction and scanning electron microscopy. Blocks with six different concentrations of nano-FA or nano-FHA were manufactured and their fluoride release properties evaluated by ultraviolet spectrophotometry. The unaltered glass ionomer cement Fuji Ortho LC (GC, control) and the two experimental cements with the highest fluoride release capacities (nano-FA+Fuji Ortho LC (GFA) and nano-FHA+Fuji Ortho LC (GFHA)) were used to bond composite blocks and orthodontic brackets to human enamel. After 24 h water storage all specimens were debonded, measuring the micro-tensile bond strength (μTBS) and the shear bond strength (SBS), respectively. The optimal concentration of added nano-FA and nano-FHA for maximum fluoride release was 25 wt.%, which nearly tripled fluoride release after 70 days compared with the control group. GC exhibited a significantly higher SBS than GFHA/GFA, with GFHA and GFA not differing significantly (P>0.05). The μTBS of GC and GFA were significantly higher than that of GFHA (P≤0.05). The results seem to indicate that the fluoride release properties of Fuji Ortho LC are improved by incorporating nano-FA or nano-FHA, simultaneously maintaining a clinically sufficient bond strength when nano-FA was added. Copyright © 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Ghigo, Mauro; Proserpio, Laura; Basso, Stefano; Citterio, Oberto; Civitani, Marta M.; Pareschi, Giovanni; Salmaso, Bianca; Sironi, Giorgia; Spiga, Daniele; Tagliaferri, Giampiero; Vecchi, Gabriele; Zambra, Alberto; Parodi, Giancarlo; Martelli, Francesco; Gallieni, Daniele; Tintori, Matteo; Bavdaz, Marcos; Wille, Eric; Ferrario, Ivan; Burwitz, Vadim
2013-09-01
The Astronomical Observatory of Brera (INAF-OAB, Italy), with the financing support of the European Space Agency (ESA), has concluded a study regarding a glass shaping technology for the production of grazing incidence segmented x-ray optics. This technique uses a hot slumping phase, in which pressure is actively applied on thin glass foils being shaped, to form a cylindrical approximation of Wolter I x-ray segments, and a subsequent cold slumping phase, in which the final Wolter I profile is then freeze into the glass segments during their integration in elemental X-ray Optical Units. The final goal of this study was the manufacturing of a prototype containing a number of slumped pair plates (meaning parabola and hyperbola couples) having representative dimensions to be tested both in UV light and in x-rays at the Panter facility (Germany). In this paper, the INAF-OAB slumping technique, comprising a shaping step and an integration step is described, together with the results obtained on the manufactured prototype modules: the first prototype was aimed to test the ad-hoc designed and built semi-automatic Integration MAchine (IMA) and debug its control software. The most complete module comprises 40 slumped segments of Schott D263 glass type of dimension 200 mm x 200 mm and thickness of 0.4 mm, slumped on Zerodur K20 mould and stacked together through glued BK7 glass structural ribs to form the first entire x-ray optical module ever built totally composed by glass. A last prototype was aimed at demonstrate the use of Schott glass AF32 type instead of D263. In particular, a new hot slumping experimental set-up is described whose advantage is to permit a better contact between mould and glass during the shaping process. The integration procedure of the slumped segments into the elemental module is also reviewed.
Sharmin, Nusrat; Hasan, Muhammad S; Rudd, Chris D; Boyd, Daniel; Werner-Zwanziger, Ulrike; Ahmed, Ifty; Parsons, Andrew J
2017-05-01
In this study, nine phosphate-based glass formulations from the system P 2 O 5 -CaO-Na 2 O-MgO-B 2 O 3 were prepared with P 2 O 5 content fixed as 40, 45 and 50 mol%, where Na 2 O was replaced by 5 and 10 mol% B 2 O 3 and MgO and CaO were fixed to 24 and 16 mol%, respectively. The effect of B 2 O 3 addition on the viscosity-temperature behaviour, fragility index and structure of the glasses was investigated. The composition of the glasses was confirmed by ICP-AES. The viscosity-temperature behaviour of the glasses were measured using beam-bending and parallel -plate viscometers. The viscosity of the glasses investigated was found to shift to higher temperature with increasing B 2 O 3 content. The kinetic fragility parameter, m and F 1/2 , estimated from the viscosity curve were found to decease with increasing B 2 O 3 content. The structural analysis was achieved by a combination of Fourier transform infrared spectroscopy and solid state nuclear magnetic resonance. 31 P solid-state magic-angle-spinning nuclear magnetic resonance (MAS-NMR) showed that the local structure of the glasses changes with increasing B 2 O 3 content. As B 2 O 3 was added to the glass systems, the phosphate connectivity increases as the as the Q 1 units transforms into Q 2 units. The 11 B NMR results confirmed the presence of tetrahedral boron (BO 4 ) units for all the compositions investigated. Structural analysis indicates an increasing level of cross-linking with increasing B 2 O 3 content. Evidence of the presence of P-O-B bonds was also observed from the FTIR and 31 P NMR analysis. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 764-777, 2017. © 2016 Wiley Periodicals, Inc.
Sensing response of copper phthalocyanine salt dispersed glass with organic vapours
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ridhi, R.; Sachdeva, Sheenam; Saini, G. S. S.
2016-05-06
Copper Phthalocyanine and other Metal Phthalocyanines are very flexible and tuned easily to modify their structural, spectroscopic, optical and electrical properties by either functionalizing them with various substituent groups or by replacing or adding a ligand to the central metal atom in the phthalocyanine ring and accordingly can be made sensitive and selective to various organic species or gaseous vapours. In the present work, we have dispersed Copper Phthalocyanine Salt (CuPcS) in sol-gel glass form using chemical route sol-gel method and studied its sensing mechanism with organic vapours like methanol and benzene and found that current increases onto their exposuremore » with vapours. A variation in the activation energies was also observed with exposure of vapours.« less
Sensing response of copper phthalocyanine salt dispersed glass with organic vapours
NASA Astrophysics Data System (ADS)
Ridhi, R.; Sachdeva, Sheenam; Saini, G. S. S.; Tripathi, S. K.
2016-05-01
Copper Phthalocyanine and other Metal Phthalocyanines are very flexible and tuned easily to modify their structural, spectroscopic, optical and electrical properties by either functionalizing them with various substituent groups or by replacing or adding a ligand to the central metal atom in the phthalocyanine ring and accordingly can be made sensitive and selective to various organic species or gaseous vapours. In the present work, we have dispersed Copper Phthalocyanine Salt (CuPcS) in sol-gel glass form using chemical route sol-gel method and studied its sensing mechanism with organic vapours like methanol and benzene and found that current increases onto their exposure with vapours. A variation in the activation energies was also observed with exposure of vapours.
PREFACE: International Seminar on Science and Technology of Glass Materials (ISSTGM-2009)
NASA Astrophysics Data System (ADS)
Veeraiah, N.
2009-07-01
The progress of the human race is linked with the development of new materials and also the values they acquired in the course of time. Though the art of glass forming has been known from Egyptian civilization, the understanding and use of these glasses for technological applications only became possible once the structural aspects were revealed by the inspiring theories proposed by William H Zachariasen. Glass and glass ceramics have become the essential materials for modern technology. The applications of these materials are wide and cover areas such as optical communication, laser host, innovative architecture, bio-medical, automobile and space technology. As we master the technology, we must also learn to use it judiciously and for the overall development of all in this global village. The International Seminar on Science and Technology of Glass Materials (ISSTGM-2009) is organized to bring together scientists, academia and industry in order to discuss various aspects of the technology and to inspire young scholars to take up fruitful research. Various topics such as glass formation and glass-ceramics, glass structure, applications of glass and glass ceramics in nuclear waste management, radiation dosimetry, electronics and information technology, biotechnological applications, bulk metallic glasses, glasses containing nano-particles, hybrid glasses, novel glasses and applications in photonics, Non-linear optics and energy generation were discussed. In this volume, 59 research articles covering 18 invited talks, 10 oral presentations and 31 poster presentations are included. We hope these will serve as a valuable resource to all the scientists and scholars working with glass materials. Acharya Nagarjuna University, established in 1976, is named after the great Buddhist preceptor and philosopher, Acharya Nagarjuna, who founded a university on the banks of river Krishna some centuries ago. The University is situated between Vijayawada and Guntur, the famous commercial and academic centers of Andhra Pradesh, India. The Departments of Physics of Acharya Nagarjuna University and the Nuzvid Campus have existed since the inception of the University. For the past decade and a half, these Departments have been actively involved in research on glass materials. More than 200 research articles have been published by staff members of these departments exclusively on glass materials. A number of Major Research Projects are being carried out by the staff members of these Departments. The organizing committee is indebted to all the scientists and scholars for their active participation in the seminar and their contribution to this proceedings. The committee expresses its gratitude to the authorities of Acharya Nagarjuna University (The Vice-Chancellor, The Rector and The Registrar), Department of Atomic Energy, Board of Research in Nuclear Sciences, Department of Science and Technology, Council of Scientific and Industrial Research, Defence Research and Development Organization and AP State Council of Science and Technology for their financial support. The committee thanks the IOP: Conference Series publisher for publishing this proceedings which added value to the seminar. Professor N Veeraiah Convener and Editor-in-Chief Professor D Krishna Rao Co-Convener
2010-08-26
2,2′-azobis(2-methylpropionitrile) (AIBN), and hydroquinone were purchased from Aldrich and used as received unless otherwise noted. Toluene and...and a glass stopper, was charged with nAl powder (1.0 g, 37 mmol) and hydroquinone (0.050 g, 0.45 mmol), which was added as a radical scavenger to
Characteristics of Adenovirus Pneumonia in Korean Military Personnel, 2012–2016
Yoon, Hee; Yoo, Hongseok; Park, Sung Bum
2017-01-01
Adenovirus (AdV) can cause severe pneumonia in non-immunocompromised host, but limited data exist on the distinctive characteristics of AdV pneumonia in non-immunocompromised patients. We evaluated distinctive clinico-laboratory and radiological characteristics and outcomes of AdV pneumonia (n = 179), compared with non-AdV pneumonia (n = 188) in Korean military personnel between 2012 and 2016. AdV pneumonia patients had a higher rate of consolidation with ground-glass opacity (101/152) in lobar distribution (89/152) on computed tomography (CT) (P < 0.001). Laboratory findings showed a higher incidence of unusual blood profiles such as leukopenia (55/179, P < 0.001) or thrombocytopenia (100/179, P < 0.001). The patients had more systemic symptoms such as myalgia (82/179, P = 0.001) or diarrhea (23/179, P < 0.001), compared with non-AdV pneumonia patients. Bacterial co-infection was identified in 28.5% of AdV pneumonia. Most of the AdV isolates typed (69/72, 95.8%) were AdV-55. Patients with a pneumonia severity index ≥ class III were more commonly observed in AdV pneumonia patients compared with non-AdV pneumonia patients (11.2% vs. 2.1%, P < 0.001), and time to clinical stabilization from admission was longer in the AdV pneumonia patients compared with the non-AdV pneumonia patients (3.8 vs. 2.6 days, P < 0.001). Mechanical ventilation (n = 6) was only required in AdV pneumonia patients, one of whom died due to AdV-55. Our data showed that AdV pneumonia in non-immunocompromised patients had distinct characteristics and most of the isolates typed in our study were AdV-55. It is suggested that AdV-55 is an important pathogen of pneumonia in Korean military personnel. PMID:28049240
Characteristics of Adenovirus Pneumonia in Korean Military Personnel, 2012-2016.
Yoon, Hee; Jhun, Byung Woo; Kim, Hojoong; Yoo, Hongseok; Park, Sung Bum
2017-02-01
Adenovirus (AdV) can cause severe pneumonia in non-immunocompromised host, but limited data exist on the distinctive characteristics of AdV pneumonia in non-immunocompromised patients. We evaluated distinctive clinico-laboratory and radiological characteristics and outcomes of AdV pneumonia (n = 179), compared with non-AdV pneumonia (n = 188) in Korean military personnel between 2012 and 2016. AdV pneumonia patients had a higher rate of consolidation with ground-glass opacity (101/152) in lobar distribution (89/152) on computed tomography (CT) (P < 0.001). Laboratory findings showed a higher incidence of unusual blood profiles such as leukopenia (55/179, P < 0.001) or thrombocytopenia (100/179, P < 0.001). The patients had more systemic symptoms such as myalgia (82/179, P = 0.001) or diarrhea (23/179, P < 0.001), compared with non-AdV pneumonia patients. Bacterial co-infection was identified in 28.5% of AdV pneumonia. Most of the AdV isolates typed (69/72, 95.8%) were AdV-55. Patients with a pneumonia severity index ≥ class III were more commonly observed in AdV pneumonia patients compared with non-AdV pneumonia patients (11.2% vs. 2.1%, P < 0.001), and time to clinical stabilization from admission was longer in the AdV pneumonia patients compared with the non-AdV pneumonia patients (3.8 vs. 2.6 days, P < 0.001). Mechanical ventilation (n = 6) was only required in AdV pneumonia patients, one of whom died due to AdV-55. Our data showed that AdV pneumonia in non-immunocompromised patients had distinct characteristics and most of the isolates typed in our study were AdV-55. It is suggested that AdV-55 is an important pathogen of pneumonia in Korean military personnel.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mirgorodsky, Andreie; Colas, Maggy; Smirnov, Mikhael
2012-06-15
Ideas currently dominating the field of structural studies of TeO{sub 2}-based glasses are critically considered. A new physically and chemically consistent approach to the constitution of binary TeO{sub 2}-WO{sub 3} glasses is proposed, in which the reasoning coming from the Raman spectra reexamination are correlated with the basic principles of thermodynamics. Separation into two phases is suggested in such glasses. One phase is TeO{sub 2}, and another is Te(WO{sub 4}){sub 2} consisting of tetrahedral [WO{sub 4}]{sup 2-} anions and of Te{sup 4+} cations. Supplementary M{sub n}O{sub k} oxides added to the glasses are found incorporated in the former phase, thusmore » producing solid solutions (for M=Ti, Nb) or tellurite compounds (for M=Nd). - Graphical abstract: Raman scattering spectra of TeO{sub 2}-based glasses with the following compositions (mol%): (a) pure TeO{sub 2}, (b) 85TeO{sub 2}-15WO{sub 3}, (c) 80TeO{sub 2}-15WO{sub 3}-5TiO{sub 2} ,(d) 80TeO{sub 2}-10WO{sub 3}-5TiO{sub 2}-5Nb{sub 2}O{sub 5}, (e) 80TeO{sub 2}-12WO{sub 3}-5TiO{sub 2}-3 Nd{sub 2}O{sub 3}, (f) 80TeO{sub 2}-10WO{sub 3}-5TiO{sub 2}-5Nd{sub 2}O{sub 3}. Highlights: Black-Right-Pointing-Pointer Structural studies of TeO{sub 2}-WO{sub 3} glasses are critically considered. Black-Right-Pointing-Pointer The oxide glass formation is analyzed from Raman spectra and thermodynamic principles. Black-Right-Pointing-Pointer Separation into two phases, TeO{sub 2} and Te(WO{sub 4}){sub 2}, is intrinsic in such glasses. Black-Right-Pointing-Pointer TiO{sub 2} or Nb{sub 2}O{sub 5} addition to TeO{sub 2}-WO{sub 3} glasses leads to produce solid solutions. Black-Right-Pointing-Pointer Nd{sub 2}O{sub 3} addition to TeO{sub 2}-WO{sub 3} glasses leads to produce a tellurite compound.« less
Elaboration and optimization of tellurite-based materials for raman gain application
NASA Astrophysics Data System (ADS)
Guery, Guillaume
Tellurite-based oxide glasses have been investigated as promising materials for Raman gain applications, due to their good linear and nonlinear optical properties and their wide transparency windows in the near- and midwave infrared spectral region. Furthermore, their interesting thermal properties, i.e. low glass transition temperature and ability to be drawn into optical fibers, make tellurite-based glasses excellent candidates for optical fiber amplifiers. The estimation of the strength and spectral distribution of Raman gain in materials is commonly approximated from the spontaneous Raman scattering cross-section measurement. For development of tellurite-based glasses as Raman amplifiers, understanding the relationship between glass structure, vibrational response, and nonlinear optical properties (NLO) represents a key point. This dissertation provides an answer to the fundamental question of the PhD study: "What is the impact of the glass structure on Raman gain properties of tellurite glasses?" This dissertation summarizes findings on different tellurite-based glass families: the TeO2-TaO5/2-ZnO, TeO2-BiO 3/2-ZnO and TeO2-NbO5/2 glass networks. The influence of glass modifiers has been shown on the glass' properties. Introduction of tantalum oxide or zinc oxide has been shown to increase the glass' stability against crystallization, quantified by DeltaT, where DeltaT = Tx -Tg. Added to the variation of the glass viscosity, this attribute is critical in fabricating optical fibers and for the use of these materials in fiber-based Raman gain applications. The role of ZnO in the tellurite network and the mechanism for structural modification has been determined. This addition results in not only the largest DeltaT reported for these highly nonlinear glasses to date, but coincides with a commensurate decrease of the refractive index. A hydroxyl purification has been developed that when employed, resulted in high purity preform materials exhibiting a limited absorption in the transmission bandwidth in the near infrared (NIR). A reduction of 90 % in the OH content in candidate glasses was realized and core-only optical fiber drawn from this glass exhibited optical losses lower than 10 dB/m (either at 1.55 mum or 2.0 mum). This optical attenuation in a high Raman gain material represents a first in the design of both material attributes. The role of the glass modifiers on the glass structure has been investigated by a combination of vibrational spectroscopic methods, including IR absorption, as well as Raman and hyper-Raman scatterings. Following examination of fundamental vibrations present in the paratellurite crystal alpha-TeO2, these results were extended to interpret the structure of multi-component tellurite glasses. It has been verified that the transformation of the tellurite entities TeO4→TeO3+1→TeO3 is directly related to the percentage and type of glass modifiers present in the various tellurite glass matrix. The dramatic disruption in the continuity of Te-O linkages in the tellurite glass backbone's chains during the introduction of the modifier zinc oxide, leads to a systematic reduction in glass network connectivity. This structural change is accompanied by a significant change in the glass' normalized polarization curve (IPsiV/IHV ), a paramter which quantifies directly the depolymerization ratio (DR). This metric provides direct correlation with a reduction in the ternary glass' polarizability/hyperpolarizability and a decrease in the glass' nonlinear optical properties, specifically its Raman gain response. These results have validated and extended our understanding of the important role of Te-O-Te content and short, medium and longer-scale organization of the tellurite glass network and the corresponding impact on linear and nonlinear optical response and properties. Such fundamental knowledge of the relationship between vibrational response and structure, correlated to linear and nonlinear optical properties, allows the extension of this know-how to the development of customized optical components enabled by novel glass and glass ceramic optical materials.
Sun, Peng-Cheng; Liu, Ying; Yi, Yue-Tao; Li, Hong-Juan; Fan, Ping; Xia, Chuan-Hai
2015-02-01
In the present study, a simple and efficient method for the preparative separation of 3-CQA from the extract of Helianthus tuberosus leaves with macroporous resins was studied. ADS-21 showed much higher adsorption capacity and better adsorption/desorption properties for 3-CQA among the tested resins. The adsorption of 3-CQA on ADS-21 resin at 25°C was fitted best to the Langmuir isotherm model and pseudo-second-order kinetic model. Dynamic adsorption/desorption experiments were carried out in a glass column packed with ADS-21 to optimise the separation process of 3-CQA from H. tuberosus leaves extract. After one treatment with ADS-21, the content of 3-CQA in the product was increased 5.42-fold, from 12.0% to 65.2%, with a recovery yield of 89.4%. The results demonstrated that the method was suitable for large-scale separation and manufacture of 3-CQA from H. tuberosus leaves. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Longpre, M. A.; Muller, J.; Beaudry, P.; Andronikides, A.; Felpeto, A.
2017-12-01
Since the 16th century, at least 13 volcanic eruptions have occurred in the Canary Islands that formed monogenetic cinder cones and lava flow fields: 2 on Lanzarote, 4 on Tenerife, 6 on La Palma, and 1 on the submarine flank of El Hierro. Here we present a comprehensive new dataset of tephra composition for all 13 eruptions, comprising major and trace element data for bulk rocks and matrix glasses, as well as vesicularity and crystallinity measurements. In addition, we compile available volcanological and petrological information for specific eruptions, including estimates of lava flow area and volume. All lapilli samples show a vesicularity of 40-50 vol% and a vesicle-free crystallinity (crystals ≥ 250 µm) of 5-15 vol%. Modal mineralogy varies significantly between samples, typically consisting of olivine ± clinopyroxene ± Fe-Ti oxide ± plagioclase ± amphibole in different proportions. All but 2 tephras have basanite-tephrite bulk rock compositions. Lapilli from vents of the AD 1730-1736 Timanfaya eruption, Lanzarote, largely are basaltic, whereas the AD 1798 Chahorra eruption, Tenerife, produced phonotephrite tephra. These results are in agreement with published bulk lava flow data. Unsurprisingly, glass compositions are more evolved than bulk rocks and MgOglass is weakly positively correlated to MgObulk (MgOglass = 0.30*MgObulk + 2.11, R2 = 0.54). Both bulk rocks and glasses show strikingly similar multi-element diagram patterns, with strong enrichment relative to the bulk-silicate Earth and marked positive Nb and Ta and negative Pb anomalies — typical for ocean island basalts. Glass/bulk rock elemental ratios reveal systematic differences between samples that relate to their mineralogy; for example, Lanzarote tephras that lack significant clinopyroxene and Fe-Ti oxide crystals have higher Scglass/Scbulk and Vglass/Vbulk than Tenerife, La Palma and El Hierro samples that typically contain these minerals. Among all elements, K and P display the greatest average glass/bulk rock enrichment factors (1.41 ± 0.18 and 1.47 ± 0.17, respectively). This work provides an internally consistent framework for the comparison of historical Canary Island eruptions and offers novel insights into the relationships between trace element signatures and the crystal cargo of basaltic magmas.
Fabrication of a microfluidic device for the compartmentalization of neuron soma and axons.
Harris, Joseph; Lee, Hyuna; Vahidi, Behrad; Tu, Christina; Cribbs, David; Jeon, Noo Li; Cotman, Carl
2007-01-01
In this video, we demonstrate the technique of soft lithography with polydimethyl siloxane (PDMS) which we use to fabricate a microfluidic device for culturing neurons. Previously, a silicon wafer was patterned with the design for the neuron microfluidic device using SU-8 and photolithography to create a master mold, or what we simply refer to as a "master". Next, we pour the silicon polymer PDMS on top of the master which is then cured by heating the PDMS to 80 degrees C for 1 hour. The PDMS forms a negative mold of the device. The PDMS is then carefully cut and lifted away from the master. Holes are punched where the reservoirs will be and the excess PDMS trimmed away from the device. Nitrogen is used to blow away any excess debris from the device. At this point the devices are now ready for use and can either bonded to corning No. 1 cover glass with a plasma sterilizer/cleaner or can be reversibly bound to the cover glass by simply placing the device on top of the cover glass. The reversible bonding of the device to glass is covered in a separate video and requires first that the device be sterilized either with 70% ethanol or by autoclaving. Plasma treating sterilizes the devices so no further treatment is necessary. It is, however, important, when plasma-treating the devices, to add liquid to the devices within 10 minutes of the plasma treatment while the surfaces are still hydrophilic. Waiting longer than 10 minutes to add liquid to the device makes it difficult for the liquid to enter the device. The neuron devices are typically plasma-bound to cover glass and 0.5 mg/ml poly-L-lysine (PLL) in pH 8.5 borate buffer is immediately added to the device. After a minimum of 3 hours incubating with PLL, the devices are washed with dH2O water a minimum of 3 times with at least 15 minutes between each wash. Next, the water is removed and fresh media is added to the device. At this point the device is ready for use. It is important to remember at this point to never remove all the media from the device. Always leave media in the main channel.
Inada, Noriko; Higaki, Takumi; Hasezawa, Seiichiro
2016-01-01
Actin-depolymerizing factors (ADFs) are conserved proteins that function in regulating the structure and dynamics of actin microfilaments in eukaryotes. In this study, we present evidence that Arabidopsis (Arabidopsis thaliana) subclass I ADFs, particularly ADF4, functions as a susceptibility factor for an adapted powdery mildew fungus. The null mutant of ADF4 significantly increased resistance against the adapted powdery mildew fungus Golovinomyces orontii. The degree of resistance was further enhanced in transgenic plants in which the expression of all subclass I ADFs (i.e. ADF1–ADF4) was suppressed. Microscopic observations revealed that the enhanced resistance of adf4 and ADF1-4 knockdown plants (ADF1-4Ri) was associated with the accumulation of hydrogen peroxide and cell death specific to G. orontii-infected cells. The increased resistance and accumulation of hydrogen peroxide in ADF1-4Ri were suppressed by the introduction of mutations in the salicylic acid- and jasmonic acid-signaling pathways but not by a mutation in the ethylene-signaling pathway. Quantification by microscopic images detected an increase in the level of actin microfilament bundling in ADF1-4Ri but not in adf4 at early G. orontii infection time points. Interestingly, complementation analysis revealed that nuclear localization of ADF4 was crucial for susceptibility to G. orontii. Based on its G. orontii-infected-cell-specific phenotype, we suggest that subclass I ADFs are susceptibility factors that function in a direct interaction between the host plant and the powdery mildew fungus. PMID:26747284
NASA Technical Reports Server (NTRS)
Love, Felisha D.; Melhado, Caroline D.; Bosah, Francis N.; Harris-Hooker, Sandra A.; Sanford, Gary L.
1998-01-01
Basic cellular functions such as electrolyte concentration, cell growth rate, glucose utilization, bone formation, response to growth stimulation, and exocytosis are modified in microgravity. These studies indicate that microgravity affects a number of physiological systems and included in this are cell signaling mechanisms. Rijken and coworkers performed growth factor studies that showed PKC signaling and actin microfilament organization appears to be sensitive to microgravity, suggesting that the inhibition of signal transduction by microgravity may be related to alterations in actin microfilament organization. However, similar studies have not been done for vascular cells. Vascular endothelial cells play critical roles in providing nutrients to organ and tissues and in wound repair. The major deterrent to ground-based microgravity studies is that it is impossible to achieved true microgravity for longer than a few minutes on earth. Hence, it has not been possible to conduct prolonged microgravity studies except for two models that simulate certain aspects of microgravity. However, hypergravity is quite easily achieved. Several researchers have shown that hypergravity will increase the proliferation of several different cell lines while decreasing cell motility and slowing liver regeneration following partial hepatectomy, These studies indicate the hypergravity also alters the behavior of most cells. Several investigators have shown that hypergravity affects the activation of several protein kinases (PKs) in cells. In this study, we investigated whether hypergravity alters the expression of f-actin by bovine aortic endothelial cells (BAECs) and the role of PK's (calmodulin 11 dependent, PKA and PKC) as mediators of these effects.
Jacques, Eveline; Buytaert, Jan; Wells, Darren M; Lewandowski, Michal; Bennett, Malcolm J; Dirckx, Joris; Verbelen, Jean-Pierre; Vissenberg, Kris
2013-06-01
Image acquisition is an important step in the study of cytoskeleton organization. As visual interpretations and manual measurements of digital images are prone to errors and require a great amount of time, a freely available software package named MicroFilament Analyzer (MFA) was developed. The goal was to provide a tool that facilitates high-throughput analysis to determine the orientation of filamentous structures on digital images in a more standardized, objective and repeatable way. Here, the rationale and applicability of the program is demonstrated by analyzing the microtubule patterns in epidermal cells of control and gravi-stimulated Arabidopsis thaliana roots. Differential expansion of cells on either side of the root results in downward bending of the root tip. As cell expansion depends on the properties of the cell wall, this may imply a differential orientation of cellulose microfibrils. As cellulose deposition is orchestrated by cortical microtubules, the microtubule patterns were analyzed. The MFA program detects the filamentous structures on the image and identifies the main orientation(s) within individual cells. This revealed four distinguishable microtubule patterns in root epidermal cells. The analysis indicated that gravitropic stimulation and developmental age are both significant factors that determine microtubule orientation. Moreover, the data show that an altered microtubule pattern does not precede differential expansion. Other possible applications are also illustrated, including field emission scanning electron micrographs of cellulose microfibrils in plant cell walls and images of fluorescent actin. © 2013 The Authors The Plant Journal © 2013 John Wiley & Sons Ltd.
Proteases of Sporothrix schenckii: Cytopathological effects on a host-cell model.
Sabanero López, Myrna; Flores Villavicencio, Lérida L; Soto Arredondo, Karla; Barbosa Sabanero, Gloria; Villagómez-Castro, Julio César; Cruz Jiménez, Gustavo; Sandoval Bernal, Gerardo; Torres Guerrero, Haydee
Sporotrichosis is a fungal infection caused by the Sporothrix schenckii complex. The adhesion of the fungus to the host tissue has been considered the key step in the colonization and invasion, but little is known about the early events in the host-parasite interaction. To evaluate the proteolytic activity of S. schenckii on epithelial cells. The proteolytic system (at pH 5 and 7) was evaluated using azocoll and zymograms. The host-parasite interaction and epithelial cell response were also analyzed by examining the microfilament cytoskeleton using phalloidin-FITC and transmission electron microscopy. Finally, the metabolic activity was determined using an XTT assay. The zymograms showed that S. schenckii yeast cells possess high intracellular and extracellular proteolytic activities (Mr≥200, 116, 97, and 70kDa) that are pH dependent and are inhibited by PMSF and E64, which act on serine and cysteine-type proteases. During the epithelial cell-protease interaction, the cells showed alterations in the microfilament distribution, as well as in the plasma membrane structure. Moreover, the metabolic activity of the epithelial cells decreased 60% without a protease inhibitor. Our data demonstrate the complexity of the cellular responses during the infection process. This process is somehow counteracted by the action of proteases inhibitors. Furthermore, the results provide critical information for understanding the nature of host-fungus interactions and for searching a new effective antifungal therapy, which includes protease inhibitors. Copyright © 2017 Asociación Española de Micología. Publicado por Elsevier España, S.L.U. All rights reserved.
Nunes, Paula; Roth, Isabelle; Meda, Paolo; Féraille, Eric; Brown, Dennis; Hasler, Udo
2015-01-01
Cell volume homeostasis is vital for the maintenance of optimal protein density and cellular function. Numerous mammalian cell types are routinely exposed to acute hypertonic challenge and shrink. Molecular crowding modifies biochemical reaction rates and decreases macromolecule diffusion. Cell volume is restored rapidly by ion influx but at the expense of elevated intracellular sodium and chloride levels that persist long after challenge. Although recent studies have highlighted the role of molecular crowding on the effects of hypertonicity, the effects of ionic imbalance on cellular trafficking dynamics in living cells are largely unexplored. By tracking distinct fluorescently labeled endosome/vesicle populations by live-cell imaging, we show that vesicle motility is reduced dramatically in a variety of cell types at the onset of hypertonic challenge. Live-cell imaging of actin and tubulin revealed similar arrested microfilament motility upon challenge. Vesicle motility recovered long after cell volume, a process that required functional regulatory volume increase and was accelerated by a return of extracellular osmolality to isosmotic levels. This delay suggests that, although volume-induced molecular crowding contributes to trafficking defects, it alone cannot explain the observed effects. Using fluorescent indicators and FRET-based probes, we found that intracellular ATP abundance and mitochondrial potential were reduced by hypertonicity and recovered after longer periods of time. Similar to the effects of osmotic challenge, isovolumetric elevation of intracellular chloride concentration by ionophores transiently decreased ATP production by mitochondria and abated microfilament and vesicle motility. These data illustrate how perturbed ionic balance, in addition to molecular crowding, affects membrane trafficking. PMID:26045497
Marzouk, M A; ElBatal, F H; ElBadry, K M; ElBatal, H A
2017-01-15
Sodium metaphosphate glasses with successive increasing added Bi 2 O 3 contents (5-40%) were prepared to improve their chemical stability and increase their optical and thermal properties through the additional building BiO 6 and BiO 3 units. The optical spectrum of the base metaphosphate glass reveals strong UV absorption due to the presence of trace iron (Fe 3+ ) ions present as impurities. Glasses containing additional 5, 7.5 and 10% Bi 2 O 3 show further band around 406nm which can be related to absorption of Bi 3+ ions. With increasing the Bi 2 O 3 content, this near visible band is observed to disappear indicating peculiar behavior needing further work. Gamma irradiation causes only minor changes in the position of the strong UV peaks but an obvious induced visible broad band centered at 452-460nm in the base and Bi 2 O 3 containing glasses. This induced band is related to the generation of phosphorus oxygen hole center or non bridging oxygen hole center as revealed by various authors. FTIR results reveal characteristic vibrational bands due to phosphate groups and with the addition of Bi 2 O 3 , some interference of BiO vibrational units are expected. Gamma irradiation causes limited changes in the IR spectra due to suggested shielding effect of the heavy metal oxide Bi 2 O 3 . Copyright © 2016 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shri Prakash, B.; Varma, K.B.R.
2007-06-15
The effect of the addition of glassy phases on the microstructure and dielectric properties of CaCu{sub 3}Ti{sub 4}O{sub 12} (CCTO) ceramics was investigated. Both single-component (B{sub 2}O{sub 3}) and multi-component (30 wt% BaO-60 wt% B{sub 2}O{sub 3}-10 wt% SiO{sub 2} (BBS)) glass systems were chosen to study their effect on the density, microstructure and dielectric properties of CCTO. Addition of an optimum amount of B{sub 2}O{sub 3} glass facilitated grain growth and an increase in dielectric constant. However, further increase in the B{sub 2}O{sub 3} content resulted in its segregation at the grain boundaries associated with a reduction in themore » grain size. In contrast, BBS glass addition resulted in well-faceted grains and increase in the dielectric constant and decrease in the dielectric loss. An internal barrier layer capacitance (IBLC) model was invoked to correlate the dielectric constant with the grain size in these samples. - Graphical abstract: Scanning electron micrograph of 30 wt% BaO-60 wt% B{sub 2}O{sub 3}-10 wt% SiO{sub 2} (BBS) glass-added CaCu{sub 3}Ti{sub 4}O{sub 12} ceramic on sintering.« less
NASA Astrophysics Data System (ADS)
Li, Bo; Li, Wei; Zheng, Jingguo
2018-01-01
Y2O3 addition has a significant influence on the crystallization, thermal, mechanical, and electrical properties of BaO -Al2O3 -B2O3 -SiO2 (BABS) glass-ceramics. Semi-quantitative calculation based on x-ray diffraction demonstrated that with increasing Y2O3 content, both the crystallinity and the phase content of cristobalite gradually decreased. It is effective for the additive Y2O3 to inhibit the formation of cristobalite phase with a large coefficient of thermal expansion value. The flexural strength and the Young's modulus, thus, are remarkably increased from 140 MPa to 200 MPa and 56.5 GPa to 63.7 GPa, respectively. Also, the sintering kinetics of BABS glass-ceramics with various Y2O3 were investigated using the isothermal sintering shrinkage curve at different sintering temperatures. The sintering activation energy Q sharply decreased from 99.8 kJ/mol to 81.5 kJ/mol when 0.2% Y2O3 was added, which indicated that a small amount of Y2O3 could effectively promote the sintering procedure of BABS glass-ceramics.
NASA Astrophysics Data System (ADS)
Chen, Yawei; Zhang, Shuren; Li, Enzhu; Niu, Na; Yang, Hongcheng
2018-02-01
The La2O3-B2O3-ZnO (LBZ) glass was proved to be an effective sintering aid of the 0.45Ca0.6Nd0.26TiO3-0.55Li0.5Nd0.5TiO3 (CNT-LNT) ceramics. The influence of LBZ glass on the phase composition, low temperature sintering process, microstructure, activation energy, and dielectric properties of CNT-LNT ceramics was investigated in detail. The LBZ glass induced an obvious decrease of the CNT-LNT ceramics sintering temperature from 1350 to 1000 °C due to the liquid phase formation, which reduced the activation energy ( E a) of the CNT-LNT ceramics. In addition, the near zero temperature coefficient of resonant frequency (τƒ) value was obtained by adding moderate quantity of LBZ glass. CNT-LNT + 5 wt% LBZ (CNT-LNT + 5L) ceramics sintered at 1000°C/4 h displayed good microwave dielectric properties of: ɛ r = 101.7, Q × f = 1560 GHz ( f = 3.25 GHz) and τ ƒ = 2.3 ppm °C-1.
Bosc, R; Fitoussi, A; Pigneur, F; Tacher, V; Hersant, B; Meningaud, J-P
2017-08-01
The augmented reality on smart glasses allows the surgeon to visualize three-dimensional virtual objects during surgery, superimposed in real time to the anatomy of the patient. This makes it possible to preserve the vision of the surgical field and to dispose of added computerized information without the need to use a physical surgical guide or a deported screen. The three-dimensional objects that we used and visualized in augmented reality came from the reconstructions made from the CT-scans of the patients. These objects have been transferred through a dedicated application on stereoscopic smart glasses. The positioning and the stabilization of the virtual layers on the anatomy of the patients were obtained thanks to the recognition, by the glasses, of a tracker placed on the skin. We used this technology, in addition to the usual locating methods for preoperative planning and the selection of perforating vessels for 12 patients operated on a breast reconstruction, by perforating flap of deep lower epigastric artery. The "hands-free" smart glasses with two stereoscopic screens make it possible to provide the reconstructive surgeon with binocular visualization in the operative field of the vessels identified with the CT-scan. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Thieme, Katrin; Avramov, Isak; Rüssel, Christian
2016-01-01
The addition of small amounts of niobium or tantalum oxide to lithium disilicate glass provokes a drastic decrease of the steady-state nucleation rates and the crystal growth velocities. The viscosity of the residual glassy matrix is considered as a function of the crystallization degree in the course of a non-isothermal crystallization. For simplification, a homogeneous distribution of the added oxides in the glass matrix is assumed. While the viscosity initially decreases, it significantly increases again for higher crystallization degrees hindering crystal growth. However, it was shown that the additives are enriched at the crystal interface. Several possible reasons for the inhibition of nucleation and growth kinetics such as viscosity, interfacial energy crystal/glassy phase, thermodynamic driving force or impingement rate are discussed. Since the crystallization front is blocked by the additives the impingement rate is decreased with increasing additive concentration. Since small concentrations of Nb2O5 and Ta2O5 have a drastic effect on the nucleation, these components should be enriched at the interface crystal/glass. This will only take place, if it leads to a decrease in the interfacial energy. Since this effect alone should result in an increase of the nucleation rate, it must be overcompensated by kinetic effects. PMID:27150844
ERIC Educational Resources Information Center
Daniel, Malinda Nichols
2012-01-01
In 2009 of the 9,793 undergraduates attending the University of Wyoming during the fall semester, 3,453 of them were first generation college students. The cultural assimilation often associated with college for first generation college students is often experienced by not only the student, but also the family left at home. This research serves as…
PROCESSING OF RADIOACTIVE WASTE
Johnson, B.M. Jr.; Barton, G.B.
1961-11-14
A process for treating radioactive waste solutions prior to disposal is described. A water-soluble phosphate, borate, and/or silicate is added. The solution is sprayed with steam into a space heated from 325 to 400 deg C whereby a powder is formed. The powder is melted and calcined at from 800 to 1000 deg C. Water vapor and gaseous products are separated from the glass formed. (AEC)
Devulder, Veerle; Degryse, Patrick; Vanhaecke, Frank
2013-12-17
The provenance of the flux raw material used in the manufacturing of Roman glass is an understudied topic in archaeology. Whether one or multiple sources of natron mineral salts were exploited during this period is still open for debate, largely because of the lack of a good provenance indicator. The flux is the major source of B in Roman glass. Therefore, B isotopic analysis of a sufficiently large collection and variety (origin and age) of such glass samples might give an indication of the number of flux sources used. For this purpose, a method based on acid digestion, chromatographic B isolation and B isotopic analysis using multicollector inductively coupled plasma mass spectrometry was developed. B isolation was accomplished using a combination of strong cation exchange and strong anion exchange chromatography. Although the B fraction was not completely matrix-free, the remaining Sb was shown not to affect the δ(11)B result. The method was validated using obsidian and archaeological glass samples that were stripped of their B content, after which an isotopic reference material with known B isotopic composition was added. Absence of artificial B isotope fractionation was demonstrated, and the total uncertainty was shown to be <2‰. A proof-of-concept application to natron glass samples showed a narrow range of δ(11)B, whereas first results for natron salt samples do show a larger difference in δ(11)B. These results suggest the use of only one natron source or of several sources with similar δ(11)B. This indicates that B isotopic analysis is a promising tool for the provenance determination of this flux raw material.
Local structural order and relaxation effects in metal-chalcogenide glasses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saleh, Z.M.
1990-01-01
Nuclear quadrupole resonance (NQR) and nuclear magnetic resonance (NMR) have been employed to study the local structural order and the relaxation mechanisms in metal-arsenic-chalcogenide glasses for metal concentrations within the glass forming region. The glass forming region in the Cu-As-S and Cu-As-se glassy systems extends approximately to 6 and 25 at. % copper, respectively. In the composition Cu[sub x](As[sub 2/5]Ch[sub 3/5])[sub 1[minus]x], where Ch = S or Se, there is evidence of dramatic changes in the local structure as copper is added to the system. One important change is the formation of As-As bonds which are absent in As[sub 2]Ch[submore » 3]. The [sup 75]As NQR measurements indicate that the density of these bonds increases with copper concentration x. These results are consistent with the predictions of a model proposed recently to explain the local structural order in glassy metal chalcogenides. While NQR data show that arsenic atoms are threefold coordinated, EXAFs measurements have shown that copper is fourfold coordinated within the glass forming ranges in both systems. The NMR measurements confirm this result and quantitatively determine the local environment around the copper nuclei. For the naturally occurring mineral luzonite (Cu[sub 3]AsS[sub 4]) copper is fourfold coordinated. The known structure of this mineral has been used as a guide to understanding the local structure in the glasses. Copper and arsenic nuclear relaxation measurements were used to study the dynamics of these systems. The temperature and frequency dependence of the spin-lattice and spin-spin relaxation times have been carefully measured to determine the relaxation mechanisms.« less
NASA Astrophysics Data System (ADS)
Renard, François; Beauprêtre, Sophie; Voisin, Christophe; Zigone, Dimitri; Candela, Thibault; Dysthe, Dag K.; Gratier, Jean-Pierre
2012-08-01
Assessing the healing rate of a fault is relevant to the knowledge of the seismic machinery. However, measuring fault healing at the depths where it occurs still remains inaccessible. We have designed an analog laboratory experiment of a simulated rough fault that undergoes healing and investigate the relative roles of interface chemical reactivity and sliding velocity on the healing rate. Slide-hold-slide experiments are conducted on a bare interface with various materials in contact (glass/glass, salt/glass, and salt/salt) with or without the presence of a reactive fluid and the slider-surface pull-off force is measured. Our results show that the interface strengthens with hold time, whatever the conditions of the experiments. In addition, we quantify the effect of chemical reactivity on the healing rate. Considering the glass/glass case as a reference, we show that the healing rate is increased by a factor of 2 for the salt/glass case; by a factor of 3 for the salt/salt case; and by about a factor of 20 when saturated brine is added on a salt/salt interface. We also measure that the sliding velocity affects the healing rate for salt/salt interfaces at room humidity. A careful optical monitoring of the interface allows a direct observation of the contact growth characteristics associated to each type of materials. Finally, the large differences of healing rate are interpreted through a mechanistic approach, where the various experimental conditions allow separating different healing mechanisms: increase of adhesion of the contacts by welding, contact growth due to creep or due to neck growth driven by surface tension.
Velis, Costas A; Franco-Salinas, Claudia; O'Sullivan, Catherine; Najorka, Jens; Boccaccini, Aldo R; Cheeseman, Christopher R
2014-07-01
Mixed color waste glass extracted from municipal solid waste is either not recycled, in which case it is an environmental and financial liability, or it is used in relatively low value applications such as normal weight aggregate. Here, we report on converting it into a novel glass-ceramic lightweight aggregate (LWA), potentially suitable for high added value applications in structural concrete (upcycling). The artificial LWA particles were formed by rapidly sintering (<10 min) waste glass powder with clay mixes using sodium silicate as binder and borate salt as flux. Composition and processing were optimized using response surface methodology (RSM) modeling, and specifically (i) a combined process-mixture dual RSM, and (ii) multiobjective optimization functions. The optimization considered raw materials and energy costs. Mineralogical and physical transformations occur during sintering and a cellular vesicular glass-ceramic composite microstructure is formed, with strong correlations existing between bloating/shrinkage during sintering, density and water adsorption/absorption. The diametrical expansion could be effectively modeled via the RSM and controlled to meet a wide range of specifications; here we optimized for LWA structural concrete. The optimally designed LWA is sintered in comparatively low temperatures (825-835 °C), thus potentially saving costs and lowering emissions; it had exceptionally low water adsorption/absorption (6.1-7.2% w/wd; optimization target: 1.5-7.5% w/wd); while remaining substantially lightweight (density: 1.24-1.28 g.cm(-3); target: 0.9-1.3 g.cm(-3)). This is a considerable advancement for designing effective environmentally friendly lightweight concrete constructions, and boosting resource efficiency of waste glass flows.
Evidence from an Ice Core of a Large Impact Circa 1443 A.D.
NASA Astrophysics Data System (ADS)
Abbott, D.; Biscaye, P.; Cole-Dai, J.; Breger, D.
2005-12-01
Published data on melt water from the Siple Dome ice core show distinct anomalies at 1443.16 A.D. The Ca value is 111 ppb, over 9 times the next highest Ca value between 850-1760 A.D. The K value is 20 ppb, about 1.4 times the next highest K value. The Ca anomaly may be due to partial dissolution of CaCO3 microfossils from the 24 km Mahuika bolide impact crater on the southern New Zealand shelf. Deep-sea samples of the Mahuika ejecta layer contain >98% carbonate microfossils. The Mahuika impact may have produced tsunami runups of 130 meters in Jervis Bay, Australia. The Australian megatsunami deposits date to 1450±50 A.D. We analyzed the melt water from 8 ice-core samples from the West Antarctic Siple Dome ice core that date from 1440-1448 A.D. The 1443 A.D. level contained a peak in K of 53 ppb as compared to a background of ~6-7 ppb. Ca was high at 26 ppb but this is not as pronounced as reported earlier. We extracted solid material from the melt water. Except for the 1443 A.D. horizon and one fractured grain at the 1442 A.D. level, most samples were barren except for typical dust. At the 1443 A.D. level, we found 5 carbonate microfossils (coccoliths?) from 5 to 20 microns across. Two were round and solid. One microfossil appeared either caught during mitosis or broken during deformation and elongation. Another carbonate microfossil was unbroken, but appeared deformed into a square. We found a Cu grain with a small amount of oxygen. It is most likely a grain of native copper with an oxidized surface. Deformed microfossils and native minerals are both characteristic of bolide impacts. We also found many microcrystalline magnetite cubes, with an average crystal size of 0.3 microns or less. The high magnetic susceptibility of impact ejacta layers is caused by microcrystalline magnetite. We found a grain of conchoidally fractured feldspar ~15 microns long. A semi-quantitive EDAX analysis found 21% Si, 55% O, 9% Al, 5% Na, 3% K, 2% Fe, and 1% Ca (atomic %), well within the range of K-feldspar compositions. Because Fe does not fit into the feldspar structure, its occurrence implies either that the Fe-bearing feldspar is a glass, or that the Fe is in microcracks within the grain. As ice is not Fe-rich, the former is more likely. Because conchoidal fracture is characteristic of glass, this suggests that the feldspar is a glass (maskelynite) derived from an impact onto continental crust. We also found Al Fe oxide, Ti Al oxide, and amphibole. A semi-quantitative EDAX analysis of the latter found 53% O, 20% Si, 5% Na, 4% Al, Mg, and Fe, 3% Ca, and 0.5% K (atomic %) with trace Ti, S and Cl, close to the composition of the alkali amphibole richterite, which forms in contact metamorphosed limestones (skarns). The Al Fe oxide is most likely hercynite, a spinel that forms in contact metamorphic aureoles in silica-poor environments. All mineral grains had distinct edges. We also found radiating, fibrous crystals of a Ca Na silicate. An EDAX analysis of the mineral found 59% O, 13% Ca, 8% Si, 3% Na, and 1% Mg (atomic %). The Ca Na silicate is most likely pectolite (NaCa2Si3O8), which has radiating, fibrous crystals and forms in skarns. The presence of minerals characteristic of contact metamorphism is important as we have found abundant skarn facies minerals in the Mahuika ejecta layer within deep sea sediment. Thus, our data taken together are most consistent with an impact ejecta layer within the Siple Dome ice core that comes from the Mahuika impact event about 4044 kilometers away; providing a well-constrained date for the event around 1443 A.D.
Resonant excited UV luminescence of the Gd3+ centres in borate glasses, co-doped with Gd and Ag
NASA Astrophysics Data System (ADS)
Padlyak, B. V.; Drzewiecki, A.; Padlyak, T. B.; Adamiv, V. T.; Teslyuk, I. M.
2018-05-01
The Li2B4O7:Gd, CaB4O7:Gd, LiCaBO3:Gd, and Li2B4O7:Gd, Ag glasses of high optical quality, obtained by standard technology, have been investigated by electron paramagnetic resonance (EPR) and optical spectroscopy at room temperature. The Gd impurity was added in the raw materials as Gd2O3 oxide in amounts 0.5 and 1.0 mol.%. The Ag impurity was introduced into the Li2B4O7 composition as AgNO3 and as highly dispersed metallic Ag in amount 2.0 mol.%. In all Gd-doped glasses was observed typical for glasses EPR U-spectrum of the Gd3+ (8S7/2, 4f7) ions. In the Gd-doped glasses upon the 273 nm excitation was observed weak UV emission line at 311 nm that is attributed to the 6P7/2 → 8S7/2 intraconfiguration 4f - 4f transition of the Gd3+ ions. In the Li2B4O7:Gd, Ag glass has been observed significant (∼100 times) increasing of peak intensity of the Gd3+ emission line at 311 nm in comparison with this line in CaB4O7:Gd glass. In luminescence excitation spectra of the CaB4O7:Gd and Li2B4O7:Gd, Ag glasses are observed characteristic groups of lines corresponding to the 8S7/2 → 6IJ, 6DJ transitions of the Gd3+ ions. Significant increasing of the Gd3+ emission line at 311 nm in the Li2B4O7:Gd, Ag glass is explained by energy transfer from Ag+ (4d10) to Gd3+ (4f7) upon 273 nm excitation that is resonant for 4d10 → 4d9 5s1 (1S0 → 1D2) and 8S7/2 → 6IJ transitions of the Ag+ and Gd3+ ions. Luminescence kinetics of the Gd3+ and Ag+ centres was investigated and analysed. Obtained results show that the borate glasses, co-activated by Gd3+ and Ag+, can be promising materials for effective UVB light sources for biomedical applications.
Effectiveness and stability of silane coupling agent incorporated in 'universal' adhesives.
Yoshihara, Kumiko; Nagaoka, Noriyuki; Sonoda, Akinari; Maruo, Yukinori; Makita, Yoji; Okihara, Takumi; Irie, Masao; Yoshida, Yasuhiro; Van Meerbeek, Bart
2016-10-01
For bonding indirect restorations, some 'universal' adhesives incorporate a silane coupling agent to chemically bond to glass-rich ceramics so that a separate ceramic primer is claimed to be no longer needed. With this work, we investigated the effectiveness/stability of the silane coupling function of the silanecontaining experimentally prepared adhesives and Scotchbond Universal (3MESPE). Experimental adhesives consisted of Scotchbond Universal and the silane-free Clearfil S3 ND Quick (Kuraray Noritake) mixed with Clearfil Porcelain Bond Activator (Kuraray Noritake) and the two adhesives to which γ-methacryloxypropyltrimethoxysilane (γ-MPTS) was added. Shear bond strength was measured onto silica-glass plates; the adhesive formulations were analyzed using fourier transform infrared spectroscopy (FTIR) and 13C nuclear magnetic resonance (NMR). In addition, shear bond strength onto CAD-CAM composite blocks was measured without and after thermo-cycling ageing. A significantly higher bond strength was recorded when Clearfil Porcelain Bond Activator was freshly mixed with the adhesive. Likewise, the experimental adhesives, to which γ-MPTS was added, revealed a significantly higher bond strength, but only when the adhesive was applied immediately after mixing; delayed application resulted in a significantly lower bond strength. FTIR and (13)C NMR revealed hydrolysis and dehydration condensation to progress with the time after γ-MPTS was mixed with the two adhesives. After thermo-cycling, the bond strength onto CAD-CAM composite blocks remained stable only for the two adhesives with which Clearfil Porcelain Bond Activator was mixed. Only the silane coupling effect of freshly prepared silanecontaining adhesives was effective. Clinically, the use of a separate silane primer or silane freshly mixed with the adhesive remains recommended to bond glass-rich ceramics. Copyright © 2016 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Paing, Htoo W; Marcus, R Kenneth
2018-03-12
A practical method for preparation of solution residue samples for analysis utilizing the ambient desorption liquid sampling-atmospheric pressure glow discharge optical emission spectroscopy (AD-LS-APGD-OES) microplasma is described. Initial efforts involving placement of solution aliquots in wells drilled into copper substrates, proved unsuccessful. A design-of-experiment (DOE) approach was carried out to determine influential factors during sample deposition including solution volume, solute concentration, number of droplets deposited, and the solution matrix. These various aspects are manifested in the mass of analyte deposited as well as the size/shape of the product residue. Statistical analysis demonstrated that only those initial attributes were significant factors towards the emission response of the analyte. Various approaches were investigated to better control the location/uniformity of the deposited sample. Three alternative substrates, a glass slide, a poly(tetrafluoro)ethylene (PTFE) sheet, and a polydimethylsiloxane (PDMS)-coated glass slide, were evaluated towards the microplasma analytical performance. Co-deposition with simple organic dyes provided an accurate means of determining the location of the analyte with only minor influence on emission responses. The PDMS-coated glass provided the best performance by virtue of its providing a uniform spatial distribution of the residue material. This uniformity yielded an improved limits of detection by approximately 22× for 20 μL and 4 x for 2 μL over the other two substrates. While they operate by fundamentally different processes, this choice of substrate is not restricted to the LS-APGD, but may also be applicable to other AD methods such as DESI, DART, or LIBS. Further developments will be directed towards a field-deployable ambient desorption OES source for quantitative analysis of microvolume solution residues of nuclear forensics importance.
Murata, Tsuyoshi; Hieda, Junko; Saito, Nagahiro; Takai, Osamu
2012-05-01
SiO2-added MgF2 nanoparticle coatings with various surface roughness properties were formed on fused silica-glass substrates from autoclaved sols prepared at 100-180 °C. To give it hydrophobicity, we treated the samples with fluoro-alkyl silane (FAS) vapor to form self-assembled monolayers on the nanoparticle coating and we examined the wettability of the samples. The samples preserved good transparency even after the FAS treatment. The wettability examination revealed that higher autoclave temperatures produced a larger average MgF2 nanoparticle particle size, a larger surface roughness, and a higher contact angle and the roll-off angle.
Ultrathin Fluidic Laminates for Large‐Area Façade Integration and Smart Windows
Heiz, Benjamin P. V.; Pan, Zhiwen; Lautenschläger, Gerhard; Sirtl, Christin; Kraus, Matthias
2016-01-01
Buildings represent more than 40% of Europe's energy demands and about one third of its CO2 emissions. Energy efficient buildings and, in particular, building skins have therefore been among the key priorities of international research agendas. Here, glass–glass fluidic devices are presented for large‐area integration with adaptive façades and smart windows. These devices enable harnessing and dedicated control of various liquids for added functionality in the building envelope. Combining a microstructured glass pane, a thin cover sheet with tailored mechanical performance, and a liquid for heat storage and transport, a flat‐panel laminate is generated with thickness adapted to a single glass sheet in conventional windows. Such multimaterial devices can be integrated with state‐of‐the‐art window glazings or façades to harvest and distribute thermal as well as solar energy by wrapping buildings into a fluidic layer. High visual transparency is achieved through adjusting the optical properties of the employed liquid. Also secondary functionality, such as chromatic windows, polychromatism, or adaptive energy uptake can be generated on part of the liquid. PMID:28331790
NASA Technical Reports Server (NTRS)
Simon, S. B.; Papike, J. J.; Laul, J. C.; Hughes, S. S.; Schmitt, R. A.
1988-01-01
Using the subdivision of Apollo 16 regolith breccias into ancient (about 4 Gyr) and younger samples (McKay et al., 1986), with the present-day soils as a third sample, a petrologic and chemical determination of regolith evolution and exotic component addition at the A-16 site was performed. The modal petrologies and mineral and chemical compositions of the regolith breccias in the region are presented. It is shown that the early regolith was composed of fragments of plutonic rocks, impact melt rocks, and minerals and impact glasses. It is found that KREEP lithologies and impact melts formed early in lunar history. The mare components, mainly orange high-TiO2 glass and green low-TiO2 glass, were added to the site after formation of the ancient breccias and prior to the formation of young breccias. The major change in the regolith since the formation of the young breccias is an increase in maturity represented by the formation of fused soil particles with prolonged exposure to micrometeorite impacts.
Raman microscopic analysis in museology
NASA Astrophysics Data System (ADS)
Withnall, Robert; Derbyshire, Alan; Thiel, Sigrun; Hughes, Michael J.
2000-09-01
These portrait miniatures on ivory were analyzed by Raman microscopy to determine the identity of tiny, white crystals which occur under, within, or on top of their paint layers. In each case the crystals were identified as magnesium hydrogen phosphate trihydrate, newberyite (MgHPO4.3H2O). Small, white crystals which grow on the inner surface of ivory tusks were also identified as newberyite by means of Raman microscopy. Thus, it is concluded that the tiny, white crystals occurring on the portrait miniatures on ivory almost certainly originate from the ivory substrate. Resonance Raman spectroscopy using 632.8 nm excitations were found to be a sensitive probe for the detection of the blue pigment, indigo, even when it occurs in pigment mixtures on paintings. Raman microscopy was also used in analyze a fragment of opaque red Assyrian glass, dating from around the 9th-8th centuries BC, an opaque red Iron Age glass stud, dating from around the 1st century BC, and three opaque yellow Anglo-Saxon glass beads, dating from the 6th century AD.
Glass transition and relaxation processes of nanocomposite polymer electrolytes.
Money, Benson K; Hariharan, K; Swenson, Jan
2012-07-05
This study focus on the effect of δ-Al(2)O(3) nanofillers on the dc-conductivity, glass transition, and dielectric relaxations in the polymer electrolyte (PEO)(4):LiClO(4). The results show that there are three dielectric relaxation processes, α, β, and γ, in the systems, although the structural α-relaxation is hidden in the strong conductivity contribution and could therefore not be directly observed. However, by comparing an enhanced dc-conductivity, by approximately 2 orders of magnitude with 4 wt % δ-Al(2)O(3) added, with a decrease in calorimetric glass transition temperature, we are able to conclude that the dc-conductivity is directly coupled to the hidden α-relaxation, even in the presence of nanofillers (at least in the case of δ-Al(2)O(3) nanofillers at concentrations up to 4 wt %). This filler induced speeding up of the segmental polymer dynamics, i.e., the α-relaxation, can be explained by the nonattractive nature of the polymer-filler interactions, which enhance the "free volume" and mobility of polymer segments in the vicinity of filler surfaces.
Compatibility of 5-fluorouracil and total parenteral nutrition solutions.
Hardin, T C; Clibon, U; Page, C P; Cruz, A B
1982-01-01
The physicochemical stability and availability of 0.1% 5-fluorouracil solutions in D5W and a typical total parenteral nutrition solution (hypertonic dextrose and crystalline amino acids) were studied in both glass and Viaflex delivery systems. Serial samples collected over a 48-hour period were assayed for 5-fluorouracil concentration using a high performance liquid chromatographic technique. Changes in the pH as well as precipitate formation were also investigated. There was no reduction in the amount of 5-fluorouracil at 48 hours in either the glass or plastic system, regardless of whether the drug was added to D5W or to the total parenteral nutrition solution. No pH changes or precipitates were observed. These findings indicate that 5-fluorouracil is compatible with and available from total parenteral solutions of hypertonic dextrose and amino acid in both plastic and glass containers. Use of such a system would allow for (1) a reduction in vascular access in patients receiving both treatments and (2) continued administration of nutritional support without the requirement for additional fluid volume.
Process for treating alkaline wastes for vitrification
Hsu, Chia-lin W.
1995-01-01
A process for treating alkaline wastes for vitrification. The process involves acidifying the wastes with an oxidizing agent such as nitric acid, then adding formic acid as a reducing agent, and then mixing with glass formers to produce a melter feed. The nitric acid contributes nitrates that act as an oxidant to balance the redox of the melter feed, prevent reduction of certain species to produce conducting metals, and lower the pH of the wastes to a suitable level for melter operation. The formic acid reduces mercury compounds to elemental mercury for removal by steam stripping, and MnO.sub.2 to the Mn(II) ion to prevent foaming of the glass melt. The optimum amounts of nitric acid and formic acid are determined in relation to the composition of the wastes, including the concentrations of mercury (II) and MnO.sub.2, noble metal compounds, nitrates, formates and so forth. The process minimizes the amount of hydrogen generated during treatment, while producing a redox-balanced feed for effective melter operation and a quality glass product.
Process for treating alkaline wastes for vitrification
Hsu, C.L.W.
1995-07-25
A process is described for treating alkaline wastes for vitrification. The process involves acidifying the wastes with an oxidizing agent such as nitric acid, then adding formic acid as a reducing agent, and then mixing with glass formers to produce a melter feed. The nitric acid contributes nitrates that act as an oxidant to balance the redox of the melter feed, prevent reduction of certain species to produce conducting metals, and lower the pH of the wastes to a suitable level for melter operation. The formic acid reduces mercury compounds to elemental mercury for removal by steam stripping, and MnO{sub 2} to the Mn(II) ion to prevent foaming of the glass melt. The optimum amounts of nitric acid and formic acid are determined in relation to the composition of the wastes, including the concentrations of mercury (II) and MnO{sub 2}, noble metal compounds, nitrates, formates and so forth. The process minimizes the amount of hydrogen generated during treatment, while producing a redox-balanced feed for effective melter operation and a quality glass product. 4 figs.
In-situ ductile metal/bulk metallic glass matrix composites formed by chemical partitioning
Kim, Choong Paul; Hays, Charles C.; Johnson, William L.
2004-03-23
A composite metal object comprises ductile crystalline metal particles in an amorphous metal matrix. An alloy is heated above its liquidus temperature. Upon cooling from the high temperature melt, the alloy chemically partitions, forming dendrites in the melt. Upon cooling the remaining liquid below the glass transition temperature it freezes to the amorphous state, producing a two-phase microstructure containing crystalline particles in an amorphous metal matrix. The ductile metal particles have a size in the range of from 0.1 to 15 micrometers and spacing in the range of from 0.1 to 20 micrometers. Preferably, the particle size is in the range of from 0.5 to 8 micrometers and spacing is in the range of from 1 to 10 micrometers. The volume proportion of particles is in the range of from 5 to 50% and preferably 15 to 35%. Differential cooling can produce oriented dendrites of ductile metal phase in an amorphous matrix. Examples are given in the Zr--Ti--Cu--Ni--Be alloy bulk glass forming system with added niobium.
In-situ ductile metal/bulk metallic glass matrix composites formed by chemical partitioning
Kim, Choong Paul [Northridge, CA; Hays, Charles C [Pasadena, CA; Johnson, William L [Pasadena, CA
2007-07-17
A composite metal object comprises ductile crystalline metal particles in an amorphous metal matrix. An alloy is heated above its liquidus temperature. Upon cooling from the high temperature melt, the alloy chemically partitions, forming dendrites in the melt. Upon cooling the remaining liquid below the glass transition temperature it freezes to the amorphous state, producing a two-phase microstructure containing crystalline particles in an amorphous metal matrix. The ductile metal particles have a size in the range of from 0.1 to 15 micrometers and spacing in the range of from 0.1 to 20 micrometers. Preferably, the particle size is in the range of from 0.5 to 8 micrometers and spacing is in the range of from 1 to 10 micrometers. The volume proportion of particles is in the range of from 5 to 50% and preferably 15 to 35%. Differential cooling can produce oriented dendrites of ductile metal phase in an amorphous matrix. Examples are given in the Zr--Ti--Cu--Ni--Be alloy bulk glass forming system with added niobium.
Glass transitions and physical aging of cassava starch - corn oil blends.
Pérez, Adriana; Sandoval, Aleida J; Cova, Aura; Müller, Alejandro J
2014-05-25
Glass transition temperatures and physical aging of amorphous cassava starch and their blends with corn oil were assessed by differential scanning calorimetry (DSC). Two enthalpic relaxation endotherms, well separated in temperature values, were exhibited by neat amorphous cassava starch with 10.6% moisture content, evidencing two amorphous regions within the starch with different degrees of mobility. The phase segregation of these two amorphous regions was favored by added corn oil at low moisture contents during storage. The presence of amylose-lipid complexes in this matrix, may also affect the molecular dynamics of these two amorphous regions at low moisture contents. Increasing moisture content, leads to a homogeneous amorphous phase, with an aging process characterized by a single enthalpic relaxation peak. In all cases, after deleting the thermal history of the samples only one glass transition temperature was detected (during DSC second heating runs) indicating that a single homogeneous amorphous phase was attained after erasing the effects of physical aging. Trends of the enthalpic relaxation parameters were also different at the two moisture contents considered in this work. Copyright © 2014 Elsevier Ltd. All rights reserved.
Plakins: a family of versatile cytolinker proteins.
Leung, Conrad L; Green, Kathleen J; Liem, Ronald K H
2002-01-01
By connecting cytoskeletal elements to each other and to junctional complexes, the plakin family of cytolinkers plays a crucial role in orchestrating cellular development and maintaining tissue integrity. Plakins are built from combinations of interacting domains that bind to microfilaments, microtubules, intermediate filaments, cell-adhesion molecules and members of the armadillo family. Plakins are involved in both inherited and autoimmune diseases that affect the skin, neuronal tissue, and cardiac and skeletal muscle. Here, we describe the members of the plakin family and their interaction partners, and give examples of the cellular defects that result from their dysfunction.
Geer, S R; Barbano, D M
2014-01-01
Our objective was to determine the role that immunoglobulins and somatic cells (SC) play in the gravity separation of milk. The experiment comprised 9 treatments: (1) low-temperature pasteurized (LTP; 72°C for 17.31s) whole milk; (2) LTP (72°C for 17.31s) whole milk with added bacteria and spores; (3) recombined LTP (72°C for 17.31s) whole milk with added bacteria and spores; (4) high-temperature pasteurized (HTP; 76°C for 7min) whole milk with added bacteria and spores; (5) HTP (76°C for 7min) whole milk with added bacteria and spores and added colostrum; (6) HTP (76°C for 7min) centrifugally separated, gravity-separated (CS GS) skim milk with HTP (76°C for 7min) low-SC cream with added bacteria and spores; (7) HTP (76°C for 7min) CS GS skim milk with HTP (76°C for 7min) high-SC cream with added bacteria and spores; (8) HTP (76°C for 7min) CS GS skim milk with HTP (76°C for 7min) low-SC cream with added bacteria and spores and added colostrum; and (9) HTP (76°C for 7min) CS GS skim milk with HTP (76°C for 7min) high-SC cream with added bacteria and spores and added colostrum. The milks in the 9 treatments were gravity separated at 4°C for 23h in glass columns. Five fractions were collected by weight from each of the column treatments, starting from the bottom of the glass column: 0 to 5%, 5 to 90%, 90 to 96%, 96 to 98%, and 98 to 100%. The SC, fat, bacteria, and spores were measured in each of the fractions. The experiment was replicated 3 times in different weeks using a different batch of milk and different colostrum. Portions of the same batch of the frozen bacteria and spore solutions were used for all 3 replicates. The presence of both SC and immunoglobulins were necessary for normal gravity separation (i.e., rising to the top) of fat, bacteria, and spores in whole milk. The presence of immunoglobulins alone without SC was not sufficient to cause bacteria, fat, and spores to rise to the top. The interaction between SC and immunoglobulins was necessary to cause aggregates of fat, SC, bacteria, and spores to rise during gravity separation. The SC may provide the buoyancy required for the aggregates to rise to the top due to gas within the SC. More research is needed to understand the mechanism of the gravity-separation process. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
The Source of Volcanic Ash in Late Classic Maya Pottery at El Pilar, Belize
NASA Astrophysics Data System (ADS)
Catlin, B. L.; Ford, A.; Spera, F. J.
2007-12-01
The presence of volcanic ash used as temper in Late Classic Maya pottery (AD 600-900) at El Pilar has been long known although the volcano(s) contributing ash have not been identified. We use geochemical fingerprinting, comparing compositions of glass shards in potsherds with volcanic sources to identify the source(s). El Pilar is located in the Maya carbonate lowlands distant from volcanic sources. It is unlikely Maya transported ash from distant sites: ash volumes are too large, the terrain too rugged, and no draft animals were available. Ash layer mining is unlikely because mine sites have not been found despite intensive surveys. Nearest volcanic sources to El Pilar, Belize and Guatemala, are roughly 450 km to the south and east. The ash found in potsherds has a cuspate morphology. This suggests ash was collected during, or shortly after, an ash airfall event following eruption. Analyses of n=333 ash shards from 20 ceramic (pottery) sherds was conducted by electron microprobe for major elements, and LA-ICPMS for trace elements and Pb isotopes. These analyses can be compared to volcanic materials from candidate volcanoes in the region. The 1982 El Chichon eruption caused airfall deposition (< 1 mm isopach) at El Pilar which lead Espindola et. al, 2000 to suggest that earlier eruptions at El Chichon could have caused ash fall at El Pilar during the Late Classic. 333 individual glass shards found within about 20 distinct potsherds have a mean silica content of 78.3±1.1 wt. % (one-sigma). The 1982 El Chichon eruption products have a mean silica content of 60.2±7.2% (one-sigma, n=48); the circa 1475 AD eruptive products of El Chichon have a mean silica content of 53.4±3.4 wt % (one-sigma, n=8). This suggests that El Chichon was not a source of the ash at El Pilar. In order confirm or refute the El Chichon source hypothesis, comparison of trace element ratios between archaeological samples and El Chichon has been made. The atomic ratios of La/Yb, Nb/Ta, Zr/Hf, Sr/Ba and Th/U of n=215 glass shards in the potsherds are 12.2±7.1, 10.9±3.4, 31.2±11.5, 0.09±0.05 and 2.5±0.9, respectively. These ratios for 1982 El Chichon are 15.4±2.1, 26.3, 36.1±5.3, 1.4±0.06 and 3.16, respectively. Data for the 1475 AD El Chichon eruption (Macias et al, 2003) can also be compared; the ratios from are 13.2±2.2, 7.3±1.8, 30.4±9.6, 1.51±0.4 and 2.88±0.23, respectively. The mean 208Pb/206Pb ratio of n=5 potsherds is 2.0523±0.002 compared to 2.0514±0.00074 for n=7 samples from El Chichon. The two most recent eruptions from El Chichon overlap with the potsherd glass data except for Sr/Ba, which might be modified by Sr-Ca exchange during firing. In order to test the effects of pot firing on glass compositional changes, experiments were conducted in which high silica volcanic glass was fired with clay according to heating schedules used by Maya potters. Two important changes are that Na is rapidly lost preferentially to K and that the Si/Ca ratio decreases due to Ca diffusion from matrix into glass during firing. One expects that ratios of the refractory trace elements such as La/Yb and Zr/Hf are less susceptible to modification. Further experiments of trace element mobility during firing are underway.
Proton conducting membrane using a solid acid
NASA Technical Reports Server (NTRS)
Boysen, Dane A. (Inventor); Narayanan, Sekharipuram R. (Inventor); Haile, Sossina M. (Inventor); Chisholm, Calum (Inventor)
2006-01-01
A solid acid material is used as a proton conducting membrane in an electrochemical device. The solid acid material can be one of a plurality of different kinds of materials. A binder can be added, and that binder can be either a nonconducting or a conducting binder. Nonconducting binders can be, for example, a polymer or a glass. A conducting binder enables the device to be both proton conducting and electron conducting.
NASA Astrophysics Data System (ADS)
Han, Jin-Hee; Kim, Hee-Joo; Lakshmana, Sudheendra; Gee, Shirley J.; Hammock, Bruce D.; Kennedy, Ian M.
2011-03-01
A nanoarray based-single molecule detection system was developed for detecting proteins with extremely high sensitivity. The nanoarray was able to effectively trap nanoparticles conjugated with biological sample into nanowells by integrating with an electrophoretic particle entrapment system (EPES). The nanoarray/EPES is superior to other biosensor using immunoassays in terms of saving the amounts of biological solution and enhancing kinetics of antibody binding due to reduced steric hindrance from the neighboring biological molecules. The nanoarray patterned onto a layer of PMMA and LOL on conductive and transparent indium tin oxide (ITO)-glass slide by using e-beam lithography. The suspension of 500 nm-fluorescent (green emission)-carboxylated polystyrene (PS) particles coated with protein-A followed by BDE 47 polyclonal antibody was added to the chip that was connected to the positive voltage. The droplet was covered by another ITO-coated-glass slide and connected to a ground terminal. After trapping the particles into the nanowells, the solution of different concentrations of anti-rabbit- IgG labeled with Alexa 532 was added for an immunoassay. A single molecule detection system could quantify the anti-rabbit IgG down to atto-mole level by counting photons emitted from the fluorescent dye bound to a single nanoparticle in a nanowell.
Design of the Longitudinal Dispersion Compensation System for the CHARA Array
NASA Astrophysics Data System (ADS)
Berger, D. H.; Bagnuolo, W. G.
2001-05-01
In recent years, the baselines of optical and infrared interferometers have been approaching half of a kilometer in length. With increased spatial layout comes new and challenging problems to solve. One common hurdle occurs when observing objects not perpendicular to the baseline. The result is one beam with added path length that must be added to the non-delayed beam such that identical phase fronts are combined together to produce fringes. For several interferometers without the addition of costly and logistically difficult evacuated delay lines, path length equalization occurs in long buildings through the ambient air medium. This causes a beam which is spectrally dispersed along the optical axis. The undesirable consequence is decreased fringe contrast. A solution is to disperse the uncompensated beam by inserting a block of glass to match the optical path lengths for all wavelengths within the observing waveband. A single glass solution is presented for the CHARA Array. Modeling, design and fabrication methods are also considered. The CHARA Array, a six-telescope O/IR interferometric array operated by Georgia State University on Mt. Wilson, California, was funded by the National Science Foundation, the W.M. Keck Foundation, the David and Lucile Packard Foundation, and Georgia State University. This research is also funded in part by the Michelson Fellowship Program sponsored by Jet Propulsion Laboratory.
Jiang, Bin; Kasapis, Stefan
2011-11-09
An investigation of the diffusional mobility of a bioactive compound (caffeine) within the high-solid (80.0% w/w) matrices of glucose syrup and κ-carrageenan plus glucose syrup exhibiting distinct mechanical glass transition properties is reported. The experimental temperature range was from 20 to -60 °C, and the techniques of modulated differential scanning calorimetry, small deformation dynamic oscillation in shear, and UV spectrometry were employed. Calorimetric and mechanical measurements were complementary in recording the relaxation dynamics of high-solid matrices upon controlled heating. Predictions of the reaction rate theory and the combined WLF/free volume framework were further utilized to pinpoint the glass transition temperature (T(g)) of the two matrices in the softening dispersion. Independent of composition, calorimetry yielded similar T(g) predictions for both matrices at this level of solids. Mechanical experimentation, however, was able to detect the effect of adding gelling polysaccharide to glucose syrup as an accelerated pattern of vitrification leading to a higher value of T(g). Kinetic rates of caffeine diffusion within the experimental temperature range were taken with UV spectroscopy. These demonstrated the pronounced effect of the gelling κ-carrageenan/glucose syrup mixture to retard diffusion of the bioactive compound near the mechanical T(g). Modeling of the diffusional mobility of caffeine produced activation energy and fractional free-volume estimates, which were distinct from those of the carbohydrate matrix within the glass transition region. This result emphasizes the importance of molecular interactions between macromolecular matrix and small bioactive compound in glass-related relaxation phenomena.
The Quaternary impact record from the Pampas, Argentina
NASA Astrophysics Data System (ADS)
Schultz, Peter H.; Zárate, Marcelo; Hames, Bill; Koeberl, Christian; Bunch, Theodore; Storzer, Dieter; Renne, Paul; Wittke, James
2004-03-01
Loess-like deposits cover much of central Argentina and preserve a rich record of impacts since the late Miocene. The present contribution focuses on two localities containing Quaternary impact glasses: along the coastal sequences near Centinela del Mar (CdM) and from near Rio Cuarto (RC). These highly vesicular glasses contain clear evidence for an impact origin including temperatures sufficient to melt most mineral constituents (1700°C) and to leave unique quench products such as β-cristobolite. The CdM glasses occur within a relatively narrow horizon just below a marine transgression expressed by a series of coastal paleo-dunes and systematic changes in the underlying sediments. High-resolution 40Ar/39Ar dating methods yielded an age of 445±21 ka (2σ). Glasses were also recovered from scattered occurrences lower in the section but were dated to 230±40 ka. This inconsistency between stratigraphic and radiometric age is most likely related to a nearby outcrop of glass that had been exposed and locally re-deposited in coastal lagoons during the last marine transgression at 125 ka. Sediments containing the original impact glass layer are now missing due to an unconformity, perhaps related to subsequent marine transgressions after the impact (410 ka and 340 ka) and hiatuses in deposition. Two different types of impact glasses from RC yield two distinct dates. High-resolution 40Ar/39Ar dating of fresher-appearing glasses (well-preserved tachylitic sheen) indicates an age of 6±2 ka (2σ). Independent fission track analyses yielded a similar age of 2.3±1.6 ka (2σ). More weathered glasses, however, gave significantly older ages of 114±26 ka (2σ). Consequently, materials from two separate Quaternary impacts have been recovered at Rio Cuarto. The younger glasses are consistent with previously reported carbon dates for materials on the floor of one of the large elongate structures. The depths of excavation for the RC and CdM impacts are very different. While the RC glasses are largely derived from near-surface materials, the CdM glasses from the upper level contain added components consistent with Miocene marine evaporites at a depth of about 400-500 m (e.g., high CaO and P2O5). The CdM glasses also incorporated older loess-like sediments from depth based on the geochemistry. Several ratios of key trace and rare earth elements of sediments of different ages from the Miocene to the Holocene indicate a systematic compositional change through time. Such changes calibrate the observed differences in glass composition from their host sediments and further indicate incorporation of materials from depth. Consequently, the Argentine loess-like sediments preserve evidence for at least four separate Quaternary impacts. Based on foreign components in the glasses, the CdM impact very likely produced a crater (now buried or eroded) once as large as 6 km in diameter. The younger RC glasses, however, are consistent with shallower excavation consistent with an oblique impact.
Nontraditional, Safe, High Voltage Rechargeable Cells of Long Cycle Life.
Braga, Maria Helena; M Subramaniyam, Chandrasekar; Murchison, Andrew J; Goodenough, John B
2018-05-23
A room-temperature all-solid-state rechargeable battery cell containing a tandem electrolyte consisting of a Li + -glass electrolyte in contact with a lithium anode and a plasticizer in contact with a conventional, low cost oxide host cathode was charged to 5 V versus lithium with a charge/discharge cycle life of over 23,000 cycles at a rate of 153 mA·g -1 of active material. A larger positive electrode cell with 329 cycles had a capacity of 585 mAh·g -1 at a cutoff of 2.5 V and a current of 23 mA·g -1 of the active material; the capacity rose with cycle number over the 329 cycles tested during 13 consecutive months. Another cell had a discharge voltage from 4.5 to 3.7 V over 316 cycles at a rate of 46 mA·g -1 of active material. Both the Li + -glass electrolyte and the plasticizer contain electric dipoles that respond to the internal electric fields generated during charge by a redistribution of mobile cations in the glass and by extraction of Li + from the active cathode host particles. The electric dipoles remain oriented during discharge to retain an internal electric field after a discharge. The plasticizer accommodates to the volume changes in the active cathode particles during charge/discharge cycling and retains during charge the Li + extracted from the cathode particles at the plasticizer/cathode-particle interface; return of these Li + to the active cathode particles during discharge only involves a displacement back across the plasticizer/cathode interface and transport within the cathode particle. A slow motion at room temperature of the electric dipoles in the Li + -glass electrolyte increases with time the electric field across the EDLC of the anode/Li + -glass interface to where Li + from the glass electrolyte is plated on the anode without being replenished from the cathode, which charges the Li + -glass electrolyte negative and consequently the glass side of the Li + -glass/plasticizer EDLC. Stripping back the Li + to the Li + -glass during discharge is enhanced by the negative charge in the Li + -glass. Since the Li + -glass is not reduced on contact with metallic lithium, no passivating interface layer contributes to a capacity fade; instead, the discharge capacity increases with cycle number as a result of dipole polarization in the Li + -glass electrolyte leading to a capacity increase of the Li + -glass/plasticizer EDLC. The storage of electric power by both faradaic electrochemical extraction/insertion of Li + in the cathode and electrostatic stored energy in the EDLCs provides a safe and fast charge and discharge with a long cycle life and a greater capacity than can be provided by the cathode host extraction/insertion reaction. The cell can be charged to a high voltage versus a lithium anode because of the added charge of the EDLCs.
Hain, Nicole; Wesner, Daniel; Druzhinin, Sergey I; Schönherr, Holger
2016-11-01
The impact of surface treatment and modification on surface nanobubble nucleation in water has been addressed by a new combination of fluorescence lifetime imaging microscopy (FLIM) and atomic force microscopy (AFM). In this study, rhodamine 6G (Rh6G)-labeled surface nanobubbles nucleated by the ethanol-water exchange were studied on differently cleaned borosilicate glass, silanized glass as well as self-assembled monolayers on transparent gold by combined AFM-FLIM. While the AFM data confirmed earlier reports on surface nanobubble nucleation, size, and apparent contact angles in dependence of the underlying substrate, the colocalization of these elevated features with highly fluorescent features observed in confocal intensity images added new information. By analyzing the characteristic contributions to the excited state lifetime of Rh6G in decay curves obtained from time-correlated single photon counting (TCSPC) experiments, the characteristic short-lived (<600 ps) component of could be associated with an emission at the gas-water interface. Its colocalization with nanobubble-like features in the AFM height images provides evidence for the observation of gas-filled surface nanobubbles. While piranha-cleaned glass supported nanobubbles, milder UV-ozone or oxygen plasma treatment afforded glass-water interfaces, where no nanobubbles were observed by combined AFM-FLIM. Finally, the number density of nanobubbles scaled inversely with increasing surface hydrophobicity.
NASA Astrophysics Data System (ADS)
Widyastuti, Ramadhan, Rizal; Ardhyananta, Hosta; Zainuri, Mochamad
2013-09-01
Nowadays, studies on investigating radar absorbing structure (RAS) using fiber reinforced polymeric (FRP) composite materials are becoming popular research field because the electromagnetic properties of FRP composites can be tailored effectively by just adding some electromagnetic powders, such as carbon black, ferrite, carbonyl iron, and etc., to the matrix of composites. The RAS works not only as a load bearing structure to hold the antenna system, but also has the important function of absorbing the in-band electromagnetic wave coming from the electromagnetic energy of tracking systems. In this study, E-glass fiber reinforced ripoxy resin composite was fabricated by blending the conductive carbon black (Ketjenblack EC300J) with the binder matrix of the composite material and maximizing the coefficient of absorption more than 90% (more than -10 dB) within the X-band frequency (8 - 12 GHz). It was measured by electrical conductivity (LCR meter) and vector network analyzer (VNA). Finally, the composite RAS with 0.02 weight fraction of carbon black and 4 plies of E-glass fiber showed thickness of 2.1 mm, electrical conductivity of 8.33 × 10-6 S/m, and maximum reflection loss of -27.123 dB, which can absorb more than 90% of incident EM wave throughout the entire X-band frequency range, has been developed.
Hammond, Billy R
2015-01-01
To evaluate the effects of filtering short wavelength light on visual performance under intense light conditions among pseudophakic patients previously implanted with a clear intraocular lens (IOL). This was a patient-masked, randomized crossover study conducted at 6 clinical sites in the United States between September 2013 and January 2014. One hundred fifty-four bilaterally pseudophakic patients were recruited. Photostress recovery time and glare disability thresholds were measured with clip-on blue-light-filtering and placebo (clear; no blue-light filtration) glasses worn over patients' habitual correction. Photostress recovery time was quantified as the time necessary to regain sight of a grating target after intense light exposure. Glare disability threshold was assessed as the intensity of a white-light annulus necessary to obscure a central target. The order of filter used and test eye were randomized across patients. Photostress recovery time and glare disability thresholds were significantly improved (both P < 0.0001) when patients used blue-light-filtering glasses compared with clear, nonfiltering glasses. Compared with a nonfiltering placebo, adding a clip-on blue-absorbing filter to the glasses of pseudophakic patients implanted with clear IOLs significantly increased their ability to cope with glare and to recover normal viewing after an intensive photostress. This result implies that IOL designs with blue-light-filtering characteristics may be beneficial under intense light conditions.
Design and Specifications for the Highland Regolith Prototype Simulants NU-LHT-1M and -2M
NASA Technical Reports Server (NTRS)
Stoeser, D.; Rickman, D.; Wilson, S.
2011-01-01
The first two prototype lunar regolith simulants were to replicate characteristics of the lunar highlands. A major change from initial plans was to use an estimate of typical Apollo 16 highland material rather than a specific core. This change was compatible with project objectives and necessitated by the lack of adequate data from a single core. To make the initial simulant, a crystalline component and a glass component were deemed necessary. Lithic feedstocks were obtained with the assistance of the Stillwater Mining Company. The mixing of the rock constituents was done based on normative mineralogy rather than modal mineralogy. This was done to simplify development. A major design decision was not to attempt simulation of the range of glass chemistries observed in Apollo samples. A single glass was assumed to be adequate for engineering purposes for which the simulant would be used. Glass was made in a process developed at Zybek Advanced Products of Boulder, Colorado. Mill sand was used as the feedstock for this process. A second generation of the simulant was made that incorporated the additional minerals apatite, synthetic whitlockite, and pyrite. The olivine source was changed to the commercially produced Twin Sisters Dunite, and a pseudo-agglutinate product was invented and added to the -2M product. The pseudo-agglutinate captures all of the lunar agglutinate features but does not attempt to incorporate nanophase Fe.
Yang, Qing; Meng, Dong; Gu, Zhaoyu; Li, Wei; Chen, Qiuju; Li, Yang; Yuan, Hui; Yu, Jie; Liu, Chunsheng; Li, Tianzhong
2018-04-18
In S-RNase-mediated self-incompatibility, S-RNase secreted from the style destroys the actin cytoskeleton of the self-pollen tubes, eventually halting their growth, but the mechanism of this process remains unclear. In vitro biochemical assays revealed that S-RNase does not bind or sever filamentous actin (F-actin). In apple (Malus domestica), we identified an actin-binding protein containing myosin, villin and GRAM (MdMVG), that physically interacts with S-RNase and directly binds and severs F-actin. Immunofluorescence assays and total internal reflection fluorescence microscopy indicated that S-RNase inhibits the F-actin-severing activity of MdMVG in vitro. In vivo, the addition of S-RNase to self-pollen tubes increased the fluorescence intensity of actin microfilaments and reduced the severing frequency of microfilaments and the rate of pollen tube growth in self-pollination induction in the presence of MdMVG overexpression. By generating 25 single-, double- and triple-point mutations in the amino acid motif E-E-K-E-K of MdMVG via mutagenesis and testing the resulting mutants with immunofluorescence, we identified a triple-point mutant, MdMVG (E167A/E171A/K185A) , that no longer has F-actin-severing activity or interacts with any of the four S-haplotype S-RNases, indicating that all three amino acids (E167, E171 and K185) are essential for the severing activity of MdMVG and its interaction with S-RNases. We conclude that apple S-RNase interacts with MdMVG to reduce self-pollen tube growth by inhibiting its F-actin-severing activity. © 2018 The Authors The Plant Journal © 2018 John Wiley & Sons Ltd.
Fertilization Induces a Transient Exposure of Phosphatidylserine in Mouse Eggs
Curia, Claudio A.; Ernesto, Juan I.; Stein, Paula; Busso, Dolores; Schultz, Richard M.; Cuasnicu, Patricia S.; Cohen, Débora J.
2013-01-01
Phosphatidylserine (PS) is normally localized to the inner leaflet of the plasma membrane and the requirement of PS translocation to the outer leaflet in cellular processes other than apoptosis has been demonstrated recently. In this work we investigated the occurrence of PS mobilization in mouse eggs, which express flippase Atp8a1 and scramblases Plscr1 and 3, as determined by RT-PCR; these enzyme are responsible for PS distribution in cell membranes. We find a dramatic increase in binding of flouresceinated-Annexin-V, which specifically binds to PS, following fertilization or parthenogenetic activation induced by SrCl2 treatment. This increase was not observed when eggs were first treated with BAPTA-AM, indicating that an increase in intracellular Ca2+ concentration was required for PS exposure. Fluorescence was observed over the entire egg surface with the exception of the regions overlying the meiotic spindle and sperm entry site. PS exposure was also observed in activated eggs obtained from CaMKIIγ null females, which are unable to exit metaphase II arrest despite displaying Ca2+ spikes. In contrast, PS exposure was not observed in TPEN-activated eggs, which exit metaphase II arrest in the absence of Ca2+ release. PS exposure was also observed when eggs were activated with ethanol but not with a Ca2+ ionophore, suggesting that the Ca2+ source and concentration are relevant for PS exposure. Last, treatment with cytochalasin D, which disrupts microfilaments, or jasplakinolide, which stabilizes microfilaments, prior to egg activation showed that PS externalization is an actin-dependent process. Thus, the Ca2+ rise during egg activation results in a transient exposure of PS in fertilized eggs that is not associated with apoptosis. PMID:23951277
NASA Technical Reports Server (NTRS)
Sims, J. R.; Karp, S.; Ingber, D. E.
1992-01-01
Studies were carried out with capillary endothelial cells cultured on fibronectin (FN)-coated dishes in order to analyze the mechanism of cell and nuclear shape control by extracellular matrix (ECM). To examine the role of the cytoskeleton in shape determination independent of changes in transmembrane osmotic pressure, membranes of adherent cells were permeabilized with saponin (25 micrograms/ml) using a buffer that maintains the functional integrity of contractile microfilaments. Real-time videomicroscopic studies revealed that addition of 250 microM ATP resulted in time-dependent retraction and rounding of permeabilized cells and nuclei in a manner similar to that observed in intact living cells following detachment using trypsin-EDTA. Computerized image analysis confirmed that permeabilized cells remained essentially rigid in the absence of ATP and that retraction was stimulated in a dose-dependent manner as the concentration of ATP was raised from 10 to 250 microM. Maximal rounding occurred by 30 min with projected cell and nuclear areas being reduced by 69 and 41%, respectively. ATP-induced rounding was also accompanied by a redistribution of microfilaments resulting in formation of a dense net of F-actin surrounding retracted nuclei. Importantly, ATP-stimulated changes in cell, cytoskeletal, and nuclear form were prevented in permeabilized cells using a synthetic myosin peptide (IRICRKG) that has been previously shown to inhibit actomyosin filament sliding in muscle. In contrast, both the rate and extent of cell and nuclear rounding were increased in permeabilized cells exposed to ATP when the soluble FN peptide, GRGDSP, was used to dislodge immobilized FN from cell surface integrin receptors.(ABSTRACT TRUNCATED AT 250 WORDS).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tavakolinejad, Alireza; Rabbani, Mohsen, E-mail: m.rabbani@eng.ui.ac.ir; Janmaleki, Mohsen
2015-08-21
Alteration in specific inertial conditions can lead to changes in morphology, proliferation, mechanical properties and cytoskeleton of cells. In this report, the effects of hypergravity on morphology of Adipose-Derived Stem Cells (ADSCs) are indicated. ADSCs were repeatedly exposed to discontinuous hypergravity conditions of 10 g, 20 g, 40 g and 60 g by utilizing centrifuge (three times of 20 min exposure, with an interval of 40 min at 1 g). Cell morphology in terms of length, width and cell elongation index and cytoskeleton of actin filaments and microtubules were analyzed by image processing. Consistent changes observed in cell elongation index as morphological change. Moreover, cell proliferation wasmore » assessed and mechanical properties of cells in case of elastic modulus of cells were evaluated by Atomic Force Microscopy. Increase in proliferation and decrease in elastic modulus of cells are further results of this study. Staining ADSC was done to show changes in cytoskeleton of the cells associated to hypergravity condition specifically in microfilament and microtubule components. After exposing to hypergravity, significant changes were observed in microfilaments and microtubule density as components of cytoskeleton. It was concluded that there could be a relationship between changes in morphology and MFs as the main component of the cells. - Highlights: • Hypergravity (10 g, 20 g, 40 g and 60 g) affects on adipose derived stem cells (ADSCs). • ADSCs after exposure to the hypergravity are more slender. • The height of ADSCs increases in all test groups comparing their control group. • Hypergravity decreases ADSCs modulus of elasticity and cell actin fiber content. • Hypergravity enhances proliferation rate of ADSCs.« less
Ryu, J H; Takagi, S; Nagai, R
1995-04-01
In mesophyll cells of the aquatic angiosperm Vallisneria gigantea, bundles of microfilaments (MFs) serve as tracks for the rotational streaming of the cytoplasm, which occurs along the two longer side walls and the two shorter end walls. The stationary organization of these bundles has been shown to depend on the association of the bundles with the plasma membrane at the end walls. To identify the sites of such association, the effects of cytochalasin B (CB) on the configuration of the bundles of MFs were examined. In the case of the side walls, MFs were completely disrupted after treatment with CB at 100 micrograms/ml for 24 hours. By contrast, in the case of the end walls, a number of partially disrupted MFs remained even after 48 hours of treatment. After removal of CB, a completely normal arrangement of bundles of MFs was once again evident within 24 hours after a rather complicated process of reassembly. When reassembly had been completed, the direction of cytoplasmic streaming was reversed only in a small fraction of the treated cells, suggesting that bundles of MFs are anchored and stabilized at the end walls of each cell and that the polarity of reorganized bundles and, therefore, the direction of the cytoplasmic streaming is determined in a manner that depends on the original polarity of MFs that remained in spite of the disruptive action of CB. By contrast, the direction of reinitiated cytoplasmic streaming was reversed in 50% of cells in which the bundles of MFs had been completely disrupted by exogenously applied trypsin prior treatment with CB.(ABSTRACT TRUNCATED AT 250 WORDS)
A Study on Tribological Behavior of Glass-Epoxy Composite Filled with Granite Dust
NASA Astrophysics Data System (ADS)
Ray, Subhrajit; Rout, Arun Ku; KuSahoo, Ashok
2017-08-01
Granite powder is one of the solid wastes generated from stone processing industry used as organic filler replacing the conventional ceramic fillers in polymer matrix composite to increase the mechanical properties. The present work investigates the addition of granite powder on erosion wear properties of epoxy-glass fiber composite. The solid particle erosion wear rates of these hybrid composites are recorded considering various control parameters as impingement angles, erodent sizes and impact velocities following erosion resistance test in an air erosion test device at room temperatures. The test was conducted as per the Taguchi experimental design to minimize the erosion loss of material. The SEM views show the surface resistivity for the granite added specimens. The microscopic study also indicates various methods of material removal, crater wear and other subjective allocation during erosion experiment of the samples.
NASA Astrophysics Data System (ADS)
Xiao, Wenya; Huang, Zhixiong; Ding, Jie
2017-12-01
In this work, kaolin powder and glass fiber fabric were added to PF in order to improve its thermal stability and mechanical property. Micro-structures of carbonized PF with kaolin powder were inspected by scanning electron microscopy (SEM) to demonstrate the filler’s pinning effect. SEM results illustrated modified PF had well morphology after high-temperature heat treatment. The Fourier transform infrared spectrometer (FTIR) test was carried out and found that kaolin powder only physically dispersed in PF. The compression test and thermal weight loss test were done on two groups of modified PF (Group A: add powder and fabric; Group B: add powder only). Results showed that all modified PF were better than pure PF, while foams with powder and fabric showed better mechanical characteristic and thermal stability compared with foams with powder only.
Thermo-cured glass ionomer cements in restorative dentistry.
Gorseta, Kristina; Glavina, Domagoj
2017-01-01
Numerous positive properties of glass ionomer cements including biocompatibility, bioactivity, releasing of fluoride and good adhesion to hard dental tissue even under wet conditions and easy of handling are reasons for their wide use in paediatric and restorative dentistry. Their biggest drawbacks are the weaker mechanical properties. An important step forward in improving GIC's features is thermo-curing with the dental polymerization unit during setting of the material. Due to their slow setting characteristics the GIC is vulnerable to early exposure to moisture. After thermo curing, cements retain all the benefits of GIC with developed better mechanical properties, improved marginal adaptation, increased microhardness and shear bond strength. Adding external energy through thermocuring or ultrasound during the setting of conventional GIC is crucial to achieve faster and better initial mechanical properties. Further clinical studies are needed to confirm these findings.
Room temperature synthesis of agarose/sol-gel glass pieces with tailored interconnected porosity.
Cabañas, M V; Peña, J; Román, J; Vallet-Regí, M
2006-09-01
An original shaping technique has been applied to prepare porous bodies at room temperature. Agarose, a biodegradable polysaccharide, was added as binder of a sol-gel glass in powder form, yielding an easy to mold paste. Interconnected tailored porous bodies can be straightforwardly prepared by pouring the slurry into a polymeric scaffold, previously designed by stereolitography, which is subsequently eliminated by alkaline dissolution at room temperature. The so obtained pieces behave like a hydrogel with an enhanced consistency that makes them machinable and easy to manipulate. These materials generate an apatite-like layer when immersed in a simulated body fluid, indicating a potential in vivo bioactivity. The proposed method can be applied to different powdered materials to produce pieces, at room temperature, with various shapes and sizes and with tailored interconnected porosity.
Revised state diagram of Laponite dispersions.
Mongondry, Philippe; Tassin, Jean François; Nicolai, Taco
2005-03-15
We propose a state diagram of charged disk-like mineral particle (Laponite) dispersions as a function of the Laponite concentration (C) and the concentration of added salt (C(s)), based on simple observation and light-scattering measurements. At low C or high C(s) the dispersions separate into two domains due to sedimentation of Laponite aggregates, while at high C and low C(s) they form homogeneous gels that do not flow upon tube reversal. The aggregation rate and the structure factor of the Laponite dispersions is determined with light scattering as a function of C and C(s). We discuss in detail the controversy on the origin of gelation of Laponite dispersions in the absence of added salt. We argue that aggregation rather than glass formation causes gelation.
Chromatid Paints: A New Method for Detecting Tumor-Specific Chromosomal Inversions
1999-10-01
chromosomal DNA as a template for DNA polymerization. The cloning procedure requires copying DNA from fixed cells attached to a glass substrate. Any...achieved by initially fixing cells in methanol and adding acetic acid just before dropping cells onto coverslips. The procedure itself is a novel and...human hybrid cells containing one human #11 chromosome were fixed and dropped onto microscope coverslips. These cells had been synchronized by mitotic
A Z-axis recumbent rotating device for use in parabolic flight
NASA Technical Reports Server (NTRS)
Graybiel, A.; Miller, E. F., II
1976-01-01
A prototype apparatus for exposing persons to rotation about their Z-axis in parabolic flight is described. Although it resembles earth-horizontal axis devices, added features are its strength and portability, and the fiber glass 'couch' with adjustable elements providing support and restraint. Even under ground-based conditions, this device provides unique opportunities for investigations involving not only canalicular and macular mechanoreceptors, but also touch, pressure, and kinesthetic receptor systems.
Sol/Gel Processing Techniques for Glass Matrix Composites.
1987-11-01
silica alkoxide gels were also produced by an initial partial hydrolysis of TEOS. ,. After an aging period of 18-24 hrs. titanium (IV) isopropoxide ...preparation of these materials is the large difference in hydrolysis rate for titanium versus silica alkoxides. Thus, the tendency towards phase separation in...ethanol solution (Ref. 6-9). After an aging time, the more reactive titanium alkoxide is added. This solution gels quickly and is ready to be further
Succession of Periphytic Microorganisms on Metal and Glass Surfaces in Natural Seawater
1976-06-01
this depolarization process. Not all investigators agree on the importance of the depolarization mechanisin (Nelson, 1962 ), but an increasing volume...small amounts of water. Hendey (1964), investigating Cladosporiuni rcinae as a fuel contaminant in kerosene-type fuel storage tanks and 2 fuel tanks of...added. Compton (1970) pointed out the naivet6 of some scientists who consider seawater a simple solution of sodium chloride contaminated with a few
2015-12-01
carbon fiber reinforced polymer (CFRP) mirrors been proposed for use in future imaging satellites. Compared to traditional glass -based mirrors, CFRP...SUBJECT TERMS carbon fiber reinforced polymer mirror, adaptive optics, deformable mirror, surface figure error 15. NUMBER OF PAGES 79 16. PRICE CODE...Department of Mechanical and Aerospace Engineering iv THIS PAGE INTENTIONALLY LEFT BLANK v ABSTRACT In recent years, carbon fiber reinforced
Bhatia, Hind P; Sood, Shveta; Sharma, Naresh
2017-01-01
Aim To evaluate and compare the sorption, solubility, and compressive strength of three different glass ionomer cements in artificial saliva - type IX glass ionomer cement, silver-reinforced glass ionomer cement, and zirconia-reinforced glass ionomer cement, so as to determine the material of choice for stress-bearing areas. Materials and methods A total of 90 cylindrical specimens (4 mm diameter and 6 mm height) were prepared for each material following the manufacturer’s instructions. After subjecting the specimens to thermocycling, 45 specimens were immersed in artificial saliva for 24 hours for compressive strength testing under a universal testing machine, and the other 45 were evaluated for sorption and solubility, by first weighing them by a precision weighing scale (W1), then immersing them in artificial saliva for 28 days and weighing them (W2), and finally dehydrating in an oven for 24 hours and weighing them (W3). Results Group III (zirconomer) shows the highest compressive strength followed by group II (Miracle Mix) and least compressive strength is seen in group I (glass ionomer cement type IX-Extra) with statistically significant differences between the groups. The sorption and solubility values in artificial saliva were highest for glass ionomer cement type IX - Extra-GC (group I) followed by zirconomer-Shofu (group III), and the least value was seen for Miracle Mix-GC (group II). Conclusion Zirconia-reinforced glass ionomer cement is a promising dental material and can be used as a restoration in stress-bearing areas due to its high strength and low solubility and sorption rate. It may be a substitute for silver-reinforced glass ionomer cement due to the added advantage of esthetics. Clinical significance This study provides vital information to pediatric dental surgeons on relatively new restorative materials as physical and mechanical properties of the new material are compared with conventional materials to determine the best suited material in terms of durability, strength and dimensional stability. This study will boost confidence among dental surgeons in terms of handling characteristics, cost effectiveness and success rate. This study will help clinically and scientifically; pediatric dental surgeons to use this material in stress-bearing areas in pediatric patients. How to cite this article Bhatia HP, Singh S, Sood S, Sharma N. A Comparative Evaluation of Sorption, Solubility, and Com-pressive Strength of Three Different Glass Ionomer Cements in Artificial Saliva: An in vitro Study. Int J Clin Pediatr Dent 2017;10(1):49-54. PMID:28377656
Polymerization shrinkage and spherical glass mega fillers: effects on cuspal deflection
BASSI, M. ANDREASI; SERRA, S.; ANDRISANI, C.; LICO, S.; BAGGI, L.; LAURITANO, D.
2016-01-01
SUMMARY Purpose The Authors analyzed the effect of spherical glass mega fillers (SGMF) on reducing contraction stress in dental composite resins, by means of a cavity model simulating the cuspal deflection which occurs on filled tooth cavity walls in clinical condition. Materials and methods 20 stylized MOD cavities (C-factor = 0.83) were performed in acrylic resin. The inner surface of each cavity was sand blasted and adhesively treated in order to ensure a valid bond with the composite resin. Three different diameter of SGMF were used (i.e. 1, 1,5, 2 mm). The samples were divided in 4 groups of 5 each: Group 1 samples filled with the composite only; Group 2 samples filled with composite added with SGMFs, Ø1mm (16 spheres for each sample); Group 3 samples filled with composite added with SGMFs, Ø1,5 mm (5 spheres for each sample); Group 4 samples filled with composite added with SGMFs, Ø2 mm (2 spheres for each sample). Digital pictures were taken, in standardized settings, before and immediately after the polymerization of the composite material, placed into the cavities. With a digital image analysis software the distances from the coronal reference points of the cavity walls were measured. Then the difference between the first and second measurement was calculated. The data were analyzed by means of the ANOVA test. Results A significative reduction on cavity walls deflection, when the composite resin is used in addiction with the SGMFs was observed. The SGMFs of smallest diameter (1mm) showed the better outcome. Conclusion The SGMFs are reliable in reducing contraction stress in dental composite resins. PMID:28280535
Insulin stimulation of rat ventricular K+ currents depends on the integrity of the cytoskeleton.
Shimoni, Y; Ewart, H S; Severson, D
1999-02-01
1. The effect of insulin on K+ currents was studied with enzymatically dispersed ventricular myocytes from insulin-deficient (type I) diabetic rats. Diabetic conditions were induced by a single intravenous injection of streptozotocin (100 mg kg-1) given 8-13 days before the experiments. Measurements of plasma glucose and insulin levels confirmed the diabetic status of the animals. 2. A Ca2+-independent transient outward K+ current, It, and a slowly inactivating, quasi-steady-state current, Iss, which are depressed in diabetic myocytes, could be restored by exposure to 1, 10 or 100 nM insulin. This was only observed after a delay of 5-6 h, although an insulin exposure of only 1 h was sufficient to initiate its stimulatory action on It and Iss. The stimulatory effect of insulin on these K+ currents was prevented by 2 microM cycloheximide, which in itself had no direct effect on these currents. 3. Disruption of the actin microfilament network with 1 microM cytochalasin D (CD) also prevented the stimulatory effect of 100 nM insulin on both It and Iss. Since CD was added 1 h after insulin, inhibitory effects on insulin signalling were ruled out. Adding CD (1 microM) 5-9 h after insulin, when currents were already augmented, had no effect (up to 50 min exposure). Incubating control cells for 6-10 h with 1 microM CD had no effect on any of the currents measured. 4. Stabilization of the actin network by pre-exposure to 2.5 microM phalloidin restored the stimulatory effect of insulin, in the continued presence of CD, ruling out any effects of CD on components other than the cytoskeleton. 5. The stimulatory effect of insulin was also prevented by incubating cells with insulin in the presence of the microtubule-disrupting agent colchicine (5 microM). 6. These results suggest that the insulin-mediated augmentation of K+ currents in diabetic myocytes requires protein synthesis, possibly of K+ channels, as well as an intact cytoskeleton. The possibility that newly formed channels translocate to the plasma membrane in a process dependent on different elements of the cytoskeleton is discussed.
Does the presence of bacteria effect basaltic glass dissolution rates? 1: Dead Pseudomonas reactants
NASA Astrophysics Data System (ADS)
Stockmann, Gabrielle J.; Shirokova, Liudmila S.; Pokrovsky, Oleg S.; Oelkers, Eric H.; Benezeth, Pascale
2010-05-01
Basaltic glass and crystalline basalt formations in Iceland have been suggested for industrial CO2 storage due to their porous and permeable properties and high reactivity. Acid CO2-saturated waters in contact with basaltic glass will lead to rapid dissolution of the glass and release of divalent cations, (Ca2+, Mg2+, Fe2+) that can react to form stable carbonates and thereby trap the CO2. However, the basalt formations in Iceland not only contains glass and mineral assemblages, but also host microbiological communities that either by their presence or by active involvement in chemical reactions could affect the amount of basaltic glass being dissolved and CO2 being trapped. Samples of natural bacteria communities from the CO2 storage grounds in Iceland were collected, separated, and purified using agar plate technique and cultured under laboratory conditions in nutrient broth-rich media. Heterotrophic aerobic Gram-negative strain of Pseudomonas reactants was selected for a series of flow-through experiments aimed at evaluation of basaltic glass dissolution rate in the presense of increasing amounts of dead bacteria and their lysis products. The experiments were carried out using mixed-flow reactors at pH 4, 6, 8 and 10 at 25 °C. Each of the four reactors contained 1 gram of basaltic glass of the size fraction 45-125 μm. This glass was dissolved in ~ 0.01 M buffer solutions (acetate, MES, bicarbonate and carbonate+bicarbonate mixture) of the desired pH. All experiments ran 2 months, keeping the flowrate and temperature stable and only changing the concentration of dead bacteria in the inlet solutions (from 0 to 430 mg/L). Experiments were performed in sterile conditions, and bacterial growth was prevented by adding NaN3 to the inlet solutions. Routine culturing of bacteria on the agar plates confirmed the sterility of experiments. Samples of outlet solutions were analyzed for major cations and trace elements by ICP-MS. Results demonstrate a slight decrease in the Si, Ca, and Mg release rates from basaltic glass with increasing concentration of dead bacteria at pH 4 and 6, but no effect at pH 8 and 10. The Al dissolution rate is lowered by up to one order of magnitude at all four pH values by the presence of dead bacteria. Comparison of SEM photos of the basaltic glass before and after experiments show no visible change of the glass surface. These results suggest that the presence of dead Pseudomonas reactants in the basaltic formations of Iceland will likely affect negligible the dissolution of basaltic glass during CO2 sequestration. The main effect of bacterial presence seems to be 1) the increase of the concentration of DOC that can complex metals and thus facilitate cation release from the solid phase and/or 2) adsorption of released metals at the surface of the biomass thus decreasing the overall element export rate.
Cytoskeleton and Cytoskeleton-Bound RNA Visualization in Frog and Insect Oocytes.
Kloc, Malgorzata; Bilinski, Szczepan; Kubiak, Jacek Z
2016-01-01
The majority of oocyte functions involves and depends on the cytoskeletal elements, which include microtubules and actin and cytokeratin filaments. Various structures and molecules are temporarily or permanently bound to the cytoskeletal elements and their functions rely on cytoskeleton integrity and its timely assembly. Thus the accurate visualization of cytoskeleton is often crucial for studies and analyses of oocyte structure and functions. Here we describe several reliable methods for microtubule and/or microfilaments preservation and visualization in Xenopus oocyte extracts, and in situ in live and fixed insect and frog (Xenopus) oocytes. In addition, we describe visualization of cytoskeleton-bound RNAs using molecular beacons in live Xenopus oocytes.
Exploring the human mesenchymal stem cell tubule communication network through electron microscopy.
Valente, Sabrina; Rossi, Roberta; Resta, Leonardo; Pasquinelli, Gianandrea
2015-04-01
Cells use several mechanisms to transfer information to other cells. In this study, we describe micro/nanotubular connections and exosome-like tubule fragments in multipotent mesenchymal stem cells (MSCs) from human arteries. Scanning and transmission electron microscopy allowed characterization of sinusoidal microtubular projections (700 nm average size, 200 µm average length, with bulging mitochondria and actin microfilaments); short, uniform, variously shaped nanotubular projections (100 nm, bidirectional communication); and tubule fragments (50 nm). This is the first study demonstrating that MSCs from human arteries constitutively interact through an articulate and dynamic tubule network allowing long-range cell to cell communication.
Texture sensing of cytoskeletal dynamics in cell migration
NASA Astrophysics Data System (ADS)
Das, Satarupa; Lee, Rachel; Hourwitz, Matthew J.; Sun, Xiaoyu; Parent, Carole; Fourkas, John T.; Losert, Wolfgang
Migrating cells can be directed towards a target by gradients in properties such as chemical concentration or mechanical properties of the surrounding microenvironment. In previous studies we have shown that micro/nanotopographical features on scales comparable to those of natural collagen fibers can guide fast migrating amoeboid cells by aligning actin polymerization waves to such nanostructures. We find that actin microfilaments and microtubules are aligned along the nanoridge topographies, modulating overall cell polarity and directional migration in epithelial cells. This work shows that topographic features on a biologically relevant length scale can modulate migration outcomes by affecting the texture sensing property of the cytoskeleton.
Synthetic peptides that cause F-actin bundling and block actin depolymerization
Sederoff, Heike [Raleigh, NC; Huber, Steven C [Savoy, IL; Larabell, Carolyn A [Berkeley, CA
2011-10-18
Synthetic peptides derived from sucrose synthase, and having homology to actin and actin-related proteins, sharing a common motif, useful for causing acting bundling and preventing actin depolymerization. Peptides exhibiting the common motif are described, as well as specific synthetic peptides which caused bundled actin and inhibit actin depolymerization. These peptides can be useful for treating a subject suffering from a disease characterized by cells having neoplastic growth, for anti-cancer therapeutics, delivered to subjects solely, or concomitantly or sequentially with other known cancer therapeutics. These peptides can also be used for stabilizing microfilaments in living cells and inhibiting growth of cells.
Method for localized deposition of noble metal catalysts with control of morphology
Ricco, Antonio J.; Manginell, Ronald P.; Huber, Robert J.
1998-01-01
A combustible gas sensor that uses a resistively heated, noble metal-coated, micromachined polycrystalline Si filament to calorimetrically detect the presence and concentration of combustible gases. A thin catalytic Pt film was deposited by CVD from the precursor Pt(acac).sub.2 onto microfilaments resistively heated to approximately 500 .degree. C.; Pt deposits only on the hot filament. The filaments tested to date are 2 .mu.m thick .times.10 .mu.m wide .times.100, 250, 500, or 1000 .mu.m-long polycrystalline Si; some are overcoated with a 0.25 .mu.m-thick protective CVD Si.sub.3 N.sub.4 layer.
Microscopy basics and the study of actin-actin-binding protein interactions.
Thomasson, Maggie S; Macnaughtan, Megan A
2013-12-15
Actin is a multifunctional eukaryotic protein with a globular monomer form that polymerizes into a thin, linear microfilament in cells. Through interactions with various actin-binding proteins (ABPs), actin plays an active role in many cellular processes, such as cell motility and structure. Microscopy techniques are powerful tools for determining the role and mechanism of actin-ABP interactions in these processes. In this article, we describe the basic concepts of fluorescent speckle microscopy, total internal reflection fluorescence microscopy, atomic force microscopy, and cryoelectron microscopy and review recent studies that utilize these techniques to visualize the binding of actin with ABPs. Copyright © 2013 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Eiselt, Thomas; Gomard, Guillaume; Preinfalk, Jan; Gleissner, Uwe; Lemmer, Uli; Hanemann, Thomas
2016-04-01
The aim is to develop a polymer layer which has the ability to diffuse light homogeneously and exhibit a high refractive index. The mixtures are containing an acrylate casting resin, benzylmethacrylate, phenanthrene and other additives. Phenanthrene is employed to increase the refractive index. The mixtures are first rheologically characterized and then polymerized with heat and UV radiation. For the refractive index measurements the polymerized samples require a planar surface without air bubbles. To produce flat samples a special construction consisting of a glass plate, a teflon sheet, a silicone ring (PDMS mold), another teflon sheet and another glass plate is developed. Glue clamps are used to fix this construction together. Selected samples have a refractive index of 1.585 at 20°C at a wavelength of 589nm. A master mixture with a high refractive index is taken for further experiments. Nano scaled titanium dioxide is added and dispersed into the master mixture and then spin coated on a glass substrate. These layers are optically characterized. The specular transmission and the overall transmission are measured to investigate the degree of scattering, which is defined as the haze. Most of the presented layers express the expected haze of over 50%.
NASA Astrophysics Data System (ADS)
Eiselt, Thomas; Gomard, Guillaume; Preinfalk, Jan; Gleißner, Uwe; Lemmer, Uli; Hanemann, Thomas
2016-11-01
In this work, we develop a wet-processable scattering layer exhibiting a high refractive index that can be used in organic light-emitting diodes for light outcoupling purposes. The composite layers contain an acrylate casting resin, benzylmethacrylate, and phenanthrene, which is employed to increase the refractive index. The mixtures are first rheologically characterized and then polymerized with heat and UV radiation. For the refractive index measurements, the polymerized samples require a planar surface without air bubbles. To produce flat samples, a special construction consisting of a glass plate, a teflon sheet, a silicone ring (PDMS mold), another teflon sheet, and another glass plate is developed. Glue clamps are used to hold the construction together. The refractive index of the samples can be increased from 1.565 to 1.585 at 20°C at a wavelength of 589 nm following the addition of 20 wt% phenanthrene. A master mixture with a high refractive index is taken for further experiments. Nanoscaled titanium dioxide is added and dispersed into the master mixture and then spin coated on a glass substrate. These layers are optically characterized. Most of the presented layers present the expected haze of over 50%.
NASA Technical Reports Server (NTRS)
Sutter, Brad; Hossner, Lloyd R.; Ming, Douglas W.
1996-01-01
Phosphorus (P) adsorption and desorption characteristics of Minnesota Basalt Lunar Simulant (MBLS) and Lunar Glass Simulant (LGS) were evaluated. Results of P interactions with lunar simulants indicated that mineral and glass components adsorbed between 50 and 70% of the applied P and that between 85 and 100% of the applied P was desorbed. The Extended Freundlich equation best described the adsorption data (r(sup 2) = 0.92), whereas the Raven/Hossner equation best described the desorption data ((r(sup 2) = 0.97). Kinetic desorption results indicated that MBLS and LGS released most of their P within 15 h. The expanded Elovich equation fit the data best at shorter times while t/Q(sub DT) equation had a better fit at longer times. These results indicate that P does not strongly adsorb to the two simulants and that any P that was adsorbed was readily desorbed in the presence of anion exchange resin. This work suggests that multiple small applications of P (10-20 mg P/kg) should be added to the simulants to ensure adequate solution P for plant uptake and efficient use of P fertilizer.
Adsorption of tuberculin PPD to glass and plastic surfaces
Landi, S.; Held, H. R.; Hauschild, A. H. W.; Hilsheimer, R.
1966-01-01
For some time it has been known that the adsorption of tuberculin to glass is a source of practical difficulties in tuberculin testing; for example, it leads to a loss of potency in diluted tuberculin PPD preparations used in the intracutaneous method of skin testing. The authors have correlated decreasing biological potency with decreasing radioactivity in solutions of tuberculin PPD labelled with 14C. The decrease in radioactivity is due to adsorption of PPD-14C to the glass or plastic surface of containers; it can be prevented by the addition of 0.0005% Tween 80. The extent of the decrease is affected by the type and size of the containers, the volume of solution used and the storage temperature. It is the same in the presence of 0.3% phenol or 0.01% Chinosol used as preservatives. The concentration of Tween 80 does not affect the size of the tuberculin skin reactions in BCG-sensitized guinea-pigs. It is recommended that an anti-adsorption agent be added to all dilute solutions of tuberculin PPD; in solutions for intracutaneous use containing 50 TU per ml, Tween 80 at a concentration of 0.0005% is satisfactory. PMID:5297556
A novel parameter to describe the glass-forming ability of alloys
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, E. S.; Ryu, C. W.; Kim, W. T.
2015-08-14
In this paper, we propose a new parameter for glass-forming ability (GFA) based on the combination of thermodynamic (stability of stable and metastable liquids by ΔT{sub m} = T{sub m}{sup mix} − T{sub l} and ΔT{sub x} = T{sub x} − T{sub g}, respectively) and kinetic (resistance to crystallization by T{sub x}) aspects for glass formation. The parameter is defined as ε = (ΔT{sub m} + ΔT{sub x} + T{sub x})/T{sub m}{sup mix} without directly adding T{sub g} while considering the whole temperature range for glass formation up to T{sub m}{sup mix}, which reflects the relative position of crystallization curve in continuous cooling transformation diagram. The relationship between the εmore » parameter and critical cooling rate (R{sub c}) or maximum section thickness for glass formation (Z{sub max}) clearly confirms that the ε parameter exhibits a better correlation with GFA than other commonly used GFA parameters, such as ΔT{sub x} (=T{sub x} − T{sub g}), K (=[T{sub x} − T{sub g}]/[T{sub l} − T{sub x}]), ΔT*(=(T{sub m}{sup mix} − T{sub l})/T{sub m}{sup mix}), T{sub rg} (=T{sub g}/T{sub l}), and γ (=[T{sub x}]/[T{sub l} + T{sub g}]). The relationship between the ε parameter and R{sub c} or Z{sub max} is also formulated and evaluated in the study. The results suggest that the ε parameter can effectively predict R{sub c} and Z{sub max} for various glass-forming alloys, which would permit more widespread uses of these paradigm-shifting materials in a variety of industries.« less
Sun, Ye; Xi, Hanmi; Ediger, M D; Richert, Ranko; Yu, Lian
2009-08-21
The liquid dynamics of 5-methyl-2-[(2-nitrophenyl)amino]-3-thiophenecarbonitrile, named ROY for its red, orange, and yellow crystal polymorphs, was characterized by dielectric spectroscopy and differential scanning calorimetry. Four of these polymorphs show fast "diffusionless" crystal growth at low temperatures while three others do not. ROY was found to be a typical fragile organic liquid. Its alpha relaxation process has time-temperature superposition symmetry across the viscous range (tau(alpha)=100 s-100 ns) with the width of the relaxation peak characterized by a constant beta(KWW) of 0.73. No secondary relaxation peak was observed, even with glasses made by fast quenching. For the polymorphs not showing fast crystal growth in the glassy state, the growth rate has a power-law relation with tau(alpha), u proportional to tau(alpha)(-xi), where xi approximately = 0.7. For the polymorphs showing fast crystal growth in the glassy state, the growth is so fast near and below the glass transition temperature T(g) that thousands of molecular layers can be added to the crystalline phase during one structural relaxation time of the liquid. In the glassy state, this mode of growth slows slightly over time. This slowdown is not readily explained by the effect of physical aging on the thermodynamic driving force of crystallization, the glass vapor pressure, or the rate of structural relaxation. This study demonstrates that from the same liquid or glass, the growth of some polymorphs is accurately described as being limited by the rate of structural relaxation or bulk diffusion, whereas the growth of other polymorphs is too fast to be under such control.
Quantifying Sulphur Emissions and Atmospheric Aerosol Loading From the 1730-36 Lanzarote Eruption
NASA Astrophysics Data System (ADS)
Sharma, K.; Blake, S.; Self, S.
2005-12-01
The AD 1730-36 eruption of Lanzarote (Canary Islands) is the third largest basaltic fissure eruption known to have occurred in the last 1000 years, after the Icelandic events of Laki (AD 1783-84) and Eldgja (AD 934). Our new volume estimates suggest that the Lanzarote eruption produced ~6 km3 of alkali basalt magma along a 15-km long, E-W trending fissure. Eruptive activity occurred in five distinct phases. Each phase began with Strombolian fire fountain activity, building large spatter and scoria cones. This was accompanied and followed by effusive aa and pahoehoe lava flow emplacement. As studies in Iceland have shown, this type of sustained fissure eruption can release large amounts of SO2 to the upper atmosphere, leading to the formation of sulphate aerosol clouds and causing widespread environmental damage and human suffering. Matrix glasses in scoria and surface lava samples have 80-300 ppm S (EMPA) and 300-600 ppm H2O (FTIR), whereas glass inclusions in olivine have 420-2650 ppm S and 1000-5000 ppm H2O. Low sulphur inclusions are believed to be partially degassed, representing melt that was trapped during degassing-induced crystallization that occurred as a result of shallow decompression. The inclusions with the highest sulphur contents trap the original un-degassed melt, as indicated by their consistent S/K2O ratio (0.22). The high sulphur contents are also consistent with our finding, from olivine-spinel equilibria, that the magma was relatively oxidized (log fO2 -4.8) therefore favouring the formation of sulphate species and preventing sulphide saturation. Our glass analyses indicate that 40 Mt of SO2 was injected into the upper troposphere - lower stratosphere via 12-16-km-high eruption plumes and that over half this amount was released during the first year of activity. This figure correlates with published Greenland ice-core (GISP-2) data that shows an acidity spike in 1731, suggesting stratospheric transport of sulphate aerosol to the North during the first year of eruption. Historical records note the presence of a dry fog over much of Europe during 1733. This, together with proxy climate indicators such as a marked tree ring anomaly in 1732 and a known decrease in the Northern hemisphere surface temperatures suggests that the Lanzarote eruption had some impact on Northern Hemisphere climate in the years following the activity.
Synthesis, characterization and processing of active rare earth-doped chalcohalide glasses
NASA Astrophysics Data System (ADS)
Debari, Roberto Mauro
Applications for infrared-transmitting non-oxide glass fibers span a broad range of topics. They can be used in the military, the medical field, telecommunications, and even in agriculture. Rare earth ions are used as dopants in these glasses in order to stimulate emissions in the infrared spectral region. In order to extend the host glass transmission further into the infrared, selenium atoms were substituted for sulfur in the established Ge-S-I chalcohalide glass system and the fundamental properties of these latter glasses were explored. Over 30 different compositions in the Ge-Se-I glass system were investigated as to their thermal and optical properties. The resulting optimum host with a composition of Ge15Se80I5 has a broad transmission range from 0.7 mum to 17.0 mum and a high working range over 145°C. The host glass also exhibited a Tg of 125°C, making rotational casting of a cladding tube for rod-and-tube fiberization a possibility. The base glass was doped with 1000 to 4000 ppm/wt of erbium, dysprosium, or neodymium. When doped with Er3+-ions, absorptions at 1.54 mum and 3.42 mum were observed. Nd3+-doping resulted in an absorption peak near 4.24 mum and Dy3+ ions caused absorption at 1.30 mum. Fluorescence emissions were found for neodymium at 1.396 mum with a FWHM of 74 nm, and for dysprosium at 1.145 mum with a FWHM of 75 nm, at 1.360 mum with a FWHM of 98 rim and at 1.674 mum with a FWHM of 60 nm. High optical quality tubes of the host glass could be formed using rotational casting in silica ampoules. Glass tubes, 4 to 6 cm long with a 1 cm outer diameter and a tailored inner-hole diameter ranging from 0.4 to 0.6 cm could be synthesized by this process with excellent dimensional tolerances around the circumference as well as along the length. A preform of this size provided 25 continuous meters of unclad fiber with diameters ranging from 140 to 200 mum. A UV-curable acrylate cladding was applied via an external coating cup. An x-ray analysis of the resulting fiber verified the constituents of the fiber. Due to tradeoffs between thermal properties, optical properties and rare earth solubility, the Ge-Se-I glass system must still be optimized prior to use as an active fiber device. Nevertheless, the viability of this host system has been demonstrated in this investigation. Some very promising advantages to adding halides to chalcogenide glass systems have been confirmed, including the tailoring of glass transition temperatures, enhancement of rare earth solubility, expanded fluorescence emissions in the IR, and suppression of some impurity absorption bands. Also, the potential for rod-and-tube fiberization utilizing the rotational casting method for tube synthesis has been established along with its resulting pristine core-clad interface. This research provides a foundation for active fiber device applications in the 2 to 10 mum spectral region.
Welding bulk metallic glass using nanostructured reactive multilayer foils
NASA Astrophysics Data System (ADS)
Trenkle, Jonathan C.
We have used Al/Ni reactive foils to weld Zr57Ti 5Cu20Ni8Al10 metallic glasses. The welds are a composite morphology comprised of glass ligaments and intermetallic AlNi (the product of the reactive foil). The presence of the presumably brittle intermetallic (in lieu of the glass) is expected to limit the mechanical properties of the welds. Based on fracture toughness measurements and the crack propagation paths, we conclude that virtually all of the toughness can be ascribed to the presence of the metallic glass ligaments. Increasing the pressure applied during welding increases the fraction of the joint made of these ligaments and so increases the fracture toughness as well. To eliminate the intermetallic from the weld altogether, we attempted to fabricate reactive mulitlayer foils that form an amorphous product by melting and cooling rapidly during a self-propagating reaction. We began with reactive foils with overall composition Zr2Ni but quickly determined that the foils did not fully melt. We then attempted to lower the melting temperature and increase the glass forming ability and the heat of mixing by adding Al and Cu. These foils again did not fully melt. Finally we systematically determined that foils of overall compositions Hf37Ni63, Ni 80P20, and Ni60P40, which are all known binary metallic glasses, will potentially melt during a self-propagating reaction. Knowledge of the phase transformations during a self-propagating reaction is necessary to engineer reactive foils for future applications. Furthermore, reactive foils provide an opportunity to study phase transformations under high heating rates not easily achievable. Characterizing the processes in the reaction zone however is challenging, requiring both temporal resolution better than ˜ 100 mus (the time required for the reaction front to pass a fixed location) and spatial resolution of < 100 mum (the approximate width of the reaction zone). Using synchrotron x-ray radiation, we have studied these phase transformations in situ in Al/Ni multilayers. Unlike previous annealing and quenching studies in these multilayers, we observed no metastable or intermediate phases.
Dereymaker, Aswin; Scurr, David J; Steer, Elisabeth D; Roberts, Clive J; Van den Mooter, Guy
2017-04-03
Fluid bed coating has been shown to be a suitable manufacturing technique to formulate poorly soluble drugs in glass solutions. Layering inert carriers with a drug-polymer mixture enables these beads to be immediately filled into capsules, thus avoiding additional, potentially destabilizing, downstream processing. In this study, fluid bed coating is proposed for the production of controlled release dosage forms of glass solutions by applying a second, rate controlling membrane on top of the glass solution. Adding a second coating layer adds to the physical and chemical complexity of the drug delivery system, so a thorough understanding of the physical structure and phase behavior of the different coating layers is needed. This study aimed to investigate the surface and cross-sectional characteristics (employing scanning electron microscopy (SEM) and time of flight secondary ion mass spectrometry (ToF-SIMS)) of an indomethacin-polyvinylpyrrolidone (PVP) glass solution, top-coated with a release rate controlling membrane consisting of either ethyl cellulose or Eudragit RL. The implications of the addition of a pore former (PVP) and the coating medium (ethanol or water) were also considered. In addition, polymer miscibility and the phase analysis of the underlying glass solution were investigated. Significant differences in surface and cross-sectional topography of the different rate controlling membranes or the way they are applied (solution vs dispersion) were observed. These observations can be linked to the polymer miscibility differences. The presence of PVP was observed in all rate controlling membranes, even if it is not part of the coating solution. This could be attributed to residual powder presence in the coating chamber. The distribution of PVP among the sample surfaces depends on the concentration and the rate controlling polymer used. Differences can again be linked to polymer miscibility. Finally, it was shown that the underlying glass solution layer remains amorphous after coating of the rate controlling membrane, whether formed from an ethanol solution or an aqueous dispersion.
In vitro evaluation of the cytotoxicity of two root canal sealers on macrophage activity.
de Oliveira Mendes, Sônia Teresa; Ribeiro Sobrinho, Antônio Paulino; de Carvalho, André Teixeira; de Souza Côrtes, Maria Ilma; Vieira, Leda Quercia
2003-02-01
Although some studies have been concerned with the cytotoxicity of endodontic sealers and their components, few have approached the effects of endodontic sealers on macrophage viability and activity. In this study the effect of two zinc oxide-eugenol-based sealers, freshly prepared or after setting for 24 h, was determined on macrophage activity in vitro. Sealers were placed inside a glass capillary tube and added to mouse-elicited macrophage cultures. Sealers did not affect macrophage viability; however, adherence to glass and phagocytosis were impaired. Moreover, nitric oxide production in response to activation with interferon-gamma was diminished, but interleukin-12 production in response to Listeria monocytogenes was not altered. Interestingly, freshly mixed and solid test samples had similar inhibitory activities. In conclusion, the tested sealers did not affect a pro-inflammatory response (interleukin-12 production) but had an inhibitory effect on the effector responses measured (phagocytosis and nitric oxide production).
Dielectric studies of Graphene and Glass Fiber reinforced composites
NASA Astrophysics Data System (ADS)
Praveen, D.; Shashi Kumar, M. E.; Pramod, R.
2018-02-01
Graphene and E-glass fibres are one of the key materials used currently due to their unique chemical and mechanical properties. Lately graphene has attracted many researchers across academic fraternity as it can yield better properties with lesser reinforcement percentages. The current research emphasizes on the development of graphene-based nanocomposites and its investigation on dielectric applications. The composites were fabricated by adding graphene reinforcements from 1%-3% by weight using conventional Hand-lay process. A thorough investigation was carried out to determine the dielectric behaviour of the nano-composites using impedance analyser according to ASTM standards. The dielectric measurements were carried out in the temperature range of 300K to 400K in a step of 20K. The current research proposes the material for application in capacitor industry as the sample of 2.5% weight fraction showed highest value of K with 14 at 26.1 Hz and 403K.
Parametrization in models of subcritical glass fracture: Activation offset and concerted activation
NASA Astrophysics Data System (ADS)
Rodrigues, Bruno Poletto; Hühn, Carolin; Erlebach, Andreas; Mey, Dorothea; Sierka, Marek; Wondraczek, Lothar
2017-08-01
There are two established but fundamentally different empirical approaches to parametrize the rate of subcritical fracture in brittle materials. While both are relying on a thermally activated reaction of bond rupture, the difference lies in the way as to how the externally applied stresses affect the local energy landscape. In the consideration of inorganic glasses, the strain energy is typically taken as an off-set on the activation barrier. As an alternative interpretation, the system’s volumetric strain-energy is added to its thermal energy. Such an interpretation is consistent with the democratic fiber bundle model. Here, we test this approach of concerted activation against macroscopic data of bond cleavage activation energy, and also against ab initio quantum chemical simulation of the energy barrier for cracking in silica. The fact that both models are able to reproduce experimental observation to a remarkable degree highlights the importance of a holistic consideration towards non-empirical understanding.
[In Situ Polymerization and Characterization of Hydroxyapatite/polyurethane Implanted Material].
Gu, Muqing; Xiao, Fengjuan; Liang, Ye; Yue, Lin; Li, Song; Li, Lanlan; Feng, Feifei
2015-08-01
In order to improve the interfacial bonding strength of hydroxyapatite/polyurethane implanted material and dispersion of hydroxyapatite in the polyurethane matrix, we in the present study synthesized nano-hydroxyapatite/polyurethane composites by in situ polymerization. We then characterized and analyzed the fracture morphology, thermal stability, glass transition temperature and mechanical properties. We seeded MG63 cells on composites to evaluate the cytocompatibility of the composites. In situ polymerization could improve the interfacial bonding strength, ameliorate dispersion of hydroxyapatite in the properties of the composites. After adding 20 wt% hydroxyapatite into the polyurethane, the thermal stability was improved and the glass transition temperatures were increased. The tensile strength and maximum elongation were 6.83 MPa and 861.17%, respectively. Compared with those of pure polyurethane the tensile strength and maximum elongation increased by 236.45% and 143.30%, respectively. The composites were helpful for cell adhesion and proliferation in cultivation.
Remington, Ruth; Chan, Amy; Lepore, Alicia; Kotlya, Elizabeth; Shea, Thomas B
2010-06-01
Preclinical studies demonstrate that apple juice exerts multiple beneficial effects including reduction of central nervous system oxidative damage, suppression of Alzheimer's disease (AD) hallmarks, improved cognitive performance, and organized synaptic signaling. Herein, we initiated an open-label clinical trial in which 21 institutionalized individuals with moderate-to-severe AD consumed 2 4-oz glasses of apple juice daily for 1 month. Participants demonstrated no change in the Dementia Rating Scale, and institutional caregivers reported no change in Alzheimer's Disease Cooperative Study (ADCS)-Activities of Daily Living (ADL) in this brief study. However, caregivers reported an approximate 27% (P < .01) improvement in behavioral and psychotic symptoms associated with dementia as quantified by the Neuropsychiatric Inventory, with the largest changes in anxiety, agitation, and delusion. This pilot study suggests that apple juice may be a useful supplement, perhaps to augment pharmacological approaches, for attenuating the decline in mood that accompanies progression of AD, which may also reduce caregiver burden.
Compendium of Nitromethane Data Relevant to the Tactical Explosive System (TEXS) Program
1989-04-01
reduced charge size. Confined NM in glass tubes and added silica impurities with a known particle size distribution, and used guar gum to hold silica...internal ignition test. The explosive in the pipe bomb is subjected to the action of a cen- trally located black powder (20 g) igniter. A positive...Laboratory 2800 Powder Mill Road Adelphia, MD 20783-1145 Commander U.S. Army Test and Evaluation Command ATTN: AMSTE-TE-AT, B. Hawley Aberdeen
Emerging Ceramic-based Materials for Dentistry
Denry, I.; Kelly, J.R.
2014-01-01
Our goal is to give an overview of a selection of emerging ceramics and issues for dental or biomedical applications, with emphasis on specific challenges associated with full-contour zirconia ceramics, and a brief synopsis on new machinable glass-ceramics and ceramic-based interpenetrating phase composites. Selected fabrication techniques relevant to dental or biomedical applications such as microwave sintering, spark plasma sintering, and additive manufacturing are also reviewed. Where appropriate, the authors have added their opinions and guidance. PMID:25274751
5m RPV for Exploring Joined Wing Gust Response
2009-12-01
an outer layer of light glass scrim used as the first layer. Varying layers of carbon cloth are used and then the core material is added. In this...for various angles of attack and sideslip angles. A parametric model is developed using Phoenix Integration’s Model Center Software (MC). This model...by the ground control software and finally a piece of real-time footage taken from the on-board, gimbaled camera. 2009 Progress Report 27
A Survey of Laser Lightning Rod Techniques
1991-08-21
impossibility of the LLR concept. 4 REFERENCES 1. Hagen, 1969: "Diffraction-limited high irradiance Nd- glass laser system, J. Appl. Phys., 40, 511-516. 2. Greig...study", Air Force Flight Dynamics Laboratory,, Technical Report AFFDL-TR-78-60. AD A063 847. 8. Schubert, C.N., Jr. and J.R. Lippert , 1979...pp. 132-135. 9. Lippert , J.R.,1978: "Laser-Induced Lightning Concept Exper- iment", Air Force Flight Dynamics Laboratory, Technical Report AFFDL-TR
Effects of Cr-N-ZrO 2 seed layer formed on glass substrates for longitudinal recording media
NASA Astrophysics Data System (ADS)
Suzuki, Hiroyuki; Djayaprawira, David D.; Takahashi, Yoshio; Ishikawa, Akira; Ono, Toshinori; Yahisa, Yotsuo
1999-03-01
Effects of Cr-N-ZrO 2 seed layer deposited on glass substrates before the deposition of C/Co-Cr-Pt/Cr-Ti layers for longitudinal recording media have been investigated. The product of v and Is, the activation volume and the saturation magnetization per unit volume, media noise Nd and S0/ Nd, which is the half value of peak-to-peak output voltage of an isolated pulse over Nd at 11.8 kFC/mm, are evaluated. We find that vIs is decreased by adding N and ZrO 2 to Cr seed layer. Nd is reduced as vIs decreases by adding nitrogen to the Cr seed layer. This is mainly due to the decreased grain sizes of both Cr-Ti underlayer and Co-Cr-Pt magnetic layer. The Nd is further reduced by the addition of ZrO 2 to the Cr-N seed layer. Highest S0/ Nd is achieved for the media with Cr-N-ZrO 2 seed layer. On the other hand, the media with Cr-ZrO 2 seed layer deposited without nitrogen show the higher Nd. Therefore the decrease of the grain size by addition of nitrogen into Ar is essential to reduce Nd, and the ZrO 2 addition to the Cr-N seed layer seems to enhance the effect of grain size reduction by nitrogen addition.
Project PHaEDRA: Preserving Harvard's Early Data and Research in Astronomy
NASA Astrophysics Data System (ADS)
Bouquin, Daina; Frey, Katie; Henneken, Edwin; McEachern, Maria; McGrath, Alex; Guarracino, Daniel; Koch, Jennifer; Damon, James; Brownell, Eric; Smith-Zrull, Lindsay; Daina Bouquin
2018-01-01
Material originally produced during 19th and early 20th century by researchers at the Harvard College Observatory (HCO) was recently re-discovered in the HCO Astronomical Plate Stacks collection. This material helps represent the history of the HCO and acts as an irreplaceable primary source on the evolution of observation methods and astronomy as a science. The material is also relevant to the history of women in science as the collection contains logbooks and notebooks produced by the Harvard Computers, women who have come back into the spotlight due to the recent release of books like "The Glass Universe," "Rise of the Rocket Girls," and movies like "Hidden Figures". To ensure that this remarkable set of items is as accessible and useful as possible Wolbach Library, in collaboration with the SAO/NASA Astrophysics Data System (ADS) and others, is working to catalog, digitize, and preserve the entire collection. The material is also being transcribed by volunteers through the Smithsonian Transcription Center in DC. The transcription will allow the collection to be full-text searchable in ADS and for the notebooks to eventually be linked to their original source material: 500,000 glass plate photographs representing the first ever picture of the visible universe. The novel workflow of this distributed repository and the significance of the PHaEDRA collection both stand to support the research of future generations.
Nguyen-Tran, Huu-Duc; Hoang, Van-Tho; Do, Van-Ta; Chun, Doo-Man; Yum, Young-Jin
2018-03-15
The development of lightweight automotive parts is an important issue for improving the efficiency of vehicles. Polymer composites have been widely applied to reduce weight and improve mechanical properties by mixing polymers with carbon fibers, glass fibers, and carbon nanotubes. Polypropylene (PP) has been added to carbon fiber-reinforced nylon-6 (CF/PA6) composite to achieve further weight reduction and water resistance. However, the mechanical properties were reduced by the addition of PP. In this research, multiwalled carbon nanotubes (CNTs) were added to compensate for the reduced mechanical properties experienced when adding PP. Tensile testing and bending tests were carried out to evaluate the mechanical properties. A small amount of CNTs improved the mechanical properties of carbon fiber-reinforced PA6/PP composites. For example, the density of CF/PA6 was reduced from 1.214 to 1.131 g/cm³ (6.8%) by adding 30 wt % PP, and the tensile strength of 30 wt % PP composite was improved from 168 to 173 MPa (3.0%) by adding 0.5 wt % CNTs with small increase of density (1.135 g/cm³). The developed composite will be widely used for lightweight automotive parts with improved mechanical properties.
Nguyen-Tran, Huu-Duc; Do, Van-Ta; Yum, Young-Jin
2018-01-01
The development of lightweight automotive parts is an important issue for improving the efficiency of vehicles. Polymer composites have been widely applied to reduce weight and improve mechanical properties by mixing polymers with carbon fibers, glass fibers, and carbon nanotubes. Polypropylene (PP) has been added to carbon fiber-reinforced nylon-6 (CF/PA6) composite to achieve further weight reduction and water resistance. However, the mechanical properties were reduced by the addition of PP. In this research, multiwalled carbon nanotubes (CNTs) were added to compensate for the reduced mechanical properties experienced when adding PP. Tensile testing and bending tests were carried out to evaluate the mechanical properties. A small amount of CNTs improved the mechanical properties of carbon fiber-reinforced PA6/PP composites. For example, the density of CF/PA6 was reduced from 1.214 to 1.131 g/cm3 (6.8%) by adding 30 wt % PP, and the tensile strength of 30 wt % PP composite was improved from 168 to 173 MPa (3.0%) by adding 0.5 wt % CNTs with small increase of density (1.135 g/cm3). The developed composite will be widely used for lightweight automotive parts with improved mechanical properties. PMID:29543754
Bone bonding in bioactive glass ceramics combined with a new synthesized agent TAK-778.
Kato, H; Neo, M; Tamura, J; Nakamura, T
2001-11-01
We studied the stimulatory effects of TAK-778, a new synthetic 3-benzothiepin derivative that promotes osteoblast differentiation, in the bonding of bone to bioactive glass ceramic implants in rabbit tibiae. Smooth-surfaced, rectangular plates (15 x 10 x 2 mm) made of apatite-wollastonite-containing glass ceramic were implanted bilaterally into the proximal metaphyses of rabbit tibiae. Sustained-release microcapsules containing TAK-778 were packed into the medullary cavity in one limb and untreated microcapsules were packed into the contralateral limb to serve as a paired control. At 4, 8, and 16 weeks after implantation, bonding at the bone/implant interfaces was evaluated using a detaching test and histological examination of undecalcified specimens. The tensile failure load increased during weeks 4 to 16 in both groups; the tensile failure load in the TAK-778-treated group was significantly greater than that in the control group at each interval after implantation. Histologically, the TAK-778-treated specimens showed greater active new bone formation mainly in the medullary cavity and more extensive bonding between the implant and bone than the untreated specimens. The results of this study suggest that adding the bone formation-promoting TAK-778 to bioactive glass ceramic implants may significantly accelerate bone apposition to the implants and improve the bonding process at the interface. This would help to establish earlier and stronger bonding of orthopedic ceramic implants to the surrounding bone tissue. Copyright 2001 John Wiley & Sons, Inc.
Fabián Molina, Gustavo; Cabral, Ricardo Juan; Mazzola, Ignacio; Brain Lascano, Laura; Frencken, Jo E.
2013-01-01
Adding heat to glass ionomers during setting might improve mechanical properties. The aim was to compare the biaxial flexural strength (BFS) between and within four glass ionomers, by time of exposure to a high-intensity LED light-curing unit. Materials and methods. Samples of Fuji 9 Gold Label, Ketac Molar Easymix, ChemFil Rock, and the EQUIA system were divided into three treatment groups (n = 30): without heating (Group 1), heated with LED lamp of 1400 mW/cm2 for 30 s while setting (Group 2), and heated with LED lamp of 1400 mW/cm2 for 60 s while setting (Group 3). Samples were stored for 48 hours in distilled water at 37°C until tested. BFS was tested, using a universal testing machine at a crosshead speed of 1 mm/min. Data were analyzed, using ANOVA test with the Bonferroni correction (α = 0.05). Heating the glass-ionomer cements with an LED curing light of 1400 mW/cm2 during setting for 30 s increased the BFS value of all GICs. No statistically significant difference in mean BFS scores was found between the EQUIA system and ChemFil Rock at 30 s and 60 s. The mean BFS value was statistically significantly higher for the EQUIA system and ChemFil Rock than for Fuji 9 Gold Label and Ketac Molar Easymix at all exposure times. PMID:23841095
Fabián Molina, Gustavo; Cabral, Ricardo Juan; Mazzola, Ignacio; Brain Lascano, Laura; Frencken, Jo E
2013-01-01
Adding heat to glass ionomers during setting might improve mechanical properties. The aim was to compare the biaxial flexural strength (BFS) between and within four glass ionomers, by time of exposure to a high-intensity LED light-curing unit. Materials and methods. Samples of Fuji 9 Gold Label, Ketac Molar Easymix, ChemFil Rock, and the EQUIA system were divided into three treatment groups (n = 30): without heating (Group 1), heated with LED lamp of 1400 mW/cm(2) for 30 s while setting (Group 2), and heated with LED lamp of 1400 mW/cm(2) for 60 s while setting (Group 3). Samples were stored for 48 hours in distilled water at 37°C until tested. BFS was tested, using a universal testing machine at a crosshead speed of 1 mm/min. Data were analyzed, using ANOVA test with the Bonferroni correction (α = 0.05). Heating the glass-ionomer cements with an LED curing light of 1400 mW/cm(2) during setting for 30 s increased the BFS value of all GICs. No statistically significant difference in mean BFS scores was found between the EQUIA system and ChemFil Rock at 30 s and 60 s. The mean BFS value was statistically significantly higher for the EQUIA system and ChemFil Rock than for Fuji 9 Gold Label and Ketac Molar Easymix at all exposure times.
GLASS 2.0: An Operational, Multimodal, Bayesian Earthquake Data Association Engine
NASA Astrophysics Data System (ADS)
Benz, H.; Johnson, C. E.; Patton, J. M.; McMahon, N. D.; Earle, P. S.
2015-12-01
The legacy approach to automated detection and determination of hypocenters is arrival time stacking algorithms. Examples of such algorithms are the associator, Binder, which has been in continuous use in many USGS-supported regional seismic networks since the 1980s and the spherical earth successor, GLASS 1.0, currently in service at the USGS National Earthquake Information Center for over 10 years. The principle short-comings of the legacy approach are 1) it can only use phase arrival times, 2) it does not adequately address the problems of extreme variations in station density worldwide, 3) it cannot incorporate multiple phase models or statistical attributes of phases with distance, and 4) it cannot incorporate noise model attributes of individual stations. Previously we introduced a theoretical framework of a new associator using a Bayesian kernel stacking approach to approximate a joint probability density function for hypocenter localization. More recently we added station- and phase-specific Bayesian constraints to the association process. GLASS 2.0 incorporates a multiplicity of earthquake related data including phase arrival times, back-azimuth and slowness information from array beamforming, arrival times from waveform cross correlation processing, and geographic constraints from real-time social media reports of ground shaking. We demonstrate its application by modeling an aftershock sequence using dozens of stations that recorded tens of thousands of earthquakes over a period of one month. We also demonstrate Glass 2.0 performance regionally and teleseismically using the globally distributed real-time monitoring system at NEIC.
NASA Astrophysics Data System (ADS)
Gupta, Mohit
The first part of the thesis (Chapters 2 & 3) describes a new class of organic polymer/inorganic glass composite materials with property improvements that are impossible to achieve with classical polymer blends or composites. These materials exhibit good processability, superior mechanical performance, good thermal stability, and have excellent gas barrier properties. Low glass transition temperature phosphate glasses (Pglass) are used as inorganic fillers and slightly maleated polypropylene is used as the organic polymer matrix. The Pglass, which was dispersed as spherical droplets in the unoriented composites can be elongated into high aspect ratio platelets during the biaxial stretching process. Biaxially oriented films exhibited a brick wall type microstructure with highly aligned inorganic platelets in a ductile organic matrix and the oxygen barrier properties are significantly improved due to presence of Pglass platelets as impermeable inclusions. Mechanical properties of the biaxially oriented films showed significant improvements compared to neat polymer due to uniform dispersion of the Pglass platelets. Properly dispersed and aligned platelets have proven to be very effective for increasing the composite modulus. These developed materials therefore show promise to help fulfill the ever increasing demand for new advanced materials for a wide variety of advanced packaging applications because of their gas barrier properties, flexibility, transparency, mechanical strength and performance under humid conditions. The second part of the thesis (Chapters 4 & 5) describes new value-added applications for polyesters. Chapter 4 reports a novel process for the decolorization of green and blue colored PET bottle flakes using hydrogen peroxide. The decolorized flakes were characterized for color, intrinsic viscosity values. Decolorized flakes exhibited color values similar to those of colorless recycled PET and even though IV values decreased, bleached flakes still exhibit useful molecular weight. The consumption of H2O2 during the bleaching process was quantified by titrating the residual peroxide using a standard solution of potassium permanganate. Chapter 5 reports synthesis of ductile amorphous polymers which change their color as a function of mechanical deformation. Cyano--OPV moieties were covalently incorporated into the backbone of amorphous polyester PETG. The materials exhibit a significant color change upon compression consistent with efficient breakup of the dye aggregates upon deformation and therefore can be useful for technological applications that require smart coatings with integrated scratch detectors.
THE IMPACT OF THE MCU LIFE EXTENSION SOLVENT ON DWPF GLASS FORMULATION EFFORTS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peeler, D; Edwards, T
2011-03-24
As a part of the Actinide Removal Process (ARP)/Modular Caustic Side Solvent Extraction Unit (MCU) Life Extension Project, a next generation solvent (NG-CSSX), a new strip acid, and modified monosodium titanate (mMST) will be deployed. The strip acid will be changed from dilute nitric acid to dilute boric acid (0.01 M). Because of these changes, experimental testing with the next generation solvent and mMST is required to determine the impact of these changes in 512-S operations as well as Chemical Process Cell (CPC), Defense Waste Processing Facility (DWPF) glass formulation activities, and melter operations at DWPF. To support programmatic objectives,more » the downstream impacts of the boric acid strip effluent (SE) to the glass formulation activities and melter operations are considered in this study. More specifically, the impacts of boric acid additions to the projected SB7b operating windows, potential impacts to frit production temperatures, and the potential impact of boron volatility are evaluated. Although various boric acid molarities have been reported and discussed, the baseline flowsheet used to support this assessment was 0.01M boric acid. The results of the paper study assessment indicate that Frit 418 and Frit 418-7D are robust to the implementation of the 0.01M boric acid SE into the SB7b flowsheet (sludge-only or ARP-added). More specifically, the projected operating windows for the nominal SB7b projections remain essentially constant (i.e., 25-43 or 25-44% waste loading (WL)) regardless of the flowsheet options (sludge-only, ARP added, and/or the presence of the new SE). These results indicate that even if SE is not transferred to the Sludge Receipt and Adjustment Tank (SRAT), there would be no need to add boric acid (from a trim tank) to compositionally compensate for the absence of the boric acid SE in either a sludge-only or ARP-added SB7b flowsheet. With respect to boron volatility, the Measurement Acceptability Region (MAR) assessments also suggest that Slurry Mix Evaporator (SME) acceptability decisions would not be different assuming either 100% of the B{sub 2}O{sub 3} from the SE were retained or volatilized. More specifically, the 0.84 wt% B{sub 2}O{sub 3} in the SE is so minor that its presence in the SME analysis does not influence SME acceptability decisions. In fact, using the 100% retention and 100% volatilization composition projections, only minor differences in the predicted properties of the glass product occur with all of the glasses being acceptable over a WL interval of 32-42%. Based on the 0.01M boric acid flowsheet, there is very little difference between Frit 418 and Frit 418-7D (a frit that was compositionally altered to account for the 0.84 wt% B{sub 2}O{sub 3} in the SE) with respect to melt temperature. In fact, when one evaluates the composition of Frit 418-7D, it lies within the current Frit 418 vendor specifications and therefore could have been produced by the vendor targeting the nominal composition of Frit 418.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
KRUGER AA; MATLACK KS; PEGG IL
2011-12-29
Eight tests using different HLW feeds were conducted on the DM100-BL to determine the effect of variations in glass properties and feed composition on processing rates and melter conditions (off-gas characteristics, glass processing, foaming, cold cap, etc.) at constant bubbling rate. In over seven hundred hours of testing, the property extremes of glass viscosity, electrical conductivity, and T{sub 1%}, as well as minimum and maximum concentrations of several major and minor glass components were evaluated using glass compositions that have been tested previously at the crucible scale. Other parameters evaluated with respect to glass processing properties were +/-15% batching errorsmore » in the addition of glass forming chemicals (GFCs) to the feed, and variation in the sources of boron and sodium used in the GFCs. Tests evaluating batching errors and GFC source employed variations on the HLW98-86 formulation (a glass composition formulated for HLW C-106/AY-102 waste and processed in several previous melter tests) in order to best isolate the effect of each test variable. These tests are outlined in a Test Plan that was prepared in response to the Test Specification for this work. The present report provides summary level data for all of the tests in the first test matrix (Matrix 1) in the Test Plan. Summary results from the remaining tests, investigating minimum and maximum concentrations of major and minor glass components employing variations on the HLW98-86 formulation and glasses generated by the HLW glass formulation algorithm, will be reported separately after those tests are completed. The test data summarized herein include glass production rates, the type and amount of feed used, a variety of measured melter parameters including temperatures and electrode power, feed sample analysis, measured glass properties, and gaseous emissions rates. More detailed information and analysis from the melter tests with complete emission chemistry, glass durability, and melter operating details will be provided in the final report. A summary of the tests that were conducted is provided in Table 1. Each of the seven tests was of nominally one hundred hours in duration. Test B was conducted in two equal segments: the first with nominal additives, and the second with the replacement of borax with a mixture of boric acid and soda ash to determine the effect of alternative OPC sources on production rates and processing characteristics. Interestingly, sugar additions were required near mid points of Tests W and Z to reduce excessive foaming that severely limited feed processing rates. The sugar additions were very effective in recovering manageable processing conditions, albeit over the relatively short remainder of the test duration. Tests W and Z employed the highest melt viscosities but not by a particularly wide margin. Other tests, which did not exhibit such foaming Issues, employed higher concentrations of manganese or iron or both. These results highlight the need for the development of protocols for the a priori determination of which HLW feeds will require sugar additions and the appropriate amounts of sugar to be added in order to control foaming (and maintain throughput) without over-reduction of the melt (which could lead to molten metal formation). In total, over 8,800 kg of feed was processed to produce over 3200 kg of glass. Steady-state processing rates were achieved, and no secondary sulfate phases were observed during any of the tests. Analysis was performed on samples of the glass product taken throughout the tests to verify composition and properties. Sampling and analysis was also performed on melter exhaust to determine the effect of the feed and glass changes on melter emissions.« less
Diagnosis of Plasma States in X-Ray Laser Experiments
1992-10-01
J e AD-A256 909 FOREIGN AEROSPACE SCIENCE AND TECHNOLOGY CENTER DTIC 4 OCT 2 6 1992’ DIAGNOSIS OF PLASMA STATES IN X-RAY LASER EXPERIMENTS by Yang ...0619-92 HUMAN TRANSLATION FASTC-ID(RS)T-0619-92 8 October 1992 DIAGNOSIS OF PLASMA STATES IN X-RAY LASER EXPERIMENTS By: Yang Shangjin, Cai Yuqin, Chunyu... Yang Shangjin, Cai Yuqin, and Chunyu Shutai China Academy of Engineering Physics Abstract At an LF-12 laser installation, an Nd glass laser of
1994-10-27
Thus, we investigated several other secondary amines for use in the condensation of the picoline salt with various substituted benza!dehydes. C I I...a 10 gallon glass lined reactor was charged with 12 L of methanol, 3.120 kg of picoline , and 6.046 kg of methyl toluene sulfonate. The I reaction...dimethylamino benzaldehyde was added to the newly formed picoline salt, I together with an additional 6 L of methanol. Finally, 500 mL of pyrrolidine were slowly
Methacrylate derivatives incorporating pyroglutamic acid.
Smith, Tara J; Mathias, Lon J
2002-01-01
Methacrylates containing pyroglutamic acid were synthesized in good yields. Methyl alpha-pyroglutamyl methylacrylate (PyMM) and methyl alpha-pyroglutamidoundecanoyl methylacrylate (PyUM) give very fast photopolymerization rates both in homopolymerizations and with widely used commercial monomers N-vinyl pyrrolidinone (NVP) and hydroxyethyl methacrylate (HEMA). Soluble or cross-linked homopolymers can be obtained depending upon polymerization temperature. Pyroglutamic methacrylates polymerize without added initiator in the melt. Solution cast, photocured, and thermally cured coatings gave good to excellent adhesion to poly(ethylene terephthalate) and glass surfaces.
2013-06-01
high-performance contact adhesive (baseline) can be used to bond most rubber, cloth, metal, wood , foamed glass, paper honeycomb, decorative plastic ...and gasket adhesive (baseline) may be used to bond metal, wood , most plastics , neoprene, SBR, and butyl rubber (11). Key features are high immediate...nitrile rubber, most plastics and gasketing materials to a variety of substrates (13). This product contains 0% HAPs (14) and has been added to the
Recycling of CdTe photovoltaic waste
Goozner, Robert E.; Long, Mark O.; Drinkard, Jr., William F.
1999-04-27
A method for extracting and reclaiming metals from scrap CdTe photovoltaic cells and manufacturing waste by leaching the metals in dilute nitric acid, leaching the waste with a leaching solution comprising nitric acid and water, skimming any plastic material from the top of the leaching solution, separating the glass substrate from the liquid leachate, adding a calcium containing base to the leachate to precipitate Cd and Te, separating the precipitated Cd and Te from the leachate, and recovering the calcium-containing base.
Recycling of CdTe photovoltaic waste
Goozner, R.E.; Long, M.O.; Drinkard, W.F. Jr.
1999-04-27
A method for extracting and reclaiming metals from scrap CdTe photovoltaic cells and manufacturing waste by leaching the metals in dilute nitric acid, leaching the waste with a leaching solution comprising nitric acid and water, skimming any plastic material from the top of the leaching solution, separating the glass substrate from the liquid leachate, adding a calcium containing base to the leachate to precipitate Cd and Te, separating the precipitated Cd and Te from the leachate, and recovering the calcium-containing base. 3 figs.
In-situ determination of the oxidation state of iron in Fe-bearing silicate melts
NASA Astrophysics Data System (ADS)
Courtial, P.; Wilke, M.; Potuzak, M.; Dingwell, D. B.
2005-12-01
Terrestrial lavas commonly contain up to 10 wt% of iron. Furthermore, rocks returned from the Moon indicate lunar lava containing up to 25 wt% of iron and planetary scientists estimated that the martian mantle has about 18 wt% of iron. An experimental challenge in dealing with Fe-bearing silicate melts is that the oxidation state, controlling the proportions of ferric and ferrous iron, is a function of composition, oxygen fugacity and temperature and may vary significantly. Further complications concerning iron originate from its potential to be either four-, six- or even five-fold coordinated in both valence states. Therefore, the oxidation state of iron was determined in air for various Fe-bearing silicate melts. Investigated samples were Na-disilicate (NS), one atmosphere anorthite-diopside eutectic (AD) and haplogranitic (HPG8) melts containing up to 20, 20 and 10 wt% of iron, respectively. XANES spectra at the Fe K-edge were collected for all the melts at beamline A1, HASYLAB, Hamburg, using a Si(111) 4-crystal monochromator. Spectra were collected for temperatures up to 1573 K using a Pt-Rh loop as heating device. The Fe oxidation state was determined from the centroid position of the pre-edge feature using the calibration of Wilke et al. (2004). XANES results suggest that oxidation state of iron does not change within error for NS melts with addition of Fe, while AD and HPG8 melts become more oxidised with increasing iron content. Furthermore, NS melts are well more oxidised than AD and HPG8 melts that exhibit relatively similar oxidation states for identical iron contents. The oxidation state of iron for NS melts appears to be slightly temperature-dependent within the temperature range investigated (1073-1573 K). However, this trend is stronger for AD and HPG8 melts. Assuming that glass reflects a picture of the homogeneous equilibria of the melt, the present in-situ Fe-oxidation states determined for these melts were compared to those obtained on quenched glasses from different temperatures, when possible, using wet-chemical analysis (i.e., K-dichromate potentiometry). Both datasets agree reasonably well (within 10 %). References: Wilke et al. (2004) Chemical Geology, 213, 71-87.
Belkin, H.E.; de Vivo, B.; Torok, K.; Webster, J.D.
1998-01-01
Silicate-melt inclusions from lavas and pyroclastics from a selected suite of pre-A.D. 1631 interplinian Mt. Somma-Vesuvius lavas and scoria have been experimentally homogeneized and studied by microthermometry, electron microprobe (EMPA) and secondary-ion mass spectrometry (SIMS) to examine pre-eruptive volatile content and magma evolution. The melt inclusions have a bubble about 0.06% their volume, uncommonly contain non-condensable gas but do not contain any dense fluid phases. Clinopyroxene-hosted inclusions yield homogenization temperatures (Th) from 1170 to 1260??C, most between 1220 and 1240??C; plagiclase-hosted inclusions have Th from 1210 to 1230??C; these values are typical for the Vesuvius environment. The dominant factor controlling major element variability in the inclusions is clinopyroxene fractionation; MgO varies from 5 to 3 wt%, SiO2 varies from 60 to 48 wt%. total alkalis vary from 15 to 4 wt%, and CaO varies from 13 to 5 wt%. H2O varies from 2.7 to 0.6 wt% and is decoupled from incompatible element evolution suggesting vapor saturation during trapping. Chlorine and F vary from 1.- wt% to 0 and 0.63 to 0 wt%, respectively. Bulk rock and limited matrix glass analyses show that the lavas lost about half of their F and Cl content except for the A.D. 472-1631 lava which contains similar Cl abundances as the bulk rock. SO3 varies from 0.5 to 0 wt% and compared with matrix glass and bulk rock demonstrate that the lavas have lost essentially all sulfur. The samples can be classified into three age groups, ??? 25 000 yr B.P., 25 000-17 000 yr B.P., and A.D. 472-1631. There is a systematic increase in some components, e.g., total alkalis, SO3, Cl, Li, B, and Sr with the youth of the sample and a decrease in others, e.g., Zr and Y. However, on average these samples seem less evolved than later A.D. 1631-1944 lavas.
The analysis of lightweight brick strength pressure with mixture of glass powder and silica fume
NASA Astrophysics Data System (ADS)
Nursyamsi; Liang, William
2018-03-01
Little by little the engineers research how the development of concrete that can utilize waste. In the utilization of the waste, it can be functioned as mixing material which the chemical or the physical traits of the used goods contain similarity to the mixture of concrete in general, one of them is glass powder as the substitute of cement. The glass powder that utilizes is the one that is sifted through sieve No. 200 as much as 10% of the weight of the cement. The testing specimen of the concrete brick is make of the mixture with the ratio of 1:7, then is added with the foaming agent (1:30) and silica fume (10% of the weight of the cement). Furthermore, visual examination, absorption, net weight and testing specimen compressive strength. The data analysis uses the reference of SNI 03 – 0349 – 1989 regarding Concrete Brick for the Match for the Wall. Foaming Agent is make by using modified hand drill and brace. The testing specimen uses the brick mold with the size of 40 cm x 20cm x 10 cm. Based on this research, it shows that the quality that results from brick is still qualified based on SNI 03 – 0349 – 1989.
Wang, Xin; Zhao, Lichen; Hu, Ximei; Cheng, Yongjian; Liu, Shuiqing; Chen, Peng; Cui, Chunxiang
2017-11-30
Magnesium-based bulk metallic glass matrix composites (BMGMCs) have better plasticity than the corresponding bulk metallic glasses (BMGs); however, their strength and density are often compromised due to the fact that the effective reinforcement phase is mostly plastic heavy metal. For lightweight SiC-particle reinforced BMGMCs, interface wettability and the sharpness of the particles often reduce the strengthening effect. In this work, SiC particles were coated with a thin Cu coating by electroless plating, and added to Mg 54 Cu 26.5 Ag 8.5 Gd 11 melt in an amount of 5 wt % to prepare a BMGMC. The microstructure of the interface, mechanical behavior and fracture morphology of the BMGMC were studied by scanning electron microscopy and quasi-static compression testing. The results showed that the Cu coating improved the wettability between SiC and the matrix alloy without obvious interfacial reactions, leading to the dispersion of SiC particles in the matrix. The addition of Cu-coated SiC particles improved the plastic deformation ability of Mg 54 Cu 26.5 Ag 8.5 Gd 11 BMG, proving that electroless plating was an effective method for controlling the interface microstructure and mechanical behavior of BMGMCs.
NASA Astrophysics Data System (ADS)
Castelain, Mickaël; Pignon, Frédéric; Piau, Jean-Michel; Magnin, Albert
2008-04-01
We used an optical tweezer to investigate the adhesion of yeast Saccharomyces cerevisiae onto a glass substrate at the initial contact. Micromanipulation of free-living objects with single-beam gradient optical trap enabled to highlight mechanisms involved in this initial contact. As a function of the ionic strength and with a displacement parallel to the glass surface, the yeast adheres following different successive ways: (i) Slipping and rolling at 1.5mM NaCl, (ii) slipping, rolling, and sticking at 15mM NaCl, and (iii) only sticking at 150mM. These observations were numerous and reproducible. A kinetic evolution of these adhesion phenomena during yeast movement was clearly established. The nature, range, and relative intensity of forces involved in these different adhesion mechanisms have been worked out as a quantitative analysis from Derjaguin-Landau-Verwey-Overbeek (DLVO) and extended DLVO theories. Calculations show that the adhesion mechanisms observed and their affinity with ionic strength were mainly governed by the Lifshitz-van der Waals interaction forces and the electrical double-layer repulsion to which are added specific contact forces linked to "sticky" glycoprotein secretion, considered to be the main forces capable of overcoming the short-range Lewis acid-base repulsions.
Facile detection of Troponin I using dendritic platinum nanoparticles and capillary tube indicators.
Lee, Sanghee; Kwon, Donghoon; Yim, Changyong; Jeon, Sangmin
2015-01-01
A facile method was developed for the detection of Troponin I (TnI) using dendritic platinum nanoparticles and capillary tube indicators. Dendritic platinum nanoparticles were functionalized with TnI antibodies, which were used to capture TnI in human serum. The captured TnI was conjugated to the inner surface of a glass vial, to which a hydrogen peroxide (H2O2) solution was added. After the glass vial was sealed with a screw cap containing a silicon septum, a capillary tube containing a drop of ink was inserted through the septum. The catalytic dissociation of H2O2 to water and oxygen increased the pressure inside the glass vial and raised the ink level in the capillary tube. The ink level increased with the platinum nanoparticle concentration, which is proportional to the TnI concentration. The sensitivity of this assay for TnI in human serum after a 5 min dissociation reaction, detected with the naked eye, was 0.1 ng/mL, which was better than the sensitivity of the conventional colorimetric method using the TMB oxidation reaction under the same experimental conditions. A control experiment using alpha-fetoprotein, interleukin-5, and C-reactive protein revealed that the developed method was highly selective for the detection of TnI.
Effect of SiO2 on immobilization of metals and encapsulation of a glass network in slag.
Kuo, Yi-Ming; Lin, Ta-Chang; Tsai, Perng-Jy
2003-11-01
The final disposal of ash from an incinerator is of special concern because of the possibility of its releasing toxic substances. Melting/vitrification has been regarded as a prospective technology of ash treatment. The object of this investigation was to evaluate the effect of silica (SiO2) addition on the immobilization of hazardous metals and the encapsulation of a glass network during the vitrification process. Four specimens with SiO2/fly ash mixing ratios of 0, 0.1, 0.2, and 0.3, respectively, were tested. The mobility of metals in slag was then estimated by a sequential extraction procedure. X-ray diffraction analysis indicates that SiO2 leads to the polymerization of silicates. The encapsulation of aluminum, calcium, and magnesium would not be observed unless adequate amount of SiO2 was added. It was also found that SiO2 addition enhances the formation of a compact and interconnected glass network structure and, thus, contributes to the chemical stability of metals in slag. After vitrification, the mobility of cadmium, copper, iron, chromium, nickel, lead, and zinc was significantly reduced. However, there is no significant correlation between the immobilization of these metals and the addition of SiO2.
Vertically-tapered optical waveguide and optical spot transformer formed therefrom
Bakke, Thor; Sullivan, Charles T.
2004-07-27
An optical waveguide is disclosed in which a section of the waveguide core is vertically tapered during formation by spin coating by controlling the width of an underlying mesa structure. The optical waveguide can be formed from spin-coatable materials such as polymers, sol-gels and spin-on glasses. The vertically-tapered waveguide section can be used to provide a vertical expansion of an optical mode of light within the optical waveguide. A laterally-tapered section can be added adjacent to the vertically-tapered section to provide for a lateral expansion of the optical mode, thereby forming an optical spot-size transformer for efficient coupling of light between the optical waveguide and a single-mode optical fiber. Such a spot-size transformer can also be added to a III-V semiconductor device by post processing.
NASA Astrophysics Data System (ADS)
Baumer, Ursula; Dietemann, Patrick; Koller, Johann
2009-07-01
Objects of hinterglasmalerei, reverse-glass paintings, are painted on the back side of glass panels. Obviously, the paint layers are applied in reverse order, starting with the uppermost layer. The finished hinterglas painting is viewed through the glass, thus revealing an impressive gloss and depth of colour. The binding media of two precious objects of hinterglasmalerei from the 16th and 17th century have been identified as almost exclusively resinous. Identification was performed by a special optimised analysis procedure, which is discussed in this paper: solvent extracts are analysed by gas chromatography/mass spectrometry, both with and without derivatisation or hydrolysis. In an additional step, oxalic acid is added to the methanol extracts prior to injection. This attenuates the peaks of the non-acidic compounds, whereas the acids elute with good resolution. The non-acidic compounds are emphasised after injection of the underivatised extracts. This approach minimises compositional changes caused by the sample preparation and derivatisation steps. Chromatograms of aged samples with a very complex composition are simplified, which allows a more reliable and straightforward identification of significant markers for various materials. The binding media of the hinterglas objects were thus shown to consist of mixtures of different natural resins, larch turpentine, heat-treated Pinaceae resin or mastic. Typical compounds of dragon's blood, a natural red resin, were also detectable in red glazes by the applied analysis routine. Identification of the binding media provides valuable information that can be used in the development of an adequate conservation treatment.
Figueroa, Yetzury; Guevara, Marvilan; Pérez, Adriana; Cova, Aura; Sandoval, Aleida J; Müller, Alejandro J
2016-08-01
This work studies how sucrose (S) addition modifies the thermal properties of cassava starch (CS). Neat CS and CS-S blends with 4, 6 and 8% sugar contents (CS-S-4%, CS-S-6% and CS-S-8%) were prepared and analyzed by differential scanning calorimetry (DSC) and dynamic mechanical thermal analysis (DMTA), in a wide range of moisture levels (2-20%). In equilibrated samples with moisture contents lower than 10%, twoendothermic steps were observed during first DSC heating scans and two corresponding relaxation maxima in tan δ were detected by DMTA. The first transition, detected at around 45-55°C by both DSC and DMTA, is frequently found in starchy foods, while the second observed at higher temperatures is associated to the glass transition temperature of the blends. At higher moisture contents, only one thermal transition was observed. Samples analyzed immediately after cooling from the melt (i.e., after erasing their thermal history), exhibited a single glass transition temperature, regardless of their moisture content. Addition of sugar promotes water plasticization of CS only at high moisture contents. In the low moisture content range, anti-plasticization was observed for both neat and sugar-added CS samples. Addition of sugar decreases the moisture content needed to achieve the maximum value of the glass transition temperature before plasticization starts. The results of this work may be valuable for the study of texture establishment in low moisture content extruded food products. Copyright © 2016 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nenoff, Tina M.; Garino, Terry J.; Croes, Kenneth James
2015-07-01
Two large size Glass Composite Material (GCM) waste forms containing AgI-MOR were fabricated. One contained methyl iodide-loaded AgI-MOR that was received from Idaho National Laboratory (INL, Test 5, Beds 1 – 3) and the other contained iodine vapor loaded AgIMOR that was received from Oak Ridge National Laboratory (ORNL, SHB 2/9/15 ). The composition for each GCM was 20 wt% AgI-MOR and 80 wt% Ferro EG2922 low sintering temperature glass along with enough added silver flake to prevent any I2 loss during the firing process. The silver flake amounts were 1.2 wt% for the GCM with the INL AgI-MOR andmore » 3 wt% for the GCM contained the ORNL AgI-MOR. The GCMs, nominally 100 g, were first uniaxially pressed to 6.35 cm (2.5 inch) diameter disks then cold isostatically pressed, before firing in air to 550°C for 1hr. They were cooled slowly (1°C/min) from the firing temperature to avoid any cracking due to temperature gradients. The final GCMs were ~5 cm in diameter (~2 inches) and non-porous with densities of ~4.2 g/cm³. X-ray diffraction indicated that they consisted of the amorphous glass phase with small amounts of mordenite and AgI. Furthermore, the presence of the AgI was confirmed by X-ray fluorescence. Methodology for the scaled up production of GCMs to 6 inch diameter or larger is also presented.« less
Iron specificity of a biosensor based on fluorescent pyoverdin immobilized in sol-gel glass
2011-01-01
Two current technologies used in biosensor development are very promising: 1. The sol-gel process of making microporous glass at room temperature, and 2. Using a fluorescent compound that undergoes fluorescence quenching in response to a specific analyte. These technologies have been combined to produce an iron biosensor. To optimize the iron (II or III) specificity of an iron biosensor, pyoverdin (a fluorescent siderophore produced by Pseudomonas spp.) was immobilized in 3 formulations of porous sol-gel glass. The formulations, A, B, and C, varied in the amount of water added, resulting in respective R values (molar ratio of water:silicon) of 5.6, 8.2, and 10.8. Pyoverdin-doped sol-gel pellets were placed in a flow cell in a fluorometer and the fluorescence quenching was measured as pellets were exposed to 0.28 - 0.56 mM iron (II or III). After 10 minutes of exposure to iron, ferrous ion caused a small fluorescence quenching (89 - 97% of the initial fluorescence, over the range of iron tested) while ferric ion caused much greater quenching (65 - 88%). The most specific and linear response was observed for pyoverdin immobilized in sol-gel C. In contrast, a solution of pyoverdin (3.0 μM) exposed to iron (II or III) for 10 minutes showed an increase in fluorescence (101 - 114%) at low ferrous concentrations (0.45 - 2.18 μM) while exposure to all ferric ion concentrations (0.45 - 3.03 μM) caused quenching. In summary, the iron specificity of pyoverdin was improved by immobilizing it in sol-gel glass C. PMID:21554740
Vitrification of incinerated tannery sludge in silicate matrices for chromium stabilization.
Varitis, S; Kavouras, P; Pavlidou, E; Pantazopoulou, E; Vourlias, G; Chrissafis, K; Zouboulis, A I; Karakostas, Th; Komninou, Ph
2017-01-01
The vitrification process was applied for the stabilization and solidification of a rich in chromium ash that was the by-product of incineration of tannery sludge. Six different batch compositions were produced, based on silica as the glass former and sodium and calcium oxides as flux agents. As-vitrified products (monoliths) were either composed of silicate matrices with separated from the melt Eskolaite (Cr 2 O 3 ) crystallites or were homogeneous glasses (in one case). All as-vitrified products were thermally treated in order to transform them to partially crystallized, i.e. devitrified products. Devitrification is an important part of the work since studying the transformation of the initial as-vitrified products into glass-ceramics with better properties could result to stabilized products with potential added value. The devitrified products were diversified by the effective crystallization mode and separated crystal phase composition. These variations originated from differences in: (a) batch composition of the initial as-vitrified products and (b) thermal treatment conditions. In devitrified products crystallization led to the separation of Devitrite (Na 2 Ca 3 Si 6 O 16 ), Combeite (Na 4 Ca 4 Si 6 O 18 ) and Wollastonite (CaSiO 3 ) crystalline phases, while Eskolaite crystallites were not affected by thermal treatment. Leaching test results revealed that chromium was successfully stabilized inside the as-vitrified monoliths. Devitrification impairs chromium stabilization, only in the case where the initial as-vitrified product was a homogeneous glass. In all other cases, devitrification did not affect successful chromium stabilization. Copyright © 2016 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, Timothy J.; Bernacki, Bruce E.; Redding, Rebecca L.
2014-11-01
Accurate and calibrated directional-hemispherical reflectance spectra of solids are important for both in situ and remote sensing. Many solids are in the form of powders or granules and to measure their diffuse reflectance spectra in the laboratory, it is often necessary to place the samples behind a transparent medium such as glass for the ultraviolet (UV), visible, or near-infrared spectral regions. Using both experimental methods and a simple optical model, we demonstrate that glass (fused quartz in our case) leads to artifacts in the reflectance values. We report our observations that the measured reflectance values, for both hemispherical and diffusemore » reflectance, are distorted by the additional reflections arising at the air–quartz and sample–quartz interfaces. The values are dependent on the sample reflectance and are offset in intensity in the hemispherical case, leading to measured values up to ~6% too high for a 2% reflectance surface, ~3.8% too high for 10% reflecting surfaces, approximately correct for 40–60% diffuse-reflecting surfaces, and ~1.5% too low for 99% reflecting Spectralon® surfaces. For the case of diffuse-only reflectance, the measured values are uniformly too low due to the polished glass, with differences of nearly 6% for a 99% reflecting matte surface. The deviations arise from the added reflections from the quartz surfaces, as verified by both theory and experiment, and depend on sphere design. Finally, empirical correction factors were implemented into post-processing software to redress the artifact for hemispherical and diffuse reflectance data across the 300–2300 nm range.« less
Silicate release from glass for pharmaceutical preparations.
Bohrer, Denise; Bortoluzzi, Fabiana; Nascimento, Paulo Cícero; Carvalho, Leandro Machado; Ramirez, Adrian Gustavo
2008-05-01
Glass is made of polymeric silica and other minor components, which are necessary for turning the silica into a material more easily moldable and resistant to temperature changes. Glass containers for pharmaceutical usage are classified according to their resistance to a chemical attack, a test carried out in the presence of water and heat. The test is designed to show the released alkalinity, a variable dependent on the amount of sodium oxide, one of the minor components added to the glass mass. In this work, the release of silica from glass by action of constituents from pharmaceutical formulations was investigated. The study included products used in large volumes and usually stored in glass containers. Solutions of amino acids, electrolytes, glucose, oligoelements and others such as heparin and sodium bicarbonate were individually stored in glass containers and heated at 121 degrees C for 30min, as in the water attack test. The test was also carried out only with water, where the pH varied from 2 to 12. The released silicate was measured either by photometry or atomic absorption spectrometry, depending on the nature of the sample. The results showed that silicate is released during the heating cycle even if the contact is with pure water only. The pH exerts a considerable influence on the release, being that the higher the pH, the higher the silica dissolved. An elevated pH, however, is not the only factor responsible for silica dissolution. While in the solutions of NaCl, KCl, Mg Cl2 and ZnSO4 and in most of the amino acids, the concentration of silicate was as high as in pure water (0.1-1.0mg Si/L). In the solutions of sodium acetate, bicarbonate and gluconate, its concentration was much higher, over 30mg Si/L. These results were confirmed by the analysis of commercial products, where in solutions of amino acids the level of silicate ranged from 0.14 to 0.19mg Si/L. On the other hand, calcium gluconate, sodium bicarbonate and potassium phosphate presented silicate levels from 1 to 4mg/L. Although silica is not considered a toxic substance for humans, it is necessary to be aware of its presence in solutions for parenteral nutrition due to the direct introduction into the bloodstream and the large volume usually administrated, even to pre-term infants.
YIELD STRESS REDUCTION OF DWPF MELTER FEED SLURRIES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stone, M; Michael02 Smith, M
2006-12-28
The Defense Waste Processing Facility (DWPF) at the Savannah River Site vitrifies High Level Waste for repository internment. The process consists of three major steps: waste pretreatment, vitrification, and canister decontamination/sealing. The HLW consists of insoluble metal hydroxides (primarily iron, aluminum, magnesium, manganese, and uranium) and soluble sodium salts (carbonate, hydroxide, nitrite, nitrate, sulfate). The pretreatment process acidifies the sludge with nitric and formic acids, adds the glass formers as glass frit, then concentrates the resulting slurry to approximately 50 weight percent (wt%) total solids. This slurry is fed to the joule-heated melter where the remaining water is evaporated followedmore » by calcination of the solids and conversion to glass. The Savannah River National Laboratory (SRNL) is currently assisting DWPF efforts to increase throughput of the melter. As part of this effort, SRNL has investigated methods to increase the solids content of the melter feed to reduce the heat load required to complete the evaporation of water and allow more of the energy available to calcine and vitrify the waste. The process equipment in the facility is fixed and cannot process materials with high yield stresses, therefore increasing the solids content will require that the yield stress of the melter feed slurries be reduced. Changing the glass former added during pretreatment from an irregularly shaped glass frit to nearly spherical beads was evaluated. The evaluation required a systems approach which included evaluations of the effectiveness of beads in reducing the melter feed yield stress as well as evaluations of the processing impacts of changing the frit morphology. Processing impacts of beads include changing the settling rate of the glass former (which effects mixing and sampling of the melter feed slurry and the frit addition equipment) as well as impacts on the melt behavior due to decreased surface area of the beads versus frit. Beads were produced from the DWPF process frit by fire polishing. The frit was allowed to free fall through a flame, then quenched with a water spray. Approximately 90% of the frit was converted to beads by this process, as shown in Figure 1. Borosilicate beads of various diameters were also procured for initial testing.« less