Hypermedicalization in White Noise.
Benson, Josef
2015-09-01
The Nazis hijacked Germany's medical establishment and appropriated medical language to hegemonize their ideology. In White Noise, shifting medical information stifles the public into docility. In Nazi Germany the primacy of language and medical authority magnified the importance of academic doctors. The muddling of identities caused complex insecurities and the need for psychological doubles. In White Noise, Professor Gladney is driven by professional insecurities to enact a double in Murray. Through the manipulation of language and medical overreach the U.S., exemplified in the novel White Noise, has become a hypermedicalized society where the spirit of the Hippocratic Oath has eroded. PMID:24458659
1/f Noise Outperforms White Noise in Sensitizing Baroreflex Function in the Human Brain
NASA Astrophysics Data System (ADS)
Soma, Rika; Nozaki, Daichi; Kwak, Shin; Yamamoto, Yoshiharu
2003-08-01
We show that externally added 1/f noise more effectively sensitizes the baroreflex centers in the human brain than white noise. We examined the compensatory heart rate response to a weak periodic signal introduced via venous blood pressure receptors while adding 1/f or white noise with the same variance to the brain stem through bilateral cutaneous stimulation of the vestibular afferents. In both cases, this noisy galvanic vestibular stimulation optimized covariance between the weak input signals and the heart rate responses. However, the optimal level with 1/f noise was significantly lower than with white noise, suggesting a functional benefit of 1/f noise for neuronal information transfer in the brain.
Facilitation of Retention by White Noise
ERIC Educational Resources Information Center
Baumeister, Alfred A.; Kistler, Doris
1975-01-01
This study attempted to determine if white noise (an arousing stimulus), when presented at the time of recall, facilitates performance of second and fifth grade students, and if this effect generalizes across different kinds of learning tasks. Findings indicate that white noise produces improvements in performance in both age groups. (GO)
High level white noise generator
Borkowski, Casimer J.; Blalock, Theron V.
1979-01-01
A wide band, stable, random noise source with a high and well-defined output power spectral density is provided which may be used for accurate calibration of Johnson Noise Power Thermometers (JNPT) and other applications requiring a stable, wide band, well-defined noise power spectral density. The noise source is based on the fact that the open-circuit thermal noise voltage of a feedback resistor, connecting the output to the input of a special inverting amplifier, is available at the amplifier output from an equivalent low output impedance caused by the feedback mechanism. The noise power spectral density level at the noise source output is equivalent to the density of the open-circuit thermal noise or a 100 ohm resistor at a temperature of approximately 64,000 Kelvins. The noise source has an output power spectral density that is flat to within 0.1% (0.0043 db) in the frequency range of from 1 KHz to 100 KHz which brackets typical passbands of the signal-processing channels of JNPT's. Two embodiments, one of higher accuracy that is suitable for use as a standards instrument and another that is particularly adapted for ambient temperature operation, are illustrated in this application.
Titration of chaos with added noise
Poon, Chi-Sang; Barahona, Mauricio
2001-01-01
Deterministic chaos has been implicated in numerous natural and man-made complex phenomena ranging from quantum to astronomical scales and in disciplines as diverse as meteorology, physiology, ecology, and economics. However, the lack of a definitive test of chaos vs. random noise in experimental time series has led to considerable controversy in many fields. Here we propose a numerical titration procedure as a simple “litmus test” for highly sensitive, specific, and robust detection of chaos in short noisy data without the need for intensive surrogate data testing. We show that the controlled addition of white or colored noise to a signal with a preexisting noise floor results in a titration index that: (i) faithfully tracks the onset of deterministic chaos in all standard bifurcation routes to chaos; and (ii) gives a relative measure of chaos intensity. Such reliable detection and quantification of chaos under severe conditions of relatively low signal-to-noise ratio is of great interest, as it may open potential practical ways of identifying, forecasting, and controlling complex behaviors in a wide variety of physical, biomedical, and socioeconomic systems. PMID:11416195
Rausch, Vanessa H; Bauch, Eva M; Bunzeck, Nico
2014-07-01
In neural systems, information processing can be facilitated by adding an optimal level of white noise. Although this phenomenon, the so-called stochastic resonance, has traditionally been linked with perception, recent evidence indicates that white noise may also exert positive effects on cognitive functions, such as learning and memory. The underlying neural mechanisms, however, remain unclear. Here, on the basis of recent theories, we tested the hypothesis that auditory white noise, when presented during the encoding of scene images, enhances subsequent recognition memory performance and modulates activity within the dopaminergic midbrain (i.e., substantia nigra/ventral tegmental area, SN/VTA). Indeed, in a behavioral experiment, we can show in healthy humans that auditory white noise-but not control sounds, such as a sinus tone-slightly improves recognition memory. In an fMRI experiment, white noise selectively enhances stimulus-driven phasic activity in the SN/VTA and auditory cortex. Moreover, it induces stronger connectivity between SN/VTA and right STS, which, in addition, exhibited a positive correlation with subsequent memory improvement by white noise. Our results suggest that the beneficial effects of auditory white noise on learning depend on dopaminergic neuromodulation and enhanced connectivity between midbrain regions and the STS-a key player in attention modulation. Moreover, they indicate that white noise could be particularly useful to facilitate learning in conditions where changes of the mesolimbic system are causally related to memory deficits including healthy and pathological aging. PMID:24345178
Memory texture as a mechanism of improvement in preference by adding noise
NASA Astrophysics Data System (ADS)
Zhao, Yinzhu; Aoki, Naokazu; Kobayashi, Hiroyuki
2014-02-01
According to color research, people have memory colors for familiar objects, which correlate with high color preference. As a similar concept to this, we propose memory texture as a mechanism of texture preference by adding image noise (1/f noise or white noise) to photographs of seven familiar objects. Our results showed that (1) memory texture differed from real-life texture; (2) no consistency was found between memory texture and real-life texture; (3) correlation existed between memory texture and preferred texture; and (4) the type of image noise which is more appropriate to texture reproduction differed by object.
A novel noise-adding radiometer
NASA Astrophysics Data System (ADS)
Wright, Alan E.; Nelson, G. J.; Stewart, R. T.; Slee, O. B.; Murray, J. D.
Very sensitive low-noise amplifiers designed to receive transmissions from spacecraft are not necessarily suitable receivers for radio astronomy. In the former case a good signal-to-noise ratio is required so that high data rates can be achieved. In the latter the ratio of signal to noise power may be as low as 10-4 and the stability of receiver gain and that of all sources of noise during long integration times become of equal importance. This paper describes a novel solution to the problem, which allowed important astronomy to be performed while the ruby maser receivers belonging to the European Space Agency were installed on the Parkes radio telescope for an extended period of time.
Differential effects of white noise in cognitive and perceptual tasks
Herweg, Nora A.; Bunzeck, Nico
2015-01-01
Beneficial effects of noise on higher cognition have recently attracted attention. Hypothesizing an involvement of the mesolimbic dopamine system and its functional interactions with cortical areas, the current study aimed to demonstrate a facilitation of dopamine-dependent attentional and mnemonic functions by externally applying white noise in five behavioral experiments including a total sample of 167 healthy human subjects. During working memory, acoustic white noise impaired accuracy when presented during the maintenance period (Experiments 1–3). In a reward based long-term memory task, white noise accelerated perceptual judgments for scene images during encoding but left subsequent recognition memory unaffected (Experiment 4). In a modified Posner task (Experiment 5), the benefit due to white noise in attentional orienting correlated weakly with reward dependence, a personality trait that has been associated with the dopaminergic system. These results suggest that white noise has no general effect on cognitive functions. Instead, they indicate differential effects on perception and cognition depending on a variety of factors such as task demands and timing of white noise presentation. PMID:26579024
On Spectral Approach to Pascal White Noise Functionals
NASA Astrophysics Data System (ADS)
Barhoumi, Abdessatar; Ouerdiane, Habib; Riahi, Anis
2011-01-01
We introduce a one-mode type interacting Fock space {F}NB ( {H}) naturally associated to the negative binomial distribution μr,α. The Fourier transform in generalized joint eigenvectors of a family {Jϕ ; ϕ ∈ ɛ} of Pascal Jacobi fields provides a way to explicit a unitary isomorphism {U}{r,α } between {F}NB ( {H}) and the so-called Pascal white noise space L2(ɛ', Λr,α). Then, we derive a chaotic decomposition property of the quadratic integrable functionals of the Pascal white noise process in terms of an appropriate wick tensor product.
Multisensor optimal information fusion input white noise deconvolution estimators.
Sun, Shuli
2004-08-01
The unified multisensor optimal information fusion criterion weighted by matrices is rederived in the linear minimum variance sense, where the assumption of normal distribution is avoided. Based on this fusion criterion, the optimal information fusion input white noise deconvolution estimators are presented for discrete time-varying linear stochastic control system with multiple sensors and correlated noises, which can be applied to seismic data processing in oil exploration. A three-layer fusion structure with fault tolerant property and reliability is given. The first fusion layer and the second fusion layer both have netted parallel structures to determine the first-step prediction error cross-covariance for the state and the estimation error cross-covariance for the input white noise between any two sensors at each time step, respectively. The third fusion layer is the fusion center to determine the optimal matrix weights and obtain the optimal fusion input white noise estimators. The simulation results for Bernoulli-Gaussian input white noise deconvolution estimators show the effectiveness. PMID:15462453
Dynamical symmetries of Markov processes with multiplicative white noise
NASA Astrophysics Data System (ADS)
Aron, Camille; Barci, Daniel G.; Cugliandolo, Leticia F.; González Arenas, Zochil; Lozano, Gustavo S.
2016-05-01
We analyse various properties of stochastic Markov processes with multiplicative white noise. We take a single-variable problem as a simple example, and we later extend the analysis to the Landau–Lifshitz–Gilbert equation for the stochastic dynamics of a magnetic moment. In particular, we focus on the non-equilibrium transfer of angular momentum to the magnetization from a spin-polarised current of electrons, a technique which is widely used in the context of spintronics to manipulate magnetic moments. We unveil two hidden dynamical symmetries of the generating functionals of these Markovian multiplicative white-noise processes. One symmetry only holds in equilibrium and we use it to prove generic relations such as the fluctuation-dissipation theorems. Out of equilibrium, we take profit of the symmetry-breaking terms to prove fluctuation theorems. The other symmetry yields strong dynamical relations between correlation and response functions which can notably simplify the numerical analysis of these problems. Our construction allows us to clarify some misconceptions on multiplicative white-noise stochastic processes that can be found in the literature. In particular, we show that a first-order differential equation with multiplicative white noise can be transformed into an additive-noise equation, but that the latter keeps a non-trivial memory of the discretisation prescription used to define the former.
Improving re-sampling detection by adding noise
NASA Astrophysics Data System (ADS)
Nataraj, Lakshmanan; Sarkar, Anindya; Manjunath, B. S.
2010-01-01
Current image re-sampling detectors can reliably detect re-sampling in JPEG images only up to a Quality Factor (QF) of 95 or higher. At lower QFs, periodic JPEG blocking artifacts interfere with periodic patterns of re-sampling. We add a controlled amount of noise to the image before the re-sampling detection step. Adding noise suppresses the JPEG artifacts while the periodic patterns due to re-sampling are partially retained. JPEG images of QF range 75-90 are considered. Gaussian/Uniform noise in the range of 28-24 dB is added to the image and the images thus formed are passed to the re-sampling detector. The detector outputs are averaged to get a final output from which re-sampling can be detected even at lower QFs. We consider two re-sampling detectors - one proposed by Poposcu and Farid [1], which works well on uncompressed and mildly compressed JPEG images and the other by Gallagher [2], which is robust on JPEG images but can detect only scaled images. For multiple re-sampling operations (rotation, scaling, etc) we show that the order of re-sampling matters. If the final operation is up-scaling, it can still be detected even at very low QFs.
Red spectra from white and blue noise
Balmforth, N. J.; Provenzale, A.; Spiegel, E. A.; Martens, M.; Tresser, C.; Wu, C. W.
1999-01-01
The value of maps of the interval in modelling population dynamics has recently been called into question because temporal variations from such maps have blue or white power spectra, whereas many observations of real populations show time-series with red spectra. One way to deal with this discrepancy is to introduce chaotic or stochastic fluctuations in the parameters of the map. This leads to on–off intermittency and can markedly redden the spectrum produced by a model that does not by itself have a red spectrum. The parameter fluctuations need not themselves have a red spectrum in order to achieve this effect. Because the power spectrum is not invariant under a change of variable, another way to redden the spectrum is by a suitable transformation of the variables used. The question this poses is whether spectra are the best means of characterizing a fluctuating variable.
The Feynman integrand as a white noise distribution beyond perturbation theory
Grothaus, Martin; Vogel, Anna
2008-06-18
In this note the concepts of path integrals and techniques how to construct them are presented. Here we concentrate on a White Noise approach. Combining White Noise techniques with a generalized time-dependent Doss' formula Feynman integrands are constructed as white noise distributions beyond perturbation theory.
The White Noise Generator programed on the Raspberry Pi
NASA Astrophysics Data System (ADS)
McGill, Ken; Ham, Katie; Schock, Kris; Dowling, Patrick; Kuzell, Chaz
2014-03-01
A Raspberry Pi computer, running a Linux based operating system, was programmed for use as a white noise generator. The program was written to output sine waves at a specific frequency with a randomly generated phase. This function generator was programmed specifically for an ongoing undergraduate research project. This research project involves the calculation of the speed of flow through a cylindrical pipe with 128 transducers equally spaced by 0.4 inches down the length of the pipe. The inputted white noise generated serves as an effective technique to induce multiple sine waves of a given frequency to the pipe, as the sine waves are generated at a random phase. Our research group would like to thank Dr. Ken McGill for all of his help, guidance, and time with this research project. We would also like to thank Georgia College and State University for providing the materials used in this experiment.
Gaussian white noise analysis and its application to Feynman path integral
NASA Astrophysics Data System (ADS)
Suryawan, Herry Pribawanto
2016-02-01
In applied science, Gaussian white noise (the time derivative of Brownian motion) is often chosen as a mathematical idealization of phenomena involving sudden and extremely large fluctuations. It is also possible to define and study Gaussian white noise in a mathematically rigorous framework. In this survey paper we review the Gaussian white noise as an object in an infinite dimensional topological vector space. A brief construction of Gaussian white noise space and Gaussian white noise distributions will be presented. Gaussian white noise analysis provides a framework which offers various generalization of concept known from finite dimensional analysis to the infinite dimensional case, among them are differential operators, Fourier transform, and distribution theory. We will also present some recent developments and results on the application of Gaussian white noise theory to Feynman's path integral approach for quantum mechanics.
Ghosh, Pradipta; Shit, Anindita; Chattopadhyay, Sudip; Chaudhuri, Jyotipratim Ray
2011-03-01
This work explores the observation that, even in the absence of a net externally applied bias, a symmetric homogeneous system coupled linearly to two heat baths is capable of producing unidirectional motion simply by nonlinearly driving one of the heat baths by an external Gaussian white noise. This is quite contrary to the traditional observation that, in order to obtain a net drift current, a state-dependent dissipation, which is a consequence of nonlinear system-bath coupling, is ubiquitous. PMID:21456831
Ghosh, Pradipta; Shit, Anindita; Chattopadhyay, Sudip; Chaudhuri, Jyotipratim Ray
2011-03-15
This work explores the observation that, even in the absence of a net externally applied bias, a symmetric homogeneous system coupled linearly to two heat baths is capable of producing unidirectional motion simply by nonlinearly driving one of the heat baths by an external Gaussian white noise. This is quite contrary to the traditional observation that, in order to obtain a net drift current, a state-dependent dissipation, which is a consequence of nonlinear system-bath coupling, is ubiquitous.
Tropospheric Biennial Oscillation (TBO) indistinguishable from white noise
NASA Astrophysics Data System (ADS)
Stuecker, Malte F.; Timmermann, Axel; Yoon, Jinhee; Jin, Fei-Fei
2015-09-01
Previous studies proposed that the year-to-year variability of seasonal monsoon indices is partly determined by a Tropospheric Biennial Oscillation (TBO). Invoking coupled ocean-atmosphere-land processes and the presence of an annual memory, the TBO mechanism describes how a relatively strong monsoon is followed by a year with weaker monsoon and vice versa. Here we revisit the issue of preferred biennial timescales in tropical monsoon systems, by testing the biennial tendencies in observed and simulated monsoon indices against the white noise null hypothesis. According to an analytical expression for the null hypothesis, we expect the probability for this biennial tendency to be 2/3, which is in close agreement with observations, reanalysis products, and Atmospheric Model Intercomparison Project/Coupled Model Intercomparison Project general circulation model simulations. Thus, it is concluded that biennial tendencies in these monsoon indices and the associated TBO are fully consistent with a white noise process and do not require the presence of a preferred biennial timescale.
Effects of white noise on off-task behavior and academic responding for children with ADHD.
Cook, Andrew; Bradley-Johnson, Sharon; Johnson, C Merle
2014-01-01
We evaluated the effects of white noise played through headphones on off-task behavior, percentage of items completed, and percentage of items completed correctly for 3 students with attention deficit hyperactivity disorder (ADHD). Headphones plus white noise were associated with decreases in off-task behavior relative to baseline and headphones-only (no white noise) control conditions. Little change in academic responding occurred across conditions for all participants. PMID:24114567
Effects of White Noise on Off-Task Behavior and Academic Responding for Children with ADHD
ERIC Educational Resources Information Center
Cook, Andrew; Bradley-Johnson, Sharon; Johnson, C. Merle
2014-01-01
We evaluated the effects of white noise played through headphones on off-task behavior, percentage of items completed, and percentage of items completed correctly for 3 students with attention deficit hyperactivity disorder (ADHD). Headphones plus white noise were associated with decreases in off-task behavior relative to baseline and…
On low-frequency errors of uniformly modulated filtered white-noise models for ground motions
Safak, Erdal; Boore, David M.
1988-01-01
Low-frequency errors of a commonly used non-stationary stochastic model (uniformly modulated filtered white-noise model) for earthquake ground motions are investigated. It is shown both analytically and by numerical simulation that uniformly modulated filter white-noise-type models systematically overestimate the spectral response for periods longer than the effective duration of the earthquake, because of the built-in low-frequency errors in the model. The errors, which are significant for low-magnitude short-duration earthquakes, can be eliminated by using the filtered shot-noise-type models (i. e. white noise, modulated by the envelope first, and then filtered).
High frequency direct drive generation using white noise sources
NASA Astrophysics Data System (ADS)
Frazier, S.; Sebacher, K.; Lawry, D.; Prather, W.; Hoffer, G.
1994-12-01
Damped sinusoid direct drive injection on interconnecting cable bundles between subsystems has long been used as a technique for determining susceptibility to electromagnetic transients in military weapon systems. Questions arise, however, about the adequacy of this method of individually injected, single sinusoids in assuring subsystem strength against broad band threats. This issue has recently been raised in the latest revision of MIL-STD-461 that requires subsystems exhibit no malfunctions when subjected to a repetitive square wave pulse with fast rise and fall time (CS115). An extension to this approach would be to test subsystems using arbitrary waveforms. In recent years arbitrary waveform generators (AWG's) have been used to duplicate, with a high degree of fidelity, the waveforms measured on cable bundles in a system illuminated by fields in a system-level EMP simulator. However, the operating speeds of present AWG's do not allow the extension of this approach to meet new threats such as MIL-STD-2169A. A novel alternative approach for generation of the required signals, being developed in a cooperative effort between the Naval Air Warfare Center and Phillips Laboratory, is the use of white noise signals conditioned in such a manner to produce the desired direct drive waveforms.
Permutation entropy of finite-length white-noise time series
NASA Astrophysics Data System (ADS)
Little, Douglas J.; Kane, Deb M.
2016-08-01
Permutation entropy (PE) is commonly used to discriminate complex structure from white noise in a time series. While the PE of white noise is well understood in the long time-series limit, analysis in the general case is currently lacking. Here the expectation value and variance of white-noise PE are derived as functions of the number of ordinal pattern trials, N , and the embedding dimension, D . It is demonstrated that the probability distribution of the white-noise PE converges to a χ2 distribution with D !-1 degrees of freedom as N becomes large. It is further demonstrated that the PE variance for an arbitrary time series can be estimated as the variance of a related metric, the Kullback-Leibler entropy (KLE), allowing the qualitative N ≫D ! condition to be recast as a quantitative estimate of the N required to achieve a desired PE calculation precision. Application of this theory to statistical inference is demonstrated in the case of an experimentally obtained noise series, where the probability of obtaining the observed PE value was calculated assuming a white-noise time series. Standard statistical inference can be used to draw conclusions whether the white-noise null hypothesis can be accepted or rejected. This methodology can be applied to other null hypotheses, such as discriminating whether two time series are generated from different complex system states.
NASA Astrophysics Data System (ADS)
Guo, Yongfeng; Shen, Yajun; Tan, Jianguo
2016-09-01
The phenomenon of stochastic resonance (SR) in a piecewise nonlinear model driven by a periodic signal and correlated noises for the cases of a multiplicative non-Gaussian noise and an additive Gaussian white noise is investigated. Applying the path integral approach, the unified colored noise approximation and the two-state model theory, the analytical expression of the signal-to-noise ratio (SNR) is derived. It is found that conventional stochastic resonance exists in this system. From numerical computations we obtain that: (i) As a function of the non-Gaussian noise intensity, the SNR is increased when the non-Gaussian noise deviation parameter q is increased. (ii) As a function of the Gaussian noise intensity, the SNR is decreased when q is increased. This demonstrates that the effect of the non-Gaussian noise on SNR is different from that of the Gaussian noise in this system. Moreover, we further discuss the effect of the correlation time of the non-Gaussian noise, cross-correlation strength, the amplitude and frequency of the periodic signal on SR.
How much image noise can be added in cardiac x-ray imaging without loss in perceived image quality?
NASA Astrophysics Data System (ADS)
Gislason-Lee, Amber J.; Kumcu, Asli; Kengyelics, Stephen M.; Brettle, David S.; Treadgold, Laura A.; Sivananthan, Mohan; Davies, Andrew G.
2015-09-01
Cardiologists use x-ray image sequences of the moving heart acquired in real-time to diagnose and treat cardiac patients. The amount of radiation used is proportional to image quality; however, exposure to radiation is damaging to patients and personnel. The amount by which radiation dose can be reduced without compromising patient care was determined. For five patient image sequences, increments of computer-generated quantum noise (white + colored) were added to the images, frame by frame using pixel-to-pixel addition, to simulate corresponding increments of dose reduction. The noise adding software was calibrated for settings used in cardiac procedures, and validated using standard objective and subjective image quality measurements. The degraded images were viewed next to corresponding original (not degraded) images in a two-alternative-forced-choice staircase psychophysics experiment. Seven cardiologists and five radiographers selected their preferred image based on visualization of the coronary arteries. The point of subjective equality, i.e., level of degradation where the observer could not perceive a difference between the original and degraded images, was calculated; for all patients the median was 33%±15% dose reduction. This demonstrates that a 33%±15% increase in image noise is feasible without being perceived, indicating potential for 33%±15% dose reduction without compromising patient care.
Improvement of intelligibility of ideal binary-masked noisy speech by adding background noise.
Cao, Shuyang; Li, Liang; Wu, Xihong
2011-04-01
When a target-speech/masker mixture is processed with the signal-separation technique, ideal binary mask (IBM), intelligibility of target speech is remarkably improved in both normal-hearing listeners and hearing-impaired listeners. Intelligibility of speech can also be improved by filling in speech gaps with un-modulated broadband noise. This study investigated whether intelligibility of target speech in the IBM-treated target-speech/masker mixture can be further improved by adding a broadband-noise background. The results of this study show that following the IBM manipulation, which remarkably released target speech from speech-spectrum noise, foreign-speech, or native-speech masking (experiment 1), adding a broadband-noise background with the signal-to-noise ratio no less than 4 dB significantly improved intelligibility of target speech when the masker was either noise (experiment 2) or speech (experiment 3). The results suggest that since adding the noise background shallows the areas of silence in the time-frequency domain of the IBM-treated target-speech/masker mixture, the abruption of transient changes in the mixture is smoothed and the perceived continuity of target-speech components becomes enhanced, leading to improved target-speech intelligibility. The findings are useful for advancing computational auditory scene analysis, hearing-aid/cochlear-implant designs, and understanding of speech perception under "cocktail-party" conditions. PMID:21476677
On stochastic differential equations driven by the renormalized square of the Gaussian white noise
NASA Astrophysics Data System (ADS)
Ben Ammou, Bilel Kacem; Lanconelli, Alberto
2015-11-01
We investigate the properties of the Wick square of Gaussian white noises through a new method to perform nonlinear operations on Hida distributions. This method lays in between the Wick product interpretation and the usual definition of nonlinear functions. We prove an Itô-type formula and solve stochastic differential equations driven by the renormalized square of the Gaussian white noise. Our approach works with standard assumptions on the coefficients of the equations, global Lipschitz continuity, and produces existence and uniqueness results in the space where the noise lives. The linear case is studied in details and positivity of the solution is proved.
NASA Technical Reports Server (NTRS)
Eckstein, M. P.; Ahumada, A. J. Jr; Watson, A. B.
1997-01-01
Studies of visual detection of a signal superimposed on one of two identical backgrounds show performance degradation when the background has high contrast and is similar in spatial frequency and/or orientation to the signal. To account for this finding, models include a contrast gain control mechanism that pools activity across spatial frequency, orientation and space to inhibit (divisively) the response of the receptor sensitive to the signal. In tasks in which the observer has to detect a known signal added to one of M different backgrounds grounds due to added visual noise, the main sources of degradation are the stochastic noise in the image and the suboptimal visual processing. We investigate how these two sources of degradation (contrast gain control and variations in the background) interact in a task in which the signal is embedded in one of M locations in a complex spatially varying background (structured background). We use backgrounds extracted from patient digital medical images. To isolate effects of the fixed deterministic background (the contrast gain control) from the effects of the background variations, we conduct detection experiments with three different background conditions: (1) uniform background, (2) a repeated sample of structured background, and (3) different samples of structured background. Results show that human visual detection degrades from the uniform background condition to the repeated background condition and degrades even further in the different backgrounds condition. These results suggest that both the contrast gain control mechanism and the background random variations degrade human performance in detection of a signal in a complex, spatially varying background. A filter model and added white noise are used to generate estimates of sampling efficiencies, an equivalent internal noise, an equivalent contrast-gain-control-induced noise, and an equivalent noise due to the variations in the structured background.
Adjustment on subjective annoyance of low frequency noise by adding additional sound
NASA Astrophysics Data System (ADS)
Di, Guo-qing; Li, Zheng-guang; Zhang, Bang-jun; Shi, Yao
2011-11-01
Structure-borne noise originating from a heat pump unit was selected to study the influence on subjective annoyance of low frequency noise (LFN) combined with additional sound. Paired comparison test was used for evaluating the subjective annoyance of LFN combined with different sound pressure levels (SPL) of pink noise, frequency-modulated pure tones (FM pure tones) and natural sounds. The results showed that, with pink noise of 250-1000 Hz combined with the original LFN, the subjective annoyance value (SAV) first dropped then rose with increasing SPL. When SPL of the pink noise was 15-25 dB, SAV was lower than that of the original LFN. With pink noise of frequency 250-20,000 Hz added to LFN, SAV increased linearly with increasing SPL. SAV and the psychoacoustic annoyance value (PAV) obtained by semi-theoretical formulas were well correlated. The determination coefficient ( R2) was 0.966 and 0.881, respectively, when the frequency range of the pink noise was 250-1000 and 250-20,000 Hz. When FM pure tones with central frequencies of 500, 2000 and 8000 Hz, or natural sounds (including the sound of singing birds, flowing water, wind or ticking clock) were, respectively, added to the original sound, the SAV increased as the SPL of the added sound increased. However, when a FM pure tone of 15 dB with a central frequency of 2000 Hz and a modulation frequency of 10 Hz was added, the SAV was lower than that of the original LFN. With SPL and central frequency held invariable, the SAV declined primarily when modulation frequency increased. With SPL and modulation frequency held invariable, the SAV became lowest when the central frequency was 2000 Hz. This showed a preferable correlation between SAV and fluctuation extent of FM pure tones.
Oscillator strength of impurity doped quantum dots: Influence of Gaussian white noise
NASA Astrophysics Data System (ADS)
Pal, Suvajit; Ganguly, Jayanta; Saha, Surajit; Ghosh, Manas
2015-10-01
We make a rigorous analysis of profiles of oscillator strength of a doped quantum dot in the presence and absence of noise. The noise employed here is a Gaussian white noise. The quantum dot is doped with repulsive Gaussian impurity. Noise has been administered additively and multiplicatively to the system. A perpendicular magnetic field is also present and a static external electric field has been applied. Profile of OS has been minutely monitored with variation of several important quantities such as confinement energy, electric field strength, dopant location, magnetic field strength, dopant potential, noise strength, Al concentration, and mode of application of noise. The profiles are enriched with significant subtleties and often reveal enhancement and maximization of oscillator strength in the presence of noise. These observations are indeed useful in the study of linear and nonlinear optical properties of doped QD systems which bear sufficient technological importance.
Separation of components from a scale mixture of Gaussian white noises
NASA Astrophysics Data System (ADS)
Vamoş, Călin; Crăciun, Maria
2010-05-01
The time evolution of a physical quantity associated with a thermodynamic system whose equilibrium fluctuations are modulated in amplitude by a slowly varying phenomenon can be modeled as the product of a Gaussian white noise {Zt} and a stochastic process with strictly positive values {Vt} referred to as volatility. The probability density function (pdf) of the process Xt=VtZt is a scale mixture of Gaussian white noises expressed as a time average of Gaussian distributions weighted by the pdf of the volatility. The separation of the two components of {Xt} can be achieved by imposing the condition that the absolute values of the estimated white noise be uncorrelated. We apply this method to the time series of the returns of the daily S&P500 index, which has also been analyzed by means of the superstatistics method that imposes the condition that the estimated white noise be Gaussian. The advantage of our method is that this financial time series is processed without partitioning or removal of the extreme events and the estimated white noise becomes almost Gaussian only as result of the uncorrelation condition.
Stationary response of multi-degree-of-freedom vibro-impact systems to Poisson white noises
NASA Astrophysics Data System (ADS)
Wu, Y.; Zhu, W. Q.
2008-01-01
The stationary response of multi-degree-of-freedom (MDOF) vibro-impact (VI) systems to random pulse trains is studied. The system is formulated as a stochastically excited and dissipated Hamiltonian system. The constraints are modeled as non-linear springs according to the Hertz contact law. The random pulse trains are modeled as Poisson white noises. The approximate stationary probability density function (PDF) for the response of MDOF dissipated Hamiltonian systems to Poisson white noises is obtained by solving the fourth-order generalized Fokker-Planck-Kolmogorov (FPK) equation using perturbation approach. As examples, two-degree-of-freedom (2DOF) VI systems under external and parametric Poisson white noise excitations, respectively, are investigated. The validity of the proposed approach is confirmed by using the results obtained from Monte Carlo simulation. It is shown that the non-Gaussian behaviour depends on the product of the mean arrival rate of the impulses and the relaxation time of the oscillator.
Homoclinic Spike adding in a neuronal model in the presence of noise
NASA Astrophysics Data System (ADS)
Fuwape, Ibiyinka; Neiman, Alexander; Shilnikov, Andrey
2008-03-01
We study the influence of noise on a spike adding transitions within the bursting activity in a Hodgkin-Huxley-type model of the leech heart interneuron. Spike adding in this model occur via homoclinic bifurcation of a saddle periodic orbit. Although narrow chaotic regions are observed near bifurcation transition, overall bursting dynamics is regular and is characterized by a constant number of spikes per burst. Experimental studies, however, show variability of bursting patterns whereby number of spikes per burst varies randomly. Thus, introduction of external synaptic noise is a necessary step to account for variability of burst durations observed experimentally. We show that near every such transition the neuron is highly sensitive to random perturbations that lead to and enhance broadly the regions of chaotic dynamics of the cell. For each spike adding transition there is a critical noise level beyond which the dynamics of the neuron becomes chaotic throughout the entire region of the given transition. Noise-induced chaotic dynamics is characterized in terms of the Lyapunov exponents and the Shannon entropy and reflects variability of firing patterns with various numbers of spikes per burst, traversing wide range of the neuron's parameters
The Effect of Noise on Spike-Adding Bifurcations in a Neuronal Burster (abstract)
NASA Astrophysics Data System (ADS)
Fuwape, Ibiyinka; Neiman, Alexander; Shilnikov, Andrey L.
2009-04-01
We study noise influence on spike-adding transitions in the bursting activity of a Hodgkin-Huxley-type model of the leech heart interneuron. In the noise-free system spike adding occurs via homoclinic bifurcation of a saddle periodic orbit. As a control parameter of the model changes a sequence of spike-adding transitions is observed, accumulating to a critical parameter value. Although narrow chaotic regions are observed near bifurcations, overall bursting dynamics is regular and is characterized by a fixed number of spikes per burst. We found that at every transition the interneuron model is highly sensitive to small random perturbations that cause a wide expansion and overlapping of chaotic regions. This chaotic behavior is characterized by positive values of leading Lyapunov exponent and of Shannon entropy of probability distribution of spike number per burst. The regions of chaotic dynamics resemble Arnold's tongues being plotted in the parameter plane, where noise intensity serves as a second control parameter. We determine the critical noise intensities leading to the global homogeneous chaotization with no periodic bursting, which corresponds to overlapping of chaotic zones.
Signal-to-noise limitations in white light holography
NASA Technical Reports Server (NTRS)
Ribak, Erez; Breckinridge, James B.; Roddier, Claude; Roddier, Francois
1988-01-01
A simple derivation is given for the SNR in images reconstructed from incoherent holograms. Dependence is shown to be on the hologram SNR, object complexity, and the number of pixels in the detector. Reconstruction of involved objects becomes possible with high-dynamic-range detectors such as CCDs. White-light holograms have been produced by means of a rotational shear interferometer combined with a chromatic corrector. A digital inverse transform recreated the object.
Stochastic flocking dynamics of the Cucker-Smale model with multiplicative white noises
NASA Astrophysics Data System (ADS)
Ahn, Shin Mi; Ha, Seung-Yeal
2010-10-01
We present a strong asymptotic stochastic flocking estimate for the stochastically perturbed Cucker-Smale model. We characterize a form of multiplicative white noises and present sufficient conditions on the control parameters to guarantee the almost sure exponential convergence toward constant equilibrium states. When the strength of multiplicative noises is sufficiently large, we show that the strong stochastic flocking occurs even for negative communication weights.
Zhao, Na; Wu, Zhisheng; Cheng, Yaqian; Shi, Xinyuan; Qiao, Yanjiang
2016-06-15
In multivariate calibration, the optimization of pretreatment methods is usually according to the prediction error and there is a lack of robustness evaluation. This study investigated the robustness of pretreatment methods by adding different simulate noises to validation dataset, calibration and validation datasets, respectively. The root mean squared error of prediction (RMSEP) and multivariate detection limits (MDL) were simultaneously calculated to assess the robustness of different pretreatment methods. The result with two different near-infrared (NIR) datasets illustrated that Multiplicative Scatter Correction (MSC) and Standard normal variate (SNV) were substantially more robust to additive noise with smaller REMSP and MDL value. PMID:27031447
NASA Astrophysics Data System (ADS)
Zhao, Na; Wu, Zhisheng; Cheng, Yaqian; Shi, Xinyuan; Qiao, Yanjiang
2016-06-01
In multivariate calibration, the optimization of pretreatment methods is usually according to the prediction error and there is a lack of robustness evaluation. This study investigated the robustness of pretreatment methods by adding different simulate noises to validation dataset, calibration and validation datasets, respectively. The root mean squared error of prediction (RMSEP) and multivariate detection limits (MDL) were simultaneously calculated to assess the robustness of different pretreatment methods. The result with two different near-infrared (NIR) datasets illustrated that Multiplicative Scatter Correction (MSC) and Standard normal variate (SNV) were substantially more robust to additive noise with smaller REMSP and MDL value.
Numeric Solutions of Dirac-Gursey Spinor Field Equation Under External Gaussian White Noise
NASA Astrophysics Data System (ADS)
Aydogmus, Fatma
2016-06-01
In this paper, we consider the Dirac-Gursey spinor field equation that has particle-like solutions derived classical field equations so-called instantons, formed by using Heisenberg ansatz, under the effect of an additional Gaussian white noise term. Our purpose is to understand how the behavior of spinor-type excited instantons in four dimensions can be affected by noise. Thus, we simulate the phase portraits and Poincaré sections of the obtained system numerically both with and without noise. Recurrence plots are also given for more detailed information regarding the system.
Continuous White Noise to Reduce Resistance Going to Sleep and Night Wakings in Toddlers
ERIC Educational Resources Information Center
Forquer, LeAnne M.; Johnson, C. Merle
2005-01-01
White noise generators were turned on at 75 dB at bedtime and kept on all night to treat resistance going to sleep and night wakings in one-year-old toddlers. In a multiple baseline design four sets of parents recorded duration of resistance going to sleep, number of night wakings, completed surveys of their child's feeding and sleeping patterns…
Variable Perception of White Noise in Ambiguous Phonetic Contexts: The Case of /p/ and /f/
ERIC Educational Resources Information Center
Shafiro, Valeriy; Raphael, Lawrence J.
2007-01-01
The roles of spectro-temporal coherence, lexical status, and word position in the perception of speech in acoustic signals containing a mixture of speech and nonspeech sounds were investigated. Stimuli consisted of nine (non)words in which either white noise was inserted only into the silent interval preceding and/or following the onset of vocalic…
Ji, Un Cig; Obata, Nobuaki
2010-12-15
The implementation problem for the canonical commutation relation is reduced to a system of differential equations for Fock space operators containing new type of derivatives. We solve these differential equations systematically by means of quantum white noise calculus, and obtain the solution to the implementation problem.
Analysis of regularized inversion of data corrupted by white Gaussian noise
NASA Astrophysics Data System (ADS)
Kekkonen, Hanne; Lassas, Matti; Siltanen, Samuli
2014-04-01
Tikhonov regularization is studied in the case of linear pseudodifferential operator as the forward map and additive white Gaussian noise as the measurement error. The measurement model for an unknown function u(x) is \\begin{eqnarray*} m(x) = Au(x) + \\delta \\varepsilon (x), \\end{eqnarray*} where δ > 0 is the noise magnitude. If ɛ was an L2-function, Tikhonov regularization gives an estimate \\begin{eqnarray*} T_\\alpha (m) = \\mathop {{arg\\, min}}_{u\\in H^r} \\big \\lbrace \\Vert A u-m\\Vert _{L^2}^2+ \\alpha \\Vert u\\Vert _{H^r}^2 \\big \\rbrace \\end{eqnarray*} for u where α = α(δ) is the regularization parameter. Here penalization of the Sobolev norm \\Vert u\\Vert _{H^r} covers the cases of standard Tikhonov regularization (r = 0) and first derivative penalty (r = 1). Realizations of white Gaussian noise are almost never in L2, but do belong to Hs with probability one if s < 0 is small enough. A modification of Tikhonov regularization theory is presented, covering the case of white Gaussian measurement noise. Furthermore, the convergence of regularized reconstructions to the correct solution as δ → 0 is proven in appropriate function spaces using microlocal analysis. The convergence of the related finite-dimensional problems to the infinite-dimensional problem is also analysed.
The Effect of White Nonstationary and Colored Nonstationary Noise on Signal Detection
NASA Astrophysics Data System (ADS)
Flores, Mauricio; Benacquista, Matthew; Stroeer, Alexander
2012-02-01
We analyze the effect of non-stationary noise on the detection of signals on unevenly sampled data. Initial frequency estimation is obtained from a Lomb-Scargle periodogram; which is followed by a global multi-start optimization, as working on a dense local Nelder-Mead iterator for parameter estimates. It has been found that a varying white noise level has no effect on the required relative signal-to-noise ratio for detection in the proposed algorithm, though affecting the absolute amplitude strength of the signal recording. Further analysis has been done on realistic colored noise. Different whitening routines have been incorporated to the proposed algorithm. Detection efficiency is compared for these different routines.
Rhazi, Dilal; Atalla, Noureddine
2014-02-01
The evaluation of the acoustic performance of noise control treatments is of great importance in many engineering applications, e.g., aircraft, automotive, and building acoustics applications. Numerical methods such as finite- and boundary elements allow for the study of complex structures with added noise control treatment. However, these methods are computationally expensive when used for complex structures. At an early stage of the acoustic trim design process, many industries look for simple and easy to use tools that provide sufficient physical insight that can help to formulate design criteria. The paper presents a simple and tractable approach for the acoustic design of noise control treatments. It presents and compares two transfer matrix-based methods to investigate the vibroacoustic behavior of noise control treatments. The first is based on a modal approach, while the second is based on wave-number space decomposition. In addition to the classical rain-on-the-roof and diffuse acoustic field excitations, the paper also addresses turbulent boundary layer and point source (monopole) excitations. Various examples are presented and compared to a finite element calculation to validate the methodology and to confirm its relevance along with its limitations. PMID:25234878
Exploring electro-optic effect of impurity doped quantum dots in presence of Gaussian white noise
NASA Astrophysics Data System (ADS)
Pal, Suvajit; Ganguly, Jayanta; Saha, Surajit; Ghosh, Manas
2016-01-01
We explore the profiles of electro-optic effect (EOE) of impurity doped quantum dots (QDs) in presence and absence of noise. We have invoked Gaussian white noise in the present study. The quantum dot is doped with Gaussian impurity. Noise has been administered to the system additively and multiplicatively. A perpendicular magnetic field acts as a confinement source and a static external electric field has been applied. The EOE profiles have been followed as a function of incident photon energy when several important parameters such as electric field strength, magnetic field strength, confinement energy, dopant location, relaxation time, Al concentration, dopant potential, and noise strength possess different values. In addition, the role of mode of application of noise (additive/multiplicative) on the EOE profiles has also been scrutinized. The EOE profiles are found to be adorned with interesting observations such as shift of peak position and maximization/minimization of peak intensity. However, the presence of noise and also the pathway of its application bring about rich variety in the features of EOE profiles through some noticeable manifestations. The observations indicate possibilities of harnessing the EOE susceptibility of doped QD systems in presence of noise.
The Parkes front-end controller and noise-adding radiometer
NASA Technical Reports Server (NTRS)
Brunzie, T. J.
1990-01-01
A new front-end controller (FEC) was installed on the 64-m antenna in Parkes, Australia, to support the 1989 Voyager 2 Neptune encounter. The FEC was added to automate operation of the front-end microwave hardware as part of the Deep Space Network's Parkes-Canberra Telemetry Array. Much of the front-end hardware was refurbished and reimplemented from a front-end system installed in 1985 by the European Space Agency for the Uranus encounter; however, the FEC and its associated noise-adding radiometer (NAR) were new Jet Propulsion Laboratory (JPL) designs. Project requirements and other factors led to the development of capabilities not found in standard Deep Space Network (DSN) controllers and radiometers. The Parkes FEC/NAR performed satisfactorily throughout the Neptune encounter and was removed in October 1989.
Dynamics of a prey-predator system under Poisson white noise excitation
NASA Astrophysics Data System (ADS)
Pan, Shan-Shan; Zhu, Wei-Qiu
2014-10-01
The classical Lotka-Volterra (LV) model is a well-known mathematical model for prey-predator ecosystems. In the present paper, the pulse-type version of stochastic LV model, in which the effect of a random natural environment has been modeled as Poisson white noise, is investigated by using the stochastic averaging method. The averaged generalized Itô stochastic differential equation and Fokker-Planck-Kolmogorov (FPK) equation are derived for prey-predator ecosystem driven by Poisson white noise. Approximate stationary solution for the averaged generalized FPK equation is obtained by using the perturbation method. The effect of prey self-competition parameter ɛ2 s on ecosystem behavior is evaluated. The analytical result is confirmed by corresponding Monte Carlo (MC) simulation.
Quantum delayed-choice experiment in an environment with arbitrary white noise
NASA Astrophysics Data System (ADS)
Filgueiras, J. G.; Sarthour, R. S.; Souza, A. M.; Oliveira, I. S.; Serra, R. M.; Céleri, L. C.
2013-06-01
The development of quantum technologies depends on the investigation of the behaviour of quantum systems in noisy environments, since complete isolation from its environment is impossible to achieve. In this paper, we show that the main features of a quantum delayed-choice experiment hold even if performed in a system with an arbitrary level of white noise. In light of our results, we analyse recent optical and NMR experiments and show that a loophole on non-locality is not fundamental.
Kaiser, Kristine; Devito, Julia; Jones, Caitlin G.; Marentes, Adam; Perez, Rachel; Umeh, Lisa; Weickum, Regina M.; McGovern, Kathryn E.; Wilson, Emma H.; Saltzman, Wendy
2015-01-01
Urbanization is a major driver of ecological change and comes with a suite of habitat modifications, including alterations to the local temperature, precipitation, light and noise regimes. Although many recent studies have investigated the behavioural and ecological ramifications of urbanization, physiological work in this area has lagged. We tested the hypothesis that anthropogenic noise is a stressor for amphibians and that chronic exposure to such noise leads to reproductive suppression. In the laboratory, we exposed male White's treefrogs, Litoria caerulea, to conspecific chorus noise either alone or coupled with pre-recorded traffic noise nightly for 1 week. Frogs presented with anthropogenic noise had significantly higher circulating concentrations of corticosterone and significantly decreased sperm count and sperm viability than did control frogs. These results suggest that in addition to having behavioural and ecological effects, anthropogenic change might alter physiology and Darwinian fitness. Future work should integrate disparate fields such as behaviour, ecology and physiology to elucidate fully organisms’ responses to habitat change. PMID:27293682
Using white noise to gate organic transistors for dynamic monitoring of cultured cell layers
Rivnay, Jonathan; Leleux, Pierre; Hama, Adel; Ramuz, Marc; Huerta, Miriam; Malliaras, George G.; Owens, Roisin M.
2015-01-01
Impedance sensing of biological systems allows for monitoring of cell and tissue properties, including cell-substrate attachment, layer confluence, and the “tightness” of an epithelial tissue. These properties are critical for electrical detection of tissue health and viability in applications such as toxicological screening. Organic transistors based on conducting polymers offer a promising route to efficiently transduce ionic currents to attain high quality impedance spectra, but collection of complete impedance spectra can be time consuming (minutes). By applying uniform white noise at the gate of an organic electrochemical transistor (OECT), and measuring the resulting current noise, we are able to dynamically monitor the impedance and thus integrity of cultured epithelial monolayers. We show that noise sourcing can be used to track rapid monolayer disruption due to compounds which interfere with dynamic polymerization events crucial for maintaining cytoskeletal integrity, and to resolve sub-second alterations to the monolayer integrity. PMID:26112429
Using white noise to gate organic transistors for dynamic monitoring of cultured cell layers
NASA Astrophysics Data System (ADS)
Rivnay, Jonathan; Leleux, Pierre; Hama, Adel; Ramuz, Marc; Huerta, Miriam; Malliaras, George G.; Owens, Roisin M.
2015-06-01
Impedance sensing of biological systems allows for monitoring of cell and tissue properties, including cell-substrate attachment, layer confluence, and the “tightness” of an epithelial tissue. These properties are critical for electrical detection of tissue health and viability in applications such as toxicological screening. Organic transistors based on conducting polymers offer a promising route to efficiently transduce ionic currents to attain high quality impedance spectra, but collection of complete impedance spectra can be time consuming (minutes). By applying uniform white noise at the gate of an organic electrochemical transistor (OECT), and measuring the resulting current noise, we are able to dynamically monitor the impedance and thus integrity of cultured epithelial monolayers. We show that noise sourcing can be used to track rapid monolayer disruption due to compounds which interfere with dynamic polymerization events crucial for maintaining cytoskeletal integrity, and to resolve sub-second alterations to the monolayer integrity.
Delay-induced stochastic bifurcations in a bistable system under white noise
Sun, Zhongkui Fu, Jin; Xu, Wei; Xiao, Yuzhu
2015-08-15
In this paper, the effects of noise and time delay on stochastic bifurcations are investigated theoretically and numerically in a time-delayed Duffing-Van der Pol oscillator subjected to white noise. Due to the time delay, the random response is not Markovian. Thereby, approximate methods have been adopted to obtain the Fokker-Planck-Kolmogorov equation and the stationary probability density function for amplitude of the response. Based on the knowledge that stochastic bifurcation is characterized by the qualitative properties of the steady-state probability distribution, it is found that time delay and feedback intensity as well as noise intensity will induce the appearance of stochastic P-bifurcation. Besides, results demonstrated that the effects of the strength of the delayed displacement feedback on stochastic bifurcation are accompanied by the sensitive dependence on time delay. Furthermore, the results from numerical simulations best confirm the effectiveness of the theoretical analyses.
Delay-induced stochastic bifurcations in a bistable system under white noise
NASA Astrophysics Data System (ADS)
Sun, Zhongkui; Fu, Jin; Xiao, Yuzhu; Xu, Wei
2015-08-01
In this paper, the effects of noise and time delay on stochastic bifurcations are investigated theoretically and numerically in a time-delayed Duffing-Van der Pol oscillator subjected to white noise. Due to the time delay, the random response is not Markovian. Thereby, approximate methods have been adopted to obtain the Fokker-Planck-Kolmogorov equation and the stationary probability density function for amplitude of the response. Based on the knowledge that stochastic bifurcation is characterized by the qualitative properties of the steady-state probability distribution, it is found that time delay and feedback intensity as well as noise intensity will induce the appearance of stochastic P-bifurcation. Besides, results demonstrated that the effects of the strength of the delayed displacement feedback on stochastic bifurcation are accompanied by the sensitive dependence on time delay. Furthermore, the results from numerical simulations best confirm the effectiveness of the theoretical analyses.
Delay-induced stochastic bifurcations in a bistable system under white noise.
Sun, Zhongkui; Fu, Jin; Xiao, Yuzhu; Xu, Wei
2015-08-01
In this paper, the effects of noise and time delay on stochastic bifurcations are investigated theoretically and numerically in a time-delayed Duffing-Van der Pol oscillator subjected to white noise. Due to the time delay, the random response is not Markovian. Thereby, approximate methods have been adopted to obtain the Fokker-Planck-Kolmogorov equation and the stationary probability density function for amplitude of the response. Based on the knowledge that stochastic bifurcation is characterized by the qualitative properties of the steady-state probability distribution, it is found that time delay and feedback intensity as well as noise intensity will induce the appearance of stochastic P-bifurcation. Besides, results demonstrated that the effects of the strength of the delayed displacement feedback on stochastic bifurcation are accompanied by the sensitive dependence on time delay. Furthermore, the results from numerical simulations best confirm the effectiveness of the theoretical analyses. PMID:26328553
Using white noise to gate organic transistors for dynamic monitoring of cultured cell layers.
Rivnay, Jonathan; Leleux, Pierre; Hama, Adel; Ramuz, Marc; Huerta, Miriam; Malliaras, George G; Owens, Roisin M
2015-01-01
Impedance sensing of biological systems allows for monitoring of cell and tissue properties, including cell-substrate attachment, layer confluence, and the "tightness" of an epithelial tissue. These properties are critical for electrical detection of tissue health and viability in applications such as toxicological screening. Organic transistors based on conducting polymers offer a promising route to efficiently transduce ionic currents to attain high quality impedance spectra, but collection of complete impedance spectra can be time consuming (minutes). By applying uniform white noise at the gate of an organic electrochemical transistor (OECT), and measuring the resulting current noise, we are able to dynamically monitor the impedance and thus integrity of cultured epithelial monolayers. We show that noise sourcing can be used to track rapid monolayer disruption due to compounds which interfere with dynamic polymerization events crucial for maintaining cytoskeletal integrity, and to resolve sub-second alterations to the monolayer integrity. PMID:26112429
Analytic expressions for rate and CV of a type I neuron driven by white gaussian noise.
Lindner, Benjamin; Longtin, André; Bulsara, Adi
2003-08-01
We study the one-dimensional normal form of a saddle-node system under the influence of additive gaussian white noise and a static "bias current" input parameter, a model that can be looked upon as the simplest version of a type I neuron with stochastic input. This is in contrast with the numerous studies devoted to the noise-driven leaky integrate-and-fire neuron. We focus on the firing rate and coefficient of variation (CV) of the interspike interval density, for which scaling relations with respect to the input parameter and noise intensity are derived. Quadrature formulas for rate and CV are numerically evaluated and compared to numerical simulations of the system and to various approximation formulas obtained in different limiting cases of the model. We also show that caution must be used to extend these results to the Theta neuron model with multiplicative gaussian white noise. The correspondence between the first passage time statistics for the saddle-node model and the Theta neuron model is obtained only in the Stratonovich interpretation of the stochastic Theta neuron model, while previous results have focused only on the Ito interpretation. The correct Stratonovich interpretation yields CVs that are still relatively high, although smaller than in the Ito interpretation; it also produces certain qualitative differences, especially at larger noise intensities. Our analysis provides useful relations for assessing the distance to threshold and the level of synaptic noise in real type I neurons from their firing statistics. We also briefly discuss the effect of finite boundaries (finite values of threshold and reset) on the firing statistics. PMID:14511512
Effects of High Intensity White Noise on Short-Term Memory for Position in a List and Sequence
ERIC Educational Resources Information Center
Daee, Safar; Wilding, J. M.
1977-01-01
Seven experiments are described investigating the effecy of high intensity white noise during the visual presentation of words on a number of short-term memory tasks. Examines results relative to position learning and sequence learning. (Editor/RK)
NASA Astrophysics Data System (ADS)
Arz, Jean-Pierre
The starting point of this Ph.D. is the industrial issue submitted to the ETS by the company Bombardier Recreational Products (BRP) of the noise reduction of the tracked drive mechanism of snowmobiles. The overall goal of is to develop a method to predict the impact noise reduction obtained by the adding of an elastomeric layer specimen of small thickness between the impacting body and the impacted structure which is a complex structure (i.e. a structure whose geometry is complex and whose composition involves several materials). To reach this overall goal, three specific goals have been fixed: (1) characterize the behavior under impact of different small thickness elastomeric layers; (2) predict the impact force generated when an elastomeric layer is added on a complex vibrating structure; and (3) validate experimentally the whole method by applying it to the impact noise reduction of a bar of the snowmobile track. To reach the first specific goal (characterize the behavior under impact of different small thickness elastomeric layers), a specific experimental characterization method has been developed. Firstly, an experimental device has been realized to submit the elastomeric layer specimens to the reproducible impact conditions of an impact hammer. The measurement of the penetration depth of the hammer into the elastomeric layer is achieved by recording its motion with a high-speed camera and by detecting its position by further analysis on the individual images. Secondly, the experimental curves obtained are analyzed to point out their main characteristics and choose an appropriate impact model. Thirdly, the contact force parameters are estimated from the experimental results and from the impact model. Using this method, eight impacted elastomeric specimens have been characterized. The results show that a more precise characterization than hardness is obtained. To reach the second specific goal (predict the impact force generated when an elastomeric layer is
Effect of White Noise on Sleep in Patients Admitted to a Coronary Care
Farokhnezhad Afshar, Pouya; Bahramnezhad, Fatemeh; Asgari, Parvaneh; Shiri, Mahmoud
2016-01-01
Introduction: Sleep disorders are a common problem in patients in the critical care unit. The objective of the present study was to determine the effect of white noise on the quality of sleep in patients admitted to the CCU. Methods: The present study was single-blind, quasi-experimental study. A total of 60 patients were selected using the purposive sampling method. Quality of sleep was measured with PSQI on the first day in admission, then after three nights of admission without any intervention for control group and for the experimental group quality of sleep measured by white noise with intensity of 50-60 dB then Quality of sleep was measured with PSQI. Data were analyzed by SPSS 13 software. Results: The average total sleep time in the control group before the study reached from 7.08 (0.8) to 4.75 (0.66) hours after three nights of hospitalization, while in the experimental group, no significant changes were seen in the average sleep hours (6.69 ± 0.84 vs. 6.92 ± 0.89, P = 0.15).The average minutes of sleep in the control group before the study reached from 12.66 (7.51) to 25.83 (11.75) minutes after a three- night stay, while in the experimental group, no significant changes were observed in the average sleep duration (12.16 ± 7.50 vs. 11 ±6. 07, P = 0.16). Conclusion: The use of white noise is recommended as a method for masking environmental noises, improving sleep, and maintaining sleep in the coronary care unit. PMID:27354974
Physisporinus vitreus: a versatile white rot fungus for engineering value-added wood products.
Schwarze, Francis W M R; Schubert, Mark
2011-11-01
The credo of every scientist working in the field of applied science is to transfer knowledge "from science to market," a process that combines (1) science (fundamental discoveries and basic research) with (2) technology development (performance assessment and optimization) and (3) technology transfer (industrial application). Over the past 7 years, we have intensively investigated the potential of the white rot fungus, Physisporinus vitreus, for engineering value-added wood products. Because of its exceptional wood degradation pattern, i.e., selective lignification without significant wood strength losses and a preferential degradation of bordered pit membranes, it is possible to use this fungus under controlled conditions to improve the acoustic properties of tonewood (i.e., "mycowood") as well as to enhance the uptake of preservatives and wood modification substances in refractory wood species (e.g., Norway spruce), a process known as "bioincising." This minireview summarizes the research that we have performed with P. vitreus and critically discusses the challenges encountered during the development of two distinct processes for engineering value-added wood products. Finally, we peep into the future potential of the bioincising and mycowood processes for additional applications in the forest and wood industry. PMID:21901405
Functors of White Noise Associated to Characters of the Infinite Symmetric Group
NASA Astrophysics Data System (ADS)
Bożejko, Marek; Guţă, Mădălin
The characters of the infinite symmetric group are extended to multiplicative positive definite functions on pair partitions by using an explicit representation due to Veršik and Kerov. The von Neumann algebra generated by the fields with f in an infinite dimensional real Hilbert space is infinite and the vacuum vector is not separating. For a family depending on an integer N< - 1 an ``exclusion principle'' is found allowing at most ``identical particles'' on the same state:
BAYESIAN ANALYSIS OF WHITE NOISE LEVELS IN THE FIVE-YEAR WMAP DATA
Groeneboom, N. E.; Eriksen, H. K.; Gorski, K.; Huey, G.; Jewell, J.; Wandelt, B.
2009-09-01
We develop a new Bayesian method for estimating white noise levels in CMB sky maps, and apply this algorithm to the five-year Wilkinson Microwave Anisotropy Probe (WMAP) data. We assume that the amplitude of the noise rms is scaled by a constant value, {alpha}, relative to a pre-specified noise level. We then derive the corresponding conditional density, P({alpha} | s, C {sub l}, d), which is subsequently integrated into a general CMB Gibbs sampler. We first verify our code by analyzing simulated data sets, and then apply the framework to the WMAP data. For the foreground-reduced five-year WMAP sky maps and the nominal noise levels initially provided in the five-year data release, we find that the posterior means typically range between {alpha} = 1.005 {+-} 0.001 and {alpha} = 1.010 {+-} 0.001 depending on differencing assembly, indicating that the noise level of these maps are biased low by 0.5%-1.0%. The same problem is not observed for the uncorrected WMAP sky maps. After the preprint version of this letter appeared on astro-ph., the WMAP team has corrected the values presented on their web page, noting that the initially provided values were in fact estimates from the three-year data release, not from the five-year estimates. However, internally in their five-year analysis the correct noise values were used, and no cosmological results are therefore compromised by this error. Thus, our method has already been demonstrated in practice to be both useful and accurate.
NASA Astrophysics Data System (ADS)
Saha, Surajit; Ghosh, Manas
2016-02-01
We perform a rigorous analysis of the profiles of a few diagonal and off-diagonal components of linear ( α xx , α yy , α xy , and α yx ), first nonlinear ( β xxx , β yyy , β xyy , and β yxx ), and second nonlinear ( γ xxxx , γ yyyy , γ xxyy , and γ yyxx ) polarizabilities of quantum dots exposed to an external pulsed field. Simultaneous presence of multiplicative white noise has also been taken into account. The quantum dot contains a dopant represented by a Gaussian potential. The number of pulse and the dopant location have been found to fabricate the said profiles through their interplay. Moreover, a variation in the noise strength also contributes evidently in designing the profiles of above polarizability components. In general, the off-diagonal components have been found to be somewhat more responsive to a variation of noise strength. However, we have found some exception to the above fact for the off-diagonal β yxx component. The study projects some pathways of achieving stable, enhanced, and often maximized output of linear and nonlinear polarizabilities of doped quantum dots driven by multiplicative noise.
Voronenko, Sergej O; Stannat, Wilhelm; Lindner, Benjamin
2015-12-01
We study a population of spiking neurons which are subject to independent noise processes and a strong common time-dependent input. We show that the response of output spikes to independent noise shapes information transmission of such populations even when information transmission properties of single neurons are left unchanged. In particular, we consider two Poisson models in which independent noise either (i) adds and deletes spikes (AD model) or (ii) shifts spike times (STS model). We show that in both models suprathreshold stochastic resonance (SSR) can be observed, where the information transmitted by a neural population is increased with addition of independent noise. In the AD model, the presence of the SSR effect is robust and independent of the population size or the noise spectral statistics. In the STS model, the information transmission properties of the population are determined by the spectral statistics of the noise, leading to a strongly increased effect of SSR in some regimes, or an absence of SSR in others. Furthermore, we observe a high-pass filtering of information in the STS model that is absent in the AD model. We quantify information transmission by means of the lower bound on the mutual information rate and the spectral coherence function. To this end, we derive the signal-output cross-spectrum, the output power spectrum, and the cross-spectrum of two spike trains for both models analytically. PMID:26458900
The What and Where of Adding Channel Noise to the Hodgkin-Huxley Equations
Goldwyn, Joshua H.; Shea-Brown, Eric
2011-01-01
Conductance-based equations for electrically active cells form one of the most widely studied mathematical frameworks in computational biology. This framework, as expressed through a set of differential equations by Hodgkin and Huxley, synthesizes the impact of ionic currents on a cell's voltage—and the highly nonlinear impact of that voltage back on the currents themselves—into the rapid push and pull of the action potential. Later studies confirmed that these cellular dynamics are orchestrated by individual ion channels, whose conformational changes regulate the conductance of each ionic current. Thus, kinetic equations familiar from physical chemistry are the natural setting for describing conductances; for small-to-moderate numbers of channels, these will predict fluctuations in conductances and stochasticity in the resulting action potentials. At first glance, the kinetic equations provide a far more complex (and higher-dimensional) description than the original Hodgkin-Huxley equations or their counterparts. This has prompted more than a decade of efforts to capture channel fluctuations with noise terms added to the equations of Hodgkin-Huxley type. Many of these approaches, while intuitively appealing, produce quantitative errors when compared to kinetic equations; others, as only very recently demonstrated, are both accurate and relatively simple. We review what works, what doesn't, and why, seeking to build a bridge to well-established results for the deterministic equations of Hodgkin-Huxley type as well as to more modern models of ion channel dynamics. As such, we hope that this review will speed emerging studies of how channel noise modulates electrophysiological dynamics and function. We supply user-friendly MATLAB simulation code of these stochastic versions of the Hodgkin-Huxley equations on the ModelDB website (accession number 138950) and http://www.amath.washington.edu/~etsb/tutorials.html. PMID:22125479
NASA Astrophysics Data System (ADS)
Ganguly, Jayanta; Ghosh, Manas
2014-05-01
We investigate the profiles of diagonal components of frequency-dependent first nonlinear (βxxx and βyyy) optical response of repulsive impurity doped quantum dots. We have assumed a Gaussian function to represent the dopant impurity potential. This study primarily addresses the role of noise on the polarizability components. We have invoked Gaussian white noise consisting of additive and multiplicative characteristics (in Stratonovich sense). The doped system has been subjected to an oscillating electric field of given intensity, and the frequency-dependent first nonlinear polarizabilities are computed. The noise characteristics are manifested in an interesting way in the nonlinear polarizability components. In case of additive noise, the noise strength remains practically ineffective in influencing the optical responses. The situation completely changes with the replacement of additive noise by its multiplicative analog. The replacement enhances the nonlinear optical response dramatically and also causes their maximization at some typical value of noise strength that depends on oscillation frequency.
Ganguly, Jayanta; Ghosh, Manas
2014-05-07
We investigate the profiles of diagonal components of frequency-dependent first nonlinear (β{sub xxx} and β{sub yyy}) optical response of repulsive impurity doped quantum dots. We have assumed a Gaussian function to represent the dopant impurity potential. This study primarily addresses the role of noise on the polarizability components. We have invoked Gaussian white noise consisting of additive and multiplicative characteristics (in Stratonovich sense). The doped system has been subjected to an oscillating electric field of given intensity, and the frequency-dependent first nonlinear polarizabilities are computed. The noise characteristics are manifested in an interesting way in the nonlinear polarizability components. In case of additive noise, the noise strength remains practically ineffective in influencing the optical responses. The situation completely changes with the replacement of additive noise by its multiplicative analog. The replacement enhances the nonlinear optical response dramatically and also causes their maximization at some typical value of noise strength that depends on oscillation frequency.
White noise response of turbine blades subjected to heat flux and thermal gradient
Karadag, V.; Aba, E.; Morguel, O.K.
1997-07-01
Design and production of the complex mechanical structures rarely result in an optimal solution. A typical example for this is a turbine blade design. Fatigue failures of the turbine blades is one of the most vexing problems of turbo-machine manufacturers, ever since the steam turbine became the main stay for power generating equipment and the gas turbines are increasingly used in air transport. Turbine blade failures due to fatigue are predominantly vibration related. The dynamic loads on the blading can arise from many different sources such as the high rotational speed, the high operating temperatures, the asymmetric aerofil tapered form of the turbine blade etc. Therefore, vibratory analysis is one of the most important stage in the designing of the turbine blades. In this study, the random response of the turbine blade to white noise excitation has been consistently calculated, including the internal damping mechanisms of the blade. Beside the damping effects, the rotational speed and the linear thermal gradient along the turbine blade are incorporated into the analysis. Pressure difference between the two surfaces of the turbine blades are modelled as white noise excitation along all over the turbine blade. The system dynamic equation of motion are derived and solved by using the combined Finite Element-Modal Analysis Method.
NASA Astrophysics Data System (ADS)
Aban, C. J. G.; Bacolod, R. O.; Confesor, M. N. P.
2015-06-01
A The White Noise Path Integral Approach is used in evaluating the B-cell density or the number of B-cell per unit volume for a basic type of immune system response based on the modeling done by Perelson and Wiegel. From the scaling principles of Perelson [1], the B- cell density is obtained where antigens and antibodies mutates and activation function f(|S-SA|) is defined describing the interaction between a specific antigen and a B-cell. If the activation function f(|S-SA|) is held constant, the major form of the B-cell density evaluated using white noise analysis is similar to the form of the B-cell density obtained by Perelson and Wiegel using a differential approach.A piecewise linear functionis also used to describe the activation f(|S-SA|). If f(|S-SA|) is zero, the density decreases exponentially. If f(|S-SA|) = S-SA-SB, the B- cell density increases exponentially until it reaches a certain maximum value. For f(|S-SA|) = 2SA-SB-S, the behavior of B-cell density is oscillating and remains to be in small values.
Zhang, Bo; Kagawa, Keiichiro; Takasawa, Taishi; Seo, Min Woong; Yasutomi, Keita; Kawahito, Shoji
2014-01-01
In extremely low-light conditions, random telegraph signal (RTS) noise and dark current white defects become visible. In this paper, a multi-aperture imaging system and selective averaging method which removes the RTS noise and the dark current white defects by minimizing the synthetic sensor noise at every pixel is proposed. In the multi-aperture imaging system, a very small synthetic F-number which is much smaller than 1.0 is achieved by increasing optical gain with multiple lenses. It is verified by simulation that the effective noise normalized by optical gain in the peak of noise histogram is reduced from 1.38e⁻ to 0.48 e⁻ in a 3 × 3-aperture system using low-noise CMOS image sensors based on folding-integration and cyclic column ADCs. In the experiment, a prototype 3 × 3-aperture camera, where each aperture has 200 × 200 pixels and an imaging lens with a focal length of 3.0 mm and F-number of 3.0, is developed. Under a low-light condition, in which the maximum average signal is 11e⁻ per aperture, the RTS and dark current white defects are removed and the peak signal-to-noise ratio (PSNR) of the image is increased by 6.3 dB. PMID:24441768
Yang, Yongge; Xu, Wei; Yang, Guidong; Jia, Wantao
2016-08-01
The Poisson white noise, as a typical non-Gaussian excitation, has attracted much attention recently. However, little work was referred to the study of stochastic systems with fractional derivative under Poisson white noise excitation. This paper investigates the stationary response of a class of quasi-linear systems with fractional derivative excited by Poisson white noise. The equivalent stochastic system of the original stochastic system is obtained. Then, approximate stationary solutions are obtained with the help of the perturbation method. Finally, two typical examples are discussed in detail to demonstrate the effectiveness of the proposed method. The analysis also shows that the fractional order and the fractional coefficient significantly affect the responses of the stochastic systems with fractional derivative. PMID:27586619
NASA Astrophysics Data System (ADS)
Ganguly, Jayanta; Ghosh, Manas
2015-07-01
We investigate the modulation of diagonal components of static linear (αxx, αyy) and first nonlinear (βxxx, βyyy) polarizabilities of quantum dots by Gaussian white noise. Quantum dot is doped with impurity represented by a Gaussian potential and repulsive in nature. The study reveals the importance of mode of application of noise (additive/multiplicative) on the polarizability components. The doped system is further exposed to a static external electric field of given intensity. As important observation we have found that the strength of additive noise becomes unable to influence the polarizability components. However, the multiplicative noise influences them conspicuously and gives rise to additional interesting features. Multiplicative noise even enhances the magnitude of the polarizability components immensely. The present investigation deems importance in view of the fact that noise seriously affects the optical properties of doped quantum dot devices.
Sheliga, Boris M; Quaia, Christian; FitzGibbon, Edmond J; Cumming, Bruce G
2016-01-01
White noise stimuli are frequently used to study the visual processing of broadband images in the laboratory. A common goal is to describe how responses are derived from Fourier components in the image. We investigated this issue by recording the ocular-following responses (OFRs) to white noise stimuli in human subjects. For a given speed we compared OFRs to unfiltered white noise with those to noise filtered with band-pass filters and notch filters. Removing components with low spatial frequency (SF) reduced OFR magnitudes, and the SF associated with the greatest reduction matched the SF that produced the maximal response when presented alone. This reduction declined rapidly with SF, compatible with a winner-take-all operation. Removing higher SF components increased OFR magnitudes. For higher speeds this effect became larger and propagated toward lower SFs. All of these effects were quantitatively well described by a model that combined two factors: (a) an excitatory drive that reflected the OFRs to individual Fourier components and (b) a suppression by higher SF channels where the temporal sampling of the display led to flicker. This nonlinear interaction has an important practical implication: Even with high refresh rates (150 Hz), the temporal sampling introduced by visual displays has a significant impact on visual processing. For instance, we show that this distorts speed tuning curves, shifting the peak to lower speeds. Careful attention to spectral content, in the light of this nonlinearity, is necessary to minimize the resulting artifact when using white noise patterns undergoing apparent motion. PMID:26762277
Sheliga, Boris M.; Quaia, Christian; FitzGibbon, Edmond J.; Cumming, Bruce G.
2016-01-01
White noise stimuli are frequently used to study the visual processing of broadband images in the laboratory. A common goal is to describe how responses are derived from Fourier components in the image. We investigated this issue by recording the ocular-following responses (OFRs) to white noise stimuli in human subjects. For a given speed we compared OFRs to unfiltered white noise with those to noise filtered with band-pass filters and notch filters. Removing components with low spatial frequency (SF) reduced OFR magnitudes, and the SF associated with the greatest reduction matched the SF that produced the maximal response when presented alone. This reduction declined rapidly with SF, compatible with a winner-take-all operation. Removing higher SF components increased OFR magnitudes. For higher speeds this effect became larger and propagated toward lower SFs. All of these effects were quantitatively well described by a model that combined two factors: (a) an excitatory drive that reflected the OFRs to individual Fourier components and (b) a suppression by higher SF channels where the temporal sampling of the display led to flicker. This nonlinear interaction has an important practical implication: Even with high refresh rates (150 Hz), the temporal sampling introduced by visual displays has a significant impact on visual processing. For instance, we show that this distorts speed tuning curves, shifting the peak to lower speeds. Careful attention to spectral content, in the light of this nonlinearity, is necessary to minimize the resulting artifact when using white noise patterns undergoing apparent motion. PMID:26762277
Beam combining and SBS suppression in white noise and pseudo-random modulated amplifiers
NASA Astrophysics Data System (ADS)
Anderson, Brian; Flores, Angel; Holten, Roger; Ehrenreich, Thomas; Dajani, Iyad
2015-03-01
White noise phase modulation (WNS) and pseudo-random binary sequence phase modulation (PRBS) are effective techniques for mitigation of nonlinear effects such as stimulated Brillouin scattering (SBS); thereby paving the way for higher power narrow linewidth fiber amplifiers. However, detailed studies comparing both coherent beam combination and the SBS suppression of these phase modulation schemes have not been reported. In this study an active fiber cutback experiment is performed comparing the enhancement factor of a PRBS and WNS broadened seed as a function of linewidth and fiber length. Furthermore, two WNS and PRBS modulated fiber lasers are coherently combined to measure and compare the fringe visibility and coherence length as a function of optical path length difference. Notably, the discrete frequency comb of PRBS modulation provides a beam combining re-coherence effect where the lasers periodically come back into phase. Significantly, this may reduce path length matching complexity in coherently combined fiber laser systems.
NASA Astrophysics Data System (ADS)
Jin, X. L.; Huang, Z. L.
The nonstationary probability densities of system responses are obtained for nonlinear multi-degree-of-freedom systems subject to stochastic parametric and external excitations. First, the stochastic averaging method is used to obtain the averaged Itô equation for amplitude envelopes of the system response. Then, the corresponding Fokker-Planck-Kolmogorov equation governing the nonstationary probability density of the amplitude envelopes is deduced. By applying the Galerkin method, the nonstationary probability density can be expressed as a series expansion in terms of a set of orthogonal base functions with time-dependent coefficients. Finally, the nonstationary probability densities for the amplitude response, as well as those for the state-space response, are solved approximately. To illustrate the applicability, the proposed method is applied to a two-degree-of-freedom van der Pol oscillator subject to external excitations of Gaussian white noises.
A representation result for nonlinear filter maps on a white noise framework
NASA Astrophysics Data System (ADS)
Mazumdar, Ravi R.; Bagchi, Arunabha
1992-07-01
The nonlinear filtering model with additive white noise which is the identity map on H = L(sub 2)(the closed interval (0, T)) with standard Gauss measure thereon is considered. Using a representation result for maps which are continuous in a locally convex topology generated by semi-norms of nuclear operators on H, it is shown that when the signal process is the solution of a nonlinear diffusion equation whose drift is uniformly Lipschitz, the nonlinear filter map can be written as the composition of a nonlinear map (which does not depend on the observation) with a linear Hilbert-Schmidt operator acting on the observation. When the nonlinear drift term satisfies the Benes conditions, it is shown that the Hilbert-Schmidt operator corresponds to the filter arising from a linear, Gaussian problem.
Langevin dynamics for vector variables driven by multiplicative white noise: A functional formalism.
Moreno, Miguel Vera; Arenas, Zochil González; Barci, Daniel G
2015-04-01
We discuss general multidimensional stochastic processes driven by a system of Langevin equations with multiplicative white noise. In particular, we address the problem of how time reversal diffusion processes are affected by the variety of conventions available to deal with stochastic integrals. We present a functional formalism to build up the generating functional of correlation functions without any type of discretization of the Langevin equations at any intermediate step. The generating functional is characterized by a functional integration over two sets of commuting variables, as well as Grassmann variables. In this representation, time reversal transformation became a linear transformation in the extended variables, simplifying in this way the complexity introduced by the mixture of prescriptions and the associated calculus rules. The stochastic calculus is codified in our formalism in the structure of the Grassmann algebra. We study some examples such as higher order derivative Langevin equations and the functional representation of the micromagnetic stochastic Landau-Lifshitz-Gilbert equation. PMID:25974436
Langevin dynamics for vector variables driven by multiplicative white noise: A functional formalism
NASA Astrophysics Data System (ADS)
Moreno, Miguel Vera; Arenas, Zochil González; Barci, Daniel G.
2015-04-01
We discuss general multidimensional stochastic processes driven by a system of Langevin equations with multiplicative white noise. In particular, we address the problem of how time reversal diffusion processes are affected by the variety of conventions available to deal with stochastic integrals. We present a functional formalism to build up the generating functional of correlation functions without any type of discretization of the Langevin equations at any intermediate step. The generating functional is characterized by a functional integration over two sets of commuting variables, as well as Grassmann variables. In this representation, time reversal transformation became a linear transformation in the extended variables, simplifying in this way the complexity introduced by the mixture of prescriptions and the associated calculus rules. The stochastic calculus is codified in our formalism in the structure of the Grassmann algebra. We study some examples such as higher order derivative Langevin equations and the functional representation of the micromagnetic stochastic Landau-Lifshitz-Gilbert equation.
Retarding friction versus white noise in the description of heavy ion fusion
NASA Astrophysics Data System (ADS)
Chushnyakova, Maria; Gontchar, Igor
2014-03-01
We performed modeling of the collision of two spherical nuclei resulting in capture. For this aim the stochastic differential equations are used with the white or colored noise and with the instant or retarding friction, respectively. The dissipative forces are proportional to the squared derivative of the strong nucleus-nucleus interaction potential (SnnP). The SnnP is calculated in the framework of the double folding approach with the density-dependent M3Y NN-forces. Calculations performed for 28Si+144Sm reaction show that accounting for the fluctuations typically reduces the capture cross sections by not more than 10%. In contradistinction, the influence of the memory effects is found resulting in about 20% enhancement of the cross section.
NASA Astrophysics Data System (ADS)
Er, Guo-Kang
2014-04-01
In this paper, the state-space-split method is extended for the dimension reduction of some high-dimensional Fokker-Planck-Kolmogorov equations or the nonlinear stochastic dynamical systems in high dimensions subject to external excitation which is the filtered Gaussian white noise governed by the second order stochastic differential equation. The selection of sub state variables and then the dimension-reduction procedure for a class of nonlinear stochastic dynamical systems is given when the external excitation is the filtered Gaussian white noise. The stretched Euler-Bernoulli beam with hinge support at two ends, point-spring supports, and excited by uniformly distributed load being filtered Gaussian white noise governed by the second-order stochastic differential equation is analyzed and numerical results are presented. The results obtained with the presented procedure are compared with those obtained with the Monte Carlo simulation and equivalent linearization method to show the effectiveness and advantage of the state-space-split method and exponential polynomial closure method in analyzing the stationary probabilistic solutions of the multi-degree-of-freedom nonlinear stochastic dynamical systems excited by filtered Gaussian white noise.
Bastatas, Lyndon D.; Bornales, Jinky B.
2008-06-18
White noise path integral prescription is applied to solve the Dirac equation for a two-dimensional Dirac oscillator in a uniform magnetic field. The energy spectrum obtained agrees with the result obtained by Villalba and Maggiolo using the differential approach.
NASA Astrophysics Data System (ADS)
Ganguly, Jayanta; Saha, Surajit; Pal, Suvajit; Ghosh, Manas
2016-03-01
We perform a meticulous analysis of profiles of third-order nonlinear optical susceptibility (TONOS) of impurity doped quantum dots (QDs) in the presence and absence of noise. We have invoked Gaussian white noise in the present study and noise has been introduced to the system additively and multiplicatively. The QD is doped with a Gaussian impurity. A magnetic field applied perpendicularly serves as a confinement source and the doped system has been exposed to a static external electric field. The TONOS profiles have been monitored against a continuous variation of incident photon energy when several important parameters such as electric field strength, magnetic field strength, confinement energy, dopant location, Al concentration, dopant potential, relaxation time, anisotropy, and noise strength assume different values. Moreover, the influence of mode of introduction of noise (additive/multiplicative) on the TONOS profiles has also been addressed. The said profiles are found to be consisting of interesting observations such as shift of TONOS peak position and maximization/minimization of TONOS peak intensity. The presence of noise alters the features of TONOS profiles and sometimes enhances the TONOS peak intensity from that of noise-free state. Furthermore, the mode of application of noise also often tailors the TONOS profiles in diverse fashions. The observations accentuate the possibility of tuning the TONOS of doped QD systems in the presence of noise.
Quantum noise limits in white-light-cavity-enhanced gravitational wave detectors
NASA Astrophysics Data System (ADS)
Zhou, Minchuan; Zhou, Zifan; Shahriar, Selim M.
2015-10-01
Previously, we had proposed a gravitational wave detector that incorporates the white-light-cavity (WLC) effect using a compound cavity for signal recycling (CC-SR). Here, we first use an idealized model for the negative dispersion medium (NDM) and use the so-called Caves model for a phase-insensitive linear amplifier to account for the quantum noise (QN) contributed by the NDM, in order to determine the upper bound of the enhancement in the sensitivity-bandwidth product. We calculate the quantum noise limited sensitivity curves for the CC-SR design, and find that the broadening of sensitivity predicted by the classical analysis is also present in these curves, but is somewhat reduced. Furthermore, we find that the curves always stay above the standard quantum limit. To circumvent this limitation, we modify the dispersion to compensate the nonlinear phase variation produced by the optomechanical resonance effects. We find that the upper bound of the factor by which the sensitivity-bandwidth product is increased, compared to the highest-sensitivity result predicted by Bunanno and Chen [Phys. Rev. D 64, 042006 (2001)], is ˜14 . We also present a simpler scheme (WLC-SR), where a dispersion medium is inserted into the SR cavity. For this scheme, we found the upper bound of the enhancement factor to be ˜18 . We then consider an explicit system for realizing the NDM, which makes use of five energy levels in M configuration to produce gain, accompanied by electromagnetically induced transparency (the GEIT system). For this explicit system, we employ the rigorous approach based on Master Equation to compute the QN contributed by the NDM, thus enabling us to determine the enhancement in the sensitivity-bandwidth product definitively rather than the upper bound thereof. Specifically, we identify a set of parameters for which the sensitivity-bandwidth product is enhanced by a factor of 17.66.
C. Lo D. D. Turner R. O. Knuteson
2006-01-31
This technical report provide a short description of the application of the principle component analysis techniques to remove uncorrelated random noise from ground-based high spectral resolution infrared radiance observations collected by the atmospheric emitted radiance interferometers (AERIs) deployed by the Atmospheric Radiation Measurement (ARM) Program. A general overview of the technique, the input, and output datastreams of the newly generated value-added product, and the data quality checks used are provided. A more complete discussion of the theory and results is given in Turner et al. (2006).
How much image noise can be added in cardiac x-ray imaging without loss in perceived image quality?
NASA Astrophysics Data System (ADS)
Gislason-Lee, Amber J.; Kumcu, Asli; Kengyelics, Stephen M.; Rhodes, Laura A.; Davies, Andrew G.
2015-03-01
Dynamic X-ray imaging systems are used for interventional cardiac procedures to treat coronary heart disease. X-ray settings are controlled automatically by specially-designed X-ray dose control mechanisms whose role is to ensure an adequate level of image quality is maintained with an acceptable radiation dose to the patient. Current commonplace dose control designs quantify image quality by performing a simple technical measurement directly from the image. However, the utility of cardiac X-ray images is in their interpretation by a cardiologist during an interventional procedure, rather than in a technical measurement. With the long term goal of devising a clinically-relevant image quality metric for an intelligent dose control system, we aim to investigate the relationship of image noise with clinical professionals' perception of dynamic image sequences. Computer-generated noise was added, in incremental amounts, to angiograms of five different patients selected to represent the range of adult cardiac patient sizes. A two alternative forced choice staircase experiment was used to determine the amount of noise which can be added to a patient image sequences without changing image quality as perceived by clinical professionals. Twenty-five viewing sessions (five for each patient) were completed by thirteen observers. Results demonstrated scope to increase the noise of cardiac X-ray images by up to 21% +/- 8% before it is noticeable by clinical professionals. This indicates a potential for 21% radiation dose reduction since X-ray image noise and radiation dose are directly related; this would be beneficial to both patients and personnel.
White noise and synchronization shaping the age structure of the human population
NASA Astrophysics Data System (ADS)
Cebrat, Stanislaw; Biecek, Przemyslaw; Bonkowska, Katarzyna; Kula, Mateusz
2007-06-01
We have modified the standard diploid Penna model of ageing in such a way that instead of threshold of defective loci resulting in genetic death of individuals, the fluctuation of environment and "personal" fluctuations of individuals were introduced. The sum of the both fluctuations describes the health status of the individual. While environmental fluctuations are the same for all individuals in the population, the personal component of fluctuations is composed of fluctuations corresponding to each physiological function (gene, genetic locus). It is rather accepted hypothesis that physiological parameters of any organism fluctuate highly nonlinearly. Transition to the synchronized behaviors could be a very strong diagnostic signal of the life threatening disorder. Thus, in our model, mutations of genes change the chaotic fluctuations representing the function of a wild gene to the synchronized signals generated by mutated genes. Genes are switched on chronologically, like in the standard Penna model. Accumulation of defective genes predicted by Medawar's theory of ageing leads to the replacement of uncorrelated white noise corresponding to the healthy organism by the correlated signals of defective functions. As a result we have got the age distribution of population corresponding to the human demographic data.
Proposed mechanism for learning and memory erasure in a white-noise-driven sleeping cortex
NASA Astrophysics Data System (ADS)
Steyn-Ross, Moira L.; Steyn-Ross, D. A.; Sleigh, J. W.; Wilson, M. T.; Wilcocks, Lara C.
2005-12-01
Understanding the structure and purpose of sleep remains one of the grand challenges of neurobiology. Here we use a mean-field linearized theory of the sleeping cortex to derive statistics for synaptic learning and memory erasure. The growth in correlated low-frequency high-amplitude voltage fluctuations during slow-wave sleep (SWS) is characterized by a probability density function that becomes broader and shallower as the transition into rapid-eye-movement (REM) sleep is approached. At transition, the Shannon information entropy of the fluctuations is maximized. If we assume Hebbian-learning rules apply to the cortex, then its correlated response to white-noise stimulation during SWS provides a natural mechanism for a synaptic weight change that will tend to shut down reverberant neural activity. In contrast, during REM sleep the weights will evolve in a direction that encourages excitatory activity. These entropy and weight-change predictions lead us to identify the final portion of deep SWS that occurs immediately prior to transition into REM sleep as a time of enhanced erasure of labile memory. We draw a link between the sleeping cortex and Landauer’s dissipation theorem for irreversible computing [R. Landauer, IBM J. Res. Devel. 5, 183 (1961)], arguing that because information erasure is an irreversible computation, there is an inherent entropy cost as the cortex transits from SWS into REM sleep.
NASA Astrophysics Data System (ADS)
Schetelat, Pascal; Etay, Jacqueline
2011-07-01
This paper presents a new technique for non-contact calorimetry measurement of specific heat capacity and thermal conductivity. Based on pseudo-white noise modulation and system identification, commonly used in electronics and communication engineering, this procedure can be used to measure the transfer function of the sample temperature variation due to heating power variation. The heat capacity and internal heat transfer coefficient are then determined using the equivalence between the identified transfer functions of the temperatures measured at two locations and the analytical model proposed by Fecht and Johnson (Rev Sci Instrum 62:1299-1303, 1991) and Wunderlich and Fecht (Measur Sci Technol 16:402-416, 2005). This inverse problem is solved numerically using a Gauss-Seidel algorithm. A numerical simulation of a non-contact modulated calorimetry experiment is used to demonstrate the relevance of this new technique for indirect measurement of the heat capacity and heat transfer coefficients of solid samples presenting large Biot numbers ( Bi > 0.4).
LCD displays performance comparison by MTF measurement using the white noise stimulus method
NASA Astrophysics Data System (ADS)
Mitjà, Carles; Escofet, Jaume
2011-01-01
The amount of images produced to be viewed as soft copies on output displays are significantly increasing. This growing occurs at the expense of the images targeted to hard copy versions on paper or any other physical support. Even in the case of high quality hard copy production, people working in professional imaging uses different displays in selecting, editing, processing and showing images, from laptop screen to specialized high end displays. Then, the quality performance of these devices is crucial in the chain of decisions to be taken in image production. Metrics of this quality performance can help in the equipment acquisition. Different metrics and methods have been described to determine the quality performance of CRT and LCD computer displays in clinical area. One of most important metrics in this field is the device spatial frequency response obtained measuring the modulation transfer function (MTF). This work presents a comparison between the MTF of three different LCD displays, Apple MacBook Pro 15", Apple LED Cinema Display 24" and Apple iPhone4, measured by the white noise stimulus method, over vertical and horizontal directions. Additionally, different displays show particular pixels structure pattern. In order to identify this pixel structure, a set of high magnification images is taken from each display to be related with the respective vertical and horizontal MTF.
A white noise approach to the Feynman integrand for electrons in random media
Grothaus, M. Riemann, F.; Suryawan, H. P.
2014-01-15
Using the Feynman path integral representation of quantum mechanics it is possible to derive a model of an electron in a random system containing dense and weakly coupled scatterers [see F. Edwards and Y. B. Gulyaev, “The density of states of a highly impure semiconductor,” Proc. Phys. Soc. 83, 495–496 (1964)]. The main goal of this paper is to give a mathematically rigorous realization of the corresponding Feynman integrand in dimension one based on the theory of white noise analysis. We refine and apply a Wick formula for the product of a square-integrable function with Donsker's delta functions and use a method of complex scaling. As an essential part of the proof we also establish the existence of the exponential of the self-intersection local times of a one-dimensional Brownian bridge. As a result we obtain a neat formula for the propagator with identical start and end point. Thus, we obtain a well-defined mathematical object which is used to calculate the density of states [see, e.g., F. Edwards and Y. B. Gulyaev, “The density of states of a highly impure semiconductor,” Proc. Phys. Soc. 83, 495–496 (1964)].
White and relaxed noises in optimal velocity models for pedestrian flow with stop-and-go waves
NASA Astrophysics Data System (ADS)
Tordeux, Antoine; Schadschneider, Andreas
2016-05-01
A class of microscopic stochastic models is proposed to describe 1D pedestrian trajectories obtained in laboratory experiments. The class contains continuous first-order models that are based on statistically calibrated optimal velocity functions. More specifically, we consider a model with an additive white noise and another one where the noise is determined by the inertial Ornstein–Uhlenbeck process. Simulation results show that both stochastic models give a good description of the characteristic relation between speed and spacing (fundamental diagram) and its variability. However, only the inertial noise model can reproduce the observed stop-and-go waves, bimodal speed distributions, and non-zero speed or spacing autocorrelations. This allows us to identify minimal microscopic stochastic mechanisms for the emergence of stable traffic waves.
NASA Astrophysics Data System (ADS)
Kayahan, Hüseyin; Yazici, Melik; Ceylan, Ömer; Gurbuz, Yasar
2014-03-01
This paper represents a novel digital readout for infrared focal plane arrays with 2.33 Ge- charge handling capacity while achieving quantization noise of 161 e-. Pixel level A/D conversion has been realized by pulse frequency modulation (PFM) technique supported with a novel method utilizing extended integration that eliminates the requirement for an additional column ADC. Digital pixel operates with two phases; the first phase is as ordinary PFM in charge domain and the second phase is in time domain, allowing the fine quantization and low quantization noise. A 32 × 32 prototype has been manufactured and tested. Measured peak SNR at half well fill is 71 dB with significant SNR improvement for low illuminated pixels due to extremely low quantization noise. 32 × 32 ROIC dissipates only 1.1 mW and the figure of merit for power dissipation is measured to be 465 fJ/LSB, compared to 930 fJ/LSB and 1470 fJ/LSB of the state of the art.
Noise is all around you, from televisions and radios to lawn mowers and washing machines. Normally, you ... sensitive structures of the inner ear and cause noise-induced hearing loss. More than 30 million Americans ...
Magma storage conditions and leucite stability in the 79 AD Vesuvius "white pumice" phonolite
NASA Astrophysics Data System (ADS)
Larsen, J. F.; Shea, T.; Gurioli, L.
2007-12-01
This study focuses on constraining the pressure and temperature stability curve of leucites and other phases that crystallized in the phonolitic magmas from the 79 AD Vesuvius Pompei eruption, using pumice from the EU1 and EU2 pumice fall layers as starting material. The experiments were conducted under H2O saturated conditions at PH2O between 25 and 200 MPa, temperatures between 800 and 1000 °C, and fO2 equaling Ni-NiO plus 0.5 log unit, using Rene-style, Waspaloy cold-seal and TZM alloy pressure vessels. The powdered pumice samples were loaded into 4 or 5 mm diameter Ag or Au capsules with 10 wt. % de-ionized water, equilibrated under isobaric and isothermal conditions for 100 to 200 hours, and quenched either by submerging the vessel in cold water or by flipping the TZM vessel to allow the capsule to rapidly quench against the water-cooled pressure seal. Both EU1 and EU2 compositions crystallized plagioclase, brown mica, pyroxene (and possibly amphibole), garnet, sanidine, and leucite in approximate order from highest equilibration PH2O and T to the lowest. The stability fields of leucite in both compositions are similar, crystallizing at approximately 125 MPa at 800 °C and 75 MPa at 880 °C. Anorthitic plagioclase and possibly pyroxene appear on the liquidus at 150 MPa and 950 °C. Plagioclase is replaced by sanidine at lower temperatures, as seen by an increase in sanidine abundance below ~880 °C and evidence for sanidine intergrown with anorthite crystals in some experiments. Previous studies have estimated the location of the 79 AD Vesuvius magma chamber to be between 3 and 6 km depth, based on the metamorphic stratigraphy and melt inclusion volatile contents . Our preliminary results are in good agreement, predicting storage pressures between 100 to 150 MPa (roughly 3 to 6 km) assuming a lithostatic pressure gradient. Refinement of the phase diagrams and additional experiments will allow for a more detailed comparison between the EU1 and EU2 magmas, as
Noise-Assisted Concurrent Multipath Traffic Distribution in Ad Hoc Networks
Murata, Masayuki
2013-01-01
The concept of biologically inspired networking has been introduced to tackle unpredictable and unstable situations in computer networks, especially in wireless ad hoc networks where network conditions are continuously changing, resulting in the need of robustness and adaptability of control methods. Unfortunately, existing methods often rely heavily on the detailed knowledge of each network component and the preconfigured, that is, fine-tuned, parameters. In this paper, we utilize a new concept, called attractor perturbation (AP), which enables controlling the network performance using only end-to-end information. Based on AP, we propose a concurrent multipath traffic distribution method, which aims at lowering the average end-to-end delay by only adjusting the transmission rate on each path. We demonstrate through simulations that, by utilizing the attractor perturbation relationship, the proposed method achieves a lower average end-to-end delay compared to other methods which do not take fluctuations into account. PMID:24319375
Noise-assisted concurrent multipath traffic distribution in ad hoc networks.
Asvarujanon, Narun; Leibnitz, Kenji; Wakamiya, Naoki; Murata, Masayuki
2013-01-01
The concept of biologically inspired networking has been introduced to tackle unpredictable and unstable situations in computer networks, especially in wireless ad hoc networks where network conditions are continuously changing, resulting in the need of robustness and adaptability of control methods. Unfortunately, existing methods often rely heavily on the detailed knowledge of each network component and the preconfigured, that is, fine-tuned, parameters. In this paper, we utilize a new concept, called attractor perturbation (AP), which enables controlling the network performance using only end-to-end information. Based on AP, we propose a concurrent multipath traffic distribution method, which aims at lowering the average end-to-end delay by only adjusting the transmission rate on each path. We demonstrate through simulations that, by utilizing the attractor perturbation relationship, the proposed method achieves a lower average end-to-end delay compared to other methods which do not take fluctuations into account. PMID:24319375
NASA Technical Reports Server (NTRS)
Reddy, C. P.; Gupta, S. C.
1973-01-01
An all digital phase locked loop which tracks the phase of the incoming sinusoidal signal once per carrier cycle is proposed. The different elements and their functions and the phase lock operation are explained in detail. The nonlinear difference equations which govern the operation of the digital loop when the incoming signal is embedded in white Gaussian noise are derived, and a suitable model is specified. The performance of the digital loop is considered for the synchronization of a sinusoidal signal. For this, the noise term is suitably modelled which allows specification of the output probabilities for the two level quantizer in the loop at any given phase error. The loop filter considered increases the probability of proper phase correction. The phase error states in modulo two-pi forms a finite state Markov chain which enables the calculation of steady state probabilities, RMS phase error, transient response and mean time for cycle skipping.
NASA Technical Reports Server (NTRS)
Blasche, P. R.
1980-01-01
Specific configurations of first and second order all digital phase locked loops are analyzed for both ideal and additive white gaussian noise inputs. In addition, a design for a hardware digital phase locked loop capable of either first or second order operation is presented along with appropriate experimental data obtained from testing of the hardware loop. All parameters chosen for the analysis and the design of the digital phase locked loop are consistent with an application to an Omega navigation receiver although neither the analysis nor the design are limited to this application.
Quantum Fields Obtained from Convoluted Generalized White Noise Never Have Positive Metric
NASA Astrophysics Data System (ADS)
Albeverio, Sergio; Gottschalk, Hanno
2016-05-01
It is proven that the relativistic quantum fields obtained from analytic continuation of convoluted generalized (Lévy type) noise fields have positive metric, if and only if the noise is Gaussian. This follows as an easy observation from a criterion by Baumann, based on the Dell'Antonio-Robinson-Greenberg theorem, for a relativistic quantum field in positive metric to be a free field.
NASA Astrophysics Data System (ADS)
Yong-Ge, Yang; Wei, Xu; Ya-Hui, Sun; Xu-Dong, Gu
2016-02-01
This paper aims to investigate the stochastic response of the van der Pol (VDP) oscillator with two kinds of fractional derivatives under Gaussian white noise excitation. First, the fractional VDP oscillator is replaced by an equivalent VDP oscillator without fractional derivative terms by using the generalized harmonic balance technique. Then, the stochastic averaging method is applied to the equivalent VDP oscillator to obtain the analytical solution. Finally, the analytical solutions are validated by numerical results from the Monte Carlo simulation of the original fractional VDP oscillator. The numerical results not only demonstrate the accuracy of the proposed approach but also show that the fractional order, the fractional coefficient and the intensity of Gaussian white noise play important roles in the responses of the fractional VDP oscillator. An interesting phenomenon we found is that the effects of the fractional order of two kinds of fractional derivative items on the fractional stochastic systems are totally contrary. Project supported by the National Natural Science Foundation of China (Grant Nos. 11472212, 11532011, and 11502201).
Marks, Kristin A; Marvyn, Phillip M; Henao, Juan J Aristizabal; Bradley, Ryan M; Stark, Ken D; Duncan, Robin E
2016-06-01
Data are presented on the fatty acyl composition of phospholipid from retroperitoneal white adipose tissue of female mice that were either given ad libitum access to food or fasted for 16 h overnight prior to sacrifice. Our data show that total adipose phospholipid concentrations were more than 2-fold higher in the fasted animals compared with the fed animals (33.48±7.40 versus 16.57±4.43 μg phospholipid fatty acids/100 mg tissue). Concentrations of several individual phospholipid fatty acyl species, including palmitic acid (16:0), vaccenic acid (18:1n-7), linoleic acid (18:2n-6), dihomo-gamma-linolenic acid (20:3n-6), arachidonic acid (20:4n-6), eicosapentaenoic acid (20:5n-3) and docosahexaenoic acid (22:6n-3), as well as total phospholipid saturated fatty acids, n-6 polyunsaturated fatty acids and n-3 polyunsaturated fatty acids, were significantly higher in adipose tissue from the fasted animals compared with the fed animals. However, when the relative abundance of phospholipid fatty acyl species was analyzed, only 20:4n-6 was specifically enriched (by ~2.5-fold) in adipose phospholipid with fasting. PMID:27014729
Adaptive subspace detection of extended target in white Gaussian noise using sinc basis
NASA Astrophysics Data System (ADS)
Zhang, Xiao-Wei; Li, Ming; Qu, Jian-She; Yang, Hui
2016-01-01
For the high resolution radar (HRR), the problem of detecting the extended target is considered in this paper. Based on a single observation, a new two-step detection based on sparse representation (TSDSR) method is proposed to detect the extended target in the presence of Gaussian noise with unknown covariance. In the new method, the Sinc dictionary is introduced to sparsely represent the high resolution range profile (HRRP). Meanwhile, adaptive subspace pursuit (ASP) is presented to recover the HRRP embedded in the Gaussian noise and estimate the noise covariance matrix. Based on the Sinc dictionary and the estimated noise covariance matrix, one step subspace detector (OSSD) for the first-order Gaussian (FOG) model without secondary data is adopted to realise the extended target detection. Finally, the proposed TSDSR method is applied to raw HRR data. Experimental results demonstrate that HRRPs of different targets can be sparsely represented very well with the Sinc dictionary. Moreover, the new method can estimate the noise power with tiny errors and have a good detection performance.
NASA Astrophysics Data System (ADS)
Pratim Ghosh, Arghya; Mandal, Arkajit; Sarkar, Sucharita; Ghosh, Manas
2016-05-01
We examine the influence of position-dependent effective mass (PDEM) on a few nonlinear optical (NLO) properties of impurity doped quantum dots (QDs) in presence and absence of noise. The said properties include total optical absorption coefficient (TOAC), nonlinear optical rectification (NOR), second harmonic generation (SHG) and third harmonic generation (THG). The impurity potential is modeled by a Gaussian function and the noise applied being Gaussian white noise. The profiles of above NLO properties have been pursued as a function of incident photon energy for different values of PDEM. Using PDEM the said profiles exhibit considerable departure from that of fixed effective mass (FEM). Presence of noise almost invariably amplifies the NLO properties with a few exceptions. A change in the mode of application of noise also sometimes affects the above profiles. The investigation furnishes us with a detailed picture of the subtle interplay between noise and PDEM through which the said NLO properties of doped QD systems can be tailored.
NASA Astrophysics Data System (ADS)
Jia, Wantao; Zhu, Weiqiu
2014-03-01
A stochastic averaging method for predicting the response of quasi-partially integrable and non-resonant Hamiltonian systems to combined Gaussian and Poisson white noise excitations is proposed. For the case with r (1
NASA Technical Reports Server (NTRS)
Johnson, E. H.
1975-01-01
The optimal design was investigated of simple structures subjected to dynamic loads, with constraints on the structures' responses. Optimal designs were examined for one dimensional structures excited by harmonically oscillating loads, similar structures excited by white noise, and a wing in the presence of continuous atmospheric turbulence. The first has constraints on the maximum allowable stress while the last two place bounds on the probability of failure of the structure. Approximations were made to replace the time parameter with a frequency parameter. For the first problem, this involved the steady state response, and in the remaining cases, power spectral techniques were employed to find the root mean square values of the responses. Optimal solutions were found by using computer algorithms which combined finite elements methods with optimization techniques based on mathematical programming. It was found that the inertial loads for these dynamic problems result in optimal structures that are radically different from those obtained for structures loaded statically by forces of comparable magnitude.
Xiao, Yanwen; Xu, Wei; Wang, Liang
2016-03-01
This paper focuses on the study of the stochastic Van der Pol vibro-impact system with fractional derivative damping under Gaussian white noise excitation. The equations of the original system are simplified by non-smooth transformation. For the simplified equation, the stochastic averaging approach is applied to solve it. Then, the fractional derivative damping term is facilitated by a numerical scheme, therewith the fourth-order Runge-Kutta method is used to obtain the numerical results. And the numerical simulation results fit the analytical solutions. Therefore, the proposed analytical means to study this system are proved to be feasible. In this context, the effects on the response stationary probability density functions (PDFs) caused by noise excitation, restitution condition, and fractional derivative damping are considered, in addition the stochastic P-bifurcation is also explored in this paper through varying the value of the coefficient of fractional derivative damping and the restitution coefficient. These system parameters not only influence the response PDFs of this system but also can cause the stochastic P-bifurcation. PMID:27036188
NASA Astrophysics Data System (ADS)
Xiao, Yanwen; Xu, Wei; Wang, Liang
2016-03-01
This paper focuses on the study of the stochastic Van der Pol vibro-impact system with fractional derivative damping under Gaussian white noise excitation. The equations of the original system are simplified by non-smooth transformation. For the simplified equation, the stochastic averaging approach is applied to solve it. Then, the fractional derivative damping term is facilitated by a numerical scheme, therewith the fourth-order Runge-Kutta method is used to obtain the numerical results. And the numerical simulation results fit the analytical solutions. Therefore, the proposed analytical means to study this system are proved to be feasible. In this context, the effects on the response stationary probability density functions (PDFs) caused by noise excitation, restitution condition, and fractional derivative damping are considered, in addition the stochastic P-bifurcation is also explored in this paper through varying the value of the coefficient of fractional derivative damping and the restitution coefficient. These system parameters not only influence the response PDFs of this system but also can cause the stochastic P-bifurcation.
NASA Astrophysics Data System (ADS)
Saha, Surajit; Ganguly, Jayanta; Pal, Suvajit; Ghosh, Manas
2016-08-01
We study the modulation of electro-optic effect (EOE) of impurity doped QD under the influence of geometrical anisotropy and position-dependent effective mass (PDEM) in presence of Gaussian white noise. Always a comparison has been made between fixed effective mass (FEM) and PDEM to understand the role of the latter. In addition, the role of mode of application of noise (additive/multiplicative) has also been analyzed. The EOE profiles are found to be enriched with shift of peak position and maximization of peak intensity. The observations reveal sensitive interplay between noise and anisotropy/PDEM to fine-tune the features of EOE profiles.
Performance of peaky template matching under additive white Gaussian noise and uniform quantization
NASA Astrophysics Data System (ADS)
Horvath, Matthew S.; Rigling, Brian D.
2015-05-01
Peaky template matching (PTM) is a special case of a general algorithm known as multinomial pattern matching originally developed for automatic target recognition of synthetic aperture radar data. The algorithm is a model- based approach that first quantizes pixel values into Nq = 2 discrete values yielding generative Beta-Bernoulli models as class-conditional templates. Here, we consider the case of classification of target chips in AWGN and develop approximations to image-to-template classification performance as a function of the noise power. We focus specifically on the case of a uniform quantization" scheme, where a fixed number of the largest pixels are quantized high as opposed to using a fixed threshold. This quantization method reduces sensitivity to the scaling of pixel intensities and quantization in general reduces sensitivity to various nuisance parameters difficult to account for a priori. Our performance expressions are verified using forward-looking infrared imagery from the Army Research Laboratory Comanche dataset.
NASA Astrophysics Data System (ADS)
Wegner, Franz
1983-12-01
The density of states of two-dimensional electrons in a strong perpendicular magnetic field and white-noise potential is calculated exactly under the provision that only the states of the free electrons in the lowest Landau level are taken into account. It is used that the integral over the coordinates in the plane perpendicular to the magnetic field in a Feynman graph yields the inverse of the number λ of Euler trails through the graph, whereas the weight by which a Feynman graph contributes in this disordered system is λ times that of the corresponding interacting system. Thus the factors λ cancel which allows the reduction of the d dimensional disordered problem to a ( d-2) dimensional φ4 interaction problem. The inverse procedure and the equivalence of disordered harmonic systems with interacting systems of superfields is used to give a mapping of interacting systems with U(1) invariance in d dimensions to interacting systems with UPL(1,1) invariance in ( d+2) dimensions. The partition function of the new systems is unity so that systems with quenched disorder can be treated by averaging exp(- H) without recourse to the replica trick.
Kastelein, Ronald A; Wensveen, Paul J; Hoek, Lean; Au, Whitlow W L; Terhune, John M; de Jong, Christ A F
2009-09-01
A psychoacoustic behavioral technique was used to determine the critical ratios (CRs) of two harbor porpoises for tonal signals with frequencies between 0.315 and 150 kHz, in random Gaussian white noise. The masked 50% detection hearing thresholds were measured using a "go/no-go" response paradigm and an up-down staircase psychometric method. CRs were determined at one masking noise level for each test frequency and were similar in both animals. For signals between 0.315 and 4 kHz, the CRs were relatively constant at around 18 dB. Between 4 and 150 kHz the CR increased gradually from 18 to 39 dB ( approximately 3.3 dB/octave). Generally harbor porpoises can detect tonal signals in Gaussian white noise slightly better than most odontocetes tested so far. By combining the mean CRs found in the present study with the spectrum level of the background noise levels at sea, the basic audiogram, and the directivity index, the detection threshold levels of harbor porpoises for tonal signals in various sea states can be calculated. PMID:19739772
NASA Astrophysics Data System (ADS)
Kayahan, Huseyin; Ceylan, Ömer; Yazici, Melik; Gurbuz, Yasar
2014-06-01
This paper presents a digital ROIC for staring type arrays with extending counting method to realize very low quantization noise while achieving a very high charge handling capacity. Current state of the art has shown that digital readouts with pulse frequency method can achieve charge handling capacities higher than 3Ge- with quantization noise higher than 1000e-. Even if the integration capacitance is reduced, it cannot be lower than 1-3 fF due to the parasitic capacitance of the comparator. For achieving a very low quantization noise of 161 electrons in a power efficient way, a new method based on measuring the time to measure the remaining charge on the integration capacitor is proposed. With this approach SNR of low flux pixels are significantly increased while large flux pixels can store electrons as high as 2.33Ge-. A prototype array of 32×32 pixels with 30μm pitch is implemented in 90nm CMOS process technology for verification. Measurement results are given for complete readout.
NASA Astrophysics Data System (ADS)
Tam, Christopher K. W.; Pastouchenko, Nikolai N.; Jones, Michael G.; Watson, Willie R.
2014-06-01
A coordinated experimental and numerical simulation effort is carried out to improve our understanding of the physics of acoustic liners in a grazing flow as well our computational aeroacoustics (CAA) method prediction capability. A numerical simulation code based on advanced CAA methods is developed. In a parallel effort, experiments are performed using the Grazing Flow Impedance Tube at the NASA Langley Research Center. In the experiment, a liner is installed in the upper wall of a rectangular flow duct with a 2 in. by 2.5 in. cross section. Spatial distribution of sound pressure levels and relative phases are measured on the wall opposite the liner in the presence of a Mach 0.3 grazing flow. The computer code is validated by comparing computed results with experimental measurements. Good agreements are found. The numerical simulation code is then used to investigate the physical properties of the acoustic liner. It is shown that an acoustic liner can produce self-noise in the presence of a grazing flow and that a feedback acoustic resonance mechanism is responsible for the generation of this liner self-noise. In addition, the same mechanism also creates additional liner drag. An estimate, based on numerical simulation data, indicates that for a resonant liner with a 10 percent open area ratio, the drag increase would be about 4 percent of the turbulent boundary layer drag over a flat wall.
A two-step A/D conversion and column self-calibration technique for low noise CMOS image sensors.
Bae, Jaeyoung; Kim, Daeyun; Ham, Seokheon; Chae, Youngcheol; Song, Minkyu
2014-01-01
In this paper, a 120 frames per second (fps) low noise CMOS Image Sensor (CIS) based on a Two-Step Single Slope ADC (TS SS ADC) and column self-calibration technique is proposed. The TS SS ADC is suitable for high speed video systems because its conversion speed is much faster (by more than 10 times) than that of the Single Slope ADC (SS ADC). However, there exist some mismatching errors between the coarse block and the fine block due to the 2-step operation of the TS SS ADC. In general, this makes it difficult to implement the TS SS ADC beyond a 10-bit resolution. In order to improve such errors, a new 4-input comparator is discussed and a high resolution TS SS ADC is proposed. Further, a feedback circuit that enables column self-calibration to reduce the Fixed Pattern Noise (FPN) is also described. The proposed chip has been fabricated with 0.13 μm Samsung CIS technology and the chip satisfies the VGA resolution. The pixel is based on the 4-TR Active Pixel Sensor (APS). The high frame rate of 120 fps is achieved at the VGA resolution. The measured FPN is 0.38 LSB, and measured dynamic range is about 64.6 dB. PMID:24999716
A Two-Step A/D Conversion and Column Self-Calibration Technique for Low Noise CMOS Image Sensors
Bae, Jaeyoung; Kim, Daeyun; Ham, Seokheon; Chae, Youngcheol; Song, Minkyu
2014-01-01
In this paper, a 120 frames per second (fps) low noise CMOS Image Sensor (CIS) based on a Two-Step Single Slope ADC (TS SS ADC) and column self-calibration technique is proposed. The TS SS ADC is suitable for high speed video systems because its conversion speed is much faster (by more than 10 times) than that of the Single Slope ADC (SS ADC). However, there exist some mismatching errors between the coarse block and the fine block due to the 2-step operation of the TS SS ADC. In general, this makes it difficult to implement the TS SS ADC beyond a 10-bit resolution. In order to improve such errors, a new 4-input comparator is discussed and a high resolution TS SS ADC is proposed. Further, a feedback circuit that enables column self-calibration to reduce the Fixed Pattern Noise (FPN) is also described. The proposed chip has been fabricated with 0.13 μm Samsung CIS technology and the chip satisfies the VGA resolution. The pixel is based on the 4-TR Active Pixel Sensor (APS). The high frame rate of 120 fps is achieved at the VGA resolution. The measured FPN is 0.38 LSB, and measured dynamic range is about 64.6 dB. PMID:24999716
NASA Astrophysics Data System (ADS)
Kohjiro, Satoshi; Hirayama, Fuminori; Yamamori, Hirotake; Nagasawa, Shuichi; Fukuda, Daiji; Hidaka, Mutsuo
2014-06-01
White noise of dissipationless microwave radio frequency superconducting quantum interference device (RF-SQUID) multiplexers has been experimentally studied to evaluate their readout performance for transition edge sensor (TES) photon counters ranging from near infrared to gamma ray. The characterization has been carried out at 4 K, first to avoid the low-frequency fluctuations present at around 0.1 K, and second, for a feasibility study of readout operation at 4 K for extended applications. To increase the resonant Q at 4 K and maintain low noise SQUID operation, multiplexer chips consisting of niobium nitride (NbN)-based coplanar-waveguide resonators and niobium (Nb)-based RF-SQUIDs have been developed. This hybrid multiplexer exhibited 1 × 104 ≤ Q ≤ 2 × 104 and the square root of spectral density of current noise referred to the SQUID input √SI = 31 pA/√Hz. The former and the latter are factor-of-five and seven improvements from our previous results on Nb-based resonators, respectively. Two-directional readout on the complex plane of the transmission component of scattering matrix S21 enables us to distinguish the flux noise from noise originating from other sources, such as the cryogenic high electron mobility transistor (HEMT) amplifier. Systematic noise measurements with various microwave readout powers PMR make it possible to distinguish the contribution of noise sources within the system as follows: (1) The achieved √SI is dominated by the Nyquist noise from a resistor at 4 K in parallel to the SQUID input coil which is present to prevent microwave leakage to the TES. (2) The next dominant source is either the HEMT-amplifier noise (for small values of PMR) or the quantization noise due to the resolution of 300-K electronics (for large values of PMR). By a decrease of these noise levels to a degree that is achievable by current technology, we predict that the microwave RF-SQUID multiplexer can exhibit √SI ≤ 5 pA/√Hz, i.e., close to √SI of
Kohjiro, Satoshi; Hirayama, Fuminori; Yamamori, Hirotake; Nagasawa, Shuichi; Fukuda, Daiji; Hidaka, Mutsuo
2014-06-14
White noise of dissipationless microwave radio frequency superconducting quantum interference device (RF-SQUID) multiplexers has been experimentally studied to evaluate their readout performance for transition edge sensor (TES) photon counters ranging from near infrared to gamma ray. The characterization has been carried out at 4 K, first to avoid the low-frequency fluctuations present at around 0.1 K, and second, for a feasibility study of readout operation at 4 K for extended applications. To increase the resonant Q at 4 K and maintain low noise SQUID operation, multiplexer chips consisting of niobium nitride (NbN)-based coplanar-waveguide resonators and niobium (Nb)-based RF-SQUIDs have been developed. This hybrid multiplexer exhibited 1 × 10{sup 4} ≤ Q ≤ 2 × 10{sup 4} and the square root of spectral density of current noise referred to the SQUID input √S{sub I} = 31 pA/√Hz. The former and the latter are factor-of-five and seven improvements from our previous results on Nb-based resonators, respectively. Two-directional readout on the complex plane of the transmission component of scattering matrix S{sub 21} enables us to distinguish the flux noise from noise originating from other sources, such as the cryogenic high electron mobility transistor (HEMT) amplifier. Systematic noise measurements with various microwave readout powers P{sub MR} make it possible to distinguish the contribution of noise sources within the system as follows: (1) The achieved √S{sub I} is dominated by the Nyquist noise from a resistor at 4 K in parallel to the SQUID input coil which is present to prevent microwave leakage to the TES. (2) The next dominant source is either the HEMT-amplifier noise (for small values of P{sub MR}) or the quantization noise due to the resolution of 300-K electronics (for large values of P{sub MR}). By a decrease of these noise levels to a degree that is achievable by current technology, we predict that the
Yoshida, Kenichiro; Nishidate, Izumi
2014-01-01
To rapidly derive a result for diffuse reflectance from a multilayered model that is equivalent to that of a Monte-Carlo simulation (MCS), we propose a combination of a layered white MCS and the adding-doubling method. For slabs with various scattering coefficients assuming a certain anisotropy factor and without absorption, we calculate the transition matrices for light flow with respect to the incident and exit angles. From this series of precalculated transition matrices, we can calculate the transition matrices for the multilayered model with the specific anisotropy factor. The relative errors of the results of this method compared to a conventional MCS were less than 1%. We successfully used this method to estimate the chromophore concentration from the reflectance spectrum of a numerical model of skin and in vivo human skin tissue. PMID:25426319
NASA Astrophysics Data System (ADS)
Ranjha, Bilal; Zhou, Zhou; Kavehrad, Mohsen
2014-08-01
We have compared the bit error rate (BER) performance of precoding-based asymmetrically clipped optical orthogonal frequency division multiplexing (ACO-OFDM) and pulse amplitude modulated discrete multitone (PAM-DMT) optical wireless (OW) systems in additive white Gaussian noise (AWGN) and indoor multipath frequency selective channel. Simulation and analytical results show that precoding schemes such as discrete Fourier transform, discrete cosine transform, and Zadoff-Chu sequences do not affect the performance of the OW systems in the AWGN channel while they do reduce the peak-to-average power ratio (PAPR) of the OFDM output signal. However, in a multipath indoor channel, using zero forcing frequency domain equalization precoding-based systems give better BER performance than their conventional counterparts. With additional clipping to further reduce the PAPR, precoding-based systems also show better BER performance compared to nonprecoded systems when clipped relative to the peak of nonprecoded systems. Therefore, precoding-based ACO-OFDM and PAM-DMT systems offer better BER performance, zero signaling overhead, and low PAPR compared to conventional systems.
Mettu, Srinivas; Chaudhury, Manoj K
2010-06-01
Relaxation of the three phase contact line of a sessile drop of water on a low energy surface is studied by subjecting it to a white noise vibration. While a spring force acts on the contact line whenever the contact angle deviates from its equilibrium value, it is opposed by hysteresis. The drop, therefore, remains pinned at a metastable state. With an appropriate amount of vibration, the drop can reach a global equilibrium state irrespective of its initial state, be it advanced or retreated. While the end state is free of hysteresis, the current study sheds light on the dynamics of relaxation that is analyzed in conjunction with a modified Langevin equation. Instead of exhibiting a smooth relaxation as predicted by the Langevin equation with a smooth background potential, stepwise relaxation is observed in most cases. These stepwise relaxations can be explained if the background potential is made slightly corrugated that signifies the existence of metastable states of a drop on a surface. The fluctuation of the displacement of the contact line is highly non-Gaussian. It is shown that an exponential distribution of the displacement fluctuation arises due to the nonlinear hysteresis term in the Langevin equation. The observations of stick-slip motion, the large time of relaxation, and the anomalous displacement fluctuation suggest that hysteresis is present during the relaxation process of the drop even though the final state reached by the drop is free of hysteresis. Finally, we compare the displacement fluctuations of the contact line on two different surfaces: a silicone rubber and a fluorocarbon monolayer. Although the displacement fluctuation is exponential in both cases, the later surface exhibits a greater variance of the distribution than the former plausibly due to differences in hysteresis. This result indicates that the fluctuation of displacement may be used as a tool to study the surface property of a low energy substrate. PMID:20099806
Enhanced corticomuscular coherence by external stochastic noise
Trenado, Carlos; Mendez-Balbuena, Ignacio; Manjarrez, Elias; Huethe, Frank; Schulte-Mönting, Jürgen; Feige, Bernd; Hepp-Reymond, Marie-Claude; Kristeva, Rumyana
2014-01-01
Noise can have beneficial effects as shown by the stochastic resonance (SR) phenomenon which is characterized by performance improvement when an optimal noise is added. Modern attempts to improve human performance utilize this phenomenon. The purpose of the present study was to investigate whether performance improvement by addition of optimum noise (ON) is related to increased cortical motor spectral power (SP) and increased corticomuscular coherence. Eight subjects performed a visuomotor task requiring to compensate with the right index finger a static force (SF) generated by a manipulandum on which Gaussian noise was applied. The finger position was displayed on-line on a monitor as a small white dot which the subjects had to maintain in the center of a green bigger circle. Electroencephalogram from the contralateral motor area, electromyogram from active muscles and finger position were recorded. The performance was measured by the mean absolute deviation (MAD) of the white dot from the zero position. ON compared to the zero noise condition induced an improvement in motor accuracy together with an enhancement of cortical motor SP and corticomuscular coherence in beta-range. These data suggest that the improved sensorimotor performance via SR is consistent with an increase in the cortical motor SP and in the corticomuscular coherence. PMID:24904365
Teledyne H1RG, H2RG, and H4RG Noise Generator
NASA Astrophysics Data System (ADS)
Rauscher, Bernard J.
2015-11-01
This paper describes the near-infrared detector system noise generator (NG) that we wrote for the James Webb Space Telescope (JWST) Near Infrared Spectrograph (NIRSpec). NG simulates many important noise components including: (1) white "read noise"; (2) residual bias drifts; (3) pink 1/f noise; (4) alternating column noise; and (5) picture frame noise. By adjusting the input parameters, NG can simulate noise for Teledyne's H1RG, H2RG, and H4RG detectors with and without Teledyne's SIDECAR ASIC IR array controller. NG can be used as a starting point for simulating astronomical scenes by adding dark current, scattered light, and astronomical sources into the results from NG. NG is written in Python-3.4. The source code is freely available for download from http://jwst.nasa.gov/publications.html.
Teledyne H1RG, H2RG, and H4RG Noise Generator
NASA Technical Reports Server (NTRS)
Rauscher, Bernard J.
2015-01-01
This paper describes the near-infrared detector system noise generator (NG) that we wrote for the James Webb Space Telescope (JWST) Near Infrared Spectrograph (NIRSpec). NG simulates many important noise components including; (1) white "read noise", (2) residual bias drifts, (3) pink 1/f noise, (4) alternating column noise, and (5) picture frame noise. By adjusting the input parameters, NG can simulate noise for Teledyne's H1RG, H2RG, and H4RG detectors with and without Teledyne's SIDECAR ASIC IR array controller. NG can be used as a starting point for simulating astronomical scenes by adding dark current, scattered light, and astronomical sources into the results from NG. NG is written in Python-3.4.
NASA Technical Reports Server (NTRS)
Porter, Trevor J.; Pisaric, Michael F. J.; Field, Robert D.; Kokelj, Steven V.; Edwards, Thomas W. D.; deMontigny, Peter; Healy, Richard; LeGrande, Allegra N.
2013-01-01
High-latitude delta(exp 18)O archives deriving from meteoric water (e.g., tree-rings and ice-cores) can provide valuable information on past temperature variability, but stationarity of temperature signals in these archives depends on the stability of moisture source/trajectory and precipitation seasonality, both of which can be affected by atmospheric circulation changes. A tree-ring delta(exp 18)O record (AD 1780-2003) from the Mackenzie Delta is evaluated as a temperature proxy based on linear regression diagnostics. The primary source of moisture for this region is the North Pacific and, thus, North Pacific atmospheric circulation variability could potentially affect the tree-ring delta(exp 18)O-temperature signal. Over the instrumental period (AD 1892-2003), tree-ring delta(exp 18)O explained 29% of interannual variability in April-July minimum temperatures, and the explained variability increases substantially at lower-frequencies. A split-period calibration/verification analysis found the delta(exp 18)O-temperature relation was time-stable, which supported a temperature reconstruction back to AD 1780. The stability of the delta(exp 18)O-temperature signal indirectly implies the study region is insensitive to North Pacific circulation effects, since North Pacific circulation was not constant over the calibration period. Simulations from the NASA-GISS ModelE isotope-enabled general circulation model confirm that meteoric delta(exp 18)O and precipitation seasonality in the study region are likely insensitive to North Pacific circulation effects, highlighting the paleoclimatic value of tree-ring and possibly other delta(exp 18)O records from this region. Our delta(exp 18)O-based temperature reconstruction is the first of its kind in northwestern North America, and one of few worldwide, and provides a long-term context for evaluating recent climate warming in the Mackenzie Delta region.
The design and research of anti-color-noise chaos M-ary communication system
NASA Astrophysics Data System (ADS)
Fu, Yongqing; Li, Xingyuan; Li, Yanan; Zhang, Lin
2016-03-01
Previously a novel chaos M-ary digital communication method based on spatiotemporal chaos Hamilton oscillator has been proposed. Without chaos synchronization circumstance, it has performance improvement in bandwidth efficiency, transmission efficiency and anti-white-noise performance compared with traditional communication method. In this paper, the channel noise influence on chaotic modulation signals and the construction problem of anti-color-noise chaotic M-ary communication system are studied. The formula of zone partition demodulator's boundary in additive white Gaussian noise is derived, besides, the problem about how to determine the boundary of zone partition demodulator in additive color noise is deeply studied; Then an approach on constructing anti-color-noise chaos M-ary communication system is proposed, in which a pre-distortion filter is added after the chaos baseband modulator in the transmitter and whitening filter is added before zone partition demodulator in the receiver. Finally, the chaos M-ary communication system based on Hamilton oscillator is constructed and simulated in different channel noise. The result shows that the proposed method in this paper can improve the anti-color-noise performance of the whole communication system compared with the former system, and it has better anti-fading and resisting disturbance performance than Quadrature Phase Shift Keying system.
NASA Astrophysics Data System (ADS)
Saha, Surajit; Pal, Suvajit; Ganguly, Jayanta; Ghosh, Manas
2016-03-01
We inspect the influence of position-dependent effective mass (PDEM) on the third-order nonlinear optical susceptibility (TONOS) of impurity doped quantum dots (QDs) in the presence and absence of noise. The TONOS profiles have been followed as a function of incident photon energy for different values of PDEM. Using PDEM the said profile considerably deviates from that of fixed effective mass (FEM). However, a switch from one mode of application of noise to another primarily alters the TONOS peak intensity. The observations highlight the possibility of tuning the TONOS profiles of doped QD systems exploiting noise and PDEM.
High- Tc dc SQUID readout electronics with low noise and high bandwidth
NASA Astrophysics Data System (ADS)
He, D. F.; Itozaki, H.
2006-10-01
Using AD797 low noise op amps and 2SA1048 low noise transistors, we have developed a composite preamplifier for use in dc SQUID readout electronics. This preamplifier has a small dc drift and super low noise at high frequencies. The equivalent input voltage noise of the preamplifier is about 0.35 nV/√Hz from 100 kHz to 10 MHz. Using this preamplifier, we developed dc SQUID readout electronics having low noise and high bandwidth. Used with a 3 mm2 high-Tc dc SQUID, the white flux noise was about 18 μΦ0/√Hz above 100 kHz and the FLL bandwidth was about 2 MHz. This readout electronics can be used for the applications of SQUID-based NDE and SQUID-based NQR.
Papoutsoglou, Sofronios E; Karakatsouli, Nafsika; Psarrou, Anna; Apostolidou, Sofia; Papoutsoglou, Eustratios S; Batzina, Alkisti; Leondaritis, Georgios; Sakellaridis, N
2015-02-01
This study presents the results of the response of Sparus aurata to three different musical stimuli, derived from the transmission (4 h per day, 5 days per week) of particular music pieces by Mozart, Romanza and Bach (140 dB(rms) re 1 μPa), compared to the same transmission level of white noise, while the underwater ambient noise in all the experimental tanks was 121 dB(rms) re 1 μPa. Using recirculating sea water facilities, 10 groups, 2 for each treatment, of 20 specimens of 11.2 ± 0.02 g (S.E.), were reared for 94 days, under 150 ± 10 l× 12L-12D, and were fed an artificial diet three times per day. Fish body weight showed significant differences after 55 days, while its maximum level was observed after the 69th day until the end of the experiment, the highest value demonstrated in Mozart (M) groups, followed by those of Romanza (R), Bach (B), control (C) and white noise (WN). SGR (M = B), %WG (M = B) and FCR (all groups fed same % b.w.) were also improved for M group. Brain neurotransmitters results exhibited significant differences in DA-dopamine, (M > B), 5HIAA (C > B), 5HIAA:5HT (WN > R), DOPAC (M > B), DOPAC:DA and (DOPAC + HVA):DA, (C > M), while no significant differences were observed in 5HT, NA, HVA and HVA:DA. No differences were observed in biometric measurements, protease activity, % fatty acids of fillet, visceral fat and liver, while differences were observed regarding carbohydrase activity and the amount (mg/g w.w.) of some fatty acids in liver, fillet and visceral fat. In conclusion, present results confirm those reported for S. aurata, concerning the observed relaxing influence--due to its brain neurotransmitters action--of the transmission of Mozart music (compared to R and B), which resulted in the achievement of maximum growth rate, body weight and improved FCR. This conclusion definitely supports the musical "understanding" and sensitivity of S. aurata to music stimuli as well as suggesting a specific effect of white noise. PMID:25487611
NASA Astrophysics Data System (ADS)
Lenderink, Geert; van Meijgaard, Erik
2013-04-01
Projections of future climate derived from multi-model ensembles with regional climate models, like those in CORDEX, often show large changes at regional (10-500 km) scales, in particular for precipitation. However, the inter-model differences in such ensembles are often of the same size. It is therefore not clear which part of the regional/local information from these regional climate model integrations can be trusted, and for users of climate information this is an undesirable situation. Thus, it is important to determine the cause of the inter-model differences within these multi-model ensembles. In general, three main causes can be distinguished: i) differences in future emissions (uncertainty in the forcing), ii) differences in modeling the response to this forcing (uncertainty in the climate models), and iii) differences due to natural variations not related to the forcing (natural variability). In multi-model ensembles, such as those in CORDEX, where different regional models are driven by different global climate models with different emission scenarios it is difficult to unravel the cause of differences in the projected changes. Here, we therefore investigated an eight-member ensemble with the regional climate model RACMO2 driven by one global climate model (EC-EARTH) using one emission scenario (RCP8.5). In this ensemble inter-model differences are solely attributed to natural variations. We determined the size of these natural variations compared to the forced climate change signal (defined as the average response over all ensemble members). In particular, we investigated whether the forced climate change signal contains persistent small scale features that would not be captured in the GCMs output ("added value"). Within a perfect model approach we also investigated whether these small scale structures can be reliably estimated from a limited number of model simulations.
Optical Johnson noise thermometry
NASA Technical Reports Server (NTRS)
Shepard, R. L.; Blalock, T. V.; Maxey, L. C.; Roberts, M. J.; Simpson, M. L.
1989-01-01
A concept is being explored that an optical analog of the electrical Johnson noise may be used to measure temperature independently of emissivity. The concept is that a laser beam may be modulated on reflection from a hot surface by interaction of the laser photons with the thermally agitated conduction electrons or the lattice phonons, thereby adding noise to the reflected laser beam. If the reflectance noise can be detected and quantified in a background of other noise in the optical and signal processing systems, the reflectance noise may provide a noncontact measurement of the absolute surface temperature and may be independent of the surface's emissivity.
Noise and the Perceptual Filling-in effect
Zomet, Ativ; Polat, Uri; Levi, Dennis M.
2016-01-01
Nearby collinear flankers increase the false alarm rate (reports of the target being present when it is not) in a Yes-No experiment. This effect has been attributed to “filling-in” of the target location due to increased activity induced by the flankers. According to signal detection theory, false alarms are attributed to noise in the visual nervous system. Here we investigated the effect of external noise on the filling-in effect by adding white noise to a low contrast Gabor target presented between two collinear Gabor flankers at a range of target-flanker separations. External noise modulates the filling-in effect, reducing visual sensitivity (d′) and increasing the filling-in effect (False Alarm rate). We estimated the amount of external noise at which the false alarm rate increases by the √2 (which we refer to as NFA). Across flank distances, both the false alarm rate and d′ (with no external noise) are correlated with NFA. These results are consistent with the notion that nearby collinear flankers add both signal and noise to the target location. The increased signal results in higher d′ values; the increased noise to higher false alarm rates (the filling effect). PMID:27103594
Noise and the Perceptual Filling-in effect.
Zomet, Ativ; Polat, Uri; Levi, Dennis M
2016-01-01
Nearby collinear flankers increase the false alarm rate (reports of the target being present when it is not) in a Yes-No experiment. This effect has been attributed to "filling-in" of the target location due to increased activity induced by the flankers. According to signal detection theory, false alarms are attributed to noise in the visual nervous system. Here we investigated the effect of external noise on the filling-in effect by adding white noise to a low contrast Gabor target presented between two collinear Gabor flankers at a range of target-flanker separations. External noise modulates the filling-in effect, reducing visual sensitivity (d') and increasing the filling-in effect (False Alarm rate). We estimated the amount of external noise at which the false alarm rate increases by the √2 (which we refer to as NFA). Across flank distances, both the false alarm rate and d' (with no external noise) are correlated with NFA. These results are consistent with the notion that nearby collinear flankers add both signal and noise to the target location. The increased signal results in higher d' values; the increased noise to higher false alarm rates (the filling effect). PMID:27103594
ERIC Educational Resources Information Center
UCLA IDEA, 2012
2012-01-01
Value added measures (VAM) uses changes in student test scores to determine how much "value" an individual teacher has "added" to student growth during the school year. Some policymakers, school districts, and educational advocates have applauded VAM as a straightforward measure of teacher effectiveness: the better a teacher, the better students…
Phase noise in RF and microwave amplifiers.
Boudot, Rodolphe; Rubiola, Enrico
2012-12-01
Understanding amplifier phase noise is a critical issue in many fields of engineering and physics, such as oscillators, frequency synthesis, telecommunication, radar, and spectroscopy; in the emerging domain of microwave photonics; and in exotic fields, such as radio astronomy, particle accelerators, etc. Focusing on the two main types of base noise in amplifiers, white and flicker, the power spectral density of the random phase φ(t) is Sφ(f) = b(0) + b(-1)/f. White phase noise results from adding white noise to the RF spectrum in the carrier region. For a given RF noise level, b(0) is proportional to the reciprocal of the carrier power P(0). By contrast, flicker results from a near-dc 1/f noise-present in all electronic devices-which modulates the carrier through some parametric effect in the semiconductor. Thus, b(-1) is a parameter of the amplifier, constant in a wide range of P(0). The consequences are the following: Connecting m equal amplifiers in parallel, b(-1) is 1/m times that of one device. Cascading m equal amplifiers, b(-1) is m times that of one amplifier. Recirculating the signal in an amplifier so that the gain increases by a power of m (a factor of m in decibels) as a result of positive feedback (regeneration), we find that b(-1) is m(2) times that of the amplifier alone. The feedforward amplifier exhibits extremely low b(-1) because the carrier is ideally nulled at the input of its internal error amplifier. Starting with an extensive review of the literature, this article introduces a system-oriented model which describes the phase flickering. Several amplifier architectures (cascaded, parallel, etc.) are analyzed systematically, deriving the phase noise from the general model. There follow numerous measurements of amplifiers using different technologies, including some old samples, and in a wide frequency range (HF to microwaves), which validate the theory. In turn, theory and results provide design guidelines and give suggestions for CAD and
NASA Technical Reports Server (NTRS)
Ribner, H. S.
1981-01-01
Jet noise is a byproduct of turbulence. Until recently turbulence was assumed to be known statistically, and jet noise was computed therefrom. As a result of new findings though on the behavior of vortices and instability waves, a more integrated view of the problem has been accepted lately. After presenting a simple view of jet noise, the paper attempts to resolve the apparent differences between Lighthill's and Lilley's interpretations of mean-flow shear, and examines a number of ad hoc approaches to jet noise suppression.
Improved Segmentation of White Matter Tracts with Adaptive Riemannian Metrics
Hao, Xiang; Zygmunt, Kristen; Whitaker, Ross T.; Fletcher, P. Thomas
2014-01-01
We present a novel geodesic approach to segmentation of white matter tracts from diffusion tensor imaging (DTI). Compared to deterministic and stochastic tractography, geodesic approaches treat the geometry of the brain white matter as a manifold, often using the inverse tensor field as a Riemannian metric. The white matter pathways are then inferred from the resulting geodesics, which have the desirable property that they tend to follow the main eigenvectors of the tensors, yet still have the flexibility to deviate from these directions when it results in lower costs. While this makes such methods more robust to noise, the choice of Riemannian metric in these methods is ad hoc. A serious drawback of current geodesic methods is that geodesics tend to deviate from the major eigenvectors in high-curvature areas in order to achieve the shortest path. In this paper we propose a method for learning an adaptive Riemannian metric from the DTI data, where the resulting geodesics more closely follow the principal eigenvector of the diffusion tensors even in high-curvature regions. We also develop a way to automatically segment the white matter tracts based on the computed geodesics. We show the robustness of our method on simulated data with different noise levels. We also compare our method with tractography methods and geodesic approaches using other Riemannian metrics and demonstrate that the proposed method results in improved geodesics and segmentations using both synthetic and real DTI data. PMID:24211814
NASA Astrophysics Data System (ADS)
Roberts, Peter M.
The purpose of this study was to examine white noise effects of U.S. crude oil spot prices on the stock prices of a green energy company. Epistemological, Phenomenological, Axiological and Ontological assumptions of Green Energy Management (GEM) Theory were utilized for selecting Air Products and Chemicals Inc. (APD) as the case study. Exxon Mobil (XOM) was used as a control for triangulation purposes. The period of time examined was between January of 1999 and December of 2008. Monthly stock prices for APD and XOM for the ten year period of time were collected from the New York Stock Exchange. Monthly U.S. crude oil spot prices for the ten year period of time were collected from the US Energy Information Administration. The data was entered into SPSS 17.0 software in order to conduct cross-correlation analysis. The six cross-correlation assumptions were satisfied in order to conduct a Cross-correlation Mirror Test (CCMT). The CCMT established the lag time direction and verified that U.S. crude oil spot prices serve as white noise for stock prices of APD and XOM. The Theory of Relative Weakness was employed in order to analyze the results. A 2 year period of time between December, 2006 and December, 2008 was examined. The correlation coefficient r = - .155 indicates that U.S. crude oil spot prices lead APD stock prices by 4 months. During the same 2 year period of time, U.S. crude oil spot prices lead XOM stock prices by 4 months at r = -.283. XOM stock prices and APD stock prices were positively correlated with 0 lag in time with a positive r = .566. The 4 month cycle was an exact match between APD stock prices, XOM stock prices and U.S. crude oil spot prices. The 4 month cycle was due to the random price fluctuation of U.S. crude oil spot prices that obscured the true stock prices of APD and XOM for the 2 year period of time.
Chesca, Boris John, Daniel; Mellor, Christopher J.
2015-10-19
A very promising direction to improve the sensitivity of magnetometers based on superconducting quantum interference devices (SQUIDs) is to build a series-array of N non-interacting SQUIDs operating flux-coherently, because in this case their voltage modulation depth, ΔV, linearly scales with N whereas the white flux noise S{sub Φ}{sup 1/2} decreases as 1/N{sup 1/2}. Here, we report the realization of both these improvements in an advanced layout of very large SQUID arrays made of YBa{sub 2}Cu{sub 3}O{sub 7}. Specially designed with large area narrow flux focusers for increased field sensitivity and improved flux-coherency, our arrays have extremely low values for S{sub Φ}{sup 1/2} between (0.25 and 0.44) μΦ{sub 0}/Hz{sup 1/2} for temperatures in the range (77–83) K. In this respect, they outperform niobium/aluminium trilayer technology-based single-SQUIDs operating at 4.2 K. Moreover, with values for ΔV and transimpedance in the range of (10–17) mV and (0.3–2.5) kΩ, respectively, a direct connection to a low-noise room temperature amplifier is allowed, while matching for such readout is simplified and the available bandwidth is greatly increased. These landmark performances suggest such series SQUID arrays are ideal candidates to replace single-SQUIDs operating at 4.2 K in many applications.
Gai, Zhihui; Li, Kang; Sun, Huanrui; She, Xiaojun; Cui, Bo; Wang, Rui
2016-09-15
Chronic noise exposure has been associated with Alzheimer's disease (AD)-like pathological changes, such as tau hyperphosphorylation and β-amyloid peptide accumulation in the prefrontal cortex (PFC). Corticotropin-releasing factor (CRF) is the central driving force in the stress response and a regulator of tau phosphorylation via binding to CRF receptors (CRFR). Little is known about the CRF system in relation to noise-induced AD-like changes in the PFC. The aim of this study was to explore the effects of chronic noise exposure on the CRF system in the PFC of rats and its relationship to tau phosphorylation. Male Wistar rats were randomly divided into control and noise exposure groups. The CRF system was evaluated following chronic noise exposure (95dB sound pressure level white noise, 4h/day×30days). Chronic noise significantly accelerated the progressive overproduction of corticosterone and upregulated CRF and CRFR1 mRNA and protein, both of which persisted 7-14days after noise exposure. In contrast, CRFR2 was elevated 3-7days following the last stimulus. Double-labeling immunofluorescence co-localized p-tau with CRF in PFC neurons. The results suggest that chronic noise exposure elevates the expression of the CRF system, which may contribute to AD-like changes. PMID:27538655
NASA Technical Reports Server (NTRS)
Huston, R. J. (Compiler)
1982-01-01
The establishment of a realistic plan for NASA and the U.S. helicopter industry to develop a design-for-noise methodology, including plans for the identification and development of promising noise reduction technology was discussed. Topics included: noise reduction techniques, scaling laws, empirical noise prediction, psychoacoustics, and methods of developing and validing noise prediction methods.
ERIC Educational Resources Information Center
Orsini, Larry L.; Hudack, Lawrence R.; Zekan, Donald L.
1999-01-01
The value-added statement (VAS), relatively unknown in the United States, is used in financial reports by many European companies. Saint Bonaventure University (New York) has adapted a VAS to make it appropriate for not-for-profit universities by identifying stakeholder groups (students, faculty, administrators/support personnel, creditors, the…
... here: EPA Home Air and Radiation Noise Pollution Noise Pollution This page has moved. You should be ... epa.gov/clean-air-act-overview/title-iv-noise-pollution Local Navigation Air & Radiation Home Basic Information ...
NASA Astrophysics Data System (ADS)
Albacete, Javier L.; Kovchegov, Yuri V.; Taliotis, Anastasios
2009-03-01
We calculate the total cross section for the scattering of a quark-anti-quark dipole on a large nucleus at high energy for a strongly coupled N = 4 super Yang-Mills theory using AdS/CFT correspondence. We model the nucleus by a metric of a shock wave in AdS5. We then calculate the expectation value of the Wilson loop (the dipole) by finding the extrema of the Nambu-Goto action for an open string attached to the quark and antiquark lines of the loop in the background of an AdS5 shock wave. We find two physically meaningful extremal string configurations. For both solutions we obtain the forward scattering amplitude N for the quark dipole-nucleus scattering. We study the onset of unitarity with increasing center-of-mass energy and transverse size of the dipole: we observe that for both solutions the saturation scale Qs is independent of energy/Bjorken-x and depends on the atomic number of the nucleus as Qs˜A1/3. Finally we observe that while one of the solutions we found corresponds to the pomeron intercept of αP = 2 found earlier in the literature, when extended to higher energy or larger dipole sizes it violates the black disk limit. The other solution we found respects the black disk limit and yields the pomeron intercept of αP = 1.5. We thus conjecture that the right pomeron intercept in gauge theories at strong coupling may be αP = 1.5.
Mock LISA data challenge for the Galactic white dwarf binaries
Blaut, Arkadiusz; Babak, Stanislav; Krolak, Andrzej
2010-03-15
We present data analysis methods used in the detection and estimation of parameters of gravitational-wave signals from the white dwarf binaries in the mock LISA data challenge. Our main focus is on the analysis of challenge 3.1, where the gravitational-wave signals from more than 6x10{sup 7} Galactic binaries were added to the simulated Gaussian instrumental noise. The majority of the signals at low frequencies are not resolved individually. The confusion between the signals is strongly reduced at frequencies above 5 mHz. Our basic data analysis procedure is the maximum likelihood detection method. We filter the data through the template bank at the first step of the search, then we refine parameters using the Nelder-Mead algorithm, we remove the strongest signal found and we repeat the procedure. We detect reliably and estimate parameters accurately of more than ten thousand signals from white dwarf binaries.
Mock LISA data challenge for the Galactic white dwarf binaries
NASA Astrophysics Data System (ADS)
Błaut, Arkadiusz; Babak, Stanislav; Królak, Andrzej
2010-03-01
We present data analysis methods used in the detection and estimation of parameters of gravitational-wave signals from the white dwarf binaries in the mock LISA data challenge. Our main focus is on the analysis of challenge 3.1, where the gravitational-wave signals from more than 6×107 Galactic binaries were added to the simulated Gaussian instrumental noise. The majority of the signals at low frequencies are not resolved individually. The confusion between the signals is strongly reduced at frequencies above 5 mHz. Our basic data analysis procedure is the maximum likelihood detection method. We filter the data through the template bank at the first step of the search, then we refine parameters using the Nelder-Mead algorithm, we remove the strongest signal found and we repeat the procedure. We detect reliably and estimate parameters accurately of more than ten thousand signals from white dwarf binaries.
Magnetostochastic resonance under colored noise condition
NASA Astrophysics Data System (ADS)
Trapanese, Marco
2012-04-01
Stochastic resonance (SR) is an amplification of the system output in correspondence of well-defined finite values of the noise strength that is injected into the system [Gammaitoni et al., Rev. Mod. Phys. 70, 223 (1998), Grigorenko et al., IEEE Trans. Magn. 31, 2491 (1995), Mantegna et al., J. Appl. Phys. 97, 10E519 (2005)]. In order to clarify the influence of a colored noise, in this paper magnetostochastic resonance (MSR) in magnetic systems described by the dynamic Preisach model is numerically investigated in the presence of colored noise. In this paper it is shown that: a) noise spectrum affects MSR; b) white noise, 1/f and 1/f2 noise induce in magnetic systems described by the dynamic Preisach model MSR; c) the maximum level of signal-to-noise (SNR) is obtained by using white noise but 1/f noise presents a range where SNR value is higher than the case of white noise; d) maximum signal amplification is obtained for white noise.
Richardson, W.J.; Greene, C.R.; Koski, W.R.; Smultea, M.A.; Cameron, G.
1991-10-01
The report concerns the effects of underwater noise from simulated oil production operations on the movements and behavior of bowhead and white whales migrating around northern Alaska in spring. An underwater sound projector suspended from pack ice was used to introduce recorded drilling noise and other test sounds into leads through the pack ice. These sounds were received and measured at various distances to determine the rate of sound attenuation with distance and frequency. The movements and behavior of bowhead and white whales approaching the operating projector were studied by aircraft- and ice-based observers. Some individuals of both species were observed to approach well within the ensonified area. However, behavioral changes and avoidance reactions were evident when the received sound level became sufficiently high. Reactions to aircraft are also discussed.
NASA Astrophysics Data System (ADS)
Methods for noise abatement are discussed. Noise nuisance, types of noise (continuous, fluctuating, intermittent, pulsed), and types of noise abatement (absorption, vibration damping, isolation) are defined. Rockwool panels, industrial ceiling panels, baffles, acoustic foam panels, vibration dampers, acoustic mats, sandwich panels, isolating cabins and walls, ear protectors, and curtains are presented.
NASA Technical Reports Server (NTRS)
Strahle, W. C.
1977-01-01
A review of the subject of combustion generated noise is presented. Combustion noise is an important noise source in industrial furnaces and process heaters, turbopropulsion and gas turbine systems, flaring operations, Diesel engines, and rocket engines. The state-of-the-art in combustion noise importance, understanding, prediction and scaling is presented for these systems. The fundamentals and available theories of combustion noise are given. Controversies in the field are discussed and recommendations for future research are made.
NASA Technical Reports Server (NTRS)
Pendley, R. E.
1982-01-01
The problem of airport noise at several airports and air bases is detailed. Community reactions to the noise, steps taken to reduce jet engine noise, and the effect of airport use restrictions and curfews on air transportation are discussed. The adverse effect of changes in allowable operational noise on airport safety and altenative means for reducing noise pollution are considered. Community-airport relations and public relations are discussed.
Quantifying the Effects of Noise on Diffuse Interface Models: Cahn-Hilliard-Cook equations
NASA Astrophysics Data System (ADS)
Pfeifer, Spencer; Ganapathysubramanian, Baskar
2015-03-01
We present an investigation into the dynamics of phase separation through numerical simulations of the Cahn-Hilliard-Cook (CHC) equation. This model is an extension of the well-known Cahn- Hilliard equation, perturbed by an additive white noise. Studies have shown that random fluctuations are critical for proper resolution of physical phenomena. This is especially true for phase critical systems. We explore the transient behavior of the solution space for varying levels of noise. This is enabled by our massively scalable finite element-based numerical framework. We briefly examine the interplay between noise level and discretization (spatial and temporal) in obtaining statistically consistent solutions. We show that the added noise accelerates progress towards phase separation, but retards dynamics throughout subsequent coarsening. We identify a scaling exponent relating morphology metrics with the level of noise. We observe a very clear scaling effect of finite domain size, which is observed to be offset by increasing levels of noise. Domain scaling reveals a clear microstructural asymmetry at various stages of the evolution for lower noise levels. In contrast, higher noise levels tend to produce more uniform morphologies.
Investigating binocular summation in human vision using complementary fused external noise
NASA Astrophysics Data System (ADS)
Howell, Christopher L.; Olson, Jeffrey T.
2016-05-01
The impact noise has on the processing of visual information at various stages within the human visual system (HVS) is still an open research area. To gain additional insight, twelve experiments were administered to human observers using sine wave targets to determine their contrast thresholds. A single frame of additive white Gaussian noise (AWGN) and its complement were used to investigate the effect of noise on the summation of visual information within the HVS. A standard contrast threshold experiment served as the baseline for comparisons. In the standard experiment, a range of sine wave targets are shown to the observers and their ability to detect the targets at varying contrast levels were recorded. The remaining experiments added some form of noise (noise image or its complement) and/or an additional sine wave target separated between one to three octaves to the test target. All of these experiments were tested using either a single monitor for viewing the targets or with a dual monitor presentation method for comparison. In the dual monitor experiments, a ninety degree mirror was used to direct each target to a different eye, allowing for the information to be fused binocularly. The experiments in this study present different approaches for delivering external noise to the HVS, and should allow for an improved understanding regarding how noise enters the HVS and what impact noise has on the processing of visual information.
Albacete, Javier L.; Kovchegov, Yuri V.; Taliotis, Anastasios
2009-03-23
We calculate the total cross section for the scattering of a quark-anti-quark dipole on a large nucleus at high energy for a strongly coupled N = 4 super Yang-Mills theory using AdS/CFT correspondence. We model the nucleus by a metric of a shock wave in AdS{sub 5}. We then calculate the expectation value of the Wilson loop (the dipole) by finding the extrema of the Nambu-Goto action for an open string attached to the quark and antiquark lines of the loop in the background of an AdS{sub 5} shock wave. We find two physically meaningful extremal string configurations. For both solutions we obtain the forward scattering amplitude N for the quark dipole-nucleus scattering. We study the onset of unitarity with increasing center-of-mass energy and transverse size of the dipole: we observe that for both solutions the saturation scale Q{sub s} is independent of energy/Bjorken-x and depends on the atomic number of the nucleus as Q{sub s}{approx}A{sup 1/3}. Finally we observe that while one of the solutions we found corresponds to the pomeron intercept of {alpha}{sub P} = 2 found earlier in the literature, when extended to higher energy or larger dipole sizes it violates the black disk limit. The other solution we found respects the black disk limit and yields the pomeron intercept of {alpha}{sub P} = 1.5. We thus conjecture that the right pomeron intercept in gauge theories at strong coupling may be {alpha}{sub P} = 1.5.
NASA Astrophysics Data System (ADS)
Martelli, Dario; Morales, Jose F.
2005-02-01
In the light of the recent Lin, Lunin, Maldacena (LLM) results, we investigate 1/2-BPS geometries in minimal (and next to minimal) supergravity in D = 6 dimensions. In the case of minimal supergravity, solutions are given by fibrations of a two-torus T2 specified by two harmonic functions. For a rectangular torus the two functions are related by a non-linear equation with rare solutions: AdS3 × S3, the pp-wave and the multi-center string. ``Bubbling'', i.e. superpositions of droplets, is accommodated by allowing the complex structure of the T2 to vary over the base. The analysis is repeated in the presence of a tensor multiplet and similar conclusions are reached, with generic solutions describing D1D5 (or their dual fundamental string-momentum) systems. In this framework, the profile of the dual fundamental string-momentum system is identified with the boundaries of the droplets in a two-dimensional plane.
NASA Astrophysics Data System (ADS)
Wan, Xiazi; Kobayashi, Hiroyuki; Aoki, Naokazu
2015-03-01
In a preceding study, we investigated the effects of image noise on the perception of image sharpness using white noise, and one- and two-dimensional single-frequency sinusoidal patterns as stimuli. This study extends our preceding study by evaluating natural color images, rather than black-and-white patterns. The results showed that the effect of noise in improving image sharpness perception is more evident in blurred images than in sharp images. This is consistent with the results of the preceding study. In another preceding study, we proposed "memory texture" to explain the preferred granularity of images, as a concept similar to "memory color" for preferred color reproduction. We observed individual differences in type of memory texture for each object, that is, white or 1/f noise. This study discusses the relationship between improvement of sharpness perception by adding noise, and the memory texture, following its individual differences. We found that memory texture is one of the elements that affect sharpness perception.
NASA Technical Reports Server (NTRS)
Vazirani, P.
1995-01-01
The process of combining telemetry signals received at multiple antennas, commonly referred to as arraying, can be used to improve communication link performance in the Deep Space Network (DSN). By coherently adding telemetry from multiple receiving sites, arraying produces an enhancement in signal-to-noise ratio (SNR) over that achievable with any single antenna in the array. A number of different techniques for arraying have been proposed and their performances analyzed in past literature. These analyses have compared different arraying schemes under the assumption that the signals contain additive white Gaussian noise (AWGN) and that the noise observed at distinct antennas is independent. In situations where an unwanted background body is visible to multiple antennas in the array, however, the assumption of independent noises is no longer applicable. A planet with significant radiation emissions in the frequency band of interest can be one such source of correlated noise. For example, during much of Galileo's tour of Jupiter, the planet will contribute significantly to the total system noise at various ground stations. This article analyzes the effects of correlated noise on two arraying schemes currently being considered for DSN applications: full-spectrum combining (FSC) and complex-symbol combining (CSC). A framework is presented for characterizing the correlated noise based on physical parameters, and the impact of the noise correlation on the array performance is assessed for each scheme.
PIXE analysis of Chinese ancient greenish white porcelain
NASA Astrophysics Data System (ADS)
Cheng, Lin; Ding, Xun-liang; Feng, Song-lin; Cheng, Huang-sheng; Zhang, Wen-Jiang; Fan, Chang-Sheng
2006-03-01
This paper reports the results about the PIXE analysis of major, minor and trace elements of Chinese ancient greenish white porcelain and blue-and-white porcelain produced in Hutian Kiln (Jingdezhen district, Jiangxi province) during 10th-14th centuries. The porcelain body and greenish white glaze from northern Song (AD 960), southern Song (AD 1037-1276), early Yuan (AD 1279-1320), later Yuan (AD 1320-1368) were investigated together with white-and-blue glaze from Ming dynasty (AD 1368-1644). The obtained data were further analyzed by factor analysis.
NASA Technical Reports Server (NTRS)
Bragdon, C. R.
1982-01-01
Airport and community land use planning as they relate to airport noise reduction are discussed. Legislation, community relations, and the physiological effect of airport noise are considered. Noise at the Logan, Los Angeles, and Minneapolis/St. Paul airports is discussed.
Sharma, Raghav; Dürrenfeld, P.; Iacocca, E.; Heinonen, O. G.; Åkerman, J.; Muduli, P. K.
2014-09-29
The frequency noise spectrum of a magnetic tunnel junction based spin torque oscillator is examined where multiple modes and mode-hopping events are observed. The frequency noise spectrum is found to consist of both white noise and 1/f frequency noise. We find a systematic and similar dependence of both white noise and 1/f frequency noise on bias current and the relative angle between the reference and free layers, which changes the effective damping and hence the mode-hopping behavior in this system. The frequency at which the 1/f frequency noise changes to white noise increases as the free layer is aligned away from the anti-parallel orientation w.r.t the reference layer. These results indicate that the origin of 1/f frequency noise is related to mode-hopping, which produces both white noise as well as 1/f frequency noise similar to the case of ring lasers.
NASA Technical Reports Server (NTRS)
Schwent, V. L.; Hillyard, S. A.; Galambos, R.
1975-01-01
A randomized sequence of tone bursts was delivered to subjects at short inter-stimulus intervals with the tones originating from one of three spatially and frequency specific channels. The subject's task was to count the tones in one of the three channels at a time, ignoring the other two, and press a button after each tenth tone. In different conditions, tones were given at high and low intensities and with or without a background white noise to mask the tones. The N sub 1 component of the auditory vertex potential was found to be larger in response to attended channel tones in relation to unattended tones. This selective enhancement of N sub 1 was minimal for loud tones presented without noise and increased markedly for the lower tone intensity and in noise added conditions.
NASA Technical Reports Server (NTRS)
Schmitz, F. H.
1991-01-01
The physical characteristics and sources of rotorcraft noise as they exist today are presented. Emphasis is on helicopter-like vehicles, that is, on rotorcraft in nonaxial flight. The mechanisms of rotor noise are reviewed in a simple physical manner for the most dominant sources of rotorcraft noise. With simple models, the characteristic time- and frequency-domain features of these noise sources are presented for idealized cases. Full-scale data on several rotorcraft are then reviewed to allow for the easy identification of the type and extent of the radiating noise. Methods and limitations of using scaled models to test for several noise sources are subsequently presented. Theoretical prediction methods are then discussed and compared with experimental data taken under very controlled conditions. Finally, some promising noise reduction technology is reviewed.
Squeezed light spin noise spectroscopy
NASA Astrophysics Data System (ADS)
Lucivero, Vito Giovanni; Jiménez-Martínez, Ricardo; Kong, Jia; Mitchell, Morgan
2016-05-01
Spin noise spectroscopy (SNS) has recently emerged as a powerful technique for determining physical properties of an unperturbed spin system from its power noise spectrum both in atomic and solid state physics. In the presence of a transverse magnetic field, we detect spontaneous spin fluctuations of a dense Rb vapor via Faraday rotation of an off-resonance probe beam, resulting in the excess of spectral noise at the Larmor frequency over a white photon shot-noise background. We report quantum enhancement of the signal-to-noise ratio via polarization squeezing of the probe beam up to 3dB over the full density range up to n = 1013 atoms cm-3, covering practical conditions used in optimized SNS experiments. Furthermore, we show that squeezing improves the trade-off between statistical sensitivity and systematic errors due to line broadening, a previously unobserved quantum advantage.
Psychophysical measurement of night vision goggle noise
NASA Astrophysics Data System (ADS)
Glasgow, Rachael L.; Marasco, Peter L.; Havig, Paul R.; Martinsen, Gary L.; Reis, George A.; Heft, Eric L.
2003-09-01
Pilots, developers, and other users of night-vision goggles (NVGs) have pointed out that different NVG image intensifier tubes have different subjective noise characteristics. Currently, no good model of the visual impact of NVG noise exists. Because it is very difficult to objectively measure the noise of a NVG, a method for assessing noise subjectively using simple psychophysical procedures was developed. This paper discusses the use of a computer program to generate noise images similar to what an observer sees through an NVG, based on filtered white noise. The images generated were based on 1/f (where f is frequency) filtered white noise with several adjustable parameters. Adjusting each of these parameters varied different characteristics of the noise. This paper discusses a study where observers compared the computer-generated noise images to true NVG noise and were asked to determine which computer-generated image was the best representation of the true noise. This method was repeated with different types of NVGs and at different luminance levels to study what NVG parameters cause variations in NVG noise.
A statistical analysis of NMR spectrometer noise.
Grage, Halfdan; Akke, Mikael
2003-05-01
Estimation of NMR spectral parameters, using e.g. maximum likelihood methods, is commonly based on the assumption of white complex Gaussian noise in the signal obtained by quadrature detection. Here we present a statistical analysis with the purpose of discussing and testing the validity of this fundamental assumption. Theoretical expressions are derived for the correlation structure of the noise under various conditions, showing that in general the noise in the sampled signal is not strictly white, even if the thermal noise in the receiver steps prior to digitisation can be characterised as white Gaussian noise. It is shown that the noise correlation properties depend on the ratio between the sampling frequency and the filter cut-off frequency, as well as the filter characteristics. The theoretical analysis identifies conditions that are expected to yield non-white noise in the sampled signal. Extensive statistical characterisation of experimental noise confirms the theoretical predictions. The statistical methods outlined here are also useful for residual analysis in connection with validation of the model and the parameter estimates. PMID:12762994
The subjective importance of noise spectral content
NASA Astrophysics Data System (ADS)
Baxter, Donald; Phillips, Jonathan; Denman, Hugh
2014-01-01
This paper presents secondary Standard Quality Scale (SQS2) rankings in overall quality JNDs for a subjective analysis of the 3 axes of noise, amplitude, spectral content, and noise type, based on the ISO 20462 softcopy ruler protocol. For the initial pilot study, a Python noise simulation model was created to generate the matrix of noise masks for the softcopy ruler base images with different levels of noise, different low pass filter noise bandwidths and different band pass filter center frequencies, and 3 different types of noise: luma only, chroma only, and luma and chroma combined. Based on the lessons learned, the full subjective experiment, involving 27 observers from Google, NVIDIA and STMicroelectronics was modified to incorporate a wider set of base image scenes, and the removal of band pass filtered noise masks to ease observer fatigue. Good correlation was observed with the Aptina subjective noise study. The absence of tone mapping in the noise simulation model visibly reduced the contrast at high levels of noise, due to the clipping of the high levels of noise near black and white. Under the 34-inch viewing distance, no significant difference was found between the luma only noise masks and the combined luma and chroma noise masks. This was not the intuitive expectation. Two of the base images with large uniform areas, `restaurant' and `no parking', were found to be consistently more sensitive to noise than the texture rich scenes. Two key conclusions are (1) there are fundamentally different sensitivities to noise on a flat patch versus noise in real images and (2) magnification of an image accentuates visual noise in a way that is non-representative of typical noise reduction algorithms generating the same output frequency. Analysis of our experimental noise masks applied to a synthetic Macbeth ColorChecker Chart confirmed the color-dependent nature of the visibility of luma and chroma noise.
NASA Astrophysics Data System (ADS)
Crighton, David G.
1991-08-01
Current understanding of airframe noise was reviewed as represented by experiment at model and full scale, by theoretical modeling, and by empirical correlation models. The principal component sources are associated with the trailing edges of wing and tail, deflected trailing edge flaps, flap side edges, leading edge flaps or slats, undercarriage gear elements, gear wheel wells, fuselage and wing boundary layers, and panel vibration, together with many minor protrusions like radio antennas and air conditioning intakes which may contribute significantly to perceived noise. There are also possibilities for interactions between the various mechanisms. With current engine technology, the principal airframe noise mechanisms dominate only at low frequencies, typically less than 1 kHz and often much lower, but further reduction of turbomachinery noise in particular may make airframe noise the principal element of approach noise at frequencies in the sensitive range.
... Check out the most popular infographics and videos Photos View the photo of the day and other galleries Video Gallery ... your questions or your story with President Obama. Photo of the Day Explore the White House Photo ...
Airframe noise component interaction studies
NASA Technical Reports Server (NTRS)
Fink, M. R.; Schlinker, R. H.
1979-01-01
Acoustic wind tunnel tests were conducted to examine the noise-generating processes of an airframe during approach flight. The airframe model was a two-dimensional wing section, to which highlift leading and trailing edge devices and landing gear could be added. Far field conventional microphones were utilized to determine component spectrum levels. An acoustic mirror directional microphone was utilized to examine noise source distributions on airframe components extended separately and in combination. Measured quantities are compared with predictions inferred from aircraft flyover data. Aeroacoustic mechanisms for each airframe component are identified. Component interaction effects on total radiated noise generally were small (within about 2 dB). However, some interactions significantly redistributed the local noise source strengths by changing local flow velocities and turbulence levels. Possibilities for noise reduction exist if trailing edge flaps could be modified to decrease their noise radiation caused by incident turbulent flow.
NASA Technical Reports Server (NTRS)
Mixson, John S.; Wilby, John F.
1991-01-01
The generation and control of flight vehicle interior noise is discussed. Emphasis is placed on the mechanisms of transmission through airborne and structure-borne paths and the control of cabin noise by path modification. Techniques for identifying the relative contributions of the various source-path combinations are also discussed along with methods for the prediction of aircraft interior noise such as those based on the general modal theory and statistical energy analysis.
Noise in any frequency range can enhance information transmission in a sensory neuron
NASA Astrophysics Data System (ADS)
Levin, Jacob E.
1997-05-01
The effect of noise on the neural encoding of broadband signals was investigated in the cricket cercal system, a mechanosensory system sensitive to small near-field air particle disturbances. Known air current stimuli were presented to the cricket through audio speakers in a controlled environment in a variety of background noise conditions. Spike trains from the second layer of neuronal processing, the primary sensory interneurons, were recorded with intracellular Electrodes and the performance of these neurons characterized with the tools of information theory. SNR, mutual information rates, and other measures of encoding accuracy were calculated for single frequency, narrowband, and broadband signals over the entire amplitude sensitivity range of the cells, in the presence of uncorrelated noise background also spanning the cells' frequency and amplitude sensitivity range. Significant enhancements of transmitted information through the addition of external noise were observed regardless of the frequency range of either the signal or noise waveforms, provided both were within the operating range of the cell. Considerable improvements in signal encoding were observed for almost an entire order of magnitude of near-threshold signal amplitudes. This included sinusoidal signals embedded in broadband white noise, broadband signals in broadband noise, and even broadband signals presented with narrowband noise in a completely non-overlapping frequency range. The noise related increases in mutual information rate for broadband signals were as high as 150%, and up to 600% increases in SNR were observed for sinusoidal signals. Additionally, it was shown that the amount of information about the signal carried, on average, by each spike was INCREASED for small signals when presented with noise—implying that added input noise can, in certain situations, actually improve the accuracy of the encoding process itself.
NASA Technical Reports Server (NTRS)
1980-01-01
Environmental Health Systems puts forth an increasing effort in the U.S. to develop ways of controlling noise, particularly in industrial environments due to Federal and State laws, labor union insistence and new findings relative to noise pollution impact on human health. NASA's Apollo guidance control system aided in the development of a noise protection product, SMART. The basis of all SMART products is SMART compound a liquid plastic mixture with exceptional energy/sound absorbing qualities. The basic compound was later refined for noise protection use.
Noise in phase-preserving linear amplifiers
Pandey, Shashank; Jiang, Zhang; Combes, Joshua; Caves, Carlton M.
2014-12-04
The purpose of a phase-preserving linear amplifier is to make a small signal larger, so that it can be perceived by instruments incapable of resolving the original signal, while sacrificing as little as possible in signal-to-noise. Quantum mechanics limits how well this can be done: the noise added by the amplifier, referred to the input, must be at least half a quantum at the operating frequency. This well-known quantum limit only constrains the second moments of the added noise. Here we provide the quantum constraints on the entire distribution of added noise: any phasepreserving linear amplifier is equivalent to a parametric amplifier with a physical state σ for the ancillary mode; σ determines the properties of the added noise.
Noise in phase-preserving linear amplifiers
NASA Astrophysics Data System (ADS)
Pandey, Shashank; Jiang, Zhang; Combes, Joshua; Caves, Carlton M.
2014-12-01
The purpose of a phase-preserving linear amplifier is to make a small signal larger, so that it can be perceived by instruments incapable of resolving the original signal, while sacrificing as little as possible in signal-to-noise. Quantum mechanics limits how well this can be done: the noise added by the amplifier, referred to the input, must be at least half a quantum at the operating frequency. This well-known quantum limit only constrains the second moments of the added noise. Here we provide the quantum constraints on the entire distribution of added noise: any phasepreserving linear amplifier is equivalent to a parametric amplifier with a physical state σ for the ancillary mode; σ determines the properties of the added noise.
NASA Astrophysics Data System (ADS)
Michel, Ulf; Dobrzynski, Werner; Splettstoesser, Wolf; Delfs, Jan; Isermann, Ullrich; Obermeier, Frank
Aircraft industry is exposed to increasing public pressure aiming at a continuing reduction of aircraft noise levels. This is necessary to both compensate for the detrimental effect on noise of the expected increase in air traffic and improve the quality of living in residential areas around airports.
NASA Astrophysics Data System (ADS)
Rumberg, Martin
Environmental noise may be defined as unwanted sound that is caused by emissions from traffic (roads, air traffic corridors, and railways), industrial sites and recreational infrastructures, which may cause both annoyance and damage to health. Noise in the environment or community seriously affects people, interfering with daily activities at school, work and home and during leisure time.
NASA Astrophysics Data System (ADS)
Klos, Anna; Olivares, German; Teferle, Felix Norman; Bogusz, Janusz
2016-04-01
important. In other words, for time series long enough, the assumed periodic signals do not affect the velocity uncertainties as much as the assumed noise model. We calculated the GDP to be the ratio between two errors of velocity: without and with inclusion of seasonal terms of periods equal to one year and its overtones till 3rd. To all these cases power-law processes of white, flicker and random-walk noise were added separately. Few oscillations in GDP can be noticed for integer years, which arise from periodic terms added. Their amplitudes in GDP increase along with the increasing spectral index. Strong peaks of oscillations in GDP are indicated for short time scales, especially for random-walk processes. This means that badly monumented stations are affected the most. Local minima and maxima in GDP are also enlarged as the noise approaches random walk. We noticed that the semi-annual signal increased the local GDP minimum for white noise. This suggests that adding power-law noise to a deterministic model with annual term or adding a semi-annual term to white noise causes an increased velocity uncertainty even at the points, where determined velocity is not biased.
Noise in a CMOS digital pixel sensor
NASA Astrophysics Data System (ADS)
Chi, Zhang; Suying, Yao; Jiangtao, Xu
2011-11-01
Based on the study of noise performance in CMOS digital pixel sensor (DPS), a mathematical model of noise is established with the pulse-width-modulation (PWM) principle. Compared with traditional CMOS image sensors, the integration time is different and A/D conversion is implemented in each PWM DPS pixel. Then, the quantitative calculating formula of system noise is derived. It is found that dark current shot noise is the dominant noise source in low light region while photodiode shot noise becomes significantly important in the bright region. In this model, photodiode shot noise does not vary with luminance, but dark current shot noise does. According to increasing photodiode capacitance and the comparator's reference voltage or optimizing the mismatch in the comparator, the total noise can be reduced. These results serve as a guideline for the design of PWM DPS.
NASA Technical Reports Server (NTRS)
2002-01-01
(Released 19 April 2002) The Science 'White Rock' is the unofficial name for this unusual landform which was first observed during the Mariner 9 mission in the early 1970's. As later analysis of additional data sets would show, White Rock is neither white nor dense rock. Its apparent brightness arises from the fact that the material surrounding it is so dark. Images from the Mars Global Surveyor MOC camera revealed dark sand dunes surrounding White Rock and on the floor of the troughs within it. Some of these dunes are just apparent in the THEMIS image. Although there was speculation that the material composing White Rock could be salts from an ancient dry lakebed, spectral data from the MGS TES instrument did not support this claim. Instead, the White Rock deposit may be the erosional remnant of a previously more continuous occurrence of air fall sediments, either volcanic ash or windblown dust. The THEMIS image offers new evidence for the idea that the original deposit covered a larger area. Approximately 10 kilometers to the southeast of the main deposit are some tiny knobs of similarly bright material preserved on the floor of a small crater. Given that the eolian erosion of the main White Rock deposit has produced isolated knobs at its edges, it is reasonable to suspect that the more distant outliers are the remnants of a once continuous deposit that stretched at least to this location. The fact that so little remains of the larger deposit suggests that the material is very easily eroded and simply blows away. The Story Fingers of hard, white rock seem to jut out like icy daggers across a moody Martian surface, but appearances can be deceiving. These bright, jagged features are neither white, nor icy, nor even hard and rocky! So what are they, and why are they so different from the surrounding terrain? Scientists know that you can't always trust what your eyes see alone. You have to use other kinds of science instruments to measure things that our eyes can
NASA Astrophysics Data System (ADS)
Costa, Miguel S.; Greenspan, Lauren; Oliveira, Miguel; Penedones, João; Santos, Jorge E.
2016-06-01
We consider solutions in Einstein-Maxwell theory with a negative cosmological constant that asymptote to global AdS 4 with conformal boundary {S}2× {{{R}}}t. At the sphere at infinity we turn on a space-dependent electrostatic potential, which does not destroy the asymptotic AdS behaviour. For simplicity we focus on the case of a dipolar electrostatic potential. We find two new geometries: (i) an AdS soliton that includes the full backreaction of the electric field on the AdS geometry; (ii) a polarised neutral black hole that is deformed by the electric field, accumulating opposite charges in each hemisphere. For both geometries we study boundary data such as the charge density and the stress tensor. For the black hole we also study the horizon charge density and area, and further verify a Smarr formula. Then we consider this system at finite temperature and compute the Gibbs free energy for both AdS soliton and black hole phases. The corresponding phase diagram generalizes the Hawking-Page phase transition. The AdS soliton dominates the low temperature phase and the black hole the high temperature phase, with a critical temperature that decreases as the external electric field increases. Finally, we consider the simple case of a free charged scalar field on {S}2× {{{R}}}t with conformal coupling. For a field in the SU(N ) adjoint representation we compare the phase diagram with the above gravitational system.
Hiemstra, D.M.
1999-12-01
The dose rate dependence of the current noise of a bipolar operational amplifier is presented. Total current noise performance degrades linearly with increasing dose rate. Generation-recombination, white and 1/f spectral components contribute to the degradation. The generation-recombination component is the most significant contributor to dose rate dependent current noise degradation.
Integrated Risk Information System (IRIS)
White phosphorus ; CASRN 7723 - 14 - 0 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic
How Colored Environmental Noise Affects Population Extinction
NASA Astrophysics Data System (ADS)
Kamenev, Alex; Meerson, Baruch; Shklovskii, Boris
2008-12-01
Environmental noise can cause an exponential reduction in the mean time to extinction (MTE) of an isolated population. We study this effect on an example of a stochastic birth-death process with rates modulated by a colored (that is, correlated) Gaussian noise. A path integral formulation yields a transparent way of evaluating the MTE and finding the optimal realization of the environmental noise that determines the most probable path to extinction. The population-size dependence of the MTE changes from exponential in the absence of the environmental noise to a power law for a short-correlated noise and to no dependence for long-correlated noise. We also establish the validity domains of the white-noise limit and adiabatic limit.
En route noise: NASA propfan test aircraft (calculated source noise
NASA Technical Reports Server (NTRS)
Rickley, E. J.
1990-01-01
The second phase of a joint National Aeronautics and Space Administration (NASA) and Federal Aviation Administration (FAA) program to study the high-altitude, low-frequency acoustic noise propagation characteristics of the Advanced Turboprop (propfan) Aircraft was conducted on April 3-13, 1989 at the White Sands Missile Range (WSMR), New Mexico. The first phase was conducted on October 26-31, 1987 in Huntsville, Alabama. NASA (Lewis) measured the source noise of the test aircraft during both phases while NASA (Langley) measured surface noise only during the second phase. FAA/NASA designed a program to obtain noise level data from the propfan test bed aircraft, both in the near field and at ground level, during simulated en route flights (35,000 and 20,000 feet ASL), and to test low frequency atmospheric absorption algorithms and prediction technology to provide insight into the necessity for regulatory measures. The curves of calculated source noise versus emission angle are based on a second order best-fit curve of the peak envelope of the adjusted ground data. Centerline and sideline derived source noise levels are shown to be in good agreement. A comparison of the Alabama chase plane source data and the calculated source noise at centerline for both the Alabama and New Mexico data shows good agreement for the 35,000 and the 20,000 feet (ASL) overflights. With the availability of the New Mexico in-flight data, further in depth comparisons will be made.
Multiplicative noise effects on electroconvection in controlling additive noise by a magnetic field
NASA Astrophysics Data System (ADS)
Huh, Jong-Hoon
2015-12-01
We report multiplicative noise-induced threshold shift of electroconvection (EC) in the presence of a magnetic field H . Controlling the thermal fluctuation (i.e., additive noise) of the rodlike molecules of nematic liquid crystals by H , the EC threshold is examined at various noise levels [characterized by their intensity and cutoff frequency (fc) ]. For a sufficiently strong H (i.e., ignorable additive noise), a modified noise sensitivity characterizing the shift problem is in good agreement with experimental results for colored as well as white noise (fc→∞ ) ; until now, there was a large deviation for (sufficiently) colored noises. The present study shows that H provides us with ideal conditions for studying the corresponding Carr-Helfrich theory considering pure multiplicative noise.
Multiplicative noise effects on electroconvection in controlling additive noise by a magnetic field.
Huh, Jong-Hoon
2015-12-01
We report multiplicative noise-induced threshold shift of electroconvection (EC) in the presence of a magnetic field H. Controlling the thermal fluctuation (i.e., additive noise) of the rodlike molecules of nematic liquid crystals by H, the EC threshold is examined at various noise levels [characterized by their intensity and cutoff frequency (f(c))]. For a sufficiently strong H (i.e., ignorable additive noise), a modified noise sensitivity characterizing the shift problem is in good agreement with experimental results for colored as well as white noise (f(c)→∞); until now, there was a large deviation for (sufficiently) colored noises. The present study shows that H provides us with ideal conditions for studying the corresponding Carr-Helfrich theory considering pure multiplicative noise. PMID:26764708
NASA Technical Reports Server (NTRS)
2005-01-01
14 November 2005 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a portion of the famous 'White Rock' feature in Pollack Crater in the Sinus Sabaeus region of Mars. The light-toned rock is not really white, but its light tone caught the eye of Mars geologists as far back as 1972, when it was first spotted in images acquired by Mariner 9. The light-toned materials are probably the remains of a suite of layered sediments that once spread completely across the interior of Pollack Crater. Dark materials in this image include sand dunes and large ripples.
Location near: 8.1oS, 335.1oW Image width: width: 3 km (1.9 mi) Illumination from: lower left Season: Southern Summer
A technique for noise measurement optimization with spectrum analyzers
NASA Astrophysics Data System (ADS)
Carniti, P.; Cassina, L.; Gotti, C.; Maino, M.; Pessina, G.
2015-08-01
Measuring low noise of electronic devices with a spectrum analyzer requires particular care as the instrument could add significant contributions. A Low Noise Amplifier, LNA, is therefore necessary to be connected between the source to be measured and the instrument, to mitigate its effect at the LNA input. In the present work we suggest a technique for the implementation of the LNA that allows to optimize both low frequency noise and white noise, obtaining outstanding performance in a very broad frequency range.
... Home Visit Global Sites Search Help? White Blood Cell Count Share this page: Was this page helpful? Also ... Leukocyte Count; White Count Formal name: White Blood Cell Count Related tests: Complete Blood Count , Blood Smear , White ...
Smeared antibranes polarise in AdS
NASA Astrophysics Data System (ADS)
Gautason, Fridrik Freyr; Truijen, Brecht; Van Riet, Thomas
2015-07-01
In the recent literature it has been questioned whether the local backreaction of antibranes in flux throats can induce a perturbative brane-flux decay. Most evidence for this can be gathered for D6 branes and D p branes smeared over 6 - p compact directions, in line with the absence of finite temperature solutions for these cases. The solutions in the literature have flat worldvolume geometries and non-compact transversal spaces. In this paper we consider what happens when the worldvolume is AdS and the transversal space is compact. We show that in these circumstances brane polarisation smoothens out the flux singularity, which is an indication that brane-flux decay is prevented. This is consistent with the fact that the cosmological constant would be less negative after brane-flux decay. Our results extend recent results on AdS7 solutions from D6 branes to AdS p+1 solutions from D p branes. We show that supersymmetry of the AdS solutions depend on p non-trivially.
AdS orbifolds and Penrose limits
Alishahiha, Mohsen; Sheikh-Jabbari, Mohammad M.; Tatar, Radu
2002-12-09
In this paper we study the Penrose limit of AdS{sub 5} orbifolds. The orbifold can be either in the pure spatial directions or space and time directions. For the AdS{sub 5}/{Lambda} x S{sup 5} spatial orbifold we observe that after the Penrose limit we obtain the same result as the Penrose limit of AdS{sub 5} x S{sup 5}/{Lambda}. We identify the corresponding BMN operators in terms of operators of the gauge theory on R x S{sup 3}/{Lambda}. The semi-classical description of rotating strings in these backgrounds have also been studied. For the spatial AdS orbifold we show that in the quadratic order the obtained action for the fluctuations is the same as that in S{sup 5} orbifold, however, the higher loop correction can distinguish between two cases.
Masking Experiments in Humans and Birds Using Anthropogenic Noises.
Dooling, Robert J; Blumenrath, Sandra H
2016-01-01
This study investigated the masking of pure tones by anthropogenic noises in humans and birds. Bird experiments were conducted in the laboratory using operant conditioning and psychophysical procedures but with anthropogenic noises rather than white noise. Humans were tested using equivalent psychophysical procedures in the field with ambient background noise. Results show that for both humans and birds published critical ratios can be used to predict the masking thresholds for pure tones by these complex noises. Thus, the species' critical ratio can be used to estimate the effect of anthropogenic environmental noises on the perception of communication and other biologically relevant sounds. PMID:26610965
Bootstrapping white matter segmentation, Eve++
NASA Astrophysics Data System (ADS)
Plassard, Andrew; Hinton, Kendra E.; Venkatraman, Vijay; Gonzalez, Christopher; Resnick, Susan M.; Landman, Bennett A.
2015-03-01
Multi-atlas labeling has come in wide spread use for whole brain labeling on magnetic resonance imaging. Recent challenges have shown that leading techniques are near (or at) human expert reproducibility for cortical gray matter labels. However, these approaches tend to treat white matter as essentially homogeneous (as white matter exhibits isointense signal on structural MRI). The state-of-the-art for white matter atlas is the single-subject Johns Hopkins Eve atlas. Numerous approaches have attempted to use tractography and/or orientation information to identify homologous white matter structures across subjects. Despite success with large tracts, these approaches have been plagued by difficulties in with subtle differences in course, low signal to noise, and complex structural relationships for smaller tracts. Here, we investigate use of atlas-based labeling to propagate the Eve atlas to unlabeled datasets. We evaluate single atlas labeling and multi-atlas labeling using synthetic atlases derived from the single manually labeled atlas. On 5 representative tracts for 10 subjects, we demonstrate that (1) single atlas labeling generally provides segmentations within 2mm mean surface distance, (2) morphologically constraining DTI labels within structural MRI white matter reduces variability, and (3) multi-atlas labeling did not improve accuracy. These efforts present a preliminary indication that single atlas labels with correction is reasonable, but caution should be applied. To purse multi-atlas labeling and more fully characterize overall performance, more labeled datasets would be necessary.
Role of colored noise in active dynamical theories
NASA Astrophysics Data System (ADS)
Kachan, Devin; Levine, Alex
2015-03-01
The noise driving many dynamical systems is temporally correlated, or colored. Biological motor proteins, for example, generate processive stresses in biopolymer networks, and it would be incorrect to model this forcing as uncorrelated white noise. To gain insight into the role of the noise spectrum, we study a phi⌃4 theory in the presence of active colored noise with renormalization group techniques. Using a frequency shell integration scheme, we perform an epsilon expansion around d =8 for power law noise of the form 1/f⌃2 and find frequency and wavevector dependent corrections to the transport coefficients. The power law noise assumption is, of course, an approximation: all physical processes possess a small frequency cutoff. We study the effect of this cutoff and find a change in scaling behavior as the system transitions from a power law divergent regime to one dominated by white noise.
White Vegetables: Glycemia and Satiety12
Anderson, G. Harvey; Soeandy, Chesarahmia Dojo; Smith, Christopher E.
2013-01-01
The objective of this review is to discuss the effect of white vegetable consumption on glycemia, satiety, and food intake. White vegetables is a term used to refer to vegetables that are white or near white in color and include potatoes, cauliflowers, turnips, onions, parsnips, white corn, kohlrabi, and mushrooms (technically fungi but generally considered a vegetable). They vary greatly in their contribution to the energy and nutrient content of the diet and glycemia and satiety. As with other foods, the glycemic effect of many white vegetables has been measured. The results illustrate that interpretation of the semiquantitative comparative ratings of white vegetables as derived by the glycemic index must be context dependent. As illustrated by using the potato as an example, the glycemic index of white vegetables can be misleading if not interpreted in the context of the overall contribution that the white vegetable makes to the carbohydrate and nutrient composition of the diet and their functionality in satiety and metabolic control within usual meals. It is concluded that application of the glycemic index in isolation to judge the role of white vegetables in the diet and, specifically in the case of potato as consumed in ad libitum meals, has led to premature and possibly counterproductive dietary guidance. PMID:23674805
Noise-enhanced convolutional neural networks.
Audhkhasi, Kartik; Osoba, Osonde; Kosko, Bart
2016-06-01
Injecting carefully chosen noise can speed convergence in the backpropagation training of a convolutional neural network (CNN). The Noisy CNN algorithm speeds training on average because the backpropagation algorithm is a special case of the generalized expectation-maximization (EM) algorithm and because such carefully chosen noise always speeds up the EM algorithm on average. The CNN framework gives a practical way to learn and recognize images because backpropagation scales with training data. It has only linear time complexity in the number of training samples. The Noisy CNN algorithm finds a special separating hyperplane in the network's noise space. The hyperplane arises from the likelihood-based positivity condition that noise-boosts the EM algorithm. The hyperplane cuts through a uniform-noise hypercube or Gaussian ball in the noise space depending on the type of noise used. Noise chosen from above the hyperplane speeds training on average. Noise chosen from below slows it on average. The algorithm can inject noise anywhere in the multilayered network. Adding noise to the output neurons reduced the average per-iteration training-set cross entropy by 39% on a standard MNIST image test set of handwritten digits. It also reduced the average per-iteration training-set classification error by 47%. Adding noise to the hidden layers can also reduce these performance measures. The noise benefit is most pronounced for smaller data sets because the largest EM hill-climbing gains tend to occur in the first few iterations. This noise effect can assist random sampling from large data sets because it allows a smaller random sample to give the same or better performance than a noiseless sample gives. PMID:26700535
Community noise sources and noise control issues
NASA Technical Reports Server (NTRS)
Nihart, Gene L.
1992-01-01
The topics covered include the following: community noise sources and noise control issues; noise components for turbine bypass turbojet engine (TBE) turbojet; engine cycle selection and noise; nozzle development schedule; NACA nozzle design; NACA nozzle test results; nearly fully mixed (NFM) nozzle design; noise versus aspiration rate; peak noise test results; nozzle test in the Low Speed Aeroacoustic Facility (LSAF); and Schlieren pictures of NACA nozzle.
Metallic-thin-film instability with spatially correlated thermal noise
NASA Astrophysics Data System (ADS)
Diez, Javier A.; González, Alejandro G.; Fernández, Roberto
2016-01-01
We study the effects of stochastic thermal fluctuations on the instability of the free surface of a flat liquid metallic film on a solid substrate. These fluctuations are represented by a stochastic noise term added to the deterministic equation for the film thickness within the long-wave approximation. Unlike the case of polymeric films, we find that this noise, while remaining white in time, must be colored in space, at least in some regimes. The corresponding noise term is characterized by a nonzero correlation length, ℓc, which, combined with the size of the system, leads to a dimensionless parameter β that accounts for the relative importance of the spatial correlation (β ˜ℓc-1 ). We perform the linear stability analysis (LSA) of the film both with and without the noise term and find that for ℓc larger than some critical value (depending on the system size), the wavelength of the peak of the spectrum is larger than that corresponding to the deterministic case, while for smaller ℓc this peak corresponds to smaller wavelength than the latter. Interestingly, whatever the value of ℓc, the peak always approaches the deterministic one for larger times. We compare LSA results with the numerical simulations of the complete nonlinear problem and find a good agreement in the power spectra for early times at different values of β . For late times, we find that the stochastic LSA predicts well the position of the dominant wavelength, showing that nonlinear interactions do not modify the trends of the early linear stages. Finally, we fit the theoretical spectra to experimental data from a nanometric laser-melted copper film and find that at later times, the adjustment requires smaller values of β (larger space correlations).
Metallic-thin-film instability with spatially correlated thermal noise.
Diez, Javier A; González, Alejandro G; Fernández, Roberto
2016-01-01
We study the effects of stochastic thermal fluctuations on the instability of the free surface of a flat liquid metallic film on a solid substrate. These fluctuations are represented by a stochastic noise term added to the deterministic equation for the film thickness within the long-wave approximation. Unlike the case of polymeric films, we find that this noise, while remaining white in time, must be colored in space, at least in some regimes. The corresponding noise term is characterized by a nonzero correlation length, ℓ_{c}, which, combined with the size of the system, leads to a dimensionless parameter β that accounts for the relative importance of the spatial correlation (β∼ℓ_{c}^{-1}). We perform the linear stability analysis (LSA) of the film both with and without the noise term and find that for ℓ_{c} larger than some critical value (depending on the system size), the wavelength of the peak of the spectrum is larger than that corresponding to the deterministic case, while for smaller ℓ_{c} this peak corresponds to smaller wavelength than the latter. Interestingly, whatever the value of ℓ_{c}, the peak always approaches the deterministic one for larger times. We compare LSA results with the numerical simulations of the complete nonlinear problem and find a good agreement in the power spectra for early times at different values of β. For late times, we find that the stochastic LSA predicts well the position of the dominant wavelength, showing that nonlinear interactions do not modify the trends of the early linear stages. Finally, we fit the theoretical spectra to experimental data from a nanometric laser-melted copper film and find that at later times, the adjustment requires smaller values of β (larger space correlations). PMID:26871167
Control of Environmental Noise
ERIC Educational Resources Information Center
Jensen, Paul
1973-01-01
Discusses the physical properties, sources, physiological effects, and legislation pertaining to noise, especially noise characteristics in the community. Indicates that noise reduction steps can be taken more intelligently after determination of the true noise sources and paths. (CC)
The AdS particle [rapid communication
NASA Astrophysics Data System (ADS)
Ghosh, Subir
2005-09-01
In this Letter we have considered a relativistic Nambu-Goto model for a particle in AdS metric. With appropriate gauge choice to fix the reparameterization invariance, we recover the previously discussed [S. Ghosh, P. Pal, Phys. Lett. B 618 (2005) 243, arxiv:hep-th/0502192] "exotic oscillator". The Snyder algebra and subsequently the κ-Minkowski spacetime are also derived. Lastly we comment on the impossibility of constructing a non-commutative spacetime in the context of open string where only a curved target space is introduced.
NASA Astrophysics Data System (ADS)
1981-01-01
The problems related to aircraft noise were studied. Physical origin (sound), human reaction (noise), quantization of noise and sound sources of aircraft noise are discussed. Noise abatement at the source, technical, fleet-political and air traffic measures are explained. The measurements and future developments are also discussed. The position of Lufthansa as regards aircraft noise problems is depicted.
Noise pollution resources compendium
NASA Technical Reports Server (NTRS)
1973-01-01
Abstracts of reports concerning noise pollution are presented. The abstracts are grouped in the following areas of activity: (1) sources of noise, (2) noise detection and measurement, (3) noise abatement and control, (4) physical effects of noise and (5) social effects of noise.
NASA Technical Reports Server (NTRS)
1983-01-01
SMART, Sound Modification and Regulated Temperature compound, is a liquid plastic mixture with exceptional energy and sound absorbing qualities. It is derived from a very elastic plastic which was an effective noise abatement material in the Apollo Guidance System. Discovered by a NASA employee, it is marketed by Environmental Health Systems, Inc. (EHS). The product has been successfully employed by a diaper company with noisy dryers and a sugar company with noisy blowers. The company also manufactures an audiometric test booth and acoustical office partitions.
Probing crunching AdS cosmologies
NASA Astrophysics Data System (ADS)
Kumar, S. Prem; Vaganov, Vladislav
2016-02-01
Holographic gravity duals of deformations of CFTs formulated on de Sitter spacetime contain FRW geometries behind a horizon, with cosmological big crunch singularities. Using a specific analytically tractable solution within a particular single scalar truncation of {N}=8 supergravity on AdS4, we first probe such crunching cosmologies with spacelike radial geodesics that compute spatially antipodal correlators of large dimension boundary operators. At late times, the geodesics lie on the FRW slice of maximal expansion behind the horizon. The late time two-point functions factorise, and when transformed to the Einstein static universe, they exhibit a temporal non-analyticity determined by the maximal value of the scale factor ã max. Radial geodesics connecting antipodal points necessarily have de Sitter energy Ɛ ≲ ã max, while geodesics with Ɛ > ã max terminate at the crunch, the two categories of geodesics being separated by the maximal expansion slice. The spacelike crunch singularity is curved "outward" in the Penrose diagram for the deformed AdS backgrounds, and thus geodesic limits of the antipodal correlators do not directly probe the crunch. Beyond the geodesic limit, we point out that the scalar wave equation, analytically continued into the FRW patch, has a potential which is singular at the crunch along with complex WKB turning points in the vicinity of the FRW crunch. We then argue that the frequency space Green's function has a branch point determined by ã max which corresponds to the lowest quasinormal frequency.
KEPLER MISSION STELLAR AND INSTRUMENT NOISE PROPERTIES
Gilliland, Ronald L.; Chaplin, William J.; Elsworth, Yvonne P.; Miglio, Andrea; Dunham, Edward W.; Argabright, Vic S.; Borucki, William J.; Bryson, Stephen T.; Koch, David G.; Walkowicz, Lucianne M.; Basri, Gibor; Buzasi, Derek L.; Caldwell, Douglas A.; Jenkins, Jon M.; Van Cleve, Jeffrey; Welsh, William F.
2011-11-01
Kepler mission results are rapidly contributing to fundamentally new discoveries in both the exoplanet and asteroseismology fields. The data returned from Kepler are unique in terms of the number of stars observed, precision of photometry for time series observations, and the temporal extent of high duty cycle observations. As the first mission to provide extensive time series measurements on thousands of stars over months to years at a level hitherto possible only for the Sun, the results from Kepler will vastly increase our knowledge of stellar variability for quiet solar-type stars. Here, we report on the stellar noise inferred on the timescale of a few hours of most interest for detection of exoplanets via transits. By design the data from moderately bright Kepler stars are expected to have roughly comparable levels of noise intrinsic to the stars and arising from a combination of fundamental limitations such as Poisson statistics and any instrument noise. The noise levels attained by Kepler on-orbit exceed by some 50% the target levels for solar-type, quiet stars. We provide a decomposition of observed noise for an ensemble of 12th magnitude stars arising from fundamental terms (Poisson and readout noise), added noise due to the instrument and that intrinsic to the stars. The largest factor in the modestly higher than anticipated noise follows from intrinsic stellar noise. We show that using stellar parameters from galactic stellar synthesis models, and projections to stellar rotation, activity, and hence noise levels reproduce the primary intrinsic stellar noise features.
Whites Trashing Whites: Multiculturalism's Liberal Guilt Trip.
ERIC Educational Resources Information Center
Holden, Michael
1995-01-01
Presents the opinions of a white, male literature professor who attended a conference of college writing teachers and was distressed because the overwhelmingly white audience listened quietly as speakers used the platform to identify whites as oppressors of minorities and linguistic imperialists. The paper questions the view that Standard English…
Noise properties of the Planck-LFI receivers
NASA Astrophysics Data System (ADS)
Meinhold, P.; Leonardi, R.; Aja, B.; Artal, E.; Battaglia, P.; Bersanelli, M.; Blackhurst, E.; Butler, C. R.; Cuevas, L. P.; Cuttaia, F.; D'Arcangelo, O.; Davis, R.; de la Fuente, M. L.; Frailis, M.; Franceschet, C.; Franceschi, E.; Gaier, T.; Galeotta, S.; Gregorio, A.; Hoyland, R.; Hughes, N.; Jukkala, P.; Kettle, D.; Laaninen, M.; Leutenegger, P.; Lowe, S. R.; Malaspina, M.; Mandolesi, R.; Maris, M.; Martínez-González, E.; Mendes, L.; Mennella, A.; Miccolis, M.; Morgante, G.; Roddis, N.; Sandri, M.; Seiffert, M.; Salmón, M.; Stringhetti, L.; Poutanen, T.; Terenzi, L.; Tomasi, M.; Tuovinen, J.; Varis, J.; Valenziano, L.; Villa, F.; Wilkinson, A.; Winder, F.; Zacchei, A.; Zonca, A.
2009-12-01
The Planck Low Frequency Instrument (LFI) radiometers have been tested extensively during several dedicated campaigns. The present paper reports the principal noise properties of the LFI radiometers. A brief description of the LFI radiometers is given along with details of the test campaigns relevant to determination of noise properties. Current estimates of flight sensitivities, 1/f parameters, and noise effective bandwidths are presented. The LFI receivers exhibit exceptional 1/f noise, and their white noise performance is sufficient for the science goals of Planck.
NASA Technical Reports Server (NTRS)
Kumar, B. V. K. V.; Juday, Richard D.
1991-01-01
An algorithm is provided for treating nonwhite additive noise in determining regions of support for phase-only filters, binary phase-only filters, and complex ternary matched filters. It is analytically shown to be optimal in the signal-to-noise ratio sense. It extends earlier research that assumed white noise.
NASA Astrophysics Data System (ADS)
Bena, Iosif; Heurtier, Lucien; Puhm, Andrea
2016-05-01
It was argued in [1] that the five-dimensional near-horizon extremal Kerr (NHEK) geometry can be embedded in String Theory as the infrared region of an infinite family of non-supersymmetric geometries that have D1, D5, momentum and KK monopole charges. We show that there exists a method to embed these geometries into asymptotically- {AdS}_3× {S}^3/{{Z}}_N solutions, and hence to obtain infinite families of flows whose infrared is NHEK. This indicates that the CFT dual to the NHEK geometry is the IR fixed point of a Renormalization Group flow from a known local UV CFT and opens the door to its explicit construction.
Shadows, currents, and AdS fields
Metsaev, R. R.
2008-11-15
Conformal totally symmetric arbitrary spin currents and shadow fields in flat space-time of dimension greater than or equal to four are studied. A gauge invariant formulation for such currents and shadow fields is developed. Gauge symmetries are realized by involving the Stueckelberg fields. A realization of global conformal boost symmetries is obtained. Gauge invariant differential constraints for currents and shadow fields are obtained. AdS/CFT correspondence for currents and shadow fields and the respective normalizable and non-normalizable solutions of massless totally symmetric arbitrary spin AdS fields are studied. The bulk fields are considered in a modified de Donder gauge that leads to decoupled equations of motion. We demonstrate that leftover on shell gauge symmetries of bulk fields correspond to gauge symmetries of boundary currents and shadow fields, while the modified de Donder gauge conditions for bulk fields correspond to differential constraints for boundary conformal currents and shadow fields. Breaking conformal symmetries, we find interrelations between the gauge invariant formulation of the currents and shadow fields, and the gauge invariant formulation of massive fields.
Noise characteristics of Continuous GPS time series of Central and Eastern Himalaya
NASA Astrophysics Data System (ADS)
Ray, J. D.; Vijayan, M. S. M.; Kumar, A.
2015-12-01
Global positioning system measurements with its millimetre level accuracy have been widely used to monitor the crustal dynamics. Geodetic crustal deformation studies require accurate estimate of the parameters which demands realistic estimate of the uncertainties in order to constrain the signal. GPS based crustal deformation studies in tectonically active region, such as Central and Eastern Himalaya have been carried out by several groups however, proper noise characteristics of GPS time series of this study region are unknown. In this work, we attempt to address the noise characteristics of GPS position time series by analysing the GPS time series of 22 stations from North-East India, Bhutan and Nepal Himalaya spanning 2002-2013. We have employed Spectral analysis and Maximum Likelihood Estimation (MLE) to study the noise characteristics. Power spectrum obtained by using Lomb-Scargle method reveals characteristics of white noise at the high frequencies and power law noise at lower frequencies. Estimation of the spectral index by finding the slope of the spectral curve suggests fractal white noise with overall index of -0.61. MLE was performed in two ways. First, by assuming the time series to be composed of (a) white (WN), (b) white plus flicker (FL) and (c) white plus random walk noise (WRN) and then by estimating spectral index assuming the noise to be composition of white and power law noise (WPN). The comparison of MLE values of three noise model suggest that white plus flicker noise model (FL) is the most preferred noise model. Comparison of velocity uncertainties between white noise and white plus flicker noise, obtained from MLE, suggest that velocity uncertainty is under estimated by factor of ~8 when simple white noise model is used. The spectral index estimated using MLE is -1.1 (~1) which suggests that flicker noise is the main power law noise in time series of all 22 GPS stations. A slight difference of noise amplitudes of two different monument types
Defects and noise in Type-II superlattice infrared detectors
NASA Astrophysics Data System (ADS)
Walther, Martin; Wörl, Andreas; Daumer, Volker; Rehm, Robert; Kirste, Lutz; Rutz, Frank; Schmitz, Johannes
2013-06-01
To examine defects in InAs/GaSb type-II superlattices we investigated GaSb substrates and epitaxial InAs/GaSb layers by synchrotron white beam X-ray topography to characterize the distribution of threading dislocations. Those measurements are compared with wet chemical etch pit density measurements on GaSb substrates and InAs/GaSb type-II superlattices epitaxial layer structures. The technique uses a wet chemical etch process to decorate threading dislocations and an automated optical analyzing system for mapping the defect distribution. Dark current and noise measurements on processed InAs/GaSb type-II superlattice single element photo diodes reveal a generation-recombination limited dark current behavior without contributions by surface leakage currents for midwavelength infrared detectors. In the white noise part of the noise spectrum, the extracted diode noise closely matches the theoretically expected shot noise behavior. For diodes with an increased dark current in comparison to the dark current of generation-recombination limited material, the standard shot-noise model fails to describe the noise experimentally observed in the white part of the spectrum. Instead, we find that McIntyre's noise model for avalanche multiplication processes fits the data quite well. We suggest that within high electric field domains localized around crystallographic defects, electrons initiate avalanche multiplication processes leading to increased dark current and excess noise.
Compression station upgrades include advanced noise reduction
Dunning, V.R.; Sherikar, S.
1998-10-01
Since its inception in the mid-`80s, AlintaGas` Dampier to Bunbury natural gas pipeline has been constantly undergoing a series of upgrades to boost capacity and meet other needs. Extending northward about 850 miles from near Perth to the northwest shelf, the 26-inch line was originally served by five compressor stations. In the 1989-91 period, three new compressor stations were added to increase capacity and a ninth station was added in 1997. Instead of using noise-path-treatment mufflers to reduce existing noise, it was decided to use noise-source-treatment technology to prevent noise creation in the first place. In the field, operation of these new noise-source treatment attenuators has been very quiet. If there was any thought earlier of guaranteed noise-level verification, it is not considered a priority now. It`s also anticipated that as AlintaGas proceeds with its pipeline and compressor station upgrade program, similar noise-source treatment equipment will be employed and retrofitted into older stations where the need to reduce noise and potential radiant-heat exposure is indicated.
Evaluation of the risk of noise-induced hearing loss among unscreened male industrial workers
NASA Astrophysics Data System (ADS)
Prince, Mary M.; Gilbert, Stephen J.; Smith, Randall J.; Stayner, Leslie T.
2003-02-01
Variability in background risk and distribution of various risk factors for hearing loss may explain some of the diversity in excess risk of noise-induced hearing loss (NIHL). This paper examines the impact of various risk factors on excess risk estimates of NIHL using data from the 1968-1972 NIOSH Occupational Noise and Hearing Survey (ONHS). Previous analyses of a subset of these data focused on 1172 highly ``screened'' workers. In the current analysis, an additional 894 white males (609 noise-exposed and 285 controls), who were excluded for various reasons (i.e., nonoccupational noise exposure, otologic or medical conditions affecting hearing, prior occupational noise exposure) have been added (n=2066) to assess excess risk of noise-induced material impairment in an unscreened population. Data are analyzed by age, duration of exposure, and sound level (8-h TWA) for four different definitions of noise-induced hearing impairment, defined as the binaural pure-tone average (PTA) hearing threshold level greater than 25 dB for the following frequencies: (a) 1-4 kHz (PTA1234), (b) 1-3 kHz (PTA123), (c) 0.5, 1, and 2 kHz (PTA512), and (d) 3, 4, and 6 kHz (PTA346). Results indicate that populations with higher background risks of hearing loss may show lower excess risks attributable to noise relative to highly screened populations. Estimates of lifetime excess risk of hearing impairment were found to be significantly different between screened and unscreened population for noise levels greater than 90 dBA. Predicted age-related risk of material hearing impairment in the ONHS unscreened population was similar to that predicted from Annex B and C of ANSI S3.44 for ages less than 60 years. Results underscore the importance of understanding differential risk patterns for hearing loss and the use of appropriate reference (control) populations when evaluating risk of noise-induced hearing impairment among contemporary industrial populations.
Indirect combustion noise of auxiliary power units
NASA Astrophysics Data System (ADS)
Tam, Christopher K. W.; Parrish, Sarah A.; Xu, Jun; Schuster, Bill
2013-08-01
Recent advances in noise suppression technology have significantly reduced jet and fan noise from commercial jet engines. This leads many investigators in the aeroacoustics community to suggest that core noise could well be the next aircraft noise barrier. Core noise consists of turbine noise and combustion noise. There is direct combustion noise generated by the combustion processes, and there is indirect combustion noise generated by the passage of combustion hot spots, or entropy waves, through constrictions in an engine. The present work focuses on indirect combustion noise. Indirect combustion noise has now been found in laboratory experiments. The primary objective of this work is to investigate whether indirect combustion noise is also generated in jet and other engines. In a jet engine, there are numerous noise sources. This makes the identification of indirect combustion noise a formidable task. Here, our effort concentrates exclusively on auxiliary power units (APUs). This choice is motivated by the fact that APUs are relatively simple engines with only a few noise sources. It is, therefore, expected that the chance of success is higher. Accordingly, a theoretical model study of the generation of indirect combustion noise in an Auxiliary Power Unit (APU) is carried out. The cross-sectional areas of an APU from the combustor to the turbine exit are scaled off to form an equivalent nozzle. A principal function of a turbine in an APU is to extract mechanical energy from the flow stream through the exertion of a resistive force. Therefore, the turbine is modeled by adding a negative body force to the momentum equation. This model is used to predict the ranges of frequencies over which there is a high probability for indirect combustion noise generation. Experimental spectra of internal pressure fluctuations and far-field noise of an RE220 APU are examined to identify anomalous peaks. These peaks are possible indirection combustion noise. In the case of the
NASA Astrophysics Data System (ADS)
Vonglahn, U. H.
1982-07-01
Calculated engine core noise levels, based on NASA Lewis prediction procedures, for five representative helicopter engines are compared with measured total helicopter noise levels and ICAO helicopter noise certification requirements. Comparisons are made for level flyover and approach procedures. The measured noise levels are generally significantly greater than those predicted for the core noise levels, except for the Sikorsky S-61 and S-64 helicopters. However, the predicted engine core noise levels are generally at or within 3 dB of the ICAO noise rules. Consequently, helicopter engine core noise can be a significant contributor to the overall helicopter noise signature.
NASA Technical Reports Server (NTRS)
Vonglahn, U. H.
1982-01-01
Calculated engine core noise levels, based on NASA Lewis prediction procedures, for five representative helicopter engines are compared with measured total helicopter noise levels and ICAO helicopter noise certification requirements. Comparisons are made for level flyover and approach procedures. The measured noise levels are generally significantly greater than those predicted for the core noise levels, except for the Sikorsky S-61 and S-64 helicopters. However, the predicted engine core noise levels are generally at or within 3 dB of the ICAO noise rules. Consequently, helicopter engine core noise can be a significant contributor to the overall helicopter noise signature.
NASA Technical Reports Server (NTRS)
Moore, R. L.; Angel, J. R. P.; Duerr, R.; Lebofsky, M. J.; Wisniewski, W. Z.; Rieke, G. H.; Axon, D. J.; Bailey, J.; Hough, J. M.; Mcgraw, J. T.
1982-01-01
Results are presented from an intensive optical and IR monitoring program of the flux and polarization characteristics of BL Lac. It is found that the polarization variations increase in amplitude with increasing time interval, and that the path traced out by the polarization vector in the Q-U plane is a random walk. In view of earlier measurements of BL Lac, the polarization fluctuations can be represented at low frequencies by the flat power spectrum of white noise, up to a frequency of 0.05 cycles/day. Above this frequency, the spectrum steepens to that of a random walk. A model for BL Lac suggested by the polarimetric noise can be constructed from independent sources of light with randomly oriented, strong polarization. Small random differences in spectral index from source to source could also explain the variable wavelength dependence of polarization.
NASA Astrophysics Data System (ADS)
Fidell, Sandy
The primary effects of community noise on residential populations are speech interference, sleep disturbance, and annoyance. This chapter focuses on transportation noise in general and on aircraft noise in particular because aircraft noise is one of the most prominent community noise sources, because airport/community controversies are often the most contentious and widespread, and because industrial and other specialized formsofcommunitynoise generally posemorelocalized problems.
NASA Technical Reports Server (NTRS)
Groeneweg, John F.; Sofrin, Thomas G.; Rice, Edward J.; Gliebe, Phillip R.
1991-01-01
Summarized here are key advances in experimental techniques and theoretical applications which point the way to a broad understanding and control of turbomachinery noise. On the experimental side, the development of effective inflow control techniques makes it possible to conduct, in ground based facilities, definitive experiments in internally controlled blade row interactions. Results can now be valid indicators of flight behavior and can provide a firm base for comparison with analytical results. Inflow control coupled with detailed diagnostic tools such as blade pressure measurements can be used to uncover the more subtle mechanisms such as rotor strut interaction, which can set tone levels for some engine configurations. Initial mappings of rotor wake-vortex flow fields have provided a data base for a first generation semiempirical flow disturbance model. Laser velocimetry offers a nonintrusive method for validating and improving the model. Digital data systems and signal processing algorithms are bringing mode measurement closer to a working tool that can be frequently applied to a real machine such as a turbofan engine. On the analytical side, models of most of the links in the chain from turbomachine blade source to far field observation point have been formulated. Three dimensional lifting surface theory for blade rows, including source noncompactness and cascade effects, blade row transmission models incorporating mode and frequency scattering, and modal radiation calculations, including hybrid numerical-analytical approaches, are tools which await further application.
Research on infrared-image denoising algorithm based on the noise analysis of the detector
NASA Astrophysics Data System (ADS)
Liu, Songtao; Zhou, Xiaodong; Shen, Tongsheng; Han, Yanli
2005-01-01
Since the conventional denoising algorithms have not considered the influence of certain concrete detector, they are not very effective to remove various noises contained in the low signal-to-noise ration infrared image. In this paper, a new thinking for infrared image denoising is proposed, which is based on the noise analyses of detector with an example of L model infrared multi-element detector. According to the noise analyses of this detector, the emphasis is placed on how to filter white noise and fractal noise in the preprocessing phase. Wavelet analysis is a good tool for analyzing 1/f process. 1/f process can be viewed as white noise approximately since its wavelet coefficients are stationary and uncorrelated. So if wavelet transform is adopted, the problem of removing white noise and fraction noise is simplified as the only one problem, i.e., removing white noise. To address this problem, a new wavelet domain adaptive wiener filtering algorithm is presented. From the viewpoint of quantitative and qualitative analyses, the filtering effect of our method is compared with those of traditional median filter, mean filter and wavelet thresholding algorithm in detail. The results show that our method can reduce various noises effectively and raise the ratio of signal-to-noise evidently.
Cabin Noise Control for Twin Engine General Aviation Aircraft
NASA Technical Reports Server (NTRS)
Vaicaitis, R.; Slazak, M.
1982-01-01
An analytical model based on modal analysis was developed to predict the noise transmission into a twin-engine light aircraft. The model was applied to optimize the interior noise to an A-weighted level of 85 dBA. To achieve the required noise attenuation, add-on treatments in the form of honeycomb panels, damping tapes, acoustic blankets, septum barriers and limp trim panels were added to the existing structure. The added weight of the noise control treatment is about 1.1 percent of the total gross take-off weight of the aircraft.
Phase noise in oscillators as differential-algebraic systems with colored noise sources
NASA Astrophysics Data System (ADS)
Demir, Alper
2004-05-01
Oscillators are key components of many kinds of systems, particularly electronic and opto-electronic systems. Undesired perturbations, i.e. noise, in practical systems adversely affect the spectral and timing properties of the signals generated by oscillators resulting in phase noise and timing jitter, which are key performance limiting factors, being major contributors to bit-error-rate (BER) of RF and possibly optical communication systems, and creating synchronization problems in clocked and sampled-data electronic systems. In this paper, we review our work on the theory and numerical methods for nonlinear perturbation and noise analysis of oscillators described by a system of differential-algebraic equations (DAEs) with white and colored noise sources. The bulk of the work reviewed in this paper first appeared in [1], then in [2] and [3]. Prior to the work mentioned above, we developed a theory and numerical methods for nonlinear perturbation and noise analysis of oscillators described by a system of ordinary differential equations (ODEs) with white noise sources only [4, 5]. In this paper, we also discuss some open problems and issues in the modeling and analysis of phase noise both in free running oscillators and in phase/injection-locked ones.
NASA Technical Reports Server (NTRS)
Clauson, J.; Heuser, J.
1981-01-01
The Applications Data Service (ADS) is a system based on an electronic data communications network which will permit scientists to share the data stored in data bases at universities and at government and private installations. It is designed to allow users to readily locate and access high quality, timely data from multiple sources. The ADS Pilot program objectives and the current plans for accomplishing those objectives are described.
Noise effects in two different biological systems
NASA Astrophysics Data System (ADS)
Spagnolo, B.; Spezia, S.; Curcio, L.; Pizzolato, N.; Fiasconaro, A.; Valenti, D.; Lo Bue, P.; Peri, E.; Colazza, S.
2009-05-01
We investigate the role of the colored noise in two biological systems: (i) adults of Nezara viridula (L.) (Heteroptera: Pentatomidae), and (ii) polymer translocation. In the first system we analyze, by directionality tests, the response of N. viridula individuals to subthreshold signals plus noise in their mating behaviour. The percentage of insects that react to the subthreshold signal shows a nonmonotonic behaviour, characterized by the presence of a maximum, as a function of the noise intensity. This is the signature of the non-dynamical stochastic resonance phenomenon. By using a “soft” threshold model we find that the maximum of the input-output cross correlation occurs in the same range of noise intensity values for which the behavioural activation of the insects has a maximum. Moreover this maximum value is lowered and shifted towards higher noise intensities, compared to the case of white noise. In the second biological system the noise driven translocation of short polymers in crowded solutions is analyzed. An improved version of the Rouse model for a flexible polymer is adopted to mimic the molecular dynamics by taking into account both the interactions between adjacent monomers and the effects of a Lennard-Jones potential between all beads. The polymer dynamics is simulated in a two-dimensional domain by numerically solving the Langevin equations of motion in the presence of thermal fluctuations and a colored noise source. At low temperatures or for strong colored noise intensities the translocation process of the polymer chain is delayed. At low noise intensity, as the polymer length increases, we find a nonmonotonic behaviour for the mean first translocation time of the polymer centre of inertia. We show how colored noise influences the motion of short polymers, by inducing two different regimes of translocation in the dynamics of molecule transport.
Colored noise effects on batch attitude accuracy estimates
NASA Technical Reports Server (NTRS)
Bilanow, Stephen
1991-01-01
The effects of colored noise on the accuracy of batch least squares parameter estimates with applications to attitude determination cases are investigated. The standard approaches used for estimating the accuracy of a computed attitude commonly assume uncorrelated (white) measurement noise, while in actual flight experience measurement noise often contains significant time correlations and thus is colored. For example, horizon scanner measurements from low Earth orbit were observed to show correlations over many minutes in response to large scale atmospheric phenomena. A general approach to the analysis of the effects of colored noise is investigated, and interpretation of the resulting equations provides insight into the effects of any particular noise color and the worst case noise coloring for any particular parameter estimate. It is shown that for certain cases, the effects of relatively short term correlations can be accommodated by a simple correction factor. The errors in the predicted accuracy assuming white noise and the reduced accuracy due to the suboptimal nature of estimators that do not take into account the noise color characteristics are discussed. The appearance of a variety of sample noise color characteristics are demonstrated through simulation, and their effects are discussed for sample estimation cases. Based on the analysis, options for dealing with the effects of colored noise are discussed.
Aircraft and airport noise control prospective outlook
Shapiro, N.
1982-01-01
In a perspective look at aircraft and airport noise control over the past ten years or more - or more is added here because the Federal Aviation Regulation Part 36 of 1969 is a more significant milestone for the air transportation system than is the Noise Control Act of 1972 - we see an appreciable reduction in the noise emitted by newly designed and newly produced airplanes, particularly those powered by the new high bypass engines, but only, at best, a moderate alleviation of airport noise. The change in airport noise exposure was the consequence of the introduction of some new, quieter airplanes into the airlines fleets and some operational modifications or restrictions at the airports.
Noise exposure in the rural setting.
Holt, J J; Broste, S K; Hansen, D A
1993-03-01
Noise levels of 155 tractors on 36 farms were studied. The range of noise levels at the driver's ear level with radios off and windows closed (if so equipped) was from 78 to 103 dB. Seventy-five percent of tractors without cabs had noise levels in excess of 90 dB, compared to only 18% of tractors with cabs. The use of a radio adds an average of 3.1 dB of noise. When some cab windows are open and the radio is on, an average of 4.2 dB is added to the cab noise. From the results of this study, the authors recommend hearing protection when time on a tractor with a cab approaches 3 to 4 hours and when time on a tractor without a cab approaches 1.5 to 2 hours. Limited use of the radio is also recommended. PMID:8441312
Performance of correlation receivers in the presence of impulse noise.
NASA Technical Reports Server (NTRS)
Moore, J. D.; Houts, R. C.
1972-01-01
An impulse noise model, which assumes that each noise burst contains a randomly weighted version of a basic waveform, is used to derive the performance equations for a correlation receiver. The expected number of bit errors per noise burst is expressed as a function of the average signal energy, signal-set correlation coefficient, bit time, noise-weighting-factor variance and probability density function, and a time range function which depends on the crosscorrelation of the signal-set basis functions and the noise waveform. Unlike the performance results for additive white Gaussian noise, it is shown that the error performance for impulse noise is affected by the choice of signal-set basis function, and that Orthogonal signaling is not equivalent to On-Off signaling with the same average energy. Furthermore, it is demonstrated that the correlation-receiver error performance can be improved by inserting a properly specified nonlinear device prior to the receiver input.
NASA Astrophysics Data System (ADS)
Wang, Xiaoting; Byrd, Mark; Jacobs, Kurt
2016-03-01
A system subjected to noise contains a decoherence-free subspace or subsystem (DFS) only if the noise possesses an exact symmetry. Here we consider noise models in which a perturbation breaks a symmetry of the noise, so that if S is a DFS under a given noise process it is no longer so under the new perturbed noise process. We ask whether there is a subspace or subsystem that is more robust to the perturbed noise than S . To answer this question we develop a numerical method that allows us to search for subspaces or subsystems that are maximally robust to arbitrary noise processes. We apply this method to a number of examples, and find that a subsystem that is a DFS is often not the subsystem that experiences minimal noise when the symmetry of the noise is broken by a perturbation. We discuss which classes of noise have this property.
Speckle noise in laser bar-code-scanner systems
NASA Astrophysics Data System (ADS)
Yu, Daoqi; Stern, Miklos; Katz, Joseph
1996-07-01
We present a theoretical model and its experimental verification for speckle-induced noise in laser-based bar-code-scanner systems. We measured the dependence of the signal-to-speckle-noise ratio on distance, spot size, and detector size. Analyses of the power spectra of both the speckle noise and of the measured surface profiles of different substrates suggest that the paper surface granularity can be approximated by a white Gaussian noise process, thus confirming the assumption of the theoretical model.
Entanglement criteria for noise resistance of two-qudit states
NASA Astrophysics Data System (ADS)
Dutta, Arijit; Ryu, Junghee; Laskowski, Wiesław; Żukowski, Marek
2016-06-01
Noise affects production and transmission of entanglement. We use a handy approach for a noise resistance of entanglement of two-qudit systems. A geometric concept using correlation tensors of separable and entangled states is implemented to formulate entanglement criterion. We apply the criterion to the various types of noise (white, colored, local depolarizing and amplitude damping) admixtures with the initial (pure) state. We also study the noise resistance with respect to the violation of specific family of Bell inequalities (CGLMP). A broad set of numerical and analytical results is presented.
Noise behavior in CGPS position time series: the eastern North America case study
NASA Astrophysics Data System (ADS)
Goudarzi, M. A.; Cocard, M.; Santerre, R.
2015-09-01
We analyzed the noise characteristics of 112 continuously operating GPS stations in eastern North America using the Spectral Analysis and the Maximum Likelihood Estimation (MLE) methods. Results of both methods show that the combination ofwhite plus flicker noise is the best model for describing the stochastic part of the position time series. We explored this further using the MLE in the time domain by testing noise models of (a) powerlaw, (b)white, (c)white plus flicker, (d)white plus randomwalk, and (e) white plus flicker plus random-walk. The results show that amplitudes of all noise models are smallest in the north direction and largest in the vertical direction. While amplitudes of white noise model in (c-e) are almost equal across the study area, they are prevailed by the flicker and Random-walk noise for all directions. Assuming flicker noise model increases uncertainties of the estimated velocities by a factor of 5-38 compared to the white noise model.
Stochastic memory: Memory enhancement due to noise
NASA Astrophysics Data System (ADS)
Stotland, Alexander; di Ventra, Massimiliano
2012-01-01
There are certain classes of resistors, capacitors, and inductors that, when subject to a periodic input of appropriate frequency, develop hysteresis loops in their characteristic response. Here we show that the hysteresis of such memory elements can also be induced by white noise of appropriate intensity even at very low frequencies of the external driving field. We illustrate this phenomenon using a physical model of memory resistor realized by TiO2 thin films sandwiched between metallic electrodes and discuss under which conditions this effect can be observed experimentally. We also discuss its implications on existing memory systems described in the literature and the role of colored noise.
The Noisy Expectation-Maximization Algorithm for Multiplicative Noise Injection
NASA Astrophysics Data System (ADS)
Osoba, Osonde; Kosko, Bart
2016-03-01
We generalize the noisy expectation-maximization (NEM) algorithm to allow arbitrary modes of noise injection besides just adding noise to the data. The noise must still satisfy a NEM positivity condition. This generalization includes the important special case of multiplicative noise injection. A generalized NEM theorem shows that all measurable modes of injecting noise will speed the average convergence of the EM algorithm if the noise satisfies a generalized NEM positivity condition. This noise-benefit condition has a simple quadratic form for Gaussian and Cauchy mixture models in the case of multiplicative noise injection. Simulations show a multiplicative-noise EM speed-up of more than 27% in a simple Gaussian mixture model. Injecting blind noise only slowed convergence. A related theorem gives a sufficient condition for an average EM noise benefit for arbitrary modes of noise injection if the data model comes from the general exponential family of probability density functions. A final theorem shows that injected noise slows EM convergence on average if the NEM inequalities reverse and the noise satisfies a negativity condition.
Noise, Health, and Architecture.
ERIC Educational Resources Information Center
Beranek, Leo L.
There is reasonable agreement that hearing impairment is related to noise exposure. This hearing loss due to noise is considered a serious health injury, but there is still difficulty in delineating the importance of noise related to people's general non-auditory well-being and health. Beside hearing loss, noise inhibits satisfactory speech…
NASA Technical Reports Server (NTRS)
Yu, Yung H.; Schmitz, Frederic H.; Morse, Andrew H.
1991-01-01
Progress in aeroacoustical theory and experiments reviewed. Report summarizes continuing U.S. Army programs of research into causes of noise generated by helicopters. Topics of study include high-speed impulsive noise, blade/vortex-interaction noise, and low-frequency harmonic noise.
ERIC Educational Resources Information Center
Swalwell, Katy
2012-01-01
Even as the United States becomes more diverse, a new era of "white flight" is unfolding. Whether they live in urban, suburban or rural communities, white students are likely to attend schools that reinforce their perceptions of cultural dominance. The average white student attends a school where 77 percent of the student body is of their race.…
NASA Technical Reports Server (NTRS)
1999-01-01
Peering deep inside a cluster of several hundred thousand stars, NASA's Hubble Space Telescope has uncovered the oldest burned-out stars in our Milky Way Galaxy, giving astronomers a fresh reading on the age of the universe.
Located in the globular cluster M4, these small, burned-out stars -- called white dwarfs -- are about 12 to 13 billion years old. By adding the one billion years it took the cluster to form after the Big Bang, astronomers found that the age of the white dwarfs agrees with previous estimates that the universe is 13 to 14 billion years old.
The images, including some taken by Hubble's Wide Field and Planetary Camera 2, are available online at
http://oposite.stsci.edu/pubinfo/pr/2002/10/ or
http://www.jpl.nasa.gov/images/wfpc .
The camera was designed and built by NASA's Jet Propulsion Laboratory, Pasadena, Calif.
In the top panel, a ground-based observatory snapped a panoramic view of the entire cluster, which contains several hundred thousand stars within a volume of 10 to 30 light-years across. The Kitt Peak National Observatory's .9-meter telescope took this picture in March 1995. The box at left indicates the region observed by the Hubble telescope.
The Hubble telescope studied a small region of the cluster. A section of that region is seen in the picture at bottom left. A sampling of an even smaller region is shown at bottom right. This region is only about one light-year across. In this smaller region, Hubble pinpointed a number of faint white dwarfs. The blue circles indicate the dwarfs. It took nearly eight days of exposure time over a 67-day period to find these extremely faint stars.
Globular clusters are among the oldest clusters of stars in the universe. The faintest and coolest white dwarfs within globular clusters can yield a globular cluster's age. Earlier Hubble observations showed that the first stars formed less than 1 billion years after the universe's birth in the big bang. So, finding the
Cardiorespiratory fitness and white matter integrity in Alzheimer's disease.
Perea, R D; Vidoni, E D; Morris, J K; Graves, R S; Burns, J M; Honea, R A
2016-09-01
The objective of this study was to investigate the relationship between cardiorespiratory (CR) fitness and the brain's white matter tract integrity using diffusion tensor imaging (DTI) in the Alzheimer's disease (AD) population. We recruited older adults in the early stages of AD (n = 37; CDR = 0.5 and 1) and collected cross-sectional fitness and diffusion imaging data. We examined the association between CR fitness (peak oxygen consumption [VO2peak]) and fractional anisotropy (FA) in AD-related white matter tracts using two processing methodologies: a tract-of-interest approach and tract-based spatial statistic (TBSS). Subsequent diffusivity metrics (radial diffusivity [RD], mean diffusivity [MD], and axial diffusivity [A × D]) were also correlated with VO2peak. The tract-of-interest approach showed that higher VO2peak was associated with preserved white matter integrity as measured by increased FA in the right inferior fronto-occipital fasciculus (p = 0.035, r = 0.36). We did not find a significant correlation using TBSS, though there was a trend for a positive association between white matter integrity and higher VO2peak measures (p < 0.01 uncorrected). Our findings indicate that higher CR fitness levels in early AD participants may be related to preserved white matter integrity. However to draw stronger conclusions, further study on the relationship between fitness and white matter deterioration in AD is necessary. PMID:26239997
Growth of bermudagrass with white clover or nitrogen fertilizer
Technology Transfer Automated Retrieval System (TEKTRAN)
White clover (Trifolium repens) var ‘Durana’ was oversown into established bermudagrass (Cynodon dactylon) in 2009. Soil analysis indicated potassium (K) was low and potash at 112 and 336 kg/ha was added as main plots. Nitrogen as ammonium nitrate or an ammonium sulfate/urea blend was added as 0, 34...
Somiya, K.; Chen, Y.; Kawamura, S.; Mio, N.
2006-06-15
The sensitivity of next-generation gravitational-wave detectors such as Advanced LIGO and LCGT should be limited mostly by quantum noise with an expected technical progress to reduce seismic noise and thermal noise. Those detectors will employ the optical configuration of resonant-sideband-extraction that can be realized with a signal-recycling mirror added to the Fabry-Perot Michelson interferometer. While this configuration can reduce quantum noise of the detector, it can possibly increase laser frequency noise and intensity noise. The analysis of laser noise in the interferometer with the conventional configuration has been done in several papers, and we shall extend the analysis to the resonant-sideband-extraction configuration with the radiation-pressure effect included. We shall also refer to laser noise in the case we employ the so-called DC readout scheme.
Innovations Without Added Costs
ERIC Educational Resources Information Center
Cereghino, Edward
1974-01-01
There is no question that we are in a tight money market, and schools are among the first institutions to feel the squeeze. Therefore, when a plan is offered that provides for innovations without added costs, its something worth noting. (Editor)
ERIC Educational Resources Information Center
Richards, Andrew
2015-01-01
Two quantitative measures of school performance are currently used, the average points score (APS) at Key Stage 2 and value-added (VA), which measures the rate of academic improvement between Key Stage 1 and 2. These figures are used by parents and the Office for Standards in Education to make judgements and comparisons. However, simple…
NASA Astrophysics Data System (ADS)
Accomazzi, Alberto; Henneken, E.; Grant, C. S.; Kurtz, M. J.; Di Milia, G.; Luker, J.; Thompson, D. M.; Bohlen, E.; Murray, S. S.
2011-05-01
ADS Labs is a platform that ADS is introducing in order to test and receive feedback from the community on new technologies and prototype services. Currently, ADS Labs features a new interface for abstract searches, faceted filtering of results, visualization of co-authorship networks, article-level recommendations, and a full-text search service. The streamlined abstract search interface provides a simple, one-box search with options for ranking results based on a paper relevancy, freshness, number of citations, and downloads. In addition, it provides advanced rankings based on collaborative filtering techniques. The faceted filtering interface allows users to narrow search results based on a particular property or set of properties ("facets"), allowing users to manage large lists and explore the relationship between them. For any set or sub-set of records, the co-authorship network can be visualized in an interactive way, offering a view of the distribution of contributors and their inter-relationships. This provides an immediate way to detect groups and collaborations involved in a particular research field. For a majority of papers in Astronomy, our new interface will provide a list of related articles of potential interest. The recommendations are based on a number of factors, including text similarity, citations, and co-readership information. The new full-text search interface allows users to find all instances of particular words or phrases in the body of the articles in our full-text archive. This includes all of the scanned literature in ADS as well as a select portion of the current astronomical literature, including ApJ, ApJS, AJ, MNRAS, PASP, A&A, and soon additional content from Springer journals. Fulltext search results include a list of the matching papers as well as a list of "snippets" of text highlighting the context in which the search terms were found. ADS Labs is available at http://adslabs.org
Airport noise impact reduction through operations
NASA Technical Reports Server (NTRS)
Deloach, R.
1981-01-01
The effects of various aeronautical, operational, and land-use noise impact reduction alternatives are assessed for a major midwestern airport. Specifically, the relative effectiveness of adding sound absorbing material to aircraft engines, imposing curfews, and treating houses with acoustic insulation are examined.
Helicopter rotor trailing edge noise. [noise prediction
NASA Technical Reports Server (NTRS)
Schlinker, R. H.; Amier, R. K.
1981-01-01
A two dimensional section of a helicopter main rotor blade was tested in an acoustic wind tunnel at close to full-scale Reynolds numbers to obtain boundary layer data and acoustic data for use in developing an acoustic scaling law and testing a first principles trailing edge noise theory. Results were extended to the rotating frame coordinate system to develop a helicopter rotor trailing edge noise prediction. Comparisons of the calculated noise levels with helicopter flyover spectra demonstrate that trailing edge noise contributes significantly to the total helicopter noise spectrum at high frequencies. This noise mechanism is expected to control the minimum rotor noise. In the case of noise radiation from a local blade segment, the acoustic directivity pattern is predicted by the first principles trailing edge noise theory. Acoustic spectra are predicted by a scaling law which includes Mach number, boundary layer thickness and observer position. Spectrum shape and sound pressure level are also predicted by the first principles theory but the analysis does not predict the Strouhal value identifying the spectrum peak.
Ternström, Sten; Södersten, Maria; Bohman, Mikael
2002-06-01
It can be difficult for the voice clinician to observe or measure how a patient uses his voice in a noisy environment. We consider here a novel method for obtaining this information in the laboratory. Worksite noise and filtered white noise were reproduced over high-fidelity loudspeakers. In this noise, 11 subjects read an instructional text of 1.5 to 2 minutes duration, as if addressing a group of people. Using channel estimation techniques, the site noise was suppressed from the recording, and the voice signal alone was recovered. The attainable noise rejection is limited only by the precision of the experimental setup, which includes the need for the subject to remain still so as not to perturb the estimated acoustic channel. This feasibility study, with 7 female and 4 male subjects, showed that small displacements of the speaker's body, even breathing, impose a practical limit on the attainable noise rejection. The noise rejection was typically 30 dB and maximally 40 dB down over the entire voice spectrum. Recordings thus processed were clean enough to permit voice analysis with the long-time average spectrum and the computerized phonetogram. The effects of site noise on voice sound pressure level, fundamental frequency, long-term average spectrum centroid, phonetogram area, and phonation time were much as expected, but with some interesting differences between females and males. PMID:12150372
NASA Astrophysics Data System (ADS)
Newman, J. S.; Beattie, K. R.
1985-03-01
This report summarizes the effects of aviation noise in many areas, ranging from human annoyance to impact on real estate values. It also synthesizes the findings of literature on several topics. Included in the literature were many original studies carried out under FAA and other Federal funding over the past two decades. Efforts have been made to present the critical findings and conclusions of pertinent research, providing, when possible, a bottom line conclusion, criterion or perspective. Issues related to aviation noise are highlighted, and current policy is presented. Specific topic addressed include: annoyance; Hearing and hearing loss; noise metrics; human response to noise; speech interference; sleep interference; non-auditory health effects of noise; effects of noise on wild and domesticated animals; low frequency acoustical energy; impulsive noise; time of day weightings; noise contours; land use compatibility; and real estate values. This document is designed for a variety of users, from the individual completely unfamiliar with aviation noise to experts in the field.
Highly noise resistant multiqubit quantum correlations
NASA Astrophysics Data System (ADS)
Laskowski, Wiesław; Vértesi, Tamás; Wieśniak, Marcin
2015-11-01
We analyze robustness of correlations of the N-qubit GHZ and Dicke states against white noise admixture. For sufficiently large N, the Dicke states (for any number of excitations) lead to more robust violation of local realism than the GHZ states (e.g. for N > 8 for the W state). We also identify states that are the most resistant to white noise. Surprisingly, it turns out that these states are the GHZ states augmented with fully product states. Based on our numerical analysis conducted up to N = 8, and an analytical formula derived for any N parties, we conjecture that the three-qubit GHZ state augmented with a product of (N - 3) pure qubits is the most robust against white noise admixture among any N-qubit state. As a by-product, we derive a single Bell inequality and show that it is violated by all pure entangled states of a given number of parties. This gives an alternative proof of Gisin’s theorem.
Shanghai alleviates noise pollution
Ding Runling
1983-07-14
''Environmental noise is now under control in Shanghai, the level of environmental noise is basically holding steady, and in some areas industrial and traffic noise has decreased.'' These were the conclusions of research by Hong Zonghui (3163 1350 6540) and Wang Shixian (3769 6164 6343) of Tongji University's Acoustics Laboratory, as put forward at a recent public academic lecture at Tongji University. In order to eliminate noise from the environment, Tongji University in the early 1970's began conducting investigations and research on noise pollution and its control together with concerned units in this city. After tests in a network of 2,117 points throughout the city, they determined that the most common form of noise pollution is traffic, which accounts for 50 percent of all noise. Since 1979, this city has adopted successive measures in the area of traffic control in order to eliminate the source of noise. Traffic noise has now dropped about 3 decibels in the city. This research report also pointed out that according to the results of regional environmental noise tests, this city does not meet the noise pollution standards set by the state. Tugboats on the Suzhou He blow their whistles late at night, and the noise at riverside homes can reach 82 decibels; the Fangua Lane residential district is close to a railroad where engine noise can reach 89 decibels and affect the residents' health. In addition, rather serious noise pollution is produced by more than 300 handicraft, light industry, textile, and electrical machinery plants.
NASA Astrophysics Data System (ADS)
Burgess, Arthur E.
1986-06-01
Human observers behave as if they have two sources of intrinsic variability, commonly referred to as internal noise. One component (here referred to as "constant") is independent of the external noise level but does depend on mean display luminance. The other component (referred to as "induced") is directly proportional to the external noise level and dominates when the display noise is easily visible. The induced internal noise is predicted by two models - one based on intrinsic signal parameter jitter and the other on a zone of indecision. Spectral density is the appropriate measure for internal noise.
Robertson, J.
1981-08-01
Noise generated by continuous miners in underground coal production is an important health hazard. Laboratory tests of simulated cutting operations and in-mine noise measurements have been made. These show that coal cutting noise and conveyor noise are the dominant sources of miner operational noise. Typical noise levels for cutting and conveying operations are 97 dBA. For full operation of all machine systems, the overall sound pressure level is approximately 101 dBA. In-mine and laboratory test results show excellent agreement in both A-weighted overall levels as well as A-weighted one-third octave band spectra.
Laser line shape and spectral density of frequency noise
Stephan, G.M.; Blin, S.; Besnard, P.; Tam, T.T.; Tetu, M.
2005-04-01
Published experimental results show that single-mode laser light is characterized in the microwave range by a frequency noise which essentially includes a white part and a 1/f (flicker) part. We theoretically show that the spectral density (the line shape) which is compatible with these results is a Voigt profile whose Lorentzian part or homogeneous component is linked to the white noise and the Gaussian part to the 1/f noise. We measure semiconductor laser line profiles and verify that they can be fit with Voigt functions. It is also verified that the width of the Lorentzian part varies like 1/P where P is the laser power while the width of the Gaussian part is more of a constant. Finally, we theoretically show from first principles that laser line shapes are also described by Voigt functions where the Lorentzian part is the laser Airy function and the Gaussian part originates from population noise.
ERIC Educational Resources Information Center
Rodgers, Timothy
2007-01-01
The 2003 UK higher education White Paper suggested that the sector needed to re-examine the potential of the value added concept. This paper describes a possible methodology for developing a performance indicator based on the economic value added to graduates. The paper examines how an entry-quality-adjusted measure of a graduate's "expected"…
Estimating noise and information for multispectral imagery
NASA Astrophysics Data System (ADS)
Aiazzi, Bruno; Alparone, Luciano; Barducci, Alessandro; Baronti, Stefano; Pippi, Ivan
2002-03-01
We focus on reliably estimating the information conveyed to a user by multispectral image data. The goal is establishing the extent to which an increase in spectral resolution can increase the amount of usable information. As a matter of fact, a trade- off exists between spatial and spectral resolution, due to physical constraints of sensors imaging with a prefixed SNR. After describing some methods developed for automatically estimating the variance of the noise introduced by multispectral imagers, lossless data compression is exploited to measure the useful information content of the multispectral data. In fact, the bit rate achieved by the reversible compression process takes into account both the contribution of the 'observation' noise, i.e., information regarded as statistical uncertainty, whose relevance is null to a user, and the intrinsic information of hypothetically noise free multispectral data. An entropic model of the image source is defined and, once the standard deviation of the noise, assumed to be white and Gaussian, has been preliminarily estimated, such a model is inverted to yield an estimate of the information content of the noise-free source from the code rate. Results of both noise and information assessment are reported and discussed on synthetic noisy images and on Landsat thematic mapper (TM) data.
Two Virasoro symmetries in stringy warped AdS3
NASA Astrophysics Data System (ADS)
Compère, Geoffrey; Guica, Monica; Rodriguez, Maria J.
2014-12-01
We study three-dimensional consistent truncations of type IIB supergravity which admit warped AdS3 solutions. These theories contain subsectors that have no bulk dynamics. We show that the symplectic form for these theories, when restricted to the non-dynamical subsectors, equals the symplectic form for pure Einstein gravity in AdS3. Consequently, for each consistent choice of boundary conditions in AdS3, we can define a consistent phase space in warped AdS3 with identical conserved charges. This way, we easily obtain a Virasoro × Virasoro asymptotic symmetry algebra in warped AdS3; two different types of Virasoro × Kač-Moody symmetries are also consistent alternatives.
Noise Immune Cavity Enhanced Optical Heterodyne Velocity Modulation Spectroscopy
NASA Astrophysics Data System (ADS)
Siller, Brian; Mills, Andrew; Porambo, Michael; McCall, Benjamin
2011-06-01
The technique of Cavity Enhanced Velocity Modulation Spectroscopy (CEVMS) has recently been developed. By demodulating the detector signal at twice the plasma modulation frequency (2f), the velocity-modulated ionic absorption signal can be extracted. Although the concentration-modulated excited neutral molecules are also observed at 2f, the ion and neutral signals can be distinguished and separated with phase-sensitive demodulation. The optical cavity provides two major benefits. It increases both the optical path length and the intracavity laser power by a factor of 2×Finesse/π. The multipass advantage allows for much longer path length than was previously possible with unidirectional multipass White cells. The power enhancement combined with perfectly overlapped counterpropagating beams within the cavity allows for sub-Doppler spectroscopy. Although CEVMS showed much potential, its sensitivity was ultimately limited by electronic noise from the plasma interfering with the cavity-locking electronics. We have further improved upon CEVMS by combining it with Noise Immune Cavity Enhanced Optical Heterodyne Molecular Spectroscopy (NICE-OHMS). The laser is frequency modulated at precisely an integer multiple of the free spectral range of the optical cavity; this allows the heterodyne sidebands to be coupled into the optical cavity. Heterodyne detection of the cavity leak-out is immune to noise in the laser-cavity lock, and 2f demodulation further decreases electronic noise in the system and retains ion-neutral discrimination. The additional level of modulation beyond ordinary CEVMS has the added advantage of enabling the observation of both absorption and dispersion signals simultaneously by using two RF mixers, each driving its own lock-in amplifier. In a single scan, four distinct signals can be obtained: absorption and dispersion for ions and excited neutrals. The technique has been demonstrated in the near-IR for N_2^+. B. M. Siller, A. A. Mills and B. J. Mc
Hearing in Cichlid Fishes under Noise Conditions
Ladich, Friedrich; Schulz-Mirbach, Tanja
2013-01-01
Background Hearing thresholds of fishes are typically acquired under laboratory conditions. This does not reflect the situation in natural habitats, where ambient noise may mask their hearing sensitivities. In the current study we investigate hearing in terms of sound pressure (SPL) and particle acceleration levels (PAL) of two cichlid species within the naturally occurring range of noise levels. This enabled us to determine whether species with and without hearing specializations are differently affected by noise. Methodology/Principal Findings We investigated auditory sensitivities in the orange chromide Etroplus maculatus, which possesses anterior swim bladder extensions, and the slender lionhead cichlid Steatocranus tinanti, in which the swim bladder is much smaller and lacks extensions. E. maculatus was tested between 0.2 and 3kHz and S. tinanti between 0.1 and 0.5 kHz using the auditory evoked potential (AEP) recording technique. In both species, SPL and PAL audiograms were determined in the presence of quiet laboratory conditions (baseline) and continuous white noise of 110 and 130 dB RMS. Baseline thresholds showed greatest hearing sensitivity around 0.5 kHz (SPL) and 0.2 kHz (PAL) in E. maculatus and 0.2 kHz in S. tinanti. White noise of 110 dB elevated the thresholds by 0–11 dB (SPL) and 7–11 dB (PAL) in E. maculatus and by 1–2 dB (SPL) and by 1–4 dB (PAL) in S. tinanti. White noise of 130 dB elevated hearing thresholds by 13–29 dB (SPL) and 26–32 dB (PAL) in E. maculatus and 6–16 dB (SPL) and 6–19 dB (PAL) in S. tinanti. Conclusions Our data showed for the first time for SPL and PAL thresholds that the specialized species was masked by different noise regimes at almost all frequencies, whereas the non-specialized species was much less affected. This indicates that noise can limit sound detection and acoustic orientation differently within a single fish family. PMID:23469032
Noise-Induced Phase Transitions: Effects of the Noises' Statistics and Spectrum
NASA Astrophysics Data System (ADS)
Deza, Roberto R.; Wio, Horacio S.; Fuentes, Miguel A.
2007-05-01
The local, uncorrelated multiplicative noises driving a second-order, purely noise-induced, ordering phase transition (NIPT) were assumed to be Gaussian and white in the model of [Phys. Rev. Lett. 73, 3395 (1994)]. The potential scientific and technological interest of this phenomenon calls for a study of the effects of the noises' statistics and spectrum. This task is facilitated if these noises are dynamically generated by means of stochastic differential equations (SDE) driven by white noises. One such case is that of Ornstein-Uhlenbeck noises which are stationary, with Gaussian pdf and a variance reduced by the self-correlation time τ, and whose effect on the NIPT phase diagram has been studied some time ago. Another such case is when the stationary pdf is a (colored) Tsallis' q-Gaussian which, being a fat-tail distribution for q > 1 and a compact-support one for q < 1, allows for a controlled exploration of the effects of the departure from Gaussian statistics. As done before with stochastic resonance and other phenomena, we now exploit this tool to study—within a simple mean-field approximation and with an emphasis on the order parameter and the "susceptibility"—the combined effect on NIPT of the noises' statistics and spectrum. Even for relatively small τ, it is shown that whereas fat-tail noise distributions (q > 1) counteract the effect of self-correlation, compact-support ones (q < 1) enhance it. Also, an interesting effect on the susceptibility is seen in the last case.
Analysis and removing noise from speech using wavelet transform
NASA Astrophysics Data System (ADS)
Tomala, Karel; Voznak, Miroslav; Partila, Pavol; Rezac, Filip; Safarik, Jakub
2013-05-01
The paper discusses the use of Discrete Wavelet Transform (DWT) and Stationary Wavelet Transform (SWT) wavelet in removing noise from voice samples and evaluation of its impact on speech quality. One significant part of Quality of Service (QoS) in communication technology is the speech quality assessment. However, this part is seriously overlooked as telecommunication providers often focus on increasing network capacity, expansion of services offered and their enforcement in the market. Among the fundamental factors affecting the transmission properties of the communication chain is noise, either at the transmitter or the receiver side. A wavelet transform (WT) is a modern tool for signal processing. One of the most significant areas in which wavelet transforms are used is applications designed to suppress noise in signals. To remove noise from the voice sample in our experiment, we used the reference segment of the voice which was distorted by Gaussian white noise. An evaluation of the impact on speech quality was carried out by an intrusive objective algorithm Perceptual Evaluation of Speech Quality (PESQ). DWT and SWT transformation was applied to voice samples that were devalued by Gaussian white noise. Afterwards, we determined the effectiveness of DWT and SWT by means of objective algorithm PESQ. The decisive criterion for determining the quality of a voice sample once the noise had been removed was Mean Opinion Score (MOS) which we obtained in PESQ. The contribution of this work lies in the evaluation of efficiency of wavelet transformation to suppress noise in voice samples.
Noise Scaling and Community Noise Metrics for the Hybrid Wing Body Aircraft
NASA Technical Reports Server (NTRS)
Burley, Casey L.; Brooks, Thomas F.; Hutcheson, Florence V.; Doty, Michael J.; Lopes, Leonard V.; Nickol, Craig L.; Vicroy, Dan D.; Pope, D. Stuart
2014-01-01
An aircraft system noise assessment was performed for the hybrid wing body aircraft concept, known as the N2A-EXTE. This assessment is a result of an effort by NASA to explore a realistic HWB design that has the potential to substantially reduce noise and fuel burn. Under contract to NASA, Boeing designed the aircraft using practical aircraft design princip0les with incorporation of noise technologies projected to be available in the 2020 timeframe. NASA tested 5.8% scale-mode of the design in the NASA Langley 14- by 22-Foot Subsonic Tunnel to provide source noise directivity and installation effects for aircraft engine and airframe configurations. Analysis permitted direct scaling of the model-scale jet, airframe, and engine shielding effect measurements to full-scale. Use of these in combination with ANOPP predictions enabled computations of the cumulative (CUM) noise margins relative to FAA Stage 4 limits. The CUM margins were computed for a baseline N2A-EXTE configuration and for configurations with added noise reduction strategies. The strategies include reduced approach speed, over-the-rotor line and soft-vane fan technologies, vertical tail placement and orientation, and modified landing gear designs with fairings. Combining the inherent HWB engine shielding by the airframe with added noise technologies, the cumulative noise was assessed at 38.7 dB below FAA Stage 4 certification level, just 3.3 dB short of the NASA N+2 goal of 42 dB. This new result shows that the NASA N+2 goal is approachable and that significant reduction in overall aircraft noise is possible through configurations with noise reduction technologies and operational changes.
Predicting Aircraft Noise Levels
NASA Technical Reports Server (NTRS)
Clark, B. J.
1983-01-01
Computer program developed for predicting aircraft noise levels either in flight or in ground tests. Noise sources include fan inlet and exhaust jet flap (for powered lift), core (combustor), turbine and airframe. Program written in FORTRAN IV.
NASA Technical Reports Server (NTRS)
Greene, G. C.
1980-01-01
The research in propeller noise prediction, noise/performance optimization, and interior reduction is described. Selected results are presented to illustrate the status of the technology and the direction of future research.
Propagation of Environmental Noise
ERIC Educational Resources Information Center
Lyon, R. H.
1973-01-01
Solutions for environmental noise pollution lie in systematic study of many basic processes such as reflection, scattering, and spreading. Noise propagation processes should be identified in different situations and assessed for their relative importance. (PS)
NASA Technical Reports Server (NTRS)
Hultgren, Lennart S.
2010-01-01
This presentation is a technical progress report and near-term outlook for NASA-internal and NASA-sponsored external work on core (combustor and turbine) noise funded by the Fundamental Aeronautics Program Subsonic Fixed Wing (SFW) Project. Sections of the presentation cover: the SFW system level noise metrics for the 2015, 2020, and 2025 timeframes; the emerging importance of core noise and its relevance to the SFW Reduced-Noise-Aircraft Technical Challenge; the current research activities in the core-noise area, with some additional details given about the development of a high-fidelity combustion-noise prediction capability; the need for a core-noise diagnostic capability to generate benchmark data for validation of both high-fidelity work and improved models, as well as testing of future noise-reduction technologies; relevant existing core-noise tests using real engines and auxiliary power units; and examples of possible scenarios for a future diagnostic facility. The NASA Fundamental Aeronautics Program has the principal objective of overcoming today's national challenges in air transportation. The SFW Reduced-Noise-Aircraft Technical Challenge aims to enable concepts and technologies to dramatically reduce the perceived aircraft noise outside of airport boundaries. This reduction of aircraft noise is critical for enabling the anticipated large increase in future air traffic. Noise generated in the jet engine core, by sources such as the compressor, combustor, and turbine, can be a significant contribution to the overall noise signature at low-power conditions, typical of approach flight. At high engine power during takeoff, jet and fan noise have traditionally dominated over core noise. However, current design trends and expected technological advances in engine-cycle design as well as noise-reduction methods are likely to reduce non-core noise even at engine-power points higher than approach. In addition, future low-emission combustor designs could increase
Reduced white matter integrity is related to cognitive instability.
Fjell, Anders M; Westlye, Lars T; Amlien, Inge K; Walhovd, Kristine B
2011-12-01
Increased performance variability has been demonstrated in several groups and conditions, including aging and cognitive decline. Structural brain characteristics underlying this phenomenon have so far been elusive. However, there is reason to expect that disconnectivity in associative pathways, whether caused by immature or degraded white matter (WM) tracts, will increase performance variability by neural noise. The aim of this study was to test whether the quality of WM, measured by diffusion tensor imaging, is related to performance variability in healthy adults. Intraindividual standard deviation of the reaction time (sdRT) across trials and median reaction time (mRT) from 270 participants were obtained from a speeded continuous performance task (Eriksen flanker task) with two conditions (congruent, incongruent). Tract-based spatial statistics was used to test the relationship with diffusion characteristics [fractional anisotropy (FA), mean diffusion (MD), radial diffusion (RD), axial diffusion (AD)]. Robust relationships between sdRT and all diffusion measures were found in most WM areas, independently of mRT, age, and sex. The effects were anatomically more widespread in the congruent than the incongruent condition, covering almost 50% of the voxels for RD and MD, and >25% of the voxels for FA and AD. Partial betas were in the range 0.45-0.55, and the strength of the relationships increased significantly with age. For mRT, the effects were smaller and unstable across condition. We concluded that performance variability is a likely consequence of individual differences in WM integrity, and that it is a promising behavioral correlate of individual differences in WM microstructure. PMID:22159119
Evans, Nick
2016-09-12
Essential facts Leading Change, Adding Value is NHS England's new nursing and midwifery framework. It is designed to build on Compassion in Practice (CiP), which was published 3 years ago and set out the 6Cs: compassion, care, commitment, courage, competence and communication. CiP established the values at the heart of nursing and midwifery, while the new framework sets out how staff can help transform the health and care sectors to meet the aims of the NHS England's Five Year Forward View. PMID:27615573
Time-Dependent Noise in GPS Position Time Series By a Network Noise Estimator
NASA Astrophysics Data System (ADS)
Dmitrieva, K.; Segall, P.
2014-12-01
Some current estimates of GPS velocity uncertainties for continuous stations with more than a decade of data can be very low, < 0.1 mm per year. Yet, velocities with respect to rigid plates can be an order of magnitude larger, even in nominally stable plate interiors. This could be caused by underestimating low frequency, time-dependent noise, such as random walk. Traditional estimators, based on individual time series, are insensitive to low amplitude random walk, yet such noise significantly increases GPS velocity uncertainties. We develop a new approach to estimating noise in GPS time series, focusing on areas where the signal in the data is well characterized. We analyze data from the seismically inactive parts of central US. The data is decomposed into signal, plate rotation and Glacial Isostatic Adjustment (GIA), and various noise components. Our method processes multiple stations simultaneously with a Kalman Filter, and estimates average noise components for the network by maximum likelihood. Currently, we model white noise, flicker noise and random walk. Synthetic tests show that this approach correctly estimates the velocity uncertainty by determining a good estimate of random walk variance, even when it is too small to be correctly estimated by traditional approaches. We present preliminary results from a network of 15 GPS stations in the central USA. The data is in a North America fixed reference frame, we subtract seasonal components and GIA displacements used in the SNARF model. Hence, all data in this reference frame is treated as noise. We estimate random walk of 0.82 mm/yr0.5, flicker noise of 3.96 mm/yr0.25 and white noise of 1.05 mm. From these noise parameters the estimated velocity uncertainty is 0.29 mm/yr for 10 years of daily data. This uncertainty is significantly greater than estimated by the traditional methods, at 0.12 mm/yr. The estimated uncertainty is still less than the median residual velocity in the North America fixed reference
On Noise Assessment for Blended Wing Body Aircraft
NASA Technical Reports Server (NTRS)
Guo, Yueping; Burley, Casey L; Thomas, Russell H.
2014-01-01
A system noise study is presented for the blended-wing-body (BWB) aircraft configured with advanced technologies that are projected to be available in the 2025 timeframe of the NASA N+2 definition. This system noise assessment shows that the noise levels of the baseline configuration, measured by the cumulative Effective Perceived Noise Level (EPNL), have a large margin of 34 dB to the aircraft noise regulation of Stage 4. This confirms the acoustic benefits of the BWB shielding of engine noise, as well as other projected noise reduction technologies, but the noise margins are less than previously published assessments and are short of meeting the NASA N+2 noise goal. In establishing the relevance of the acoustic assessment framework, the design of the BWB configuration, the technical approach of the noise analysis, the databases and prediction tools used in the assessment are first described and discussed. The predicted noise levels and the component decomposition are then analyzed to identify the ranking order of importance of various noise components, revealing the prominence of airframe noise, which holds up the levels at all three noise certification locations and renders engine noise reduction technologies less effective. When projected airframe component noise reduction is added to the HWB configuration, it is shown that the cumulative noise margin to Stage 4 can reach 41.6 dB, nearly at the NASA goal. These results are compared with a previous NASA assessment with a different study framework. The approaches that yield projections of such low noise levels are discussed including aggressive assumptions on future technologies, assumptions on flight profile management, engine installation, and component noise reduction technologies. It is shown that reliable predictions of component noise also play an important role in the system noise assessment. The comparisons and discussions illustrate the importance of practical feasibilities and constraints in aircraft
NASA Technical Reports Server (NTRS)
Gibson, J. S.; Searle, N.
1976-01-01
An extensive series of noise measurements, for a variety of geometric and operational parameters, was made on models of upper surface blowing (USB) powered lift systems. The data obtained were analyzed and the effects and trends of parametric variation defined. The behavior and nature of USB noise and the design of USB systems with low noise characteristics is examined.
NASA Astrophysics Data System (ADS)
Vipperman, Jeffrey S.; Bauer, Eric R.
2002-05-01
It is estimated that 70%-90% of miners have enough noise induced hearing loss (NIHL) to be classified as a disability (NIOSH, Publication No. 76-172, 1976; Franks, NIOSH Internal Report, 1996). In response, NIOSH is conducting a cross-sectional survey of the mining industry in order to determine the sources of mining noise and offer recommendations on how to mitigate high noise levels, and bring mining operations into compliance with the recent mining noise regulation: 30CFR, Part 62. This paper will outline the results from noise surveys of eight draglines which operate in above-ground coal mining operations. The data recorded include noise dosimetry in conjunction with time-at-task studies and 1/3-octave sound level (Leq, Lmin, and Lmax) measurements. The 1/3-octave band readings were used to create noise contour maps which allowed the spatial and frequency information of the noise to be considered. Comparison of Lmin and Lmax levels offer insight into the variability of the noise levels inside the dragline. The potential for administrative controls is limited due to consistently high noise levels throughout the deck. Implementation of engineering controls is also hindered by the size and number of the noise sources and the frequency content of the noise.
NASA Technical Reports Server (NTRS)
Pearsons, K. S.; Bennett, R. L.
1974-01-01
The handbook was compiled to provide information in a concise form, describing the multitude of noise rating schemes. It is hoped that by describing the noise rating methods in a single volume the user will have better access to the definitions, application and calculation procedures of the current noise rating methods.
ERIC Educational Resources Information Center
Vagianos, Louis
1972-01-01
The library problem consists of equal parts of external and internal noise. The external noise consists of the volume of publication. The internal noise can be characterized by the present and continuing brouhaha concerning reform of library education. Scientists frankly regard librarians as impediments to information. (Author/NH)
Whiteness in Social Work Education Authentic White Allies
ERIC Educational Resources Information Center
Hornung, Rebecca
2012-01-01
This dissertation is guided by the following questions: How do People of Color define and experience White people as "authentic" allies? What does a White ally look like to People of Color? How do White allies view themselves as "authentic" White allies? What experiences lead White people to anti-racism and anti-racist praxis?…
Effects of band-limited noise on human observer performance
NASA Astrophysics Data System (ADS)
Salem, Salem; Jacobs, Eddie; Moore, Richard; Hogervorst, Maarten; Bijl, Piet; Halford, Carl
2007-04-01
Perception tests establish the effects of spatially band-limited noise and blur on human observer performance. Previously, Bijl showed that the contrast threshold of a target image with spatially band-limited noise is a function of noise spatial frequency. He used the method of adjustment to find the contrast thresholds for each noise frequency band. A noise band exists in which the target contrast threshold reaches a peak relative to the threshold for higher- or lower-noise frequencies. Bijl also showed that the peak of this noise band shifts as high frequency information is removed from the target images. To further establish these results, we performed forced-choice experiments. First, a Night Vision and Electronics Sensors Directorate (NVESD) twelve (12)-target infrared tracked vehicle image set identification (ID) experiment, second, a bar-pattern resolving experiment, and third, a Triangle Orientation Discrimination (TOD) experiment. In all of the experiments, the test images were first spatially blurred, then spatially band-limited noise was added. The noise center spatial frequency was varied in half-octave increments over seven octaves. Observers were shown images of varying target-to-noise contrasts, and a contrast threshold was calculated for each spatial noise band. Finally, we compared the Targeting Task Performance (TTP) human observer model predictions for performance in the presence of spatially band-limited noise with these experimental results.
Uniform apparent contrast noise: A picture of the noise of the visual contrast detection system
NASA Technical Reports Server (NTRS)
Ahumada, A. J., Jr.; Watson, A. B.
1984-01-01
A picture which is a sample of random contrast noise is generated. The noise amplitude spectrum in each region of the picture is inversely proportional to spatial frequency contrast sensitivity for that region, assuming the observer fixates the center of the picture and is the appropriate distance from it. In this case, the picture appears to have approximately the same contrast everywhere. To the extent that contrast detection thresholds are determined by visual system noise, this picture can be regarded as a picture of the noise of that system. There is evidence that, at different eccentricities, contrast sensitivity functions differ only by a magnification factor. The picture was generated by filtering a sample of white noise with a filter whose frequency response is inversely proportional to foveal contrast sensitivity. It was then stretched by a space-varying magnification function. The picture summmarizes a noise linear model of detection and discrimination of contrast signals by referring the model noise to the input picture domain.
Effects of the Noises' Statistics and Spectrum on Noise-Induced Phase Transitions
NASA Astrophysics Data System (ADS)
Deza, Roberto R.; Fuentes, Miguel A.; Wio, Horacio S.
2007-07-01
The study of the effect of the noises' statistics and spectrum on second-order, purely noise-induced phase transition (NIPT) is of wide interest: It is simplified if the noises are dynamically generated by means of stochastic differential equations driven by white noises, a well known case being that of Ornstein-Uhlenbeck noises with a self-correlation time τ whose effect on the NIPT phase diagram has been studied some time ago. Another case is when the stationary pdf is a (colored) q-Gaussian which, being a fat-tail distribution for q > 1 and a compact-support one for q < 1, allows for a controlled study of the effects of the departure from Gaussian statistics. As done with stochastic resonance and other phenomena, we exploit this tool to study—within a simple mean-field approximation—the combined effect on NIPT of the noises' statistics and spectrum. Even for relatively small τ, it is shown that whereas for fat-tail noise distributions counteract the effect of self-correlation, compact-support ones enhance it.
NASA Astrophysics Data System (ADS)
Lafollette, Philip A.
1991-06-01
In this study of short-term noise variation in Air Force platforms, we followed two avenues of investigation. First, we applied quantitative measures of variation to individual noise recordings, and compared the results across various aircraft. Some measures used were simple descriptive statistics, but we also measured attenuation obtained by spectral restoration (spectral subtraction), applied to the noise signal alone. The noise attenuation obtained for real aircraft environments was in most cases about the same as predicted theoretically for white Gaussian noise, but in some instances was considerably higher, especially in the presence of propeller noise. Second, we applied the nonparametric Mann-Whitney statistic to test the stationarity of power spectrum estimates on time scales of 200 to 800 ms. There was little or no evidence of nonstationarity in large jet or turboprop aircraft. In fighter aircraft and helicopters, there was some evidence of nonstationarity confined to more or less narrow frequency ranges. The nonstationarity found did not appear to limit the performance of special restoration algorithms. The noise recordings used were taken from the RADC/EEV database of field recordings made in the E-3A, E-4B, EC-135, E-130, P-3C, F-15, F-16, F-4, A-10, HH-53 and Tornado aircraft.
Core Noise - Increasing Importance
NASA Technical Reports Server (NTRS)
Hultgren, Lennart S.
2011-01-01
This presentation is a technical summary of and outlook for NASA-internal and NASA-sponsored external research on core (combustor and turbine) noise funded by the Fundamental Aeronautics Program Subsonic Fixed Wing (SFW) Project. Sections of the presentation cover: the SFW system-level noise metrics for the 2015, 2020, and 2025 timeframes; turbofan design trends and their aeroacoustic implications; the emerging importance of core noise and its relevance to the SFW Reduced-Perceived-Noise Technical Challenge; and the current research activities in the core-noise area, with additional details given about the development of a high-fidelity combustor-noise prediction capability as well as activities supporting the development of improved reduced-order, physics-based models for combustor-noise prediction. The need for benchmark data for validation of high-fidelity and modeling work and the value of a potential future diagnostic facility for testing of core-noise-reduction concepts are indicated. The NASA Fundamental Aeronautics Program has the principal objective of overcoming today's national challenges in air transportation. The SFW Reduced-Perceived-Noise Technical Challenge aims to develop concepts and technologies to dramatically reduce the perceived aircraft noise outside of airport boundaries. This reduction of aircraft noise is critical to enabling the anticipated large increase in future air traffic. Noise generated in the jet engine core, by sources such as the compressor, combustor, and turbine, can be a significant contribution to the overall noise signature at low-power conditions, typical of approach flight. At high engine power during takeoff, jet and fan noise have traditionally dominated over core noise. However, current design trends and expected technological advances in engine-cycle design as well as noise-reduction methods are likely to reduce non-core noise even at engine-power points higher than approach. In addition, future low-emission combustor
Anthropogenic noise affects song structure in red-winged blackbirds (Agelaius phoeniceus).
Hanna, Dalal; Blouin-Demers, Gabriel; Wilson, David R; Mennill, Daniel J
2011-11-01
Anthropogenic noise can mask animal signals that are crucial for communicating information about food, predators and mating opportunities. In response to noise masking, signallers can potentially improve acoustic signal transmission by adjusting the timing, frequency or amplitude of their signals. These changes can be a short-term modification in response to transient noise or a long-term modification in response to chronic noise. An animal's ability to adapt to anthropogenic noise can be crucial to its success. In this study, we evaluated the effects of anthropogenic noise on the structure of red-winged blackbird song. First, we manipulated the presence of anthropogenic noise by experimentally broadcasting either silence or low-frequency white noise to subjects inhabiting quiet marshes located away from roadsides. Subjects exhibited increased signal tonality when temporarily exposed to low-frequency white noise, suggesting that red-winged blackbirds can alter their signals rapidly in response to sudden noise. Second, we compared songs produced in quiet marshes located away from roadsides with songs produced during quiet periods at roadside marshes that are normally noisy. This allowed us to test whether birds that are exposed to chronic anthropogenic noise exhibit altered song structure during temporarily quiet periods. Subjects residing in roadside marshes that are normally polluted with anthropogenic noise sang songs with increased tonality during quiet periods. Overall, our results show that anthropogenic noise influences the structure of birdsong. These effects should be considered in conservation and wildlife management. PMID:21993783
The role of noise in analog-to-digital converters
Brock, B.C.
1996-11-01
Because of the widespread use of digital systems in radars, instrumentation, and communication systems, an understanding of the role played by noise at the input to the analog-to-digital (A/D) converter is important. When digital signal processing is performed on the output of the A/D, it is crucial that the A/D respond linearly to the signal. The noise level at the input of the A/D is a determining factor for the linearity of the system. Many texts discuss the operation and performance of analog-to-digital converters and, although the understanding of the role of noise is not new, it seems that few, if any, discuss noise from the point of view presented here. This omission appears to lead to a misunderstanding of the importance of noise in these analog-to-digital systems. Single- bit and multiple-bit analog-to-digital converters will be analyzed, and it will be shown, that with the appropriate noise level at the input, even the single-bit converter can behave as a linear device. An example will be described whereby a ``feature`` of a particular commercial instrumentation system was based on a misunderstanding of the role of noise, and the use of this ``feature`` caused serious degradation of the system linearity and performance.
Classical noise, quantum noise and secure communication
NASA Astrophysics Data System (ADS)
Tannous, C.; Langlois, J.
2016-01-01
Secure communication based on message encryption might be performed by combining the message with controlled noise (called pseudo-noise) as performed in spread-spectrum communication used presently in Wi-Fi and smartphone telecommunication systems. Quantum communication based on entanglement is another route for securing communications as demonstrated by several important experiments described in this work. The central role played by the photon in unifying the description of classical and quantum noise as major ingredients of secure communication systems is highlighted and described on the basis of the classical and quantum fluctuation dissipation theorems.
NASA Astrophysics Data System (ADS)
Fakhri, Hossein; Imaanpur, Ali
2003-03-01
In this article we construct the chirality and Dirac operators on noncommutative AdS2. We also derive the discrete spectrum of the Dirac operator which is important in the study of the spectral triple associated to AdS2. It is shown that the degeneracy of the spectrum present in the commutative AdS2 is lifted in the noncommutative case. The way we construct the chirality operator is suggestive of how to introduce the projector operators of the corresponding projective modules on this space.
NASA Astrophysics Data System (ADS)
Molina-Vilaplana, Javier; Sierra, Germán
2013-12-01
In this paper we formulate the xp model on the AdS2 spacetime. We find that the spectrum of the Hamiltonian has positive and negative eigenvalues, whose absolute values are given by a harmonic oscillator spectrum, which in turn coincides with that of a massive Dirac fermion in AdS2. We extend this result to generic xp models which are shown to be equivalent to a massive Dirac fermion on spacetimes whose metric depend of the xp Hamiltonian. Finally, we construct the generators of the isometry group SO(2,1) of the AdS2 spacetime, and discuss the relation with conformal quantum mechanics.
A Goldilocks principle for modelling radial velocity noise
NASA Astrophysics Data System (ADS)
Feng, F.; Tuomi, M.; Jones, H. R. A.; Butler, R. P.; Vogt, S.
2016-09-01
The Doppler measurements of stars are diluted and distorted by stellar activity noise. Different choices of noise models and statistical methods have led to much controversy in the confirmation of exoplanet candidates obtained through analysing radial velocity data. To quantify the limitation of various models and methods, we compare different noise models and signal detection criteria for various simulated and real data sets in the Bayesian framework. According to our analyses, the white noise model tend to interpret noise as signal, leading to false positives. On the other hand, the red noise models are likely to interpret signal as noise, resulting in false negatives. We find that the Bayesian information criterion combined with a Bayes factor threshold of 150 can efficiently rule out false positives and confirm true detections. We further propose a Goldilocks principle aimed at modelling radial velocity noise to avoid too many false positives and too many false negatives. We propose that the noise model with RHK-dependent jitter is used in combination with the moving average model to detect planetary signals for M dwarfs. Our work may also shed light on the noise modelling for hotter stars, and provide a valid approach for finding similar principles in other disciplines.
Mixed noise removal by weighted encoding with sparse nonlocal regularization.
Jiang, Jielin; Zhang, Lei; Yang, Jian
2014-06-01
Mixed noise removal from natural images is a challenging task since the noise distribution usually does not have a parametric model and has a heavy tail. One typical kind of mixed noise is additive white Gaussian noise (AWGN) coupled with impulse noise (IN). Many mixed noise removal methods are detection based methods. They first detect the locations of IN pixels and then remove the mixed noise. However, such methods tend to generate many artifacts when the mixed noise is strong. In this paper, we propose a simple yet effective method, namely weighted encoding with sparse nonlocal regularization (WESNR), for mixed noise removal. In WESNR, there is not an explicit step of impulse pixel detection; instead, soft impulse pixel detection via weighted encoding is used to deal with IN and AWGN simultaneously. Meanwhile, the image sparsity prior and nonlocal self-similarity prior are integrated into a regularization term and introduced into the variational encoding framework. Experimental results show that the proposed WESNR method achieves leading mixed noise removal performance in terms of both quantitative measures and visual quality. PMID:24760906
NASA Astrophysics Data System (ADS)
Mahan, J. Robert; Karchmer, Allen
1991-08-01
Two types of aircraft power plant are considered: the gas turbine and the reciprocating engine. The engine types considered are: the reciprocating engine, the turbojet engine, the turboprop engine, and the turbofan engine. Combustion noise in gas turbine engines is discussed, and reciprocating-engine combustion noise is also briefly described. The following subject areas are covered: configuration variables, operational variables, characteristics of combustion and core noise, sources of combustion noise, combustion noise theory and comparison with experiment, available prediction methods, diagnostic techniques, measurement techniques, data interpretation, and example applications.
NASA Technical Reports Server (NTRS)
Westphal, J. A.
1972-01-01
The hardware and techniques to measure and compare sky noise at several sites were studied, and a device was developed that would maximize its output and minimize its output for modulation. The instrument and its functions are described. The nature of sky emissions and the fluctuation, gaseous sources of sky noise, and aerosol sources are discussed. It is concluded that sky noise really exists, and the spatial distribution of the sky noise sources are such that observed noise values are linear functions of chopping stroke.
NASA Astrophysics Data System (ADS)
Pospieszalski, M. W.
2010-10-01
The simple noise models of field effect and bipolar transistors reviewed in this article are quite useful in engineering practice, as illustrated by measured and modeled results. The exact and approximate expressions for the noise parameters of FETs and bipolar transistors reveal certain common noise properties and some general noise properties of both devices. The usefulness of these expressions in interpreting the dependence of measured noise parameters on frequency, bias, and temperature and, consequently, in checking of consistency of measured data has been demonstrated.
Contemplating Alzheimer's disease and the contribution of white matter hyperintensities.
Brickman, Adam M
2013-12-01
As the older adult segment of the population increases, Alzheimer's disease (AD) has emerged as a significant public health epidemic. Over the past 3 decades, advances in the understanding of the biology of AD have led to a somewhat unified hypothesis of disease pathogenesis that emphasizes the precipitating role of beta amyloid protein. However, several lines of evidence suggest that multiple pathologies are necessary for clinical manifestation of the disease. Our focus over the past several years has been on the contribution of small vessel cerebrovascular disease, visualized as white matter hyperintensities (WMH) on magnetic resonance imaging, to AD. White matter hyperintensity volume, particularly in parietal regions, is elevated among individuals with and at risk for AD, predicts future diagnosis of AD, predicts the rate of progression of cognitive symptoms among individuals with AD, and increases over time among individuals destined to develop AD. White matter hyperintensities may represent an independent source of impairment and/or may interact more fundamentally with "primary" AD pathology. Future work should focus on more inclusive models of that better define "normal" vs "pathological" aging. PMID:24190781
Development of low noise CCD readout front-end
NASA Astrophysics Data System (ADS)
JamroŻy, M.; Kasprowicz, G.; Romaniuk, R.; Poźniak, K.
2015-09-01
This paper describes development of low noise readout subsystem for digital camera dedicated for astronomical observations. Main aim of the study is noise reduction in regard of sensor's output signal and noise added by the analogue electronics. Basic concept and simulation results of analogue front-end are presented. Various Digital Signal Processing schemes are considered in order to increase Signal to Noise ratio. Another step of development are design of the prototype PCB board and implementation of selected processing techniques in to the structure of a FPGA device.
Beneficial role of noise in artificial neural networks
Monterola, Christopher; Saloma, Caesar; Zapotocky, Martin
2008-06-18
We demonstrate enhancement of neural networks efficacy to recognize frequency encoded signals and/or to categorize spatial patterns of neural activity as a result of noise addition. For temporal information recovery, noise directly added to the receiving neurons allow instantaneous improvement of signal-to-noise ratio [Monterola and Saloma, Phys. Rev. Lett. 2002]. For spatial patterns however, recurrence is necessary to extend and homogenize the operating range of a feed-forward neural network [Monterola and Zapotocky, Phys. Rev. E 2005]. Finally, using the size of the basin of attraction of the networks learned patterns (dynamical fixed points), a procedure for estimating the optimal noise is demonstrated.
Acoustical measurement separates core noise and jet noise
NASA Technical Reports Server (NTRS)
Parthasarathy, S. P.
1980-01-01
Measuring technique discriminates between jet noise and core noise of jet engine. Results of experimentation confirmed that core noise and jet noise can be separated by examining cross-correlation of far-field microphone signals and that crossover point between core noise and jet noise moves toward higher velocities at higher angles with respect to jet axis.
ERIC Educational Resources Information Center
Segall, Avner; Garrett, James
2013-01-01
In light of the increasing racial diversity in American schools and the consistently homogenous teacher workforce in the United States, understanding the ways white teachers consider and attend to racial issues is of crucial importance to the educational landscape. This paper, based on a qualitative study, explores five white American…
Technology Transfer Automated Retrieval System (TEKTRAN)
White mold of chickpea can occur at either seedling stage or at flowering and pod filling stages. At seedling stage, the disease occurs at the base of the stem causing symptoms like collar rot. Often white mycelial growth around the stem on soil surface is visible. Affected plants wilt and die. ...
The Hidden Curriculum of Whiteness: White Teachers, White Territory, and White Community.
ERIC Educational Resources Information Center
Allen, Ricky Lee
This paper suggests that space and spatiality are major features of racial identity and the formation of student resistance. It brings together critical studies of "Whiteness," human territoriality, and theories of resistance in education. The problems between white teachers and students of color can be understood better through a combination of…
NASA Technical Reports Server (NTRS)
2004-01-01
This is a composite red-green-blue image of the rock called White Boat. It is the first rock target that Spirit drove to after finishing a series of investigations on the rock Adirondack. White Boat stood out to scientists due to its light color and more tabular shape compared to the dark, rounded rocks that surround it.
NASA Technical Reports Server (NTRS)
Hultgren, Lennart S.
2011-01-01
This presentation is a technical summary of and outlook for NASA-internal and NASA-sponsored external research on core (combustor and turbine) noise funded by the Fundamental Aeronautics Program Subsonic Fixed Wing (SFW) Project. Sections of the presentation cover: the SFW system-level noise metrics for the 2015, 2020, and 2025 timeframes; turbofan design trends and their aeroacoustic implications; the emerging importance of core noise and its relevance to the SFW Reduce-Perceived-Noise Technical Challenge; and the current research activities in the core noise area. Recent work1 on the turbine-transmission loss of combustor noise is briefly described, two2,3 new NRA efforts in the core-noise area are outlined, and an effort to develop CMC-based acoustic liners for broadband noise reduction suitable for turbofan-core application is delineated. The NASA Fundamental Aeronautics Program has the principal objective of overcoming today's national challenges in air transportation. The reduction of aircraft noise is critical to enabling the anticipated large increase in future air traffic. The Subsonic Fixed Wing Project's Reduce-Perceived-Noise Technical Challenge aims to develop concepts and technologies to dramatically reduce the perceived aircraft noise outside of airport boundaries.
NASA Astrophysics Data System (ADS)
Sheen, Dong-Hoon; Shin, Jin Soo; Kang, Tae-Seob; Baag, Chang-Eob
2009-09-01
Abnormal cultural seismic noise is observed in the frequency range of 0.01-0.05 Hz. Cultural noise generated by human activities is generally observed in frequencies above 1 Hz, and is greater in the daytime than at night. The low-frequency noise presented in this paper exhibits a characteristic amplitude variation and can be easily identified from time domain seismograms in the frequency range of interest. The amplitude variation is predominantly in the vertical component, but the horizontal components also show variations. Low-frequency noise is markedly periodic, which reinforces its interpretation as cultural noise. Such noise is observed world-wide, but is limited to areas in the vicinity of railways. The amplitude variation in seismograms correlates strongly with railway timetables, and the waveform shows a wavelength shift associated with the Doppler effect, which indicates that the origin of seismic background noise in the frequency range 0.01-0.05 Hz is railways.
Robertson, J.; Kovac, J.; Bartholomae, R.
1981-08-01
Noise generated by continuous miners in underground coal production is an important health hazard. Bureau of Mines contract J0387229 charters investigation and control of this noise through laboratory tests of simulated cutting operations and through in-mine noise measurements. The results of these investigations indicate that coal cutting noise and conveyor noise are dominant sources of miner operational noise. Typical noise levels for both cutting and conveying operations are approximately 97 dBA. For full operation of all machine systems, the overall sound pressure level is approximately 101 dBA. In-mine and laboratory test results show agreement in both A-weighted overall levels as well as A-weighted one-third octave band spectra. 4 refs.
Working decks for buoy maintenance. White Sage on left, White ...
Working decks for buoy maintenance. White Sage on left, White Holly on right. - U.S. Coast Guard Cutter WHITE HOLLY, U.S. Coast Guard 8th District Base, 4640 Urquhart Street, New Orleans, Orleans Parish, LA
Elevation from east. White Holly in foreground, with White Sage ...
Elevation from east. White Holly in foreground, with White Sage behind. - U.S. Coast Guard Cutter WHITE HOLLY, U.S. Coast Guard 8th District Base, 4640 Urquhart Street, New Orleans, Orleans Parish, LA
NASA Astrophysics Data System (ADS)
Kikuchi, Kenji
2010-06-01
Accelerator driven nuclear transmutation system has been pursued to have a clue to the solution of high-level radioactive waste management. The concept consists of super conducting linac, sub-critical reactor and the beam window. Reference model is set up to 800MW thermal power by using 1.5GeV proton beams with considerations multi-factors such as core criticality. Materials damage is simulated by high-energy particle transport codes and so on. Recent achievement on irradiation materials experiment is stated and the differences are pointed out if core burn-up is considered or not. Heat balance in tank-type ADS indicates the temperature conditions of steam generator, the beam widow and cladding materials. Lead-bismuth eutectics demonstration has been conducted. Corrosion depth rate was shown by experiments.
Modulated escape from a metastable state driven by colored noise
NASA Astrophysics Data System (ADS)
Schuecker, Jannis; Diesmann, Markus; Helias, Moritz
2015-11-01
Many phenomena in nature are described by excitable systems driven by colored noise. The temporal correlations in the fluctuations hinder an analytical treatment. We here present a general method of reduction to a white-noise system, capturing the color of the noise by effective and time-dependent boundary conditions. We apply the formalism to a model of the excitability of neuronal membranes, the leaky integrate-and-fire neuron model, revealing an analytical expression for the linear response of the system valid up to moderate frequencies. The closed form analytical expression enables the characterization of the response properties of such excitable units and the assessment of oscillations emerging in networks thereof.
Supersymmetric warped AdS in extended topologically massive supergravity
NASA Astrophysics Data System (ADS)
Deger, N. S.; Kaya, A.; Samtleben, H.; Sezgin, E.
2014-07-01
We determine the most general form of off-shell N=(1,1) supergravity field configurations in three dimensions by requiring that at least one off-shell Killing spinor exists. We then impose the field equations of the topologically massive off-shell supergravity and find a class of solutions whose properties crucially depend on the norm of the auxiliary vector field. These are spacelike-squashed and timelike-stretched AdS3 for the spacelike and timelike norms, respectively. At the transition point where the norm vanishes, the solution is null warped AdS3. This occurs when the coefficient of the Lorentz-Chern-Simons term is related to the AdS radius by μℓ=2. We find that the spacelike-squashed AdS3 can be modded out by a suitable discrete subgroup of the isometry group, yielding an extremal black hole solution which avoids closed timelike curves.
Measurement of fluorescent white effects and whiteness.
Anders, G
1975-01-01
This report surveys the literature and describes various techniques of whiteness measurement and evaluation in current use. Measuring techniques are described for dealing separately with the effects obtained by bleaching, blueing and fluorescent whitening, and an example is given of the direct quantitative estimation of a fluorescent whitening agents (FWAs) on a substrate by measuring reflectance in the ultraviolet region. Another chapter deals with the colorimetric estimation of the whiteness and the shade of a fluorescent white using modern apparatus in conjunction with a programmable minicomputer. A new simple and universally applicab,e formula was worked out: W=D-Y+P-x+Q-y+C which has been successfully used in routine tests and which for the first time gives different weight to whiteness values corresponding to all shade preferences existing in theory. Each user can match the formula to his own preference by appropriate adjustment of the D, P, Q andC values. Y,x and y are the customary colorimetric values as standardized by the CIE (Commission Internationale de l'Eclairage). It was also found that with another formula the shades of fluorescent whitening effects (green to red tints) may be defined in a simple way. PMID:1064551
NASA Technical Reports Server (NTRS)
Hultgren, Lennart S.
2012-01-01
This presentation is a technical summary of and outlook for NASA-internal and NASA-sponsored external research on core noise funded by the Fundamental Aeronautics Program Subsonic Fixed Wing (SFW) Project. Sections of the presentation cover: the SFW system-level noise metrics for the 2015 (N+1), 2020 (N+2), and 2025 (N+3) timeframes; SFW strategic thrusts and technical challenges; SFW advanced subsystems that are broadly applicable to N+3 vehicle concepts, with an indication where further noise research is needed; the components of core noise (compressor, combustor and turbine noise) and a rationale for NASA's current emphasis on the combustor-noise component; the increase in the relative importance of core noise due to turbofan design trends; the need to understand and mitigate core-noise sources for high-efficiency small gas generators; and the current research activities in the core-noise area, with additional details given about forthcoming updates to NASA's Aircraft Noise Prediction Program (ANOPP) core-noise prediction capabilities, two NRA efforts (Honeywell International, Phoenix, AZ and University of Illinois at Urbana-Champaign, respectively) to improve the understanding of core-noise sources and noise propagation through the engine core, and an effort to develop oxide/oxide ceramic-matrix-composite (CMC) liners for broadband noise attenuation suitable for turbofan-core application. Core noise must be addressed to ensure that the N+3 noise goals are met. Focused, but long-term, core-noise research is carried out to enable the advanced high-efficiency small gas-generator subsystem, common to several N+3 conceptual designs, needed to meet NASA's technical challenges. Intermediate updates to prediction tools are implemented as the understanding of the source structure and engine-internal propagation effects is improved. The NASA Fundamental Aeronautics Program has the principal objective of overcoming today's national challenges in air transportation. The
Low noise multiwasher superconducting interferometer
Carelli, P.; Castellano, M.G.; Torrioli, G.; Leoni, R.
1998-01-01
The dc-superconducting quantum interference device (SQUID) is a low-noise converter from magnetic flux to voltage which can have, in principle, an energy sensitivity near the quantum limit of {h_bar}/2. A critical parameter for the ideal performance is the device inductance, which must be kept as small as possible. Minimizing the SQUID inductance, however, is a major concern for a practical device; this requirement implies a small SQUID ring and hence magnetic coupling with an external signal is more difficult to achieve. Here we present an original scheme (called multiwasher) to circumvent this problem, and its implementation in an all-refractory thin-film device. Our scheme not only provides good magnetic coupling with a large input coil (0.5 {mu}H) and very low SQUID inductance, but also shielding from outside uniform fields, such as those generated by ambient disturbances. The measured coupled spectral energy sensitivity in the white region at about 1 kHz is 28{h_bar} at 4.2 K and 5.5{h_bar} in a pumped helium bath at 0.9 K. The flux noise spectral density at 0.1 Hz and 0.9 K is {Phi}{sub n}=1{times}10{sup {minus}6}{Phi}{sub 0}/{radical} (Hz) . {copyright} {ital 1998 American Institute of Physics.}
Evaluation of internal noise methods for Hotelling observer models
Zhang Yani; Pham, Binh T.; Eckstein, Miguel P.
2007-08-15
The inclusion of internal noise in model observers is a common method to allow for quantitative comparisons between human and model observer performance in visual detection tasks. In this article, we studied two different strategies for inserting internal noise into Hotelling model observers. In the first strategy, internal noise was added to the output of individual channels: (a) Independent nonuniform channel noise, (b) independent uniform channel noise. In the second strategy, internal noise was added to the decision variable arising from the combination of channel responses. The standard deviation of the zero mean internal noise was either constant or proportional to: (a) the decision variable's standard deviation due to the external noise, (b) the decision variable's variance caused by the external noise, (c) the decision variable magnitude on a trial to trial basis. We tested three model observers: square window Hotelling observer (HO), channelized Hotelling observer (CHO), and Laguerre-Gauss Hotelling observer (LGHO) using a four alternative forced choice (4AFC) signal known exactly but variable task with a simulated signal embedded in real x-ray coronary angiogram backgrounds. The results showed that the internal noise method that led to the best prediction of human performance differed across the studied model observers. The CHO model best predicted human observer performance with the channel internal noise. The HO and LGHO best predicted human observer performance with the decision variable internal noise. The present results might guide researchers with the choice of methods to include internal noise into Hotelling model observers when evaluating and optimizing medical image quality.
Statistics of a neuron model driven by asymmetric colored noise
NASA Astrophysics Data System (ADS)
Müller-Hansen, Finn; Droste, Felix; Lindner, Benjamin
2015-02-01
Irregular firing of neurons can be modeled as a stochastic process. Here we study the perfect integrate-and-fire neuron driven by dichotomous noise, a Markovian process that jumps between two states (i.e., possesses a non-Gaussian statistics) and exhibits nonvanishing temporal correlations (i.e., represents a colored noise). Specifically, we consider asymmetric dichotomous noise with two different transition rates. Using a first-passage-time formulation, we derive exact expressions for the probability density and the serial correlation coefficient of the interspike interval (time interval between two subsequent neural action potentials) and the power spectrum of the spike train. Furthermore, we extend the model by including additional Gaussian white noise, and we give approximations for the interspike interval (ISI) statistics in this case. Numerical simulations are used to validate the exact analytical results for pure dichotomous noise, and to test the approximations of the ISI statistics when Gaussian white noise is included. The results may help to understand how correlations and asymmetry of noise and signals in nerve cells shape neuronal firing statistics.
Noise properties of HF radar measurement of ocean surface currents
NASA Astrophysics Data System (ADS)
Forget, Philippe
2015-08-01
High-frequency (HF) radars are commonly used for coastal circulation monitoring. The objective of the study is to assess what is the minimum timescale of variability of the geophysical surface currents that are accessible to the radar measurement given the intrinsic noise of this measurement. Noise properties are derived from the power density spectra (PDSs) of radial current records, which are compared to a model of the PDS of idealized currents contaminated by an additive white noise. The data were collected by two radar systems operating in the Northwestern Mediterranean. Periods of 3 weeks to 7 months are considered. Most of measured currents are affected by a white noise effect. Noise properties vary in time and space and are not specific to a particular radar station or to the radar signal processing method used (beam forming or direction finding). An increase of the noise level reduces the effective temporal resolution of radar-derived currents and then increases the minimum observable timescale of variability of geophysical currents. Our results are consistent with results of comparison found in literature between in situ sensors and radar measurements as well as between two radars operating along a same base line. The study suggests a self-sufficient method, requiring no external data, to estimate the minimum sampling period to consider for getting data sets having a minimized contamination by instrumental noise. This period can also be taken for smoothing or filtering measured currents.
Improved Measurement of Coherence in Presence of Instrument Noise
NASA Technical Reports Server (NTRS)
Merceret, Francis J.
2003-01-01
A method for correcting measured coherence spectra for the effect of incoherent instrument noise has been developed and demonstrated. Coherence measurements are widely used in engineering and science to determine the extent to which two signals are alike. The signals may come from two different sources or from the same source at different times. The coherence of time-lagged signals from a single source is an excellent indication of the effective lifetime of the signal components as a function of their frequency. Unfortunately, incoherent instrument noise will bias the measurement to lower values and may lead the user of the data to false conclusions about the longevity of significant features. The new method may be used whenever both the signal and noise power spectra are known and the noise is incoherent both with the signal and with itself at the applicable time delays. It provides a corrected coherence spectrum given the measured coherence and power spectra. For powerlaw signal spectra and instrumental white noise, the correction formula takes a particularly simple and explicit form. Since many geophysical signals exhibit powerlaw behavior and most instrument noise spectra approach white noise, the simplified form should be widely applicable in meteorology, oceanography, geology, and planetary geophysics.
ERIC Educational Resources Information Center
Hines, Mack T., III
2016-01-01
This study analyzes the prevalence of white fragility within the six white, pre-service principals' online responses to readings about white privilege. Six white, pre-service principals were asked to provide commentary to class readings on the relevance of white privilege to their preparation for future positions as principals. The findings showed…
Judgments of aircraft noise in a traffic noise background
NASA Technical Reports Server (NTRS)
Powell, C. A.; Rice, C. G.
1975-01-01
An investigation was conducted to determine subjective response to aircraft noise in different road traffic backgrounds. In addition, two laboratory techniques for presenting the aircraft noise with the background noise were evaluated. For one technique, the background noise was continuous over an entire test session; for the other, the background noise level was changed with each aircraft noise during a session. Subjective response to aircraft noise was found to decrease with increasing background noise level, for a range of typical indoor noise levels. Subjective response was found to be highly correlated with the Noise Pollution Level (NPL) measurement scale.
Knauss, D.
2002-01-01
The EC has published a Green Paper on noise policy in the EU and has issued a directive on the assessment and reduction of environmental noise. This directive will make noise mapping mandatory for cities with at least 250.000 inhabitants. Due to the development in computer technology it is possible to calculate noise maps for large urban areas using the available data on buildings, ground profile, road and rail traffic. Examples for noise mapping are Birmingham (GB), Linz (A) and various German cities. Based on noise maps and empirical data on the correlation between annoyance and noise levels annoyance maps for different sources (rail, road, aircraft) can be calculated. Under the assumption that the annoyance for the different sources are only weakly correlated, a combined annoyance map can be calculated. In a second step using the distribution of the population the actual number of annoyed people can be evaluated. This analysis can be used, for example, to identify noise hot spots and to assess the impact of major traffic projects - roads, airports- on the noise situation as well as the impact on the population. Furthermore, the combined annoyance maps can be used to investigate on health effects and to check whether or not empirical correlations between annoyance and noise levels are sufficiently correct. PMID:12678944
NASA Astrophysics Data System (ADS)
Jäcker-Cüppers, Michael
Noise belongs to the severest environmental impairments in towns, with road traffic being the most annoying noise source. The reduction of these impairments and the precaution against new noise impacts is an important task of the communities. However, many of the potential abatement measures are not in the responsibility of the communities. In most European countries, noise emission regulations for road and rail vehicles and outdoor machinery are nowadays enforced by the European Union. Noise reception limits are generally enforced by national laws. Therefore, efficient noise abatement in towns has to be coordinated with the regional, national and supranational, i.e. European noise policy. The most important fields of action for the urban noise abatement are the roads, railways and airports with heavy traffic. For the avoidance of health risks due to noise here short-term reductions are needed, which can generally be achieved only by a combination of measures for which different stakeholders are responsible. This underlines the importance of integrated and coordinated noise abatement concepts.
Neuron dynamics in the presence of 1/f noise
NASA Astrophysics Data System (ADS)
Sobie, Cameron; Babul, Arif; de Sousa, Rogério
2011-05-01
Interest in understanding the interplay between noise and the response of a nonlinear device cuts across disciplinary boundaries. It is as relevant for unmasking the dynamics of neurons in noisy environments as it is for designing reliable nanoscale logic circuit elements and sensors. Most studies of noise in nonlinear devices are limited to either time-correlated noise with a Lorentzian spectrum (of which the white noise is a limiting case) or just white noise. We use analytical theory and numerical simulations to study the impact of the more ubiquitous “natural” noise with a 1/f frequency spectrum. Specifically, we study the impact of the 1/f noise on a leaky integrate and fire model of a neuron. The impact of noise is considered on two quantities of interest to neuron function: The spike count Fano factor and the speed of neuron response to a small steplike stimulus. For the perfect (nonleaky) integrate and fire model, we show that the Fano factor can be expressed as an integral over noise spectrum weighted by a (low-pass) filter function given by F(t,f)=sinc2(πft). This result elucidates the connection between low-frequency noise and disorder in neuron dynamics. Under 1/f noise, spike dynamics lacks a characteristic correlation time, inducing the leaky and nonleaky models, to exhibit nonergodic behavior and the Fano factor, increasing logarithmically as a function of time. We compare our results to experimental data of single neurons in vivo [Teich, Heneghan, Lowen, Ozaki, and Kaplan, J. Opt. Soc. Am. AJNRSDS1084-752910.1364/JOSAA.14.000529 14, 529 (1997)] and show how the 1/f noise model provides much better agreement than the usual approximations based on Lorentzian noise. The low-frequency noise, however, complicates the case for an information-coding scheme based on interspike intervals by introducing variability in the neuron response time. On a positive note, the neuron response time to a step stimulus is, remarkably, nearly optimal in the presence
Neuron dynamics in the presence of 1/f noise.
Sobie, Cameron; Babul, Arif; de Sousa, Rogério
2011-05-01
Interest in understanding the interplay between noise and the response of a nonlinear device cuts across disciplinary boundaries. It is as relevant for unmasking the dynamics of neurons in noisy environments as it is for designing reliable nanoscale logic circuit elements and sensors. Most studies of noise in nonlinear devices are limited to either time-correlated noise with a Lorentzian spectrum (of which the white noise is a limiting case) or just white noise. We use analytical theory and numerical simulations to study the impact of the more ubiquitous "natural" noise with a 1/f frequency spectrum. Specifically, we study the impact of the 1/f noise on a leaky integrate and fire model of a neuron. The impact of noise is considered on two quantities of interest to neuron function: The spike count Fano factor and the speed of neuron response to a small steplike stimulus. For the perfect (nonleaky) integrate and fire model, we show that the Fano factor can be expressed as an integral over noise spectrum weighted by a (low-pass) filter function given by F(t,f)=sinc(2)(πft). This result elucidates the connection between low-frequency noise and disorder in neuron dynamics. Under 1/f noise, spike dynamics lacks a characteristic correlation time, inducing the leaky and nonleaky models, to exhibit nonergodic behavior and the Fano factor, increasing logarithmically as a function of time. We compare our results to experimental data of single neurons in vivo [Teich, Heneghan, Lowen, Ozaki, and Kaplan, J. Opt. Soc. Am. A 14, 529 (1997)] and show how the 1/f noise model provides much better agreement than the usual approximations based on Lorentzian noise. The low-frequency noise, however, complicates the case for an information-coding scheme based on interspike intervals by introducing variability in the neuron response time. On a positive note, the neuron response time to a step stimulus is, remarkably, nearly optimal in the presence of 1/f noise. An explanation of this
Model for excess noise in voltage-biased superconducting bolometers.
Gildemeister, J M; Lee, A T; Richards, P L
2001-12-01
We are developing superconducting transition-edge bolometers for far-infrared and millimeter wavelengths. The bolometers described here are suspended by thin legs of silicon nitride for thermal isolation. At frequencies between 200 mHz and 10-50 Hz these devices show white noise at their thermal fluctuation limit (NEP approximately 10(-17) W/ radicalHz). At higher frequencies a broad peak appears in the noise spectrum, which we attribute to a combination of thermal fluctuations in complex thermal circuits and electrothermal feedback. Detailed noise calculations fit the noise measured in three different devices that were specifically designed to test the model. We discuss how changes in bolometer materials can shift the noise peak above the frequency range of interest for most applications. PMID:18364926
Detection in fixed and random noise in foveal and parafoveal vision explained by template learning
NASA Technical Reports Server (NTRS)
Beard, B. L.; Ahumada, A. J. Jr; Watson, A. B. (Principal Investigator)
1999-01-01
Foveal and parafoveal contrast detection thresholds for Gabor and checkerboard targets were measured in white noise by means of a two-interval forced-choice paradigm. Two white-noise conditions were used: fixed and twin. In the fixed noise condition a single noise sample was presented in both intervals of all the trials. In the twin noise condition the same noise sample was used in the two intervals of a trial, but a new sample was generated for each trial. Fixed noise conditions usually resulted in lower thresholds than twin noise. Template learning models are presented that attribute this advantage of fixed over twin noise either to fixed memory templates' reducing uncertainty by incorporation of the noise or to the introduction, by the learning process itself, of more variability in the twin noise condition. Quantitative predictions of the template learning process show that it contributes to the accelerating nonlinear increase in performance with signal amplitude at low signal-to-noise ratios.
Signal processing and electronic noise in LZ
NASA Astrophysics Data System (ADS)
Khaitan, D.
2016-03-01
The electronics of the LUX-ZEPLIN (LZ) experiment, the 10-tonne dark matter detector to be installed at the Sanford Underground Research Facility (SURF), consists of low-noise dual-gain amplifiers and a 100-MHz, 14-bit data acquisition system for the TPC PMTs. Pre-prototypes of the analog amplifiers and the 32-channel digitizers were tested extensively with simulated pulses that are similar to the prompt scintillation light and the electroluminescence signals expected in LZ. These studies are used to characterize the noise and to measure the linearity of the system. By increasing the amplitude of the test signals, the effect of saturating the amplifier and the digitizers was studied. The RMS ADC noise of the digitizer channels was measured to be 1.19± 0.01 ADCC. When a high-energy channel of the amplifier is connected to the digitizer, the measured noise remained virtually unchanged, while the noise added by a low-energy channel was estimated to be 0.38 ± 0.02 ADCC (46 ± 2 μV). A test facility is under construction to study saturation, mitigate noise and measure the performance of the LZ electronics and data acquisition chain.
NASA Technical Reports Server (NTRS)
Stanley, William D.
1994-01-01
An investigation of the Allan variance method as a possible means for characterizing fluctuations in radiometric noise diodes has been performed. The goal is to separate fluctuation components into white noise, flicker noise, and random-walk noise. The primary means is by discrete-time processing, and the study focused primarily on the digital processes involved. Noise satisfying the requirements was generated by direct convolution, fast Fourier transformation (FFT) processing in the time domain, and FFT processing in the frequency domain. Some of the numerous results obtained are presented along with the programs used in the study.
NASA Astrophysics Data System (ADS)
Regadío, Alberto; Tabero, Jesús; Sánchez-Prieto, Sebastián
2016-03-01
In particle detectors, pulse shaping is the process of changing the waveform of the pulses in order to maximize the signal to noise ratio. This shaping usually only takes into account white, pink (flicker) and red (Brownian) noise. In this paper, a generalization of noise indexes as a function to an arbitrary fβ noise type, where β is a real number, is presented. This generalization has been created using the differintegral operator, defined in Fractional Calculus. These formulas are used to calculate the Equivalent Noise Change (ENC) in detector particle systems.
Pulsating White Dwarf Star GD99
NASA Astrophysics Data System (ADS)
Chynoweth, K. M.; Thompson, S.; Mullally, F.; Yeates, C.
2004-12-01
We present 15 hours of time-series photometry of the variable white dwarf star GD99. These data were obtained at the McDonald Observatory 2.1m Otto Struve Telescope in January 2003, using the Argos CCD photometer. We achieved a noise level as low as 0.07 %, as measured from the power spectrum of our first night. Our observations confirm that GD99 is a unique pulsating white dwarf whose modes show characteristics of both the hot and cold type of DA variable stars. Additionally, GD99 has a large number of modes, making it a good candidate for asteroseismological study. Our preliminary results indicate that this star merits further study to decipher its abundant set of unusual modes. With such a rich period structure, longer continuous data sets will be required to fully resolve the pulsation spectrum.
Value Added in English Schools
ERIC Educational Resources Information Center
Ray, Andrew; McCormack, Tanya; Evans, Helen
2009-01-01
Value-added indicators are now a central part of school accountability in England, and value-added information is routinely used in school improvement at both the national and the local levels. This article describes the value-added models that are being used in the academic year 2007-8 by schools, parents, school inspectors, and other…
Hartung, Thomas
2009-12-01
Taking the 110th anniversary of marketing of aspirin as starting point, the almost scary toxicological profile of aspirin is contrasted with its actual use experience. The author concludes that we are lucky that, in 1899, there was no regulatory toxicology. Adding, for the purpose of this article, a fourth R to the Three Rs, i.e. Realism, three reality-checks are carried out. The first one comes to the conclusion that the tools of toxicology are hardly adequate for the challenges ahead. The second one concludes that, specifically, the implementation of the EU REACH system is not feasible with these tools, mainly with regard to throughput. The third one challenges the belief that classical alternative methods, i.e. replacing animal test-based tools one by one, is actually leading to a new toxicology - it appears to change only patches of the patchwork, but not to overcome any inherent limitations other than ethical ones. The perspective lies in the Toxicology for the 21st Century initiatives, which aim to create a new approach from the scratch, by an evidence-based toxicology and a global "Human Toxicology Programme". PMID:20105011
White dwarfs identified in LAMOST DR 2
NASA Astrophysics Data System (ADS)
Guo, Jincheng; Zhao, Jingkun; Tziamtzis, Anestis; Liu, Jifeng; Li, Lifang; Zhang, Yong; Hou, Yonghui; Wang, Yuefei
2015-12-01
Here we present a catalogue of 1056 spectroscopically identified hydrogen-dominated white dwarfs (DAWDs), 34 helium-dominated white dwarfs (DBWDs) and 276 white dwarf main sequence (WDMS) binaries from the Large sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST) survey data release 2 (DR2). 383 DAWDs, 4 DBWDs and 138 WDMSs are new identifications after cross-match with literature. There are ˜4100 k spectra in total from DR 2. The low ratio of white dwarfs found in LAMOST is attributed to biased selection of LAMOST input catalogue and much brighter targets relative to stars observed in Sloan Digital Sky Survey. In this paper, a new DAWD selection method is adopted as a new attempt and supplement to the traditional methods. The effective temperature, surface gravity, mass, cooling age and distance of high signal-to-noise DAWDs are estimated. The peak of the mass distribution is found to be ˜0.6 M⊙, which is consistent with previous work. The parameters of WDMS binaries are also provided in this paper. As the foundation of our future work, which is to identify more WDs with debris disc, WDs found in LAMOST showed a lot of potential. Interesting infrared-excess WDs will be reported in our forthcoming paper.
NASA Astrophysics Data System (ADS)
Arkhipkin, Victor; Dobrolyubov, Sergey; Myslenkov, Stanislav; Korablina, Anastasia
2016-04-01
The implementation of the SWAN spectral wave model for the White Sea with using unstructured grid was presented. The main area of the Barents Sea was added to calculation region because it produces swell which incomes to the White Sea from the outside. Spatial resolution of unstructured grid is 500 m-5 km for the White Sea and 10-20 km for the Barents sea. NCEP/CFSR (~0.3°) input wind forcing was used. The results of the numerical modeling include wind wave fields for the White Sea with time step of 3 hours from 1979 to 2010. Spatial extreme value analysis of significant wave heights was performed. The storm situations, when the significant wave height exceeded 3 and 4 meters, were identified for the 32-year period. It allowed to analyze the variability of wind wave climate in the White Sea. The storminess of the White Sea tended to increase from 1979 to 1991, then decreased to minimum at 2000 and increased again till 2010. This work showed the following results. For example, in the Voronka (part of the White Sea) the synoptic situations with a wave height of more than 2 m (50-60 cases) took place about three times more than in the Basin (part of the White Sea), with heights of more than 3 m (25-40 cases) five or six times more. Cases with wave heights greater than 5 m in the Basin is extremely rare, while in the Voronka they occur 10 times a year. The significant wave height of a possible one time in 100 years is up to 7 meters in the Basin, up to 13 m in the Voronka, up to 3 m in the Onega Bay. In May, the smallest wavelength occurs in the Onega Bay, and is only 25 m. In the Basin wavelength is increased to 50 m. The longer wavelengths observed in the Voronka - 100 m. In November in the Basin (especially in the western part) and in the Voronka wavelength greatly increased to 75 and 200 m, respectively. In May, in the Onega Bay, Basin and Gorlo (part of the White Sea) swell height does not exceed 1 m. Only in the Voronka, it increases up to 3 meters. By November
Understanding Slat Noise Sources
NASA Technical Reports Server (NTRS)
Khorrami, Medhi R.
2003-01-01
Model-scale aeroacoustic tests of large civil transports point to the leading-edge slat as a dominant high-lift noise source in the low- to mid-frequencies during aircraft approach and landing. Using generic multi-element high-lift models, complementary experimental and numerical tests were carefully planned and executed at NASA in order to isolate slat noise sources and the underlying noise generation mechanisms. In this paper, a brief overview of the supporting computational effort undertaken at NASA Langley Research Center, is provided. Both tonal and broadband aspects of slat noise are discussed. Recent gains in predicting a slat s far-field acoustic noise, current shortcomings of numerical simulations, and other remaining open issues, are presented. Finally, an example of the ever-expanding role of computational simulations in noise reduction studies also is given.
Lipscomb, D M; Roettger, R W
1976-01-01
Environmental noise has increased to the point that it affects large numbers of people. The most consistently demonstrated health effect of exposure to noise is hearing impairment. Other effects, such as stress reaction, irritability, fatigue and disturbances to physiologic function have been seen in laboratory research but are highly individualized and restricted to such specific populations as industrial workers. Rising background sound levels in communities due to increased traffic flow, industralization, work saving machinery, and other noise sources have caused community noise levels to become dangerously high. This factor is complicated by exposure to high sound level recreational activities with greater frequency and for longer periods. Recognizing the existence of the problem, governmental agencies have begun to identify the scope of the problem, to designate standards and regulations controlling noise sources, and to regulate allowable noise exposure for workers. PMID:10297834
NASA Technical Reports Server (NTRS)
1982-01-01
A demonstration conducted last winter at the Tip Top Poultry Plant intended to show poultry plant managers from all over the U.S. potential solutions to the problem of plant noise. Plastic covers used over sound absorbing materials need to meet cleanability requirements, high- pressure water cleaning and other harsh maintenance procedures peculiar to the poultry processing industry. For the demonstration, Fiber Flex, Inc. manufactured and donated 750 noise panels; Owens-Corning Fiberglas Corporation donated the fiberglas cores; and the cover material was purchased from Howe and Bainbridge. The Engineering Experiment Station (EES) conducted before and after noise surveys and is evaluating the effect of noise reduction on turnover and productivity in the demonstration plant. EES plans to conduct a noise abatement workshop and update a handbook to help poultry processors with noise problems. EES study and demonstration may be applicable to other food processing plants where similar sanitary constraints exist.
Adaptive noise cancelling of multichannel magnetic resonance sounding signals
NASA Astrophysics Data System (ADS)
Dalgaard, E.; Auken, E.; Larsen, J. J.
2012-10-01
Adaptive noise cancelling of multichannel magnetic resonance sounding (MRS) signals is investigated. An analysis of the noise sources affecting MRS signals show that the applicability of adaptive noise cancelling is primarily limited to cancel powerline harmonics. The problems of handling spikes in MRS signals are discussed and an efficient algorithm for spike detection is presented. The optimum parameters for multichannel adaptive noise cancelling are identified through simulations with synthetic signals added to noise-only recordings from an MRS instrument. We discuss the design and the efficiency of different stacking methods. The results from multichannel adaptive noise cancelling are compared to time-domain multichannel Wiener filtering. Our results show that within the experimental uncertainty the two methods give identical results.
Jay, M.A.
1995-02-01
Many natural gas compressor stations which were previously located away from residential areas are now being encroached upon by surrounding building developments. An increased awareness of community noise issues has proved to be the impetus for investigating and developing more effective noise control methods and treatments for natural gas compressor facilities. This project investigates the feasibility of applying Active Noise Cancellation (ANC) to the exhaust of a large, internal combustion reciprocating type engine.
NASA Technical Reports Server (NTRS)
Hardin, J. C.; Fratello, D. J.; Hayden, R. E.; Kadman, Y.; Africk, S.
1975-01-01
Methods of predicting airframe noise generated by aircraft in flight under nonpowered conditions are discussed. Approaches to predictions relying on flyover data and component theoretical analyses are developed. A nondimensional airframe noise spectrum of various aircraft is presented. The spectrum was obtained by smoothing all the measured spectra to remove any peculiarities due to airframe protrusions, normalizing each spectra by its overall sound pressure level and a characteristics frequency, and averaging the spectra together. A chart of airframe noise sources is included.
Simpson, Michael L; Allen, Michael S.; Cox, Chris D.; Dar, Roy D.; Karig, David K; McCollum, James M.; Cooke, John F
2009-01-01
Noise biology focuses on the sources, processing, and biological consequences of the inherent stochastic fluctuations in molecular transitions or interactions that control cellular behavior. These fluctuations are especially pronounced in small systems where the magnitudes of the fluctuations approach or exceed the mean value of the molecular population. Noise biology is an essential component of nanomedicine where the communication of information is across a boundary that separates small synthetic and biological systems that are bound by their size to reside in environments of large fluctuations. Here we review the fundamentals of the computational, analytical, and experimental approaches to noise biology. We review results that show that the competition between the benefits of low noise and those of low population has resulted in the evolution of genetic system architectures that produce an uneven distribution of stochasticity across the molecular components of cells and, in some cases, use noise to drive biological function. We review the exact and approximate approaches to gene circuit noise analysis and simulation, and reviewmany of the key experimental results obtained using flow cytometry and time-lapse fluorescent microscopy. In addition, we consider the probative value of noise with a discussion of using measured noise properties to elucidate the structure and function of the underlying gene circuit. We conclude with a discussion of the frontiers of and significant future challenges for noise biology.
Landing gear noise attenuation
NASA Technical Reports Server (NTRS)
Moe, Jeffrey W. (Inventor); Whitmire, Julia (Inventor); Kwan, Hwa-Wan (Inventor); Abeysinghe, Amal (Inventor)
2011-01-01
A landing gear noise attenuator mitigates noise generated by airframe deployable landing gear. The noise attenuator can have a first position when the landing gear is in its deployed or down position, and a second position when the landing gear is in its up or stowed position. The noise attenuator may be an inflatable fairing that does not compromise limited space constraints associated with landing gear retraction and stowage. A truck fairing mounted under a truck beam can have a compliant edge to allow for non-destructive impingement of a deflected fire during certain conditions.
Supergravity at the boundary of AdS supergravity
NASA Astrophysics Data System (ADS)
Amsel, Aaron J.; Compère, Geoffrey
2009-04-01
We give a general analysis of AdS boundary conditions for spin-3/2 Rarita-Schwinger fields and investigate boundary conditions preserving supersymmetry for a graviton multiplet in AdS4. Linear Rarita-Schwinger fields in AdSd are shown to admit mixed Dirichlet-Neumann boundary conditions when their mass is in the range 0≤|m|<1/2lAdS. We also demonstrate that mixed boundary conditions are allowed for larger masses when the inner product is “renormalized” accordingly with the action. We then use the results obtained for |m|=1/lAdS to explore supersymmetric boundary conditions for N=1 AdS4 supergravity in which the metric and Rarita-Schwinger fields are fluctuating at the boundary. We classify boundary conditions that preserve boundary supersymmetry or superconformal symmetry. Under the AdS/CFT dictionary, Neumann boundary conditions in d=4 supergravity correspond to gauging the superconformal group of the three-dimensional CFT describing M2-branes, while N=1 supersymmetric mixed boundary conditions couple the CFT to N=1 superconformal topologically massive gravity.
NASA Technical Reports Server (NTRS)
2008-01-01
This image of White Rock in Pollack crater was taken by the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) on February 3, 2007 at 1750 UTC (12:50 p.m. EST), near 8 degrees south latitude, 25 degrees east longitude. The CRISM image was taken in 544 colors covering 0.36-3.92 micrometers, and shows features as small as 40 meters (132 feet) across. The region covered is roughly 20 kilometers (12 miles) long and 10 kilometers (6 miles) wide at its narrowest point.
First imaged by the Mariner 9 spacecraft in 1972, the enigmatic group of wind-eroded ridges known as White Rock has been the subject of many subsequent investigations. White Rock is located on the floor of Pollack Crater in the Sinus Sabaeus region of Mars. It measures some 15 by 18 kilometers (9 by 11 miles) and was named for its light-colored appearance. In contrast-enhanced images, the feature's higher albedo or reflectivity compared with the darker material on the floor of the crater makes it appear white. In reality, White Rock has a dull, reddish color more akin to Martian dust. This higher albedo as well as its location in a topographic low suggested to some researchers that White Rock may be an eroded remnant of an ancient lake deposit. As water in a desert lake on Earth evaporates, it leaves behind white-colored salts that it leached or dissolved out of the surrounding terrain. These salt deposits may include carbonates, sulfates, and chlorides.
In 2001, the Thermal Emission Spectrometer (TES) on NASA's Mars Global Surveyor measured White Rock and found no obvious signature of carbonates or sulfates, or any other indication that White Rock holds evaporite minerals. Instead, it found Martian dust.
CRISM's challenge was to obtain greater detail of White Rock's mineralogical composition and how it formed. The instrument operates at a different wavelength range than TES, giving it greater sensitivity to carbonate, sulfate and phyllosilicate (clay-like) minerals. It also
NASA Astrophysics Data System (ADS)
Hawley, Wendy Phyllis
2012-01-01
3D models of white dwarf collisions are used to assess the likelihood of double-degenerate mergers as progenitors for Type Ia supernovae (henceforth SNIa) and to identify observational signatures of double-degenerate collisions. Observations of individual SNIa, SNIa rates in different galaxy types, and double white dwarf binary systems suggest that mergers or collisions between two white dwarfs play a role in the overall SNIa population. Given the possibility of two progenitor systems (single-degenerate and double-degenerate), the sample of SNIa used in cosmological calcula- tions needs to be carefully examined. To improve calculations of cosmological parameters, the development of calibrated diagnostics for double-degenerate progenitor SNIa is essential. Head-on white dwarf collision simulations are used to provide an upper limit on the 56Ni production in white dwarf collisions. In chapter II, I explore zero impact parameter collisions of white dwarfs using the Eulerian grid code FLASH. The initial 1D white dwarf profiles are created assuming hydrostatic equilibrium and a uniform composition of 50% 12C and 50% 16O. The masses range from 0.64 to 0.81 solar masses and have an isothermal temperature of 107 K. I map these 1D models onto a 3D grid, where the dimensions of the grid are each eight times the white dwarf radius, and the dwarfs are initially placed four white dwarf radii apart (center to center). To provide insight into a larger range of physical possibilities, I also model non-zero impact parameter white dwarf collisions (Chapter III). Although head-on white dwarf collisions provide an upper limit on 56Ni production, non-zero impact parameter collisions provide insight into a wider range of physical scenarios. The initial conditions (box size, initial separation, composition, and initial temperature) are identical to those used for the head-on collisions (Chapter II) for the same range of masses. For each mass pair- ing, collision simulations are carried
White Racial Identity Statuses as Predictors of White Privilege Awareness
ERIC Educational Resources Information Center
Hays, Danica G.; Chang, Catherine Y.; Havice, Pamela
2008-01-01
This study explored the relationship between White privilege awareness and White racial identity development for 197 counseling trainees. Results indicated that 3 of J. E. Helms's (1984, 1990, 1995) White racial identity statuses (i.e., Contact, Reintegration, and Immersion/Emersian) significantly predicted White privilege awareness. Implications…
ERIC Educational Resources Information Center
Comer, James P.
Black and white conflict is a by-product of a more basic problem: the failure of this society to develop a social system that enables all people to meet their basic human needs at a reasonable level. Until this is done, we will not be able to move beyond black and white. The underlying problem is related to a sudden acceleration of human history…
Nolte, J W; van der Waal, I
2011-09-01
A 46-year-old man appeared with white lesions of the oral cavity. A previously taken biopsy revealed no classifying diagnosis and treatment with mouth rinse produced no improvement. A new biopsy was taken, on which the pathologist performed additional tests. This resulted in the diagnosis 'syphilis'. The patient was treated with benzylpenicillin and the oral white lesions disappeared. Although nowadays syphilis is rare, special attention is required when noticing these kinds of lesions of the oral cavity. PMID:21957637
Two-dimensional soft output Viterbi algorithm with noise filter for patterned media storage
NASA Astrophysics Data System (ADS)
Kim, Jinyoung; Lee, Jaejin
2011-04-01
We introduce a two-dimensional (2D) soft output Viterbi algorithm (SOVA) using two 1D SOVAs, which apply two noise filters corresponding to horizontal and vertical directions, respectively, for patterned media storage. Patterned media storage has 2D intersymbol interference (ISI), which includes ISI from neighboring symbols and intertrack interference from adjacent tracks, since there is a small space between adjacent tracks and neighborhood symbols. Noise filter replaces colored noise with white noise. As a result, the noise filter can reduce the noise power, so that performance can be improved. As shown in the simulation results, when there is no off-track, the 2D SOVA using a noise filter is approximately 0.4 dB better than not using a noise filter at a 10-6 bit error rate; when there is 20% off-track, it has about a 1 dB gain.
Image discrimination models predict detection in fixed but not random noise
NASA Technical Reports Server (NTRS)
Ahumada, A. J. Jr; Beard, B. L.; Watson, A. B. (Principal Investigator)
1997-01-01
By means of a two-interval forced-choice procedure, contrast detection thresholds for an aircraft positioned on a simulated airport runway scene were measured with fixed and random white-noise masks. The term fixed noise refers to a constant, or unchanging, noise pattern for each stimulus presentation. The random noise was either the same or different in the two intervals. Contrary to simple image discrimination model predictions, the same random noise condition produced greater masking than the fixed noise. This suggests that observers seem unable to hold a new noisy image for comparison. Also, performance appeared limited by internal process variability rather than by external noise variability, since similar masking was obtained for both random noise types.
Asymptotically AdS spacetimes with a timelike Kasner singularity
NASA Astrophysics Data System (ADS)
Ren, Jie
2016-07-01
Exact solutions to Einstein's equations for holographic models are presented and studied. The IR geometry has a timelike cousin of the Kasner singularity, which is the less generic case of the BKL (Belinski-Khalatnikov-Lifshitz) singularity, and the UV is asymptotically AdS. This solution describes a holographic RG flow between them. The solution's appearance is an interpolation between the planar AdS black hole and the AdS soliton. The causality constraint is always satisfied. The entanglement entropy and Wilson loops are discussed. The boundary condition for the current-current correlation function and the Laplacian in the IR is examined. There is no infalling wave in the IR, but instead, there is a normalizable solution in the IR. In a special case, a hyperscaling-violating geometry is obtained after a dimensional reduction.
All AdS7 solutions of type II supergravity
NASA Astrophysics Data System (ADS)
Apruzzi, Fabio; Fazzi, Marco; Rosa, Dario; Tomasiello, Alessandro
2014-04-01
In M-theory, the only AdS7 supersymmetric solutions are AdS7 × S 4 and its orbifolds. In this paper, we find and classify new supersymmetric solutions of the type AdS7 × M 3 in type II supergravity. While in IIB none exist, in IIA with Romans mass (which does not lift to M-theory) there are many new ones. We use a pure spinor approach reminiscent of generalized complex geometry. Without the need for any Ansatz, the system determines uniquely the form of the metric and fluxes, up to solving a system of ODEs. Namely, the metric on M 3 is that of an S 2 fibered over an interval; this is consistent with the Sp(1) R-symmetry of the holographically dual (1,0) theory. By including D8 brane sources, one can numerically obtain regular solutions, where topologically M 3 ≅ S 3.
Worldsheet scattering in AdS3/CFT2
NASA Astrophysics Data System (ADS)
Sundin, Per; Wulff, Linus
2013-07-01
We confront the recently proposed exact S-matrices for AdS 3/ CFT 2 with direct worldsheet calculations. Utilizing the BMN and Near Flat Space (NFS) expansions for strings on AdS 3 × S 3 × S 3 × S 1 and AdS 3 × S 3 × T 4 we compute both tree-level and one-loop scattering amplitudes. Up to some minor issues we find nice agreement in the tree-level sector. At the one-loop level however we find that certain non-zero tree-level processes, which are not visible in the exact solution, contribute, via the optical theorem, and give an apparent mismatch for certain amplitudes. Furthermore we find that a proposed one-loop modification of the dressing phase correctly reproduces the worldsheet calculation while the standard Hernandez-Lopez phase does not. We also compute several massless to massless processes.
Detailed ultraviolet asymptotics for AdS scalar field perturbations
NASA Astrophysics Data System (ADS)
Evnin, Oleg; Jai-akson, Puttarak
2016-04-01
We present a range of methods suitable for accurate evaluation of the leading asymptotics for integrals of products of Jacobi polynomials in limits when the degrees of some or all polynomials inside the integral become large. The structures in question have recently emerged in the context of effective descriptions of small amplitude perturbations in anti-de Sitter (AdS) spacetime. The limit of high degree polynomials corresponds in this situation to effective interactions involving extreme short-wavelength modes, whose dynamics is crucial for the turbulent instabilities that determine the ultimate fate of small AdS perturbations. We explicitly apply the relevant asymptotic techniques to the case of a self-interacting probe scalar field in AdS and extract a detailed form of the leading large degree behavior, including closed form analytic expressions for the numerical coefficients appearing in the asymptotics.
New massive gravity and AdS(4) counterterms.
Jatkar, Dileep P; Sinha, Aninda
2011-04-29
We show that the recently proposed Dirac-Born-Infeld extension of new massive gravity emerges naturally as a counterterm in four-dimensional anti-de Sitter space (AdS(4)). The resulting on-shell Euclidean action is independent of the cutoff at zero temperature. We also find that the same choice of counterterm gives the usual area law for the AdS(4) Schwarzschild black hole entropy in a cutoff-independent manner. The parameter values of the resulting counterterm action correspond to a c=0 theory in the context of the duality between AdS(3) gravity and two-dimensional conformal field theory. We rewrite this theory in terms of the gauge field that is used to recast 3D gravity as a Chern-Simons theory. PMID:21635026
Proceedings of Noise-con 81: Applied noise control technology
Royster, L.H.; Hart, F.D.; Stewart, N.D.
1981-01-01
The conference was divided into sessions covering noise control regulations and benefits; noise source identification; barriers and enclosures; mufflers; hearing protection devices; textile and fibre industries; metal fabrication industry; transportation and aircraft noise control; punch-press noise control and miscellaneous topics; woodworking industry; tobacco and packaging industries; community noise; and applications of damping materials. One paper has been abstracted separately.
Sounds and Noises. A Position Paper on Noise Pollution.
ERIC Educational Resources Information Center
Chapman, Thomas L.
This position paper focuses on noise pollution and the problems and solutions associated with this form of pollution. The paper is divided into the following five sections: Noise and the Ear, Noise Measurement, III Effects of Noise, Acoustics and Action, and Programs and Activities. The first section identifies noise and sound, the beginnings of…
Phases of global AdS black holes
NASA Astrophysics Data System (ADS)
Basu, Pallab; Krishnan, Chethan; Subramanian, P. N. Bala
2016-06-01
We study the phases of gravity coupled to a charged scalar and gauge field in an asymptotically Anti-de Sitter spacetime ( AdS 4) in the grand canonical ensemble. For the conformally coupled scalar, an intricate phase diagram is charted out between the four relevant solutions: global AdS, boson star, Reissner-Nordstrom black hole and the hairy black hole. The nature of the phase diagram undergoes qualitative changes as the charge of the scalar is changed, which we discuss. We also discuss the new features that arise in the extremal limit.
Optimal and Suboptimal Noises Enhancing Mutual Information in Threshold System
NASA Astrophysics Data System (ADS)
Zhai, Qiqing; Wang, Youguo
2016-05-01
In this paper, we investigate the efficacy of noise enhancing information transmission in a threshold system. At first, in the frame of stochastic resonance (SR), optimal noise (Opt N) is derived to maximize mutual information (MI) of this nonlinear system. When input signal is discrete (binary), the optimal SR noise is found to have a finite distribution. In contrast, when input signal is continuous, the optimal SR noise is a constant one. In addition, suboptimal SR noises are explored as well with optimization methods when the types of noise added into the system are predetermined. We find that for small thresholds, suboptimal noises do not exist. Only when thresholds reach some level, do suboptimal noises come into effect. Meanwhile, we have discussed the impact of tails in noise distribution on SR effect. Finally, this paper extends the single-threshold system to an array of multi-threshold devices and presents the corresponding efficacy of information transmission produced by optimal and suboptimal SR noises. These results may be beneficial to quantization and coding.
Relationship between acceptance of background noise and hearing aid use
NASA Astrophysics Data System (ADS)
Nabelek, Anna K.; Burchfield, Samuel B.; Webster, Joanna D.
2003-04-01
Background noise produces complaints among hearing-aid users, however speech-perception-in-noise does not predict hearing-aid use. It is possible that hearing-aid users are complaining about the presence of background noise and not about speech perception. To test this possibility, acceptance of background noise is being investigated as a predictor of hearing-aid use. Acceptance of background noise is determined by having subjects select their most comfortable listening level (MCL) for a story. Next, speech-babble is added and the subjects select the maximum background noise level (BNL) which is acceptable while listening to and following the story. The difference between the MCL and the BNL is the acceptable noise level (ANL), all in dB. ANLs are being compared with hearing-aid use, subjective impressions of benefit (APHAB), speech perception in background noise (SPIN) scores, and audiometric data. Individuals who accept higher levels of background noise are more successful users than individuals who accept less background noise. Mean ANLs are 7.3 dB for full-time users (N=21), 12.6 dB for part-time users (N=44), and 13.8 dB for rejecters (N=17). ANLs are not related to APHAB, SPIN, or audiometric data. Results for about 120 subjects will be reported. [Work supported by NIDCD (NIH) RO1 DC 05018.
NASA Technical Reports Server (NTRS)
Gliebe, P. R.; Brausch, J. F.; Majjigi, R. K.; Lee, R.
1991-01-01
The objectives of this chapter are to review and summarize the jet noise suppression technology, to provide a physical and theoretical model to explain the measured jet noise suppression characteristics of different concepts, and to provide a set of guidelines for evolving jet noise suppression designs. The underlying principle for all jet noise suppression devices is to enhance rapid mixing (i.e., diffusion) of the jet plume by geometric and aerothermodynamic means. In the case of supersonic jets, the shock-cell broadband noise reduction is effectively accomplished by the elimination or mitigation of the shock-cell structure. So far, the diffusion concepts have predominantly concentrated on jet momentum and energy (kinetic and thermal) diffusion, in that order, and have yielded better noise reduction than the simple conical nozzles. A critical technology issue that needs resolution is the effect of flight on the noise suppression potential of mechanical suppressor nozzles. A more thorough investigation of this mechanism is necessary for the successful development and design of an acceptable noise suppression device for future high-speed civil transports.
Speech communications in noise
NASA Technical Reports Server (NTRS)
1984-01-01
The physical characteristics of speech, the methods of speech masking measurement, and the effects of noise on speech communication are investigated. Topics include the speech signal and intelligibility, the effects of noise on intelligibility, the articulation index, and various devices for evaluating speech systems.
Noise: The Ignored Contaminant
ERIC Educational Resources Information Center
Miller, Maurice H.
1977-01-01
Noise is the single most omnipresent noxious contaminant in the American environment, yet little attention has been paid to its dangers and relatively small amounts of money spent to control it. Compares the effects and management of hearing impairment due to noise with those resulting from other causes. (Editor)
Predicted airframe noise levels
NASA Astrophysics Data System (ADS)
Raney, J. P.
1980-09-01
Calculated values of airframe noise levels corresponding to FAA noise certification conditions for six aircraft are presented. The aircraft are: DC-9-30; Boeing 727-200; A300-B2 Airbus; Lockheed L-1011; DC-10-10; and Boeing 747-200B. The prediction methodology employed is described and discussed.
Noise Pollution, Teachers' Edition.
ERIC Educational Resources Information Center
O'Donnell, Patrick A.; Lavaroni, Charles W.
One of three in a series about pollution, this teacher's guide for a unit on noise pollution is designed for use in junior high school grades. It offers suggestions for extending the information and activities contained in the textual material for students. Chapter 1 discusses the problem of noise pollution and involves students in processes of…
ERIC Educational Resources Information Center
Crumpton, Michael A.
2005-01-01
Noise in a community college library can be part of the nature of the environment. It can also become a huge distraction for those who see the library as their sanctuary for quiet study and review of resources. This article describes the steps that should be taken by library staff in order to be proactive about noise and the library environment,…
Influence of sonic noise on human stereoscopic depth perception.
Hermann, E R; Hesse, C S; Hoyle, E R; Leopold, A C; Standard, J J
1979-05-01
Scientific establishment of the no-effect response to finite levels of exposure to a physical or chemical agent is indeed a rigorous exercise and is frequently controversial. In earlier research by Slutsky under direction of the senior author, a statistically significant increase in stereoscopic depth perception error was noted among 24 test subjects exposed to high intensity noise. Additional extensive research reported in this paper indicates that error in stereoscopic depth perception is not significantly altered by exposure to continuous white noise of short duration at levels ranging from 70 to 115 dBA. Furthernore, exposure of humans for periods of a few minutes to white noise in octave bands centered on 250 Hz, 1000 Hz, 4 kHz and 16 kHz at 115 dB does not affect their depth perception measured by the Howard-Dolman test. A comprehensive analysis of depth perception errors measured under noise exposure conditions (n = 4040) in comparison with those obtained under control conditions (n = 1430) produced a mean change in error of -0.38 mm, a statistically insignificant difference (p = 0.17). Even if such an error were attributable to high level noise, it should be noted that minus sign designates an improvement of depth perception in noise and that it is difficult to imagine visual tasks in which change in error of +/-0.38 mm at a distance of 6.0 meters is meaningful. PMID:463754
The behavior of quantization spectra as a function of signal-to-noise ratio
NASA Technical Reports Server (NTRS)
Flanagan, M. J.
1991-01-01
An expression for the spectrum of quantization error in a discrete-time system whose input is a sinusoid plus white Gaussian noise is derived. This quantization spectrum consists of two components: a white-noise floor and spurious harmonics. The dithering effect of the input Gaussian noise in both components of the spectrum is considered. Quantitative results in a discrete Fourier transform (DFT) example show the behavior of spurious harmonics as a function of the signal-to-noise ratio (SNR). These results have strong implications for digital reception and signal analysis systems. At low SNRs, spurious harmonics decay exponentially on a log-log scale, and the resulting spectrum is white. As the SNR increases, the spurious harmonics figure prominently in the output spectrum. A useful expression is given that roughly bounds the magnitude of a spurious harmonic as a function of the SNR.
Chimera patterns under the impact of noise
NASA Astrophysics Data System (ADS)
Loos, Sarah A. M.; Claussen, Jens Christian; Schöll, Eckehard; Zakharova, Anna
2016-01-01
We investigate two types of chimera states, patterns consisting of coexisting spatially separated domains with coherent and incoherent dynamics, in ring networks of Stuart-Landau oscillators with symmetry-breaking coupling, under the influence of noise. Amplitude chimeras are characterized by temporally periodic dynamics throughout the whole network, but spatially incoherent behavior with respect to the amplitudes in a part of the system; they are long-living transients. Chimera death states generalize chimeras to stationary inhomogeneous patterns (oscillation death), which combine spatially coherent and incoherent domains. We analyze the impact of random perturbations, addressing the question of robustness of chimera states in the presence of white noise. We further consider the effect of symmetries applied to random initial conditions.
Not Available
1989-09-01
MVMA has sponsored a study to assist the motor vehicle manufacturers and others in assessing the impact of motor vehicle noise on the community. As part of this study, a computer model was developed to quantify, by mathematical simulation, the impact of traffic noise on the community, with particular emphasis on passenger cars, light trucks and vans under 10,000 pounds gross vehicle weight rating. The primary objective of the program was to evaluate the incremental changes in exposure to traffic noise which would result from the promulgation of various new-vehicle emission standards and to compare these incremental changes with those which result from alternative approaches to vehicle noise abatement. The model is available for use on microcomputers and is capable of evaluating local, as well as national, noise control strategies.
Chouard, C H
2001-07-01
Noise is responsible for cochlear and general damages. Hearing loss and tinnitus greatly depend on sound intensity and duration. Short-duration sound of sufficient intensity (gunshot or explosion) will not be described because they are not currently encountered in our normal urban environment. Sound levels of less than 75 d (A) are unlikely to cause permanent hearing loss, while sound levels of about 85 d (A) with exposures of 8 h per day will produce permanent hearing loss after many years. Popular and largely amplified music is today one of the most dangerous causes of noise induced hearing loss. The intensity of noises (airport, highway) responsible for stress and general consequences (cardiovascular) is generally lower. Individual noise sensibility depends on several factors. Strategies to prevent damage from sound exposure should include the use of individual hearing protection devices, education programs beginning with school-age children, consumer guidance, increased product noise labelling, and hearing conservation programs for occupational settings. PMID:11476007
NASA Technical Reports Server (NTRS)
Lucas, Michael J.; Marcolini, Michael A.
1997-01-01
The Rotorcraft Noise Model (RNM) is an aircraft noise impact modeling computer program being developed for NASA-Langley Research Center which calculates sound levels at receiver positions either on a uniform grid or at specific defined locations. The basic computational model calculates a variety of metria. Acoustic properties of the noise source are defined by two sets of sound pressure hemispheres, each hemisphere being centered on a noise source of the aircraft. One set of sound hemispheres provides the broadband data in the form of one-third octave band sound levels. The other set of sound hemispheres provides narrowband data in the form of pure-tone sound pressure levels and phase. Noise contours on the ground are output graphically or in tabular format, and are suitable for inclusion in Environmental Impact Statements or Environmental Assessments.
NASA Astrophysics Data System (ADS)
Diakonova, Marina; Eguíluz, Víctor M.; San Miguel, Maxi
2015-09-01
Coupling dynamics of the states of the nodes of a network to the dynamics of the network topology leads to generic absorbing and fragmentation transitions. The coevolving voter model is a typical system that exhibits such transitions at some critical rewiring. We study the robustness of these transitions under two distinct ways of introducing noise. Noise affecting all the nodes destroys the absorbing-fragmentation transition, giving rise in finite-size systems to two regimes: bimodal magnetization and dynamic fragmentation. Noise targeting a fraction of nodes preserves the transitions but introduces shattered fragmentation with its characteristic fraction of isolated nodes and one or two giant components. Both the lack of absorbing state for homogeneous noise and the shift in the absorbing transition to higher rewiring for targeted noise are supported by analytical approximations.
NASA Astrophysics Data System (ADS)
Turco, M.; Milelli, M.
2009-09-01
skill scores of two competitive forecast. It is important to underline that the conclusions refer to the analysis of the Piemonte operational alert system, so they cannot be directly taken as universally true. But we think that some of the main lessons that can be derived from this study could be useful for the meteorological community. In details, the main conclusions are the following: - despite the overall improvement in global scale and the fact that the resolution of the limited area models has increased considerably over recent years, the QPF produced by the meteorological models involved in this study has not improved enough to allow its direct use, that is, the subjective HQPF continues to offer the best performance; - in the forecast process, the step where humans have the largest added value with respect to mathematical models, is the communication. In fact the human characterisation and communication of the forecast uncertainty to end users cannot be replaced by any computer code; - eventually, although there is no novelty in this study, we would like to show that the correct application of appropriated statistical techniques permits a better definition and quantification of the errors and, mostly important, allows a correct (unbiased) communication between forecasters and decision makers.
Testing Models for Perceptual Discrimination Using Repeatable Noise
NASA Technical Reports Server (NTRS)
Ahumada, Albert J., Jr.; Null, Cynthia H. (Technical Monitor)
1998-01-01
Adding noise to stimuli to be discriminated allows estimation of observer classification functions based on the correlation between observer responses and relevant features of the noisy stimuli. Examples will be presented of stimulus features that are found in auditory tone detection and visual Vernier acuity. Using the standard signal detection model (Thurstone scaling), we derive formulas to estimate the proportion of the observer's decision variable variance that is controlled by the added noise. One is based on the probability of agreement of the observer with him/herself on trials with the same noise sample. Another is based on the relative performance of the observer and the model. When these do not agree, the model can be rejected. A second derivation gives the probability of agreement of observer and model when the observer follows the model except for internal noise. Agreement significantly less than this amount allows rejection of the model.
NASA Astrophysics Data System (ADS)
Dybiec, Bartłomiej; Gudowska-Nowak, Ewa
2009-05-01
A standard approach to analysis of noise-induced effects in stochastic dynamics assumes a Gaussian character of the noise term describing interaction of the analyzed system with its complex surroundings. An additional assumption about the existence of timescale separation between the dynamics of the measured observable and the typical timescale of the noise allows external fluctuations to be modeled as temporally uncorrelated and therefore white. However, in many natural phenomena the assumptions concerning the above mentioned properties of 'Gaussianity' and 'whiteness' of the noise can be violated. In this context, in contrast to the spatiotemporal coupling characterizing general forms of non-Markovian or semi-Markovian Lévy walks, so called Lévy flights correspond to the class of Markov processes which can still be interpreted as white, but distributed according to a more general, infinitely divisible, stable and non-Gaussian law. Lévy noise-driven non-equilibrium systems are known to manifest interesting physical properties and have been addressed in various scenarios of physical transport exhibiting a superdiffusive behavior. Here we present a brief overview of our recent investigations aimed at understanding features of stochastic dynamics under the influence of Lévy white noise perturbations. We find that the archetypal phenomena of noise-induced ordering are robust and can be detected also in systems driven by memoryless, non-Gaussian, heavy-tailed fluctuations with infinite variance.
NASA Technical Reports Server (NTRS)
Stothers, R. B.
1984-01-01
The possible cause of the densest and most persistent dry fog on record, which was observed in Europe and the Middle East during AD 536 and 537, is discussed. The fog's long duration toward the south and the high sulfuric acid signal detected in Greenland in ice cores dated around AD 540 support the theory that the fog was due to the explosion of the Rabaul volcano, the occurrence of which has been dated at about AD 540 by the radiocarbon method.
AdS Branes from Partial Breaking of Superconformal Symmetries
Ivanov, E.A.
2005-10-01
It is shown how the static-gauge world-volume superfield actions of diverse superbranes on the AdS{sub d+1} superbackgrounds can be systematically derived from nonlinear realizations of the appropriate AdS supersymmetries. The latter are treated as superconformal symmetries of flat Minkowski superspaces of the bosonic dimension d. Examples include the N = 1 AdS{sub 4} supermembrane, which is associated with the 1/2 partial breaking of the OSp(1|4) supersymmetry down to the N = 1, d = 3 Poincare supersymmetry, and the T-duality related L3-brane on AdS{sub 5} and scalar 3-brane on AdS{sub 5} x S{sup 1}, which are associated with two different patterns of 1/2 breaking of the SU(2, 2|1) supersymmetry. Another (closely related) topic is the AdS/CFT equivalence transformation. It maps the world-volume actions of the codimension-one AdS{sub d+1} (super)branes onto the actions of the appropriate Minkowski (super)conformal field theories in the dimension d.
White matter diffusion alterations in normal women at risk of Alzheimer's disease.
Smith, Charles D; Chebrolu, Himachandra; Andersen, Anders H; Powell, David A; Lovell, Mark A; Xiong, Shuling; Gold, Brian T
2010-07-01
Increased white matter mean diffusivity and decreased fractional anisotropy (FA) has been observed in subjects diagnosed with mild cognitive impairment (MCI) and Alzheimer's disease (AD). We sought to determine whether similar alterations of white matter occur in normal individuals at risk of AD. Diffusion tensor images were acquired in 42 cognitively normal right-handed women with both a family history of dementia and at least one apolipoprotein E4 allele. These were compared with images from 23 normal women without either AD risk factor. Group analyses were performed using tract-based spatial statistics. Reduced FA was observed in the fronto-occipital and inferior temporal fasciculi (particularly posteriorly), the splenium of the corpus callosum, subcallosal white matter and the cingulum bundle. These findings demonstrate that specific white matter pathways are altered in normal women at increased risk of AD years before the expected onset of cognitive symptoms. PMID:18801597
AdS5 backgrounds with 24 supersymmetries
NASA Astrophysics Data System (ADS)
Beck, S.; Gutowski, J.; Papadopoulos, G.
2016-06-01
We prove a non-existence theorem for smooth AdS 5 solutions with connected, compact without boundary internal space that preserve strictly 24 supersymmetries. In particular, we show that D = 11 supergravity does not admit such solutions, and that all such solutions of IIB supergravity are locally isometric to the AdS 5 × S 5 maximally supersymmetric background. Furthermore, we prove that (massive) IIA supergravity also does not admit such solutions, provided that the homogeneity conjecture for massive IIA supergravity is valid. In the context of AdS/CFT these results imply that if gravitational duals for strictly mathcal{N}=3 superconformal theories in 4-dimensions exist, they are either singular or their internal spaces are not compact.
Entanglement temperature and perturbed AdS3 geometry
NASA Astrophysics Data System (ADS)
Levine, G. C.; Caravan, B.
2016-06-01
Generalizing the first law of thermodynamics, the increase in entropy density δ S (x ) of a conformal field theory (CFT) is proportional to the increase in energy density, δ E (x ) , of a subsystem divided by a spatially dependent entanglement temperature, TE(x ) , a fixed parameter determined by the geometry of the subsystem, crossing over to thermodynamic temperature at high temperatures. In this paper we derive a generalization of the thermodynamic Clausius relation, showing that deformations of the CFT by marginal operators are associated with spatial temperature variations, δ TE(x ) , and spatial energy correlations play the role of specific heat. Using AdS/CFT duality we develop a relationship between a perturbation in the local entanglement temperature of the CFT and the perturbation of the bulk AdS metric. In two dimensions, we demonstrate a method through which direct diagonalizations of the boundary quantum theory may be used to construct geometric perturbations of AdS3 .
Noise Hampers Children’s Expressive Word Learning
Riley, Kristine Grohne; McGregor, Karla K.
2013-01-01
Purpose To determine the effects of noise and speech style on word learning in typically developing school-age children. Method Thirty-one participants ages 9;0 (years; months) to 10;11 attempted to learn 2 sets of 8 novel words and their referents. They heard all of the words 13 times each within meaningful narrative discourse. Signal-to-noise ratio (noise vs. quiet) and speech style (plain vs. clear) were manipulated such that half of the children heard the new words in broadband white noise and half heard them in quiet; within those conditions, each child heard one set of words produced in a plain speech style and another set in a clear speech style. Results Children who were trained in quiet learned to produce the word forms more accurately than those who were trained in noise. Clear speech resulted in more accurate word form productions than plain speech, whether the children had learned in noise or quiet. Learning from clear speech in noise and plain speech in quiet produced comparable results. Conclusion Noise limits expressive vocabulary growth in children, reducing the quality of word form representation in the lexicon. Clear speech input can aid expressive vocabulary growth in children, even in noisy environments. PMID:22411494
Wellbery, Caroline; Chan, Melissa
2014-12-01
Much has been written about the symbolic function of the white coat: its implications of purity, its representation of authority and professionalism, and its role in consolidating a medical hierarchy. By contrast, the medical literature has paid almost no attention to the patient gown. In this article, we argue that in order to understand the full implications of the white coat in the doctor-patient relationship, we must also take into account patients' dress, and even undress. We explore contemporary artistic images of white coat and patient gown in order to reveal the power differential in the doctor-patient relationship. Artistic representations capture some of the cultural ambivalence surrounding the use of the white coat, which confers professional status on its wearer, while undermining his or her personal identity. At the other end of the sartorial spectrum, hospital gowns also strip wearers of their identity, but add to this an experience of vulnerability. Although compelling reasons for continuing to wear the white coat in circumscribed settings persist, physicians should be mindful of its hierarchical implications. Ample room remains for improving patients' privacy and dignity by updating the hospital gown. PMID:24687912
Noaman, B. A.; Korman, C. E.
2009-04-23
In this paper, we present a deterministic approach to calculate terminal current noise characteristics in semiconductor devices in the framework of semiclassical transport based on the spherical harmonics of the Boltzmann Transport Equation. The model relies on the solution of the Boltzmann equation in the frequency domain with special initial and boundary conditions. The terminal current fluctuation is directly related to scattering without the additional Langevin noise term added to the calculation. Simulation results are presented for the terminal current spectral density for a 1-D n{sup +}nn{sup +} structure due to elastic-acoustic and intervally scattering.
NASA Astrophysics Data System (ADS)
Ji, Yanju; Li, Dongsheng; Yu, Mingmei; Wang, Yuan; Wu, Qiong; Lin, Jun
2016-05-01
The ground electrical source airborne transient electromagnetic system (GREATEM) on an unmanned aircraft enjoys considerable prospecting depth, lateral resolution and detection efficiency, etc. In recent years it has become an important technical means of rapid resources exploration. However, GREATEM data are extremely vulnerable to stationary white noise and non-stationary electromagnetic noise (sferics noise, aircraft engine noise and other human electromagnetic noises). These noises will cause degradation of the imaging quality for data interpretation. Based on the characteristics of the GREATEM data and major noises, we propose a de-noising algorithm utilizing wavelet threshold method and exponential adaptive window width-fitting. Firstly, the white noise is filtered in the measured data using the wavelet threshold method. Then, the data are segmented using data window whose step length is even logarithmic intervals. The data polluted by electromagnetic noise are identified within each window based on the discriminating principle of energy detection, and the attenuation characteristics of the data slope are extracted. Eventually, an exponential fitting algorithm is adopted to fit the attenuation curve of each window, and the data polluted by non-stationary electromagnetic noise are replaced with their fitting results. Thus the non-stationary electromagnetic noise can be effectively removed. The proposed algorithm is verified by the synthetic and real GREATEM signals. The results show that in GREATEM signal, stationary white noise and non-stationary electromagnetic noise can be effectively filtered using the wavelet threshold-exponential adaptive window width-fitting algorithm, which enhances the imaging quality.
Independent component analysis of DTI data reveals white matter covariances in Alzheimer's disease
NASA Astrophysics Data System (ADS)
Ouyang, Xin; Sun, Xiaoyu; Guo, Ting; Sun, Qiaoyue; Chen, Kewei; Yao, Li; Wu, Xia; Guo, Xiaojuan
2014-03-01
Alzheimer's disease (AD) is a progressive neurodegenerative disease with the clinical symptom of the continuous deterioration of cognitive and memory functions. Multiple diffusion tensor imaging (DTI) indices such as fractional anisotropy (FA) and mean diffusivity (MD) can successfully explain the white matter damages in AD patients. However, most studies focused on the univariate measures (voxel-based analysis) to examine the differences between AD patients and normal controls (NCs). In this investigation, we applied a multivariate independent component analysis (ICA) to investigate the white matter covariances based on FA measurement from DTI data in 35 AD patients and 45 NCs from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database. We found that six independent components (ICs) showed significant FA reductions in white matter covariances in AD compared with NC, including the genu and splenium of corpus callosum (IC-1 and IC-2), middle temporal gyral of temporal lobe (IC-3), sub-gyral of frontal lobe (IC-4 and IC-5) and sub-gyral of parietal lobe (IC-6). Our findings revealed covariant white matter loss in AD patients and suggest that the unsupervised data-driven ICA method is effective to explore the changes of FA in AD. This study assists us in understanding the mechanism of white matter covariant reductions in the development of AD.
Effects of background noise on total noise annoyance
NASA Technical Reports Server (NTRS)
Willshire, K. F.
1987-01-01
Two experiments were conducted to assess the effects of combined community noise sources on annoyance. The first experiment baseline relationships between annoyance and noise level for three community noise sources (jet aircraft flyovers, traffic and air conditioners) presented individually. Forty eight subjects evaluated the annoyance of each noise source presented at four different noise levels. Results indicated the slope of the linear relationship between annoyance and noise level for the traffic noise was significantly different from that of aircraft and of air conditioner noise, which had equal slopes. The second experiment investigated annoyance response to combined noise sources, with aircraft noise defined as the major noise source and traffic and air conditioner noise as background noise sources. Effects on annoyance of noise level differences between aircraft and background noise for three total noise levels and for both background noise sources were determined. A total of 216 subjects were required to make either total or source specific annoyance judgements, or a combination of the two, for a wide range of combined noise conditions.
Noise-induced precursors of state transitions in the stochastic Wilson-cowan model.
Negahbani, Ehsan; Steyn-Ross, D Alistair; Steyn-Ross, Moira L; Wilson, Marcus T; Sleigh, Jamie W
2015-01-01
The Wilson-Cowan neural field equations describe the dynamical behavior of a 1-D continuum of excitatory and inhibitory cortical neural aggregates, using a pair of coupled integro-differential equations. Here we use bifurcation theory and small-noise linear stochastics to study the range of a phase transitions-sudden qualitative changes in the state of a dynamical system emerging from a bifurcation-accessible to the Wilson-Cowan network. Specifically, we examine saddle-node, Hopf, Turing, and Turing-Hopf instabilities. We introduce stochasticity by adding small-amplitude spatio-temporal white noise, and analyze the resulting subthreshold fluctuations using an Ornstein-Uhlenbeck linearization. This analysis predicts divergent changes in correlation and spectral characteristics of neural activity during close approach to bifurcation from below. We validate these theoretical predictions using numerical simulations. The results demonstrate the role of noise in the emergence of critically slowed precursors in both space and time, and suggest that these early-warning signals are a universal feature of a neural system close to bifurcation. In particular, these precursor signals are likely to have neurobiological significance as early warnings of impending state change in the cortex. We support this claim with an analysis of the in vitro local field potentials recorded from slices of mouse-brain tissue. We show that in the period leading up to emergence of spontaneous seizure-like events, the mouse field potentials show a characteristic spectral focusing toward lower frequencies concomitant with a growth in fluctuation variance, consistent with critical slowing near a bifurcation point. This observation of biological criticality has clear implications regarding the feasibility of seizure prediction. PMID:25859420
... OF LABOR Occupational Safety and Health Administration 200 Constitution Ave., NW, Washington, DC 20210 800-321-6742 (OSHA) TTY www.OSHA.gov FEDERAL GOVERNMENT White House Affordable Care Act Disaster Recovery ...
O'Brien, Ian; Wilson, Wayne; Bradley, Andrew
2008-08-01
Professional orchestral musicians are at risk of exposure to excessive noise when at work. This is an industry-wide problem that threatens not only the hearing of orchestral musicians but also the way orchestras operate. The research described in this paper recorded noise levels within a professional orchestra over three years in order to provide greater insight to the orchestral noise environment; to guide future research into orchestral noise management and hearing conservation strategies; and to provide a basis for the future education of musicians and their managers. Every rehearsal, performance, and recording from May 2004 to May 2007 was monitored, with the woodwind, brass, and percussion sections monitored in greatest detail. The study recorded dBALEQ and dBC peak data, which are presented in graphical form with accompanying summarized data tables. The findings indicate that the principal trumpet, first and third horns, and principal trombone are at greatest risk of exposure to excessive sustained noise levels and that the percussion and timpani are at greatest risk of exposure to excessive peak noise levels. However, the findings also strongly support the notion that the true nature of orchestral noise is a great deal more complex than this simple statement would imply. PMID:18681585
Broadband rotor noise analyses
NASA Technical Reports Server (NTRS)
George, A. R.; Chou, S. T.
1984-01-01
The various mechanisms which generate broadband noise on a range of rotors studied include load fluctuations due to inflow turbulence, due to turbulent boundary layers passing the blades' trailing edges, and due to tip vortex formation. Existing analyses are used and extensions to them are developed to make more accurate predictions of rotor noise spectra and to determine which mechanisms are important in which circumstances. Calculations based on the various prediction methods in existing experiments were compared. The present analyses are adequate to predict the spectra from a wide variety of experiments on fans, full scale and model scale helicopter rotors, wind turbines, and propellers to within about 5 to 10 dB. Better knowledge of the inflow turbulence improves the accuracy of the predictions. Results indicate that inflow turbulence noise depends strongly on ambient conditions and dominates at low frequencies. Trailing edge noise and tip vortex noise are important at higher frequencies if inflow turbulence is weak. Boundary layer trailing edge noise, important, for large sized rotors, increases slowly with angle of attack but not as rapidly as tip vortex noise.
Brezinka, C; Lechner, T; Stephan, K
1997-01-01
From 23 weeks of gestation some and from 28 weeks all healthy fetuses are capable of reacting to sound stimulation. The intrauterine acoustic environment is dominated by maternal sounds--heartbeat, breathing, the mother's voice, borborygmi and sounds caused by body movements. Background noise is never below 28 dB and can rise to 84 dB when the mother is singing. Noises that are meant to reach the fetus must be louder than the background noise and must be of low frequency as high frequency sounds are damped by maternal tissue. Vibroacoustic stimulation tests (VAST) have become popular in pregnancy surveillance over the last 20 years, mostly using an artificial larynx. Advantages and problems of the various VAST protocols in fetal monitoring are discussed in the light of animal experiments and clinical studies. Health legislation laws in most countries forbid pregnant women to work in surroundings with a high noise level (80 dB continuous noise and/or rapid impulse noise changes of 40 dB). Whereas regulations for pregnant women are easy to enforce in industry, pregnant women employed in discos or performing as musicians spend most of their working day exposed to noise impact higher than the recommended limit. PMID:9483870
Broadband rotor noise analyses
NASA Astrophysics Data System (ADS)
George, A. R.; Chou, S. T.
1984-04-01
The various mechanisms which generate broadband noise on a range of rotors studied include load fluctuations due to inflow turbulence, due to turbulent boundary layers passing the blades' trailing edges, and due to tip vortex formation. Existing analyses are used and extensions to them are developed to make more accurate predictions of rotor noise spectra and to determine which mechanisms are important in which circumstances. Calculations based on the various prediction methods in existing experiments were compared. The present analyses are adequate to predict the spectra from a wide variety of experiments on fans, full scale and model scale helicopter rotors, wind turbines, and propellers to within about 5 to 10 dB. Better knowledge of the inflow turbulence improves the accuracy of the predictions. Results indicate that inflow turbulence noise depends strongly on ambient conditions and dominates at low frequencies. Trailing edge noise and tip vortex noise are important at higher frequencies if inflow turbulence is weak. Boundary layer trailing edge noise, important, for large sized rotors, increases slowly with angle of attack but not as rapidly as tip vortex noise.
NASA Astrophysics Data System (ADS)
de Araujo, Marco A. N.; Massarani, Paulo M.; de Azevedo, Jose A. J.; Gerges, Samir N. Y.
2002-11-01
The Brazilian Silence Program, created in 1990 by the Brazilian Ministry of Environment, advocates the production and use of equipment with lower noise level. The subcommittee of Noise Labeling of the Brazilian Committee of Certification is composed of INMETRO acoustic specialists to organize and implement the Brazilian Labeling Program. This subcommittee elaborated the label form and test procedure. The noise-labeling program will first concentrate on the following household devices, both manufactured in Brazil or imported from abroad; mixers, blenders, hairdryers, refrigerators, and vacuum cleaners. The label should contain the sound-power level in dBA. INMETRO or other credited laboratories are responsible for the measurements. The ISO 4871, 3740 (1 to 5), ISO 8960, and IEC 704 (1 to 4) and also the equivalent Brazilian standards are used for the measurements, such as ABNT NBR 13910-1. The main objective of the label is to inform the consumer about the emitted noise level. The label offers the noise parameter to be used by the consumer when comparing devices, considering price, performance, and now also noise. No restriction for noise level was established.
... Info » Hearing, Ear Infections, and Deafness Noise-Induced Hearing Loss On this page: What is noise-induced hearing ... additional information about NIHL? What is noise-induced hearing loss? Every day, we experience sound in our environment, ...
NASA Astrophysics Data System (ADS)
Baur, J.; Schlotter, P.; Schneider, J.
Using blue-emitting GaN LEDs on SiC substrate chips as primary light sources, we have fabricated green, yellow, red and white light emitting diodes (LUCOLEDs). The generation of mixed colors, as turquoise and magenta, is also demonstrated. The underlying physical principle is that of luminescence downconversion (Stokes shift), as typical for organic dye molecules and many inorganic phosphors. For white light generation via the LUCOLED principle, the phosphor Y3Al5O12:Ce3+(4f1) is ideally suited. The optical characteristics of Ce3+(4f1) in Y3Al5O12(YAG) are discussed in detail. Possibilities to "tune" the white color by various substitutions in the garnet lattice are shortly outlined.
NASA Astrophysics Data System (ADS)
Gu, Yimin; Narendran, Nadarajah; Freyssinier, Jean Paul
2004-10-01
Two life tests were conducted to compare the effects of drive current and ambient temperature on the degradation rate of 5 mm and high-flux white LEDs. Tests of 5 mm white LED arrays showed that junction temperature increases produced by drive current had a greater effect on the rate of light output degradation than junction temperature increases from ambient heat. A preliminary test of high-flux white LEDs showed the opposite effect, with junction temperature increases from ambient heat leading to a faster depreciation. However, a second life test is necessary to verify this finding. The dissimilarity in temperature effect among 5 mm and high-flux LEDs is likely caused by packaging differences between the two device types.
NASA Technical Reports Server (NTRS)
George, Albert R.; Sim, Ben WEL-C.
1993-01-01
The unconventional supersonic tip speed of advanced propellers has led to uncertainties about Propfan's noise acceptability and compliance with Federal Aviation Noise Regulation (FAR 36). Overhead flight testing of the Propfan with an SR-7L blade during 1989's Propfan Test Assessment (PTA) Program have shown unexpectedly high far-field sound pressure levels. This study here attempts to provide insights into the acoustics of a single-rotating propeller (SRP) with supersonic tip speed. At the same time, the role of the atmosphere in shaping the far-field noise characteristics is investigated.
NASA Astrophysics Data System (ADS)
Semenov, Andrew G.; Zaikin, Andrei D.
2016-07-01
Quantum phase slips (QPSs) generate voltage fluctuations in superconducting nanowires. Employing the Keldysh technique and making use of the phase-charge duality arguments, we develop a theory of QPS-induced voltage noise in such nanowires. We demonstrate that quantum tunneling of the magnetic flux quanta across the wire yields quantum shot noise which obeys Poisson statistics and is characterized by a power-law dependence of its spectrum SΩ on the external bias. In long wires, SΩ decreases with increasing frequency Ω and vanishes beyond a threshold value of Ω at T →0 . The quantum coherent nature of QPS noise yields nonmonotonous dependence of SΩ on T at small Ω .
Effects of natural sounds on the perception of road traffic noise.
Coensel, Bert De; Vanwetswinkel, Sofie; Botteldooren, Dick
2011-04-01
Recent studies show that introducing sound from water features in urban open spaces may reduce the loudness of road traffic noise, but it is not clear in which situations this measure also improves overall soundscape quality. This work describes a listening experiment on loudness, pleasantness, and eventfulness of stimuli that combine road traffic noise with fountain or bird sound at different sound levels. Adding fountain sound reduced the loudness of road traffic noise only if the latter had low temporal variability. Conversely, adding bird sound significantly enhanced soundscape pleasantness and eventfulness, more than what was achieved by adding fountain sound. PMID:21476622
Fourth Aircraft Interior Noise Workshop
NASA Technical Reports Server (NTRS)
Stephens, David G. (Compiler)
1992-01-01
The fourth in a series of NASA/SAE Interior Noise Workshops was held on May 19 and 20, 1992. The theme of the workshop was new technology and applications for aircraft noise with emphasis on source noise prediction; cabin noise prediction; cabin noise control, including active and passive methods; and cabin interior noise procedures. This report is a compilation of the presentations made at the meeting which addressed the above issues.
21 CFR 160.145 - Dried egg whites.
Code of Federal Regulations, 2010 CFR
2010-04-01
... use under § 173.25 of this chapter shall be used. As a further preliminary step to drying, the glucose... microorganisms. Dried egg whites may be powdered. (b) The optional glucose-removing procedures are: (1) Enzyme procedure. A glucose-oxidase-catalase preparation and hydrogen peroxide solution are added to liquid...
21 CFR 160.145 - Dried egg whites.
Code of Federal Regulations, 2011 CFR
2011-04-01
... use under § 173.25 of this chapter shall be used. As a further preliminary step to drying, the glucose... microorganisms. Dried egg whites may be powdered. (b) The optional glucose-removing procedures are: (1) Enzyme procedure. A glucose-oxidase-catalase preparation and hydrogen peroxide solution are added to liquid...
21 CFR 160.145 - Dried egg whites.
Code of Federal Regulations, 2013 CFR
2013-04-01
... fermentation procedures—(i) Yeast procedure. Food-grade baker's yeast (Saccharomyces cerevisiae) is added to the liquid egg whites and controlled fermentation is maintained. The quantity of yeast used and the... in the fermentation and the time and temperature of reaction are sufficient to substantially...
21 CFR 160.145 - Dried egg whites.
Code of Federal Regulations, 2012 CFR
2012-04-01
... fermentation procedures—(i) Yeast procedure. Food-grade baker's yeast (Saccharomyces cerevisiae) is added to the liquid egg whites and controlled fermentation is maintained. The quantity of yeast used and the... in the fermentation and the time and temperature of reaction are sufficient to substantially...
21 CFR 160.145 - Dried egg whites.
Code of Federal Regulations, 2014 CFR
2014-04-01
... fermentation procedures—(i) Yeast procedure. Food-grade baker's yeast (Saccharomyces cerevisiae) is added to the liquid egg whites and controlled fermentation is maintained. The quantity of yeast used and the... in the fermentation and the time and temperature of reaction are sufficient to substantially...
Lorentzian AdS geometries, wormholes, and holography
Arias, Raul E.; Silva, Guillermo A.; Botta Cantcheff, Marcelo
2011-03-15
We investigate the structure of two-point functions for the quantum field theory dual to an asymptotically Lorentzian Anti de Sitter (AdS) wormhole. The bulk geometry is a solution of five-dimensional second-order Einstein-Gauss-Bonnet gravity and causally connects two asymptotically AdS spacetimes. We revisit the Gubser-Klebanov-Polyakov-Witten prescription for computing two-point correlation functions for dual quantum field theories operators O in Lorentzian signature and we propose to express the bulk fields in terms of the independent boundary values {phi}{sub 0}{sup {+-}} at each of the two asymptotic AdS regions; along the way we exhibit how the ambiguity of normalizable modes in the bulk, related to initial and final states, show up in the computations. The independent boundary values are interpreted as sources for dual operators O{sup {+-}} and we argue that, apart from the possibility of entanglement, there exists a coupling between the degrees of freedom living at each boundary. The AdS{sub 1+1} geometry is also discussed in view of its similar boundary structure. Based on the analysis, we propose a very simple geometric criterion to distinguish coupling from entanglement effects among two sets of degrees of freedom associated with each of the disconnected parts of the boundary.
Self-dual warped AdS3 black holes
NASA Astrophysics Data System (ADS)
Chen, Bin; Ning, Bo
2010-12-01
We study a new class of solutions of three-dimensional topological massive gravity. These solutions can be taken as nonextremal black holes, with their extremal counterparts being discrete quotients of spacelike warped AdS3 along the U(1)L isometry. We study the thermodynamics of these black holes and show that the first law is satisfied. We also show that for consistent boundary conditions, the asymptotic symmetry generators form only one copy of the Virasoro algebra with central charge cL=(4νℓ)/(G(ν2+3)), with which the Cardy formula reproduces the black hole entropy. We compute the real-time correlators of scalar perturbations and find a perfect match with the dual conformal field theory (CFT) predictions. Our study provides a novel example of warped AdS/CFT correspondence: the self-dual warped AdS3 black hole is dual to a CFT with nonvanishing left central charge. Moreover, our investigation suggests that the quantum topological massive gravity asymptotic to the same spacelike warped AdS3 in different consistent ways may be dual to different two-dimensional CFTs.
Age-Related Changes in 1/f Neural Electrophysiological Noise
Kramer, Mark A.; Case, John; Lepage, Kyle Q.; Tempesta, Zechari R.; Knight, Robert T.; Gazzaley, Adam
2015-01-01
Aging is associated with performance decrements across multiple cognitive domains. The neural noise hypothesis, a dominant view of the basis of this decline, posits that aging is accompanied by an increase in spontaneous, noisy baseline neural activity. Here we analyze data from two different groups of human subjects: intracranial electrocorticography from 15 participants over a 38 year age range (15–53 years) and scalp EEG data from healthy younger (20–30 years) and older (60–70 years) adults to test the neural noise hypothesis from a 1/f noise perspective. Many natural phenomena, including electrophysiology, are characterized by 1/f noise. The defining characteristic of 1/f is that the power of the signal frequency content decreases rapidly as a function of the frequency (f) itself. The slope of this decay, the noise exponent (χ), is often <−1 for electrophysiological data and has been shown to approach white noise (defined as χ = 0) with increasing task difficulty. We observed, in both electrophysiological datasets, that aging is associated with a flatter (more noisy) 1/f power spectral density, even at rest, and that visual cortical 1/f noise statistically mediates age-related impairments in visual working memory. These results provide electrophysiological support for the neural noise hypothesis of aging. SIGNIFICANCE STATEMENT Understanding the neurobiological origins of age-related cognitive decline is of critical scientific, medical, and public health importance, especially considering the rapid aging of the world's population. We find, in two separate human studies, that 1/f electrophysiological noise increases with aging. In addition, we observe that this age-related 1/f noise statistically mediates age-related working memory decline. These results significantly add to this understanding and contextualize a long-standing problem in cognition by encapsulating age-related cognitive decline within a neurocomputational model of 1/f noise
White light velocity interferometer
Erskine, David J.
1997-01-01
The invention is a technique that allows the use of broadband and incoherent illumination. Although denoted white light velocimetry, this principle can be applied to any wave phenomenon. For the first time, powerful, compact or inexpensive sources can be used for remote target velocimetry. These include flash and arc lamps, light from detonations, pulsed lasers, chirped frequency lasers, and lasers operating simultaneously in several wavelengths. The technique is demonstrated with white light from an incandescent source to measure a target moving at 16 m/s.
White light velocity interferometer
Erskine, D.J.
1997-06-24
The invention is a technique that allows the use of broadband and incoherent illumination. Although denoted white light velocimetry, this principle can be applied to any wave phenomenon. For the first time, powerful, compact or inexpensive sources can be used for remote target velocimetry. These include flash and arc lamps, light from detonations, pulsed lasers, chirped frequency lasers, and lasers operating simultaneously in several wavelengths. The technique is demonstrated with white light from an incandescent source to measure a target moving at 16 m/s. 41 figs.
White light velocity interferometer
Erskine, David J.
1999-01-01
The invention is a technique that allows the use of broadband and incoherent illumination. Although denoted white light velocimetry, this principle can be applied to any wave phenomenon. For the first time, powerful, compact or inexpensive sources can be used for remote target velocimetry. These include flash and arc lamps, light from detonations, pulsed lasers, chirped frequency lasers, and lasers operating simultaneously in several wavelengths. The technique is demonstrated with white light from an incandescent source to measure a target moving at 16 m/s.
White cell design considerations
NASA Technical Reports Server (NTRS)
Hannan, Paul
1989-01-01
The White cell is a unit-magnification image relay system consisting of three noncoaxial spherical mirrors of equal curvature. The cell is used to provide a long optical path in a relatively small physical space. Multiple reflections are used, in a manner similar to a unstable laser resonator. A particular application is an optical delay line on the input of a streak camera to allow for the finite triggering time of the sweep start. This paper addresses the first- and third-order properties of the White cell. A displacement sensitivity analysis is included.
White light velocity interferometer
Erskine, D.J.
1999-06-08
The invention is a technique that allows the use of broadband and incoherent illumination. Although denoted white light velocimetry, this principle can be applied to any wave phenomenon. For the first time, powerful, compact or inexpensive sources can be used for remote target velocimetry. These include flash and arc lamps, light from detonations, pulsed lasers, chirped frequency lasers, and lasers operating simultaneously in several wavelengths. The technique is demonstrated with white light from an incandescent source to measure a target moving at 16 m/s. 41 figs.
White cell design considerations
NASA Astrophysics Data System (ADS)
Hannan, Paul
1989-11-01
The White cell is a unit-magnification image relay system consisting of three noncoaxial spherical mirrors of equal curvature. The cell is used to provide a long optical path in a relatively small physical space. Multiple reflections are used, in a manner similar to a unstable laser resonator. A particular application is an optical delay line on the input of a streak camera to allow for the finite triggering time of the sweep start. This paper addresses the first- and third-order properties of the White cell. A displacement sensitivity analysis is included.
Noise-induced pattern formation in a semiconductor nanostructure.
Stegemann, G; Balanov, A G; Schöll, E
2005-01-01
We investigate the influence of noise upon the dynamics of the current density distribution in a model of a semiconductor nanostructure, namely, a double barrier resonant tunneling diode. We fix the parameters of the device below the Hopf bifurcation, where the only stable state of the system is a spatially inhomogeneous "filamentary" steady state. We show that the addition of weak Gaussian white noise to the system gives rise to spatially inhomogeneous oscillations that can be quite coherent. As the noise intensity grows, the oscillations tend to become more and more spatially homogeneous, while simultaneously the temporal correlation of the oscillations decreases. Thus, while on one hand noise destroys temporal coherence, on the other hand it enhances the spatial coherence of the current density pattern. PMID:15697712
Hysteretic behavior of spin-crossover noise driven system
NASA Astrophysics Data System (ADS)
Gudyma, Iurii; Maksymov, Artur; Dimian, Mihai
2016-04-01
The influence of white Gaussian noise on hysteretic behavior of spin-crossover system is analyzed in the framework of stochastic Langevin dynamics. Various stochastic simulations are performed and several important properties of spin-transition in spin-crossover system driven by noise are reproduced. The numerical results are tested against the stationary probability function and the associated dynamic potential obtained from Fokker-Planck equation corresponding to spin-crossover Langevin dynamics. The dependence of light-induced optical hysteresis width and non-hysteretic transition curve slope on the noise intensity is illustrated. The role of low-spin and high-spin phase stabilities in the hysteretic behavior of noise-driven spin-crossover system is discussed.
Noise to lubricate qubit transfer in a spin network
NASA Astrophysics Data System (ADS)
Rafiee, Morteza; Lupo, Cosmo; Mancini, Stefano
2013-09-01
We consider quantum state transfer in a fully connected spin network, in which the results indicate that it is impossible to achieve high fidelity by free dynamics. However, the addition of certain kinds of noise can be helpful for this purpose. In fact, we introduce a model of Gaussian white noise affecting the spin-spin couplings (edges), except those linked to the input and output node, and prove that it enhances the fidelity of state transfer. The observed noise benefit is scale free as it applies to a quantum network of any size. The amount of the fidelity enhancement, depending on the noise strength as well as on the number of edges to which it is applied, can be so high as to take the fidelity close to one.
Image signal-to-noise ratio estimation using adaptive slope nearest-neighbourhood model.
Sim, K S; Teh, V
2015-12-01
A new technique based on nearest neighbourhood method is proposed. In this paper, considering the noise as Gaussian additive white noise, new technique single-image-based estimator is proposed. The performance of this new technique such as adaptive slope nearest neighbourhood is compared with three of the existing method which are original nearest neighbourhood (simple method), first-order interpolation method and shape-preserving piecewise cubic hermite autoregressive moving average. In a few cases involving images with different brightness and edges, this adaptive slope nearest neighbourhood is found to deliver an optimum solution for signal-to-noise ratio estimation problems. For different values of noise variance, the adaptive slope nearest neighbourhood has highest accuracy and less percentage estimation error. Being more robust with white noise, the new proposed technique estimator has efficiency that is significantly greater than those of the three methods. PMID:26292081
Effect of harmonic noise on a Brownian particle in a ratchet periodic potential
NASA Astrophysics Data System (ADS)
Zhou, Z. R.; Bai, L.; Shu, C. Z.; Nie, L. R.
2012-08-01
A Brownian particle in a ratchet periodic potential driven by harmonic noise, which is produced through a RLC oscillation circuit with Gaussian white noise, is investigated. The mean velocity and stationary probability distribution function (SPDF) of the system are obtained by means of numerical simulations. We also used the power spectrum of the harmonic noise, the peak position and semi-height width of which can be changed by modulating the driving oscillation circuit's parameters, to analyse contributions of characteristics of the power spectrum to the mean velocity. The results indicate that: (i) appropriate peak position and semi-height width of the harmonic noise's power spectrum can maximise the particle's mean velocity; (ii) the SPDF undergoes a state transition from monostability → bistability → tristability → monostability as the Gaussian white noise intensity is increased, and the other parameters of the driving oscillation circuit can also modify the system's state.
The noise behavior of silicon JFET transistors from room temperature down to 80K
NASA Astrophysics Data System (ADS)
Arnaboldi, C.; Boella, Giuliano; Panzeri, E.; Pessina, Gianluigi
2004-05-01
We have designed and built a very simple and efficient instrument that allows performing very accurate noise measurements of transistors at any biasing conditions, from room temperature down to cryogenic temperatures. This way a study has been possible of the noise behavior of Silicon JFETs for both the low frequency and the high frequency white noise. We explored a wide range of biasing conditions, starting from a power dissipation of only 2 μW up to 1 μW. Concerning white noise, evidence was found for the hot electron effect: it was negligible at small power dissipation and evident at large power. An experimental study was made of the low frequency noise. Its interpretation was developed based on the Generation Recombination theory. Many JFET samples were investigated, made with different technologies and having different gate area.
The effect of white non-stationary data on drifting signal detection
NASA Astrophysics Data System (ADS)
Flores, Mauricio; Stroeer, Alexander; Benacquista, Matthew
2011-10-01
We analyze the effect of non-stationary noise in the detection of drifting signals on unevenly sampled data. Initial frequency estimation is obtained from a Lomb-Scargle periodogram; which is followed by a global multi-start optimization, as working on a dense local Nelder-Mead iterator for parameter estimates. It has been found that a varying white noise level has no effect on the required relative signal-to-noise ratio for detection in the proposed algorithm, though affecting the absolute amplitude strength of the signal recording. Future work includes the addition of colored noise to this analysis.
Moudon, Anne Vernez
2009-08-01
The increasing interest in the potential effects of the community environment on individual health has so far excluded those of the acoustic environment. Yet it has long been recognized that continued exposure to elevated sound levels leads to noise-induced hearing loss. Noise is defined as unwanted sound that disturbs communication and speech intelligibility and interferes with sleep and mental tasks. Evidence points to numerous psychophysiologic outcomes of sustained exposure, including annoyance, reduced performance, aggressive behavior, and increased risk of myocardial infarction. Populated areas have experienced a steady rise in outdoor ambient noise resulting from increases in vehicular traffic and the ubiquitous use of machinery. In 2000, the WHO produced guidelines on occupational and community noise. The European Union mandated noise surveillance and abatement programs in cities. In the U.S., a few cities have revised their noise ordinances, but proactive noise reduction initiatives remain confined to new transportation infrastructure projects, thus leaving a large portion of the population at risk. Adding community noise to the public health agenda seems timely. Research needs to measure population-wide health effects of involuntary long-term exposure to ambient noise. Further study of the range and severity of co-morbidities will help refine the thresholds used to protect health. Policies and interventions, including health impact assessments, will require detailed data on actual ambient noise levels. Reducing noise at the source will likely require new road standards and lower allowable engine noise levels. Finally, noise abatement programs have an environmental justice dimension and need to target the at-risk population. PMID:19589452
Noise Characteristics of Superconducting Low-Inductance Undulatory Galvanometer
NASA Astrophysics Data System (ADS)
Liu, Wenshuo; Vavilov, Maxim; McDermott, Robert
2015-03-01
We describe theoretical studies of the Superconducting Low-Inductance Undulatory Galvanometer (SLUG), a non-reciprocal gain element based on Josephson junctions. We use both analytical and numerical methods to calculate various properties of the SLUG, including power gain, added noise and back-action in both the thermal and quantum regimes. We derive the distribution functions of the output signals in the presence of classical noise using the Fokker-Planck equation. We also discuss optimal matching of the SLUG amplifier so that gain, bandwidth and noise performance can meet the criteria of high-fidelity multiplexed qubit readout.
NASA Astrophysics Data System (ADS)
Razifar, Pasha; Engler, Henry; Blomquist, Gunnar; Ringheim, Anna; Estrada, Sergio; Långström, Bengt; Bergström, Mats
2009-06-01
This study introduces a new approach for the application of principal component analysis (PCA) with pre-normalization on dynamic positron emission tomography (PET) images. These images are generated using the amyloid imaging agent N-methyl [11C]2-(4'-methylaminophenyl)-6-hydroxy-benzothiazole ([11C]PIB) in patients with Alzheimer's disease (AD) and healthy volunteers (HVs). The aim was to introduce a method which, by using the whole dataset and without assuming a specific kinetic model, could generate images with improved signal-to-noise and detect, extract and illustrate changes in kinetic behavior between different regions in the brain. Eight AD patients and eight HVs from a previously published study with [11C]PIB were used. The approach includes enhancement of brain regions where the kinetics of the radiotracer are different from what is seen in the reference region, pre-normalization for differences in noise levels and removal of negative values. This is followed by slice-wise application of PCA (SW-PCA) on the dynamic PET images. Results obtained using the new approach were compared with results obtained using reference Patlak and summed images. The new approach generated images with good quality in which cortical brain regions in AD patients showed high uptake, compared to cerebellum and white matter. Cortical structures in HVs showed low uptake as expected and in good agreement with data generated using kinetic modeling. The introduced approach generated images with enhanced contrast and improved signal-to-noise ratio (SNR) and discrimination power (DP) compared to summed images and parametric images. This method is expected to be an important clinical tool in the diagnosis and differential diagnosis of dementia.
NASA Technical Reports Server (NTRS)
Hellman, R. P.
1985-01-01
A large scale laboratory investigation of loudness, annoyance, and noisiness produced by single-tone-noise complexes was undertaken to establish a broader data base for quanitification and prediction of perceived annoyance of sounds containing tonal components. Loudness, annoyance, and noisiness were distinguished as separate, distinct, attributes of sound. Three different spectral patterns of broadband noise with and without added tones were studied: broadband-flat, low-pass, and high-pass. Judgments were obtained by absolute magnitude estimation supplement by loudness matching. The data were examined and evaluated to determine the potential effects of (1) the overall sound pressure level (SPL) of the noise-tone complex, (2) tone SPL, (3) noise SPL, (4) tone-to-noise ratio, (5) the frequency of the added tone, (6) noise spectral shape, and (7) subjective attribute judged on absolute magnitude of annoyance. Results showed that, in contrast to noisiness, loudness and annoyance growth behavior depends on the relationship between the frequency of the added tone and the spectral shape of the noise. The close correspondence between the frequency of the added tone and the spectral shape of the noise. The close correspondence between loundness and annoyance suggests that, to better understand perceived annoyance of sound mixtures, it is necessary to relate the results to basic auditory mechanisms governing loudness and masking.
NASA Astrophysics Data System (ADS)
Beristain, Sergio
2001-05-01
Mexico City is known to be the largest city in the world, inhabited by some 20 percent of the national population, so noise pollution is not strange to it, particularly in view of the fact that industry is not concentrated, but rather spread throughout the city. The international airport also lies within the city limits, in the midst of residential areas. The heavy traffic during rush hours in the morning and in the evening and the activities of the populace, together with special events, produce a noise problem that is difficult to assess and to solve. Nevertheless, with educational programs begun several years ago and noise campaigns planned for the near future, in addition to existing regulations, the problem is not completely out of control. This paper presents a discussion of the general noise problem and describes how authorities and institutions are dealing with it.
Airframe noise prediction evaluation
NASA Technical Reports Server (NTRS)
Yamamoto, Kingo J.; Donelson, Michael J.; Huang, Shumei C.; Joshi, Mahendra C.
1995-01-01
The objective of this study is to evaluate the accuracy and adequacy of current airframe noise prediction methods using available airframe noise measurements from tests of a narrow body transport (DC-9) and a wide body transport (DC-10) in addition to scale model test data. General features of the airframe noise from these aircraft and models are outlined. The results of the assessment of two airframe prediction methods, Fink's and Munson's methods, against flight test data of these aircraft and scale model wind tunnel test data are presented. These methods were extensively evaluated against measured data from several configurations including clean, slat deployed, landing gear-deployed, flap deployed, and landing configurations of both DC-9 and DC-10. They were also assessed against a limited number of configurations of scale models. The evaluation was conducted in terms of overall sound pressure level (OASPL), tone corrected perceived noise level (PNLT), and one-third-octave band sound pressure level (SPL).
Noise-induced transitions in a generalized Verhulst model with a reflecting boundary
NASA Astrophysics Data System (ADS)
Lumi, N.; Rekker, A.; Ainsaar, A.; Mankin, R.
2013-10-01
The dynamics of a population growth model with generalized Verhulst self-regulation driven by a multiplicative three-level Markovian noise (trichotomous noise) as well as by a time-dependent deterministic stimulus is considered. In the white noise limit, the exact formulae for the conditional probability density of the population size and for the first passage time distribution are derived separately for both the reflecting and absorbing boundary conditions at the carrying capacity. In the case of multiplicative trichotomous noise, using the reflecting boundary condition, an exact analytical solution for the stationary probability distribution is found. It is established that a variation of noise parameters, such as correlation time, amplitude, and kurtosis, can cause noise-induced phase transitions. The dependence of the critical noise characteristic, which marks a transition between different phases, on other system parameters is analysed.
The method of narrow-band audio classification based on universal noise background model
NASA Astrophysics Data System (ADS)
Rui, Rui; Bao, Chang-chun
2013-03-01
Audio classification is the basis of content-based audio analysis and retrieval. The conventional classification methods mainly depend on feature extraction of audio clip, which certainly increase the time requirement for classification. An approach for classifying the narrow-band audio stream based on feature extraction of audio frame-level is presented in this paper. The audio signals are divided into speech, instrumental music, song with accompaniment and noise using the Gaussian mixture model (GMM). In order to satisfy the demand of actual environment changing, a universal noise background model (UNBM) for white noise, street noise, factory noise and car interior noise is built. In addition, three feature schemes are considered to optimize feature selection. The experimental results show that the proposed algorithm achieves a high accuracy for audio classification, especially under each noise background we used and keep the classification time less than one second.
NASA Technical Reports Server (NTRS)
Henderson, Brenda
2012-01-01
The presentation highlights jet-noise research conducted in the Subsonic Fixed Wing, Supersonics, and Environmentally Responsible Aviation Projects in the Fundamental Aeronautics Program at NASA. The research efforts discussed include NASA's updated Aircraft NOise Prediction Program (ANOPP2), acoustic-analogy-based prediction tools, jet-surface-interaction studies, plasma-actuator investigations, N+2 Supersonics Validation studies, rectangular-jet experiments, twin-jet experiments, and Hybrid Wind Body (HWB) activities.
Cerami, V.J.
1996-03-01
The purpose of this article is to define how the selection of HVAC equipment and layout impact the achievable noise criteria (NC) levels in occupied spaces. It will focus on the design of HVAC systems that employ floor-by-floor air handling/air conditioning units and their acoustical ramifications. This is of increasing importance since tenants require incorporation of noise limits in lease agreements.
NASA Technical Reports Server (NTRS)
1986-01-01
A former NASA employee who discovered a kind of plastic that soaked up energy, dampened vibrations, and was a good noise abatement material, founded a company to market noise deadening adhesives, sheets, panels and enclosures. Known as SMART products, they are 75-80% lighter than ordinary soundproofing material and have demonstrated a high degree of effectiveness. The company, Varian Associates, makes enclosures for high voltage terminals and other electronic system components, and easily transportable audiometric test booths.
Television noise reduction device
NASA Technical Reports Server (NTRS)
Gordon, B. L.; Stamps, J. C. (Inventor)
1975-01-01
A noise reduction system that divides the color video signal into its luminance and chrominance components is reported. The luminance component of a given frame is summed with the luminance component of at least one preceding frame which was stored on a disc recorder. The summation is carried out so as to achieve a signal amplitude equivalent to that of the original signal. The averaged luminance signal is then recombined with the chrominance signal to achieve a noise-reduced television signal.
Warped AdS3/dipole-CFT duality
NASA Astrophysics Data System (ADS)
Song, Wei; Strominger, Andrew
2012-05-01
String theory contains solutions with {{SL}}( {{2},{R}} ){{R}} × {{U}}{( {1} )_L} -invariant warped AdS3 (WAdS3) factors arising as continuous deformations of ordinary AdS3 factors. We propose that some of these are holographically dual to the IR limits of nonlocal dipole-deformed 2D D-brane gauge theories, referred to as "dipole CFTs". Neither the bulk nor boundary theories are currently well-understood, and consequences of the proposed duality for both sides is investigated. The bulk entropy-area law suggests that dipole CFTs have (at large N) a high-energy density of states which does not depend on the deformation parameter. Putting the boundary theory on a spatial circle leads to closed timelike curves in the bulk, suggesting a relation of the latter to dipole-type nonlocality.
New boundary conditions for AdS3
NASA Astrophysics Data System (ADS)
Compère, Geoffrey; Song, Wei; Strominger, Andrew
2013-05-01
New chiral boundary conditions are found for quantum gravity with matter on AdS3. The associated asymptotic symmetry group is generated by a single right-moving U(1) Kac-Moody-Virasoro algebra with {c_R}={3ℓ}/2G . The Kac-Moody zero mode generates global left-moving translations and equals, for a BTZ black hole, the sum of the total mass and spin. The level is positive about the global vacuum and negative in the black hole sector, corresponding to ergosphere formation. Realizations arising in Chern-Simons gravity and string theory are analyzed. The new boundary conditions are shown to naturally arise for warped AdS3 in the limit that the warp parameter is taken to zero.
Observing quantum gravity in asymptotically AdS space
NASA Astrophysics Data System (ADS)
Emelyanov, Slava
2015-12-01
The question is studied of whether an observer can discover quantum gravity in the semiclassical regime. It is shown that it is indeed possible to probe a certain quantum gravity effect by employing an appropriately designed detector. The effect is related to the possibility of having topologically inequivalent geometries in the path-integral approach at the same time. A conformal field theory (CFT) state which is expected to describe the eternal anti-de Sitter (AdS) black hole in the large-N limit is discussed. It is argued under certain assumptions that the black hole boundary should be merely a patch of the entire AdS boundary. This leads then to a conclusion that that CFT state is the ordinary CFT vacuum restricted to that patch. If existent, the bulk CFT operators can behave as the ordinary semiclassical quantum field theory in the large-N limit in the weak sense.
Semiclassical Virasoro blocks from AdS3 gravity
NASA Astrophysics Data System (ADS)
Hijano, Eliot; Kraus, Per; Perlmutter, Eric; Snively, River
2015-12-01
We present a unified framework for the holographic computation of Virasoro conformal blocks at large central charge. In particular, we provide bulk constructions that correctly reproduce all semiclassical Virasoro blocks that are known explicitly from conformal field theory computations. The results revolve around the use of geodesic Witten diagrams, recently introduced in [1], evaluated in locally AdS3 geometries generated by backreaction of heavy operators. We also provide an alternative computation of the heavy-light semiclassical block — in which two external operators become parametrically heavy — as a certain scattering process involving higher spin gauge fields in AdS3; this approach highlights the chiral nature of Virasoro blocks. These techniques may be systematically extended to compute corrections to these blocks and to interpolate amongst the different semiclassical regimes.
NASA Technical Reports Server (NTRS)
Zorumski, W. E.
1983-01-01
Analytic propeller noise prediction involves a sequence of computations culminating in the application of acoustic equations. The prediction sequence currently used by NASA in its ANOPP (aircraft noise prediction) program is described. The elements of the sequence are called program modules. The first group of modules analyzes the propeller geometry, the aerodynamics, including both potential and boundary layer flow, the propeller performance, and the surface loading distribution. This group of modules is based entirely on aerodynamic strip theory. The next group of modules deals with the actual noise prediction, based on data from the first group. Deterministic predictions of periodic thickness and loading noise are made using Farassat's time-domain methods. Broadband noise is predicted by the semi-empirical Schlinker-Amiet method. Near-field predictions of fuselage surface pressures include the effects of boundary layer refraction and (for a cylinder) scattering. Far-field predictions include atmospheric and ground effects. Experimental data from subsonic and transonic propellers are compared and NASA's future direction is propeller noise technology development are indicated.
NASA Technical Reports Server (NTRS)
2002-01-01
At bottom center of this true-color Moderate Resolution Imaging Spectroradiometer (MODIS) image from April 13, 2001, the White Sea in western Russia is becoming free of ice in its southern extent. Meanwhile, the blue-green waters along the coast of the peninsula jutting out into the Barents Sea to the northeast could be due to a phytoplankton bloom.
ERIC Educational Resources Information Center
Widmar, Marge
1985-01-01
A secondary teacher describes how she has her students use liquid white enamel. With the enameling process, students can create lasting, exciting artwork. They can exercise an understanding of design and color while learning the value of careful, sustained craft skills. (RM)
Alday-Maldacena Duality and AdS Plateau Problem
NASA Astrophysics Data System (ADS)
Morozov, A.
A short summary of approximate approach to the study of minimal surfaces in AdS, based on solving Nambu-Goto equations iteratively. Today, after partial denunciation of the BDS conjecture, this looks like the only constructive approach to understanding the ways of its possible modification and thus to saving the Alday-Maldacena duality. Numerous open technical problems are explicitly formulated throughout the text.
Optimal application of Morrison's iterative noise removal for deconvolution. Appendices
NASA Technical Reports Server (NTRS)
Ioup, George E.; Ioup, Juliette W.
1987-01-01
Morrison's iterative method of noise removal, or Morrison's smoothing, is applied in a simulation to noise-added data sets of various noise levels to determine its optimum use. Morrison's smoothing is applied for noise removal alone, and for noise removal prior to deconvolution. For the latter, an accurate method is analyzed to provide confidence in the optimization. The method consists of convolving the data with an inverse filter calculated by taking the inverse discrete Fourier transform of the reciprocal of the transform of the response of the system. Various length filters are calculated for the narrow and wide Gaussian response functions used. Deconvolution of non-noisy data is performed, and the error in each deconvolution calculated. Plots are produced of error versus filter length; and from these plots the most accurate length filters determined. The statistical methodologies employed in the optimizations of Morrison's method are similar. A typical peak-type input is selected and convolved with the two response functions to produce the data sets to be analyzed. Both constant and ordinate-dependent Gaussian distributed noise is added to the data, where the noise levels of the data are characterized by their signal-to-noise ratios. The error measures employed in the optimizations are the L1 and L2 norms. Results of the optimizations for both Gaussians, both noise types, and both norms include figures of optimum iteration number and error improvement versus signal-to-noise ratio, and tables of results. The statistical variation of all quantities considered is also given.
NASA Technical Reports Server (NTRS)
2002-01-01
Editor's Note: The caption below, published on May 10, 2001, is incorrect. According to Masha Vorontsova, director of the International Fund for Animal Welfare in Moscow, the situation with the seal pups in the White Sea is normal. There is no disaster and there never was. For more details, refer to the article entitled 'No Danger' on the New Scientist home page. The Earth Observatory regrets the earlier errant report. Original Caption According to the Russian Polar Research Institute for Fisheries and Oceanography, between 250,000 and 300,000 Greenland seal pups face death by starvation over the next two months due to a cruel trick by mother nature. The seals, most of them less than two months old, are trapped on ice sheets that remain locked in the White Sea, located near Archangel in Northern Russia. Typically, during the spring thaw the ice sheets break up and flow with the currents northward into the Barents Sea, the seals' spring feeding grounds. The seal pups hitch a ride on the ice floes, living on their own individual stores of fat until they arrive in the Barents Sea. Their mothers departed for the Barents Sea weeks ago. In a normal year, the seal pups' trip from the White Sea out to the Barents takes about six weeks and the seals have adapted to rely upon this mechanism of mother nature. During their yearly migration, the mother seals usually stay with their pups and feed them until their pelts turn from white to grey--a sign that the pups are mature enough to swim and feed themselves. Unfortunately, this year unusually strong northerly winds created a bottleneck of ice near the mouth of the white sea, thus blocking the flow of ice and trapping the pups. These true-color images of the White Sea were acquired by the Moderate-resolution Imaging Spectroradiometer (MODIS), flying aboard NASA's Terra spacecraft. This image, taken May 2, 2000 that there is usually much less ice in the White Sea this time of year as most of it is typically en route to the
Watanabe, Ryo; Ogawa, Masato; Mituzono, Hiroki; Aoki, Takahiro; Hayano, Mizuho; Watanabe, Yuka
2010-08-20
In optimizing exposures, it is very important to evaluate the impact of image noise on image quality. To realize this, there is a need to evaluate how much image noise will make the subject disease invisible. But generally it is very difficult to shoot images of different quality in a clinical examination. Thus, a method to create a noise addition image by adding the image noise to raw data has been reported. However, this approach requires a special system, so it is difficult to implement in many facilities. We have invented a method to easily create a noise addition image by using the water phantom and image add-subtract software that accompanies the device. To create a noise addition image, first we made a noise image by subtracting the water phantom with different SD. A noise addition image was then created by adding the noise image to the original image. By using this method, a simulation image with intergraded SD can be created from the original. Moreover, the noise frequency component of the created noise addition image is as same as the real image. Thus, the relationship of image quality to SD in the clinical image can be evaluated. Although this method is an easy method of LDSI creation on image data, a noise addition image can be easily created by using image addition and subtraction software and water phantom, and this can be implemented in many facilities. PMID:20953102
On information loss in AdS3/CFT2
NASA Astrophysics Data System (ADS)
Fitzpatrick, A. Liam; Kaplan, Jared; Li, Daliang; Wang, Junpu
2016-05-01
We discuss information loss from black hole physics in AdS3, focusing on two sharp signatures infecting CFT2 correlators at large central charge c: `forbidden singularities' arising from Euclidean-time periodicity due to the effective Hawking temperature, and late-time exponential decay in the Lorentzian region. We study an infinite class of examples where forbidden singularities can be resolved by non-perturbative effects at finite c, and we show that the resolution has certain universal features that also apply in the general case. Analytically continuing to the Lorentzian regime, we find that the non-perturbative effects that resolve forbidden singularities qualitatively change the behavior of correlators at times t ˜ S BH , the black hole entropy. This may resolve the exponential decay of correlators at late times in black hole backgrounds. By Borel resumming the 1 /c expansion of exact examples, we explicitly identify `information-restoring' effects from heavy states that should correspond to classical solutions in AdS3. Our results suggest a line of inquiry towards a more precise formulation of the gravitational path integral in AdS3.
Supersymmetric giant graviton solutions in AdS3
NASA Astrophysics Data System (ADS)
Mandal, Gautam; Raju, Suvrat; Smedbäck, Mikael
2008-02-01
We parametrize all classical probe brane configurations that preserve four supersymmetries in (a) the extremal D1-D5 geometry, (b) the extremal D1-D5-P geometry, (c) the smooth D1-D5 solutions proposed by Lunin and Mathur, and (d) global AdS3×S3×T4/K3. These configurations consist of D1 branes, D5 branes, and bound states of D5 and D1 branes with the property that a particular Killing vector is tangent to the brane world volume at each point. We show that the supersymmetric sector of the D5-brane world volume theory may be analyzed in an effective 1+1 dimensional framework that places it on the same footing as D1 branes. In global AdS and the corresponding Lunin-Mathur solution, the solutions we describe are “bound” to the center of AdS for generic parameters and cannot escape to infinity. We show that these probes only exist on the submanifold of moduli space where the background BNS field and theta angle vanish. We quantize these probes in the near-horizon region of the extremal D1-D5 geometry and obtain the theory of long strings discussed by Seiberg and Witten.
Tackling gravity wave confusion noise with template optimizers
NASA Astrophysics Data System (ADS)
Stroeer, Alexander; Benacquista, Matthew
2012-06-01
The Mock LISA Data Challenge 4.0 simulated the joint two-year recording of gravitational wave signals from mergers of spinning black holes, extreme mass ratio inspirals, Galactic white dwarf binaries, bursts from cosmic strings, and a stochastic background—all over LISA instrument noise. We analysed this data using a global multi-start box and bound optimization scheme, incorporating multi-dimensional Nelder Mead simplex 2 optimization. Our scheme identified 2658 binaries. Of these, 2246 were found to systematically decompose the power in a strong spinning black hole merger into a "white dwarf binary transform". The remaining 416 binaries were identified with a false alarm rate of ~ 23%.
NASA Astrophysics Data System (ADS)
Kepler, S. O.
2014-10-01
White dwarfs are the evolutionary endpoint for nearly 95% of all stars born in our Galaxy, the final stages of evolution of all low- and intermediate mass stars, i.e., main sequence stars with masses below (8.5± 1.5) M_{odot}, depending on metallicity of the progenitor, mass loss and core overshoot. Massive white dwarfs are intrinsically rare objects, tand produce a gap in the determination of the initial vs. final mass relation at the high mass end (e.g. Weidemann 2000 A&A, 363, 647; Kalirai et al. 2008, ApJ, 676, 594; Williams, Bolte & Koester 2009, ApJ, 693, 355). Main sequences stars with higher masses will explode as SNII (Smartt S. 2009 ARA&A, 47, 63), but the limit does depend on the metallicity of the progenitor. Massive white dwarfs are probably SNIa progenitors through accretion or merger. They are rare, being the final product of massive stars (less common) and have smaller radius (less luminous). Kepler et al. 2007 (MNRAS, 375, 1315), Kleinman et al. 2013 (ApJS, 204, 5) estimate only 1-2% white dwarfs have masses above 1 M_{odot}. The final stages of evolution after helium burning are a race between core growth and loss of the H-rich envelope in a stellar wind. When the burning shell is exposed, the star rapidly cools and burning ceases, leaving a white dwarf. As they cool down, the magnetic field freezes in, ranging from a few kilogauss to a gigagauss. Peculiar type Ia SN 2006gz, SN 2007if, SN 2009dc, SN 2003fg suggest progenitors in the range 2.4-2.8 M_{odot}, and Das U. & Mukhopadhyay B. (2012, Phys. Rev. D, 86, 042001) estimate that the Chandrasekhar limit increases to 2.3-2.6 M_{odot} for extremely high magnetic field stars, but differential rotation induced by accretion could also increase it, according to Hachisu I. et al. 2012 (ApJ, 744, 69). García-Berro et al. 2012, ApJ, 749, 25, for example, proposes double degenerate mergers are the progenitors of high-field magnetic white dwarfs. We propose magnetic fields enhance the line broadening in
Role of the nature of noise in the thermal conductance of mechanical systems.
Morgado, Welles A M; Duarte Queirós, Sílvio M
2012-10-01
Focusing on a paradigmatic small system consisting of two coupled damped oscillators, we survey the role of the Lévy-Itô nature of the noise in the thermal conductance. For white noises, we prove that the Lévy-Itô composition (Lebesgue measure) of the noise is irrelevant for the thermal conductance of a nonequilibrium linearly coupled chain, which signals the independence of mechanical and thermodynamical properties. In contrast, for the nonlinearly coupled case, the two types of properties mix and the explicit definition of the noise plays a central role. PMID:23214530
Several specific and nonspecific responses of the human and animal body to ship noise
NASA Technical Reports Server (NTRS)
Markaryan, S. S.; Volkov, S. S.; Sysoyev, A. B.
1983-01-01
The effect of noise on cargo boats on a long voyage differs considerably from the effect of noise in factories and in service industries. The peculiarities of the effect of round-the-clock noises at sea at 55 to 85 decibels, typical for cargo boats, were studied in white rats in the laboratory and aboard ship (each of the experiments lasted three months) and in young naval cadets and experienced seamen on voyages lasting one, two, and three months. The findings helped to derive health standards for maximum admissible noise level at sea.
Bosten, J. M.; Beer, R. D.; MacLeod, D. I. A.
2015-01-01
To shed light on the perceptual basis of the color white, we measured settings of unique white in a dark surround. We find that settings reliably show more variability in an oblique (blue-yellow) direction in color space than along the cardinal axes of the cone-opponent mechanisms. This is against the idea that white perception arises at the null point of the cone-opponent mechanisms, but one alternative possibility is that it occurs through calibration to the visual environment. We found that the locus of maximum variability in settings lies close to the locus of natural daylights, suggesting that variability may result from uncertainty about the color of the illuminant. We tested this by manipulating uncertainty. First, we altered the extent to which the task was absolute (requiring knowledge of the illumination) or relative. We found no clear effect of this factor on the reduction in sensitivity in the blue-yellow direction. Second, we provided a white surround as a cue to the illumination or left the surround dark. Sensitivity was selectively worse in the blue-yellow direction when the surround was black than when it was white. Our results can be functionally related to the statistics of natural images, where a greater blue-yellow dispersion is characteristic of both reflectances (where anisotropy is weak) and illuminants (where it is very pronounced). Mechanistically, the results could suggest a neural signal responsive to deviations from the blue-yellow locus or an adaptively matched range of contrast response functions for signals that encode different directions in color space. PMID:26641948
NASA Technical Reports Server (NTRS)
1998-01-01
These images show a newly created large-scale storm on Jupiter, known as a white oval. This storm is the size of Earth and was observed by the Hubble Space Telescope and the Galileo spacecraft's photopolarimeter radiometer in July 1998. The color composite image shown in the upper panel was taken by the Hubble Space Telescope's Wide-Field/Planetary Camera on July 16, 1998. The image in the lower panel was created from data taken by Galileo's photopolarimeter experiment on July 20, 1998, and it is sensitive to Jupiter's atmospheric temperatures.
The white oval is believed to be the result of a merger between two smaller, 50-year-old ovals sometime in February, 1998. This white oval may be the strongest storm in the solar system outside Jupiter's 200-year old Great Red Spot. The Galileo spacecraft's measurements of the temperature field show that the feature is distinctly colder than its surroundings, as would be expected from rapidly upwelling winds in the center of the feature, and this temperature difference is at least as large as that of the two former white ovals. The temperature measurements also show that the feature to the left of the new white oval, once distinctly warmer that its surroundings (as expected of downdrafts) has cooled off.
More images and information on the Galileo mission are available on the Internet at http://galileo.jpl.nasa.gov .
The Hubble Space Telescope image is courtesy of Amy Simon and Reta Beebe, New Mexico State University, and the Space Telescope Science Institute.
The Jet Propulsion Laboratory, Pasadena, CA manages the Galileo mission for NASA's Office of Space Science, Washington, DC.
I Also Said, "White Racial Identity Influences White Researchers."
ERIC Educational Resources Information Center
Helms, Janet E.
1993-01-01
Responds to earlier article by Mio and Iwamasa (1992) on white researchers investigating ethnic-minority populations and other cross-cultural issues. Briefly summarizes theory of white racial identity development as conceptualized by Helms and suggests some ways in which white scholar's stages might influence her or his scholarship endeavors.…
Exploring Whiteness: A Study of Self Labels for White Americans.
ERIC Educational Resources Information Center
Martin, Judith N.; Krizek, Robert L.; Nakayama, Thomas K.; Bradford, Lisa
1996-01-01
Examines the preferences and meanings of labels for White Americans as discursively defined expressions of identity, after preliminary revelations of resistance by Whites to self-labeling was seen. Surveys 371 White undergraduate students, rating seven labels regarding preference and discussing feelings about self-labeling. Reveals that the most…
50 CFR 660.373 - Pacific whiting (whiting) fishery management.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 50 CFR Part 660, subpart G, a vessel that is 75 feet or less LOA that harvests whiting and, in... affecting § 660.373, see the List of CFR Sections Affected, which appears in the Finding Aids section of the... 50 Wildlife and Fisheries 9 2010-10-01 2010-10-01 false Pacific whiting (whiting)...
Complicating Whiteness: Identifications of Veteran White Teachers in Multicultural Settings
ERIC Educational Resources Information Center
Miele, Anthony
2013-01-01
A scrupulous search of whiteness literatures in relation to multicultural education reveals a preponderance of scholarship noting White privilege and race evasiveness. Given contrasting scholarship arguing White identity as complicated, multifarious, and bound to social and historical context, concurrent with a dearth of scholarship that examines…
White Institutional Presence: The Impact of Whiteness on Campus Climate
ERIC Educational Resources Information Center
Gusa, Diane Lynn
2010-01-01
In this conceptual paper, Diane Gusa highlights the salience of race by scrutinizing the culture of Whiteness within predominately White institutions of higher education. Using existing research in higher education retention literature, Gusa examines embedded White cultural ideology in the cultural practices, traditions, and perceptions of…
White Students Reflecting on Whiteness: Understanding Emotional Responses
Todd, Nathan R.; Spanierman, Lisa B.; Aber, Mark S.
2010-01-01
In the present investigation, the authors explored potential predictors of White students’ general emotional responses after they reflected on their Whiteness in a semi-structured interview (n = 88) or written reflection (n = 187). Specifically, the authors examined how color-blindness (i.e., awareness of White privilege) and racial affect (i.e., White empathy, White guilt, and White fear), assessed before the interview or written reflection, may predict positive and negative emotional responses, assessed immediately following the interview or written reflection. Furthermore, the authors considered whether affective costs of racism to Whites moderated the association between racial color-blindness and general positive and negative emotional responses of White students. Findings indicated that affective costs of racism moderated associations between racial color-blindness and general emotional responses. Specifically, White fear moderated associations for the written reflection group whereas White empathy moderated an association in the interview. White guilt did not moderate, but instead directly predicted a negative emotional response in the written reflection group. Findings suggest that the interaction between racial color-blindness and racial affect is important when predicting students’ emotional responses to reflecting on their Whiteness. Implications for educators and administrators are discussed. PMID:20657811
Aircraft noise - Different ways to monitor the noise load
NASA Astrophysics Data System (ADS)
Bekebrede, G.
Measures taken by the Dutch government to reduce aircraft-noise disturbances including the establishment of noise zones in which subsequent building is forbidden, while already existing homes are provided with noise insulation are discussed. To ensure accurate noise monitoring, the following recommendations were made by the NLR: (1) regular noise load calculations, utilizing aircraft noise and performance data, the air traffic mix, and flight route information; (2) flight track monitoring, performed by a computerized Flight Track and Aircraft Noise Monitoring System which identifies all aircraft deviating from the prescribed track (i.e., flying over congested regions); and (3) actual noise monitoring, to guard the noise level at a specific noise-sensitive area in close proximity to the airfield, such as a hospital.
Noise-induced synchronization in spin torque nano oscillators
NASA Astrophysics Data System (ADS)
Nakada, K.; Yakata, S.; Kimura, T.
2012-04-01
We have numerically studied the stochastic magnetization dynamics of a pair of spin torque nano oscillators (STNOs) under noisy current injection by using the Landau-Lifshitz-Gilbert-Slonczewski (LLGS) equation with a macro-spin approximation. Common noisy current injection into both STNOs is found to induce the phase synchronizations, where two STNOs show in-phase or anti-phase locked precession depending on the sequences of Gaussian white noise. The noise-induced synchronization could be a possible application for controlling the output power in the array of the STNOs.
Robust shot-noise measurement for continuous-variable quantum key distribution
NASA Astrophysics Data System (ADS)
Kunz-Jacques, Sébastien; Jouguet, Paul
2015-02-01
We study a practical method to measure the shot noise in real time in continuous-variable quantum key distribution systems. The amount of secret key that can be extracted from the raw statistics depends strongly on this quantity since it affects in particular the computation of the excess noise (i.e., noise in excess of the shot noise) added by an eavesdropper on the quantum channel. Some powerful quantum hacking attacks relying on faking the estimated value of the shot noise to hide an intercept and resend strategy were proposed. Here, we provide experimental evidence that our method can defeat the saturation attack and the wavelength attack.
Advanced techniques for noise source identification on a large generator unit
Williams, R.G.D. ); Yang, S.J. )
1993-03-01
Power station acoustic noise assessment, which has experienced increased environmental awareness and subsequently more stringent legislation for a number of years, has received and added stimulus due to the recent advent of powerful measurement and analysis techniques including sound intensity and coherence. These experimental techniques are explained and results, for a generator unit, illustrate their value in providing a unique, correlated insight into noise problems. This includes noise quantification, full explanation of site sound pressure level in terms of the various influences and major noise source identification. These techniques are widely applicable and an invaluable aid to any industrial noise problem.
White matter is found in the deeper tissues of the brain (subcortical). It contains nerve fibers (axons), which are ... or covering called myelin. Myelin gives the white matter its color. It also protects the nerve fibers ...
ERIC Educational Resources Information Center
Rossell, Christine
1978-01-01
In order to determine the effect of school desegregation on White enrollment, the policy impact from two long-term demographic trends among middle class Whites--suburbanization and the declining birth rate--must be isolated. (Author/MC)
Wolff-Parkinson-White syndrome
Wolff-Parkinson-White syndrome is a condition in which there is an extra electrical pathway of the heart. The ... to periods of rapid heart rate ( tachycardia ). Wolff-Parkinson-White syndrome is one of the most common ...
Adaptive whitening of ambient ocean noise with narrowband signal preservation.
Hollmann, Luke J; Stevenson, Robert L
2016-06-01
Passive underwater listening devices are often deployed to listen for narrowband signals of interest in time-varying background ocean noise. Such tonals are generated mechanically by ships, submarines, and machines, or acoustically by aquatic wildlife. Quantization of the sensor data for storage or low bit-rate transmission adds white noise which can overwhelm weak narrowband signals if the background noise is sufficiently colored. Whitening the background noise prior to quantization can reduce the detrimental effects, but the whitening process must preserve any tonals in the signal for maximum effectiveness. Existing adaptive whitening techniques make no effort to avoid suppressing tonals in the whitening process, while existing spectral separation methods fail to whiten background noise. The proposed methods perform adaptive whitening of background ambient noise while preserving narrowband tones at their original signal-to-noise ratios. The proposed methods are shown to outperform combinations of existing partial solutions both subjectively and by evaluating the objective criteria introduced. The stability and convergence properties of the proposed algorithms match or surpass those of existing well-known adaptive algorithms. PMID:27369136
Coloured noise effects on deformation parameters of permanent GPS networks
NASA Astrophysics Data System (ADS)
Razeghi, S. M.; Amiri-Simkooei, A. R.; Sharifi, M. A.
2016-03-01
Deformation analysis in general and strain analysis in particular using permanent GPS networks require proper analysis of time-series in which all functional effects are taken into consideration and all stochastic effects are captured using an appropriate noise model. This contribution addresses both issues when considering the strain parameters of a GPS network. Estimates of spatial correlation, time correlated noise, and multivariate power spectrum for daily position time-series of the Southern California Integrated GPS Network (SCIGN) stations collected between 1996 and 2011 are obtained. Significant signals with periods of 13.63 d and those related to the GPS draconitic year are identified in these time-series. We aim to assess the effect of a realistic noise model of the series on the uncertainties of the strain parameters including displacements, normal and shear strains, and rotations. For the SCIGN network considered, the following results are highlighted. Contrary to the common belief, the uncertainties of the displacements parameters become smaller when taking a realistic noise model into account. This however was not the case when assessing the noise characteristics of the normal and shear strain, and rotation parameters. The uncertainties increase nearly by a factor of two, in agreement to what is expected. Some of the significant deformation parameters of the white noise model become less significant in case of the realistic noise model.
Effects of noise exposure and task demand on cardiovascular function.
Wu, T N; Huang, J T; Chou, P F; Chang, P Y
1988-01-01
Cardiovascular effects under various noise-exposure and task-demand conditions were studied among 40 senior highschool students. The subjects consisted of 20 males and 20 females with a mean age of 16.7 +/- 0.7 years. All subjects had equivalent abacus performance ratings. Each subject was tested with a random sequence of six sessions. The time limit set for each session was 33 min. Six experimental sessions were constructed by a random combination of noise exposure (60, 85 or 90 dB (A] white noise) and task demand (task presence or task absence) variables. Blood pressure measures were taken at the beginning and ending phases of each session. A task-demand variable was defined as a conjoint of mental arithmetic (3 min) and abacus arithmetic (30 min). The results from the present study show that the effect of noise exposure on task performance is remarkable. Only noise exposure tended to influence the performance of male students in abacus arithmetic. The effect of task demand on blood pressure was higher than that of noise exposure. No interaction effect (noise exposure x task demand) on blood pressure, was found via analyses of within-subjects two-way ANOVA. PMID:3346087
Bending AdS waves with new massive gravity
NASA Astrophysics Data System (ADS)
Ayón-Beato, Eloy; Giribet, Gaston; Hassaïne, Mokhtar
2009-05-01
We study AdS-waves in the three-dimensional new theory of massive gravity recently proposed by Bergshoeff, Hohm, and Townsend. The general configuration of this type is derived and shown to exhibit different branches, with different asymptotic behaviors. In particular, for the special fine tuning m2 = ±1/(2l2), solutions with logarithmic fall-off arise, while in the range m2 > -1/(2l2), spacetimes with Schrödinger isometry group are admitted as solutions. Spacetimes that are asymptotically AdS3, both for the Brown-Henneaux and for the weakened boundary conditions, are also identified. The metric function that characterizes the profile of the AdS-wave behaves as a massive excitation on the spacetime, with an effective mass given by meff2 = m2-1/(2l2). For the critical value m2 = -1/(2l2), the value of the effective mass precisely saturates the Breitenlohner-Freedman bound for the AdS3 space where the wave is propagating on. The analogies with the AdS-wave solutions of topologically massive gravity are also discussed. Besides, we consider the coupling of both massive deformations to Einstein gravity and find the exact configurations for the complete theory, discussing all the different branches exhaustively. One of the effects of introducing the Chern-Simons gravitational term is that of breaking the degeneracy in the effective mass of the generic modes of pure New Massive Gravity, producing a fine structure due to parity violation. Another effect is that the zoo of exact logarithmic specimens becomes considerably enlarged.
Fluctuation and noise propagation in phenotypic transition cascades of clonal populations
NASA Astrophysics Data System (ADS)
Pei, Qi-ming; Zhan, Xuan; Yang, Li-jian; Shen, Jian; Wang, Li-fang; Qui, Kang; Liu, Ting; Kirunda, J. B.; Yousif, A. A. M.; Li, An-bang; Jia, Ya
2015-07-01
Quantitative modeling of fluctuations of each phenotype is a crucial step towards a fundamental understanding of noise propagation through various phenotypic transition cascades. The theoretical formulas for noise propagation in various phenotypic transition cascades are derived by using the linear noise approximation of master equation and the logarithmic gain. By virtue of the theoretical formulas, we study the noise propagation in bidirectional and unidirectional phenotypic transition cascades, respectively. It is found that noise propagation in these two phenotypic transition cascades evidently differs: In the bidirectional cascade, a systemic random environment is provided by a correlated global component. The total noise of each phenotype is mainly determined by the intrinsic noise and the transmitted noise from other phenotypes. The intrinsic noise enlarged by interconversion through an added part shows a novel noise propagation mechanism. However, in the unidirectional cascade, the random environment of each downstream phenotype is provided by upstream phenotypes. The total noise of each downstream phenotype is mainly determined by the transmitted noises from upstream phenotypes. The intrinsic noise and the conversion noise can propagate in both bidirectional and unidirectional phenotypic transition cascades.
Fluctuation and noise propagation in phenotypic transition cascades of clonal populations.
Pei, Qi-ming; Zhan, Xuan; Yang, Li-jian; Shen, Jian; Wang, Li-fang; Qui, Kang; Liu, Ting; Kirunda, J B; Yousif, A A M; Li, An-bang; Jia, Ya
2015-07-01
Quantitative modeling of fluctuations of each phenotype is a crucial step towards a fundamental understanding of noise propagation through various phenotypic transition cascades. The theoretical formulas for noise propagation in various phenotypic transition cascades are derived by using the linear noise approximation of master equation and the logarithmic gain. By virtue of the theoretical formulas, we study the noise propagation in bidirectional and unidirectional phenotypic transition cascades, respectively. It is found that noise propagation in these two phenotypic transition cascades evidently differs: In the bidirectional cascade, a systemic random environment is provided by a correlated global component. The total noise of each phenotype is mainly determined by the intrinsic noise and the transmitted noise from other phenotypes. The intrinsic noise enlarged by interconversion through an added part shows a novel noise propagation mechanism. However, in the unidirectional cascade, the random environment of each downstream phenotype is provided by upstream phenotypes. The total noise of each downstream phenotype is mainly determined by the transmitted noises from upstream phenotypes. The intrinsic noise and the conversion noise can propagate in both bidirectional and unidirectional phenotypic transition cascades. PMID:26274216
Making noise comfortable for people
Leventhall, H.G.; Wise, S.S.
1998-10-01
Typical HVAC noise may produce an uncomfortable environment, leading to the associated problems of general dissatisfaction and reduced productivity. It is not sufficient to have good thermal, lighting, and air cleanliness conditions if the noise is disturbing. In this paper, noise comfort is considered, with special emphasis on the developing criteria for low-frequency noise.
Fundamentals of noise control engineering
Miller, R.K.; Thumann, A.
1986-01-01
This reference provides coverage of noise control engineering. Techniques are presented in precise terms for both acoustical design of new facilities and cost-effective noise reduction in existing facilities. Examples illustrate how to design acoustical enclosures, apply silencing equipment, estimate equipment noise and meet noise criteria for communities.
Disturbance caused by aircraft noise
NASA Technical Reports Server (NTRS)
Josse, R.
1980-01-01
Noise pollution caused by the presence of airfields adjacent to residential areas is studied. Noise effects on the sleep of residents near airports and the degree of the residents noise tolerance are evaluated. What aircraft noises are annoying and to what extent the annoyance varies with sound level are discussed.
Reducing environmental noise impacts: A USAREUR noise management program handbook
NASA Astrophysics Data System (ADS)
Feather, Timothy D.; Shekell, Ted K.
1991-06-01
Noise pollution is a major environmental problem faced by the U.S. Army in Europe. Noise-related complaints from German citizens can escalate into intense political issues in German communities. This in turn hampers efficient operation of military training and often times threatens the Army's mission. In order to remedy these problems, USAREUR has developed a noise management program. A successful noise management program will limit the impact of unavoidable noise on the populace. This report, a component of the noise management program, is a reference document for noise management planning. It contains guidelines and rules-of-thumb for noise management. This document contains procedures which operation and training level personnel can understand and apply in their day to day noise management planning. Noise mitigation tips are given. Basic technical information that will aid in understanding noise mitigation is provided along with noise management through land use planning. Noise management for specific components of the military community, (airfields, base operations, training areas, and housing and recreation areas) are addressed. The nature of noise generated, means of noise abatement at the source, path, and receiver (both physical and organizational/public relations methods), and a case study example are described.
Brodsky, Stanley J.; de Teramond, Guy F.; /Costa Rica U. /SLAC
2007-02-21
The AdS/CFT correspondence between string theory in AdS space and conformal .eld theories in physical spacetime leads to an analytic, semi-classical model for strongly-coupled QCD which has scale invariance and dimensional counting at short distances and color confinement at large distances. Although QCD is not conformally invariant, one can nevertheless use the mathematical representation of the conformal group in five-dimensional anti-de Sitter space to construct a first approximation to the theory. The AdS/CFT correspondence also provides insights into the inherently non-perturbative aspects of QCD, such as the orbital and radial spectra of hadrons and the form of hadronic wavefunctions. In particular, we show that there is an exact correspondence between the fifth-dimensional coordinate of AdS space z and a specific impact variable {zeta} which measures the separation of the quark and gluonic constituents within the hadron in ordinary space-time. This connection allows one to compute the analytic form of the frame-independent light-front wavefunctions, the fundamental entities which encode hadron properties and allow the computation of decay constants, form factors, and other exclusive scattering amplitudes. New relativistic lightfront equations in ordinary space-time are found which reproduce the results obtained using the 5-dimensional theory. The effective light-front equations possess remarkable algebraic structures and integrability properties. Since they are complete and orthonormal, the AdS/CFT model wavefunctions can also be used as a basis for the diagonalization of the full light-front QCD Hamiltonian, thus systematically improving the AdS/CFT approximation.
NASA Astrophysics Data System (ADS)
Birnie, Claire; Chambers, Kit; Angus, Doug; Stork, Anna
2016-05-01
Noise is a persistent feature in seismic data and so poses challenges in extracting increased accuracy in seismic images and physical interpretation of the subsurface. In this paper, we analyse passive seismic data from the Aquistore carbon capture and storage pilot project permanent seismic array to characterise, classify and model seismic noise. We perform noise analysis for a three month subset of passive seismic data from the array and provide conclusive evidence that the noise field is not white, stationary, or Gaussian; characteristics commonly yet erroneously assumed in most conventional noise models. We introduce a novel noise modelling method that provides a significantly more accurate characterisation of real seismic noise compared to conventional methods, which is quantified using the Mann-Whitney-White statistical test. This method is based on a statistical covariance modelling approach created through the modelling of individual noise signals. The identification of individual noise signals, broadly classified as stationary, pseudo-stationary and non-stationary, provides a basis on which to build an appropriate spatial and temporal noise field model. Furthermore, we have developed a workflow to incorporate realistic noise models within synthetic seismic datasets providing an opportunity to test and analyse detection and imaging algorithms under realistic noise conditions.
NASA Astrophysics Data System (ADS)
Birnie, Claire; Chambers, Kit; Angus, Doug; Stork, Anna L.
2016-08-01
Noise is a persistent feature in seismic data and so poses challenges in extracting increased accuracy in seismic images and physical interpretation of the subsurface. In this paper, we analyse passive seismic data from the Aquistore carbon capture and storage pilot project permanent seismic array to characterise, classify and model seismic noise. We perform noise analysis for a three-month subset of passive seismic data from the array and provide conclusive evidence that the noise field is not white, stationary, or Gaussian; characteristics commonly yet erroneously assumed in most conventional noise models. We introduce a novel noise modelling method that provides a significantly more accurate characterisation of real seismic noise compared to conventional methods, which is quantified using the Mann-Whitney-White statistical test. This method is based on a statistical covariance modelling approach created through the modelling of individual noise signals. The identification of individual noise signals, broadly classified as stationary, pseudo-stationary and non-stationary, provides a basis on which to build an appropriate spatial and temporal noise field model. Furthermore, we have developed a workflow to incorporate realistic noise models within synthetic seismic data sets providing an opportunity to test and analyse detection and imaging algorithms under realistic noise conditions.
Noise and Directionality in a SLUG Microwave Amplifier for Superconducting Qubit Readout
NASA Astrophysics Data System (ADS)
Thorbeck, Ted; Zhu, Shaojiang; Leonard, Edward; McDermott, Robert
2015-03-01
Josephson parametric amplifiers have been widely used for low-noise dispersive readout of superconducting qubits. However, multiple stages of cryogenic isolation are required to protect the qubit from the strong microwave pump tone and from the high temperature noise of downstream gain stages. We want to remove circulators and isolators from the measurement chain because they are bulky, expensive, and magnetic. The SLUG (superconducting low-inductance undulatory galvanometer) is a microwave amplifier that achieves broad bandwidth, low added noise, and high gain. In this talk we discuss measurements of the SLUG added noise (less than photon system added noise). We describe theoretical and experimental investigations of the SLUG reverse isolation. Finally, we discuss backaction of the SLUG on the measured qubit, and we present strategies for the suppression of SLUG backaction.
Helicopter rotor trailing edge noise
NASA Technical Reports Server (NTRS)
Schlinker, R. H.; Amiet, R. K.
1981-01-01
An experimental and theoretical study was conducted to assess the importance of trailing edge noise as a helicopter main rotor broadband noise source. The noise mechanism was isolated by testing a rotor blade segment in an open jet acoustic wind tunnel at close to full scale Reynolds numbers. Boundary layer data and acoustic data were used to develop scaling laws and assess a first principles trailing edge noise theory. Conclusions from the isolated blade study were analytically transformed to the rotating frame coordinate system to develop a generalized rotor noise prediction. Trailing edge noise was found to contribute significantly to the total helicopter noise spectrum at high frequencies.
Helicopter rotor trailing edge noise
NASA Astrophysics Data System (ADS)
Schlinker, R. H.; Amiet, R. K.
1981-10-01
An experimental and theoretical study was conducted to assess the importance of trailing edge noise as a helicopter main rotor broadband noise source. The noise mechanism was isolated by testing a rotor blade segment in an open jet acoustic wind tunnel at close to full scale Reynolds numbers. Boundary layer data and acoustic data were used to develop scaling laws and assess a first principles trailing edge noise theory. Conclusions from the isolated blade study were analytically transformed to the rotating frame coordinate system to develop a generalized rotor noise prediction. Trailing edge noise was found to contribute significantly to the total helicopter noise spectrum at high frequencies.
Asteroseismology of White Dwarf Stars
NASA Technical Reports Server (NTRS)
Hansen, Carl J.
1997-01-01
The primary purpose of this investigation has been to study various aspects of multimode pulsations in variable white dwarfs. In particular, nonlinear interactions among pulsation modes in white dwarfs (and, to some extent, in other variable stars), analysis of recent observations where such interactions are important, and preliminary work on the effects of crystallization in cool white dwarfs are reported.
Divkovic, Gabriela; Jenne, Juergen W.
2005-03-28
We used fresh egg white and polyacrylamide to create a transparent tissue mimicking phantom. Heating of phantoms by HIFU leads to egg white protein denaturation and creation of visible white lesions. We measured the acoustical and thermal properties and investigated the possibility to use such phantoms to study the lesion formation during the HIFU therapy.
ERIC Educational Resources Information Center
Smith, Barbara A.
2014-01-01
This study examines White university students' understanding of race. Based in the scholarship on higher education and diversity, and framed in Critical Race Theory (CRT), this study explores the racial awareness of White students. This study contributes to the literature on the racial experience of Whites and an understanding of how White…
Ultraviolet asymptotics and singular dynamics of AdS perturbations
NASA Astrophysics Data System (ADS)
Craps, Ben; Evnin, Oleg; Vanhoof, Joris
2015-10-01
Important insights into the dynamics of spherically symmetric AdS-scalar field perturbations can be obtained by considering a simplified time-averaged theory accurately describing perturbations of amplitude ɛ on time-scales of order 1/ ɛ 2. The coefficients of the time-averaged equations are complicated expressions in terms of the AdS scalar field mode functions, which are in turn related to the Jacobi polynomials. We analyze the behavior of these coefficients for high frequency modes. The resulting asymptotics can be useful for understanding the properties of the finite-time singularity in solutions of the time-averaged theory recently reported in the literature. We highlight, in particular, the gauge dependence of this asymptotics, with respect to the two most commonly used gauges. The harsher growth of the coefficients at large frequencies in higher-dimensional AdS suggests strengthening of turbulent instabilities in higher dimensions. In the course of our derivations, we arrive at recursive relations for the coefficients of the time-averaged theory that are likely to be useful for evaluating them more efficiently in numerical simulations.
NASA Astrophysics Data System (ADS)
Lewis, K.
2011-02-01
The photometric transit timing technique was proposed by Szabó et al. (2006) as a method for discovering moons of transiting extrasolar planets. In the preliminary analysis of this technique, it was assumed that the noise in the transit lightcurve was well described by uncorrelated white noise. However, this assumption is not necessarily realistic. To determine the effect of using more realistic lightcurves, transit timing uncertainties are calculated for the case of white noise, measured solar photometric noise and measured solar photometric noise that has been filtered. It is found that for light curves contaminated with realistic photometric noise, the transit timing uncertainties are dramatically increased (and thus moon detection reduced). In addition, we find that while filtering reduced this problem, it did not negate it.
Aircraft noise synthesis system
NASA Technical Reports Server (NTRS)
Mccurdy, David A.; Grandle, Robert E.
1987-01-01
A second-generation Aircraft Noise Synthesis System has been developed to provide test stimuli for studies of community annoyance to aircraft flyover noise. The computer-based system generates realistic, time-varying, audio simulations of aircraft flyover noise at a specified observer location on the ground. The synthesis takes into account the time-varying aircraft position relative to the observer; specified reference spectra consisting of broadband, narrowband, and pure-tone components; directivity patterns; Doppler shift; atmospheric effects; and ground effects. These parameters can be specified and controlled in such a way as to generate stimuli in which certain noise characteristics, such as duration or tonal content, are independently varied, while the remaining characteristics, such as broadband content, are held constant. The system can also generate simulations of the predicted noise characteristics of future aircraft. A description of the synthesis system and a discussion of the algorithms and methods used to generate the simulations are provided. An appendix describing the input data and providing user instructions is also included.
Effect of luminance noise on the object frequencies mediating letter identification
Hall, Cierra; Wang, Shu; Bhagat, Reema; McAnany, J. Jason
2014-01-01
Purpose: To determine if the same object frequency information mediates letter contrast threshold in the presence and absence of additive luminance noise (i.e., “noise-invariant processing”) for letters of different size. Methods: Contrast thresholds for Sloan letters ranging in size from 0.9 to 1.8 log MAR were obtained from three visually normal observers under three paradigms: (1) high- and low-pass Gaussian filtered letters were presented against a uniform adapting field; (2) high- and low-pass Gaussian filtered letters were presented in additive white luminance noise; and (3) unfiltered letters were presented in high- and low-pass Gaussian filtered luminance noise. A range of high- and low-pass filter cutoffs were used to limit selectively the object frequency content of the letters (paradigms 1 and 2) or noise (paradigm 3). The object frequencies mediating letter identification under each paradigm were derived from plots of log contrast threshold vs. log filter cutoff frequency. Results: The object frequency band mediating letter identification systematically shifted to higher frequencies with increasing log MAR letter size under all three paradigms. However, the relationship between object frequency and letter size depended on the paradigm under which the measurements were obtained. The largest difference in object frequency among the paradigms was observed at 1.8 log MAR, where the addition of white noise nearly doubled the center frequency of the band of object frequencies mediating letter identification, compared to measurements made in the absence of noise. Conclusion: Noise can affect the object frequency band mediating letter contrast threshold, particularly for large letters, an effect that is likely due to strong masking of the low frequency letter components by low frequency noise checks. This finding indicates that noise-invariant processing cannot necessarily be assumed for large letters presented in white noise. PMID:25071637
Event-related potentials for better speech perception in noise by cochlear implant users.
Soshi, Takahiro; Hisanaga, Satoko; Kodama, Narihiro; Kanekama, Yori; Samejima, Yasuhiro; Yumoto, Eiji; Sekiyama, Kaoru
2014-10-01
Speech perception in noise is still difficult for cochlear implant (CI) users even with many years of CI use. This study aimed to investigate neurophysiological and behavioral foundations for CI-dependent speech perception in noise. Seventeen post-lingual CI users and twelve age-matched normal hearing adults participated in two experiments. In Experiment 1, CI users' auditory-only word perception in noise (white noise, two-talker babble; at 10 dB SNR) degraded by about 15%, compared to that in quiet (48% accuracy). CI users' auditory-visual word perception was generally better than auditory-only perception. Auditory-visual word perception was degraded under information masking by the two-talker noise (69% accuracy), compared to that in quiet (77%). Such degradation was not observed for white noise (77%), suggesting that the overcoming of information masking is an important issue for CI users' speech perception improvement. In Experiment 2, event-related cortical potentials were recorded in an auditory oddball task in quiet and noise (white noise only). Similarly to the normal hearing participants, the CI users showed the mismatch negative response (MNR) to deviant speech in quiet, indicating automatic speech detection. In noise, the MNR disappeared in the CI users, and only the good CI performers (above 66% accuracy) showed P300 (P3) like the normal hearing participants. P3 amplitude in the CI users was positively correlated with speech perception scores. These results suggest that CI users' difficulty in speech perception in noise is associated with the lack of automatic speech detection indicated by the MNR. Successful performance in noise may begin with attended auditory processing indicated by P3. PMID:25158303
Noise: a forgotten environmental problem
Kloos, J.B.
1980-01-01
Highway traffic noise is a serious problem for communities. The traffic noise can be lessened by source controls. The impact of the noise can be mitigated with barriers built along heavily traveled roads. However, the most promising long-range solution is noise compatible land use planning at the local level. Low cost methods are available to prevent noise problems from ever occuring. The Federal Highway Administration is attempting to encourage local officials to use these methods.
Rotor noise in maneuvering flight
NASA Astrophysics Data System (ADS)
Chen, Hsuan-Nien
The objective of this research is to understand the physics of rotor noise in the maneuvering flight. To achieve this objective, an integrated noise prediction system is constructed, namely GenHel-MFW-PSU-WOPWOP. This noise prediction system includes a flight simulation code, a high fidelity free vortex-wake code, and a rotor acoustic prediction code. By using this noise prediction system, rotor maneuver noise characteristics are identified. Unlike periodic rotor noise, a longer duration is required to describe rotor maneuver noise. The variation of helicopter motion, blade motion and blade airloads are all influencing the noise prediction results in both noise level and directivity in the maneuvering flight. In this research, two types of rotor maneuver noise are identified, steady maneuver noise and transient maneuver noise. In the steady maneuver, rotor noise corresponds to a steady maneuver condition, which has nearly steady properties in flight dynamics and aerodynamics. Transient maneuver noise is the result of the transition between two steady maneuvers. In a transient maneuver, the helicopter experiences fluctuations in airload and helicopter angular rates, which lead to excess rotor noise. Even though the transient maneuver only exists for a fairly short period of time, the corresponding transient maneuver noise could be significant when compared to steady maneuver noise. The blade tip vortices also present complex behaviors in the transient maneuver condition. With stronger vortex circulation strength and the potential for vortex bundling, blade vortex-interaction (BVI) noise may increase significantly during a transient maneuver. In this research, it is shown that even with small pilot controls, significant BVI noise can be generated during a transient flight condition. Finally, through this research, the importance of transient maneuver noise is demonstrated and recognized.
NASA Technical Reports Server (NTRS)
2008-01-01
This image was acquired by NASA's Phoenix Mars Lander's Surface Stereo Imager on Sol 43, the 43rd Martian day after landing (July 8, 2008). This image shows the trench informally called 'Snow White.'
Two samples were delivered to the Wet Chemistry Laboratory, which is part of Phoenix's Microscopy, Electrochemistry, and Conductivity Analyzer (MECA). The first sample was taken from the surface area just left of the trench and informally named 'Rosy Red.' It was delivered to the Wet Chemistry Laboratory on Sol 30 (June 25, 2008). The second sample, informally named 'Sorceress,' was taken from the center of the 'Snow White' trench and delivered to the Wet Chemistry Laboratory on Sol 41 (July 6, 2008).
The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.
A Landing Gear Noise Reduction Study Based on Computational Simulations
NASA Technical Reports Server (NTRS)
Khorrami, Mehdi R.; Lockard, David P.
2006-01-01
Landing gear is one of the more prominent airframe noise sources. Techniques that diminish gear noise and suppress its radiation to the ground are highly desirable. Using a hybrid computational approach, this paper investigates the noise reduction potential of devices added to a simplified main landing gear model without small scale geometric details. The Ffowcs Williams and Hawkings equation is used to predict the noise at far-field observer locations from surface pressure data provided by unsteady CFD calculations. Because of the simplified nature of the model, most of the flow unsteadiness is restricted to low frequencies. The wheels, gear boxes, and oleo appear to be the primary sources of unsteadiness at these frequencies. The addition of fairings around the gear boxes and wheels, and the attachment of a splitter plate on the downstream side of the oleo significantly reduces the noise over a wide range of frequencies, but a dramatic increase in noise is observed at one frequency. The increased flow velocities, a consequence of the more streamlined bodies, appear to generate extra unsteadiness around other parts giving rise to the additional noise. Nonetheless, the calculations demonstrate the capability of the devices to improve overall landing gear noise.
NASA Astrophysics Data System (ADS)
Accomazzi, Alberto; Kurtz, M. J.; Henneken, E. A.; Grant, C. S.; Thompson, D.; Di Milia, G.; Luker, J.; Murray, S. S.
2013-01-01
The NASA Astrophysics Data System (ADS) has been working hard on updating its services and interfaces to better support our community's research needs. ADS Labs is a new interface built on the old tried-and-true ADS Abstract Databases, so all of ADS's content is available through it. In this presentation we highlight the new features that have been developed in ADS Labs over the last year: new recommendations, metrics, a citation tool and enhanced fulltext search. ADS Labs has long been providing article-level recommendations based on keyword similarity, co-readership and co-citation analysis of its corpus. We have now introduced personal recommendations, which provide a list of articles to be considered based on a individual user's readership history. A new metrics interface provides a summary of the basic impact indicators for a list of records. These include the total and normalized number of papers, citations, reads, and downloads. Also included are some of the popular indices such as the h, g and i10 index. The citation helper tool allows one to submit a set of records and obtain a list of top 10 papers which cite and/or are cited by papers in the original list (but which are not in it). The process closely resembles the network approach of establishing "friends of friends" via an analysis of the citation network. The full-text search service now covers more than 2.5 million documents, including all the major astronomy journals, as well as physics journals published by Springer, Elsevier, the American Physical Society, the American Geophysical Union, and all of the arXiv eprints. The full-text search interface interface allows users and librarians to dig deep and find words or phrases in the body of the indexed articles. ADS Labs is available at http://adslabs.org
NASA Astrophysics Data System (ADS)
Niesl, G.; Laudien, E.
1994-09-01
Compared to fixed wing aircraft, helicopter interior noise is higher, and subjectively more annoying. This is mainly due to discrete frequencies by the main transmission system, and also from other components like main and tail rotor, engines, or cooling fans. Up to now, mainly passive measures have been used for interior noise reduction. Despite intensive experimental and theoretical investigation to improve acoustic treatment, their weight penalties remain high especially in the low frequency range. Here, active noise control offers additional capacities without excessive weight efforts. Loud-speaker based systems are sufficiently well developed for implementing a prototype system in the helicopter. Two other principles are in development: active panel control which introduces mechanical actuators to excite the cabin walls, and active control of gearbox struts with actuators in the load path between gearbox and fuselage.
NASA Technical Reports Server (NTRS)
Groeneweg, J. F.; Rice, E. J.
1983-01-01
Turbofan noise generation and suppression in aircraft engines are reviewed. The chain of physical processes which connect unsteady flow interactions with fan blades to far field noise is addressed. Mechanism identification and description, duct propagation, radiation and acoustic suppression are discussed. The experimental technique of fan inflow static tests are discussed. Rotor blade surface pressure and wake velocity measurements aid in the determination of the types and strengths of the generation mechanisms. Approaches to predicting or measuring acoustic mode content, optimizing treatment impedance to maximize attenuation, translating impedance into porous wall structure and interpreting far field directivity patterns are illustrated by comparisons of analytical and experimental results. The interdependence of source and acoustic treatment design to minimize far field noise is emphasized. Area requiring further research are discussed and the relevance of aircraft turbofan results to quieting other turbomachinery installations is addressed.
Network structure controls noise
NASA Astrophysics Data System (ADS)
Das, Jayajit; Raychaudhuri, Subhadip
2004-03-01
Biochemical reactions often involve low copy number of reactant molecules. Bio-networks, however, control the intrinsic noise arising from the fluctuations of low copy number of reactant molecules quite efficiently to perform their job in a robust manner. Network structures may be very crucial in the effective modulation of fluctuation effects. We investigate the interplay between the network structure and the noise behavior in signal transduction networks using Stochastic simulations. Some of the recurrent modules in biological networks seem to be vital in noise control. We correlate the effect of those modules to the function of the global topology of the network. This may explain why certain class of modules are so ubiquitous in Bio-networks.
Peretti, Alessandro; Nataletti, Pietro; Bonfiglio, Paolo; di Bisceglie, Anita Pasqua
2013-01-01
The present research concerns the noise analysis of five vessels during navigation and fishing activities. In locations where staff operates, sound levels (produced substantially by the engine) were close to 90 dB(A); within the rest areas the noise is also quite significant. On the basis of working time, exposure levels ranged between 80 and 90 dB(A). In order to identify interventions able to reduce the risk, reverberation times, sound insulation of the different areas and the vibrations produced by the engine were measured on the same vessels docked in port. Noise level reduction as a result of sound absorptive treatments were estimated using an analytical model. PMID:24303698
NASA Astrophysics Data System (ADS)
Beckenbauer, Thomas
Road traffic is the most interfering noise source in developed countries. According to a publication of the European Union (EU) at the end of the twentieth century [1], about 40% of the population in 15 EU member states is exposed to road traffic noise at mean levels exceeding 55 dB(A). Nearly 80 million people, 20% of the population, are exposed to levels exceeding 65 dB(A) during daytime and more than 30% of the population is exposed to levels exceeding 55 dB(A) during night time. Such high noise levels cause health risks and social disorders (aggressiveness, protest, and helplessness), interference of communication and disturbance of sleep; the long- and short-term consequences cause adverse cardiovascular effects, detrimental hormonal responses (stress hormones), and possible disturbance of the human metabolism (nutrition) and the immune system. Even performance at work and school could be impaired.
The AdS central charge in string theory
NASA Astrophysics Data System (ADS)
Troost, Jan
2011-11-01
We evaluate the vacuum expectation value of the central charge operator in string theory in an AdS3 vacuum. Our calculation provides a rare non-zero one-point function on a spherical worldsheet. The evaluation involves the regularization both of a worldsheet ultraviolet divergence (associated to the infinite volume of the conformal Killing group), and a space-time infrared divergence (corresponding to the infinite volume of space-time). The two divergences conspire to give a finite result, which is the classical general relativity value for the central charge, corrected in bosonic string theory by an infinite series of tree level higher derivative terms.