DOE Office of Scientific and Technical Information (OSTI.GOV)
Izaurralde, R Cesar C.; Rosenberg, Norman J.; Lal, Rattan
2001-12-31
Farmers, gardeners, and, of course, argonomists know that adding organic matter to soils is a good thing to do. Organic matter increases soil water-holding capacity, imparts fertility with the addition of nutrients, increases soil aggregation, and improves tilth. Depending on its type-humus, manure, stubble, litter-organic matter contains between 40 and 60% carbon.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Izaurralde, R Cesar C.; Rosenberg, Norman J.; Lal, Rattan
Farmers, gardeners, and, of course, argonomists know that adding organic matter to soils is a good thing to do. Organic matter increases soil water-holding capacity, imparts fertility with the addition of nutrients, increases soil aggregation, and improves tilth. Depending on its type-humus, manure, stubble, litter-organic matter contains between 40 and 60% carbon.
Wang, Quan; Awasthi, Mukesh Kumar; Ren, Xiuna; Zhao, Junchao; Li, Ronghua; Wang, Zhen; Chen, Hongyu; Wang, Meijing; Zhang, Zengqiang
2017-12-01
The aim of this work was to compare the impact of biochar, zeolite and their mixture on nitrogen conservation and organic matter transformation during pig manure (PM) composting. Four treatments were set-up from PM mixed with wheat straw and then applied 10% biochar (B), 10% zeolite (Z) and 10% biochar+10% zeolite (B+Z) into composting mixtures (dry weight basis), while treatment without additives applied used as control. Results indicated that adding B, Z and B+Z could obviously (p<0.05) improve the organic matter degradation and decrease the nitrogen loss. And combined addition of B and Z further promoted the organic matter humification and reduced the heavy metals mobility. Meanwhile the highest mitigation of ammonia (63.40%) and nitrogen dioxide (78.13%) emissions was observed in B+Z added treatment. Comparison of organic matter transformation, nitrogen conservation and compost quality indicated that the combined use of biochar and zeolite could be more useful for PM composting. Copyright © 2017 Elsevier Ltd. All rights reserved.
Bouteleux, C.; Saby, S.; Tozza, D.; Cavard, J.; Lahoussine, V.; Hartemann, P.; Mathieu, L.
2005-01-01
When exposed to oxidation, algae release dissolved organic matter with significant carbohydrate (52%) and biodegradable (55 to 74%) fractions. This study examined whether algal organic matter (AOM) added in drinking water can compromise water biological stability by supporting bacterial survival. Escherichia coli (1.3 × 105 cells ml−1) was inoculated in sterile dechlorinated tap water supplemented with various qualities of organic substrate, such as the organic matter coming from chlorinated algae, ozonated algae, and acetate (model molecule) to add 0.2 ± 0.1 mg of biodegradable dissolved organic carbon (BDOC) liter−1. Despite equivalent levels of BDOC, E. coli behavior depended on the source of the added organic matter. The addition of AOM from chlorinated algae led to an E. coli growth equivalent to that in nonsupplemented tap water; the addition of AOM from ozonated algae allowed a 4- to 12-fold increase in E. coli proliferation compared to nonsupplemented tap water. Under our experimental conditions, 0.1 mg of algal BDOC was sufficient to support E. coli growth, whereas the 0.7 mg of BDOC liter−1 initially present in drinking water and an additional 0.2 mg of BDOC acetate liter−1 were not sufficient. Better maintenance of E. coli cultivability was also observed when AOM was added; cultivability was even increased after addition of AOM from ozonated algae. AOM, likely to be present in treatment plants during algal blooms, and thus potentially in the treated water may compromise water biological stability. PMID:15691924
Detritus utilization by Mytilus edulis
NASA Astrophysics Data System (ADS)
Williams, Phil
1981-06-01
Feeding expriments showed that salt marsh vascular plant detritus is a poor food for Mytilus edulis. In laboratory experiment tissue weight of mussels increased slightly when Spartina foliosa and Salicornia virginica detritus was added to background seawater rich in organic matter. However, mussels lost weight when detritus was added to background seawater with a lower organic matter content. Aged and unaged plant material were equally poor in food value for M. edulis. Mussels in the Tijuana Estuary grew substantially during the period of the laboratory experiments.
Dairy manure applications and soil health implications
USDA-ARS?s Scientific Manuscript database
Dairy manure applications can potentially improve soil health by adding organic matter (OM) to the soil. However, intensive dairy manure applications can cause salt accumulations on arid, irrigated soils, impairing soil health, which can reduce crop growth and yield. Soil organic matter, a major c...
Influence of Multiple Environmental Factors on Organic Matter Chlorination in Podsol Soil.
Svensson, Teresia; Montelius, Malin; Andersson, Malin; Lindberg, Cecilia; Reyier, Henrik; Rietz, Karolina; Danielsson, Åsa; Bastviken, David
2017-12-19
Natural chlorination of organic matter is common in soils. The abundance of chlorinated organic compounds frequently exceeds chloride in surface soils, and the ability to chlorinate soil organic matter (SOM) appears widespread among microorganisms. Yet, the environmental control of chlorination is unclear. Laboratory incubations with 36 Cl as a Cl tracer were performed to test how combinations of environmental factors, including levels of soil moisture, nitrate, chloride, and labile organic carbon, influenced chlorination of SOM from a boreal forest. Total chlorination was hampered by addition of nitrate or by nitrate in combination with water but enhanced by addition of chloride or most additions including labile organic matter (glucose and maltose). The greatest chlorination was observed after 15 days when nitrate and water were added together with labile organic matter. The effect that labile organic matter strongly stimulated the chlorination rates was confirmed by a second independent experiment showing higher stimulation at increased availability of labile organic matter. Our results highlight cause-effect links between chlorination and the studied environmental variables in podsol soil-with consistent stimulation by labile organic matter that did overrule the negative effects of nitrate.
Lee, Beom; Park, Jun-Gyu; Shin, Won-Beom; Tian, Dong-Jie; Jun, Hang-Bae
2017-06-01
Microbial electrolysis cells (MECs) are being studied to improve the efficiency of anaerobic digesters and biogas production. In the present study, we investigated the effects of electrochemical reactions in AD-MEC (anaerobic digester combined with MECs) on changes in the microbial communities of bulk sludge through 454-pyrosequencing analysis, as well as the effect of these changes on anaerobic digestion. Methanobacterium beijingense and Methanobacterium petrolearium were the dominant archaeal species in AD, while Methanosarcina thermophila and Methanobacterium formicicum were dominant in AD-MEC at steady-state. There were no substantial differences in dominant bacterial species. Clostridia class was more abundant than Bacteroidia class in both reactors. Compared to AD, AD-MEC showed a 40% increase in overall bacterial population, increasing the removal of organic matters and the conversion of volatile fatty acids (VFAs). Thus, the MEC reaction more effectively converts organic matters to VFAs and activates microbial communities favorable for methane production. Copyright © 2017 Elsevier Ltd. All rights reserved.
Destroying lignocellulosic matters for enhancing methane production from excess sludge.
Hao, Xiaodi; Hu, Yuansheng; Cao, Daqi
2016-01-01
A lot of lignocellulosic matters are usually present in excess sludge, which are hardly degraded in anaerobic digestion (AD) and thus remains mostly in digested sludge. This is a reason why the conversion rate of sludge organics into energy (CH4) is often low. Obviously, the hydrolysis of AD cannot destruct the structure of lignocellulosic matters. Structural destruction of lignocellulosic matters has to be performed in AD. In this study, pretreatments with the same principles as cell disintegration of sludge were applied to destruct lignocellulosic matters so that these materials could be converted to CH4 via AD. Acid, alkali, thermal treatment and ultrasonic were used in the experiments to observe the destructed/degraded efficiency of lignocellulosic matters. Thermal treatment was found to be the most effective pretreatment. Under optimized conditions (T = 150 °C and t = 30 min), pretreated sludge had a degraded rate of 52.6% in AD, due to easy destruction and/or degradation of hemicelluloses and celluloses in pretreatment. The sludge pretreated by thermal treatment could enhance the CH4 yield (mL CH4 g(-1) VSS) by 53.6% compared to raw sludge. Economically, the thermal treatment can balance the input energy with the produced energy (steam and electricity).
Americium-241 uptake by Bahiagrass as influenced by soil type, lime, and organic matter
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoyt, G.D.; Adriano, D.C.
1979-07-01
Availability of /sup 241/Am to bahiagrass (Paspalum notatum), a major forage crop in the southeastern US, was studied under greenhouse conditions using two soil types, two rates of lime, and four rates of organic matter. The plants were grown in pots until three clippings were obtained. Americium-241 concentrations in plant tissues from the unlimed Dothan (24% clay) soil were, on the average, approximately twice as high as those from unlimed Troup (10% clay) soil. Lime significantly reduced /sup 241/Am uptake from both soils. The americium concentration ratios (americium concentration in dry plant tissue/average americium concentration in dry soil) for limedmore » treatments were, in general, one order of magnitude lower than those for unlimed treatments. Organic matter, added to the soils as bermuda grass hay, somewhat reduced /sup 241/Am uptake, especially when added at high rates in unlimed soils. The effect of lime on uptake could be attributed to immobilization of americium ions external to the roots as a result of decreased solubility of this radionuclide and/or antagonistic effect of increased calcium ion concentration in the soil solution on americium ions. The effect of organic matter on uptake could be attributed to its fixing capacity for metals.« less
Protocol for Enhanced in situ Bioremediation Using Emulsified Edible Oil
2006-05-01
of molecular hydrogen include natural organic matter, fuel hydrocarbons, landfill leachate , or added organic substrates. Hydrogen is generated by... Phytoremediation of Chlorinated and Recalcitrant Compounds, p. 47-53. APPENDIX A SUBSTRATE CALCULATIONS Excel spreadsheets are
Liotta, Flavia; d'Antonio, Giuseppe; Esposito, Giovanni; Fabbricino, Massimiliano; Frunzo, Luigi; van Hullebusch, Eric D; Lens, Piet N L; Pirozzi, Francesco
2014-01-01
The role of the moisture content and particle size (PS) on the disintegration of complex organic matter during the wet anaerobic digestion (AD) process was investigated. A range of total solids (TS) from 5% to 11.3% and PS from 0.25 to 15 mm was evaluated using carrot waste as model complex organic matter. The experimental results showed that the methane production rate decreased with higher TS and PS. A modified version of the AD model no.1 for complex organic substrates was used to model the experimental data. The simulations showed a decrease of the disintegration rate constants with increasing TS and PS. The results of the biomethanation tests were used to calibrate and validate the applied model. In particular, the values of the disintegration constant for various TS and PS were determined. The simulations showed good agreement between the numerical and observed data.
Li, Ronghua; Wang, Quan; Zhang, Zengqiang; Zhang, Guangjie; Li, Zhonghong; Wang, Li; Zheng, Jianzhong
2015-01-01
The effects of the corn stalk charred biomass (CB) prepared at different pyrolysis temperatures as additives on nutrient transformation during aerobic composting of pig manure were investigated. The results showed that the addition of CB carbonized at different temperatures to pig manure compost significantly influenced the compost temperature, moisture, pH, electrical conductivity, organic matter degradation, total nitrogen, [Formula: see text] and NH3 variations during composting. Compared with control and adding CB charred at lower temperature treatments, the addition of CB prepared over 700°C resulted in higher pH (over 9.2) and NH3 emission and lower potherb mustard seed germination index value during the thermophilic phase. Peak temperatures of composts appeared at 7 days for control and 11 days for CB added treatments. During 90 days composting, the organic matter degradation could be increased over 14.8-29.6% after adding of CB in the compost mixture. The introduction of CB in pig manure could prolong the thermophilic phase, inhibit moisture reduce, facilitate the organic matter decomposition, reduce diethylene triamine pentaacetic acid (DTPA) extractable Zn and Cu contents in pig manure composts and increase ryegrass growth. The study indicated that the corn stalk CB prepared around 500°C was a suitable additive in pig manure composting.
Importance of hypolimnetic cycling in aging of "new" mercury in a northern temperate lake.
Chadwick, Shawn P; Babiarz, Christopher L; Hurley, James P; Armstrong, David E
2013-03-15
The aging of "new" mercury (Hg) was investigated in Experimental Lake 658 as part of the Mercury Experiment To Assess Atmospheric Loading In Canada and the United States (METAALICUS). Mercury enriched in (202)Hg was added to the epilimnion over a three-year period to simulate direct atmospheric deposition. We evaluated the aging of newly added mercury (HgLake) in the water column using chemical methods and experiments to examine differences in phase partitioning and transport compared to the ambient pool, HgAmb. Aging was sufficiently slow to observe differences in the partitioning characteristics of HgLake and HgAmb. Amended HgLake initially partitioned to a greater extent to epilimnetic particulate matter (log Kd of HgLake=5.08; log Kd of HgAmb=4.9). HgLake was transported rapidly to the hypolimnion by settling particulate matter. Partitioning became more similar after amended Hg was recycled within the hypolimnion through redox processes. Experiments showed the removal of Hg from the aqueous phase by Fe and/or Mn oxyhydroxide-organic matter complexes. Separations using the anion exchange resin DEAE indicated that both HgLake and HgAmb were associated mainly with dissolved organic matter (DOM) and with partial association with sulfide in anoxic waters, but the degree of association of HgLake with DOM was higher in oxic (epilimnetic) waters. In the solid phase, chemical fractionation indicated greater association of HgLake with organic matter, while HgAmb showed greater association with oxyhydroxide and inert phases. Overall, the results suggest that "new" Hg added from the atmosphere is initially more particle-reactive than ambient Hg in the epilimnion, where initial sorption/partitioning occurs mainly to plankton and detrital particles. Once Hg has been deposited at the sediment-water interface, extended equilibration time in combination with microbial and chemical redox processes "age" the "new" Hg, and particle partitioning becomes similar for the added isotope and ambient pools. Copyright © 2012 Elsevier B.V. All rights reserved.
Effects of Added Organic Matter and Water on Soil Carbon Sequestration in an Arid Region
Tian, Yuan; Jiang, Lianhe; Zhao, Xuechun; Zhu, Linhai; Chen, Xi; Gao, Yong; Wang, Shaoming; Zheng, Yuanrun; Rimmington, Glyn M.
2013-01-01
It is generally predicted that global warming will stimulate primary production and lead to more carbon (C) inputs to soil. However, many studies have found that soil C does not necessarily increase with increased plant litter input. Precipitation has increased in arid central Asia, and is predicted to increase more, so we tested the effects of adding fresh organic matter (FOM) and water on soil C sequestration in an arid region in northwest China. The results suggested that added FOM quickly decomposed and had minor effects on the soil organic carbon (SOC) pool to a depth of 30 cm. Both FOM and water addition had significant effects on the soil microbial biomass. The soil microbial biomass increased with added FOM, reached a maximum, and then declined as the FOM decomposed. The FOM had a more significant stimulating effect on microbial biomass with water addition. Under the soil moisture ranges used in this experiment (21.0%–29.7%), FOM input was more important than water addition in the soil C mineralization process. We concluded that short-term FOM input into the belowground soil and water addition do not affect the SOC pool in shrubland in an arid region. PMID:23875022
Escalante, H; Castro, L; Amaya, M P; Jaimes, L; Jaimes-Estévez, J
2018-01-01
Cheese whey (CW) is the main waste generated in the cheesemaking process and has high organic matter content and acidity. Therefore, CW disposal is a challenge for small to medium enterprises (SMEs) in the dairy industry that do not have any type of treatment plant. Anaerobic digestion (AD) is an attractive process for solving this problem. The aim of this research was to determine the biomethane and struvite precipitation potentials of CW from four dairy SMEs. First, changes in CW properties (organic matter and pH) were evaluated. Second, biomethane and struvite potentials were assessed using cattle slurry as inoculum. The organic matter in CW varied from 40 to 65gVS/kg, 65 to 140g COD/L, and 2 to 10g/L for VFAs depending on the sampling time and type of sample. The pH of the CW samples ranged from 3 to 6.5. In the anaerobic biodegradability analysis, methane yields reached 0.51 to 0.60L CH 4 /g VS added , which represented electrical and caloric potentials of 54 and 108kWh/m 3 for CW, respectively. Organic matter removal in all experiments was above 83%. Moreover, anaerobic digestates presented NH 4 + /PO 4 3- molar ratios between 2.6 and 4.0, which are adequate for struvite precipitation with potential production of 8.5-10.4g struvite/L CW. Finally, the use of biogas as energetic supplement and struvite as soil fertilizer, represents economics saves of US$ 6.91/m 3 CW and US$ 5.75/m 3 CW in therms of electricity and fertilizer use, respectively. The energetic, agricultural and economic potentials, evidence that AD process is a feasible alternative for cheese whey treatment. Copyright © 2017. Published by Elsevier Ltd.
Leenheer, Jerry A.; Rostad, Colleen E.
2004-01-01
Organic matter in wastewater sampled from a swine waste-retention basin in Iowa was fractionated into 14 fractions on the basis of size (particulate, colloid, and dissolved); volatility; polarity (hydrophobic, transphilic, hydrophilic); acid, base, neutral characteristics; and precipitate or flocculates (floc) formation upon acidification. The compound-class composition of each of these fractions was determined by infrared and 13C-NMR spectral analyses. Volatile acids were the largest fraction with acetic acid being the major component of this fraction. The second most abundant fraction was fine particulate organic matter that consisted of bacterial cells that were subfractionated into extractable lipids consisting of straight chain fatty acids, peptidoglycans components of bacterial cell walls, and protein globulin components of cellular plasma. The large lipid content of the particulate fraction indicates that non-polar contaminants, such as certain pharmaceuticals added to swine feed, likely associate with the particulate fraction through partitioning interactions. Hydrocinnamic acid is a major component of the hydrophobic acid fraction, and its presence is an indication of anaerobic degradation of lignin originally present in swine feed. This is the first study to combine particulate organic matter with dissolved organic matter fractionation into a total organic matter fractionation and characterization.
Subcritical water extraction of organic matter from sedimentary rocks.
Luong, Duy; Sephton, Mark A; Watson, Jonathan S
2015-06-16
Subcritical water extraction of organic matter containing sedimentary rocks at 300°C and 1500 psi produces extracts comparable to conventional solvent extraction. Subcritical water extraction of previously solvent extracted samples confirms that high molecular weight organic matter (kerogen) degradation is not occurring and that only low molecular weight organic matter (free compounds) are being accessed in analogy to solvent extraction procedures. The sedimentary rocks chosen for extraction span the classic geochemical organic matter types. A type I organic matter-containing sedimentary rock produces n-alkanes and isoprenoidal hydrocarbons at 300°C and 1500 psi that indicate an algal source for the organic matter. Extraction of a rock containing type II organic matter at the same temperature and pressure produces aliphatic hydrocarbons but also aromatic compounds reflecting the increased contributions from terrestrial organic matter in this sample. A type III organic matter-containing sample produces a range of non-polar and polar compounds including polycyclic aromatic hydrocarbons and oxygenated aromatic compounds at 300°C and 1500 psi reflecting a dominantly terrestrial origin for the organic materials. Although extraction at 300°C and 1500 psi produces extracts that are comparable to solvent extraction, lower temperature steps display differences related to organic solubility. The type I organic matter produces no products below 300°C and 1500 psi, reflecting its dominantly aliphatic character, while type II and type III organic matter contribute some polar components to the lower temperature steps, reflecting the chemical heterogeneity of their organic inventory. The separation of polar and non-polar organic compounds by using different temperatures provides the potential for selective extraction that may obviate the need for subsequent preparative chromatography steps. Our results indicate that subcritical water extraction can act as a suitable replacement for conventional solvent extraction of sedimentary rocks, but can also be used for any organic matter containing mineral matrix, including soils and recent sediments, and has the added benefit of tailored extraction for analytes of specific polarities. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.
Li, Wei; Nanaboina, Venkateswarlu; Chen, Fang; Korshin, Gregory V
2016-03-05
This study examined the degradation behavior of polycyclic musks (PMs) and antineoplastic drugs (ADs) and the absorbance spectra of effluent organic matter (EfOM) in municipal wastewater by ozone. Specific ozone doses used in the experiments ranged from 0 to 1mg O3/mg dissolved organic matter (DOC). The examined PMs included galaxolide, tonalide, celestolide, traseolide and phantolide. ADs included busulfan, chlorambucil, cyclophosphamide, dacarbazine, flutamide, ifosfamide, tamoxifen and methotrexate. Strong monotonic albeit nonlinear correlations were found to exist between relative changes of EfOM absorbance at 254 nm (i.e. ΔA254/A(0)254) and the degradation of the selected PMs and ADs. This result was interpreted based on the concept of the simultaneous oxidation of EfOM and, on the other hand, PMs and ADs. This interpretation showed that PMs were degraded primarily via OH radical attack, with tonalide and phantolide being less reactive compared with the other PMs. ADs such as cyclophosphamide, ifosfamide and busulfan were also determined to undergo oxidation by OH radicals. Comparison of the behavior of the radical probe para-chlorobenzoic acid and the examined ADs and PMs allowed evaluating corresponding reaction rate constants for reactions between these species and OH radicals. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Thomas, Elizabeth K.; Briner, Jason P.; Axford, Yarrow; Francis, Donna R.; Miller, Gifford H.; Walker, Ian R.
2011-05-01
We generate a multi-proxy sub-centennial-scale reconstruction of environmental change during the past two millennia from Itilliq Lake, Baffin Island, Arctic Canada. Our reconstruction arises from a finely subsectioned 210Pb- and 14C-dated surface sediment core and includes measures of organic matter (e.g., chlorophyll a; carbon-nitrogen ratio) and insect (Diptera: Chironomidae) assemblages. Within the past millennium, the least productive, and by inference coldest, conditions occurred ca. AD 1700-1850, late in the Little Ice Age. The 2000-yr sediment record also reveals an episode of reduced organic matter deposition during the 6th-7th century AD; combined with the few other records comparable in resolution that span this time interval from Baffin Island, we suggest that this cold episode was experienced regionally. A comparable cold climatic episode occurred in Alaska and western Canada at this time, suggesting that the first millennium AD cold climate anomaly may have occurred throughout the Arctic. Dramatic increases in aquatic biological productivity at multiple trophic levels are indicated by increased chlorophyll a concentrations since AD 1800 and chironomid concentrations since AD 1900, both of which have risen to levels unprecedented over the past 2000 yr.
NASA Astrophysics Data System (ADS)
Barthod, Justine; Rumpel, Cornélia; Paradelo, Remigio; Dignac, Marie-France
2016-04-01
Intensive farming practices can lead to a depletion of soil organic matter, negatively impacting important soil properties such as structural stability, fertility and C storage. The addition of organic amendments such as compost and vermicompost, rich in carbon, helps maintaining soil organic matter levels or restoring degraded soils. Composting and vermicomposting are based on stabilization of organic matter through the mineralization of easily decomposable organic matter compounds, therefore releasing greenhouse gases, including CO2. The aim of this study was to evaluate the global potential reduction of such emissions by the use of additives (2:1 clay and/or biochar): during (vermi)composting processes and after use of the final products as soil amendments. We hypothesized that the interactions between the additives and organic matter may lead to carbon stabilization and that such interactions may be enhanced by the presence of worms (Eisenia). We added in different proportions clay (25% or 50%), biochar (10%) and a mixture of biochar (10%) with clay (25%) to pre-composted green waste. The CO2 emissions of the composting and vermicomposting processes were measured during 21 days. After that, the amendments were added to a loamy cambisol soil and the CO2 emissions were monitored during 30 days of a laboratory experiment. The most efficient treatments in terms of reducing global CO2 emissions were the co-vermicomposting process with 25% clay followed by co-composting with 50% clay and with 10% biochar plus 25% clay. In this treatment (vermicompost with 25% clay), the carbon emissions were decreased by up to 44% compared to regular compost. Addition of biochar reduced CO2 emissions only during composting. Co-composting with biochar could be a promising avenue to limit global CO2 emissions whereas in presence of worms clay additions are better suited. These findings suggest that the presence of worms increased the formation of organo-mineral associations and thus C protection up to a certain clay/organic matter ratio. This strategy could be used to enhance the stability of organic amendments and increase soil carbon sequestration.
Sink or link? The bacterial role in benthic carbon cycling in the Arabian Sea's oxygen minimum zone
NASA Astrophysics Data System (ADS)
Pozzato, L.; Van Oevelen, D.; Moodley, L.; Soetaert, K.; Middelburg, J. J.
2013-11-01
The bacterial loop, the consumption of dissolved organic matter (DOM) by bacteria and subsequent transfer of bacterial carbon to higher trophic levels, plays a prominent role in pelagic food webs. However, its role in sedimentary ecosystems is not well documented. Here we present the results of isotope tracer experiments performed under in situ oxygen conditions in sediments from inside and outside the Arabian Sea's oxygen minimum zone (OMZ) to study the importance of the microbial loop in this setting. Particulate organic matter, added as phytodetritus, was processed by bacteria, protozoa and metazoans, while dissolved organic matter was processed only by bacteria and there was very little, if any, transfer to higher trophic levels within the 7 day experimental period. This lack of significant transfer of bacterial-derived carbon to metazoan consumers indicates that the bacterial loop is rather inefficient, in sediments both inside and outside the OMZ. Moreover, metazoans directly consumed labile particulate organic matter resources and thus competed with bacteria for phytodetritus.
Sink or link? The bacterial role in benthic carbon cycling in the Arabian sea oxygen minimum zone
NASA Astrophysics Data System (ADS)
Pozzato, L.; Van Oevelen, D.; Moodley, L.; Soetaert, K.; Middelburg, J. J.
2013-06-01
The bacterial loop, the consumption of dissolved organic matter (DOM) by bacteria and subsequent transfer of bacterial carbon to higher trophic levels, plays a prominent role in pelagic aquatic food webs. However, its role in sedimentary ecosystems is not well documented. Here we present the results of isotope tracer experiments performed under in situ oxygen conditions in sediments from inside and outside the Arabian Sea Oxygen Minimum Zone (OMZ) to study the importance of the microbial loop in this setting. Particulate organic matter, added as phytodetritus, was processed by bacteria, protozoa and metazoans, while dissolved organic matter was processed only by bacteria and there was very little, if any, transfer to higher trophic levels within the experimental period. This lack of significant transfer of bacterial-derived carbon to metazoan consumers indicates that the bacterial loop is rather inefficient in these sediments. Moreover, metazoans directly consume labile particulate organic matter resources and thus compete with bacteria for phytodetritus.
Buhay, W.M.; Simpson, S.; Thorleifson, H.; Lewis, M.; King, J.; Telka, A.; Wilkinson, Philip M.; Babb, J.; Timsic, S.; Bailey, D.
2009-01-01
A short sediment core (162 cm), covering the period AD 920-1999, was sampled from the south basin of Lake Winnipeg for a suite of multi-proxy analyses leading towards a detailed characterisation of the recent millennial lake environment and hydroclimate of southern Manitoba, Canada. Information on the frequency and duration of major dry periods in southern Manitoba, in light of the changes that are likely to occur as a result of an increasingly warming atmosphere, is of specific interest in this study. Intervals of relatively enriched lake sediment cellulose oxygen isotope values (??18Ocellulose) were found to occur from AD 1180 to 1230 (error range: AD 1104-1231 to 1160-1280), 1610-1640 (error range: AD 1571-1634 to 1603-1662), 1670-1720 (error range: AD 1643-1697 to 1692-1738) and 1750-1780 (error range: AD 1724-1766 to 1756-1794). Regional water balance, inferred from calculated Lake Winnipeg water oxygen isotope values (??18Oinf-lw), suggest that the ratio of lake evaporation to catchment input may have been 25-40% higher during these isotopically distinct periods. Associated with the enriched d??18Ocellulose intervals are some depleted carbon isotope values associated with more abundantly preserved sediment organic matter (d??13COM). These suggest reduced microbial oxidation of terrestrially derived organic matter and/or subdued lake productivity during periods of minimised input of nutrients from the catchment area. With reference to other corroborating evidence, it is suggested that the AD 1180-1230, 1610-1640, 1670-1720 and 1750-1780 intervals represent four distinctly drier periods (droughts) in southern Manitoba, Canada. Additionally, lower-magnitude and duration dry periods may have also occurred from 1320 to 1340 (error range: AD 1257-1363), 1530-1540 (error range: AD 1490-1565 to 1498-1572) and 1570-1580 (error range: AD 1531-1599 to 1539-1606). ?? 2009 John Wiley & Sons, Ltd.
Chao, Huan-Ping; Hsieh, Lin-Han Chiang; Tran, Hai Nguyen
2018-02-15
This study developed a novel method to promote the remediation efficiency of air sparging. According to the enhanced-volatilization theory presented in this study, selected alcohols added to groundwater can highly enhance the volatilization amounts of organic compounds with high Henry's law constants. In this study, the target organic compounds consisted of n-hexane, n-heptane, benzene, toluene, 1,1,2-trichloroethane, and tetrachloroethene. n-pentanol, n-hexanol, and n-heptanol were used to examine the changes in the volatilization amounts of organic compounds in the given period. Two types of soils with high and low organic matter were applied to evaluate the transport of organic compounds in the soil-water system. The volatilization amounts of the organic compounds increased with increasing alcohol concentrations. The volatilization amounts of the test organic compounds exhibited a decreasing order: n-heptanol>n-hexanol>n-pentanol. When 10mg/L n-heptanol was added to the system, the maximum volatilization enhancement rate was 18-fold higher than that in distilled water. Samples of soil with high organic matter might reduce the volatilization amounts by a factor of 5-10. In the present study, the optimal removal efficiency for aromatic compounds was approximately 98%. Copyright © 2017 Elsevier B.V. All rights reserved.
Research on solvent-refined coal. Quarterly technical progress report, April 1, 1981-June 30, 1981
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1981-10-01
This report describes progress on the Research on Solvent Refined Coal project by The Pittsburg and Midway Coal Mining Co.'s Merriam Laboratory during the second quarter of 1981. Alexander Mine coal was evaluated as a feedstock for major liquefaction facilities and had a yield structure similar to other reactive Pittsburgh seam coals at standard SRC II conditions. Two lots of coal from the Ireland Mine (Pittsburgh seam) were found to be of nearly the same composition and produced essentially the same yields. Two experiments in which coal-derived nonvolatile organic matter was processed without fresh coal feed indicate constant rates ofmore » conversion of SRC to oil and gas. Insoluble organic matter (IOM) remained unconverted. The naphtha and middle distillate products from the deep conversion contained less sulfur but more nitrogen than those from conventional SRC II processing. Encouraging results were obtained when a very small amount of iron oxide dispersed on alumina was added to Kaiparowits coal which cannot be processed at normal SRC II conditions without added catalyst. Subbituminous coals from the McKinley and Edna Mines were processed successfully with added pyrite but would not run when the added catalyst was removed.« less
Zhao, Shu-Hua; Chen, Zhi-Liang; Zhang, Tai-Ping; Pan, Wei-Bin; Peng, Xiao-Chun; Che, Rong; Ou, Ying-Juan; Lei, Guo-Jian; Zhou, Ding
2014-04-01
Different forms of heavy metals in soil will produce different environmental effects, and will directly influence the toxicity, migration and bioavailability of heavy metals. This study used lime, fly ash, dried sludge, peanut shells as stabilizers in the treatment of heavy metals in mineral waste residues. Morphological analyses of heavy metal, leaching experiments, potted plant experiments were carried out to analyze the migration and transformation of heavy metals. The results showed that after adding stabilizers, the pH of the acidic mineral waste residues increased to more than neutral, and the organic matter content increased significantly. The main existing forms of As, Pb, and Zn in the mineral waste residues were the residual. The contents of exchangeable and organic matter-bound As decreased by 65.6% and 87.7% respectively after adding fly ash, dried sludge and peanut shells. Adding lime, fly ash and peanut shells promoted the transformation of As from the Fe-Mn oxide-bound to the carbonate-bound, and adding lime and fly ash promoted the transformation of Pb and Zn from the exchangeable, Fe-Mn oxide-bound, organic matter-bound to the residual. After the early stage of the stabilization treatment, the contents of As, Pb and Zn in the leachate had varying degrees of decline, and adding peanut shells could reduce the contents of As, Pb and Zn in the leachate further. Among them, the content of As decreased most significantly after treatment with fly ash, dried sludge and peanut shells, with a decline of 57.4%. After treatment with lime, fly ash and peanut shells, the content of Zn decreased most significantly, by 24.9%. The addition of stabilizers was advantageous to the germination and growth of plants. The combination of fly ash, dried sludge and peanut shell produced the best effect, and the Vetiveria zizanioides germination rate reached 76% in the treated wasted mineral residues.
Raw liquid waste treatment process
NASA Technical Reports Server (NTRS)
Humphrey, Marshall F. (Inventor)
1980-01-01
A raw sewage treatment process is disclosed in which substantially all the non-dissolved matter, which is suspended in the sewage water is first separated from the water, in which at least organic matter is dissolved. The non-dissolved material is pyrolyzed to form an activated carbon and ash material without the addition of any conditioning agents. The activated carbon and ash material is added to the water from which the non-dissolved matter was removed. The activated carbon and ash material absorbs organic matter and heavy metal ions, it is believed, are dissolved in the water and is thereafter supplied in a counter current flow direction and combined with the incoming raw sewage to facilitate the separation of the non-dissolved settleable materials from the sewage water. The used carbon and ash material together with the non-dissolved matter which was separated from the sewage water are pyrolyzed to form the activated carbon and ash material.
Raw Liquid Waste Treatment System and Process
NASA Technical Reports Server (NTRS)
Humphrey, M. F. (Inventor)
1974-01-01
A raw sewage treatment process is disclosed in which substantially all the non-dissolved matter, suspended in the sewage water is first separated from the water, in which at least organic matter remains dissolved. The non-dissolved material is pyrolyzed to form an activated carbon and ash material without the addition of any conditioning agents. The activated carbon and ash material is added to the water from which the non-dissolved matter was removed. The activated carbon and ash material adsorbs the organic matter dissolved in the water and is thereafter supplied in a counter flow direction and combined with the incoming raw sewage to at least facilitate the separation of the non-dissolved settleable materials from the sewage water. Carbon and ash material together with the non-dissolved matter which was separated from the sewage water are pyrolyzed to form the activated carbon and ash material.
Protein Purification and Its Application to Crystallization
1988-08-30
separation can be altered by adding various organic modifiers to the separation solvents. The Laboratory for the Structure of Matter is involved in a...SQUID ORGANOPHOSPHOROUS ACID ANHYDRASE 2.2.1 Introduction Cephalopod optic ganglion and hepatopancrease contain an organic phosphorous acid anhydrase...number of other sources including erythrocytes, and various organs (21,22). AChE hydrolyzes the ester linkage in acetylcholine releasing acetate and
Arce, Guillermo; Montecinos, Mauricio; Guerra, Paula; Escauriaza, Cristian; Coquery, Marina; Pastén, Pablo
2017-08-01
Acid drainage (AD) is an important environmental concern that impacts water quality. The formation of reactive Fe and Al oxyhydroxides during the neutralization of AD at river confluences is a natural attenuation process. Although it is known that organic matter (OM) can affect the aggregation of Fe and Al oxyhydroxides and the sorption of As onto their surfaces, the role of OM during the neutralization of AD at river confluences has not been studied. Field and experimental approaches were used to understand this role, using the Azufre River (pH 2) - Caracarani River (pH 8.6) confluence (northern Chile) as model system. Field measurements of organic carbon revealed a 10-15% loss of OM downstream the confluence, which was attributed to associations with Fe and Al oxyhydroxides that settle in the river bed. Laboratory mixtures of AD water with synthetic Caracarani waters under varying conditions of pH, concentration and type of OM revealed that OM promoted the aggregation of Fe oxyhydroxides without reducing As sorption, enhancing the removal of As at slightly acidic conditions (pH ∼4.5). At acidic conditions (pH ∼3), aggregation of OM - metal complexes at high OM concentrations could become the main removal mechanism. One type of OM promoted bimodal particle size distributions with larger mean sizes, possibly increasing the settling velocity of aggregates. This work contributes to a better understanding of the role of OM in AD affected basins, showing that the presence of OM during processes of neutralization of AD can enhance the removal of toxic elements. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Luna Ramos, Lourdes; Miralles Mellado, Isabel; Ángel Domene Ruiz, Miguel; Solé Benet, Albert
2016-04-01
Mining activities generate erosion and loss of plant cover and soil organic matter (SOM), especially in arid and semiarid Mediterranean regions. A precondition for ecosystem restoration in such highly disturbed areas is the development of functional soils with sufficient organic matter. But the SOM quality is also important to long-term C stabilization. The resistance to biodegradation of recalcitrant organic matter fractions has been reported to depend on some intrinsic structural factors of humic acid substances and formation of amorphous organo-mineral recalcitrant complexes. In an experimental soil restoration in limestone quarries in the Sierra de Gádor (Almería), SE Spain, several combinations of organic amendments (sewage sludge and compost from domestic organic waste) and mulches (gravel and woodchip) were added in experimental plots using a factorial design. In each plot, 75 native plants (Anthyllis cytisoides, A. terniflora and Macrochloa tenacissima) were planted and five years after the start of the experiment total organic carbon (TOC), physico-chemical soil properties and organic C fractions (particulate organic matter, H3PO4-fulvic fraction, fulvic acids (FA), humic acids (HA) and humin) were analyzed. We observed significant differences between treatments related to the TOC content and the HA/FA ratio. Compost amendments increased the TOC, HA content and HA/FA ratio, even higher than in natural undisturbed soils, indicating an effective clay humus-complex pointing to progressively increasing organic matter quality. Soils with sewage sludge showed the lowest TOC and HA/FA ratio and accumulated a lower HA proportion indicating poorer organic matter quality and comparatively lower resilience than in natural soils and soils amended with compost.
NASA Astrophysics Data System (ADS)
Hong, Huachang; Qian, Lingya; Xiao, Zhuoqun; Zhang, Jianqing; Chen, Jianrong; Lin, Hongjun; Yu, Haiying; Shen, Liguo; Liang, Yan
2015-12-01
Occurrence of halonitromethanes (HNMs) in drinking water has been a public concern due to the potential risks to human health. Though quite a lot of work has been carried out to understand the formation of HNMs, the relationship between HNMs formation and the nitrite remains unclear. In this study, the effects of nitrite on the formation of HNMs during chlorination of organic matter from different origin were assessed. Organic matter (OM) derived from phoenix tree (fallen leaves: FLOM; green leaves: GLOM) and Microcystis aeruginosa (intracellular organic matter: IOM) were used to mimic the allochthonous and autochthonous organic matter in surface water, respectively. Results showed that HNMs yields were significantly enhanced with the addition of nitrite, and the highest enhancement was observed for FLOM, successively followed by GLOM and IOM, suggesting that the contribution of nitrite to HNMs formation was positively related with SUVA (an indicator for aromaticity) of OM. Therefore, the nitrite contamination should be strictly controlled for the source water dominated by allochthonous OM, which may significantly reduce the formation of HNMs during chlorination. Moreover, given a certain nitrite level, the higher pH resulted in higher stimulation of HNM formation, yet the chlorine dose (always added in excess resulting in residual reactive chlorine), reaction time and temperature did not show obvious influence.
Department of Defense and Energy Independence: Optimism Meets Reality
2007-04-01
26 Winglets .................................................................................................................26 Autonomous...58 iv Illustrations Page Figure 1 KC-135 Winglet Flight Tests at...fuel from coal, making synthetic fuel from biomass (organic matter), and adding winglets to aircraft wings for improved fuel efficiency. Notes 1
Soil Water Content Sensor Response to Organic Matter Content under Laboratory Conditions
Fares, Ali; Awal, Ripendra; Bayabil, Haimanote K.
2016-01-01
Studies show that the performance of soil water content monitoring (SWCM) sensors is affected by soil physical and chemical properties. However, the effect of organic matter on SWCM sensor responses remains less understood. Therefore, the objectives of this study are to (i) assess the effect of organic matter on the accuracy and precision of SWCM sensors using a commercially available soil water content monitoring sensor; and (ii) account for the organic matter effect on the sensor’s accuracy. Sand columns with seven rates of oven-dried sawdust (2%, 4%, 6%, 8%, 10%, 12% and 18% v/v, used as an organic matter amendment), thoroughly mixed with quartz sand, and a control without sawdust were prepared by packing quartz sand in two-liter glass containers. Sand was purposely chosen because of the absence of any organic matter or salinity, and also because sand has a relatively low cation exchange capacity that will not interfere with the treatment effect of the current work. Sensor readings (raw counts) were monitored at seven water content levels (0, 0.02, 0.04, 0.08, 0.12, 0.18, 0.24, and 0.30 cm3 cm−3) by uniformly adding the corresponding volumes of deionized water in addition to the oven-dry one. Sensor readings were significantly (p < 0.05) affected by the organic matter level and water content. Sensor readings were strongly correlated with the organic matter level (R2 = 0.92). In addition, the default calibration equation underestimated the water content readings at the lower water content range (<0.05 cm3 cm−3), while it overestimated the water content at the higher water content range (>0.05 cm3 cm−3). A new polynomial calibration equation that uses raw count and organic matter content as covariates improved the accuracy of the sensor (RMSE = 0.01 cm3 cm−3). Overall, findings of this study highlight the need to account for the effect of soil organic matter content to improve the accuracy and precision of the tested sensor under different soils and environmental conditions. PMID:27527185
Soil Water Content Sensor Response to Organic Matter Content under Laboratory Conditions.
Fares, Ali; Awal, Ripendra; Bayabil, Haimanote K
2016-08-05
Studies show that the performance of soil water content monitoring (SWCM) sensors is affected by soil physical and chemical properties. However, the effect of organic matter on SWCM sensor responses remains less understood. Therefore, the objectives of this study are to (i) assess the effect of organic matter on the accuracy and precision of SWCM sensors using a commercially available soil water content monitoring sensor; and (ii) account for the organic matter effect on the sensor's accuracy. Sand columns with seven rates of oven-dried sawdust (2%, 4%, 6%, 8%, 10%, 12% and 18% v/v, used as an organic matter amendment), thoroughly mixed with quartz sand, and a control without sawdust were prepared by packing quartz sand in two-liter glass containers. Sand was purposely chosen because of the absence of any organic matter or salinity, and also because sand has a relatively low cation exchange capacity that will not interfere with the treatment effect of the current work. Sensor readings (raw counts) were monitored at seven water content levels (0, 0.02, 0.04, 0.08, 0.12, 0.18, 0.24, and 0.30 cm³ cm(-3)) by uniformly adding the corresponding volumes of deionized water in addition to the oven-dry one. Sensor readings were significantly (p < 0.05) affected by the organic matter level and water content. Sensor readings were strongly correlated with the organic matter level (R² = 0.92). In addition, the default calibration equation underestimated the water content readings at the lower water content range (<0.05 cm³ cm(-3)), while it overestimated the water content at the higher water content range (>0.05 cm³ cm(-3)). A new polynomial calibration equation that uses raw count and organic matter content as covariates improved the accuracy of the sensor (RMSE = 0.01 cm³ cm(-3)). Overall, findings of this study highlight the need to account for the effect of soil organic matter content to improve the accuracy and precision of the tested sensor under different soils and environmental conditions.
McClanahan, T R; Steneck, R S; Pietri, D; Cokos, B; Jones, S
2005-05-01
We studied the responses of algae, corals, and small fish to elevated inorganic fertilizer, organic matter, and their combination over a 49-day summer period in cages that simulated the coral reef in the remote Glovers reef atoll, Belize. The addition of organic matter reduced while fertilization had no effect on the numbers of herbivorous damsel and parrotfishes. All measures of algal biomass were influenced by fertilization. The combined inorganic and organic enrichment produced the highest algal biomass, which is most likely due to the combined effect of higher nutrients and lower herbivory. The cover of turf and total algae were influenced by all treatments and their interactions and most strongly and positively influenced by fertilization followed by organic matter and the combination of organic matter and inorganic fertilizer. The inorganic and combined treatments were both dominated by two turf algae, Enteromorpha prolifera and Digenia simplex, while the nonfertilized treatments were dominated by brown frondose algae Lobophora variegata, Padina sanctae, and Dictyota cervicornis. The organic matter treatment had greater cover of P. sanctae and D. cervicornis than the untreated control, which was dominated by Lobophora variegata, also the dominant algae on the nearby patch reefs. Crustose corallines grew slowly ( approximately 2.5 mm/49 days) and were not influenced by the treatments when grown on vertical surfaces but decreased on horizontal coral plates in the combined organic matter and fertilization treatment. No mortality occurred for the two coral species that were added to the cages. Porites furcata darkened in the fertilized cages while there was a mix of paling and darkening for a small amount of the coral tissue of Diploria labyrinthiformes. Inorganic fertilization stimulates small filamentous turf algae and Symbiodinium living in coral but inhibits brown frondose algae. Organic matter inhibits small herbivorous fish, L. variegata, and encrusting coralline algae when growing on horizontal surfaces.
Dynamics of organic matter and microbial populations in amended soil: a multidisciplinary approach
NASA Astrophysics Data System (ADS)
Gigliotti, Giovanni; Pezzolla, Daniela; Zadra, Claudia; Albertini, Emidio; Marconi, Gianpiero; Turchetti, Benedetta; Buzzini, Pietro
2013-04-01
The application of organic amendments to soils, such as pig slurry, sewage sludge and compost is considered a tool for improving soil fertility and enhancing C stock. The addition of these different organic materials allows a good supply of nutrients for plants but also contributes to C sequestration, affects the microbial activity and the transformation of soil organic matter (SOM). Moreover, the addition of organic amendment has gained importance as a source of greenhouse gas (GHG) emissions and then as a cause of the "Global Warming". Therefore, it is important to investigate the factors controlling the SOM mineralization in order to improve soil C sequestration and decreasing at the same time the GHG emissions. The quality of organic matter added to the soil will play an important role in these dynamics, affecting the microbial activity and the changes in microbial community structure. A laboratory, multidisciplinary experiment was carried out to test the effect of the amendment by anaerobic digested livestock-derived organic materials on labile organic matter evolution and on dynamics of microbial population, this latter both in terms of consistence of microbial biomass, as well as in terms of microbial biodiversity. Different approaches were used to study the microbial community structure: chemical (CO2 fluxes, WEOC, C-biomass, PLFA), microbiological (microbial enumeration) and molecular (DNA extraction and Roche 454, Next Generation Sequencing, NGS). The application of fresh digestate, derived from the anaerobic treatment of animal wastes, affected the short-term dynamics of microbial community, as reflected by the increase of CO2 emissions immediately after the amendment compared to the control soil. This is probably due to the addition of easily available C added with the digestate, demonstrating that this organic material was only partially stabilized by the anaerobic process. In fact, the digestate contained a high amounts of available C, which led to increase WEOC concentration in digestate treated soil compared to the control soil. The depletion of C, likely due to the microbial activity, was confirmed by the gradual decrease of WEOC concentration in soils amended with digestate. The SUVA254 measurement showed an influence of digestate on the quality of soil WEOM, with higher values in the control rather than in the digestate amended soil, indicating a great amount of aromatic compounds in native SOM. The results of the PLFAs showed that the addition of digestate did not lead overall changes in the microbial community structure compared to the control, except for a shallow decrease of fungi. This probably suggests that the slow rate of mineralization of the organic matter added with digestate does not induce to a rapid shift of microbial community structure. The NGS showed the most important bacterial phyla and fungi species that were involved in the SOM turnover. Furthermore, this approach might be useful to trace the residence time of microbial pathogens supplied with digestates.
Gray matter network disruptions and amyloid beta in cognitively normal adults.
Tijms, Betty M; Kate, Mara Ten; Wink, Alle Meije; Visser, Pieter Jelle; Ecay, Mirian; Clerigue, Montserrat; Estanga, Ainara; Garcia Sebastian, Maite; Izagirre, Andrea; Villanua, Jorge; Martinez Lage, Pablo; van der Flier, Wiesje M; Scheltens, Philip; Sanz Arigita, Ernesto; Barkhof, Frederik
2016-01-01
Gray matter networks are disrupted in Alzheimer's disease (AD). It is unclear when these disruptions start during the development of AD. Amyloid beta 1-42 (Aβ42) is among the earliest changes in AD. We studied, in cognitively healthy adults, the relationship between Aβ42 levels in cerebrospinal fluid (CSF) and single-subject cortical gray matter network measures. Single-subject gray matter networks were extracted from structural magnetic resonance imaging scans in a sample of cognitively healthy adults (N = 185; age range 39-79, mini-mental state examination >25, N = 12 showed abnormal Aβ42 < 550 pg/mL). Degree, clustering coefficient, and path length were computed at whole brain level and for 90 anatomical areas. Associations between continuous Aβ42 CSF levels and single-subject cortical gray matter network measures were tested. Smoothing splines were used to determine whether a linear or nonlinear relationship gave a better fit to the data. Lower Aβ42 CSF levels were linearly associated at whole brain level with lower connectivity density, and nonlinearly with lower clustering values and higher path length values, which is indicative of a less-efficient network organization. These relationships were specific to medial temporal areas, precuneus, and the middle frontal gyrus (all p < 0.05). These results suggest that mostly within the normal spectrum of amyloid, lower Aβ42 levels can be related to gray matter networks disruptions. Copyright © 2016 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Börjesson, G.; Kätterer, T.; Kirchmann, H.
2012-04-01
Soil organic matter is a key attribute of soil fertility. The pool of soil organic C can be increased, either by mineral fertilisers or by adding organic amendments such as sewage sludge. Sewage sludge has positive effects on agricultural soils through the supply of organic matter and essential plant nutrients, but sludge may also contain unwanted heavy metals, xenobiotic substances and pathogens. One obvious effect of long-term sewage sludge addition is a decrease in soil pH, caused by N mineralisation followed by nitrification, sulphate formation and presence of organic acids with the organic matter added. The objective of this study was to investigate the effect of sewage sludge on the microbial biomass and community structure. Materials and methods We analysed soil samples from four sites where sewage sludge has been repeatedly applied in long-term field experiments situated in different parts of Sweden; Ultuna (59°49'N, 17°39'E, started 1956), Lanna (58°21'N, 13°06'E, started 1997-98), Petersborg (55°32'N, 13°00'E, started 1981) and Igelösa (55°45'N, 13°18'E, started 1981). In these four experiments, at least one sewage sludge treatment is included in the experimental design. In the Ultuna experiment, all organic fertilisers, including sewage sludge, are applied every second year, corresponding to 4 ton C ha-1. The Lanna experiment has a similar design, with 8 ton dry matter ha-1 applied every second year. Lanna also has an additional treatment in which metal salts (Cd, Cu, Ni and Zn) are added together with sewage sludge. At Petersborg and Igelösa, two levels of sewage sludge (4 or 12 ton dry matter ha-1 every 4th year) are compared with three levels of NPK fertiliser (0 N, ½ normal N and normal N). Topsoil samples (0-20 cm depth) from the four sites were analysed for total C, total N, pH and PLFAs (phospholipid fatty acids). In addition, crop yields were recorded. Results At all four sites, sewage sludge has had a positive effect on crop yields and soil organic matter levels. Correlations between soil organic matter and total PLFA contents showed highly positive correlations at all sites (with R-values between 0.72 and 0.88). To find out whether sewage sludge through its metal impurities could impose stress on the microbial biomass, we compared the correlations between all different fertilisers used and PLFAs. The slopes of these comparisons revealed that sludge did not differ from other fertiliser treatments, which means that our results contrast earlier reports on negative effects of metals in sludge on soil microbes. The microbial community structure, studied with principal component analysis of individual PLFAs, was strongly affected by changes in soil pH, and at those sites where sewage sludge had caused a low pH, Gram-positive bacteria were more dominant than in the other treatments. However, differences in community structure were larger between sites than between the treatments investigated in this study, thus indicating that the original soil properties were more important for the microbial community structure than the fertiliser treatments.
NASA Astrophysics Data System (ADS)
Shi, Pu; Arter, Christian; Liu, Xingyu; Keller, Martin; Schulin, Rainer
2017-04-01
Aggregate stability is an important factor in soil resistance against erosion, and, by influencing the extent of sediment transport associated with surface runoff, it is thus also one of the key factors which determine on- and off-site effects of water erosion. As it strongly depends on soil organic matter, many studies have explored how aggregate stability can be improved by organic matter inputs into the soil. However, the focus of these studies has been on the relationship between aggregate stability and soil organic matter dynamics. How the effects of organic matter inputs on aggregate stability translate into soil erodibility under rainfall impacts has received much less attention. In this study, we performed field plot experiments to examine how organic matter inputs affect aggregate breakdown and surface sediment transport under field conditions in artificial rainfall events. Three pairs of plots were prepared by adding a mixture of grass and wheat straw to one of plots in each pair but not to the other, while all plots were treated in the same way otherwise. The rainfall events were applied some weeks later so that the applied organic residues had sufficient time for decomposition and incorporation into the soil. Surface runoff rate and sediment concentration showed substantial differences between the treatments with and without organic matter inputs. The plots with organic inputs had coarser and more stable aggregates and a rougher surface than the control plots without organic inputs, resulting in a higher infiltration rate and lower transport capacity of the surface runoff. Consequently, sediments exported from the amended plots were less concentrated but more enriched in suspended particles (<20 µm) than from the un-amended plots, indicating a more size-selective sediment transport. In contrast to the amended plots, there was an increase in the coarse particle fraction (> 250 µm) in the runoff from the plots with no organic matter inputs towards the end of the rainfall events due to emerging bed-load transport. The results show that a single application of organic matter can already cause a large difference in aggregate breakdown, surface sealing, and lateral sediment-associated matter transfer under rainfall impact. Furthermore, we will present terrestrial laser scanning data showing the treatment effects on soil surface structure, as well as data on carbon, phosphorus and heavy metal export associated with the translocation of the sediments.
Henneberry, Yumiko K.; Kraus, Tamara; Krabbenhoft, David P.; Horwath, William R.
2015-01-01
The presence of mercury (Hg), particularly methylmercury (MeHg), is a concern for both human and ecological health as MeHg is a neurotoxin and can bioaccumulate to lethal levels in upper trophic level organisms. Recent research has demonstrated that coagulation with metal-based salts can effectively remove both inorganic mercury (IHg) and MeHg from solution through association with dissolved organic matter (DOM) and subsequent flocculation and precipitation. In this study, we sought to further examine interactions between Hg and DOM and the resulting organo-metallic precipitate (floc) to assess if (1) newly added IHg could be removed to the same extent as ambient IHg or whether the association between IHg and DOM requires time, and (2) once formed, if the floc has the capacity to remove additional Hg from solution. Agricultural drainage water samples containing ambient concentrations of both DOM and IHg were spiked with a traceable amount of isotopically enriched IHg and dosed with ferric sulfate after 0, 1, 5, and 30 days. Both ambient and newly added IHg were removed within hours, with 69–79 % removed. To a separate sample set, isotopically enriched IHg was added to solution after floc had formed. Under those conditions, 81–95 % of newly added Hg was removed even at Hg concentrations 1000-fold higher than ambient levels. Results of this study indicate coagulation with ferric sulfate effectively removes both ambient and newly added IHg entering a system and suggests rapid association between IHg and DOM. This work also provides new information regarding the ability of floc to remove additional Hg from solution even after it has formed.
Guilini, Katja; Soltwedel, Thomas; van Oevelen, Dick; Vanreusel, Ann
2011-01-01
A colonisation experiment was performed in situ at 2500 m water depth at the Arctic deep-sea long-term observatory HAUSGARTEN to determine the response of deep-sea nematodes to disturbed, newly available patches, enriched with organic matter. Cylindrical tubes,laterally covered with a 500 µm mesh, were filled with azoic deep-sea sediment and 13C-labelled food sources (diatoms and bacteria). After 10 days of incubation the tubes were analysed for nematode response in terms of colonisation and uptake. Nematodes actively colonised the tubes,however with densities that only accounted for a maximum of 2.13% (51 ind.10 cm−2) of the ambient nematode assemblages. Densities did not differ according to the presence or absence of organic matter, nor according to the type of organic matter added. The fact that the organic matter did not function as an attractant to nematodes was confirmed by the absence of notable 13C assimilation by the colonising nematodes. Overall, colonisationappears to be a process that yields reproducible abundance and diversity patterns, with certain taxa showing more efficiency. Together with the high variability between the colonising nematode assemblages, this lends experimental support to the existence of a spatio-temporal mosaic that emerges from highly localised, partially stochastic community dynamics. PMID:21526147
Carr, Stephanie A; Mills, Christopher T.; Mandernack, Kevin W
2016-01-01
The Adélie Basin, located offshore of the Wilkes Land margin, experiences unusually high sedimentation rates (~ 2 cm yr− 1) for the Antarctic coast. This study sought to compare depthwise changes in organic matter (OM) quantity and quality with changes in microbial biomass with depth at this high-deposition site and an offshore continental margin site. Sediments from both sites were collected during the International Ocean Drilling (IODP) Program Expedition 318. Viable microbial biomass was estimated from concentrations of bacterial-derived phospholipid fatty acids, while OM quality was assessed using four different amino acid degradation proxies. Concentrations of total hydrolysable amino acids (THAA) measured from the continental margin suggest an oligotrophic environment, with THAA concentrations representing only 2% of total organic carbon with relative proportions of non-protein amino acids β-alanine and γ-aminobutyric acid as high as 40%. In contrast, THAA concentrations from the near-shore Adélie Basin represent 40%–60% of total organic carbon. Concentrations of β-alanine and γ-aminobutyric acid were often below the detection limit and suggest that the OM of the basin as labile. DI values in surface sediments at the Adélie and margin sites were measured to be + 0.78 and − 0.76, reflecting labile and more recalcitrant OM, respectively. Greater DI values in deeper and more anoxic portions of both cores correlated positively with increased relative concentrations of phenylalanine plus tyrosine and may represent a change of redox conditions, rather than OM quality. This suggests that DI values calculated along chemical profiles should be interpreted with caution. THAA concentrations, the percentage of organic carbon (CAA%) and total nitrogen (NAA%) represented by amino acids at both sites demonstrated a significant positive correlation with bacterial abundance estimates. These data suggest that the selective degradation of amino acids, as indicated by THAA concentrations, CAA% or NAA% values may be a better proxy for describing the general changes in sedimentary bacterial abundances than total organic matter or bulk sedimentation rates.
Qiu, Qingyan; Wu, Lanfang; Ouyang, Zhu; Li, Binbin; Xu, Yanyan
2016-03-01
Soil organic carbon (SOC) mineralization is important for the regulation of the global climate and soil fertility. Decomposition of SOC may be significantly affected by the supply of plant-derived labile carbon (C). To investigate the impact of plant-derived dissolved organic matter (DOM) and urea (N) additions on the decomposition of native SOC as well as to elucidate the underlying mechanisms of priming effects (PEs), a batch of incubation experiments was conducted for 250 days by application of (13)C-labeled plant-derived DOM and urea to soils. The direction of PE induced by the addition of DOM was different from the addition of N, i.e. it switched from negative to positive in DOM-amended soils, whereas in the N-treated soil it switched from positive to negative. Adding DOM alone was favorable for soil C sequestration (59 ± 5 mg C per kg soil), whereas adding N alone or together with DOM accelerated the decomposition of native SOC, causing net C losses (-62 ± 4 and -34 ± 31 mg C per kg soil, respectively). These findings indicate that N addition and its interaction with DOM are not favorable for soil C sequestration. Adding DOM alone increased the level of dissolved organic carbon (DOC), but it did not increase the level of soil mineral N. Changes in the ratio of microbial biomass carbon (MBC) to microbial biomass nitrogen (MBN) and microbial metabolic quotient (qCO2) after the addition of DOM and N suggest that a possible shift in the microbial community composition may occur in the present study. Adding DOM with or without N increased the activities of β-glucosidase and urease. Changes in the direction and magnitude of PE were closely related to changes in soil C and N availability. Soil C and N availability might influence the PE through affecting the microbial biomass and extracellular enzyme activity as well as causing a possible shift in the microbial community composition.
Effects of exercise on capillaries in the white matter of transgenic AD mice
Zhang, Yi; Chao, Feng-Lei; Zhou, Chun-Ni; Jiang, Lin; Zhang, Lei; Chen, Lin-Mu; Luo, Yan-Min; Xiao, Qian; Tang, Yong
2017-01-01
Previous studies have shown that exercise can prevent white matter atrophy in APP/PS1 transgenic Alzheimer’s disease (AD) mice. However, the mechanism of this protective effect remains unknown. To further understand this issue, we investigated the effects of exercise on the blood supply of white matter in transgenic AD mice. Six-month-old male APP/PS1 mice were randomly divided into a control group and a running group, and age-matched non-transgenic littermates were used as a wild-type control group. Mice in the running group ran on a treadmill at low intensity for four months. Then, spatial learning and memory abilities, white matter and white matter capillaries were examined in all mice. The 10-month-old AD mice exhibited deficits in cognitive function, and 4 months of exercise improved these deficits. The white matter volume and the total length, total volume and total surface area of the white matter capillaries were decreased in the 10-month-old AD mice, and 4 months of exercise dramatically delayed the changes in these parameters in the AD mice. Our results demonstrate that even low-intensity running exercise can improve spatial learning and memory abilities, delay white matter atrophy and protect white matter capillaries in early-stage AD mice. Protecting capillaries might be an important structural basis for the exercise-induced protection of the structural integrity of white matter in AD. PMID:29029478
Effects of exercise on capillaries in the white matter of transgenic AD mice.
Zhang, Yi; Chao, Feng-Lei; Zhou, Chun-Ni; Jiang, Lin; Zhang, Lei; Chen, Lin-Mu; Luo, Yan-Min; Xiao, Qian; Tang, Yong
2017-09-12
Previous studies have shown that exercise can prevent white matter atrophy in APP/PS1 transgenic Alzheimer's disease (AD) mice. However, the mechanism of this protective effect remains unknown. To further understand this issue, we investigated the effects of exercise on the blood supply of white matter in transgenic AD mice. Six-month-old male APP/PS1 mice were randomly divided into a control group and a running group, and age-matched non-transgenic littermates were used as a wild-type control group. Mice in the running group ran on a treadmill at low intensity for four months. Then, spatial learning and memory abilities, white matter and white matter capillaries were examined in all mice. The 10-month-old AD mice exhibited deficits in cognitive function, and 4 months of exercise improved these deficits. The white matter volume and the total length, total volume and total surface area of the white matter capillaries were decreased in the 10-month-old AD mice, and 4 months of exercise dramatically delayed the changes in these parameters in the AD mice. Our results demonstrate that even low-intensity running exercise can improve spatial learning and memory abilities, delay white matter atrophy and protect white matter capillaries in early-stage AD mice. Protecting capillaries might be an important structural basis for the exercise-induced protection of the structural integrity of white matter in AD.
Effect of aggregate structure on VOC gas adsorption onto volcanic ash soil.
Hamamoto, Shoichiro; Seki, Katsutoshi; Miyazaki, Tsuyoshi
2009-07-15
The understanding of the gaseous adsorption process and the parameters of volatile organic compounds such as organic solvents or fuels onto soils is very important in the analysis of the transport or fate of these chemicals in soils. Batch adsorption experiments with six different treatments were conducted to determine the adsorption of isohexane, a gaseous aliphatic, onto volcanic ash soil (Tachikawa loam). The measured gas adsorption coefficient for samples of Tachikawa loam used in the first three treatments, Control, AD (aggregate destroyed), and AD-OMR (aggregate destroyed and organic matter removed), implied that the aggregate structure of volcanic ash soil as well as organic matter strongly enhanced gas adsorption under the dry condition, whereas under the wet condition, the aggregate structure played an important role in gas adsorption regardless of the insolubility of isohexane. In the gas adsorption experiments for the last three treatments, soils were sieved in different sizes of mesh and were separated into three different aggregate or particle size fractions (2.0-1.0mm, 1.0-0.5mm, and less than 0.5mm). Tachikawa loam with a larger size fraction showed higher gas adsorption coefficient, suggesting the higher contributions of macroaggregates to isohexane gas adsorption under dry and wet conditions.
Effect of soil pH and organic matter on the adsorption and desorption of pentachlorophenol.
Chien, Shui-Wen Chang; Chen, Shou-Hung; Li, Chi-Jui
2018-02-01
Various properties of soil affect the partition of organic contaminants within, and conversely, the properties of the organic contaminants also directly affect their partition behavior in soil. Therefore, understanding the effects of various properties of soil on the partition of organic contaminants favors subsequent assessment and provides soil remediation methods for policymakers. This study selected pentachlorophenol (PCP), a common hydrophobic ionizable organic compound in contaminated sites worldwide, as the target contaminant. The effects of pH, organic matter, and the combination of both, on PCP adsorption/desorption behavior in soil were investigated. Phosphoric acid and potassium hydroxide were used as buffer solutions to modify the soil pH by the batch and column extraction methods. A common retail organic fertilizer and fulvic acid were selected as additives to manipulate the soil organic content. Modifying the pH of the soil samples revealed that acidic soil exhibited a greater PCP adsorption rate than alkaline soil. The amount of PCP desorption increased regardless of pH of the in situ contaminated soil. The adsorption of PCP increased with increasing amount of organic additive. However, addition of fulvic acid yielded different results compared to the addition of organic fertilizer. Specifically, the organic fertilizer could not compete with the in situ contaminated soil in PCP adsorption, whereas fulvic acids increased the PCP dissolution to facilitate adsorbing contaminant adsorption. The combined effect of pH modification and organic matter addition provides additional PCP adsorption sites; therefore, adding the organic fertilizer to decrease the soil pH elevated the PCP adsorption rates of the laterite, alluvial, and in situ contaminated soil samples. The study results revealed that both pH and organic matter content are crucial to PCP adsorption/desorption in soil. Therefore, the effects of soil pH and organic matter should be considered in facilitating PCP treatment for soil remediation.
Microbial battery for efficient energy recovery.
Xie, Xing; Ye, Meng; Hsu, Po-Chun; Liu, Nian; Criddle, Craig S; Cui, Yi
2013-10-01
By harnessing the oxidative power of microorganisms, energy can be recovered from reservoirs of less-concentrated organic matter, such as marine sediment, wastewater, and waste biomass. Left unmanaged, these reservoirs can become eutrophic dead zones and sites of greenhouse gas generation. Here, we introduce a unique means of energy recovery from these reservoirs-a microbial battery (MB) consisting of an anode colonized by microorganisms and a reoxidizable solid-state cathode. The MB has a single-chamber configuration and does not contain ion-exchange membranes. Bench-scale MB prototypes were constructed from commercially available materials using glucose or domestic wastewater as electron donor and silver oxide as a coupled solid-state oxidant electrode. The MB achieved an efficiency of electrical energy conversion of 49% based on the combustion enthalpy of the organic matter consumed or 44% based on the organic matter added. Electrochemical reoxidation of the solid-state electrode decreased net efficiency to about 30%. This net efficiency of energy recovery (unoptimized) is comparable to methane fermentation with combined heat and power.
Microbial battery for efficient energy recovery
Xie, Xing; Ye, Meng; Hsu, Po-Chun; Liu, Nian; Criddle, Craig S.; Cui, Yi
2013-01-01
By harnessing the oxidative power of microorganisms, energy can be recovered from reservoirs of less-concentrated organic matter, such as marine sediment, wastewater, and waste biomass. Left unmanaged, these reservoirs can become eutrophic dead zones and sites of greenhouse gas generation. Here, we introduce a unique means of energy recovery from these reservoirs—a microbial battery (MB) consisting of an anode colonized by microorganisms and a reoxidizable solid-state cathode. The MB has a single-chamber configuration and does not contain ion-exchange membranes. Bench-scale MB prototypes were constructed from commercially available materials using glucose or domestic wastewater as electron donor and silver oxide as a coupled solid-state oxidant electrode. The MB achieved an efficiency of electrical energy conversion of 49% based on the combustion enthalpy of the organic matter consumed or 44% based on the organic matter added. Electrochemical reoxidation of the solid-state electrode decreased net efficiency to about 30%. This net efficiency of energy recovery (unoptimized) is comparable to methane fermentation with combined heat and power. PMID:24043800
King, Stephen M; Jarvie, Helen P
2012-07-03
The response of the dispersion nanostructure of surface river bed sediment to the controlled removal and readdition of natural organic matter (NOM), in the absence and presence of background electrolyte, was examined using the technique of small-angle neutron scattering (SANS). Partial NOM removal induced aggregation of the mineral particles, but more extensive NOM removal restored colloidal stability. When peat humic acid (PHA) was added to a NOM-deficient sediment concentration-related structural transformations were observed: at 255 mg/L PHA aggregation of the nanocolloid was actually enhanced, but at 380 mg/L PHA disaggregation and colloidal stability were promoted. The addition of 2 mM CaCl(2) induced mild aggregation in the native sediment but not in sediments with added PHA, suggesting that the native NOM and the PHA respond differently to changes in ionic strength. A first attempt at using SANS to directly characterize the thickness and coverage of an adsorbed PHA layer in a natural nanocolloid is also presented. The results are discussed in the context of a hierarchical aquatic colloidal nanostructure, and the implications for contemporary studies of the role of dissolved organic carbon (DOC) in sustaining the transport of colloidal iron in upland catchments.
Guo, Yane; Zhang, Zengqiang; Zhou, Bo; Wang, Pan; Yao, Hongxiang; Yuan, Minshao; An, Ningyu; Dai, Haitao; Wang, Luning; Zhang, Xi; Liu, Yong
2014-06-01
Specific patterns of brain atrophy may be helpful in the diagnosis of Alzheimer's disease (AD). In the present study, we set out to evaluate the utility of grey-matter volume in the classification of AD and amnestic mild cognitive impairment (aMCI) compared to normal control (NC) individuals. Voxel-based morphometric analyses were performed on structural MRIs from 35 AD patients, 27 aMCI patients, and 27 NC participants. A two-sample two-tailed t-test was computed between the NC and AD groups to create a map of abnormal grey matter in AD. The brain areas with significant differences were extracted as regions of interest (ROIs), and the grey-matter volumes in the ROIs of the aMCI patients were included to evaluate the patterns of change across different disease severities. Next, correlation analyses between the grey-matter volumes in the ROIs and all clinical variables were performed in aMCI and AD patients to determine whether they varied with disease progression. The results revealed significantly decreased grey matter in the bilateral hippocampus/parahippocampus, the bilateral superior/middle temporal gyri, and the right precuneus in AD patients. The grey-matter volumes were positively correlated with clinical variables. Finally, we performed exploratory linear discriminative analyses to assess the classifying capacity of grey-matter volumes in the bilateral hippocampus and parahippocampus among AD, aMCI, and NC. Leave-one-out cross-validation analyses demonstrated that grey-matter volumes in hippocampus and parahippocampus accurately distinguished AD from NC. These findings indicate that grey-matter volumes are useful in the classification of AD.
Xu, Xun; Zhao, Qingliang; Wu, Mingsong; Ding, Jing; Zhang, Weixian
2017-02-01
To enhance the biodegradation of organic matter in sediment microbial fuel cell (SMFC), Fe(III) oxide, as an alternative electron acceptor, was added into the sediment. Results showed that the SMFC with Fe(III) oxide addition obtained higher removal efficiencies for organics than the SMFC without Fe(III) oxide addition and open circuit bioreactor, and produced a maximum power density (P max ) of 87.85mW/m 2 with a corresponding maximum voltage (V max ) of 0.664V. The alteration of UV-254 and specific ultraviolet absorbance (SUVA) also demonstrated the organic matter in sediments can be effectively removed. High-throughput sequencing of anodic microbial communities indicated that bacteria from the genus Geobacter were predominantly detected (21.23%) in the biofilm formed on the anode of SMFCs, while Pseudomonas was the most predominant genus (18.12%) in the presence of Fe(III) oxide. Additionally, compared with the open circuit bioreactor, more electrogenic bacteria attached to the biofilm of anode in SMFCs. Copyright © 2016 Elsevier Ltd. All rights reserved.
Disinfection by-products (DBPs) result from the interaction of natural organic matter and bromide with chemical disinfectants, such as chlorine, added to drinking water to inactivate disease-producing microorganisms. These DBPs are monitored and regulated because of their possibl...
Code of Federal Regulations, 2012 CFR
2012-07-01
... point before the waste fluids drain into the underlying soils. For a dry well, it is likely to be the.... Stratum (plural strata) means a single sedimentary bed or layer, regardless of thickness, that consists of... (Hydrocompaction); oxidation of organic matter in soils; or added load on the land surface. Subsurface fluid...
Code of Federal Regulations, 2014 CFR
2014-07-01
... point before the waste fluids drain into the underlying soils. For a dry well, it is likely to be the.... Stratum (plural strata) means a single sedimentary bed or layer, regardless of thickness, that consists of... (Hydrocompaction); oxidation of organic matter in soils; or added load on the land surface. Subsurface fluid...
Detrital Controls on Dissolved Organic Matter in Soils: A Field Experiment
NASA Astrophysics Data System (ADS)
Lajtha, K.; Crow, S.; Yano, Y.; Kaushal, S.; Sulzman, E.; Sollins, P.
2004-12-01
We established a long-term field study in an old growth coniferous forest at the H.J. Andrews Experimental Forest, OR, to address how detrital quality and quantity control soil organic matter accumulation and stabilization. The Detritus Input and Removal Treatments (DIRT) plots consist of treatments that double leaf litter, double woody debris inputs, exclude litter inputs, or remove root inputs via trenching. We measured changes in soil solution chemistry with depth, and conducted long-term incubations of bulk soils and soil density fractions from different treatments in order to elucidate effects of detrital inputs on the relative amounts and lability of different soil C pools. In the field, the effect of adding woody debris was to increase dissolved organic carbon (DOC) concentrations in O-horizon leachate and at 30 cm, but not at 100 cm, compared to control plots, suggesting increased rates of DOC retention with added woody debris. DOC concentrations decreased through the soil profile in all plots to a greater degree than did dissolved organic nitrogen (DON), most likely due to preferential sorption of high C:N hydrophobic dissolved organic matter (DOM) in upper horizons; %hydrophobic DOM decreased significantly with depth, and hydrophilic DOM had a much lower and narrower C:N ratio. Although laboratory extracts of different litter types showed differences in DOM chemistry, percent hydrophobic DOM did not differ among detrital treatments in the field, suggesting microbial equalization of DOM leachate in the field. In long-term laboratory incubations, light fraction material did not have higher rates of respiration than heavy fraction or bulk soils, suggesting that physical protection or N availability controls different turnover times of heavy fraction material, rather than differences in chemical lability. Soils from plots that had both above- and below-ground litter inputs excluded had significantly lower DOC loss rates, and a non-significant trend for lower respiration rates . Soils from plots with added wood had similar respiration and DOC loss rates as control soils, suggesting that the additional DOC sorption observed in the field in these soils was stabilized in the soil and not readily lost upon incubation.
Wang, Tao; Shi, Feng; Jin, Yan; Yap, Pew-Thian; Wee, Chong-Yaw; Zhang, Jianye; Yang, Cece; Li, Xia; Xiao, Shifu; Shen, Dinggang
2016-01-01
Alzheimer's disease (AD) is the most common form of dementia in elderly people. It is an irreversible and progressive brain disease. In this paper, we utilized diffusion-weighted imaging (DWI) to detect abnormal topological organization of white matter (WM) structural networks. We compared the differences between WM connectivity characteristics at global, regional, and local levels in 26 patients with probable AD and 16 normal control (NC) elderly subjects, using connectivity networks constructed with the diffusion tensor imaging (DTI) model and the high angular resolution diffusion imaging (HARDI) model, respectively. At the global level, we found that the WM structural networks of both AD and NC groups had a small-world topology; however, the AD group showed a significant decrease in both global and local efficiency, but an increase in clustering coefficient and the average shortest path length. We further found that the AD patients had significantly decreased nodal efficiency at the regional level, as well as weaker connections in multiple local cortical and subcortical regions, such as precuneus, temporal lobe, hippocampus, and thalamus. The HARDI model was found to be more advantageous than the DTI model, as it was more sensitive to the deficiencies in AD at all of the three levels.
NASA Astrophysics Data System (ADS)
Hall, S. J.; Silver, W. L.
2010-12-01
Oxidative reactions play an important role in decomposing soil organic matter fractions that resist hydrolytic degradation, and fundamentally affect the cycling of recalcitrant soil carbon across ecosystems. Microbial extracellular oxidative enzymes (e.g. lignin peroxidases and laccases) have been assumed to provide a dominant role in catalyzing soil organic matter oxidation, while other potential oxidative mechanisms remain poorly explored. Here, we show that abiotic reactions mediated by the oxidation of ferrous iron (Fe(II)) could explain high potential oxidation rates in humid tropical forest soils, which often contain high concentrations of Fe(II) and experience rapid redox fluctuations between anaerobic and aerobic conditions. These abiotic reactions could provide an additional mechanism to explain high rates of decomposition in these ecosystems, despite frequent oxygen deficits. We sampled humid tropical forest soils in Puerto Rico, USA from various topographic positions, ranging from well-drained ridges to riparian valleys that experience broad fluctuations in redox potential. We measured oxidative activity by adding the model humic compound L-DOPA to soil slurries, followed by colorimetric measurements of the supernatant solution over time. Dilute hydrogen peroxide was added to a subset of slurries to measure peroxidative activity. We found that oxidative and peroxidative activity correlated positively with soil Fe(II) concentrations, counter to prevailing theory that low redox potential should suppress oxidative enzymes. Boiling or autoclaving sub-samples of soil slurries to denature any enzymes present typically increased peroxidative activity and did not eliminate oxidative activity, further suggesting the importance of an abiotic mechanism. We found substantial differences in the oxidation products of the L-DOPA substrate generated by our soil slurries in comparison with oxidation products generated by a purified enzyme (mushroom tyrosinase). Tyrosinase generated a red compound (dopachrome) that is the target analyte of the traditional L-DOPA oxidative enzyme assay, whereas our soil slurries generated purple melanin-like compounds that were likely generated by more extensive oxidation. To investigate the importance of Fe(II) for L-DOPA oxidation, we added realistic concentrations of Fe(II) (equivalent to 10 - 500 μg Fe g-1 soil) to an L-DOPA buffer solution under oxic conditions, and found rates of L-DOPA oxidation comparable to those from soil slurries. Molecular oxygen and Fe(II) are known to generate strong oxidants via Fenton reactions. We decreased L-DOPA oxidation rates in soil slurries by adding catalase and superoxide-dismutase enzymes to scavenge reactive oxygen species, suggesting that a free-radical mechanism contributed to L-DOPA oxidation. We obtained similar results using another humic model compound, tetramethylbenzidine (TMB). Although abiotic oxidative reactions involving iron have been employed to degrade anthropogenic organic contaminants, this study is among the first to demonstrate their potential importance for oxidizing organic matter in natural ecosystems. In soils rich in Fe(II), abiotic reactions could complement, or even obviate, the role of microbial oxidative enzymes in degrading recalcitrant organic compounds.
Compost addition reduces porosity and chlordecone transfer in soil microstructure.
Woignier, Thierry; Clostre, Florence; Fernandes, Paula; Rangon, Luc; Soler, Alain; Lesueur-Jannoyer, Magalie
2016-01-01
Chlordecone, an organochlorine insecticide, pollutes soils and contaminates crops and water resources and is biomagnified by food chains. As chlordecone is partly trapped in the soil, one possible alternative to decontamination may be to increase its containment in the soil, thereby reducing its diffusion into the environment. Containing the pesticide in the soil could be achieved by adding compost because the pollutant has an affinity for organic matter. We hypothesized that adding compost would also change soil porosity, as well as transport and containment of the pesticide. We measured the pore features and studied the nanoscale structure to assess the effect of adding compost on soil microstructure. We simulated changes in the transport properties (hydraulic conductivity and diffusion) associated with changes in porosity. During compost incubation, the clay microstructure collapsed due to capillary stresses. Simulated data showed that the hydraulic conductivity and diffusion coefficient were reduced by 95 and 70% in the clay microstructure, respectively. Reduced transport properties affected pesticide mobility and thus helped reduce its transfer from the soil to water and to the crop. We propose that the containment effect is due not only to the high affinity of chlordecone for soil organic matter but also to a trapping mechanism in the soil porosity.
Dissolved organic matter reduces algal accumulation of methylmercury
Luengen, Allison C.; Fisher, Nicholas S.; Bergamaschi, Brian A.
2012-01-01
Dissolved organic matter (DOM) significantly decreased accumulation of methylmercury (MeHg) by the diatom Cyclotella meneghiniana in laboratory experiments. Live diatom cells accumulated two to four times more MeHg than dead cells, indicating that accumulation may be partially an energy-requiring process. Methylmercury enrichment in diatoms relative to ambient water was measured by a volume concentration factor (VCF). Without added DOM, the maximum VCF was 32 x 104, and the average VCF (from 10 to 72 h) over all experiments was 12.6 x 104. At very low (1.5 mg/L) added DOM, VCFs dropped by approximately half. At very high (20 mg/L) added DOM, VCFs dropped 10-fold. Presumably, MeHg was bound to a variety of reduced sulfur sites on the DOM, making it unavailable for uptake. Diatoms accumulated significantly more MeHg when exposed to transphilic DOM extracts than hydrophobic ones. However, algal lysate, a labile type of DOM created by resuspending a marine diatom in freshwater, behaved similarly to a refractory DOM isolate from San Francisco Bay. Addition of 67 μM L-cysteine resulted in the largest drop in VCFs, to 0.28 x 104. Although the DOM composition influenced the availability of MeHg to some extent, total DOM concentration was the most important factor in determining algal bioaccumulation of MeHg.
A review on the applications of microbial electrolysis cells in anaerobic digestion.
Yu, Zhengsheng; Leng, Xiaoyun; Zhao, Shuai; Ji, Jing; Zhou, Tuoyu; Khan, Aman; Kakde, Apurva; Liu, Pu; Li, Xiangkai
2018-05-01
Anaerobic digestion (AD) has been widely used for biogas or biofuel generation from waste treatment. Because a low production rate and instability of AD occur frequently, various technologies have been applied to improvement of AD. Microbial electrolysis cells (MECs), an emerging technology, can convert organic matter into hydrogen, methane, and other value-added products. Recent studies showed that application of MEC to AD (MEC-AD) can accelerate degradation of a substrate (including recalcitrant compounds) and alter AD microbial community by enriching exoelectrogens and methanogens thus increasing biogas production. With stable microbial communities established, improvement of MEC-AD for methane production was achieved. MEC-AD process can be monitored in real-time by detecting electric signals, which linearly correlate with substrate concentrations. This review attempts to evaluate interactions among the decomposition of substrates, MEC-AD system, and the microbial community. This analysis should provide useful insights into the improvement of methane production and the performance of MEC-AD. Copyright © 2018 Elsevier Ltd. All rights reserved.
Non-labile Soil Nitrogen Retention beneath Three Tree Species in a Tropical Plantation
Jason P. Kaye; Dan Binkley; Xiaoming Zou
2002-01-01
Soil organic matter is the largest sink for N additions to forests. Species composition may affect soilNretention by altering the amount or proportion of added N stored in non-labile organic pools. We measured 15N tracer retention in labile and non-labile pools of surface (0â20 cm) mineral soils, 7 yr after the tracer was applied to a 9 yr-old Puerto Rican tree...
Zhang, Difang; Luo, Wenhai; Yuan, Jing; Li, Guoxue
2018-04-26
This study investigated the performance of co-biodrying sewage sludge and organic fraction of municipal solid waste (OFMSW) at different proportions. Cornstalk was added at 15% (of total wet weight) as the bulking agent. Results show that increasing OFMSW percentage promoted the biodegradation of organic matter, thus enhancing the temperature integration value and water removal to above 75% during sludge and OFMSW co-biodrying. In particular, adding more OFMSW accelerated the biodegradation of soluble carbohydrates, lignins, lipids, and amylums, resulting in more organic loss and thus lower biodrying index (3.3-3.7 for 55-85% OFMSW). Water balance calculation indicated that evaporation was the main mechanism for water removal. Heat used for water evaporation was 37.7-48.6% of total heat consumption during co-biodrying. Our results suggest that sludge and OFMSW should be mixed equally for their efficient co-biodrying. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Woulds, Clare; Middelburg, Jack J.; Cowie, Greg L.
2012-01-01
Of the factors which control the quantity and composition of organic matter (OM) buried in marine sediments, the links between infaunal ingestion and gut passage and sediment geochemistry have received relatively little attention. This study aimed to use feeding experiments and novel isotope tracing techniques to quantify amino acid net accumulation and loss during polychaete gut passage, and to link this to patterns of selective preservation and decay in sediments. Microcosms containing either Arenicolamarina or Hediste (formerly Nereis) diversicolor were constructed from defaunated sediment and filtered estuarine water, and maintained under natural temperature and light conditions. They were fed with 13C-labelled diatoms daily for 8 days, and animals were transferred into fresh, un-labelled sediment after ∼20 days. Samples of fauna, microcosm sediment and faecal matter were collected after 8, ∼20 and ∼40 days, and analysed for their bulk isotopic signatures and 13C-labelled amino acid compositions. Bulk isotopic data showed that, consistent with their feeding modes, Hediste assimilated added 13C more quickly, and attained a higher labelling level than Arenicola. Both species retained the added 13C in their biomass even after removal from the food. A principal component analysis of 13C-labelled amino acid mole percentages showed clear differences in composition between the algae, faunal tissues, and sediment plus faecal matter. Further, the two species of polychaete showed different compositions in their tissues. The amino acids phenylalanine, valine, leucine, iso-leucine, threonine and proline showed net accumulation in polychaete tissues. Serine, methionine, lysine, aspartic and glutamic acids and tyrosine were rapidly lost through metabolism, consistent with their presence in easily digestible cell components (as opposed to cell walls which offer physical protection). All sample types (polychaete tissues, sediments and faecal matter) were enriched in labelled glycine. Possible mechanisms for this enrichment include accumulation through inclusion in tissues with long residence times, preferential preservation (i.e. selection against) during metabolism, production from other labelled amino acids during varied metabolic processes, and accumulation in refractory by-products of secondary bacterial production. Overall, similarities were observed between amino-acid decay patterns in faunated microcosms, afaunal controls, and those previously reported in marine sediments. Thus, while polychaete gut passage did produce compound-selective accumulation and losses of certain amino acids in polychaete tissues and faecal matter, the impact of polychaete gut passage on sediment organic geochemistry was difficult to deconvolve from microbial decay. Despite processing large volumes of organic matter, polychaetes may not have distinctive influence on sediment compositions, possibly because metabolic processes concerning amino acids may be broadly similar across a wide range of organisms.
Chan, Lauryn G; Cohen, Joshua L; de Moura Bell, Juliana Maria Leite Nobrega
2018-03-25
The design of new food products and increased agricultural activities have produced a diversity of waste streams or by-products that contain a high load of organic matter. The underutilization of these streams presents a serious threat to the environment and to the financial viability of the agricultural sector and the food industry. Oleaginous microorganisms, such as yeast and microalgae, have been used to convert the organic matter present in many agricultural waste streams into an oil-rich biomass. Filamentous fungi are promising oleaginous microorganisms because of their high lipid accumulation potential and simple biomass recovery, the latter being related to their pellet-like growth morphology in submerged cultivation. This review highlights the use of oleaginous filamentous fungi to convert food by-products into value-added components, including the effect of cultivation conditions on biomass yield and composition. Special attention is given to downstream processing for the commercial production of fungal oil. Also discussed are innovative techniques to optimize the biomass oil yield and to minimize the challenges associated with biomass harvesting and oil extraction at industrial scale.
Kiyuna, Luma Sayuri Mazine; Fuess, Lucas Tadeu; Zaiat, Marcelo
2017-05-01
Throughout the sugarcane harvest, it is common for sulfate to accumulate in the vinasse of sugar and ethanol plants. However, little is known regarding the influence of sulfate on the anaerobic digestion (AD) of vinasse, which may lead to severe performance losses. This study assessed the influence of various COD/sulfate ratios (12.0, 10.0 and 7.5) on both COD removal and methane (CH 4 ) production from sugarcane vinasse AD. Batch assays were conducted in thermophilic conditions. At a COD/sulfate ratio of 7.5, CH 4 production was 35% lower compared with a ratio of 12.0, considering a diversion of approximately 13.6% of the electron flow to sulfidogenesis. The diversion of electrons to sulfidogenesis was negligible at COD/sulfate ratios higher than 25, considering the exponential increase in CH 4 production. Organic matter degradation was not greatly affected by sulfidogenesis, with COD removal levels higher than 80%, regardless of the initial COD/sulfate ratio. Copyright © 2017 Elsevier Ltd. All rights reserved.
Influence of biochar and plant growth on organic matter dynamics in a reclaimed mine residue
NASA Astrophysics Data System (ADS)
Moreno-Barriga, Fabián; Díaz, Vicente; Alberto, Jose; Faz, Ángel; Zornoza, Raúl
2016-04-01
This study aims at assessing the impact of biochar and marble waste amendment and the development of vegetation in acidic mine wastes on organic matter dynamics. For this purpose, a mine residue was collected in a tailing pond from the Sierra Minera of Cartagena-La Unión (SE Spain), and a greenhouse experiment was established for 120 days. Marble waste (MW) was added in a rate of 200 g kg-1 as a source of calcium carbonate to increase the pH from 3 to 7.5-8 (average pH in the native soils of the area). We added biochar as a source of organic carbon and nutrients, in two different rates, 50 g kg-1 (BC1) and 100 g kg-1 (BC2). To assess the influence of vegetation growth on the creation of a technosoil from mine residues and its impact on organic matter dynamics, the plant species Piptatherum miliaceum (PM) was planted in half the pots with the different amendments. Thus, five treatments were established: unamended and unplanted control (CT), BC1, BC2, BC1+PM and BC2+PM. Results showed that the different treatments had no significant effect on aggregates stability, microbial biomass carbon and the emission of N2O and CH4. So, it seems that longer periods are needed to increase the stability of aggregates and microbial populations, since even the combined use of biochar, marble waste and vegetation was not enough to increase these properties in 120 days. Nonetheless, it was positive that the addition of biochar and the release of root exudates did not trigger the emission of greenhouse gases. Organic carbon significantly increased with the addition of biochar, with values similar to the dose applied, indicating high stability and low mineralization of the amendment. The addition of amendments significantly increased arylesterase activity, while the growth of the plant was needed to significantly increase β-glucosidase activity. The soluble carbon significantly decreased in BC1 and BC2 with regards to CT, while no significant differences were observed among CT and treatments with plant. Arylestarase showed significant correlations with pH and organic carbon, while β-glucosidase was related to total and soluble organic carbon. Thus, the high recalcitrance of biochar increased the total organic carbon, but decreased soluble carbon, likely by adsorption, and was not able to activate microbial populations. A labile source of organic matter should be added together with the proposed amendments to promote the activation of microbial communities and likely the formation of stable aggregates, since root exudates were not enough for this purpose. Acknowledgement : This work has been funded by Fundación Séneca (Agency of Science and Technology of the Region of Murcia, Spain) by the project 18920/JLI/13
The association of uranium with organic matter in Holocene peat: An experimental leaching study
Zielinski, R.A.; Meier, A.L.
1988-01-01
Uraniferous peat was sampled from surface layers of a Holocene U deposit in northeastern Washington State. Dried, sized, and homogenized peat that contained 5980 ??307 ppm U was subjected to a variety of leaching conditions to determine the nature and strength of U-organic bonding in recently accumulated organic matter. The results complement previous experimental studies of U uptake on peat and suggest some natural or anthropogenic disturbances that are favorable for remobilizing U. The fraction of U leached in 24 h experiments at 25??C ranged from 0 to 95%. The most effective leach solutions contained anions capable of forming stable dissolved complexes with uranyl (UO2+2) cation. These included H2SO4 (pH = 1.5) and concentrated (>0.01 M) solutions of sodium bicarbonate-carbonate (pH = 7.0-10.0), or sodium pyrophosphate (pH = 10). Effective leaching by carbonate and pyrophosphate in the absence of added oxidant, and the insignificant effect of added oxidant (as pressurized O2) strongly suggest that U is initially fixed on organic matter as an oxidized U(VI) species. Uranium is more strongly bound than some other polyvalent cations, based on its resistance to exchange in the presence of large excesses of dissolved Ca2+ and Cu2+. Measurements of the rate of U leaching indicate faster rates in acid solution compared to carbonate solution, and are consisten with simultaneous attack of sites with different affinities for U. Sulfuric acid appears a good choice for commercial extraction of U from mined peat. In situ disturbances such as overliming of peat soils, addition of fertilizers containing pyrophosphate, or incursions of natural carbonate-rich waters could produce significant remobilization of U, and possibly compromise the quality of local domestic water supplies. ?? 1988.
Wang, Qing-kui; Wang, Si-long; Yu, Xiao-jun; Zhang, Jian; Liu, Yan-xin
2007-06-01
With incubation test, this paper studied the effects of Cunninghamia lanceolata leaf litter and its mixture with the litters of main broadleaved tree species in subtropical China, such as Alnus cremastogyne, Kalopanax septemlobus and Michelia macclurei on active soil organic matter. The results showed that adding leaf litters into soil could significantly increase soil microbial biomass C and N, respiration rate and dissolved organic C, and mixed leaf litters were more effective than C. lanceolata leaf litter in increasing soil dissolved organic C. By the end of the incubation, the increment of soil microbial biomass C and N, respiration rate, and dissolved organic C in treatments C. lanceolata leaf litter and C. lanceolata-broadleaved tree species mixed leaf litters was 49% and 63%, 35% and 75%, 65% and 100%, and 66% and 108%, respectively, compared with control. The addition of leaf litters had no significant effects on soil microbial quotient and microbial biomass C/N ratio.
Frontotemporal neural systems supporting semantic processing in Alzheimer's disease.
Peelle, Jonathan E; Powers, John; Cook, Philip A; Smith, Edward E; Grossman, Murray
2014-03-01
We hypothesized that semantic memory for object concepts involves both representations of visual feature knowledge in modality-specific association cortex and heteromodal regions that are important for integrating and organizing this semantic knowledge so that it can be used in a flexible, contextually appropriate manner. We examined this hypothesis in an fMRI study of mild Alzheimer's disease (AD). Participants were presented with pairs of printed words and asked whether the words matched on a given visual-perceptual feature (e.g., guitar, violin: SHAPE). The stimuli probed natural kinds and manufactured objects, and the judgments involved shape or color. We found activation of bilateral ventral temporal cortex and left dorsolateral prefrontal cortex during semantic judgments, with AD patients showing less activation of these regions than healthy seniors. Moreover, AD patients showed less ventral temporal activation than did healthy seniors for manufactured objects, but not for natural kinds. We also used diffusion-weighted MRI of white matter to examine fractional anisotropy (FA). Patients with AD showed significantly reduced FA in the superior longitudinal fasciculus and inferior frontal-occipital fasciculus, which carry projections linking temporal and frontal regions of this semantic network. Our results are consistent with the hypothesis that semantic memory is supported in part by a large-scale neural network involving modality-specific association cortex, heteromodal association cortex, and projections between these regions. The semantic deficit in AD thus arises from gray matter disease that affects the representation of feature knowledge and processing its content, as well as white matter disease that interrupts the integrated functioning of this large-scale network.
Goedkoop, Willem; Peterson, Märit
2003-01-01
In this laboratory study, we address the effect of Chironomus bioturbation (0, 2,000, 6,000, and 18,000 ind/m2) and sediment organic matter content (10, 20, and 40%) on the fate, distribution, and bioavailability of 14C-lindane under standardized conditions in toxicity tests with artificial sediment. The results show that both Chironomus burrowing activity and sediment organic matter strongly modify test conditions. Larval mortality and development were inversely related with Chironomus densities and lindane concentration. Sediment organic matter content affected larval development rates but not mortality. Partitioning of lindane between the sediment, overlying water, and interstitial water was affected negatively by Chironomus larval densities: however, sediment partitioning was positively affected by sediment organic matter content. Bioturbation by Chironomus resulted in a remobilization of particle-associated lindane to the interstitial and overlying water, implying an increase in the bioavailability of the test compound. Strong positive relationships were found between Chironomus densities and lindane concentrations in interstitial water. The presence of Chironomus also resulted in lower label recovery. Label recovery on sediment particles ranged from 49 to 61% of initially added label in microcosms without Chironomus, from 41 to 56% at low larval densities, and from 15 to 50% at high larval densities. These results show that large discrepancies may exist between nominal test concentrations (from test compound additions) and true exposure concentrations even under standardized test conditions, which can introduce a relatively large error term in risk assessments. Calculations show that volatilization may be a quantitatively important sink for test compounds.
Measuring the Value Added of Management: A Knowledge Value Added Approach
2006-12-31
Dark Matter ” ................................................................3 Difficult-to-track Dark Matter Outputs .................................................5 Computing Metaphor..........................................................................6 Dark Matter Correlates with Market Performance ..............................8 Outputs of Dark Matter .......................................................................9 Operationalizing: The Measurement of Dark
Non-labile Soil 15Nitrogen Retention beneath Three Tree Species in a Tropical Plantation
Jason P. Kaye; Dan Binkley; Xiaoming Zou
2002-01-01
Soil organic matter is the largest sink for N additions to forests.Species composition may affect soilNretention by altering the amount or proportion of added N stored in non-labile organic pools. We measured 15N tracer retention in labile and non-labile pools of surface (0â20 cm) mineral soils, 7 yr after the tracer was applied to a 9 yr-old Puerto Rican tree...
Effects of silver nanoparticles on soil enzyme activities with and without added organic matter.
Peyrot, Caroline; Wilkinson, Kevin J; Desrosiers, Mélanie; Sauvé, Sébastien
2014-01-01
The effects of silver nanoparticles (AgNPs) on terrestrial ecosystems need to be better understood and assessed. Cationic silver (Ag+) has well-documented toxicity against bacteria, but it is not clear what will be the effect of nanoscale Ag. In the present study, the potential effects of AgNPs were investigated in soils by measuring activity of the enzymes phosphomonoesterase, arylsulfatase, β-D-glucosidase, and leucine-aminopeptidase. The toxicity of AgNPs was compared with that of ionic Ag, and the ameliorating effects of soil organic matter were evaluated. To this end, 2 soils with different organic matter contents were artificially contaminated with either AgNPs or Ag-acetate at equivalent total Ag concentrations. In general, enzyme activities were inhibited as a function of the Ag concentration in the soil. In the AgNP exposures, only a small fraction of the AgNP was actually truly dissolved (found in the <1-nm fraction), suggesting that the particulate forms of AgNPs resulted in a significant inhibition of soil enzymes. The addition of organic matter to the soils appeared to enhance enzyme activities; however, the mechanism of organic matter action is not clear given that dissolved Ag concentrations were similar in both the organic-matter–amended and unamended soils. The present study shows that the AgNP produces significant negative effects on the soil enzyme activities tested. The Ag chemical speciation measurements suggested that the AgNP caused greater toxic effects to the soil enzymes at the low Ag concentrations. For the larger concentrations of total soil Ag, causes of the negative effects on enzyme activities are less obvious but suggest that colloidal forms of Ag play a role.
Benthic Foraminifera, Food in the Deep Sea, and Limits to Bentho-Pelagic Coupling
NASA Astrophysics Data System (ADS)
Thomas, E.; Boscolo-Galazzo, F.; Arreguin-Rodrigu, G. J.; Ortiz, S.; Alegret, L.
2015-12-01
The deep-sea is the largest habitat on Earth, contains highly diverse biota, but is very little known. Many of its abundant benthic biota (e.g., nematodes) are not preserved in the fossil record. Calcareous and agglutinated benthic foraminifera (unicellular eukaryotes, Rhizaria; efficient dispersers) and ostracodes (Animalia, Crustacea; non-efficient dispersers) are the most common organisms providing a fossil record of deep-sea environments. Very little food is supplied to the deep-sea, because organic matter produced by photosynthesis is largely degraded before it arrives at the seafloor. Only a few % of organic matter is carried to the ocean bottom by 'marine snow', with its particle size and behavior in the water column controlled by surface ecosystem structure, including type of dominant primary producers (diatoms, cyanobacteria). Food supply and its seasonality are generally seen as the dominant control on benthic assemblages (combined with oxygenation), providing bentho-pelagic coupling between primary and benthic productivity. Benthic foraminiferal assemblages (composition and density) thus are used widely to estimate past productivity, especially during episodes of global climate change, ocean acidification, and mass extinction of primary producers. We show that some environmental circumstances may result in interrupting bentho-pelagic coupling, e.g. through lateral supply of organic matter along continental margins (adding more refractory organic matter), through trophic focusing and/or fine particle winnowing on seamounts (giving an advantage to suspension feeders), and through carbonate undersaturation (giving advantage to infaunal over epifaunal calcifyers). In addition, increased remineralization of organic matter combined with increased metabolic rates may cause assemblages to reflect more oligotrophic conditions at stable primary productivity during periods of global warming. As a result, benthic foraminiferal accumulation rates must be carefully evaluated before use as proxies for primary productivity.
NASA Astrophysics Data System (ADS)
Finley, B. K.; Schwartz, E.; Koch, B.; Dijkstra, P.; Hungate, B. A.
2017-12-01
The interactions between soil mineral assemblages and microbial communities are important drivers of soil organic carbon (SOC) cycling and storage, although the mechanisms driving these interactions remain unclear. There is increasing evidence supporting the importance of associations with poorly crystalline, short-range order (SRO) minerals in protection of SOC from microbial utilization. However, how the microbial processing of SRO-associated SOC may be influenced by fresh organic matter inputs (priming) remains poorly understood. The influence on SRO minerals on soil microbial community dynamics is uncertain as well. Therefore, we conducted a priming incubation by adding either a simulated root exudate mixture or conifer needle litter to three soils from a mixed-conifer ecosystem. The parent material of the soils were andesite, basalt, and granite and decreased in SRO mineral content, respectively. We also conducted a parallel quantitative stable isotope probing incubation by adding 18O-labelled water to the soils to isotopically label microbial DNA in situ. This allowed us to characterize and identify the active bacterial and archaeal community and taxon-specific growth under fresh organic matter input. While the granite soil (lowest SRO content), had the largest total mineralization, the least priming occurred. The andesite and basalt soils (greater SRO content) had lower total respiration, but greater priming. Across all treatments, the granite soil, while having the lowest species richness of the entire community (249 taxa, both active and inactive), had a larger active community (90%) in response to new SOC input. The andesite and basalt soils, while having greater total species richness of the entire community at 333 and 325 taxa, respectively, had fewer active taxa in response to new C compared to the granite soil (30% and 49% taxa, respectively). These findings suggest that the soil mineral assemblage is an important driver on SOC cycling under fresh organic matter inputs, as well as on the activity and diversity of the microbial community. Often, microbial diversity is associated with function. Our results suggest that the soil environment, in this case SRO mineral content, may be more important on SOC cycling and storage than microbial diversity alone.
Yang, Benqin; Zhang, Lei; Lee, Yongwoo; Jahng, Deokjin
2013-10-01
A novel process termed as bioevaporation was established to completely evaporate wastewater by metabolic heat released from the aerobic microbial degradation of the organic matters contained in the highly concentrated organic wastewater itself. By adding the glucose solution and ground food waste (FW) into the biodried sludge bed, the activity of the microorganisms in the biodried sludge was stimulated and the water in the glucose solution and FW was evaporated. As the biodegradable volatile solids (BVS) concentration in wastewater increased, more heat was produced and the water removal ratio increased. When the volatile solids (VS) concentrations of both glucose and ground FW were 120 g L(-1), 101.7% and 104.3% of the added water was removed, respectively, by completely consuming the glucose and FW BVS. Therefore, the complete removal of water and biodegradable organic contents was achieved simultaneously in the bioevaporation process, which accomplished zero-discharge treatment of highly concentrated organic wastewater. Copyright © 2013 Elsevier Ltd. All rights reserved.
Dissolved Organic Carbon and Disinfection By-Product Precursor Release from Managed Peat Soils
Fleck, J.A.; Bossio, D.A.; Fujii, R.
2004-01-01
A wetland restoration demonstration project examined the effects of a permanently flooded wetland on subsidence of peat soils. The project, started in 1997, was done on Twitchell Island, in the Sacramento-San Joaquin Delta of California. Conversion of agricultural land to a wetland has changed many of the biogeochemical processes controlling dissolved organic carbon (DOC) release from the peat soils, relative to the previous land use. Dissolved organic C in delta waters is a concern because it reacts with chlorine, added as a disinfectant in municipal drinking waters, to form carcinogenic disinfection byproducts (DBPs), including trihalomethanes (THMs) and haloacetic acids (HAAs). This study explores the effects of peat soil biogeochemistry on DOC and DBP release under agricultural and wetland management. Results indicate that organic matter source, extent of soil organic matter decomposition, and decomposition pathways all are factors in THM formation. The results show that historical management practices dominate the release of DOC and THM precursors. However, within-site differences indicate that recent management decisions can contribute to changes in DOC quality and THM precursor formation. Not all aromatic forms of carbon are highly reactive and certain environmental conditions produce the specific carbon structures that form THMs. Both HAA and THM precursors are elevated in the DOC released under wetland conditions. The findings of this study emphasize the need to further investigate the roles of organic matter sources, microbial decomposition pathways, and decomposition status of soil organic matter in the release of DOC and DBP precursors from delta soils under varying land-use practices.
COP-compost: a software to study the degradation of organic pollutants in composts.
Zhang, Y; Lashermes, G; Houot, S; Zhu, Y-G; Barriuso, E; Garnier, P
2014-02-01
Composting has been demonstrated to be effective in degrading organic pollutants (OP) whose behaviour depends on the composting conditions, the microbial populations activated and interactions with organic matters. The fate of OP during composting involves complex mechanisms and models can be helpful tools for educational and scientific purposes, as well as for industrialists who want to optimise the composting process for OP elimination. A COP-Compost model, which couples an organic carbon (OC) module and an organic pollutant (OP) module and which simulates the changes of organic matter, organic pollutants and the microbial activities during the composting process, has been proposed and calibrated for a first set of OP in a previous study. The objectives of the present work were (1) to introduce the COP-Compost model from its convenient interface to a potential panel of users, (2) to show the variety of OP that could be simulated, including the possibility of choosing between degradation through co-metabolism or specific metabolism and (3) to show the effect of the initial characteristics of organic matter quality and its microbial biomass on the simulated results of the OP dynamic. In the model, we assumed that the pollutants can be adsorbed on organic matter according to the biochemical quality of the OC and that the microorganisms can degrade the pollutants at the same time as they degrade OC (by co-metabolism). A composting experiment describing two different (14)C-labelled organic pollutants, simazine and pyrene, were chosen from the literature because the four OP fractions simulated in the model were measured during the study (the mineralised, soluble, sorbed and non-extractable fractions). Except for the mineralised fraction of simazine, a good agreement was achieved between the simulated and experimental results describing the evolution of the different organic fractions. For simazine, a specific biomass had to be added. To assess the relative importance of organic matter dynamics on the organic pollutants' behaviour, a sensitivity analysis was conducted. The sensitivity analysis demonstrated that the parameters associated with organic matter dynamics and its initial microbial biomass greatly influenced the evolution of all the OP fractions, although the initial biochemical quality of the OC did not have a significant impact on the OP evolution.
Independent component analysis of DTI data reveals white matter covariances in Alzheimer's disease
NASA Astrophysics Data System (ADS)
Ouyang, Xin; Sun, Xiaoyu; Guo, Ting; Sun, Qiaoyue; Chen, Kewei; Yao, Li; Wu, Xia; Guo, Xiaojuan
2014-03-01
Alzheimer's disease (AD) is a progressive neurodegenerative disease with the clinical symptom of the continuous deterioration of cognitive and memory functions. Multiple diffusion tensor imaging (DTI) indices such as fractional anisotropy (FA) and mean diffusivity (MD) can successfully explain the white matter damages in AD patients. However, most studies focused on the univariate measures (voxel-based analysis) to examine the differences between AD patients and normal controls (NCs). In this investigation, we applied a multivariate independent component analysis (ICA) to investigate the white matter covariances based on FA measurement from DTI data in 35 AD patients and 45 NCs from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database. We found that six independent components (ICs) showed significant FA reductions in white matter covariances in AD compared with NC, including the genu and splenium of corpus callosum (IC-1 and IC-2), middle temporal gyral of temporal lobe (IC-3), sub-gyral of frontal lobe (IC-4 and IC-5) and sub-gyral of parietal lobe (IC-6). Our findings revealed covariant white matter loss in AD patients and suggest that the unsupervised data-driven ICA method is effective to explore the changes of FA in AD. This study assists us in understanding the mechanism of white matter covariant reductions in the development of AD.
Longitudinal changes in microstructural white matter metrics in Alzheimer's disease.
Mayo, Chantel D; Mazerolle, Erin L; Ritchie, Lesley; Fisk, John D; Gawryluk, Jodie R
2017-01-01
Alzheimer's disease (AD) is a progressive neurodegenerative disorder. Current avenues of AD research focus on pre-symptomatic biomarkers that will assist with early diagnosis of AD. The majority of magnetic resonance imaging (MRI) based biomarker research to date has focused on neuronal loss in grey matter and there is a paucity of research on white matter. Longitudinal DTI data from the Alzheimer's Disease Neuroimaging Initiative 2 database were used to examine 1) the within-group microstructural white matter changes in individuals with AD and healthy controls at baseline and year one; and 2) the between-group microstructural differences in individuals with AD and healthy controls at both time points. 1) Within-group: longitudinal Tract-Based Spatial Statistics revealed that individuals with AD and healthy controls both had widespread reduced fractional anisotropy (FA) and increased mean diffusivity (MD) with changes in the hippocampal cingulum exclusive to the AD group. 2) Between-group: relative to healthy controls, individuals with AD had lower FA and higher MD in the hippocampal cingulum, as well as the corpus callosum, internal and external capsule; corona radiata; posterior thalamic radiation; superior and inferior longitudinal fasciculus; fronto-occipital fasciculus; cingulate gyri; fornix; uncinate fasciculus; and tapetum. The current results indicate that sensitivity to white matter microstructure is a promising avenue for AD biomarker research. Additional longitudinal studies on both white and grey matter are warranted to further evaluate potential clinical utility.
Bejanin, Alexandre; Desgranges, Béatrice; La Joie, Renaud; Landeau, Brigitte; Perrotin, Audrey; Mézenge, Florence; Belliard, Serge; de La Sayette, Vincent; Eustache, Francis; Chételat, Gaël
2017-04-01
This study aims at further understanding the distinct vulnerability of brain networks in Alzheimer's disease (AD) versus semantic dementia (SD) investigating the white matter injury associated with medial temporal lobe (MTL) atrophy in both conditions. Twenty-six AD patients, twenty-one SD patients, and thirty-nine controls underwent a high-resolution T1-MRI scan allowing to obtain maps of grey matter volume and white matter density. A statistical conjunction approach was used to identify MTL regions showing grey matter atrophy in both patient groups. The relationship between this common grey matter atrophy and white matter density maps was then assessed within each patient group. Patterns of grey matter atrophy were distinct in AD and SD but included a common region in the MTL, encompassing the hippocampus and amygdala. This common atrophy was associated with alterations in different white matter areas in AD versus SD, mainly including the cingulum and corpus callosum in AD, while restricted to the temporal lobe - essentially the uncinate and inferior longitudinal fasciculi - in SD. Complementary analyses revealed that these relationships remained significant when controlling for global atrophy or disease severity. Overall, this study provides the first evidence that atrophy of the same MTL region is related to damage in distinct white matter fibers in AD and SD. These different patterns emphasize the vulnerability of distinct brain networks related to the MTL in these two disorders, which might underlie the discrepancy in their symptoms. These results further suggest differences between AD and SD in the neuropathological processes occurring in the MTL. Hum Brain Mapp 38:1791-1800, 2017. © 2017 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Moreno-Jiménez, Eduardo; Clemente, Rafael; Mestrot, Adrien; Meharg, Andrew A
2013-02-01
Organic matter amendments are applied to contaminated soil to provide a better habitat for re-vegetation and remediation, and olive mill waste compost (OMWC) has been described as a promising material for this aim. We report here the results of an incubation experiment carried out in flooded conditions to study its influence in As and metal solubility in a trace elements contaminated soil. NPK fertilisation and especially organic amendment application resulted in increased As, Se and Cu concentrations in pore water. Independent of the amendment, dimethylarsenic acid (DMA) was the most abundant As species in solution. The application of OMWC increased pore water dissolved organic-carbon (DOC) concentrations, which may explain the observed mobilisation of As, Cu and Se; phosphate added in NPK could also be in part responsible of the mobilisation caused in As. Therefore, the application of soil amendments in mine soils may be particularly problematic in flooded systems. Copyright © 2012 Elsevier Ltd. All rights reserved.
Park, Seungshik; Son, Se-Chang
2016-01-01
This study investigates the size distribution and possible sources of humic-like substances (HULIS) in ambient aerosol particles collected at an urban site in Gwangju, Korea during the winter of 2015. A total of 10 sets of size-segregated aerosol samples were collected using a 10-stage Micro-Orifice Uniform Deposit Impactor (MOUDI), and the samples were analyzed to determine the mass as well as the presence of ionic species (Na(+), NH4(+), K(+), Ca(2+), Mg(2+), Cl(-), NO3(-), and SO4(2-)), water-soluble organic carbon (WSOC) and HULIS. The separation and quantification of the size-resolved HULIS components from the MOUDI samples was accomplished using a Hydrophilic-Lipophilic Balanced (HLB) solid phase extraction method and a total organic carbon analyzer, respectively. The entire sampling period was divided into two periods: non-Asian dust (NAD) and Asian dust (AD) periods. The contributions of water-soluble organic mass (WSOM = 1.9 × WSOC) and HULIS (=1.9 × HULIS-C) to fine particles (PM1.8) were approximately two times higher in the NAD samples (23.2 and 8.0%) than in the AD samples (12.8 and 4.2%). However, the HULIS-C/WSOC ratio in PM1.8 showed little difference between the NAD (0.35 ± 0.07) and AD (0.35 ± 0.05) samples. The HULIS exhibited a uni-modal size distribution (@0.55 μm) during NAD and a bimodal distribution (@0.32 and 1.8 μm) during AD, which was quite similar to the mass size distributions of particulate matter, WSOC, NO3(-), SO4(2-), and NH4(+) in both the NAD and AD samples. The size distribution characteristics and the results of the correlation analyses indicate that the sources of HULIS varied according to the particle size. In the fine mode (≤1.8 μm), the HULIS composition during the NAD period was strongly associated with secondary organic aerosol (SOA) formation processes similar to those of secondary ionic species (cloud processing and/or heterogeneous reactions) and primary emissions during the biomass burning period, and during the AD period, it was only associated with SOA formation. In the coarse mode (3.1-10 μm), it was difficult to identify the HULIS sources during the NAD period, and during the AD period, the HULIS was most likely associated with soil-related particles [Ca(NO3]2 and CaSO4) and/or sea-salt particles (NaNO3 and Na2SO4).
NASA Astrophysics Data System (ADS)
Sipler, R. E.; Spackeen, J.; McQuaid, J.; Bertrand, E. M.; Roberts, Q. N.; Baer, S. E.; Hutchins, D. A.; Allen, A. E.; Bronk, D. A.
2016-02-01
Western Antarctic shelves are highly productive regions that play an important role in global carbon and nitrogen cycles, specifically serving as a critical sink for carbon dioxide. Fixed carbon is stored within the phytoplankton cell as particulate organic matter or released into the surrounding water as dissolved organic matter (DOM). These phytoplankton-derived sources of organic matter support higher trophic levels as well as heterotrophic bacterial growth and respiration. The composition of the phytoplankton-derived organic matter is a function of the taxa as well as the environmental conditions under which it is produced. Phytoplankton community composition within western Antarctic Seas changes throughout Austral spring and summer with early production dominated by ice algae, switching to pelagic diatoms and flagellates later in the season. The goal of this study was to compare the response of Ross Sea microbial communities to DOM produced by ice algae or late season diatoms, specifically recent isolates of Pseudo nitzschia obtained from the Ross Sea. During 5-day bioassay studies, exudates from a natural ice algal community and from Pseudo nitzschia sp. isolates were added to natural microbial communities collected from two different Ross Sea locations, an ice-edge and an ice-covered site. The bacterial response to the DOM additions was greatest in the ice-covered community with a 5 and 3-fold higher bacterial abundance in the ice algae DOM and Pseudo nitzschia DOM treatments, respectively, relative to the control. The ice edge bacterial community responded similarly to both sources with a 2-fold increase in bacterial abundance compared to the control. Unlike the bacterial response, there was little difference in chlorophyll a concentrations between treatments, indicating that phytoplankton growth was not stimulated or inhibited by our additions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shu Tao; Fuliu Xu; Wenxin Liu
Severe contamination of agricultural soils by polycyclic aromatic hydrocarbons (PAHs) occurs in many places in China mainly as a result of coal and biomass combustion. Because ingestion is the main source of human exposure to PAHs and vegetables are basic ingredients for the Chinese diet, it is important to know how and to what extent PAHs are accumulated in vegetables produced in contaminated soils. This study, evaluated the extent to which organic matter contents in soils influence the accumulation of PAHs by the roots of wheat plants and have developed a rapid chemical method for determining the bioavailability of PAH.more » Four PAHs, naphthalene, acenaphthylene, fluorene, and phenanthrene, were added to natural soil samples with different amounts of organic matter for pot experiments to evaluate apparent bioavailability of PAHs to wheat roots (Triticum aestivum L.). The extractabilities of PAHs in the soil were tested by a sequential extraction scheme using accelerated solvent extraction with water, n-hexane, and a mixture of dichloromethane and acetone as solvents. The water or n-hexane-extractable PAHs were positively correlated to dissolved organic matter (DOM) and negatively correlated to total organic matter (TOM), indicating mobilization and immobilization effects of DOM and TOM on soil PAHs, respectively. The apparent accumulation of PAHs by wheat roots was also positively and negatively correlated to DOM and TOM, respectively. As a result, there are positive correlations between the amounts of PAHs extracted by water or n-hexane and the quantities accumulated in plant roots, suggesting the feasibility of using water- or n-hexanes-extractable fractions as indicators of PAH availability to plants. 19 refs., 8 figs., 1 tab.« less
NASA Astrophysics Data System (ADS)
Bongiorni, Lucia; Ravara, Ascensão; Parretti, Paola; Santos, Ricardo S.; Rodrigues, Clara F.; Amaro, Teresa; Cunha, Marina R.
2013-12-01
In recent years increasing knowledge has been accumulated on seamounts ecology; however their sedimentary environments and associated biological communities remain largely understudied. In this study we investigated quantity and biochemical composition of organic matter and macrofaunal diversity in sediments of the Condor Seamount (NE Atlantic, Azores). In order to test the effect of the seamount on organic matter distribution, sediment samples were collected in 6 areas: the summit, the northern and southern flanks and bases, and in an external far field site. Macrofauna abundance and diversity were investigated on the summit, the southern flank and in the far field site. The organic matter distribution reflected the complex hydrodynamic conditions occurring on the Condor. Concentrations of organic matter compounds were generally lower on the whole seamount than in the far field site and on the seamount summit compared to flanks and bases. A clear difference was also evident between the northern and southern slopes of the Condor, suggesting a role of the seamount in conditioning sedimentation processes and distribution of food resources for benthic consumers. Macrofauna assemblages changed significantly among the three sampling sites. High abundance and dominance, accompanied by low biodiversity, characterized the macrofauna community on the Condor summit, while low dominance and high biodiversity were observed at the flank. Our results, although limited to five samples on the seamount and two off the seamount, do not necessarily support the paradigm that seamounts are more biodiverse than the surrounding seafloor. However, the abundance (and biomass), functional diversity and taxonomical distinctiveness of the macrofaunal assemblages from the Condor Seamount suggest that seamounts habitats may play a relevant role in adding to the regional biodiversity.
Effects of added polyacrylamide on changes in water states during the composting of kitchen waste.
Yang, Yu-Qiang; Chen, Zhuo-Xian; Zhang, Xue-Qing; Hu, Li-Fang; Shen, Dong-Sheng; Long, Yu-Yang
2015-02-01
The effects of adding polyacrylamide (PAM), to attempt to delay the loss of capillary water and achieve a better level of organic matter humification, in the composting of kitchen waste were evaluated. Four treatments, with initial moisture content of 60 % were used: 0.1 % PAM added before the start of composting (R1), 0.1 % PAM added when the thermophilic phase of composting became stable (at >50 °C) (R2), 0.1 % PAM added when the moisture content significantly decreased (R3), and no PAM added (R4). The introduction of PAM in R1 and R2 significantly increased the capillary force and delayed the loss of moisture content and capillary water. The introduction of PAM in R2 and R3 improved the composting process, in terms of the degradation of biochemical fractions and the humification degree. These results show that the optimal time for adding PAM was the initial stage of the thermophilic phase.
Role of Environmental Contaminants in the Etiology of Alzheimer's Disease: A Review
Manivannan, Yegambaram; Manivannan, Bhagyashree; Beach, Thomas G.; Halden, Rolf U.
2015-01-01
Alzheimer's dis ease (AD) is a leading cause of mortality in the developed world with 70% risk attributable to genetics. The remaining 30% of AD risk is hypothesized to include environmental factors and human lifestyle patterns. Environmental factors possibly include inorganic and organic hazards, exposure to toxic metals (aluminium, copper), pesticides (organochlorine and organophosphate insecticides), industrial chemicals (flame retardants) and air pollutants (particulate matter). Long term exposures to these environmental contaminants together with bioaccumulation over an individual's life-time are speculated to induce neuroinflammation and neuropathology paving the way for developing AD. Epidemiologic associations between environmental contaminant exposures and AD are still limited. However, many in vitro and animal studies have identified toxic effects of environmental contaminants at the cellular level, revealing alterations of pathways and metabolisms associated with AD that warrant further investigations. This review provides an overview of in vitro, animal and epidemiological studies on the etiology of AD, highlighting available data supportive of the long hypothesized link between toxic environmental exposures and development of AD pathology. PMID:25654508
Pathways of CH3Hg and Hg Ingestion in Benthic Organisms: An Enriched Isotope Approach
2015-01-01
Mercury is a widespread contaminant in marine food webs, and identifying uptake pathways of mercury species, CH3Hg+ and Hg2+, into low trophic level organisms is important to understanding its entry into marine food webs. Enriched stable isotope tracers were used to study benthic vs. pelagic pathways of CH3Hg+ and Hg2+ uptake via food to the infaunal estuarine amphipod, Leptocheirus plumulosus. Algal cells differentially labeled with isotopically enriched CH3Hg+ or Hg2+ were added simultaneously to the sediment and water column of microcosms, and Hg species were monitored in amphipods and in sediment and water compartments. Methylation of Hg2+ occurred during the course of the experiment, enhancing the uptake of Hg2+ spikes. Trophic transfer of Hg from algae added to the water column was determined to be the major uptake route for amphipods, suggesting inputs of contaminated organic matter from the pelagic zone are important to mercury bioaccumulation even in organisms living in sediments. PMID:24678910
Pathways of CH3Hg and Hg ingestion in benthic organisms: an enriched isotope approach.
Taylor, Vivien F; Bugge, Deenie; Jackson, Brian P; Chen, Celia Y
2014-05-06
Mercury is a widespread contaminant in marine food webs, and identifying uptake pathways of mercury species, CH3Hg(+) and Hg(2+), into low trophic level organisms is important to understanding its entry into marine food webs. Enriched stable isotope tracers were used to study benthic vs. pelagic pathways of CH3Hg(+) and Hg(2+) uptake via food to the infaunal estuarine amphipod, Leptocheirus plumulosus. Algal cells differentially labeled with isotopically enriched CH3Hg(+) or Hg(2+) were added simultaneously to the sediment and water column of microcosms, and Hg species were monitored in amphipods and in sediment and water compartments. Methylation of Hg(2+) occurred during the course of the experiment, enhancing the uptake of Hg(2+) spikes. Trophic transfer of Hg from algae added to the water column was determined to be the major uptake route for amphipods, suggesting inputs of contaminated organic matter from the pelagic zone are important to mercury bioaccumulation even in organisms living in sediments.
Qiao, Junlian; Zhang, Xiaodong; Lv, Liping
2017-11-01
Bench scale tests were conducted to investigate the effect of potassium permanganate pre-oxidation on the photosynthetic activity and molecular weight distribution of Anabaena spiroides. Different concentrations of potassium permanganate were added into the suspension of Anabaena spiroides, one of the dominant algae in water bloom, and after pre-oxidation of permanganate for 1 h, the results show that the removal rate significantly increases by 33.99~36.35% compared to direct coagulation. Then, the algal characteristics, including photosynthetic ability, the changes in extracellular organic matter three-dimensional fluorescence, and the distribution of molecular weight were conducted and the results show that along with increasing concentration of potassium permanganate, the photosynthetic ability of algae decreases, more extracellular organic matter is secreted, and large molecular weight matter (humic-like and fulvic-like substances) are generated. Therefore, this study demonstrates that potassium permanganate could be used in addressing the algae-rich water.
Ly, Martina; Carlsson, Cynthia M.; Okonkwo, Ozioma C.; Zetterberg, Henrik; Blennow, Kaj; Sager, Mark A.; Asthana, Sanjay; Johnson, Sterling C.; Alexander, Andrew L.; Bendlin, Barbara B.
2017-01-01
Brain changes associated with Alzheimer’s disease (AD) begin decades before disease diagnosis. While β-amyloid plaques and neurofibrillary tangles are defining features of AD, neuronal loss and synaptic pathology are closely related to the cognitive dysfunction. Brain imaging methods that are tuned to assess degeneration of myelinated nerve fibers in the brain (collectively called white matter) include diffusion tensor imaging (DTI) and related techniques, and are expected to shed light on disease-related loss of structural connectivity. Participants (N = 70, ages 47–76 years) from the Wisconsin Registry for Alzheimer’s Prevention study underwent DTI and hybrid diffusion imaging to determine a free-water elimination (FWE-DTI) model. The study assessed the extent to which preclinical AD pathology affects brain white matter. Preclinical AD pathology was determined using cerebrospinal fluid (CSF) biomarkers. The sample was enriched for AD risk (APOE ε4 and parental history of AD). AD pathology assessed by CSF analyses was significantly associated with altered microstructure on both DTI and FWE-DTI. Affected regions included frontal, parietal, and especially temporal white matter. The f-value derived from the FWE-DTI model appeared to be the most sensitive to the relationship between the CSF AD biomarkers and microstructural alterations in white matter. These findings suggest that white matter degeneration is an early pathological feature of AD that may have utility both for early disease detection and as outcome measures for clinical trials. More complex models of microstructural diffusion properties including FWE-DTI may provide increased sensitivity to early brain changes associated with AD over standard DTI. PMID:28291839
Role of Organic Matter in the Removal of Heavy Metals in Stormwater Runoff
NASA Astrophysics Data System (ADS)
Barrett, M.; Ingenloff, C.; Katz, L.
2011-12-01
Heavy metals (copper, zinc, and lead) are common constituents in highway runoff and concentrations in runoff from highway facilities are particularly high. These concentrations are also generally higher than observed in natural water bodies and several studies have demonstrated acute and chronic toxicity to aquatic ecosystems. One focus of this project is to assess the potential of sorption to reduce the concentration of metals in runoff. The difficulty evaluating adsorption in multi-component systems is to capture the impacts of background organic matter and other complexing ions on adsorption behavior. Very few studies have evaluated the ability of surface complexation models to predict adsorption in systems that contain organic matter from highway runoff. Moreover, the composition of the organic matter in stormwater runoff can be significantly different from natural organic matter typically used to assess the impact of background organics on metal ion adsorption. This research project specifically addresses these concerns and examines the impact of highway runoff on the adsorption behavior to determine whether existing surface complexation and chemical speciation models and parameter databases can be used to predict adsorption of target metal ions in these waters. Previous research has employed both actual storm water that has been obtained from actual field highway runoff sites as well as synthetic storm water compositions that have attempted to mimic the major components of natural storm water. Researchers and practitioners in the field generally agree on the importance of capturing the background water matrix; however, concerns associated with required volumes, holding times, aging, consistency and temporal and spatial variability often favor the use of synthetic formulations. While synthetic storm water can achieve the required consistency, numerous artifacts can be introduced due to the high reactivity of trace metal ions with background inorganic and organic ligands. Of particular concern, is the background organic matrix associated with stormwater. While most of the inorganic composition of natural stormwater can be adequately characterized using routine analytical procedures, characterization of organic matter to the same level of detail is not possible. Indeed, methods for characterization of natural organic matter typically only provide operational definitions of the composition. A compromise between using natural and synthetic storm water was therefore made by recognizing the importance of capturing the organic matter from natural storm water, but adding the flexibility of using synthetic storm water to provide the ionic composition. To alleviate concerns associated with storing large volumes and aging of organic solutions, the storm water was concentrated within twenty-four hours of collection using reverse osmosis and then freeze-dried. The freeze-dried organic matter will be reconstituted as needed at concentrations that mimic the initial total organic concentration of the stormwater when it was collected. This paper provides detailed guidance for the preparation of a synthetic water that can be used to simulate stormwater composition.
Treatment of corn ethanol distillery wastewater using two-stage anaerobic digestion.
Ráduly, B; Gyenge, L; Szilveszter, Sz; Kedves, A; Crognale, S
In this study the mesophilic two-stage anaerobic digestion (AD) of corn bioethanol distillery wastewater is investigated in laboratory-scale reactors. Two-stage AD technology separates the different sub-processes of the AD in two distinct reactors, enabling the use of optimal conditions for the different microbial consortia involved in the different process phases, and thus allowing for higher applicable organic loading rates (OLRs), shorter hydraulic retention times (HRTs) and better conversion rates of the organic matter, as well as higher methane content of the produced biogas. In our experiments the reactors have been operated in semi-continuous phase-separated mode. A specific methane production of 1,092 mL/(L·d) has been reached at an OLR of 6.5 g TCOD/(L·d) (TCOD: total chemical oxygen demand) and a total HRT of 21 days (5.7 days in the first-stage, and 15.3 days in the second-stage reactor). Nonetheless the methane concentration in the second-stage reactor was very high (78.9%); the two-stage AD outperformed the reference single-stage AD (conducted at the same reactor loading rate and retention time) by only a small margin in terms of volumetric methane production rate. This makes questionable whether the higher methane content of the biogas counterbalances the added complexity of the two-stage digestion.
NASA Astrophysics Data System (ADS)
Park, Chul; Cha, Hyung-Gon; Lee, Ji-Hyun; Choi, Tae Seop; Lee, Jungsuk; Kim, Young-Hee; Bae, Minjung; Shin, Kyoungsoon; Choi, Keun-Hyung
2017-11-01
The management of ship ballast water is essential to stemming the introduction of non-indigenous species. Approval for onboard installation of a system to treat ballast water requires rigorous land-based testing as dictated in the G8 guideline by the International Maritime Organization. However, this testing lacks standardization-most notably augmentation of organic carbon for influent water by adding chemical additives. Electrochlorination is a popular treatment method for ballast water, in which chlorinated oxidants react with organisms and organic matter in water. The additives could thus affect the treatment efficacy of the ballast water. Here, we examined the effects of several candidates of organic carbon additives on the consumption of total residual oxidant (TRO), the production of disinfection byproducts (DBPs), plankton survival, and ecotoxicity. The TRO consumption over five days of storage was higher in electrochlorinated seawater amended with lignin and Metamucil when compared with seawaters with other organic carbon compounds. DBP production varied by almost two orders of magnitude as a function of the various additives. This was largely attributed to the production of tribromomethane and dibromoacetic acid. The survival of Artemia franciscana was significantly different across waters of different organic carbon additives. Algal toxicity testing with the marine haptophyte Isochrysis galbana significantly reduced growth in lignin- and Metamucil-treated seawaters, but not with other organic carbon compounds. Bioluminescence in Vibrio fischeri sharply declined in electrochlorinated seawaters with all types of organic carbon compounds, but no toxicity was manifested once the electrochlorinated seawaters were neutralized with sodium thiosulfate. The varying degrees of outcome suggest that it might be better to eliminate the requirements of adding organic carbon to test water as long as natural water was used for land-based testing of BWMS. If needed, the additives could be used in proportion to the composition of the organic matter in water being tested.
Wang, Liya; Goldstein, Felicia C.; Levey, Allan I.; Lah, James J.; Meltzer, Carolyn C.; Holder, Chad A.; Mao, Hui
2012-01-01
Purpose White matter hyperintensities (WMHs) are a risk factor for Alzheimer’s disease (AD). This study investigated the relationship between WMHs and white matter changes in AD using diffusion tensor imaging (DTI) and the sensitivity of each DTI index in distinguishing AD with WMHs. Subjects and Methods Forty-four subjects with WMHs were included. Subjects were classified into three groups based on the Scheltens rating scale: 15 AD patients with mild WMHs, 12 AD patients with severe WMHs, and 17 controls with mild WMHs. Fractional anisotropy (FA), mean diffusivity (MD), radial diffusivity (DR) and axial diffusivity (DA) were analyzed using the region of interest and Tract-Based Spatial Statistics methods. Sensitivity and specificity of DTI indices in distinguishing AD groups from the controls were evaluated. Results AD patients with mild WMHs exhibited differences from control subjects in most DTI indices in the medial temporal and frontal areas; however, differences in DTI indices from AD patients with mild WMHs and AD patients with severe WMHs were found in the parietal and occipital areas. FA and DR were more sensitive measurements than MD and DA in differentiating AD patients from controls, while MD was a more sensitive measurement in distinguishing AD patients with severe WMHs from those with mild WMHs. Conclusions WMHs may contribute to the white matter changes in AD brains, specifically in temporal and frontal areas. Changes in parietal and occipital lobes may be related to the severity of WMHs. DR may serve as an imaging marker of myelin deficits associated with AD. PMID:21152911
Narrative Organization Deficit in Lewy Body Disorders Is Related to Alzheimer Pathology
Grossman, Murray; Irwin, David J.; Jester, Charles; Halpin, Amy; Ash, Sharon; Rascovsky, Katya; Weintraub, Daniel; McMillan, Corey T.
2017-01-01
Background: Day-to-day interactions depend on conversational narrative, and we examine here the neurobiological basis for difficulty organizing narrative discourse in patients with Lewy body disorders (LBD). Method: Narrative organization was examined in 56 non-aphasic LBD patients, including a non-demented cohort (n = 30) with Parkinson's disease (PD) or PD-Mild Cognitive Impairment PD-MCI,) and a cohort with mild dementia (n = 26) including PD-dementia (PDD) and dementia with Lewy bodies (DLB), with similar age and education but differing in MMSE (p < 0.001). We used a previously reported procedure that probes patients' judgments of the organization of brief, familiar narratives (e.g., going fishing, wrapping a present). A subgroup of 24 patients had MRI assessment of regional gray matter (GM) atrophy and cerebrospinal fluid (CSF) levels of biomarkers for Alzheimer's disease (AD) pathology, including beta amyloid (Aβ), total-tau (t-tau), and phosphorylated-tau (p-tau). Results: Mildly demented LBD patients had a significant deficit judging narratives compared to non-demented patients, but this deficit was not correlated with MMSE. Regression analyses instead related narrative organization to regions of frontal GM atrophy, and CSF levels of Aβ and t-tau associated with presumed AD pathology in these frontal regions. Conclusion: These findings are consistent with the hypothesis that CSF markers of AD pathology associated with frontal regions play a role in difficulty organizing narratives in LBD. PMID:28228714
Narrative Organization Deficit in Lewy Body Disorders Is Related to Alzheimer Pathology.
Grossman, Murray; Irwin, David J; Jester, Charles; Halpin, Amy; Ash, Sharon; Rascovsky, Katya; Weintraub, Daniel; McMillan, Corey T
2017-01-01
Background: Day-to-day interactions depend on conversational narrative, and we examine here the neurobiological basis for difficulty organizing narrative discourse in patients with Lewy body disorders (LBD). Method: Narrative organization was examined in 56 non-aphasic LBD patients, including a non-demented cohort ( n = 30) with Parkinson's disease (PD) or PD-Mild Cognitive Impairment PD-MCI,) and a cohort with mild dementia ( n = 26) including PD-dementia (PDD) and dementia with Lewy bodies (DLB), with similar age and education but differing in MMSE ( p < 0.001). We used a previously reported procedure that probes patients' judgments of the organization of brief, familiar narratives (e.g., going fishing, wrapping a present). A subgroup of 24 patients had MRI assessment of regional gray matter (GM) atrophy and cerebrospinal fluid (CSF) levels of biomarkers for Alzheimer's disease (AD) pathology, including beta amyloid (Aβ), total-tau ( t -tau), and phosphorylated-tau ( p -tau). Results: Mildly demented LBD patients had a significant deficit judging narratives compared to non-demented patients, but this deficit was not correlated with MMSE. Regression analyses instead related narrative organization to regions of frontal GM atrophy, and CSF levels of Aβ and t -tau associated with presumed AD pathology in these frontal regions. Conclusion: These findings are consistent with the hypothesis that CSF markers of AD pathology associated with frontal regions play a role in difficulty organizing narratives in LBD.
NASA Astrophysics Data System (ADS)
Grathoff, Georg H.; Peltz, Markus; Enzmann, Frieder; Kaufhold, Stephan
2016-07-01
The goal of this study is to better understand the porosity and permeability in shales to improve modelling fluid and gas flow related to shale diagenesis. Two samples (WIC and HAD) were investigated, both mid-Jurassic organic-rich Posidonia shales from Hils area, central Germany of different maturity (WIC R0 0.53 % and HAD R0 1.45 %). The method for image collection was focused ion beam (FIB) microscopy coupled with scanning electron microscopy (SEM). For image and data analysis Avizo and GeoDict was used. Porosity was calculated from segmented 3-D FIB based images and permeability was simulated by a Navier Stokes-Brinkman solver in the segmented images. Results show that the quantity and distribution of pore clusters and pores (≥ 40 nm) are similar. The largest pores are located within carbonates and clay minerals, whereas the smallest pores are within the matured organic matter. Orientation of the pores calculated as pore paths showed minor directional differences between the samples. Both samples have no continuous connectivity of pore clusters along the axes in the x, y, and z direction on the scale of 10 to 20 of micrometer, but do show connectivity on the micrometer scale. The volume of organic matter in the studied volume is representative of the total organic carbon (TOC) in the samples. Organic matter does show axis connectivity in the x, y, and z directions. With increasing maturity the porosity in organic matter increases from close to 0 to more than 5 %. These pores are small and in the large organic particles have little connection to the mineral matrix. Continuous pore size distributions are compared with mercury intrusion porosimetry (MIP) data. Differences between both methods are caused by resolution limits of the FIB-SEM and by the development of small pores during the maturation of the organic matter. Calculations show no permeability when only considering visible pores due to the lack of axis connectivity. Adding the organic matter with a background permeability of 1 × 10-21 m2 to the calculations, the total permeability increased by up to 1 order of magnitude for the low mature and decreases slightly for the overmature sample from the gas window. Anisotropy of permeability was observed. Permeability coefficients increase by 1 order of magnitude if simulations are performed parallel to the bedding. Our results compare well with experimental data from the literature suggesting that upscaling may be possible in the future as soon as maturity dependent organic matter permeability coefficients can be determined.
White matter changes in Alzheimer's disease: a focus on myelin and oligodendrocytes.
Nasrabady, Sara E; Rizvi, Batool; Goldman, James E; Brickman, Adam M
2018-03-02
Alzheimer's disease (AD) is conceptualized as a progressive consequence of two hallmark pathological changes in grey matter: extracellular amyloid plaques and neurofibrillary tangles. However, over the past several years, neuroimaging studies have implicated micro- and macrostructural abnormalities in white matter in the risk and progression of AD, suggesting that in addition to the neuronal pathology characteristic of the disease, white matter degeneration and demyelination may be also important pathophysiological features. Here we review the evidence for white matter abnormalities in AD with a focus on myelin and oligodendrocytes, the only source of myelination in the central nervous system, and discuss the relationship between white matter changes and the hallmarks of Alzheimer's disease. We review several mechanisms such as ischemia, oxidative stress, excitotoxicity, iron overload, Aβ toxicity and tauopathy, which could affect oligodendrocytes. We conclude that white matter abnormalities, and in particular myelin and oligodendrocytes, could be mechanistically important in AD pathology and could be potential treatment targets.
Kim, Hye Min; Lee, Min Jin; Jung, Ji Young; Hwang, Chung Yeon; Kim, Mincheol; Ro, Hee-Myong; Chun, Jongsik; Lee, Yoo Kyung
2016-11-01
The increasing temperature in Arctic tundra deepens the active layer, which is the upper layer of permafrost soil that experiences repeated thawing and freezing. The increasing of soil temperature and the deepening of active layer seem to affect soil microbial communities. Therefore, information on soil microbial communities at various soil depths is essential to understand their potential responses to climate change in the active layer soil. We investigated the community structure of soil bacteria in the active layer from moist acidic tundra in Council, Alaska. We also interpreted their relationship with some relevant soil physicochemical characteristics along soil depth with a fine scale (5 cm depth interval). The bacterial community structure was found to change along soil depth. The relative abundances of Acidobacteria, Gammaproteobacteria, Planctomycetes, and candidate phylum WPS-2 rapidly decreased with soil depth, while those of Bacteroidetes, Chloroflexi, Gemmatimonadetes, and candidate AD3 rapidly increased. A structural shift was also found in the soil bacterial communities around 20 cm depth, where two organic (upper Oi and lower Oa) horizons are subdivided. The quality and the decomposition degree of organic matter might have influenced the bacterial community structure. Besides the organic matter quality, the vertical distribution of bacterial communities was also found to be related to soil pH and total phosphorus content. This study showed the vertical change of bacterial community in the active layer with a fine scale resolution and the possible influence of the quality of soil organic matter on shaping bacterial community structure.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-09-14
... FEDERAL DEPOSIT INSURANCE CORPORATION Sunshine Act Meeting; Notice of Matters To Be Added to the... Sunshine Act'' (5 U.S.C. 552b), notice is hereby given that the following matters will be added to the... approximately one week after the event. Visit http://www.vodium.com/goto/fdic/boardmeetings.asp to view the...
Facet-Dependent Oxidative Goethite Growth As a Function of Aqueous Solution Conditions.
Strehlau, Jennifer H; Stemig, Melissa S; Penn, R Lee; Arnold, William A
2016-10-04
Nitroaromatic compounds are groundwater pollutants that can be degraded through reactions with Fe(II) adsorbed on iron oxide nanoparticles, although little is known about the evolving reactivity of the minerals with continuous pollutant exposure. In this work, Fe(II)/goethite reactivity toward 4-chloronitrobenzene (4-ClNB) as a function of pH, organic matter presence, and reactant concentrations was explored using sequential-spike batch reactors. Reaction rate constants were smaller with lower pH, introduction of organic matter, and diluted reactant concentrations as compared to a reference condition. Reaction rate constants did not change with the number of 4-ClNB spikes for all reaction conditions. Under all conditions, oxidative goethite growth was demonstrated through X-ray diffraction, magnetic characterization, and transmission electron microscopy. Nonparametric statistics were applied to compare histograms of lengths and widths of goethite nanoparticles as a function of varied solution conditions. The conditions that slowed the reaction also resulted in statistically shorter and wider particles than for the faster reactions. Additionally, added organic matter interfered with particle growth on the favorable {021} faces to a greater extent, with statistically reduced rate of growth on the tip facets and increased rate of growth on the side facets. These data demonstrate that oxidative growth of goethite in aqueous systems is dependent on major groundwater variables, such as pH and the presence of organic matter, which could lead to the evolving reactivity of goethite particles in natural environments.
Graphite tail powder and liquid biofertilizer as trace elements source for ground nut
NASA Astrophysics Data System (ADS)
Hindersah, Reginawanti; Setiawati, M. Rochimi; Fitriatin, B. Natalie; Suryatama, Pujawati; Asmiran, Priyanka; Panatarani, Camellia; Joni, I. Made
2018-02-01
Utilization of graphite tail waste from the mineral beneficiation processing is very important since it contain significant amount of essential minerals which are necessary for plant growth. These mineral are required in biochemical processes and mainly play an important role as cofactor in enzymatic reaction. The objective of this research is to investigate the performance of graphite tail on supporting plant growth and yield of ground nut (Arachishypogeae L.). A field experiment has been performed to test the performance of mixed graphite tail and reduced organic matter dose. The graphite tail size were reduced to various sieved size, -80 mesh, -100 mesh and -200 mesh. The experiment was setup in randomized block design with 4 treatments and 6 replications for each treatment, while the control plot is received without graphite tail. The results demonstrated that reduced organic matter along with -200 mesh tail has potentially decreased plant height at the end of vegetative growth stage, in contrast for to -80 mesh tail amendment increased individual fresh plant biomass. Statistically, there was no change of plant nodule, individual shoot fresh and dry weight, root nodule, number of pod following any mesh of graphite tail amendment. Reducing organic matter while adding graphite tail of 5% did not change bean weight in all plot. In contrast, reduced organic matter along with 80-mesh graphite tail amendment improved the nut yield per plot. This experiment suggests that graphite tail, mainly -80 mesh graphite tail can be possibly used in legume production.
Editorial - A Matter of Continuity, of People, of Ethics, of Vision
NASA Astrophysics Data System (ADS)
Heck, Andre
2012-08-01
This editorial presents the book as a continuation, with more emphasis on people, of the earlier prize-winning series "Organizations and Strategies in Astronomy (OSA)", the seven volumes of which described how astronomy research lives: how it is planned, funded and organized, how it interacts with other disciplines and the rest of the world, how it communicates, etc. All those books are a unique medium for scientists and non-scientists (sometimes from outside astronomy) to describe their experience, often for the first time at such a level, on non-purely scientific matters, many of them of fundamental importance for the efficient conduct astronomy-related activities. The editorial tackles also issues regarding ethics and management of people, stressing the need for managers with ad hoc training and a long-term vision of the role of astronomers towards the society at large.
NASA Astrophysics Data System (ADS)
Fajkovic, Hana; Rončević, Sanda; Nemet, Ivan; Prohić, Esad; Leontić-Vazdar, Dana
2017-04-01
Forest fire presents serious problem, especially in Mediterranean Region. Effects of fire are numerous, from climate change and deforestation to loss of soil organic matter and changes in soil properties. One of the effects, not well documented, is possible redistribution and/or remobilisation of pollutants previously deposited in the soil, due to the new physical and chemical soil properties and changes in equilibrium conditions. For understanding and predicting possible redistribution and/or remobilisation of potential pollutants from soil, affected by fire different in temperature, several laboratory investigations were carried out. To evaluate the influence of organic matter on soil under fire, three soil samples were analysed and compared: (a) the one with added coniferous organic matter; (b) deciduous organic matter (b) and (c) soil without additional organic matter. Type of organic matter is closely related to pH of soil, as pH is influencing the mobility of some pollutants, e.g. metals. For that reason pH was also measured through all experimental steps. Each of mentioned soil samples (a, b and c) were heated at 1+3 different temperatures (25°C, 200°C, 500°C and 850°C). After heating, whereby fire effect on soil was simulated, samples were analysed by BCR protocol with the addition of a first step of sequential extraction procedure by Tessier and analysis of residual by aqua regia. Element fractionation of heavy metals by this procedure was used to determine the amounts of selected elements (Al, Cd, Cr, Co, Cu, Fe, Mn, Ni, Pb and Zn). Selected metal concentrations were determined using inductively coupled plasma atomic emission spectrometer. Further on, loss of organic matter was calculated after each heating procedure as well as the mineral composition. The mineral composition was determined using an X-ray diffraction. From obtained results, it can be concluded that temperature has an influence on concentration of elements in specific step of sequential extraction procedures. The first step of Tessier and BCR extraction of samples heated at 250°C and 500°C showed increasing trend of elemental concentrations. Results of these steps are especially important since they indicate mobile fraction of the elements (exchangeable, water- and acid-soluble fraction), which can easily affect the environment. Extraction procedures of samples combusted at 850°C showed that decrease in measured elemental content occurred. Some correlation is also noticed between type of organic matter, pH and concentration of analysed elements.
NASA Astrophysics Data System (ADS)
Zhu, Weining; Yu, Qian; Tian, Yong Q.; Chen, Robert F.; Gardner, G. Bernard
2011-02-01
A method for the inversion of hyperspectral remote sensing was developed to determine the absorption coefficient for chromophoric dissolved organic matter (CDOM) in the Mississippi and Atchafalaya river plume regions and the northern Gulf of Mexico, where water types vary from Case 1 to turbid Case 2. Above-surface hyperspectral remote sensing data were measured by a ship-mounted spectroradiometer and then used to estimate CDOM. Simultaneously, water absorption and attenuation coefficients, CDOM and chlorophyll fluorescence, turbidities, and other related water properties were also measured at very high resolution (0.5-2 m) using in situ, underwater, and flow-through (shipboard, pumped) optical sensors. We separate ag, the absorption coefficient a of CDOM, from adg (a of CDOM and nonalgal particles) based on two absorption-backscattering relationships. The first is between ad (a of nonalgal particles) and bbp (total particulate backscattering coefficient), and the second is between ap (a of total particles) and bbp. These two relationships are referred as ad-based and ap-based methods, respectively. Consequently, based on Lee's quasi-analytical algorithm (QAA), we developed the so-called Extended Quasi-Analytical Algorithm (QAA-E) to decompose adg, using both ad-based and ap-based methods. The absorption-backscattering relationships and the QAA-E were tested using synthetic and in situ data from the International Ocean-Colour Coordinating Group (IOCCG) as well as our own field data. The results indicate the ad-based method is relatively better than the ap-based method. The accuracy of CDOM estimation is significantly improved by separating ag from adg (R2 = 0.81 and 0.65 for synthetic and in situ data, respectively). The sensitivities of the newly introduced coefficients were also analyzed to ensure QAA-E is robust.
Lim, Jun Wei; Wang, Jing-Yuan
2013-04-01
Microaeration has been used conventionally for the desulphurization of biogas, and recently it was shown to be an alternative pretreatment to enhance hydrolysis of the anaerobic digestion (AD) process. Previous studies on microaeration pretreatment were limited to the study of substrates with complex organic matter, while little has been reported on its effect on substrates with higher biodegradability such as brown water and food waste. Due to the lack of consistent microaeration intensities, previous studies were not comparable and thus inconclusive in proving the effectiveness of microaeration to the overall AD process. In this study, the role of microaeration pretreatment in the anaerobic co-digestion of brown water and food waste was evaluated in batch-tests. After a 4-day pretreatment with 37.5 mL-O2/L(R)-d added to the liquid phase of the reactor, the methane production of substrates were monitored in anaerobic conditions over the next 40 days. The added oxygen was consumed fully by facultative microorganisms and a reducing environment for organic matter degradation was maintained. Other than higher COD solubilization, microaeration pretreatment led to greater VFA accumulation and the conversion of other short chain fatty acids to acetate. This could be due to enhanced activities of hydrolytic and acidogenic bacteria and the degradation of slowly biodegradable compounds under microaerobic conditions. This study also found that the nature of inoculum influenced the effects of microaeration as a 21% and 10% increase in methane yield was observed when pretreatment was applied to inoculated substrates, and substrates without inoculum, respectively. Copyright © 2012 Elsevier Ltd. All rights reserved.
Extraction of an urease-active organo-complex from soil.
NASA Technical Reports Server (NTRS)
Burns, R. G.; El-Sayed, M. H.; Mclaren, A. D.
1972-01-01
Description of an extraction from a Dublin clay loam soil of a colloidal organic matter complex that is urease active and, by X-ray analysis, free of clays. Urease activity in the clay-free precipitates, as in the soil, was not destroyed by the activity of an added proteolytic enzyme, pronase. This is attributed to the circumstance that native soil urease resides in organic colloidal particles with pores large enough for water, urea, ammonia, and carbon dioxide to pass freely, but nevertheless small enough to exclude pronase.
Carbon dioxide emissions from agricultural soils amended with livestock-derived organic materials
NASA Astrophysics Data System (ADS)
Pezzolla, D.; Said-Pullicino, D.; Gigliotti, G.
2009-04-01
Carbon dioxide gas xchange between terrestrial ecosystems and the atmosphere, as well as the carbon sink strength of various arable land ecosystems, is of primary interest for global change research. Measures for increasing soil C inputs include the preferential use of livestock-derived organic materials (e.g. animal manure and slurries, digestate from biogas production plants and compost). The application of such materials to agricultural soils returns essential nutrients for plant growth and organic matter to maintain long-term fertility. Whether or not such practices ultimately result in sustained C sequestration at the ecosystem level will depend on their mineralization rates. This work presents preliminary results from a laboratory incubation trial to evaluate carbon dioxide fluxes from two agricultural soils (a calcareous silt loam and a silty clay loam) amended with agricultural doses of (i) pig slurry (PSL), (ii) the digestate from the anaerobic fermentation of pig slurries (AAS) and (ii) a compost from the aerobic stabilisation of the digestate (LDC). These subsequent steps of slurry stabilisation resulted in a decrease in the content of labile organic matter which was reflected in a reduction in maximum carbon dioxide emission rates from amended soils. Measurements have shown that peak emissions from soils occur immediately after application of these organic materials (within 5 days) and decrease in the order PSL > AAS > LDC. Moreover, mean cumulative emissions over the first 40 days showed that a higher percentage (about 44%) of the C added with PSL was mineralised respect to C added with AAS (39%) and LDC (25%). Although it was hypothesised that apart from the quantity and stability of the added organic materials, even soil characteristics could influence C mineralisation rates, no significant differences were observed between emission fluxes for similarly treated soils. Mean cumulative emission fluxes after 40 days from treatment were of 114, 103 and 84 g C m-2 for PSL, AAS and LDC respectively. Carbon dioxide emission rates were corroborated with results obtained from the quantification of water-extractable organic C (WEOC) and soil microbial biomass-C (Cmic). The former represents the more labile fraction of soil organic matter and its concentration in the freshly amended soils followed the order LDC > AAS ≈ PSL. However, whereas WEOC concentrations decrease rapidly for PSL and LDC amended soils, AAS treated soils showed a steady increase during the first 20 days of incubation followed by a decrease thereafter. This was attributed to the release of soluble organic matter from the anaerobically stabilised digestate in the presence of an aerobic soil microbial community. Irrespective of the type of amendment, Cmic values increased with time with respect to the unamended controls, reaching highest values after 20 days from amendment and decreasing thereafter. Even after 40 days of incubation, Cmic values in all amended soils did not return to the background values obtained with unamended controls. These results suggest that the application of stabilised livestock-derived organic materials to soils may play an important role in reducing C emissions associated with agricultural practices and increase soil C stocks, apart from other indirect beneficial effects such as the recovery of energy from combustion of biogas from anaerobic fermentation of these waste materials.
Korak, Julie A; Wert, Eric C; Rosario-Ortiz, Fernando L
2015-01-01
Intracellular organic matter (IOM) from cyanobacteria may be released into natural waters following cell death in aquatic ecosystems and during oxidation processes in drinking water treatment plants. Fluorescence spectroscopy was evaluated to identify the presence of IOM from three cyanobacteria species during simulated release into natural water and following oxidation processes (i.e. ozone, free chlorine, chloramine, chlorine dioxide). Peak picking and the fluorescence index (FI) were explored to determine which IOM components (e.g., pigments) provide unique and persistent fluorescence signatures with minimal interferences from the background dissolved organic matter (DOM) found in Colorado River water (CRW). When IOM was added to ultrapure water, the fluorescence signature of the three cyanobacteria species showed similarities to each other. Each IOM exhibited a strong protein-like fluorescence and fluorescence at Ex 370 nm and Em 460 nm (FDOM), where commercial fluorescence sensors monitor. All species also had strong phycobiliprotein fluorescence (i.e. phycocyanin or phycoerythrin) in the higher excitation range (500-650 nm). All three IOM isolates had FI values greater than 2. When IOM was added to CRW, phycobiliprotein fluorescence was quenched through interactions between IOM and CRW-DOM. Mixing IOM and CRW demonstrated that protein-like and FDOM intensity responses were not a simple superposition of the starting material intensities, indicating that interactions between IOM and CRW-DOM fluorescing moieties were important. Fluorescence intensity in all regions decreased with exposure to ozone, free chlorine, and chlorine dioxide, but the FI still indicated compositional differences compared to CRW-DOM. The phycobiliproteins in IOM are not promising as a surrogate for IOM release, because their fluorescence intensity is quenched by interactions with DOM and decreased during oxidation processes. Increases in both FDOM intensity and FI are viable qualitative indicators of IOM release in natural waters and following oxidation and may provide a more robust real-time indication of the presence of IOM than conventional dissolved organic carbon or UV absorbance measurements.
Biomimetic Phases of Microtubule-Motor Mixtures
NASA Astrophysics Data System (ADS)
Ross, Jennifer
2014-03-01
We try to determine the universal principles of organization from the molecular scale that gives rise to architecture on the cellular scale. We are specifically interested in the organization of the microtubule cytoskeleton, a rigid, yet versatile network in most cell types. Microtubules in the cell are organized by motor proteins and crosslinkers. This work applies the ideas of statistical mechanics and condensed matter physics to the non-equilibrium pattern formation behind intracellular organization using the microtubule cytoskeleton as the building blocks. We examine these processes in a bottom-up manner by adding increasingly complex protein actors into the system. Our systematic experiments expose nature's laws for organization and has large impacts on biology as well as illuminating new frontiers of non-equilibrium physics.
Insam, Heribert; Markt, Rudolf
2016-05-15
Co-digestion of organic waste and sewage sludge enhances biogas production and reduces the mass of remaining solids. This phenomenon of enhanced organic matter decomposition by adding labile substrate is known from other habitats like soils and sediments where it is called priming effect. It is thus suggested to adopt the term priming effect also in environmental biotechnology, and in particular for biomethanisation of wastewater sludges by the addition of energy-rich co-substrates. Copyright © 2016 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lim, Jun Wei; School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798; Wang, Jing-Yuan, E-mail: jywang@ntu.edu.sg
2013-04-15
Highlights: ► Microaeration pretreatment was effective for brown water and food waste mixture. ► The added oxygen was consumed fully by facultative microorganisms. ► Enhanced solubilization, acidification and breakdown of SCFAs to acetate. ► Microaeration pretreatment improved methane yield by 10–21%. ► Nature of inoculum influenced the effects of microaeration. - Abstract: Microaeration has been used conventionally for the desulphurization of biogas, and recently it was shown to be an alternative pretreatment to enhance hydrolysis of the anaerobic digestion (AD) process. Previous studies on microaeration pretreatment were limited to the study of substrates with complex organic matter, while little hasmore » been reported on its effect on substrates with higher biodegradability such as brown water and food waste. Due to the lack of consistent microaeration intensities, previous studies were not comparable and thus inconclusive in proving the effectiveness of microaeration to the overall AD process. In this study, the role of microaeration pretreatment in the anaerobic co-digestion of brown water and food waste was evaluated in batch-tests. After a 4-day pretreatment with 37.5 mL-O{sub 2}/L{sub R}-d added to the liquid phase of the reactor, the methane production of substrates were monitored in anaerobic conditions over the next 40 days. The added oxygen was consumed fully by facultative microorganisms and a reducing environment for organic matter degradation was maintained. Other than higher COD solubilization, microaeration pretreatment led to greater VFA accumulation and the conversion of other short chain fatty acids to acetate. This could be due to enhanced activities of hydrolytic and acidogenic bacteria and the degradation of slowly biodegradable compounds under microaerobic conditions. This study also found that the nature of inoculum influenced the effects of microaeration as a 21% and 10% increase in methane yield was observed when pretreatment was applied to inoculated substrates, and substrates without inoculum, respectively.« less
Sun, Xiaoyan; Salat, David; Upchurch, Kristen; Deason, Rebecca; Kowall, Neil; Budson, Andrew
2014-10-01
Accumulating evidence shows that gradual loss of white matter integrity plays an important role in the development of Alzheimer disease (AD). The aim of this research was to study the microstructural integrity of white matter in AD in vivo. Global fractional anisotropy, global axial diffusivity (AxD), and global radial diffusivity (RD) were analyzed in subjects with normal controls (NC), mild cognitive impairment (MCI), and AD using Alzheimer's Disease Neuroimaging Initiative data (total N = 210). We further compared specific white matter tracts among the 3 groups. Compared with the NC group, the MCI group had significantly increased global AxD and global RD. Compared with the NC and MCI groups, the AD group had significantly decreased global fractional anisotropy, increased global AxD, and increased global RD. With regard to specific white matter tracts, in the MCI group, we found increased AxD and increased RD in the external capsule, part of the lateral cholinergic pathway, in addition to the tracts connecting the limbic regions, predominantly in the left hemisphere. In the AD group, white matter abnormalities were widespread, including in the external capsule (cholinergic pathway) and limbic region tracts as well as tracts connecting anterior to posterior regions bilaterally. The radiographic manifestation of damaged white matter microstructural integrity in the cholinergic pathway in MCI patients may provide a rational basis for the use of cholinesterase inhibitor drugs in the MCI stage of AD.
Biochar contribution to soil pH buffer capacity
NASA Astrophysics Data System (ADS)
Tonutare, Tonu; Krebstein, Kadri; Utso, Maarius; Rodima, Ako; Kolli, Raimo; Shanskiy, Merrit
2014-05-01
Biochar as ecologically clean and stable form of carbon has complex of physical and chemical properties which make it a potentially powerful soil amendment (Mutezo, 2013). Therefore during the last decade the biochar application as soil amendment has been a matter for a great number of investigations. For the ecological viewpoint the trend of decreasing of soil organic matter in European agricultural land is a major problem. Society is faced with the task to find possibilities to stabilize or increase soil organic matter content in soil and quality. The availability of different functional groups (e.g. carboxylic, phenolic, acidic, alcoholic, amine, amide) allows soil organic matter to buffer over a wide range of soil pH values (Krull et al. 2004). Therefore the loss of soil organic matter also reduces cation exchange capacity resulting in lower nutrient retention (Kimetu et al. 2008). Biochar can retain elements in soil directly through the negative charge that develops on its surfaces, and this negative charge can buffer acidity in the soil. There are lack of investigations about the effect of biochar to soil pH buffering properties, The aim of our investigation was to investigate the changes in soil pH buffer capacity in a result of addition of carbonizated material to temperate region soils. In the experiment different kind of softwood biochars, activated carbon and different soil types with various organic matter and pH were used. The study soils were Albeluvisols, Leptosols, Cambisols, Regosols and Histosols . In the experiment the series of the soil: biochar mixtures with the biochar content 0 to 100% were used. The times of equiliberation between solid and liquid phase were from 1 to 168 hours. The suspension of soil: biochar mixtures was titrated with HCl solution. The titration curves were established and pH buffer capacities were calculated for the pH interval from 3.0 to 10.0. The results demonstrate the dependence of pH buffer capacity from soil type, organic matter and type of added carbonizated material. Our study showed that the biochar content has significant role in total pH buffer capacity in soil:biochar system . References. Kimetu, J.M., Lehmann, J., Ngoze, S.O., Mugendi, D.N., Kinyangi, J., Riha, S.J., Verchot, L., Recha, J.W., Pell, A.N. 2008. Reversibility of Soil Productivity Decline with Organic Matter of Differing Quality Along a Degradation Gradient. Ecosystems, 11, 726-739. Krull, E. S., Skjemstad, J.O., Baldock, J.A. 2004 'Functions of Soil Organic Matter and the Effect on Soil Properties'. GRDC report. Project CSO 00029. Mutezo, W.T., 2013. Early crop growth and yield responses of maize (Zea mays) to biochar applied on soil. International Working Paper Series, 13/03, 50 pp.
Pakravan, Parvaneh; Siadati, Seyyed Amir
2017-08-01
Detection of hazardous chemical species by changing the electrical conductivity of a semiconductor matter is a proposed and applied way for decreasing their subsequent unpleasant effects. Recently, many examples of using inorganic or organic materials, polymeric, and also nano-sized species as sensors were reported in which, in some cases, those matters were strongly affective and suitable. In this project, we have made an assessment on whether the graphene segment or C 20 fullerene, able to sense the existence of cyanogen chloride NCCl? In order to gain trustable results, the possible reaction pathways along with the adsorption kinetics were investigated. Moreover, the electronic density of states DOS showed that C 20 fullerene senses the existence of cyanogen chloride agent with a clearer signal (ΔE g =0.0110eV) compared to the graphene segment (ΔE g =0.0001eV). Also the adsorption energy calculations showed that cyanogen chloride could be adsorbed by the fullerene in a multi-step process (E ads1 =-0.852kcalmol -1 ; E ads2 =-0.446kcalmol -1 ; E ads3 =-2.330kcalmol -1 ). Copyright © 2016 Elsevier Inc. All rights reserved.
Levičnik-Höfferle, Spela; Nicol, Graeme W; Ausec, Luka; Mandić-Mulec, Ines; Prosser, James I
2012-04-01
Ammonia oxidation, the first step in nitrification, is performed by autotrophic bacteria and thaumarchaea, whose relative contributions vary in different soils. Distinctive environmental niches for the two groups have not been identified, but evidence from previous studies suggests that activity of thaumarchaea, unlike that of bacterial ammonia oxidizers, is unaffected by addition of inorganic N fertilizer and that they preferentially utilize ammonia generated from the mineralization of organic N. This hypothesis was tested by determining the influence of both inorganic and organic N sources on nitrification rate and ammonia oxidizer growth and community structure in microcosms containing acidic, forest soil in which ammonia oxidation was dominated by thaumarchaea. Nitrification rate was unaffected by the incubation of soil with inorganic ammonium but was significantly stimulated by the addition of organic N. Oxidation of ammonia generated from native soil organic matter or added organic N, but not added inorganic N, was accompanied by increases in abundance of the thaumarchaeal amoA gene, a functional gene for ammonia oxidation, but changes in community structure were not observed. Bacterial amoA genes could not be detected. Ammonia oxidation was completely inhibited by 0.01% acetylene in all treatments, indicating ammonia monooxygenase-dependent activity. The findings have implications for current models of soil nitrification and for nitrification control strategies to minimize fertilizer loss and nitrous oxide production. © 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.
Jetana, T; Suthikrai, W; Usawang, S; Vongpipatana, C; Sophon, S; Liang, J B
2009-04-01
Four, male, growing Thai swamp buffaloes (197 +/- 5.3 kg and all 1 year old) were used to evaluate the effects of concentrate added to pineapple waste silage in differing ratios, to form a complete diet, studying in vivo digestion, the rate of passage, microbial protein synthesis and blood metabolites. Animals were fed ad libitum with 4 diets, using four combinations of pineapple waste silage (P) and concentrate (C), in the proportions (on a dry matter basis) of 0.8:0.2 (P80:C20), 0.6:0.4 (P60:C40), 0.4:0.6 (P40:C60) and 0.2:0.8 (P20:C80). The results showed that the intakes of dry matter (DM), organic matter (OM), nitrogen (N), the N-balance, urinary purine derivatives (PD) excretion, the ratios of allantoin to creatinine (CR), PD to CR, the plasma urea-N (PUN) and insulin increased in the animals, but the intake of neutral detergent fiber (NDF), the coefficient of whole tract, apparent digestibility of NDF, the transit time (TT) and the mean retention time (TMRT) decreased, when the proportion of concentrate in the diet increased. This study indicated that the proportion of P40:C60 in the diet produced the best efficiency of urinary PD excretion (mmol) per digestible OM intake (kg DOMI).
Measuring the Value Added of Management: A Knowledge Value Added Approach
2007-04-30
approach would work in an open acquisitions environment. Management “ Dark Matter ” Dark matter , in the physics sense, is largely unobservable—albeit...critical to understanding the physics of the universe. The dark matter of management has also been largely unobservable in the outputs of the core...this creative aspect as management “ dark matter .” This management “ dark matter ” has largely been assumed to be critical to the duties of a manager
Theodorakopoulos, Nicolas; Février, Laureline; Barakat, Mohamed; Ortet, Philippe; Christen, Richard; Piette, Laurie; Levchuk, Sviatoslav; Beaugelin-Seiller, Karine; Sergeant, Claire; Berthomieu, Catherine; Chapon, Virginie
2017-08-01
After the Chernobyl nuclear power plant accident in 1986, contaminated soils, vegetation from the Red Forest and other radioactive debris were buried within trenches. In this area, trench T22 has long been a pilot site for the study of radionuclide migration in soil. Here, we used 454 pyrosequencing of 16S rRNA genes to obtain a comprehensive view of the bacterial and archaeal diversity in soils collected inside and in the vicinity of the trench T22 and to investigate the impact of radioactive waste disposal on prokaryotic communities. A remarkably high abundance of Chloroflexi and AD3 was detected in all soil samples from this area. Our statistical analysis revealed profound changes in community composition at the phylum and OTUs levels and higher diversity in the trench soils as compared to the outside. Our results demonstrate that the total absorbed dose rate by cell and, to a lesser extent the organic matter content of the trench, are the principal variables influencing prokaryotic assemblages. We identified specific phylotypes affiliated to the phyla Crenarchaeota, Acidobacteria, AD3, Chloroflexi, Proteobacteria, Verrucomicrobia and WPS-2, which were unique for the trench soils. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Gabhane, Jagdish; William, S P M Prince; Bidyadhar, Rajnikant; Bhilawe, Priya; Anand, Duraisamy; Vaidya, Atul N; Wate, Satish R
2012-06-01
The effect of various additives such as fly ash, phosphogypsum, jaggery, lime, and polyethylene glycol on green waste composting was investigated through assessing their influence on microbial growth, enzymatic activities, organic matter degradation, bulk density, quality of finished compost including gradation test, heavy metal analysis, etc. A perusal of results showed that addition of jaggery and polyethylene glycol were helpful to facilitate composting process as they significantly influenced the growth of microbes and cellulase activity. The quality of finished compost prepared from jaggery and polyethylene glycol added treatments were superior to other composts, wherein reduction in C/N ratio was more than 8% in jaggery treatment. All other parameters of compost quality including gradation test also favored jaggery and polyethylene glycol as the best additives for green waste composting. Copyright © 2012 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Tannenbaum, E.; Kaplan, I. R.
1985-01-01
Pyrolysis experiments conducted at 200 and 300 C on kerogen and bitumen from the Monterey formation and on the Green River Formation kerogen with montmorillonite, illite, and calcite added are described. The pyrolysis products are identified and gas and condensate analyses are performed. A catalytic effect is detected in the pyrolysis of kerogen with montmorillonite; however, illite and calcite display no catalytic activity. The increased production of C1-C6 hydrocarbons and the dominance of branched hydrocarbons in the C4-C6 range reveals a catalytic influence. It is observed that the catalysis of montmorillonite is greater during bitumen pyrolysis than for kerogen, and catalysis with minerals affects the production of CO2. It is concluded that a mineral matrix is important in determining the type and amount of gases and condensates forming from organic matter under thermal stress.
Functional traits of soil invertebrates as indicators for exposure to soil disturbance.
Hedde, Mickaël; van Oort, Folkert; Lamy, Isabelle
2012-05-01
We tested a trait-based approach to link a soil disturbance to changes in invertebrate communities. Soils and macro-invertebrates were sampled in sandy soils contaminated by long-term wastewater irrigation, adding notably organic matter and trace metals (TM). We hypothesized that functional traits of invertebrates depict ways of exposure and that exposure routes relate to specific TM pools. Geophages and soft-body invertebrates were chosen to inform on exposure by ingestion or contact, respectively. Trait-based indices depicted more accurately effects of pollution than community density and diversity did. Exposure by ingestion had more deleterious effects than by contact. Both types of exposed invertebrates were influenced by TM, but geophages mainly responded to changes in soil organic matter contents. The trait-based approach requires to be applied in various conditions to uncorrelate specific TM impacts from those of other environmental factors. Copyright © 2012 Elsevier Ltd. All rights reserved.
Systematic approaches to comprehensive analyses of natural organic matter
Leenheer, Jerry A.
2009-01-01
The more that is learned of the chemistry of aquatic natural organic matter (NOM) the greater is the scientific appreciation of the vast complexity of this subject. This complexity is due not only to a multiplicity of precursor molecules in any environment but to their associations with each other and with other components of local environments such as clays, mineral acids and dissolved metals. In addition, this complex system is subject to constant change owing to environmental variables and microbial action. Thus, there is a good argument that no two NOM samples are exactly the same even from the same source at nearly the same time. When ubiquity of occurrence, reaction with water treatment chemicals, and subsequent human exposure are added to the list of NOM issues, one can understand the appeal that this subject holds for a wide variety of environmental scientists.
Song, Xiaoye; Luo, Wenhai; McDonald, James; Khan, Stuart J; Hai, Faisal I; Price, William E; Nghiem, Long D
2018-07-01
In this study, a direct contact membrane distillation (MD) unit was integrated with an anaerobic membrane bioreactor (AnMBR) to simultaneously recover energy and produce high quality water for reuse from wastewater. Results show that AnMBR could produce 0.3-0.5L/g COD added biogas with a stable methane content of approximately 65%. By integrating MD with AnMBR, bulk organic matter and phosphate were almost completely removed. The removal of the 26 selected trace organic contaminants by AnMBR was compound specific, but the MD process could complement AnMBR removal, leading to an overall efficiency from 76% to complete removal by the integrated system. The results also show that, due to complete retention, organic matter (such as humic-like and protein-like substances) and inorganic salts accumulated in the MD feed solution and therefore resulted in significant fouling of the MD unit. As a result, the water flux of the MD process decreased continuously. Nevertheless, membrane pore wetting was not observed throughout the operation. Crown Copyright © 2018. Published by Elsevier B.V. All rights reserved.
Thorn, K.A.; Pennington, J.C.; Hayes, C.A.
2002-01-01
T15NT was added to a soil of low organic carbon content and composted for 20 days in an aerobic bench scale reactor. The finished whole compost and fulvic acid, humic acid, humin, and lignocellulose fractions extracted from the compost were analyzed by solid-state CP/MAS and DP/MAS 15N NMR. 15N NMR spectra provided direct spectroscopic evidence for reduction of TNT followed by covalent binding of the reduced metabolites to organic matter of the composted soil, with the majority of metabolite found in the lignocellulose fraction, by mass also the major fraction of the compost. In general, the types of bonds formed between soil organic matter and reduced TNT amines in controlled laboratory reactions were observed in the spectra of the whole compost and fractions, confirming that during composting TNT is reduced to amines that form covalent bonds with organic matter through aminohydroquinone, aminoquinone, heterocyclic, and imine linkages, among others. Concentrations of imine nitrogens in the compost spectra suggestthat covalent binding bythe diamines 2,4DANT and 2,6DANT is a significant process in the transformation of TNT into bound residues. Liquid-phase 15N NMR spectra of the fulvic acid and humin fractions provided possible evidence for involvement of phenoloxidase enzymes in covalent bond formation.
Healing the wounds in the landscape-reclaiming gravel roads in conservation areas.
Tarvainen, Oili; Tolvanen, Anne
2016-07-01
Reclaiming abandoned and unmaintained roads, built originally for forestry and mineral extraction, is an important part of ecological restoration, because the roads running through natural habitats cause fragmentation. The roads can be reclaimed in a passive way by blocking access to the road, but successful seedling recruitment may require additional management due to the physical constraints present at the road. We established a full factorial study to compare the effects of three road reclaiming measures, namely ripping, creation of safe sites by adding mulch and pine seed addition, on soil processes, recovery of understorey vegetation and seedling recruitment in three conservation areas in eastern Finland. We surveyed soil organic matter, frequency and cover of plant functional types, litter and mineral soil, and number of tree seedlings. The soil organic matter was, on average, 1.3-fold in the 50-cm-deep ripping treatment relative to unripped and 20-cm-deep ripping treatments. The germination and survival of deciduous seedlings and grass establishment were promoted by adding mulch. The addition of pine seeds counteracted the seed limitation and enhanced the regeneration of trees. The treatment combination consisting of ripping, adding mulch and pine seed addition enhanced the vegetation succession and tree-seedling recruitment most: the cover of grasses, herbs and ericaceous dwarf shrubs was 1.3-7.6-fold and the number of coniferous tree seedlings was 3.4-7.1-fold relative to the other treatment combinations. Differences between short-term (1-3 years) and longer-term (6 years) results indicate the need for a sufficient observation period in road reclamation studies.
Chen, Yanlong; Cui, Juan; Tian, Xiaohong; Zhao, Aiqing; Li, Meng; Wang, Shaoxia; Li, Xiushaung; Jia, Zhou; Liu, Ke
2017-01-01
Organic matter plays a key role in availability and transformation of soil Zn (zinc), which greatly controls Zn concentrations in cereal grains and human Zn nutrition level. Accordingly, soils homogenized with the wheat straw (0, 12 g straw kg-1) and Zn fertilizer (0, 7 mg Zn kg-1) were buried and incubated in the field over 210 days to explore the response of soil Zn availability and the ageing of exogenous Zn to straw addition. Results indicated that adding straw alone scarcely affected soil DTPA-Zn concentration and Zn fractions because of the low Zn concentration of wheat straw and the high soil pH, and large clay and calcium carbonate contents. However, adding exogenous Zn plus straw increased the DTPA-Zn abundance by about 5-fold and had the similar results to adding exogenous Zn alone, corresponding to the increased Zn fraction loosely bounded to organic matter, which had a more dominant presence in Zn reaction than soil other constituents such as carbonate and minerals in calcareous soil. The higher relative amount of ineffective Zn (~50%) after water soluble Zn addition also occurred, and at the days of 120-165 and 180-210when the natural temperature and rainfall changed mildly, the ageing process of exogenous Zn over time was well evaluated by the diffusion equation, respectively. Consequently, combining crop residues with exogenous water soluble Zn application is promising strategy to maximize the availability of Zn in calcareous soil, but the higher ageing rate of Zn caused by the higher Zn mobility should be considered.
Zhang, Min; Yang, Changming; Jing, Yachao; Li, Jianhua
2016-12-01
Anaerobic digestion (AD) is one of the most widely used processes to stabilize waste sewage sludge and produce biogas as renewable energy. The relatively low organic matter content and high heavy metal concentrations in sewage sludge have severely restricted the application and development of AD technology in China. In this study, the effect of energy grass (Pennisetum alopecuroides) addition on methane production and heavy metal fractionation during the AD of sewage sludge was evaluated. Methane production was enhanced by 11.2% by the addition of P. alopecuroides. The addition of P. alopecuroides significantly reduced the percentages of the water-soluble and exchangeable fractions of the target heavy metals in the sewage sludge after AD, and the dominant species were concentrated in Fe-Mn oxide-bound and organic- and sulfide-bound fractions of the digested sludge. The addition of P. alopecuroides at a dosage of 0.3kg significantly (P<0.05) decreased the mobility factors (MFs) of the target heavy metals after AD. In particular, the MFs of Cr and Ni were 61% and 32% lower, respectively, relative to the control. The increase in the added dose did not necessarily lead to further decreases in the MFs of the heavy metals. These results demonstrate that an appropriate addition of energy grass could enhance AD, decrease the mobility of heavy metals and promote heavy metal stabilization in sewage sludge during AD, which is beneficial for the subsequent land application of sewage sludge. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Choo, Lin-P'ing; Jackson, Michael; Halliday, William C.; Mantsch, Henry H.
1994-01-01
The abnormal abundance of (beta) -amyloid plaques and neurofibrillary tangles are the hallmark of Alzheimer's disease (AD). Human central nervous system (CNS) grey matter was probed for characteristics arising from these pathological features. In AD but not normal grey matter, an IR band at 1615 cm-1 is seen, characteristic of a protein in an aggregated state. We speculate that this band arises from (beta) A4-amyloid protein. AD, and 18q- grey matter spectra show increased intensity of phosphate bands in accordance with known hyperphosphorylation of proteins found in neurofibrillary tangles. These spectral features may be useful in the diagnosis of AD.
Moon, Chung-Man; Shin, Il-Seon; Jeong, Gwang-Woo
2017-02-01
Background Non-invasive imaging markers can be used to diagnose Alzheimer's disease (AD) in its early stages, but an optimized quantification analysis to measure the brain integrity has been less studied. Purpose To evaluate white matter volume change and its correlation with neuropsychological scales in patients with AD using a diffeomorphic anatomical registration through exponentiated lie algebra (DARTEL)-based voxel-based morphometry (VBM). Material and Methods The 21 participants comprised 11 patients with AD and 10 age-matched healthy controls. High-resolution magnetic resonance imaging (MRI) data were processed by VBM analysis based on DARTEL algorithm. Results The patients showed significant white matter volume reductions in the posterior limb of the internal capsule, cerebral peduncle of the midbrain, and parahippocampal gyrus compared to healthy controls. In correlation analysis, the parahippocampal volume was positively correlated with the Korean-mini mental state examination score in AD. Conclusion This study provides an evidence for localized white matter volume deficits in conjunction with cognitive dysfunction in AD. These findings would be helpful to understand the neuroanatomical mechanisms in AD and to robust the diagnostic accuracy for AD.
Panda, Sandeep K; Mishra, Swati S; Kayitesi, Eugenie; Ray, Ramesh C
2016-04-01
Wastes generated from fruits and vegetables are organic in nature and contribute a major share in soil and water pollution. Also, green house gas emission caused by fruit and vegetable wastes (FVWs) is a matter of serious environmental concern. This review addresses the developments over the last one decade on microbial processing technologies for production of enzymes and organic acids from FVWs. The advances in genetic engineering for improvement of microbial strains in order to enhance the production of the value added bio-products as well as the concept of zero-waste economy have been briefly discussed. Copyright © 2015 Elsevier Inc. All rights reserved.
McKee, K.L.; Cherry, J.A.
2009-01-01
Although hurricanes can damage or destroy coastal wetlands, they may play a beneficial role in reinvigorating marshes by delivering sediments that raise soil elevations and stimulate organic matter production. Hurricane Katrina altered elevation dynamics of two subsiding brackish marshes in the Mississippi River deltaic plain by adding 3 to 8 cm of sediment to the soil surface in August 2005. Soil elevations at both sites subsequently declined due to continued subsidence, but net elevation gain was still positive at both Pearl River (+1.7 cm) and Big Branch (+0.7 cm) marshes two years after the hurricane. At Big Branch where storm sediments had higher organic matter and water contents, post-storm elevation loss was more rapid due to initial compaction of the storm layer in combination with root-zone collapse. In contrast, elevation loss was slower at Pearl River where the storm deposit (high sand content) did not compact and the root zone did not collapse. Vegetation at both sites fully recovered within one year, and accumulation of root matter at Big Branch increased 10-fold from 2005 to 2006, suggesting that the hurricane stimulated belowground productivity. Results of this study imply that hurricane sediment may benefit subsiding marshes by slowing elevation loss. However, long-term effects of hurricane sediment on elevation dynamics will depend not only on the amount of sediment deposited, but on sediment texture and resistance to compaction as well as on changes in organic matter accumulation in the years following the hurricane.
Adding Value to Air Force Management Through Building Partnerships Assessment
2010-01-01
information on reprint and linking permissions, please see RAND Permissions. Skip all front matter: Jump to Page 16 The RAND Corporation is a nonprofit...public service of the RAND Corporation . CHILDREN AND FAMILIES EDUCATION AND THE ARTS ENERGY AND ENVIRONMENT HEALTH AND HEALTH CARE INFRASTRUCTURE AND...5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Rand Corporation ,Project Air Force,PO Box 2138,Santa Monica,CA,90407-2138
Nemmi, Federico; Saint-Aubert, Laure; Adel, Djilali; Salabert, Anne-Sophie; Pariente, Jérémie; Barbeau, Emmanuel; Payoux, Pierre; Péran, Patrice
2014-01-01
Purpose AV-45 amyloid biomarker is known to show uptake in white matter in patients with Alzheimer’s disease (AD) but also in healthy population. This binding; thought to be of a non-specific lipophilic nature has not yet been investigated. The aim of this study was to determine the differential pattern of AV-45 binding in healthy and pathological populations in white matter. Methods We recruited 24 patients presenting with AD at early stage and 17 matched, healthy subjects. We used an optimized PET-MRI registration method and an approach based on intensity histogram using several indexes. We compared the results of the intensity histogram analyses with a more canonical approach based on target-to-cerebellum Standard Uptake Value (SUVr) in white and grey matters using MANOVA and discriminant analyses. A cluster analysis on white and grey matter histograms was also performed. Results White matter histogram analysis revealed significant differences between AD and healthy subjects, which were not revealed by SUVr analysis. However, white matter histograms was not decisive to discriminate groups, and indexes based on grey matter only showed better discriminative power than SUVr. The cluster analysis divided our sample in two clusters, showing different uptakes in grey but also in white matter. Conclusion These results demonstrate that AV-45 binding in white matter conveys subtle information not detectable using SUVr approach. Although it is not better than standard SUVr to discriminate AD patients from healthy subjects, this information could reveal white matter modifications. PMID:24573658
Dissociating Normal Aging from Alzheimer’s Disease: A View from Cognitive Neuroscience
Toepper, Max
2017-01-01
Both normal aging and Alzheimer’s disease (AD) are associated with changes in cognition, grey and white matter volume, white matter integrity, neural activation, functional connectivity, and neurotransmission. Obviously, all of these changes are more pronounced in AD and proceed faster providing the basis for an AD diagnosis. Since these differences are quantitative, however, it was hypothesized that AD might simply reflect an accelerated aging process. The present article highlights the different neurocognitive changes associated with normal aging and AD and shows that, next to quantitative differences, there are multiple qualitative differences as well. These differences comprise different neurocognitive dissociations as different cognitive deficit profiles, different weights of grey and white matter atrophy, and different gradients of structural decline. These qualitative differences clearly indicate that AD cannot be simply described as accelerated aging process but on the contrary represents a solid entity. PMID:28269778
Origins, seasonality, and fluxes of organic matter in the Congo River
NASA Astrophysics Data System (ADS)
Spencer, Robert G. M.; Hernes, Peter J.; Dinga, Bienvenu; Wabakanghanzi, Jose N.; Drake, Travis W.; Six, Johan
2016-07-01
The Congo River in central Africa represents a major source of organic matter (OM) to the Atlantic Ocean. This study examined elemental (%OC, %N, and C:N), stable isotopic (δ13C and δ15N), and biomarker composition (lignin phenols) of particulate OM (POM) and dissolved OM (DOM) across the seasonal hydrograph. Even though the Congo exhibits an extremely stable intra-annual discharge regime, seasonal variability in OM composition was evident. DOM appears predominantly derived from vascular plant inputs with greater relative contribution during the rising limb and peak in discharge associated with the major November-December discharge maximum. Generally, POM appears to be sourced from soil-derived mineral-associated OM (low C:N, low Λ8, and higher (Ad:Al)v) but the relative proportion of fresh vascular plant material (higher C:N, higher Λ8, and lower (Ad:Al)v) increases with higher discharge. During the study period (September 2009 to November 2010) the Congo exported 29.21 Tg yr-1 of total suspended sediment (TSS), 1.96 Tg yr-1 of particulate organic carbon (POC), and 12.48 Tg yr-1 of dissolved organic carbon. The Congo exports an order of magnitude lower TSS load in comparison to other major riverine sources of TSS (e.g., Ganges and Brahmaputra), but due to its OM-rich character it actually exports a comparable amount of POC. The Congo is also 2.5 times more efficient at exporting dissolved lignin per unit volume compared to the Amazon. Including Congo dissolved lignin data in residence time calculations for lignin in the Atlantic Ocean results in an approximately 10% reduction from the existing estimate, suggesting that this material is more reactive than previously thought.
Why is Mineral-Associated Organic Matter Enriched in 15N? Evidence from Grazed Pasture Soil
NASA Astrophysics Data System (ADS)
Baisden, W. T.; Wells, N. S.; Mudge, P. L.; Clough, T. J.; Schipper, L. A.; Ghani, A.; Stevenson, B.
2014-12-01
Throughout the scientific literature, measurements across soil depth and density fractions suggest that, with few exceptions, mineral-associated organic matter (OM) has higher δ15N than non-mineral-associated OM. This implies that the δ15N difference between N inputs and mineral-stabilized OM may characterize the microbial processes involved in stabilization and mineral association. Yet current understanding of observed N isotope fractionation in terrestrial ecosystems suggests the large isotope effects are expressed during inorganic N transformations from NH4 to gaseous loss pathways of NH3 volatilization and denitrification. How can the relative importance of N isotope fractionation during OM stabilization versus loss pathways be resolved? We recently examined N isofluxes when a temporary nitrogen excess is created by urine deposition in a New Zealand dairy pasture. We found that the N isotopic composition of volatilized NH3, and NO3 available for leaching or denitrification could not be linked back to the added N using Rayleigh distillation models. Instead, the results imply that the added N was immobilized, and the N available for losses was increasingly derived from mineralization of organic matter during the course of the experiment. These results are consistent with recent evidence of enhanced OM mineralization in urine patches, understanding of N isotope mass balances and long-standing evidence that gross mineralization and immobilization fluxes greatly exceed net mineralization and nitrification, except at very high N saturation. These results suggest that where 15N enrichment occurs due to fractionating loss pathways, the isotope effects are primarily transmitted to immobilized N, forming 15N enriched stabilized OM. This further explains earlier findings that the δ15N of soil OM represents an integrated indicator of losses, reflecting the intensity and duration of pastoral agriculture. We suggest that development of an indicator based on δ15N in mineral-associated OM might relate mineralization rates to the δ15N of stabilized or immobilized N.
NASA Astrophysics Data System (ADS)
Blackaby, E.; Craven, O. D.; Hockaday, W. C.; Forman, S. L.; Stinchcomb, G. E.
2017-12-01
The middle Tennessee River Valley contains both historic and prehistoric (>AD 1600) flood deposits. Stratigraphic sequences of stacked flood deposits that often bury soils provide new insights on organic matter transported and preserved prior to and after European colonization. This study focused on understanding carbon cycling within a dynamic fluvial system and quantifying the anthropogenic effect on flood processes through the analysis of molecular components of the organic matter. The data may be helpful in discerning the organic geochemical fingerprint for historic and prehistoric flood deposits. Ten samples were collected from three sites at varying depths and dated using optically stimulated luminescence (OSL). All samples underwent solid-state cross polar 13C NMR analysis at twelve kilohertz, and a molecular mixing model (MMM) was used to determine the molecular components of the organic matter present in each sample. The MMM categorized carbon molecules present in each sample in terms of carbohydrate, protein, lipid, lignin, char, or pure carbonyl. Char was the most prominent molecular component of all ten samples ranging from 28.7 to 55.9% and comprised larger percentages in prehistoric deposits. The historic deposits, while still char dominated, showed more molecular diversity with higher percentages in non-char carbon groups. The carbonyl, lipid, and carbohydrate groups are present throughout all the samples with the carbonyl ranging from 9.3 to 31.4%, the lipid from 5.5 to 16.7%, and the carbohydrate from 4.4 to 16.9%. The high amount of carbonyl throughout the samples indicates that the deposits existed in a highly oxidizing environment. Differences in the presence and amount of carbon groups between historic and prehistoric flood deposits potentially reflect diagenic alternation of organic matter through time, changes in human land use, or some combination processes. These preliminary results possibly indicate changes in carbon pools accessed with European cultivation and continued degradation of organic moieties during a ca. 400 years burial, and mostly in oxidizing conditions.
Angeriz-Campoy, Rubén; Álvarez-Gallego, Carlos J; Romero-García, Luis I
2015-10-01
Bio-hydrogen production from dry thermophilic anaerobic co-digestion (55°C and 20% total solids) of organic fraction of municipal solid waste (OFMSW) and food waste (FW) was studied. OFMSW coming from mechanical-biological treatment plants (MBT plants) presents a low organic matter concentration. However, FW has a high organic matter content but several problems by accumulation of volatile fatty acids (VFAs) and system acidification. Tests were conducted using a mixture ratio of 80:20 (OFSMW:FW), to avoid the aforementioned problems. Different solid retention times (SRTs) - 6.6, 4.4, 2.4 and 1.9 days - were tested. It was noted that addition of food waste enhances the hydrogen production in all the SRTs tested. Best results were obtained at 1.9-day SRT. It was observed an increase from 0.64 to 2.51 L H2/L(reactor) day in hydrogen productivity when SRTs decrease from 6.6 to 1.9 days. However, the hydrogen yield increases slightly from 33.7 to 38 mL H2/gVS(added). Copyright © 2015 Elsevier Ltd. All rights reserved.
Ouyang, Wei; Zhao, Xuchen; Tysklind, Mats; Hao, Fanghua
2016-04-01
Biochar application has been identified as the effective soil amendment and the materials to control the diffuse herbicide pollution. The atrazine was selected as the typical diffuse herbicide pollutant as the dominant proportion in applications. The biochar treated from four types of crops biomass were added to soil with high organic matter content. The basic sorption characteristics of biocahrs from corn cob (CC), corn stalk (CS), soybean straw (SS), rice straw (RS) and corn stalk paralyzed with 5% of ammonium dihydrogen phosphate (ACS) were analyzed, along with the comparison of the sorption difference of the raw soil and soil amended with biochars at four levels of ratio (0.5%, 1.0%, 3.0% and 5.0%). It was found that the linear distribution isotherm of raw soil was much effective due to the high organic matter background concentration. The addition of five types of biochars under two kinds of initial atrazine concentration (1 mg/L and 20 mg/L) demonstrated the sorption variances. Results showed the soil amended with RS and CS biochar had the biggest removal rate in four regular biochars and the removal rate of the ACS was the biggest. The sorption coefficient and the normalized sorption coefficient from Freundlich modeling presented the isothermal sorption characteristics of atrazine with soil of high organic matter content. The normalized sorption coefficient increased with the equilibrium concentration decreased in the biochar amended soil, which indicated the sorption performance will be better due to the low atrazine concentration in practice. Results showed that biochar amendment is the effective way to prevent leakage of diffuse herbicide loss. Copyright © 2016 Elsevier Ltd. All rights reserved.
How is the presence of horizons and localized matter encoded in the entanglement entropy?
NASA Astrophysics Data System (ADS)
Cadoni, Mariano; Jain, Parul
2017-05-01
Motivated by the new theoretical paradigm that views space-time geometry as emerging from the entanglement of a pre-geometric theory, we investigate the issue of the signature of the presence of horizons and localized matter on the entanglement entropy (EE) SE for the case of three-dimensional AdS (AdS3) gravity. We use the holographically dual two-dimensional CFT on the torus and the related modular symmetry in order to treat bulk black holes and conical singularities (sourced by pointlike masses not shielded by horizons) on the same footing. In the regime where boundary tori can be approximated by cylinders, we are able to give universal expressions for the EE of black holes and conical singularities. We argue that the presence of horizons/localized matter in the bulk is encoded in the EE in terms of (i) enhancement/reduction of the entanglement of the AdS3 vacuum, (ii) scaling as area/volume of the leading term of the perturbative expansion of SE, (iii) exponential/periodic behavior of SE and (iv) presence of unaccessible regions in the noncompact/compact dimension of the boundary cylinder. In particular, we show that the reduction effect of matter on the entanglement of the vacuum found by Verlinde for the de Sitter vacuum extends to the AdS3 vacuum.
Travar, I; Kihl, A; Kumpiene, J
2015-12-01
The aim of this study was to evaluate the stabilization/solidification (S/S) of trace element-contaminated soil using air pollution control residues (APCRs) prior to disposal in landfill sites. Two soil samples (with low and moderate concentrations of organic matter) were stabilized using three APCRs that originated from the incineration of municipal solid waste, bio-fuels and a mixture of coal and crushed olive kernels. Two APCR/soil mixtures were tested: 30% APCR/70% soil and 50% APCR/50% soil. A batch leaching test was used to study immobilization of As and co-occurring metals Cr, Cu, Pb and Zn. Solidification was evaluated by measuring the unconfined compression strength (UCS). Leaching of As was reduced by 39-93% in APCR/soil mixtures and decreased with increased amounts of added APCR. Immobilization of As positively correlated with the amount of Ca in the APCR and negatively with the amount of soil organic matter. According to geochemical modelling, the precipitation of calcium arsenate (Ca3(AsO4)2/4H2O) and incorporation of As in ettringite (Ca6Al2(SO4)3(OH)12 · 26H2O) in soil/APCR mixtures might explain the reduced leaching of As. A negative effect of the treatment was an increased leaching of Cu, Cr and dissolved organic carbon. Solidification of APCR/soil was considerably weakened by soil organic matter.
Baccot, Camille; Pallier, Virginie; Feuillade-Cathalifaud, Geneviève
2017-05-01
Many data on anaerobic digestion (AD) and co-digestion of municipal solid waste leachate (MSWL) are already available in literature. They mainly deal with its performances to decrease the chemical oxygen demand (COD) of MSWL and no information is given on the impact of the specific characteristics of the dissolved organic matter (DOM) in leachate on these performances. DOM in leachate evolves towards more aromatic and hydrophobic compounds during landfilling with increasing specific ultra-violet absorbance index (SUVA) and hydrophobic character. However, according to the humification stages, this DOM would not present the same aptitude for AD. This research thus focused on (i) optimizing a biochemical methane potential (BMP) test applied to MSWL by using the Taguchi method and (ii) evaluating the impact of the hydrophobic character of the DOM in leachate on the BMP of MSWL to finally define the humification degree more suitable for AD. Hydrophobic-like (HPO ∗ ) and transphilic-like (TPH ∗ ) compounds extracted from leachate by a fractionation protocol were tested because of their high content in MSWL during acetogenesis and methanogenesis steps. After 275days of AD, the content in hydrophobic compounds and the SUVA indexes increased in the digestates. Moreover, even if the biogas and methane productions were not significantly different during the whole tests (4072±350mLgDOC -1 and 2370±95mLgDOC -1 respectively), the volume of biogas produced directly correlated with the TPH ∗ fraction content in the initial digestates. On the contrary, the methane percentage in biogas was anti-correlated with the hydrophilic-like compounds content. The hydrophobic-like molecules seem thus not to be directly involved in the methanogenic step, however they promote the increase of the methane percent in the biogas. Copyright © 2016 Elsevier Ltd. All rights reserved.
Bioretention Design to Improve Nitrogen Removal | Science ...
Bioretention has been shown to effectively remove a variety of stormwater stressors, including oil/grease, heavy metals, phosphorus, and ammonium. However, reported nitrate and total nitrogen removal performance is highly variable. The media typically used in bioretention installation is coarse-grained with low organic matter content, which facilitates high infiltration rates but fails to provide the anaerobic conditions and carbon availability necessary to promote nitrate removal by denitrification. EPA's research at the Urban Watershed Research Facility investigates the effects of media carbon amendments, introduced internal storage zones, plant type, and media volume on nitrogen removal. Initial bench-scale tests informed media and carbon amendment choices. A locally-available, sandy media with low organic matter content was added to eight experimental, pilot-scale rain gardens above a shallow pea gravel drainage layer. The media was separated from the pea gravel with a nonwoven geotextile. Double-shredded hardwood wood chips were chosen as a carbon amendment and added as a 20-cm layer 10 cm above the geotextile in four of the eight pilot-scale rain gardens; the other four did not receive the mulch layer. Four rain gardens were constructed with an elevated outlet pipe to create an internal storage zone; the other four drain freely. Pilot-scale rain gardens were constructed in tanks of two sizes to test the effects of media volume. After initial hydrologic
DOE Office of Scientific and Technical Information (OSTI.GOV)
Michele, Pognani, E-mail: michele.pognani@unimi.it; Giuliana, D’Imporzano, E-mail: giuliana.dimporzano@unimi.it; Gruppo Ricicla - DiSAA, Università degli Studi di Milano, Biomass and Bioenergy Lab., Parco Tecnologico Padano, Via Einstein, Loc. C.na Codazza, 26900 Lodi
2015-01-15
Highlights: • Solid State Anaerobic Digestion (SSAD) of OFMSW can be optimized by irrigation with digestate. • Digestate spreading allows keeping optimal process parameters and high hydrolysis rate. • The 18.4% of CH{sub 4} was produced in the reactor, leaving the 49.7% in the percolate. • Successive CSTR feed with percolate shows a biogas enriched in methane (more than 80%). • The proposed process allow producing the 68% of OFMSW potential CH{sub 4}, getting high quality organic amendment. - Abstract: Dry anaerobic digestion (AD) of OFMSW was optimized in order to produce biogas avoiding the use of solid inoculum. Doingmore » so the dry AD was performed irrigating the solid waste with liquid digestate (flow rate of 1:1.18–1:0.9 w/w waste/digestate; 21 d of hydraulic retention time – HRT) in order to remove fermentation products inhibiting AD process. Results indicated that a high hydrolysis rate of organic matter (OM) and partial biogas production were obtained directly during the dry AD. Hydrolysate OM was removed from digester by the percolate flow and it was subsequently used to feed a liquid anaerobic digester. During dry AD a total loss of 36.9% of total solids was recorded. Methane balance indicated that 18.4% of potential methane can be produced during dry AD and 49.7% by the percolate. Nevertheless results obtained for liquid AD digestion indicated that only 20.4% and 25.7% of potential producible methane was generated by adopting 15 and 20 days of HRT, probably due to the AD inhibition due to high presence of toxic ammonia forms in the liquid medium.« less
Soil development in OSL dated sandy dune substrates under Quercus robur Forest (Netherlands)
NASA Astrophysics Data System (ADS)
van Mourik, J. M.; Nierop, Ir. K.; Verstraten, J. M.
2009-04-01
Coastal dune landscapes are very dynamic. The present distribution of vegetation and soil is the result of over 2000 years of natural processes and human management. The initial soil development was controlled by an increase of the organic matter content, which consisted mainly of decomposed roots of grasses (rhizomull), and a decrease of the soil pH to 3-4 by decalcification. This stage was followed by the development of a deciduous forest, which was dominated by Quercus robur. Since 1600 AD, a large part of the deciduous forest that dominated the east side of the coastal dune landscape transferred in expensive residential areas and urbanizations. Nevertheless some parts of the oak forest belt remained. The present forest soils are acid and the controlling soil processes are leaching of sesquioxides and storage of organic matter in mormoder humus forms. The sustainability of ecosystems is closely related to the quality of the humus form, controlling nutrient cycling and water supply. Therefore, improve of knowledge of humus form development and properties is important. We applied soil micromorphology and pyrolysis-gas chromatography/mass spectrometry (GC/MS) to investigate more details of humus form development at two locations (Duivendrift and Hoek van Klaas) in the coastal dune area of the Amsterdamse Waterleidingduinen (near Haarlem, the Netherlands). However, to understand forest soil development, including the organic matter composition in the humus form, the age of the substrate and the forest is required. Therefore, we used tradition techniques as pollen analysis and radiocarbon dating but also the recently introduced optical stimulated luminescence (OSL) dating technique. OSL dating works excellent for aeolian sandy deposits with a high percentage of quartz grains. The OSL age is defined as the time after the last bleaching by solar radiation of mineral grains. Or in other words, the start of a stable period without sand drifting. In the Ah horizons we observed palynological traces of a former dune landscape with grasses and typical dune land shrubs. The F and H horizons were dominated by Quercus pollen. In thin sections we found that in the upper part of the F horizons the soil skeleton was formed by leaf litter fragments that were fragmented and decomposed by fungi and micro arthropods. The soil skeleton of the lower part of the F horizons consisted of a mixture of leaf litter fragments and (dead) root fragments. In this part of the profile, fungi and micro arthropods were also responsible for the physical and chemical organic matter decomposition. The soil skeleton of the Ah horizons was formed by mineral grains in which small sized organic aggregates occurred. These aggregates may have four possible sources: (1) sinsedimentary aggregates, involved in sand drifting, (2) fecal relicts from decomposed (older) roots of a former dune land vegetation, (2) fecal relicts from decomposed (younger) roots of the forest and its understory, and (3) infiltrated parts of fecal pallets from the overlying F horizons. The calibrated radiocarbon dates of organic matter from the upper 5 cm of the Ah horizons go back to around 1960 AD. This points to a 45 year period for the development of the ectorganic horizons, assuming that fresh organic matter did not ‘contaminate' the radiocarbon dating. The OSL the ages of quartz grains from the upper 5 cm of the Ah horizons indicate landscape stabilization around 1800AD implying that two centuries were available for vegetation and soil development. There seems to be a significant difference between the OSL and 14C ages of the top of the Ah horizon. The OSL dates are very reliable. They indicate the correct time of the transformation of drift sand into stable, vegetated landscape. The pollen spectra of the Ah horizon show traces of dune grass and shrub landscape, but probably these pollen grains originate from sinsedimentary organic aggregates. And during the juvenile phase of a quercus forest, the quercus pollen production is very low and other wind pollinated grains from dune grasses and shrubs can dominate the pollen spectra. Based upon OSL dates, a period of 200 year forest soil development is more reliable than the 14C based 45 year. We must reject the 14C ages, due to complexity of sources of soil organic matter in the Ah horizon The organic matter as investigated by analytical pyrolysis and thermally assisted hydrolysis and methylation and subsequent analysis by GC/MS revealed a major oak-derived picture. The L+F1 horizons reflected relatively undecomposed organic matter mainly derived from leaves. By contrast, in both F2+H and the Ah horizons leaf material was accompanied by root-derived components, particularly suberin. The latter may originate from barks as well, but in the Ah horizons the contribution of roots was most probably much greater. Apart from a common transformation pattern (decrease of polysaccharides, degradation of lignin and accumulation of lipids), a very small contribution of C26 alkanol indicated a chemical fingerprint of the previous grass vegetation. In conclusion: chemical analysis confirmed the soil micromorphological data, and the application of OSL dating improves our knowledge about geochronology of the system.
Bioavailability of riverine dissolved organic matter to phytoplankton in the marine coastal waters
NASA Astrophysics Data System (ADS)
Jurgensone, Iveta; Aigars, Juris
2012-07-01
Nutrient inputs from catchments with intensive agriculture are mostly dominated by inorganic nutrients, whereas the contribution of organic nutrients from catchments with natural forests can be considerable but there is a pooere understanding of this nutrient source. Consequently this study investigated spring, summer and autumn phytoplankton community responses to enrichment by riverine dissolved organic matter (DOM). Dissolved organic substances were extracted from the Daugava River, fractionated into three molecular size classes: 1) 5-100 kDa, 2) 100-1000 kDa, and 3) >1000 kDa, and added to a microcosm with natural assemblages from the Gulf of Riga. During the spring the phytoplankton community was dominated (97%) by diatoms and the species composition did not change over the course of the experiment. Specific species and functional groups of the summer and autumn phytoplankton communities responded positively to these treatments. Small-celled cyanobacteria and Monoraphidium contortum responded to almost all size fractions of DOM for the summer and autumn experiments. Oocystis spp. characteristic for the summer and Chaetoceros wighamii, Cyclotella spp., Thalassiosira baltica for the autumn responded to treatment by two and three size classes of organic substances, respectively, while Merismopedia spp. shifted from one food source to another during the summer experiment.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-10-21
... NATIONAL CREDIT UNION ADMINISTRATION Sunshine Act; Notice of a Matter To Be Added to the Agenda for Consideration at an Agency Meeting Time and Date: 10 a.m., Thursday, October 21, 2010. Place: Board Room, 7th Floor, Room 7047, 1775 Duke Street, Alexandria, VA 22314-3428. Status: Open. Matters To...
NASA Astrophysics Data System (ADS)
Viehberg, Finn; Pienitz, Reinhard; Plessen, Birgit; Muir, Derek; Wang, Xiaowa
2017-04-01
Several Thule forager groups settled successfully in the Hudson Bay region of the Canadian Arctic starting at ca. AD 1050. First evidence of settlements at Native Point on Southampton Island dates prior to AD 1400 by Sadlermiuts. The village consisted of numerous sod and winter houses which framed a small shallow freshwater body (ca. 20,000 m2). Numerous butchered carcasses of mainly walrus, seal, bowhead whales and caribou remained in the pond and further decayed in the water. Here, we present first results from three short sediment cores taken from the bottom of the settlement pond. Sedimentological, geochemical and micropaleontological analyses show an abrupt change at ca. AD 1500 from pristine aquatic environments to eutrophic conditions. Variation in d15N and d13C of the organic matter suggest that this shift is related to the first butchering activity of Sadlermiuts in the area.
Cortical gray and subcortical white matter associations in Parkinson's disease.
Sterling, Nicholas W; Du, Guangwei; Lewis, Mechelle M; Swavely, Steven; Kong, Lan; Styner, Martin; Huang, Xuemei
2017-01-01
Cortical atrophy has been documented in both Parkinson's disease (PD) and healthy aging, but its relationship to changes in subcortical white matter is unknown. This was investigated by obtaining T1- and diffusion-weighted images from 76 PD and 70 controls at baseline and 18 and 36 months, from which cortical volumes and underlying subcortical white matter axial diffusivity (AD), radial diffusivity (RD), and fractional anisotropy (FA) were determined. Twelve of 69 cortical subregions had significant group differences, and for these, underlying subcortical white matter was explored. At baseline, higher cortical volumes were significantly correlated with lower underlying subcortical white matter AD, RD, and higher FA (ps ≤ 0.017) in PD. Longitudinally, higher rates of cortical atrophy in PD were associated with increased rates of change in AD RD, and FA values (ps ≤ 0.0013) in 2 subregions explored. The significant gray-white matter associations were not found in controls. Thus, unlike healthy aging, cortical atrophy and subcortical white matter changes may not be independent events in PD. Copyright © 2016 Elsevier Inc. All rights reserved.
Thermal properties of soils: effect of biochar application
NASA Astrophysics Data System (ADS)
Usowicz, Boguslaw; Lukowski, Mateusz; Lipiec, Jerzy
2014-05-01
Thermal properties (thermal conductivity, heat capacity and thermal diffusivity) have a significant effect on the soil surface energy partitioning and resulting in the temperature distribution. Thermal properties of soil depend on water content, bulk density and organic matter content. An important source of organic matter is biochar. Biochar as a material is defined as: "charcoal for application as a soil conditioner". Biochar is generally associated with co-produced end products of pyrolysis. Many different materials are used as biomass feedstock for biochar, including wood, crop residues and manures. Additional predictions were done for terra preta soil (also known as "Amazonian dark earth"), high in charcoal content, due to adding a mixture of charcoal, bone, and manure for thousands of years i.e. approximately 10-1,000 times longer than residence times of most soil organic matter. The effect of biochar obtained from the wood biomass and other organic amendments (peat, compost) on soil thermal properties is presented in this paper. The results were compared with wetland soils of different organic matter content. The measurements of the thermal properties at various water contents were performed after incubation, under laboratory conditions using KD2Pro, Decagon Devices. The measured data were compared with predictions made using Usowicz statistical-physical model (Usowicz et al., 2006) for biochar, mineral soil and soil with addition of biochar at various water contents and bulk densities. The model operates statistically by probability of occurrence of contacts between particular fractional compounds. It combines physical properties, specific to particular compounds, into one apparent conductance specific to the mixture. The results revealed that addition of the biochar and other organic amendments into the soil caused considerable reduction of the thermal conductivity and diffusivity. The mineral soil showed the highest thermal conductivity and diffusivity that decreased in soil with addition of biochar and pure biochar. The reduction of both properties was mostly due to decrease in both particle density and bulk density. Both biochar and the organic amendments addition resulted in a decrease of the heat capacity of the mixtures in dry state and considerable increase in wet state. The lowest and highest reduction in the thermal conductivity with decreasing water content was obtained for pure biochar and mineral soil, respectively. The thermal diffusivity had a characteristic maximum at higher bulk densities and lower water contents. The wetland soil higher in organic matter content exhibit smaller temporal variation of the thermal properties compared to soils lower in organic matter content in response to changes of water content. The statistical-physical model was found to be useful for satisfactory predicting thermal properties of the soil with addition of biochar and organic amendments. Usowicz B. et al., 2006. Thermal conductivity modelling of terrestrial soil media - A comparative study. Planetary and Space Science 54, 1086-1095.
Bilello, Michel; Doshi, Jimit; Nabavizadeh, S. Ali; Toledo, Jon B.; Erus, Guray; Xie, Sharon X.; Trojanowski, John Q.; Han, Xiaoyan; Davatzikos, Christos
2015-01-01
Background Vascular risk factors are increasingly recognized as risks factors for Alzheimer’s disease (AD) and early conversion from mild cognitive impairment (MCI) to dementia. While neuroimaging research in AD has focused on brain atrophy, metabolic function or amyloid deposition, little attention has been paid to the effect of cerebrovascular disease to cognitive decline. Objective To investigate the correlation of brain atrophy and white matter lesions with cognitive decline in AD, MCI, and control subjects. Methods Patients with AD and MCI, and healthy subjects were included in this study. Subjects had a baseline MRI scan, and baseline and follow-up neuropsychological battery (CERAD). Regional volumes were measured, and white matter lesion segmentation was performed. Correlations between rate of CERAD score decline and white matter lesion load and brain structure volume were evaluated. In addition, voxel-based correlations between baseline CERAD scores and atrophy and white matter lesion measures were computed. Results CERAD rate of decline was most significantly associated with lesion loads located in the fornices. Several temporal lobe ROI volumes were significantly associated with CERAD decline. Voxel-based analysis demonstrated strong correlation between baseline CERAD scores and atrophy measures in the anterior temporal lobes. Correlation of baseline CERAD scores with white matter lesion volumes achieved significance in multilobar subcortical white matter. Conclusion Both baseline and declines in CERAD scores correlate with white matter lesion load and gray matter atrophy. Results of this study highlight the dominant effect of volume loss, and underscore the importance of small vessel disease as a contributor to cognitive decline in the elderly. PMID:26402108
Bilello, Michel; Doshi, Jimit; Nabavizadeh, S Ali; Toledo, Jon B; Erus, Guray; Xie, Sharon X; Trojanowski, John Q; Han, Xiaoyan; Davatzikos, Christos
2015-01-01
Vascular risk factors are increasingly recognized as risks factors for Alzheimer's disease (AD) and early conversion from mild cognitive impairment (MCI) to dementia. While neuroimaging research in AD has focused on brain atrophy, metabolic function, or amyloid deposition, little attention has been paid to the effect of cerebrovascular disease to cognitive decline. To investigate the correlation of brain atrophy and white matter lesions with cognitive decline in AD, MCI, and control subjects. Patients with AD and MCI, and healthy subjects were included in this study. Subjects had a baseline MRI scan, and baseline and follow-up neuropsychological battery (CERAD). Regional volumes were measured, and white matter lesion segmentation was performed. Correlations between rate of CERAD score decline and white matter lesion load and brain structure volume were evaluated. In addition, voxel-based correlations between baseline CERAD scores and atrophy and white matter lesion measures were computed. CERAD rate of decline was most significantly associated with lesion loads located in the fornices. Several temporal lobe ROI volumes were significantly associated with CERAD decline. Voxel-based analysis demonstrated strong correlation between baseline CERAD scores and atrophy measures in the anterior temporal lobes. Correlation of baseline CERAD scores with white matter lesion volumes achieved significance in multilobar subcortical white matter. Both baseline and declines in CERAD scores correlate with white matter lesion load and gray matter atrophy. Results of this study highlight the dominant effect of volume loss, and underscore the importance of small vessel disease as a contributor to cognitive decline in the elderly.
NASA Astrophysics Data System (ADS)
Shaw, C.; Kurz, W. A.; Metsaranta, J.; Bona, K. A.; Hararuk, O.; Smyth, C.
2017-12-01
The Carbon Budget Model of the Canadian Forest Sector (CBM-CFS3) is a forest carbon budget model that operates on individual stands. It is applied from regional to national-scales in Canada for national and international reporting of GHG emissions and removals and in support of analyses of forest sector mitigation options and other scientific and policy questions. This presentation will review the history and continuous improvement process of representations of dead organic matter (DOM) and soil carbon modelling. Early model versions in which dead organic matter (DOM) pools only included litter, downed deadwood and soil, to the current version where these pools are estimated separately to better compare model estimates against field measurements, or new pools have been added. Uncertainty analyses consistently point at soil C pools as large sources of uncertainty. With the new ground plot measurements from the National Forest Inventory, and with a newly compiled forest soil carbon database, we have recently completed a model data assimilation exercise that helped reduce parameter uncertainties. Lessons learned from the continuous improvement process will be summarised and we will discuss how model modification have led to improved representation of DOM and soil carbon dynamics. We conclude by suggesting future research priorities that can advance DOM and soil carbon modelling in Canadian forest ecosystems.
Steketee, Rebecca M E; Meijboom, Rozanna; de Groot, Marius; Bron, Esther E; Niessen, Wiro J; van der Lugt, Aad; van Swieten, John C; Smits, Marion
2016-07-01
This study investigates regional coherence between white matter (WM) microstructure and gray matter (GM) volume and perfusion measures in Alzheimer's disease (AD) and behavioral variant frontotemporal dementia (bvFTD) using a correlational approach. WM-GM coherence, compared with controls, was stronger between cingulum WM and frontotemporal GM in AD, and temporoparietal GM in bvFTD. In addition, in AD compared with controls, coherence was stronger between inferior fronto-occipital fasciculus WM microstructure and occipital GM perfusion. In this first study assessing regional WM-GM coherence in AD and bvFTD, we show that WM microstructure and GM volume and perfusion measures are coherent, particularly in regions implicated in AD and bvFTD pathology. This indicates concurrent degeneration in disease-specific networks. Our methodology allows for the detection of incipient abnormalities that go undetected in conventional between-group analyses. Copyright © 2016 Elsevier Inc. All rights reserved.
Adani, Fabrizio; Salati, Silvia; Spagnol, Manuela; Tambone, Fulvia; Genevini, Pierluigi; Pilu, Roberto; Nierop, Klaas G J
2009-07-01
The quantity and quality of plant litter in the soil play an important role in the soil organic matter balance. Besides other pedo-climatic aspects, the content of recalcitrant molecules of plant residues and their chemical composition play a major role in the preservation of plant residues. In this study, we report that intrinsically resistant alkali-soluble bio-macromolecules extracted from maize plant (plant-humic acid) (plant-HA) contribute directly to the soil organic matter (OM) by its addition and conservation in the soil. Furthermore, we also observed that a high syringyl/guaiacyl (S/G) ratio in the lignin residues comprising the plant tissue, which modifies the microscopic structure of the alkali-soluble plant biopolymers, enhances their recalcitrance because of lower accessibility of molecules to degrading enzymes. These results are in agreement with a recent study, which showed that the humic substance of soil consists of a mixture of identifiable biopolymers obtained directly from plant tissues that are added annually by maize plant residues.
Feasibility of co-composting of sewage sludge, spent mushroom substrate and wheat straw.
Meng, Liqiang; Li, Weiguang; Zhang, Shumei; Wu, Chuandong; Lv, Longyi
2017-02-01
In this study, the lab-scale co-composting of sewage sludge (SS) with mushroom substrate (SMS) and wheat straw (WS) conducted for 20days was evaluated. The addition of SMS evidently increased CO 2 production and dehydrogenase activity. The combined addition of SMS and WS significantly improved the compost quality in terms of temperature, organic matter degradation and germination index, especially, reduced 21.9% of NH 3 emission. That's because SMS and WS possessed the complementarity of free air space and contained plenty of degradable carbon source. The SMS could create a comfortable environment for the nitrifying bacteria and improve nitrification. The carbohydrates from combined addition of SMS and WS could be utilized by thermophilic microorganisms, stimulate ammonia assimilation and reduce NH 3 emission. These results suggested that adding SMS and WS could not only improve the degradation of organic matter and the quality of compost product, but also stimulate ammonia assimilation and reduce ammonia emission. Copyright © 2016. Published by Elsevier Ltd.
Clark, Catherine D; O'Connor, Adam P; Foley, Denise M; de Bruyn, Warren J
2007-09-01
Optical properties of colored dissolved organic matter (CDOM) were measured as a tracer of polluted waters in a Southern California surf-zone with consistently high levels of fecal indicator bacteria. Salinity, temperature, fecal coliform, absorbance (200-700nm) and fluorescence (lambda(excitation)=350nm; lambda(emission)=360-650nm) were measured in the creek and surf-zone during a dry and rain event. Fluorescence to absorption ratios for CDOM were used to distinguish water masses, with two distinct CDOM end-members identified as creek (flu/abs=8.7+/-0.8x10(4)) and coastal (flu/abs=2.2+/-0.3x10(4)). Waters containing the same CDOM end-member had highly variable bacterial levels during the dry event, suggesting intermittent sources of bacteria added to a uniform water source, consistent with marine birds. During the rain event, increased levels of the creek end-member and bacteria indicated a second bacteria source from runoff.
NASA Astrophysics Data System (ADS)
Heck, Andre
2013-01-01
This editorial presents the book as a continuation of the first volume, both OPSA volumes being themselves in the line, with more emphasis on people, of the earlier prize-winning series "Organizations and Strategies in Astronomy (OSA)", the seven volumes of which described how astronomy research lives: how it is planned, funded and organized, how it interacts with other disciplines and the rest of the world, how it communicates, etc. All those books are a unique medium for scientists and non-scientists (sometimes from outside astronomy) to describe their experience, often for the first time at such a level, on non-purely scientific matters, many of them of fundamental importance for the efficient conduct astronomy-related activities. The editorial tackles also issues regarding ethics and management of people, stressing the need for managers with ad hoc training and a long-term vision of the role of astronomers towards the society at large.
Montiel-Rozas, M M; Madejón, E; Madejón, P
2016-09-01
Bioavailability of heavy metals can be modified by different root exudates. Among them, low molecular weight organic acids (LMWOAs) play an important role in this process. Three plant species (Poa annua, Medicago polymorpha and Malva sylvestris), potentially used for phytoremediation, have been assessed for both metal uptake and LMWOAs excretion in contaminated environments with different concentrations of Cd, Cu and Zn. The experiments have been carried out in washed sand and in three contaminated soils where two organic amendments were added (biosolid compost and alperujo compost). The most abundant LMWOAs excreted by all studied plants were oxalic and malic acids, although citric and fumaric acids were also detected. The general tendency was that plants responded to an increase of heavy metal stress releasing higher amounts of LMWOAs. This is an efficient exclusion mechanism reducing the metal uptake and allowing the plant growth at high levels of contamination. In the experiment using wash sand as substrate, the organic acids composition and quantity depended mainly on plant species and metal contamination. M. polymorpha was the species that released the highest concentrations of LMWOAs, both in sand and in soils with no amendment addition, whereas a decrease of these acids was observed with the addition of amendments. Our results established a clear effect of organic matter on the composition and total amount of LMWOAs released. The increase of organic matter and nutrients, through amendments, improved the soil quality reducing phytotoxicity. As a result, organic acids exudates decreased and were solely composed of oxalic acid (except for M. polymorpha). The release of LMWOAs has proved to be an important mechanism against heavy metal stress, unique to each species and modifiable by means of organic amendment addition. Copyright © 2016 Elsevier Ltd. All rights reserved.
Stimulated Bacterial Growth under Elevated pCO2: Results from an Off-Shore Mesocosm Study
Endres, Sonja; Galgani, Luisa; Riebesell, Ulf; Schulz, Kai-Georg; Engel, Anja
2014-01-01
Marine bacteria are the main consumers of freshly produced organic matter. Many enzymatic processes involved in the bacterial digestion of organic compounds were shown to be pH sensitive in previous studies. Due to the continuous rise in atmospheric CO2 concentration, seawater pH is presently decreasing at a rate unprecedented during the last 300 million years but the consequences for microbial physiology, organic matter cycling and marine biogeochemistry are still unresolved. We studied the effects of elevated seawater pCO2 on a natural plankton community during a large-scale mesocosm study in a Norwegian fjord. Nine Kiel Off-Shore Mesocosms for Future Ocean Simulations (KOSMOS) were adjusted to different pCO2 levels ranging initially from ca. 280 to 3000 µatm and sampled every second day for 34 days. The first phytoplankton bloom developed around day 5. On day 14, inorganic nutrients were added to the enclosed, nutrient-poor waters to stimulate a second phytoplankton bloom, which occurred around day 20. Our results indicate that marine bacteria benefit directly and indirectly from decreasing seawater pH. During the first phytoplankton bloom, 5–10% more transparent exopolymer particles were formed in the high pCO2 mesocosms. Simultaneously, the efficiency of the protein-degrading enzyme leucine aminopeptidase increased with decreasing pH resulting in up to three times higher values in the highest pCO2/lowest pH mesocosm compared to the controls. In general, total and cell-specific aminopeptidase activities were elevated under low pH conditions. The combination of enhanced enzymatic hydrolysis of organic matter and increased availability of gel particles as substrate supported up to 28% higher bacterial abundance in the high pCO2 treatments. We conclude that ocean acidification has the potential to stimulate the bacterial community and facilitate the microbial recycling of freshly produced organic matter, thus strengthening the role of the microbial loop in the surface ocean. PMID:24941307
NASA Astrophysics Data System (ADS)
Chassiot, Léo; Chapron, Emmanuel; Di Giovanni, Christian; Albéric, Patrick; Lajeunesse, Patrick; Lehours, Anne-Catherine; Meybeck, Michel
2016-06-01
A set of sedimentary cores, high resolution swath bathymetry and subbottom profiler data provides new insights on sedimentary processes in meromictic maar Lake Pavin, France. Three sedimentary environments (i.e., littoral, plateau and basin) have been identified in the lake from sediment composition using bulk organic geochemistry and the analysis of hydroacoustic images. Various forms of rapidly deposited layers (RDLs) have been identified and radiocarbon dated. An up to date stratigraphy of sedimentary events matching coeval RDLs across the lake is presented and illustrates a wide range of natural hazards linked to Lake Pavin during the last 2000 years. In AD 600, a sudden lake outburst triggered a slump deposit along with a 9 m lake-level drop that drove shifts in sedimentary organic matter composition. Outside the lake, outburst flood deposits have been described downstream and provide sedimentary evidence for this event. The lake-level drop also favored the generation of gravity reworking processes, as shown by (1) a regional earthquake-triggered large slope failure on the plateau connected to a mass-wasting deposit in the basin dated to AD 1300, and (2) a succession of turbidites in AD 1825 and AD 1860 contemporaneous to two historic earthquakes, suggesting that this lake is sensitive to earthquakes with a minimum epicentral intensity of V. Finally, past observations of lake water color changes in AD 1783 and AD 1936, similar to reports in other meromictic lakes, match iron-rich deposits identified in maar lake sediments and suggest that Lake Pavin could have undergone limnic eruptions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haddix, Michelle L.; Magrini-Bair, Kim; Evans, Robert J.
Soil organic matter (SOM) is extremely complex. It is composed of hundreds of different organic substances and it has been difficult to quantify these diverse substances in a dynamic-ecosystem functioning standpoint. Analytical pyrolysis has been used to compare chemical differences between soils, but its ability to measure the absolute amount of a specific compound in the soil is still in question. Our objective was to assess whether utilizing pyrolysis-molecular beam mass spectroscopy (py-MBMS) to define the signature of known reference compounds (adenine, indole, palmitic acid, etc.) and biological samples (chitin, fungi, cellulose, etc.) separately and when added to whole soilsmore » it was possible to make py-MBMS more quantitative. Reference compounds, spanning a wide variety of compound categories, and biological samples, expected to be present in SOM, were added to three soils from Colorado, Ohio, and Massachusetts that have varying total C, % clay, and clay type. Py-MBMS, a rapid analysis technique originally developed to analyze complex biomolecules, flash pyrolyzes soil organic matter to form products that are often considered characteristic of the original molecular structure. Samples were pyrolyzed at 550 degrees C by py-MBMS. All samples were weighed and %C and %N determined both before and after pyrolysis to evaluate mass loss, C loss, and N loss for the samples.An average relationship of r2 = 0.76 (P = 0.005) was found for the amount of cellulose added to soil at 25, 50, and 100% of soil C relative to the ion intensity of select mass/charge of the compound.There was a relationship of r2 = 0.93 (P < 0.001) for the amount of indole added to soil at 25, 50, and 100% of soil C and the ion intensity of the associated mass variables (mass/charge). Comparing spectra of pure compounds with the spectra of the compounds added to soil and isolated clay showed that interference could occur based on soil type and compound with the Massachusetts soil with high C (55.8 g C kg-1) and low % clay (5.4%) having the least interference and the Colorado soil with low C (14.6 g C kg-1) and a moderate smectite clay content of 14% having the greatest soil interference. Due to soil interference from clay type and content and varying optimum temperatures of pyrolysis for different compounds it is unlikely that analytical pyrolysis can be quantitative for all types of compounds. Select compound categories such as carbohydrates have the potential to be quantified in soil with analytical pyrolysis due to the fact that they: 1) almost fully pyrolyzed, 2) were represented by a limited number of m/z, and 3) had a strong relationship with the amount added and the total ion intensity produced. The three different soils utilized in this study had similar proportions of C pyrolyzed in the whole soil (54-57%) despite differences in %C and %clay between the soils. Mid-infrared spectroscopic analyses of the soil before and after pyrolysis showed that pyrolysis resulted in reductions in the 3400, 2930-2870, 1660 and 1430 cm-1 bands. These bands are primarily representative of O-H and N-H bonds, C-H stretch, and ..delta.. (CH2) in polysaccharides/lipid and are associated with mineralizable SOM. The incorporation of standards into routine analytical pyrolysis allowed us to assess the quantitative potential of py-MBMS along with the effect of the mineral matrix, which we believe is applicable to all forms of analytical pyrolysis.« less
NASA Astrophysics Data System (ADS)
Arimura, Hidetaka; Yoshiura, Takashi; Kumazawa, Seiji; Tanaka, Kazuhiro; Koga, Hiroshi; Mihara, Futoshi; Honda, Hiroshi; Sakai, Shuji; Toyofuku, Fukai; Higashida, Yoshiharu
2008-03-01
Our goal for this study was to attempt to develop a computer-aided diagnostic (CAD) method for classification of Alzheimer's disease (AD) with atrophic image features derived from specific anatomical regions in three-dimensional (3-D) T1-weighted magnetic resonance (MR) images. Specific regions related to the cerebral atrophy of AD were white matter and gray matter regions, and CSF regions in this study. Cerebral cortical gray matter regions were determined by extracting a brain and white matter regions based on a level set based method, whose speed function depended on gradient vectors in an original image and pixel values in grown regions. The CSF regions in cerebral sulci and lateral ventricles were extracted by wrapping the brain tightly with a zero level set determined from a level set function. Volumes of the specific regions and the cortical thickness were determined as atrophic image features. Average cortical thickness was calculated in 32 subregions, which were obtained by dividing each brain region. Finally, AD patients were classified by using a support vector machine, which was trained by the image features of AD and non-AD cases. We applied our CAD method to MR images of whole brains obtained from 29 clinically diagnosed AD cases and 25 non-AD cases. As a result, the area under a receiver operating characteristic (ROC) curve obtained by our computerized method was 0.901 based on a leave-one-out test in identification of AD cases among 54 cases including 8 AD patients at early stages. The accuracy for discrimination between 29 AD patients and 25 non-AD subjects was 0.840, which was determined at the point where the sensitivity was the same as the specificity on the ROC curve. This result showed that our CAD method based on atrophic image features may be promising for detecting AD patients by using 3-D MR images.
NASA Astrophysics Data System (ADS)
Guo, Jia; Xu, Peng; Song, Chao; Yao, Li; Zhao, Xiaojie
2012-03-01
Magnetic resonance diffusion tensor imaging (DTI) is a kind of effective measure to do non-invasive investigation on brain fiber structure at present. Studies of fiber tracking based on DTI showed that there was structural connection of white matter fiber among the nodes of resting-state functional network, denoting that the connection of white matter was the basis of gray matter regions in functional network. Nevertheless, relationship between these structure connectivity regions and functional network has not been clearly indicated. Moreover, research of fMRI found that activation of default mode network (DMN) in Alzheimer's disease (AD) was significantly descended, especially in hippocampus and posterior cingulated cortex (PCC). The relationship between this change of DMN activity and structural connection among functional networks needs further research. In this study, fast marching tractography (FMT) algorithm was adopted to quantitative calculate fiber connectivity value between regions, and hippocampus and PCC which were two important regions in DMN related with AD were selected to compute white matter connection region between them in elderly normal control (NC) and AD patient. The fiber connectivity value was extracted to do the correlation analysis with activity intensity of DMN. Results showed that, between PCC and hippocampus of NC, there exited region with significant high connectivity value of white matter fiber whose performance has relatively strong correlation with the activity of DMN, while there was no significant white matter connection region between them for AD patient which might be related with reduced network activation in these two regions of AD.
Vinnerås, B; Holmqvist, A; Bagge, E; Albihn, A; Jönsson, H
2003-09-01
No efficient, reliable, and scale independent disinfection methods for toilet waste are available today for safe recycling of plant nutrients. Therefore, two chemical treatment methods, addition of urea or of PAA (a quaternary mixture of 15% peracetic acid, 15% hydrogen peroxide and 30% acetic acid), were evaluated for disinfection of faecal matter.Degradation of the added urea resulted in 30 g of ammonia nitrogen per kilogram of treated matter and a pH increase to approximately 9.3. This produced an efficient disinfection of E. coli, Enterococcus spp., and Salmonella spp. within 3 weeks (>6log(10) reduction) and a reduction of the chemical resistant Salmonella typhimurium 28b phage, corresponding to a decimal reduction within 7.5 days. No viable Ascaris suum eggs were found after 50 days of treatment. No reduction of spore forming Clostridia spp. was observed. Urea treatment proved to be efficient for disinfection of source separated faecal matter in a scale independent method used for safe recycling of nutrients found in the faecal matter.PAA reduced all of the above indicator organisms within 12 h after application. For this faecal material, with a dry matter content of approximately 10%, an addition of 0.5-1% of PAA (active substance, corresponding to 3.3-6.7% of the Proxitane 15 used) was required before no viable organisms were found in the material. However, this was not tested for the A. suum. No viable spore-forming bacteria or phages were detected. A high rate of bacteria regrowth occurred at 0.15% dosage and 5 days of treatment. PAA is an efficient alternative for disinfection of separated faeces if a rapid treatment is needed.
NASA Astrophysics Data System (ADS)
Beller, H. R.; Jewell, T. N. M.; Karaoz, U.; Bill, M.; Chakraborty, R.; Brodie, E.; Williams, K. H.
2016-12-01
In this study, we sought to better understand how natural organic matter fuels microbial communities in the anoxic subsurface at the Rifle (CO) site. We conducted a 20-day microcosm experiment with naturally reduced zone (NRZ) sediments and collected samples every 5 days for omics (metagenome and metatranscriptome) and geochemical measurements. No electron donors were added other than the NRZ sediment, which is enriched in buried woody plant material. The microcosms were constructed and incubated under anaerobic conditions in serum bottles with a N2 headspace. Biogeochemical measurements indicated that the decomposition of native organic matter occurred in different phases, including mineralization of dissolved organic carbon (DOC) to CO2 during the first week of incubation, followed by a pulse of acetogenesis that dominated carbon flux after 2 weeks. The depletion of DOC over time was strongly correlated with increases in expression of many genes associated with heterotrophy (e.g., amino acid, fatty acid, and carbohydrate metabolism) belonging to a Hydrogenophaga strain that accounted for a relatively large percentage ( 8%) of the metatranscriptome. This Hydrogenophaga strain also expressed genes indicative of chemolithoautotrophy, including CO2 fixation (RubisCO), H2 oxidation, S-compound oxidation, and denitrification. The pulse of acetogenesis appears to have been collectively catalyzed by a number of different organisms and metabolisms, most prominently pyruvate:ferredoxin oxidoreductase. Unexpected genes were identified among the most highly expressed (>98th percentile) transcripts, including acetone carboxylase and cell wall-associated hydrolases, some of which are known to act on peptidoglycan. Many of the most highly expressed hydrolases belonged to a Ca. Bathyarchaeota strain and may have been associated with scavenging of bacterial biomass. Overall, observed metabolism ranged far beyond the expected fermentation of plant-derived organic matter.
Molecular simulation of a model of dissolved organic matter.
Sutton, Rebecca; Sposito, Garrison; Diallo, Mamadou S; Schulten, Hans-Rolf
2005-08-01
A series of atomistic simulations was performed to assess the ability of the Schulten dissolved organic matter (DOM) molecule, a well-established model humic molecule, to reproduce the physical and chemical behavior of natural humic substances. The unhydrated DOM molecule had a bulk density value appropriate to humic matter, but its Hildebrand solubility parameter was lower than the range of current experimental estimates. Under hydrated conditions, the DOM molecule went through conformational adjustments that resulted in disruption of intramolecular hydrogen bonds (H-bonds), although few water molecules penetrated the organic interior. The radius of gyration of the hydrated DOM molecule was similar to those measured for aquatic humic substances. To simulate humic materials under aqueous conditions with varying pH levels, carboxyl groups were deprotonated, and hydrated Na+ or Ca2+ were added to balance the resulting negative charge. Because of intrusion of the cation hydrates, the model metal-humic structures were more porous, had greater solvent-accessible surface areas, and formed more H-bonds with water than the protonated, hydrated DOM molecule. Relative to Na+, Ca2+ was both more strongly bound to carboxylate groups and more fully hydrated. This difference was attributed to the higher charge of the divalent cation. The Ca-DOM hydrate, however, featured fewer H-bonds than the Na-DOM hydrate, perhaps because of the reduced orientational freedom of organic moieties and water molecules imposed by Ca2+. The present work is, to our knowledge, the first rigorous computational exploration regarding the behavior of a model humic molecule under a range of physical conditions typical of soil and water systems.
NASA Astrophysics Data System (ADS)
Liu, Jiachao; Li, Ziyi; Chen, Kewei; Yao, Li; Wang, Zhiqun; Li, Kunchen; Guo, Xiaojuan
2011-03-01
Gray matter volume and cortical thickness are two indices of concern in brain structure magnetic resonance imaging research. Gray matter volume reflects mixed-measurement information of cerebral cortex, while cortical thickness reflects only the information of distance between inner surface and outer surface of cerebral cortex. Using Scaled Subprofile Modeling based on Principal Component Analysis (SSM_PCA) and Pearson's Correlation Analysis, this study further provided quantitative comparisons and depicted both global relevance and local relevance to comprehensively investigate morphometrical abnormalities in cerebral cortex in Alzheimer's disease (AD). Thirteen patients with AD and thirteen age- and gender-matched healthy controls were included in this study. Results showed that factor scores from the first 8 principal components accounted for ~53.38% of the total variance for gray matter volume, and ~50.18% for cortical thickness. Factor scores from the fifth principal component showed significant correlation. In addition, gray matter voxel-based volume was closely related to cortical thickness alterations in most cortical cortex, especially, in some typical abnormal brain regions such as insula and the parahippocampal gyrus in AD. These findings suggest that these two measurements are effective indices for understanding the neuropathology in AD. Studies using both gray matter volume and cortical thickness can separate the causes of the discrepancy, provide complementary information and carry out a comprehensive description of the morphological changes of brain structure.
Entisol land characteristics with and without cover crop (Mucuna bracteata) on rubber plantation
NASA Astrophysics Data System (ADS)
Sakiah; Sembiring, M.; Hasibuan, J.
2018-02-01
Optimal nutrient delivery is one way to improve the quality and quantity of crop production. This is because the crops needs for nutrient is quite high, while the soil capacity in providing nutrients is limited. In addition to fertilization, nutrients can be given in the form of added organic material or planted as cover crop. The research took place from April to August 2016 in Bandar Pinang, Bandar Sumatera Indonesia Ltd. (SIPEF Group) plantation, with survey method. Soil samples were taken based on: Topography (flat and slope 15-30%), cover crop (with or without Mucuna bracteata) and plant age (seedling periods 1, 2 and 3). The soil sample is taken composite by zig zag method. The observed parameters were organic matter, N total, soil texture, bulk density and infiltration rate. Mucuna bracteata planting increased the contain of soil organic matter by 30.43% in flat area and 53.33% in hilly area, amount of N total soil by 27.27% in flat area and 7.69% at hilly area, bulk density 3.73 % In flat area and 0.41% in hilly area, soil infiltration by 48.88% with sandy clay dominant soil texture.
Neuroanatomy: The added value of the Klingler method.
Silva, Susana M; Andrade, José Paulo
2016-11-01
Undergraduate neuroanatomy students are usually not able to achieve a clear comprehension of the spatial relationships existing between the white matter fiber tracts in spite of numerous neuroanatomy textbooks, atlases and multimedia tools. The objective of this paper is to show the educational value of the application of the Klingler fiber dissection technique and the use of these dissections in the understanding of the three-dimensional intrinsic anatomy of the brain white matter for medical students. Four formalin-fixed brains were dissected using the Klingler methodology in order to reveal the inner anatomical organization of the brain white matter. The most important fiber systems were dissected and their relationships to the cerebral and cerebellar gray matter structures visualized. These dissections were used as a learning tool in teaching the brain white matter structural and topographical connectivity. The white matter fiber systems were presented to undergraduate medical students during a neuroanatomy course. They observed and manipulated the dissected specimens leading to a thorough understanding of the configuration and location of the white matter fiber tracts, and their relationships to the ventricular system and gray matter structures. Subsequently, students were asked to answer a survey concerning the importance of the utilization of this material in their understanding of the three-dimensional intrinsic anatomy of the brain white matter. The knowledge acquired with this technique, complemented by conventional formalin-fixed sections may improve the neuroanatomical knowledge and future retention of medical students. Copyright © 2016 Elsevier GmbH. All rights reserved.
Diatom-specific highly branched isoprenoids as biomarkers in Antarctic consumers.
Goutte, Aurélie; Cherel, Yves; Houssais, Marie-Noëlle; Klein, Vincent; Ozouf-Costaz, Catherine; Raccurt, Mireille; Robineau, Camille; Massé, Guillaume
2013-01-01
The structure, functioning and dynamics of polar marine ecosystems are strongly influenced by the extent of sea ice. Ice algae and pelagic phytoplankton represent the primary sources of nutrition for higher trophic-level organisms in seasonally ice-covered areas, but their relative contributions to polar marine consumers remain largely unexplored. Here, we investigated the potential of diatom-specific lipid markers and highly branched isoprenoids (HBIs) for estimating the importance of these two carbon pools in an Antarctic pelagic ecosystem. Using GC-MS analysis, we studied HBI biomarkers in key marine species over three years in Adélie Land, Antarctica: euphausiids (ice krill Euphausia crystallorophias and Antarctic krill E. superba), fish (bald notothens Pagothenia borchgrevinki and Antarctic silverfish Pleuragramma antarcticum) and seabirds (Adélie penguins Pygoscelis adeliae, snow petrels Pagodroma nivea and cape petrels Daption capense). This study provides the first evidence of the incorporation of HBI lipids in Antarctic pelagic consumers. Specifically, a di-unsaturated HBI (diene) of sea ice origin was more abundant in ice-associated species than in pelagic species, whereas a tri-unsaturated HBI (triene) of phytoplanktonic origin was more abundant in pelagic species than in ice-associated species. Moreover, the relative abundances of diene and triene in seabird tissues and eggs were higher during a year of good sea ice conditions than in a year of poor ice conditions. In turn, the higher contribution of ice algal derived organic matter to the diet of seabirds was related to earlier breeding and higher breeding success. HBI biomarkers are a promising tool for estimating the contribution of organic matter derived from ice algae in pelagic consumers from Antarctica.
Impact of pyrogenic organic matter decomposition and induced priming effect on soil C budget.
NASA Astrophysics Data System (ADS)
Maestrini, Bernardo; Abiven, Samuel
2014-05-01
Pyrogenic organic matter (PyOM) results from the incomplete combustion of biomass and may contribute to constitute an important fraction of soil C in forest and agricultural soils, in the form of charcoal (produced by wildfires) or biochar (anthropogenic). Although many evidences exist on the long mean residence time of PyOM there is still a large uncertainty on PyOM loss processes and rate and on possible induced priming effect on non-PyOM. Therefore determining PyOM mineralization rate, loss processes and possible induced priming effect on soil organic matter decomposition are key issues to understand the impact of PyOM on the carbon (C) cycle. We investigated the impact of PyOM on soil C budget by combining results from three independent studies: (i) a field study to investigate PyOM mineralization rate and the relative importance of PyOM loss processes, (ii) a PyOM and soil incubation experiment to correlate C and N mineralization rates, (iii) a review of the priming effect induced by PyOM on soil organic C. We employed 13C labelled pinewood-derived PyOM for the field experiment and 13C labelled ryegrass-derived PyOM in the incubation experiment to trace PyOM losses. In the field experiment it was observed that: (i) Pyrolysis process reduced pinewood decomposition by a factor of 60, (ii) leaching and translocation of fresh PyOM along the soil profile were negligible compared to losses as CO2. In the incubation experiment we found that ryegrass induced a two phase priming effect on native soil organic matter, with a positive priming effect followed by a negative priming effect phase, we also found that ryegrass-derived PyOM decomposition was much slower than pinewood one. The different decomposition rate results probably from the different aromaticity of the two PyOM together with the different set-up of the two experiments. Both the incubation experiment and the meta-analysis revealed that PyOM may induce a two-phase priming effect on native soil organic matter decomposition: positive on the short term and negative on the long term. The meta-analysis showed that that positive priming effect is induced mostly on the native soil organic matter on the short term and by PyOM characterised by a low C content. This result was not confirmed on the freshly added organic matter. We believe that the presence of a labile fraction in PyOM may induce positive priming effect on the short term by mean of co-metabolism. We conclude that PyOM chemical composition and feedstock play an important role in predicting PyOM mineralization rate, and that on the short term PyOM may induce a positive priming effect therefore decreasing the abatement potential of PyOM as a C-sink.
Small vessel disease is linked to disrupted structural network covariance in Alzheimer's disease.
Nestor, Sean M; Mišić, Bratislav; Ramirez, Joel; Zhao, Jiali; Graham, Simon J; Verhoeff, Nicolaas P L G; Stuss, Donald T; Masellis, Mario; Black, Sandra E
2017-07-01
Cerebral small vessel disease (SVD) is thought to contribute to Alzheimer's disease (AD) through abnormalities in white matter networks. Gray matter (GM) hub covariance networks share only partial overlap with white matter connectivity, and their relationship with SVD has not been examined in AD. We developed a multivariate analytical pipeline to elucidate the cortical GM thickness systems that covary with major network hubs and assessed whether SVD and neurodegenerative pathologic markers were associated with attenuated covariance network integrity in mild AD and normal elderly control subjects. SVD burden was associated with reduced posterior cingulate corticocortical GM network integrity and subneocorticocortical hub network integrity in AD. These findings provide evidence that SVD is linked to the selective disruption of cortical hub GM networks in AD brains and point to the need to consider GM hub covariance networks when assessing network disruption in mixed disease. Copyright © 2017 the Alzheimer's Association. Published by Elsevier Inc. All rights reserved.
Hansley, P.L.; Spirakis, C.S.
1992-01-01
Interstitial, epigenetic amorphous organic matter is intimately associated with uranium in the Grants uranium region and is considered essential to genetic models for these deposits. In contrast, uranium minerals are intimately associated with authigenic vanadium chlorite and vanadium oxides in amorphous organic matter-poor ores of the Slick Rock and Henry Mountains mining districts and therefore, in some genetic models amorphous organic matter is not considered crucial to the formation of these deposits. Differences in organic matter content can be explained by recognizing that amorphous organic matter-poor deposits have been subjected to more advanced stages of diagenesis than amorphous organic matter-rich deposits. Evidence that amorphous organic matter was involved in the genesis of organic matter-poor, as well as organic matter-rich, deposits is described. -from Authors
Carbon turnover in an agricultural sub-soil
NASA Astrophysics Data System (ADS)
Collins, Chris
2010-05-01
Maize was added to a grassland subsoil (10 - 50 cm) and the fate of the carbon from the plant material followed for 520 days with nine sampling points over an exponential time series. The carbon and delta 13C signature in five soil fractions: POM (particulate organic matter), fine sand, coarse silt, fine silt and clay were monitored. Over the course of the experiment there was a 57% decline in the total C of the soil principally from the particulate organic matter which contained the added maize equivalent to a half life of 533 days. A single exponential was the best fit to the data indicating that the slower turnover pools proposed in models such as Roth C were not observed in the time course of this experiment. Carbon rapidly entered the fine sand and coarse silt fractions, it then passed into the clay fraction. The fine silt fraction was not significantly changed. The maize carbon showed a delay to this pattern, but there was accumulation of maize carbon in the fine sand and fine silt fractions. The largest increases in % carbon as a consequence of the introduction of the maize carbon were of the following order clay > fine sand > coarse silt >fine silt. The results suggest that all these fractions are actively being turnover in this soil and that carbon is most protected in the fine sand and silt fractions, not clay as has been observed by other workers. The results are also discussed in the wider contexts of representative pools for modeling.
Effects of organic matter on crystallization of struvite in biologically treated swine wastewater.
Capdevielle, Aurélie; Sýkorová, Eva; Béline, Fabrice; Daumer, Marie-Line
2016-01-01
A sustainable way to recover phosphorus (P) in swine wastewater involves a preliminary step of P dissolution followed by the separation of particulate organic matter (OM). The next two steps are firstly the precipitation of struvite crystals done by adding a crystallization reagent (magnesia) and secondly the filtration of the crystals. To develop the process successfully at an industrial scale, the control of the mechanisms of precipitation is the key point in order to obtain high value-added products, that is, big struvite crystals easy to harvest and handle. Experiments with process parameters optimized previously in a synthetic swine wastewater were performed on real swine wastewater to assess the role of the OM on struvite crystallization. After 24 h, with a pH increase to 6.8 only, 90% of the initial P was precipitated and 60% was precipitated as struvite. 80% of the solid recovered was in the fraction > 100 µm. The other forms recovered were brushite, amorphous calcium phosphate, NaCl, KCl and OM. The influence of OM on struvite precipitation in acidified swine wastewater was negative on the reaction kinetics but positive on the size of the struvite crystals. The presence of colloidal particles increased the size of the struvite crystals but slowed down the kinetics due to the viscosity induced by the repulsive force of the colloids. The maximum size of single struvite crystals (200 µm) was observed with the presence of particulate OM.
NASA Astrophysics Data System (ADS)
Dudal, Yves; Gérard, Frédéric
2004-08-01
Soil organic matter consists of a highly complex and diversified blend of organic molecules, ranging from low molecular weight organic acids (LMWOAs), sugars, amines, alcohols, etc., to high apparent molecular weight fulvic and humic acids. The presence of a wide range of functional groups on these molecules makes them very reactive and influential in soil chemistry, in regards to acid-base chemistry, metal complexation, precipitation and dissolution of minerals and microbial reactions. Out of these functional groups, the carboxylic and phenolic ones are the most abundant and most influential in regards to metal complexation. Therefore, chemical equilibrium models have progressively dealt with organic matter in their calculations. This paper presents a review of six chemical equilibrium models, namely N ICA-Donnan, E Q3/6, G EOCHEM, M INTEQA2, P HREEQC and W HAM, in light of the account they make of natural organic matter (NOM) with the objective of helping potential users in choosing a modelling approach. The account has taken various faces, mainly by adding specific molecules within the existing model databases (E Q3/6, G EOCHEM, and P HREEQC) or by using either a discrete (W HAM) or a continuous (N ICA-Donnan and M INTEQA2) distribution of the deprotonated carboxylic and phenolic groups. The different ways in which soil organic matter has been integrated into these models are discussed in regards to the model-experiment comparisons that were found in the literature, concerning applications to either laboratory or natural systems. Much of the attention has been focused on the two most advanced models, W HAM and N ICA-Donnan, which are able to reasonably describe most of the experimental results. Nevertheless, a better knowledge of the humic substances metal-binding properties is needed to better constrain model inputs with site-specific parameter values. This represents the main axis of research that needs to be carried out to improve the models. In addition to humic substances, more non-humic compounds should also be introduced in model databases, notably the ones that readily interact with the soil microorganisms. Thermodynamic data are generally available for most of these compounds, such as low molecular-weight organic acids. However, the more complex non-humic substances, exhibiting a ratio of hydrophobic versus hydrophilic bonds lower than humic substances, need to be further characterised for a comprehensive implementation in chemical equilibrium models.
McLeod, Pamela B.; van den Heuvel-Greve, Martine J.; Allen-King, Richelle M.; Luoma, Samuel N.; Luthy, Richard G.
2004-01-01
We investigated the bioavailability via diet of spiked benzo[a]pyrene (BaP) and 2,2‘,5,5‘-tetrachlorobiphenyl (PCB-52) from different carbonaceous (non-carbonate, carbon containing) particle types to clams (Macoma balthica) collected from San Francisco Bay. Our results reveal significant differences in absorption efficiency between compounds and among carbonaceous particle types. Absorption efficiency for PCB-52 was always greater than that for BaP bound to a given particle type. Among particles, absorption efficiency was highest from wood and diatoms and lowest from activated carbon. Large differences in absorption efficiency could not be simply explained by comparatively small differences in the particles' total organic carbon content. BaP and PCB-52 bound to activated carbon exhibited less than 2% absorption efficiency and were up to 60 times less available to clams than the same contaminants associated with other types of carbonaceous matter. These results suggest that variations in the amount and type of sediment particulate carbonaceous matter, whether naturally occurring or added as an amendment, will have a strong influence on the bioavailability of hydrophobic organic contaminants. This has important implications for environmental risk assessment, sediment management, and development of novel remediation techniques.
McLeod, Pamela B.; van den Heuvel-Greve, Martine J.; Allen-King, Richelle M.; Luoma, Samuel N.; Luthy, Richard G.
2004-01-01
We investigated the bioavailability via diet of spiked benzo[a]pyrene (BaP) and 2,2‘,5,5‘-tetrachlorobiphenyl (PCB-52) from different carbonaceous (non-carbonate, carbon containing) particle types to clams (Macoma balthica) collected from San Francisco Bay. Our results reveal significant differences in absorption efficiency between compounds and among carbonaceous particle types. Absorption efficiency for PCB-52 was always greater than that for BaP bound to a given particle type. Among particles, absorption efficiency was highest from wood and diatoms and lowest from activated carbon. Large differences in absorption efficiency could not be simply explained by comparatively small differences in the particles' total organic carbon content. BaP and PCB-52 bound to activated carbon exhibited less than 2% absorption efficiency and were up to 60 times less available to clams than the same contaminants associated with other types of carbonaceous matter. These results suggest that variations in the amount and type of sediment particulate carbonaceous matter, whether naturally occurring or added as an amendment, will have a strong influence on the bioavailability of hydrophobic organic contaminants. This has important implications for environmental risk assessment, sediment management, and development of novel remediation techniques.
Technology selection for MSW treatment in Altiplano areas using FMDM.
Jiang, Jianguo; Lou, Zhiying; Hg, Siio; Duo, Ji; Li, Zhong
2009-10-01
There are special requirements for municipal solid waste (MSW) treatment caused by lower oxygen content and atmospheric pressure on the Altiplano. The intention of this paper was to analyse the applicability of various technologies to MSW treatment in the Altiplano and select the best one based on the current MSW collection modes and technical levels, using the Fuzzy Mathematical Decision Method (FMDM). Technologies including landfill, incineration, composting, and anaerobic digestion (AD) were compared. The results of the studies showed that AD technology is a new technology which is attractive in economic terms and helpful for environmental harmony. AD can solve the difficulties caused by a high content of organic matter in the MSW, lower atmospheric pressure and oxygen content on the Altiplano. Moreover, it can achieve reduction and recycling of the waste, thereby saving space for treatment and disposal. Using this technology, renewable energy can be recovered to save conventional fuel consumption and the emission of greenhouse gases can be reduced to improve the conservation of the local ecosystem. Putting AD into practice in the Altiplano may be the preferred method of MSW treatment.
Li, Jun; Liu, Jun; Wang, Danjun; Chen, Tao; Ma, Ting; Wang, Zhihong; Zhuo, Weilong
2015-01-01
Micropowder (20–250 µm) made from ground dry waste sludge from a municipal sewage treatment plant was added in a sequencing batch reactor (R2), which was fed by synthetic wastewater with acetate as carbon source. Compared with the traditional SBR (R1), aerobic sludge granulation time was shortened 15 days in R2. Furthermore, filamentous bacteria in bulking sludge were controlled to accelerate aerobic granulation and form large granules. Correspondingly, the SVI decreased from 225 mL/g to 37 mL/g. X-ray Fluorescence (XRF) analysis demonstrated that Al and Si from the micropowder were accumulated in granules. A mechanism hypotheses for the acceleration of aerobic granulation by adding dry sludge micropowder is proposed: added micropowder acts as nuclei to induce bacterial attachment; dissolved matters from the micropowder increase abruptly the organic load for starved sludge to control overgrown filamentous bacteria as a framework for aggregation; increased friction from the movement of micropowder forces the filaments which extend outwards to shrink for shaping granules. PMID:26308025
Mahara, Y; Kubota, T; Wakayama, R; Nakano-Ohta, T; Nakamura, T
2007-11-15
We investigated the role of natural organic matter in cadmium mobility in soil environments. We collected the dissolved organic matter from two different types of natural waters: pond surface water, which is oxic, and deep anoxic groundwater. The collected organic matter was fractionated into four groups with molecular weights (unit: Da (Daltons)) of <1 x 10(3), 1-10 x 10(3), 10-100 x 10(3), and >100 x 10(3). The organic matter source was land plants, based on the carbon isotope ratios (delta(13)C/(12)C). The organic matter in surface water originated from presently growing land plants, based on (14)C dating, but the organic matter in deep groundwater originated from land plants that grew approximately 4000 years ago. However, some carbon was supplied by the high-molecular-weight fraction of humic substances in soil or sediments. Cadmium interacted in a system of siliceous sand, fractionated organic matter, and water. The lowest molecular weight fraction of organic matter (<1 x 10(3)) bound more cadmium than did the higher molecular weight fractions. Organic matter in deep groundwater was more strongly bound to cadmium than was organic matter in surface water. The binding behaviours of organic matter with cadmium depended on concentration, age, molecular weight, and degradation conditions of the organic matter in natural waters. Consequently, the dissolved, low-molecular-weight fraction in organic matter strongly influences cadmium migration and mobility in the environment.
NASA Astrophysics Data System (ADS)
Dietzen, Christiana; Harrison, Robert
2016-04-01
Weathering of silicate minerals regulates the global carbon cycle on geologic timescales. Several authors have proposed that applying finely ground silicate minerals to soils, where organic acids would enhance the rate of weathering, could increase carbon uptake and mitigate anthropogenic CO2 emissions. Silicate minerals such as olivine could replace lime, which is commonly used to remediate soil acidification, thereby sequestering CO2 while achieving the same increase in soil pH. However, the effect of adding this material on soil organic matter, the largest terrestrial pool of carbon, has yet to be considered. Microbial biomass and respiration have been observed to increase with decreasing acidity, but it is unclear how long the effect lasts. If the addition of silicate minerals promotes the loss of soil organic carbon through decomposition, it could significantly reduce the efficiency of this process or even create a net carbon source. However, it is possible that this initial flush of microbial activity may be compensated for by additional organic matter inputs to soil pools due to increases in plant productivity under less acidic conditions. This study aimed to examine the effects of olivine amendments on soil CO2 flux. A liming treatment representative of typical agricultural practices was also included for comparison. Samples from two highly acidic soils were split into groups amended with olivine or lime and a control group. These samples were incubated at 22°C and constant soil moisture in jars with airtight septa lids. Gas samples were extracted periodically over the course of 2 months and change in headspace CO2 concentration was determined. The effects of enhanced mineral weathering on soil organic matter have yet to be addressed by those promoting this method of carbon sequestration. This project provides the first data on the potential effects of enhanced mineral weathering in the soil environment on soil organic carbon pools.
Increased White Matter Inflammation in Aging- and Alzheimer's Disease Brain.
Raj, Divya; Yin, Zhuoran; Breur, Marjolein; Doorduin, Janine; Holtman, Inge R; Olah, Marta; Mantingh-Otter, Ietje J; Van Dam, Debby; De Deyn, Peter P; den Dunnen, Wilfred; Eggen, Bart J L; Amor, Sandra; Boddeke, Erik
2017-01-01
Chronic neuroinflammation, which is primarily mediated by microglia, plays an essential role in aging and neurodegeneration. It is still unclear whether this microglia-induced neuroinflammation occurs globally or is confined to distinct brain regions. In this study, we investigated microglia activity in various brain regions upon healthy aging and Alzheimer's disease (AD)-related pathology in both human and mouse samples. In purified microglia isolated from aging mouse brains, we found a profound gene expression pattern related to pro-inflammatory processes, phagocytosis, and lipid homeostasis. Particularly in white matter microglia of 24-month-old mice, abundant expression of phagocytic markers including Mac-2, Axl, CD16/32, Dectin1, CD11c, and CD36 was detected. Interestingly, in white matter of human brain tissue the first signs of inflammatory activity were already detected during middle age. Thus quantification of microglial proteins, such as CD68 (commonly associated with phagocytosis) and HLA-DR (associated with antigen presentation), in postmortem human white matter brain tissue showed an age-dependent increase in immunoreactivity already in middle-aged people (53.2 ± 2.0 years). This early inflammation was also detectable by non-invasive positron emission tomography imaging using [ 11 C]-(R)-PK11195, a ligand that binds to activated microglia. Increased microglia activity was also prominently present in the white matter of human postmortem early-onset AD (EOAD) brain tissue. Interestingly, microglia activity in the white matter of late-onset AD (LOAD) CNS was similar to that of the aged clinically silent AD cases. These data indicate that microglia-induced neuroinflammation is predominant in the white matter of aging mice and humans as well as in EOAD brains. This white matter inflammation may contribute to the progression of neurodegeneration, and have prognostic value for detecting the onset and progression of aging and neurodegeneration.
Lee, Yeonjung; Lee, Bomi; Hur, Jin; Min, Jun-Oh; Ha, Sun-Yong; Ra, Kongtae; Kim, Kyung-Tae; Shin, Kyung-Hoon
2016-05-01
In order to understand the biodegradability of algal-derived organic matter, biodegradation experiments were conducted with (13)C and (15)N-labeled natural phytoplankton and periphytic algal populations in experimental conditions for 60 days. Qualitative changes in the dissolved organic matter were also determined using parallel factor analysis and the stable carbon isotopic composition of the hydrophobic dissolved organic matter through the experimental period. Although algal-derived organic matter is considered to be easily biodegradable, the initial amounts of total organic carbon newly produced by phytoplankton and periphytic algae remained approximately 16 and 44 % after 60 days, respectively, and about 22 and 43 % of newly produced particulate nitrogen remained. Further, the dissolved organic carbon derived from both algal populations increased significantly after 60 days. Although the dissolved organic matter gradually became refractory, the contributions of the algal-derived organic matter to the dissolved organic matter and hydrophobic dissolved organic matter increased. Our laboratory experimental results suggest that algal-derived organic matter produced by phytoplankton and periphytic algae could contribute significantly to the non-biodegradable organic matter through microbial transformations.
Chou, Ping-Song; Wu, Shyh-Jong; Kao, Yi-Hui; Chou, Mei-Chuan; Tai, Shu-Yu; Yang, Yuan-Han
2017-06-01
The presence of cerebral white matter changes (WMC) has been reported as an important predictor of the rapidity of cognitive decline in Alzheimer's disease (AD). The association between the angiotensin-converting enzyme (ACE) insertion/deletion (I/D) polymorphism and WMC in AD is yet to be elucidated. The present study aimed to examine the association between the ACE I/D polymorphism and WMC among AD patients in Taiwan. A total of 403 patients clinically diagnosed with AD were recruited in a cross-sectional study carried out in an area hospital in Kaohsiung, Taiwan. The ACE I/D polymorphism was genotyped, and cerebral white matter rating was carried out using the visual rating scale for age-related white matter changes. The I allele was associated with a significantly lower total age-related white matter changes scale score compared with the D allele (4.83 vs 5.93, P = 0.013). The total age-related white matter changes scale score was significantly lower for the I/I genotype than for the I/D (4.37 vs 5.87, P = 0.009) and I/D + D/D genotypes (4.37 vs 5.91, P = 0.006), with no differences observed between the I/I + I/D and the D/D genotypes (5.08 vs 6.09, P = 0.373), after adjustment for age and hypertension. A stratified analysis by sex demonstrated that the I/I genotype was associated with significant lower WMC than other genotypes in women, but not in men. The present study supports the hypothesis that the ACE I/D polymorphism is associated with the severity of WMC in patients with AD. Patients with AD who are homozygous for the I allele might be less likely to develop WMC, especially women. Geriatr Gerontol Int 2017; 17: 945-950. © 2016 Japan Geriatrics Society.
Tong, Ming; Leão, Raiane; Vimbela, Gina V; Yalcin, Emine B; Kay, Jared; Krotow, Alexander; de la Monte, Suzanne M
2017-07-01
White matter is an early and important yet under-evaluated target of Alzheimer's disease (AD). Metabolic impairments due to insulin and insulin-like growth factor resistance contribute to white matter degeneration because corresponding signal transduction pathways maintain oligodendrocyte function and survival. This study utilized a model of sporadic AD in which adult Long Evans rats administered intracerebral streptozotocin (i.c. STZ) developed AD-type neurodegeneration. Temporal lobe white matter lipid ion profiles were characterized by matrix-assisted laser desorption/ionization-imaging mass spectrometry (MALDI-IMS). Although the lipid ion species expressed in the i.c. STZ and control groups were virtually identical, i.c. STZ mainly altered the abundances of various lipid ions. Correspondingly, the i.c. STZ group was distinguished from control by principal component analysis and data bar plots. i.c. STZ mainly reduced expression of lipid ions with low m/z's (less than 810) as well as the upper range m/z lipids (m/z 964-986), and increased expression of lipid ions with m/z's between 888 and 937. Phospholipids were mainly included among the clusters inhibited by i.c. STZ, while both sulfatides and phospholipids were increased by i.c. STZ. However, Chi-Square analysis demonstrated significant i.c. STZ-induced trend reductions in phospholipids and increases in sulfatides (P<0.00001). The i.c. STZ model of sporadic AD is associated with broad and sustained abnormalities in temporal lobe white matter lipids. The findings suggest that the i.c. STZ model could be used for pre-clinical studies to assess therapeutic measures for their ability to restore white matter integrity in AD. Copyright © 2017 Elsevier Inc. All rights reserved.
Focal atrophy in Dementia with Lewy Bodies on MRI: a distinct pattern from Alzheimer's disease
Whitwell, Jennifer L; Weigand, Stephen D; Shiung, Maria M; Boeve, Bradley F; Ferman, Tanis J; Smith, Glenn E; Knopman, David S; Petersen, Ronald C; Benarroch, Eduardo E; Josephs, Keith A; Jack, Clifford R
2009-01-01
SUMMARY Dementia with Lewy Bodies (DLB) is the second most common cause of degenerative dementia after Alzheimer's disease (AD). However, unlike in AD the patterns of cerebral atrophy associated with DLB have not been well established. The aim of this study was to identify a signature pattern of cerebral atrophy in DLB and to compare it to the pattern found in AD. Seventy-two patients that fulfilled clinical criteria for probable DLB were age and gender-matched to 72 patients with probable AD and 72 controls. Voxel-based morphometry (VBM) was used to assess patterns of grey matter atrophy in the DLB and AD groups, relative to controls, after correction for multiple comparisons (p<0.05). Study specific templates and prior probability maps were used to avoid normalization and segmentation bias. Region-of-interest (ROI) analyses were also performed comparing loss of the midbrain, substantia innominata (SI), temporoparietal cortex and hippocampus between the groups. The DLB group showed very little cortical involvement on VBM with regional grey matter loss observed primarily in the dorsal midbrain, SI and hypothalamus. In comparison, the AD group showed a widespread pattern of grey matter loss involving the temporoparietal association cortices and the medial temporal lobes. The SI and dorsal midbrain were involved in AD however they were not identified as a cluster of loss discrete from uninvolved surrounding areas, as observed in the DLB group. On direct comparison between the two groups, the AD group showed greater loss in the medial temporal lobe and inferior temporal regions than the DLB group. The ROI analysis showed reduced SI and midbrain grey matter in both the AD and DLB groups. The SI grey matter was reduced more in AD than DLB, yet the midbrain was reduced more in DLB than AD. The hippocampus and temporoparietal cortex showed significantly greater loss in the AD group compared to the DLB group. A pattern of relatively focused atrophy of the midbrain, hypothalamus and SI, with a relative sparing of the hippocampus and temporoparietal cortex, is therefore suggestive of DLB and may aid in the differentiation of DLB from AD. These findings support recent pathological studies showing an ascending pattern of Lewy Body progression from brainstem to basal areas of the brain. Damage to this network of structures in DLB may affect a number of different neurotransmitter systems which in turn may contribute to a number of the core clinical features of DLB. PMID:17267521
NASA Astrophysics Data System (ADS)
Pape, Ellen; van Oevelen, Dick; Moodley, Leon; Soetaert, Karline; Vanreusel, Ann
2013-10-01
Sediments sampled from the Galicia Bank seamount and the adjacent slope (northeast Atlantic), and from a western Mediterranean slope site, were injected onboard with 13C-enriched dissolved organic matter (DOM) to evaluate nematode feeding strategies and the fate of DOM carbon in different benthic environments. We hypothesized that nematode 13C label assimilation resulted from either direct DOM uptake or feeding on 13C labeled bacteria. Slope sediments were injected with glucose ("simple" DOM) or "complex" diatom-derived DOM to investigate the influence of DOM composition on carbon assimilation. The time-series (1, 7 and 14 days) experiment at the seamount site was the first study to reveal a higher 13C enrichment of nematodes than bacteria and sediments after 7 days. Although isotope dynamics indicated that both DOM and bacteria were plausible candidate food sources, the contribution to nematode secondary production and metabolic requirements (estimated from biomass-dependent respiration rates) was higher for bacteria than for DOM at all sites. The seamount nematode community showed higher carbon assimilation rates than the slope assemblages, which may reflect an adaptation to the food-poor environment. Our results suggested that the trophic importance of bacteria did not depend on the amount of labile sedimentary organic matter. Furthermore, there was a discrepancy between carbon assimilation rates observed in the experiments and the feeding type classification, based on buccal morphology. Sites with a similar feeding type composition (i.e. the northeast Atlantic sites) showed large differences in uptake, whilst the nematode assemblages at the two slope sites, which had a differing trophic structure, took up similar amounts of the DOM associated carbon. Our results did not indicate substantial differences in carbon processing related to the complexity of the DOM substrate. The quantity of processed carbon (5-42% of added DOM) was determined by the bacteria, and was primarily respired. The bulk of the added 13C-DOM was not ingested by the benthic biota under study, and a considerable fraction was possibly adsorbed onto the sediment grains.
Lascano, G J; Koch, L E; Heinrichs, A J
2016-09-01
The objective of this experiment was to determine the effects of feeding a high-rumen-degradable protein (RDP) diet when dietary fiber content is manipulated within differing forage-to-concentrate ratio (F:C) on nutrient utilization of precision-fed dairy heifers. Six cannulated Holstein heifers (486.98±15.07kg of body weight) were randomly assigned to 2 F:C, low- (45% forage; LF) and high-forage (90% forage; HF) diets and to a fiber proportion sequence [33% grass hay and wheat straw (HS), 67% corn silage (CS; low fiber); 50% HS, 50% CS (medium fiber); and 67% HS, 33% CS (high fiber)] within forage proportion administered according to a split-plot, 3×3 Latin square design (16-d periods). Heifers fed LF had greater apparent total-tract organic matter digestibility coefficients (dC), neutral detergent fiber, and cellulose than those fed LC diets. Substituting CS with HS resulted in a linear reduction in dry matter, organic matter, and cellulose dC. Nitrogen dC was not different between F:C or with increasing proportions of HS in diets, but N retention tended to decrease linearly as HS was increased in the diets. Predicted microbial protein flow to the duodenum decreased linearly with HS addition and protozoa numbers HS interacted linearly, exhibiting a decrease as HS increased for LF, whereas no effects were observed for HF. Blood urea N increased linearly as HS was incorporated. The LF-fed heifers had a greater ruminal volatile fatty acids concentration. We noted a tendency for a greater dry matter, and a significantly higher liquid fraction turnover rate for HF diets. There was a linear numerical increase in the liquid and solid fraction turnover rate as fiber was added to the diets. Rumen fermentation parameters and fractional passages (solid and liquid) rates support the reduction in dC, N retention, and microbial protein synthesis observed as more dietary fiber is added to the rations of dairy heifers precision-fed a constant proportion of rumen-degradable protein. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Guenet, Bertrand; Esteban Moyano, Fernando; Peylin, Philippe; Ciais, Philippe; Janssens, Ivan A.
2016-03-01
Priming of soil carbon decomposition encompasses different processes through which the decomposition of native (already present) soil organic matter is amplified through the addition of new organic matter, with new inputs typically being more labile than the native soil organic matter. Evidence for priming comes from laboratory and field experiments, but to date there is no estimate of its impact at global scale and under the current anthropogenic perturbation of the carbon cycle. Current soil carbon decomposition models do not include priming mechanisms, thereby introducing uncertainty when extrapolating short-term local observations to ecosystem and regional to global scale. In this study we present a simple conceptual model of decomposition priming, called PRIM, able to reproduce laboratory (incubation) and field (litter manipulation) priming experiments. Parameters for this model were first optimized against data from 20 soil incubation experiments using a Bayesian framework. The optimized parameter values were evaluated against another set of soil incubation data independent from the ones used for calibration and the PRIM model reproduced the soil incubations data better than the original, CENTURY-type soil decomposition model, whose decomposition equations are based only on first-order kinetics. We then compared the PRIM model and the standard first-order decay model incorporated into the global land biosphere model ORCHIDEE (Organising Carbon and Hydrology In Dynamic Ecosystems). A test of both models was performed at ecosystem scale using litter manipulation experiments from five sites. Although both versions were equally able to reproduce observed decay rates of litter, only ORCHIDEE-PRIM could simulate the observed priming (R2 = 0.54) in cases where litter was added or removed. This result suggests that a conceptually simple and numerically tractable representation of priming adapted to global models is able to capture the sign and magnitude of the priming of litter and soil organic matter.
NASA Astrophysics Data System (ADS)
Guenet, B.; Moyano, F. E.; Peylin, P.; Ciais, P.; Janssens, I. A.
2015-10-01
Priming of soil carbon decomposition encompasses different processes through which the decomposition of native (already present) soil organic matter is amplified through the addition of new organic matter, with new inputs typically being more labile than the native soil organic matter. Evidence for priming comes from laboratory and field experiments, but to date there is no estimate of its impact at global scale and under the current anthropogenic perturbation of the carbon cycle. Current soil carbon decomposition models do not include priming mechanisms, thereby introducing uncertainty when extrapolating short-term local observations to ecosystem and regional to global scale. In this study we present a simple conceptual model of decomposition priming, called PRIM, able to reproduce laboratory (incubation) and field (litter manipulation) priming experiments. Parameters for this model were first optimized against data from 20 soil incubation experiments using a Bayesian framework. The optimized parameter values were evaluated against another set of soil incubation data independent from the ones used for calibration and the PRIM model reproduced the soil incubations data better than the original, CENTURY-type soil decomposition model, whose decomposition equations are based only on first order kinetics. We then compared the PRIM model and the standard first order decay model incorporated into the global land biosphere model ORCHIDEE. A test of both models was performed at ecosystem scale using litter manipulation experiments from 5 sites. Although both versions were equally able to reproduce observed decay rates of litter, only ORCHIDEE-PRIM could simulate the observed priming (R2 = 0.54) in cases where litter was added or removed. This result suggests that a conceptually simple and numerically tractable representation of priming adapted to global models is able to capture the sign and magnitude of the priming of litter and soil organic matter.
Organic matter in sediment is derived from many sources, including dead plants and animals, fecal matter, and flocculated colloidal organic matter. hemical partitioning and toxicity of nonpolar organic contaminants is strongly affected by the quantity of sediment organic matter. ...
Axon-glial disruption: the link between vascular disease and Alzheimer's disease?
Horsburgh, Karen; Reimer, Michell M; Holland, Philip; Chen, Guiquan; Scullion, Gillian; Fowler, Jill H
2011-08-01
Vascular risk factors play a critical role in the development of cognitive decline and AD (Alzheimer's disease), during aging, and often result in chronic cerebral hypoperfusion. The neurobiological link between hypoperfusion and cognitive decline is not yet defined, but is proposed to involve damage to the brain's white matter. In a newly developed mouse model, hypoperfusion, in isolation, produces a slowly developing and diffuse damage to myelinated axons, which is widespread in the brain, and is associated with a selective impairment in working memory. Cerebral hypoperfusion, an early event in AD, has also been shown to be associated with white matter damage and notably an accumulation of amyloid. The present review highlights some of the published data linking white matter disruption to aging and AD as a result of vascular dysfunction. A model is proposed by which chronic cerebral hypoperfusion, as a result of vascular factors, results in both the generation and accumulation of amyloid and injury to white matter integrity, resulting in cognitive impairment. The generation of amyloid and accumulation in the vasculature may act to perpetuate further vascular dysfunction and accelerate white matter pathology, and as a consequence grey matter pathology and cognitive decline.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-10-25
... NATIONAL CREDIT UNION ADMINISTRATION Sunshine Act Meeting Notice; Matter Added to the Agenda for Consideration at an Agency Meeting FEDERAL REGISTER CITATION OF PREVIOUS ANNOUNCEMENT: October 21, 2013 (78 FR... ``Government in Sunshine Act'' notice is hereby given that the NCUA Board gave notice on October 21, 2013 (78...
78 FR 69411 - Sunshine Act Meeting Notice
Federal Register 2010, 2011, 2012, 2013, 2014
2013-11-19
.... Company Administrative A-1 AD02-1-000 Agency Business Matters. A-2 AD02-7-000 Customer Matters...-000 Small Generator Interconnection Agreements and Procedures. E-2 RM13-5-000 Version 5 Critical...-WECC-2--Contingency Reserve. E-11 OA13-8-000 Genesis Solar, LLC. E-12 ER13-2412-000 Trans Bay Cable LLC...
NASA Astrophysics Data System (ADS)
Wu, Xianjun; Di, Qian; Li, Yao; Zhao, Xiaojie
2009-02-01
Recently, evidences from fMRI studies have shown that there was decreased activity among the default-mode network in Alzheimer's disease (AD), and DTI researches also demonstrated that demyelinations exist in white matter of AD patients. Therefore, combining these two MRI methods may help to reveal the relationship between white matter damages and alterations of the resting state functional connectivity network. In the present study, we tried to address this issue by means of correlation analysis between DTI and resting state fMRI images. The default-mode networks of AD and normal control groups were compared to find the areas with significantly declined activity firstly. Then, the white matter regions whose fractional anisotropy (FA) value correlated with this decline were located through multiple regressions between the FA values and the BOLD response of the default networks. Among these correlating white matter regions, those whose FA values also declined were found by a group comparison between AD patients and healthy elderly control subjects. Our results showed that the areas with decreased activity among default-mode network included left posterior cingulated cortex (PCC), left medial temporal gyrus et al. And the damaged white matter areas correlated with the default-mode network alterations were located around left sub-gyral temporal lobe. These changes may relate to the decreased connectivity between PCC and medial temporal lobe (MTL), and thus correlate with the deficiency of default-mode network activity.
Gong, Nan-Jie; Chan, Chun-Chung; Leung, Lam-Ming; Wong, Chun-Sing; Dibb, Russell; Liu, Chunlei
2017-05-01
One aim of this study is to use non-Gaussian diffusion kurtosis imaging (DKI) for capturing microstructural abnormalities in gray matter of Alzheimer's disease (AD). The other aim is to compare DKI metrics against thickness of cortical gray matter and volume of deep gray matter, respectively. A cohort of 18 patients with AD, 18 patients with amnestic mild cognitive impairment (MCI), and 18 normal controls underwent morphological and DKI MR imaging. Images were investigated using regions-of-interest-based analyses for deep gray matter and vertex-wise analyses for cortical gray matter. In deep gray matter, more regions showed DKI parametric abnormalities than atrophies at the early MCI stage. Mean kurtosis (MK) exhibited the largest number of significant abnormalities among all DKI metrics. At the later AD stage, diffusional abnormalities were observed in fewer regions than atrophies. In cortical gray matter, abnormalities in thickness were mainly in the medial and lateral temporal lobes, which fit the locations of known early pathological changes. Microstructural abnormalities were predominantly in the parietal and even frontal lobes, which fit the locations of known late pathological changes. In conclusion, MK can complement conventional diffusion metrics for detecting microstructural changes, especially in deep gray matter. This study also provides evidence supporting the notion that microstructural changes predate morphological changes. Hum Brain Mapp 38:2495-2508, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Lutfalla, Suzanne; Skalsky, Rastislav; Martin, Manuel; Balkovic, Juraj; Havlik, Petr; Soussana, Jean-François
2017-04-01
The 4 per 1000 Initiative underlines the role of soil organic matter in addressing the three-fold challenge of food security, adaptation of the land sector to climate change, and mitigation of human-induced GHG emissions. It sets an ambitious global target of a 0.4% (4/1000) annual increase in top soil organic carbon (SOC) stock. The present collaborative project between the 4 per 1000 research program, INRA and IIASA aims at providing a first global assessment of the translation of this soil organic carbon sequestration target into the equivalent organic matter inputs target. Indeed, soil organic carbon builds up in the soil through different processes leading to an increased input of carbon to the system (by increasing returns to the soil for instance) or a decreased output of carbon from the system (mainly by biodegradation and mineralization processes). Here we answer the question of how much extra organic matter must be added to agricultural soils every year (in otherwise unchanged climatic conditions) in order to guarantee a 0.4% yearly increase of total soil organic carbon stocks (40cm soil depth is considered). We use the RothC model of soil organic matter turnover on a spatial grid over 10 years to model two situations for croplands: a first situation where soil organic carbon remains constant (system at equilibrium) and a second situation where soil organic matter increases by 0.4% every year. The model accounts for the effects of soil type, temperature, moisture content and plant cover on the turnover process, it is run on a monthly time step, and it can simulate the needed organic input to sustain a certain SOC stock (or evolution of SOC stock). These two SOC conditions lead to two average yearly plant inputs over 10 years. The difference between the two simulated inputs represent the additional yearly input needed to reach the 4 per 1000 objective (input_eq for inputs needed for SOC to remain constant; input_4/1000 for inputs needed for SOC to reach the 4 per 1000 target). A spatial representation of this difference shows the distribution of the required returns to the soil. This first tool will provide the basis for the next steps: choosing and implementing practices to obtain the required additional input. Results will be presented from simulations at the regional scale (country: Slovakia) and at the global scale (0,5° grid resolution). Soil input data comes from the HWSD, climatic input data comes from AgMERRA climate dataset averaged of a 30 years period (1980-2010). They show that, at the global scale, given some data corrections which will be presented and discussed, the 4 per 1000 increase in top soil organic carbon can be reached with a median additional input of +0.89 tC/ha/year for cropland soils.
Lee, Yeonjung; Hong, Seongjin; Kim, Min-Seob; Kim, Dahae; Choi, Bo-Hyung; Hur, Jin; Khim, Jong Seong; Shin, Kyung-Hoon
2017-06-01
Coastal areas are subjected to significant allochthonous organic matter deposits from surrounding areas; however, limited information is available on the source and delivery of this organic matter. In this study, to assess seasonal changes in the sources of organic matter in Lake Sihwa (Korea), biodegradability, fluorescence property, and stable isotopic compositions (carbon, nitrogen, and sulfur) of the organic matter were determined. Water samples were collected from the inner lake (n = 9) and inland creeks (n = 10) in five separate events, from November 2012 to October 2013. Organic matter originating from rural, urban, and industrial areas was examined as the potential sources. The organic matter contents and biodegradability in the industrial area were the highest, whereas low concentrations and poor biodegradability of organic matter were found in the rural area, and moderate properties were observed in the urban area. In Lake Sihwa, a large concentration of total organic matter and enhanced biodegradability were observed during March and August. However, main source of organic matter differed between the sampling events. The largest contribution of organic matter, deriving from marine phytoplankton, was found in March. On the other hand, in August, the organic matter originating from the industrial area, which is characterized by high levels of heavy metals and persistent organic pollutants, was significantly increased. Our results could be useful to enhance the management of water bodies aimed at reducing the organic matter concentrations and improving the water quality of Lake Sihwa, and even that of the Yellow Sea. Copyright © 2017 Elsevier Ltd. All rights reserved.
Relation of pH and other soil variables to concentrations of Pb, Cu, Zn, Cd, and Se in earthworms
Beyer, W.N.; Hensler, G.L.; Moore, J.
1987-01-01
Various soil treatments (clay, composted peat, superphosphate, sulfur, calcium carbonate, calcium chloride, zinc chloride, selenous acid) were added to experimental field plots to test the effect of different soil variables on the concentrations of 5 elements in earthworms (Pb, Cu, Zn, Cd, Se). Concentrations of the 5 elements were related to 9 soil variables (soil Pb, soil Cu, soil Zn, pH, organic matter, P, K, Mg, and Ca) with linear multiple regression. Lead concentrations in earthworms were positively correlated with soil Pb and soil organic matter, and negatively correlated with soil pH and soil Mg, with an R2 of 64%. Se concentrations were higher in earthworms from plots amended with Se, and Zn concentrations were higher in earthworms from plots amended with Zn. However, none of the other soil variables had important effects on the concentrations of Cu, Zn, Cd and Se in earthworms. Although some significant statistical relations were demonstrated, the values of r2 of all relations (> 20%) were so low that they had little predictive value.
Bacterial carbon use plasticity, phylogenetic diversity and the priming of soil organic matter.
Morrissey, Ember M; Mau, Rebecca L; Schwartz, Egbert; McHugh, Theresa A; Dijkstra, Paul; Koch, Benjamin J; Marks, Jane C; Hungate, Bruce A
2017-08-01
Microorganisms perform most decomposition on Earth, mediating carbon (C) loss from ecosystems, and thereby influencing climate. Yet, how variation in the identity and composition of microbial communities influences ecosystem C balance is far from clear. Using quantitative stable isotope probing of DNA, we show how individual bacterial taxa influence soil C cycling following the addition of labile C (glucose). Specifically, we show that increased decomposition of soil C in response to added glucose (positive priming) occurs as a phylogenetically diverse group of taxa, accounting for a large proportion of the bacterial community, shift toward additional soil C use for growth. Our findings suggest that many microbial taxa exhibit C use plasticity, as most taxa altered their use of glucose and soil organic matter depending upon environmental conditions. In contrast, bacteria that exhibit other responses to glucose (reduced growth or reliance on glucose for additional growth) clustered strongly by phylogeny. These results suggest that positive priming is likely the prototypical response of bacteria to sustained labile C addition, consistent with the widespread occurrence of the positive priming effect in nature.
Chen, Zhuo; Valentine, Richard L
2008-07-15
NDMA is a recently recognized disinfection byproduct that can be formed by a reaction of monochloramine with natural organic matter (NOM). This study was undertaken to examine the influence of various preoxidation strategies (including prechlorination) on the subsequent formation of NDMA and to determine how this is correlated to the subsequent loss in specific UV absorbance (SUVA) that preoxidation causes. Batch experiments were conducted using surface-water-derived NOM exposed to various oxidants that included free chlorine, permanganate, hydrogen peroxide, and ozone. Photochemical oxidation was also studied by exposing the water to simulated sunlight The amount of NDMA formed after monochloramine was added or formed in situ, in the case when free chlorine was the preoxidant, was significantly reduced by these treatments. The reduction was proportional to the reduction in SUVA that also occurred as a consequence of these treatments indicating that SUVA may be a good surrogate for NDMA precursor content. Furthermore, the change in NDMA formation per unit change in SUVA was a constant that did not depend on the nature of the oxidant
Fernández-Calviño, David; Rodríguez-Salgado, Isabel; Pérez-Rodríguez, Paula; Nóvoa-Muñoz, Juan Carlos; Arias-Estévez, Manuel
2015-03-01
The effect of bentonite waste added to a "poor" soil on its general characteristic and copper adsorption capacity was assessed. The soil was amended with different bentonite waste concentrations (0, 10, 20, 40 and 80 Mg ha(-1)) in laboratory pots, and different times of incubation of samples were tested (one day and one, four and eight months). The addition of bentonite waste increased the pH, organic matter content and phosphorus and potassium concentrations in the soil, being stable for P and K, whereas the organic matter decreased with time. Additionally, the copper sorption capacity of the soil and the energy of the Cu bonds increased with bentonite waste additions. However, the use of this type of waste in soil presented important drawbacks for waste dosages higher than 20 Mg ha(-1), such as an excessive increase of the soil pH and an increase of copper in the soil solution. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Albut, Gülüm; Namık Cagatay, M.; Gungor, Nurdan; Gungor, Emin; Acar, Dursun; Balkıs, Nuray
2014-05-01
Marginal marine basins are particularly prone to anthropogenic pollution because of restricted water circulation and commonly high population density in their drainage basin. Gemlik Gulf is such a semi-enclosed inlet with maximum depth of 113 m in the eastern part of the Sea of Marmara, which is separated from the rest of the Marmara shelf by a -50 m deep sill. It is under anthropogenic risk from different industrial and municipal pollution sources in its drainage basin. Moreover, Gemlik Gulf, located on the middle branch of the North Anatolian fault (NAF), is under a future earthquake risk with a high possibility of pollution from disruption to industrial plants and municipal infrastucture, similar to the the one that occurred in the İzmit Gulf during the 1999 Mw 7.4 İzmit earthquake. In this study, we investigated the extent and temporal evolution of the heavy metal and organic pollution using a wide range of analyses of a 84 cm sediment/water interface long core from the central part of the basin, involving μ-XRF Core Scanner, Inductively Coupled Plasma-Mass Spectrometry (ICP-MS), Total Organic (TOC) and Inorganic Carbon (TIC), and mass spectrometric stable C and N isotopic and C and N elemental analyses. The chronology of the core was determined using radionuclide (210Pb and 137Cs) and AMS radiocarbon analysis. The core covers about last 800 years. The upper part of the core, representing the last 155 years, is gray mud grading into very dark grey mud in the top 84 cm. The 5-8 cm interval below sea floor (bsf) (AD 1985-1995) includes 3 white laminae consisting of coccolithophore Emiliania huxleyi and another carbonate rich layer deposited during AD 1855-1950. TOC values are commonly between 1.5 and 2.5 % below 12.5 cmbsf (AD 1965), but increases up to 4.25 % towards the core top. The core includes a mass flow unit, which is most probably triggered by the AD 1855 earthquake, and is characterized by high contents of Fe, Zr, low contents of Ca, Nb, La U, Th, Zn and Pb, Cu. Enrichment factor (EF) of Mo, obtained with respect to the average metal values of uncontaminated substratum in the core and normalisation to Al, increase sharply upwards starting from 15 cmbsf (AD 1955) to a maximum EF of 23. Such a dramatic Mo increase, together with a Mn depletion, indicates the establishment of bottom water anoxia in the Gulf at least since AD 1970. At around the same time increases started to be observed in concentrations of most metals and semi-metals such as Cd, Zn, Cu, Pb, U, S, Sb, with a maximum EF of 5.7, 2.1, 1.6, 1.6, 1.3, 3.2, 2.2, respectively. C/N ratio and δ13C reveals the cylicity in origin of organic matter changing from bottom to top of the core respectively as: terrestrial, a mixture of marine and terrestrial, terrestrial in the mass flow unit, mixed, marine and terrestrial in most recent sediments of last about 15 years. The organic matter of terrestrial origin as well as pollutants were transported by Kocadere and Karsak Creeks and Kocasu river. δ15N values range between 4 and 4.5 o during AD 1230-1540 and 2.5 and 3.1 o during AD 1540-1740 and between 3.7 and 5.6 o since AD 1855 to present. Assessment of δ15N data together with the TOC and TIC data suggest that denitrification process has been effective especially during the last 150 years, and least effective during AD 1540-1740 which includes the Late Maunder Minimum cold period.
Benzene and MTBE Sorption in Fine Grain Sediments
NASA Astrophysics Data System (ADS)
Leal-Bautista, R. M.; Lenczewski, M. E.
2003-12-01
The practice of adding methyl tert-butyl ether (MTBE) to gasoline started in the late 1970s and increased dramatically in the 1990s. MTBE first was added as a substitute for tetra-ethyl lead then later as a fuel oxygenate. Although the use of MTBE has resulted in significant reduction in air pollution, it has become a significant groundwater contaminant due to its high solubility in water, high environmental mobility, and low potential for biodegradation. A recent report (1999-2001) by the Metropolitan Water District of Southern California in collaboration with United State Geological Survey and the Oregon Health and Science University found that MTBE was the second most frequent detected volatile organic compound in groundwater. In Illinois, MTBE has been found in 26 of the 1,800 public water supplies. MTBE has also been blended in Mexico into two types of gasoline sold in the country by the state oil company (PEMEX) but is not monitored in groundwater at this time. Early research on MTBE considered it unable to adsorb to soils and sediments, however, by increasing the organic matter and decreasing the size of the grains (silts or clays) this may increase sorption. The objective of this study is to determine if fine grained materials have the potential for sorption of MTBE due to its high specific surface area (10-700 m 2/g) and potentially high organic matter (0.5-3.8%). The experiment consisted of sorption isotherms to glacial tills from DeKalb, Illinois and lacustrine clays from Chalco, Mexico. Experiments were performed with various concentrations of MTBE and benzene (10, 50, 100, 500 and 1000 ug/L) at 10° C and 25° C. Results showed a range of values for the distribution coefficient (Kd, linear model). At 10° C the Kd value for MTBE was 0.187 mL/g for lacustrine clay while the glacial loess had a value of 0.009 mL/g. The highest Kd values with MTBE were 0.2859 mL/g for organic rich lacustrine clays and 0.014 mL/g for glacial loess at 25° C. The highest values with benzene were 0.323 mL/g for organic rich lacustrine clays and 0.119 mL/g for glacial loess at 10° C. At 25° C the organic rich lacustrine clays the Kd value was 0.332 mL/g, while Kd value for glacial loess was 0.114 mL/g. Sands with no organic matter (Ottawa sand) had a value of < 0.001 mL/g for both temperatures 25° C and 10° C and both organic compounds. The retardation factor (R) for MTBE was 1.559 at 10° C and 1.855 at 25° C for lacustrine clays; while the glacial tills R was 1.058 at 10° C and 1.095 at 25° C. The retardation factor for benzene was 1.967 at 10° C and 1.996 at 25° C for lacustrine clays; while the glacial tills R was 1.039 at 10° C and 1.037 at 25° C. These results indicate higher retardation values than previously determined for a clayey sand; therefore show that sorption can occur in fine grain materials especially with high organic matter. This study contributes to the understanding of the sorption of MTBE and improves the knowledge to implement the optimal remediation method for sites contaminated by MTBE.
NASA Astrophysics Data System (ADS)
Bond, T. C.; Zarzycki, C.; Flanner, M. G.; Koch, D. M.
2010-06-01
We propose a measure to quantify climate warming or cooling by pollutants with atmospheric lifetimes of less than one year: the Specific Forcing Pulse (SFP). SFP is the amount of energy added to the Earth system per mass of pollutant emitted. Global average SFP for black carbon, including atmosphere and cryosphere, is 1.12 GJ g-1 and that for organic matter is -0.061 GJ g-1. We provide regional values for black carbon (BC) and organic matter (OM) emitted from 23 source-region combinations, divided between atmosphere and cryosphere impacts and identifying forcing by latitude. Regional SFP varies by about 40% for black carbon. This variation is relatively small because of compensating effects; particles from regions that affect ice albedo typically have shorter atmospheric lifetimes because of lower convection. The ratio between BC and OM SFP implies that, for direct forcing, an OM:BC mass ratio of 15 has a neutral effect on top-of-atmosphere direct forcing for any region, and any lower ratio induces direct warming. However, important processes, particularly cloud changes that tend toward cooling, have not been included here. We demonstrate ensemble adjustment, in which we produce a "best estimate" by combining a suite of diverse but simple models and enhanced models of greater complexity. Adjustments for black carbon internal mixing and for regional variability are discussed; regions with convection are implicated in greater model diversity. SFP expresses scientific uncertainty and separates it from policy uncertainty; the latter is caused by disagreements about the relevant time horizon, impact, or spatial scale of interest. However, metrics used in policy discussions, such as global warming potentials, are easily derived from SFP. Global-average SFP for biofuel and fossil fuel emissions translates to a 100-year GWP of about 760 for black carbon and -40 for organic matter when snow forcing is included. Ensemble-adjusted estimates of atmospheric radiative impact by black and organic matter using year 2000 emissions are +0.46 W m-2 and -0.17 W m-2, respectively; anthropogenic forcing is +0.38 W m-2 and -0.12 W m-2. The black carbon value is only 11% higher than that of the Intergovernmental Panel on Climate Change (IPCC), although this value includes enhanced absorption due to internal mixing.
Scheibe, Andrea; Gleixner, Gerd
2014-01-01
We investigated the effect of leaf litter on below ground carbon export and soil carbon formation in order to understand how litter diversity affects carbon cycling in forest ecosystems. 13C labeled and unlabeled leaf litter of beech (Fagus sylvatica) and ash (Fraxinus excelsior), characterized by low and high decomposability, were used in a litter exchange experiment in the Hainich National Park (Thuringia, Germany). Litter was added in pure and mixed treatments with either beech or ash labeled with 13C. We collected soil water in 5 cm mineral soil depth below each treatment biweekly and determined dissolved organic carbon (DOC), δ13C values and anion contents. In addition, we measured carbon concentrations and δ13C values in the organic and mineral soil (collected in 1 cm increments) up to 5 cm soil depth at the end of the experiment. Litter-derived C contributes less than 1% to dissolved organic matter (DOM) collected in 5 cm mineral soil depth. Better decomposable ash litter released significantly more (0.50±0.17%) litter carbon than beech litter (0.17±0.07%). All soil layers held in total around 30% of litter-derived carbon, indicating the large retention potential of litter-derived C in the top soil. Interestingly, in mixed (ash and beech litter) treatments we did not find a higher contribution of better decomposable ash-derived carbon in DOM, O horizon or mineral soil. This suggest that the known selective decomposition of better decomposable litter by soil fauna has no or only minor effects on the release and formation of litter-derived DOM and soil organic matter. Overall our experiment showed that 1) litter-derived carbon is of low importance for dissolved organic carbon release and 2) litter of higher decomposability is faster decomposed, but litter diversity does not influence the carbon flow. PMID:25486628
Scheibe, Andrea; Gleixner, Gerd
2014-01-01
We investigated the effect of leaf litter on below ground carbon export and soil carbon formation in order to understand how litter diversity affects carbon cycling in forest ecosystems. 13C labeled and unlabeled leaf litter of beech (Fagus sylvatica) and ash (Fraxinus excelsior), characterized by low and high decomposability, were used in a litter exchange experiment in the Hainich National Park (Thuringia, Germany). Litter was added in pure and mixed treatments with either beech or ash labeled with 13C. We collected soil water in 5 cm mineral soil depth below each treatment biweekly and determined dissolved organic carbon (DOC), δ13C values and anion contents. In addition, we measured carbon concentrations and δ13C values in the organic and mineral soil (collected in 1 cm increments) up to 5 cm soil depth at the end of the experiment. Litter-derived C contributes less than 1% to dissolved organic matter (DOM) collected in 5 cm mineral soil depth. Better decomposable ash litter released significantly more (0.50±0.17%) litter carbon than beech litter (0.17±0.07%). All soil layers held in total around 30% of litter-derived carbon, indicating the large retention potential of litter-derived C in the top soil. Interestingly, in mixed (ash and beech litter) treatments we did not find a higher contribution of better decomposable ash-derived carbon in DOM, O horizon or mineral soil. This suggest that the known selective decomposition of better decomposable litter by soil fauna has no or only minor effects on the release and formation of litter-derived DOM and soil organic matter. Overall our experiment showed that 1) litter-derived carbon is of low importance for dissolved organic carbon release and 2) litter of higher decomposability is faster decomposed, but litter diversity does not influence the carbon flow.
NASA Astrophysics Data System (ADS)
Crooker, K.; Filley, T. R.; Six, J.; Frey, J.
2004-12-01
In agricultural watersheds, the mobilization of terrestrial organic matter into yaquatic environments has been linked to increased primary productivity and ymicrobial activity in the tributaries of large-order streams and rivers. The yincrease in primary productivity and microbial activity results in downstream ynutrient export which can increase decomposition rates, turbidity, release of ycarbon dioxide to the atmosphere, and reduce the dissolved oxygen levels that yaquatic fauna rely upon to survive. The intensity and frequency of storms is a ycritical factor in determining the mass and chemical character of organic matter ymobilized as overland flow from agricultural watersheds. We will present results yfrom biogeochemical characterization of size fractionated aquatic and soil yorganic matter collected during storm events from a 2.5 Km2 drainage area in ycentral Indiana, part of the U.S. Geological Survey National Water-Quality yAssessment. Molecular and isotopic techniques were applied to size fractions of ysource surface soils and to the resultant dissolved, colloidal, and particulate yaquatic fractions isolated by cross-flow ultra-filtration at the overland flow site and ydown stream. Alkaline CuO oxidation of the size fractions was performed to yrelease lignin and aliphatic biopolymer (cutin and suberin) components. yPreliminary results indicate that dissolved organic components released during ythe storm are more degraded than particulate and colloidal materials. Compound yspecific and bulk carbon isotope analyses of the fractions will help us discern if yselective mobilization and decomposition is a factor in controlling the organic ymatter discharge volume from either the added C3 soybean or C4 corn in this ycorn/soybean rotation system.y
Isolation and chemical characterization of dissolved and colloidal organic matter
Aiken, G.; Leenheer, J.
1993-01-01
Commonly used techniques for the concentration and isolation of organic matter from water, such as preparative chromatography, ultrafiltration and reverse osmosis, and the methods used to analyze the organic matter obtained by these methods are reviewed. The development of methods to obtain organic matter that is associated with fractions of the dissolved organic carbon other than humic substances, such as organic bases, hydrophilic organic acids and colloidal organic matter are discussed. Methods specifically used to study dissolved organic nitrogen and dissolved organic phosphorous are also discussed. -from Authors
Importance of organic amendment characteristics on bioremediation of PAH-contaminated soil.
Lukić, B; Huguenot, D; Panico, A; Fabbricino, M; van Hullebusch, E D; Esposito, G
2016-08-01
This study investigates the importance of the organic matter characteristics of several organic amendments (i.e., buffalo manure, food and kitchen waste, fruit and vegetables waste, and activated sewage sludge) and their influence in the bioremediation of a polycyclic aromatic hydrocarbons (PAH)-contaminated soil. The removal of low molecular weights (LMW) and high molecular weights (HMW) PAHs was monitored in four bioremediation reactors and used as an indicator of the role of organic amendments in contaminant removal. The total initial concentration of LMW PAHs was 234 mg kg(-1) soil (dry weight), while the amount for HMW PAHs was 422 mg kg(-1) soil (dry weight). Monitoring of operational parameters and chemical analysis was performed during 20 weeks. The concentrations of LMW PAH residues in soil were significantly lower in reactors that displayed a mesophilic phase, i.e., 11 and 15 %, compared to reactors that displayed a thermophilic phase, i.e., 29 and 31 %. Residual HMW PAHs were up to five times higher compared to residual LMW PAHs, depending on the reactor. This demonstrated that the amount of added organic matter and macronutrients such as nitrogen and phosphorus, the biochemical organic compound classes (mostly soluble fraction and proteins), and the operational temperature are important factors affecting the overall efficiency of bioremediation. On that basis, this study shows that characterization of biochemical families could contribute to a better understanding of the effects of organic amendments and clarify their different efficiency during a bioremediation process of PAH-contaminated soil.
Moyo, Francis; Tandlich, Roman; Wilhelmi, Brendan S.; Balaz, Stefan
2014-01-01
Renewed focus on the sorption of hydrophobic organic chemicals (HOCs) onto mineral surfaces and soil components is required due to the increased and wider range of organic pollutants being released into the environment. This mini-review examines the possibility of the contribution and mechanism of HOC sorption onto clay mineral sorbents such as kaolinite, and soil organic matter and the possible role of both in the prevention of environmental contamination by HOCs. Literature data indicates that certain siloxane surfaces can be hydrophobic. Therefore soils can retain HOCs even at low soil organic levels and the extent will depend on the structure of the pollutant and the type and concentration of clay minerals in the sorbent. Clay minerals are wettable by nonpolar solvents and so sorption of HOCs onto them from aqueous and non-aqueous solutions is possible. This is important for two reasons: firstly, the movement and remediation of soil environments will be a function of the concentration and type of clay minerals in the soil. Secondly, low-cost sorbents such as kaolinite and expandable clays can be added to soils or contaminated environments as temporary retention barriers for HOCs. Inorganic cations sorbed onto the kaolinite have a strong influence on the rate and extent of sorption of hydrophobic organic pollutants onto kaolinite. Structural sorbate classes that can be retained by the kaolinite matrix are limited by hydrogen bonding between hydroxyl groups of the octahedral alumosilicate sheet and the tetrahedral sheet with silicon. Soil organic carbon plays a key role in the sorption of HOCs onto soils, but the extent will be strongly affected by the structure of the organic soil matter and the presence of soot. Structural characterisation of soil organic matter in a particular soil should be conducted during a particular contamination event. Contamination by mining extractants and antibiotics will require renewed focus on the use of the QSAR approaches in the context of the sorption of HOCs onto clay minerals from aqueous and non-aqueous solutions. PMID:24821385
The potential bioavailability of mineral-associated organic nitrogen in the rhizosphere.
NASA Astrophysics Data System (ADS)
Jilling, A.; Grandy, S.; Keiluweit, M.
2017-12-01
Nitrogen (N) transformations and bioavailability limit both plant productivity and N losses in most ecosystems. Recent research has focused on the mineralization path that N takes—from polymeric to monomeric and finally inorganic forms—and how these pools and processes influence the bioavailability of soil N. By contrast, there has been inadequate exploration of the N-sources that dominate the production of bioavailable N. In a new conceptual framework, we propose that mineral-associated organic matter (MAOM) is an overlooked, but critical, source of organic N, especially in the rhizosphere. We hypothesize that root-deposited low molecular weight exudates enhance the direct and indirect (via microbial communities) destabilization, solubilization, and subsequent bioavailable of MAOM. To test this conceptual framework, we conducted a laboratory incubation to examine the capacity for MAOM to supply N and to determine whether the soil-microbial response to root exudates facilitates the release and subsequent degradation of mineral-bound N. We isolated silt and clay organic matter fractions from two agricultural soils and added sterile sand to create a soil in which MAOM was the sole source of organic N. We applied three solution treatments: 13C-labelled glucose, to stimulate microbial activity and potentially the production of extracellular enzymes capable of liberating N; 13C-labelled oxalic acid, which has been demonstrated to dissolve metal-organic bonds and possibly destabilize mineral-bound and N-rich organic matter; and water, to serve as a control. Over the 12-day incubation, we observed an increase in enzyme activities and C- and N-cycling rates following glucose additions. Oxalic acid additions initially suppressed microbial activity, but eventually favored a slower-growing community with greater oxidative enzyme potential. Results suggest that C additions stimulate a microbial SOM-mining response. We will further assess the abiotic effect of organic acids on soil solution chemistry. We predict that oxalic acid additions will result in the release of metals and formerly clay-bound organic compounds into solution. Results from these incubations will be discussed in the context of our conceptual framework on the N-supplying capacity of MAOM.
Visualization of soil particulate organic matter by means of X-ray CT?
NASA Astrophysics Data System (ADS)
Sleutel, Steven; Van Loo, Denis; Maenhout, Peter; Van Hoorebeke, Luc; Cnudde, Veerle; De Neve, Stefaan
2014-05-01
The role of soil structure in organic matter (OM) stabilization has been primarily investigated through physical fractionation studies operative at the scale of aggregates and smaller organo-mineral particles. By narrowing down soil structure to an arrangement of mineral and organic particles, the majority of studies did not explore the spatial organization of the soil pore network, the actual habitat of microorganisms. The pore structure of soil can have a significant impact on soil processes like OM decomposition by excluding OM from micro-organisms in small pores, by regulating the diffusion of substrates and metabolites and by regulating aeration and presence of moisture. Because of its ability to visualize the 3D architecture of soil non-destructively, X-ray Computed Tomography (CT) is becoming a widespread tool for studying soil pore network structure. However, phase determination of pore space, soil OM, soil mineral matter (MM) and water is often limited even with the latest technological and software advances, allowing high resolution and better quality imaging. Contrast agents commonly used in histology enable enhancement of X-ray attenuation of targeted structures or compounds. Here we report on the first systematic investigation of the use of such X-ray contrast agents for soil research. An evaluation procedure as well as a method to apply the agents to soil samples was developed and applied on reference soil samples. The effectiveness and selectivity of the contrast agents was evaluated for soil organic matter (SOM), MM and water. Several products were found to selectively increase the attenuation of water or SOM. The four agents with the best OM-staining capabilities (Phosphomolybdenic acid (PMA), silver nitrate, lead nitrate and lead acetate) were further tested on an OM-MM mixture. Observed differences in reactivity of the staining agents with MM components were apparent, suggesting that contrasting agents may have to be selected for the specific composition of the soil mineral matrix. Furthermore, techniques such as multiple-energy scanning and K-edge imaging, even in the future perhaps in combination with spectral resolving detectors or spectroscopic techniques can could further enhance the potential benefit from this study of X-ray CT staining agents. The high Z elements of the staining agents have unique and characteristic traits that can be detected or quantified with the abovementioned techniques and methods. We conclude that, given resolution limits and inherent presence of partial volume effects staining, X-ray CT-based localization of discrete SOM particles will be limited to a lower limit of 20-50 µm. Still, the improved 3D visualization of OM and soil pore space opens up possibilities for tailored lab experiments with measures of microbial activity, which could generate new insights in carbon cycling at small scales. In addition, we report on a lab incubation experiment in which CO2 respiration from soil cores was monitored (headspace GC analysis) and an X-ray CT approach yielded soil pore size distributions. We incubated a sandy loam soil (with application of ground grass or sawdust) in 18 small aluminium rings (Ø 1 cm, h 1 cm). Bulk density was adjusted to 1.1 or 1.3 Mg m-3 (compaction) and 6 rings were filled at a coarser Coarse Sand:Fine Sand:Silt+Clay ratio. While compaction induced a strong reduction in the cumulative C mineralization for both grass and sawdust substrates, artificial change to a coarser soil texture only reduced net C mineralization from the added sawdust. There thus appears to be a strong interaction effect between soil pore structure and substrate type on substrate decomposition. Correlation coefficients between the C mineralization rates and volumes of 7 pore size classes (from the X-ray CT data) also showed an increasing positive correlation with increasing pore size. Since any particulate organic matter initially present in the soil was removed prior to the experiment (sieving, ashing the >53µm fraction and recombining with the <53µm fraction), the added OM can be localized by means of X-ray CT. Through on-going image analysis the surrounding porosity of the added grass or sawdust particles is being quantified to further study the interaction between the soil pore structure and substrate decomposition.
Park, Nathan D; Thring, Ronald W; Garton, Randy P; Rutherford, Michael P; Helle, Steve S
2011-01-01
Anaerobic digestion is a well established technology for the reduction of organic matter and stabilization of wastewater. Biogas, a mixture of methane and carbon dioxide, is produced as a useful by-product of the process. Current solid waste management at the city of Prince George is focused on disposal of waste and not on energy recovery. Co-digestion of fresh fruit and vegetable waste with sewer sludge can improve biogas yield by increasing the load of biodegradable material. A six week full-scale project co-digesting almost 15,000 kg of supermarket waste was completed. Average daily biogas production was found to be significantly higher than in previous years. Digester operation remained stable over the course of the study as indicated by the consistently low volatile acids-to-alkalinity ratio. Undigested organic material was visible in centrifuged sludge suggesting that the waste should have been added to the primary digester to prevent short circuiting and to increase the hydraulic retention time of the freshly added waste.
Mercury dilution by autochthonous organic matter in a fertilized mangrove wetland.
Machado, Wilson; Sanders, Christian J; Santos, Isaac R; Sanders, Luciana M; Silva-Filho, Emmanoel V; Luiz-Silva, Wanilson
2016-06-01
A dated sediment core from a highly-fertilized mangrove wetland located in Cubatão (SE Brazil) presented a negative correlation between mercury (Hg) and organic carbon contents. This is an unusual result for a metal with well-known affinity to organic matter. A dilution of Hg concentrations by autochthonous organic matter explained this observation, as revealed by carbon stable isotopes signatures (δ(13)C). Mercury dilution by the predominant mangrove-derived organic matter counterbalanced the positive influences of algal-derived organic matter and clay contents on Hg levels, suggesting that deleterious effects of Hg may be attenuated. Considering the current paradigm on the positive effect of organic matter on Hg concentrations in coastal sediments and the expected increase in mangrove organic matter burial due to natural and anthropogenic stimulations of primary production, predictions on the influences of organic matter on Hg accumulation in mangrove wetlands deserve caution. Copyright © 2016 Elsevier Ltd. All rights reserved.
Liebetrau, Jan; Sträuber, Heike; Kretzschmar, Jörg; Denysenko, Velina; Nelles, Michael
2017-04-09
The term anaerobic digestion usually refers to the microbial conversion of organic material to biogas, which mainly consists of methane and carbon dioxide. The technical application of the naturally-occurring process is used to provide a renewable energy carrier and - as the substrate is often waste material - to reduce the organic matter content of the substrate prior to disposal.Applications can be found in sewage sludge treatment, the treatment of industrial and municipal solid wastes and wastewaters (including landfill gas utilization), and the conversion of agricultural residues and energy crops.For biorefinery concepts, the anaerobic digestion (AD) process is, on the one hand, an option to treat organic residues from other production processes. Concomitant effects are the reduction of organic carbon within the treated substance, the conversion of nitrogen and sulfur components, and the production of an energy-rich gas - the biogas. On the other hand, the multistep conversion of complex organic material offers the possibility of interrupting the conversion chain and locking out intermediates for utilization as basic material within the chemical industry.
Do Variations in Detrital Inputs Influence Stable Soil Organic Matter? - An Experimental Approach
NASA Astrophysics Data System (ADS)
Lajtha, K.; Townsend, K.; Brewer, E.; Caldwell, B.; Kalbitz, K.; Plante, A.
2007-12-01
Recognition of the importance of feedbacks from plants in determining soil nutrient dynamics and C storage led to a large number of litter decomposition studies. Despite growing knowledge of short-term litter dynamics, we know relatively little about the fate of plant litter and its role in determining SOM content and nutrient cycling over time scales ranging from decades and centuries. To address this gap, we established long-term studies of controls on soil organic matter formation in an old-growth forest at the H.J. Andrews Experimental Forest, OR. This study complements a network of recently established similar experiments that pan climatic and soil gradients, as well as the original DIRT experiment established in the Wisconsin Arboretum in 1956 in both grassland and forested sites. The central goal of the DIRT project is to assess how rates and sources of plant litter inputs control the accumulation and dynamics of organic matter and nutrients in forest soils over decadal time scales. Treatment plots include doubled litter (needle) inputs , doubled wood, no above ground litter (screened) inputs, no root inputs (trenched), and no inputs (screened and trenched). For the 50th anniversary of the Wisconsin sites and the 10th anniversary of the H.J. Andrews site, we used sequential density fractionation of soils from all treatments to determine if adding or removing either below- or above-ground litter inputs influenced carbon stabilization as soil organic matter. After 50 years, double litter plots in both prairie and forested soils had higher %C in the 0-10 cm horizon. In the forested site, plots showed increased C content of the lightest fraction, which represents relatively young SOM with a short turnover time. However, the first two heavy fractions also showed increases in C with added aboveground litter, suggesting the importance of aboveground litter inputs to SOM in the forest. No such pattern existed for the prairie soil, and we hypothesize that this is because aboveground, labile litter adds very little to stabilized SOM in grasslands, and that root-derived C is the dominant control on SOM stabilization in grasslands. These results were confirmed with analysis of labile C (short -term respiration measurements) and acid hydrolysis resistant C across treatments. The relative contribution of aboveground vs. belowground litter was analyzed through the analysis of cutin and suberin acids, and we found that the detrital source of litter was retained in soils and could be fingerprinted through this analysis. Thermal analysis, including thermogravimetry (TG) and differential scanning calorimetry (DSC) performed simultaneously is currently being applied to explore both SOM quality and stability.
77 FR 28642 - Sunshine Act Meeting Notice
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-15
... information and to ascertain what, if any, matters have been added, deleted or postponed, please contact the... scheduled matters at the Closed Meeting. Certain staff members who have an interest in the matters also may... Meeting in closed session, and determined that no earlier notice thereof was possible. The subject matter...
Early diagenesis and organic matter preservation--A molecular stable isotope perspective
DOE Office of Scientific and Technical Information (OSTI.GOV)
Macko, S.A.; Engel, M.H.; Qian, Y.
1992-01-01
Through new developments in stable isotope capability, gas chromatography coupled to a stable isotope ratio mass spectrometer (GC/IRMS), the molecular pathways of the diagenetic reactions can be observed on the components themselves. The authors report the results of laboratory-controlled degradation experiments of fresh organic substrates. Isotopically resolvable materials were used. Seagrass showed slight enrichments in [delta]N-15 with little change in [delta]C-13 following four weeks of decomposition. During that period the identifiable amino acid content decreased by approx. 50% for each amino acid. Mixtures of marine sediment with the same seagrass showed enrichments in nitrogen with associated depletions in carbon isotopicmore » compositions over the same time span. Control experiments on the sediments without added fresh seagrass showed no change in isotopic content. These changes are attributed to hydrolysis, deamination and decarboxylation reactions. Isotopic fractionations of similar size and direction have been observed in laboratory studies on peptide hydrolysis and natural samples of particulate organic materials. At the molecular level, using GC/IRMS, certain amino acids are seen to decrease in C-13 content while others become increasingly enriched in C-13. Similar reactions are seen in carbohydrates. The molecular isotope approach indicates that the process of diagenesis and preservation is significantly more complex than simple breakdown and loss. A large portion of the organic matter eventually preserved in organic-rich deposits can be attributed to new production in the deposit.« less
NASA Astrophysics Data System (ADS)
Ni, Huang-Jing; Zhou, Lu-Ping; Zeng, Peng; Huang, Xiao-Lin; Liu, Hong-Xing; Ning, Xin-Bao
2015-07-01
Applications of multifractal analysis to white matter structure changes on magnetic resonance imaging (MRI) have recently received increasing attentions. Although some progresses have been made, there is no evident study on applying multifractal analysis to evaluate the white matter structural changes on MRI for Alzheimer’s disease (AD) research. In this paper, to explore multifractal analysis of white matter structural changes on 3D MRI volumes between normal aging and early AD, we not only extend the traditional box-counting multifractal analysis (BCMA) into the 3D case, but also propose a modified integer ratio based BCMA (IRBCMA) algorithm to compensate for the rigid division rule in BCMA. We verify multifractal characteristics in 3D white matter MRI volumes. In addition to the previously well studied multifractal feature, Δα, we also demonstrated Δf as an alternative and effective multifractal feature to distinguish NC from AD subjects. Both Δα and Δf are found to have strong positive correlation with the clinical MMSE scores with statistical significance. Moreover, the proposed IRBCMA can be an alternative and more accurate algorithm for 3D volume analysis. Our findings highlight the potential usefulness of multifractal analysis, which may contribute to clarify some aspects of the etiology of AD through detection of structural changes in white matter. Project supported by the National Natural Science Foundation of China (Grant No. 61271079), the Vice Chancellor Research Grant in University of Wollongong, and the Priority Academic Program Development of Jiangsu Higher Education Institutions, China.
Cawley, Kaelin M; Koerfer, Verena; McKnight, Diane M
2013-06-01
Several algal species responsible for harmful algal blooms (HABs), such as Alexandrium fundyense, are mixotrophic under certain environmental conditions. The ability to switch between photosynthetic and heterotrophic modes of growth may play a role in the development of HABs in coastal regions. We examined the influence of humic dissolved organic matter (HDOM) derived from terrestrial (plant/soil) and microbial sources on the growth of A. fundyense. We found that a terrestrially derived HDOM, Suwannee River humic acid (SRHA), did enhance A. fundyense growth; however, a microbially derived HDOM, Pony Lake fulvic acid (PLFA) did not enhance growth. A. fundyense grows in association with bacteria in culture and we observed that bacterial cell densities were much lower in A. fundyense cultures than in bacteria-only cultures, consistent with bacterial grazing by A. fundyense in culture. In bacteria-only cultures with added algal exudates (EX), the addition of PLFA and SRHA resulted in a slight increase in bacterial cell density compared to cultures without HDOM added. Changes over time in the chemical quality of the HDOM in the A. fundyense cultures reflected contributions of microbially derived material with similar characteristics as the PLFA. Overall, these results suggest that the chemical differences between SRHA and PLFA are responsible for the greater effect of SRHA on A. fundyense growth, and that the differential effect is not a result of an effect on the growth of associated bacteria. © 2013 Phycological Society of America.
Vermicomposting as an advanced biological treatment for industrial waste from the leather industry.
Nunes, Ramom R; Bontempi, Rhaissa M; Mendonça, Giovane; Galetti, Gustavo; Rezende, Maria Olímpia O
2016-01-01
The leather industry (tanneries) generates high amounts of toxic wastes, including solid and liquid effluents that are rich in organic matter and mineral content. Vermicomposting was studied as an alternative method of treating the wastes from tanneries. Vermicompost was produced from the following tannery residues: tanned chips of wet-blue leather, sludge from a liquid residue treatment station, and a mixture of both. Five hundred earthworms (Eisenia fetida) were added to each barrel. During the following 135 days the following parameters were evaluated: pH, total organic carbon (TOC), organic matter (OM), cation exchange capacity (CEC), C:N ratio, and chromium content as Cr (III) and Cr (VI). The results for pH, TOC and OM contents showed decreases in their values during the composting process, whereas values for CEC and total nitrogen rose, indicating that the vermicompost reached maturity. For chromium, at 135 days, all values of Cr (VI) were below the detectable level. Therefore, the Cr (VI) content had probably been biologically transformed into Cr (III), confirming the use of this technique as an advanced biological treatment. The study reinforces the idea that vermicomposting could be introduced as an effective technology for the treatment of industrial tannery waste and the production of agricultural inputs.
Metallothionein-like multinuclear clusters of mercury(II) and sulfur in peat
Nagy, K.L.; Manceau, A.; Gasper, J.D.; Ryan, J.N.; Aiken, G.R.
2011-01-01
Strong mercury(II)-sulfur (Hg-SR) bonds in natural organic matter, which influence mercury bioavailability, are difficult to characterize. We report evidence for two new Hg-SR structures using X-ray absorption spectroscopy in peats from the Florida Everglades with added Hg. The first, observed at a mole ratio of organic reduced S to Hg (Sred/Hg) between 220 and 1140, is a Hg4Sx type of cluster with each Hg atom bonded to two S atoms at 2.34 ?? and one S at 2.53 ??, and all Hg atoms 4.12 ?? apart. This model structure matches those of metal-thiolate clusters in metallothioneins, but not those of HgS minerals. The second, with one S atom at 2.34 ?? and about six C atoms at 2.97 to 3.28 ??, occurred at S red/Hg between 0.80 and 4.3 and suggests Hg binding to a thiolated aromatic unit. The multinuclear Hg cluster indicates a strong binding environment to cysteinyl sulfur that might impede methylation. Along with a linear Hg(SR)2 unit with Hg - S bond lengths of 2.34 ?? at Sred/Hg of about 10 to 20, the new structures support a continuum in Hg-SR binding strength in natural organic matter. ?? 2011 American Chemical Society.
Co-treatment of landfill leachate and domestic wastewater using a submerged aerobic biofilter.
Ferraz, F M; Povinelli, J; Pozzi, E; Vieira, E M; Trofino, J C
2014-08-01
This study used a pilot-scale submerged aerobic biofilter (SAB) to evaluate the co-treatment of domestic wastewater and landfill leachate that was pre-treated by air stripping. The leachate tested volumetric ratios were 0, 2, and 5%. At a hydraulic retention time of 24 h, the SAB was best operated with a volumetric ratio of 2% and removed 98% of the biochemical oxygen demand (BOD), 80% of the chemical oxygen demand (COD) and dissolved organic carbon (DOC), and 90% of the total suspended solids (TSS). A proposed method, which we called the "equivalent in humic acid" (Eq.HA) approach, indicated that the hardly biodegradable organic matter in leachate was removed by partial degradation (71% of DOC Eq.HA removal). Adding leachate at a volumetric ratio of 5%, the concentration of the hardly biodegradable organic matter was decreased primarily as a result of dilution rather than biodegradation, which was confirmed by Fourier transform infrared (FTIR) spectroscopy. The total ammoniacal nitrogen (TAN) was mostly removed (90%) by nitrification, and the SAB performances at the volumetric ratios of 0 and 2% were equal. For the three tested volumetric ratios of leachate (0, 2, and 5%), the concentrations of heavy metals in the treated samples were below the local limits. Copyright © 2014 Elsevier Ltd. All rights reserved.
Nicolau, Rudy; Leloup, Maud; Lachassagne, Delphine; Pinault, Emilie; Feuillade-Cathalifaud, Geneviève
2015-05-01
This work is focused on the development of an analytical procedure for the improvement of the Organic Matter structure characterization, particularly the algal matter. Two fractions of algal organic matter from laboratory cultures of algae (Euglena gracilis) and cyanobacteria (Microcystis aeruginosa) were extracted with XAD resins. The fractions were studied using laser desorption ionization (LDI) and Matrix-Assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF). A comparison with the natural organic matter characteristics from commercial humic acids and fulvic acids extracted from Suwannee River was performed. Results show that algal and natural organic matters have unique quasi-polymeric structures. Significant repeating patterns were identified. Different fractions extracted from organic matter with common origin had common structures. Thus, 44, 114 and 169Da peaks separation for fractions from E. gracilis organic matter and 28, 58 and 100Da for M. aeruginosa ones were clearly observed. Using the developed protocol, a structural scheme and organic matter composition were obtained. The range 600-2000Da contained more architectural composition differences than the range 100-600Da, suggesting that organic matter is composed of an assembly of common small molecules. Associated to specific monomers, particular patterns were common to all samples but assembly and resulting structure were unique for each organic matter. Thus, XAD fractionation coupled to mass spectroscopy allowed determining a specific fingerprint for each organic matter. Copyright © 2015 Elsevier B.V. All rights reserved.
Increased White Matter Inflammation in Aging- and Alzheimer’s Disease Brain
Raj, Divya; Yin, Zhuoran; Breur, Marjolein; Doorduin, Janine; Holtman, Inge R.; Olah, Marta; Mantingh-Otter, Ietje J.; Van Dam, Debby; De Deyn, Peter P.; den Dunnen, Wilfred; Eggen, Bart J. L.; Amor, Sandra; Boddeke, Erik
2017-01-01
Chronic neuroinflammation, which is primarily mediated by microglia, plays an essential role in aging and neurodegeneration. It is still unclear whether this microglia-induced neuroinflammation occurs globally or is confined to distinct brain regions. In this study, we investigated microglia activity in various brain regions upon healthy aging and Alzheimer’s disease (AD)-related pathology in both human and mouse samples. In purified microglia isolated from aging mouse brains, we found a profound gene expression pattern related to pro-inflammatory processes, phagocytosis, and lipid homeostasis. Particularly in white matter microglia of 24-month-old mice, abundant expression of phagocytic markers including Mac-2, Axl, CD16/32, Dectin1, CD11c, and CD36 was detected. Interestingly, in white matter of human brain tissue the first signs of inflammatory activity were already detected during middle age. Thus quantification of microglial proteins, such as CD68 (commonly associated with phagocytosis) and HLA-DR (associated with antigen presentation), in postmortem human white matter brain tissue showed an age-dependent increase in immunoreactivity already in middle-aged people (53.2 ± 2.0 years). This early inflammation was also detectable by non-invasive positron emission tomography imaging using [11C]-(R)-PK11195, a ligand that binds to activated microglia. Increased microglia activity was also prominently present in the white matter of human postmortem early-onset AD (EOAD) brain tissue. Interestingly, microglia activity in the white matter of late-onset AD (LOAD) CNS was similar to that of the aged clinically silent AD cases. These data indicate that microglia-induced neuroinflammation is predominant in the white matter of aging mice and humans as well as in EOAD brains. This white matter inflammation may contribute to the progression of neurodegeneration, and have prognostic value for detecting the onset and progression of aging and neurodegeneration. PMID:28713239
NASA Astrophysics Data System (ADS)
Potthoff, Martin; Wichern, Florian; Dyckmans, Jens; Joergensen, Rainer Georg
2016-04-01
Earthworms deeply interact with the processes of soil organic matter turnover in soil. Stabilization of carbon by soil aggregation and in the humus fraction of SOM are well known processes related to earthworm activity and burrowing. However, recent research on priming effects showed inconsistent effects for the impact of earthworm activity. Endogeic earthworms can induce apparent as well as true positive priming effects. The main finding is almost always that earthworm increase the CO2 production from soil. The sources of this carbon release can vary and seem to depend on a complex interaction of quantity and quality of available carbon sources including added substrates like straw or other compounds, food preferences and feeding behavior of earthworms, and soil properties. Referring to recent studies on earthworm effects on soil carbon storage and release (mainly Eck et al. 2015 Priming effects of Aporrectodea caliginosa on young rhizodeposits and old soil organic matter following wheat straw addition, European Journal of Soil Biology 70:38-45; Zareitalabad et al. 2010 Decomposition of 15N-labelled maize leaves in soil affected by endogeic geophagous Aporrectodea caliginosa, Soil Biology and Biochemistry 42(2):276-282; and Potthoff et al. 2001 Short-term effects of earthworm activity and straw amendment on the microbial C and N turnover in a remoistened arable soil after summer drought, Soil Biology and Biochemistry 33(4):583-591) we summaries the knowledge on earthworms and priming and come up with a conceptual approach and further research needs.
NASA Astrophysics Data System (ADS)
Benner, Ronald; Peele, Emily R.; Hodson, Robert E.
1986-11-01
Dissolved organic matter was leached from [ 14C]labeled leaves of the red mangrove, Rhizophora mangle, and used in studies to determine the rates and efficiencies of microbial utilization of the water-soluble components of mangrove leaves in the Fresh Creek estuary, Bahamas. Rates of microbial utilization (assimilation plus mineralization) of mangrove leachate ranged from 0·022 to 4·675 μg ml -1 h -1 depending on the concentration of leachate and the size or diversity of microbial populations. Microflora associated with decaying mangrove leaves utilized mangrove leachate at rates up to 18-fold higher than rates of leachate utilization by planktonic microflora. Chemical analyses indicated that tannins and other potentially inhibitory phenolic compounds made up a major fraction (18%) of the dissolved organic matter in mangrove leachate. Mangrove leachate did not appear to be inhibitory to the microbial uptake of leachate or the microbial degradation of the lignocellulosic component of mangrove leaves except at high concentrations (mg ml -1). The availability of molecular oxygen also was an important parameter affecting rates of leachate utilization; rates of microbial utilization of leachate were up to 8-fold higher under aerobic rather than anaerobic conditions. The overall efficiency of conversion of mangrove leachate into microbial biomass was high and ranged from 64% to 94%. As much as 42% of the added leachate was utilized during 2 to 12 h incubations, indicating that a major fraction of the leachable material from mangrove leaves is incorporated into microbial biomass, and thus available to animals in the estuarine food web.
Below-ground attributes on reclaimed surface minelands over a 40-year chronosequence
NASA Astrophysics Data System (ADS)
Limb, Ryan; Bohrer, Stefanie; Volk, Jay
2017-04-01
Reclamation following mining activities often aims to restore stable soils that support productive and diverse native plant communities. The soil re-spread process increases soil compaction, which may alter soil water, plant composition, rooting depths and soil organic matter. This may have a direct impact on vegetation establishment and species recruitment. Seasonal wet/dry and freeze/thaw patterns are thought to alleviate soil compaction over time. However, this has not been formally evaluated on reclaimed landscapes at large scales. Our objectives were to (1) determine soil compaction alleviation, (2) rooting depth and (3) spatial patterns of soil water content over a time-since-reclamation gradient. Soil resistance to penetration varied by depth, with shallow compaction remaining unchanged, but deeper compaction increased over time rather than being alleviated. Root biomass and depth did not increase with time and was consistently less than reference locations. Plant communities initially had a strong native component, but quickly became dominated by invasive species following reclamation and soil water content became increasingly homogeneous over the 40-year chronosequence. Seasonal weather patterns and soil organic matter additions can reduce soil compaction if water infiltration is not limited. Shallow and strongly fibrous-rooted grasses present in reclaimed sites added organic matter to shallow soil layers, but did not penetrate the compacted layers and allow water infiltration. Strong linkages between land management strategies, soil properties and vegetation composition can advance reclamation efforts and promote heterogeneous landscapes. However, current post-reclamation management strategies are not facilitating natural seasonal weather patterns to reducing soil compaction.
Organic matter in central California radiation fogs.
Herckes, Pierre; Lee, Taehyoung; Trenary, Laurie; Kang, Gongunn; Chang, Hui; Collett, Jeffrey L
2002-11-15
Organic matter was studied in radiation fogs in the San Joaquin Valley of California during the California Regional Particulate Air Quality Study (CRPAQS). Total organic carbon (TOC) concentrations ranged from 2 to 40 ppm of C. While most organic carbon was found in solution as dissolved organic carbon (DOC), 23% on average was not dissolved inside the fog drops. We observe a clear variation of organic matter concentration with droplet size. TOC concentrations in small fog drops (<17 microm) were a factor of 3, on average, higher than TOC concentrations in larger drops. As much as half of the dissolved organic matter was determined to have a molecular weight higher than 500 Da. Deposition fluxes of organic matter in fog drops were high (0.5-4.3 microg of C m(-2) min(-1)), indicating the importance of fog processing as a vector for removal of organic matter from the atmosphere. Deposition velocities of organic matter, however, were usually found to be lower than deposition velocities for fogwater, consistent with the enrichment of the organic matter in smaller fog drops with lower terminal settling velocities.
Schouten, Tijn M; Koini, Marisa; de Vos, Frank; Seiler, Stephan; van der Grond, Jeroen; Lechner, Anita; Hafkemeijer, Anne; Möller, Christiane; Schmidt, Reinhold; de Rooij, Mark; Rombouts, Serge A R B
2016-01-01
Magnetic resonance imaging (MRI) is sensitive to structural and functional changes in the brain caused by Alzheimer's disease (AD), and can therefore be used to help in diagnosing the disease. Improving classification of AD patients based on MRI scans might help to identify AD earlier in the disease's progress, which may be key in developing treatments for AD. In this study we used an elastic net classifier based on several measures derived from the MRI scans of mild to moderate AD patients (N = 77) from the prospective registry on dementia study and controls (N = 173) from the Austrian Stroke Prevention Family Study. We based our classification on measures from anatomical MRI, diffusion weighted MRI and resting state functional MRI. Our unimodal classification performance ranged from an area under the curve (AUC) of 0.760 (full correlations between functional networks) to 0.909 (grey matter density). When combining measures from multiple modalities in a stepwise manner, the classification performance improved to an AUC of 0.952. This optimal combination consisted of grey matter density, white matter density, fractional anisotropy, mean diffusivity, and sparse partial correlations between functional networks. Classification performance for mild AD as well as moderate AD also improved when using this multimodal combination. We conclude that different MRI modalities provide complementary information for classifying AD. Moreover, combining multiple modalities can substantially improve classification performance over unimodal classification.
Shape-preserving transformations of organic matter and compositions thereof
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaehr, Bryan J.; Meyer, Kristin; Townson, Jason L.
The present invention relates to methods of transforming organic matter into organic-inorganic composites, inorganic replicas, or conductive replicas. Organic matter, such as biological cells and tissue and organs, can be converted into such composites and replicas using the methods described herein. In particular, such methods transform organic matter (into inorganic, organic-inorganic, or conductive constructs), while simultaneously preserving microscopic and/or macroscopic structural detail.
Opposing effects of different soil organic matter fractions on crop yields.
Wood, Stephen A; Sokol, Noah; Bell, Colin W; Bradford, Mark A; Naeem, Shahid; Wallenstein, Matthew D; Palm, Cheryl A
2016-10-01
Soil organic matter is critical to sustainable agriculture because it provides nutrients to crops as it decomposes and increases nutrient- and water-holding capacity when built up. Fast- and slow-cycling fractions of soil organic matter can have different impacts on crop production because fast-cycling fractions rapidly release nutrients for short-term plant growth and slow-cycling fractions bind nutrients that mineralize slowly and build up water-holding capacity. We explored the controls on these fractions in a tropical agroecosystem and their relationship to crop yields. We performed physical fractionation of soil organic matter from 48 farms and plots in western Kenya. We found that fast-cycling, particulate organic matter was positively related to crop yields, but did not have a strong effect, while slower-cycling, mineral-associated organic matter was negatively related to yields. Our finding that slower-cycling organic matter was negatively related to yield points to a need to revise the view that stabilization of organic matter positively impacts food security. Our results support a new paradigm that different soil organic matter fractions are controlled by different mechanisms, potentially leading to different relationships with management outcomes, like crop yield. Effectively managing soils for sustainable agriculture requires quantifying the effects of specific organic matter fractions on these outcomes. © 2016 by the Ecological Society of America.
Effect of aging of chemicals in soil on their biodegradability and extractability
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hatzinger, P.B.; Alexander, M.
1995-11-01
A study was conducted to determine whether the time that a compound remains in a soil affects its biodegradability and the ease of its extraction. Phenanthrene and 4-nitrophenol were aged in sterilized loam and muck, and bacteria able to degrade the compounds were then added to the soils. increasingly smaller amounts of phenanthrene in the muck and 4-nitrophenol in both soils were mineralized with increasing duration of aging. Aging also increased the resistance of phenanthrene to biodegradation in nutrient-amended aquifer sand. The rate of miner- alization of the two compounds in both soils declined with increasing periods of aging. Themore » amount of phenanthrene and 4-nitrophenol added to sterile soils that was recovered by butanol extraction declined with duration of aging, but subsequent Soxhlet extraction recovered phenanthrene from the loam but not the muck. The extents of mineralization of phenanthrene previously incubated for up to 27 days with soluble or insoluble organic matter from the muck were similar. Less aged than freshly added phenanthrene was biodegraded if aggregates in the muck were sonically disrupted. The data show that phenanthrene and 4-nitrophenol added to soil become increasingly more resistant with time to biodegradation and extraction.« less
NASA Technical Reports Server (NTRS)
Zolensky, Michael E.; Wirick, S.; Flynn, G. J.; Jacobsen, C.; Na
2011-01-01
The Stardust mission collected both mineral and organic matter from Comet Wild 2 [1,2,3,4]. The organic matter discovered in Comet Wild 2 ranges from aromatic hydrocarbons to simple aliphatic chains and is as diverse and complex as organic matter found in carbonaceous chondrites and interplanetary dust particles.[3,5,6,7,8,9]. Compared to insoluble organic matter from carbonaceous chondrites the organic matter in Comet Wild 2 more closely resembles organic matter found in the IDPS both hydrous and anhydrous. Common processes for the formation of organic matter in space include: Fischer-Tropsch, included with this aqueous large body and moderate heating alterations; UV irradiation of ices; and; plasma formation and collisions. The Fischer-Tropsch could only occur on large bodies processes, and the production of organic matter by UV radiation is limited by the penetration depth of UV photons, on the order of a few microns or less for most organic matter, so once organic matter coats the ices it is formed from, the organic production process would stop. Also, the organic matter formed by UV irradiation would, by the nature of the process, be in-sensitive to photodissocation from UV light. The energy of soft X-rays, 280-300 eV occur within the range of extreme ultraviolet photons. During the preliminary examination period we found a particle that nearly completely photoionized when exposed to photons in the energy range 280-310eV. This particle experienced a long exposure time to the soft x-ray beam which caused almost complete mass loss so little chemical information was obtain. During the analysis of our second allocation we have discovered another particle that photoionized at these energies but the exposure time was limited and more chemical information was obtained.
Acid-base properties of Baltic Sea dissolved organic matter
NASA Astrophysics Data System (ADS)
Hammer, Karoline; Schneider, Bernd; Kuliński, Karol; Schulz-Bull, Detlef E.
2017-09-01
Calculations related to the marine CO2 system that are based on alkalinity data may be strongly biased if the contributions of organic compounds are ignored. In coastal seas, concentrations of dissolved organic matter (DOM) are frequently high and alkalinity from inorganic compounds is low. In this study, based on measurements of total alkalinity, total CO2, and pH, we determined the organic alkalinity, Aorg, in water from the central Baltic Sea. The maximum Aorg measured in the surface mixed layer during the spring bloom was > 50 μmol/kg-SW but the Aorg decreased with depth and approached zero below the permanent halocline. This behavior could be attributed to the decreased pH of deeper water layers. The data were used to calculate the bulk dissociation constant, KDOM, for marine DOM and the fraction f of dissolved organic carbon (DOC) that acts as a carrier for acid-base functional groups. The p KDOM (7.27) agreed well with the value (7.34) previously estimated in a preliminary study of organic alkalinity in the Baltic Sea. The fraction of carbon atoms carrying acid-base groups was 17% and was somewhat higher than previously reported (12%). Spike experiments performed using artificial seawater and three different humic/fulvic substances tested whether the acid-base properties of these substances explain the results of our field study. Specifically, Aorg was determined at different concentrations (DOC) of the added humic/fulvic substances. The relationship between Aorg and the DOC concentrations indicated that humic/fulvic substances are more acidic (p KDOM < 6.5) than the bulk DOC natural occurring in the Baltic Sea.
Hatton, Sean N; Panizzon, Matthew S; Vuoksimaa, Eero; Hagler, Donald J; Fennema-Notestine, Christine; Rinker, Daniel; Eyler, Lisa T; Franz, Carol E; Lyons, Michael J; Neale, Michael C; Tsuang, Ming T; Dale, Anders M; Kremen, William S
2018-05-01
Two basic neuroimaging-based characterizations of white matter tracts are the magnitude of water diffusion along the principal tract orientation (axial diffusivity, AD) and water diffusion perpendicular to the principal orientation (radial diffusivity, RD). It is generally accepted that decreases in AD reflect disorganization, damage, or loss of axons, whereas increases in RD are indicative of disruptions to the myelin sheath. Previous reports have detailed the heritability of individual AD and RD measures, but have not examined the extent to which the same or different genetic or environmental factors influence these two phenotypes (except for corpus callosum). We implemented bivariate twin analyses to examine the shared and independent genetic influences on AD and RD. In the Vietnam Era Twin Study of Aging, 393 men (mean age = 61.8 years, SD = 2.6) underwent diffusion-weighted magnetic resonance imaging. We derived fractional anisotropy (FA), mean diffusivity (MD), AD, and RD estimates for 11 major bilateral white matter tracts and the mid-hemispheric corpus callosum, forceps major, and forceps minor. Separately, AD and RD were each highly heritable. In about three-quarters of the tracts, genetic correlations between AD and RD were >.50 (median = .67) and showed both unique and common variance. Genetic variance of FA and MD were predominately explained by RD over AD. These findings are important for informing genetic association studies of axonal coherence/damage and myelination/demyelination. Thus, genetic studies would benefit from examining the shared and unique contributions of AD and RD. © 2018 Wiley Periodicals, Inc.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-02
... Promulgation of Air Quality Implementation Plans; Wisconsin; Particulate Matter Standards; Withdrawal of Direct... were made to the particulate matter standards by adding fine particulate standards and revoking the..., Intergovernmental relations, Particulate matter. Authority: 42 U.S.C. 7401 et seq. Dated: May 14, 2010. Walter W...
Characterization of organic matter in lake sediments from Minnesota and Yellowstone National Park
Dean, Walter E.
2006-01-01
Samples of sediment from lakes in Minnesota and Yellowstone National Park (YNP) were analyzed for organic carbon (OC), hydrogen richness by Rock-Eval pyrolysis, and stable carbon- and nitrogen-isotope composition of bulk organic matter. Values of delta 13C of lake plankton tend to be around -28 to -32 parts per thousand (0/00). Organic matter with values of delta 13C in the high negative 20s overlap with those of organic matter derived from C3 higher terrestrial plants but are at least 10 0/00 more depleted in 13C than organic matter derived from C4 terrestrial plants. If the organic matter is produced mainly by photosynthetic plankton and is not oxidized in the water column, there may be a negative correlation between H-richness (Rock-Eval pyrolysis H-index) and delta 13C, with more H-rich, algal organic matter having lower values of delta 13C. However, if aquatic organic matter is oxidized in the water column, or if the organic matter is a mixture of terrestrial and aquatic organic matter, then there may be no correlation between H-richness and carbon-isotopic composition. Values of delta 13C lower than about -28 0/00 probably indicate a contribution of bacterial biomass produced in the hypolimnion by chemoautotrophy or methanotrophy. In highly eutrophic lakes in which large amounts of 13C-depleted organic matter is continually removed from the epilimnion by photosynthesis throughout the growing season, the entire carbon reservoir in the epilimnion may become severely 13C-enriched so that 13C-enriched photosynthetic organic matter may overprint 13C-depleted chemosynthetic bacterial organic matter produced in the hypolimnon. Most processes involved with the nitrogen cycle in lakes, such as production of ammonia and nitrate, tend to produce 15N-enriched values of delta 15N. Most Minnesota lake sediments are 15N-enriched. However, some of the more OC-rich sediments have delta 15N values close to zero (delta 15N of air), suggesting that organic matter production is by nitrogen fixation, which further implies that nitrogen is limiting. Most lakes from YNP also have values of delta 15N near zero.
NASA Astrophysics Data System (ADS)
Sephton, Mark A.; Lewis, James M. T.; Watson, Jonathan S.; Montgomery, Wren; Garnier, Carole
2014-11-01
Instruments on the Viking landers and Curiosity rover analyzed samples of Mars and detected carbon dioxide and organic compounds of uncertain origin. Mineral-assisted reactions are leading to uncertainty, particularly those involving perchlorate minerals which thermally decompose to produce chlorine and oxygen which can then react with organic matter to generate organochlorine compounds and carbon dioxide. Although generally considered a problem for interpretation, the release profiles of generated gases can indicate the type of organic matter present. We have performed a set of experiments with perchlorate and organic matter of variable molecular weights. Results indicate that organic susceptibility to thermal degradation and mineral-assisted reactions is related to molecular weight. Low molecular weight organic matter reacts at lower temperatures than its high molecular weight counterparts. The natural occurrence and association of organic matter with differing molecular weights helps to discriminate between contamination (usually low molecular weight organic matter only) and indigenous carbon (commonly low and high molecular weight organic matter together). Our results can be used to provide insights into data returning from Mars.
NASA Astrophysics Data System (ADS)
Valdivia-Silva, Julio E.; Navarro-Gonzalez, Rafael; McKay, Chris
Thermal evolved gas analysis (TEGA), one of several instruments on board of the Phoenix Lander, is a combination of a high temperature furnace and a mass spectrometer that was used to analyze Mars soil samples heated at a programmed ramp rate up to 1000 ° C. The evolved gases generated during the process were analyzed with the evolved gas analyzer (a mass spectrometer) in order to determine the composition of gases released as a function of temperature. In other hand, labeled release experiment (LR), one of the Viking biology anal-ysis used on Mars, monitored the radioactive gas evolution after the addition of a 14C-labeled aqueous organic substrate into a sealed test cell that contained a Martian surface sample. This experiment was designed to test Martian surface samples for the presence of life by measuring metabolic activity and distinguishing it from physical or chemical activity. The interpretation of the Viking LR experiment was that the tested soils were chemically reactive and not biolog-ically active, and that at least two oxidative processes with different kinetics were required to explain the observed decomposition of organics, while TEGA experiment of the Phoenix mis-sion apparently didn't detect organic matter on the surface of Mars. Both of these experiments showed little possibility of the presence of organics, and therefore the presence of life. Here we examine the evolved gas properties of hyperarid soils from the Pampas de La Joya, which is considered as a new analogue to Mars, in order to investigate the effect of the soil matrix on the TEGA response, and additionally, we conducted experiments under Viking LR protocol to test the decomposition kinetics of organic compounds in aqueous solution added to these soils. Our TEGA results indicate that native or added organics present in these samples were oxidized to CO2 during thermal process, suggesting the existence in these soils of a thermolabile oxidant which is highly oxidative and other thermostable oxidant which has a minor oxidative activity and that survives the heat-treatment. Interestingly, LR experiment shows that the 13C-labeled formate and DL-alanine were oxidized to 13CO2 when added in aqueous solution to soils collected from the Pampas de La Joya region. The observation of similar 13CO2 initial releasing by soils treated with L-alanine, compared to soils treated D-alanine, indicates the presence of one or more nonbiological chemical decomposition mechanisms similar to Yungay soils and the Viking LR experiment. Thus, the soils from Pampas of La Joya, are potentially excellent analogues of the oxidative processes that occur on Mars, and can be used to study mechanisms of destruction of organics on this planet. The nature of oxidant(s) present in the soils from Pampas de La Joya is still unknown.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hunchak-Kariouk, K.
1992-01-01
Pore water dissolved organic matter is an overlooked pool of organic matter important to the environmental fate of hydrophobic organic pollutants. The association of polychlorinated biphenyls, polyaromatic hydrocarbons and chlorinated pesticides with pore water dissolved organic matter influences their distribution and mobility within the bottom sediment environment. Steep physical, biological and chemical gradients at the sediment/water interface isolate the pore water and create unique conditions within the sediment. This study indicates that any disturbance of this environment will alter the distribution and mobility of organic pollutants by changing their association to the pore water dissolved organic matter. A small volumemore » closed equilibration method was developed to measure the solubility enhancement of 2,2' 4,4'-tetrachlorobiphenyl (TeCB) by natural dissolved organic matter. Chemical coated micro-glass beads were equilibrated with anoxic and laboratory aerated (oxic) pore water samples in flame sealed ampules. The TeCB enhanced solubilities were used to determine the pore water dissolved organic matter partition coefficient, K[sub pwdom]. The measured TeCB solubility and K[sub pwdom] were much smaller for anoxic than oxic pore waters. The dissolved organic matter sorptive capacity for the TeCB increased as the water was aerated. This change is attributed to coagulative fractionation and structural changes of the pore water dissolved organic matter during aeration and was characterized by differences in the dissolved organic matter concentration, UV absorption at 254 nm, interfacial surface tension, and sorption capacity of molecular weight fractions of anoxic and oxic pore water dissolved organic matter. The increase in partitioning indicates that there will be an increase in the mobility of the TeCB as an anoxic bottom sediment environment is disturbed and aerated.« less
Karapanagioti, Hrissi K.; Kleineidam, Sybille; Sabatini, David A.; Grathwohl, Peter; Ligouis, Bertrand
2000-01-01
Sediment organic matter heterogeneity in sediments is shown to impact the sorption behavior of contaminants. We investigated the sorptive properties as well as the composition of organic matter in different subsamples (mainly grain size fractions) of the Canadian River Alluvium (CRA). Organic petrography was used as a new tool to describe and characterize the organic matter in the subsamples. The samples studied contained many different types of organic matter including bituminous coal particles. Differences in sorption behavior were explained based on these various types of organic matter. Subsamples containing predominately coaly, particulate organic matter showed the highest Koc, the highest nonlinearity of sorption isotherms and the slowest sorption kinetics. Soil subsamples with organic matter present as organic coatings around the quartz grains evidenced the lowest Koc, the most linear sorption isotherms and the fastest sorption kinetics, which was not limited by slow intraparticle diffusion. Due to the high sorption capacity of the coaly particles even when it is present as only a small fraction of the composite organic content (<3%) causes Koc values which are much higher than expected for soil organic matter (e.g. Koc − Kow relationships). The results show that the identification and quantification of the coaly particles within a sediment or soil sample is a prerequisite in order to understand or predict sorption behavior of organic pollutants.
Sablayrolles, Caroline; Montréjaud-Vignoles, Mireille; Silvestre, Jérôme; Treilhou, Michel
2009-01-01
Surfactants are widely used in household and industrial products. The risk of incorporation of linear alkylbenzene sulfonates (LAS) from biosolids, wastewater, and fertilizers land application to the food chain is being assessed at present by the European Union. In the present work, a complete analytical method for LAS trace determination has been developed and successfully applied to LAS (C10–C13) uptake in carrot plants used as model. These carrots were grown in soil with the trace organics compounds added directly into the plant containers in pure substances form. LAS trace determination (μg kg−1 dry matter) in carrots samples was achieved by Soxtec apparatus and high-performance liquid chromatography-fluorescence detection. The methodology developed provides LAS determination at low detection limits (5 μg kg−1 dry matter) for carrot sample (2 g dry matter) with good recoveries rate (>90%). Transfer of LAS has been followed into the various parts of the carrot plant. LAS are generally found in the carrot leaves and percentage transfer remains very low (0.02%). PMID:20107562
Gray Matter Network Disruptions and Regional Amyloid Beta in Cognitively Normal Adults.
Ten Kate, Mara; Visser, Pieter Jelle; Bakardjian, Hovagim; Barkhof, Frederik; Sikkes, Sietske A M; van der Flier, Wiesje M; Scheltens, Philip; Hampel, Harald; Habert, Marie-Odile; Dubois, Bruno; Tijms, Betty M
2018-01-01
The accumulation of amyloid plaques is one of the earliest pathological changes in Alzheimer's disease (AD) and may occur 20 years before the onset of symptoms. Examining associations between amyloid pathology and other early brain changes is critical for understanding the pathophysiological underpinnings of AD. Alterations in gray matter networks might already start at early preclinical stages of AD. In this study, we examined the regional relationship between amyloid aggregation measured with positron emission tomography (PET) and gray matter network measures in elderly subjects with subjective memory complaints. Single-subject gray matter networks were extracted from T1-weigthed structural MRI in cognitively normal subjects ( n = 318, mean age 76.1 ± 3.5, 64% female, 28% amyloid positive). Degree, clustering, path length and small world properties were computed. Global and regional amyloid load was determined using [ 18 F]-Florbetapir PET. Associations between standardized uptake value ratio (SUVr) values and network measures were examined using linear regression models. We found that higher global SUVr was associated with lower clustering ( β = -0.12, p < 0.05), and small world values ( β = -0.16, p < 0.01). Associations were most prominent in orbito- and dorsolateral frontal and parieto-occipital regions. Local SUVr values showed less anatomical variability and did not convey additional information beyond global amyloid burden. In conclusion, we found that in cognitively normal elderly subjects, increased global amyloid pathology is associated with alterations in gray matter networks that are indicative of incipient network breakdown towards AD dementia.
Bakhshizadeh, Somayeh; Taghizadeh, Akbar; Janmohammadi, Hossein; Alijani, Sadegh
2014-01-01
The nutritive value of pistachio epicarp (PE) was evaluated by in situ and in vitro techniques. Chemical analysis indicated that PE was high in crude protein (11.30%) and low in neutral detergent fiber (26.20%). Total phenols, total tannins, condensed tannins and hydrolysable tannins contents in PE were 8.29%, 4.48%, 0.49% and 3.79%, respectively. Ruminal dry matter and crude protein degradation after 48 hr incubation were 75.21% and 82.52%, respectively. The gas production volume at 48 hr for PE was 122.47 mL g(-1)DM. As a whole, adding polyethylene glycol (PEG) to PE increased (p < 0.05) gas production volumes, organic matter digestibility and the metabolizable energy that illustrated inhibitory effect of phenolics on rumen microbial fermentation and the positive influence of PEG on digestion PE. The results showed that PE possessed potentials to being used as feed supplements.
Soil organic matter composition affected by potato cropping managements
USDA-ARS?s Scientific Manuscript database
Organic matter is a small but important soil component. As a heterogeneous mixture of geomolecules and biomolecules, soil organic matter (SOM) can be fractionated into distinct pools with different solubility and lability. Water extractable organic matter (WEOM) fraction is the most labile and mobil...
Maynaud, Géraldine; Druilhe, Céline; Daumoin, Mylène; Jimenez, Julie; Patureau, Dominique; Torrijos, Michel; Pourcher, Anne-Marie; Wéry, Nathalie
2017-05-01
The stability of digestate organic matter is a key parameter for its use in agriculture. Here, the organic matter stability was compared between 14 post-treated digestates and the relationship between organic matter complexity and biodegradability was highlighted. Respirometric activity and CH 4 yields in batch tests showed a positive linear correlation between both types of biodegradability (R 2 =0.8). The accessibility and complexity of organic matter were assessed using chemical extractions combined with fluorescence spectroscopy, and biodegradability was mostly anti-correlated with complexity of organic matter. Post-treatments presented a significant effect on the biodegradability and complexity of organic matter. Biodegradability was low for composted digestates which comprised slowly accessible complex molecules. Inversely, solid fractions obtained after phase separation contained a substantial part of remaining biodegradable organic matter with a significant easily accessible fraction comprising simpler molecules. Understanding the effect of post-treatment on the biodegradability of digestates should help to optimize their valorization. Copyright © 2017 Elsevier Ltd. All rights reserved.
The AD and ELENA orbit, trajectory and intensity measurement systems
NASA Astrophysics Data System (ADS)
Marco-Hernández, R.; Alves, D.; Angoletta, M. E.; Marqversen, O.; Molendijk, J.; Oponowicz, E.; Ruffieux, R.; Sánchez-Quesada, J.; SØby, L.
2017-07-01
This paper describes the new Antiproton Decelerator (AD) orbit measurement system and the Extra Low ENergy Antiproton ring (ELENA) orbit, trajectory and intensity measurement system. The AD machine at European Organization for Nuclear Research (CERN) is presently being used to decelerate antiprotons from 3.57 GeV/c to 100 MeV/c for matter vs anti-matter comparative studies. The ELENA machine, presently under commissioning, has been designed to provide an extra deceleration stage down to 13.7 MeV/c. The AD orbit system is based on 32 horizontal and 27 vertical electrostatic Beam Position Monitor (BPM) fitted with existing low noise front-end amplifiers while the ELENA system consists of 24 \\gls{BPM}s equipped with new low-noise head amplifiers. In both systems the front-end amplifiers generate a difference (delta) and a sum (sigma) signal which are sent to the digital acquisition system, placed tens of meters away from the AD or ELENA rings, where they are digitized and further processed. The beam position is calculated by dividing the difference signal by the sum signal either using directly the raw digitized data for measuring the turn-by-turn trajectory in the ELENA system or after down-mixing the signals to baseband for the orbit measurement in both machines. The digitized sigma signal will be used in the ELENA system to calculate the bunched beam intensity and the Schottky parameters with coasting beam after passing through different signal processing chain. The digital acquisition arrangement for both systems is based on the same hardware, also used in the ELENA Low Level Radio Frequency (LLRF) system, which follows the VME Switched Serial (VXS) enhancement of the Versa Module Eurocard 64x extension (VME64x) standard and includes VITA 57 standard Field Programmable Gate Array Mezzanine Card (FMC). The digital acquisition Field Programmable Gate Array (FPGA) and Digital Signal Processor (DSP) firmware shares many common functionalities with the LLRF system but has been tailored for this measurement application in particular. Specific control and acquisition software has been developed for these systems. Both systems are installed in AD and ELENA. The AD orbit system currently measures the orbit in AD while the ELENA system is being used in the commissioning of the ELENA ring.
Measuring organic matter in Everglades wetlands and the Everglades Agricultural Area
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wright, Alan L.; Hanlon, Edward A.
Here, organic matter is a complex material that represents the long-term decay products from plants and other organisms in the soil. When organic matter is allowed to build up in a soil, the soil color at the surface usually turns a darker color, often with a red or brown hue. Typically in Florida mineral soils, organic matter content is quite low, within the range of 1 to 5%. However, in some soils that remain flooded for most of the year, organic matter can build up with time and actually become the soil. Such is the case for the organic soils,more » or histosols, found in southern Florida. These organic soils comprise much of the Water Conservation Areas, Everglades National Park (ENP), Big Cypress Basin, and the Everglades Agricultural Area (EAA). It is important to document organic matter accumulation in the Everglades to gauge the effectiveness of wetland creation and succession. For the EAA, the drained soils lose organic matter due to oxidation, so measurement of the organic matter content of these soils over the course of time indicates the oxidation potential and mineral incorporation from bedrock. Due to the wide diversity of soil types and methods of measuring soil organic matter, there is a need to devise a more universal method applicable to many types of histosols in south Florida. The intent of this publication is: 1.To describe a simple laboratory method for determining the organic matter content of the organic soils of southern Florida and demonstrate the importance of using this new procedure for improved accuracy and precision; 2.To utilize this updated laboratory procedure for field sites across Everglades wetlands and the EAA; and 3. To recommend this procedure be used by growers, state and federal agencies, and university and agency researchers dealing with the management of organic soils in southern Florida. Growers can use this improvement to organic matter measurement to keep lab testing costs low while getting a better, more quantitative estimate of organic carbon (organic matter) for decisions regarding pesticide applications and estimated contribution of nutrients released from the organic matter in their fields. Restoration efforts in the Everglades wetlands can be better documented with the lower cost, but now equally as useful, LOI test for organic carbon. Improvements to soil organic matter coupled with other measurements of biological health of the system can be documented with less work using the adjusted LOI calculations.« less
Provenzano, Frank A; Muraskin, Jordan; Tosto, Giuseppe; Narkhede, Atul; Wasserman, Ben T; Griffith, Erica Y; Guzman, Vanessa A; Meier, Irene B; Zimmerman, Molly E; Brickman, Adam M
2013-04-01
Current hypothetical models emphasize the importance of β-amyloid in Alzheimer disease (AD) pathogenesis, although amyloid alone is not sufficient to account for the dementia syndrome. The impact of small-vessel cerebrovascular disease, visualized as white matter hyperintensities (WMHs) on magnetic resonance imaging scans, may be a key factor that contributes independently to AD presentation. To determine the impact of WMHs and Pittsburgh Compound B (PIB) positron-emission tomography-derived amyloid positivity on the clinical expression of AD. Baseline PIB-positron-emission tomography values were downloaded from the Alzheimer's Disease Neuroimaging Initiative database. Total WMH volume was derived on accompanying structural magnetic resonance imaging data. We examined whether PIB positivity and total WMHs predicted diagnostic classification of patients with AD (n = 20) and control subjects (n = 21). A second analysis determined whether WMHs discriminated between those with and without the clinical diagnosis of AD among those who were classified as PIB positive (n = 28). A third analysis examined whether WMHs, in addition to PIB status, could be used to predict future risk for AD among subjects with mild cognitive impairment (n = 59). The Alzheimer's Disease Neuroimaging Initiative public database. The study involved data from 21 normal control subjects, 59 subjects with mild cognitive impairment, and 20 participants with clinically defined AD from the Alzheimer Disease's Neuroimaging Initiative database. Clinical AD diagnosis and WMH volume. Pittsburgh Compound B positivity and increased total WMH volume independently predicted AD diagnosis. Among PIB-positive subjects, those diagnosed as having AD had greater WMH volume than normal control subjects. Among subjects with mild cognitive impairment, both WMH and PIB status at baseline conferred risk for future diagnosis of AD. White matter hyperintensities contribute to the presentation of AD and, in the context of significant amyloid deposition, may provide a second hit necessary for the clinical manifestation of the disease. As risk factors for the development of WMHs are modifiable, these findings suggest intervention and prevention strategies for the clinical syndrome of AD.
The abiotic degradation of soil organic matter to oxalic acid
NASA Astrophysics Data System (ADS)
Studenroth, Sabine; Huber, Stefan; Schöler, H. F.
2010-05-01
The abiotic degradation of soil organic matter to volatile organic compounds was studied intensely over the last years (Keppler et al., 2000; Huber et al., 2009). It was shown that soil organic matter is oxidised due to the presence of iron (III), hydrogen peroxide and chloride and thereby produces diverse alkyl halides, which are emitted into the atmosphere. The formation of polar halogenated compounds like chlorinated acetic acids which are relevant toxic environmental substances was also found in soils and sediments (Kilian et al., 2002). The investigation of the formation of other polar halogenated and non-halogenated compounds like diverse mono- and dicarboxylic acids is going to attain more and more importance. Due to its high acidity oxalic acid might have impacts on the environment e.g., nutrient leaching, plant diseases and negative influence on microbial growth. In this study, the abiotic formation of oxalic acid in soil is examined. For a better understanding of natural degradation processes mechanistic studies were conducted using the model compound catechol as representative for structural elements of the humic substances and its reaction with iron (III) and hydrogen peroxide. Iron is one of the most abundant elements on earth and hydrogen peroxide is produced by bacteria or through incomplete reduction of oxygen. To find suitable parameters for an optimal reaction and a qualitative and quantitative analysis method the following reaction parameters are varied: concentration of iron (III) and hydrogen peroxide, time dependence, pH-value and influence of chloride. Analysis of oxalic acid was performed employing an ion chromatograph equipped with a conductivity detector. The time dependent reaction shows a relatively fast formation of oxalic acid, the optimum yield is achieved after 60 minutes. Compared to the concentration of catechol an excess of hydrogen peroxide as well as a low concentration of iron (III) are required. In absence of chloride the degradation of catechol to oxalic acid delivers a maximum yield of approximately 60 %, whereas the presence of chloride reduces the formation of oxalic acid to 30 %. Chloride possibly induces further competing reactions of catechol leading to a lower concentration of oxalic acid. Freeze-dried soil samples have been tested for production of oxalic acid, where the rate of organic matter seems to play an important role for the formation. By adding iron (III) and/or hydrogen peroxide oxalic acid yields increase, which demonstrates the reaction of soil organic matter with iron (III) and hydrogen peroxide as expected. Thus the natural abiotic formation of oxalic acid is confirmed. The results of the soil measurements are similar to those obtained with catechol. Therefore, the newly gained insights with model compounds appear to be applicable to soil conditions and these findings increase our understanding of the degradation pathways of soil organic matter. Furthermore an overview of the rates of oxalic acid formation of a variety of soil samples is shown and discussed in the light of different soil parameter.
White matter hyperintensities and imaging patterns of brain ageing in the general population.
Habes, Mohamad; Erus, Guray; Toledo, Jon B; Zhang, Tianhao; Bryan, Nick; Launer, Lenore J; Rosseel, Yves; Janowitz, Deborah; Doshi, Jimit; Van der Auwera, Sandra; von Sarnowski, Bettina; Hegenscheid, Katrin; Hosten, Norbert; Homuth, Georg; Völzke, Henry; Schminke, Ulf; Hoffmann, Wolfgang; Grabe, Hans J; Davatzikos, Christos
2016-04-01
White matter hyperintensities are associated with increased risk of dementia and cognitive decline. The current study investigates the relationship between white matter hyperintensities burden and patterns of brain atrophy associated with brain ageing and Alzheimer's disease in a large populatison-based sample (n = 2367) encompassing a wide age range (20-90 years), from the Study of Health in Pomerania. We quantified white matter hyperintensities using automated segmentation and summarized atrophy patterns using machine learning methods resulting in two indices: the SPARE-BA index (capturing age-related brain atrophy), and the SPARE-AD index (previously developed to capture patterns of atrophy found in patients with Alzheimer's disease). A characteristic pattern of age-related accumulation of white matter hyperintensities in both periventricular and deep white matter areas was found. Individuals with high white matter hyperintensities burden showed significantly (P < 0.0001) lower SPARE-BA and higher SPARE-AD values compared to those with low white matter hyperintensities burden, indicating that the former had more patterns of atrophy in brain regions typically affected by ageing and Alzheimer's disease dementia. To investigate a possibly causal role of white matter hyperintensities, structural equation modelling was used to quantify the effect of Framingham cardiovascular disease risk score and white matter hyperintensities burden on SPARE-BA, revealing a statistically significant (P < 0.0001) causal relationship between them. Structural equation modelling showed that the age effect on SPARE-BA was mediated by white matter hyperintensities and cardiovascular risk score each explaining 10.4% and 21.6% of the variance, respectively. The direct age effect explained 70.2% of the SPARE-BA variance. Only white matter hyperintensities significantly mediated the age effect on SPARE-AD explaining 32.8% of the variance. The direct age effect explained 66.0% of the SPARE-AD variance. Multivariable regression showed significant relationship between white matter hyperintensities volume and hypertension (P = 0.001), diabetes mellitus (P = 0.023), smoking (P = 0.002) and education level (P = 0.003). The only significant association with cognitive tests was with the immediate recall of the California verbal and learning memory test. No significant association was present with the APOE genotype. These results support the hypothesis that white matter hyperintensities contribute to patterns of brain atrophy found in beyond-normal brain ageing in the general population. White matter hyperintensities also contribute to brain atrophy patterns in regions related to Alzheimer's disease dementia, in agreement with their known additive role to the likelihood of dementia. Preventive strategies reducing the odds to develop cardiovascular disease and white matter hyperintensities could decrease the incidence or delay the onset of dementia. © The Author (2016). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
White matter hyperintensities and imaging patterns of brain ageing in the general population
Erus, Guray; Toledo, Jon B.; Zhang, Tianhao; Bryan, Nick; Launer, Lenore J.; Rosseel, Yves; Janowitz, Deborah; Doshi, Jimit; Van der Auwera, Sandra; von Sarnowski, Bettina; Hegenscheid, Katrin; Hosten, Norbert; Homuth, Georg; Völzke, Henry; Schminke, Ulf; Hoffmann, Wolfgang; Grabe, Hans J.; Davatzikos, Christos
2016-01-01
Abstract White matter hyperintensities are associated with increased risk of dementia and cognitive decline. The current study investigates the relationship between white matter hyperintensities burden and patterns of brain atrophy associated with brain ageing and Alzheimer’s disease in a large populatison-based sample ( n = 2367) encompassing a wide age range (20–90 years), from the Study of Health in Pomerania. We quantified white matter hyperintensities using automated segmentation and summarized atrophy patterns using machine learning methods resulting in two indices: the SPARE-BA index (capturing age-related brain atrophy), and the SPARE-AD index (previously developed to capture patterns of atrophy found in patients with Alzheimer’s disease). A characteristic pattern of age-related accumulation of white matter hyperintensities in both periventricular and deep white matter areas was found. Individuals with high white matter hyperintensities burden showed significantly ( P < 0.0001) lower SPARE-BA and higher SPARE-AD values compared to those with low white matter hyperintensities burden, indicating that the former had more patterns of atrophy in brain regions typically affected by ageing and Alzheimer’s disease dementia. To investigate a possibly causal role of white matter hyperintensities, structural equation modelling was used to quantify the effect of Framingham cardiovascular disease risk score and white matter hyperintensities burden on SPARE-BA, revealing a statistically significant ( P < 0.0001) causal relationship between them. Structural equation modelling showed that the age effect on SPARE-BA was mediated by white matter hyperintensities and cardiovascular risk score each explaining 10.4% and 21.6% of the variance, respectively. The direct age effect explained 70.2% of the SPARE-BA variance. Only white matter hyperintensities significantly mediated the age effect on SPARE-AD explaining 32.8% of the variance. The direct age effect explained 66.0% of the SPARE-AD variance. Multivariable regression showed significant relationship between white matter hyperintensities volume and hypertension ( P = 0.001), diabetes mellitus ( P = 0.023), smoking ( P = 0.002) and education level ( P = 0.003). The only significant association with cognitive tests was with the immediate recall of the California verbal and learning memory test. No significant association was present with the APOE genotype. These results support the hypothesis that white matter hyperintensities contribute to patterns of brain atrophy found in beyond-normal brain ageing in the general population. White matter hyperintensities also contribute to brain atrophy patterns in regions related to Alzheimer’s disease dementia, in agreement with their known additive role to the likelihood of dementia. Preventive strategies reducing the odds to develop cardiovascular disease and white matter hyperintensities could decrease the incidence or delay the onset of dementia. PMID:26912649
Sun, Ruibo; Dsouza, Melissa; Gilbert, Jack A; Guo, Xisheng; Wang, Daozhong; Guo, Zhibin; Ni, Yingying; Chu, Haiyan
2016-12-01
Organic matter application is a widely used practice to increase soil carbon content and maintain soil fertility. However, little is known about the effect of different types of organic matter, or the input of exogenous species from these materials, on soil fungal communities. In this study, fungal community composition was characterized from soils amended with three types of organic matter over a 30-year fertilization experiment. Chemical fertilization significantly changed soil fungal community composition and structure, which was exacerbated by the addition of organic matter, with the direction of change influenced by the type of organic matter used. The addition of organic matter significantly increased soil fungal richness, with the greatest richness achieved in soils amended with pig manure. Importantly, following addition of cow and pig manure, fungal taxa associated with these materials could be found in the soil, suggesting that these exogenous species can augment soil fungal composition. Moreover, the addition of organic matter decreased the relative abundance of potential pathogenic fungi. Overall, these results indicate that organic matter addition influences the composition and structure of soil fungal communities in predictable ways. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.
Research Highlight: Water-extractable organic matter from sandy loam soils
USDA-ARS?s Scientific Manuscript database
Labile organic matter plays important roles in soil health and nutrient cycling because of its dynamic nature. Water-extractable organic matter is part of the soil labile organic matter. In an article recently published in Agricultural & Environmental Letters, researchers report on the level and na...
Ting, Windsor Kwan-Chun; Fischer, Corinne E; Millikin, Colleen P; Ismail, Zahinoor; Chow, Tiffany W; Schweizer, Tom A
2015-01-01
Grey matter atrophy in the right hemisphere has been shown to be more severe in dementia patients with delusions, suggesting a neuroanatomical localization that may be pertinent to impending neurodegeneration. Delusional symptoms may arise when atrophy in these areas reduces the regulatory functions of the right hemisphere, in tandem with asymmetric neuropathology in the left hemisphere. We hypothesized that delusional patients with either amnestic mild cognitive impairment (MCI) or early Alzheimer Disease (AD) would experience more pronounced grey matter atrophy in the right frontal lobe compared with matched patients without delusions. We used neuroimaging and clinical data obtained from the Alzheimer's Disease Neuroimaging Initiative. A comparison group of twenty-nine nondelusional MCI/early AD participants were compared with twenty-nine delusional participants using voxel-based morphometry, matched at baseline by age, sex, education, and Mini-Mental State Exam score. All included participants were diagnosed with amnestic MCI at study baseline. Fifteen voxel clusters of decreased grey matter in participants with delusions were detected. Prominent grey matter decrease was observed in the right precentral gyrus, right inferior frontal gyrus, right insula, and left middle occipital gyrus, areas that may be involved in control of thought and emotions. Greater right fronto-temporal grey matter atrophy was observed in MCI or early AD participants with delusions compared to matched patients without delusions. Consistent with our predictions, asymmetric grey matter atrophy in the right hemisphere may contribute to development of delusions through loss of executive inhibition.
DTI-measured white matter abnormalities in adolescents with Conduct Disorder
Haney-Caron, Emily; Caprihan, Arvind; Stevens, Michael C.
2013-01-01
Emerging research suggests that antisocial behavior in youth is linked to abnormal brain white matter microstructure, but the extent of such anatomical connectivity abnormalities remain largely untested because previous Conduct Disorder (CD) studies typically have selectively focused on specific frontotemporal tracts. This study aimed to replicate and extend previous frontotemporal diffusion tensor imaging (DTI) findings to determine whether noncomorbid CD adolescents have white matter microstructural abnormalities in major white matter tracts across the whole brain. Seventeen CD-diagnosed adolescents recruited from the community were compared to a group of 24 non-CD youth which did not differ in average age (12–18) or gender proportion. Tract-based spatial statistics (TBSS) fractional anisotropy (FA), axial diffusivity (AD), and radial diffusivity (RD) measurements were compared between groups using FSL nonparametric two-sample t test, clusterwise whole-brain corrected, p<.05. CD FA and AD deficits were widespread, but unrelated to gender, verbal ability, or CD age of onset. CD adolescents had significantly lower FA and AD values in frontal lobe and temporal lobe regions, including frontal lobe anterior/superior corona radiata, and inferior longitudinal and fronto-occpital fasciculi passing through the temporal lobe. The magnitude of several CD FA deficits was associated with number of CD symptoms. Because AD, but not RD, differed between study groups, abnormalities of axonal microstructure in CD rather than myelination are suggested. This study provides evidence that adolescent antisocial disorder is linked to abnormal white matter microstructure in more than just the uncinate fasciulcus as identified in previous DTI studies, or frontotemporal brain structures as suggested by functional neuroimaging studies. Instead, neurobiological risk specific to antisociality in adolescence is linked to microstructural abnormality in numerous long-range white matter connections among many diverse different brain regions. PMID:24139595
Enhancement of the natural organic matter removal from drinking water by nanofiltration.
Matilainen, A; Liikanen, R; Nyström, M; Lindqvist, N; Tuhkanen, T
2004-03-01
Finnish surface waters are abundant in natural organic matter. Natural organic matter can be removed from drinking water in a water treatment process by coagulation and filtration. The standard treatment operations are not able to remove the smallest molar mass fraction of organic matter and the intermediate molar mass matter is only partly removed. The removal of residual natural organic matter from drinking water by nanofiltration was evalueted in this study. Three different nanofiltration membranes were compared in filtering six pre-treated surface waters. The total organic carbon content of the feed waters varied from 2.0 to 4.2 mg l(-1). Other water quality parameters measured were conductivity, alkalinity, hardness, UV-absorbance, SUVA, E2/E3 value and molecular size distribution by high-performance size-exclusion chromatography. The natural organic matter removal efficiencies of the membranes were good and varied between 100% and 49%, and between 85% and 47% according to molecular size distribution and total organic carbon measurements, respectively. Removal of different molecular size fractions varied from 100% to 56%, 100% to 54% and 88% to 19%, regarding high molar mass, intermediate molar mass and low molar mass organic matter, respectively. The Desal-5 DL membrane produced the highest natural organic matter removals.
Response of soil dissolved organic matter to microplastic addition in Chinese loess soil.
Liu, Hongfei; Yang, Xiaomei; Liu, Guobin; Liang, Chutao; Xue, Sha; Chen, Hao; Ritsema, Coen J; Geissen, Violette
2017-10-01
Plastic debris is accumulating in agricultural land due to the increased use of plastic mulches, which is causing serious environmental problems, especially for biochemical and physical properties of the soil. Dissolved organic matter (DOM) plays a central role in driving soil biogeochemistry, but little information is available on the effects of plastic residues, especially microplastic, on soil DOM. We conducted a soil-incubation experiment in a climate-controlled chamber with three levels of microplastic added to loess soil collected from the Loess Plateau in China: 0% (control, CK), 7% (M1) and 28% (M2) (w/w). We analysed the soil contents of dissolved organic carbon (DOC), dissolved organic nitrogen (DON), NH 4 + , NO 3 - , dissolved organic phosphorus (DOP), and PO 4 3- and the activities of fluorescein diacetate hydrolase (FDAse) and phenol oxidase. The higher level of microplastic addition significantly increased the nutrient contents of the DOM solution. The lower level of addition had no significant effect on the DOM solution during the first seven days, but the rate of DOM decomposition decreased in M1 between days 7 and 30, which increased the nutrient contents. The microplastic facilitated the accumulation of high-molecular-weight humic-like material between days 7 and 30. The DOM solutions were mainly comprised of high-molecular-weight humic-like material in CK and M1 and of high-molecular-weight humic-like material and tyrosine-like material in M2. The Microplastic stimulated the activities of both enzymes. Microplastic addition thus stimulated enzymatic activity, activated pools of organic C, N, and P, and was beneficial for the accumulation of dissolved organic C, N and P. Copyright © 2017 Elsevier Ltd. All rights reserved.
Nakasaki, Kiyohiko; Araya, Shogo; Mimoto, Hiroshi
2013-09-01
In this study, the yeast strain Pichia kudriavzevii RB1 was used as an inoculum to accelerate organic matter degradation of rabbit food with added organic acids, which was used as a model food waste for composting. The RB1 strain rapidly degraded the organic acids present in the raw compost material, leading to an increase in pH beyond the neutral level, within 2 days. Both mesophilic and thermophilic bacteria proliferated faster in the compost with RB1 inoculation than in that without inoculation. Although the yeast died with the increase in compost temperature, it affected the early stages of composting prior to the thermophilic stage and accelerated the composting process by 2 days by eliminating the initial lag phase seen in the growth of other microorganisms. Moreover, populations of Bacillus thermoamylovorans, Bacillus foraminis, and Bacillus coagulans became dominant during the thermophilic stages of both composting with and without RB1 inoculation. Copyright © 2013 Elsevier Ltd. All rights reserved.
Cu-based metal-organic framework thin films: A morphological and photovoltaic study
NASA Astrophysics Data System (ADS)
Khajavian, Ruhollah; Ghani, Kamal
2018-06-01
This work explores the layer-by-layer (LbL) fabrication of [Cu2(bdc)2(bpy)]n thin films by using pyridine and acetic acid as capping agents onto mesoporous titania surface. While in the presence of acetic acid highly-ordered crystals with nanoplate morphology are formed, modulation with pyridine gives rise to formation of leaf-like crystals. In addition, processing sequence also matters when modulator is added. According to our results, modulators should be added to metal solution rather than linker/pillar during LbL assembly. These films were subsequently shown to generate photocurrent in a sandwich-type Grätzel solar cell device in response to simulated 1 sun illumination. The results also demonstrated that the device consisted of well-aligned nanoplates exhibits higher power conversion efficiency than the similar cell with disordered leaf-like crystals after iodine loading.
Lee, Yeonjung; Hur, Jin; Shin, Kyung-Hoon
2014-07-15
The characteristics and sources of organic matter in water of the Lake Shihwa, which receives inputs from rural, urban, and industrial areas, were evaluated by examining the biodegradable organic carbon concentration, fluorescence spectra, and carbon and nitrogen isotope ratios, especially during rainy season and dry season. The organic matter transported from rural areas was of refractory nature, while that of industrial origin decomposed rapidly. As compared to the dry season, the organic matter in the rainy season was characterized by a reduced labile fraction. During the dry season, the autochthonous organic matter dominated in the lake, however, the contributions of allochthonous organic sources by industrial and rural areas significantly increased at rainy season. This investigation revealed that the transport of organic matter of anthropogenic origin to the Lake Shihwa was mainly influenced by heavy rainfall. Moreover, each anthropogenic source could differently influence the occurrence of organic matter in water of the Lake Shihwa. Copyright © 2014 Elsevier Ltd. All rights reserved.
Adsorption of natural dissolved organic matter at the oxide/water interface
Davis, James A.
1982-01-01
Natural organic matter is readily adsorbed by alumina and kaolinite in the pH range of natural waters. Adsorption occurs by complex formation between surface hydroxyls and the acidic functional groups of the organic matter. Oxides with relatively acidic surface hydroxyls, e.g. silica, do not react strongly with the organic matter. Under conditions typical for natural waters, almost complete surface coverage by adsorbed organic matter may be expected for alumina, hydrous iron oxides and the edge sites of aluminosilicates. Potentiometric titration and electrophoresis indicate that most of the acidic functional groups of the adsorbed organic matter are neutralized by protons from solution. The organic coating is expected to have a great influence on subsequent adsorption of inorganic cations and anions.
ERIC Educational Resources Information Center
Adams, Krista; Feagin, Shannon
2017-01-01
This article presents a lesson that was designed to explore the scientific descriptions of matter through both the intensive and extensive properties that students successfully added to their vocabulary. Students' examples demonstrated that there were places where their reasoning about matter faltered as related to how the material is the same…
78 FR 4481 - Sunshine Act Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2013-01-22
.... For further information and to ascertain what, if any, matters have been added, deleted or postponed... Meeting. Certain staff members who have an interest in the matters also may be present. The General...) and (10), permit consideration of the scheduled matters at the Closed Meeting. Commissioner Paredes...
Wang, Kui; Chen, Jianfang; Jin, Haiyan; Li, Hongliang; Zhang, Weiyan
2018-05-12
Organic matter degradation is a key component of the processes of carbon preservation and burial in seafloor sediments. The aim of this study was to explore organic matter degradation state within the open-shelf Changjiang Estuary of the East China Sea, using an amino acids-based degradation index (DI) in conjunction with information about organic matter source (marine versus terrestrial), bottom water oxygenation state, and sediment grain size. The relative molar percentages of 17 individual amino acids (characterized using principal component analysis) in surface sediments indicate that organic matter is degraded to varying extents across the estuary seabed. Sediments with DI >0 (relatively labile) were found mostly within a coastal hypoxic area. Sediments of DI less than -1 (relatively refractory) were found near the Changjiang River mouth and the northern and southern parts of the central shelf. We consider DI to be a more reliable indicator of degradation than simple ratios of AAs. DI was inversely correlated with the proportion of terrestrial organic material (F t ) in the sediments, indicating that relatively fresh/labile organic matter was generally associated with marine sources. DI was significantly correlated with F t and bottom water apparent oxygen utilization (AOU bot ) together. The parameter DI and the (labile) amino acid tyrosine were highest in hypoxic areas, suggesting the presence of relatively fresh organic matter, probably due to a combination of marine-source inputs and better preservation of organic matter in the silt and clay sediments of these areas (as compared to sandy sediments). Less degraded organic matter with high amino acids was also favorable to benthic animals. Overall, sedimentary estuarine organic matter was least degraded in areas characterized by marine sources of organic matter, low-oxygen conditions, and fine-grained sediments. Copyright © 2018 Elsevier B.V. All rights reserved.
The Case Against Charge Transfer Interactions in Dissolved Organic Matter Optical Properties
NASA Astrophysics Data System (ADS)
McKay, G.; Korak, J.; Erickson, P. R.; Latch, D. E.; McNeill, K.; Rosario-Ortiz, F.
2017-12-01
The optical properties of dissolved organic matter influence chemical and biological processes in all aquatic ecosystems. Organic matter optical properties have been used by scientists and engineers for decades for remote sensing, in situ monitoring, and characterizing laboratory samples to track dissolved organic carbon concentration and character. However, there is still a lack of understanding of the origin of organic matter optical properties, which could conflict with other empirical fluorescence interpretation methods (e.g. PARAFAC). Organic matter optical properties have been attributed to a charge-transfer model in which donor-acceptor complexes play a primary role. This model was evaluated by measuring the absorbance and fluorescence response of organic matter isolates to perturbations in solvent temperature, viscosity, and polarity, which affect the position and intensity of spectra for known donor-acceptor complexes of organic molecules. Absorbance and fluorescence spectral shape were unaffected by these perturbations, indicating that the distribution of absorbing and emitting species was unchanged. These results call into question the wide applicability of the charge-transfer model for explaining organic matter optical properties and suggest that future research should explore other models for organic matter photophysics.
Increasing the sensitivity of LXe TPCs to dark matter by doping with helium or neon
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lippincott, W. Hugh; Alexander, Thomas R.; Hime, Andrew
Next generation liquid xenon TPCs are poised to increase our sensitivity to dark matter by two orders of magnitude over a wide range of possible dark matter candidates. This proceedings describes an idea to expand the reach and flexibility of such detectors even further, by adding helium and neon to the xenon to enable searches for very light dark matter and combining high and low Z targets in the same detector. Adding helium or neon to LXe-TPCs has many advantages. First, the helium or neon target benefits from the excellent self-shielding provided by a large liquid xenon detector. Second, themore » same instrumentation, PMTs, and data acquisition can be used. Third, light nuclei are more robust to the systematic uncertainties that affect light WIMP searches. Fourth, helium and neon recoils will likely produce larger signals in liquid xenon than xenon recoils, achieving lower energy thresholds, and further increasing the sensitivity to light WIMPs. Finally, by adding He/Ne in sequence after a Xe-only run, the source of any observed signal can be isolated.« less
Increasing the sensitivity of LXe TPCs to dark matter by doping with helium or neon
Lippincott, W. Hugh; Alexander, Thomas R.; Hime, Andrew
2017-02-03
Next generation liquid xenon TPCs are poised to increase our sensitivity to dark matter by two orders of magnitude over a wide range of possible dark matter candidates. This proceedings describes an idea to expand the reach and flexibility of such detectors even further, by adding helium and neon to the xenon to enable searches for very light dark matter and combining high and low Z targets in the same detector. Adding helium or neon to LXe-TPCs has many advantages. First, the helium or neon target benefits from the excellent self-shielding provided by a large liquid xenon detector. Second, themore » same instrumentation, PMTs, and data acquisition can be used. Third, light nuclei are more robust to the systematic uncertainties that affect light WIMP searches. Fourth, helium and neon recoils will likely produce larger signals in liquid xenon than xenon recoils, achieving lower energy thresholds, and further increasing the sensitivity to light WIMPs. Finally, by adding He/Ne in sequence after a Xe-only run, the source of any observed signal can be isolated.« less
Wu, Ming-Kung; Lu, Yan-Ting; Huang, Chi-Wei; Lin, Pin-Hsuan; Chen, Nai-Ching; Lui, Chun-Chung; Chang, Wen-Neng; Lee, Chen-Chang; Chang, Ya-Ting; Chen, Sz-Fan; Chang, Chiung-Chih
2015-07-01
Cerebrovascular risk factors and white matter (WM) damage lead to worse cognitive performance in Alzheimer dementia (AD). This study investigated WM microstructure using diffusion tensor imaging in patients with mild to moderate AD and investigated specific fiber tract involvement with respect to predefined cerebrovascular risk factors and neurobehavioral data prediction cross-sectionally and after 18 months. To identify the primary pathoanatomic relationships of risk biomarkers to fiber tract integrity, we predefined 11 major association tracts and calculated tract specific fractional anisotropy (FA) values. Eighty-five patients with AD underwent neurobehavioral assessments including the minimental state examination (MMSE) and 12-item neuropsychiatric inventory twice with a 1.5-year interval to represent major outcome factors. In the cross-sectional data, total cholesterol, low-density lipoprotein, vitamin B12, and homocysteine levels correlated variably with WM FA values. After entering the biomarkers and WM FA into a regression model to predict neurobehavioral outcomes, only fiber tract FA or homocysteine level predicted the MMSE score, and fiber tract FA or age predicted the neuropsychiatric inventory total scores and subdomains of apathy, disinhibition, and aberrant motor behavior. In the follow-up neurobehavioral data, the mean global FA value predicted the MMSE and aberrant motor behavior subdomain, while age predicted the anxiety and elation subdomains. Cerebrovascular risk biomarkers may modify WM microstructural organization, while the association with fiber integrity showed greater clinical significance to the prediction of neurobehavioral outcomes both cross-sectionally and longitudinally.
Interactive effects of C, organic N, and inorganic N on SOM mineralization
NASA Astrophysics Data System (ADS)
Mason-Jones, Kyle; Schmücker, Niklas; Kuzyakov, Yakov
2017-04-01
The processes governing soil organic matter (SOM) mineralization are not yet fully understood, despite considerable interest in the topic. Mechanistic theories of microbial activity often point to interactions between carbon (C) pools and other nutrients, notably nitrogen (N). The N-mining hypothesis is a well-known example, which claims that N-limited microorganisms mineralize SOM to access the N contained within. This could elegantly explain why an increase in available carbon often accelerates mineralization of SOM, i.e. the priming effect. The hypothesis predicts a robust positive relationship between priming and C:N ratio of the added organic substances, and we therefore tested this expectation. Soil samples from an agricultural Luvisol were incubated in a three-week, full factorial experiment, amended with organic carbon sources (glucose, alanine and no addition), at three levels of C addition (none, 25% and 50% of extractable MBC), and three levels of inorganic N to match the organic N provided by alanine. Isotopic labelling (14C and 15N) was used to trace added C and N in the evolved CO2, soil solution and microbial biomass. Both glucose and alanine induced accelerated SOM mineralization. Alanine's low C:N ratio did not prevent it from causing priming, and inorganic N forms had little effect on SOM mineralization. Our results were therefore inconsistent with the predictions of the N-mining hypothesis. Instead, the dynamics of the observed priming indicated that other mechanisms were more important, closely related to the mineralization of the added substances. Co-metabolism of SOM and apparent priming by pool substitution were more consistent the observed priming effects. These new experimental results are supported by an analysis of literature. We demonstrate that the simple C:N stoichiometric theory of N mining is insufficient to explain the role of N in SOM mineralization. Other mechanisms must be included in explanations of SOM priming.
Verfaillie, Sander C J; Slot, Rosalinde E R; Dicks, Ellen; Prins, Niels D; Overbeek, Jozefien M; Teunissen, Charlotte E; Scheltens, Philip; Barkhof, Frederik; van der Flier, Wiesje M; Tijms, Betty M
2018-03-30
Grey matter network disruptions in Alzheimer's disease (AD) are associated with worse cognitive impairment cross-sectionally. Our aim was to investigate whether indications of a more random network organization are associated with longitudinal decline in specific cognitive functions in individuals with subjective cognitive decline (SCD). We included 231 individuals with SCD who had annually repeated neuropsychological assessment (3 ± 1 years; n = 646 neuropsychological investigations) available from the Amsterdam Dementia Cohort (54% male, age: 63 ± 9, MMSE: 28 ± 2). Single-subject grey matter networks were extracted from baseline 3D-T1 MRI scans and we computed basic network (size, degree, connectivity density) and higher-order (path length, clustering, betweenness centrality, normalized path length [lambda] and normalized clustering [gamma]) parameters at whole brain and/or regional levels. We tested associations of network parameters with baseline and annual cognition (memory, attention, executive functioning, language composite scores, and global cognition [all domains with MMSE]) using linear mixed models, adjusted for age, sex, education, scanner and total gray matter volume. Lower network size was associated with steeper decline in language (β ± SE = 0.12 ± 0.05, p < 0.05FDR). Higher-order network parameters showed no cross-sectional associations. Lower gamma and lambda values were associated with steeper decline in global cognition (gamma: β ± SE = 0.06 ± 0.02); lambda: β ± SE = 0.06 ± 0.02), language (gamma: β ± SE = 0.11 ± 0.04; lambda: β ± SE = 0.12 ± 0.05; all p < 0.05FDR). Lower path length values in precuneus and fronto-temporo-occipital cortices were associated with a steeper decline in global cognition. A more randomly organized grey matter network was associated with a steeper decline of cognitive functioning, possibly indicating the start of cognitive impairment. © 2018 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc.
Oustriere, Nadège; Marchand, Lilian; Lottier, Nathalie; Motelica, Mikael; Mench, Michel
2017-02-01
A 2-year pot experiment was carried out to examine the aging effect of biochar (B), alone or combined with iron grit (Z), on Cu stabilization and plant growth in a contaminated soil (964mg Cu kg -1 ) from a wood preservation site. The experiment consisted in 3 soil treatments, either planted with Arundo donax L. (Ad) or Populus nigra L. (Pn): (1) untreated Cu-contaminated soil (Ad, Pn); (2) Unt+1% (w/w) B (AdB, PnB), and (3) Unt+1% B+1% Z (AdBZ, PnBZ). After 22months, the soil pore water (SPW) was sampled and roots and shoots were harvested. The SPW compositions at 3 and 22months were compared, showing that the SPW Cu 2+ concentration increased again in the PnB and PnBZ soils. Cultivation of A. donax enhanced the dissolved organic matter concentration in the SPW, which decreased its Cu 2+ concentration but promoted its total Cu concentration in the Ad and AdB soils. Adding Z with B reduced both SPW Cu 2+ and Cu concentrations in the pots cultivated by A. donax and P. nigra as compared to B alone. The B and BZ treatments did not enhance root and shoot yields of both plant species as compared to the Unt soil but their shoot Cu concentrations were in the range of common values. Copyright © 2016 Elsevier B.V. All rights reserved.
Nedelska, Zuzana; Schwarz, Christopher G.; Boeve, Bradley F.; Lowe, Val; Reid, Robert I.; Przybelski, Scott A.; Lesnick, Timothy G.; Gunter, Jeffrey L.; Senjem, Matthew L.; Ferman, Tanis J.; Smith, Glenn E.; Geda, Yonas E.; Knopman, David S.; Petersen, Ronald C.; Jack, Clifford R.; Kantarci, Kejal
2015-01-01
Many patients with dementia with Lewy bodies have overlapping Alzheimer's disease (AD)–related pathology, which may contribute to white matter (WM) diffusivity alterations on diffusion tensor imaging (DTI). Consecutive patients with DLB (n=30), age and sex matched AD patients (n=30), and cognitively normal controls (CN; n=60) were recruited. All subjects underwent DTI, 18F 2-fluoro-deoxy-d-glucose (FDG) and 11C Pittsburgh compound B (PiB) PET scans. DLB patients had reduced fractional anisotropy (FA) in the parieto-occipital WM but not elsewhere compared to CN, and elevated FA in parahippocampal WM compared to AD patients, which persisted after controlling for Aβ load in DLB. The pattern of WM FA alterations on DTI was consistent with the more diffuse posterior parietal and occipital glucose hypometabolism of FDG PET in the cortex. DLB is characterized by a loss of parieto-occipital WM integrity, independent of concomitant AD-related Aβ load. Cortical glucose hypometabolism accompanies WM FA alterations with a concordant pattern of gray and white matter involvement in the parieto-occipital lobes in DLB. PMID:25863527
Doan, Nhat Trung; Engvig, Andreas; Zaske, Krystal; Persson, Karin; Lund, Martina Jonette; Kaufmann, Tobias; Cordova-Palomera, Aldo; Alnæs, Dag; Moberget, Torgeir; Brækhus, Anne; Barca, Maria Lage; Nordvik, Jan Egil; Engedal, Knut; Agartz, Ingrid; Selbæk, Geir; Andreassen, Ole A; Westlye, Lars T
2017-09-01
Alzheimer's disease (AD) is a debilitating age-related neurodegenerative disorder. Accurate identification of individuals at risk is complicated as AD shares cognitive and brain features with aging. We applied linked independent component analysis (LICA) on three complementary measures of gray matter structure: cortical thickness, area and gray matter density of 137 AD, 78 mild (MCI) and 38 subjective cognitive impairment patients, and 355 healthy adults aged 18-78 years to identify dissociable multivariate morphological patterns sensitive to age and diagnosis. Using the lasso classifier, we performed group classification and prediction of cognition and age at different age ranges to assess the sensitivity and diagnostic accuracy of the LICA patterns in relation to AD, as well as early and late healthy aging. Three components showed high sensitivity to the diagnosis and cognitive status of AD, with different relationships with age: one reflected an anterior-posterior gradient in thickness and gray matter density and was uniquely related to diagnosis, whereas the other two, reflecting widespread cortical thickness and medial temporal lobe volume, respectively, also correlated significantly with age. Repeating the LICA decomposition and between-subject analysis on ADNI data, including 186 AD, 395 MCI and 220 age-matched healthy controls, revealed largely consistent brain patterns and clinical associations across samples. Classification results showed that multivariate LICA-derived brain characteristics could be used to predict AD and age with high accuracy (area under ROC curve up to 0.93 for classification of AD from controls). Comparison between classifiers based on feature ranking and feature selection suggests both common and unique feature sets implicated in AD and aging, and provides evidence of distinct age-related differences in early compared to late aging. Copyright © 2017 Elsevier Inc. All rights reserved.
76 FR 42143 - Sunshine Act Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2011-07-18
..., 2011: Adjudicatory Matters. At times, changes in Commission priorities require alterations in the scheduling of meeting items. For further information and to ascertain what, if any, matters have been added...
Natural organic matters removal efficiency by coagulation
NASA Astrophysics Data System (ADS)
Sapingi, Mohd Sharizal Mohd; Pishal, Munirah; Murshed, Mohamad Fared
2017-10-01
The presence of Natural Organic Matter (NOM) in surface water results in unwanted characteristics in terms of color, odor, and taste. NOM content reaction with free chlorine in treated water lowers the water quality further. Chlorine is added for disinfection and produces undesirable disinfection by-products (DPBs). DBPs in drinking water are carcinogenic to consumers and may promote cancerous cell development in the human body. This study was performed to compare the coagulant efficiency of aluminum sulfate (Alum) and ferric chloride (FeCl3) on NOM removal (as in UV254 absorbance) and turbidity removal under three pH conditions (pH 6, pH 7, and sample actual pH). The three sampling points for these studies were Jalan Baru River, Kerian River, and Redac Pond. Additional sampling points, such as Lubuk Buntar and a tubewell located in the Civil Engineering School, were included to observe differences in characteristics. DOC, UV absorbance, and full wavelength were tested, after which samples treated with alum were also tested to further analyze the NOM content. Based on UV254 absorbance and DOC data, specific UV value was calculated to obtain vital synopsis of the characteristics of NOM content, as well as coagulation efficiency.
NASA Astrophysics Data System (ADS)
Curry, Kenneth J.; Bennett, Richard H.; Mayer, Lawrence M.; Curry, Ann; Abril, Maritza; Biesiot, Patricia M.; Hulbert, Matthew H.
2007-04-01
We employed direct visualization of organic matter (OM) sequestered by microfabric signatures in organo-clay systems to study mechanisms of OM protection. We studied polysaccharides, an abundant class of OM in marine sediments, associated with the nano- and microfabric of clay sediment using a novel application of transmission electron microscopy, histochemical staining (periodic acid-thiosemicarbazide-silver proteinate), and enzymatic digestion techniques. We used two experimental organo-clay sediment environments. First, laboratory-consolidated sediment with 10% chitin (w/w) added was probed for chitin before and after digestion with chitinase. Second, fecal pellets from the polychaete Heteromastus filiformis were used as a natural environment rich in clay and polysaccharides. Sections of this material were probed with silver proteinate for polysaccharides before and after digestion with a mixture of enzymes (amylase, cellulase, chitinase, dextranase, and pectinase). In both environments, chitin or other polysaccharides were found within pores, bridging clay domains, and attached to clay surfaces in undigested samples. Digested samples showed chitin or polysaccharides more closely associated with clay surfaces and in small pores. Our results imply protective roles for both sorption to clay surfaces and encapsulation within clay microfabric signatures.
Song, Yi; Guo, Fen; Gu, Song-hai
2007-02-01
Eight components, i. e. Mn, SiO2, Fe, P, Al2O3, CaO, MgO and S, in manganese ore were determined by X-ray fluorescence spectrometer. Because manganese ore sample releases a lot of air bubbles during fusion which effect accuracy and reproducibility of determination, nitric acid was added to the sample to destroy organic matter before fusion by the mixture flux at 1000 degrees C. This method solved the problem that the flux splashed during fusion because organic matter volatilized brought out a lot of air bubbles, eliminated particle size effects and mineral effect, while solved the problem of volatilization of sulfur during fusion. The experiments for the selection of the sample preparation conditions, i. e. fusion flux, fusion time and volume of HNO3, were carried out. The matrix effects on absorption and enhancement were corrected by variable theoretical alpha coefficient to expand the range of determination. Moreover, the precision and accuracy experiments were performed. In comparison with chemical analysis method, the quantitative analytical results for each component are satisfactory. The method has proven rapid, precise and simple.
Natural Organic Matter Removal and Fouling in a Low Pressure Hybrid Membrane Systems
Uyak, Vedat; Akdagli, Muge; Cakmakci, Mehmet; Koyuncu, Ismail
2014-01-01
The objective of this study was to investigate powdered activated carbon (PAC) contribution to natural organic matter (NOM) removal by a submerged MF and UF hybrid systems. It was found that filtration of surface waters by a bare MF and UF membranes removed negligible TOC; by contrast, significant amounts of TOC were removed when daily added PAC particles were predeposited on the membrane surfaces. These results support the assumption that the membranes surface properties and PAC layer structure might have considerably influential factor on NOM removal. Moreover, it was concluded that the dominant removal mechanism of hybrid membrane system is adsorption of NOM within PAC layer rather than size exclusion of NOM by both of membrane pores. Transmembrane pressure (TMP) increases with PAC membrane systems support the view that PAC adsorption pretreatment will not prevent the development of membrane pressure; on the contrary, PAC particles themselves caused membrane fouling by blocking the entrance of pores of MF and UF membranes. Although all three source waters have similar HPI content, it appears that the PAC interaction with the entrance of membrane pores was responsible for offsetting the NOM fractional effects on membrane fouling for these source waters. PMID:24523651
Deformation behaviors of peat with influence of organic matter.
Yang, Min; Liu, Kan
2016-01-01
Peat is a kind of special material rich in organic matter. Because of the high content of organic matter, it shows different deformation behaviors from conventional geotechnical materials. Peat grain has a non-negligible compressibility due to the presence of organic matter. Biogas can generate from peat and can be trapped in form of gas bubbles. Considering the natural properties of peat, a special three-phase composition of peat is described which indicates the existence of organic matter and gas bubbles in peat. A stress-strain-time model is proposed for the compression of organic matter, and the surface tension effect is considered in the compression model of gas bubbles. Finally, a mathematical model has been developed to simulate the deformation behavior of peat considering the compressibility of organic matter and entrapped gas bubbles. The deformation process is the coupling of volume variation of organic matter, gas bubbles and water drainage. The proposed model is used to simulate a series of peat laboratory oedometer tests, and the model can well capture the test results with reasonable model parameters. Effects of model parameters on deformation of peat are also analyzed.
What is soil organic matter worth?
Sparling, G P; Wheeler, D; Vesely, E-T; Schipper, L A
2006-01-01
The conservation and restoration of soil organic matter are often advocated because of the generally beneficial effects on soil attributes for plant growth and crop production. More recently, organic matter has become important as a terrestrial sink and store for C and N. We have attempted to derive a monetary value of soil organic matter for crop production and storage functions in three contrasting New Zealand soil orders (Gley, Melanic, and Granular Soils). Soil chemical and physical characteristics of real-life examples of three pairs of matched soils with low organic matter contents (after long-term continuous cropping for vegetables or maize) or high organic matter content (continuous pasture) were used as input data for a pasture (grass-clover) production model. The differences in pasture dry matter yields (non-irrigated) were calculated for three climate scenarios (wet, dry, and average years) and the yields converted to an equivalent weight and financial value of milk solids. We also estimated the hypothetical value of the C and N sequestered during the recovery phase of the low organic matter content soils assuming trading with C and N credits. For all three soil orders, and for the three climate scenarios, pasture dry matter yields were decreased in the soils with lower organic matter contents. The extra organic matter in the high C soils was estimated to be worth NZ$27 to NZ$150 ha(-1) yr(-1) in terms of increased milk solids production. The decreased yields from the previously cropped soils were predicted to persist for 36 to 125 yr, but with declining effect as organic matter gradually recovered, giving an accumulated loss in pastoral production worth around NZ$518 to NZ$1239 ha(-1). This was 42 to 73 times lower than the hypothetical value of the organic matter as a sequestering agent for C and N, which varied between NZ$22,963 to NZ$90,849 depending on the soil, region, discount rates, and values used for carbon and nitrogen credits.
Abudalo, R.A.; Ryan, J.N.; Harvey, R.W.; Metge, D.W.; Landkamer, Lee L.
2010-01-01
To assess the effect of organic matter on the transport of Cryptosporidium parvum oocysts in a geochemically heterogeneous saturated porous medium, we measured the breakthrough and collision efficiencies of oocysts as a function of dissolved organic matter concentration in a flow-through column containing ferric oxyhydroxide-coated sand. We characterized the surface properties of the oocysts and ferric oxyhydroxide-coated sand using microelectrophoresis and streaming potential, respectively, and the amount of organic matter adsorbed on the ferric oxyhydroxide-coated sand as a function of the concentration of dissolved organic matter (a fulvic acid isolated from Florida Everglades water). The dissolved organic matter had no significant effect on the zeta potential of the oocysts. Low concentrations of dissolved organic matter were responsible for reversing the charge of the ferric oxyhydroxide-coated sand surface from positive to negative. The charge reversal and accumulation of negative charge on the ferric oxyhydroxide-coated sand led to increases in oocyst breakthrough and decreases in oocyst collision efficiency with increasing dissolved organic matter concentration. The increase in dissolved organic matter concentration from 0 to 20 mg L-1 resulted in a two-fold decrease in the collision efficiency. ?? 2009 Elsevier Ltd.
78 FR 26412 - Sunshine Act Meetings
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-06
.... For further information and to ascertain what, if any, matters have been added, deleted or postponed.... Certain staff members who have an interest in the matters also may be present. The General Counsel of the...), permit consideration of the scheduled matters at the Closed Meeting. Commissioner Gallagher, as duty...
78 FR 40780 - Sunshine Act Meetings
Federal Register 2010, 2011, 2012, 2013, 2014
2013-07-08
... what, if any, matters have been added, deleted or postponed, please contact the Office of the Secretary... Closed Meeting. Certain staff members who have an interest in the matters also may be present. The...) and (10), permit consideration of the scheduled matters at the Closed Meeting. Commissioner Gallagher...
77 FR 71845 - Sunshine Act Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2012-12-04
... ascertain what, if any, matters have been added, deleted or postponed, please contact: The Office of the... Meeting. Certain staff members who have an interest in the matters also may be present. The General...) and (10), permit consideration of the scheduled matters at the Closed Meeting. Commissioner Gallagher...
76 FR 14110 - Sunshine Act Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-15
.... For further information and to ascertain what, if any, matters have been added, deleted or postponed.... The following matter will also be considered during the 10 a.m. closed meeting scheduled for Thursday, March 17, 2011: A litigation matter. Commissioner Casey, as duty officer, voted to consider the item...
77 FR 73498 - Sunshine Act Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2012-12-10
... meeting items. For further information and to ascertain what, if any, matters have been added, deleted or... Meeting. Certain staff members who have an interest in the matters also may be present. The General...) and (10), permit consideration of the scheduled matters at the Closed Meeting. Commissioner Aguilar...
The contentious nature of soil organic matter.
Lehmann, Johannes; Kleber, Markus
2015-12-03
The exchange of nutrients, energy and carbon between soil organic matter, the soil environment, aquatic systems and the atmosphere is important for agricultural productivity, water quality and climate. Long-standing theory suggests that soil organic matter is composed of inherently stable and chemically unique compounds. Here we argue that the available evidence does not support the formation of large-molecular-size and persistent 'humic substances' in soils. Instead, soil organic matter is a continuum of progressively decomposing organic compounds. We discuss implications of this view of the nature of soil organic matter for aquatic health, soil carbon-climate interactions and land management.
Quantifying the degradation of organic matter in marine sediments: A review and synthesis
NASA Astrophysics Data System (ADS)
Arndt, Sandra; Jørgensen, B. B.; LaRowe, D. E.; Middelburg, J. J.; Pancost, R. D.; Regnier, P.
2013-08-01
Quantifying the rates of biogeochemical processes in marine sediments is essential for understanding global element cycles and climate change. Because organic matter degradation is the engine behind benthic dynamics, deciphering the impact that various forces have on this process is central to determining the evolution of the Earth system. Therefore, recent developments in the quantitative modeling of organic matter degradation in marine sediments are critically reviewed. The first part of the review synthesizes the main chemical, biological and physical factors that control organic matter degradation in sediments while the second part provides a general review of the mathematical formulations used to model these processes and the third part evaluates their application over different spatial and temporal scales. Key transport mechanisms in sedimentary environments are summarized and the mathematical formulation of the organic matter degradation rate law is described in detail. The roles of enzyme kinetics, bioenergetics, temperature and biomass growth in particular are highlighted. Alternative model approaches that quantify the degradation rate constant are also critically compared. In the third part of the review, the capability of different model approaches to extrapolate organic matter degradation rates over a broad range of temporal and spatial scales is assessed. In addition, the structure, functions and parameterization of more than 250 published models of organic matter degradation in marine sediments are analyzed. The large range of published model parameters illustrates the complex nature of organic matter dynamics, and, thus, the limited transferability of these parameters from one site to another. Compiled model parameters do not reveal a statistically significant correlation with single environmental characteristics such as water depth, deposition rate or organic matter flux. The lack of a generic framework that allows for model parameters to be constrained in data-poor areas seriously limits the quantification of organic matter degradation on a global scale. Therefore, we explore regional patterns that emerge from the compiled more than 250 organic matter rate constants and critically discuss them in their environmental context. This review provides an interdisciplinary view on organic matter degradation in marine sediments. It contributes to an improved understanding of global patterns in benthic organic matter degradation, and helps identify outstanding questions and future directions in the modeling of organic matter degradation in marine sediments.
Influence of solar radiation on DOM release from resuspended Florida Bay sediments
NASA Astrophysics Data System (ADS)
Shank, G. C.; Evans, A.; Jaffé, R.; Yamashita, Y.
2009-12-01
This study investigated dissolved organic matter (DOM) release from resuspended Florida Bay sediments under dark and sunlit conditions. Much of Florida Bay (located between Everglades and Florida Keys) is very shallow (< 2 m) so sediment resuspension events have the potential to substantially impact the concentration and composition of DOM in the water column. For our study, sediments were collected at several sites across Florida Bay and ranged from 3-11 percent organic carbon (by weight). Sediments were resuspended in oligotrophic seawater for 48 hours in 1 L quartz flasks in the dark and under simulated solar radiation (SunTest XLS+) at concentrations of 100 mg L-1 and 1 g L-1 (wet weight). Final solutions were analyzed for DOC, chromophoric dissolved organic matter (CDOM), and Excitation Emission Matrix (EEM) fluorescence. Results showed little to no DOC increases in the resuspensions performed under dark conditions, but substantial release of DOM in irradiated resuspensions, especially at high sediment concentrations where DOC increases ranged from 100-500%. The sediments also released substantial quantities of CDOM to solution under irradiated conditions. The magnitude of DOC increases in irradiated resuspensions were well-correlated with the amount of particulate organic carbon (POC) added. Data from EEM-PARAFAC analyses suggests the photochemically produced DOM was comprised of desorbed humic material with a smaller fraction from microbial mediated processes. Our study provides evidence that sediment resuspension episodes in shallow sunlit waters such as Florida Bay have the potential to provide an important source of organic carbon to overlying waters.
Defining organic matter quality in sediment systems: a suggested classification scheme
NASA Astrophysics Data System (ADS)
Alderson, Danielle; Evans, Martin; Rothwell, James; Boult, Stephen
2015-04-01
The quantity and quality of the mineral component of sediments is a core focus of sedimentological investigation in terrestrial systems. This is not to say that the organic component of collected sediments is simply ignored; the organic component is often scrutinised, but in some fields in a restricted manner, limited to basic characteristics such as the ratio of organic to mineral content derived from loss on ignition. There is no doubt that this information is useful; however, these types of analysis indicate the quantity of organic matter relative to a particular temporal scale or volume, rather than treating the organic fraction as a separate entity worthy of substantial investigation. The quality of the organic component is being increasingly considered in a number of fields, with molecular, thermal, spectroscopic and bulk methods being used. However, models and theories on organic matter processing in a variety of environmental systems, have been developed without clearly defining organic matter quality, because most results do not depend on an outright measure of quality (Bosatta and Agren, 1999). With approaches and techniques varying between fields, there is a need to consider a more systematic approach to the analysis and definition of organic matter quality. The disparities in the definition of the quality of organic matter, and thus how it may be measured have vital implications for the study of carbon cycling, biogeochemical processing, and ultimately ecosystem structure and function. The quality and quantity of organic matter have an influence on the chemistry and biology of systems and may reveal a wealth of past or contemporary environmental information. In this paper we provide a classification of organic matter quality and examples of potential applications and suitable techniques for the analysis of the main classes of organic matter character. A more consistent approach to organic matter characterisation has the potential to aid understanding of soils and sediments through consideration of decomposition dynamics; accounting for organic matter variety in carbon cycling and budgeting; use of organic proxies of source determination; and investigations into palaeovegetation and palaeoclimate.
Organic amendments derived from a pharmaceutical by-product: benefits and risks
NASA Astrophysics Data System (ADS)
Gigliotti, Giovanni; Cucina, Mirko; Zadra, Claudia; Pezzolla, Daniela; Sordi, Simone; Carla Marcotullio, Maria; Curini, Massimo
2015-04-01
The application of organic amendments to soils, such as sewage sludge, anaerobic digestate and compost is considered a tool for improving soil fertility and enhancing C stocks. The addition of these different organic materials allows a good supply of nutrients for plants but also contributes to C sequestration, affects the microbial activity and the transformation of soil organic matter (SOM). Moreover, the addition of organic amendment has gained importance as a source of CO2 emissions and then as a cause of the "Global Warming". Therefore, it is important to investigate the factors controlling the SOM mineralization in order to improve the soil C sequestration and decreasing at the same time CO2 emissions. Moreover, the quality of organic matter added to the soil will play an important role in these dynamics. Based on these considerations, the aim of the present work was to investigate the effect of the application to an arable soil of different organic materials derived from a pharmaceutical by-product which results from the fermentative biomass after the separation of the lipopolypeptidic antibiotic produced. A microcosm soil experiment was carried out using three different materials: a sewage sludge derived from the stabilization process of the by-product, a digestate obtained from the anaerobic treatment of the by-product and a compost produced by the aerobic treatment of the same digestate. To achieve this aim, the short-term variations of CO2 emissions, enzymatic soil activities (Dehydrogenase total activity and Fluoresceine diacetate hydrolysis), SOM quantity and quality were studied. In addition, process-related residues of antibiotic and decanoic acid (a precursor added during the fermentation) were analyzed on the organic materials to assess their possible presence. Through these analyses it was possible to state that the application to the soil of sewage sludge and anaerobic digestate may have a strong influence on the short-term variations of the parameters evaluated, particularly on enzymatic soil activities and on CO2 emissions. Whereas, results obtained from compost amended soils showed that its addition to the soil affects lower the enzymatic soil activities and CO2 emissions than the other materials. Determinations of antibiotic and decanoic acid residues showed that only small traces of them were recognizable in the sewage sludge and in the anaerobic digestate. Compost showed concentrations of these compounds lower than the method sensibility and then, based on these results, further analysis on the amended soil were considered negligible.
Halim, M; Conte, P; Piccolo, A
2003-07-01
Effective phytoremediation of soils contaminated by heavy metals depends on their availability to plant uptake that, in turn, may be influenced by either the existing soil humus or an exogenous humic matter. We amended an organic and a mineral soil with an exogenous humic acid (HA) in order to enhance the soil organic carbon (SOC) content by 1% and 2%. The treated soils were further enriched with heavy metals (Cu, Pb, Cd, Zn, Ni) to a concentration of 0, 10, 20, and 40 microg/g for each metal and allowed to age at room temperature for 1 and 2 months. After each period, they were extracted for readily soluble and exchangeable (2.5% acetic acid), plant-available (DTPA, Diethylentriaminepentaacetic acid), and occluded (1 N HNO(3)) metal species. Addition of HA generally reduced the extractability of the soluble and exchangeable forms of metals. This effect was directly related to the amount of added HA and increased with ageing time. Conversely, the potentially plant-available metals extracted with DTPA were generally larger with increasing additions of exogenous HA solutions. This was attributed to the formation of metal-humic complexes, which ensured a temporary bioavailability of metals and prevented their rapid transformation into insoluble species. Extractions with 1 N HNO(3) further indicated that the added metals were present in complexes with HA. The observed effects appeared to also depend on the amount of native SOC and its structural changes with ageing. The results suggest that soil amendments with exogenous humic matter may accelerate the phytoremediation of heavy metals from contaminated soil, while concomitantly prevent their environmental mobility.
Simon, F Xavier; Penru, Ywann; Guastalli, Andrea R; Llorens, Joan; Baig, Sylvie
2011-07-15
Biochemical oxygen demand (BOD) is a useful parameter for assessing the biodegradability of dissolved organic matter in water. At the same time, this parameter is used to evaluate the efficiency with which certain processes remove biodegradable natural organic matter (NOM). However, the values of BOD in seawater are very low (around 2 mgO(2)L(-1)) and the methods used for its analysis are poorly developed. The increasing attention given to seawater desalination in the Mediterranean environment, and related phenomena such as reverse osmosis membrane biofouling, have stimulated interest in seawater BOD close to the Spanish coast. In this study the BOD analysis protocol was refined by introduction of a new step in which a critical quantity of autochthonous microorganisms, measured as adenosine triphosphate, is added. For the samples analyzed, this improvement allowed us to obtain reliable and replicable BOD measurements, standardized with solutions of glucose-glutamic acid and acetate. After 7 days of analysis duration, more than 80% of ultimate BOD is achieved, which in the case of easily biodegradable compounds represents nearly a 60% of the theoretical oxygen demand. BOD(7) obtained from the Mediterranean Sea found to be 2.0±0.3 mgO(2)L(-1) but this value decreased with seawater storage time due to the rapid consumption of labile compounds. No significant differences were found between two samples points located on the Spanish coast, since their organic matter content was similar. Finally, the determination of seawater BOD without the use of inoculum may lead to an underestimation of BOD. Copyright © 2011 Elsevier B.V. All rights reserved.
Accumulation of chlorinated benzenes in earthworms
Beyer, W.N.
1996-01-01
Chlorinated benzenes are widespread in the environment. Hexachlorobenzene, pentachlorobenzene and all isomers of dichlorobenzenes, trichlorobenzenes, and tetrachlorobenzenes, have been detected in fish, water, and sediments from the Great Lakes. This paper describes a long-term (26 week) experiment relating the concentrations of chlorinated benzenes in earthworms to 1) the length of exposure, and it describes three 8-week experiments relating concentrations of chlorinated benzenes in earthworms to 2) their concentration in soil 3) the soil organic matter content and, 4) the degree of chlorination. In the 26-week experiment, the concentration of 1,2,4 - trichlorobenzene in earthworms fluctuated only slightly about a mean of 0.63 ppm (Fig. 1). Although a statistically significant decrease can be demonstrated over the test (Pearson correlation coefficient, r = -0.62 p < 0.05), the decrease was minor. Hexachlorobenzene in earthworms showed a cyclical trend that coincided with replacement of the media, and a slight but statistically significant tendency to increase from about 2 to 3 ppm over the 26 weeks (r = 0.55, p < 0.05). Concentrations of both trichlorobenzene and hexachlorobenzene in earthworms increased as the concentrations in the soil increased (Fig. 2), but leveled off at the highest soil concentrations. The most surprising result of this study was the relatively low concentrations in earthworms compared to those in soils. The average concentration of each of the six isomers of trichlorobenzene and tetrachlorobenzene in earthworms was only about 1 ppm (Table 2); the isomeric structure did not affect accumulation. The concentration of organic matter in soil had a prominent effect on hexachlorobenzene concentrations in earthworms (Fig. 3). Hexachlorobenzene concentrations decreased steadily from 9.3 ppm in earthworms kept in soil without any peat moss added to about 1 ppm in soil containing 16 or 32% organic matter.
Zhu, Jian; Wang, Ping; Lin, Yan; Lei, Ming-jing; Chen, Yang
2016-02-15
In order to understand the difference of in situ immobilization effect and mechanism of Cd contamination in soil using diatomite produced from different areas, the test was conducted using diatomite produced from Yunnan Tengchong, Jilin Linjiang, Zhejiang Shengzhou and Henan Xinyang of China as modifiers to immobilize cadmium contamination in simulated soil. The results indicated that the diatomite from all the four producing areas could effectively immobilize available Cd in soil, decreasing the available Cd content in soil by 27.7%, 28.5%, 30.1% and 57.2%, respectively when the adding concentration was 30 g x kg(-1). Their ability for immobilizing available Cd in soil followed the sequence of Henan Xinyang > Zhejiang Shengzhou > Jilin Linjiang > Yunnan Tengchong. It was also found that the physical and chemical properties of diatomite played a main role in soil cadmium immobilization, lower bulk density, larger specific surface area, more micro pores and wider distribution range of aperture were more favorable for available Cd immobilization. The results also showed that, the diatomite could control Cd contamination by changing soil physical and chemical properties, among these properties, pH and organic matter content were the key factors, increasing soil pH value and organic matter content was favorable for available cadmium immobilization, while the soil water content had little effect on available cadmium immobilization. The control of soil cadmium contamination by using diatomite to change cation exchange capacity was limited by time in some degree. The diatomite produced from Henan Xinyang, Zhejiang Shengzhou and Yunnan Tengchong increased the soil pH value and organic matter content, and was favorable for available Cd immobilization, while the diatomite from Jilin Linjiang showed converse effect.
Chen, Chunmei; Thompson, Aaron
2018-01-16
Abiotic Fe(II) oxidation by O 2 commonly occurs in the presence of mineral sorbents and organic matter (OM) in soils and sediments; however, this tertiary system has rarely been studied. Therefore, we examined the impacts of mineral surfaces (goethite and γ-Al 2 O 3 ) and organic matter [Suwannee River fulvic acid (SRFA)] on Fe(II) oxidation rates and the resulting Fe(III) (oxyhydr)oxides under 21 and 1% pO 2 at pH 6. We tracked Fe dynamics by adding 57 Fe(II) to 56 Fe-labeled goethite and γ-Al 2 O 3 and characterized the resulting solids using 57 Fe Mössbauer spectroscopy. We found Fe(II) oxidation was slower at low pO 2 and resulted in higher-crystallinity Fe(III) phases. Relative to oxidation of Fe(II) (aq) alone, both goethite and γ-Al 2 O 3 surfaces increased Fe(II) oxidation rates regardless of pO 2 levels, with goethite being the stronger catalyst. Goethite surfaces promoted the formation of crystalline goethite, while γ-Al 2 O 3 favored nano/small particle or disordered goethite and some lepidocrocite; oxidation of Fe(II) aq alone favored lepidocrocite. SRFA reduced oxidation rates in all treatments except the mineral-free systems at 21% pO 2 , and SRFA decreased Fe(III) phase crystallinity, facilitating low-crystalline ferrihydrite in the absence of mineral sorbents, low-crystalline lepidocrocite in the presence of γ-Al 2 O 3 , but either crystalline goethite or ferrihydrite when goethite was present. This work highlights that the oxidation rate, the types of mineral surfaces, and OM control Fe(III) precipitate composition.
Nicholson, Brooke E.; Beaudoin, Claire S.; Detweiler, Angela M.; Bebout, Brad M.
2014-01-01
Methane production has been observed in a number of hypersaline environments, and it is generally thought that this methane is produced through the use of noncompetitive substrates, such as the methylamines, dimethylsulfide and methanol. Stable isotope measurements of the produced methane have also suggested that the methanogens are operating under conditions of substrate limitation. Here, substrate limitation in gypsum-hosted endoevaporite and soft-mat hypersaline environments was investigated by the addition of trimethylamine, a noncompetitive substrate for methanogenesis, and dried microbial mat, a source of natural organic matter. The δ13C values of the methane produced after amendments were compared to those in unamended control vials. At all hypersaline sites investigated, the δ13C values of the methane produced in the amended vials were statistically lower (by 10 to 71‰) than the unamended controls, supporting the hypothesis of substrate limitation at these sites. When substrates were added to the incubation vials, the methanogens within the vials fractionated carbon isotopes to a greater degree, resulting in the production of more 13C-depleted methane. Trimethylamine-amended samples produced lower methane δ13C values than the mat-amended samples. This difference in the δ13C values between the two types of amendments could be due to differences in isotope fractionation associated with the dominant methane production pathway (or substrate used) within the vials, with trimethylamine being the main substrate used in the trimethylamine-amended vials. It is hypothesized that increased natural organic matter in the mat-amended vials would increase fermentation rates, leading to higher H2 concentrations and increased CO2/H2 methanogenesis. PMID:25239903
76 FR 14110 - Sunshine Act Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-15
... meeting items. For further information and to ascertain what, if any, matters have been added, deleted or.... Certain staff members who have an interest in the matters also may be present. The General Counsel of the...), permit consideration of the scheduled matters at the Closed Meeting. Commissioner Paredes, as duty...
76 FR 65758 - Sunshine Act Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-24
... scheduling of meeting items. For further information and to ascertain what, if any, matters have been added.... Certain staff members who have an interest in the matters also may be present. The General Counsel of the... consideration of the scheduled matter at the Closed Meeting. Commissioner Paredes, as duty officer, voted to...
78 FR 42125 - Sunshine Act Meeting.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-07-15
... what, if any, matters have been added, deleted or postponed, please contact the Office of the Secretary... Item. The following matter will also be considered during the 4:00 p.m. Closed Meeting scheduled for Wednesday July 10, 2013: a personnel matter. The General Counsel of the Commission, or her designee, has...
77 FR 74519 - Sunshine Act Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2012-12-14
... further information and to ascertain what, if any, matters have been added, deleted or postponed, please...: Additional Item. The following matter will also be considered during the 2:00 p.m. Closed Meeting scheduled for Thursday, December 13, 2012: A personnel matter. The General Counsel of the Commission, or his...
77 FR 49846 - Sunshine Act Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2012-08-17
.... For further information and to ascertain what, if any, matters have been added, deleted or postponed... matters also may be present. The General Counsel of the Commission, or his designee, has certified that... (10) and 17 CFR 200.402(a)(3), (5), (7), 9(ii) and (10), permit consideration of the scheduled matters...
77 FR 53948 - Sunshine Act Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2012-09-04
... further information and to ascertain what, if any, matters have been added, deleted or postponed, please...: Additional Item. The following matter will also be considered during the 2:00 p.m. Closed Meeting scheduled for Thursday, August 30, 2012: A personnel matter. The General Counsel of the Commission, or his...
76 FR 52722 - Sunshine Act Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-23
... meeting items. For further information and to ascertain what, if any, matters have been added, deleted or.... Certain staff members who have an interest in the matters also may be present. The General Counsel of the...), permit consideration of the scheduled matters at the Closed Meeting. Commissioner Walter, as duty officer...
78 FR 69463 - Notice of Sunshine Act Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2013-11-19
... information and to ascertain what, if any, matters have been added, deleted or postponed, please contact the... Closed Meeting. Certain staff members who have an interest in the matters also may be present. The...) and (10), permit consideration of the scheduled matter at the Closed Meeting. Commissioner Stein, as...
78 FR 35075 - Sunshine Act Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2013-06-11
.... For further information and to ascertain what, if any, matters have been added, deleted or postponed.... Certain staff members who have an interest in the matters also may be present. The General Counsel of the...), permit consideration of the scheduled matters at the Closed Meeting. Commissioner Walter, as duty officer...
78 FR 36279 - Sunshine Act Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2013-06-17
... information and to ascertain what, if any, matters have been added, deleted or postponed, please contact the...: Additional Item. The following matter will also be considered during the 2:00 p.m. Closed Meeting scheduled for Thursday, June 13, 2013: a personnel matter. The General Counsel of the Commission, or her...
75 FR 21686 - Sunshine Act Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-26
.... For further information and to ascertain what, if any, matters have been added, deleted or postponed.... Certain staff members who have an interest in the matters also may be present. The General Counsel of the... consideration of the scheduled matters at the Closed Meeting. Commissioner Aguilar, as duty officer, voted to...
77 FR 71203 - Sunshine Act Meetings
Federal Register 2010, 2011, 2012, 2013, 2014
2012-11-29
... information and to ascertain what, if any, matters have been added, deleted or postponed, please contact the... Commissioners, the Secretary to the Commission, and certain staff members who have an interest in the matter... CFR 200.402(a)(2) and (6), permit consideration of the scheduled matter at the Closed Meeting...
78 FR 14377 - Sunshine Act Meetings
Federal Register 2010, 2011, 2012, 2013, 2014
2013-03-05
... information and to ascertain what, if any, matters have been added, deleted or postponed, please contact the.... Certain staff members who have an interest in the matters also may be present. The General Counsel of the...), permit consideration of the scheduled matters at the Closed Meeting. Commissioner Aguilar, as duty...
76 FR 24546 - Sunshine Act Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2011-05-02
... scheduling of meeting items. For further information and to ascertain what, if any, matters have been added.... Certain staff members who have an interest in the matters also may be present. The General Counsel of the...), permit consideration of the scheduled matters at the Closed Meeting. Commissioner Walter, as duty officer...
77 FR 40392 - Sunshine Act Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2012-07-09
... ascertain what, if any, matters have been added, deleted or postponed, please contact: The Office of the... secretaries will attend the Closed Meetings. Certain staff members who have an interest in the matters also... matters at the Closed Meeting. Commissioner Gallagher, as duty officer, voted to consider the items listed...
77 FR 6160 - Notice of Sunshine Act Meeting.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-07
... what, if any, matters have been added, deleted or postponed, please contact: The Office of the... attend the Closed Meeting. Certain staff members who have an interest in the matters also may be present...)(3), (5), (7), 9(ii) and (10), permit consideration of the scheduled matters at the Closed Meeting...
76 FR 63964 - Sunshine Act Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-14
... ascertain what, if any, matters have been added, deleted or postponed, please contact: The Office of the.... Certain staff members who have an interest in the matters also may be present. The General Counsel of the...), permit consideration of the scheduled matters at the Closed Meeting. Commissioner Aguilar, as duty...
The use of fiber tractography for identifying patients with Alzheimer's disease
NASA Astrophysics Data System (ADS)
Dong, Kyung-Rae; Goo, Eun-Hoe; Lee, Jae-Seung; Chung, Woon-Kwan
2013-01-01
This study examined the usefulness of fiber tractography (FT) for identifying patients with Alzheimer's disease (AD) and mild cognitive impairment (MCI) through diffusion tensor imaging (DTI). DTI was performed on twelve patients with AD (four males and eight females, mean age: 78.1 ± 7.5 years) and an eleven patients with MCI (five males and six females, mean age: 69.3 ± 8.0 years) from January to December 2011 by using a 3.0T scanner. Two regions of interest were drawn on the pyramidal tract of Pons and the posterior limb of the internal capsule, which passed through both cortico spinal tracts on the color-cored fractional anisotropy (FA) map. The numbers of white matter fibers on the DTIs in the patients with AD and MCI were determined. The numbers of white matter fibers in the AD patients were 1055.67 ± 333.12 and 860.75 ± 355.50 on the left and the right, respectively. In the patients with MCI, the numbers of white matter fibers and were 1329.82 ± 238.99 and 1316.55 ± 215.25 on the left and the right, respectively. The difference between the right and the left sides in the AD patients was slightly higher than that in the MCI patients.
Black hole thermodynamics, conformal couplings, and R 2 terms
NASA Astrophysics Data System (ADS)
Chernicoff, Mariano; Galante, Mario; Giribet, Gaston; Goya, Andres; Leoni, Matias; Oliva, Julio; Perez-Nadal, Guillem
2016-06-01
Lovelock theory provides a tractable model of higher-curvature gravity in which several questions can be studied analytically. This is the reason why, in the last years, this theory has become the favorite arena to study the effects of higher-curvature terms in the context of AdS/CFT correspondence. Lovelock theory also admits extensions that permit to accommodate matter coupled to gravity in a non-minimal way. In this setup, problems such as the backreaction of matter on the black hole geometry can also be solved exactly. In this paper, we study the thermodynamics of black holes in theories of gravity of this type, which include both higher-curvature terms, U(1) gauge fields, and conformal couplings with matter fields in D dimensions. These charged black hole solutions exhibit a backreacting scalar field configuration that is regular everywhere outside and on the horizon, and may exist both in asymptotically flat and asymptotically Anti-de Sitter (AdS) spaces. We work out explicitly the boundary action for this theory, which renders the variational problem well-posed and suffices to regularize the Euclidean action in AdS. We also discuss several interrelated properties of the theory, such as its duality symmetry under field redefinition and how it acts on black holes and gravitational wave solutions.
Beheshti, Iman; Olya, Hossain G T; Demirel, Hasan
2016-04-05
Recently, automatic risk assessment methods have been a target for the detection of Alzheimer's disease (AD) risk. This study aims to develop an automatic computer-aided AD diagnosis technique for risk assessment of AD using information diffusion theory. Information diffusion is a fuzzy mathematics logic of set-value that is used for risk assessment of natural phenomena, which attaches fuzziness (uncertainty) and incompleteness. Data were obtained from voxel-based morphometry analysis of structural magnetic resonance imaging. The information diffusion model results revealed that the risk of AD increases with a reduction of the normalized gray matter ratio (p > 0.5, normalized gray matter ratio <40%). The information diffusion model results were evaluated by calculation of the correlation of two traditional risk assessments of AD, the Mini-Mental State Examination and the Clinical Dementia Rating. The correlation results revealed that the information diffusion model findings were in line with Mini-Mental State Examination and Clinical Dementia Rating results. Application of information diffusion model contributes to the computerization of risk assessment of AD, which has a practical implication for the early detection of AD.
String Theory Methods for Condensed Matter Physics
NASA Astrophysics Data System (ADS)
Nastase, Horatiu
2017-09-01
Preface; Acknowledgments; Introduction; Part I. Condensed Matter Models and Problems: 1. Lightning review of statistical mechanics, thermodynamics, phases and phase transitions; 2. Magnetism in solids; 3. Electrons in solids: Fermi gas vs. Fermi liquid; 4. Bosonic quasi-particles: phonons and plasmons; 5. Spin-charge separation in 1+1 dimensional solids: spinons and holons; 6. The Ising model and the Heisenberg spin chain; 7. Spin chains and integrable systems; 8. The thermodynamic Bethe ansatz; 9. Conformal field theories and quantum phase transitions; 10. Classical vs. quantum Hall effect; 11. Superconductivity: Landau-Ginzburg, London and BCS; 12. Topology and statistics: Berry and Chern-Simons, anyons and nonabelions; 13. Insulators; 14. The Kondo effect and the Kondo problem; 15. Hydrodynamics and transport properties: from Boltzmann to Navier-Stokes; Part II. Elements of General Relativity and String Theory: 16. The Einstein equation and the Schwarzschild solution; 17. The Reissner-Nordstrom and Kerr-Newman solutions and thermodynamic properties of black holes; 18. Extra dimensions and Kaluza-Klein; 19. Electromagnetism and gravity in various dimensions. Consistent truncations; 20. Gravity plus matter: black holes and p-branes in various dimensions; 21. Weak/strong coupling dualities in 1+1, 2+1, 3+1 and d+1 dimensions; 22. The relativistic point particle and the relativistic string; 23. Lightcone strings and quantization; 24. D-branes and gauge fields; 25. Electromagnetic fields on D-branes. Supersymmetry and N = 4 SYM. T-duality of closed strings; 26. Dualities and M theory; 27. The AdS/CFT correspondence: definition and motivation; Part III. Applying String Theory to Condensed Matter Problems: 28. The pp wave correspondence: string Hamiltonian from N = 4 SYM; 29. Spin chains from N = 4 SYM; 30. The Bethe ansatz: Bethe strings from classical strings in AdS; 31. Integrability and AdS/CFT; 32. AdS/CFT phenomenology: Lifshitz, Galilean and Schrodinger symmetries and their gravity duals; 33. Finite temperature and black holes; 34. Hot plasma equilibrium thermodynamics: entropy, charge density and chemical potential of strongly coupled theories; 35. Spectral functions and transport properties; 36. Dynamic and nonequilibrium properties of plasmas: electric transport, Langevin diffusion and thermalization via black hole quasi-normal modes; 37. The holographic superconductor; 38. The fluid-gravity correspondence: conformal relativistic fluids from black hole horizons; 39. Nonrelativistic fluids: from Einstein to Navier-Stokes and back; Part IV. Advanced Applications: 40. Fermi gas and liquid in AdS/CFT; 41. Quantum Hall effect from string theory; 42. Quantum critical systems and AdS/CFT; 43. Particle-vortex duality and ABJM vs. AdS4 X CP3 duality; 44. Topology and non-standard statistics from AdS/CFT; 45. DBI scalar model for QGP/black hole hydro- and thermo-dynamics; 46. Holographic entanglement entropy in condensed matter; 47. Holographic insulators; 48. Holographic strange metals and the Kondo problem; References; Index.
Uncovering the Social Deficits in the Autistic Brain. A Source-Based Morphometric Study
Grecucci, Alessandro; Rubicondo, Danilo; Siugzdaite, Roma; Surian, Luca; Job, Remo
2016-01-01
Autism is a neurodevelopmental disorder that mainly affects social interaction and communication. Evidence from behavioral and functional MRI studies supports the hypothesis that dysfunctional mechanisms involving social brain structures play a major role in autistic symptomatology. However, the investigation of anatomical abnormalities in the brain of people with autism has led to inconsistent results. We investigated whether specific brain regions, known to display functional abnormalities in autism, may exhibit mutual and peculiar patterns of covariance in their gray-matter concentrations. We analyzed structural MRI images of 32 young men affected by autistic disorder (AD) and 50 healthy controls. Controls were matched for sex, age, handedness. IQ scores were also monitored to avoid confounding. A multivariate Source-Based Morphometry (SBM) was applied for the first time on AD and controls to detect maximally independent networks of gray matter. Group comparison revealed a gray-matter source that showed differences in AD compared to controls. This network includes broad temporal regions involved in social cognition and high-level visual processing, but also motor and executive areas of the frontal lobe. Notably, we found that gray matter differences, as reflected by SBM, significantly correlated with social and behavioral deficits displayed by AD individuals and encoded via the Autism Diagnostic Observation Schedule scores. These findings provide support for current hypotheses about the neural basis of atypical social and mental states information processing in autism. PMID:27630538
Lu, Kun; Dong, Shipeng; Petersen, Elijah J; Niu, Junfeng; Chang, Xiaofeng; Wang, Peng; Lin, Sijie; Gao, Shixiang; Mao, Liang
2017-03-28
The exciting commercial application potential of graphene materials may inevitably lead to their increasing release into the environment where they may pose ecological risks. This study focused on using carbon-14-labeled few-layer graphene (FLG) to determine whether the size of graphene plays a role in its uptake, depuration, and biodistribution in adult zebrafish. After 48 h exposure to larger FLG (L-FLG) at 250 μg/L, the amount of graphene in the organism was close to 48 mg/kg fish dry mass, which was more than 170-fold greater than the body burden of those exposed to the same concentration of smaller FLG (S-FLG). The amount of uptake for both L-FLG and S-FLG increased by a factor of 2.5 and 16, respectively, when natural organic matter (NOM) was added in the exposure suspension. While the L-FLG mainly accumulated in the gut of adult zebrafish, the S-FLG was found in both the gut and liver after exposure with or without NOM. Strikingly, the S-FLG was able to pass through the intestinal wall and enter the intestinal epithelial cells and blood. The presence of NOM increased the quantity of S-FLG in these cells. Exposure to L-FLG or S-FLG also had a significantly different impact on the intestinal microbial community structure.
Microbial activity in Alaskan taiga soils contaminated by crude oil in 1976
DOE Office of Scientific and Technical Information (OSTI.GOV)
Monroe, E.M.; Lindstrom, J.E.; Brown, E.J.
1995-12-31
Biodegradation, often measured via microbial activity, includes destruction of environmental pollutants by living microorganisms and is dependent upon many physical and chemical factors. Effects of mineral nutrients and organic matter on biodegradation of Prudhoe Bay crude oil were investigated at a nineteen-year-old oil spill site in Alaskan taiga. Microcosms of two different soil types from the spill site; one undeveloped soil with forest litter and detritus (O horizon) and one more developed with lower organic content (A horizon), were treated with various nitrogen and phosphorus amendments, and incubated for up to six weeks. Each microcosm was sampled periodically and assayedmore » for hydrocarbon mineralization potential using radiorespirometry, for total carbon dioxide respired using gas chromatography, and for numbers of hydrocarbon-degrading bacteria and heterotrophic bacteria using most probable number counting techniques. Organic matter in the O horizon soil along with combinations of mineral nutrients were found to stimulate microbial activity. No combination of mineral nutrient additions to the A horizon soil stimulated any of the parameters above those measured in control microcosms. The results of this study indicate that adding mineral nutrients and tilling the O horizon into the A horizon of subarctic soils contaminated with crude oil, would stimulate microbial activity, and therefore the biodegradation potential, ultimately increasing the rate of destruction of crude oil in these soils.« less
Removal of organic pollutants from produced water using Fenton oxidation
NASA Astrophysics Data System (ADS)
Afzal, Talia; Hasnain Isa, Mohamed; Mustafa, Muhammad Raza ul
2018-03-01
Produced water (PW) is the largest stream of wastewater from oil and gas exploration. It is highly polluted and requires proper treatment before disposal. The main objective of this study was to investigate the effectiveness of Fenton oxidation in degradation of organic matter in PW. The role of operating factors viz., H2O2 concentration (0.12 × 10-3 moles/L to 3 moles/L), [H2O2]/[Fe2+] molar ratio (2 to 75), and reaction time (30 to 200 minutes), on COD removal was determined through a series of batch experiments conducted in acidic environment at room temperature. The experiments were conducted with 500 mL PW samples in 1L glass beakers covered on the outside with aluminum foil to protect them from sunlight. Pre-decided amounts of ferrous sulfate heptahydrate (FeSO4.7H2O) and hydrogen peroxide (H2O2) were added to initiate the Fenton reaction. An increase in COD removal was observed with increase in reaction time and [H2O2]/[Fe2+] molar ratio. COD removal also increased with H2O2 concentration up to 0.01 moles/L; further increase in H2O2 concentration decreased the COD removal efficiency. Over 90% COD removal was achieved under optimum reaction conditions. The study indicates that Fenton oxidation is effective for remediation of PW in terms of organic matter removal.
Diaby, M; Kinani, S; Genty, C; Bouchonnet, S; Sablier, M; Le Negrate, A; El Fassi, M
2009-12-01
This article establishes an alternative method for the characterization of volatiles organic matter (VOM) contained in deposits of the piston first ring grooves of diesel engines using a ChromatoProbe direct sample introduction (DSI) device coupled to gas chromatography/mass spectrometry (GC/MS) analysis. The addition of an organic solvent during thermal desorption leads to an efficient extraction and a good chromatographic separation of extracted products. The method was optimized investigating the effects of several solvents, the volume added to the solid sample, and temperature programming of the ChromatoProbe DSI device. The best results for thermal desorption were found using toluene as an extraction solvent and heating the programmable temperature injector from room temperature to 300 degrees C with a temperature step of 105 degrees C. With the use of the optimized thermal desorption conditions, several components have been positively identified in the volatile fraction of the deposits: aromatics, antioxidants, and antioxidant degradation products. Moreover, this work highlighted the presence of diesel fuel in the VOM of the piston deposits and gave new facts on the absence of the role of diesel fuel in the deposit formation process. Most importantly, it opens the possibility of quickly performing the analysis of deposits with small amounts of samples while having a good separation of the volatiles.
Piccolo, Alessandro; Spaccini, Riccardo; Nebbioso, Antonio; Mazzei, Pierluigi
2011-08-01
Here we describe an innovative mechanism for carbon sequestration in soil by in situ photopolymerization of soil organic matter under biomimetic catalysis. Three different Mediterranean soils were added with a synthetic water-soluble iron-porphyrin, irradiated by solar light, and subjected first to 5 days incubation and, then, 15, and 30 wetting and drying (w/d) cycles. The in situ catalyst-assisted photopolymerization of soil organic carbon (SOC) increased water stability of soil aggregates both after 5 days incubation and 15 w/d cycles, but not after 30 w/d cycles. Particle-size distribution of all treated soils confirmed the induced soil physical improvement, by showing a concomitant lower yield of the clay-sized fraction and larger yields of either coarse sand- or fine sand-size fractions, depending on soil texture, though only after 5 days incubation. The gain in soil physical quality was reflected by the shift of OC content from small to large soil aggregates, thereby suggesting that photopolymerization stabilized OC by both chemical and physical processes. A further evidence of the carbon sequestration capacity of the photocatalytic treatment was provided by the significant reduction of CO(2) respired by all soils after both incubation and w/d cycles. Our findings suggest that "green" catalytic technologies may potentially be the bases for future practices to increase soil carbon stabilization and mitigate CO(2) emissions from arable soils.
Palanivell, Perumal; Susilawati, Kasim; Ahmed, Osumanu Haruna; Majid, Nik Muhamad
2013-01-01
Production of agriculture and timber commodities leads generation of enormous quantity of wastes. Improper disposal of these agroindustrial wastes pollutes the environment. This problem could be reduced by adding value to them. Therefore, a study was carried out to analyse and compare the nutrients content of RS, RH, SD, and EFB of composts and crude humic substances; furthermore, their effect on growth, dry matter production, and nutrient uptake for Zea mays L., and selected soil chemical properties were evaluated. Standard procedures were used to analyze humic acids (HA), crude fulvic acids (CFA), crude humin (CH), soil, dry matter production and nutrient uptake. Sawdust and RS compost matured at 42 and 47 days, respectively, while RH and EFB composts were less matured at 49th day of composting. Rice straw compost had higher ash, N, P, CEC, HA, K, and Fe contents with lower organic matter, total organic carbon, and C/N and C/P ratios. The HA of sawdust compost showed higher carbon, carboxylic, K, and Ca contents compared to those of RS, RH, and EFB. Crude FA of RS compost showed highest pH, total K, Ca, Mg, and Na contents. Crude humin from RS compost had higher contents of ash, N, P, and CEC. Rice straw was superior in compost, CFA, and CH, while sawdust compost was superior in HA. Application of sawdust compost significantly increased maize plants' diameter, height, dry matter production, N, P, and cations uptake. It also reduced N, P, and K based chemical fertilizer use by 90%. Application of CH and the composts evaluated in this study could be used as an alternative for chemical fertilizers in maize cultivation. PMID:24319353
The Case Against Charge Transfer Interactions in Dissolved Organic Matter Photophysics.
McKay, Garrett; Korak, Julie A; Erickson, Paul R; Latch, Douglas E; McNeill, Kristopher; Rosario-Ortiz, Fernando L
2018-01-16
The optical properties of dissolved organic matter influence chemical and biological processes in all aquatic ecosystems. Dissolved organic matter optical properties have been attributed to a charge-transfer model in which donor-acceptor complexes play a primary role. This model was evaluated by measuring the absorbance and fluorescence response of organic matter isolates to changes in solvent temperature, viscosity, and polarity, which affect the position and intensity of spectra for known donor-acceptor complexes of organic molecules. Absorbance and fluorescence spectral shape were largely unaffected by these changes, indicating that the distribution of absorbing and emitting species was unchanged. Overall, these results call into question the wide applicability of the charge-transfer model for explaining organic matter optical properties and suggest that future research should explore other models for dissolved organic matter photophysics.
Shiu, Ruei-Feng; Lee, Chon-Lin; Chin, Wei-Chun
2017-12-15
Rivers drive large amounts of terrestrial and riverine organic matter into oceans. These organic materials may alter the self-assembly of marine dissolved organic matter (DOM) polymers into microgels and can even affect the behavior of existing natural microgels. We used Suwannee River humic acid, fulvic acid, and natural organic matter as a model of riverine organic matter (ROM) to investigate the impacts of ROM input on DOM polymer and microgel conversion. Our results indicated that the release of extra ROM, even at low concentrations (0.1-10 mg L -1 ), into the marine organic matter pool decreased the size of self-assembled DOM polymers (from 4-5 μm to < 1 μm) and dispersed the existing natural microgels into smaller particles (from 4-5 μm to 2-3 μm). The particle size of the microgel phase was also less sensitive than that of the DOM polymers to external changes (addition of ROM). This size reduction in DOM aggregation and existing microgels may be closely tied to the surface chemistry of the organic matter, such as negative surface charge stabilization and Ca 2+ cross-linking bridges. These findings reveal that ROM inputs may therefore impede the self-assembly of DOM polymers into particulate organic matter and reduce the sedimentation flux of organic carbon and other elements from surface water to the deep ocean, thereby disturbing the biological pump, the downward transportation of nutrients, and the marine organic carbon cycle. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Huerta, Esperanza; Alonso Gongora, Erick
2014-05-01
Yucatan peninsula is one of the recent emerged lands in Mexico; where more of the soils have low organic matter content, and/or the organic horizon is thin (2-5cm). The industry of material extraction for construction purposes is well developed in Yucatan Peninsula, due to the fact of the calcareous material that can be obtained by the maternal rock. Therefore, the material extraction promotes the desertification of the areas, and soil erosion. Bougainvillea sp is a tropical and subtropical woody, evergreen, shrubby vine (Kobayashi et al. 2007), it has a wide range of distribution and it roots are superficial, what allows the plant to inhabit soils with a thin layer of soil organic matter. Earthworms as ecosystem engineers (Jones et al. 1994) can modify their environment, forming borrows and incorporation organic matter into the soil. The aim of this study was to rehabilitate soils without organic matter horizon by the use of earthworms and Bougainvillea litter. The study was developed at mesocosmos level in the laboratory of soils at El Colegio de la Frontera Sur, Unidad Campeche, Mexico. Individual of anecic earthworms were collected and reproduced previously, anecic worms can better incorporate organic matter in to the soil than epigeics or endogeics worms, in Mexican tropical terrestrial ecosystems, anecic worms are almost absent or scarce. In this study we used the exotic earthworm Amynthas gracilis (native in Taiwan),that used to inhabit banana plantations with low technology in southeast Mexico, as exotic has a wide range of tolerance to different amounts of soil organic matter and pH. Four treatments with 4 replicas were established: a) calcareous soil without organic matter horizon+earthworms+litter, b) calcareous soil with organic matter horizon+ earthworms+litter, c) calcareous soil without organic matter horizon+litter, d) calcareous soil with organic matter horizon+litter. After 60 days of study, we observed how earthworms developed successfully in treatments with and without organic matter horizon. Higher amount of litter was incorporated into the soil in those treatments with earthworms. Soil invertebrates populated those treatments with organic matter and earthworms. This study shows that Bougainvillea sp and A. gracilis can be a good combination for rehabilitation of soils without organic matter layer in tropics. Further studies are required in order to observe same results at the field level.
Anthropogenic aerosols as a source of ancient dissolved organic matter in glaciers
Stubbins, Aron; Hood, Eran; Raymond, Peter A.; Aiken, George R.; Sleighter, Rachel L.; Hernes, Peter J.; Butman, David; Hatcher, Patrick G.; Striegl, Robert G.; Schuster, Paul F.; Abdulla, Hussain A.N.; Vermilyea, Andrew W.; Scott, Durelle T.; Spencer, Robert G.M.
2012-01-01
Glacier-derived dissolved organic matter represents a quantitatively significant source of ancient, yet highly bioavailable carbon to downstream ecosystems. This finding runs counter to logical perceptions of age–reactivity relationships, in which the least reactive material withstands degradation the longest and is therefore the oldest. The remnants of ancient peatlands and forests overrun by glaciers have been invoked as the source of this organic matter. Here, we examine the radiocarbon age and chemical composition of dissolved organic matter in snow, glacier surface water, ice and glacier outflow samples from Alaska to determine the origin of the organic matter. Low levels of compounds derived from vascular plants indicate that the organic matter does not originate from forests or peatlands. Instead, we show that the organic matter on the surface of the glaciers is radiocarbon depleted, consistent with an anthropogenic aerosol source. Fluorescence spectrophotometry measurements reveal the presence of protein-like compounds of microbial or aerosol origin. In addition, ultrahigh-resolution mass spectrometry measurements document the presence of combustion products found in anthropogenic aerosols. Based on the presence of these compounds, we suggest that aerosols derived from fossil fuel burning are a source of pre-aged organic matter to glacier surfaces. Furthermore, we show that the molecular signature of the organic matter is conserved in snow, glacier water and outflow, suggesting that the anthropogenic carbon is exported relatively unchanged in glacier outflows.
NASA Astrophysics Data System (ADS)
Quiers, M.; Perrette, Y.; Jacq, K.; Pousset, E.; Plassart, G.
2017-12-01
OM fluorescence is today a well-developed tool used to characterize and quantify organic matter (OM), but also to evaluate and discriminate OM fate and changes related to climate and environmental modifications. While fluorescence measurements on water and soils extracts provide information about organic fluxes today, solid phase fluorescence using natural archives allows to obtain high resolution records of OM evolution during time. These evolutions can be discussed in regards of climate and environmental perturbations detected in archives using different proxies, and thus provide keys for understanding factors driving carbon fluxes mechanisms. Among fluorescent organic species, Polycyclic Aromatic Hydrocarbons (PAH) have been used as probe molecules for organic contamination tracking. Moreover, monitoring studies have shown that PAH could also be used as markers to discriminates atmospheric and erosion factors leading to PAH and organic matter fluxes to the aquifer. PAH records in soils and natural archives appear as a promising proxy to follow both past atmospheric contamination and soil erosion. But, PAH fluorescence is difficult to discriminate from bulk OM fluorescence using steady-state fluorescence (SSF) technics as their fluorescence domains recover. Time resolved emission spectroscopy (TRES) increases the information provided by SSF technic, adding a time dimension to measurements and allowing to discriminate PAH fluorescence. We report here a first application of this technic on natural archives. The challenge is to obtain TRES signature along the sample, including for low PAH concentrations. This study aims to evaluate the reliability of high resolution TRES measurement as PAH carbon fluxes sources. Method is based on LIF instrument for solid phase fluorescence measurement. An instrument coupling an excitation system constituting by 2 pulsed lasers (266 and 355 nm) and a detection system was developed. This measurement provides high resolution record of PAH fluorescence. Preliminary results on stalagmite samples, lake sediments and soils will be reported. PAH content variations along the sample were compared with PAH concentration and with bulk OM content deduced from SSF records. The accuracy of the PAH fluorescence as source marker of fluxes will be discussed for each type of sample.
Xu, Gang; Liu, Jian; Hu, Gang; Jonell, Tara N; Chen, Lilei
2017-10-15
To constrain organic matter compositions and origins, elemental (TOC, TN, C/N) and stable carbon (δ 13 C) and nitrogen isotope (δ 15 N) compositions are measured for surface sediments collected from muddy deposit along the Zhejiang coast, East China Sea. The results showed that the TOC, TN, C/N, δ 13 C, and δ 15 N were 0.19-0.67%, 0.03-0.09%, 6.76-9.22, -23.43 to -20.26‰, and 3.93-5.27‰, respectively. The δ 13 C values showed that the mixing inputs of terrigenous and marine organic matter generally dominated sedimentary organic matter in the west part, and the sedimentary organic matters were mainly influenced by the marine organic matter in the east part of the study area. A stable carbon isotope two end member mixing model estimates ~38% terrestrial -derived and ~62% marine-derived inputs to sedimentary organic matter. Microbial mineralization strongly controls δ 15 N values, and therefore cannot be used to identify the provenance of organic matter for the Zhenjiang coast. Copyright © 2017. Published by Elsevier Ltd.
Insight into dissolved organic matter fractions in Lake Wivenhoe during and after a major flood.
Aryal, Rupak; Grinham, Alistair; Beecham, Simon
2016-03-01
Dissolved organic matter is an important component of biogeochemical processes in aquatic environments. Dissolved organic matter may consist of a myriad of different fractions and resultant processing pathways. In early January 2011, heavy rainfall occurred across South East Queensland, Australia causing significant catchment inflow into Lake Wivenhoe, which is the largest water supply reservoir for the city of Brisbane, Australia. The horizontal and vertical distributions of dissolved organic matter fractions in the lake during the flood period were investigated and then compared with stratified conditions with no catchment inflows. The results clearly demonstrate a large variation in dissolved organic matter fractions associated with inflow conditions compared with stratified conditions. During inflows, dissolved organic matter concentrations in the reservoir were fivefold lower than during stratified conditions. Within the dissolved organic matter fractions during inflow, the hydrophobic and humic acid fractions were almost half those recorded during the stratified period whilst low molecular weight neutrals were higher during the flood period compared to during the stratified period. Information on dissolved organic matter and the spatial and vertical variations in its constituents' concentrations across the lake can be very useful for catchment and lake management and for selecting appropriate water treatment processes.
The nature of organic records in impact excavated rocks on Mars
NASA Astrophysics Data System (ADS)
Montgomery, W.; Bromiley, G. D.; Sephton, M. A.
2016-08-01
Impact ejected rocks are targets for life detection missions to Mars. The Martian subsurface is more favourable to organic preservation than the surface owing to an attenuation of radiation and physical separation from oxidising materials with increasing depth. Impact events bring materials to the surface where they may be accessed without complicated drilling procedures. On Earth, different assemblages of organic matter types are derived from varying depositional environments. Here we assess whether these different types of organic materials can survive impact events without corruption. We subjected four terrestrial organic matter types to elevated pressures and temperatures in piston-cylinder experiments followed by chemical characterisation using whole-rock pyrolysis-gas chromatography-mass spectrometry. Our data reveal that long chain hydrocarbon-dominated organic matter (types I and II; mainly microbial or algal) are unresistant to pressure whereas aromatic hydrocarbon-dominated organic matter types (types III and IV; mainly land plant, metamorphosed or degraded, displaying some superficial chemical similarities to abiotic meteoritic organic matter) are relatively resistant. This suggests that the impact excavated record of potential biology on Mars will be unavoidably biased, with microbial organic matter underrepresented while metamorphosed, degraded or abiotic meteoritic organic matter types will be selectively preserved.
The nature of organic records in impact excavated rocks on Mars.
Montgomery, W; Bromiley, G D; Sephton, M A
2016-08-05
Impact ejected rocks are targets for life detection missions to Mars. The Martian subsurface is more favourable to organic preservation than the surface owing to an attenuation of radiation and physical separation from oxidising materials with increasing depth. Impact events bring materials to the surface where they may be accessed without complicated drilling procedures. On Earth, different assemblages of organic matter types are derived from varying depositional environments. Here we assess whether these different types of organic materials can survive impact events without corruption. We subjected four terrestrial organic matter types to elevated pressures and temperatures in piston-cylinder experiments followed by chemical characterisation using whole-rock pyrolysis-gas chromatography-mass spectrometry. Our data reveal that long chain hydrocarbon-dominated organic matter (types I and II; mainly microbial or algal) are unresistant to pressure whereas aromatic hydrocarbon-dominated organic matter types (types III and IV; mainly land plant, metamorphosed or degraded, displaying some superficial chemical similarities to abiotic meteoritic organic matter) are relatively resistant. This suggests that the impact excavated record of potential biology on Mars will be unavoidably biased, with microbial organic matter underrepresented while metamorphosed, degraded or abiotic meteoritic organic matter types will be selectively preserved.
The nature of organic records in impact excavated rocks on Mars
Montgomery, W.; Bromiley, G. D.; Sephton, M. A.
2016-01-01
Impact ejected rocks are targets for life detection missions to Mars. The Martian subsurface is more favourable to organic preservation than the surface owing to an attenuation of radiation and physical separation from oxidising materials with increasing depth. Impact events bring materials to the surface where they may be accessed without complicated drilling procedures. On Earth, different assemblages of organic matter types are derived from varying depositional environments. Here we assess whether these different types of organic materials can survive impact events without corruption. We subjected four terrestrial organic matter types to elevated pressures and temperatures in piston-cylinder experiments followed by chemical characterisation using whole-rock pyrolysis-gas chromatography-mass spectrometry. Our data reveal that long chain hydrocarbon-dominated organic matter (types I and II; mainly microbial or algal) are unresistant to pressure whereas aromatic hydrocarbon-dominated organic matter types (types III and IV; mainly land plant, metamorphosed or degraded, displaying some superficial chemical similarities to abiotic meteoritic organic matter) are relatively resistant. This suggests that the impact excavated record of potential biology on Mars will be unavoidably biased, with microbial organic matter underrepresented while metamorphosed, degraded or abiotic meteoritic organic matter types will be selectively preserved. PMID:27492071
NASA Astrophysics Data System (ADS)
Trofimov, S. Ya.; Lazarev, A. S.; Fokin, A. D.
2012-12-01
The mineralization rate of the 14C-labeled organic matter (OM) in the humus-accumulative AE horizon of a soddy-podzolic soil was determined in a laboratory experiment. The labeling was performed in a field experiment when microamounts of 14C-labeled glucose, glycine, and uracil were added to tree waste in sacks embedded in the upper layer of the forest litter. Samples containing 14C were taken from the AE horizon (above which the sacks with the labeled material were placed) 7 and 20 months after the beginning of the experiment. The soil samples were wetted to a water content corresponding to ˜80% of the total water capacity and placed in hermetic vessels containing vials with a periodically renewed alkali solution. The incubation was performed at room temperature for 3.5 months; the alkali solutions in the vials were replaced and titrated 12 times during this period. Mineralization curves were plotted from the amounts of carbon dioxide absorbed by a 0.3 N NaOH solution, which were calculated for each time interval; its 14C content was determined by the scintillation method. The experimental treatments also included the determination of the OM mineralization rate in material from the AE horizon pretreated with a heavy liquid or a heavy liquid and a 0.1 N NaOH solution. The differences between the mineralization rates of the labeled organic matter applied to the soil in the form of glucose, glycine, and uracil under the field conditions after the interaction for 7 and 20 months were revealed. The changes in the mineralization rate after the successive extraction of the labile organic matter with a heavy liquid and a 0.1 N NaOH solution were studied. It was shown that the transformation of the labeled low-molecular-weight organic compounds in the soil over 20 months included their strong inclusion into the humus composition, which was confirmed by the similar values of the mineralization constants of the native and 14C-labeled OM. In addition, the treatments with the heavy liquid or the heavy liquid and the NaOH solution had almost identical effects on the mineralization of the native and 14C-labeled OM. The mineralization constants of the native and 14C-labeled OM in the samples taken after 7 months of the field experiment differed significantly.
Van Meter, Robin J; Glinski, Donna A; Henderson, W Matthew; Purucker, S Thomas
2016-11-01
Pesticides have been implicated as a major factor in global amphibian declines and may pose great risk to terrestrial phase amphibians moving to and from breeding ponds on agricultural landscapes. Dermal uptake from soil is known to occur in amphibians, but predicting pesticide availability and bioconcentration across soil types is not well understood. The present study was designed to compare uptake of 5 current-use pesticides (imidacloprid, atrazine, triadimefon, fipronil, and pendimethalin) in American toads (Bufo americanus) from exposure on soils with significant organic matter content differences (14.1% = high organic matter and 3.1% = low organic matter). We placed toads on high- or low-organic matter soil after applying individual current-use pesticides on the soil surface for an 8-h exposure duration. Whole body tissue homogenates and soils were extracted and analyzed using liquid chromatography-mass spectrometry to determine pesticide tissue and soil concentration, as well as bioconcentration factor in toads. Tissue concentrations were greater on the low-organic matter soil than the high-organic matter soil across all pesticides (average ± standard error; 1.23 ± 0.35 ppm and 0.78 ± 0.23 ppm, respectively), and bioconcentration was significantly higher for toads on the low-organic matter soil (analysis of covariance p = 0.002). Soil organic matter is known to play a significant role in the mobility of pesticides and bioavailability to living organisms. Agricultural soils typically have relatively lower organic matter content and serve as a functional habitat for amphibians. The potential for pesticide accumulation in amphibians moving throughout agricultural landscapes may be greater and should be considered in conservation and policy efforts. Environ Toxicol Chem 2016;35:2734-2741. © 2016 SETAC. © 2016 SETAC.
Yu, Soon Ju; Lee, Jae Yil; Ha, Sung Ryong
2010-01-01
This article aims to describe the influence of diffuse pollution on the temporal and spatial characteristics of natural organic matter (NOM) in a stratified dam reservoir, the Daecheong Dam, on the basis of intensive observation results and the dynamic water quality simulation using CE-QUAL-W2. Turbidity is regarded as a comprehensive representation of allochothonous organic matter from diffuse sources in storm season because the turbidity concentration showed reasonable significance in a statistical correlation with the UV absorbance at 254 nm and total phosphorus. CE-QUAL-W2 simulation results showed good consistency with the observed data in terms of dissolved organic matter (DOM) including refractory dissolved organic carbon (RDOC) and labile DOC and also well explained the internal movement of constituents and stratification phenomenon in the reservoir. Instead turbidity and NOM were related well in the upper region of the reservoir according to flow distance, gradually as changing to dissolved form of organic matter, RDOM affected organic matter concentration of reservoir water quality compared to turbidity. To control the increase of soluble organic matters in the dam reservoir, appropriate dam water discharge gate operation provided effective measurement. Because of the gate operation let avoid the accumulation of organic matter within a dam reservoir by shorten of turbid regime retention time.
A Robust Analysis Method For Δ13c Signal Of Bulk Organic Matter In Speleothems
NASA Astrophysics Data System (ADS)
Bian, F.; Blyth, A. J.; Smith, C.; Baker, A.
2017-12-01
Speleothems preserve organic matter that is derived from both the surface soil and cave environments. This organic matter can be used to understand paleoclimate and paleoenvironments. However, a stable and quick micro-analysis method to measure the δ13C signals from speleothem organic matter separate from the total δ13C remains absent. And speleothem organic geochemistry is still relatively unexplored compared to inorganic geochemistry. In this research, for the organic matter analysis, bulk homogeneous power samples were obtained from one large stalagmite. These were dissolved by phosphoric acid to produce the aqueous solution. Then, the processed solution was degassed through a rotational vacuum concentrator. A liquid chromatograph was coupled to IRMS to control the oxidization and the measurement of analytes. This method is demonstrated to be robust for the analysis of speleothem d13C organic matter analysis under different preparation and instrumental settings, with the low standard deviation ( 0.2‰), and low sample consumption (<25 mg). Considering the complexity of cave environments, this method will be useful in further investigations the δ13C of entrapped organic matter and environmental controls in other climatic and ecological contexts, including the determination of whether vegetation or soil microbial activity is the dominant control on speleothem d13C of organic matter.
Jalbrzikowski, Maria; Villalon-Reina, Julio E.; Karlsgodt, Katherine H.; Senturk, Damla; Chow, Carolyn; Thompson, Paul M.; Bearden, Carrie E.
2014-01-01
22q11.2 Microdeletion Syndrome (22q11DS) is a highly penetrant genetic mutation associated with a significantly increased risk for psychosis. Aberrant neurodevelopment may lead to inappropriate neural circuit formation and cerebral dysconnectivity in 22q11DS, which may contribute to symptom development. Here we examined: (1) differences between 22q11DS participants and typically developing controls in diffusion tensor imaging (DTI) measures within white matter tracts; (2) whether there is an altered age-related trajectory of white matter pathways in 22q11DS; and (3) relationships between DTI measures, social cognition task performance, and positive symptoms of psychosis in 22q11DS and typically developing controls. Sixty-four direction diffusion weighted imaging data were acquired on 65 participants (36 22q11DS, 29 controls). We examined differences between 22q11DS vs. controls in measures of fractional anisotropy (FA), axial diffusivity (AD), and radial diffusivity (RD), using both a voxel-based and region of interest approach. Social cognition domains assessed were: Theory of Mind and emotion recognition. Positive symptoms were assessed using the Structured Interview for Prodromal Syndromes. Compared to typically developing controls, 22q11DS participants showed significantly lower AD and RD in multiple white matter tracts, with effects of greatest magnitude for AD in the superior longitudinal fasciculus. Additionally, 22q11DS participants failed to show typical age-associated changes in FA and RD in the left inferior longitudinal fasciculus. Higher AD in the left inferior fronto-occipital fasciculus (IFO) and left uncinate fasciculus was associated with better social cognition in 22q11DS and controls. In contrast, greater severity of positive symptoms was associated with lower AD in bilateral regions of the IFO in 22q11DS. White matter microstructure in tracts relevant to social cognition is disrupted in 22q11DS, and may contribute to psychosis risk. PMID:25426042
Preferences for different nitrogen forms by coexisting plant species and soil microbes.
Harrison, Kathryn A; Bol, Roland; Bardgett, Richard D
2007-04-01
The growing awareness that plants might use a variety of nitrogen (N) forms, both organic and inorganic, has raised questions about the role of resource partitioning in plant communities. It has been proposed that coexisting plant species might be able to partition a limited N pool, thereby avoiding competition for resources, through the uptake of different chemical forms of N. In this study, we used in situ stable isotope labeling techniques to assess whether coexisting plant species of a temperate grassland (England, UK) display preferences for different chemical forms of N, including inorganic N and a range of amino acids of varying complexity. We also tested whether plants and soil microbes differ in their preference for different N forms, thereby relaxing competition for this limiting resource. We examined preferential uptake of a range of 13C15N-labeled amino acids (glycine, serine, and phenylalanine) and 15N-labeled inorganic N by coexisting grass species and soil microbes in the field. Our data show that while coexisting plant species simultaneously take up a variety of N forms, including inorganic N and amino acids, they all showed a preference for inorganic N over organic N and for simple over the more complex amino acids. Soil microbes outcompeted plants for added N after 50 hours, but in the long-term (33 days) the proportion of added 15N contained in the plant pool increased for all N forms except for phenylalanine, while the proportion in the microbial biomass declined relative to the first harvest. These findings suggest that in the longer-term plants become more effective competitors for added 15N. This might be due to microbial turnover releasing 15N back into the plant-soil system or to the mineralization and subsequent plant uptake of 15N transferred initially to the organic matter pool. We found no evidence that soil microbes preferentially utilize any of the N forms added, despite previous studies showing that microbial preferences for N forms vary over time. Our data suggest that coexisting plants can outcompete microbes for a variety of N forms, but that such plant species show similar preferences for inorganic over organic N.
29 CFR 1912.11 - Terms of ad hoc committee members.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 29 Labor 7 2011-07-01 2011-07-01 false Terms of ad hoc committee members. 1912.11 Section 1912.11 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED) ADVISORY COMMITTEES ON STANDARDS Organizational Matters § 1912.11 Terms of ad...
29 CFR 1912.11 - Terms of ad hoc committee members.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 29 Labor 7 2010-07-01 2010-07-01 false Terms of ad hoc committee members. 1912.11 Section 1912.11 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED) ADVISORY COMMITTEES ON STANDARDS Organizational Matters § 1912.11 Terms of ad...
The 1.5-ka varved record of Lake Montcortès (southern Pyrenees, NE Spain)
NASA Astrophysics Data System (ADS)
Corella, Juan Pablo; Brauer, Achim; Mangili, Clara; Rull, Valentí; Vegas-Vilarrúbia, Teresa; Morellón, Mario; Valero-Garcés, Blas L.
2012-09-01
The karstic Lake Montcortès sedimentary sequence spanning the last 1548 yr constitutes the first continuous, high-resolution, multi-proxy varved record in northern Spain. Sediments consist of biogenic varves composed of calcite, organic matter and detrital laminae and turbidite layers. Calcite layer thickness and internal sub-layering indicate changes in water temperature and seasonality whereas the frequency of detrital layers reflects rainfall variability. Higher temperatures occurred in Lake Montcortès in AD 555-738, 825-875, 1010-1322 and 1874-present. Lower temperatures and prolonged winter conditions were recorded in AD 1446-1598, 1663-1711 and 1759-1819. Extreme and multiple precipitation events dominated in AD 571-593, 848-922, 987-1086, 1168-1196, 1217-1249, 1444-1457, 1728-1741 and 1840-1875, indicating complex hydrological variability in NE Spain since AD 463. The sedimentary record of Lake Montcortès reveals a short-term relation between rainfall variability and the detrital influx, pronounced during extended periods of reduced anthropogenic influences. In pre-industrial times, during warm climate episodes, population and land use increased in the area. After the onset of the industrialization, the relationship between climate and human activities decoupled and population dynamics and landscape modifications were therefore mostly determined by socio-economic factors.
Dissolved organic matter in anoxic pore waters from Mangrove Lake, Bermuda
Orem, W.H.; Hatcher, P.G.; Spiker, E. C.; Szeverenyi, N.M.; Maciel, G.E.
1986-01-01
Dissolved organic matter and dissolved inorganic chemical species in anoxic pore water from Mangrove Lake, Bermuda sediments were studied to evaluate the role of pore water in the early diagenesis of organic matter. Dissolved sulphate, titration alkalinity, phosphate, and ammonia concentration versus depth profiles were typical of many nearshore clastic sediments and indicated sulphate reduction in the upper 100 cm of sediment. The dissolved organic matter in the pore water was made up predominantly of large molecules, was concentrated from large quantities of pore water by using ultrafiltration and was extensively tudied by using elemental and stable carbon isotope analysis and high-resolution, solid state 13C nuclear magnetic resonance and infrared spectroscopy. The results indicate that this material has a predominantly polysaccharide-like structure and in addition contains a large amount of oxygen-containing functional groups (e.g., carboxyl groups). The 13C nulcear magnetic resonance spectra of the high-molecular-weight dissolved organic matter resemble those of the organic matter in the surface sediments of Mangrove Lake. We propose that this high-molecular-weight organic matter in pore waters represents the partially degraded, labile organic components of the sedimentary organic matter and that pore waters serve as a conduit for removal of these labile organic components from the sediments. The more refractory components are, thus, selectively preserved in the sediments as humic substances (primarily humin). ?? 1986.
Liu, Qingkun; Senyuk, Bohdan; Tang, Jianwei; Lee, Taewoo; Qian, Jun; He, Sailing; Smalyukh, Ivan I
2012-08-24
We describe a soft matter system of self-organized oblate micelles and plasmonic gold nanorods that exhibit a negative orientational order parameter. Because of anisotropic surface anchoring interactions, colloidal gold nanorods tend to align perpendicular to the director describing the average orientation of normals to the discoidal micelles. Helicoidal structures of highly concentrated nanorods with a negative order parameter are realized by adding a chiral additive and are further controlled by means of confinement and mechanical stress. Polarization-sensitive absorption, scattering, and two-photon luminescence are used to characterize orientations and spatial distributions of nanorods. Self-alignment and effective-medium optical properties of these hybrid inorganic-organic complex fluids match predictions of a simple model based on anisotropic surface anchoring interactions of nanorods with the structured host medium.
Organic matter content of soil after logging of fir and redwood forests
Philip B. Durgin
1980-01-01
Organic matter in soil controls a variety of soil properties. A study in Humboldt County, California, evaluated changes in percentages of organic matter in soil as a function of time after timber harvest and soil depth in fir and redwood forests. To assess organic matter content, samples were taken from cutblocks of various ages in soil to depths of 1.33 m. Results...
NASA Astrophysics Data System (ADS)
Sander, Michael; Getzinger, Gordon; Walpen, Nicolas
2017-04-01
Peat organic matter contains redox-active functional groups that can accept and/or donate electrons from and to biotic and abiotic reaction partners present in peatlands. Several studies have provided evidence that electron accepting quinone moieties in the peat organic matter may act as terminal electron acceptors for anaerobic microbial respiration. This respiration pathway may competitively suppress methanogenesis and thereby lead to excess carbon dioxide to methane formation in peatlands. Electron donating phenolic moieties in peat organic matter have long been considered to inhibit microbial and enzymatic activities in peatlands, thereby contributing to carbon stabilization and accumulation in these systems. Phenols are expected to be comparatively stable in anoxic parts of the peats as phenoloxidases, a class of enzymes capable of oxidatively degrading phenols, require molecular oxygen as co-substrate. Despite the general recognition of the importance of redox-active moieties in peat organic matter, the abundance, redox properties and reactivities of these moieties remain poorly studied and understood, in large part due to analytical challenges. This contribution will, in a first part, summarize recent advances in our research group on the analytical chemistry of redox-active moieties in peat organic matter. We will show how mediated electrochemical analysis can be used to quantify the capacities of electron accepting and donating moieties in both dissolved and particulate peat organic matter. We will link these capacities to the physicochemical properties of peat organic matter and provide evidence for quinones and phenols as major electron accepting and donating moieties, respectively. The second part of this contribution will highlight how these electroanalytical techniques can be utilized to advance a more fundamental understanding of electron transfer processes involving peat organic matter. These processes include the redox cycling (i.e., repeated reduction and re-oxidation) of peat organic matter under alternating anoxic-oxic conditions as well as the oxidation of phenolic moieties in peat organic matter by phenol oxidases in the presence of molecular oxygen. Overall, this contribution will attempt to link molecular-level insights into the redox properties of peat organic matter to larger scale redox processes that are important to carbon cycling in peatlands.
Rapatsa, J; Terapongtanakorn, S
2010-03-15
The experiment was carried out at the Faculty of Agriculture, Ubon Ratchathani University during November 2006 to July 2007. A Completely Randomized Design (CRD) with four replications was used. Six treatments were allocated into two experimental fields, i.e., field A, animal manures added soil. Field B, chemical fertilizers added soil and both fields have been used for chili cultivation for more than 5 years and they belong to Warin soil series (Oxic Paleustults). The results showed that mean values of soil pH and organic matter % of field A were much higher than field B but mean values of nitrogen % and phosphorus were much higher for field B than field A. Exchangeable potassium were inadequately available in all treatments. All treatments of field B gave excessive amounts of available phosphorus at a toxic level. T3 of field A gave higher plant height, total dry weight plant(-1), pod fresh and dry weights plant(-1) than T5 of field B. Of overall results in terms of growth and yields of chili plants, field A gave much better advantages over field B. The CO2 uptake and CO2 in leaves were higher for field A than field B. Polyamines of putrescine (Put), spermidine (Spd) and spermine (Spm) of T2 were affected by stress conditions due to previous applied chemical fertilisers. Available phosphorus mean values in most treatments were excessively available. Amounts of polyamines in chili leaves due to the added organic manure and chemical fertilizers (T3 up to T6) were not cleared.
NASA Astrophysics Data System (ADS)
Quiers, M.; Perrette, Y.; Etienne, D.; Develle, A. L.; Jacq, K.
2017-12-01
The use of organic proxies increases in paleoenvironmental reconstructions from natural archives. Major advances have been achieved by the development of new highly informative molecular proxies usually linked to specific compounds. While studies focused on targeted compounds, offering a high information degree, advances on bulk organic matter are limited. However, this bulk is the main contributor to carbon cycle and has been shown to be a driver of many mineral or organic compounds transfer and record. Development of target proxies need complementary information on bulk organic matter to understand biases link to controlling factors or analytical methods, and provide a robust interpretation. Fluorescence methods have often been employed to characterize and quantify organic matter. However, these technics are mainly developed for liquid samples, inducing material and resolution loss when working on natural archives (either stalagmite or sediments). High-resolution solid phase fluorescence (SPF) was developed on speleothems. This method allows now to analyse organic matter quality and quantity if procedure to constrain the optical density are adopted. In fact, a calibration method using liquid phase fluorescence (LPF) was developed for speleothem, allowing to quantify organic carbon at high-resolution. We report here an application of such a procedure SPF/LPF measurements on lake sediments. In order to avoid sediment matrix effects on the fluorescence signal, a calibration using LPF measurements was realised. First results using this method provided organic matter quality record of different organic matter compounds (humic-like, protein-like and chlorophylle-like compounds) at high resolution for the sediment core. High resolution organic matter fluxes are obtained in a second time, applying pragmatic chemometrics model (non linear models, partial least square models) on high resolution fluorescence data. SPF method can be considered as a promising tool for high resolution record on organic matter quality and quantity. Potential application of this method will be evocated (lake ecosystem dynamic, changes in trophic levels)
Chromophoric dissolved organic matter (CDOM) spectral absorption, dissolved organic carbon (DOC) concentration, and the particulate fraction of inorganic (PIM) and organic matter (POM) were measured in Louisiana coastal waters at Vermilion, Atchafalaya, Terrebonne, Barataria, and...
Atrophy of the Parietal Lobe in Preclinical Dementia
ERIC Educational Resources Information Center
Jacobs, Heidi I. L.; Van Boxtel, Martin P. J.; Uylings, Harry B. M.; Gronenschild, Ed H. B. M.; Verhey, Frans R.; Jolles, Jelle
2011-01-01
Cortical grey matter atrophy patterns have been reported in healthy ageing and Alzheimer disease (AD), but less consistently in the parietal regions of the brain. We investigated cortical grey matter volume patterns in parietal areas. The grey matter of the somatosensory cortex, superior and inferior parietal lobule was measured in 75 older adults…
Determination of the Content of Heavy Metals in Pyrite Contaminated Soil and Plants
Antonijević, Milan M.; Marić, Miroslava
2008-01-01
Determination of a pyrite contaminated soil texture, content of heavy metals in the soil and soil pH, was the aim in the investigation. Acidification of damaged soil was corrected by calcium carbonate. Mineral nutrients and organic matter (NPK, dung, earthworm cast, straw and coal dust) were added to damaged soil. Afterwards, the soil was used for oat production. Determination of total heavy metal contents (Cu, Pb, Zn, Fe) in soil was performed by atomic absorption spectrofotometry. Plant material (stems, seeds) was analysed, too. Total concentration of the heavy metals in the plant material were greater than in crop obtained in unaffected soil. PMID:27873845
NASA Astrophysics Data System (ADS)
Silver, Matthew; Wefer-Roehl, Annette; Kübeck, Christine; Schüth, Christoph
2016-04-01
The EU FP7 project MARSOL seeks to address water scarcity challenges in arid regions, where managed aquifer recharge (MAR) is an upcoming technology to recharge depleted aquifers using alternative water sources. Within this framework, we conduct column experiments to investigate transformations of nitrogen species when secondary treated wastewater (STWW) is infiltrated through two natural soils being considered for managed aquifer recharge. The soils vary considerably in organic matter content, with total organic matter determined by loss on ignition of 6.8 and 2.9 percent by mass for Soil 1 and Soil 2, respectively. Ammonium (NH4+) concentrations as high as 8.6 mg/L have been measured in pore water samples from Soil #1, indicating that ammonium could be a contaminant of concern in MAR applications using STWW, with consideration of the EU limit of 0.5 mg/L for NH4+. The two forms of nitrogen with the highest concentrations in the secondary treated wastewater are nitrate (NO3-) and dissolved organic nitrogen (DON). In water samples taken from the soil columns, a mass balance of measured ions shows a deficit of nitrogen in ionic form in the upper to middle depths of the soil, suggesting the presence of unmeasured species. These are likely nitrous oxide or dinitrogen gas, which would signify that denitrification is occurring. Measurements of N2O from water samples will verify its presence and spatial variation. The ammonium concentrations increase slowly in the upper parts of the soil but then increase more sharply at greater depth, after NO3- is depleted, suggesting that DON is the source of the produced NH4+. The production of NH4+ is presumed to be facilitated microbiologically. It is hypothesized that at higher organic carbon to total nitrogen (C:N) ratios, more NH4+ will be formed. To test this, in the experiments with Soil #2, three different inflow waters are used, listed in order of decreasing C:N ratio: STWW, STWW with NO3- added to a concentration of 80 mg/L, and STWW diluted with tapwater and with NO3- added to 80 mg/L. Soil pore water samples show that at 30 cm depth, NH4+ concentrations are highest with the original STWW, and progressively lower with the NO3- enriched STWW and the tapwater-diluted STWW. This shows that the C:N ratio of the inflow water is positively correlated with NH4+ concentration in soil water and suggests lower inflow C:N ratios may diminish NH4+ production. In addition, outflow rates from the column with unaltered STWW are approximately 15% higher than outflow rates from the column with added NO3-, an effect that could be caused by gas (N2 or N2O) clogging of the soil. As MAR is an upcoming technology already being practiced, these results will be used to develop guidance on how to mitigate the impact of pollutants to groundwater (NH4+) and the atmosphere (N2O). Key factors diminishing the production of NH4+ appear to be lower organic matter content of the soil and elevated NO3- concentrations in the inflow water, although the latter could have adverse effects with respect to emission of N2O.
NASA Astrophysics Data System (ADS)
Leifeld, Jens; Conen, Franz; Oberholzer, Hans Rudolf; Jochen, Mayer
2014-05-01
Soil carbon dynamics are controlled by the delicate balance between carbon inputs and outputs which both are co-regulated by land use and management (LUM) as important anthropogenic drivers. Upon land use change to cropland carbon stocks generally tend to decline but often the contribution of two opposing factors, namely changes in input and decomposition rates, to soil carbon stock changes is indistinguishable. Here we report on an ongoing cropland experiment in Zurich, Switzerland, named ZOFE (Zurich Organic Fertilization Experiment), established on former grassland in 1949. ZOFE encompasses a range of mineral and organic fertilization practices and a zero fertilizer treatment as control. The experiment has a block design with five replicates per treatment. We make use of productivity and fertilization gradients in selected treatments of the ZOFE trial to evaluate how low or high inputs (induced by differential yields and organic fertilization) may affect soil organic carbon storage and transformation. For the most recent sampling that also included subsoil down to 0.9 m, all properties were measured for every single replicate. Topsoil carbon storage declined after grassland conversion at rates of c. 0.2 t C ha-1 a-1, particularly in treatments with mineral fertilizer and high yields, and without fertilization and low yields. Organic matter amendments such as manure or compost could partially offset but not fully compensate some of the topsoil carbon loss. Over time the soil's delta 15N signature declined as well, probably due to increased atmospheric nitrogen deposition. It increased from the top- to the subsoil, indicating increasing microbial transformation, particularly with manure added. The soil's radiocarbon signature revealed distinct bomb peak patterns in all treatments but only in the topsoil. The 14C data confirmed that with higher productivity more recent organic matter was incorporated, both in top and subsoil. Because, in contrast to topsoil, subsoil carbon storage was similar among treatments, the results tentatively indicate that in the ZOFE trial higher subsoil carbon inputs, owing to high productivity and additional organic amendments, do not enhance subsoil carbon storage but higher inputs are counterbalanced by faster soil organic matter decomposition.
El Fallah, Rawa; Rouillon, Régis; Vouvé, Florence
2018-06-15
The fate of benzo(a)pyrene (BaP), a ubiquitous contaminant reported to be persistent in the environment, is largely controlled by its interactions with the soil organic matter. In the present study, the spectral characteristics of fluorophores present in the physical fractions of the soil organic matter were investigated in the presence of pure BaP solution. After extraction of humic substances (HSs), and their fractionation into fluvic acid (FA) and humic acid (HA), two fluorescent compounds (C 1 and C 2 ) were identified and characterized in each physical soil fraction, by means of fluorescence excitation-emission matrices (FEEMs) and Parallel Factor Analysis (PARAFAC). Then, to each type of fraction having similar DOC content, was added an increasing volume of pure BaP solution in attempt to assess the behavior of BaP with the fluorophores present in each one. The application of FEEMs-PARAFAC method validated a three-component model that consisted of the two resulted fluorophores from HSs, FA and HA (C 1 and C 2 ) and a BaP-like fluorophore (C 3 ). Spectral modifications were noted for components C 2 HSs (C 2 in humic substances fraction) (λex/λem: 420/490-520 nm), C 2 FA (C 2 in fulvic acid fraction) (λex/λem: 400/487(517) nm) and C 1 HA (C 1 in humic acid fraction) (λex/λem: 350/452(520) nm). We explored the impact of increasing the volume of the added pure BaP solution on the scores of the fluorophores present in the soil fractions. It was found that the scores of C 2 HSs, C 2 FA, and C 1 HA increased when the volume of the added pure BaP solution increased. Superposition of the excitation spectra of these fluorophores with the emission spectrum of BaP showed significant overlaps that might explain the observed interactions between BaP and the fluorescent compounds present in SOM physical fractions. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
El Fallah, Rawa; Rouillon, Régis; Vouvé, Florence
2018-06-01
The fate of benzo(a)pyrene (BaP), a ubiquitous contaminant reported to be persistent in the environment, is largely controlled by its interactions with the soil organic matter. In the present study, the spectral characteristics of fluorophores present in the physical fractions of the soil organic matter were investigated in the presence of pure BaP solution. After extraction of humic substances (HSs), and their fractionation into fluvic acid (FA) and humic acid (HA), two fluorescent compounds (C1 and C2) were identified and characterized in each physical soil fraction, by means of fluorescence excitation-emission matrices (FEEMs) and Parallel Factor Analysis (PARAFAC). Then, to each type of fraction having similar DOC content, was added an increasing volume of pure BaP solution in attempt to assess the behavior of BaP with the fluorophores present in each one. The application of FEEMs-PARAFAC method validated a three-component model that consisted of the two resulted fluorophores from HSs, FA and HA (C1 and C2) and a BaP-like fluorophore (C3). Spectral modifications were noted for components C2HSs (C2 in humic substances fraction) (λex/λem: 420/490-520 nm), C2FA (C2 in fulvic acid fraction) (λex/λem: 400/487(517) nm) and C1HA (C1 in humic acid fraction) (λex/λem: 350/452(520) nm). We explored the impact of increasing the volume of the added pure BaP solution on the scores of the fluorophores present in the soil fractions. It was found that the scores of C2HSs, C2FA, and C1HA increased when the volume of the added pure BaP solution increased. Superposition of the excitation spectra of these fluorophores with the emission spectrum of BaP showed significant overlaps that might explain the observed interactions between BaP and the fluorescent compounds present in SOM physical fractions.
Zhao, Yulian; Dong, Faqin; Dai, Qunwei; Li, Gang; Ma, Jie
2017-07-25
This paper aimed to investigate the variation of preserving organic matter bound in the interlayer space of montmorillonite (Mt) induced by a microbe metabolic process. We selected Bacillus pumilus as the common soil native bacteria. The alteration of d 001 value, functional group, and C,N organic matter contents caused by bacteria were analyzed by XRD, FTIR, and elementary analyzer, respectively. XRD results showed that the d 001 value of montmorillonite increased with the concentration decreasing and decreased with the culture time increasing after interacting with bacteria indicating the interlayer space of montmorillonite was connected with the organic matter. The findings of long-term interaction by resetting culture conditions implied that the montmorillonite buffered the organic matter when the nutrition was enough and released again when the nutrition was lacking. The results of the elementary analyzer declared the content of organic matter was according to the d 001 value of montmorillonite and N organic matter which played a major impact. FTIR results confirmed that the Si-O stretching vibrations of Mt were affected by the functional group of organic matter. Our results showed that the montmorillonite under the influence of soil bacteria has a strong buffering capacity for preserving organic matter into the interlayer space in a short-term. It might provide critical implications for understanding the evolution process and the preservation of fertilization which was in the over-fertilization or less-fertilization conditions on farmland.
Enhancement of biogas production by co-digestion of potato pulp with cow manure in a CSTR system.
Sanaei-Moghadam, Akbar; Abbaspour-Fard, Mohammad Hossein; Aghel, Hasan; Aghkhani, Mohammad Hossein; Abedini-Torghabeh, Javad
2014-08-01
Anaerobic digestion (AD) process is a well-established method to generate energy from the organic wastes both from the environmental and economical perspectives. The purpose of present study is to evaluate energy production from potato wastes by incorporating cow manure into the process. Firstly, a laboratory pilot of one-stage biogas production was designed and built according to continuously stirred tank reactor (CSTR) system. The setup was able to automatically control the environmental conditions of the process including temperature, duration, and rate of stirring. AD experiment was exclusively performed on co-digestion of potato peel (PP) and cow manure (CM) in three levels of mixing ratio including 20:80, 50:50, 80:20 (PP:CM), and 0:100 as control treatment based on the volatile solid (VS) weight without adding initial inoculums. After hydraulic retention time (HRT) of 50 days on average 193, 256, 348, and 149 norm liter (LN) (kg VS)(-1), methane was produced for different mixing ratios, respectively. Statistical analysis shows that these gas productions are significantly different. The average energy was determined based on the produced methane which was about 2.8 kWh (kg VS)(-1), implying a significant energy production potential. The average chemical oxygen demand (COD) removal of treatments was about 61%, showing that it can be leached significantly with high organic matter by the employed pilot. The energy efficiency of 92% of the process also showed the optimum control of the process by the pilot.
Studies on transformations of plutonium-239 and americium-241 in three major Indian soils.
Vyas, B N; Mistry, K B
1984-01-13
These studies were carried out to elucidate the behaviour of 239Pu and and 241Am in three major soil groups of India, namely oxisol, vertisol-pellustert and entisol-haplaquent, over extended periods up to 400 days. The influences of soil characteristics, addition of organic matter and the chemical form of the radionuclides added to soils were investigated. A large fraction, ranging from 60 to 90% of the soluble radionuclides added as nitrates, underwent rapid conversion to precipitated hydrous oxides and hydroxides (0.3 M sodium citrate-dithionite extracts). At 3 h after contamination, ion-exchangeable forms (0.1 M MgCl2 extracts) contained low levels of total added Pu (0.7 to 19.1%) and from 0.1 to 2.8% of total Am. These levels decreased further with increasing periods of incubation of up to 400 days. In contrast, on addition of chelated forms of radionuclides (as DTPA and EDTA complexes) up to 85% of total Pu, and about 50% of total Am were associated with 0.1 M MgCl2 extracts 3 h post-contamination and significant amounts were extractable when maintained over extended periods of incubation of up to 400 days. The levels of Pu and Am associated with organic-bound forms (0.1 M NaOH extracts) did not show consistent trends, although in all three soil types the contents of these radionuclides in the insoluble residue fraction (including refractory compounds) generally increased with time of incubation.
Association of Amyloid Pathology With Myelin Alteration in Preclinical Alzheimer Disease.
Dean, Douglas C; Hurley, Samuel A; Kecskemeti, Steven R; O'Grady, J Patrick; Canda, Cristybelle; Davenport-Sis, Nancy J; Carlsson, Cynthia M; Zetterberg, Henrik; Blennow, Kaj; Asthana, Sanjay; Sager, Mark A; Johnson, Sterling C; Alexander, Andrew L; Bendlin, Barbara B
2017-01-01
The accumulation of aggregated β-amyloid and tau proteins into plaques and tangles is a central feature of Alzheimer disease (AD). While plaque and tangle accumulation likely contributes to neuron and synapse loss, disease-related changes to oligodendrocytes and myelin are also suspected of playing a role in development of AD dementia. Still, to our knowledge, little is known about AD-related myelin changes, and even when present, they are often regarded as secondary to concomitant arteriosclerosis or related to aging. To assess associations between hallmark AD pathology and novel quantitative neuroimaging markers while being sensitive to white matter myelin content. Magnetic resonance imaging was performed at an academic research neuroimaging center on a cohort of 71 cognitively asymptomatic adults enriched for AD risk. Lumbar punctures were performed and assayed for cerebrospinal fluid (CSF) biomarkers of AD pathology, including β-amyloid 42, total tau protein, phosphorylated tau 181, and soluble amyloid precursor protein. We measured whole-brain longitudinal and transverse relaxation rates as well as the myelin water fraction from each of these individuals. Automated brain mapping algorithms and statistical models were used to evaluate the relationships between age, CSF biomarkers of AD pathology, and quantitative magnetic resonance imaging relaxometry measures, including the longitudinal and transverse relaxation rates and the myelin water fraction. The mean (SD) age for the 19 male participants and 52 female participants in the study was 61.6 (6.4) years. Widespread age-related changes to myelin were observed across the brain, particularly in late myelinating brain regions such as frontal white matter and the genu of the corpus callosum. Quantitative relaxometry measures were negatively associated with levels of CSF biomarkers across brain white matter and in areas preferentially affected in AD. Furthermore, significant age-by-biomarker interactions were observed between myelin water fraction and phosphorylated tau 181/β-amyloid 42, suggesting that phosphorylated tau 181/β-amyloid 42 levels modulate age-related changes in myelin water fraction. These findings suggest amyloid pathologies significantly influence white matter and that these abnormalities may signify an early feature of the disease process. We expect that clarifying the nature of myelin damage in preclinical AD may be informative on the disease's course and lead to new markers of efficacy for prevention and treatment trials.
Association of Amyloid Pathology With Myelin Alteration in Preclinical Alzheimer Disease
Dean, Douglas C.; Hurley, Samuel A.; Kecskemeti, Steven R.; O’Grady, J. Patrick; Canda, Cristybelle; Davenport-Sis, Nancy J.; Carlsson, Cynthia M.; Zetterberg, Henrik; Blennow, Kaj; Asthana, Sanjay; Sager, Mark A.; Johnson, Sterling C.; Alexander, Andrew L.; Bendlin, Barbara B.
2016-01-01
IMPORTANCE The accumulation of aggregated β-amyloid and tau proteins into plaques and tangles is a central feature of Alzheimer disease (AD). While plaque and tangle accumulation likely contributes to neuron and synapse loss, disease-related changes to oligodendrocytes and myelin are also suspected of playing a role in development of AD dementia. Still, to our knowledge, little is known about AD-related myelin changes, and even when present, they are often regarded as secondary to concomitant arteriosclerosis or related to aging. OBJECTIVE To assess associations between hallmark AD pathology and novel quantitative neuroimaging markers while being sensitive to white matter myelin content. DESIGN, SETTING, AND PARTICIPANTS Magnetic resonance imaging was performed at an academic research neuroimaging center on a cohort of 71 cognitively asymptomatic adults enriched for AD risk. Lumbar punctures were performed and assayed for cerebrospinal fluid (CSF) biomarkers of AD pathology, including β-amyloid 42, total tau protein, phosphorylated tau 181, and soluble amyloid precursor protein. We measured whole-brain longitudinal and transverse relaxation rates as well as the myelin water fraction from each of these individuals. MAIN OUTCOMES AND MEASURES Automated brain mapping algorithms and statistical models were used to evaluate the relationships between age, CSF biomarkers of AD pathology, and quantitative magnetic resonance imaging relaxometry measures, including the longitudinal and transverse relaxation rates and the myelin water fraction. RESULTS The mean (SD) age for the 19 male participants and 52 female participants in the study was 61.6 (6.4) years. Widespread age-related changes to myelin were observed across the brain, particularly in late myelinating brain regions such as frontal white matter and the genu of the corpus callosum. Quantitative relaxometry measures were negatively associated with levels of CSF biomarkers across brain white matter and in areas preferentially affected in AD. Furthermore, significant age-by-biomarker interactions were observed between myelin water fraction and phosphorylated tau 181/β-amyloid 42, suggesting that phosphorylated tau 181/β-amyloid 42 levels modulate age-related changes in myelin water fraction. CONCLUSIONS AND RELEVANCE These findings suggest amyloid pathologies significantly influence white matter and that these abnormalities may signify an early feature of the disease process. We expect that clarifying the nature of myelin damage in preclinical AD may be informative on the disease’s course and lead to new markers of efficacy for prevention and treatment trials. PMID:27842175
Ramirez, Joel; Berezuk, Courtney; McNeely, Alicia A; Scott, Christopher J M; Gao, Fuqiang; Black, Sandra E
2015-01-01
Visible Virchow-Robin spaces (VRS) are commonly used markers for small vessel disease in aging and dementia. However, as previous reports were based on subjective visual ratings, the goal of this project was to validate and apply an MRI-based quantitative measure of VRS as a potential neuroimaging biomarker. A modified version of Lesion Explorer was applied to MRIs from Alzheimer's disease patients (AD: n = 203) and normal elderly controls (NC: n = 94). Inter-rater reliability, technique validity, group/gender differences, and correlations with other small vessel disease markers were examined (lacunes and white matter hyperintensities, WMH). Inter-rater reliability and spatial congruence was excellent (ICC = 0.99, SI = 0.96), and VRS volumes were highly correlated with established rating scales (CS: ρ = 0.84, p < 0.001; BG: ρ = 0.75, p < 0.001). Compared to NC, AD had significantly greater volumes of WMH (p < 0.01), lacunes (p < 0.001), and VRS in the white matter (p < 0.01), but not in the basal ganglia (n.s.). Compared to women, demented and non-demented men had greater VRS in the white matter (p < 0.001), but not in the basal ganglia (n.s.). Additionally, VRS were correlated with lacunes and WMH, but only in AD (r = 0.3, p < 0.01). Compared to women, men may be more susceptible to greater volumes of VRS, particularly in the white matter. RESULTS support the hypothesis that VRS in the white matter may be more related to AD-related vascular pathology compared to VRS found in the basal ganglia. Future work using this novel VRS segmentation tool will examine its potential utility as an imaging biomarker of vascular rather than parenchymal amyloid.
NASA Astrophysics Data System (ADS)
Li, Zhong Qiao; Wu, Ying; Liu, Su Mei; Du, Jin Zhou; Zhang, Jing
2016-02-01
The East China Sea (ECS) is a large river dominated marginal sea and receives massive volumes of terrestrial material from the Changjiang (Yangtze River). As the ECS preserves a record of terrestrial material derived from the Changjiang Basin, cores collected from this region can be used to reconstruct paleoclimate change and human disturbance in the watershed. A core (P4) was collected from the ECS shelf break and analyzed for bulk parameters (organic carbon (OC), total nitrogen (TN), and stable carbon isotopes (δ13C)), lignin phenols, and 3,5-dihydroxy benzoic acid (DHBA). The depth profiles of these parameters indicate stable and consistent marine production. The lignin source indices, cinnamyl phenols vs. vanillyl phenols (C/V) and syringyl phenols vs. vanillyl phenols (S/V), were in agreement with previously reported results from ECS surface sediments, but differed markedly from Bohai Sea surface sediments. The ratio of acid to aldehyde in vanillyl phenols ((Ad/Al)v) indicated the terrestrial OC in this core was refractory. At the same time, the variation in lignin phenols is positively correlated with the strength of the Indian Summer Monsoon (ISM) over the last 800 years (p<0.001). This is because most sediment is delivered from the upper reaches of the Changjiang Basin, where the ISM is the key control on precipitation. Two extreme drought events, around 1580 A.D. and 1770 A.D. were also identified in the core based on the extremely low C/V, S/V, lignin phenol vegetation index (LPVI), and DHBA values. Furthermore, the significant shift in C/V and S/V since 1880 A.D. is probably a reflection of increased human activity in the upper Changjiang Basin over this period.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilson, Rachel M; Tfaily, Malak M
These data are provided in support of the Commentary, Advanced molecular techniques provide a rigorous method for characterizing organic matter quality in complex systems, Wilson and Tfaily (2018). Measurement results demonstrate that optical characterization of peatland dissolved organic matter (DOM) may not fully capture classically identified chemical characteristics and may, therefore, not be the best measure of organic matter quality.
The impact of sea-level rise on organic matter decay rates in Chesapeake Bay brackish tidal marshes
Kirwanm, M.L.; Langley, J.A.; Guntenspergen, Gleen R.; Megonigal, J.P.
2013-01-01
The balance between organic matter production and decay determines how fast coastal wetlands accumulate soil organic matter. Despite the importance of soil organic matter accumulation rates in influencing marsh elevation and resistance to sea-level rise, relatively little is known about how decomposition rates will respond to sea-level rise. Here, we estimate the sensitivity of decomposition to flooding by measuring rates of decay in 87 bags filled with milled sedge peat, including soil organic matter, roots and rhizomes. Experiments were located in field-based mesocosms along 3 mesohaline tributaries of the Chesapeake Bay. Mesocosm elevations were manipulated to influence the duration of tidal inundation. Although we found no significant influence of inundation on decay rate when bags from all study sites were analyzed together, decay rates at two of the sites increased with greater flooding. These findings suggest that flooding may enhance organic matter decay rates even in water-logged soils, but that the overall influence of flooding is minor. Our experiments suggest that sea-level rise will not accelerate rates of peat accumulation by slowing the rate of soil organic matter decay. Consequently, marshes will require enhanced organic matter productivity or mineral sediment deposition to survive accelerating sea-level rise.
The impact of sea-level rise on organic matter decay rates in Chesapeake Bay brackish tidal marshes
NASA Astrophysics Data System (ADS)
Kirwan, M. L.; Langley, J. A.; Guntenspergen, G. R.; Megonigal, J. P.
2013-03-01
The balance between organic matter production and decay determines how fast coastal wetlands accumulate soil organic matter. Despite the importance of soil organic matter accumulation rates in influencing marsh elevation and resistance to sea-level rise, relatively little is known about how decomposition rates will respond to sea-level rise. Here, we estimate the sensitivity of decomposition to flooding by measuring rates of decay in 87 bags filled with milled sedge peat, including soil organic matter, roots and rhizomes. Experiments were located in field-based mesocosms along 3 mesohaline tributaries of the Chesapeake Bay. Mesocosm elevations were manipulated to influence the duration of tidal inundation. Although we found no significant influence of inundation on decay rate when bags from all study sites were analyzed together, decay rates at two of the sites increased with greater flooding. These findings suggest that flooding may enhance organic matter decay rates even in water-logged soils, but that the overall influence of flooding is minor. Our experiments suggest that sea-level rise will not accelerate rates of peat accumulation by slowing the rate of soil organic matter decay. Consequently, marshes will require enhanced organic matter productivity or mineral sediment deposition to survive accelerating sea-level rise.
The impact of sea-level rise on organic matter decay rates in Chesapeake Bay brackish tidal marshes
NASA Astrophysics Data System (ADS)
Kirwan, M. L.; Langley, J. A.; Guntenspergen, G. R.; Megonigal, J. P.
2012-10-01
The balance between organic matter production and decay determines how fast coastal wetlands accumulate soil organic matter. Despite the importance of soil organic matter accumulation rates in influencing marsh elevation and resistance to sea-level rise, relatively little is known about how decomposition rates will respond to sea-level rise. Here, we estimate the sensitivity of decomposition to flooding by measuring rates of decay in 87 bags filled with milled sedge peat, including soil organic matter, roots and rhizomes. Experiments were located in field-based mesocosms along 3 mesohaline tributaries of the Chesapeake Bay. Mesocosm elevations were manipulated to influence the duration of tidal inundation. Although we found no significant influence of inundation on decay rate when bags from all study sites were analyzed together, decay rates at two of the sites increased with greater flooding. These findings suggest that flooding may enhance organic matter decay rates even in water-logged soils, but that the overall influence of flooding is minor. Our experiments suggest that sea-level rise will not accelerate rates of peat accumulation by slowing the rate of soil organic matter decay. Consequently, marshes will require enhanced organic matter productivity or mineral sediment deposition to survive accelerating sea-level rise.
40 CFR 503.41 - Special definitions.
Code of Federal Regulations, 2012 CFR
2012-07-01
... device in which organic matter and inorganic matter in sewage sludge are combusted in a bed of particles... combustion of organic matter and inorganic matter in sewage sludge by high temperatures in an enclosed device... accordance with 40 CFR 51.100 (ii). (p) Total hydrocarbons means the organic compounds in the exit gas from a...
40 CFR 503.41 - Special definitions.
Code of Federal Regulations, 2011 CFR
2011-07-01
... device in which organic matter and inorganic matter in sewage sludge are combusted in a bed of particles... combustion of organic matter and inorganic matter in sewage sludge by high temperatures in an enclosed device... accordance with 40 CFR 51.100 (ii). (p) Total hydrocarbons means the organic compounds in the exit gas from a...
40 CFR 503.41 - Special definitions.
Code of Federal Regulations, 2014 CFR
2014-07-01
... device in which organic matter and inorganic matter in sewage sludge are combusted in a bed of particles... combustion of organic matter and inorganic matter in sewage sludge by high temperatures in an enclosed device... accordance with 40 CFR 51.100 (ii). (p) Total hydrocarbons means the organic compounds in the exit gas from a...
40 CFR 503.41 - Special definitions.
Code of Federal Regulations, 2013 CFR
2013-07-01
... device in which organic matter and inorganic matter in sewage sludge are combusted in a bed of particles... combustion of organic matter and inorganic matter in sewage sludge by high temperatures in an enclosed device... accordance with 40 CFR 51.100 (ii). (p) Total hydrocarbons means the organic compounds in the exit gas from a...
Phoemchalard, Chirasak; Uriyapongson, Suthipong; Berg, Eric Paul
2014-04-01
The effects of cassava bioethanol by-product (CEP) and crude palm oil (CPO) on feed intake, nutrient digestibility, and growth performance of yearling heifers were investigated in a 150-day feeding trial. Eighteen, crossbred heifers (Brahman x Thai native) were randomly allotted according to 2 × 3 factorial arrangement. Low or high levels of CEP (15 or 30% of concentrate, LCEP, or HCEP) were basal treatments and 0, 2, and 4% CPO were daily top-dressed. Concentrate was supplemented at 1.75% of body weight (BW) and rice straw offered ad libitum. CEP level had no significance on feed intake. CPO increased roughage intake, concentrate intake, and total feed intake when expressed as %BW/d (P < 0.01) and as metabolic BW (kg(0.75)/d, P < 0.05). Intakes of dry matter (DM), organic matter (OM), and crude protein (CP) were similar (P > 0.05). Intake of fat increased with higher levels of CPO (P < 0.001). The DM, OM, CP, and EE digestibility of cattle-fed HCEP was lower than LCEP, but adding 4% CPO increased digestibility. Growth performance was similar for all diets (P > 0.05). We concluded that CEP can be used up to 30% in the diet, with or without additional fat inclusion.
Organic matter in hydrothermal metal ores and hydrothermal fluids
Orem, W.H.; Spiker, E. C.; Kotra, R.K.
1990-01-01
Massive polymetallic sulfides are currently being deposited around active submarine hydrothermal vents associated with spreading centers. Chemoautolithotrophic bacteria are responsible for the high production of organic matter also associated with modern submarine hydrothermal activity. Thus, there is a significant potential for organic matter/metal interactions in these systems. We have studied modern and ancient hydrothermal metal ores and modern hydrothermal fluids in order to establish the amounts and origin of the organic matter associated with the metal ores. Twenty-six samples from modern and ancient hydrothermal systems were surveyed for their total organic C contents. Organic C values ranged from 0.01% to nearly 4.0% in these samples. Metal ores from modern and ancient sediment-covered hydrothermal systems had higher organic C values than those from modern and ancient hydrothermal systems lacking appreciable sedimentary cover. One massive pyrite sample from the Galapagos spreading center (3% organic C) had stable isotope values of -27.4% (??13C) and 2.1% (??15N), similar to those in benthic siphonophors from active vents and distinct from seep sea sedimentary organic matter. This result coupled with other analyses (e.g. 13C NMR, pyrolysis/GC, SEM) of this and other samples suggests that much of the organic matter may originate from chemoautolithotrophic bacteria at the vents. However, the organic matter in hydrothermal metal ores from sediment covered vents probably arises from complex sedimentary organic matter by hydrothermal pyrolysis. The dissolved organic C concentrations of hydrothermal fluids from one site (Juan de Fuca Ridge) were found to be the same as that of background seawater. This result may indicate that dissolved organic C is effectively scavenged from hydrothermal fluids by biological activity or by co-precipitation with metal ores. ?? 1990.
40 CFR 63.4351 - How do I demonstrate initial compliance?
Code of Federal Regulations, 2013 CFR
2013-07-01
... the organic HAP emissions reductions by applying the volatile organic matter collection and recovery... cumulative amount of volatile organic matter recovered by the solvent recovery system for the compliance... of the mass of volatile organic matter recovered. (ii) For each solvent recovery system, determine...
40 CFR 63.3961 - How do I demonstrate initial compliance?
Code of Federal Regulations, 2012 CFR
2012-07-01
... balances, calculate the organic HAP emission reduction by applying the volatile organic matter collection... device that indicates the cumulative amount of volatile organic matter recovered by the solvent recovery....0 percent of the mass of volatile organic matter recovered. (2) For each solvent recovery system...
40 CFR 63.3961 - How do I demonstrate initial compliance?
Code of Federal Regulations, 2014 CFR
2014-07-01
... balances, calculate the organic HAP emission reduction by applying the volatile organic matter collection... device that indicates the cumulative amount of volatile organic matter recovered by the solvent recovery....0 percent of the mass of volatile organic matter recovered. (2) For each solvent recovery system...
40 CFR 63.4351 - How do I demonstrate initial compliance?
Code of Federal Regulations, 2014 CFR
2014-07-01
... the organic HAP emissions reductions by applying the volatile organic matter collection and recovery... cumulative amount of volatile organic matter recovered by the solvent recovery system for the compliance... of the mass of volatile organic matter recovered. (ii) For each solvent recovery system, determine...
40 CFR 63.4351 - How do I demonstrate initial compliance?
Code of Federal Regulations, 2012 CFR
2012-07-01
... the organic HAP emissions reductions by applying the volatile organic matter collection and recovery... cumulative amount of volatile organic matter recovered by the solvent recovery system for the compliance... of the mass of volatile organic matter recovered. (ii) For each solvent recovery system, determine...
Chromophoric dissolved organic (CDOM) in aquatic environments is derived from the microbial decomposition of terrestrial and microbial organic matter. Here we present results of studies of the spectral properties and photoreactivity of the CDOM derived from several organic matter...
GROUNDWATER TRANSPORT OF HYDROPHOBIC ORGANIC COMPOUNDS IN THE PRESENCE OF DISSOLVED ORGANIC MATTER
The effects of dissolved organic matter (DOM) on the transport of hydrophobic organic compounds in soil columns were investigated. Three compounds (naphthalene, phenanthrene and DDT) that spanned three orders of magnitude in water solubility were used. Instead of humic matter, mo...
The Fornix in Mild Cognitive Impairment and Alzheimer’s Disease
Nowrangi, Milap A.; Rosenberg, Paul B.
2015-01-01
The fornix is an integral white matter bundle located in the medial diencephalon and is part of the limbic structures. It serves a vital role in memory functions and as such has become the subject of recent research emphasis in Alzheimer’s disease (AD) and mild cognitive impairment (MCI). As the characteristic pathological processes of AD progress, structural and functional changes to the medial temporal lobes and other regions become evident years before clinical symptoms are present. Though gray matter atrophy has been the most studied, degradation of white matter structures especially the fornix may precede these and has become detectable with use of diffusion tensor imaging (DTI) and other complimentary imaging techniques. Recent research utilizing DTI measurement of the fornix has shown good discriminability of diagnostic groups, particularly early and preclinical, as well as predictive power for incident MCI and AD. Stimulating and modulating fornix function by the way of DBS has been an exciting new area as pharmacological therapeutics has been slow to develop. PMID:25653617
soil organic matter fractionation
NASA Astrophysics Data System (ADS)
Osat, Maryam; Heidari, Ahmad
2010-05-01
Carbon is essential for plant growth, due to its effects on other soil properties like aggregation. Knowledge of dynamics of organic matter in different locations in the soil matrix can provide valuable information which affects carbon sequestration and soil the other soil properties. Extraction of soil organic matter (SOM) fractions has been a long standing approach to elucidating the roles of soil organic matter in soil processes. Several kind fractionation methods are used and all provide information on soil organic matter function. Physical fractionation capture the effects on SOM dynamics of the spatial arrangement of primary and secondary organomineral particles in soil while chemical fractionation can not consider the spatial arrangement but their organic fractions are suitable for advanced chemical characterization. Three method of physical separation of soil have been used, sieving, sedimentation and densitometry. The distribution of organic matter within physical fractions of the soil can be assessed by sieving. Sieving separates soil particles based strictly on size. The study area is located on north central Iran, between 35° 41'- 36° 01' N and 50° 42'- 51° 14' E. Mean annual precipitation about 243.8 mm and mean annual air temperature is about 14.95 °C. The soil moisture and temperature regime vary between aridic-thermic in lower altitudes to xeric-mesic in upper altitudes. More than 36 surface soil samples (0-20 cm) were collected according to land-use map units. After preliminary analyzing of samples 10 samples were selected for further analyses in five size fractions and three different time intervals in September, January and April 2008. Fractionation carried out by dry sieving in five classes, 1-2 mm, 0.5-1 mm, 270 μm-0.5mm, 53-270 μm and <53 μm. Organic matter and C/N ratio were determined for all fractions at different time intervals. Chemical fractionation of organic matter also carried out according to Tan (2003), also Mineralogical studies were carried out to illustrate the relationship between clay mineral series and organic matter. According to the results the amount of organic carbon increases by decreasing size fractions and reaches to its maximum in <250μ classes, also 2:1 and expanding clays which have the ability to maintain larger amounts of organic carbon were the dominant clay minerals. Chemical fractionation of soil organic matter to humic acid and fulvic acid shows that there is a better correlation between humic acid contents and soil organic matter (R2 = 0.86) than fulvic acid and organic matter (R2=0.5). The amount of humic and fulvic acids varies in different size fractions and reaches to its minimum in the E fraction in all three stages. The relationships between fulvic and humic acids with organic matter content, demonstrating that at the lower organic matter content, humification is slow, thus humic acid content is rather low than the fulvic acid content. By increasing the organic matter content biological activity increases and followed by humification process proceeds so that the humic acid content locates over the fulvic acid content.
Smernik, Ronald J; Kookana, Rai S
2015-01-01
Sorption of non-ionic organic compounds to soil is usually expressed as the carbon-normalized partition coefficient (KOC), because it is assumed that the main factor that influences the amount sorbed is the organic carbon content of the soil. However, KOC can vary by a factor of at least ten across a range of soils. We investigated two potential causes of variation in diuron KOC - organic matter-mineral interactions and organic matter chemistry - for a diverse set of 34 soils from Sri Lanka, representing a wide range of soil types. Treatment with hydrofluoric acid (HF-treatment) was used to concentrate soil organic matter. HF-treatment increased KOC for the majority of soils (average factor 2.4). We attribute this increase to the blocking of organic matter sorption sites in the whole soils by minerals. There was no significant correlation between KOC for the whole soils and KOC for the HF-treated soils, indicating that the importance of organic matter-mineral interactions varied greatly amongst these soils. There was as much variation in KOC across the HF-treated soils as there was across the whole soils, indicating that the nature of soil organic matter is also an important contributor to KOC variability. Organic matter chemistry, determined by solid-state (13)C nuclear magnetic resonance (NMR) spectroscopy, was correlated with KOC for the HF-treated soils. In particular, KOC increased with the aromatic C content (R=0.64, p=1×10(-6)), and decreased with O-alkyl C (R=-0.32, p=0.03) and alkyl C (R=-0.41, p=0.004) content. Copyright © 2014 Elsevier Ltd. All rights reserved.
Laboratory Study of Methane Flux from Acid Sulphate Soil in South Kalimantan
NASA Astrophysics Data System (ADS)
Annisa, W.; Cahyana, D.; Syahbuddin, H.; Rachman, A.
2017-06-01
Addition of organic matter in waterlogged conditions will enhance methanogenesis process that produces greenhouse gases. Fresh organic material is considered reactive because it contains carbons that is subject to decompose, therefore, when it exposed to acid sulphate soil, both in natural condition (aeration required) and intensive (aeration not required) will lower the value of redox potential. This experiment aimed to determine the flux of methane (CH4) from various locally available organic materials applied to acid sulphate soil. The experiment was arranged in factorial design with two factors. The first factor was the source of organic matter, i.e. fresh rice straw, fresh purun, fresh cattle manure, composted rice straw, composted purun and composted cattle manure, and control. The second factor was the management of organic matter i.e. placed on the soil surface with no tillage and mixed with soil during tillage. The results showed that application of fresh organic matter into inundated acid sulphate soil increased CH4 fluxes up to 23.78 µg CH4 g1 d1 which was higher than from composted organic matter (4.327 µg CH4.g1.d1). Methane flux due to organic matter management was significantly negatively (p=0.001) correlated with soil redox potential (Eh) with R2 of - 0.76. Organic matter placed on the soil surface with no tillage produced methane flux ranged from 0.33 to 20.78 g CH4 g1 d1, which was lower than methane flux produced from organic matter mixed with soil during tillage (0.38 to 27.27 g CH4 g1 d1). Composting organic matter before application and mixing them with the soil through tillage are highly recommended to reduce greenhouse gas emissions from cultivated acid sulphate soils.
ERIC Educational Resources Information Center
Clarkson, W. W.; And Others
This module sketches out the impact of sewage organic matter on soils. For convenience, that organic matter is separated into the readily decomposable compounds and the more resistant material (volatile suspended solids, refractory organics, and sludges). The fates of those organics are reviewed along with loading rates and recommended soil…
Marinari, S; Masciandaro, G; Ceccanti, B; Grego, S
2007-09-01
The aim of this study was to evaluate chemical and biochemical changes of organic matter in fertilized (ammonium nitrate) and amended (vermicompost and manure) soils using pyrolysis and metabolic indices. The metabolic potential [dehydrogenase (DH-ase)/water soluble organic carbon (WSOC)], the metabolic quotient (qCO2) and the microbial quotient (Cmic:Corg) were calculated as indices of soil organic matter evolution. Pyrolysis-gas chromatography (Py-GC) was used to study structural changes in the organic matter. Carbon forms and microbial biomass have been measured by dichromate oxidation and fumigation-extraction methods, respectively. Dehydrogenase activity has been tested using INT (p-Iodonitrotetrazolium violet) as substrate. The results showed that organic amendment increased soil microbial biomass and its activity which were strictly related to pyrolytic mineralization and humification indices (N/O, B/E3). Mineral fertilization caused a greater alteration of native soil organic matter than the organic amendments, in that a high release of WSOC and relatively large amounts of aliphatic pyrolytic products, were observed. Therefore, the pyrolysis and metabolic indices provided similar and complementary information on soil organic matter changes after mineral and organic fertilization.
Using CT Data to Improve the Quantitative Analysis of 18F-FBB PET Neuroimages
Segovia, Fermín; Sánchez-Vañó, Raquel; Górriz, Juan M.; Ramírez, Javier; Sopena-Novales, Pablo; Testart Dardel, Nathalie; Rodríguez-Fernández, Antonio; Gómez-Río, Manuel
2018-01-01
18F-FBB PET is a neuroimaging modality that is been increasingly used to assess brain amyloid deposits in potential patients with Alzheimer's disease (AD). In this work, we analyze the usefulness of these data to distinguish between AD and non-AD patients. A dataset with 18F-FBB PET brain images from 94 subjects diagnosed with AD and other disorders was evaluated by means of multiple analyses based on t-test, ANOVA, Fisher Discriminant Analysis and Support Vector Machine (SVM) classification. In addition, we propose to calculate amyloid standardized uptake values (SUVs) using only gray-matter voxels, which can be estimated using Computed Tomography (CT) images. This approach allows assessing potential brain amyloid deposits along with the gray matter loss and takes advantage of the structural information provided by most of the scanners used for PET examination, which allow simultaneous PET and CT data acquisition. The results obtained in this work suggest that SUVs calculated according to the proposed method allow AD and non-AD subjects to be more accurately differentiated than using SUVs calculated with standard approaches. PMID:29930505
Hydrolytic microbial communities in terrestrial ecosystems
NASA Astrophysics Data System (ADS)
Manucharova, Natalia; Chernov, Timofey; Kolcova, Ekaterina; Zelezova, Alena; Lukacheva, Euhenia; Zenova, Galina
2014-05-01
Hydrolytic microbial communities in terrestrial ecosystems Manucharova N.A., Chernov T.I., Kolcova E.M., Zelezova A.D., Lukacheva E.G. Lomonosov Moscow State University, Russia Vertical differentiation of terrestrial biogeocenoses is conditioned by the formation of vertical tiers that differ considerably in the composition and structure of microbial communities. All the three tiers, phylloplane, litter and soil, are united by a single flow of organic matter, and are spatially separated successional stages of decomposition of organic substances. Decomposition of organic matter is mainly due to the activity of microorganisms producing enzymes - hydrolase and lyase - which destroy complex organic compounds. Application of molecular biological techniques (FISH) in environmental studies provides a more complete information concerning the taxonomic diversity and potential hydrolytic activity of microbial complexes of terrestrial ecosystems that exist in a wide range of environmental factors (moisture, temperature, redox potential, organic matter). The combination of two molecular biological techniques (FISH and DGGE-analysis of fragments of gene 16S rRNA total amplificate) enables an informative assessment of the differences in the structure of dominant and minor components of hydrolytic complexes formed in different tiers of terrestrial ecosystems. The functional activity of hydrolytic microbial complexes of terrestrial ecosystems is determined by the activity of dominant and minor components, which also have a high gross enzymatic activity. Degradation of biopolymers in the phylloplane is mainly due to the representatives of the Proteobacteria phylogenetic group (classes alpha and beta). In mineral soil horizons, the role of hydrolytic representatives of Firmicutes and Actinobacteria increases. Among the key environmental parameters that determine the functional activity of the hydrolytic (chitinolytic) complex of soil layer (moisture, nutrient supply, successional time), the most significant one is moisture. Moisture levels providing maximum activity of a hydrolytic microbial complex depend on the soil type. Development of a hydrolytic microbial complex occurs in a very wide moisture range - from values close to field capacity to those close to the wilting moisture point. The functional role of mycelial actinobacteria in the metabolism of chitin consists, on the one hand, in active decomposition of this biopolymer, and on the other hand, in the regulation of microbial hydrolytic complex activity through the production of biologically active regulatory metabolites, which occurs in a wide range of environmental parameters (moisture, temperature, organic matter, successional time). Experimental design is applicable to identify in situ optimal values of environmental factors that considerably affect the functional parameters of hydrolytic microbial complexes.
Molybdenum isotope fractionation during adsorption to organic matter
NASA Astrophysics Data System (ADS)
King, E. K.; Perakis, S. S.; Pett-Ridge, J. C.
2018-02-01
Organic matter is of emerging interest as a control on molybdenum (Mo) biogeochemistry, and information on isotope fractionation during adsorption to organic matter can improve interpretations of Mo isotope variations in natural settings. Molybdenum isotope fractionation was investigated during adsorption onto insolubilized humic acid (IHA), a surrogate for organic matter, as a function of time (2-170 h) and pH (2-7). For the time series experiment performed at pH 4.2, the average Mo isotope fractionation between the solution and the IHA (Δ98Mosolution-IHA) was 1.39‰ (±0.16‰, 2σ, based on 98Mo/95Mo relative to the NIST 3134 standard) at steady state. For the pH series experiment, Mo adsorption decreased as pH increased from 2.0 to 6.9, and the Δ98Mosolution-IHA increased from 0.82‰ to 1.79‰. We also evaluated natural Mo isotope patterns in precipitation, foliage, organic horizon, surface mineral soil, and bedrock from 12 forested sites in the Oregon Coast Range. The average Mo isotope offset observed between precipitation and organic (O) horizon soil was 2.1‰, with light Mo isotopes adsorbing preferentially to organic matter. Fractionation during adsorption to organic matter is similar in magnitude and direction to prior observations of Mo fractionation during adsorption to Fe- and Mn- (oxyhydr)oxides. Our finding that organic matter influences Mo isotope composition has important implications for the role of organic matter as a driver of trace metal retention and isotopic fractionation.
NASA Astrophysics Data System (ADS)
Annabi, Mohamed; Bahri, Haithem; Cheick M'Hamed, Hatem; Hermessi, Taoufik
2016-04-01
Intensive cultivation of soils, using multiple soil tillage, led to the decrease of their organic matter content and structural stability in several cultivated area of the Mediterranean countries. In these degraded soils, the addition of organic products, traditionally the animal manure, should improve soil health among them the resistance of soil to water erosion. The aim of this study was to evaluate after 1 year of the addition to a cambisoil different doses of farmyard manure on soil organic matter content, on microbial activity and on aggregate stability (proxy to soil resistance to water erosion). The statistical process (bilinear model) was used to found a point at which the addition of the organic product no longer influences the soil resistance to erosion. The farmyard manure issued from a cow breeding was composted passively during 4 months and used to amend a small plots of a cultivated cambisol (silty-clay texture, 0.9% TOC) located in the northeast of Tunisia (Morneg region). The manure was intimately incorporate to the soil. The manure organic matter content was 31%, and its isohumic coefficient was 49%. Twelve dose of manure were tested: from 0 to 220 t C.ha-1. The experiment was started on September 2011. In November 2012, soil sampling was done and soil organic carbon content (Walkley-Black method) and soil aggregate stability (wet method of Le Bissonnais) were assessed. A laboratory incubations of soil+manure mixtures, with the same proportions as tested in the field conditions, was carried at 28°C and at 75% of the mixture field capacity water retention. Carbon mineralization was monitored during three months incubation. Results show that the addition of farmyard manure stimulated the microbial activity proportionally to the added dose. This activation is due to the presence of easily biodegradable carbon in the manure, which increases with increasing manure dose. On the other hand, the addition of manure increased the aggregate stability with the manure dose increasing. This aggregate stabilization is due to the stimulation of microbial activity (r= 0.72, n=12) which can improves the aggregate stability by increasing the aggregate cohesion by adhesive substances such as the polysaccharides and by the enmeshment of aggregate by fungal hyphea. The increase of organic matter content due to manure addition contributes also to aggregate stabilization with a high regression slope with the first manure doses (less then 120 t C.ha-1). Using a bi-linear model, reach 2.3% of soil organic carbon seems to be a critical level from which the aggregate stability evolves little.
40 CFR 63.3541 - How do I demonstrate initial compliance?
Code of Federal Regulations, 2013 CFR
2013-07-01
... volatile organic matter collection and recovery efficiency to the mass of organic HAP contained in the... indicates the cumulative amount of volatile organic matter recovered by the solvent recovery system each month. (2) For each solvent recovery system, determine the mass of volatile organic matter recovered for...
40 CFR 63.3541 - How do I demonstrate initial compliance?
Code of Federal Regulations, 2014 CFR
2014-07-01
... volatile organic matter collection and recovery efficiency to the mass of organic HAP contained in the... indicates the cumulative amount of volatile organic matter recovered by the solvent recovery system each month. (2) For each solvent recovery system, determine the mass of volatile organic matter recovered for...
40 CFR 63.4561 - How do I demonstrate initial compliance?
Code of Federal Regulations, 2012 CFR
2012-07-01
... reduction by applying the volatile organic matter collection and recovery efficiency to the mass of organic... cumulative amount of volatile organic matter recovered by the solvent recovery system each month. The device... volatile organic matter recovered. (2) For each solvent recovery system, determine the mass of volatile...
40 CFR 63.3541 - How do I demonstrate initial compliance?
Code of Federal Regulations, 2012 CFR
2012-07-01
... volatile organic matter collection and recovery efficiency to the mass of organic HAP contained in the... indicates the cumulative amount of volatile organic matter recovered by the solvent recovery system each month. (2) For each solvent recovery system, determine the mass of volatile organic matter recovered for...
The interaction of nano-particles and organic substances, like natural organic matter, could have significant influence on the fate, transport and bioavailability of toxic substances. Natural organic matter (NOM) is a mixture of chemically complex polyelectrolytes with varying m...
Risk of falls in Alzheimer's disease: a prospective study.
Horikawa, Etsuo; Matsui, Toshifumi; Arai, Hiroyuki; Seki, Takashi; Iwasaki, Koh; Sasaki, Hidetada
2005-07-01
Falls are common in patients with Alzheimer's disease (AD). Identification of the potential risk factors and developing preventive strategies for falls will have a significant impact in maintaining the quality of life in AD. Clinical follow-up of 124 (74.1+/-6.1 years, range 62-88) mild to moderate AD patients in an outpatient memory clinic. Postural sway, cognitive function, use of neuroleptics, severity of periventricular and deep white matter lesions, and the presence or absence of silent brain infarctions on magnetic resonance imaging were assessed at baseline. A total of 104 patients (84%) completed the study. Fall events were confirmed in 42.3% (44/104). After adjustment for age, gender, and cognitive status, a high grade of periventricular white matter lesions (odds ratio 8.7 [95%CI 1.5 to 51.8], p = 0.017) and neuroleptic drug use (odds ratio 3.5 [95%CI 1.2 to 10.5], p = 0.027) were significantly associated with an increased risk of falls. Our results suggest that periventricular white matter lesions and the use of neuroleptics may be related to falls in mild to moderate AD. A comprehensive risk management of brain ischemia as well as the use of the smallest efficacious dose of neuroleptics in the treatment of behavioral and psychiatric symptoms of AD should be recommended to help reduce the risk of unexpected falls.
Lima de Souza, Alexandre; Divino Ribeiro, Marinaldo; Mattos Negrão, Fagton; Castro, Wanderson José Rodrigues; Valério Geron, Luiz Juliano; de Azevedo Câmara, Larissa Rodrigues
2016-01-01
The objective was to evaluate the ingestive behavior of ovine fed Marandu grass silage with dehydrated brewery residue added. The experiment had a completely randomized design with five treatments and four repetitions, with the treatments levels of inclusion being of 0, 10, 20, 30, and 40% natural matter of naturally dehydrated brewery residue for 36 hours to the marandu grass silage. 20 ovines were used and the experimental period was 21 days, 15 being for adaptation to diets. The use of brewery byproduct promoted quadratic effect (P < 0.05) for the consumption of dry matter with maximum point value estimated at adding 23.25% additive. Ingestion efficiency and rumination efficiency of dry matter (g DM/hour) were significant (P < 0.05), by quadratic behavior, and NDF ingestion and rumination efficiency showed crescent linear behavior. The DM and NDF consumption expressed in kg/meal and in minutes/kg were also significant (P < 0.05), showing quadratic behavior. Rumination activity expressed in g DM and NDF/piece was influenced (P < 0.05) by the adding of brewery residue in marandu grass silage in quadratic way, with maximum value estimated of 1.57 g DM/bolus chewed in inclusion of 24.72% additive in grass silage. The conclusion is that intermediary levels adding of 20 to 25% dehydrated brewery residue affects certain parameters of ingestive behavior. PMID:27547811
Quigley, J D; Hill, T M; Dennis, T S; Suarez-Mena, F X; Schlotterbeck, R L
2018-04-11
Milk replacer (MR) feeding programs have traditionally fed at less than ad libitum amounts to promote calf starter (CS) intake and allow early weaning. More recently, increased amounts of MR preweaning have been shown to increase preweaning ADG, although postweaning growth may be reduced. Several studies suggest that limited postweaning digestion of nutrients in CS may contribute to postweaning growth impairment. It is not clear whether CS formulation might also contribute to differences in postweaning nutrient digestion when calves are fed different MR programs. A 56-d feeding and digestion trial was conducted to compare growth and digestion in 2- to 3-d-old male Holstein calves (n = 48; initially 41.9 kg of body weight) fed a moderate (MRM) or high (MRH) MR program and either a pelleted CS containing 9.9% starch or a texturized CS containing 41.3% starch. Programs were 0.66 kg of dry matter (DM)/d of MR to d 46, then 0.33 kg/d to d 49 (MRM) and 0.85 kg of DM/d to d 5, then 1.07 kg/d to d 42, then 0.53 kg/d to d 49 (MRH). The MR contained 25% crude protein and 18.6% fat and was reconstituted to 13 (MRM) or 15% (MRH) solids. Calves were also assigned randomly to receive a pelleted CS (9.9% starch, 36.9% NDF) or a textured CS (41.3% starch, 13.3% NDF) and water for ad libitum intake for 56 d. During d 31 to 35 and 52 to 56, fecal samples were collected from 5 calves per treatment for estimates of digestibility. Selected nutrients and chromic oxide (d 31-35) or acid-insoluble ash (d 52-56) were analyzed in feed and feces to estimate digestibility. Data were analyzed as a completely randomized design. Repeated measures analysis was performed when data were measured by week. Calves fed MRH gained more body weight (but not hip width) and were more efficient to weaning compared with calves fed MRM, although fecal scores and days treated with medications were greater. We found no effect of CS on animal performance, although calves fed textured CS had higher fecal scores. Digestibilities of nutrients were affected by treatment and time of sampling (5 or 8 wk). At 5 wk, digestion of DM, organic matter, crude protein, and fat were lower and digestion of acid detergent fiber, neutral detergent fiber, and starch were higher in calves fed MRM and reflected greater CS intake. Also, digestion of DM, organic matter, acid detergent fiber, starch, crude protein, and fat were greater in calves fed textured CS at 5 wk. By 8 wk, when CS was the only source of nutrients, digestion of DM, organic matter, acid detergent fiber, and neutral detergent fiber were greater in calves fed MRM and digestion of DM and organic matter were greater, and acid detergent fiber and neutral detergent fiber digestion were lower in calves fed textured CS. Formulation of CS as well as amount of MR offered to young calves influenced animal performance and digestion in this study. Copyright © 2018 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Utilization of different waste proteins to create a novel PGPR-containing bio-organic fertilizer
Huang, Yan; Sun, Li; Zhao, Jianshu; Huang, Rong; Li, Rong; Shen, Qirong
2015-01-01
High-quality bio-organic fertilizers (BIOs) cannot be produced without the addition of some proteins, while many waste proteins are haphazardly disposed, causing serious environmental pollution. In this study, several waste proteins were used as additives to assist with the reproduction of the functional microbe (Bacillus amyloliquefaciens SQR9) inoculated into matured composts to produce BIOs. An optimized composition of solid-state fermentation (SSF) raw materials was predicted by response surface methodology and experimental validation. The results showed that 7.61% (w/w, DW, the same below) rapeseed meal, 8.85% expanded feather meal, 6.47% dewatered blue algal sludge and 77.07% chicken compost resulted in maximum biomass of strain SQR-9 and the maximum amount of lipopeptides 7 days after SSF. Spectroscopy experiments showed that the inner material structural changes in the novel SSF differed from the control and the novel BIO had higher dissolved organic matter. This study offers a high value-added utilization of waste proteins for producing economical but high-quality BIO. PMID:25586328
Jain, Mayur Shirish; Jambhulkar, Rohit; Kalamdhad, Ajay S
2018-04-01
Composting is an efficient technology to reduce pathogenic bodies and stabilize the organic matter in organic wastes. This research work investigates an effect of biochar as amendment to improve the composting efficiency and its effect on degradation kinetics, physical and nutritional properties. Biochar (2.5, 5 and 10% (w/w)) were added into a mixture of Hydrilla verticillata, cow dung and sawdust having ratio of 8:1:1 (control), respectively. Biochar addition resulted in advanced thermophilic temperatures (59 °C) and could improve the physical properties of composting process. Owing to addition of 5% biochar as a bulking agent in composting mixture, the final product from composting, total nitrogen increased by 45% compared to the other trials, and air-filled porosity decreased by 39% and was found to be within recommended range from literature studies. Considering temperature, degradation rate and nitrogen transformation the amendment of 5% biochar is recommended for Hydrilla verticillata composting. Copyright © 2018 Elsevier Ltd. All rights reserved.
Anaerobic digestion of thin stillage for energy recovery and water reuse in corn-ethanol plants.
Alkan-Ozkaynak, A; Karthikeyan, K G
2011-11-01
Recycling of anaerobically-digested thin stillage within a corn-ethanol plant may result in the accumulation of nutrients of environmental concern in animal feed coproducts and inhibitory organic materials in the fermentation tank. Our focus is on anaerobic digestion of treated (centrifugation and lime addition) thin stillage. Suitability of digestate from anaerobic treatment for reuse as process water was also investigated. Experiments conducted at various inoculum-to-substrate ratios (ISRs) revealed that alkalinity is a critical parameter limiting digestibility of thin stillage. An ISR level of 2 appeared optimal based on high biogas production level (763 mL biogas/g volatile solids added) and organic matter removal (80.6% COD removal). The digester supernatant at this ISR level was found to contain both organic and inorganic constituents at levels that would cause no inhibition to ethanol fermentation. Anaerobic digestion of treated-thin stillage can be expected to improve the water and energy efficiencies of dry grind corn-ethanol plants. Copyright © 2011 Elsevier Ltd. All rights reserved.
Utilization of different waste proteins to create a novel PGPR-containing bio-organic fertilizer
NASA Astrophysics Data System (ADS)
Huang, Yan; Sun, Li; Zhao, Jianshu; Huang, Rong; Li, Rong; Shen, Qirong
2015-01-01
High-quality bio-organic fertilizers (BIOs) cannot be produced without the addition of some proteins, while many waste proteins are haphazardly disposed, causing serious environmental pollution. In this study, several waste proteins were used as additives to assist with the reproduction of the functional microbe (Bacillus amyloliquefaciens SQR9) inoculated into matured composts to produce BIOs. An optimized composition of solid-state fermentation (SSF) raw materials was predicted by response surface methodology and experimental validation. The results showed that 7.61% (w/w, DW, the same below) rapeseed meal, 8.85% expanded feather meal, 6.47% dewatered blue algal sludge and 77.07% chicken compost resulted in maximum biomass of strain SQR-9 and the maximum amount of lipopeptides 7 days after SSF. Spectroscopy experiments showed that the inner material structural changes in the novel SSF differed from the control and the novel BIO had higher dissolved organic matter. This study offers a high value-added utilization of waste proteins for producing economical but high-quality BIO.
Exponential Potential versus Dark Matter
1993-10-15
scale of the solar system. Galaxy, Dark matter , Galaxy cluster, Gravitation, Quantum gravity...A two parameter exponential potential explains the anomalous kinematics of galaxies and galaxy clusters without need for the myriad ad hoc dark ... matter models currently in vogue. It also explains much about the scales and structures of galaxies and galaxy clusters while being quite negligible on the
Yu, Bingsong; Dong, Hailiang; Jiang, Hongchen; Lv, Guo; Eberl, Dennis D.; Li, Shanying; Kim, Jinwook
2009-01-01
The role of saline lake sediments in preserving organic matter has long been recognized. In order to further understand the preservation mechanisms, the role of clay minerals was studied. Three sediment cores, 25, 57, and 500 cm long, were collected from Qinghai Lake, NW China, and dissected into multiple subsamples. Multiple techniques were employed, including density fractionation, X-ray diffraction, scanning and transmission electron microscopy (SEM and TEM), total organic carbon (TOC) and carbon compound analyses, and surface area determination. The sediments were oxic near the water-sediment interface, but became anoxic at depth. The clay mineral content was as much as 36.8%, consisting mostly of illite, chlorite, and halloysite. The TEM observations revealed that organic matter occurred primarily as organic matter-clay mineral aggregates. The TOC and clay mineral abundances are greatest in the mid-density fraction, with a positive correlation between the TOC and mineral surface area. The TOC of the bulk sediments ranges from 1 to 3% with the non-hydrocarbon fraction being predominant, followed by bitumen, saturated hydrocarbon, aromatic hydrocarbons, and chloroform-soluble bitumen. The bimodal distribution of carbon compounds of the saturated hydrocarbon fraction suggests that organic matter in the sediments was derived from two sources: terrestrial plants and microorganisms/algae. Depthrelated systematic changes in the distribution patterns of the carbon compounds suggest that the oxidizing conditions and microbial abundance near the water-sediment interface promote degradation of labile organic matter, probably in adsorbed form. The reducing conditions and small microbial biomass deeper in the sediments favor preservation of organic matter, because of the less labile nature of organic matter, probably occurring within clay mineral-organic matter aggregates that are inaccessible to microorganisms. These results have important implications for our understanding of mechanisms of organic matter preservation in saline lake sediments.
Wild, Birgit; Schnecker, Jörg; Alves, Ricardo J. Eloy; Barsukov, Pavel; Bárta, Jiří; Čapek, Petr; Gentsch, Norman; Gittel, Antje; Guggenberger, Georg; Lashchinskiy, Nikolay; Mikutta, Robert; Rusalimova, Olga; Šantrůčková, Hana; Shibistova, Olga; Urich, Tim; Watzka, Margarete; Zrazhevskaya, Galina; Richter, Andreas
2014-01-01
Rising temperatures in the Arctic can affect soil organic matter (SOM) decomposition directly and indirectly, by increasing plant primary production and thus the allocation of plant-derived organic compounds into the soil. Such compounds, for example root exudates or decaying fine roots, are easily available for microorganisms, and can alter the decomposition of older SOM (“priming effect”). We here report on a SOM priming experiment in the active layer of a permafrost soil from the central Siberian Arctic, comparing responses of organic topsoil, mineral subsoil, and cryoturbated subsoil material (i.e., poorly decomposed topsoil material subducted into the subsoil by freeze–thaw processes) to additions of 13C-labeled glucose, cellulose, a mixture of amino acids, and protein (added at levels corresponding to approximately 1% of soil organic carbon). SOM decomposition in the topsoil was barely affected by higher availability of organic compounds, whereas SOM decomposition in both subsoil horizons responded strongly. In the mineral subsoil, SOM decomposition increased by a factor of two to three after any substrate addition (glucose, cellulose, amino acids, protein), suggesting that the microbial decomposer community was limited in energy to break down more complex components of SOM. In the cryoturbated horizon, SOM decomposition increased by a factor of two after addition of amino acids or protein, but was not significantly affected by glucose or cellulose, indicating nitrogen rather than energy limitation. Since the stimulation of SOM decomposition in cryoturbated material was not connected to microbial growth or to a change in microbial community composition, the additional nitrogen was likely invested in the production of extracellular enzymes required for SOM decomposition. Our findings provide a first mechanistic understanding of priming in permafrost soils and suggest that an increase in the availability of organic carbon or nitrogen, e.g., by increased plant productivity, can change the decomposition of SOM stored in deeper layers of permafrost soils, with possible repercussions on the global climate. PMID:25089062
Gourier, Didier; Binet, Laurent; Scrzypczak, Audrey; Derenne, Sylvie; Robert, François
2004-05-01
The insoluble organic matter (IOM) of three carbonaceous meteorites (Orgueil, Murchison and Tagish Lake meteorites) and three samples of cherts (microcrystalline SiO2 rock) containing microfossils with age ranging between 45 million years and 3.5 billion years is studied by electron paramagnetic resonance (EPR). The age of the meteorites is that of the solar system (4.6 billion years). The purpose of this work was to determine the EPR parameters, which allow us to discriminate between biogenic and extra terrestrial origin for the organic matter. Such indicators should be relevant for the controversy regarding the biogenicity of the organic matter in the oldest cheroot (3.5 billion years) and in Martian meteorites containing microbe-like microstructures. The organic matter of meteorites contains a high concentration of diradicaloid moieties characterised by a diamagnetic ground state S = 0 and a thermally accessible triplet state S = 1. The three meteorites exhibit the same singlet-triplet gap (ST gap) DeltaE approximately 0.1 eV. To the best of our knowledge, such diradicaloids are unknown in insoluble organic matter of terrestrial origin. We have also shown that the EPR linewidth of insoluble organic matter in cherts and coals decrease logarithmically with the age of the organic matter. We conclude from this result that the organic matter in the oldest cherts (3.5 billion years) has the same age as their SiO2 matrix, and is not due to a latter contamination by bacteria, as was recently found in meteoritic samples.
Wei, Liangliang; Li, Siliang; Noguera, Daniel R; Qin, Kena; Jiang, Junqiu; Zhao, Qingliang; Kong, Xiangjuan; Cui, Fuyi
2015-06-01
Recycling wastewater treatment plant (WWTP) effluent at low cost via the soil aquifer treatment (SAT), which has been considered as a renewable approach in regenerating potable and non-potable water, is welcome in arid and semi-arid regions throughout the world. In this study, the effect of a coal slag additive on the bulk removal of the dissolved organic matter (DOM) in WWTP effluent during SAT operation was explored via the matrix configurations of both coal slag layer and natural soil layer. Azide inhibition and XAD-resins fractionation experiments indicated that the appropriate configuration designing of an upper soil layer (25 cm) and a mixture of soil/coal slag underneath would enhance the removal efficiency of adsorption and anaerobic biodegradation to the same level as that of aerobic biodegradation (31.7% vs 32.2%), while it was only 29.4% compared with the aerobic biodegradation during traditional 50 cm soil column operation. The added coal slag would preferentially adsorb the hydrophobic DOM, and those adsorbed organics could be partially biodegraded by the biomass within the SAT systems. Compared with the relatively lower dissolved organic carbon (DOC), ultraviolet light adsorption at 254 nm (UV-254) and trihalomethane formation potential (THMFP) removal rate of the original soil column (42.0%, 32.9%, and 28.0%, respectively), SSL2 and SSL4 columns would enhance the bulk removal efficiency to more than 60%. Moreover, a coal slag additive in the SAT columns could decline the aromatic components (fulvic-like organics and tryptophan-like proteins) significantly. Copyright © 2015 Elsevier Ltd. All rights reserved.
Land use and nutrient inputs affect priming in Andosols of Mt. Kilimanjaro
NASA Astrophysics Data System (ADS)
Mganga, Kevin; Kuzyakov, Yakov
2015-04-01
Organic C and nutrients additions in soil can accelerate mineralisation of soil organic matter i.e. priming effects. However, only very few studies have been conducted to investigate the priming effects phenomenon in tropical Andosols. Nutrients (N, P, N+P) and 14C labelled glucose were added to Andosols from six natural and intensively used ecosystems at Mt. Kilimanjaro i.e. (1) savannah, (2) maize fields, (3) lower montane forest, (4) coffee plantation, (5) grasslands and (6) Chagga homegardens. Carbon-dioxide emissions were monitored over a 60 days incubation period. Mineralisation of glucose to 14CO2 was highest in coffee plantation and lowest in Chagga homegarden soils. Maximal and minimal mineralisation rates immediately after glucose additions were observed in lower montane forest with N+P fertilisation (9.1% ± 0.83 d -1) and in savannah with N fertilisation (0.9% ± 0.17 d -1), respectively. Glucose and nutrient additions accelerated native soil organic matter mineralisation i.e. positive priming. Chagga homegarden soils had the lowest 14CO2 emissions and incorporated the highest percent of glucose into microbial biomass. 50-60% of the 14C input was retained in soil. We attribute this mainly to the high surface area of non-crystalline constituents i.e. allophanes, present in Andosols and having very high sorption capacity for organic C. The allophanic nature of Andosols of Mt. Kilimanjaro especially under traditional Chagga homegarden agroforestry system shows great potential for providing essential environmental services, notably C sequestration. Key words: Priming Effects, Andosols, Land Use Changes, Mt. Kilimanjaro, Allophanes, Tropical Agroforestry
Modeling Source Water Threshold Exceedances with Extreme Value Theory
NASA Astrophysics Data System (ADS)
Rajagopalan, B.; Samson, C.; Summers, R. S.
2016-12-01
Variability in surface water quality, influenced by seasonal and long-term climate changes, can impact drinking water quality and treatment. In particular, temperature and precipitation can impact surface water quality directly or through their influence on streamflow and dilution capacity. Furthermore, they also impact land surface factors, such as soil moisture and vegetation, which can in turn affect surface water quality, in particular, levels of organic matter in surface waters which are of concern. All of these will be exacerbated by anthropogenic climate change. While some source water quality parameters, particularly Total Organic Carbon (TOC) and bromide concentrations, are not directly regulated for drinking water, these parameters are precursors to the formation of disinfection byproducts (DBPs), which are regulated in drinking water distribution systems. These DBPs form when a disinfectant, added to the water to protect public health against microbial pathogens, most commonly chlorine, reacts with dissolved organic matter (DOM), measured as TOC or dissolved organic carbon (DOC), and inorganic precursor materials, such as bromide. Therefore, understanding and modeling the extremes of TOC and Bromide concentrations is of critical interest for drinking water utilities. In this study we develop nonstationary extreme value analysis models for threshold exceedances of source water quality parameters, specifically TOC and bromide concentrations. In this, the threshold exceedances are modeled as Generalized Pareto Distribution (GPD) whose parameters vary as a function of climate and land surface variables - thus, enabling to capture the temporal nonstationarity. We apply these to model threshold exceedance of source water TOC and bromide concentrations at two locations with different climate and find very good performance.
Organic matter preserved in 3-billion-year-old mudstones at Gale crater, Mars
NASA Astrophysics Data System (ADS)
Eigenbrode, Jennifer L.; Summons, Roger E.; Steele, Andrew; Freissinet, Caroline; Millan, Maëva; Navarro-González, Rafael; Sutter, Brad; McAdam, Amy C.; Franz, Heather B.; Glavin, Daniel P.; Archer, Paul D.; Mahaffy, Paul R.; Conrad, Pamela G.; Hurowitz, Joel A.; Grotzinger, John P.; Gupta, Sanjeev; Ming, Doug W.; Sumner, Dawn Y.; Szopa, Cyril; Malespin, Charles; Buch, Arnaud; Coll, Patrice
2018-06-01
Establishing the presence and state of organic matter, including its possible biosignatures, in martian materials has been an elusive quest, despite limited reports of the existence of organic matter on Mars. We report the in situ detection of organic matter preserved in lacustrine mudstones at the base of the ~3.5-billion-year-old Murray formation at Pahrump Hills, Gale crater, by the Sample Analysis at Mars instrument suite onboard the Curiosity rover. Diverse pyrolysis products, including thiophenic, aromatic, and aliphatic compounds released at high temperatures (500° to 820°C), were directly detected by evolved gas analysis. Thiophenes were also observed by gas chromatography–mass spectrometry. Their presence suggests that sulfurization aided organic matter preservation. At least 50 nanomoles of organic carbon persists, probably as macromolecules containing 5% carbon as organic sulfur molecules.
Jellyfish Lake, Palau: early diagenesis of organic matter in sediments of an anoxic marine lake
Orem, W.H.; Burnett, W.C.; Landing, W.M.; Lyons, W.B.; Showers, W.
1991-01-01
The major postdepositional change in the sedimentary organic matter is carbohydrate biodegradation. Lignin and aliphatic substances are preserved in the sediments. Dissolved organic matter in pore waters is primarily composed of carbohydrates, reflecting the degradation of sedimentary carbohydrates. Rate constants for organic carbon degradation and sulfate reduction in sediments of the lake are about 10?? lower than in other anoxic sediments. This may reflect the vascular plant source and partly degraded nature of the organic matter reaching the sediments of the lake. -from Authors
Progressive aphasia secondary to Alzheimer disease pathology: A clinicopathologic and MRI study
Josephs, Keith A.; Whitwell, Jennifer L.; Duffy, Joseph R.; Vanvoorst, Wendy A.; Strand, Edyth A.; Hu, William T.; Boeve, Bradley F.; Graff-Radford, Neill R.; Parisi, Joseph E.; Knopman, David S.; Dickson, Dennis W.; Jack, Clifford R.; Petersen, Ronald C.
2009-01-01
Background The pathology causing progressive aphasia is typically a variant of frontotemporal lobar degeneration, especially with ubiquitin-positive-inclusions (FTLD-U). Less commonly the underlying pathology is Alzheimer disease (AD). Objective To compare clinicopathological and MRI features of subjects with progressive aphasia and AD pathology, to subjects with aphasia and FTLD-U pathology, and subjects with typical AD. Methods We identified 5 subjects with aphasia and AD pathology and 5 with aphasia and FTLD-U pathology with an MRI from a total of 216 aphasia subjects. Ten subjects with typical AD clinical features and AD pathology were also identified. All subjects with AD pathology underwent pathological re-analysis with TDP-43 immunohistochemistry. Voxel-based morphometry (VBM) was used to assess patterns of grey matter atrophy in the aphasia cases with AD pathology, aphasia cases with FTLD-U, and typical AD cases with AD pathology, compared to a normal control group. Results All aphasic subjects had fluent speech output. However, those with AD pathology had better processing speed than those with FTLD-U pathology. Immunohistochemistry with TDP-43 antibodies was negative. VBM revealed grey matter atrophy predominantly in the temporoparietal cortices with notable sparing of the hippocampus in the aphasia with AD subjects. In comparison, the aphasic subjects with FTLD-U showed sparing of the parietal lobe. Typical AD subjects showed temporoparietal and hippocampal atrophy. Conclusions A temporoparietal pattern of atrophy on MRI in patients with progressive fluent aphasia and relatively preserved processing speed is suggestive of underlying AD pathology rather than FTLD-U. PMID:18166704
Li, Si-jia; Song, Kai-shan; Zhao, Ying; Mu, Guang-yi; Shao, Tian-tian; Ma, Jian-hang
2016-01-15
Field surveys and laboratory analysis were carried out in Chagan Lake and Xinlicheng Reservoir under different salinity conditions in September 2012. In the laboratory, the absorption coefficients of particulates and chromophoric dissolved organic matter (CDOM) were measured, aiming to compare the absorption features, source of optical active substances and relative contribution of optical active constituents over the range of PAR (400-700 nm) in Chagan Lake and Xinlicheng Reservoir. The results showed that the Chagan Lake and Xinlicheng Reservoir were water bodies with medium eutrophication in autumn by TAL nutrient index and the absorption spectra of particulates matters were similar to those of phytoplankton. For the Chagan Lake with high salinity( EC = 988. 87 micro S x cm(-1)), the total particulate absorption was dominated by the nonalgal particles, and the contribution rate was in the order of nonalgal particles > phytoplankton > CDOM. For the Xinlicheng Reservoir with low salinity (EC = 311.67 microS x -cm(-1)), the total particulate absorption was dominated by the phytoplankton, and the contribution rate was ranked as phytoplankton > nonalgal particles > CDOM. Positive correlation was observed between a(p) (440), a(p) (675), a(d) (440) and total suspended matter (TSM), inorganic suspended matter (ISM), organic suspended matter (OSM) and Chl-a respectively in Chagan Lake, with correlation coefficients all above 0.55. Positive correlation was observed between a(p)(440), a(p) (675) and Chl-a (0.77 and 0.85, P < 0.05) , so did a(d) (440) and ISM (0.74, P < 0.01), while negative correlation was observed between a(p) (440) and OSM in the Xinlicheng Reservoir. In terms of Chagan Lake, negative correlation was merely observed between a(g) (440) and OSM (-0.54, P < 0.05) , but not in the Xinlicheng Reservoir. Both Sg, which was calculated by the fitting absorption curve from 250 to 400 nm, and relative molecular weight M showed that Sg[ (0.021 +/- 0.001) m(-1)] in Chagan Lake was greater than that in the Xinlicheng Reservoir [(0.0176 +/- 0.001) m(-1)], and Mr, in Chagan Lake was 11.44 +/- 2.00 (7.5-15.09), which was greater than that in Xinlicheng Reservoir 7.53 +/- 0.79 (6.17-8.89), indicating that the relative molecular weight of CDOM in the Chagan Lake was less than that in the Xinlicheng Reservoir. The Chagan Lake was greatly affected by wind speed and shore collapse to produce suspended mineral and sediment particles. Thereby the total particulate absorption was dominated by the nonalgal particles. The waters in the Xinlicheng Reservoir were greatly impacted by terrestrial inorganic matter, and the growth of phytoplankton was weakened and microbes activities were strengthened simultaneously, which led to the negative correlations between a(g)(lamda) and OSM.
Soil Carbon Cycling - More than Changes in Soil Organic Carbon Stocks
NASA Astrophysics Data System (ADS)
Lorenz, K.
2015-12-01
Discussions about soil carbon (C) sequestration generally focus on changes in soil organic carbon (SOC) stocks. Global SOC mass in the top 1 m was estimated at about 1325 Pg C, and at about 3000 Pg C when deeper soil layers were included. However, both inorganically and organically bound carbon forms are found in soil but estimates on global soil inorganic carbon (SIC) mass are even more uncertain than those for SOC. Globally, about 947 Pg SIC may be stored in the top 1 m, and especially in arid and semi-arid regions SIC stocks can be many times great than SOC stocks. Both SIC and SOC stocks are vulnerable to management practices, and stocks may be enhanced, for example, by optimizing net primary production (NPP) by fertilization and irrigation (especially optimizing belowground NPP for enhancing SOC stocks), adding organic matter (including black C for enhancing SOC stocks), and reducing soil disturbance. Thus, studies on soil C stocks, fluxes, and vulnerability must look at both SIC and SOC stocks in soil profiles to address large scale soil C cycling.
Riverine transport of terrestrial organic matter to the North Catalan margin, NW Mediterranean Sea
NASA Astrophysics Data System (ADS)
Sanchez-Vidal, Anna; Higueras, Marina; Martí, Eugènia; Liquete, Camino; Calafat, Antoni; Kerhervé, Philippe; Canals, Miquel
2013-11-01
Rivers are the primary pathway for organic matter transport from the terrestrial to the marine environment and, thus, river fluxes are critical in regulating the quantity of terrestrial organic matter that reaches the coastal ecosystems. Hydrodynamic processes typical of the coastal zone can lead to the transport of terrestrial organic matter across the continental shelf and beyond. Such organic matter can eventually reach the deep margin and basin ecosystems. Riverine inputs of organic matter to the sea can be a significant food source to marine ecosystems contributing to carbon cycling in these ecosystems. In order to assess the marine carbon cycle it is essential to know the biogeochemical characteristics and temporal dynamics of the fluvial organic matter input discharged by rivers to the coastal zone. In this study we present a one and a half year long (November 2008 to May 2010) assessment on organic carbon (OC) and nitrogen (N) inputs from the three main rivers discharging into the North Catalan margin (Tordera, Ter and Fluvià, from south to north). Furthermore, we investigate the characteristics of the particulate organic matter discharged by these rivers by means of stable isotopic (δ13C and δ15N) and grain size analyses. We found that the hydrological regime of the rivers is a relevant factor in regulating the quantity and mediating the quality of organic matter inputs to the North Catalan margin. Overall, the three main rivers discharging into the study area deliver 1266 and 159 tonnes of terrestrial OC and N per year, respectively, to the coastal zone. Most of the OC and N load is transported during floods, which indicates that the Mediterranean climate of the area, with a strong seasonal contrast in precipitation, determines the timing of the main inputs of OC and N to the sea. Therefore, the annual OC and N load experiences a high temporal variability associated to the number and magnitude of floods with in each hydrological year. In addition, we found that water reservoirs along the rivers act as traps for terrestrial organic matter, reducing its delivery and ultimate burial into marine sediments. River hydrology also affects the quality of organic matter that reaches the coastal zone (both in terms of C and N) by shifting the relative weight of the various sources of terrestrial organic matter. During low river discharge (i.e., in summer and early autumn) the main contributor to the organic matter pool is mostly associated with freshwater primary producers, whereas with relatively high water flows (i.e., in winter and spring) the main contributor is associated with erosion and release of soil organic matter. Furthermore, the impact of waste water treatment plants into the studied rivers results in the alteration of the isotopic signal of suspended N. The three studied rivers play a major role in transporting terrestrial organic matter to the North Catalan margin, but the fraction that is exported to the deep margin by high-energy episodic hydrodynamic events, such as large coastal storms, has a minor importance.
NASA Astrophysics Data System (ADS)
Junium, C. K.; Karson, J. A.; Kahan, T.
2015-12-01
The oxidizing nature of Martian soils suggests that the preservation of organic molecules or any direct evidence for life at the surface may not be possible. Future rover missions will need to focus on a variety localitions including those that provide the best possibility for the preservation of organic matter. Volcanic glass and basalt flow surfaces are favored environments for microbial colonization on Earth and this may have been similar on an early Mars. Trace metals and nutrients from easily weathered surface would have provided nutrients as well as substrates for chemolithoautotrophs. In regions of igneous activity, successive flows could overrun microbial communities, trapping potential organic signatures between flows. Here we present experimental evidence for the preservation of organic matter between lava flows and that flow interfaces may be excellent sites for exploratory efforts in the search for Martian biosignatures. We performed a series of experiments using the infrastructure of the Syracuse Lava Project that allows for natural-scale lava flows of up to several hundred kilograms. We subjected cyanobacterial organic matter to overrun by lava under a variety of conditions. In all cases organic matter was preserved between lava flows as chars on the overrun 'colonized" lava and as thin shiny carbon coatings on the overriding flow. The carbon coatings are likely the result of rapid heating and pyrolysis of organic matter that sears to the underside of the overriding lava. Controls yielded no positive signatures for organic matter. We also tested the degree to which the organic matter could be detected remotely using technologies that are found on the Mars Science Laboratory or planned for future missions. We employed elemental and stable isotopes analysis, and Raman spectroscopy. Elemental analysis demonstrated that organic carbon and nitrogen remain in the charred material and that the carbon and nitrogen isotopes of the chars do not deviate significantly from the precursor organic matter (-24.3‰ cyanobacterial biomass; -24.2‰ black carbon). Raman spectroscopy revealed spectra for black carbon, even from the thinnest carbon coatings on overriding lava surfaces. These findings demonstrate that if organic matter is preserved beneath lava flows it may be readily detectable.
76 FR 14006 - Sunshine Act Meeting Notice
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-15
... Matters. A-2 AD02-7-000 Customer Matters, Reliability, Security and Market Operations. Electric E-1 ER03-563-066 Devon Power LLC. E-2 OMITTED. E-3 NP10-18-000 North American Electric Reliability Corporation. [[Page 14007
Riverine organic matter composition and fluxes to Hudson Bay
NASA Astrophysics Data System (ADS)
Kuzyk, Z. Z. A.; Macdonald, R. W.; Goni, M. A.; Godin, P.; Stern, G. A.
2016-12-01
With warming in northern regions, many changes including permafrost degradation, vegetation alteration, and wildfire incidence will impact the carbon cycle. Organic carbon (OC) carried by river runoff to northern oceans has the potential to provide integrated evidence of these impacts. Here, concentrations of dissolved (DOC) and particulate (POC) OC are used to estimate terrestrial OC transport in 17 major rivers draining varied vegetative and permafrost conditions into Hudson Bay and compositional data (lignin and 14C) to infer OC sources. Hudson Bay lies just south of the Arctic Circle in Canada and is surrounded by a large drainage basin (3.9 × 106 km2) dominated by permafrost. Analysis of POC and DOC in the 17 rivers indicates that DOC dominates the total OC load. The southern rivers dominate. The Nelson and Churchill Rivers to the southwest are particularly important suppliers of OC partly because of large drainage basins but also perhaps because of impacts by hydroelectric development, as suggested by a 14C age of DOC in the Churchill River of 2800 years. Higher DOC and POC concentrations in the southern rivers, which have substantive areas only partially covered by permafrost, compared to northern rivers draining areas with complete permafrost cover, implies that warming - and hence permafrost thawing - will lead to progressively higher DOC and POC loads for these rivers. Lignin composition in the organic matter (S/V and C/V ratios) reveals mixed sources of OC consistent with the dominant vegetation in the river basins. This vegetation is organized by latitude with southern regions below the tree line enriched by woody gymnosperm sources (boreal forest) and northern regions enriched with organic matter from non-woody angiosperms (flowering shrubs, tundra). Acid/Aldehyde composition together with Δ14C data for selected DOC samples suggest that most of the lignin has undergone oxidative degradation, particularly the DOC component. However, high Δ14C ages did not co-occur with high [Ad/Al] ratios, suggesting that riverine DOC preserved (frozen) for extensive periods is now being released. Although permafrost thaw within the Hudson Bay drainage has already commenced, this meridional river study provides a benchmark against which to evaluate future change.
Thouin, Hugues; Battaglia-Brunet, Fabienne; Gautret, Pascale; Le Forestier, Lydie; Breeze, Dominique; Séby, Fabienne; Norini, Marie-Paule; Dupraz, Sebastien
2017-10-01
A mesocosm study was conducted to assess the impact of water saturation episodes and of the input of bioavailable organic matter on the biogeochemical cycles of C and N, and on the behavior of metal(loid)s in a soil highly contaminated by the destruction of arsenical shells. An instrumented mesocosm was filled with contaminated soil taken from the "Place-à-Gaz" site. Four cycles of dry and wet periods of about one month were simulated for 276days. After two dry/wet cycles, organic litter sampled on the site was added above the topsoil. The nitrogen cycle was the most impacted by the wet/dry cycles, as evidenced by a denitrification microbial process in the saturated level. The concentrations of the two most mobile pollutants, Zn and As, in the soil water and in the mesocosm leachate were, respectively, in the 0.3-1.6mM and 20-110μM ranges. After 8months of experiment, about 83g·m -3 of Zn and 3.5g·m -3 of As were leached from the soil. These important quantities represent <1% of the solid stock of this contaminant. Dry/wet cycles had no major effect on Zn mobility. However, soil saturation induced the immobilization of As by trapping As V but enhanced As III mobility. These phenomena were amplified by the presence of bioavailable organic matter. The study showed that the natural deposition of forest organic litter allowed a part of the soil's biological function to be restored but did not immobilize all the Zn and As, and even contributed to transport of As III to the surrounding environment. The main hazard of this type of site, contaminated by organo-arsenic chemical weapons, is the constitution of a stock of As that may leach into the surrounding environment for several hundred years. Copyright © 2017 Elsevier B.V. All rights reserved.
Zhou, Jiang-Tao; Lü, De-Guo; Qin, Si-Jun
2014-09-01
The effects of different organic matter covers on soil physical-chemical properties were investigated in a 'Hanfu' apple orchard located in a cold region. Four treatments were applied (weed mulching, rice straw mulching, corn straw mulching, and crushed branches mulching), and physical-chemical properties, including orchard soil moisture and nutrient contents, were compared among treatment groups and between organic matter-treated and untreated plots. The results showed that soil water content increased in the plots treated with organic matter mulching, especially in the arid season. Cover with organic matter mulch slowed the rate of soil temperature increase in spring, which was harmful to the early growth of fruit trees. Organic matter mulching treatments decreased the peak temperature of orchard soil in the summer and increased the minimum soil temperature in the fall. pH was increased in soils treated with organic matter mulching, especially in the corn straw mulching treatment, which occurred as a response to alleviating soil acidification to achieve near-neutral soil conditions. The soil organic matter increased to varying extents among treatment groups, with the highest increase observed in the weed mulching treatment. Overall, mulching increased alkali-hydrolyzable nitrogen, available phosphorus, and available potassium in the soil, but the alkali-hydrolyzable nitrogen content in the rice straw mulching treatment was lower than that of the control.
NASA Astrophysics Data System (ADS)
Hofmann, P.; Leythaeuser, D.; Schwark, L.
2001-07-01
In order to determine thermal effects of the Ries impact, southern Germany, on organic matter in its ejecta blanket, the maturity of organic matter of Posidonia Shale components from the Bunte Breccia at Harburg and Gundelsheim is compared with the maturity of organic matter of a reference section of Posidonia Shale outside the impact site at Hesselberg. Three black shale samples from the Bunte Breccia were identified as corresponding to the organic matter-rich Posidonia Shale based on the molecular composition of extractable organic matter. They show n-alkane patterns with a maximum of n-C 17, a predominance of odd over even n-alkanes in the range from n-C 26 to n-C 35, a dominance of unsaturated sterenes over steranes and monoaromatic over triaromatic steroids, and contain isorenieratene. The maturity of the organic matter from the Bunte Breccia samples corresponds to 0.32-0.35% random vitrinite reflectance ( Rr) and a spectral red/green quotient ( Q) of 0.32-0.34. The organic matter from the Bunte Breccia is more mature than the Posidonia Shale sample from the reference site Hesselberg (0.25% Rr; 0.21 for Q). The thermal overprint is presumed to be too high to be explained by differences in the burial history prior to the impact alone and is, therefore, attributed to processes related to the displacement of the Bunte Breccia.
Nakasaki, Kiyohiko; Marui, Taketoshi
2011-06-01
To monitor the progress of organic matter degradation in a large-scale composting facility, the percentage of organic matter degradation was determined by measuring CO(2) evolution during recomposting of compost samples withdrawn from the facility. The percentage of organic matter degradation was calculated as the ratio of the amount of CO(2) evolved from compost raw material to that evolved from each sample during recomposting in the laboratory composting apparatus. It was assumed that the difference in the cumulative emission of CO(2) between the compost raw material and a sample corresponds to the amount of CO( 2) evolved from the sample in the composting facility. Using this method, the changes in organic matter degradation during composting in practical large-scale composting facilities were estimated and it was found that the percentage of organic matter degradation increased more vigorously in the earlier stages than in the later stages of composting. The percentage of organic matter degradation finally reached 78 and 55% for the compost produced from garbage-animal manure mixture and distillery waste (shochu residue), respectively. It was thus ascertained that organic matter degradation progressed well in both composting facilities. Furthermore, by performing a plant growth assay, it was observed that the compost products of both the facilities did not inhibit seed germination and thus were useful in promoting plant growth.
Depletion of 13C in Cretaceous marine organic matter: Source, diagenetic, or environmental sigal?
Dean, W.E.; Arthur, M.A.; Claypool, G.E.
1986-01-01
Geochemical studies of Cretaceous strata rich in organic carbon (OC) from Deep Sea Drilling Project (DSDP) sites and several land sections reveal several consistent relationships among amount of OC, hydrocarbon generating potential of kerogen (measured by pyrolysis as the hydrogen index, HI), and the isotopic composition of the OC. First, there is a positive correlation between HI and OC in strata that contain more than about 1% OC. Second, percent OC and HI often are negatively correlated with carbon isotopic composition (?? 13C) of kerogen. The relationship between HI and OC indicates that as the amount of organic matter increases, this organic matter tends to be more lipid rich reflecting the marine source of the organic matter. Cretaceous samples that contain predominantly marine organic matter tend to be isotopically lighter than those that contain predominantly terrestrial organic matter. Average ?? 13C values for organic matter from most Cretaceous sites are between -26 and -28???, and values heavier than about -25??? occur at very few sites. Most of the ?? 13C values of Miocene to Holocene OC-rich strata and modern marine plankton are between -16 to -23???. Values of ??13C of modern terrestrial organic matter are mostly between -23 and -33???. The depletion of terrestial OC in 13C relative to marine planktonic OC is the basis for numerous statements in the literature that isotopically light Cretaceous organic matter is of terrestrial origin, even though other organic geochemical and(or) optical indicators show that the organic matter is mainly of marine origin. A difference of about 5??? in ?? 13C between modern and Cretaceous OC-rich marine strata suggests either that Cretaceous marine planktonic organic matter had the same isotopic signature as modern marine plankton and that signature has been changed by diagenesis, or that OC derived from Cretaceous marine plankton was isotopically lighter by about 5??? relative to modern plankton OC. Diagenesis does not produce a significant shift in ?? 13C in Miocene to Holocene sediments, and therefore probably did not produce the isotopically light Cretaceous OC. This means that Cretaceous marine plankton must have had ?? 13C values that were about 5??? lighter than modern marine plankton, and at least several per mil lighter than Cretaceous terrestrial vegetation. The reason for these lighter values, however, is not obvious. It has been proposed that concentrations of CO2 were higher during the middle Cretaceous, and this more available CO2 may be responsible for the lighter ?? 13C values of Cretaceous marine organic matter. ?? 1986.
Sandra M. Clinton; Rick T. Edwards; Stuart E.G. Findlay
2010-01-01
We measured the hyporheic microbial exoenzyme activities in a floodplain river to determine whether dissolved organic matter (DOM) bioavailability varied with overlying riparian vegetation patch structure or position along flowpaths. Particulate organic matter (POM), dissolved organic carbon (DOC), dissolved oxygen (DO), electrical conductivity and temperature were...
The Effect of paper mill waste and sewage sludge amendments on soil organic matter
NASA Astrophysics Data System (ADS)
Méndez, Ana; Barriga, Sandra; Guerrero, Francisca; Gascó, Gabriel
2013-04-01
In general, Mediterranean soils have low organic matter content, due to the climate characteristics of this region and inadequate land management. Traditionally, organic wastes such as manure are used as amendment in order to improve the soil quality, increasing soil fertility by the accumulation of nitrogen, phosphorus and other plant nutrients in the soil. In the last decade, other anthropogenic organic wastes such as sewage sludge or paper waste materials have been studied as soil amendments to improve physical, chemical and biological properties of soils. The objective of the present work was to study the influence of waste from a paper mill and sewage sludge amendments on soil organic matter. For this reason, soil organic matter evolution was studied using thermogravimetric analysis (TGA), the derivative (dTG) and differential thermal analysis (DTA). Thermal analytical techniques have the advantage of using full samples without pre-treatments and have been extensively used to study the evolution of organic matter in soils, to evaluate composting process or to study the evolution of organic matter of growing media.
Nguyen, Dinh Duc; Yeop, Jeong Seong; Choi, Jaehoon; Kim, Sungsu; Chang, Soon Woong; Jeon, Byong-Hun; Guo, Wenshan; Ngo, Huu Hao
2017-08-01
Dry semicontinuous anaerobic digestion (AD) of South Korean food waste (FW) under four solid loading rates (SLRs) (2.30-9.21kg total solids (TS)/m 3 day) and at a fixed TS content was compared between two digesters, one each under mesophilic and thermophilic conditions. Biogas production and organic matter reduction in both digesters followed similar trends, increasing with rising SLR. Inhibitor (intermediate products of the anaerobic fermentation process) effects on the digesters' performance were not observed under the studied conditions. In all cases tested, the digesters' best performance was achieved at the SLR of 9.21kg TS/m 3 day, with 74.02% and 80.98% reduction of volatile solids (VS), 0.87 and 0.90m 3 biogas/kg VS removed , and 0.65 (65% CH 4 ) and 0.73 (60.02% CH 4 ) m 3 biogas/kg VS fed , under mesophilic and thermophilic conditions, respectively. Thermophilic dry AD is recommended for FW treatment in South Korea because it is more efficient and has higher energy recovery potential when compared to mesophilic dry AD. Copyright © 2017 Elsevier Ltd. All rights reserved.
Source apportionment of airborne particulate matter using organic compounds as tracers
NASA Astrophysics Data System (ADS)
Schauer, James J.; Rogge, Wolfgang F.; Hildemann, Lynn M.; Mazurek, Monica A.; Cass, Glen R.; Simoneit, Bernd R. T.
A chemical mass balance receptor model based on organic compounds has been developed that relates source contributions to airborne fine particle mass concentrations. Source contributions to the concentrations of specific organic compounds are revealed as well. The model is applied to four air quality monitoring sites in southern California using atmospheric organic compound concentration data and source test data collected specifically for the purpose of testing this model. The contributions of up to nine primary particle source types can be separately identified in ambient samples based on this method, and approximately 85% of the organic fine aerosol is assigned to primary sources on an annual average basis. The model provides information on source contributions to fine mass concentrations, fine organic aerosol concentrations and individual organic compound concentrations. The largest primary source contributors to fine particle mass concentrations in Los Angeles are found to include diesel engine exhaust, paved road dust, gasoline-powered vehicle exhaust, plus emissions from food cooking and wood smoke, with smaller contribution from tire dust, plant fragments, natural gas combustion aerosol, and cigarette smoke. Once these primary aerosol source contributions are added to the secondary sulfates, nitrates and organics present, virtually all of the annual average fine particle mass at Los Angeles area monitoring sites can be assigned to its source.
Source apportionment of airborne particulate matter using organic compounds as tracers
NASA Astrophysics Data System (ADS)
Schauer, James J.; Rogge, Wolfgang F.; Hildemann, Lynn M.; Mazurek, Monica A.; Cass, Glen R.; Simoneit, Bernd R. T.
A chemical mass balance receptor model based on organic compounds has been developed that relates sours; contributions to airborne fine particle mass concentrations. Source contributions to the concentrations of specific organic compounds are revealed as well. The model is applied to four air quality monitoring sites in southern California using atmospheric organic compound concentration data and source test data collected specifically for the purpose of testing this model. The contributions of up to nine primary particle source types can be separately identified in ambient samples based on this method, and approximately 85% of the organic fine aerosol is assigned to primary sources on an annual average basis. The model provides information on source contributions to fine mass concentrations, fine organic aerosol concentrations and individual organic compound concentrations. The largest primary source contributors to fine particle mass concentrations in Los Angeles are found to include diesel engine exhaust, paved road dust, gasoline-powered vehicle exhaust, plus emissions from food cooking and wood smoke, with smaller contribution:; from tire dust, plant fragments, natural gas combustion aerosol, and cigarette smoke. Once these primary aerosol source contributions are added to the secondary sulfates, nitrates and organics present, virtually all of the annual average fine particle mass at Los Angeles area monitoring sites can be assigned to its source.
Correlated microanalysis of cometary organic grains returned by Stardust
NASA Astrophysics Data System (ADS)
de Gregorio, Bradley T.; Stroud, Rhonda M.; Cody, George D.; Nittler, Larry R.; David Kilcoyne, A. L.; Wirick, Sue
2011-09-01
Abstract- Carbonaceous matter in Stardust samples returned from comet 81P/Wild 2 is observed to contain a wide variety of organic functional chemistry. However, some of this chemical variety may be due to contamination or alteration during particle capture in aerogel. We investigated six carbonaceous Stardust samples that had been previously analyzed and six new samples from Stardust Track 80 using correlated transmission electron microscopy (TEM), X-ray absorption near-edge structure spectroscopy (XANES), and secondary ion mass spectroscopy (SIMS). TEM revealed that samples from Track 35 containing abundant aliphatic XANES signatures were predominantly composed of cometary organic matter infilling densified silica aerogel. Aliphatic organic matter from Track 16 was also observed to be soluble in the epoxy embedding medium. The nitrogen-rich samples in this study (from Track 22 and Track 80) both contained metal oxide nanoparticles, and are likely contaminants. Only two types of cometary organic matter appear to be relatively unaltered during particle capture. These are (1) polyaromatic carbonyl-containing organic matter, similar to that observed in insoluble organic matter (IOM) from primitive meteorites, interplanetary dust particles (IDPs), and in other carbonaceous Stardust samples, and (2) highly aromatic refractory organic matter, which primarily constitutes nanoglobule-like features. Anomalous isotopic compositions in some of these samples also confirm their cometary heritage. There also appears to be a significant labile aliphatic component of Wild 2 organic matter, but this material could not be clearly distinguished from carbonaceous contaminants known to be present in the Stardust aerogel collector.
Dust emissions of organic soils observed in the field and laboratory
NASA Astrophysics Data System (ADS)
Zobeck, T. M.; Baddock, M. C.; Guo, Z.; Van Pelt, R.; Acosta-Martinez, V.; Tatarko, J.
2011-12-01
According to the U.S. Soil Taxonomy, Histosols (also known as organic soils) are soils that are dominated by organic matter (>20% organic matter) in half or more of the upper 80 cm. These soils, when intensively cropped, are subject to wind erosion resulting in loss in crop productivity and degradation of soil, air, and water quality. Estimating wind erosion on Histosols has been determined by USDA-Natural Resources Conservation Service as a critical need for the Wind Erosion Prediction System (WEPS) model. WEPS has been developed to simulate wind erosion on agricultural land in the US, including soils with organic soil material surfaces. However, additional field measurements are needed to calibrate and validate estimates of wind erosion of organic soils using WEPS. In this study, we used a field portable wind tunnel to generate suspended sediment (dust) from agricultural surfaces for soils with a range of organic contents. The soils were tilled and rolled to provide a consolidated, friable surface. Dust emissions and saltation were measured using an isokinetic vertical slot sampler aspirated by a regulated suction source. Suspended dust was collected on filters of the dust slot sampler and sampled at a frequency of once every six seconds in the suction duct using a GRIMM optical particle size analyzer. In addition, bulk samples of airborne dust were collected using a sampler specifically designed to collect larger dust samples. The larger dust samples were analyzed for physical, chemical, and microbiological properties. In addition, bulk samples of the soils were tested in a laboratory wind tunnel similar to the field wind tunnel and a laboratory dust generator to compare field and laboratory results. For the field wind tunnel study, there were no differences between the highest and lowest organic content soils in terms of their steady state emission rate under an added abrader flux, but the soil with the mid-range of organic matter had less emission by one third. In the laboratory wind tunnel, samples with the same ratio of erodible to non-erodible aggregates as the field soils were abraded and dust emissions were observed with the same sampling system as used in the field wind tunnel. In the dust generator, 5 gm samples < 8 mm diameter of each organic soil were rotated in a 50 cm long tube and the dust generated was observed with the GRIMM during a 20 minute run. Comparisons of the field dust emission rates with the laboratory results will be presented.
Test procedure for determining organic matter content in soils : UV-VIS method.
DOT National Transportation Integrated Search
2010-11-01
The Texas Department of Transportation has been having problems with organic matter in soils that they : stabilize for use as subgrade layers in road construction. The organic matter reduces the effectiveness of : common soil additives (lime/cement) ...
Sachit, Dawood Eisa; Veenstra, John N.
2017-01-01
In this work, three different types of Reverse Osmosis (RO) (Thin-Film Composite (SE), Cellulose Acetate (CE), and Polyamide (AD)) were used to perform foulant analysis (autopsy) study on the deposited materials from three different simulated brackish surface feed waters. The brackish surface water qualities represented the water quality in Iraqi marshes. The main foulants from the simulated feed waters were characterized by using Scanning Electron Microscope (SEM) images and Energy-Dispersive X-ray Spectroscopy (EDXS) spectra. The effect of feed water temperatures (37 °C and 11 °C) on the formation of the fouled material deposited on the membrane surface was examined in this study. Also, pretreatment by a 0.1 micron microfiltration (MF) membrane of the simulated feed water in advance of the RO membrane on the precipitated material on the membrane surface was investigated. Finally, Fourier Transform Infrared Spectroscopy (FTIR) analysis was used to identify the functional groups of the organic matter deposited on the RO membrane surfaces. The SEM images and EDSX spectra suggested that the fouled material was mainly organic matter, and the major crystal deposited on the RO membrane was calcium carbonate (CaCO3). The FTIR spectra of the fouled RO membranes suggested that the constituents of the fouled material included aliphatic and aromatic compounds. PMID:28406468
Lønborg, Christian; Nieto-Cid, Mar; Hernando-Morales, Victor; Hernández-Ruiz, Marta; Teira, Eva; Álvarez-Salgado, Xosé Antón
2016-05-01
The impact of solar radiation on dissolved organic matter (DOM) derived from 3 different sources (seawater, eelgrass leaves and river water) and the effect on the bacterial carbon cycling and diversity were investigated. Seawater with DOM from the sources was first either kept in the dark or exposed to sunlight (4 days), after which a bacterial inoculum was added and incubated for 4 additional days. Sunlight exposure reduced the coloured DOM and carbon signals, which was followed by a production of inorganic nutrients. Bacterial carbon cycling was higher in the dark compared with the light treatment in seawater and river samples, while higher levels were found in the sunlight-exposed eelgrass experiment. Sunlight pre-exposure stimulated the bacterial growth efficiency in the seawater experiments, while no impact was found in the other experiments. We suggest that these responses are connected to differences in substrate composition and the production of free radicals. The bacterial community that developed in the dark and sunlight pre-treated samples differed in the seawater and river experiments. Our findings suggest that impact of sunlight exposure on the bacterial carbon transfer and diversity depends on the DOM source and on the sunlight-induced production of inorganic nutrients. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Zhang, Enren; Xu, Wei; Diao, Guowang; Shuang, Chendong
Microbial-anode fuel cells (MAFCs) with high electron recovery (>50%) from acetate and glucose have been constructed in this study. By inoculating fresh sedimentary microorganisms into anaerobic anode compartments, a stable current (∼0.42 mA for acetate-fed MAFCs; ∼0.35 mA for glucose-fed MAFCs) is generated from the oxidation of the added organic matter until its concentration decreases to a low level. SEM micrographs indicate that thick biofilms of microbial communities (coccoid cells with a diameter of ∼0.5 μm in acetate-fed MAFCs; rod-shaped cells with a length of 2.0-4.0 μm and a width of 0.5-0.7 μm in glucose-fed MAFCs) completely cover the anode electrodes. These anodophillic biofilms are thought to be responsible for the current generation, and make these microbial-anode fuel cells exhibit good performance even when the growth medium is replaced by a salt buffer without any growth factor. In comparison with those microbial fuel cells that require the addition of artificial electron transfer-mediating compounds, the findings in this study imply a potential way to develop excellent mediator-less MAFCs for electricity generation from organic matter by using substrate-induced anodophillic microbial species.
Silva-Castro, G. A.; Uad, I.; Gonzalez-Martinez, A.; Rivadeneyra, A.; Gonzalez-Lopez, J.; Rivadeneyra, M. A.
2015-01-01
The precipitation of calcium carbonate and calcium sulphate by isolated bacteria from seawater and real brine obtained in a desalination plant growth in culture media containing seawater and brine as mineral sources has been studied. However, only bioprecipitation was detected when the bacteria were grown in media with added organic matter. Biomineralization process started rapidly, crystal formation taking place in the beginning a few days after inoculation of media; roughly 90% of total cultivated bacteria showed. Six major colonies with carbonate precipitation capacity dominated bacterial community structure cultivated in heterotrophic platable bacteria medium. Taxonomic identification of these six strains through partial 16S rRNA gene sequences showed their affiliation with Gram-positive Bacillus and Virgibacillus genera. These strains were able to form calcium carbonate minerals, which precipitated as calcite and aragonite crystals and showed bacterial fingerprints or bacteria calcification. Also, carbonic anhydrase activity was observed in three of these isolated bacteria. The results of this research suggest that microbiota isolated from sea water and brine is capable of precipitation of carbonate biominerals, which can occur in situ with mediation of organic matter concentrations. Moreover, calcium carbonate precipitation ability of this microbiota could be of importance in bioremediation of CO2 and calcium in certain environments. PMID:26273646
Silva-Castro, G A; Uad, I; Gonzalez-Martinez, A; Rivadeneyra, A; Gonzalez-Lopez, J; Rivadeneyra, M A
2015-01-01
The precipitation of calcium carbonate and calcium sulphate by isolated bacteria from seawater and real brine obtained in a desalination plant growth in culture media containing seawater and brine as mineral sources has been studied. However, only bioprecipitation was detected when the bacteria were grown in media with added organic matter. Biomineralization process started rapidly, crystal formation taking place in the beginning a few days after inoculation of media; roughly 90% of total cultivated bacteria showed. Six major colonies with carbonate precipitation capacity dominated bacterial community structure cultivated in heterotrophic platable bacteria medium. Taxonomic identification of these six strains through partial 16S rRNA gene sequences showed their affiliation with Gram-positive Bacillus and Virgibacillus genera. These strains were able to form calcium carbonate minerals, which precipitated as calcite and aragonite crystals and showed bacterial fingerprints or bacteria calcification. Also, carbonic anhydrase activity was observed in three of these isolated bacteria. The results of this research suggest that microbiota isolated from sea water and brine is capable of precipitation of carbonate biominerals, which can occur in situ with mediation of organic matter concentrations. Moreover, calcium carbonate precipitation ability of this microbiota could be of importance in bioremediation of CO2 and calcium in certain environments.
Lompe, Kim Maren; Menard, David; Barbeau, Benoit
2017-10-15
Combining powdered activated carbon (PAC) with magnetic iron oxides has been proposed in the past to produce adsorbents for natural organic matter (NOM) removal that can be easily separated using a magnetic field. However, the trade-off between the iron oxides' benefits and the reduced carbon content, porosity, and surface area has not yet been investigated systematically. We produced 3 magnetic powdered activated carbons (MPAC) with mass fractions of 10%, 38% and 54% maghemite nanoparticles and compared them to bare PAC and pure nanoparticles with respect to NOM adsorption kinetics and isotherms. While adsorption kinetics were not influenced by the presence of the iron oxide nanoparticles (IONP), as shown by calculated diffusion coefficients from the homogeneous surface diffusion model, nanoparticles reduced the adsorption capacity of NOM due to their lower adsorption capacity. Although the nanoparticles added mesoporosity to the composite materials they blocked intrinsic PAC mesopores at mass fractions >38% as measured by N 2 -adsorption isotherms. Below this mass fraction, the adsorption capacity was mainly dependent on the carbon content in MPAC and mesopore blocking was negligible. If NOM adsorption with MPAC is desired, a highly mesoporous PAC and a low IONP mass fraction should be chosen during MPAC synthesis. Copyright © 2017 Elsevier Ltd. All rights reserved.
Biologically Active Organic Matter in Soils of European Russia
NASA Astrophysics Data System (ADS)
Semenov, V. M.; Kogut, B. M.; Zinyakova, N. B.; Masyutenko, N. P.; Malyukova, L. S.; Lebedeva, T. N.; Tulina, A. S.
2018-04-01
Experimental and literature data on the contents and stocks of active organic matter in 200 soil samples from the forest-tundra, southern-taiga, deciduous-forest, forest-steppe, dry-steppe, semidesert, and subtropical zones have been generalized. Natural lands, agrocenoses, treatments of long-term field experiments (bare fallow, unfertilized and fertilized crop rotations, perennial plantations), and different layers of soil profile are presented. Sphagnum peat and humus-peat soil in the tundra and forest-tundra zones are characterized by a very high content of active organic matter (300-600 mg C/100 g). Among the zonal soils, the content of active organic matter increases from the medium (75-150 mg C/100 g) to the high (150-300 mg C/100 g) level when going from soddy-podzolic soil to gray forest and dark-gray forest soils and then to leached chernozem. In the series from typical chernozem to ordinary and southern chernozem and chestnut and brown semidesert soils, a decrease in the content of active organic matter to the low (35-75 mg C/100 g) and very low (<35 mg C/100 g) levels is observed. Acid brown forest soil in the subtropical zone is characterized by a medium supply with active organic matter. Most arable soils are mainly characterized by low or very low contents of active organic matter. In the upper layers of soils, active organic matter makes up 1.2-11.1% of total Corg. The profile distribution of active organic matter in the studied soils coincides with that of Corg: their contents appreciably decrease with depth, except for brown semidesert soil. The stocks of active organic matter vary from 0.4 to 5.4 t/ha in the layer of 0-20 cm and from 1.0 to 12.4/ha in the layer of 0-50 cm of different soil types.
Molybdenum isotope fractionation during adsorption to organic matter
King, Elizabeth K.; Perakis, Steven; Pett-Ridge, Julie C.
2018-01-01
Organic matter is of emerging interest as a control on molybdenum (Mo) biogeochemistry, and information on isotope fractionation during adsorption to organic matter can improve interpretations of Mo isotope variations in natural settings. Molybdenum isotope fractionation was investigated during adsorption onto insolubilized humic acid (IHA), a surrogate for organic matter, as a function of time (2–170 h) and pH (2–7). For the time series experiment performed at pH 4.2, the average Mo isotope fractionation between the solution and the IHA (Δ98Mosolution-IHA) was 1.39‰ (± 0.16‰, 2σ, based on 98Mo/95Mo relative to the NIST 3134 standard) at steady state. For the pH series experiment, Mo adsorption decreased as pH increased from 2.0 to 6.9, and the Δ98Mosolution-IHA increased from 0.82‰ to 1.79‰. We also evaluated natural Mo isotope patterns in precipitation, foliage, organic horizon, surface mineral soil, and bedrock from 12 forested sites in the Oregon Coast Range. The average Mo isotope offset observed between precipitation and organic (O) horizon soil was 2.1‰, with light Mo isotopes adsorbing preferentially to organic matter. Fractionation during adsorption to organic matter is similar in magnitude and direction to prior observations of Mo fractionation during adsorption to Fe- and Mn- (oxyhydr)oxides. Our finding that organic matter influences Mo isotope composition has important implications for the role of organic matter as a driver of trace metal retention and isotopic fractionation.
Lu, Yan; Xu, Hongwen
2014-01-01
The objectives of this study were to test the effects of soil temperature, flooding, and raw organic matter input on N2O emissions in a soil sampled at Hongze Lake wetland, Jiangsu Province, China. The treatments studied were-peat soil (I), peat soil under flooding (II), peat soil plus raw organic matter (III), and peat soil under flooding plus organic matter. These four treatments were incubated at 20°C and 35°C. The result showed that temperature increase could enhance N2O emissions rate and cumulative emissions significantly; moreover, the flooded soil with external organic matter inputs showed the lowest cumulative rise in N2O emissions due to temperature increment. Flooding might inhibit soil N2O emissions, and the inhibition was more pronounced after organic matter addition to the original soil. Conversely, organic matter input explained lower cumulative N2O emissions under flooding. Our results suggest that complex interactions between flooding and other environmental factors might appear in soil N2O emissions. Further studies are needed to understand potential synergies or antagonisms between environmental factors that control N2O emissions in wetland soils.
Wang, Yan-Cang; Gu, Xiao-He; Zhu, Jin-Shan; Long, Hui-Ling; Xu, Peng; Liao, Qin-Hong
2014-01-01
The present study aims to assess the feasibility of multi-spectral data in monitoring soil organic matter content. The data source comes from hyperspectral measured under laboratory condition, and simulated multi-spectral data from the hyperspectral. According to the reflectance response functions of Landsat TM and HJ-CCD (the Environment and Disaster Reduction Small Satellites, HJ), the hyperspectra were resampled for the corresponding bands of multi-spectral sensors. The correlation between hyperspectral, simulated reflectance spectra and organic matter content was calculated, and used to extract the sensitive bands of the organic matter in the north fluvo-aquic soil. The partial least square regression (PLSR) method was used to establish experiential models to estimate soil organic matter content. Both root mean squared error (RMSE) and coefficient of the determination (R2) were introduced to test the precision and stability of the modes. Results demonstrate that compared with the hyperspectral data, the best model established by simulated multi-spectral data gives a good result for organic matter content, with R2=0.586, and RMSE=0.280. Therefore, using multi-spectral data to predict tide soil organic matter content is feasible.
Removal of non-biodegradable organic matter from landfill leachates by adsorption.
Rodríguez, J; Castrillón, L; Marañón, E; Sastre, H; Fernández, E
2004-01-01
Leachates produced at the La Zoreda landfill in Asturias, Spain, were recirculated through a simulated landfill pilot plant. Prior to recirculation, three loads of different amounts of Municipal Solid Waste (MSW) were added to the plant, forming in this way consecutive layers. When anaerobic digestion was almost completed, the leachates from the landfill were recirculated. After recirculation, a new load of MSW was added and two new recirculations were carried out. The organic load of the three landfill leachates recirculated through the anaerobic pilot plant decreased from initial values of 5108, 3782 and 2560 mg/l to values of between 1500 and 1600 mg/l. Despite achieving reductions in the organic load of the leachate, a residual organic load still remained that was composed of non-biodegradable organic constituents such as humic substances. Similar values of the chemical oxygen demand (COD) were obtained when the landfill leachate was treated by a pressurised anoxic-aerobic process followed by ultrafiltration. After recirculation through the pilot plant, physico-chemical treatment was carried out to reduce the COD of the leachate. The pH of the leachate was decreased to a value of 1.5 to precipitate the humic fraction, obtaining a reduction in COD of about 13.5%. The supernatant liquid was treated with activated carbon and different resins, XAD-8, XAD-4 and IR-120. Activated carbon presented the highest adsorption capacities, obtaining COD values for the treated leachate in the order of 200mg/l. Similar results were obtained when treating with activated carbon, the leachate from the biological treatment plant at the La Zoreda landfill; in this case without decreasing the pH.
Dean, Douglas C.; Jerskey, Beth A.; Chen, Kewei; Protas, Hillary; Thiyyagura, Pradeep; Roontiva, Auttawat; O’Muircheartaigh, Jonathan; Dirks, Holly; Waskiewicz, Nicole; Lehman, Katie; Siniard, Ashley L.; Turk, Mari N.; Hua, Xue; Madsen, Sarah K.; Thompson, Paul M.; Fleisher, Adam S.; Huentelman, Matthew J.; Deoni, Sean C. L.; Reiman, Eric M.
2014-01-01
IMPORTANCE Converging evidence suggests brain structure alterations may precede overt cognitive impairment in Alzheimer disease by several decades. Early detection of these alterations holds inherent value for the development and evaluation of preventive treatment therapies. OBJECTIVE To compare magnetic resonance imaging measurements of white matter myelin water fraction (MWF) and gray matter volume (GMV) in healthy infant carriers and noncarriers of the apolipoprotein E (APOE) ε4 allele, the major susceptibility gene for late-onset AD. DESIGN, SETTING, AND PARTICIPANTS Quiet magnetic resonance imaging was performed at an academic research imaging center on 162 healthy, typically developing 2- to 25-month-old infants with no family history of Alzheimer disease or other neurological or psychiatric disorders. Cross-sectional measurements were compared in the APOE ε4 carrier and noncarrier groups. White matter MWF was compared in one hundred sixty-two 2- to 25-month-old sleeping infants (60 ε4 carriers and 102 noncarriers). Gray matter volume was compared in a subset of fifty-nine 6- to 25-month-old infants (23 ε4 carriers and 36 noncarriers), who remained asleep during the scanning session. The carrier and noncarrier groups were matched for age, gestational duration, birth weight, sex ratio, maternal age, education, and socioeconomic status. MAIN OUTCOMES AND MEASURES Automated algorithms compared regional white matter MWF and GMV in the carrier and noncarrier groups and characterized their associations with age. RESULTS Infant ε4 carriers had lower MWF and GMV measurements than noncarriers in precuneus, posterior/middle cingulate, lateral temporal, and medial occipitotemporal regions, areas preferentially affected by AD, and greater MWF and GMV measurements in extensive frontal regions and measurements were also significant in the subset of 2- to 6-month-old infants (MWF differences, P < .05, after correction for multiple comparisons; GMV differences, P < .001, uncorrected for multiple comparisons). Infant ε4 carriers also exhibited an attenuated relationship between MWF and age in posterior white matter regions. CONCLUSIONS AND RELEVANCE While our findings should be considered preliminary, this study demonstrates some of the earliest brain changes associated with the genetic predisposition to AD. It raises new questions about the role of APOE in normal human brain development, the extent to which these processes are related to subsequent AD pathology, and whether they could be targeted by AD prevention therapies. PMID:24276092
Dean, Douglas C; Jerskey, Beth A; Chen, Kewei; Protas, Hillary; Thiyyagura, Pradeep; Roontiva, Auttawat; O'Muircheartaigh, Jonathan; Dirks, Holly; Waskiewicz, Nicole; Lehman, Katie; Siniard, Ashley L; Turk, Mari N; Hua, Xue; Madsen, Sarah K; Thompson, Paul M; Fleisher, Adam S; Huentelman, Matthew J; Deoni, Sean C L; Reiman, Eric M
2014-01-01
Converging evidence suggests brain structure alterations may precede overt cognitive impairment in Alzheimer disease by several decades. Early detection of these alterations holds inherent value for the development and evaluation of preventive treatment therapies. To compare magnetic resonance imaging measurements of white matter myelin water fraction (MWF) and gray matter volume (GMV) in healthy infant carriers and noncarriers of the apolipoprotein E (APOE) ε4 allele, the major susceptibility gene for late-onset AD. Quiet magnetic resonance imaging was performed at an academic research imaging center on 162 healthy, typically developing 2- to 25-month-old infants with no family history of Alzheimer disease or other neurological or psychiatric disorders. Cross-sectional measurements were compared in the APOE ε4 carrier and noncarrier groups. White matter MWF was compared in one hundred sixty-two 2- to 25-month-old sleeping infants (60 ε4 carriers and 102 noncarriers). Gray matter volume was compared in a subset of fifty-nine 6- to 25-month-old infants (23 ε4 carriers and 36 noncarriers), who remained asleep during the scanning session. The carrier and noncarrier groups were matched for age, gestational duration, birth weight, sex ratio, maternal age, education, and socioeconomic status. Automated algorithms compared regional white matter MWF and GMV in the carrier and noncarrier groups and characterized their associations with age. Infant ε4 carriers had lower MWF and GMV measurements than noncarriers in precuneus, posterior/middle cingulate, lateral temporal, and medial occipitotemporal regions, areas preferentially affected by AD, and greater MWF and GMV measurements in extensive frontal regions and measurements were also significant in the subset of 2- to 6-month-old infants (MWF differences, P < .05, after correction for multiple comparisons; GMV differences, P < .001, uncorrected for multiple comparisons). Infant ε4 carriers also exhibited an attenuated relationship between MWF and age in posterior white matter regions. While our findings should be considered preliminary, this study demonstrates some of the earliest brain changes associated with the genetic predisposition to AD. It raises new questions about the role of APOE in normal human brain development, the extent to which these processes are related to subsequent AD pathology, and whether they could be targeted by AD prevention therapies.
SOIL NITROGEN TRANSFORMATIONS AND ROLE OF LIGHT FRACTION ORGANIC MATTER IN FOREST SOILS
Depletion of soil organic matter through cultivation may alter substrate availability for microbes, altering the dynamic balance between nitrogen (N) immobilization and mineralization. Soil light fraction (LF) organic matter is an active pool that decreases upon cultivation, and...
Sobieszczyk, Steven; Keith, Mackenzie K.; Goldman, Jami H.; Rounds, Stewart A.
2015-01-01
The U.S. Geological Survey (USGS), in cooperation with Clean Water Services, recently completed an investigation into the sources, transport, and fate of organic matter in the Fanno Creek watershed. The information provided by this investigation will help resource managers to implement strategies aimed at decreasing the excess supply of organic matter that contributes to low dissolved-oxygen levels in Fanno Creek and downstream in the Tualatin River during summer. This fact sheet summarizes the findings of the investigation.
1975-10-08
m AD-A020 796 A POSTULATED MECHANISM THAT LEADS TO MATERIALIZATION AND DEMATERIALIZATION OF MATTER AND TO ANTIGRAVITY Thomas E. Bearden Army...TITLE fand Subtlll») A POSTULATED MECHANISM THAT LEADS TO MATERIALIZATION AND DEMATERIALIZATION OF MATTER AND TO ANTIGRAVITY S. TYPE OF REPORT... Antigravity 1 Three-dimensional space Photon Orthogonal frames i I
Black holes in quasi-topological gravity and conformal couplings
NASA Astrophysics Data System (ADS)
Chernicoff, Mariano; Fierro, Octavio; Giribet, Gaston; Oliva, Julio
2017-02-01
Lovelock theory of gravity provides a tractable model to investigate the effects of higher-curvature terms in the context of AdS/CFT. Yielding second order, ghost-free field equations, this theory represents a minimal setup in which higher-order gravitational couplings in asymptotically Anti-de Sitter (AdS) spaces, including black holes, can be solved analytically. This however has an obvious limitation as in dimensions lower than seven, the contribution from cubic or higher curvature terms is merely topological. Therefore, in order to go beyond quadratic order and study higher terms in AdS5 analytically, one is compelled to look for other toy models. One such model is the so-called quasi-topological gravity, which, despite being a higher-derivative theory, provides a tractable setup with R 3 and R 4 terms. In this paper, we investigate AdS5 black holes in quasi-topological gravity. We consider the theory conformally coupled to matter and in presence of Abelian gauge fields. We show that charged black holes in AdS5 which, in addition, exhibit a backreaction of the matter fields on the geometry can be found explicitly in this theory. These solutions generalize the black hole solution of quasi-topological gravity and exist in a region of the parameter spaces consistent with the constraints coming from causality and other consistency conditions. They have finite conserved charges and exhibit non-trivial thermodynamical properties.
Sources, factors, mechanisms and possible solutions to pollutants in marine ecosystems.
Mostofa, Khan M G; Liu, Cong-Qiang; Vione, Davide; Gao, Kunshan; Ogawa, Hiroshi
2013-11-01
Algal toxins or red-tide toxins produced during algal blooms are naturally-derived toxic emerging contaminants (ECs) that may kill organisms, including humans, through contaminated fish or seafood. Other ECs produced either naturally or anthropogenically ultimately flow into marine waters. Pharmaceuticals are also an important pollution source, mostly due to overproduction and incorrect disposal. Ship breaking and recycle industries (SBRIs) can also release various pollutants and substantially deteriorate habitats and marine biodiversity. Overfishing is significantly increasing due to the global food crisis, caused by an increasing world population. Organic matter (OM) pollution and global warming (GW) are key factors that exacerbate these challenges (e.g. algal blooms), to which acidification in marine waters should be added as well. Sources, factors, mechanisms and possible remedial measures of these challenges to marine ecosystems are discussed, including their eventual impact on all forms of life including humans. Copyright © 2013 Elsevier Ltd. All rights reserved.
Protective effect of humus extract against Trypanosoma brucei infection in mice.
Kodama, Hiroshi; Denso; Okazaki, Fumi; Ishida, Saeko
2008-11-01
Humic substances are formed during the decomposition of organic matter in humus, and are found in many natural environments in which organic materials and microorganisms are present. Oral administration of humus extract to mice successfully induced effective protection against experimental challenge by the two subspecies, Trypanosoma brucei brucei and T. brucei gambiense. Mortality was most reduced among mice who received a 3% humus extract for 21 days in drinking water ad libitum. Spleen cells from humus-administered mice exhibited significant non-specific cytotoxic activity against L1210 mouse leukemia target cells. Also, spleen cells produced significantly higher amounts of Interferon-gamma when stimulated in vitro with Concanavalin A than cells from normal controls. These results clearly show that administration to mice of humus extract induced effective resistance against Trypanosoma infection. Enhancement of the innate immune system may be involved in host defense against trypanosomiasis.
Effect of microaerobic fermentation in preprocessing fibrous lignocellulosic materials.
Alattar, Manar Arica; Green, Terrence R; Henry, Jordan; Gulca, Vitalie; Tizazu, Mikias; Bergstrom, Robby; Popa, Radu
2012-06-01
Amending soil with organic matter is common in agricultural and logging practices. Such amendments have benefits to soil fertility and crop yields. These benefits may be increased if material is preprocessed before introduction into soil. We analyzed the efficiency of microaerobic fermentation (MF), also referred to as Bokashi, in preprocessing fibrous lignocellulosic (FLC) organic materials using varying produce amendments and leachate treatments. Adding produce amendments increased leachate production and fermentation rates and decreased the biological oxygen demand of the leachate. Continuously draining leachate without returning it to the fermentors led to acidification and decreased concentrations of polysaccharides (PS) in leachates. PS fragmentation and the production of soluble metabolites and gases stabilized in fermentors in about 2-4 weeks. About 2 % of the carbon content was lost as CO(2). PS degradation rates, upon introduction of processed materials into soil, were similar to unfermented FLC. Our results indicate that MF is insufficient for adequate preprocessing of FLC material.
The Origin of Organic Matter in the Solar System: Evidence from Interplanetary Dust Particles
NASA Technical Reports Server (NTRS)
Flynn, G. J.; Keller, L. P.; Jacobsen, C.; Wirick, S.
2001-01-01
The origin of the organic matter in interplanetary materials has not been established. A variety of mechanisms have been proposed, with two extreme cases being a Fisher-Tropsch type process operating in the gas phase of the solar nebula or a Miller-Urey type process, which requires interaction with an aqueous fluid, presumably occurring on an asteroid. In the Fisher-Tropsch case, we might expect similar organic matter in hydrated and anhydrous interplanetary materials. However, aqueous alteration is required in the case of the Miller-Urey process, and we would expect to see organic matter preferentially in interplanetary materials that exhibit evidence of aqueous activity, such as the presence of hydrated silicates. The types and abundance of organic matter in meteorites have been used as an indicator of the origin of organic matter in the Solar System. Indigenous complex organic matter, including amino acids, has been found in hydrated carbonaceous chondrite meteorites, such as Murchison. Much lower amounts of complex organic matter, possibly only terrestrial contamination, have been found in anhydrous carbonaceous chondrite meteorites, such as Allende, that contain most of their carbon in elemental form. These results seem to favor production of the bulk of the organic matter in the Solar System by aqueous processing on parent bodies such as asteroids, a Miller-Urey process. However, the hydrated carbonaceous chondrite meteorites have approximately solar abundances of the moderately volatile elements, while all anhydrous carbonaceous chondrite meteorites have significantly lower contents of these moderately volatile elements. Two mechanisms, incomplete condensation or evaporation, both of which involve processing at approx. 1200 C, have been suggested to explain the lower content of the moderately volatile elements in all anhydrous meteorites. Additional information is contained in the original extended abstract.
Effect of organic matters on CO2 hydrate phase equilibrium conditions in Na-montmorillonite clay
NASA Astrophysics Data System (ADS)
Park, T.; Kyung, D.; Lee, W.
2013-12-01
Formation of gas hydrates provides an attractive idea for storing greenhouse gases in a long-term stable geological formation. Since the phase equilibrium conditions of gas hydrates indicate the stability of hydrates, estimation of the phase equilibrium conditions of gas hydrates in marine geological conditions is necessary. In this study, we have identified the effects of organic matters (glycine, glucose, and urea) and solid surface (montmorillonite (MMT)) on the three-phase (liquid-hydrate-vapor) equilibrium conditions of CO2 hydrate. CO2 phase equilibrium experiments were conducted using 0.5mol% organic matter solutions with and without 10g soil mineral were experimentally conducted. Addition of organic matters shifted the phase equilibrium conditions of CO2 hydrate to the higher pressure or lower pressure region because of higher competition of water molecules due to the dissolved organic matters. Presence of MMT also leaded to the higher equilibrium pressure due to the interaction of cations with water molecules. By addition of organic matters to the clay suspension, the hydrate phase equilibrium conditions were less inhibited compared to those of MMT and organic matters independently. The diminished magnitudes by addition of organic matters to the clay suspension (MMT > MMT+urea > MMT+glycine > MMT+glucose > DIW) were different to the order of inhibition degree without MMT (Glucose > glycine > urea > DIW). X-ray diffraction (XRD), scanning electron microscope (SEM), and ion chromatography (IC) analysis were conducted to support the hypothesis that the organic matters interact with cations in MMT interlayer space, and leads to the less inhibition of phase equilibrium conditions. The present study provides basic information for the formation and dissociation of CO2 hydrates in the geological formation when sequestering CO2 as a form of CO2 hydrate.
Dean, W.E.; Gardner, J.V.
1998-01-01
Organic matter in sediments from cores collected from the upper continental slope (200-2700 m) off California and southern Oregon shows marked differences in concentration and marine character between the last glacial interval (ca. 24-10 ka) and either Holocene time or last interstadial (oxygen isotope stage 3, ca. 60-24 ka). In general, sediments deposited during Holocene time and stage 3 contain higher amounts of marine organic matter than those deposited during the last glacial interval, and this contrast is greatest in cores collected off southern California. The most profound differences in stage 3 sediments are between predominantly bioturbated sediments and occasional interbeds of laminated sediments. The sediments are from cores collected within the present oxygen minimum zone on the upper continental slope from as far north as the Oregon-California border to as far south as Point Conception. These upper Pleistocene laminated sediments contain more abundant hydrogen-rich (type II) marine algal organic matter than even surface sediments that have large amounts of nonrefractory organic matter. The stable carbon-isotopic composition of the organic matter does not change with time between bioturbated and laminated sediments, indicating that the greater abundance of type II organic matter in the laminated sediments is not due to a change in source but rather represents a greater degree of production and preservation of marine organic matter. The presence of abundant, well-preserved organic matter supports the theory that the oxygen minimum zone in the northeastern Pacific Ocean was more intense, and possibly anoxic, during late Pleistocene time as a result of increased coastal upwelling that enhanced algal productivity.
Shi, Qiong-bin; Zhao, Xiu-lan; Chang, Tong-ju; Lu, Ji-wen
2016-05-15
A long-term experiment was utilized to study the effects of tillage methods on the contents and distribution characteristics of organic matter and heavy metals (Cu, Zn, Pb, Cd, Fe and Mn) in aggregates with different sizes (including 1-2, 0.25-1, 0.05-0.25 mm and < 0.05 mm) in a purple paddy soil under two tillage methods including flooded paddy field (FPF) and paddy-upland rotation (PR). The relationship between heavy metals and organic matter in soil aggregates was also analyzed. The results showed that the aggregates of two tillage methods were dominated by 0.05-0.25 mm and < 0.05 mm particle size, respectively. The contents of organic matter in each aggregate decreased with the decrease of aggregate sizes, however, compared to PR, FPF could significantly increase the contents of organic matter in soils and aggregates. The tillage methods did not significantly affect the contents of heavy metals in soils, but FPF could enhance the accumulation and distribution of aggregate, organic matter and heavy metals in aggregates with diameters of 1-2 mm and 0.25-1 mm. Correlation analysis found that there was a negative correlation between the contents of heavy metals and organic matter in soil aggregates, but a positive correlation between the amounts of heavy metal and organic matter accumulated in soil aggregates. From the slope of the correlation analysis equations, we could found that the sensitivities of heavy metals to the changes of soil organic matters followed the order of Mn > Zn > Pb > Cu > Fe > Cd under the same tillage. When it came to the same heavy metal, it was more sensitive in PR than in FPF.
How does pyrogenic organic matter affect the N dynamic in agricultural soils? An incubation study
NASA Astrophysics Data System (ADS)
de La Rosa, José M.; Knicker, Heike
2010-05-01
Besides other environmental factors, N availability drives the carbon (C) and nitrogen (N) cycles in grasslands. Since grass-dominated ecosystems cover approximately 40% of the terrestrial surface and store more than 30% of global soil organic carbon (SOC), alterations to those ecosystems could have significant consequences and potential implications for global C and N cycles and climate (Schlesinger et al., 1990). Understanding the processes that govern the efficient cycling of nutrients through soil/plant systems remains an important topic to underpin the choice of strategies aimed at ensuring the long-term sustainability of ecosystems. In Mediterranean ecosystems, wild-fires occur frequently. Whereas factors such as water shortage or erosion contribute to reduced N-availability by lowering the litter input, burning additionally increase the refractory N and C-pools by charring litter and humic material (charred pyrogenic organic matter-PyOM) (Gonzalez-Pérez, 2004). In general, the addition of organic matter either as plant residues or farmyard manure has been shown to significantly increase biological activity, microbial biomass and enzyme activity in soil (Dick, 1992). Even in situations where microbial biomass appears to be unaffected, the activity of specific processes (e.g. N mineralization) can be significantly influenced by the addition of organic residues). However, little is known about the changes of the N cycle caused by the addition of PyOM. Therefore, the interest of our research was to study the impact of 15N enriched-biochars either alone or in conjunction with a 15N enriched fertilizer (K15NO3) on aggregate stability and organic carbon (C) and nitrogen (N) distribution among the different soil fractions. The latter may help to elucidate both, the quality of the stored organic matter and if the accumulation is related to interaction with the mineral matter. Therefore, biochar derived from grass material grown on 15N-enriched fertilizer was added to a typical Andalusian agricultural soil (calcareous Rhodoxeralf, FAO-UNESCO classification). The bioavailability of the 15N from the biochars was tested by determining its content in grass (lolium perenne) grown on this soil under defined conditions. Following the 15N within the soil fractions gave further information about some mechanisms involved in N-partioning and stabilization. Chemical alteration of the 15N-containing organic structures during mobilization/immobilization were followed by solid-state NMR spectroscopy in order to obtain some more insights into the processes involved in the C and N-sequestration. References: Campbell, C.A., V.O. Biederbeck, G. Wen, R.P. Zentner, J. Schoenau and D. Hahn, Canadian Journal of Soil Science 79 (1999), pp. 73-84. Dick, R.P., Agriculture Ecosystems and Environment 40 (1992), pp. 25-36. González-Pérez, J.A., F.J., González-Vila, G., Almendros and H., Knicker, Environment International 30 (2004), pp. 855-870. Schlesinger, W.H., J.E. Reynolds, G.L. Cunningham, L.F. Huenneke, W.M. Jarrell, R.A. Virginia and W.G. Whitford, Science 247 (1990), pp. 1043-1048.
Henneberry, Yumiko K.; Kraus, Tamara E.C.; Nico, Peter S.; Horwath, William R.
2012-01-01
The objective was to assess the interaction of Fe coprecipitated with dissolved organic matter (DOM) and its effect on Fe (hydr)oxide crystallinity and DOM retention under abiotic reducing conditions. A Fe-based coagulant was reacted with DOM from an agricultural drain and the resulting precipitate (floc) was exposed to S(-II) and Fe(II). Solution concentrations of Fe(II/III) and DOM were monitored, floc crystallinity was determined using X-ray diffraction, and the composition and distribution of functional groups were assessed using scanning transmission X-ray microscopy (STXM) and near edge X-ray absorption fine structure (NEXAFS) spectroscopy. Results indicate coprecipitation of Fe(III) with DOM forms a non-crystalline floc that withstands crystallization regardless of change in pH, Fe:DOM ratio and type of reductant added. There was no evidence that exposure to reducing conditions led to release of DOM from the floc, indicating that coprecipitation with complex natural DOM in aquatic environments may stabilize Fe (hydr)oxides against crystallization upon reaction with reduced species and lead to long term sequestration of the DOM. STXM analysis identified spatially distinct regions with remarkable functional group purity, contrary to the model of DOM as a relatively uniform complex polymer lacking identifiable organic compounds. Polysaccharide-like OM was strongly and directly correlated with the presence of Fe but showed different Fe binding strength depending on the presence of carboxylic acid functional groups, whereas amide and aromatic functional groups were inversely correlated with Fe content.
NASA Astrophysics Data System (ADS)
El Fallah, Rawa
2017-04-01
Benzo(a)pyrene (BaP) is a polycyclic aromatic hydrocarbon arising mainly from the incomplete combustion of organic material. It is toxic and has mutagenic and carcinogenic properties. It is classified as a priority pollutant by The United States Environmental Protection Agency (US-EPA). After it's emission in the atmosphere, and due to its physico-chemical properties, BaP will be deposited in the soil. Its aromaticity gives it the capacity to be studied by fluorescence spectroscopy so that of the Natural Organic Matter (NOM). In this study we used fluorescence excitation-emission-matrix (FEEM) with Parallel Factor analysis (PARAFAC) to study the interaction between NOM of soil and BaP. Soil sample was treated with Tetrasodium pyrophosphate along with Sodium hydroxide to obtain the Humic Substances, which afterwards were physically fractioned under acidic pH into solid Humic Acid and liquid Fulvic Acid. Three concentrations of BaP solution were added to each soil fraction. We compared the results of PARAFAC analysis of the samples containing BaP and the original NOM fractions. In the samples containing BaP, four fluorophores (components) were found, the fourth identified as BaP. Out of the three other fluorophores characteristic of NOM, two were found similar in all NOM fractions whereas only one fluorophore had some variations in its spectral characteristics. The presence of BaP changed the fluorescence of NOM. These modifications were depending on the type of soil fraction.
Performance of five Montreal West Island home composters.
Adhikari, Bijaya K; Trémier, Anne; Barrington, Suzelle
2012-01-01
Even if home composting can eliminate municipal organic waste collection, handling and treatment costs, its compost quality requires investigation outside the laboratory. A study was thus conducted to evaluate the influence of the following management practices on the compost quality produced by five backyards home composters in Montreal West Island from June to October 2010: the type and backyard location of the home composter (HC), and the rate and type of organic waste (OW) fed into the home composter. The parameters monitored were compost temperature and final characteristics including trace elements and pathogens. For all HC compost, maximum but not necessarily thermophilic temperatures were highly probable within one week of adding more than 10 kg of OW composed of equal volumes of food waste (FW) and yard trimmings (YT). Top and bottom HC perforations enhanced convective aeration but concentrated OW decomposition within the bottom layer. Fed an equal volume of FW and YT, the final HC compost had a dry and organic matter content exceeding 30%, and 50%, respectively, and a total nitrogen, phosphorous and potassium level of 2, 1 and 3% on a dry matter basis, representing a good quality soil amendment. Clean OW feeding resulted in compost respecting Canadian and European regulations for Escherichia coli and Salmonella, irrespective of the temperature regime. For trace elements, regulatory limits may be exceeded when the home composter is fed ashes and soil. Homeowners must also be careful when applying pesticides to their lawns and gardens and then feeding the residues to the home composter.
Calderón-Garcidueñas, Lilian; Franco-Lira, Maricela; Torres-Jardón, Ricardo; Henriquez-Roldán, Carlos; Barragán-Mejía, Gerardo; Valencia-Salazar, Gildardo; González-Maciel, Angelica; Reynoso-Robles, Rafael; Villarreal-Calderón, Rafael; Reed, William
2007-01-01
Exposures to particulate matter and gaseous air pollutants have been associated with respiratory tract inflammation, disruption of the nasal respiratory and olfactory barriers, systemic inflammation, production of mediators of inflammation capable of reaching the brain and systemic circulation of particulate matter. Mexico City (MC) residents are exposed to significant amounts of ozone, particulate matter and associated lipopolysaccharides. MC dogs exhibit brain inflammation and an acceleration of Alzheimer's-like pathology, suggesting that the brain is adversely affected by air pollutants. MC children, adolescents and adults have a significant upregulation of cyclooxygenase-2 (COX2) and interleukin-1beta (IL-1beta) in olfactory bulb and frontal cortex, as well as neuronal and astrocytic accumulation of the 42 amino acid form of beta -amyloid peptide (Abeta 42), including diffuse amyloid plaques in frontal cortex. The pathogenesis of Alzheimer's disease (AD) is characterized by brain inflammation and the accumulation of Abeta 42, which precede the appearance of neuritic plaques and neurofibrillary tangles, the pathological hallmarks of AD. Our findings of nasal barrier disruption, systemic inflammation, and the upregulation of COX2 and IL-1beta expression and Abeta 42 accumulation in brain suggests that sustained exposures to significant concentrations of air pollutants such as particulate matter could be a risk factor for AD and other neurodegenerative diseases.
Anjum, Muzammil; Al-Talhi, Hasan A; Mohamed, Saleh A; Kumar, Rajeev; Barakat, M A
2018-06-15
Biogas production using waste activated sludge (WAS) is one of the most demanding technologies for sludge treatment and generating energy in sustainable manner. The present study deals with the photocatalytic pretreatment of WAS using ZnO-ZnS@polyaniline (ZnO-ZnS@PANI) nanocomposite as means for increasing its degradability for improved biogas production by anaerobic digestion (AD). Photocatalysis accelerated the hydrolysis of WAS and increased the sCOD by 6.7 folds after 6 h and transform tCOD into bioavailable sCOD. After the AD of WAS, a removal of organic matter (60.6%) and tCOD (69.3%) was achieved in photocatalytic pretreated sludge. The biogas production was 1.6 folds higher in photocatalytic sludge with accumulative biogas up to 1645.1 ml L -1 vs after 45 days compared with the raw sludge (1022.4 ml L -1 VS ). Moreover, the photocatalysis decrease the onset of methanogenesis from 25 to 12 days while achieve the maximum conversion rate of reducing sugars into organic acids at that time. These results suggested that photocatalysis is an efficient pretreatment method and ZnO-ZnS@PANI can degrade sludge efficiently for enhance biogas production in anaerobic digestion process. Copyright © 2017 Elsevier Ltd. All rights reserved.
García-Sánchez, Mercedes; Šípková, Adéla; Száková, Jiřina; Kaplan, Lukáš; Ochecová, Pavla; Tlustoš, Pavel
2014-01-01
Both soil organic matter and sulfur (S) can reduce or even suppress mercury (Hg) mobility and bioavailability in soil. A batch incubation experiment was conducted with a Chernozem and a Luvisol artificially contaminated by 440 mg·kg−1 Hg showing wide differences in their physicochemical properties and available nutrients. The individual treatments were (i) digestate from the anaerobic fermentation of biowaste; (ii) fly ash from wood chip combustion; and (iii) ammonium sulfate, and every treatment was added with the same amount of S. The mobile Hg portion in Chernozem was highly reduced by adding digestate, even after 1 day of incubation, compared to control. Meanwhile, the outcome of these treatments was a decrease of mobile Hg forms as a function of incubation time whereas the contents of magnesium (Mg), potassium (K), iron (Fe), manganese (Mn), copper (Cu), zinc (Zn), and phosphorus (P) were stimulated by the addition of digestate in both soils. The available calcium (Ca) contents were not affected by the digestate addition. The experiment proved digestate application as the efficient measure for fast reduction of mobile Hg at extremely contaminated soils. Moreover, the decrease of the mobile mercury portion was followed by improvement of the nutrient status of the soils. PMID:25401138
USDA-ARS?s Scientific Manuscript database
Chemical properties of whole organic matter (OM) and its dissolved organic matter (DOM) fraction from six dominant macrophytes in Lake Dianchi were comparatively characterized, and their environmental implications were discussed. Significant differences in chemical composition of the OM samples were...
NASA Astrophysics Data System (ADS)
Jacques, Diederik; Gérard, Fréderic; Mayer, Uli; Simunek, Jirka; Leterme, Bertrand
2016-04-01
A large number of organic matter degradation, CO2 transport and dissolved organic matter models have been developed during the last decades. However, organic matter degradation models are in many cases strictly hard-coded in terms of organic pools, degradation kinetics and dependency on environmental variables. The scientific input of the model user is typically limited to the adjustment of input parameters. In addition, the coupling with geochemical soil processes including aqueous speciation, pH-dependent sorption and colloid-facilitated transport are not incorporated in many of these models, strongly limiting the scope of their application. Furthermore, the most comprehensive organic matter degradation models are combined with simplified representations of flow and transport processes in the soil system. We illustrate the capability of generic reactive transport codes to overcome these shortcomings. The formulations of reactive transport codes include a physics-based continuum representation of flow and transport processes, while biogeochemical reactions can be described as equilibrium processes constrained by thermodynamic principles and/or kinetic reaction networks. The flexibility of these type of codes allows for straight-forward extension of reaction networks, permits the inclusion of new model components (e.g.: organic matter pools, rate equations, parameter dependency on environmental conditions) and in such a way facilitates an application-tailored implementation of organic matter degradation models and related processes. A numerical benchmark involving two reactive transport codes (HPx and MIN3P) demonstrates how the process-based simulation of transient variably saturated water flow (Richards equation), solute transport (advection-dispersion equation), heat transfer and diffusion in the gas phase can be combined with a flexible implementation of a soil organic matter degradation model. The benchmark includes the production of leachable organic matter and inorganic carbon in the aqueous and gaseous phases, as well as different decomposition functions with first-order, linear dependence or nonlinear dependence on a biomass pool. In addition, we show how processes such as local bioturbation (bio-diffusion) can be included implicitly through a Fickian formulation of transport of soil organic matter. Coupling soil organic matter models with generic and flexible reactive transport codes offers a valuable tool to enhance insights into coupled physico-chemical processes at different scales within the scope of C-biogeochemical cycles, possibly linked with other chemical elements such as plant nutrients and pollutants.
Yagi, Michiyo; Hirano, Yoshiyuki; Nakazato, Michiko; Nemoto, Kiyotaka; Ishikawa, Kazuhiro; Sutoh, Chihiro; Miyata, Haruko; Matsumoto, Junko; Matsumoto, Koji; Masuda, Yoshitada; Obata, Takayuki; Iyo, Masaomi; Shimizu, Eiji; Nakagawa, Akiko
2017-06-01
To investigate the relationship between the severities of symptom dimensions in obsessive-compulsive disorder (OCD) and white matter alterations. We applied tract-based spatial statistics for diffusion tensor imaging (DTI) acquired by 3T magnetic resonance imaging. First, we compared fractional anisotropy (FA) between 20 OCD patients and 30 healthy controls (HC). Then, applying whole brain analysis, we searched the brain regions showing correlations between the severities of symptom dimensions assessed by Obsessive-Compulsive Inventory-Revised and FA in all participants. Finally, we calculated the correlations between the six symptom dimensions and multiple DTI measures [FA, axial diffusivity (AD), radial diffusivity (RD), mean diffusivity (MD)] in a region-of-interest (ROI) analysis and explored the differences between OCD patients and HC. There were no between-group differences in FA or brain region correlations between the severities of symptom dimensions and FA in any of the participants. ROI analysis revealed negative correlations between checking severity and left inferior frontal gyrus white matter and left middle temporal gyrus white matter and a positive correlation between ordering severity and right precuneus in FA in OCD compared with HC. We also found negative correlations between ordering severity and right precuneus in RD, between obsessing severities and right supramarginal gyrus in AD and MD, and between hoarding severity and right insular gyrus in AD. Our study supported the hypothesis that the severities of respective symptom dimensions are associated with different patterns of white matter alterations.
Nonlinear Propagation of Sound in Recently Settled Flocculated Sediments
NASA Astrophysics Data System (ADS)
Reed, A. H.; Sanders, W. M.
2016-12-01
Cohesive sediments undergo changes in a whirlwind. Dumped out of the river and into the estuary, they get bathed in salty water and subject to turbulent motion. During this sequence of events, the clay particles form clay aggregates of larger size with higher settling rates than the clay particles. Once the flocs have settled, cohesive sediments may form a sediment deposit of mud. Our interest is in the factors that control the development of soundspeed within these muds. This paper addresses organic matter influences on floc aggregation and settling rates. In laboratory studies, organic matter type differed in mixtures with either bentonite or kaolinite clays. The organic matter types used were guar gum, a net positive biopolymer, and xanthan gum, a net negative biopolymer derived from bacterial exudates, similar to those commonly found in estuaries. These biopolymers were dissolved into low salinity water (0-10 ppt). The biopolymer mixture was degassed and during the degassing process, either bentonite or kaolinite clay was added to the vessel. Surprisingly, different settling rates occurred in the clay-biopolymer mixtures. The settling rates of the clay-guar mixtures was more rapid (1-2 days) than the settling rate for the clay-xanthan mixtures. While clay-guar consolidated further, clay-xanthan maintained consistency for more than 2 weeks with density slowly increasing during that period. Compressional soundspeed (Vp) measurements were made with depth through the vessel using 0.5 mHz piezoelectric transducers. It was found that Vp in water was similar to that of the clay-xanthan. Vp was the same in the upper 6 cm of mud as it was in the overlying water and Vp decreased to become slower with increasing depth. Compressional wave velocity (Vp) also changed slightly with the guar complexes below the sediment water interface to the depth of the vessel. Vp was slightly slower in the mud than in the water column. Vp of the water was 1480-1495 m/s whereas Vp within the clay-biopolymer was below the minimum Vp in the water column. This slight decrease in Vp with depth is consistent for that of naturally occurring surficial mud deposits. This work suggests that organic matter type can play a critical role in the rate of consolidation within a mud deposit, which has implications for mud strength development and transport potential.
Managing soils for long-term productivity
Syers, J. K.
1997-01-01
Meeting the goal of long-term agricultural productivity requires that soil degradation be halted and reversed. Soil fertility decline is a key factor in soil degradation and is probably the major cause of declining crop yields. There is evidence that the contribution of declining soil fertility to soil degradation has been underestimated.
Sensitivity to soil degradation is implicit in the assessment of the sustainability of land management practices, with wide recognition of the fact that soils vary in their ability to resist change and recover subsequent to stress. The concept of resilience in relation to sustainability requires further elaboration and evaluation.
In the context of soil degradation, a decline in soil fertility is primarily interpreted as the depletion of organic matter and plant nutrients. Despite a higher turnover rate of organic matter in the tropics there is no intrinsic difference between the organic matter content of soils from tropical and temperate regions. The level of organic matter in a soil is closely related to the above and below ground inputs. In the absence of adequate organic material inputs and where cultivation is continuous, soil organic matter declines progressively. Maintaining the quantity and quality of soil organic matter should be a guiding principle in developing management practices.
Soil microbial biomass serves as an important reservoir of nitrogen (N), phosphorus (P) and sulphur (S), and regulates the cycling of organic matter and nutrients. Because of its high turnover rate, microbial biomass reacts quickly to changes in management and is a sensitive indicator for monitoring and predicting changes in soil organic matter. Modelling techniques have been reasonably successful in predicting changes in soil organic matter with different organic material inputs, but there is little information from the tropics.
Nutrient depletion through harvested crop components and residue removal, and by leaching and soil erosion accentuates the often very low inherent fertility of many soils in the tropics. An integrated approach involving inorganic and organic inputs is required where animal and plant residues are returned, as far as practicable. Chemical fertilizers alone cannot achieve long-term productivity on many soils and organic material inputs are required to maintain soil organic matter levels and crop productivity. A major research effort is required to develop improved strategies for halting and reversing soil degradation if long-term productivity is to be secured.
Self-organization of dissolved organic matter to micelle-like microparticles in river water.
Kerner, Martin; Hohenberg, Heinz; Ertl, Siegmund; Reckermann, Marcus; Spitzy, Alejandro
2003-03-13
In aquatic systems, the concept of the 'microbial loop' is invoked to describe the conversion of dissolved organic matter to particulate organic matter by bacteria. This process mediates the transfer of energy and matter from dissolved organic matter to higher trophic levels, and therefore controls (together with primary production) the productivity of aquatic systems. Here we report experiments on laboratory incubations of sterile filtered river water in which we find that up to 25% of the dissolved organic carbon (DOC) aggregates abiotically to particles of diameter 0.4-0.8 micrometres, at rates similar to bacterial growth. Diffusion drives aggregation of low- to high-molecular-mass DOC and further to larger micelle-like microparticles. The chemical composition of these microparticles suggests their potential use as food by planktonic bacterivores. This pathway is apparent from differences in the stable carbon isotope compositions of picoplankton and the microparticles. A large fraction of dissolved organic matter might therefore be channelled through microparticles directly to higher trophic levels--bypassing the microbial loop--suggesting that current concepts of carbon conversion in aquatic systems require revision.
NASA Astrophysics Data System (ADS)
Tang, Jianwu; Johannesson, Karen H.
2010-12-01
The ability of organic matter as well as carbonate ions to extract rare earth elements (REEs) from sandy sediments of a Coastal Plain aquifer was investigated for unpurified organic matter from different sources (i.e., Mississippi River natural organic matter, Aldrich humic acid, Nordic aquatic fulvic acid, Suwannee River fulvic acid, and Suwannee River natural organic matter) and for extraction solutions containing weak (i.e., CH 3COO -) or strong (i.e., CO32-) ligands. The experimental results indicate that, in the absence of strong REE complexing ligands in solution, the amount of REEs released from the sand is small and the fractionation pattern of the released REEs appears to be controlled by the surface stability constants for REE sorption with Fe(III) oxides/oxyhydroxides. In the presence of strong solution complexing ligands, however, the amount and the fractionation pattern of the released REEs reflect the strength and variation of the stability constants of the dominant aqueous REE species across the REE series. The varying amount of REEs extracted by the different organic matter employed in the experiments indicates that organic matter from different sources has different complexing capacity for REEs. However, the fractionation pattern of REEs extracted by the various organic matter used in our experiments is remarkable consistent, being independent of the source and the concentration of organic matter used, as well as solution pH. Because natural aquifer sand and unpurified organic matter were used in our experiments, our experimental conditions are more broadly similar to natural systems than many previous laboratory experiments of REE-humic complexation that employed purified humic substances. Our results suggest that the REE loading effect on REE-humic complexation is negligible in natural waters as more abundant metal cations (e.g., Fe, Al) out-compete REEs for strong binding sites on organic matter. More specifically, our results indicate that REE complexation with organic matter in natural waters is dominated by REE binding to weak sites on dissolved organic matter, which subsequently leads to a middle REE (MREE: Sm-Ho)-enriched fractionation pattern. The experiments also indicate that carbonate ions may effectively compete with fulvic acid in binding with dissolved REEs, but cannot out compete humic acids for REEs. Therefore, in natural waters where low molecular weight (LMW) dissolved organic carbon (DOC) is the predominant form of DOC (e.g., lower Mississippi River water), REEs occur as "truly" dissolved species by complexing with carbonate ions as well as FA, resulting in heavy REE (HREE: Er-Lu)-enriched shale-normalized fractionation patterns. Whereas, in natural terrestrial waters where REE speciation is dominated by organic complexes with high molecular weight DOC (e.g., "colloidal" HA), only MREE-enriched fractionation patterns will be observed because the more abundant, weak sites preferentially complex MREEs relative to HREEs and light REEs (LREEs: La-Nd).
Kipka, Undine; Di Toro, Dominic M
2011-09-01
Predicting the association of contaminants with both particulate and dissolved organic matter is critical in determining the fate and bioavailability of chemicals in environmental risk assessment. To date, the association of a contaminant to particulate organic matter is considered in many multimedia transport models, but the effect of dissolved organic matter is typically ignored due to a lack of either reliable models or experimental data. The partition coefficient to dissolved organic carbon (K(DOC)) may be used to estimate the fraction of a contaminant that is associated with dissolved organic matter. Models relating K(DOC) to the octanol-water partition coefficient (K(OW)) have not been successful for many types of dissolved organic carbon in the environment. Instead, linear solvation energy relationships are proposed to model the association of chemicals with dissolved organic matter. However, more chemically diverse K(DOC) data are needed to produce a more robust model. For humic acid dissolved organic carbon, the linear solvation energy relationship predicts log K(DOC) with a root mean square error of 0.43. Copyright © 2011 SETAC.
Jeanneau, Laurent; Faure, Pierre
2010-09-01
The quantitative multimolecular approach (QMA) based on an exhaustive identification and quantification of molecules from the extractable organic matter (EOM) has been recently developed in order to investigate organic contamination in sediments by a more complete method than the restrictive quantification of target contaminants. Such an approach allows (i) the comparison between natural and anthropogenic inputs, (ii) between modern and fossil organic matter and (iii) the differentiation between several anthropogenic sources. However QMA is based on the quantification of molecules recovered by organic solvent and then analyzed by gas chromatography-mass spectrometry, which represent a small fraction of sedimentary organic matter (SOM). In order to extend the conclusions of QMA to SOM, radiocarbon analyses have been performed on organic extracts and decarbonated sediments. This analysis allows (i) the differentiation between modern biomass (contemporary (14)C) and fossil organic matter ((14)C-free) and (ii) the calculation of the modern carbon percentage (PMC). At the confluence between Fensch and Moselle Rivers, a catchment highly contaminated by both industrial activities and urbanization, PMC values in decarbonated sediments are well correlated with the percentage of natural molecular markers determined by QMA. It highlights that, for this type of contamination by fossil organic matter inputs, the conclusions of QMA can be scaled up to SOM. QMA is an efficient environmental diagnostic tool that leads to a more realistic quantification of fossil organic matter in sediments. Copyright 2010 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Gordon, Peter R.; Sephton, Mark A.
2016-11-01
Returning samples from Mars will require an effective method to assess and select the highest-priority geological materials. The ideal instrument for sample triage would be simple in operation, limited in its demand for resources, and rich in produced diagnostic information. Pyrolysis-Fourier infrared spectroscopy (pyrolysis-FTIR) is a potentially attractive triage instrument that considers both the past habitability of the sample depositional environment and the presence of organic matter that may reflect actual habitation. An important consideration for triage protocols is the sensitivity of the instrumental method. Experimental data indicate pyrolysis-FTIR sensitivities for organic matter at the tens of parts per million level. The mineral matrix in which the organic matter is hosted also has an influence on organic detection. To provide an insight into matrix effects, we mixed well-characterized organic matter with a variety of dry minerals, to represent the various inorganic matrices of Mars samples, prior to analysis. During pyrolysis-FTIR, serpentinites analogous to those on Mars indicative of the Phyllocian Era led to no negative effects on organic matter detection; sulfates analogous to those of the Theiikian Era led, in some instances, to the combustion of organic matter; and palagonites, which may represent samples from the Siderikian Era, led, in some instances, to the chlorination of organic matter. Any negative consequences brought about by these mineral effects can be mitigated by the correct choice of thermal extraction temperature. Our results offer an improved understanding of how pyrolysis-FTIR can perform during sample triage on Mars.
Huang, J; Friedland, R P; Auchus, A P
2007-01-01
Diffusion tensor imaging (DTI) is a sensitive technique for studying cerebral white matter. We used DTI to characterize microstructural white matter changes and their associations with cognitive dysfunction in Alzheimer disease (AD) and mild cognitive impairment (MCI). We studied elderly subjects with mild AD (n = 6), MCI (n = 11), or normal cognition (n = 8). A standardized clinical and neuropsychological evaluation was conducted on each subject. DTI images were acquired, and fractional anisotropy (FA), axial diffusivity (DA), and radial diffusivity (DR) of normal-appearing white matter (NAWM) in frontal, temporal, parietal, and occipital lobes were determined. These diffusion measurements were compared across the 3 groups, and significant differences were further examined for correlations with tests of cognitive function. Compared with normal controls, AD subjects demonstrated decreased FA and increased DR in the temporal, parietal, and frontal NAWM and decreased DA in temporal NAWM. MCI subjects also showed decreased FA and decreased DA in temporal NAWM, with decreased FA and increased DR in parietal NAWM. Diffusion measurements showed no differences in occipital NAWM. Across all subjects, temporal lobe FA and DR correlated with episodic memory, frontal FA and DR correlated with executive function, and parietal DR significantly correlated with visuospatial ability. We found evidence for functionally relevant microstructural changes in the NAWM of patients with AD and MCI. These changes were present in brain regions serving higher cortical functions, but not in regions serving primary functions, and are consistent with a hypothesized loss of axonal processes in the temporal lobe.
Ogama, Noriko; Sakurai, Takashi; Shimizu, Atsuya; Toba, Kenji
2014-01-01
Preventive strategy for falls in demented elderly is a clinical challenge. From early-stage of Alzheimer's disease (AD), patients show impaired balance and gait. The purpose of this study is to determine whether regional white matter lesions (WMLs) can predict balance/gait disturbance and falls in elderly with amnestic mild cognitive impairment (aMCI) or AD. Cross-sectional. Hospital out-patient clinic. One hundred sixty-three patients diagnosed with aMCI or AD were classified into groups having experienced falls (n = 63) or not (n = 100) in the previous year. Cognition, depression, behavior and psychological symptoms of dementia, medication, and balance/gait function were evaluated. Regional WMLs were visually analyzed as periventricular hyperintensity in frontal caps, bands, and occipital caps, and as deep white matter hyperintensity in frontal, parietal, temporal, and occipital lobes, basal ganglia, thalamus, and brain stem. Brain atrophy was linearly measured. The fallers had a greater volume of WMLs and their posture/gait performance tended to be worse than nonfallers. Several WMLs in particular brain regions were closely associated with balance and gait impairment. Besides polypharmacy, periventricular hyperintensity in frontal caps and occipital WMLs were strong predictors for falls, even after potential risk factors for falls were considered. Regional white matter burden, independent of cognitive decline, correlates with balance/gait disturbance and predicts falls in elderly with aMCI and AD. Careful insight into regional WMLs on brain magnetic resonance may greatly help to diagnose demented elderly with a higher risk of falls. Copyright © 2014 American Medical Directors Association, Inc. Published by Elsevier Inc. All rights reserved.
Universal extra dimensions and the graviton portal to dark matter
NASA Astrophysics Data System (ADS)
Arun, Mathew Thomas; Choudhury, Debajyoti; Sachdeva, Divya
2017-10-01
The Universal Extra Dimension (UED) paradigm is particularly attractive as it not only includes a natural candidate for the Dark Matter particle , but also addresses several issues related to particle physics. Non-observations at the Large Hadron Collider, though, has brought the paradigm into severe tension. However, a particular 5-dimensional UED model emerges from a six dimensional space-time with nested warping. The AdS6 bulk protects both the Higgs mass as well as the UED scale without invoking unnatural parameter values. The graviton excitations in the sixth direction open up new (co-)annihilation channels for the Dark Matter particle, thereby allowing for phenomenological consistency, otherwise denied to the minimal UED scenario. The model leads to unique signatures in both satellite-based experiments as well as the LHC.
River-derived dissolved organic matter (DOM) influences metabolism, light attenuation, and bioavailability of metals and nutrients in coastal ecosystems. Recent work suggests that DOM concentrations in surface waters vary seasonally because different organic matter pools are mobi...
Should biochar be used in container substrates?
USDA-ARS?s Scientific Manuscript database
Biochar is charred organic matter that remains after a process called pyrolysis. Pyrolysis is a thermochemical decomposition of organic matter. In this process, organic matter is subjected to extremely high temperatures (200 to 800 °C) in the absence of oxygen. The history of biochar use begins i...
40 CFR 80.45 - Complex emissions model.
Code of Federal Regulations, 2013 CFR
2013-07-01
... section. POM = Polycyclic organic matter emissions in terms of milligrams per mile, as determined in... milligrams per mile, as determined in paragraph (e)(7) of this section. POM = Polycyclic organic matter... equations given in paragraphs (e)(7) (i) and (ii) of this section. (8) Polycyclic organic matter mass...
40 CFR 80.45 - Complex emissions model.
Code of Federal Regulations, 2012 CFR
2012-07-01
... section. POM = Polycyclic organic matter emissions in terms of milligrams per mile, as determined in... milligrams per mile, as determined in paragraph (e)(7) of this section. POM = Polycyclic organic matter... equations given in paragraphs (e)(7) (i) and (ii) of this section. (8) Polycyclic organic matter mass...
40 CFR 80.45 - Complex emissions model.
Code of Federal Regulations, 2014 CFR
2014-07-01
... section. POM = Polycyclic organic matter emissions in terms of milligrams per mile, as determined in... milligrams per mile, as determined in paragraph (e)(7) of this section. POM = Polycyclic organic matter... equations given in paragraphs (e)(7) (i) and (ii) of this section. (8) Polycyclic organic matter mass...
Molecular-Level Transformations of Lignin During Photo-Oxidation and Biodegradation
NASA Astrophysics Data System (ADS)
Feng, X.; Hills, K.; Simpson, A. J.; Simpson, M. J.
2009-05-01
As the second most abundant component of terrestrial plant residues, lignin plays a key role in regulating plant litter decomposition, humic substance formation, and dissolved organic matter (OM) production from terrestrial sources. Biodegradation is the primary decomposition process of lignin on land. However, photo- oxidation of lignin-derived compounds has been reported in aquatic systems and is considered to play a vital role in arid and semiarid regions. With increasing ultraviolet (UV) radiation due to ozone depletion, it is important to understand the biogeochemical fate of lignin exposed to photo-oxidation in terrestrial environments. This study examines and compares the transformation of lignin in a three-month laboratory simulation of biodegradation and photo-oxidation using molecular-level techniques. Lignin-derived monomers extracted by copper oxidation were analyzed by gas chromatography/mass spectrometry (GC/MS) from the water-soluble and insoluble OM of 13C-labeled corn leaves. Biodegradation increased the solubility of lignin monomers in comparison to the control samples, and the acid-to-aldehyde (Ad/Al) ratios increased in both the water-soluble and insoluble OM, indicating a higher degree of side-chain lignin oxidation. Photo-oxidation did not produce a significant change on the solubility or Ad/Al ratios of lignin from corn leaves. However, the ratios of trans-to-cis isomers of both cinnamyl units (p-coumaric acid and ferulic acid) increased with photo-oxidation and decreased with biodegradation in the insoluble OM. We also investigated the role of photo-oxidation in lignin transformation in soils cropped with 13C-labeled corn. Interestingly, the organic carbon content increased significantly with time in the water-soluble OM from soil/corn residues under UV radiation. An increase in the concentration of lignin monomers and dimers and the Ad/Al ratios was also observed with photo-oxidation. Iso-branched fatty acids of microbial origin remained in a similar concentration in the water-soluble OM from the UV-radiated and control soils, indicating little microbial contribution to the observed increase in water-soluble carbon. These observations suggest that photo-oxidation may increase the solubility of soil organic matter (SOM) through the oxidation of lignin-derived compounds. Mechanisms of lignin oxidation (demethylation or side-chain oxidation) and molecular size distribution changes of the water-soluble and NaOH-soluble OM during photo-oxidation and biodegradation will also be examined using solution-state nuclear magnetic resonance (NMR) spectroscopy. Collectively, our experiment demonstrates that while biodegradation predominates in the decomposition of lignin in plant litter, photo- oxidation may play an important part in destabilizing lignin-derived compounds in the soil.
Molecular-level transformations of lignin during photo-oxidation and biodegradation
NASA Astrophysics Data System (ADS)
Feng, X.; Hills, K.; Simpson, A. J.; Simpson, M. J.
2009-04-01
As the second most abundant component of terrestrial plant residues, lignin plays a key role in regulating plant litter decomposition, humic substance formation, and dissolved organic matter (OM) production from terrestrial sources. Biodegradation is the primary decomposition process of lignin on land. However, photo-oxidation of lignin-derived compounds has been reported in aquatic systems and is considered to play a vital role in arid and semiarid regions. With increasing ultraviolet (UV) radiation due to ozone depletion, it is important to understand the biogeochemical fate of lignin exposed to photo-oxidation in terrestrial environments. This study examines and compares the transformation of lignin in a three-month laboratory simulation of biodegradation and photo-oxidation using molecular-level techniques. Lignin-derived monomers extracted by copper oxidation were analyzed by gas chromatography/mass spectrometry (GC/MS) from the water-soluble and insoluble OM of 13C-labeled corn leaves. Biodegradation increased the solubility of lignin monomers in comparison to the control samples, and the acid-to-aldehyde (Ad/Al) ratios increased in both the water-soluble and insoluble OM, indicating a higher degree of side-chain lignin oxidation. Photo-oxidation did not produce a significant change on the solubility or Ad/Al ratios of lignin from corn leaves. However, the ratios of trans-to-cis isomers of both cinnamyl units (p-coumaric acid and ferulic acid) increased with photo-oxidation and decreased with biodegradation in the insoluble OM. We also investigated the role of photo-oxidation in lignin transformation in soils cropped with 13C-labeled corn. Interestingly, the organic carbon content increased significantly with time in the water-soluble OM from soil/corn residues under UV radiation. An increase in the concentration of lignin monomers and dimers and the Ad/Al ratios was also observed with photo-oxidation. Iso-branched fatty acids of microbial origin remained in a similar concentration in the water-soluble OM from the UV-radiated and control soils, indicating little microbial contribution to the observed increase in water-soluble carbon. These observations suggest that photo-oxidation may increase the solubility of soil organic matter (SOM) through the oxidation of lignin-derived compounds. Mechanisms of lignin oxidation (demethylation or side-chain oxidation) and molecular size distribution changes of the water-soluble and NaOH-soluble OM during photo-oxidation and biodegradation will also be examined using solution-state nuclear magnetic resonance (NMR) spectroscopy. Collectively, our experiment demonstrates that while biodegradation predominates in the decomposition of lignin in plant litter, photo-oxidation may play an important part in destabilizing lignin-derived compounds in the soil.
Turnover of intra- and extra-aggregate organic matter at the silt-size scale
I. Virto; C. Moni; C. Swanston; C. Chenu
2010-01-01
Temperate silty soils are especially sensitive to organic matter losses associated to some agricultural management systems. Long-term preservation of organic C in these soils has been demonstrated to occur mainly in the silt- and clay-size fractions, although our knowledge about the mechanisms through which it happens remains unclear. Although organic matter in such...
Wang, Guo-Cang; Sun, Min-Zhuo; Gao, Shu-Fang; Tang, Li
2018-04-26
This organic-rich shale was analyzed to determine the type, origin, maturity and depositional environment of the organic matter and to evaluate the hydrocarbon generation potential of the shale. This study is based on geochemical (total carbon content, Rock-Eval pyrolysis and the molecular composition of hydrocarbons) and whole-rock petrographic (maceral composition) analyses. The petrographic analyses show that the shale penetrated by the Chaiye 2 well contains large amounts of vitrinite and sapropelinite and that the organic matter within these rocks is type III and highly mature. The geochemical analyses show that these rocks are characterized by high total organic carbon contents and that the organic matter is derived from a mix of terrestrial and marine sources and highly mature. These geochemical characteristics are consistent with the results of the petrographic analyses. The large amounts of organic matter in the Carboniferous shale succession penetrated by the Chaiye 2 well may be due to good preservation under hypersaline lacustrine and anoxic marine conditions. Consequently, the studied shale possesses very good hydrocarbon generation potential because of the presence of large amounts of highly mature type III organic matter.
Gordon, Peter R; Sephton, Mark A
2016-11-01
Returning samples from Mars will require an effective method to assess and select the highest-priority geological materials. The ideal instrument for sample triage would be simple in operation, limited in its demand for resources, and rich in produced diagnostic information. Pyrolysis-Fourier infrared spectroscopy (pyrolysis-FTIR) is a potentially attractive triage instrument that considers both the past habitability of the sample depositional environment and the presence of organic matter that may reflect actual habitation. An important consideration for triage protocols is the sensitivity of the instrumental method. Experimental data indicate pyrolysis-FTIR sensitivities for organic matter at the tens of parts per million level. The mineral matrix in which the organic matter is hosted also has an influence on organic detection. To provide an insight into matrix effects, we mixed well-characterized organic matter with a variety of dry minerals, to represent the various inorganic matrices of Mars samples, prior to analysis. During pyrolysis-FTIR, serpentinites analogous to those on Mars indicative of the Phyllocian Era led to no negative effects on organic matter detection; sulfates analogous to those of the Theiikian Era led, in some instances, to the combustion of organic matter; and palagonites, which may represent samples from the Siderikian Era, led, in some instances, to the chlorination of organic matter. Any negative consequences brought about by these mineral effects can be mitigated by the correct choice of thermal extraction temperature. Our results offer an improved understanding of how pyrolysis-FTIR can perform during sample triage on Mars. Key Words: Mars-Life-detection instruments-Search for Mars' organics-Biosignatures. Astrobiology 16, 831-845.
Comparison of Radiocarbon Ages of Sediments, Plants, and Shells From Coastal Lakes in North Florida
NASA Astrophysics Data System (ADS)
Wang, Y.; Das, O.; Liu, J.; Xu, X.; Roy, R.; Donoghue, J. F.; Means, G. H.
2017-12-01
Coastal lakes sediments are valuable archives of paleo-hurricanes and environmental changes during the late Quaternary provided that they can be accurately dated. Here, we report new radiocarbon (14C) dates derived from various organic and inorganic substrates, including bulk sediment organic matter, plants, shells, particulate organic matter (POM) and dissolved organic matter (DOM), from three coastal lakes in Florida, and compare these ages to evaluate the "reservoir effect" on 14C dating of both organic and inorganic carbon in these lakes. Bulk sediment organic matter yielded consistently older 14C ages than contemporaneous plants and shell fragments, indicating significant radiocarbon deficiencies in sedimentary organic matter in these coastal lakes, caused by influx of old organic carbon from terrestrial sources (such as soils and ancient peat deposits) in the watershed. Several reversals are observed in the 14C ages of bulk sediment organic matter in sediment cores from these lakes, indicating that input of aged organic matter from terrestrial sources into these lakes can vary considerably over time. DOM and POM samples collected at different times also yielded variable 14C signatures, further confirming the temporal variability in the contribution of old organic carbon from terrestrial sources to the lakes. The 14C age discrepancy between bulk sediment organic matter and co-occurring plant fragments or shells varies from less than one hundred years to nearly three thousand years in sediment cores examined in this study. The results show that 14C ages obtained from bulk sediment organic matter in these coastal lakes are unreliable. Analyses of both modern and fossil shells from one of the lakes suggest that the 14C reservoir effect on inorganic carbon in the lake is small and thus freshwater shells (if preserved in the sediment cores) may serve as a good substrate for 14C dating in the absence of plant fragments. However, unidentifiable shell fragments, especially those associated with sand pockets (or sand layers), in coastal lake sediment cores are not suitable for 14C dating as they are likely of marine origin and affected by significant marine 14C reservoir effect.
3D Maps from Multiple MRI Illustrate Changing Atrophy Patterns as Subjects Progress from MCI to AD
Whitwell, Jennifer L; Przybelski, Scott; Weigand, Stephen D; Knopman, David S; Boeve, Bradley F; Petersen, Ronald C; Jack, Clifford R
2009-01-01
Summary Mild cognitive impairment (MCI), particularly the amnestic subtype (aMCI), is considered as a transitional stage between normal aging and a diagnosis of clinically probable Alzheimer's disease (AD). The aMCI construct is particularly useful as it provides an opportunity to assess a clinical stage which in most subjects represents prodromal AD. The aim of this study was to assess the progression of cerebral atrophy over multiple serial MRI during the period from aMCI to conversion to AD. Thirty-three subjects were selected that fulfilled clinical criteria for aMCI and had three serial MRI scans: the first scan approximately three years before conversion to AD, the second scan approximately one year before conversion, and the third scan at the time of conversion from aMCI to AD. A group of 33 healthy controls were age and gender-matched to the study cohort. Voxel-based morphometry (VBM) was used to assess patterns of grey matter atrophy in the aMCI subjects at each time-point compared to the control group. Customized templates and prior probability maps were used to avoid normalization and segmentation bias. The pattern of grey matter loss in the aMCI subject scans that were three years before conversion was focused primarily on the medial temporal lobes, including the amygdala, anterior hippocampus and entorhinal cortex, with some additional involvement of the fusiform gyrus, compared to controls. The extent and magnitude of the cerebral atrophy further progressed by the time the subjects were one year before conversion. At this point atrophy in the temporal lobes spread to include the middle temporal gyrus, and extended into more posterior regions of the temporal lobe to include the entire extent of the hippocampus. The parietal lobe also started to become involved. By the time the subjects had converted to a clinical diagnosis of AD the pattern of grey matter atrophy had become still more widespread with more severe involvement of the medial temporal lobes and the temporoparietal association cortices and, for the first time, substantial involvement of the frontal lobes. This pattern of progression fits well with the Braak and Braak neurofibrillary pathological staging scheme in AD. It suggests that the earliest changes occur in the anterior medial temporal lobe and fusiform gyrus, and that these changes occur at least three years before conversion to AD. These results also suggest that 3-dimensional patterns of grey matter atrophy may help to predict the time to conversion in subjects with aMCI. PMID:17533169
Precambrian organic geochemistry - Preservation of the record
NASA Technical Reports Server (NTRS)
Hayes, J. M.; Wedeking, K. W.; Kaplan, I. R.
1983-01-01
A review of earlier studies is presented, and new results in Precambrian organic geochemistry are discussed. It is pointed out that two lines of evidence can be developed. One is based on structural organic chemistry, while the other is based on isotopic analyses. In the present investigation, the results of both structural and isotopic investigations of Precambrian organic matter are discussed. Processes and products related to organic geochemistry are examined, taking into account the carbon cycle, an approximate view of the principal pathways of carbon cycling associated with organic matter in the present global ecosystem, processes affecting sedimentary organic matter, and distribution and types of organic matter. Attention is given to chemical fossils in Precambrian sediments, kerogen analyses, the determination of the structural characteristics of kerogen, and data concerning the preservation of the Precambrian organic geochemical record.