Morales-López, R; Auclair, E; Van Immerseel, F; Ducatelle, R; García, F; Brufau, J
2010-06-01
1. Three experiments were carried out to study the effects of two experimental yeast cell wall (YCW) supplements, one from the yeast extract industry and the other from the brewery industry, added to maize or wheat based-diets, on performance and intestinal parameters of broiler chickens (Ross 308). 2. In the first and second experiments, a completely randomised block design with 4 experimental treatments was used: T-1) Negative control, no additives T-2) Positive control, avilamycin group (10 mg/kg feed), T-3) Yeast extract-YCW (500 mg/kg), and T-4) Brewery-YCW (500 mg/kg feed). There were 6 replicates of 20 (experiment 1) and 22 (experiment 2) chicks per treatment. 3. In experiment 1 (wheat based diets), yeast extract-YCW increased BW and daily feed intake (42 d). The effects were comparable to those of avilamycin. In experiment 2 (maize based diet), avilamycin, yeast extract-YCW and brewery-YCW treatments improved the feed conversion ratio with respect to the negative control group (0 to 14 d). 4. At 24 d, in both experiments, the ileal nutrient digestibility and ileal bacterial counts were not affected by any experimental treatment. In maize diets, lower intestinal viscosity was obtained with avilamycin, yeast extract-YCW and brewery-YCW than with the negative control. In wheat diets, yeast extract-YCW and brewery-YCW reduced intestinal viscosity. 5. A third experiment was conducted to study the effect of yeast extract-YCW on animal performance, intestinal mucosa morphology and intestinal viscosity. A 2 x 2 factorial arrangement of treatments was used; one factor was the dietary yeast extract-YCW supplementation (0 or 500 mg/kg feed) and the other the cereal in the diet (maize or wheat). 6. At 43 d, the heaviest BW was in chickens fed on yeast extract-YCW compared to those given the negative control. At 22 d, yeast extract-YCW increased villus height, mucus thickness and number of goblet cells with respect to negative control. 7. Results of these experiments suggest that supplementation of yeast extract-YCW to broiler chicken diets increased animal performance by favouring intestinal mucosal development.
Effects of alkylresorcinols on volume and structure of yeast-leavened bread.
Andersson, Annica Am; Landberg, Rikard; Söderman, Thomas; Hedkvist, Sofie; Katina, Kati; Juvonen, Riikka; Holopainen, Ulla; Lehtinen, Pekka; Aman, Per
2011-01-30
Alkylresorcinols (AR) are amphiphilic phenolic compounds found in high amounts in wheat, durum wheat and rye, with different homologue composition for each cereal. The effect of different amounts of added AR from these cereals on bread volume, height, porosity and microstructure was studied. Breads with added rye bran (with high levels of AR) or acetone-extracted rye bran (with low levels of AR) were also baked, as well as breads with finely milled forms of each of these brans. Breads with high amounts of added AR, irrespective of AR homologue composition, had a lower volume, a more compact structure and an adverse microstructure compared with breads with no or low levels of added AR. AR were also shown to inhibit the activity of baker's yeast. There was no difference in bread volume and porosity between bread baked with rye bran and acetone-extracted rye bran or with brans of different particle size. Irrespective of homologue composition, AR had a negative effect on wheat bread properties when added in high amounts as purified extracts from wheat, durum wheat and rye. Natural levels of AR in rye bran, however, did not affect the volume and porosity of yeast-leavened wheat breads. 2010 Society of Chemical Industry.
Vegemite Beer: yeast extract spreads as nutrient supplements to promote fermentation.
Kerr, Edward D; Schulz, Benjamin L
2016-01-01
Vegemite is an iconic Australian food spread made from spent brewers' yeast extract, which has been reported to be used as an ingredient in illegal home brewing. In this study, we tested the utility of Vegemite and the similar spread Marmite in promoting fermentation. We could not culture microorganisms from either Vegemite or Marmite, consistent with these food-grade spreads being essentially sterile. To test if the addition of Vegemite or Marmite could assist in fermentation when additional viable yeast was also present, solutions containing glucose and a range of concentrations of either Vegemite or Marmite were inoculated with brewers' yeast. No fermentation occurred in any condition without addition of extra brewer's yeast. Fermentation did not occur when yeast was inoculated into solutions containing only glucose, but progressed efficiently with when Vegemite or Marmite was also added. Gas Chromatography confirmed that ethanol was present at ∼3% v/v post-fermentation in all samples which contained glucose, Vegemite or Marmite, and brewers' yeast. Trace amounts of methanol were also detected. Mass spectrometry proteomics identified abundant intracellular yeast proteins and barley proteins in Vegemite and Marmite, and abundant secreted yeast proteins from actively growing yeast in those samples to which extra brewers' yeast had been added. We estimate that the real-world cost of home brewed "Vegemite Beer" would be very low. Our results show that Vegemite or other yeast extract spreads could provide cheap and readily available sources of nutrient supplementation to increase the efficiency of fermentation in home brewing or other settings.
NASA Technical Reports Server (NTRS)
Bilmes, B. I.; Kasymova, G. A.; Runov, V. I.; Karavayeva, N. N.
1980-01-01
Data are given of a comparative study of the growth and development as well as the characteristics of the biomass of the C. Lipolytica yeast according to the content of raw protein, protein, lipids, vitamins in the B group, and residual hydrocarbons during growth in media with de-aromatized gas-condensate FNZ as the carbon source with aqueous and alcohol extracts of S. acuminatus as the biostimulants. It is shown that the decoction and aqueous extract of green algae has the most intensive stimulating effect on the yeast growth. When a decoction of algae is added to the medium, the content of residual hydrocarbons in the biomass of C. lipolytica yeast is reduced by 4%; the quantity of protein, lipids, thamine and inositol with replacement of the yeast autolysate by the decoction of algae is altered little.
NASA Astrophysics Data System (ADS)
Barnhart, Elliott; Davis, Katherine; Varonka, Matthew; Orem, William; Fields, Matthew
2016-04-01
Coal bed methane (CBM) is a relatively clean source of energy but current CBM production techniques have not sustained long-term production or produced enough methane to remain economically practical with lower natural gas prices. Enhancement of the in situ microbial community that actively generates CBM with the addition of specific nutrients could potentially sustain development. CBM production more than doubled from native microbial populations from Powder River Basin (PRB) coal beds, when yeast extract and several individual components of yeast extract (proteins and amino acids) were added to laboratory microcosms. Microbial populations capable of hydrogenotrophic (hydrogen production/utilization) methanogenesis were detected in situ and under non-stimulated conditions. Stimulation with yeast extract caused a shift in the community to microorganisms capable of acetoclastic (acetate production/utilization) methanogenesis. Previous isotope analysis from CBM production wells indicated a similar microbial community shift as observed in stimulation experiments: hydrogenotrophic methanogenesis was found throughout the PRB, but acetoclastic methanogenesis dominated major recharge areas. In conjunction, a high proportion of cyanobacterial and algal SSU rRNA gene sequences were detected in a CBM well within a major recharge area, suggesting that these phototrophic organisms naturally stimulate methane production. In laboratory studies, adding phototrophic (algal) biomass stimulated CBM production by PRB microorganisms similarly to yeast extract (~40μg methane increase per gram of coal). Analysis of the British thermal unit (BTU) content of coal from long-term incubations indicated >99.5% of BTU content remained after CBM stimulation with either algae or yeast extract. Biomimicry of in situ algal CBM stimulation could lead to technologies that utilize coupled biological systems (photosynthesis and methane production) that sustainably enhance CBM production and generate algal biofuels while also sequestering carbon dioxide (CO2).
Impact of new ingredients obtained from brewer's spent yeast on bread characteristics.
Martins, Z E; Pinho, O; Ferreira, I M P L V O
2018-05-01
The impact of bread fortification with β-glucans and with proteins/proteolytic enzymes from brewers' spent yeast on physical characteristics was evaluated. β-Glucans extraction from spent yeast cell wall was optimized and the extract was incorporated on bread to obtain 2.02 g β-glucans/100 g flour, in order to comply with the European Food Safety Authority guidelines. Protein/proteolytic enzymes extract from spent yeast was added to bread at 60 U proteolytic activity/100 g flour. Both β-glucans rich and proteins/proteolytic enzymes extracts favoured browning of bread crust. However, breads with proteins/proteolytic enzymes addition presented lower specific volume, whereas the incorporation of β-glucans in bread lead to uniform pores that was also noticeble in terms of higher specific volume. Overall, the improvement of nutritional/health promoting properties is highlighted with β-glucan rich extract, not only due to bread β-glucan content but also for total dietary fibre content (39% increase). The improvement was less noticeable for proteins/proteolytic enzymes extract. Only a 6% increase in bread protein content was noted with the addition of this extract and higher protein content would most likely accentuate the negative impact on bread specific volume that in turn could impair consumer acceptance. Therefore, only β-glucan rich extract is a promising bread ingredient.
Krebs, H O; Hoffschulte, H K; Müller, M
1989-05-01
We demonstrate here the in vitro translocation of yeast acid phosphatase into rough endoplasmic reticulum. The precursor of the repressible acid phosphatase from Saccharomyces cerevisiae encoded by the PHO5 gene, was synthesized in a yeast lysate programmed with in vitro transcribed PHO5 mRNA. In the presence of yeast rough microsomes up to 16% of the acid phosphatase synthesized was found to be translocated into the microsomes, as judged by proteinase resistance, and fully core-glycosylated. The translocation efficiency however, decreased to 3% if yeast rough microsomes were added after synthesis of acid phosphatase had been terminated. When a wheat-germ extract was used for in vitro synthesis, the precursor of acid phosphatase was translocated into canine pancreatic rough microsomes and thereby core-glycosylated in a signal-recognition-particle-dependent manner. Replacing canine with yeast rough microsomes in the wheat-germ translation system, however, resulted in a significant decrease in the ability to translocate and glycosylate the precursor. Translocation and glycosylation were partially restored by a high-salt extract prepared from yeast ribosomes. The results presented here suggest that yeast-specific factors are needed to translocate and glycosylate acid phosphatase efficiently in vitro.
Conditions of activation of yeast plasma membrane ATPase.
Sychrová, H; Kotyk, A
1985-04-08
The in vivo activation of the H+-ATPase of baker's yeast plasma membrane found by Serrano in 1983 was demonstrated with D-glucose aerobically and anaerobically (as well as in a respiration-deficient mutant) and, after suitable induction, with maltose, trehalose, and galactose. The activated but not the control ATPase was sensitive to oligomycin. No activation was possible in a cell-free extract with added glucose. The ATPase was not activated in yeast protoplasts which may account for the absence of glucose-stimulated secondary active transports in these wall-less cells and provide support for a microscopic coupling between ATPase activity and these transports in yeast cells.
Preparation of cell-free splicing extracts from Saccharomyces cerevisiae.
Ares, Manuel
2013-10-01
Much of our understanding of the mechanism of splicing comes from the analysis of cell extracts able to carry out splicing complex formation and splicing reactions in vitro using exogenously added synthetic model pre-mRNA transcripts. This protocol describes the preparation of whole-cell extracts from the budding yeast Saccharomyces cerevisiae. These extracts can be used to dissect the biochemical steps of the splicing reaction and to determine the macromolecules, cofactors, and substrate features necessary for successful splicing.
Impact of Microorganisms on the Dynamics of Unsaturated Flow Within Fractures
NASA Astrophysics Data System (ADS)
Stoner, D. L.; Stedtfeld, R. D.; Tyler, T. L.; White, F. J.; McJunkin, T. R.
2002-12-01
Understanding the impact of microorganisms on fluid flow in groundwater and subsurface environments is of significance because of the importance of natural water resources, contaminant transport, and in situ bioprocesses such as mineral dissolution and recovery, enhanced oil recovery, and remediation. In this study, the impact of microorganisms and nutrient amendments on the behavior of water within a fracture system was evaluated using an experimental system comprised of limestone blocks and a groundwater isolate, {\\ it Sphingomonas} sp. Four blocks (25 cm x 6.6 cm x 5 cm) were configured to make a vertical fracture (50.2 x 5 x 0.07 cm) that was intersected by a horizontal fracture (13.4 x 5 x 0.1 cm). To monitor the behavior of water within the fracture, 5 optical sensors each consisting of a light emitting diode and photocell were installed external to the vertical fracture. Two were installed above the fracture intersection, two below and one at the intersection. The presence of fluid in the fracture was detected as a decrease in light transmission as the fluid passed by each detector. Drop interval (the period of time between succeeding drops at the same detector) and drop width (the period of time it took for a water drop or stream to pass by each detector) data were collected for each of the five detectors. Liquids were introduced via a single needle at the top of the fracture at a rate of 0.5 ml/min. Deionized water, which had been chemically equilibrated with the limestone rock, was the control medium to which 1) cells; 2) cells with 0.01% yeast extract; 3) cells with 0.1% yeast extract; and 4) cells with 0.1% yeast extract and 30 mM urea were added. For the equilibrated water, drop intervals and drop widths above the fracture intersection were ~1 s and <0.1 s, respectively. Drop intervals and drop widths at and below the intersection were ~100 s and ~10 s, respectively. Above the fracture intersection, the addition of cells or cells with 0.01% yeast extract had little effect on drop intervals and drop widths. At and below the intersection, however, drop intervals increased to ~500 s and drop widths to ~10 s. Later with the addition of 0.1% yeast extract or 0.1% yeast extract with urea, drop interval and drop width immediately increased at locations above the fracture intersection and within 24 hours, continuous streaming was observed. For the lower sensors, drop interval and drop width initially decreased, followed by continuous streaming the day after the 0.1% yeast extract and urea was added to the system. In conclusion, the dynamics of drop behavior in fracture systems is a complex process that is impacted by the presence of bacteria and nutrient amendments as well as the fracture configuration.
Effect of the bread-making process on zearalenone levels.
Heidari, Sara; Milani, Jafar; Nazari, Seyed Saman Seyed Jafar
2014-01-01
The effects of the bread-making process including fermentation with Saccharomyces cerevisiae and lactic acid bacteria (Lactobacillus casei, Lactobacillus rhamnosus, Lactobacillus acidophilus and Lactobacillus fermentum) and baking at 200°C on zearalenone (ZEA) levels were investigated. Standard solutions of ZEA were added to flour and then loaves of bread were prepared. Sourdough and three types of yeast including active dry yeast, instant dry yeast and compressed yeast were used for the fermentation of dough. ZEA levels in flour, dough and bread were determined by HPLC with fluorescence detection after extraction and clean-up on an immunoaffinity column. The highest reduction in levels of ZEA was found in the first fermentation (first proof), while the lowest reduction was observed in the baking stage. In addition, the results showed that compressed yeast had the maximum reduction potential on ZEA levels even at the baking stage.
Guadalupe, Zenaida; Palacios, Antonio; Ayestaran, Belén
2007-06-13
Different strategies were adopted to achieve increases in color stability in Tempranillo wines: (i) addition of maceration enzymes directly to the must, (ii) addition of commercial mannoproteins to the must, and (iii) inoculation of must with yeast overexpressed of mannoproteins. The addition of enzymes favored color extraction, and the wines obtained presented higher values of wine color, color intensity, bisulfite-stable color, and visually enhanced color intensity. The enzyme hydrolytic activity produced an increase in the acid polysaccharide content and polyphenol index and yielded to wines with more astringency, tannin, and length. Added mannoproteins had clearer effects on the analyzed parameters than yeast. Contrary to what may be thought, mannoproteins did not maintain the extracted polyphenols in colloidal dispersion and neither ensured color stability. These compounds clearly modified the gustative structure of the wines, enhancing the sweetness and roundness.
21 CFR 172.590 - Yeast-malt sprout extract.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Yeast-malt sprout extract. 172.590 Section 172.590... Substances § 172.590 Yeast-malt sprout extract. Yeast-malt sprout extract, as described in this section, may... produced by partial hydrolysis of yeast extract (derived from Saccharomyces cereviseae, Saccharomyces...
Inhibition of salmonella by cecal bacteria in media supplemented with lactate and succinate
USDA-ARS?s Scientific Manuscript database
Experiments were conducted to examine the ability of cecal cultures from broilers to inhibit growth of Salmonella Typhimurium in vitro. Cecal contents from commercial broilers were combined, and 0.1 ml of the cecal slurry was added to media containing (g/l), tryptose, 10; yeast extract, 5; sodium ch...
21 CFR 184.1983 - Bakers yeast extract.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Bakers yeast extract. 184.1983 Section 184.1983... GRAS § 184.1983 Bakers yeast extract. (a) Bakers yeast extract is the food ingredient resulting from concentration of the solubles of mechanically ruptured cells of a selected strain of yeast, Saccharomyces...
21 CFR 184.1983 - Bakers yeast extract.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Bakers yeast extract. 184.1983 Section 184.1983... Listing of Specific Substances Affirmed as GRAS § 184.1983 Bakers yeast extract. (a) Bakers yeast extract... a selected strain of yeast, Saccharomyces cerevisiae. It may be concentrated or dried. (b) The...
21 CFR 184.1983 - Bakers yeast extract.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Bakers yeast extract. 184.1983 Section 184.1983... Listing of Specific Substances Affirmed as GRAS § 184.1983 Bakers yeast extract. (a) Bakers yeast extract... a selected strain of yeast, Saccharomyces cerevisiae. It may be concentrated or dried. (b) The...
21 CFR 172.590 - Yeast-malt sprout extract.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Yeast-malt sprout extract. 172.590 Section 172.590... CONSUMPTION Flavoring Agents and Related Substances § 172.590 Yeast-malt sprout extract. Yeast-malt sprout... prescribed conditions: (a) The additive is produced by partial hydrolysis of yeast extract (derived from...
21 CFR 172.590 - Yeast-malt sprout extract.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Yeast-malt sprout extract. 172.590 Section 172.590... CONSUMPTION Flavoring Agents and Related Substances § 172.590 Yeast-malt sprout extract. Yeast-malt sprout... prescribed conditions: (a) The additive is produced by partial hydrolysis of yeast extract (derived from...
21 CFR 172.590 - Yeast-malt sprout extract.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Yeast-malt sprout extract. 172.590 Section 172.590... CONSUMPTION Flavoring Agents and Related Substances § 172.590 Yeast-malt sprout extract. Yeast-malt sprout... prescribed conditions: (a) The additive is produced by partial hydrolysis of yeast extract (derived from...
21 CFR 172.590 - Yeast-malt sprout extract.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Yeast-malt sprout extract. 172.590 Section 172.590... CONSUMPTION Flavoring Agents and Related Substances § 172.590 Yeast-malt sprout extract. Yeast-malt sprout... prescribed conditions: (a) The additive is produced by partial hydrolysis of yeast extract (derived from...
Ethanol from Sugar Cane: Flask Experiments Using the EX-FERM Technique
Rolz, Carlos; de Cabrera, Sheryl
1980-01-01
Alcohol production at the laboratory scale from sugar cane pieces by the EX-FERM technique was studied with 37 strains of Saccharomyces spp. The EX-FERM process is novel in that it employs the simultaneous extraction and fermentation of the sucrose in a cane-water suspension. Two types of cane treatments were used: chips and shredded pith, either fresh or dried. A mother culture of the yeast was prepared in enriched cane juice and then added to the cane-water mixture. After static fermentation for 40 h at 30°C, the cane was removed, and fresh cane was added to the yeast-alcohol broth. After an additional 24 h, the cane was again removed and the liquor was analyzed. After the first 40-h cycle, sugar consumption was above 99% with 10 of the 37 yeast strains tested, and ethanol reached levels of 1.29 to 4.00 g per 100 ml, depending on the yeast strain. The final ethanol concentration reached 4.27 to 5.37 g per 100 ml, and sugar consumption was above 98% in three cases during a second EX-FERM cycle employing previously air-dried chips and pith. Product yields were within accepted values. Cane treatment did not appear to affect the results at this level. PMID:16345626
Functional enrichment of mannanase-treated spent brewer yeast.
Cao, Ruge; Yang, Xingyue; Shang, Wenting; Zhou, Zhongkai; Strappe, Padraig; Blanchard, Chris
2017-09-14
In this study, the effect of Bacillus amyloliquefaciens-produced β-mannanase on the nutrient diffusion (release) and antioxidant activity of spent brewer yeast (SBY) was investigated. Three pretreatments were performed: (1) autolysis at 50°C for 24 h; (2) autolysis at 50°C for 24 h, with the addition of β-mannanase during the autolysis; (3) autolysis at 50°C for 24 h, and the β-mannanase was added for another 12 h treatment. The pretreatments with the addition of β-mannanase caused significant cell wall degradation, markedly increased the yield of SBY extracts. More importantly, this study found that polysaccharides were degraded to be oligosaccharides with a considerable reduction in molecular weights. Meanwhile, pretreatment with the enzyme also exhibited a higher antioxidant activity in SBY extract compared to autolysis itself. The current study indicated that pretreatment (3) had a better effect than pretreatment (2) in terms of improving in antioxidant activity in SBY extract. These improved characteristics of SBY extracts isolated through enzymatic treatment appear to show promising features for their prospective use as natural functional agents.
Beck, Bert; Brusselman, Eva; Nuyttens, David; Moens, Maurice; Temmerman, Femke; Pollet, Sabien; Van Weyenberg, Stephanie; Spanoghe, Pieter
2014-01-01
Steinernema carpocapsae Weiser, an entomopathogenic nematode (EPN), is a potential biological control agent for the cabbage moth (Mamestra brassicae L.). This research aimed to identify a suitable spray application technique, and to determine whether yeast extract added to an EPN spray has an attracting and/or a feeding stimulant effect on M. brassicae. The biological control capabilities of EPN against this pest were examined in the field. Good coverage of the underside of cauliflower leaves, the habitat of young instar larvae (L1-L4) of M. brassicae was obtained using different spray boom configurations with vertical extensions that carried underleaf spraying nozzles. One of the configurations was selected for field testing with an EPN spray. Brewer's yeast extract stimulated larval feeding on leaves, and increased the mortality of these larvae when exposed to EPN. The field trial showed that a spray application with S. carpocapsae, Addit and xanthan gum can effectively lower the numbers of cabbage heads damaged by M. brassicae. Brewer's yeast extract did not significantly increase this field performance of EPN. Steinernema carpocapsae, applied with an appropriate spray technique, can be used within biological control schemes as part of a resistance management programme for Bt. © 2013 Society of Chemical Industry.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 25 2013-07-01 2013-07-01 false Yeast Extract Hydrolysate from... PESTICIDE CHEMICAL RESIDUES IN FOOD Exemptions From Tolerances § 180.1246 Yeast Extract Hydrolysate from... exemption from the requirement of a tolerance for residues of the biochemical pesticide Yeast Extract...
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 25 2012-07-01 2012-07-01 false Yeast Extract Hydrolysate from... PESTICIDE CHEMICAL RESIDUES IN FOOD Exemptions From Tolerances § 180.1246 Yeast Extract Hydrolysate from... exemption from the requirement of a tolerance for residues of the biochemical pesticide Yeast Extract...
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 24 2011-07-01 2011-07-01 false Yeast Extract Hydrolysate from... PESTICIDE CHEMICAL RESIDUES IN FOOD Exemptions From Tolerances § 180.1246 Yeast Extract Hydrolysate from... exemption from the requirement of a tolerance for residues of the biochemical pesticide Yeast Extract...
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 24 2014-07-01 2014-07-01 false Yeast Extract Hydrolysate from... PESTICIDE CHEMICAL RESIDUES IN FOOD Exemptions From Tolerances § 180.1246 Yeast Extract Hydrolysate from... exemption from the requirement of a tolerance for residues of the biochemical pesticide Yeast Extract...
Xi, Yong-lan; Chen, Ke-quan; Dai, Wen-yu; Ma, Jiang-feng; Zhang, Min; Jiang, Min; Wei, Ping; Ouyang, Ping-Kai
2013-05-01
In this study, corn steep liquor powder (CSL) was used as nitrogen source to replace the relatively costly yeast extract typically used for the production of succinic acid with Actinobacillus succinogenes NJ113. Moreover, when heme was added to the fermentation medium and the culture was agitated at a low speed, a maximum succinic acid concentration of 37.9 g/l was obtained from a glucose concentration of 50 g/l, and a productivity of 0.75 g/l/h was achieved. These yields are almost as high as for fermentation with glucose and yeast extract. These results suggest that heme-supplemented CSL may be a suitable alternative nitrogen source for a cost-effective method of producing succinic acid with A. succinogenes NJ113 while consuming less energy than previous methods. Copyright © 2013 Elsevier Ltd. All rights reserved.
Baiges, I; Arola, L
2016-01-01
BACKGROUND: Saccharomyces cerevisiae is a model organism with conserved aging pathways. Yeast chronological lifespan experiments mimic the processes involved in human non-dividing tissues, such as the nervous system or skeletal muscle, and can speed up the search for biomolecules with potential anti-aging effects before proceeding to animal studies. OBJECTIVE: To test the effectiveness of a cocoa polyphenol-rich extract (CPE) in expanding the S. cerevisiae chronological lifespan in two conditions: in the stationary phase reached after glucose depletion and under severe caloric restriction. MEASUREMENTS: Using a high-throughput method, wild-type S. cerevisiae and its mitochondrial manganese-dependent superoxide dismutase null mutant (sod2Δ) were cultured in synthetic complete dextrose medium. After 2 days, 0, 5 and 20 mg/ml of CPE were added, and viability was measured throughout the stationary phase. The effects of the major components of CPE were also evaluated. To determine yeast lifespan under severe caloric restriction conditions, cultures were washed with water 24 h after the addition of 0 and 20 mg/ml of CPE, and viability was followed over time. RESULTS : CPE increased the chronological lifespan of S. cerevisiae during the stationary phase in a dose-dependent manner. A similar increase was also observed in (sod2Δ). None of the major CPE components (theobromine, caffeine, maltodextrin, (-)-epicatechin, (+)-catechin and procyanidin B2) was able to increase the yeast lifespan. CPE further increased the yeast lifespan under severe caloric restriction. CONCLUSION: CPE increases the chronological lifespan of S. cerevisiae through a SOD2-independent mechanism. The extract also extends yeast lifespan under severe caloric restriction conditions. The high-throughput assay used makes it possible to simply and rapidly test the efficacy of a large number of compounds on yeast aging, requiring only small amounts, and is thus a convenient screening assay to accelerate the search for biomolecules with potential anti-aging effects.
Valentini, L; Bon, S Bittolo; Pugno, N M
2016-08-31
In this paper the fermentation process activated by living microorganisms of the baker's yeast is proposed as a facile assembly method of hybrid nanoparticles at liquid interface. Water dispersion of commercial baker's yeast extract used for bread production, graphene nanoplatelets (GNPs), and carbon nanotubes (CNTs) were added to oil/water interface; when the yeast is activated by adding sugar, the byproduct carbon dioxide bubbles migrate from the water phase to the oil/water interface generating a floating nanostructured film at liquid interface where it is trapped. Starting from this simple method, we propose a general approach for the stabilization of intractable poly(etheretherketone) polymeric particles with GNPs and CNTs at immiscible liquid interface. This process allowed the formation of sintered porous composites with improved mechanical properties. The porous structure of the composites gave rise to a low thermal conductivity making them good candidates for thermal insulating applications. Liquid absorption by these porous composites has been also reported. We believe that this new approach may have applications in the large scale fabrication of nanomaterials and is particularly suited for the preparation of nanocomposites starting from polymers that are intractable by solvent casting.
Promising results of cranberry in the prevention of oral Candida biofilms.
Girardot, Marion; Guerineau, Amandine; Boudesocque, Leslie; Costa, Damien; Bazinet, Laurent; Enguehard-Gueiffier, Cécile; Imbert, Christine
2014-04-01
In the context of dental caries prevention by natural foodstuff sources, antifungal and antibiofilm activities of dry commercial extracts of cranberry fruit (Vaccinium macrocarpon Aiton) and two other red fruits (Vaccinium myrtillus L. and Malpighia punicifolia L.) were assessed on Candida albicans and Candida glabrata yeasts. When added to the culture medium, the cranberry extract displayed a significant anti-adhesion activity against Candida spp. when used at low concentrations. In addition, the pretreatment of surfaces with this extract induced an anti-adhesion activity mainly against C. glabrata yeasts and an antibiofilm activity against C. albicans. This activity was dependent on concentration, species, and strain. A phytochemical investigation bioguided by anti-adhesion tests against the two Candida species was carried out on crude cranberry juice to determine the active fractions. Three subfractions enriched in proanthocyanidins showed an anti-adhesion activity at low concentrations. This study investigated for the first time the interest of crude extracts of cranberry and cranberry juice fractions to prevent biofilms of C. glabrata. It highlighted the potency of consuming this fruit and using it as a source of anti-adhesion agents. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.
Optimization of Banana Juice Fermentation for the Production of Microbial Oil †
Vega, Esther Z.; Glatz, Bonita A.; Hammond, Earl G.
1988-01-01
Apiotrichum curvatum ATCC 20509 (formerly Candida curvata D), a lipid-accumulating yeast, was grown in banana juice. The optimum conditions for biomass production in shake flasks were 30°C growth temperature, efficient aeration, a juice concentration of 25%, and preliminary heat treatment at less than sterilization conditions. Under controlled conditions in a fermentor, 20% banana juice was optimum. High concentrations of yeast extract (0.3%) increased biomass production by 40% but decreased oil production by 30%. A lower yeast extract concentration (0.05%) increased biomass production by 2% and oil production by 25%. The best growth and oil production were observed when asparagine (1.4 g/liter) and mineral salts were added to the banana juice. The addition of minerals seemed to improve the utilization of carbon. Growth inhibition was observed when the fermentor was aerated with pure oxygen, even when additional nutrients were present. A fed-batch process permitted the juice concentration to be increased from 15 to 82%; biomass accumulation was three times higher than in batch fermentations. However, the cellular lipid content was only 30% of dry weight, and chemical oxygen demand reduction was slow and inefficient. PMID:16347584
Zarei, Omid; Dastmalchi, Siavoush; Hamzeh-Mivehroud, Maryam
2016-01-01
Yeasts, especially Saccharomyces cerevisiae, are one of the oldest organisms with broad spectrum of applications, owing to their unique genetics and physiology. Yeast extract, i.e. the product of yeast cells, is extensively used as nutritional resource in bacterial culture media. The aim of this study was to develop a simple, rapid and cost benefit process to produce the yeast extract. In this procedure mechanical methods such as high temperature and pressure were utilized to produce the yeast extract. The growth of the bacteria feed with the produced yeast extract was monitored in order to assess the quality of the product. The results showed that the quality of the produced yeast extract was very promising concluded from the growth pattern of bacterial cells in media prepared from this product and was comparable with that of the three commercial yeast extracts in terms of bacterial growth properties. One of the main advantages of the current method was that no chemicals and enzymes were used, leading to the reduced production cost. The method is very simple and cost effective, and can be performed in a reasonable time making it suitable for being adopted by research laboratories. Furthermore, it can be scaled up to produce large quantities for industrial applications. PMID:28243289
Pires, Eduardo J; Ruiz, Héctor A; Teixeira, José A; Vicente, António A
2012-06-13
The major objective of this work is to improve the pretreatments of brewer's spent grains (BSG) aiming at their use as a source for lignocellulosic yeast carriers (LCYC) production. Therefore, several pretreatments of BSG have been designed aiming at obtaining various yeast carriers, differing on their physicochemical composition. Cellulose, hemicellulose, lignin, fat, protein, and ash content were determined for crude BSG and the LCYCs. The long chain fatty acids profile for the crude BSG was also analyzed. Chemical treatments successfully produced several different LCYC based on BSG. The highest cellulose content in LCYC was achieved upon application of caustic (NaOH) treatment during 40 min. Either caustic or combined acid-caustic treatments predominately generated hydrophobic, negatively charged LCYC. The feasibility of using BSG for LCYC production is strengthened by the fact that added-value byproduct can be extracted before the chemical treatments are applied.
Urea enhances cell lysis of Schizosaccharomyces pombe ura4 mutants.
Nishino, Kohei; Kushima, Misaki; Kaino, Tomohiro; Matsuo, Yasuhiro; Kawamukai, Makoto
2017-07-01
Cell lysis is induced in Schizosaccharomyces pombe ∆ura4 cells grown in YPD medium, which contains yeast extract, polypeptone, and glucose. To identify the medium components that induce cell lysis, we first tested various kinds of yeast extracts from different suppliers. Cell lysis of ∆ura4 cells on YE medium was observed when yeast extracts from OXOID, BD, Oriental, and Difco were used, but not when using yeast extract from Kyokuto. To determine which compounds induced cell lysis, we subjected yeast extract and polypeptone to GC-MS analysis. Ten kinds of compounds were detected in OXOID and BD yeast extracts, but not in Kyokuto yeast extract. Among them was urea, which was also present in polypeptone, and it clearly induced cell lysis. Deletion of the ure2 gene, which is responsible for utilizing urea, abolished the lytic effect of urea. The effect of urea was suppressed by deletion of pub1, and a similar phenotype was observed in the presence of polypeptone. Thus, urea is an inducer of cell lysis in S. pombe ∆ura4 cells.
Bayliak, Maria M.; Burdyliuk, Nadia I.; Izers’ka, Lilia I.; Lushchak, Volodymyr I.
2014-01-01
Concentration-dependent effects of aqueous extract from R. rosea root on long-term survival and stress resistance of budding yeast Saccharomyces cerevisiae were studied. At low concentrations, R. rosea aqueous extract extended yeast chronological lifespan, enhanced oxidative stress resistance of stationary-phase cells and resistance to number stressors in exponentially growing cultures. At high concentrations, R. rosea extract sensitized yeast cells to stresses and shortened yeast lifespan. These biphasic concentration-responses describe a common hormetic phenomenon characterized by a low-dose stimulation and a high-dose inhibition. Yeast pretreatment with low doses of R. rosea extract enhanced yeast survival and prevented protein oxidation under H2O2-induced oxidative stress. Positive effect of R. rosea extract on yeast survival under heat shock exposure was not accompanied with changes in antioxidant enzyme activities and levels of oxidized proteins. The deficiency in transcriptional regulators, Msn2/Msn4 and Yap1, abolished the positive effect of low doses of R. rosea extract on yeast viability under stress challenges. Potential involvement of Msn2/Msn4 and Yap1 regulatory proteins in realization of R. rosea beneficial effects is discussed. PMID:24659935
Suehara, Ken-ichiro; Kawamoto, Yoshihiro; Fujii, Eiko; Kohda, Jiro; Nakano, Yasuhisa; Yano, Takuo
2005-10-01
The biological treatment of wastewater discharged from a biodiesel fuel (BDF) production plant conducting alkali catalysis transesterification was investigated. BDF wastewater has a high pH and high hexane-extracted oil and low nitrogen concentrations, and inhibits the growth of microorganisms. The biological treatment of BDF wastewater is difficult because the composition of such wastewater is not suitable for microbial growth. To apply the microbiological treatment of BDF wastewater using an oil degradable yeast, Rhodotorula mucilaginosa, the pH was adjusted to 6.8 and several nutrients such as a nitrogen source (ammonium sulfate, ammonium chloride or urea), yeast extract, KH2PO4 and MgSO4.7H2O were added to the wastewater. The optimal initial concentration of yeast extract was 1 g/l and the optimal C/N ratio was between 17 and 68 when using urea as a nitrogen source. A growth inhibitor was also present in the BDF wastewater, and this growth inhibitor could be detected by measuring the solid content in an aqueous phase after the hexane extraction of the wastewater. Microorganisms could not grow at solid contents higher than 2.14 g/l in the wastewater. To avoid the growth inhibition, the BDF wastewater was diluted with the same volume of water. Oil degradation in the diluted BDF wastewater was observed and the best result was obtained under the determined optimal conditions. This treatment system is simple because no controllers, except for a temperature, are necessary. These results suggest that the biological treatment system developed for BDF wastewater is useful for small-scale BDF production plants.
Production of low-molecular weight soluble yeast β-glucan by an acid degradation method.
Ishimoto, Yuina; Ishibashi, Ken-Ichi; Yamanaka, Daisuke; Adachi, Yoshiyuki; Kanzaki, Ken; Iwakura, Yoichiro; Ohno, Naohito
2018-02-01
β-glucan is widely distributed in nature as water soluble and insoluble forms. Both forms of β-glucan are utilized in several fields, especially for functional foods. Yeast β-glucan is a medically important insoluble particle. Solubilization of yeast β-glucan may be valuable for improving functional foods and in medicinal industries. In the present study, we applied an acid degradation method to solubilize yeast β-glucan and found that β-glucan was effectively solubilized to low-molecular weight β-glucans by 45% sulfuric acid treatment at 20°C. The acid-degraded soluble yeast β-glucan (ad-sBBG) was further fractionated into a higher-molecular weight fraction (ad-sBBG-high) and a lower-molecular weight fraction (ad-sBBG-low). Since ad-sBBG-high contained mannan, while ad-sBBG-low contained it only scarcely, it was possible to prepare low-molecular weight soluble β-glucan with higher purity. In addition, ad-sBBG-low bound to dectin-1, which is an innate immunity receptor of β-glucan, and showed antagonistic activity against reactive oxygen production and cytokine synthesis by macrophages. Thus, this acid degradation method is an important procedure for generating immune-modulating, low-molecular weight, soluble yeast β-glucan. Copyright © 2017 Elsevier B.V. All rights reserved.
Pullulan production by Aureobasidium pullulans grown on ethanol stillage as a nitrogen source.
West, T P; Strohfus, B
1996-01-01
Pullulan production by Aureobasidium pullulans strain RP-1 using thin stillage from fuel ethanol production as a nitrogen source was studied in a medium using corn syrup as a carbon source. The use of 1% thin stillage as a nitrogen source instead of ammonium sulphate elevated polysaccharide production by strain RP-1 cells when grown on a concentration of up to 7.5% corn syrup, independent of yeast extract supplementation. Dry weights of cells grown in medium containing ammonium sulphate as the nitrogen source were higher than the stillage-grown cells after 7 days of growth. The viscosity of the polysaccharide on day 7 was higher for cells grown on thin stillage rather than ammonium sulphate as a nitrogen source. The pullulan content of the polysaccharide elaborated by ammonium sulphate-grown cells on day 7 was higher than the pullulan content of polysaccharide produced by stillage-grown cells regardless of whether yeast extract was added to the culture medium.
Al-Shalabi, Zahwa; Doran, Pauline M
2016-04-10
This study investigated fission yeast (Schizosaccharomyces pombe) and hairy roots of tomato (Solanum lycopersicum) as in vitro production vehicles for biological synthesis of CdS quantum dots. Cd added during the mid-growth phase of the cultures was detoxified within the biomass into inorganic sulphide-containing complexes with the quantum confinement properties of semiconductor nanocrystals. Significant differences were found between the two host systems in terms of nanoparticle production kinetics, yield and quality. The much slower growth rate of hairy roots compared with yeast is a disadvantage for commercial scaled-up production. Nanoparticle extraction from the biomass was less effective for the roots: 19% of the Cd present in the hairy roots was recovered after extraction compared with 34% for the yeast. The overall yield of CdS quantum dots was also lower for the roots: relative to the amount of Cd taken up into the biomass, 8.5% was recovered in yeast gel filtration fractions exhibiting quantum dot properties whereas the result for hairy roots was only 0.99%. Yeast-produced CdS crystallites were somewhat smaller with diameters of approximately 2-6 nm compared with those of 4-10nm obtained from the roots. The average ratio of inorganic sulphide to Cd for the purified and size-fractionated particles was 0.44 for the yeast and 1.6 for the hairy roots. Despite the limitations associated with hairy roots in terms of culture kinetics and product yield, this system produced CdS nanoparticles with enhanced photostability and 3.7-13-fold higher fluorescence quantum efficiency compared with those generated by yeast. This work demonstrates that the choice of cellular host can have a significant effect on nanoparticle functional properties as well as on the bioprocessing aspects of biological quantum dot synthesis. Copyright © 2016 Elsevier B.V. All rights reserved.
Złotek, Urszula; Świeca, Michał
2016-05-01
This paper presents a study on changes in the main phytochemical levels and antioxidant and anti-inflammatory activity of lettuce caused by different doses and times of application of yeast extracts. Elicitation with yeast extract caused an increase in the total phenolic compounds and chlorophyll content, which varied according to the dose and time of spraying, but it did not have a positive impact on vitamin C, flavonoid and carotenoid content in lettuce. The best effect was achieved by double spraying with 1% yeast extract and by single spraying with 0.1% yeast extract. The increase in phytochemical content was positively correlated with the antioxidant and anti-inflammatory activity of the studied lettuce leaves. Chicoric acid seems to be the major contributor to these antioxidant activities. Yeast extract may be used as a natural, environmentally friendly and safe elicitor for improving the health-promoting qualities of lettuce. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.
Pfannebecker, Jens; Schiffer-Hetz, Claudia; Fröhlich, Jürgen; Becker, Barbara
2016-11-01
In the present study, a culture medium for qualitative detection of osmotolerant yeasts, named OM, was developed. For the development, culture media with different concentrations of glucose, fructose, potassium chloride and glycerin were analyzed in a Biolumix™ test incubator. Selectivity for osmotolerant yeasts was guaranteed by a water activity (a w )-value of 0.91. The best results regarding fast growth of Zygosaccharomyces rouxii (WH 1002) were achieved in a culture medium consisting of 45% glucose, 5% fructose and 0.5% yeast extract and in a medium with 30% glucose, 10% glycerin, 5% potassium chloride and 0.5% yeast extract. Substances to stimulate yeast fermentation rates were analyzed in a RAMOS ® parallel fermenter system, enabling online measurement of the carbon dioxide transfer rate (CTR) in shaking flasks. Significant increases of the CTR was achieved by adding especially 0.1-0.2% ammonium salts ((NH 4 ) 2 HPO 4 , (NH 4 ) 2 SO 4 or NH 4 NO 3 ), 0.5% meat peptone and 1% malt extract. Detection times and the CTR of 23 food-borne yeast strains of the genera Zygosaccharomyces, Torulaspora, Schizosaccharomyces, Candida and Wickerhamomyces were analyzed in OM bouillon in comparison to the selective culture media YEG50, MYG50 and DG18 in the parallel fermenter system. The OM culture medium enabled the detection of 10 2 CFU/g within a time period of 2-3days, depending on the analyzed yeast species. Compared with YEG50 and MYG50 the detection times could be reduced. As an example, W. anomalus (WH 1021) was detected after 124h in YEG50, 95.5h in MYG50 and 55h in OM bouillon. Compared to YEG50 the maximum CO 2 transfer rates for Z. rouxii (WH 1001), T. delbrueckii (DSM 70526), S. pombe (DSM 70576) and W. anomalus (WH 1016) increased by a factor ≥2.6. Furthermore, enrichment cultures of inoculated high-sugar products in OM culture medium were analyzed in the Biolumix™ system. The results proved that detection times of 3days for Z. rouxii and T. delbrueckii can be realized by using OM in combination with the automated test system even if low initial counts (10 1 CFU/g) are present in the products. In conclusion, the presented data suggest that the OM culture medium is appropriate for the enrichment of osmotolerant yeasts from high-sugar food products. Copyright © 2016 Elsevier B.V. All rights reserved.
Malassezia Yeast and Cytokine Gene Polymorphism in Atopic Dermatitis
Das, Shukla; Ramachandran, V.G.; Saha, Rumpa; Bhattacharya, S.N.; Dar, Sajad
2017-01-01
Introduction Atopic Dermatitis (AD) is a recurrent chronic condition associated with microorganism and their interaction with the susceptible host. Malassezia yeast is a known commensal which is thought to provoke the recurrent episodes of symptoms in atopic dermatitis patients. Malassezia immunomodulatory properties along with defective skin barrier in such host, results in disease manifestation. Here, we studied Single Nucleotide Polymorphism (SNP) in IL10 and IFN γ genes of the host and its relation with susceptibility to Malassezia infection. Aim To isolate Malassezia yeast from AD patients and compare the genetic susceptibility of the host by correlating the cytokine gene polymorphism with the control subjects. Materials and Methods Study was conducted from January 2012 to January 2013. It was a prospective observational study done in Department of Microbiology and Department of Dermatology and Venereology in University College of Medical Sciences and GTB Hospital, Delhi. Sample size comprised of 38 cases each of AD. Skin scrapings were used for fungal culture on Sabouraud Dextrose Agar (SDA) and Modified Dixon Agar (MDA) and isolated were identified as per conventional phenotypic methods. Genomic DNA was extracted from blood samples collected from all study subjects. Cytokine genotyping was carried out by Amplification Refractory Mutations System- Polymerase Chain Reaction (ARMS-PCR) with sequence specific primers. Three SNPs (IL10-1082A/G; IL10-819/592C/T; IFN-γ+874A/T) in two cytokine genes were assessed in all the patients and healthy controls. Statistical Analysis Chi-Square Test or Fisher’s-Exact Test and Bonferroni’s correction. Results In AD group, Malassezia yeasts were cultured in 24 out of 38 samples and thus the identification rate was 63.1 percent as compared to healthy group, 52.6 percent (20/38). Significant difference in allele, or genotype distribution were observed in IL10-819/592C/T and IFN-γ+874A/T gene polymorphism in AD group. Conclusion Higher isolation rate in cases as compared to control group highlights the implication of Malassezia in AD. Association between specific cytokine gene polymorphism and clinical outcome was found to be significant in study group. The result of cytokine gene polymorphism in the present study demonstrated susceptibility of host to Malassezia infection. PMID:28511379
Mari, Eleonora; Guerrini, Simona; Granchi, Lisa; Vincenzini, Massimo
2016-06-01
The aim of this study was to evaluate the occurrence of yeast populations during different olive oil extraction processes, carried out in three consecutive years in Tuscany (Italy), by analysing crushed pastes, kneaded pastes, oil from decanter and pomaces. The results showed yeast concentrations ranging between 10(3) and 10(5) CFU/g or per mL. Seventeen dominant yeast species were identified by random amplified polymorphic DNA with primer M13 and their identification was confirmed by restriction fragments length polymorphism of ribosomal internal transcribed spacer and sequencing rRNA genes. The isolation frequencies of each species in the collected samples pointed out that the occurrence of the various yeast species in olive oil extraction process was dependent not only on the yeasts contaminating the olives but also on the yeasts colonizing the plant for oil extraction. In fact, eleven dominant yeast species were detected from the washed olives, but only three of them were also found in oil samples at significant isolation frequency. On the contrary, the most abundant species in oil samples, Yamadazyma terventina, did not occur in washed olive samples. These findings suggest a phenomenon of contamination of the plant for oil extraction that selects some yeast species that could affect the quality of olive oil.
Kennedy Ii, Daniel E; West, Thomas P
2018-05-16
The ability of the fungus Aureobasidium pullulans ATCC 42023 to produce pullulan from yeast extract-supplemented xylan hydrolysates of the prairie grass prairie cordgrass was examined relative to polysaccharide and cell biomass production, yield, and pullulan content of the polysaccharide. A pullulan concentration of 11.2 g L-1 and yield of 0.79 g g-1 was produced by ATCC 42023 when grown for 168 h at 30°C on the phosphate-buffered hydrolysate supplemented with yeast extract. The highest biomass level being 8.8 g L-1 was produced by ATCC 42023 after 168 h on a yeast extract-supplemented, hydrolysate-containing complete medium lacking sodium chloride. The highest pullulan content of the polysaccharide produced by ATCC 42023 after 168 h on the hydrolysate medium supplemented with yeast extract and ammonium sulfate was 70%. The findings indicate that a polysaccharide with a high pullulan content can be produced at a relatively high yield by the fungus grown on a yeast extract-supplemented xylan hydrolysate, suggesting that pullulan could be produced using a biomass-based process.
Li, Qihou; Tian, Ye; Fu, Xian; Yin, Huaqun; Zhou, Zhijun; Liang, Yiting; Qiu, Guanzhou; Liu, Jie; Liu, Hongwei; Liang, Yili; Shen, Li; Cong, Jing; Liu, Xueduan
2011-08-01
To determine the effect of organics (yeast extract) on microbial community during chalcopyrite bioleaching at different temperature, real-time polymerase chain reaction (PCR) was employed to analyze community dynamics of major bacteria applied in bioleaching. The results showed that yeast extract exerted great impact on microbial community, and therefore influencing bioleaching rate. To be specific, yeast extract was adverse to this bioleaching process at 30°C due to decreased proportion of important chemolithotrophs such as Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans. However, yeast extract could promote bioleaching rate at 40°C on account of the increased number and enhanced work of Ferroplasma thermophilum, a kind of facultative bacteria. Similarly, bioleaching rate was enhanced under the effect of yeast extract at 50°C owing to the work of Acidianus brierleyi. At 60°C, bioleaching rate was close to 100% and temperature was the dominant factor determining bioleaching rate. Interestingly, the existence of yeast extract greatly enhanced the relative competitiveness of Ferroplasma thermophilum in this complex bioleaching microbial community.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sporty, J; Kabir, M M; Turteltaub, K
A robust redox extraction protocol for quantitative and reproducible metabolite isolation and recovery has been developed for simultaneous measurement of nicotinamide adenine dinucleotide (NAD) and its reduced form, NADH, from Saccharomyces cerevisiae. Following culture in liquid media, approximately 10{sup 8} yeast cells were harvested by centrifugation and then lysed under non-oxidizing conditions by bead blasting in ice-cold, nitrogen-saturated 50-mM ammonium acetate. To enable protein denaturation, ice cold nitrogen-saturated CH{sub 3}CN + 50-mM ammonium acetate (3:1; v:v) was added to the cell lysates. After sample centrifugation to pellet precipitated proteins, organic solvent removal was performed on supernatants by chloroform extraction. Themore » remaining aqueous phase was dried and resuspended in 50-mM ammonium acetate. NAD and NADH were separated by HPLC and quantified using UV-VIS absorbance detection. Applicability of this procedure for quantifying NAD and NADH levels was evaluated by culturing yeast under normal (2% glucose) and calorie restricted (0.5% glucose) conditions. NAD and NADH contents are similar to previously reported levels in yeast obtained using enzymatic assays performed separately on acid (for NAD) and alkali (for NADH) extracts. Results demonstrate that it is possible to perform a single preparation to reliably and robustly quantitate both NAD and NADH contents in the same sample. Robustness of the protocol suggests it will be (1) applicable to quantification of these metabolites in mammalian and bacterial cell cultures; and (2) amenable to isotope labeling strategies to determine the relative contribution of specific metabolic pathways to total NAD and NADH levels in cell cultures.« less
You, Yilin; Li, Na; Han, Xue; Guo, Jielong; Liu, Guojie; Huang, Weidong; Zhan, Jicheng
2018-04-01
The color of mulberry wine is extremely unstable in processing and aging. This paper investigates the effects of tannin extract and yeast extract on the color and color-preserving characteristics of mulberry wine made from the Dashi cultivar. The results showed that the maximum absorption wavelength in both tannin extract and yeast extract groups changed generating the red shift effect. The color of the tannin extract maintained a good gloss in the first 4 months, while the yeast extract group showed remarkable color preservation for the first 3 months. The total anthocyanin and cyanidin-3-rutinoside contents in both experiment groups were significantly higher than that of the control group, thus proving that tannin extract and yeast extract both exert a remarkably positive effect on preserving the color of mulberry wine during its aging. Moreover, sensory analysis indicated that the quality of mulberry wine treated with tannin extract was significantly higher than that of the control. The distinct color of mulberry wine is one of the foremost qualities that imprints on consumers' senses, but it is extremely unstable in processing and aging. However, the color protection of mulberry wine was not studied previously. In this study, we found that tannin extract and yeast extract both exert a remarkably positive effect on preserving the color of mulberry wine during aging. The study is of great significance as a guide to improving the color stability of mulberry wine, thereby also improving and promoting the development of the mulberry deep processing industry. © 2018 Institute of Food Technologists®.
Bonilla-Hermosa, Verónica Alejandra; Duarte, Whasley Ferreira; Schwan, Rosane Freitas
2014-08-01
The semi-dry processing of coffee generates significant amounts of coffee pulp and wastewater. This study evaluated the production of bioethanol and volatile compounds of eight yeast strains cultivated in a mixture of these residues. Hanseniaspora uvarum UFLA CAF76 showed the best fermentation performance; hence it was selected to evaluate different culture medium compositions and inoculum size. The best results were obtained with 12% w/v of coffee pulp, 1 g/L of yeast extract and 0.3 g/L of inoculum. Using these conditions, fermentation in 1 L of medium was carried out, achieving higher ethanol yield, productivity and efficiency with values of 0.48 g/g, 0.55 g/L h and 94.11% respectively. Twenty-one volatile compounds corresponding to higher alcohols, acetates, terpenes, aldehydes and volatile acids were identified by GC-FID. Such results indicate that coffee residues show an excellent potential as substrates for production of value-added compounds. H. uvarum demonstrated high fermentative capacity using these residues. Copyright © 2014 Elsevier Ltd. All rights reserved.
Yoo, Ki-Seon; Kim, Ji Eun; Seo, Eun-Young; Kim, Yu Jin; Choi, Hwa Young; Yoon, Hyang-Sik; Kim, Myoung-Dong; Han, Nam Soo
2010-07-01
This study was performed to investigate the effects of adding a dual starter on the chemical and sensory characteristics of red wine made of Campbell Early grape. The yeast starter, Saccharomyces cerevisiae, and lactic acid bacteria (LAB) starter, Oenococcus oeni, were used for inoculation in the winemaking process for alcoholic and malolactic fermentation (MLF), respectively. After 200 days incubation, the chemical compositions of yeast/LAB-added wine (YL-wine) were compared with those of no starter-added wine (control) and yeast-added wine (Y-wine). The results show that no significant differences were observed in pH, total sugar, and alcohol content among wine samples, but the malic acid content in YL-wine was significantly reduced and various esters and higher alcohols were synthesized. The sensory test revealed that the addition of dual starters resulted in improved overall acceptability in wine. This study emphasizes the importance of O. oeni in addition to yeast in making Campbell Early wine.
NASA Astrophysics Data System (ADS)
Suto, Koichi; Joe, Seong Jin; Inoue, Chihiro; Chida, Tadashi
2006-05-01
A heterotrophic bacterium, designated as HIB4, having an ability to oxidize ferrous iron was isolated from the sample of an enrichment culture with 9K medium, by using the modified WAYE (washed agarose/yeast extract) medium with ferrous sulphate. This isolate was identified as Alicyclobacillus disulfidooxidans from 16S rDNA sequence analysis. The isolate grew and oxidized ferrous iron in an inorganic medium containing 0.02 % (w/v) of yeast extract and Ferrous iron oxidation occurred at the almost end of its logarithmic phase. Yeast extract was an essential substrate for the isolate because the isolate could not grow or oxidize ferrous iron without yeast extract. However, higher concentration of yeast extract inhibited the growth of the isolate. On the other hand, it was confirmed that the isolate was able to grow without ferrous ion so that it did not get any energy by ferrous ion oxidation. Its optimum concentration of yeast extract was 0.02% (w/v) at the concentration of ferrous ion 0.08mol/liter. Its optimum pH was 1.5 and the optimum temperature was 30 °C These physiological characteristics were completely different from A. disulfidooxidans SD-11 which is the type strain.
Statistical optimisation of cell growth and carotenoid production by rhodotorula mucilaginosa
Maldonade, Iriani R.; Rodriguez-Amaya, Delia B.; Scamparini, Adilma R. P.
2012-01-01
Sequential statistical methods were used to maximise carotenoid production by a strain of Rhodotorula mucilaginosa, isolated from the Brazilian ecosystem. Initially, a factorial 25–1 experimental design was used, and the variables were pH and the levels of glucose, yeast extract, MgSO4.7H2O and KH2PO4. The nitrogen source (yeast extract) was the most important variable in enhancing carotenoid production; MgSO4.7H2O and KH2PO4 had a negative influence. The initial pH had no significant effect on carotenoid and cell productions. We further investigated the effects of glucose and yeast extract effects, using a second-order central composite design (CCD) to optimise carotenoid production, which was adequately approximated with a full quadratic equation obtained from a two-factor-2-level design. The analysis of quadratic surfaces showed that after 5 days of cultivation at 25 °C, the maximum carotenoid concentration (745 µg l-1) was obtained with 15 g l-1 of yeast extract and 20 g l-1 of glucose. The maximum carotenoid production (152 µg g-1) was obtained with 5 g l-1 yeast extract and 10 g l-1 glucose. Carotenoid formation was more sensitive to changes in yeast extract concentration than to changes in glucose concentration. Maximum cell production was achieved with 15–17 g l-1 of yeast extract and 15–20 g l-1 of glucose. PMID:24031809
Gordon, M E; Edwards, M S; Sweeney, C R; Jerina, M L
2013-08-01
The objective of this study was to test the hypothesis that an equine diet formulated with chelated trace minerals, organic selenium, yeast culture, direct-fed microbials (DFM) and Yucca schidigera extract would decrease excretion of nutrients that have potential for environmental impact. Horses were acclimated to 100% pelleted diets formulated with (ADD) and without (CTRL) the aforementioned additives. Chelated sources of Cu, Zn, Mn, and Co were included in the ADD diet at a 100% replacement rate of sulfate forms used in the CTRL diet. Additionally, the ADD diet included organic selenium yeast, DFM, and Yucca schidigera extract. Ten horses were fed the 2 experimental diets during two 42-d periods in a crossover design. Total fecal and urine collection occurred during the last 14 d of each period. Results indicate no significant differences between Cu, Zn, Mn, and Co concentrations excreted via urine (P > 0.05) due to dietary treatment. There was no difference between fecal Cu and Mn concentrations (P > 0.05) based on diet consumed. Mean fecal Zn and Co concentrations excreted by horses consuming ADD were greater than CTRL (P < 0.003). Differences due to diet were found for selenium fecal (P < 0.0001) and urine (P < 0.0001) excretions, with decreased concentrations found for horses consuming organic selenium yeast (ADD). In contrast, fecal K (%) was greater (P = 0.0421) for horses consuming ADD, whereas concentrations of fecal solids, total N, ammonia N, P, total ammonia, and fecal output did not differ between dietary treatments (P > 0.05). In feces stockpiled to simulate a crude composting method, no differences (P > 0.05) due to diet were detected for particle size, temperature, moisture, OM, total N, P, phosphate, K, moisture, potash, or ammonia N (P > 0.05). Although no difference (P = 0.2737) in feces stockpile temperature due to diet was found, temperature differences over time were documented (P < 0.0001). In conclusion, the addition of certain chelated mineral sources, organic Se yeast, DFM, and Yucca schidigera extract did not decrease most nutrient concentrations excreted. Horses consuming organic selenium as part of the additive diet had lower fecal and urine Se concentrations, as well as greater fecal K concentrations.
Genetically engineering adenoviral vectors for gene therapy.
Coughlan, Lynda
2014-01-01
Adenoviral (Ad) vectors are commonly used for various gene therapy applications. Significant advances in the genetic engineering of Ad vectors in recent years has highlighted their potential for the treatment of metastatic disease. There are several methods to genetically modify the Ad genome to incorporate retargeting peptides which will redirect the natural tropism of the viruses, including homologous recombination in bacteria or yeast. However, homologous recombination in yeast is highly efficient and can be achieved without the need for extensive cloning strategies. In addition, the method does not rely on the presence of unique restriction sites within the Ad genome and the reagents required for this method are widely available and inexpensive. Large plasmids containing the entire adenoviral genome (~36 kbp) can be modified within Saccharomyces cerevisiae yeast and genomes easily rescued in Escherichia coli hosts for analysis or amplification. A method for two-step homologous recombination in yeast is described in this chapter.
Aung, Hsu Mon; Huangteerakul, Chananya; Panvongsa, Wittaya; Jensen, Amornrat N; Chairoungdua, Arthit; Sukrong, Suchada; Jensen, Laran T
2018-09-15
Plant materials used in this study were selected based on the ethnobotanical literature. Plants have either been utilized by Thai practitioners as alternative treatments for cancer or identified to exhibit anti-cancer properties. To screen ethnomedicinal plants using a yeast cell-based assay for synthetic lethal interactions with cells deleted for RAD1, the yeast homologue of human ERCC4 (XPF) MATERIALS AND METHODS: Ethanolic extracts from thirty-two species of medicinal plants utilized in Thai traditional medicine were screened for synthetic lethal/sick interactions using a yeast cell-based assay. Cell growth was compared between the parental strain and rad1∆ yeast following exposure to select for specific toxicity of plant extracts. Candidate extracts were further examined for the mode of action using genetic and biochemical approaches. Screening a library of ethanolic extracts from medicinal plants identified Bacopa monnieri and Colubrina asiatica as having synthetic lethal effects in the rad1∆ cells but not the parental strain. Synthetic lethal effects for B. monneiri extracts were more apparent and this plant was examined further. Genetic analysis indicates that pro-oxidant activities and defective excision repair pathways do not significantly contribute to enhanced sensitivity to B. monneiri extracts. Exposure to B. monneiri extracts resulted in nuclear fragmentation and elevated levels of ethidium bromide staining in rad1∆ yeast suggesting promotion of an apoptosis-like event. Growth inhibition also observed in the human Caco-2 cell line suggesting the effects of B. monnieri extracts on both yeast and human cells may be similar. B. monneiri extracts may have utility in treatment of colorectal cancers that exhibit deficiency in ERCC4 (XPF). Copyright © 2018 Elsevier B.V. All rights reserved.
Production of astaxanthin rich feed supplement for animals from Phaffia rhodozyma yeast at low cost
NASA Astrophysics Data System (ADS)
Irtiza, Ayesha; Shatunova, Svetlana; Glukhareva, Tatiana; Kovaleva, Elena
2017-09-01
Dietary nutrients such as amino acids, vitamins, minerals and antioxidants can play a significant role in determining meat quality and also the growth rate of poultry or animal. Phaffia rhodozyma was grown on waste from brewery industry to produce astaxanthin rich feed supplements at a very low cost. Phaffia rhodozyma is yeast specie that has ability to produce carotenoids and approximately 80% of its total carotenoid content is astaxanthin, which is highly valuable carotenoid for food, feed and aquaculture industry. This study was carried out to test yeast extract of spent yeast from brewing industry waste (residual yeast) as potential nitrogen source for growth of Phaffia rhodozyma. Cultivation was carried out in liquid media prepared by yeast extracts and other components (glucose and peptone). Carotenoids from the biomass were released into biomass by suspending cells in DMSO for destruction of cells followed by extraction with petroleum ether. The extracted carotenoids were studied by spectrophotometry to identify and quantify astaxanthin and other carotenoids produced.
2012-04-01
fermented yeast , pure hydrogen, or endogenous biomass decay). When similarly respiring (~120 ?eeq PCE/(L-hr)) batch and PSS cultures were contrasted, the...electron equivalence (eeq) basis), and electron donor type (butyrate, lactate, yeast extract, fermented yeast , pure hydrogen, or endogenous biomass...acceptor ratios (0.7 to 17 on an electron equivalence (eeq) basis), and 12 electron donor type (butyrate, lactate, yeast extract, fermented yeast , pure
21 CFR 160.145 - Dried egg whites.
Code of Federal Regulations, 2011 CFR
2011-04-01
... fermentation procedures—(i) Yeast procedure. Food-grade baker's yeast (Saccharomyces cerevisiae) is added to the liquid egg whites and controlled fermentation is maintained. The quantity of yeast used and the...
21 CFR 160.145 - Dried egg whites.
Code of Federal Regulations, 2013 CFR
2013-04-01
... fermentation procedures—(i) Yeast procedure. Food-grade baker's yeast (Saccharomyces cerevisiae) is added to the liquid egg whites and controlled fermentation is maintained. The quantity of yeast used and the...
21 CFR 160.145 - Dried egg whites.
Code of Federal Regulations, 2014 CFR
2014-04-01
... fermentation procedures—(i) Yeast procedure. Food-grade baker's yeast (Saccharomyces cerevisiae) is added to the liquid egg whites and controlled fermentation is maintained. The quantity of yeast used and the...
21 CFR 160.145 - Dried egg whites.
Code of Federal Regulations, 2012 CFR
2012-04-01
... fermentation procedures—(i) Yeast procedure. Food-grade baker's yeast (Saccharomyces cerevisiae) is added to the liquid egg whites and controlled fermentation is maintained. The quantity of yeast used and the...
Effect of Lactoferrin on Oral Biofilm Formation
2009-10-01
dental implant failures, denture stomatitis and oral yeast infections such as candidiasis. It is one of the most widely studied biofilm systems, yet...and Company, Sparks, MD) and incubated at 37C for 24 h. P. gingivalis was grown in trypticase soy broth– yeast extract supplemented with 0.05% cysteine...protein, was purchased from (Sigma). In the attachment assays, artificial saliva (1 g lemco (refined meat extract of very light colour), 2 g yeast extract
Davis, Katherine J.; Lu, Shipeng; Barnhart, Elliott P.; Parker, Albert E.; Fields, Matthew W.; Gerlach, Robin
2018-01-01
Slow rates of coal-to-methane conversion limit biogenic methane production from coalbeds. This study demonstrates that rates of coal-to-methane conversion can be increased by the addition of small amounts of organic amendments. Algae, cyanobacteria, yeast cells, and granulated yeast extract were tested at two concentrations (0.1 and 0.5 g/L), and similar increases in total methane produced and methane production rates were observed for all amendments at a given concentration. In 0.1 g/L amended systems, the amount of carbon converted to methane minus the amount produced in coal only systems exceeded the amount of carbon added in the form of amendment, suggesting enhanced coal-to-methane conversion through amendment addition. The amount of methane produced in the 0.5 g/L amended systems did not exceed the amount of carbon added. While the archaeal communities did not vary significantly, the bacterial populations appeared to be strongly influenced by the presence of coal when 0.1 g/L of amendment was added; at an amendment concentration of 0.5 g/L the bacterial community composition appeared to be affected most strongly by the amendment type. Overall, the results suggest that small amounts of amendment are not only sufficient but possibly advantageous if faster in situcoal-to-methane production is to be promoted.
2012-05-24
carbon is consumed, O2 is depleted until the system becomes anaerobic ►After O2 is consumed, anaerobic fermentation begins and H2 is released into...Degradation and TNT Biodegradation Pathway 10 Carbon source water Lactic acid propionic and pyruvic acids acetic acid fermentation methane TNT...A total of 32,791 lbs of SRS was mixed with potable water to provide 20,000 gallons of solution for injection ► 197 lbs of yeast extract was added
Spent yeast as natural source of functional food additives
Rakowska, Rita; Sadowska, Anna; Dybkowska, Ewa; Świderski, Franciszek
Spent yeasts are by-products arising from beer and wine production which over many years have been chiefly used as feed additives for livestock. They contain many valuable and bioactive substances which has thereby generated much interest in their exploitation. Up till now, the main products obtained from beer-brewing yeasts are β-glucans and yeast extracts. Other like foodstuffs include dried brewer’s yeast, where this is dried and the bitterness removed to be fit for human consumption as well as mannan-oligosaccharides hitherto used in the feed industry. β-glucans constitute the building blocks of yeast cell walls and can thus be used in human nutrition as dietary supplements or serving as food additives in functional foods. β-glucans products obtained via post-fermentation of beer also exhibit a high and multi-faceted biological activity where they improve the blood’s lipid profile, enhance immunological status and have both prebiotic and anti-oxidant properties. Yeast extracts are currently being used more and more to enhance flavour in foodstuffs, particularly for meat and its products. Depending on how autolysis is carried out, it is possible to design extracts of various meat flavours characteristic of specific meats. Many different flavour profiles can be created which may be additionally increased in combination with vegetable extracts. Within the food market, yeast extracts can appear in various guises such as liquids, pastes or powders. They all contain significant amounts of glutamic acid, 5’-GMP and 5’-IMP nucleotides together with various amino acids and peptides that act synergistically for enhancing the flavour of foodstuff products. Recent studies have demonstrated additional benefits of yeast extracts as valuable sources of amino acids and peptides which can be used in functional foods and dietary supplements. These products possess GRAS status (Generally Recognised As Safe) which thereby also adds further as to why they should be used as natural food additives that are functional.
Irazusta, Verónica; Bernal, Anahí Romina; Estévez, María Cristina; de Figueroa, Lucía I C
2018-02-01
Cyberlindnera jadinii M9 and Wickerhamomyces anomalus M10 isolated from textile-dye liquid effluents has shown capacity for chromium detoxification via Cr(VI) biological reduction. The aim of the study was to evaluate the effect of hexavalent chromium on synthesis of novel and/or specific proteins involved in chromium tolerance and reduction in response to chromium overload in two indigenous yeasts. A study was carried out following a proteomic approach with W. anomalus M10 and Cy. jadinii M9 strains. For this, proteins extracts belonging to total cell extracts, membranes and mitochondria were analyzed. When Cr(VI) was added to culture medium there was an over-synthesis of 39 proteins involved in different metabolic pathways. In both strains, chromium supplementation changed protein biosynthesis by upregulating proteins involved in stress response, methionine metabolism, energy production, protein degradation and novel oxide-reductase enzymes. Moreover, we observed that Cy. jadinii M9 and W. anomalus M10 displayed ability to activate superoxide dismutase, catalase and chromate reductase activity. Two enzymes from the total cell extracts, type II nitroreductase (Frm2) and flavoprotein wrbA (Ycp4), were identified as possibly responsible for inducing crude chromate-reductase activity in cytoplasm of W. anomalus M10 under chromium overload. In Cy.jadinii M9, mitochondrial Ferredoxine-NADP reductase (Yah1) and membrane FAD flavoprotein (Lpd1) were identified as probably involved in Cr(VI) reduction. To our knowledge, this is the first study proposing chromate reductase activity of these four enzymes in yeast and reporting a relationship between protein synthesis, enzymatic response and chromium biospeciation in Cy. jadinii and W. anomalus. Copyright © 2017 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sherman, F
1958-11-01
A comparative study was made of the growth of yeast in various media at the optimum temperature (30 ) and at supraoptimum temperatures. It was found that at elevated temperatures there is a decrease in the ability of yeast to grow, which may be alleviated by increasing the percentage of yeast extract in the medium, adding oleic acid to the medium, or using an inoculum of cells that have previously been grown at the elevated temperature. Because of these findings, it is believed that growth at elevated temperatures results in an increased nutrient requirement which may be eliminated by inducedmore » adaptation. When yeasts were grown at elevated temperatures or exposed for a short time to lethal temperatures it was found that there was a great increase in the fraction of respiratory-deficient mutants (petites). It was shown that the increase of mutants did not arise because of selection, but that the elevated temperatures actually induced the mutation. From the results of various genetic analyses it is shown that these respiratorydeficient mutants are very similar, if not identical. to vegetative petites occurring spontaneously or induced by acriflavine. The kinetics of this mutation is discussed, with possible theoretical interpretations. (auth)« less
Spent brewer's yeast extract as an ingredient in cooked hams.
Pancrazio, Gaston; Cunha, Sara C; de Pinho, Paula Guedes; Loureiro, Mónica; Meireles, Sónia; Ferreira, Isabel M P L V O; Pinho, Olívia
2016-11-01
This work describes the effect of the incorporation of 1% spent yeast extract into cooked hams. Physical/chemical/sensorial characteristics and changes during 12 and 90days storage were evaluated on control and treated cooked hams processed for 1.5, 2.0, 2.5 or 3h. Spent yeast extract addition increased hardness, chewiness, ash, protein and free amino acid content. Similar volatile profiles were obtained, although there were some quantitative differences. No advantages were observed for increased cooking time. No significant differences were observed for physical and sensorial parameters of cooked hams with spent yeast extract at 12 and 90days post production, but His, aldehydes and esters increased at the end of storage. This behaviour was similar to that observed for control hams. The higher hardness of cooked ham with 1% yeast extract was due to the stronger gel formed during cooking and was maintained during storage. This additive acts as gel stabilizer for cooked ham production and could potentially improve other processing characteristics. Copyright © 2016 Elsevier Ltd. All rights reserved.
Khan, Washim; Gupta, Shreesh; Ahmad, Sayeed
2017-10-01
Due to lack of scientific evidence for the safety of Butea monosperma (Fabaceae), our study aimed to carry out its toxicological profile and to identify its metabolic pattern in yeast cell. The effect of aqueous extract of B. monosperma flower on glucose uptake in yeast cell was evaluated through optimizing pH, temperature, incubation time, substrate concentration and kinetic parameters. Further, the metabolic pattern of extract as such and in yeast cell were analyzed by gas chromatography-mass spectrometry. Mice were administered aqueous extract up to 6000 and 4000 mg/kg for acute oral and intraperitoneal toxicity, respectively, while up to 4500 mg/kg for sub-acute oral toxicity (30 days). Elongation in the lag and log phase was observed in yeast cells supplemented with extract as compared to control. A maximum of 184.9% glucose uptake was observed whereas kinetic parameters (K m and V max ) were 1.38 and 41.91 mol/s, respectively. Out of 75 metabolites found in the extract, 14 and 18 metabolites were utilized by yeast cell after 15 and 30 min of incubation, respectively. The LD 50 of extract administered through intraperitoneal route was estimated to be 3500 mg/kg. The extract did not elicit any significant difference (P ≥ 0.05) in weight gain, food consumption, water intake, hematological, biochemical parameters and histological changes as compared to the normal control. Results ascertained the safety of B. monosperma flower extract which can be explored as potential candidates for the development of anti-diabetic phytopharmaceuticals. Copyright © 2017 Elsevier Ltd. All rights reserved.
Extraction of genomic DNA from yeasts for PCR-based applications.
Lõoke, Marko; Kristjuhan, Kersti; Kristjuhan, Arnold
2011-05-01
We have developed a quick and low-cost genomic DNA extraction protocol from yeast cells for PCR-based applications. This method does not require any enzymes, hazardous chemicals, or extreme temperatures, and is especially powerful for simultaneous analysis of a large number of samples. DNA can be efficiently extracted from different yeast species (Kluyveromyces lactis, Hansenula polymorpha, Schizosaccharomyces pombe, Candida albicans, Pichia pastoris, and Saccharomyces cerevisiae). The protocol involves lysis of yeast colonies or cells from liquid culture in a lithium acetate (LiOAc)-SDS solution and subsequent precipitation of DNA with ethanol. Approximately 100 nanograms of total genomic DNA can be extracted from 1 × 10(7) cells. DNA extracted by this method is suitable for a variety of PCR-based applications (including colony PCR, real-time qPCR, and DNA sequencing) for amplification of DNA fragments of ≤ 3500 bp.
Enzymatic Removal of Diacetyl from Beer
Tolls, T. N.; Shovers, J.; Sandine, W. E.; Elliker, P. R.
1970-01-01
Diacetyl removal from beer was studied with whole cells and crude enzyme extracts of yeasts and bacteria. Cells of Streptococcus diacetilactis 18-16 destroyed diacetyl in solutions at a rate almost equal to that achieved by the addition of whole yeast cells. Yeast cells impregnated in a diatomaceous earth filter bed removed all diacetyl from solutions percolated through the bed. Undialyzed crude enzyme extracts from yeast cells removed diacetyl very slowly from beer at its normal pH (4.1); at a pH of 5.0 or higher, rapid diacetyl removal was achieved. Dialyzed crude enzyme extracts from yeast cells were found to destroy diacetyl in a manner quite similar to that of diacetyl reductase from Aerobacter aerogenes, and both the bacterial and the yeast extracts were stimulated significantly by the addition of reduced nicotinamide adenine dinucleotide (NADH). Diacetyl reductase activity of four strains of A. aerogenes was compared; three of the strains produced enzyme with approximately twice the specific activity of the other strain (8724). Gel electrophoresis results indicated that at least three different NADH-oxidizing enzymes were present in crude extracts of diacetyl reductase. Sephadex-gel chromotography separated NADH oxidase from diacetyl reductase. It was also noted that ethyl alcohol concentrations approximately equivalent to those found in beer were quite inhibitory to diacetyl reductase. PMID:4315861
Hernández-Cortés, Guillermo; Valle-Rodríguez, Juan Octavio; Herrera-López, Enrique J; Díaz-Montaño, Dulce María; González-García, Yolanda; Escalona-Buendía, Héctor B; Córdova, Jesús
2016-12-01
Agave (Agave tequilana Weber var. azul) fermentations are traditionally carried out employing batch systems in the process of tequila manufacturing; nevertheless, continuous cultures could be an attractive technological alternative to increase productivity and efficiency of sugar to ethanol conversion. However, agave juice (used as a culture medium) has nutritional deficiencies that limit the implementation of yeast continuous fermentations, resulting in high residual sugars and low fermentative rates. In this work, fermentations of agave juice using Saccharomyces cerevisiae were put into operation to prove the necessity of supplementing yeast extract, in order to alleviate nutritional deficiencies of agave juice. Furthermore, continuous fermentations were performed at two different aeration flow rates, and feeding sterilized and non-sterilized media. The obtained fermented musts were subsequently distilled to obtain tequila and the preference level was compared against two commercial tequilas, according to a sensorial analysis. The supplementation of agave juice with air and yeast extract augmented the fermentative capacity of S. cerevisiae S1 and the ethanol productivities, compared to those continuous fermentations non supplemented. In fact, aeration improved ethanol production from 37 to 40 g L(-1), reducing sugars consumption from 73 to 88 g L(-1) and ethanol productivity from 3.0 to 3.2 g (Lh)(-1), for non-aerated and aerated (at 0.02 vvm) cultures, respectively. Supplementation of yeast extract allowed an increase in specific growth rate and dilution rates (0.12 h(-1), compared to 0.08 h(-1) of non-supplemented cultures), ethanol production (47 g L(-1)), reducing sugars consumption (93 g L(-1)) and ethanol productivity [5.6 g (Lh)(-1)] were reached. Additionally, the effect of feeding sterilized or non-sterilized medium to the continuous cultures was compared, finding no significant differences between both types of cultures. The overall effect of adding yeast extract and air to the continuous fermentations resulted in 88 % increase in ethanol productivity. For all cultures, pH was not controlled, reaching low pH values (from 2.6 to 3). This feature suggested a reduced probability of contamination for prolonged continuous cultures and explained why no significant differences were found between continuous cultures fed with sterilized or non-sterilized media. Concentrations of volatile compounds quantified in the distillates (tequila) were in the allowed ranges established by the Mexican regulation of tequila (NOM-006-SCFI-2012, Norma Oficial Mexicana: Bebidas alcohólicas-Tequila-specificaciones, 2012). The preference level of the distillates was similar to that of two well-known commercial tequilas. The results suggested the possibility of implementing this innovative technology on an industrial scale, attaining high productivities and using non-sterilized agave juice.
27 CFR 24.192 - Process and materials.
Code of Federal Regulations, 2010 CFR
2010-04-01
... the kinds and within the limitations prescribed in § 24.182 may be added with yeast or yeast culture to acclimate the yeast and to facilitate the process of secondary fermentation or to correct the wine...
27 CFR 24.192 - Process and materials.
Code of Federal Regulations, 2013 CFR
2013-04-01
... the kinds and within the limitations prescribed in § 24.182 may be added with yeast or yeast culture to acclimate the yeast and to facilitate the process of secondary fermentation or to correct the wine...
27 CFR 24.192 - Process and materials.
Code of Federal Regulations, 2014 CFR
2014-04-01
... the kinds and within the limitations prescribed in § 24.182 may be added with yeast or yeast culture to acclimate the yeast and to facilitate the process of secondary fermentation or to correct the wine...
27 CFR 24.192 - Process and materials.
Code of Federal Regulations, 2011 CFR
2011-04-01
... the kinds and within the limitations prescribed in § 24.182 may be added with yeast or yeast culture to acclimate the yeast and to facilitate the process of secondary fermentation or to correct the wine...
27 CFR 24.192 - Process and materials.
Code of Federal Regulations, 2012 CFR
2012-04-01
... the kinds and within the limitations prescribed in § 24.182 may be added with yeast or yeast culture to acclimate the yeast and to facilitate the process of secondary fermentation or to correct the wine...
Strategy for the extraction of yeast DNA from artisan agave must for quantitative PCR analysis.
Kirchmayr, Manuel Reinhart; Segura-Garcia, Luis Eduardo; Flores-Berrios, Ericka Patricia; Gschaedler, Anne
2011-11-01
An efficient method for the direct extraction of yeast genomic DNA from agave must was developed. The optimized protocol, which was based on silica-adsorption of DNA on microcolumns, included an enzymatic cell wall degradation step followed by prolonged lysis with hot detergent. The resulting extracts were suitable templates for subsequent qPCR assays that quantified mixed yeast populations in artisan Mexican mezcal fermentations. Copyright © 2011 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
Beh, Boon Kee; Kong, Joan; Ho, Wan Yong; Mohd Yusof, Hamidah; Hussin, Aminuddin bin; Jaganath, Indu Bala; Alitheen, Noorjahan Banu; Jamaluddin, Anisah
2014-01-01
Fermented red yeast rice has been traditionally consumed as medication in Asian cuisine. This study aimed to determine the in vivo hypocholesterolemic and antioxidant effects of fermented red yeast rice water extract produced using Malaysian Agricultural Research and Development Institute (MARDI) Monascus purpureus strains in mice fed with high cholesterol diet. Absence of monacolin-k, lower level of γ-aminobutyric acid (GABA), higher content of total amino acids, and antioxidant activities were detected in MARDI fermented red yeast rice water extract (MFRYR). In vivo MFRYR treatment on hypercholesterolemic mice recorded similar lipid lowering effect as commercial red yeast rice extract (CRYR) as it helps to reduce the elevated serum liver enzyme and increased the antioxidant levels in liver. This effect was also associated with the upregulation of apolipoproteins-E and inhibition of Von Willebrand factor expression. In summary, MFRYR enriched in antioxidant and amino acid without monacolin-k showed similar hypocholesterolemic effect as CRYR that was rich in monacolin-k and GABA. PMID:25031606
Quantification of 1,3-β-D-glucan from yeast added as a functional ingredient to bread.
Rieder, Anne; Ballance, Simon; Böcker, Ulrike; Knutsen, Svein
2018-02-01
Due to their immunomodulatory effect, 1,3-β-G from yeast are used as functional ingredients, but reliable methods for their detection in foods are lacking. We have adapted a method based on fluorescence detection with aniline blue to quantify the amount of five commercial yeast β-glucan preparations added to crisp or yeast-leavened bread. This assay detected yeast β-glucan preparations added to different breads with an average recovery of 90, 96, 99 and 105%, while one of the preparations was overestimated, with an average recovery of 157%. The presence of cereal 1,3-1,4-β- D- glucans did not interfere with assay performance. The addition of 1,3-β-G at 0.2 and 0.5 g/100g is low compared to the recommended dose of 1,3-β-G per serving demonstrating assay sensitivity. However, more research is needed to fully understand the effect of 1,3-β-G conformation/structure on aniline blue interaction as well as the effect of baking on structure and dissolution properties of yeast β-glucans. Copyright © 2017 Elsevier Ltd. All rights reserved.
Pérez-Bibbins, B; Torrado-Agrasar, A; Salgado, J M; Oliveira, R Pinheiro de Souza; Domínguez, J M
2015-06-01
Lees are the wastes generated during the fermentation and aging processes of different industrial activities concerning alcoholic drinks such as wine, cider and beer. They must be conveniently treated to avoid uncontrolled dumping which causes environmental problems due to their high content of phenols, pesticides, heavy metals, and considerable concentrations of nitrogen, phosphate and potassium as well as high organic content. The companies involved must seek alternative environmental and economic physicochemical and biological treatments for their revalorization consisting in the recovery or transformation of the components of the lees into high value-added compounds. After describing the composition of lees and market of wine, beer and cider industries in Spain, this work aims to review the recent applications of wine, beer and cider lees reported in literature, with special attention to the use of lees as an endless sustainable source of nutrients and the production of yeast extract by autolysis or cell disruption. Lees and/or yeast extract can be used as nutritional supplements with potential exploitation in the biotechnological industry for the production of natural compounds such as xylitol, organic acids, and biosurfactants, among others. Copyright © 2015 Elsevier Ltd. All rights reserved.
[Effects of 33% grapefruit extract on the growth of the yeast--like fungi, dermatopytes and moulds].
Krajewska-Kułak, E; Lukaszuk, C; Niczyporuk, W
2001-01-01
Grapefruit seed extract was discovered by Jacob Harich an american immunologist in 1980. Assessment of the influence of grapefruit extract on the yeast-like fungi strains--Candida albicans growth. Material used in this investigation was ATCC test Candida albicans strains no 10231, 200 of Candida albicans strains, 5 of Candida sp. strains isolated from patients with candidiasis symptoms from different ontocenosis and 12 of dermatophytes and moulds isolated from patients. The susceptibility of the Candida was determined by serial dilution method. It seems that 33% grapefruit extract exert a potent antifungal activity against the yeast like fungi strains and had low activity against dermatophytes and moulds. Further studies in vitro and in vivo on greater number of the yeast-like fungi strains and other fungi species are needed.
Inbuilt potential of YEM medium and its constituents to generate Ag/Ag₂O nanoparticles.
Yamal, G; Sharmila, P; Rao, K S; Pardha-Saradhi, P
2013-01-01
We discovered that Yeast Extract Mannitol (YEM) medium possessed immense potential to generate silver nanoparticles from AgNO3 upon autoclaving, which was evident from (i) alteration in color of the medium; (ii) peak at ∼410 nm in UV-Vis spectrum due to surface plasmon resonance specific to silver nanoparticles; and (iii) TEM investigations. TEM coupled with EDX confirmed that distinct nanoparticles were composed of silver. Yeast extract and mannitol were key components of YEM medium responsible for the formation of nanoparticles. PXRD analysis indicated crystalline geometry and Ag/Ag2O phases in nanoparticles generated with YEM medium, yeast extract and mannitol. Our investigations also revealed that both mannitol and yeast extract possessed potential to convert ∼80% of silver ions in 0.5 mM AgNO3 to nanoparticles, on autoclaving for 30 min at 121°C under a pressure of 1.06 kg/cm(2). Addition of filter sterilized AgNO3 under ambient conditions to pre-autoclaved YEM medium and yeast extract brought about color change due to the formation of silver nanoparticles, but required prolonged duration. In general, even after 72 h intensity of color was significantly less than that recorded following autoclaving. Silver nanoparticles formed at room temperature were more heterogeneous compared to that obtained upon autoclaving. In summary, our findings demonstrated that (i) YEM medium and its constituents promote synthesis of silver nanoparticles; and (ii) autoclaving enhances rapid synthesis of silver nanoparticles by YEM medium, yeast extract and mannitol.
Baadhe, Rama Raju; Mekala, Naveen Kumar; Palagiri, Satwik Reddy; Parcha, Sreenivasa Rao
2012-07-01
In this case study, we designed a farnesyl pyrophosphate (FPP) biosynthetic network using hybrid functional Petri net with extension (HFPNe) which is derived from traditional Petri net theory and allows easy modeling with graphical approach of various types of entities in the networks together. Our main objective is to improve the production of FPP in yeast, which is further converted to amorphadiene (AD), a precursor of artemisinin (antimalarial drug). Natively, mevalonate (MEV) pathway is present in yeast. Methyl erythritol phosphate pathways (MEP) are present only in higher plant plastids and eubacteria, but not present in yeast. IPP and DAMP are common isomeric intermediate in these two pathways, which immediately yields FPP. By integrating these two pathways in yeast, we augmented the FPP synthesis approximately two folds higher (431.16 U/pt) than in MEV pathway alone (259.91 U/pt) by using HFPNe technique. Further enhanced FPP levels converted to AD by amorphadiene synthase gene yielding 436.5 U/pt of AD which approximately two folds higher compared to the AD (258.5 U/pt) synthesized by MEV pathway exclusively. Simulation and validation processes performed using these models are reliable with identified biological information and data.
Cardona, Jorge A; Lee, Joon-Hee; Talcott, Stephen T
2009-09-23
The muscadine grape ( Vitis rotundifolia ) industry of the southern United States is largely devoid of value-added processes that capture the phytochemical content of wine and juice byproducts. Methods to recover and stabilize polyphenolics from muscadine grape pomace following juice manufacture were evaluated in laboratory-scale and pilot-scale trials. In laboratory-scale trials using osmotic equilibration, water-based extracts from juice pomace initially extracted 31-42% of total polyphenolics, 26-32% of total ellagic acid, and 36-62% of total anthocyanins. When adsorbed onto Amberlite XAD-4 resin to concentrate polyphenolics, these extracts lost 10.5% of their total ellagic acid from inefficient adsorption to the solid phase support. Subsequent pilot-scale trials were evaluated using hot water extracts from grape juice pomace followed by aerobic yeast fermentation to remove sugars and comparison to reversed phase C(18) and Amberlite XAD-4. Extracts were also concentrated using spray-drying and vacuum evaporation. Fermentation had a minor impact on the retention of most polyphenolic compounds evaluated, yet resulted in a 16.3% decrease in antioxidant capacity. Spray-drying resulted in a 30.3% loss in total anthocyanins, a 21.5% loss in total phenolics, and a 23.3% decrease in antioxidant activity, whereas vacuum evaporation had no deleterious impact on these parameters. The physiology of the muscadine grape and its unique phytochemical composition has limited utilization of pomace from wine and juice manufacture. However, these studies demonstrated the potential to extract and concentrate polyphenolic-rich extracts for use in value-added applications.
Growth of Desulfovibrio on the surface of agar media.
Iverson, W P
1966-07-01
Growth of Desulfovibrio desulfuricans (API strain) was found to take place in an atmosphere of hydrogen on the agar surface of complex media, including yeast extract (Difco), and Trypticase Soy Agar (BBL) without any added reducing agents. For growth on a 2% yeast extract-agar surface in the absence of hydrogen (nitrogen atmosphere), sodium lactate was required in the medium. Growth on the surface of Trypticase Soy Agar (TSA) under nitrogen took place readily in the absence of an added hydrogen donor. A medium (TSA plus salts) is described based upon the addition of sodium lactate (4 ml per liter), magnesium sulfate (2 g per liter), and ferrous ammonium sulfate (0.05%) to TSA, which appears suitable for the isolation and growth of Desulfovibrio on the surface of agar plates in an atmosphere of hydrogen. Sodium lactate does not appear to be essential in this medium for good growth and sulfate reduction in a hydrogen atmosphere, but is essential in a nitrogen atmosphere. Growth of Desulfovibrio (hydrogen atmosphere) on the agar surface of media commonly used for its cultivation as well as on an inorganic medium containing bicarbonate as a source of carbon is poor and erratic unless inoculated (Desulfovibrio) plates of TSA plus salts are incubated in the same container with plates of these media. This stimulatory effect of incubation with inoculated plates of TSA plus salts medium appears to be due to as yet unidentified volatile material produced by D. desulfuricans when growing on this medium. Another volatile material, or possibly the identical material, appears to act similarly to a hydrogen donor.
21 CFR 160.185 - Dried egg yolks.
Code of Federal Regulations, 2011 CFR
2011-04-01
... preservative. (2) Yeast procedure. The pH of the liquid egg yolks is adjusted to the range of 6.0 to 7.0, if... maintained by adding food-grade baker's yeast (Saccharomyces cerevisiae). The quantity of yeast used and the...
21 CFR 160.185 - Dried egg yolks.
Code of Federal Regulations, 2014 CFR
2014-04-01
... preservative. (2) Yeast procedure. The pH of the liquid egg yolks is adjusted to the range of 6.0 to 7.0, if... maintained by adding food-grade baker's yeast (Saccharomyces cerevisiae). The quantity of yeast used and the...
21 CFR 160.185 - Dried egg yolks.
Code of Federal Regulations, 2013 CFR
2013-04-01
... preservative. (2) Yeast procedure. The pH of the liquid egg yolks is adjusted to the range of 6.0 to 7.0, if... maintained by adding food-grade baker's yeast (Saccharomyces cerevisiae). The quantity of yeast used and the...
21 CFR 160.185 - Dried egg yolks.
Code of Federal Regulations, 2012 CFR
2012-04-01
... preservative. (2) Yeast procedure. The pH of the liquid egg yolks is adjusted to the range of 6.0 to 7.0, if... maintained by adding food-grade baker's yeast (Saccharomyces cerevisiae). The quantity of yeast used and the...
Weckesser, S; Engel, K; Simon-Haarhaus, B; Wittmer, A; Pelz, K; Schempp, C M
2007-08-01
There is cumulative resistance against antibiotics of many bacteria. Therefore, the development of new antiseptics and antimicrobial agents for the treatment of skin infections is of increasing interest. We have screened six plant extracts and isolated compounds for antimicrobial effects on bacteria and yeasts with dermatological relevance. The following plant extracts have been tested: Gentiana lutea, Harpagophytum procumbens, Boswellia serrata (dry extracts), Usnea barbata, Rosmarinus officinalis and Salvia officinalis (supercritical carbon dioxide [CO2] extracts). Additionally, the following characteristic plant substances were tested: usnic acid, carnosol, carnosic acid, ursolic acid, oleanolic acid, harpagoside, boswellic acid and gentiopicroside. The extracts and compounds were tested against 29 aerobic and anaerobic bacteria and yeasts in the agar dilution test. U. barbata-extract and usnic acid were the most active compounds, especially in anaerobic bacteria. Usnea CO2-extract effectively inhibited the growth of several Gram-positive bacteria like Staphylococcus aureus (including methicillin-resistant strains - MRSA), Propionibacterium acnes and Corynebacterium species. Growth of the dimorphic yeast Malassezia furfur was also inhibited by Usnea-extract. Besides the Usnea-extract, Rosmarinus-, Salvia-, Boswellia- and Harpagophytum-extracts proved to be effective against a panel of bacteria. It is concluded that due to their antimicrobial effects some of the plant extracts may be used for the topical treatment of skin disorders like acne vulgaris and seborrhoic eczema.
Mahazar, N H; Zakuan, Z; Norhayati, H; MeorHussin, A S; Rukayadi, Y
2017-01-01
Inoculation of starter culture in cocoa bean fermentation produces consistent, predictable and high quality of fermented cocoa beans. It is important to produce healthy inoculum in cocoa bean fermentation for better fermented products. Inoculum could minimize the length of the lag phase in fermentation. The purpose of this study was to optimize the component of culture medium for the maximum cultivation of Candida sp. and Blastobotrys sp. Molasses and yeast extract were chosen as medium composition and Response Surface Methodology (RSM) was then employed to optimize the molasses and yeast extract. Maximum growth of Candida sp. (7.63 log CFU mL-1) and Blastobotrys sp. (8.30 log CFU mL-1) were obtained from the fermentation. Optimum culture media for the growth of Candida sp., consist of 10% (w/v) molasses and 2% (w/v) yeast extract, while for Blastobotrys sp., were 1.94% (w/v) molasses and 2% (w/v) yeast extract. This study shows that culture medium consists of molasses and yeast extract were able to produce maximum growth of Candida sp. and Blastobotrys sp., as a starter culture for cocoa bean fermentation.
Popa, Claudia Valentina; Lungu, Liliana; Cristache, Ligia Florentina; Ciuculescu, Crinu; Danet, Andrei Florin; Farcasanu, Ileana Cornelia
2015-01-01
To gain new insight into the antimicrobial potential of Ailanthus altissima Swingle, ethanol leaf extracts were evaluated for the antifungal effects against the model yeast Saccharomyces cerevisae. The extracts inhibited the yeast growth in a dose-dependent manner, and this effect could be augmented by heat shock, exposure to visible light or exposure to high concentrations of Ca(2+). Using transgenic yeast cells expressing the Ca(2+)-dependent photoprotein, aequorin, it was found that the leaf extracts induced cytosolic Ca(2+) elevation. Experiments on yeast mutants with defects in Ca(2+) transport demonstrated that the cytotoxicity of the A. altissima leaf extracts (AaLEs) was mediated by transient pulses of Ca(2+) ions which were released into the cytosol predominantly from the vacuole. The investigation of the antifungal synergies involving AaLEs may contribute to the development of optimal and safe combination therapies for the treatment of drug-resistant fungal infections.
Huff, G R; Huff, W E; Rath, N C; Solis de Los Santos, F; Farnell, M B; Donoghue, A M
2007-04-01
Two battery experiments were conducted to evaluate a commercial yeast extract feed supplement, Alphamune, in a cold stress-Escherichia coli challenge of 1-wk-old turkeys. Experiment 1 used 1-d-old male poults that were the progeny of 33-wk-old hens in their second week of lay. Experiment 2 used male poults of the same genetic line from 40-wk-old hens in their eighth week of lay. Poults were fed a standard unmedicated turkey starter diet or the same diet with either a low level (504 g/t) or a high level (1,008 g/t) of yeast extract. Challenged birds were exposed to intermittent cold stress during wk 1 to 3 and to a respiratory E. coli challenge at 1 wk of age. In both experiments, BW at wk 1 was increased by feeding yeast extract. In experiment 1, challenged, control-fed birds had decreased BW at wk 3 and feed conversion was protected by both levels of yeast extract supplementation. In experiment 2, challenge had no effect on control-fed birds; however, yeast extract decreased the BW of challenged birds. In experiment 1, total leukocyte numbers were decreased by challenge of control-fed birds only, and there was no effect of challenge on the heterophil/lymphocyte ratio. In experiment 2, total leukocyte numbers were decreased and the heterophil/lymphocyte ratio was increased in challenged, control-fed birds. Percentage mortality was not affected by challenge in experiment 1; however, in experiment 2, mortality was increased by challenge of control-fed birds and those fed the lower level of yeast extract. These results suggest that hen age should be considered when designing studies to evaluate antibiotic alternatives and in making decisions for incorporating such alternatives into production.
Inbuilt Potential of YEM Medium and Its Constituents to Generate Ag/Ag2O Nanoparticles
Yamal, G.; Sharmila, P.; Rao, K. S.; Pardha-Saradhi, P.
2013-01-01
We discovered that Yeast Extract Mannitol (YEM) medium possessed immense potential to generate silver nanoparticles from AgNO3 upon autoclaving, which was evident from (i) alteration in color of the medium; (ii) peak at ∼410 nm in UV-Vis spectrum due to surface plasmon resonance specific to silver nanoparticles; and (iii) TEM investigations. TEM coupled with EDX confirmed that distinct nanoparticles were composed of silver. Yeast extract and mannitol were key components of YEM medium responsible for the formation of nanoparticles. PXRD analysis indicated crystalline geometry and Ag/Ag2O phases in nanoparticles generated with YEM medium, yeast extract and mannitol. Our investigations also revealed that both mannitol and yeast extract possessed potential to convert ∼80% of silver ions in 0.5 mM AgNO3 to nanoparticles, on autoclaving for 30 min at 121°C under a pressure of 1.06 kg/cm2. Addition of filter sterilized AgNO3 under ambient conditions to pre-autoclaved YEM medium and yeast extract brought about color change due to the formation of silver nanoparticles, but required prolonged duration. In general, even after 72 h intensity of color was significantly less than that recorded following autoclaving. Silver nanoparticles formed at room temperature were more heterogeneous compared to that obtained upon autoclaving. In summary, our findings demonstrated that (i) YEM medium and its constituents promote synthesis of silver nanoparticles; and (ii) autoclaving enhances rapid synthesis of silver nanoparticles by YEM medium, yeast extract and mannitol. PMID:23626722
Huyben, David; Boqvist, Sofia; Passoth, Volkmar; Renström, Lena; Allard Bengtsson, Ulrika; Andréoletti, Olivier; Kiessling, Anders; Lundh, Torbjörn; Vågsholm, Ivar
2018-02-08
Yeasts can be used to convert organic food wastes to protein-rich animal feed in order to recapture nutrients. However, the reuse of animal-derived waste poses a risk for the transmission of infectious prions that can cause neurodegeneration and fatality in humans and animals. The aim of this study was to investigate the ability of yeasts to reduce prion activity during the biotransformation of waste substrates-thereby becoming a biosafety hurdle in such a circular food system. During pre-screening, 30 yeast isolates were spiked with Classical Scrapie prions and incubated for 72 h in casein substrate, as a waste substitute. Based on reduced Scrapie seeding activity, waste biotransformation and protease activities, intact cells and cell extracts of 10 yeasts were further tested. Prion analysis showed that five yeast species reduced Scrapie seeding activity by approximately 1 log10 or 90%. Cryptococcus laurentii showed the most potential to reduce prion activity since both intact and extracted cells reduced Scrapie by 1 log10 and achieved the highest protease activity. These results show that select forms of yeast can act as a prion hurdle during the biotransformation of waste. However, the limited ability of yeasts to reduce prion activity warrants caution as a sole barrier to transmission as higher log reductions are needed before using waste-cultured yeast in circular food systems.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Hydrolysate from Saccharomyces cerevisiae on all food commodities when applied/used for the management of... PESTICIDE CHEMICAL RESIDUES IN FOOD Exemptions From Tolerances § 180.1246 Yeast Extract Hydrolysate from...
Tshongo Muhindo, Christian; Ahn, Sylvie A; Rousseau, Michel F; Dierckxsens, Yvan; Hermans, Michel P
2017-12-01
Cholesfytol ® , a lipid-lowering dietary supplement with antioxidant and anti-atherosclerotic properties, combines red yeast rice (RYR) and olive extract (5mg hydroxytyrosol equivalent) and represents an alternative for patients who do not wish or are unable to use chemical statins, including individuals with previous statin-associated muscle symptoms (SAMS). A 2-months observational non-randomized study was performed to evaluate the efficacy, tolerance and safety of Cholesfytol ® (1 tablet/day) in 642 hypercholesterolemic patients (mean age: 59 yrs; total cholesterol (TC) ≥200; LDL-C ≥140mg/dl). Patients were followed by 126 GPs, and included irrespective of SAMS history and/or diabetes. None of the patients were taking statins or other lipid-modifying therapy at inclusion. At baseline, 26% had fasting glucose >100 ≤125mg/dL, and 5% >125mg/dL; 32% (n=194) had a SAMS history; and 21% had atherogenic dyslipidemia (AD). In the entire cohort, pre-treatment TC; non-HDL-C; LDL-C; and TG were 259; 200; 168; 158mg/dL, respectively, and decreased significantly on treatment (-17.5% (TC) and -23.3% (LDL-C)). Fasting glucose and HbA 1c decreased between visits. The reduction in lipids was greater in patients with higher values at baseline. For comparable pre-treatment values, patients with SAMS history had reductions in TC, LDL-C, non-HDL-C, and apoB 100 slightly less than patients without myalgia. AD patients had greater on-treatment decrease in TG. Overall, 13 patients reported minor side-effects, and 4 patients reporting myalgia had antecedent SAMS. In conclusion, a substantial decrease in LDL-C was obtained with a combination of RYR and olive extract in high-risk hypercholesterolemic patients, without inducing new-onset SAMS. Copyright © 2017 Elsevier Ltd. All rights reserved.
USDA-ARS?s Scientific Manuscript database
Studies evaluated the effectiveness of adding Saccharomyces cerevisiae with brown cane sugar (sugar) to the codling moth granulosis virus, CpGV, to improve larval control of Cydia pomonella (L.), on apple. Neither the use of the yeast or sugar alone caused larval mortality greater than the water con...
Cytotoxicity of selected medicinal plants used in Mt. Frere District, South Africa.
Mnengi, Dorris; Kappo, Abidemi; Kambizi, Learnmore; Nakin, Motebang
2014-01-01
In South African traditional medicine, some are plants known to combat pediatric diseases and are commonly used by traditional healers. The aim was to evaluate cytotoxicity effects of plants. The ground plant material was exhaustively extracted using methanol, acetone and water separately for 72 hrs. These organic solvents were removed from filtrates using a rotavapour. Stock solutions were prepared at 40 mg/ml Dimethyl sulfoxide (DMSO) and test solutions were transferred into vials and 10 brine shrimps introduced in each. The number of dead shrimps was counted to ascertain toxicity. Ten A. salina nauplii (larva) were transferred into each sample vial and filtered brine solution was added to make 5 ml. The nauplii were counted macroscopically in the stem of the pipette against a lighted background. A drop of dry yeast suspension was added as food to each vial. Probit analysis was used to determine the concentration at which lethality to brine shrimp represents 50 % (LC50). All the tested extracts showed that the concentration is directly proportional to death of brine shrimps. Fifty percent lethality (LC50) of the tested crude extract ranged between 4.1 and 4.6 µg/ml with methanol extract of B. abyssinica being the lowest and T. acutiloba the highest. This study revealed that 100% of plant crude extracts screened for activity against Artemisia salina larvae showed strong cytotoxicity below 10 µg/ml and plant species with LC50 values < 1000 µg/ml may not make good paediatric remedies due to their inherent toxicity.
Polyhexamethyl biguanide can eliminate contaminant yeasts from fuel-ethanol fermentation process.
Elsztein, Carolina; de Menezes, João Assis Scavuzzi; de Morais, Marcos Antonio
2008-09-01
Industrial ethanol fermentation is a non-sterile process and contaminant microorganisms can lead to a decrease in industrial productivity and significant economic loss. Nowadays, some distilleries in Northeastern Brazil deal with bacterial contamination by decreasing must pH and adding bactericides. Alternatively, contamination can be challenged by adding a pure batch of Saccharomyces cerevisiae-a time-consuming and costly process. A better strategy might involve the development of a fungicide that kills contaminant yeasts while preserving S. cerevisiae cells. Here, we show that polyhexamethyl biguanide (PHMB) inhibits and kills the most important contaminant yeasts detected in the distilleries of Northeastern Brazil without affecting the cell viability and fermentation capacity of S. cerevisiae. Moreover, some physiological data suggest that PHMB acts through interaction with the yeast membrane. These results support the development of a new strategy for controlling contaminant yeast population whilst keeping industrial yields high.
Capturing of the monoterpene olefin limonene produced in Saccharomyces cerevisiae.
Jongedijk, Esmer; Cankar, Katarina; Ranzijn, Jorn; van der Krol, Sander; Bouwmeester, Harro; Beekwilder, Jules
2015-01-01
Monoterpene olefins such as limonene are plant compounds with applications as flavouring and fragrance agents, as solvents and potentially also in polymer and fuel chemistry. We engineered baker's yeast Saccharomyces cerevisiae to express a (-)-limonene synthase from Perilla frutescens and a (+)-limonene synthase from Citrus limon. Both proteins were expressed either with their native plastid targeting signal or in a truncated form in which the plastidial sorting signal was removed. The yeast host strain for expression was AE9 K197G, which expresses a mutant Erg20 enzyme. This enzyme catalyses the formation of geranyl diphosphate, which is the precursor for monoterpenes. Several methods were tested to capture limonene produced by the yeast. Extraction from the culture medium by pentane, or by the addition of CaCl2 followed by solid-phase micro-extraction, did not lead to detectable limonene, indicating that limonene is rapidly lost from the culture medium. Volatile terpenes such as limonene may also be trapped in a dodecane phase added to the medium during fermentation. This method resulted in recovery of 0.028 mg/l (+)-limonene and 0.060 mg/l (-)-limonene in strains using the truncated Citrus and Perilla synthases, respectively. Trapping the headspace during culture of the limonene synthase-expressing strains resulted in higher titres, at 0.12 mg/l (+)-limonene and 0.49 mg/l (-)-limonene. These results show that the volatile properties of the olefins produced require specific methods for efficient recovery of these molecules from biotechnological production systems. Copyright © 2014 John Wiley & Sons, Ltd.
Prescott, Thomas A K; Ariño, Joaquín; Kite, Geoffrey C; Simmonds, Monique S J
2012-03-27
The leaves of Jasminum humile are used to treat skin disorders in a way which resembles the use of modern topical anti-inflammatory drugs. Ethanolic extracts of the roots and leaves were shown to inhibit calcineurin which is a regulator of inflammatory gene expression. A novel yeast calcineurin reporter gene assay suitable for a 96 well plate format was developed to test for inhibition of calcineurin-dependent gene expression. Calmodulin/calcineurin phosphatase assays were then used to further elucidate the mode of action of the extracts. Jasminum humile root and leaf extract exhibited calcineurin inhibition activity that was shown to be mediated through a direct interaction with calcineurin enzyme. The activity is sufficient to block calcineurin-dependent gene expression in a yeast model. The activity of the plant supports its traditional use in the treatment of inflammatory skin disorders. The specially adapted yeast reporter assay was found to be a highly effective way of detecting calcineurin inhibitors in plant extracts. Crown Copyright © 2012. Published by Elsevier Ireland Ltd. All rights reserved.
Mazauric, Jean-Paul; Salmon, Jean-Michel
2006-05-31
In the first part of this work, the analysis of the polyphenolic compounds remaining in the wine after different contact times with yeast lees during simulation of red wine aging was undertaken. To achieve a more precise view of the wine polyphenols adsorbed on lees during red wine aging and to establish a clear balance between adsorbed and remnant polyphenol compounds, the specific analysis of the chemical composition of the adsorbed polyphenolic compounds (condensed tannins and anthocyanins) after their partial desorbtion from yeast lees by denaturation treatments was realized in the second part of the study. The total recovery of polyphenol compounds from yeast lees was not complete, since a rather important part of the initial wine colored polyphenols, especially those with a dominant blue color component, remained strongly adsorbed on yeast lees, as monitored by color tristimulus and reflectance spectra measurements. All anthocyanins were recovered at a rather high percentage (about 62%), and it was demonstrated that they were not adsorbed in relation with their sole polarity. Very few monomeric phenolic compounds were extracted from yeast lees. With the use of drastic denaturing treatments, the total recovery of condensed tannins reached 83%. Such tannins extracted from yeast lees exhibited very high polymeric size and a rather high percentage of galloylated residues by comparison with initial wine tannins, indicating that nonpolar tannins were preferentially desorbed from yeast lees by the extraction treatments.
Hasan, Mojeer; Azhar, Mohd; Nangia, Hina; Bhatt, Prakash Chandra; Panda, Bibhu Prasad
2016-01-01
In this study astaxanthin production by Phaffia rhodozyma was enhanced by chemical mutation using ethyl methane sulfonate. The mutant produces a higher amount of astaxanthin than the wild yeast strain. In comparison to supercritical fluid technique, high-pressure homogenization is better for extracting astaxanthin from yeast cells. Ultrasonication of dimethyl sulfoxide, hexane, and acetone-treated cells yielded less astaxanthin than β-glucanase enzyme-treated cells. The combination of ultrasonication with β-glucanase enzyme is found to be the most efficient method of extraction among all the tested physical and chemical extraction methods. It gives a maximum yield of 435.71 ± 6.55 µg free astaxanthin per gram of yeast cell mass.
Exploring the Ubiquitin-Proteasome Protein Degradation Pathway in Yeast
ERIC Educational Resources Information Center
Will, Tamara J.; McWatters, Melissa K.; McQuade, Kristi L.
2006-01-01
This article describes an undergraduate biochemistry laboratory investigating the ubiquitin-proteasome pathway in yeast. In this exercise, the enzyme beta-galactosidase (beta-gal) is expressed in yeast under the control of a stress response promoter. Following exposure to heat stress to induce beta-gal expression, cycloheximide is added to halt…
A thin-layer liquid culture technique for the growth of Helicobacter pylori.
Joo, Jung-Soo; Park, Kyung-Chul; Song, Jae-Young; Kim, Dong-Hyun; Lee, Kyung-Ja; Kwon, Young-Cheol; Kim, Jung-Min; Kim, Kyung-Mi; Youn, Hee-Shang; Kang, Hyung-Lyun; Baik, Seung-Chul; Lee, Woo-Kon; Cho, Myung-Je; Rhee, Kwang-Ho
2010-08-01
Several attempts have been successful in liquid cultivation of Helicobaccter pylori. However, there is a need to improve the growth of H. pylori in liquid media in order to get affluent growth and a simple approach for examining bacterial properties. We introduce here a thin-layer liquid culture technique for the growth of H. pylori. A thin-layer liquid culture system was established by adding liquid media to a 90-mm diameter Petri dish. Optimal conditions for bacterial growth were investigated and then viability, growth curve, and released proteins were examined. Maximal growth of H. pylori was obtained by adding 3 mL of brucella broth supplemented with 10% horse to a Petri dish. H. pylori grew in both DMEM and RPMI-1640 supplemented with 10% fetal bovine serum and 0.5% yeast extract. Serum-free RPMI-1640 supported the growth of H. pylori when supplemented with dimethyl-beta-cyclodextrin (200 microg/mL) and 1% yeast extract. Under optimal growth, H. pylori grew exponentially for 28 hours, reaching a density of 3.4 OD(600) with a generation time of 3.3 hours. After 24 hours, cultures at a cell density of 1.0 OD(600) contained 1.3 +/- 0.1 x 10(9 )CFU/mL. gamma-Glutamyl transpeptidase, nuclease, superoxide dismutase, and urease were not detected in culture supernatants at 24 hours in thin-layer liquid culture, but were present at 48 hours, whereas alcohol dehydrogenase, alkylhydroperoxide reductase, catalase, and vacuolating cytotoxin were detected at 24 hours. Thin-layer liquid culture technique is feasible, and can serve as a versatile liquid culture technique for investigating bacterial properties of H. pylori.
Growth of Desulfovibrio on the Surface of Agar Media
Iverson, Warren P.
1966-01-01
Growth of Desulfovibrio desulfuricans (API strain) was found to take place in an atmosphere of hydrogen on the agar surface of complex media, including yeast extract (Difco), and Trypticase Soy Agar (BBL) without any added reducing agents. For growth on a 2% yeast extract-agar surface in the absence of hydrogen (nitrogen atmosphere), sodium lactate was required in the medium. Growth on the surface of Trypticase Soy Agar (TSA) under nitrogen took place readily in the absence of an added hydrogen donor. A medium (TSA plus salts) is described based upon the addition of sodium lactate (4 ml per liter), magnesium sulfate (2 g per liter), and ferrous ammonium sulfate (0.05%) to TSA, which appears suitable for the isolation and growth of Desulfovibrio on the surface of agar plates in an atmosphere of hydrogen. Sodium lactate does not appear to be essential in this medium for good growth and sulfate reduction in a hydrogen atmosphere, but is essential in a nitrogen atmosphere. Growth of Desulfovibrio (hydrogen atmosphere) on the agar surface of media commonly used for its cultivation as well as on an inorganic medium containing bicarbonate as a source of carbon is poor and erratic unless inoculated (Desulfovibrio) plates of TSA plus salts are incubated in the same container with plates of these media. This stimulatory effect of incubation with inoculated plates of TSA plus salts medium appears to be due to as yet unidentified volatile material produced by D. desulfuricans when growing on this medium. Another volatile material, or possibly the identical material, appears to act similarly to a hydrogen donor. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 PMID:5955798
Anvari, Masumeh; Khayati, Gholam; Rostami, Shora
2014-02-01
This study was aimed to optimise lactose, inulin and yeast extract concentration and also culture pH for maximising the growth of a probiotic bacterium, Bifidobacterium animalis subsp. lactis in apple juice and to assess the effects of these factors by using response surface methodology. A second-order central composite design was applied to evaluate the effects of these independent variables on growth of the microorganism. A polynomial regression model with cubic and quadratic terms was used for analysis of the experimental data. It was found that the effects involving inulin, yeast extract and pH on growth of the bacterium were significant, and the strongest effect was given by the yeast extract concentration. Estimated optimum conditions of the factors on the bacterial growth are as follows: lactose concentration=9·5 g/l; inulin concentration=38·5 mg/l; yeast extract concentration=9·6 g/l and initial pH=6·2.
Liguori, Rossana; Soccol, Carlos Ricardo; Vandenberghe, Luciana Porto de Souza; Woiciechowski, Adenise Lorenci; Ionata, Elena; Marcolongo, Loredana; Faraco, Vincenza
2015-01-01
Six Lactobacillus strains were analyzed to select a bacterium for conversion of brewers' spent grain (BSG) into lactic acid. Among the investigated strains, L. acidophilus ATCC 43121 showed the highest yield of lactic acid production (16.1 g/L after 48 hours) when grown in a synthetic medium. It was then analyzed for its ability to grow on the hydrolysates obtained from BSG after acid-alkaline (AAT) or aqueous ammonia soaking (AAS) pretreatment. The lactic acid production by L. acidophilus ATCC 43121 through fermentation of the hydrolysate from AAS treated BSG was 96% higher than that from the AAT treated one, although similar yields of lactic acid per consumed glucose were achieved due to a higher (46%) glucose consumption by L. acidophilus ATCC 43121 in the AAS BSG hydrolysate. It is worth noting that adding yeast extract to the BSG hydrolysates increased both the yield of lactic acid per substrate consumed and the volumetric productivity. The best results were obtained by fermentation of AAS BSG hydrolysate supplemented by yeast extract, in which the strain produced 22.16 g/L of lactic acid (yield of 0.61 g/g), 27% higher than the value (17.49 g/L) obtained in the absence of a nitrogen source. PMID:26640784
Hamlet, C G; Sadd, P A
2005-07-01
A major precursor of 3-monochloropropanediol (3-MCPD) in leavened cereal products is glycerol, which is formed as a natural by-product of yeast fermentation. However, yeast metabolism is affected by stresses such as low osmotic pressure from, for example, the incorporation of sugar or salt in the dough recipe. Tests with model doughs have shown that glycerol production was proportional to yeast mass and limited by available sugars, but that high levels of yeast inhibited 3-MCPD formation. The yeast fraction responsible for the inhibition of 3-MCPD in model dough was shown to be the soluble cytosol proteins, and the inhibition mechanism could be explained by the known reactions of 3-MCPD and/or its precursors with ammonia/amino acids (from yeast proteins). Added glucose did not increase the production of glycerol by yeast but it did promote the generation of 3-MCPD in cooked doughs. The latter effect was attributed to the removal of 3-MCPD inhibitors such as ammonia and amino acids by their reactions with added glucose (e.g. Maillard). The thermal generation of organic acids from added glucose also reduced the pH of cooked doughs, so the effect of pH and short-chain organic acids on 3-MCPD generation in dough was measured. There was a good correlation between initial dough pH and the level of 3-MCPD generated. The effect was weaker than that predicted by simple kinetic modelling, suggesting that the involvement of H+ and/or the organic acid was catalytic. The results showed that modifications to dough recipes involving the addition of reducing sugars and/or organic acids can have a significant impact on 3-MPCD generation in bakery products.
Saveliev, A S; Kovaleva, I E; Novikova, L A; Isaeva, L V; Luzikov, V N
1999-03-15
When studying the fate of mammalian apocytochrome P450scc (apo-P450scc) imported in small amounts into isolated yeast mitochondria, we found that it undergoes degradation, this process being retarded if recipient mitochondria are preloaded in vivo (to about 0.2% of total organelle protein) with a fusion protein composed of mammalian adrenodoxin reductase and adrenodoxin (AdR-Ad); in parallel we observed aggregation of apo-P450scc. These effects suggest some overload of Pim1p protease and/or mtHsp70 system by AdR-Ad, as both of them are involved in the degradation of apo-P450scc (see Savel'ev et al. J. Biol. Chem. 273, 20596-20602, 1998). However, under the same conditions AdR-Ad was not able to impede the import of proteins into mitochondria and the development of the mitochondrial respiratory machinery in yeast, the processes requiring the mtHsp70 system and Pim1p, respectively. These data imply that chaperones and Pim1p protease prefer their natural targets in mitochondria to imported foreign proteins. Copyright 1999 Academic Press.
Separation of Corn Fiber and Conversion to Fuels and Chemicals Phase II: Pilot-scale Operation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abbas, Charles; Beery, Kyle; Orth, Rick
2007-09-28
The purpose of the Department of Energy (DOE)-supported corn fiber conversion project, “Separation of Corn Fiber and Conversion to Fuels and Chemicals Phase II: Pilot-scale Operation” is to develop and demonstrate an integrated, economical process for the separation of corn fiber into its principal components to produce higher value-added fuel (ethanol and biodiesel), nutraceuticals (phytosterols), chemicals (polyols), and animal feed (corn fiber molasses). This project has successfully demonstrated the corn fiber conversion process on the pilot scale, and ensured that the process will integrate well into existing ADM corn wet-mills. This process involves hydrolyzing the corn fiber to solubilize 50%more » of the corn fiber as oligosaccharides and soluble protein. The solubilized fiber is removed and the remaining fiber residue is solvent extracted to remove the corn fiber oil, which contains valuable phytosterols. The extracted oil is refined to separate the phytosterols and the remaining oil is converted to biodiesel. The de-oiled fiber is enzymatically hydrolyzed and remixed with the soluble oligosaccharides in a fermentation vessel where it is fermented by a recombinant yeast, which is capable of fermenting the glucose and xylose to produce ethanol. The fermentation broth is distilled to remove the ethanol. The stillage is centrifuged to separate the yeast cell mass from the soluble components. The yeast cell mass is sold as a high-protein yeast cream and the remaining sugars in the stillage can be purified to produce a feedstock for catalytic conversion of the sugars to polyols (mainly ethylene glycol and propylene glycol) if desirable. The remaining materials from the purification step and any materials remaining after catalytic conversion are concentrated and sold as a corn fiber molasses. Additional high-value products are being investigated for the use of the corn fiber as a dietary fiber sources.« less
Peighamy-Ashnaei, S; Sharifi-Tehrani, A; Ahmadzadeh, M; Behboudi, K
2008-01-01
The medium has a profound effect on biocontrol agents, including ability to grow and effectiveness in disease control. In this study, growth and antagonistic efficacy of strains P-5 and P-35 (P. fluorescens), B-3 and B-16 (B. subtilis) were evaluated in combinations of two carbon (sucrose and molasses) and two nitrogen (urea and yeast extract) sources to optimize control of Botrytis cinerea on apple. All of the strains were grown in different liquid media (pH = 6.9) including: sucrose + yeast extract, molasses of sugar beet + yeast extract in 2:1 and 1:1 w/w ratios, molasses of sugar beet + urea, molasses, malt extract and nutrient broth. Apples (Golden Delicious) were inoculated by a 25-microl suspension of 10(6) spores of B. cinerea per ml, wounding each fruit (in two sites separately). Then a 25-microl suspension of each strain, containing 2 x 10(8) cfu ml(-1) grown in each of the above culture media, was applied to each wound. Results indicated that Molasses + Yeast extract (1:1 w/w) medium supported rapid growth in all of the strains. The final growth of B. subtilis B-16 in Molasses + Yeast extract (1:1 w/w) medium was 5 x 10(9) cfu ml(-1). After ten days, all of the strains significantly inhibited pathogenicity of B. cinerea on apples. The biocontrol efficacy of B. subtilis B-3 in Molasses + Yeast extract (1:1 w/w) medium reduced the severity of grey mould from 100% (inoculated control) to less than 26.9%. After 20 days, Strain B-3 showed a considerable biocontrol efficacy in Molasses medium and reduced the severity of grey mould from 100% (inoculated control) to less than 38.2%. The results obtained in this study could be used to provide a reliable basis for the increase of population of biocontrol agents in fermentation process.
Abdul Khalil, Khalilah; Mustafa, Shuhaimi; Mohammad, Rosfarizan; Bin Ariff, Arbakariya; Shaari, Yamin; Abdul Manap, Yazid; Dahalan, Farrah Aini
2014-01-01
This study was undertaken to optimize skim milk and yeast extract concentration as a cultivation medium for optimal Bifidobacteria pseudocatenulatum G4 (G4) biomass and β-galactosidase production as well as lactose and free amino nitrogen (FAN) balance after cultivation period. Optimization process in this study involved four steps: screening for significant factors using 23 full factorial design, steepest ascent, optimization using FCCD-RSM, and verification. From screening steps, skim milk and yeast extract showed significant influence on the biomass production and, based on the steepest ascent step, middle points of skim milk (6% wt/vol) and yeast extract (1.89% wt/vol) were obtained. A polynomial regression model in FCCD-RSM revealed that both factors were found significant and the strongest influence was given by skim milk concentration. Optimum concentrations of skim milk and yeast extract for maximum biomass G4 and β-galactosidase production meanwhile low in lactose and FAN balance after cultivation period were 5.89% (wt/vol) and 2.31% (wt/vol), respectively. The validation experiments showed that the predicted and experimental values are not significantly different, indicating that the FCCD-RSM model developed is sufficient to describe the cultivation process of G4 using skim-milk-based medium with the addition of yeast extract. PMID:24527457
Omoruyi, Iyekhoetin Matthew; Kabiersch, Grit; Pohjanvirta, Raimo
2013-01-01
Processed and packaged food items as well as ready-to-eat snacks are neglected and poorly characterised sources of human exposure to endocrine-disrupting chemicals (EDCs). In this study we investigated the presence of xenoestrogens in commercially processed and packaged Finnish foods, arising from substances deliberately added or inadvertently contaminating the food, substances formed as a result of food processing, or substances leaching from food packaging materials. Samples were obtained in three separate batches of equivalent products from both a supermarket and a local representative of a global chain of hamburger restaurants and extracted by a solid-phase extraction method. Their endocrine-disrupting potential was determined by yeast bioluminescent assay, using two recombinant yeast strains Saccharomyces cerevisiae BMAEREluc/ERα and S. cerevisiae BMA64/luc. In this test system, the majority of samples (both foodstuffs and wrappers) analysed proved negative. However, all batches of industrially prepared hamburgers (but not those obtained from a hamburger restaurant) as well as pepper salami significantly induced luciferase activity in the BMAEREluc/ERα yeast strain indicating the presence of xenoestrogens, with estradiol equivalents of these products ranging from 0.2 to 443 pg g(-1). All three products contained soy-based ingredients, which apparently accounted for, or at least contributed to, their high estrogenic activity, since no signal in the assay was observed with extracts of the packaging material, while two different soy sauces tested yielded an intense signal (28 and 54 pg ml(-1) estradiol-equivalent). These findings imply that by and large chemicals arising in the processing or packaging of foodstuffs in Finland constitute an insignificant source of xenoestrogens to consumers. However, soy-derived ingredients in certain food items might render the entire products highly estrogenic. The estrogenic activity of soy is attributed to isoflavones whose health effects - though widely considered beneficial - are controversial. As hamburgers are a popular type of food among children, the findings are noteworthy and possibly of concern.
Vieira, Elsa; Brandão, Tiago; Ferreira, Isabel M P L V O
2013-09-18
The present work evaluates the influence of serial yeast repitching on nucleotide composition of brewer's spent yeast extracts produced without addition of exogenous enzymes. Two procedures for disrupting cell walls were compared, and the conditions for low-cost and efficient RNA hydrolysis were selected. A HILIC methodology was validated for the quantification of nucleotides and nucleosides in yeast extracts. Thirty-seven samples of brewer's spent yeast ( Saccharomyces pastorianus ) organized according to the number of serial repitchings were analyzed. Nucleotides accounted for 71.1-88.2% of the RNA products; 2'AMP was the most abundant (ranging between 0.08 and 2.89 g/100 g dry yeast). 5'GMP content ranged between 0.082 and 0.907 g/100 g dry yeast. The sum of 5'GMP, 5'IMP, and 5'AMP represented between 25 and 32% of total nucleotides. This works highlights for the first time that although serial repitching influences the content of monophosphate nucleotides and nucleosides, the profiles of these RNA hydrolysis products are not affected.
Linke, Bettina; Schröder, Kersten; Arter, Juliane; Gasperazzo, Tatiana; Woehlecke, Holger; Ehwald, Rudolf
2010-09-01
Here we report that dehydrated ethanol is an excellent medium for both in situ preservation of nucleic acids and cell disruption of plant and yeast cells. Cell disruption was strongly facilitated by prior dehydration of the ethanol using dehydrated zeolite. Following removal of ethanol, nucleic acids were extracted from the homogenate pellet using denaturing buffers. The method provided DNA and RNA of high yield and integrity. Whereas cell wall disruption was essential for extraction of DNA and large RNA molecules, smaller molecules such as tRNAs could be selectively extracted from undisrupted, ethanol-treated yeast cells. Our results demonstrate the utility of absolute ethanol for sample fixation, cell membrane and cell wall disruption, as well as preservation of nucleic acids during sample storage.
Wiedmeier, R D; Arambel, M J; Walters, J L
1987-10-01
Four nonpregnant and nonlactating Holstein cows fitted with ruminal fistulas were assigned to each of four diets in a 4 X 4 Latin square design. Dietary treatments were 1) basal diet containing 50% concentrate; 2) basal diet plus 90 g/d yeast culture; 3) basal diet plus 2.63 g/d Aspergillus oryzae fermentation extract; 4) basal diet plus 90 g/d of A. oryzae fermentation extract and yeast culture. Cows were fed diets at a rate of 86 g DM/kg BW.75 for 14 d adaptation followed by an 8-d collection period. Digestibility of dry matter was increased by A. oryzae and A. oryzae and yeast culture combination treatments. Digestibility of CP was increased regardless of fungal culture addition. Hemicellulose digestibility, percent ruminal cellulolytic organisms, and acetate to propionate ratio were increased by the addition of fungal supplements.
Knight, Alan L; Basoalto, Esteban; Yee, Wee; Hilton, Rick; Kurtzman, Cletus P
2016-08-01
Drosophila suzukii is a major pest of cherry in the western United States. We evaluated whether the addition of sugary baits could improve the efficacy of two classes of insecticides not considered to be sufficiently effective for this pest, diamides and spinosyns, in laboratory and field trials in cherry. Adding cane sugar alone or in combination with the yeasts Saccharomyces cerevisiae or Aureobasidium pullulans significantly improved insecticide efficacy. However, the significance of adding yeasts to the sugar plus insecticide on fly mortality varied with respect to both the insecticide and yeast species. The addition of S. cerevisiae to sugar also did not significantly reduce egg densities in fruit compared with sugar alone. The addition of a yeast plus sugar significantly reduced egg densities in three field trials with cyantraniliprole and in two out of three trials with spinosad. The addition of cane sugar with or without yeast can improve the effectiveness of diamide and spinosyn insecticides for D. suzukii in cherry. Inclusion of these two insecticides in D. suzukii management programs may alleviate the strong selection pressure currently being imposed on a few mode-of-action insecticide classes used by growers to maintain fly suppression over long continuous harvest periods of mixed cultivars. Published 2015. This article is a U.S. Government work and is in the public domain in the USA. Published 2015. This article is a U.S. Government work and is in the public domain in the USA.
Use of Non-Conventional Cell Disruption Method for Extraction of Proteins from Black Yeasts
Čolnik, Maja; Primožič, Mateja; Knez, Željko; Leitgeb, Maja
2016-01-01
The influence of pressure and treatment time on cells disruption of different black yeasts and on activities of extracted proteins using supercritical carbon dioxide process was studied. The cells of three different black yeasts Phaeotheca triangularis, Trimatostroma salinum, and Wallemia ichthyophaga were exposed to supercritical carbon dioxide (SC CO2) by varying pressure at fixed temperature (35°C). The black yeasts cell walls were disrupted, and the content of the cells was spilled into the liquid medium. The impact of SC CO2 conditions on secretion of enzymes and proteins from black yeast cells suspension was studied. The residual activity of the enzymes cellulase, β-glucosidase, α-amylase, and protease was studied by enzymatic assay. The viability of black yeast cells was determined by measuring the optical density of the cell suspension at 600 nm. The total protein concentration in the suspension was determined on UV–Vis spectrophotometer at 595 nm. The release of intracellular and extracellular products from black yeast cells was achieved. Also, the observation by an environmental scanning electron microscopy shows major morphological changes with SC CO2-treated cells. The advantages of the proposed method are in a simple use, which is also possible for heat-sensitive materials on one hand and on the other hand integration of the extraction of enzymes and their use in biocatalytical reactions. PMID:27148527
Potential of agroindustrial waste from olive oil industry for fuel ethanol production.
Georgieva, Tania I; Ahring, Birgitte K
2007-12-01
Olive pulp (OP) is a highly polluting semi-solid residue generated from the two-stage extraction processing of olives and is a major environmental issue in Southern Europe, where 80% of the world olive oil is produced. At present, OP is either discarded to the environment or combusted with low calorific value. In this work, utilization of OP as a potential substrate for production of bioethanol was studied. Enzymatic hydrolysis and subsequent glucose fermentation by baker's yeast were evaluated for OP from 10% to 30% dry matter (i.e., undiluted). Enzymatic hydrolysis resulted in an increase in glucose concentration by 75%, giving final glucose yields near 70%. Fermentation of undiluted OP hydrolysate (OPH) resulted in the maximum ethanol produced (11.2 g/L) with productivity of 2.1 g/L/h. Ethanol yields were similar for all tested OPH concentrations and were in the range of 0.49-0.51 g/g. Results showed that yeast could effectively ferment OPH even without nutrient addition, revealing the tolerance of yeast to OP toxicity. Because of low xylan (12.4%) and glucan (16%) content in OP, this specific type of OP is not a suitable material for producing only ethanol and thus, bioethanol production should be integrated with production of other value-added products.
Extraction of the number of peroxisomes in yeast cells by automated image analysis.
Niemistö, Antti; Selinummi, Jyrki; Saleem, Ramsey; Shmulevich, Ilya; Aitchison, John; Yli-Harja, Olli
2006-01-01
An automated image analysis method for extracting the number of peroxisomes in yeast cells is presented. Two images of the cell population are required for the method: a bright field microscope image from which the yeast cells are detected and the respective fluorescent image from which the number of peroxisomes in each cell is found. The segmentation of the cells is based on clustering the local mean-variance space. The watershed transformation is thereafter employed to separate cells that are clustered together. The peroxisomes are detected by thresholding the fluorescent image. The method is tested with several images of a budding yeast Saccharomyces cerevisiae population, and the results are compared with manually obtained results.
Growth of the extremophilic Deinococcus geothermalis DSM 11302 using co-substrate fed-batch culture.
Bornot, Julie; Molina-Jouve, Carole; Uribelarrea, Jean-Louis; Gorret, Nathalie
2014-02-01
Deinococcus geothermalis metabolism has been scarcely studied to date, although new developments on its utilization for bioremediation have been carried out. So, large-scale production of this strain and a better understanding of its physiology are required. A fed-batch experiment was conducted to achieve a high cell density non-limiting culture of D. geothermalis DSM 11302. A co-substrate nutritional strategy using glucose and yeast extract was carried out in a 20-L bioreactor in order to maintain a non-limited growth at a maximal growth rate of 1 h(-1) at 45 °C. Substrate supplies were adjusted by monitoring online culture parameters and physiological data (dissolved oxygen, gas analyses, respiratory quotient, biomass concentration). The results showed that yeast extract could serve as both carbon and nitrogen sources, although glucose and ammonia were consumed too. Yeast extract carbon-specific uptake rate reached a value 4.5 times higher than glucose carbon-specific uptake rate. Cell concentration of 9.6 g L(-1) dry cell weight corresponding to 99 g of biomass was obtained using glucose and yeast extract as carbon and nitrogen sources.
Soares, Lais Américo; Braga, Juliana Kawanishi; Motteran, Fabrício; Sakamoto, Isabel Kimiko; Silva, Edson Luiz; Varesche, Maria Bernadete Amâncio
2017-07-01
Hydrogen production from hydrothermally pretreated (200 °C for 10 min at 16 bar) sugarcane bagasse was analyzed using response surface methodology. The yeast extract concentration and the temperature had a significant influence for hydrogen production (p-value 0.027 and 0.009, respectively). Maximum hydrogen production (17.7 mmol/L) was observed with 3 g/L yeast extract at 60 °C (C10). In this conditions were produced acetic acid (50.44 mg/L), butyric acid (209.71 mg/L), ethanol (38.4 mg/L), and methane (6.27 mmol/L). Lower hydrogen productions (3.5 mmol/L and 3.9 mmol/L) were observed under the conditions C7 (2 g/L of yeast extract, 35.8 °C) and C9 (1 g/L of yeast extract, 40 °C), respectively. The low yeast extract concentration and low temperature caused a negative effect on the hydrogen production. By means of denaturing gradient gel electrophoresis 20% of similarity was observed between the archaeal population of mesophilic (35 and 40 °C) and thermophilic (50, 60 and 64 °C) reactors. Likewise, similarity of 22% was noted between the bacterial population for the reactors with the lowest hydrogen production (3.5 mmol/L), at 35.8 °C and with the highest hydrogen production (17.7 mmol/L) at 60 °C demonstrating that microbial population modification was a function of incubation temperature variation.
Qi, Aisha; Yeo, Leslie; Friend, James; Ho, Jenny
2010-02-21
Paper has been proposed as an inexpensive and versatile carrier for microfluidics devices with abilities well beyond simple capillary action for pregnancy tests and the like. Unlike standard microfluidics devices, extracting a fluid from the paper is a challenge and a drawback to its broader use. Here, we extract fluid from narrow paper strips using surface acoustic wave (SAW) irradiation that subsequently atomizes the extracted fluid into a monodisperse aerosol for use in mass spectroscopy, medical diagnostics, and drug delivery applications. Two protein molecules, ovalbumin and bovine serum albumin (BSA), have been preserved in paper and then extracted using atomized mist through SAW excitation; protein electrophoresis shows there is less than 1% degradation of either protein molecule in this process. Finally, a solution of live yeast cells was infused into paper, which was subsequently dried for preservation then remoistened to extract the cells via SAW atomization, yielding live cells at the completion of the process. The successful preservation and extraction of fluids, proteins and yeast cells significantly expands the usefulness of paper in microfluidics.
Misra, Ashish; Conway, Matthew F.; Johnnie, Joseph; Qureshi, Tabish M.; Lige, Bao; Derrick, Anne M.; Agbo, Eddy C.; Sriram, Ganesh
2013-01-01
Synthetic biology enables metabolic engineering of industrial microbes to synthesize value-added molecules. In this, a major challenge is the efficient redirection of carbon to the desired metabolic pathways. Pinpointing strategies toward this goal requires an in-depth investigation of the metabolic landscape of the organism, particularly primary metabolism, to identify precursor and cofactor availability for the target compound. The potent antimalarial therapeutic artemisinin and its precursors are promising candidate molecules for production in microbial hosts. Recent advances have demonstrated the production of artemisinin precursors in engineered yeast strains as an alternative to extraction from plants. We report the application of in silico and in vivo metabolic pathway analyses to identify metabolic engineering targets to improve the yield of the direct artemisinin precursor dihydroartemisinic acid (DHA) in yeast. First, in silico extreme pathway (ExPa) analysis identified NADPH-malic enzyme and the oxidative pentose phosphate pathway (PPP) as mechanisms to meet NADPH demand for DHA synthesis. Next, we compared key DHA-synthesizing ExPas to the metabolic flux distributions obtained from in vivo 13C metabolic flux analysis of a DHA-synthesizing strain. This comparison revealed that knocking out ethanol synthesis and overexpressing glucose-6-phosphate dehydrogenase in the oxidative PPP (gene YNL241C) or the NADPH-malic enzyme ME2 (YKL029C) are vital steps toward overproducing DHA. Finally, we employed in silico flux balance analysis and minimization of metabolic adjustment on a yeast genome-scale model to identify gene knockouts for improving DHA yields. The best strategy involved knockout of an oxaloacetate transporter (YKL120W) and an aspartate aminotransferase (YKL106W), and was predicted to improve DHA yields by 70-fold. Collectively, our work elucidates multiple non-trivial metabolic engineering strategies for improving DHA yield in yeast. PMID:23898325
Weber, Roland W S; Anke, Heidrun; Davoli, Paolo
2007-03-23
A simple method for the extraction of carotenoid pigments from frozen wet cells of red yeasts (Basidiomycota) and their analysis by reversed-phase HPLC using a C(18) column and a water/acetone solvent system is described. Typical red yeast carotenoids belonging to an oxidative series from the monocyclic gamma-carotene to 2-hydroxytorularhodin and from the bicyclic beta-carotene to astaxanthin were separated. Pigment identity was confirmed by LC-atmospheric pressure chemical ionisation (APCI) mass spectrometry using similar chromatographic conditions.
Vaheed, Hossein; Shojaosadati, Seyed Abbas; Galip, Hasan
2011-01-01
In this research, ethanol production from carob pod extract (extract) using Zymomonas mobilis with medium optimized by Plackett-Burman (P-B) and response surface methodologies (RSM) was studied. Z. mobilis was recognized as useful for ethanol production from carob pod extract. The effects of initial concentrations of sugar, peptone, and yeast extract as well as agitation rate (rpm), pH, and culture time in nonhydrolyzed carob pod extract were investigated. Significantly affecting variables (P = 0.05) in the model obtained from RSM studies were: weights of bacterial inoculum, initial sugar, peptone, and yeast extract. Acid hydrolysis was useful to complete conversion of sugars to glucose and fructose. Nonhydrolyzed extract showed higher ethanol yield and residual sugar compared with hydrolyzed extract. Ethanol produced (g g(-1) initial sugar, as the response) was not significantly different (P = 0.05) when Z. mobilis performance was compared in hydrolyzed and nonhydrolyzed extract. The maximum ethanol of 0.34 ± 0.02 g g(-1) initial sugar was obtained at 30°C, initial pH 5.2, and 80 rpm, using concentrations (g per 50 mL culture media) of: inoculum bacterial dry weight, 0.017; initial sugar, 5.78; peptone, 0.43; yeast extract, 0.43; and culture time of 36 h.
Figuerola, F E; Estévez, A M; Castillo, E
1987-06-01
The feasibility of adding chick-pea flour substituting part of wheat flour in yeast-leavened bread-making in order to increase the protein value, was studied. A 70% extraction chick-pea flour of commercial granulometry (150 mu) was prepared. Wheat flours of 74% and 78% extraction were then blended with 5%, 10% and 15% of chick-pea flour. Every flour and blend were subsequently analyzed to determine protein, ash, fiber, fat and maltose content, as well as sedimentation, farinogram and bread-making. Addition of chick-pea flour increased protein, fiber, ash and fat content in the blends, not causing a severe effect on quality, even at the 15% level of substitution. Blends showed an increase in maltose content, W value and bread specific volume. Furthermore, breads prepared were of good quality even without the use of maturing agents.
In Situ Dechlorination of Solvents in Saturated Soils
1996-05-01
riboflavin 0.025 nicotinic acid 0.025 DL-calcium pantothenate 0.025 vitamin B12 0.025 p-aminobenzoic acid 0.025 lipoic acid 0.025 yeast extract...contaminated core materials collected from the Coast Guard Air Station in Traverse City, MI. Four fatty acids and three alcohols were tested for their...EXTRACT CONCENTRATIONS Vitamin/Yeast Extract Concentration (mg/L) d-biotin 0.01 folic acid 0.01 pyridoxine hydrochloride 0.05 thiamin hydrochloride 0.025
Interference of peptone and tyrosine with the lignin peroxidase assay.
ten Have, R; Hartmans, S; Field, J A
1997-01-01
The N-unregulated white rot fungus Bjerkandera sp. strain BOS55 was cultured in 1 liter of peptone-yeast extract medium to produce lignin peroxidase (LiP). During the LiP assay, the oxidation of veratryl alcohol to veratraldehyde was inhibited due to tyrosine present in the peptone and the yeast extract. PMID:9251220
Galli, A; Della Latta, V; Bologna, C; Pucciarelli, D; Cipriani, F; Backovic, A; Cervelli, T
2017-08-01
Adeno-associated virus type 2 (AAV) is a nonpathogenic parvovirus that is a promising tool for gene therapy. We aimed to construct plasmids for optimal expression and assembly of capsid proteins and evaluate adenovirus (Ad) protein effect on AAV single-stranded DNA (ssDNA) formation in Saccharomyces cerevisiae. Yeast expression plasmids have been developed in which the transcription of AAV capsid proteins (VP1,2,3) is driven by the constitutive ADH1 promoter or galactose-inducible promoters. Optimal VP1,2,3 expression was obtained from GAL1/10 bidirectional promoter. Moreover, we demonstrated that AAP is expressed in yeast and virus-like particles (VLPs) assembled inside the cell. Finally, the expression of two Ad proteins, E4orf6 and E1b55k, had no effect on AAV ssDNA formation. This study confirms that yeast is able to form AAV VLPs; however, capsid assembly and ssDNA formation are less efficient in yeast than in human cells. Moreover, the expression of Ad proteins did not affect AAV ssDNA formation. New manufacturing strategies for AAV-based gene therapy vectors (rAAV) are needed to reduce costs and time of production. Our study explores the feasibility of yeast as alternative system for rAAV production. © 2017 The Society for Applied Microbiology.
Bioleaching of electronic scrap by mixed culture of moderately thermophilic microorganisms
NASA Astrophysics Data System (ADS)
Ivǎnuş, D.; ǎnuş, R. C., IV; Cǎlmuc, F.
2010-06-01
A process for the metal recovery from electronic scrap using bacterial leaching was investigated. A mixed culture of moderately thermophilic microorganisms was enriched from acid mine drainages (AMDs) samples collected from several sulphide mines in Romania, and the bioleaching of electronic scrap was conducted both in shake flask and bioreactor. The results show that in the shake flask, the mixture can tolerate 50 g/L scrap after being acclimated to gradually increased concentrations of scrap. The copper extraction increases obviously in bioleaching of scrap with moderately thermophilic microorganisms supplemented with 0.4 g/L yeast extract at 180 r/min, 74% copper can be extracted in the pulp of 50 g/L scrap after 20 d. Compared with copper extractions of mesophilic culture, unacclimated culture and acclimated culture without addition of yeast extract, that of accliniated culture with addition of yeast extract is increased by 53%, 44% and 16%, respectively. In a completely stirred tank reactor, the mass fraction of copper and total iron extraction reach up to 81% and 56%, respectively. The results also indicate that it is necessary to add a large amount of acid to the pulp to extract copper from electronic scrap effectively.
Development of Biologically Modified Anodes for Energy Harvesting Using Microbial Fuel Cells
2012-09-01
also robust and conductive. 2. MATERIALS AND METHODS Artificial, conductive biofilms were prepared of both yeast and bacteria from the genera...written software using LabView. 2.1 Yeast Yeast biofilms were all prepared using a minimal media referred to as M9 with glucose added. M9 consists... yeast was cultured in the presence of a carbon felt electrode (~1cm X4cm) with a titanium wire as the electrical lead. 7 micron carbon fiber was
A Functional Genomics Approach to Identify Novel Breast Cancer Gene Targets in Yeast
2004-05-01
AD Award Number: DAMD17-03-1-0232 TITLE: A Functional Genomics Approach to Identify Novel Breast Cancer Gene Targets in Yeast PRINCIPAL INVESTIGATOR...Approach to Identify Novel Breast DAMD17-03-1-0232 Cancer Gene Targets in Yeast 6. A UTHOR(S) Craig Bennett, Ph.D. 7. PERFORMING ORGANIZA TION NAME(S...Unlimited 13. ABSTRACT (Maximum 200 Words) We are using the yeast Saccharomyces cerevisiae to identify new cancer gene targets that interact with the
In vitro hypoglycemic effects of Albizzia lebbeck and Mucuna pruriens
Bhutkar, Mangesh; Bhise, Satish
2013-01-01
Objective To verify the antidiabetic potential of stem bark of Albizzia lebbeck (A. lebbeck) and seeds of Mucuna pruriens (M. pruriens) using various in vitro techniques. Methods The plant extracts were studied for their effects on glucose adsorption, diffusion amylolysis kinetics and glucose transport across yeast cells. Results Both the plant extracts adsorbed glucose and the adsorption of glucose increased remarkably with an increase in glucose concentration. No significant (P≤0.05) differences were observed between the adsorption capacities of A. lebbeck and M. pruriens. In amylolysis kinetic experimental model the rate of glucose diffusion was found to increase with time from 30 to 180 min, and both the plant extracts demonstrated significant inhibitory effects on movement of glucose into external solution across dialysis membrane as compared to control. The retardation of glucose diffusion by A. lebbeck extract was significantly higher (P≤0.05) than M. pruriens. These effects were reflected with higher glucose dialysis retardation index values for A. lebbeck than M. pruriens. The plant extracts also promoted glucose uptake by yeast cells. The rate of uptake of glucose into yeast cells was linear in all the 5 glucose concentrations used in the study. M. pruriens extract exhibited significantly higher (P≤0.05) activity than the extract of A. lebbeck at all concentrations. Conclusions The results verified the antidiabetic potential of A. lebbeck and M. pruriens. The hypoglycemic effect exhibited by the extracts is mediated by increasing glucose adsorption, decreasing glucose diffusion rate and at the cellular level by promoting glucose transport across the cell membrane as revealed by simple in vitro model of yeast cells.
Antimicrobial activity of grapefruit seed and pulp ethanolic extract.
Cvetnić, Zdenka; Vladimir-Knezević, Sanda
2004-09-01
Antibacterial and antifungal activity of ethanolic extract of grapefruit (Citrus paradisi Macf., Rutaceae) seed and pulp was examined against 20 bacterial and 10 yeast strains. The level of antimicrobial effects was established using an in vitro agar assay and standard broth dilution susceptibility test. The contents of 3.92% of total polyphenols and 0.11% of flavonoids were determined spectrometrically in crude ethanolic extract. The presence of flavanones naringin and hesperidin in the extract was confirmed by TLC analysis. Ethanolic extract exibited the strongest antimicrobial effect against Salmonella enteritidis (MIC 2.06%, m/V). Other tested bacteria and yeasts were sensitive to extract concentrations ranging from 4.13% to 16.50% (m/V).
Han, Sang-Min; Lee, Jong-Soo
2017-09-01
This study was done to produce γ-aminobutyric acid (GABA) from wild yeast as well as investigate its anti-hyperglycemic effects. Among ten GABA-producing yeast strains, Pichia silvicola UL6-1 and Sporobolomyces carnicolor 402-JB-1 produced high GABA concentration of 134.4 µg/mL and 179.2 µg/mL, respectively. P. silvicola UL6-1 showed a maximum GABA yield of 136.5 µg/mL and 200.8 µg/mL from S. carnicolor 402-JB-1 when they were cultured for 30 hr at 30℃ in yeast extract-peptone-dextrose medium. The cell-free extract from P. silvicola UL6-1 and S. carnicolor 402-JB-1 showed very high anti-hyperglycemic α-glucosidase inhibitory activity of 72.3% and 69.9%, respectively. Additionally, their cell-free extract-containing GABA showed the anti-hyperglycemic effect in streptozotocin-induced diabetic Sprague-Dawley rats.
Han, Sang-Min
2017-01-01
This study was done to produce γ-aminobutyric acid (GABA) from wild yeast as well as investigate its anti-hyperglycemic effects. Among ten GABA-producing yeast strains, Pichia silvicola UL6-1 and Sporobolomyces carnicolor 402-JB-1 produced high GABA concentration of 134.4 µg/mL and 179.2 µg/mL, respectively. P. silvicola UL6-1 showed a maximum GABA yield of 136.5 µg/mL and 200.8 µg/mL from S. carnicolor 402-JB-1 when they were cultured for 30 hr at 30℃ in yeast extract-peptone-dextrose medium. The cell-free extract from P. silvicola UL6-1 and S. carnicolor 402-JB-1 showed very high anti-hyperglycemic α-glucosidase inhibitory activity of 72.3% and 69.9%, respectively. Additionally, their cell-free extract-containing GABA showed the anti-hyperglycemic effect in streptozotocin-induced diabetic Sprague-Dawley rats. PMID:29138625
Samson, Eugenie; Arlia-Ciommo, Anthony; Dakik, Pamela; Cortes, Berly; Feldman, Rachel; Mohtashami, Sadaf; McAuley, Mélissa; Chancharoen, Marisa; Rukundo, Belise; Simard, Éric; Titorenko, Vladimir I.
2016-01-01
We discovered six plant extracts that increase yeast chronological lifespan to a significantly greater extent than any of the presently known longevity-extending chemical compounds. One of these extracts is the most potent longevity-extending pharmacological intervention yet described. We show that each of the six plant extracts is a geroprotector which delays the onset and decreases the rate of yeast chronological aging by eliciting a hormetic stress response. We also show that each of these extracts has different effects on cellular processes that define longevity in organisms across phyla. These effects include the following: 1) increased mitochondrial respiration and membrane potential; 2) augmented or reduced concentrations of reactive oxygen species; 3) decreased oxidative damage to cellular proteins, membrane lipids, and mitochondrial and nuclear genomes; 4) enhanced cell resistance to oxidative and thermal stresses; and 5) accelerated degradation of neutral lipids deposited in lipid droplets. Our findings provide new insights into mechanisms through which chemicals extracted from certain plants can slow biological aging. PMID:26918729
Cömert, Muazzez; Şayan, Yılmaz; Özelçam, Hülya; Baykal, Gülşah Yeğenoğlu
2015-01-01
The effects of Saccharomyces cerevisiae supplementation (6.6×108 cfu) and anhydrous ammonia treatment (3%) of wheat straw (WS) were investigated on in-situ dry matter (DM) degradability, and on rumen fermentation and growth performance of lambs. Rumen-fistulated Menemen sheep fed a diet with and without live yeast were used to assess the DM degradability characteristics of WS and ammonia-treated wheat straw (WSNH3). Twenty-six yearling Menemen male lambs were fed in four groups. Lambs of control group (WS) received untreated WS without supplemental yeast, whereas other three groups were fed WS treated with anhydrous ammonia (WSNH3 group), untreated WS and yeast (WS+YEAST group) or WS treated with anhydrous ammonia and yeast (WSNH3+YEAST group). Supplemented live yeast (4 g/d) was added in the diet. Lambs were offered untreated or ammonia treated WS ad-libitum and concentrate was fed at 1% of live body weight. The degradability of the water-insoluble (fraction B) was significantly increased by all of the treatment groups. Potential degradability (A+B), effective DM degradability’s (pe2, pe5, and pe8) and average daily weight gain increased only in WSNH3+YEAST group (p<0.05). Voluntary DM intake was not increased by the treatments (p>0.05), but voluntary metabolizable energy and crude protein intake were increased by WSNH3 and by WSNH3+YEAST (p<0.05). Average daily rumen pH was not affected by any of the treatments, but average daily NH3-N was significantly higher in the WSNH3 and WSNH3+YEAST groups, and total volatile fatty acids were significantly higher in the WS+YEAST and WSNH3+YEAST groups. In conclusion, the improvement of feed value of WS was better by the combination of ammonia-treatment and yeast supplementation compared to either treatment alone. PMID:25656177
Vishniac, H S
1995-11-01
Microcosms containing an air-dried autoclaved loamy sand (Eufala A) with low salt and organic content were inoculated with a representative (obligately aerobic, encapsulated) soil yeast, Cryptococcus albidus var. albidus (T) ATCC 10666, singly (for growth rate and survival determinations) and together with the bacterial biota native to Eufala A. The yeast competed successfully with the more rapidly growing bacteria in the presence of added water from 1% (5.7% of field capacity) to 14% (80% of field capacity) but grew for shorter times than when grown alone; times correlated with the lag phase of the bacterial biota. When well-watered (10 and 14%) competition cultures were allowed to dry and used as inoculum for subcultures, the yeast made significant growth only at 1% added water but survived at the higher moisture concentrations. The competitive ability of Cr. albidus confirms the previously reported advantages of the cryptococcal capsule in hydration and desiccation and, together with lengthy survival, suggests that the importance of such yeasts in the biogeochemistry of arid soils has been seriously underestimated.
NASA Astrophysics Data System (ADS)
Tan, J. P.; Jahim, J. M.; Wu, T. Y.; Harun, S.; Mumtaz, T.
2016-06-01
Expensive raw materials are the driving force that leads to the shifting of the petroleum-based succinic acid production into bio-based succinic acid production by microorganisms. Cost of fermentation medium is among the main factors contributing to the total production cost of bio-succinic acid. After carbon source, nitrogen source is the second largest component of the fermentation medium, the cost of which has been overlooked for the past years. The current study aimed at replacing yeast extract- a costly nitrogen source with corn steep liquor for economical production of bio-succinic acid by Actinobacillus succinogenes 130Z. In this study, a final succinic acid concentration of 20.6 g/L was obtained from the use of corn steep liquor as the nitrogen source, which was comparable with the use of yeast extract as the nitrogen source that had a final succinate concentration of 21.4 g/l. In terms of economical wise, corn steep liquor was priced at 200 /ton, which was one fifth of the cost of yeast extract at 1000 /ton. Therefore, corn steep liquor can be considered as a potential nitrogen source in biochemical industries instead of the costly yeast extract.
Bioactivity studies of extracts from Tridax procumbens.
Taddei, A; Rosas-Romero, A J
2000-06-01
An updated review on the biological activity of Tridax procumbens is presented. A detailed biological screening comprised of gram-positive and gram-negative bacteria, yeasts and fungi using crude extracts of this plant was undertaken. The n-hexane extract of the flowers showed activity against Escherichia coli. The same extract of the whole aerial parts was active against Mycobacterium smegmatis, Escherichia coli, Salmonella group C and Salmonella paratyphi. The ethyl-acetate extract of the flowers was active against Bacillus cereus and Klebsiella sp. The aerial parts extract also showed activity only against Mycobacterium smegmatis and Staphylococcus aureus, while the aqueous extract showed no antimicrobial activity. None of the tested extracts was active against the yeasts, Candida albicans, Candida tropicalis and Rhodotorula rubra; or the fungi: Aspergillus flavus, Aspergillus niger, Mucor sp. and Trichophyton rubrum.
Effects of Vernonia cinerea less methanol extract on growth and morphogenesis of Candida albicans.
Latha, L Yoga; Darah, I; Jain, K; Sasidharan, S
2011-05-01
Vernonia (V.) cinerea Less (Asteraceae) have many therapeutic uses in the practice of traditional medicine. The methanol extract of V cinerea, was screened for antiyeast activity against pathogenic yeast Candida albicans. The antimicrobial activities were studied by using disc diffusion method and broth dilution method. The effect of the extract on the growth profile of the yeast was also examined via time-kill assay. In addition to the fungicidal effects study, microscopic observations using Scanning (SEM) electron microscopy, Transmission (TEM) electron microscopy and light microscopy (LM) were done to determine the major alterations in the microstructure of Candida (C) albicans. The extract showed a favorable antimicrobial activity against C. albicans with a minimum inhibitory concentration (MIC) value of 1.56 mg/mL. Time-kill assay suggested that Vernonia cinerea extract had completely inhibited Candida albicans growth and also exhibited prolonged antiyeast activity. The main abnormalities notes from these microscopic observations were the alterations in morphology and complete collapse of the yeast cells after 36 h of exposure to the extract. The extract of Vernonia cinerea may be an effective agent to treat the Candida albicans infection.
Patiño-Vera, M; Jiménez, B; Balderas, K; Ortiz, M; Allende, R; Carrillo, A; Galindo, E
2005-01-01
To develop a pilot-plant fermentation process for the production of the yeast Rhodotorula minuta, to be used as a biocontrol agent of mango anthracnose, using a low-cost culture medium. To develop a stable liquid formulation that preserve high viability of the yeast stored at 4 degrees C. Keeping constant the volumetric power input, a fermentation process was scaled-up from shake flasks to a 100 l bioreactor. Preharvest applications of the yeast resulted in postharvest anthracnose severity equal or lower than that observed with a chemical fungicide. Glycerol was added to the formulation as water activity reducer and xanthan gum as a viscosity-enhancing agent. Yeast initial concentration of 10(10) CFU ml(-1) resulted in 4-5 orders of magnitude decrease after 1 month of storage at 4 degrees C, whereas when it was formulated at 10(9) CFU ml(-1), the decrease was of two orders of magnitude in 6 months. The fermentation process was successfully scaled-up using a low-cost culture medium. Postharvest anthracnose severity could be considerably reduced using this yeast. Formulating the yeast at 10(9) CFU ml(-1) and adding glycerol (20%) and xanthan (5 g l(-1)) avoided both contamination and yeast sedimentation and it was able to preserve up to 10(7) CFU ml(-1) after 6 months at 4 degrees C. The yeast R. minuta is reported as a novel antagonistic micro-organism against the pathogen Colletotrichum gloeosporioides. Pilot plant production of this yeast allowed us to conduct field tests in commercial orchards during three harvest seasons. Yeast suspensions applied to mango trees reduced the fruit anthracnose severity in levels similar or better than chemical fungicides.
Mnif, Ines; Ellouze-Chaabouni, Semia; Ayedi, Younes; Ghribi, Dhouha
2014-08-01
This study investigated the efficiency of hydrocarbon utilization by B. subtilis SPB1, a biosurfactant-producing strain. Microbial growth, biosurfactant production, and hydrocarbon biodegradation were studied in a liquid mineral medium, supplemented with 2% hydrocarbons in both the absence and in the presence of 0.1% yeast extract. Preliminary studies showed that maximum growth was registered with a 2% hydrocarbon solution. Results showed that the addition of yeast extract greatly stimulated microbial growth and thus induced biosurfactant production. Furthermore, biodegradation efficiencies were higher in the presence of yeast extract. Kerosene fuel was more recalcitrant to biodegradation than diesel oil. This study's findings suggest that the addition of an organic nitrogen source stimulates tension-active agents' production, which emulsifies hydrophobic compounds and enhances their biodegradation and microbial growth.
Smith, Esti-Andrine; Myburgh, Jacobus; Osthoff, Gernot; de Wit, Maryna
2014-11-01
Water soluble autolysate of yeast, usually utilised for microbial growth support, was used as additive in yoghurt fermentation. The yeast extract (YE) resulted in a decrease of fermentation time by 21% to reach a pH of 4·6. However, the YE resulted in unacceptable flavour and taste. By size exclusion chromatography, a fraction of the YE was obtained that could account for the observed 21% decrease in fermentation time. The fraction contained molecules of low molecular weight, consisting of minerals, free amino acids and peptides. The acceleration of the yoghurt fermentation was ascribed to the short peptides in the fraction. It is proposed that the application of this extract in industrial yoghurt manufacture would result in savings for both the industry and the consumer.
Recovery of Fuel-Precursor Lipids from Oleaginous Yeast
Kruger, Jacob S.; Cleveland, Nicholas S.; Yeap, Rou Yi; ...
2018-01-24
Bio-derived lipids offer a potentially promising intermediate to displace petroleum-derived diesel. One of the key challenges for the production of lipids via microbial cell mass is that these products are stored intracellularly and must be extracted and recovered efficiently and economically. Thus, improved methods of cell lysis and lipid extraction are needed. In this study, we examine lipid extraction from wet oleaginous yeast in combination with seven different cell lysis approaches encompassing both physical and chemical techniques (high-pressure homogenization, microwave and conventional thermal treatments, bead beating, acid, base, and enzymatic treatments) to facilitate lipid extraction from a model oleaginous yeastmore » strain, Lipomyces starkeyi. Of the seven techniques investigated, acid treatment led to the highest lipid recovery yields. Further exploration of acid treatment and integration with an economic model revealed that treatment at 170 degrees C for 60 min at 1 wt% H 2SO 4 and 8 wt% yeast solids represents a viable option for both lipid recovery yield and process economics, enabling experimental lipid recovery yields of 88.5-93.0% to be achieved at a corresponding estimated minimum fuel selling price (MFSP) of $5.13-$5.61/gallon of gasoline equivalent (GGE). The same acid treatment conditions applied to two other strains of oleaginous yeast (Cutaneotrichosporon curvatus and Rhodotorula toruloides) resulted in similar lipid recovery yields. In pretreatment experiments scaled up to 300 mL, slightly lower temperatures or shorter pretreatment times, along with higher yeast solids loading, resulted in higher lipid yields than the conditions identified from the small-scale runs. Two replicate runs carried out at 170 degrees C for 30 min using 1 wt% H2SO4 and 19 wt% yeast solids achieved an average lipid recovery of 96.1% at a corresponding estimated MFSP of $4.89/GGE. In all cases, the lipids are primarily triglycerides and free fatty acids comprised mainly of palmitic, stearic, and oleic acids, with smaller fractions of polar lipids. The fatty acid composition of the lipids extracted from the wet treated cell mass is the same as that in freeze-dried whole oleaginous yeast cell mass, suggesting the acid treatment renders all lipids extractable. This work demonstrates that acid treatment is a robust and effective cell lysis technique in a microbial lipid-based biofuel scenario and provides a baseline for further scale-up and process integration.« less
Recovery of Fuel-Precursor Lipids from Oleaginous Yeast
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kruger, Jacob S.; Cleveland, Nicholas S.; Yeap, Rou Yi
Bio-derived lipids offer a potentially promising intermediate to displace petroleum-derived diesel. One of the key challenges for the production of lipids via microbial cell mass is that these products are stored intracellularly and must be extracted and recovered efficiently and economically. Thus, improved methods of cell lysis and lipid extraction are needed. In this study, we examine lipid extraction from wet oleaginous yeast in combination with seven different cell lysis approaches encompassing both physical and chemical techniques (high-pressure homogenization, microwave and conventional thermal treatments, bead beating, acid, base, and enzymatic treatments) to facilitate lipid extraction from a model oleaginous yeastmore » strain, Lipomyces starkeyi. Of the seven techniques investigated, acid treatment led to the highest lipid recovery yields. Further exploration of acid treatment and integration with an economic model revealed that treatment at 170 degrees C for 60 min at 1 wt% H 2SO 4 and 8 wt% yeast solids represents a viable option for both lipid recovery yield and process economics, enabling experimental lipid recovery yields of 88.5-93.0% to be achieved at a corresponding estimated minimum fuel selling price (MFSP) of $5.13-$5.61/gallon of gasoline equivalent (GGE). The same acid treatment conditions applied to two other strains of oleaginous yeast (Cutaneotrichosporon curvatus and Rhodotorula toruloides) resulted in similar lipid recovery yields. In pretreatment experiments scaled up to 300 mL, slightly lower temperatures or shorter pretreatment times, along with higher yeast solids loading, resulted in higher lipid yields than the conditions identified from the small-scale runs. Two replicate runs carried out at 170 degrees C for 30 min using 1 wt% H2SO4 and 19 wt% yeast solids achieved an average lipid recovery of 96.1% at a corresponding estimated MFSP of $4.89/GGE. In all cases, the lipids are primarily triglycerides and free fatty acids comprised mainly of palmitic, stearic, and oleic acids, with smaller fractions of polar lipids. The fatty acid composition of the lipids extracted from the wet treated cell mass is the same as that in freeze-dried whole oleaginous yeast cell mass, suggesting the acid treatment renders all lipids extractable. This work demonstrates that acid treatment is a robust and effective cell lysis technique in a microbial lipid-based biofuel scenario and provides a baseline for further scale-up and process integration.« less
Yeast Biomass Production in Brewery's Spent Grains Hemicellulosic Hydrolyzate
NASA Astrophysics Data System (ADS)
Duarte, Luís C.; Carvalheiro, Florbela; Lopes, Sónia; Neves, Ines; Gírio, Francisco M.
Yeast single-cell protein and yeast extract, in particular, are two products which have many feed, food, pharmaceutical, and biotechnological applications. However, many of these applications are limited by their market price. Specifically, the yeast extract requirements for culture media are one of the major technical hurdles to be overcome for the development of low-cost fermentation routes for several top value chemicals in a biorefinery framework. A potential biotechnical solution is the production of yeast biomass from the hemicellulosic fraction stream. The growth of three pentose-assimilating yeast cell factories, Debaryomyces hansenii, Kluyveromyces marxianus, and Pichia stipitis was compared using non-detoxified brewery's spent grains hemicellulosic hydrolyzate supplemented with mineral nutrients. The yeasts exhibited different specific growth rates, biomass productivities, and yields being D. hansenii as the yeast species that presented the best performance, assimilating all sugars and noteworthy consuming most of the hydrolyzate inhibitors. Under optimized conditions, D. hansenii displayed a maximum specific growth rate, biomass yield, and productivity of 0.34 h-1, 0.61 g g-1, and 0.56 g 1-1 h-1, respectively. The nutritional profile of D. hansenii was thoroughly evaluated, and it compares favorably to others reported in literature. It contains considerable amounts of some essential amino acids and a high ratio of unsaturated over saturated fatty acids.
Schnierda, T; Bauer, F F; Divol, B; van Rensburg, E; Görgens, J F
2014-05-01
The impact of different nitrogen and carbon sources on biomass production of the non-Saccharomyces wine yeast species Lachancea thermotolerans, Metschnikowia pulcherrima and Issatchenkia orientalis was assessed. Using a molasses-based medium, yeast extract and corn steep liquor as well as ammonium sulphate and di-ammonium phosphate (DAP) as nitrogen sources were compared in shake-flask cultures. A medium with 20 g l⁻¹ sugar (diluted molasses) and 500 mg l⁻¹ total yeast assimilable nitrogen, from yeast extract, gave the highest biomass concentrations and yields. Invertase pretreatment was required for cultures of M. pulcherrima and I. orientalis, and respective biomass yields of 0.7 and 0.8 g g⁻¹ were achieved in aerobic bioreactor cultures. The absence of ethanol production suggested Crabtree-negative behaviour by these yeasts, whereas Crabtree-positive behaviour by L. thermotolerans resulted in ethanol and biomass concentrations of 5.5 and 11.1 g l⁻¹, respectively. Recent studies demonstrate that non-Saccharomyces yeasts confer positive attributes to the final composition of wine. However, optimal process conditions for their biomass production have not been described, thereby limiting commercial application. In this study, industrial media and methods of yeast cultivation were investigated to develop protocols for biomass production of non-Saccharomyces yeast starter cultures for the wine industry. © 2014 The Society for Applied Microbiology.
Hall, Jean A; Bobe, Gerd; Vorachek, William R; Estill, Charles T; Mosher, Wayne D; Pirelli, Gene J; Gamroth, Mike
2014-07-01
Selenium (Se) is an essential micronutrient for ruminant animals affecting both performance and immune functions. Adding 3 mg of Se/L (in the form of Na selenite) to colostrum has been shown to improve IgG absorption in Se-deficient newborn dairy calves. The objective of our study was to determine the effect of supranutritional maternal and colostral Se supplementation on IgG status of Se-replete dairy calves. The study design was a 2 × 2 × 2 factorial design. During the last 8 wk before calving, dairy cows at a commercial dairy were fed either 0 (control cows) or 105 mg of Se-yeast once weekly (supranutritional Se-yeast-supplemented cows), in addition to Na selenite at 0.3 mg of Se/kg of DM in their ration. After birth, calves were fed pooled colostrum from control or supranutritional Se-yeast-supplemented cows to which 0 or 3 mg of Se/L (in the form of Na selenite) was added. Concentrations of whole-blood (WB) Se and serum Se measured at birth and at 48 h and 14 d of age, and serum IgG concentrations measured at 48 h and 14 and 60 d of age were determined. Calves born to Se-yeast-supplemented cows had higher WB-Se and serum-Se concentrations for the first 2 wk, and higher IgG absorption efficiency (62% at 48 h), resulting in higher serum-IgG concentrations (43% at 48 h and 65% at 14 d) and higher total serum-IgG content (50% at 48 h and 75% at 14 d), compared with calves born to control cows. Calves that received colostrum with added Na selenite had higher WB-Se concentrations for the first 2 wk, but only at 14 d of age were serum-Se concentrations, serum-IgG concentrations (53% higher), and total serum-IgG content (56% higher) higher, compared with calves that were fed colostrum without added Na selenite. Calves born to Se-yeast-supplemented cows that received colostrum from Se-yeast cows without added Na selenite had a higher IgG absorption efficiency compared with all other treatment groups. Our results support that feeding cows supranutritional Se-yeast supplement during the dry period or spiking colostrum with Na selenite both improve IgG status of Se-replete calves. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
USDA-ARS?s Scientific Manuscript database
Conventional cellulose-to-ethanol conversion by simultaneous saccharification and fermentation (SSF)requires enzymatic saccharification using both cellulase and ß-glucosidase allowing cellulose utilization by common ethanologenic yeast. Here we report a new yeast strain of Clavispora NRRL Y-50464 th...
Adsorption of ochratoxin A from grape juice by yeast cells immobilised in calcium alginate beads.
Farbo, Maria Grazia; Urgeghe, Pietro Paolo; Fiori, Stefano; Marceddu, Salvatore; Jaoua, Samir; Migheli, Quirico
2016-01-18
Grape juice can be easily contaminated with ochratoxin A (OTA), one of the known mycotoxins with the greatest public health significance. Among the different approaches to decontaminate juice from this mycotoxin, microbiological methods proved efficient, inexpensive and safe, particularly the use of yeast or yeast products. To ascertain whether immobilisation of the yeast biomass would lead to successful decontamination, alginate beads encapsulating Candida intermedia yeast cells were used in our experiments to evaluate their OTA-biosorption efficacy. Magnetic calcium alginate beads were also prepared by adding magnetite in the formulation to allow fast removal from the aqueous solution with a magnet. Calcium alginate beads were added to commercial grape juice spiked with 20 μg/kg OTA and after 48 h of incubation a significant reduction (>80%), of the total OTA content was achieved, while in the subsequent phases (72-120 h) OTA was slowly released into the grape juice by alginate beads. Biosorption properties of alginate-yeast beads were tested in a prototype bioreactor consisting in a glass chromatography column packed with beads, where juice amended with OTA was slowly flowed downstream. The adoption of an interconnected scaled-up bioreactor as an efficient and safe tool to remove traces of OTA from liquid matrices is discussed. Copyright © 2015 Elsevier B.V. All rights reserved.
Grandi, Paola; Dang, Tam; Pané, Nelly; Shevchenko, Andrej; Mann, Matthias; Forbes, Douglass; Hurt, Ed
1997-01-01
Yeast and vertebrate nuclear pores display significant morphological similarity by electron microscopy, but sequence similarity between the respective proteins has been more difficult to observe. Herein we have identified a vertebrate nucleoporin, Nup93, in both human and Xenopus that has proved to be an evolutionarily related homologue of the yeast nucleoporin Nic96p. Polyclonal antiserum to human Nup93 detects corresponding proteins in human, rat, and Xenopus cells. Immunofluorescence and immunoelectron microscopy localize vertebrate Nup93 at the nuclear basket and at or near the nuclear entry to the gated channel of the pore. Immunoprecipitation from both mammalian and Xenopus cell extracts indicates that a small fraction of Nup93 physically interacts with the nucleoporin p62, just as yeast Nic96p interacts with the yeast p62 homologue. However, a large fraction of vertebrate Nup93 is extracted from pores and is also present in Xenopus egg extracts in complex with a newly discovered 205-kDa protein. Mass spectrometric sequencing of the human 205-kDa protein reveals that this protein is encoded by an open reading frame, KIAAO225, present in the human database. The putative human nucleoporin of 205 kDa has related sequence homologues in Caenorhabditis elegans and Saccharomyces cerevisiae. To analyze the role of the Nup93 complex in the pore, nuclei were assembled that lack the Nup93 complex after immunodepletion of a Xenopus nuclear reconstitution extract. The Nup93-complex–depleted nuclei are clearly defective for correct nuclear pore assembly. From these experiments, we conclude that the vertebrate and yeast pore have significant homology in their functionally important cores and that, with the identification of Nup93 and the 205-kDa protein, we have extended the knowledge of the nearest-neighbor interactions of this core in both yeast and vertebrates. PMID:9348540
Hydrogen utilization by clostridia in sewage sludge.
Ohwaki, K; Hungate, R E
1977-01-01
A sporeformer morphologically different but physiologically similar to Clostridium aceticum Wieringa was isolated from sewage sludge. It used large amounts of H2 and CO2, converting them chiefly to acetic acid. Growth occurs anaerobically on yeast extract alone, but after the nutrients in yeast extract are used, growth continues at a reduced rate, supported by the conversion of the gases to acetate. PMID:879782
USDA-ARS?s Scientific Manuscript database
We evaluated yeast extract (YE) and vitamin D (VD) in turkeys treated with dexamethasone (Dex) at intervals designed to simulate transport stress during a 3 stage growout. YE but not VD decreased early mortality (P = 0.001) and mortality at wk 7 (P= 0.02) and wk 12 (P = 0.002) but not wk 16. Celluli...
Park, Chan B.; Lee, Sun Bok; Ryu, Dewey D. Y.
2001-01-01
Identification of physiological and environmental factors that limit efficient growth of hyperthermophiles is important for practical application of these organisms to the production of useful enzymes or metabolites. During fed-batch cultivation of Sulfolobus solfataricus in medium containing l-glutamate, we observed formation of l-pyroglutamic acid (PGA). PGA formed spontaneously from l-glutamate under culture conditions (78°C and pH 3.0), and the PGA formation rate was much higher at an acidic or alkaline pH than at neutral pH. It was also found that PGA is a potent inhibitor of S. solfataricus growth. The cell growth rate was reduced by one-half by the presence of 5.1 mM PGA, and no growth was observed in the presence of 15.5 mM PGA. On the other hand, the inhibitory effect of PGA on cell growth was alleviated by addition of l-glutamate or l-aspartate to the medium. PGA was also produced from the l-glutamate in yeast extract; the PGA content increased to 8.5% (wt/wt) after 80 h of incubation of a yeast extract solution at 78°C and pH 3.0. In medium supplemented with yeast extract, cell growth was optimal in the presence of 3.0 g of yeast extract per liter, and higher yeast extract concentrations resulted in reduced cell yields. The extents of cell growth inhibition at yeast extract concentrations above the optimal concentration were correlated with the PGA concentration in the culture broth. Although other structural analogues of l-glutamate, such as l-methionine sulfoxide, glutaric acid, succinic acid, and l-glutamic acid γ-methyl ester, also inhibited the growth of S. solfataricus, the greatest cell growth inhibition was observed with PGA. We also observed that unlike other glutamate analogues, N-acetyl-l-glutamate enhanced the growth of S. solfataricus. This compound was stable under cell culture conditions, and replacement of l-glutamate with N-acetyl-l-glutamate in the medium resulted in increased cell density. PMID:11472943
Magiatis, Prokopios; Pappas, Periklis; Gaitanis, George; Mexia, Nikitia; Melliou, Eleni; Galanou, Maria; Vlachos, Christophoros; Stathopoulou, Konstantina; Skaltsounis, Alexios Leandros; Marselos, Marios; Velegraki, Aristea; Denison, Michael S.; Bassukas, Ioannis D.
2013-01-01
Malassezia yeasts are commensal microorganisms which under insufficiently understood conditions can become pathogenic. We have previously shown that specific strains isolated from diseased human skin can preferentially produce agonists of the aryl hydrocarbon receptor (AhR), whose activation has been linked to certain skin diseases. Investigation of skin scale extracts from patients with Malassezia associated diseases demonstrated 10–1000 fold higher AhR activating capacity than control skin extracts. LC/MS/MS analysis of the patients’ extracts revealed the presence of indirubin, 6-formylindolo[3,2-b]carbazole (FICZ), indolo[3,2-b]carbazole (ICZ), malassezin, and pityriacitrin. The same compounds were also identified in 9/12 Malassezia species culture extracts tested, connecting their presence in skin scales with this yeast. Studying the activity of the Malassezia culture-extracts and pure metabolites in HaCaT cells by Reverse Transcriptase Real-Time PCR revealed significant alterations in mRNA levels of the endogenous AhR-responsive genes Cyp1A1, Cyp1B1 and AhRR. Indirubin and FICZ activated AhR in HaCaT and human HepG2 cells with significantly higher, yet transient, potency as compared to the prototypical AhR ligand, dioxin. In loco synthesis of these highly potent AhR inducers by Malassezia yeasts could have a significant impact on skin homeostatic mechanisms and disease development. PMID:23448877
Process design and optimization of novel wheat-based continuous bioethanol production system.
Arifeen, Najmul; Wang, Ruohang; Kookos, Ioannis K; Webb, Colin; Koutinas, Apostolis A
2007-01-01
A novel design of a wheat-based biorefinery for bioethanol production, including wheat milling, gluten extraction as byproduct, fungal submerged fermentation for enzyme production, starch hydrolysis, fungal biomass autolysis for nutrient regeneration, yeast fermentation with recycling integrated with a pervaporation membrane for ethanol concentration, and fuel-grade ethanol purification by pressure swing distillation (PSD), was optimized in continuous mode using the equation-based software General Algebraic Modelling System (GAMS). The novel wheat biorefining strategy could result in a production cost within the range of dollars 0.96-0.50 gal(-1) ethanol (dollars 0.25-0.13 L(-1) ethanol) when the production capacity of the plant is within the range of 10-33.5 million gal y(-1) (37.85-126.8 million L y(-1)). The production of value-added byproducts (e.g., bran-rich pearlings, gluten, pure yeast cells) was identified as a crucial factor for improving the economics of fuel ethanol production from wheat. Integration of yeast fermentation with pervaporation membrane could result in the concentration of ethanol in the fermentation outlet stream (up to 40 mol %). The application of a PSD system that consisted of a low-pressure and a high-pressure column and employing heat integration between the high- and low-pressure columns resulted in reduced operating cost (up to 44%) for fuel-grade ethanol production.
Pyrene degradation by yeasts and filamentous fungi.
Romero, M Cristina; Salvioli, Mónica L; Cazau, M Cecilia; Arambarri, A M
2002-01-01
The saprotrophic soil fungi Fusarium solani (Mart.) Sacc., Cylindrocarpon didymum (Hartig) Wollenw, Penicillium variabile Sopp. and the yeasts Rhodotorula glutinis (Fresenius) Harrison and Rhodotorula minuta (Saito) Harrison were cultured in mineral medium with pyrene. The remaining pyrene concentrations were periodically determined during 20 incubation days, using HPLC. To assess the metabolism of pyrene degradation we added 0.1 microCi of [4,5,9,10] 14C-pyrene to each fungi culture and measured the radioactivity in the volatile organic substances, extractable, aqueous phase, biomass and 14CO2 fractions. The assays demonstrated that F. solani and R. glutinis metabolized pyrene as a sole source of carbon. Differences in their activities at the beginning of the cultures disappeared by the end of the experiment, when 32 and 37% of the original pyrene concentration was detected, for the soil fungi and yeasts, respectively. Among the filamentous fungi, F. solani was highly active and oxidized pyrene; moreover, small but significant degradation rates were observed in C. didymum and P. variahile cultures. An increase in the 14CO2 evolution was observed at the 17th day with cosubstrate. R. glutinis and R. minuta cultures showed similar ability to biotransform pyrene, and that 35% of the initial concentration was consumed at the end of the assay. The same results were obtained in the experiments with or without glucose as cosubstrate.
Hickman, Mark J; Petti, Allegra A; Ho-Shing, Olivia; Silverman, Sanford J; McIsaac, R Scott; Lee, Traci A; Botstein, David
2011-11-01
A yeast strain lacking Met4p, the primary transcriptional regulator of the sulfur assimilation pathway, cannot synthesize methionine. This apparently simple auxotroph did not grow well in rich media containing excess methionine, forming small colonies on yeast extract/peptone/dextrose plates. Faster-growing large colonies were abundant when overnight cultures were plated, suggesting that spontaneous suppressors of the growth defect arise with high frequency. To identify the suppressor mutations, we used genome-wide single-nucleotide polymorphism and standard genetic analyses. The most common suppressors were loss-of-function mutations in OPI1, encoding a transcriptional repressor of phospholipid metabolism. Using a new system that allows rapid and specific degradation of Met4p, we could study the dynamic expression of all genes following loss of Met4p. Experiments using this system with and without Opi1p showed that Met4 activates and Opi1p represses genes that maintain levels of S-adenosylmethionine (SAM), the substrate for most methyltransferase reactions. Cells lacking Met4p grow normally when either SAM is added to the media or one of the SAM synthetase genes is overexpressed. SAM is used as a methyl donor in three Opi1p-regulated reactions to create the abundant membrane phospholipid, phosphatidylcholine. Our results show that rapidly growing cells require significant methylation, likely for the biosynthesis of phospholipids.
Enhanced Bio-Ethanol Production from Industrial Potato Waste by Statistical Medium Optimization.
Izmirlioglu, Gulten; Demirci, Ali
2015-10-15
Industrial wastes are of great interest as a substrate in production of value-added products to reduce cost, while managing the waste economically and environmentally. Bio-ethanol production from industrial wastes has gained attention because of its abundance, availability, and rich carbon and nitrogen content. In this study, industrial potato waste was used as a carbon source and a medium was optimized for ethanol production by using statistical designs. The effect of various medium components on ethanol production was evaluated. Yeast extract, malt extract, and MgSO₄·7H₂O showed significantly positive effects, whereas KH₂PO₄ and CaCl₂·2H₂O had a significantly negative effect (p-value<0.05). Using response surface methodology, a medium consisting of 40.4 g/L (dry basis) industrial waste potato, 50 g/L malt extract, and 4.84 g/L MgSO₄·7H₂O was found optimal and yielded 24.6 g/L ethanol at 30 °C, 150 rpm, and 48 h of fermentation. In conclusion, this study demonstrated that industrial potato waste can be used effectively to enhance bioethanol production.
Złotek, Urszula
2017-01-01
Elicitation, which is a way of inducing plant secondary metabolism, may be an effective method for improving the quality of plant food. The aim of this study was to determine how the application of jasmonic acid (as an abiotic elicitor) and yeast extract (as a biotic elicitor) influences the production of some bioactive compounds in marjoram and the antioxidant activity of this herb. Elicitation with 0.01 µM and 1 µM jasmonic acid as well as 0.1% and 1% yeast extracts was used for improving the health-benefiting quality of marjoram. The study focused on the effects of eliciting the level of some phytochemicals and the antioxidant activity of marjoram. There were no significant differences in total phenolic content between the elicited and control plants. In turn, the elicitation with 0.1% and 1% yeast extracts caused 1.8- and 2.5-fold increases in the ascorbic acid content in marjoram leaves, respectively. Both biotic and abiotic elicitation resulted in elevation of chlorophyll content, but only the abiotic elicitor (jasmonic acid) caused a significant increase (by over 50%) in the carotenoid content of marjoram leaves. The antiradical activity of marjoram was increased by the abiotic and biotic elicitation, whereas only the abiotic elicitation resulted in improving the reducing power of this herb. In conclusion, biotic and abiotic elicitation could be an effective strategy for improving the level of some phytochemicals, as well as the antioxidant activity of marjoram. A particularly valuable finding obtained in this study is that natural elicitors e.g. yeast extract can be equally effective in elevating the content of some bioactive compounds in herbs e.g. marjoram as an abiotic one.
Inoculation of Torulaspora delbrueckii as a bio-protection agent in winemaking.
Simonin, Scott; Alexandre, Hervé; Nikolantonaki, Maria; Coelho, Christian; Tourdot-Maréchal, Raphaëlle
2018-05-01
In oenology, bio-protection consists in adding bacteria, yeasts or a mixture of microorganisms on grape must before fermentation in order to reduce the use of chemical compounds such as sulphites. More particularly, non-Saccharomyces yeasts are used as a total or partial alternative to sulphites. However, scientific data capable of proving the effectiveness of adding these yeasts on grape must is lacking. This study reports the analysis of antimicrobial and antioxidant effects of one non-Saccharomyces yeast, Torulaspora delbrueckii, inoculated at the beginning of the white winemaking process in two Burgundian wineries as an alternative to sulphiting. The implantation of the T. delbrueckii strain was successful in both wineries and had no impact on fermentation kinetics. Adding T. delbrueckii reduced biodiversity during the pre-fermentation stages compared to sulphited controls and it also effectively limited the development of spoilage microorganisms in the same way as the addition of sulphites. T. delbrueckii could protect must and wine from oxidation as demonstrated by the analysis of colour and phenolic compounds. This is the first evidence that early addition of T. delbrueckii during winemaking can be a microbiogical and chemical alternative to sulphites. However, its contribution seems to be matrix dependent. Copyright © 2018 Elsevier Ltd. All rights reserved.
Yellapu, Sravan Kumar; Bezawada, Jyothi; Kaur, Rajwinder; Kuttiraja, Mathiazhakan; Tyagi, Rajeshwar D
2016-10-01
The lipid extraction from the microbial biomass is a tedious and high cost dependent process. In the present study, detergent assisted lipids extraction from the culture of the yeast Yarrowia lipolytica SKY-7 was carried out. Response surface methodology (RSM) was used to investigate the effect of three principle parameters (N-LS concentration, time and temperature) on microbial lipid extraction efficiency % (w/w). The results obtained by statistical analysis showed that the quadratic model fits in all cases. Maximum lipid recovery of 95.3±0.3% w/w was obtained at the optimum level of process variables [N-LS concentration 24.42mg (equal to 48mgN-LS/g dry biomass), treatment time 8.8min and reaction temperature 30.2°C]. Whereas the conventional chloroform and methanol extraction to achieve total lipid recovery required 12h at 60°C. The study confirmed that oleaginous yeast biomass treatment with N-lauroyl sarcosine would be a promising approach for industrial scale microbial lipid recovery. Copyright © 2016 Elsevier Ltd. All rights reserved.
Evaluation of antipyretic potential of Vernonia cinerea extract in rats.
Gupta, Malaya; Mazumder, U K; Manikandan, L; Bhattacharya, S; Haldar, P K; Roy, S
2003-08-01
The methanol extract of the whole plant of Vernonia cinerea (MEVC) was evaluated for its antipyretic potential on normal body temperature and yeast-induced pyrexia in rats. MEVC significantly reduced the normal body temperature at doses of 250 and 500 mg/kg body weight p.o. MEVC also lowered the elevated body temperature in the case of yeast-induced pyrexia in a dose dependent manner. The antipyretic effect of the extract at a dose of 500 mg/kg was identical to that of the standard drug paracetamol. Copyright 2003 John Wiley & Sons, Ltd.
Saccharomyces cerevisiae cell wall components as tools for ochratoxin a decontamination.
Piotrowska, Małgorzata; Masek, Anna
2015-04-02
The aim of this study was to evaluate the usefulness of Saccharomyces cerevisiae cell wall preparations in the adsorption of ochratoxin A (OTA). The study involved the use of a brewer's yeast cell wall devoid of protein substances, glucans obtained by water and alkaline extraction, a glucan commercially available as a dietary supplement for animals and, additionally, dried brewer's yeast for comparison. Fourier Transform Infrared (FTIR) analysis of the obtained preparations showed bands characteristic for glucans in the resulting spectra. The yeast cell wall preparation, water-extracted glucan and the commercial glucan bound the highest amount of ochratoxin A, above 55% of the initial concentration, and the alkaline-extracted glucan adsorbed the lowest amount of this toxin. It has been shown that adsorption is most effective at a close-to-neutral pH, while being considerably limited in alkaline conditions.
Schriner, Samuel E; Coskun, Volkan; Hogan, Sean P; Nguyen, Cindy T; Lopez, Terry E; Jafari, Mahtab
2016-03-01
The root and rhizome extract of Rhodiola rosea has been extensively used in traditional medicine to improve physical and mental performance and to protect against stress. We, and others, have reported that R. rosea can extend lifespan in flies, worms, and yeast. We also previously found that the extract can act independently of dietary restriction (DR), a treatment that can extend lifespan in a range of model organisms. In flies, DR is implemented through a reduction in dietary yeast content. Here, we report that the ability of R. rosea extract to extend lifespan in flies is dependent on the carbohydrate and caloric content when supplemented with a simplified diet composed of yeast and sucrose. R. rosea extract elevated the sugar content in flies and down-regulated hexokinase expression, suggesting that it perturbs carbohydrate metabolism in flies. In our previous studies, bananas, barley malt, and corn syrup provided dietary carbohydrates, and R. rosea extract could extend lifespan with a range of caloric levels. We conclude that the lifespan-extending effect of R. rosea extract in flies is dependent on dietary carbohydrate and caloric contents coupled with an interaction with complex dietary components present in bananas, barley, or corn.
Herrero, Mónica; García, Luis A; Díaz, Mario
2003-12-01
Yeast extract addition to reconstituted apple juice had a positive impact on the development of the malolactic starter culture used to ensure malolactic fermentation in cider, using active but non-proliferating cells. In this work, the reuse of fermentation lees from cider is proposed as an alternative to the use of commercial yeast extract products. Malolactic enzymatic assays, both in whole cells and cell-free extracts, were carried out to determine the best time to harvest cells for use as an inoculum in cider. Cells harvested at the late exponential phase, the physiological stage of growth corresponding to the maximum values of specific malolactic activity, achieved a good rate of malic acid degradation in controlled cider fermentation. Under the laboratory conditions used, malic acid degradation rates in the fermentation media turned out to be near 2.0 and 2.5 times lower, compared with the rates obtained in whole-cell enzymatic assays, as useful data applicable to industrial cider production.
Role of the XIAP-Cooper Axis in Prostate Cancer
2011-04-01
growing yeast transformed with a plasmid encoding human XIAP in Cu-free selective medium. Supplemental Cu was added to the medium 1-2 hours before...human XIAP into yeast deletion strains. We selected 16 deletion strains from the same background as our wild-type control (BY4741) for analysis. These...transformed with the XIAP expression plasmid. This objective is complete. Assess yeast deletion mutants for delivery of copper to XIAP. After
Role of the XIAP-Copper Axis in Prostate Cancer
2010-04-01
the copper chaperone for superoxide dismutase (CCS). We performed a targeted genetic screen in yeast to identify proteins involved in delivery of...copper (Cu) to XIAP. This screen identified CCS as a primary mediator of Cu delivery to XIAP in yeast , and we subsequently determined that CCS...protocol for growing yeast transformed with a plasmid encoding human XIAP in Cu-free selective medium. Supplemental Cu was added to the medium 1-2 hours
Safaei, Zahra; Karimi, Keikhosro; Zamani, Akram
2016-08-30
In this study the effects of phosphate, potassium, yeast extract, and trace metals on the growth of Mucor indicus and chitosan, chitin, and metabolite production by the fungus were investigated. Maximum yield of chitosan (0.32 g/g cell wall) was obtained in a phosphate-free medium. Reversely, cell growth and ethanol formation by the fungus were positively affected in the presence of phosphate. In a phosphate-free medium, the highest chitosan content (0.42 g/g cell wall) and cell growth (0.66 g/g sugar) were obtained at 2.5 g/L of KOH. Potassium concentration had no significant effect on ethanol and glycerol yields. The presence of trace metals significantly increased the chitosan yield at an optimal phosphate and potassium concentration (0.50 g/g cell wall). By contrast, production of ethanol by the fungus was negatively affected (0.33 g/g sugars). A remarkable increase in chitin and decrease in chitosan were observed in the absence of yeast extract and concentrations lower than 2 g/L. The maximum chitosan yield of 51% cell wall was obtained at 5 g/L of yeast extract when the medium contained no phosphate, 2.5 g/L KOH, and 1 mL/L trace metal solution.
Cell-cycle regulation of formin-mediated actin cable assembly
Miao, Yansong; Wong, Catherine C. L.; Mennella, Vito; Michelot, Alphée; Agard, David A.; Holt, Liam J.; Yates, John R.; Drubin, David G.
2013-01-01
Assembly of appropriately oriented actin cables nucleated by formin proteins is necessary for many biological processes in diverse eukaryotes. However, compared with knowledge of how nucleation of dendritic actin filament arrays by the actin-related protein-2/3 complex is regulated, the in vivo regulatory mechanisms for actin cable formation are less clear. To gain insights into mechanisms for regulating actin cable assembly, we reconstituted the assembly process in vitro by introducing microspheres functionalized with the C terminus of the budding yeast formin Bni1 into extracts prepared from yeast cells at different cell-cycle stages. EM studies showed that unbranched actin filament bundles were reconstituted successfully in the yeast extracts. Only extracts enriched in the mitotic cyclin Clb2 were competent for actin cable assembly, and cyclin-dependent kinase 1 activity was indispensible. Cyclin-dependent kinase 1 activity also was found to regulate cable assembly in vivo. Here we present evidence that formin cell-cycle regulation is conserved in vertebrates. The use of the cable-reconstitution system to test roles for the key actin-binding proteins tropomyosin, capping protein, and cofilin provided important insights into assembly regulation. Furthermore, using mass spectrometry, we identified components of the actin cables formed in yeast extracts, providing the basis for comprehensive understanding of cable assembly and regulation. PMID:24133141
Value-added biotransformation of cellulosic sugars by engineered Saccharomyces cerevisiae.
Lane, Stephan; Dong, Jia; Jin, Yong-Su
2018-07-01
The substantial research efforts into lignocellulosic biofuels have generated an abundance of valuable knowledge and technologies for metabolic engineering. In particular, these investments have led to a vast growth in proficiency of engineering the yeast Saccharomyces cerevisiae for consuming lignocellulosic sugars, enabling the simultaneous assimilation of multiple carbon sources, and producing a large variety of value-added products by introduction of heterologous metabolic pathways. While microbial conversion of cellulosic sugars into large-volume low-value biofuels is not currently economically feasible, there may still be opportunities to produce other value-added chemicals as regulation of cellulosic sugar metabolism is quite different from glucose metabolism. This review summarizes these recent advances with an emphasis on employing engineered yeast for the bioconversion of lignocellulosic sugars into a variety of non-ethanol value-added products. Copyright © 2018 Elsevier Ltd. All rights reserved.
Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) degradation by Acetobacterium paludosum.
Sherburne, Leslie A; Shrout, Joshua D; Alvarez, Pedro J J
2005-12-01
Substrates and nutrients are often added to contaminated soil or groundwater to enhance bioremediation. Nevertheless, this practice may be counterproductive in some cases where nutrient addition might relieve selective pressure for pollutant biodegradation. Batch experiments with a homoacetogenic pure culture of Acetobacterium paludosum showed that anaerobic RDX degradation is the fastest when auxiliary growth substrates (yeast extract plus fructose) and nitrogen sources (ammonium) are not added. This bacterium degraded RDX faster under autotrophic (H2-fed) than under heterotrophic conditions, even though heterotrophic growth was faster. The inhibitory effect of ammonium is postulated to be due to the repression of enzymes that initiate RDX degradation by reducing its nitro groups, based on the known fact that ammonia represses nitrate and nitrite reductases. This observation suggests that the absence of easily assimilated nitrogen sources, such as ammonium, enhances RDX degradation. Although specific end products of RDX degradation were not determined, the production of nitrous oxide (N2O) suggests that A. paludosum cleaved the triazine ring.
Singh, Varinder; Bedi, Gurleen Kaur; Shri, Richa
2017-01-01
Management of type 2 diabetes by delaying or preventing glucose absorption using natural products is gaining significant attention. Edible mushrooms are well documented for their nutritional and medicinal properties. This investigation was designed to evaluate the antidiabetic activity of aqueous extracts of selected culinary-medicinal mushrooms, namely, Pleurotus ostreatus, Calocybe indica, and Volvariella volvacea, using in vitro models (α-amylase inhibition assay, glucose uptake by yeast cells, and glucose adsorption capacity). The most active extract was subsequently examined in vivo using the oral starch tolerance test in mice. All prepared extracts showed dose-dependent inhibition of α-amylase and an increase in glucose transport across yeast cells. C. indica extract was the most active α-amylase inhibitor (half-maximal inhibitory concentration, 18.07 ± 0.75 mg/mL) and exhibited maximum glucose uptake by yeast cells (77.53 ± 0.97% at 35 mg/mL). All extracts demonstrated weak glucose adsorption ability. The positive in vitro tests for C. indica paved the way for in vivo studies. C. indica extract (200 and 400 mg/kg) significantly (P < 0.05) reduced postprandial blood glucose peaks in mice challenged with starch. The extract (400 mg/kg) and acarbose normalized blood glucose levels at 180 minutes, when they were statistically similar to values in normal mice. Thus, it may be concluded that the antidiabetic effect of C. indica is mediated by inhibition of starch metabolism (α-amylase inhibition), increased glucose uptake by peripheral cells (promotion of glucose uptake by yeast cells), and mild entrapment (adsorption) of glucose. Hence, C. indica can be developed as antidiabetic drug after detailed pharmacological studies.
The antimicrobial effects of chopped garlic in ground beef and raw meatball (ciğ köfte).
Aydin, Ali; Bostan, Kamil; Erkan, Mehmet Emin; Bingöl, Bariş
2007-03-01
This study was carried out to investigate the antimicrobial effects of chopped garlic in ground beef and raw meatball (çig köfte), which is a traditional food product eaten raw. Fresh minced ground beef and raw meatball batter prepared with traditional methods were separated into groups. Chopped and crushed garlic was added to each batch in order to reach various concentrations from 0% to 10%. The ground beef samples were stored at refrigerator and ambient temperatures. The raw meatball samples were only stored at room temperature. All samples were analyzed in order to determine the microbial counts at the 2(nd), 6(th), 12(th), and 24(th) hours of storage. Garlic addition decreased the microbial growth in some ground beef samples kept either at room temperature or in the refrigerator. However, microbial growth increased in some ground beef samples kept in similar conditions. The difference was found in samples kept in the refrigerator for 24 hours in terms of total aerobic mesophilic bacteria and coliform bacteria when garlic used at 10%. The effects of garlic on the microbial growth of both coliforms and Staphylococcus/Micrococcus in the samples kept at room temperature were increased. The yeast and mold counts in ground beef samples kept in any condition were not affected by garlic addition. However, the addition of garlic to the raw meatball mix decreased the microbial count, in terms of total aerobic mesophilic bacteria and yeast and mold counts, when the garlic was added at 5% or 10% (P < .05). The addition of 10% garlic to raw meatball caused a permanent decrease in yeast and mold count, unlike in ground beef. The results of this study indicate that the chopped garlic has a slowing-down effect on microbiological growth in ground meat depending on the garlic concentration, but this effect was not at an expected level even at the highest concentration, because potential antimicrobial agents in chopped garlic were probably insufficiently extracted.
Yuan, Fenghua; Lai, Fangfang; Gu, Liya; Zhou, Wen; El Hokayem, Jimmy; Zhang, Yanbin
2009-05-01
Mismatch repair corrects biosynthetic errors generated during DNA replication, whose deficiency causes a mutator phenotype and directly underlies hereditary non-polyposis colorectal cancer and sporadic cancers. Because of remarkably high conservation of the mismatch repair machinery between the budding yeast (Saccharomyces cerevisiae) and humans, the study of mismatch repair in yeast has provided tremendous insights into the mechanisms of this repair pathway in humans. In addition, yeast cells possess an unbeatable advantage over human cells in terms of the easy genetic manipulation, the availability of whole genome deletion strains, and the relatively low cost for setting up the system. Although many components of eukaryotic mismatch repair have been identified, it remains unclear if additional factors, such as DNA helicase(s) and redundant nuclease(s) besides EXO1, participate in eukaryotic mismatch repair. To facilitate the discovery of novel mismatch repair factors, we developed a straightforward in vitro cell-free repair system. Here, we describe the practical protocols for preparation of yeast cell-free nuclear extracts and DNA mismatch substrates, and the in vitro mismatch repair assay. The validity of the cell-free system was confirmed by the mismatch repair deficient yeast strain (Deltamsh2) and the complementation assay with purified yeast MSH2-MSH6.
Drying enhances immunoactivity of spent brewer's yeast cell wall β-D-glucans.
Liepins, Janis; Kovačova, Elena; Shvirksts, Karlis; Grube, Mara; Rapoport, Alexander; Kogan, Grigorij
2015-07-20
Due to immunological activity, microbial cell wall polysaccharides are defined as 'biological response modifiers' (BRM). Cell walls of spent brewer's yeast also have some BRM activity. However, up to date there is no consensus on the use of spent brewer's yeast D-glucan as specific BRM in humans or animals. The aim of this paper is to demonstrate the potential of spent brewer's yeast β-D-glucans as BRM, and drying as an efficient pretreatment to increase β-D-glucan's immunogenic activity. Our results revealed that drying does not change spent brewer's yeast biomass carbohydrate content as well as the chemical structure of purified β-D-glucan. However, drying increased purified β-D-glucan TNF-α induction activity in the murine macrophage model. We presume drying pretreatment enhances purity of extracted β-D-glucan. This is corroborated with FT-IR analyses of the β-D-glucan spectra. Based on our results, we suggest that dry spent brewer's yeast biomass can be used as a cheap source for high-quality β-D-glucan extraction. Drying in combination with carboxylmethylation (CM), endows spent brewer's yeast β-D-glucan with the immunoactivity similar or exceeding that of a well-characterized fungal BRM pleuran. Copyright © 2015 Elsevier B.V. All rights reserved.
Magiatis, Prokopios; Pappas, Periklis; Gaitanis, George; Mexia, Nikitia; Melliou, Eleni; Galanou, Maria; Vlachos, Christophoros; Stathopoulou, Konstantina; Skaltsounis, Alexios Leandros; Marselos, Marios; Velegraki, Aristea; Denison, Michael S; Bassukas, Ioannis D
2013-08-01
Malassezia yeasts are commensal microorganisms, which under insufficiently understood conditions can become pathogenic. We have previously shown that specific strains isolated from diseased human skin can preferentially produce agonists of the aryl hydrocarbon receptor (AhR), whose activation has been linked to certain skin diseases. Investigation of skin scale extracts from patients with Malassezia-associated diseases demonstrated 10- to 1,000-fold higher AhR-activating capacity than control skin extracts. Liquid chromatography-tandem mass spectrometry analysis of the patients' extracts revealed the presence of indirubin, 6-formylindolo[3,2-b]carbazole (FICZ), indolo[3,2-b]carbazole (ICZ), malassezin, and pityriacitrin. The same compounds were also identified in 9 out of 12 Malassezia species culture extracts tested, connecting their presence in skin scales with this yeast. Studying the activity of the Malassezia culture extracts and pure metabolites in HaCaT cells by reverse transcriptase real-time PCR revealed significant alterations in mRNA levels of the endogenous AhR-responsive genes Cyp1A1, Cyp1B1, and AhRR. Indirubin- and FICZ-activated AhR in HaCaT and human HepG2 cells with significantly higher, yet transient, potency as compared with the prototypical AhR ligand, dioxin. In loco synthesis of these highly potent AhR inducers by Malassezia yeasts could have a significant impact on skin homeostatic mechanisms and disease development.
Microbial metabolic activity in soil as measured by dehydrogenase determinations
NASA Technical Reports Server (NTRS)
Casida, L. E., Jr.
1977-01-01
The dehydrogenase technique for measuring the metabolic activity of microorganisms in soil was modified to use a 6-h, 37 C incubation with either glucose or yeast extract as the electron-donating substrate. The rate of formazan production remained constant during this time interval, and cellular multiplication apparently did not occur. The technique was used to follow changes in the overall metabolic activities of microorganisms in soil undergoing incubation with a limiting concentration of added nutrient. The sequence of events was similar to that obtained by using the Warburg respirometer to measure O2 consumption. However, the major peaks of activity occurred earlier with the respirometer. This possibly is due to the lack of atmospheric CO2 during the O2 consumption measurements.
Chagas, Clarice M A; Honorato, Talita L; Pinto, Gustavo A S; Maia, Geraldo A; Rodrigues, Sueli
2007-05-01
Cashew apples are considered agriculture excess in the Brazilian Northeast because cashew trees are cultivated primarily with the aim of cashew nut production. In this work, the use of cashew apple juice as a substrate for Leuconostoc mesenteroides cultivation was investigated. The effect of yeast extract and phosphate addition was evaluated using factorial planning tools. Both phosphate and yeast extract addition were significant factors for biomass growth, but had no significant effect on maximum enzyme activity. The enzyme activities found in cashew apple juice assays were at least 3.5 times higher than the activity found in the synthetic medium. Assays with pH control (pH = 6.5) were also carried out. The pH-controlled fermentation enhanced biomass growth, but decreased the enzyme activity. Crude enzyme free of cells produced using cashew apple juice was stable for 16 h at 30 degrees C at a pH of 5.0.
Cashew apple juice as microbial cultivation medium for non-immunogenic hyaluronic acid production.
Oliveira, Adriano H; Ogrodowski, Cristiane C; de Macedo, André C; Santana, Maria Helena A; Gonçalves, Luciana R B
2013-12-01
In this work, natural cashew apple juice was used as cultivation medium as an alternative to substitute brain heart infusion medium. The effect of aeration and juice supplementation with yeast extract on the production of hyaluronic acid in batch fermentation was also investigated. Similar levels of cell mass were obtained in inoculum using cashew apple juice supplemented with yeast extract or the conventional brain heart infusion medium. Fermentation in Erlenmeyer flasks produced low biomass and hyaluronic acid concentrations. The hyaluronic acid concentration and viscosity increased from 0.15 g/L and 3.87 cP (no aeration or medium supplementation) to 1.76 g/L and 107 cP, when aeration (2 vvm) and 60 g/L of yeast extract were used. The results suggest the production of low-molecular weight hyaluronic acid oligomers instead of the high molecular weight polymer.
In Vitro Antidiabetic Effects and Antioxidant Potential of Cassia nemophila Pods
Rehman, Gauhar; Hamayun, Muhammad; Ul Islam, Saif; Arshad, Saba; Zaman, Khair; Ahmad, Ayaz; Shehzad, Adeeb; Hussain, Anwar
2018-01-01
The antidiabetic and antioxidant potential of ethanolic extract of Cassia nemophila pod (EECNP) was evaluated by three in vitro assays, including yeast glucose uptake assay, glucose adsorption assay, and DPPH radical scavenging activity. The result revealed that the extracts have enhanced the uptake of glucose through the plasma membrane of yeast cells. A linear increase in glucose uptake by yeast cells was noticed with gradual increase in the concentration of the test samples. Moreover, the adsorption capacity of the EECNP was directly proportional to the molar concentration of glucose. Also, the DPPH radical scavenging capacity of the extract was increased to a maximum value of 43.3% at 80 μg/ml, which was then decreased to 41.9% at 100 μg/ml. From the results, it was concluded that EECNP possess good antidiabetic and antioxidant properties as shown by in vitro assays. PMID:29607313
Cashew apple juice as microbial cultivation medium for non-immunogenic hyaluronic acid production
Oliveira, Adriano H.; Ogrodowski, Cristiane C.; de Macedo, André C.; Santana, Maria Helena A.; Gonçalves, Luciana R.B.
2013-01-01
In this work, natural cashew apple juice was used as cultivation medium as an alternative to substitute brain heart infusion medium. The effect of aeration and juice supplementation with yeast extract on the production of hyaluronic acid in batch fermentation was also investigated. Similar levels of cell mass were obtained in inoculum using cashew apple juice supplemented with yeast extract or the conventional brain heart infusion medium. Fermentation in Erlenmeyer flasks produced low biomass and hyaluronic acid concentrations. The hyaluronic acid concentration and viscosity increased from 0.15 g/L and 3.87 cP (no aeration or medium supplementation) to 1.76 g/L and 107 cP, when aeration (2 vvm) and 60 g/L of yeast extract were used. The results suggest the production of low-molecular weight hyaluronic acid oligomers instead of the high molecular weight polymer. PMID:24688498
Saccharomyces Cerevisiae Cell Wall Components as Tools for Ochratoxin A Decontamination
Piotrowska, Małgorzata; Masek, Anna
2015-01-01
The aim of this study was to evaluate the usefulness of Saccharomyces cerevisiae cell wall preparations in the adsorption of ochratoxin A (OTA). The study involved the use of a brewer’s yeast cell wall devoid of protein substances, glucans obtained by water and alkaline extraction, a glucan commercially available as a dietary supplement for animals and, additionally, dried brewer’s yeast for comparison. Fourier Transform Infrared (FTIR) analysis of the obtained preparations showed bands characteristic for glucans in the resulting spectra. The yeast cell wall preparation, water-extracted glucan and the commercial glucan bound the highest amount of ochratoxin A, above 55% of the initial concentration, and the alkaline-extracted glucan adsorbed the lowest amount of this toxin. It has been shown that adsorption is most effective at a close-to-neutral pH, while being considerably limited in alkaline conditions. PMID:25848694
Alcohol production from Jerusalem artichoke using yeasts with inulinase activity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guiraud, J.P.; Daurelles, J.; Galzy, P.
1981-07-01
The purpose of this article is to show that yeasts with inulinase activity can be used to produce ethanol from the Jerusalem artichoke (Helianthus tuberosus L.). The results show that a fermentable extract can be easily obtained from the Jerusalem artichoke even under cold conditions. Yeasts with inulinase activity can be used to produce ethanol with good profitability. 19 refs.
Sugita, Takashi; Suto, Hajime; Unno, Tetsushi; Tsuboi, Ryoji; Ogawa, Hideoki; Shinoda, Takako; Nishikawa, Akemi
2001-01-01
Members of the genus Malassezia, lipophilic yeasts, are considered to be one of the exacerbating factors in atopic dermatitis (AD). We examined variation in cutaneous colonization by Malassezia species in AD patients and compared it with variation in healthy subjects. Samples were collected by applying transparent dressings to the skin lesions of AD patients. DNA was extracted directly from the dressings and amplified in a specific nested PCR assay. Malassezia-specific DNA was detected in all samples obtained from 32 AD patients. In particular, Malassezia globosa and M. restricta were detected in approximately 90% of the AD patients and M. furfur and M. sympodialis were detected in approximately 40% of the cases. The detection rate was not dependent on the type of skin lesion. In healthy subjects, Malassezia DNA was detected in 78% of the samples, among which M. globosa, M. restricta, and M. sympodialis were detected at frequencies ranging from 44 to 61%, with M. furfur at 11%. The diversity of Malassezia species found in AD patients was greater (2.7 species detected in each individual) than that found in healthy subjects (1.8 species per individual). Our results suggest that M. furfur, M. globosa, M. restricta, and M. sympodialis are common inhabitants of the skin of both AD patients and healthy subjects, while the skin microflora of AD patients shows more diversity than that of healthy subjects. To our knowledge, this is the first report of the use of a nested PCR as an alternative to fungal culture for analysis of the distribution of cutaneous Malassezia spp. PMID:11574560
Goldschmidt, Pablo; Degorge, Sandrine; Che Sarria, Patricia; Benallaoua, Djida; Semoun, Oudy; Borderie, Vincent; Laroche, Laurent; Chaumeil, Christine
2012-01-01
The prognosis of people infected with Fungi especially immunocompromised depends on rapid and accurate diagnosis to capitalize on time administration of specific treatments. However, cultures produce false negative results and nucleic-acid amplification techniques require complex post-amplification procedures to differentiate relevant fungal types. The objective of this work was to develop a new diagnostic strategy based on real-time polymerase-chain reaction high-resolution melting analysis (PCR-HRM) that a) detects yeasts and filamentous Fungi, b) differentiates yeasts from filamentous Fungi, and c) discriminates among relevant species of yeasts. PCR-HRM detection limits and specificity were assessed with a) isolated strains; b) human blood samples experimentally infected with Fungi; c) blood experimentally infected with other infectious agents; d) corneal scrapings from patients with suspected fungal keratitis (culture positive and negative) and e) scrapings from patients with suspected bacterial, viral or Acanthamoeba infections. The DNAs were extracted and mixed with primers diluted in the MeltDoctor® HRM Master Mix in 2 tubes, the first for yeasts, containing the forward primer CandUn (5'CATGCCTGTTTGAGCGTC) and the reverse primer FungUn (5'TCCTCCGCTT ATTGATATGCT) and the second for filamentous Fungi, containing the forward primer FilamUn (5'TGCCTGTCCGAGCGTCAT) and FungUn. Molecular probes were not necessary. The yields of DNA extraction and the PCR inhibitors were systematically monitored. PCR-HRM detected 0.1 Colony Forming Units (CFU)/µl of yeasts and filamentous Fungi, differentiated filamentous Fungi from yeasts and discriminated among relevant species of yeasts. PCR-HRM performances were higher than haemoculture and sensitivity and specificity was 100% for culture positive samples, detecting and characterizing Fungi in 7 out 10 culture negative suspected fungal keratitis. PCR-HRM appears as a new, sensitive, specific and inexpensive test that detects Fungi and differentiates filamentous Fungi from yeasts. It allows direct fungal detection from clinical samples and experimentally infected blood in less than 2.30 h after DNA extraction.
Yeasts Diversity in Fermented Foods and Beverages
NASA Astrophysics Data System (ADS)
Tamang, Jyoti Prakash; Fleet, Graham H.
People across the world have learnt to culture and use the essential microorganisms for production of fermented foods and alcoholic beverages. A fermented food is produced either spontaneously or by adding mixed/pure starter culture(s). Yeasts are among the essential functional microorganisms encountered in many fermented foods, and are commercially used in production of baker's yeast, breads, wine, beer, cheese, etc. In Asia, moulds are predominant followed by amylolytic and alcohol-producing yeasts in the fermentation processes, whereas in Africa, Europe, Australia and America, fermented products are prepared exclusively using bacteria or bacteria-yeasts mixed cultures. This chapter would focus on the varieties of fermented foods and alcoholic beverages produced by yeasts, their microbiology and role in food fermentation, widely used commercial starters (pilot production, molecular aspects), production technology of some common commercial fermented foods and alcoholic beverages, toxicity and food safety using yeasts cultures and socio-economy
Leiva-Candia, D E; Tsakona, S; Kopsahelis, N; García, I L; Papanikolaou, S; Dorado, M P; Koutinas, A A
2015-08-01
This study focuses on the valorisation of crude glycerol and sunflower meal (SFM) from conventional biodiesel production plants for the separation of value-added co-products (antioxidant-rich extracts and protein isolate) and for enhancing biodiesel production through microbial oil synthesis. Microbial oil production was evaluated using three oleaginous yeast strains (Rhodosporidium toruloides, Lipomyces starkeyi and Cryptococcus curvatus) cultivated on crude glycerol and nutrient-rich hydrolysates derived from either whole SFM or SFM fractions that remained after separation of value-added co-products. Fed-batch bioreactor cultures with R. toruloides led to the production of 37.4gL(-1) of total dry weight with a microbial oil content of 51.3% (ww(-1)) when a biorefinery concept based on SFM fractionation was employed. The estimated biodiesel properties conformed with the limits set by the EN 14214 and ASTM D 6751 standards. The estimated cold filter plugging point (7.3-8.6°C) of the lipids produced by R. toruloides is closer to that of biodiesel derived from palm oil. Copyright © 2015 Elsevier Ltd. All rights reserved.
Surdyk, Nicolas; Rosén, Johan; Andersson, Roger; Aman, Per
2004-04-07
A repeatable procedure for studying the effects of internal and external factors on acrylamide content in yeast-leavened wheat bread has been developed. The dough contained wheat endosperm flour with a low content of precursors for acrylamide formation (asparagine and reducing sugars), dry yeast, salt, and water. The effects of asparagine and fructose, added to the dough, were studied in an experiment with a full factorial design. More than 99% of the acrylamide was found in the crust. Added asparagine dramatically increased the content of acrylamide in crusts dry matter (from about 80 microg/kg to between 600 and 6000 microg/kg) while added fructose did not influence the content. The effects of temperature and time of baking were studied in another experiment using a circumscribed central composite design. Mainly temperature (above 200 degrees C) but also time increased the acrylamide content in crust dry matter (from below 10 to 1900 microg/kg), and a significant interaction was found between these two factors. When baked at different conditions with the same ingredients, a highly significant relationship (P < 0.001) between color and acrylamide content in crust was found. Added asparagine, however, did not increase color, showing that mainly other amino compounds are involved in the browning reactions.
Fernandes, Joana P.; Neto, Rodrigo; Centeno, Filipe; De Fátima Teixeira, Maria; Gomes, Ana Catarina
2015-01-01
Fining agents derived from animal and mineral sources are widely used to clarify and stabilize white wines. Nevertheless, health and environmental problems are being raised, concerning the allergenic and environmental impact of some of those fining products. In this study, our aim is to validate the potential of yeast protein extracts, obtained from an alternative and safe source, naturally present in wine: oenological yeasts. Three untreated white wines were used in this work in order to evaluate the impact of these novel yeast protein extracts (YPE) in terms of the wine clarification and stabilization improvement. Two separated fining trials were thus conducted at laboratory scale and the yeast alternatives were compared with reference fining agents, obtained from mineral, animal and vegetable origins. Our results indicate that YPE were capable to promote (i) brilliance/color improvement, (ii) turbidity reduction (76–89% comparing with the untreated wines), and (iii) production of compact and homogeneous lees (44% smaller volume than obtained with bentonite). Additionally, after submitting wines to natural and forced oxidations, YPE treatments revealed (iv) different forms of colloidal stabilization, by presenting comparable or superior effects when particularly compared to casein. Altogether, this study reveals that YPE represent a promising alternative for white wine fining, since they are resultant from a natural and more sustainable origin, at present not regarded as potential allergenic according to Regulation (EC) No. 1169/2011. PMID:25853122
Díaz-Montaño, Dulce M; Favela-Torres, Ernesto; Córdova, Jesus
2010-01-30
The aim of this work was to improve the productivity and yield of tequila fermentation and to propose the use of a recently isolated non-Saccharomyces yeast in order to obtain a greater diversity of flavour and aroma of the beverage. For that, the effects of the addition of different nitrogen (N) sources to Agave tequilana juice on the growth, fermentative capacity and ethanol tolerance of Kloeckera africana and Saccharomyces cerevisiae were studied and compared. Kloeckera africana K1 and S. cerevisiae S1 were cultured in A. tequilana juice supplemented with ammonium sulfate, diammonium phosphate or yeast extract. Kloeckera africana did not assimilate inorganic N sources, while S. cerevisiae utilised any N source. Yeast extract stimulated the growth, fermentative capacity and alcohol tolerance of K. africana, giving kinetic parameter values similar to those calculated for S. cerevisiae. This study revealed the importance of supplementing A. tequilana juice with a convenient N source to achieve fast and complete conversion of sugars in ethanol, particularly in the case of K. africana. This yeast exhibited similar growth and fermentative capacity to S. cerevisiae. The utilisation of K. africana in the tequila industry is promising because of its variety of synthesised aromatic compounds, which would enrich the attributes of this beverage. (c) 2009 Society of Chemical Industry.
Wang, Ling-Fei; Wang, Zhi-Peng; Liu, Xiao-Yan; Chi, Zhen-Ming
2013-11-01
In this study, citric acid production from extract of Jerusalem artichoke tubers by the genetically engineered yeast Yarrowia lipolytica strain 30 was investigated. After the compositions of the extract of Jerusalem artichoke tubers for citric acid production were optimized, the results showed that natural components of extract of Jerusalem artichoke tubers without addition of any other components were suitable for citric acid production by the yeast strain. During 10 L fermentation using the extract containing 84.3 g L(-1) total sugars, 68.3 g L(-1) citric acid was produced and the yield of citric acid was 0.91 g g(-1) within 336 h. At the end of the fermentation, 9.2 g L(-1) of residual total sugar and 2.1 g L(-1) of reducing sugar were left in the fermented medium. At the same time, citric acid in the supernatant of the culture was purified. It was found that 67.2 % of the citric acid in the supernatant of the culture was recovered and purity of citric acid in the crystal was 96 %.
Lowman, Douglas W; Greene, Rachel R; Bearden, Daniel W; Kruppa, Michael D; Pottier, Max; Monteiro, Mario A; Soldatov, Dmitriy V; Ensley, Harry E; Cheng, Shih-Chin; Netea, Mihai G; Williams, David L
2014-02-07
The innate immune system differentially recognizes Candida albicans yeast and hyphae. It is not clear how the innate immune system effectively discriminates between yeast and hyphal forms of C. albicans. Glucans are major components of the fungal cell wall and key fungal pathogen-associated molecular patterns. C. albicans yeast glucan has been characterized; however, little is known about glucan structure in C. albicans hyphae. Using an extraction procedure that minimizes degradation of the native structure, we extracted glucans from C. albicans hyphal cell walls. (1)H NMR data analysis revealed that, when compared with reference (1→3,1→6) β-linked glucans and C. albicans yeast glucan, hyphal glucan has a unique cyclical or "closed chain" structure that is not found in yeast glucan. GC/MS analyses showed a high abundance of 3- and 6-linked glucose units when compared with yeast β-glucan. In addition to the expected (1→3), (1→6), and 3,6 linkages, we also identified a 2,3 linkage that has not been reported previously in C. albicans. Hyphal glucan induced robust immune responses in human peripheral blood mononuclear cells and macrophages via a Dectin-1-dependent mechanism. In contrast, C. albicans yeast glucan was a much less potent stimulus. We also demonstrated the capacity of C. albicans hyphal glucan, but not yeast glucan, to induce IL-1β processing and secretion. This finding provides important evidence for understanding the immune discrimination between colonization and invasion at the mucosal level. When taken together, these data provide a structural basis for differential innate immune recognition of C. albicans yeast versus hyphae.
Lowman, Douglas W.; Greene, Rachel R.; Bearden, Daniel W.; Kruppa, Michael D.; Pottier, Max; Monteiro, Mario A.; Soldatov, Dmitriy V.; Ensley, Harry E.; Cheng, Shih-Chin; Netea, Mihai G.; Williams, David L.
2014-01-01
The innate immune system differentially recognizes Candida albicans yeast and hyphae. It is not clear how the innate immune system effectively discriminates between yeast and hyphal forms of C. albicans. Glucans are major components of the fungal cell wall and key fungal pathogen-associated molecular patterns. C. albicans yeast glucan has been characterized; however, little is known about glucan structure in C. albicans hyphae. Using an extraction procedure that minimizes degradation of the native structure, we extracted glucans from C. albicans hyphal cell walls. 1H NMR data analysis revealed that, when compared with reference (1→3,1→6) β-linked glucans and C. albicans yeast glucan, hyphal glucan has a unique cyclical or “closed chain” structure that is not found in yeast glucan. GC/MS analyses showed a high abundance of 3- and 6-linked glucose units when compared with yeast β-glucan. In addition to the expected (1→3), (1→6), and 3,6 linkages, we also identified a 2,3 linkage that has not been reported previously in C. albicans. Hyphal glucan induced robust immune responses in human peripheral blood mononuclear cells and macrophages via a Dectin-1-dependent mechanism. In contrast, C. albicans yeast glucan was a much less potent stimulus. We also demonstrated the capacity of C. albicans hyphal glucan, but not yeast glucan, to induce IL-1β processing and secretion. This finding provides important evidence for understanding the immune discrimination between colonization and invasion at the mucosal level. When taken together, these data provide a structural basis for differential innate immune recognition of C. albicans yeast versus hyphae. PMID:24344127
PHAGE FORMATION IN STAPHYLOCOCCUS MUSCAE CULTURES
Price, Winston H.
1949-01-01
1. A non-dialyzable fraction from fresh bakers' yeast stimulates the formation of S. muscae virus in cells in synthetic medium in the log phase of multiplication. 2. A similar fraction was not found in calf thymus, pancreas, or liver. 3. The active substance in this fraction has been partially purified. 4. This substance is taken up by the cells. In the absence of virus the added substance is metabolized to a form no longer available for virus formation. 5. A purified yeast fraction, which stimulates adaptive enzyme formation in yeast, has been found to stimulate virus formation in the S. muscae system. 6. The similarities between the yeast fraction that stimulates adaptive enzyme formation and the yeast fraction that stimulates virus formation are discussed. PMID:18123312
Suitability of peracetic acid for sterilization of media for mycoplasma cultures.
Wutzler, P; Sprössig, M; Peterseim, H
1975-01-01
The utility of peracetic acid for sterilization of serum and yeast extract additions to mycoplasma medium was studied by culturing six Mycoplasma species. Culture media containing additions that had been sterilized with peracetic acid proved to be as good as filtered components. The use of 0.05 to 0.1% peracetic acid is recommended to sterilize the serum and yeast extract additions since savings in time and equipment can be accomplished. PMID:1100656
Rowe, Jeffrey D; Harbertson, James F; Osborne, James P; Freitag, Michael; Lim, Juyun; Bakalinsky, Alan T
2010-02-24
Total protein and protein-associated mannan concentrations were measured, and individual proteins were identified during extraction into model wines over 9 months of aging on the yeast lees following completion of fermentations by seven wine strains of Saccharomyces cerevisiae. In aged wines, protein-associated mannan increased about 6-fold (+/-66%), while total protein only increased 2-fold (+/-20%), which resulted in a significantly greater protein-associated mannan/total protein ratio for three strains. A total of 219 proteins were identified among all wine samples taken over the entire time course. Of the 17 "long-lived" proteins detected in all 9 month samples, 13 were cell wall mannoproteins, and four were glycolytic enzymes. Most cytosolic proteins were not detected after 6 months. Native mannosylated yeast invertase was assayed for binding to wine tannin and was found to have a 10-fold lower affinity than nonglycosylated bovine serum albumin. Enrichment of mannoproteins in the aged model wines implies greater solution stability than other yeast proteins and the possibility that their contributions to wine quality may persist long after bottling.
Inaccurate DNA synthesis in cell extracts of yeast producing active human DNA polymerase iota.
Makarova, Alena V; Grabow, Corinn; Gening, Leonid V; Tarantul, Vyacheslav Z; Tahirov, Tahir H; Bessho, Tadayoshi; Pavlov, Youri I
2011-01-31
Mammalian Pol ι has an unusual combination of properties: it is stimulated by Mn(2+) ions, can bypass some DNA lesions and misincorporates "G" opposite template "T" more frequently than incorporates the correct "A." We recently proposed a method of detection of Pol ι activity in animal cell extracts, based on primer extension opposite the template T with a high concentration of only two nucleotides, dGTP and dATP (incorporation of "G" versus "A" method of Gening, abbreviated as "misGvA"). We provide unambiguous proof of the "misGvA" approach concept and extend the applicability of the method for the studies of variants of Pol ι in the yeast model system with different cation cofactors. We produced human Pol ι in baker's yeast, which do not have a POLI ortholog. The "misGvA" activity is absent in cell extracts containing an empty vector, or producing catalytically dead Pol ι, or Pol ι lacking exon 2, but is robust in the strain producing wild-type Pol ι or its catalytic core, or protein with the active center L62I mutant. The signature pattern of primer extension products resulting from inaccurate DNA synthesis by extracts of cells producing either Pol ι or human Pol η is different. The DNA sequence of the template is critical for the detection of the infidelity of DNA synthesis attributed to DNA Pol ι. The primer/template and composition of the exogenous DNA precursor pool can be adapted to monitor replication fidelity in cell extracts expressing various error-prone Pols or mutator variants of accurate Pols. Finally, we demonstrate that the mutation rates in yeast strains producing human DNA Pols ι and η are not elevated over the control strain, despite highly inaccurate DNA synthesis by their extracts.
The effect of yeast extract addition on quality of fermented sausages at low NaCl content.
Campagnol, Paulo Cezar Bastianello; dos Santos, Bibiana Alves; Wagner, Roger; Terra, Nelcindo Nascimento; Pollonio, Marise Aparecida Rodrigues
2011-03-01
Fermented sausages with 25% or 50% of their NaCl replaced by KCl and supplemented with 1% or 2% concentrations of yeast extract were produced. The sausage production process was monitored with physical, chemical and microbiological analyses. After production, the sausage samples were submitted to a consumer study and their volatile compounds were extracted by solid-phase microextraction and analyzed by GC-MS. The replacement of NaCl by KCl did not significantly influence the physical, chemical or microbiological characteristics. The sensory quality of the fermented sausages with a 50% replacement was poor compared with the full-salt control samples. The use of yeast extract at a 2% concentration increased volatile compounds that arose from amino acids and carbohydrate catabolism. These compounds contributed to the suppression of the sensory-quality defects caused by the KCl introduction, thus enabling the production of safe fermented sausages that have acceptable sensory qualities with half as much sodium content. Copyright © 2010 The American Meat Science Association. Published by Elsevier Ltd. All rights reserved.
Rodríguez-Limas, William A; Pastor, Ana Ruth; Esquivel-Soto, Ernesto; Esquivel-Guadarrama, Fernando; Ramírez, Octavio T; Palomares, Laura A
2014-05-19
Rotavirus is the most common cause of severe diarrhea in many animal species of economic interest. A simple, safe and cost-effective vaccine is required for the control and prevention of rotavirus in animals. In this study, we evaluated the use of Saccharomyces cerevisiae extracts containing rotavirus-like particles (RLP) as a vaccine candidate in an adult mice model. Two doses of 1mg of yeast extract containing rotavirus proteins (between 0.3 and 3 μg) resulted in an immunological response capable of reducing the replication of rotavirus after infection. Viral shedding in all mice groups diminished in comparison with the control group when challenged with 100 50% diarrhea doses (DD50) of murine rotavirus strain EDIM. Interestingly, when immunizing intranasally protection against rotavirus infection was observed even when no increase in rotavirus-specific antibody titers was evident, suggesting that cellular responses were responsible of protection. Our results indicate that raw yeast extracts containing rotavirus proteins and RLP are a simple, cost-effective alternative for veterinary vaccines against rotavirus. Copyright © 2014 Elsevier Ltd. All rights reserved.
Jia, Bo; Liu, Xingyan; Zhan, Jicheng; Li, Jingyuan; Huang, Weidong
2015-06-01
Proanthocyanidins (PAs) derived from the grape skin, as well as from grape seeds, grape stems, are an important group of polyphenols in wine. The aim of this study was to understand the effect of PAs (0.1, 1.0 g/L) on growth and alcoholic fermentation of 2 strains of Saccharomyces cerevisiae (commercial strain FREDDO and newly selected strain BH8) during copper-stress fermentation, using a simple model fermentation system. Our results showed that both PAs and Cu(2+) could pose significant inhibition effects on the growth of yeast cells, CO2 release, sugar consumption, and ethanol production during the initial phase of the fermentation. Compared to PAs, Cu(2+) performed more obvious inhibition on the yeast growth and fermentation. However, adding 1.0 g/L PAs increased in the vitality and metabolism activity of yeast cells at the mid-exponential phase of fermentation in the mediums with no copper and 0.1 mM Cu(2+) added, shortened the period of wine fermentation, and decreased the copper residues. It indicated that PAs could improve the ability of wine yeast to resist detrimental effects under copper-stress fermentation condition, maintaining cells metabolic activity, and fermentation could be controlled by manipulating PAs supplementation. © 2015 Institute of Food Technologists®
de Câmara, Antonio Anchieta; Dupont, Sébastien; Beney, Laurent; Gervais, Patrick; Rosenthal, Amauri; Correia, Roberta Targino Pinto; Pedrini, Márcia Regina da Silva
2016-06-01
Osmoporation is an innovative method that can be used with food-grade yeast cells of Saccharomyces cerevisiae as natural encapsulating matrices. This technique overcomes barriers that difficult encapsulation and enables the internalization of fragile bioactive molecules such as fisetin into yeasts. In the present study, we assessed the effects of concentration, osmotic pressure, and temperature on the encapsulation efficiency (EE) and internalized fisetin content (IF). Two different quantification strategies were investigated: direct extraction (DE) without cell washing or freeze-drying steps and indirect extraction (IE) performed after washings with ethanol and freeze-drying. Our results showed that osmoporation improved EE (33 %) and IF (1.199 mg). The best experimental conditions were found by using DE. High-resolution images showed that the yeast cell envelope was preserved during osmoporation at 30 MPa and 84 % of yeast cells remained viable after treatment. Washing cells with organic solvent led to decreased EE (0.65 %) and IF (0.023 mg). This was probably due to either damages caused to yeast cell envelope or fisetin dragged out of cell. Overall, the results demonstrated the adequacy and relevant biotechnological potential of yeasts as encapsulating matrices for hydrophobic compounds. This fresh biotechnological approach has proven to be a promising tool for the production of bioactive-rich food products.
The extraction and purification of a cysteine transfer ribonucleic acid from baker's yeast.
Holness, N J; Atfield, G
1976-01-01
1. A modification of the RPC 1 system of A.D. Kelmers, G.D. Novelli & M.P. Stulberg (1965) (J. Biol. Chem. 240, 3979-3983) is described in which the support medium is a Celite of narrow range particle size treated with dichlorodimethylsilane. 2. By using this system an apparently pure preparation of tRNA Cys was isolated from baker's yeast tRNA. 3. This preparation accepted at least 60% of the theoretical quantity of [3-14C]cysteine in a conventional assay and failed to accept isoleucine, phenylalanine, proline, serine or tyrosine. 4. A theoretical countercurrent-distribution curve calculated by assuming a distribution coefficient K of 2.03 was in excellent agreement with the profiles of E260 and cysteine-acceptor ability after 537 transfers in the 1.85 M-phosphate/formamide/propan-2-ol system of C.M. Connelly & B.P. Doctor (1965) (J. Biol. Chem. 241, 715-719). 5. Chromatography of tRNA Cys on Bio-Gel P100 polyacrylamide beads afforded two components one of which was far less efficient than the other in accepting cysteine. The base compositions of the two were similar. PMID:776175
Campbell, Carmen; Nanjundaswamy, Ananda K; Njiti, Victor; Xia, Qun; Chukwuma, Franklin
2017-05-01
Controlled fermentation of Sweet potato ( Ipomoea batatas ) var. Beauregard by yeast, Saccharomyces boulardii (MAY 796) to enhance the nutritional value of sweet potato was investigated. An average 8.00 × 10 10 Colony Forming Units (CFU)/g of viable cells were obtained over 5-day high-solid fermentation. Yeast cell viability did not change significantly over time at 4°C whereas the number of viable yeast cells reduced significantly at room temperature (25°C), which was approximately 40% in 12 months. Overall, the controlled fermentation of sweet potato by MAY 796 enhanced protein, crude fiber, neutral detergent fiber, acid detergent fiber, amino acid, and fatty acid levels. Development of value-added sweet potato has a great potential in animal feed and human nutrition. S. boulardii - fermented sweet potato has great potential as probiotic-enriched animal feed and/or functional food for human nutrition.
Effects of a spoilage yeast from silage on in vitro ruminal fermentation.
Santos, M C; Lock, A L; Mechor, G D; Kung, L
2015-04-01
Feeding silages with high concentrations of yeasts from aerobic spoilage is often implicated as a cause of poor animal performance on dairies. Our objective was to determine if a commonly found spoilage yeast, isolated from silage, had the potential to alter in vitro ruminal fermentations. A single colony of Issatchenkia orientalis, isolated from high-moisture corn, was grown in selective medium. The yeast culture was purified and added to in vitro culture tubes containing a total mixed ration (43% concentrate, 43% corn silage, 11% alfalfa haylage, and 3% alfalfa hay on a dry matter basis), buffer, and ruminal fluid to achieve added theoretical final concentrations of 0 (CTR), 4.40 (low yeast; LY), 6.40 (medium yeast; MY), and 8.40 (high yeast; HY) log10 cfu of yeast/mL of in vitro fluid. Seven separate tubes were prepared for each treatment and each time point and incubated for 12 and 24h at 39 °C. At the end of the incubation period, samples were analyzed for pH, yeast number, neutral detergent fiber (NDF) digestibility, volatile fatty acids (VFA), and fatty acids (FA). We found that total viable yeast counts decreased for all treatments in in vitro incubations but were still relatively high (5.3 log10 cfu of yeasts/mL) for HY after 24h of incubation. Addition of HY resulted in a lower pH and higher concentration of total VFA in culture fluid compared with other treatments. Moreover, additions of MY and HY decreased in vitro NDF digestibility compared with CTR, and the effect was greatest for HY. Overall, the biohydrogenation of dietary unsaturated FA was not altered by addition of I. orientalis and decreased over time with an increase in the accumulation of saturated FA, especially palmitic and stearic acids. We conclude that addition of I. orientalis, especially at high levels, has the potential to reduce in vitro NDF digestion and alter other aspects of ruminal fermentations. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Antimicrobial activity of spices.
Arora, D S; Kaur, J
1999-08-01
Spices have been shown to possess medicinal value, in particular, antimicrobial activity. This study compares the sensitivity of some human pathogenic bacteria and yeasts to various spice extracts and commonly employed chemotherapeutic substances. Of the different spices tested only garlic and clove were found to possess antimicrobial activity. The bactericidal effect of garlic extract was apparent within 1 h of incubation and 93% killing of Staphylococcus epidermidis and Salmonella typhi was achieved within 3 h. Yeasts were totally killed in 1 h by garlic extract but in 5 h with clove. Some bacteria showing resistance to certain antibiotics were sensitive to extracts of both garlic and clove. Greater anti-candidal activity was shown by garlic than by nystatin. Spices might have a great potential to be used as antimicrobial agents.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yasuda, Kaori; Endo, Mariko; Ikushiro, Shinichi
Highlights: •We produce 25-hydroxyvitamin D in the recombinant yeast expressing human CYP2R1. •Vitamin D2 is produced in yeast from endogenous ergosterol with UV irradiation. •We produce 25-hydroxyvitamin D2 in the recombinant yeast without added substrate. -- Abstract: CYP2R1 is known to be a physiologically important vitamin D 25-hydroxylase. We have successfully expressed human CYP2R1 in Saccharomyces cerevisiae to reveal its enzymatic properties. In this study, we examined production of 25-hydroxylated vitamin D using whole recombinant yeast cells that expressed CYP2R1. When vitamin D{sub 3} or vitamin D{sub 2} was added to the cell suspension of CYP2R1-expressing yeast cells in amore » buffer containing glucose and β-cyclodextrin, the vitamins were converted into their 25-hydroxylated products. Next, we irradiated the cell suspension with UVB and incubated at 37 °C. Surprisingly, the 25-hydroxy vitamin D{sub 2} was produced without additional vitamin D{sub 2}. Endogenous ergosterol was likely converted into vitamin D{sub 2} by UV irradiation and thermal isomerization, and then the resulting vitamin D{sub 2} was converted to 25-hydroxyvitamin D{sub 2} by CYP2R1. This novel method for producing 25-hydroxyvitamin D{sub 2} without a substrate could be useful for practical purposes.« less
Pendland, S L; Martin, S J; Chen, C; Schreckenberger, P C; Danziger, L H
1997-01-01
We compared growth characteristics of 46 Legionella strains grown on buffered charcoal yeast extract alpha (BCYE alpha) agar and buffered starch yeast extract (BSYE) agar and MICs of macrolides, azalides, and fluoroquinolones for these organisms. Growth was poor and not reproducible on BSYE agar. Growth was excellent on BCYE alpha, and MICs were easy to interpret. BCYE alpha is superior to BSYE for testing susceptibilities of Legionella species by agar dilution. PMID:9350781
Yeast ecology of Kombucha fermentation.
Teoh, Ai Leng; Heard, Gillian; Cox, Julian
2004-09-01
Kombucha is a traditional fermentation of sweetened tea, involving a symbiosis of yeast species and acetic acid bacteria. Despite reports of different yeast species being associated with the fermentation, little is known of the quantitative ecology of yeasts in Kombucha. Using oxytetracycline-supplemented malt extract agar, yeasts were isolated from four commercially available Kombucha products and identified using conventional biochemical and physiological tests. During the fermentation of each of the four products, yeasts were enumerated from both the cellulosic pellicle and liquor of the Kombucha. The number and diversity of species varied between products, but included Brettanomyces bruxellensis, Candida stellata, Schizosaccharomyces pombe, Torulaspora delbrueckii and Zygosaccharomyces bailii. While these yeast species are known to occur in Kombucha, the enumeration of each species present throughout fermentation of each of the four Kombucha cultures demonstrated for the first time the dynamic nature of the yeast ecology. Kombucha fermentation is, in general, initiated by osmotolerant species, succeeded and ultimately dominated by acid-tolerant species.
Assefa, Fassil
2014-01-01
Bioethanol is one of the most commonly used biofuels in transportation sector to reduce greenhouse gases. S. cerevisiae is the most employed yeast for ethanol production at industrial level though ethanol is produced by an array of other yeasts, bacteria, and fungi. This paper reviews the current and nonmolecular trends in ethanol production using S. cerevisiae. Ethanol has been produced from wide range of substrates such as molasses, starch based substrate, sweet sorghum cane extract, lignocellulose, and other wastes. The inhibitors in lignocellulosic hydrolysates can be reduced by repeated sequential fermentation, treatment with reducing agents and activated charcoal, overliming, anion exchanger, evaporation, enzymatic treatment with peroxidase and laccase, in situ detoxification by fermenting microbes, and different extraction methods. Coculturing S. cerevisiae with other yeasts or microbes is targeted to optimize ethanol production, shorten fermentation time, and reduce process cost. Immobilization of yeast cells has been considered as potential alternative for enhancing ethanol productivity, because immobilizing yeasts reduce risk of contamination, make the separation of cell mass from the bulk liquid easy, retain stability of cell activities, minimize production costs, enable biocatalyst recycling, reduce fermentation time, and protect the cells from inhibitors. The effects of growth variables of the yeast and supplementation of external nitrogen sources on ethanol optimization are also reviewed. PMID:27379305
Enhanced Bio-Ethanol Production from Industrial Potato Waste by Statistical Medium Optimization
Izmirlioglu, Gulten; Demirci, Ali
2015-01-01
Industrial wastes are of great interest as a substrate in production of value-added products to reduce cost, while managing the waste economically and environmentally. Bio-ethanol production from industrial wastes has gained attention because of its abundance, availability, and rich carbon and nitrogen content. In this study, industrial potato waste was used as a carbon source and a medium was optimized for ethanol production by using statistical designs. The effect of various medium components on ethanol production was evaluated. Yeast extract, malt extract, and MgSO4·7H2O showed significantly positive effects, whereas KH2PO4 and CaCl2·2H2O had a significantly negative effect (p-value < 0.05). Using response surface methodology, a medium consisting of 40.4 g/L (dry basis) industrial waste potato, 50 g/L malt extract, and 4.84 g/L MgSO4·7H2O was found optimal and yielded 24.6 g/L ethanol at 30 °C, 150 rpm, and 48 h of fermentation. In conclusion, this study demonstrated that industrial potato waste can be used effectively to enhance bioethanol production. PMID:26501261
Durmic, Zoey; Moate, Peter J; Eckard, Richard; Revell, Dean K; Williams, Richard; Vercoe, Philip E
2014-04-01
Ruminants produce large quantities of methane in their rumen as a by-product of microbial digestion of feed. Antibiotics are added to ruminant feed to reduce wasteful production of methane; however, this practice has some downsides. A search for safer and natural feed additives with anti-methanogenic properties is under way. The objective of this research was to examine selected feed additives, plant essential oils and plant extracts for their anti-methanogenic potential in the rumen using an in vitro batch fermentation system. A significant reduction (P < 0.05) in methane production was observed with nine feed additives (up to 40% reduction), all eight essential oils (up to 75% reduction) and two plant extracts (14% reduction) when compared to their respective controls. Amongst these, only an algal meal high in docosahexaenoic acid, preparations of Nannochloropsis oculata, calcareous marine algae, yeast metabolites and two tannins did not inhibit microbial gas and volatile acid production. The current study identified some potent dietary ingredients or plant compounds that can assist in developing novel feed additives for methane mitigation from the rumen. © 2013 Society of Chemical Industry.
Arrizon, Javier; Fiore, Concetta; Acosta, Guillermina; Romano, Patrizia; Gschaedler, Anne
2006-01-01
Few studies have been performed on the characterization of yeasts involved in the production of agave distilled beverages and their individual fermentation properties. In this study, a comparison and evaluation of yeasts of different origins in the tequila and wine industries were carried out for technological traits. Fermentations were carried out in high (300 g l(-1)) and low (30 g l(-1)) sugar concentrations of Agave tequilana juice, in musts obtained from Fiano (white) and Aglianico (red) grapes and in YPD medium (with 270 g l(-1) of glucose added) as a control. Grape yeasts exhibited a reduced performance in high-sugar agave fermentation, while both agave and grape yeasts showed similar fermentation behaviour in grape musts. Production levels of volatile compounds by grape and agave yeasts differed in both fermentations.
Evolutionary History of Ascomyceteous Yeasts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haridas, Sajeet; Riley, Robert; Salamov, Asaf
2014-06-06
Yeasts are important for many industrial and biotechnological processes and show remarkable diversity despite morphological similarities. We have sequenced the genomes of 16 ascomycete yeasts of taxonomic and industrial importance including members of Saccharomycotina and Taphrinomycotina. A comparison of these with several other previously published yeast genomes have added increased confidence to the phylogenetic positions of previously poorly placed species including Saitoella complicata, Babjeviella inositovora and Metschnikowia bicuspidata. Phylogenetic analysis also showed that yeasts with alternative nuclear codon usage where CUG encodes serine instead of leucine are monophyletic within the Saccharomycotina. Most of the yeasts have compact genomes with amore » large fraction of single exon genes with Lipomyces starkeyi and the previously published Pneumocystis jirovecii being notable exceptions. Intron analysis suggests that early diverging species have more introns. We also observed a large number of unclassified lineage specific non-simple repeats in these genomes.« less
MediterrAsian Diet Products That Could Raise HDL-Cholesterol: A Systematic Review
Giacosa, Attilio; Morazzoni, Paolo; Guido, Davide; Grassi, Mario; Morandi, Gabriella; Bologna, Chiara; Allegrini, Pietro
2016-01-01
Background. High HDL-cholesterol (HDL-C) values are negatively correlated with cardiovascular diseases. This review analyses the effect of the supplementation with various Mediterranean diet products (artichoke, bergamot, and olive oil) and Asian diet products (red yeast rice) on the HDL-C value in dyslipidemic subjects. Methods. A systematic review has been done involving all the English written studies published from the 1st of January 1958 to the 31st of March 2016. Results. The results of this systematic review indicate that the dietary supplementation with red yeast rice, bergamot, artichoke, and virgin olive oil has promising effects on the increase of HDL-C serum levels. The artichoke leaf extract and virgin olive oil appear to be particularly interesting, while bergamot extract needs further research and the effect of red yeast rice seems to be limited to patients with previous myocardial infarction. Conclusions. Various MediterrAsian diet products or natural extracts may represent a potential intervention treatment to raise HDL-C in dyslipidemic subjects. PMID:27882320
MediterrAsian Diet Products That Could Raise HDL-Cholesterol: A Systematic Review.
Rondanelli, Mariangela; Giacosa, Attilio; Morazzoni, Paolo; Guido, Davide; Grassi, Mario; Morandi, Gabriella; Bologna, Chiara; Riva, Antonella; Allegrini, Pietro; Perna, Simone
2016-01-01
Background . High HDL-cholesterol (HDL-C) values are negatively correlated with cardiovascular diseases. This review analyses the effect of the supplementation with various Mediterranean diet products (artichoke, bergamot, and olive oil) and Asian diet products (red yeast rice) on the HDL-C value in dyslipidemic subjects. Methods . A systematic review has been done involving all the English written studies published from the 1st of January 1958 to the 31st of March 2016. Results . The results of this systematic review indicate that the dietary supplementation with red yeast rice, bergamot, artichoke, and virgin olive oil has promising effects on the increase of HDL-C serum levels. The artichoke leaf extract and virgin olive oil appear to be particularly interesting, while bergamot extract needs further research and the effect of red yeast rice seems to be limited to patients with previous myocardial infarction. Conclusions . Various MediterrAsian diet products or natural extracts may represent a potential intervention treatment to raise HDL-C in dyslipidemic subjects.
Sun, Qixing; Chen, Xusheng; Ren, Xidong; Zheng, Gencheng; Mao, Zhonggui
2015-05-01
During the production of ε-poly-L-lysine (ε-PL) in fed-batch fermentation, the decline of ε-PL synthesis often occurs at middle or late phase of the fermentation. To solve the problem, we adopted two strategies, namely pH shift and feeding yeast extract, to improve the productivity of ε-PL. ε-PL productivity in fermentation by pH shift and feeding yeast extract achieved 4.62 g/(L x d) and 5.16 g/(L x d), which were increased by 27.3% and 42.2% compared with the control ε-PL fed-batch fermentation, respectively. Meanwhile, ε-PL production enhanced 36.95 g/L and 41.32 g/L in 192 h with these two strategies, increased by 27.4% and 42.48% compared to the control, respectively. ε-PL production could be improved at middle or late phase of fed-batch fermentation by pH shift or feeding yeast extract.
Chen, W; Supanwong, K; Ohmiya, K; Shimizu, S; Kawakami, H
1985-01-01
Veratrylglycerol-beta-guaiacyl ether (0.2 g/liter), a lignin model compound, was found to be degraded by mixed rumen bacteria in a yeast extract medium under strictly anaerobic conditions to the extent of 19% within 24 h. Guaiacoxyacetic acid, 2-(o-methoxyphenoxy)ethanol, vanillic acid, and vanillin were detected as degradation products of veratrylglycerol-beta-guaiacyl ether by thin-layer chromatography, gas chromatography, and gas chromatography-mass spectrometry. Guaiacoxyacetic acid (0.25 g/liter), when added into the medium as a substrate, was entirely degraded within 36 h, resulting in the formation of phenoxyacetic acid, guaiacol, and phenol. These results suggest that the beta-arylether bond, an important intermonomer linkage in lignin, can be cleaved completely by these rumen anaerobes. PMID:3841472
Optimization of γ-amino butyric acid production in a newly isolated Lactobacillus brevis.
Binh, Tran Thi Thanh; Ju, Wan-Taek; Jung, Woo-Jin; Park, Ro-Dong
2014-01-01
An isolate from kimchi, identified as Lactobacillus brevis, accumulated γ-aminobutyric acid (GABA), a major inhibitory neurotransmitter, in the culture medium. Optimal culture conditions for growth of L. brevis and production of GABA were 6 % (w/v) l-glutamic acid, 4 % (w/v) maltose, 2 % (w/v) yeast extract, 1 % (w/v) NaCl, 1 % (w/v) CaCl2, 2 g Tween 80/l, and 0.02 mM pyridoxal 5′-phosphate at initial pH 5.25 and 37 °C. GABA reached 44.4 g/l after 72 h cultivation with a conversion rate 99.7 %, based on the amount (6 %) of l-glutamic acid added. GABA was purified using ion exchange column chromatography with 70 % recovery and 97 % purity.
Immunoprecipitation and Characterization of Membrane Protein Complexes from Yeast
ERIC Educational Resources Information Center
Parra-Belky, Karlett; McCulloch, Kathryn; Wick, Nicole; Shircliff, Rebecca; Croft, Nicolas; Margalef, Katrina; Brown, Jamie; Crabill, Todd; Jankord, Ryan; Waldo, Eric
2005-01-01
In this undergraduate biochemistry laboratory experiment, the vacuolar ATPase protein complex is purified from yeast cell extracts by doing immunoprecipitations under nondenaturing conditions. Immunoprecipitations are performed using monoclonal antibodies to facilitate data interpretation, and subunits are separated on the basis of their molecular…
Liu, Z Lewis; Weber, Scott A; Cotta, Michael A; Li, Shi-Zhong
2012-01-01
This study reports a new yeast strain of Clavispora NRRL Y-50464 that is able to utilize cellobiose as sole source of carbon and produce sufficient native β-glucosidase enzyme activity for cellulosic ethanol production using SSF. In addition, this yeast is tolerant to the major inhibitors derived from lignocellulosic biomass pre-treatment such as 2-furaldehyde (furfural) and 5-(hydroxymethyl)-2-furaldehyde (HMF), and converted furfural into furan methanol in less than 12h and HMF into furan-2,5-dimethanol within 24h in the presence of 15 mM each of furfural and HMF. Using xylose-extracted corncob residue as cellulosic feedstock, an ethanol production of 23 g/l was obtained using 25% solids loading at 37 °C by SSF without addition of exogenous β-glucosidase. Development of this yeast aids renewable biofuels development efforts for economic consolidated SSF bio-processing. Published by Elsevier Ltd.
Morita, Masakazu; Shimamura, Hiroko; Ishida, Natsuko; Imamura, Koreyoshi; Sakiyama, Takaharu; Nakanishi, Kazuhiro
2004-01-01
alpha-Glucosidase was produced using recombinant Aspergillus oryzae by membrane-surface liquid culture (MSLC), a method previously developed by the authors and the results compared with other methods, including shaking flask culture (SFC), agar-plate culture (APC), culture on urethane sponge supports (USC), and liquid surface culture (LSC) to determine possible reasons for the advantageous features of MSLC. When yeast extract was used as a nitrogen source, the amount of enzyme produced by MSLC was 5 or more times higher than those for SFC and LSC, but similar to that using APC. Enzyme production in USC was slightly lower than in MSLC and APC. Cell growth was similar irrespective of the cultivation method used. When NaNO3, a typical inorganic nitrogen source was used, enzyme production in all the cultures was lower than that using yeast extract. However, even using NaNO3, the amount of the enzyme produced by MSLC was 8 to 20 times higher than those by SFC, APC, USC, and LSC. Although cell growth using NaNO3 was similar to that for yeast extract in MSLC, it was markedly decreased in SFC, APC, and LSC. The reason for the difference in enzyme productivity for various cultivation methods using yeast extract and NaNO3 as a nitrogen source is discussed, on the basis of the experimental findings. The role of the oxygen transfer effect and gene expression levels in enzyme production were also examined.
Ho, K L; Pometto, A L; Hinz, P N; Dickson, J S; Demirci, A
1997-01-01
Plastic composite supports containing 50% agricultural products (oat hulls, soybean hulls, yeast extract, soybean flour, dried bovine erythrocytes, bovine albumin, and/or mineral salts) and 50% (wt/wt) polypropylene were produced by high-temperature twin-screw extrusion. The research employed two half sets of a five-factorial fractional design (2(5 - 1)) to evaluate the effects of different agricultural components on the properties of the plastic composite supports and to select the best plastic composite support formulation for lactic acid fermentation. The biofilm population was affected by the contact angle and relative hydrophobicity of the supports (r = 0.79 to 0.82). Lactic acid was produced by the suspended cells (r = 0.96) and the biofilm on the plastic composite support discs (r = 0.85). Incorporation of yeast extract into plastic composite supports enhanced growth of free and attached cells in minimal medium (P < 0.0001). The presence of soybean hulls, yeast extract, or mineral salts in plastic composite supports produced less hydrophobic supports (P < 0.0001) and enhanced cell attachment (P < 0.03). Under all conditions, suspended-cell and polypropylene disc controls gave negligible lactic acid production and cell density. Plastic composite supports containing soybean hulls, yeast extract, soybean flour, bovine albumin, and mineral salts gave the highest biofilm population (2.3 x 10(9) CFU/g of support), cell density (absorbance of 1.8 at 620 nm), and lactic acid concentration (7.6 g/liter) in minimal medium. PMID:9212402
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghaly, A.E.; El-Taweel, A.A.
1995-05-01
Candida psuedotropicalis ATCC 8619 was selected among nine strains of lactose fermenting yeast for the production of ethanol from cheese whey. The effects of three nutrients (ammonium sulfate (NH{sub 4}){sub 2}SO{sub 4}, dipotassium hydrogen phosphate K{sub 2}HPO{sub 4}, yeast extract, and combination of them) on the ethanol yield from cheese whey were investigated. The results indicated that no addition of nutrient supplement is necessary to achieve complete lactose utilization during the cheese whey ethanol fermentation. However, addition of a small concentration (0.005% w/v) of these supplements reduced the lag period and the total fermentation time and increased the specific growthmore » rate of the yeast. Higher concentrations (0.01 and 0.015% w/v) of ammonium sulfate and dipotassium hydrogen phosphate inhibited the cell growth rate of the yeast. The highest ethanol (21.7% g/L) was achieved using yeast extract at a concentration of 0.01% w/v, given a conversion efficiency of 98.3%. No indication of alcohol inhibition was observed in this study. 60 refs., 9 figs., 3 tabs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brindle, K.; Braddock, P.; Fulton, S.
1990-04-03
Rabbit muscle creatine kinase has been introduced into the yeast Saccharomyces cerevisiae by transforming cells with a multicopy plasmid containing the coding sequence for the enzyme under the control of the yeast phosphoglycerate kinase promoter. The transformed cells showed creating kinase activities similar to those found in mammalian heart muscle. {sup 31}P NMR measurements of the near-equilibrium concentrations of phosphocreatine and cellular pH together with measurements of the total extractable concentrations of phosphocreatine and creatine allowed calculation of the free ADP/ATP ratio in the cell. The calculated ratio of approximately 2 was considerably higher than the ratio of between 0.06more » and 0.1 measured directly in cell extracts.« less
Řezanka, Tomáš; Matoulková, Dagmar; Kolouchová, Irena; Masák, Jan; Viden, Ivan; Sigler, Karel
2015-05-01
The methods of preparation of fatty acids from brewer's yeast and its use in production of biofuels and in different branches of industry are described. Isolation of fatty acids from cell lipids includes cell disintegration (e.g., with liquid nitrogen, KOH, NaOH, petroleum ether, nitrogenous basic compounds, etc.) and subsequent processing of extracted lipids, including analysis of fatty acid and computing of biodiesel properties such as viscosity, density, cloud point, and cetane number. Methyl esters obtained from brewer's waste yeast are well suited for the production of biodiesel. All 49 samples (7 breweries and 7 methods) meet the requirements for biodiesel quality in both the composition of fatty acids and the properties of the biofuel required by the US and EU standards.
Hunaefi, Dase; Akumo, Divine N.; Riedel, Heidi; Smetanska, Iryna
2012-01-01
High rosmarinic acid (RA) productivity has been achieved by applying jasmonic acid and yeast extract elicitors to the in vitro sprout culture of Orthosiphon aritatus (IOSC). The highest RA accumulation from three solvents was detected in IOSC after treatment with yeast extract (5 g/L). HPLC analysis clearly confirmed a drastic increase in RA subjected to yeast extract elicitation. Therefore, this yeast extract elicited IOSC was chosen for a lactic acid bacteria (LAB) fermentation study as a model system. This selected IOSC was subjected to different types of LAB fermentations (Lactobacillus plantarum ATCC 8014 and Lactobacillus acidophilus NCFM) for different periods of time 24, 48 and 72 h. The LAB fermentations consisted of solid state fermentations (SSF) and liquid state fermentations (LSF) in a Digital Control Unit (DCU) fermenter system. The aim was to determine the effect of fermentation on the antioxidant properties of the plant extract. Results indicated that all types of LAB fermentation decreased the level of RA and total phenolics, however, a slight increase in total flavonoids and flavonols was observed in SSF samples. HPLC results confirmed that the longer the fermentation, the greater the reduction in RA content. The highest reduction was obtained in the sample of LSF inoculated with L. plantarum for a period of 72 h. The temperature of fermentation (37 °C) was predicted as contributing to the declining level in RA content. The loss in RA was concomitant with a loss of total antioxidant activity (1,1-diphenyl-2-picrylhydrazyl (DPPH) scavenging activity, Trolox Equivalent Antioxidant Capacity (TEAC), and Superoxide Dismutase (SOD)-like activity). These results indicate that RA is the major contributor to the antioxidant activity of this plant. PMID:26787613
Review: Pathogenesis of canine atopic dermatitis: skin barrier and host-micro-organism interaction.
Santoro, Domenico; Marsella, Rosanna; Pucheu-Haston, Cherie M; Eisenschenk, Melissa N C; Nuttall, Tim; Bizikova, Petra
2015-04-01
Canine atopic dermatitis (AD) is a common, genetically predisposed, inflammatory and pruritic skin disease. The pathogenesis of canine AD is incompletely understood. The aim of this review is to provide an in-depth update on the involvement of skin barrier and host-microbiome interaction in the pathogenesis of canine AD. Online citation databases and abstracts from international meetings were searched for publications related to skin barrier and host-microbiome interaction (e.g. bacteria, yeast, antimicrobial peptides). A total of 126 publications were identified. This review article focuses on epidermal barrier dysfunction and the interaction between cutaneous microbes (bacteria and yeasts) and the host (antimicrobial peptides). Epidemiological updates on the presence of pathogenic organisms and canine AD are also provided. Major advances have been made in the investigation of skin barrier dysfunction in canine AD, although many questions still remain. Skin barrier dysfunction and host-microbiome interactions are emerging as primary alterations in canine AD. Based on this review, it is clear that future studies focused on the development of drugs able to restore the skin barrier and increase the natural defences against pathogenic organisms are needed. © 2015 ESVD and ACVD.
Chan, Lauryn G; Cohen, Joshua L; de Moura Bell, Juliana Maria Leite Nobrega
2018-03-25
The design of new food products and increased agricultural activities have produced a diversity of waste streams or by-products that contain a high load of organic matter. The underutilization of these streams presents a serious threat to the environment and to the financial viability of the agricultural sector and the food industry. Oleaginous microorganisms, such as yeast and microalgae, have been used to convert the organic matter present in many agricultural waste streams into an oil-rich biomass. Filamentous fungi are promising oleaginous microorganisms because of their high lipid accumulation potential and simple biomass recovery, the latter being related to their pellet-like growth morphology in submerged cultivation. This review highlights the use of oleaginous filamentous fungi to convert food by-products into value-added components, including the effect of cultivation conditions on biomass yield and composition. Special attention is given to downstream processing for the commercial production of fungal oil. Also discussed are innovative techniques to optimize the biomass oil yield and to minimize the challenges associated with biomass harvesting and oil extraction at industrial scale.
Isolation and characterization of ethanol tolerant yeast strains
Tikka, Chiranjeevi; Osuru, Hari Prasad; Atluri, Navya; Raghavulu, Praveen Chakravarthi Veera; yellapu, Nanda Kumar; Mannur, Ismail Shaik; Prasad, Uppu Venkateswara; Aluru, Sudheer; K, Narasimha Varma; Bhaskar, Matcha
2013-01-01
Yeast strains are commonly associated with sugar rich environments. Various fruit samples were selected as source for isolating yeast cells. The isolated cultures were identified at Genus level by colony morphology, biochemical characteristics and cell morphological characters. An attempt has been made to check the viability of yeast cells under different concentrations of ethanol. Ethanol tolerance of each strain was studied by allowing the yeast to grow in liquid YEPD (Yeast Extract Peptone Dextrose) medium having different concentrations of ethanol. A total of fifteen yeast strains isolated from different samples were used for the study. Seven strains of Saccharomyces cerevisiae obtained from different fruit sources were screened for ethanol tolerance. The results obtained in this study show a range of tolerance levels between 7%-12% in all the stains. Further, the cluster analysis based on 22 RAPD (Random Amplified polymorphic DNA) bands revealed polymorphisms in these seven Saccharomyces strains. PMID:23750092
NASA Astrophysics Data System (ADS)
Feldman, David; Stathis, Peter A.; Hirst, Margaret A.; Price Stover, E.; Do, Yung S.; Kurz, Walter
1984-06-01
Partially purified lipid extracts of Saccharomyces cerevisiae contain a substance that displaces tritiated estradiol from rat uterine cytosol estrogen receptors. The yeast product induces estrogenic bioresponses in mammalian systems as measured by induction of progesterone receptors in cultured MCF-7 human breast cancer cells and by a uterotrophic response and progesterone receptor induction after administration to ovariectomized mice. The findings raise the possibility that bakers' yeast may be a source of environmental estrogens.
Santos, Francisco José Borges Dos; Moura, Dinara Jaqueline; Péres, Valéria Flores; Sperotto, Angelo Regis de Moura; Caramão, Elina Bastos; Cavalcante, Ana Amélia de Carvalho Melo; Saffi, Jenifer
2012-12-18
Bauhinia platypetala Burch. is a traditionally used Brazilian medicinal plant, although no evidence in the literature substantiates the safety of its use. The aim of this study was to investigate the safety of the ethanolic extract and the ethereal fraction of B. platypetala leaves. The identification of chemical compounds from the B. platypetala ethanolic extract and its ethereal fraction was performed by GC/MS and ESI-MS/MS. The plant's toxicological, cytotoxic, mutagenic and genotoxic properties were determined in Saccharomyces cerevisiae strains and V79 cell culture by survival assays and comet assay. The major compound identified in the B. platypetala ethanolic extract is palmitic acid, kaempferitirin and quercitrin, while the B. platypetala ethereal fraction was found to be rich in phytol, gamma-sitosterol and vitamin E. Moreover, the results indicated that the B. platypetala ethanolic extract has an anti-oxidative effect against H(2)O(2) in yeast. In addition, the B. platypetala ethanolic extract did not induce mutagenic effects on the S. cerevisiae N123 strain, but the ethereal fraction of B. platypetala at higher concentrations (250-500 μg/mL) induced cytotoxicity and mutagenicity. A slight cytotoxic effect was observed in mammalian V79 cells; however, both the B. platypetala ethanolic extract and its ethereal fraction were able to induce DNA strand breaks in V79 cells, as detected by the alkaline comet assay. The B. platypetala ethanolic extract has antioxidant action and showed absence of mutagenic effects in yeast S. cerevisiae. On the other hand B. platypetala ethereal fraction is mutagenic and does not show antioxidant activity in yeast. In mammalian cells B. platypetala ethanolic extract and it's ethereal fraction induce cyotoxic and genotoxic action. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Cusick, M E
1992-12-29
A novel approach is described to purify potential ribonucleoproteins (RNP) of yeast. The method assays a yeast RNP complex, assembled in vitro on actin pre-mRNA, by low-ionic strength acrylamide gel electrophoresis. The minimal protein components of this RNP complex were three proteins, one of 30 kDa and two at 42-44 kDa, defined by formation of the complex on biotinylated-RNA, binding of this complex to avidin-agarose, and salt elution of the protein in the biotinylated-RNP complex. Using the assay for RNP complex formation, an RNP protein was purified to homogeneity on the basis of its affinity towards single-stranded DNA and RNA. This RNP protein turned out to be identical to a known RNP protein, the single-stranded binding protein 1 (ssb1) of yeast, on the basis of identical gel electrophoretic migration, antibody cross-reactivity, and identical properties on the gel complex formation assay. In vitro mRNA splicing was normal in extracts made from a yeast strain missing ssb1 (ssb1- strain). Addition of anti-ssb1 antibody to splicing extracts made from a wild type strain did not inhibit or diminish splicing. Instead, mRNA splicing was reproducibly stimulated several fold, indicating competition between ssb1 and splicing factors for binding to single-stranded RNA in the extracts. RNP complexes still formed in the ssb1- strain, demonstrating that it would be possible to purify other RNP proteins from this strain using the gel complex formation assay.
Liu, Sheng-Rong; Wu, Qing-Ping; Zhang, Ju-Mei; Mo, Shu-Ping
2015-03-01
ε-Poly-L-lysine (ε-PL) is a homopolymer of L-lysine molecules connected between the ε amino and alpha carboxyl groups. This polymer is currently used as a natural preservative in food. Insufficient biomass is a major problem in ε-PL fermentation. Here, to improve cell growth and ε-PL productivity, various nitrogen-rich nutrients were supplemented into flask cultures after 16 h cultivation, marking the onset of ε-PL biosynthesis. Yeast extract, soybean powder, corn powder, and beef extract significantly improved cell growth. In terms of ε-PL productivity, yeast extract at 0.5% (w/v) gave the maximum yield (2.24 g/l), 115.4% higher than the control (1.04 g/l), followed by soybean powder (1.86 g/l) at 1% (w/v) and corn powder (1.72 g/l) at 1% (w/v). However, supplementation with beef extract inhibited ε-PL production. The optimal time for supplementation for all nutrients examined was at 16 h cultivation. The kinetics of yeast-extract-supplemented cultures showed enhanced cell growth and production duration. Thus, the most commonly used two-stage pH control fed-batch fermentation method was modified by omitting the pH 5.0-controlled period, and coupling the procedure with nutrient feeding in the pH 3.9-controlled phase. Using this process, by continuously feeding 0.5 g/h of yeast extract, soybean powder, or corn powder into cultures in a 30 L fermenter, the final ε-PL titer reached 28.2 g/l, 23.7 g/l, and 21.4 g/l, respectively, 91.8%, 61.2%, and 45.6% higher than that of the control (14.7 g/l). This describes a promising option for the mass production of ε-PL.
Inaccurate DNA Synthesis in Cell Extracts of Yeast Producing Active Human DNA Polymerase Iota
Makarova, Alena V.; Grabow, Corinn; Gening, Leonid V.; Tarantul, Vyacheslav Z.; Tahirov, Tahir H.; Bessho, Tadayoshi; Pavlov, Youri I.
2011-01-01
Mammalian Pol ι has an unusual combination of properties: it is stimulated by Mn2+ ions, can bypass some DNA lesions and misincorporates “G” opposite template “T” more frequently than incorporates the correct “A.” We recently proposed a method of detection of Pol ι activity in animal cell extracts, based on primer extension opposite the template T with a high concentration of only two nucleotides, dGTP and dATP (incorporation of “G” versus “A” method of Gening, abbreviated as “misGvA”). We provide unambiguous proof of the “misGvA” approach concept and extend the applicability of the method for the studies of variants of Pol ι in the yeast model system with different cation cofactors. We produced human Pol ι in baker's yeast, which do not have a POLI ortholog. The “misGvA” activity is absent in cell extracts containing an empty vector, or producing catalytically dead Pol ι, or Pol ι lacking exon 2, but is robust in the strain producing wild-type Pol ι or its catalytic core, or protein with the active center L62I mutant. The signature pattern of primer extension products resulting from inaccurate DNA synthesis by extracts of cells producing either Pol ι or human Pol η is different. The DNA sequence of the template is critical for the detection of the infidelity of DNA synthesis attributed to DNA Pol ι. The primer/template and composition of the exogenous DNA precursor pool can be adapted to monitor replication fidelity in cell extracts expressing various error-prone Pols or mutator variants of accurate Pols. Finally, we demonstrate that the mutation rates in yeast strains producing human DNA Pols ι and η are not elevated over the control strain, despite highly inaccurate DNA synthesis by their extracts. PMID:21304950
Impact of water extractable arabinoxylan from rye bran on the frozen steamed bread dough quality.
Wang, Pei; Tao, Han; Jin, Zhengyu; Xu, Xueming
2016-06-01
Impact of water extractable arabinoxylan from rye bran on frozen steamed bread dough quality was investigated in terms of the bread characteristics, ice crystallization, yeast activity as well as the gluten molecular weight distribution and glutenin macropolymer content in the present study. Results showed that water extractable arabinoxylan significantly improved bread characteristics during the 60-day frozen storage. Less water was crystallized in the water extractable arabinoxylan dough during storage, which could explain the alleviated yeast activity loss. For all the frozen dough samples, more soluble high molecular weight (Mw ≈ 91,000-688,000) and low molecular weight (Mw ≈ 91,000-16,000) proteins were derived from glutenin macropolymer depolymerization. Nevertheless, water extractable arabinoxylan dough developed higher glutenin macropolymer content with lowered level of soluble low molecular weight proteins throughout the storage. This study suggested water extractable arabinoxylan from rye bran had great potential to be served as an effective frozen steamed bread dough improver. Copyright © 2016 Elsevier Ltd. All rights reserved.
Jiang, Y; Ogunade, I M; Qi, S; Hackmann, T J; Staples, C R; Adesogan, A T
2017-01-01
This study was conducted to examine effects of the dose and viability of supplemental Saccharomyces cerevisiae on the ruminal fermentation and bacteria population and the performance of lactating dairy cows. Four ruminally cannulated lactating cows averaging 284±18d in milk were assigned to 4 treatments arranged in a 4×4 Latin square design with four 21-d periods. Cows were fed a total mixed ration containing 41.7% corn silage, 12.1% brewer's grains, and 46.2% concentrate on a dry matter basis. The diet was supplemented with no yeast (control) or with a low dose of live yeast (5.7×10 7 cfu/cow per day; LLY), a high dose of live yeast (6.0×10 8 cfu/cow per day; HLY), or a high dose of killed yeast (6.0×10 8 cfu/cow per day; HDY). Microbial diversity was examined by high-throughput Illumina MiSeq sequencing (Illumina Inc., San Diego, CA) of the V4 region of the 16S rRNA gene. The relative abundance of select ruminal bacteria was also quantified by quantitative PCR (qPCR). Adding LLY to the diet increased the relative abundance of some ruminal cellulolytic bacteria (Ruminococcus and Fibrobacter succinogenes) and amylolytic bacteria (Ruminobacter, Bifidobacterium, and Selenomonas ruminantium). Adding live instead of killed yeast increased the relative abundance of Ruminococcus and F. succinogenes; adding HDY increased the relative abundance of Ruminobacter, Bifidobacterium, Streptococcus bovis, and Selenomonas ruminantium. The most dominant (≥1% of total sequences) bacteria that responded to LLY addition whose functions are among the least understood in relation to the mode of action of yeast include Paraprevotellaceae, CF231, Treponema, and Lachnospiraceae. Future studies should aim to speciate, culture, and examine the function of these bacteria to better understand their roles in the mode of action of yeast. A relatively precise relationship was detected between the relative abundance of F. succinogenes (R 2 =0.67) from qPCR and MiSeq sequencing, but weak relationships were detected for Megasphaera elsdenii, Ruminococcus flavefaciens, and S. ruminantium (R 2 ≤0.19). Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Expression of the Major Surface Antigen of Plasmodium knowlesi Sporozoites in Yeast
NASA Astrophysics Data System (ADS)
Sharma, Shobhona; Godson, G. Nigel
1985-05-01
The circumsporozoite protein, a surface antigen of the sporozoite stage of the monkey malarial parasite Plasmodium knowlesi, was expressed in the yeast Saccharomyces cerevisiae by using an expression vector containing the 5' regulatory region of the yeast alcohol dehydrogenase I gene. It was necessary to eliminate the entire 5' upstream region of the parasite DNA to obtain the expression of this protein. Only the circumsporozoite precursor protein was produced by the yeast transformants, as detected by immunoblotting. About 55 and 20 percent of the circumsporozoite protein produced in yeast was associated with the 25,000g and 150,000g particulate fractions, respectively. The protein could be solubilized in Triton X-100 and was stable in solubilized extracts.
Poppenberger, B; Berthiller, F; Lucyshyn, D; Schuhmacher, R; Krska, R; Adam, G
2005-06-01
First results of the GEN-AU pilot project "Fusarium virulence and plant resistance mechanisms" are reported. Employing genetically engineered yeast strains we have been able to clone genes from the model plantArabidopsis thaliana encoding UDP-glucosyltransferases which can inactivate deoxynivalenol (DON) and zearalenone (ZON). The structure of the metabolites produced by the transformed yeast strains were determined by LC-MS/MS as DON-3O-glucoside and ZON-4O-glucoside, respectively. ZON and derivatives added to glucosyltransferase expressing yeast cultures are converted into the corresponding glucosides in very high yield, opening an efficient way to produce reference materials for these masked mycotoxins.
NASA Astrophysics Data System (ADS)
Elster, J.; Delmas, R. J.; Petit, J.-R.; Řeháková, K.
2007-06-01
Taxonomical and ecological analyses were performed on micro-autotrophs (cyanobacteria and algae together with remnants of diatom valves), micro-fungi (hyphae and spores), bacteria (rod, cocci and red clusters), yeast, and plant pollen extracted from various samples: Alps snow (Mt. Blank area), Andean snow (Illimani, Bolivia), Antarctic aerosol filters (Dumont d'Urville, Terre Adélie), and Antarctic inland ice (Terre Adélie). Three methods for ice and snow sample's pre-concentration were tested (filtration, centrifugation and lyophilisation). Afterwards, cultivation methods for terrestrial, freshwater and marine microorganisms (micro-autotrophs and micro-fungi) were used in combination with liquid and solid media. The main goal of the study was to find out if micro-autotrophs are commonly transported by air masses, and later stored in snow and icecaps around the world. The most striking result of this study was the absence of culturable micro-autotrophs in all studied samples. However, an unusual culturable pigmented prokaryote was found in both alpine snow and aerosol samples. Analyses of many samples and proper statistical analyses (PCA, RDA- Monte Carlo permutation tests) showed that studied treatments highly significantly differ in both microbial community and biotic remnants composition F=9.33, p=0.001. In addition, GLM showed that studied treatments highly significantly differ in numbers of categories of microorganisms and remnants of biological material F=11.45, p=0.00005. The Antarctic aerosol samples were characterised by having red clusters of bacteria, the unusual prokaryote and yeasts. The high mountain snow from the Alps and Andes contained much more culturable heterotrophs. The unusual prokaryote was very abundant, as were coccoid bacteria, red clusters of bacteria, as well as yeasts. The Antarctic ice samples were quite different. These samples had higher numbers of rod bacteria and fungal hyphae. The microbial communities and biological remnants of analysed samples comprises two communities, without a sharp boundary between them: i) the first community includes ubiquitous organisms including contaminants, ii) the second community represents individuals frequently occurring in remote terrestrial cold or hot desert/semi-desert and/or marginal soil-snow-ice ecosystems.
Böswald, C; Engelhardt, G; Vogel, H; Wallnöfer, P R
1995-01-01
The Fusarium mycotoxin zearalenone (ZEA), added at a level of 2 micrograms/ml, was reduced stereoselectively by cultures of Candida tropicalis, Torulaspora delbrückii, Zygosaccharomyces rouxii, and 7 Saccharomyces strains to both alpha- and beta-zearalenol. In contrast, only alpha-zearalenol was produced from ZEA by Pichia fermentans and several yeast strains of the genera Candida, Hansenula, Brettanomyces, Schizosaccharomyces, and Saccharomycopsis. No glucose conjugates of ZEA (zearalenone-4-beta-D-glucopyranoside) were detected. The trichothecene mycotoxin deoxynivalenol (DON) was not metabolized by any of the yeast strains that were used for analysis.
Wang, Xiao-Xiong; Hu, Hong-Ying; Liu, De-Hua; Song, Yuan-Quan
2016-01-25
The effective use of xylose may significantly enhance the feasibility of using lignocellulosic hydrolysate to produce 2,3-butanediol (2,3-BD). Previous difficulties in 2,3-BD production include that the high-concentration xylose cannot be converted completely and the fermentation rate is slow. This study investigated the effects of yeast extract, ethylenediaminetetraacetic acid disodium salt (Na2EDTA), and acetic acid on 2,3-BD production from xylose. The central composite design approach was used to optimize the concentrations of these components. It was found that simultaneous addition of yeast extract, Na2EDTA, and acetic acid could significantly improve 2,3-BD production. The optimal concentrations of yeast extract, Na2EDTA, and acetic acid were 35.2, 1.2, and 4.5 g/L, respectively. The 2,3-BD concentration in the optimized medium reached 39.7 g/L after 48 hours of shake flask fermentation, the highest value ever reported in such a short period. The xylose utilization ratio and the 2,3-BD concentration increased to 99.0% and 42.7 g/L, respectively, after 48 hours of stirred batch fermentation. Furthermore, the 2,3-BD yield was 0.475 g/g, 95.0% of the theoretical maximum value. As the major components of lignocellulosic hydrolysate are glucose, xylose, and acetic acid, the results of this study indicate the possibility of directly using the hydrolysate to effectively produce 2,3-BD. Copyright © 2015 Elsevier B.V. All rights reserved.
Casey, Gregory P.; Magnus, Carol A.; Ingledew, W. M.
1984-01-01
A number of economic and product quality advantages exist in brewing when high-gravity worts of 16 to 18% dissolved solids are fermented. Above this level, production problems such as slow or stuck fermentations and poor yeast viability occur. Ethanol toxicity has been cited as the main cause, as brewers' yeasts are reported to tolerate only 7 to 9% (vol/vol) ethanol. The inhibitory effect of high osmotic pressure has also been implicated. In this report, it is demonstrated that the factor limiting the production of high levels of ethanol by brewing yeasts is actually a nutritional deficiency. When a nitrogen source, ergosterol, and oleic acid are added to worts up to 31% dissolved solids, it is possible to produce beers up to 16.2% (vol/vol) ethanol. Yeast viability remains high, and the yeasts can be repitched at least five times. Supplementation does not increase the fermentative tolerance of the yeasts to ethanol but increases the length and level of new yeast cell mass synthesis over that seen in unsupplemented wort (and therefore the period of more rapid wort attenuation). Glycogen, protein, and sterol levels in yeasts were examined, as was the importance of pitching rate, temperature, and degree of anaerobiosis. The ethanol tolerance of brewers' yeast is suggested to be no different than that of sake or distillers' yeast. PMID:16346630
Oxygen requirements of yeasts. [Saccharomyces cerevisiae; Candida tropicalis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Visser, W.; Scheffers, W.A.; Batenburg-Van Der Vegte, W.H.
1990-12-01
Type species of 75 yeast genera were examined for their ability to grow anaerobically in complex and mineral media. To define anaerobic conditions, we added a redox indicator, resazurin, to the media to determine low redox potentials. All strains tested were capable of fermenting glucose to ethanol in oxygen-limited shake-flask cultures, even those of species generally regarded as nonfermentative. However, only 23% of the yeast species tested grew under anaerobic conditions. A comparative study with a number of selected strains revealed that Saccharomyces cerevisiae stands out as a yeast capable of rapid growth at low redox potentials. Other yeasts, suchmore » as Torulaspora delbrueckii and Candida tropicalis, grew poorly ({mu}{sub max}, 0.03 and 0.05 h{sup {minus}1}, respectively) under anaerobic conditions in mineral medium supplemented with Tween 80 and ergosterol. The latter organisms grew rapidly under oxygen limitation and then displayed a high rate of alcoholic fermentation. It can be concluded that these yeasts have hitherto-unidentified oxygen requirements for growth.« less
The yeast protein extract (RM8323) developed by National Institute of Standards and Technology (NIST) under the auspices of NCI's CPTC initiative is currently available to the public at https://www-s.nist.gov/srmors/view_detail.cfm?srm=8323. The yeast proteome offers researchers a unique biological reference material. RM8323 is the most extensively characterized complex biological proteome and the only one associated with several large-scale studies to estimate protein abundance across a wide concentration range.
Yamamura, Y; Mizuguchi, Y; Taura, F; Kurosaki, F
2014-10-01
A cDNA clone, designated SdGGPPS2, was isolated from young seedlings of Scoparia dulcis. The putative amino acid sequence of the translate of the gene showed high homology with geranylgeranyl diphosphate synthase (GGPPS) from various plant sources, and the N-terminal residues exhibited the characteristics of chloroplast targeting sequence. An appreciable increase in the transcriptional level of SdGGPPS2 was observed by exposure of the leaf tissues of S. dulcis to methyl jasmonate, yeast extract or Ca(2+) ionophore A23187. In contrast, SdGGPPS1, a homologous GGPPS gene of the plant, showed no or only negligible change in the expression level upon treatment with these stimuli. The truncated protein heterologously expressed in Escherichia coli in which the putative targeting domain was deleted catalyzed the condensation of farnesyl diphosphate and isopentenyl diphosphate to liberate geranylgeranyl diphosphate. These results suggested that SdGGPPS2 plays physiological roles in methyl jasmonate and yeast extract-induced metabolism in the chloroplast of S. dulcis cells.
Flavins contained in yeast extract are exploited for anodic electron transfer by Lactococcus lactis.
Masuda, Masaki; Freguia, Stefano; Wang, Yung-Fu; Tsujimura, Seiya; Kano, Kenji
2010-06-01
Cyclic voltammograms of yeast extract-containing medium exhibit a clear redox peak around -0.4V vs. Ag|AgCl. Fermentative bacterium Lactococcus lactis was hereby shown to exploit this redox compound for extracellular electron transfer towards a graphite anode using glucose as an electron donor. High performance liquid chromatography revealed that this may be a flavin-type compound. The ability of L. lactis to exploit exogenous flavins for anodic glucose oxidation was confirmed by tests where flavin-type compounds were supplied to the bacterium in well defined media. Based on its mid-point potential, riboflavin can be regarded as a near-optimal mediator for microbially catalyzed anodic electron transfer. Riboflavin derivative flavin mononucleotide (FMN) was also exploited by L. lactis as a redox shuttle, unlike flavin adenine dinucleotide (FAD), possibly due to the absence of a specific transporter for the latter. The use of yeast extract in microbial fuel cell media is herein discouraged based on the related unwanted artificial addition of redox mediators which may distort experimental results. Copyright 2009 Elsevier B.V. All rights reserved.
Screening of antimicrobial activity of macroalgae extracts from the Moroccan Atlantic coast.
El Wahidi, M; El Amraoui, B; El Amraoui, M; Bamhaoud, T
2015-05-01
The aim of this work is the screening of the antimicrobial activity of seaweed extracts against pathogenic bacteria and yeasts. The antimicrobial activity of the dichloromethane and ethanol extracts of ten marine macroalgae collected from the Moroccan's Atlantic coast (El-Jadida) was tested against two Gram+ (Bacillus subtilis and Staphylococcus aureus) and two Gram- (Escherichia coli and Pseudomonas aeruginosa) human pathogenic bacteria, and against two pathogenic yeasts (Candida albicans and Cryptococcus neoformans) using the agar disk-diffusion method. Seven algae (70%) of ten seaweeds are active against at least one pathogenic microorganisms studied. Five (50%) are active against the two studied yeast with an inhibition diameter greater than 15 mm for Cystoseira brachycarpa. Six (60%) seaweeds are active against at least one studied bacteria with five (50%) algae exhibiting antibacterial inhibition diameter greater than 15 mm. Cystoseira brachycarpa, Cystoseira compressa, Fucus vesiculosus, and Gelidium sesquipedale have a better antimicrobial activity with a broad spectrum antimicrobial and are a potential source of antimicrobial compounds and can be subject of isolation of the natural antimicrobials. Copyright © 2015 Elsevier Masson SAS. All rights reserved.
Evaluation of cashew apple juice for surfactin production by Bacillus subtilis LAMI008.
Ponte Rocha, Maria Valderez; Gomes Barreto, Raphaela V; Melo, Vânia Maria M; Barros Gonçalves, Luciana Rocha
2009-05-01
Bacillus subtilis LAMI008 strain isolated from the tank of Chlorination at the Wastewater Treatment Plant on Campus do Pici in Federal University of Ceará, Brazil has been screened for surfactin production in mineral medium containing clarified cashew apple juice (MM-CAJC). Results were compared with the ones obtained using mineral medium with glucose PA as carbon source. The influence on growth and surfactin production of culture medium supplementation with yeast extract was also studied. The substrate concentration analysis indicated that B. subtilis LAMI008 was able to degrade all carbon sources studied and produce biosurfactant. The highest reduction in surface tension was achieved with the fermentation of MM-CAJC, supplemented with yeast extract, which decreased from 58.95 +/- 0.10 to 38.10 +/- 0.81 dyn cm(-1). The biosurfactant produced was capable of emulsifying kerosene, achieving an emulsification index of 65%. Surfactin concentration of 3.5 mg L(-1) was obtained when MM-CAJC, supplemented with yeast extract, was used, thus indicating that it is feasible to produce surfactin from clarified cashew apple juice, a renewable and low-cost carbon source.
Suzuki, Toshihiro; Seta, Kohei; Nishikawa, Chiaki; Hara, Eri; Shigeno, Toshiya; Nakajima-Kambe, Toshiaki
2015-01-01
To improve the ethanol tolerance of the Klebsiella variicola strain TB-83, we obtained the streptomycin-resistant, ethanol-tolerant mutant strain TB-83D by a ribosome engineering approach. Strain TB-83D was able to grow in the presence of 7% (v/v) ethanol and it showed higher ethanol production than strain TB-83. Examination of various culture conditions revealed that yeast extract was essential for ethanol production and bacterial growth. In addition, ethanol production was elevated to 32g/L by the addition of yeast extract; however, ethanol production was inhibited by formate accumulation. With regard to cost reduction, the use of corn steep liquor (CSL) markedly decreased the formate concentration, and 34g/L ethanol was produced by combining yeast extract with CSL. Our study is the first to improve ethanol tolerance and productivity by a ribosome engineering approach, and we found that strain TB-83D is effective for ethanol production from glycerol. Copyright © 2014 Elsevier Ltd. All rights reserved.
The mannoprotein of Saccharomyces cerevisiae is an effective bioemulsifier.
Cameron, D R; Cooper, D G; Neufeld, R J
1988-01-01
The mannoprotein which is a major component of the cell wall of Saccharomyces cerevisiae is an effective bioemulsifier. Mannoprotein emulsifier was extracted in a high yield from whole cells of fresh bakers' yeast by two methods, by autoclaving in neutral citrate buffer and by digestion with Zymolase (Miles Laboratories; Toronto, Ontario, Canada), a beta-1,3-glucanase. Heat-extracted emulsifier was purified by ultrafiltration and contained approximately 44% carbohydrate (mannose) and 17% protein. Treatment of the emulsifier with protease eliminated emulsification. Kerosene-in-water emulsions were stabilized over a broad range of conditions, from pH 2 to 11, with up to 5% sodium chloride or up to 50% ethanol in the aqueous phase. In the presence of a low concentration of various solutes, emulsions were stable to three cycles of freezing and thawing. An emulsifying agent was extracted from each species or strain of yeast tested, including 13 species of genera other than Saccharomyces. Spent yeast from the manufacture of beer and wine was demonstrated to be a possible source for the large-scale production of this bioemulsifier. PMID:3046488
Skaar, I; Stenwig, H
1996-01-01
A general medium named malt-yeast extract-sucrose agar (MYSA) containing oxgall was designed. The medium was intended for the enumeration and isolation of molds and yeasts in routine examinations of animal feed stuffs. In this study MYSA was tested as a general medium for mycological examination of silage. The medium was compared with dichloran-rose bengal medium (DRBC) in an examination of more than 500 specimens of big bale grass silage. Selected characteristics of known fungal species commonly isolated from feeds were examined after growth on MYSA and DRBC and on malt extract agar, used as a noninhibitory control medium. MYSA suppressed bacterial growth, without affecting the growth of fungi common in feeds. The fungi growing on MYSA were easily recognized, and the medium seemed to slow radial growth of fungal colonies, which permitted, easy counting. The number of species found was higher on MYSA than on DRBC. When we compared MYSA with DRBC for mycological examination of grass silage samples, MYSA was found to be the medium of choice. PMID:8837416
Isolation and Purification of Antibiotic Material from Physarum gyrosum
Schroeder, H. R.; Mallette, M. F.
1973-01-01
The myxomycete Physarum gyrosum was cultured in its plasmodial stage on agar plates containing 0.025 M phosphate buffer at pH 6.5, 2% bakers' yeast, and 0.2% glucose and was supplemented with live Escherichia coli. Extracts of these plasmodia contained several antibiotic substances. Antibiotic materials were partially purified by dialysis of the agar medium-mold mixture, evaporation of the dialyzate, and butanol extraction of the residue. Further purification in two paper and two thin-layer chromatographic systems gave one product which was pure in six thin-layer chromatographic systems. Antibiotic activity against some gram-positive and gram-negative bacteria and yeasts was demonstrated with partially purified extracts and a paper-chromatographically separated fraction. One pure antibiotic was effective against Bacillus cereus. PMID:4799591
USDA-ARS?s Scientific Manuscript database
Douglas fir is the dominant commercial tree grown in the United States. In this study Douglas fir residue was converted to single cell oils using oleaginous yeasts. Monosaccharides were extracted from the woody biomass by pretreating with sulfite and dilute sulfuric acid (SPORL process) and hydrol...
Resinless section electron microscopy reveals the yeast cytoskeleton.
Penman, J; Penman, S
1997-04-15
The cytoskeleton of Saccharomyces cerevisiae is essentially invisible using conventional microscopy techniques. A similar problem was solved for the mammalian cell cytoskeleton using resinless section electron microscopy, a technique applied here to yeast. In the resinless image, soluble proteins are no longer cloaked by embedding medium and must be removed by selective detergent extraction. In yeast, this requires breaching the cell wall by digesting with Zymolyase sufficiently to allow detergent extraction of the plasma membrane lipids. Gel electropherograms show that the extracted or "soluble" proteins are distinct from the retained or "structural" proteins that presumably comprise the cytoskeleton. These putative cytoskeleton proteins include the major portions of a 43-kDa protein, which is presumably actin, and of proteins in a band appearing at 55 kDa, as well as numerous less abundant, nonactin proteins. Resinless section electron micrographs show a dense, three-dimensional web of anastomosing, polymorphic filaments bounded by the remnant cell wall. Although the filament network is very heterogenous, there appear to be two principal classes of filament diameters-5 nm and 15-20 nm-which may correspond to actin and intermediate filaments, respectively. A large oval region of lower filament density probably corresponds to the vacuole, and an electron dense spheroidal body, 300-500 nm in diameter, is likely the nucleus. The techniques detailed in this report afford new approaches to the study of yeast cytoarchitecture.
Laforgue, R; Lonvaud-Funel, A
2012-12-01
Brettanomyces bruxellensis populations have been correlated with an increase in phenolic off-flavors in wine. The volatile phenols causing the olfactory defect result from the successive decarboxylation and reduction of hydroxycinnamic acids that are normal components of red wines. The growth of B. bruxellensis is preventable by adding sulfur dioxide (SO(2)), with variable effectiveness. Moreover, it was hypothesized that SO(2) was responsible for the entry of B. bruxellensis into a viable but non-culturable (VBNC) state. The aim of this project was to investigate the effects of SO(2) on the remaining enzyme activities of B. bruxellensis populations according to their viability and cultivability, focusing on the hydroxycinnamate decarboxylase enzyme, the first enzyme needed, rather than the metabolites produced. Enzyme activity was determined both in cell-free extracts and resting cells after various SO(2) treatments in synthetic media. After slight sulfiting (around 50 mg/L total SO(2)), the yeasts had lost part of their enzyme activity but not their cultivability. At higher doses (at least 75 mg/L total SO(2)) the majority of yeasts had lost their cultivability but still retained part of their enzyme activity. These results suggested that non culturable cells retained some enzyme activity. Copyright © 2012 Elsevier Ltd. All rights reserved.
Stefan, Alessandra; Hochkoeppler, Alejandro; Ugolini, Luisa; Lazzeri, Luca; Conte, Emanuele
2016-01-01
The conversion of industrial by-products into high-value added compounds is a challenging issue. Crude glycerol, a by-product of the biodiesel production chain, could represent an alternative carbon source for the cultivation of oleaginous yeasts. Here, we developed five minimal synthetic glycerol-based media, with different C/N ratios, and we analyzed the production of biomass and fatty acids by Yarrowia lipolytica Po1g strain. We identified two media at the expense of which Y. lipolytica was able to accumulate ∼5 g L(-1) of biomass and 0.8 g L(-1) of fatty acids (0.16 g of fatty acids per g of dry weight). These optimized media contained 0.5 g L(-1) of urea or ammonium sulfate and 20 g L(-1) of glycerol, and were devoid of yeast extract. Moreover, Y. lipolytica was engineered by inserting the FatB2 gene, coding for the CpFatB2 thioesterase from Cuphea palustris, in order to modify the fatty acid composition towards the accumulation of medium-chain fatty acids. Contrary to the expected, the expression of the heterologous gene increased the production of oleic acid, and concomitantly decreased the level of saturated fatty acids. © 2015 American Institute of Chemical Engineers.
From crude glycerol to carotenoids by using a Rhodotorula glutinis mutant.
Cutzu, Raffaela; Coi, Annalisa; Rosso, Fulvia; Bardi, Laura; Ciani, Maurizio; Budroni, Marilena; Zara, Giacomo; Zara, Severino; Mannazzu, Ilaria
2013-06-01
In this work eighteen red yeasts were screened for carotenoids production on glycerol containing medium. Strain C2.5t1 of Rhodotorula glutinis, that showed the highest productivity, was UV mutagenized. Mutant 400A15, that exhibited a 280 % increase in β-carotene production in respect to the parental strain, was selected. A central composite design was applied to 400A15 to optimize carotenoids and biomass productions. Regression analyses of the quadratic polynomial equations obtained (R(2) = 0.87 and 0.94, for carotenoids and biomass, respectively) suggest that the models are reliable and significant (P < 0.0001) in the prediction of carotenoids and biomass productions on the basis of the concentrations of crude glycerol, yeast extract and peptone. Accordingly, total carotenoids production achieved (14.07 ± 1.45 mg l(-1)) under optimized growth conditions was not statistically different from the maximal predicted (14.64 ± 1.57 mg l(-1)) (P < 0.05), and it was about 100 % higher than that obtained under un-optimized conditions. Therefore mutant 400A15 may represent a biocatalyst of choice for the bioconversion of crude glycerol into value-added metabolites, and a tool for the valorization of this by-product of the biodiesel industry.
Media and growth conditions for induction of secondary metabolite production.
Frisvad, Jens C
2012-01-01
Growth media and incubation conditions have a very strong influence of secondary metabolite production. There is no consensus on which media are the optimal for metabolite production, but a series of useful and effective media and incubation conditions have been listed here. Chemically well-defined media are suited for biochemical studies, but in order to get chemical diversity expressed in filamentous fungi, sources rich in amino acids, vitamins, and trace metals have to be added, such as yeast extract and oatmeal. A battery of solid agar media is recommended for exploration of chemical diversity as agar plug samples are easily analyzed to get an optimal representation of the qualitative secondary metabolome. Standard incubation for a week at 25°C in darkness is recommended, but optimal conditions have to be modified depending on the ecology and physiology of different filamentous fungi.
Jiang, Bei; Zhou, Zunchun; Dong, Ying; Tao, Wei; Wang, Bai; Jiang, Jingwei; Guan, Xiaoyan
2015-07-01
A bacterium designated strain JB, able to degrade six benzene, toluene, ethylbenzene, and o-, m-, and p-xylene (BTEX) compounds, was isolated from petroleum-contaminated soil. Taxonomic analyses showed that the isolate belonged to Comamonas, and until now, the genus Comamonas has not included any known BTEX degraders. The BTEX biodegradation rate was slightly low on the mineral salt medium (MSM), but adding a small amount of yeast extract greatly enhanced the biodegradation. The relationship between specific degradation rate and individual BTEX was described well by Michaelis-Menten kinetics. The treatment of petrochemical wastewater containing BTEX mixture and phenol was shown to be highly efficient by BTEX-grown JB. In addition, toxicity assessment indicated the treatment of the petrochemical wastewater by BTEX-grown JB led to less toxicity than untreated wastewater.
Metabolic construction strategies for direct methanol utilization in Saccharomyces cerevisiae.
Dai, Zhongxue; Gu, Honglian; Zhang, Shangjie; Xin, Fengxue; Zhang, Wenming; Dong, Weiliang; Ma, Jiangfeng; Jia, Honghua; Jiang, Min
2017-12-01
The aim of this study was to metabolically construct Saccharomyces cerevisiae for achievement of direct methanol utilization and value added product (mainly pyruvate) production. After successful integration of methanol oxidation pathway originated from Pichia pastoris into the chromosome of S. cerevisiae, the recombinant showed 1.04g/L consumption of methanol and 3.13% increase of cell growth (OD 600 ) when using methanol as the sole carbon source. Moreover, 0.26g/L of pyruvate was detected in the fermentation broth. The supplementation of 1g/L yeast extract could further improve cell growth with increase of 11.70% and methanol consumption to 2.35g/L. This represents the first genetically modified non-methylotrophic eukaryotic microbe for direct methanol utilization and would be of great value concerning the development of biotechnological processes. Copyright © 2017 Elsevier Ltd. All rights reserved.
Wu, Changzheng; Zhang, Feng; Li, Lijun; Jiang, Zhedong; Ni, Hui; Xiao, Anfeng
2018-01-01
High amounts of insoluble substrates exist in the traditional solid-state fermentation (SSF) system. The presence of these substrates complicates the determination of microbial biomass. Thus, enzyme activity is used as the sole index for the optimization of the traditional SSF system, and the relationship between microbial growth and enzyme synthesis is always ignored. This study was conducted to address this deficiency. All soluble nutrients from tea stalk were extracted using water. The aqueous extract was then mixed with polyurethane sponge to establish a modified SSF system, which was then used to conduct tannase production. With this system, biomass, enzyme activity, and enzyme productivity could be measured rationally and accurately. Thus, the association between biomass and enzyme activity could be easily identified, and the shortcomings of traditional SSF could be addressed. Different carbon and nitrogen sources exerted different effects on microbial growth and enzyme production. Single-factor experiments showed that glucose and yeast extract greatly improved microbial biomass accumulation and that tannin and (NH 4 ) 2 SO 4 efficiently promoted enzyme productivity. Then, these four factors were optimized through response surface methodology. Tannase activity reached 19.22 U/gds when the added amounts of tannin, glucose, (NH 4 ) 2 SO 4 , and yeast extract were 7.49, 8.11, 9.26, and 2.25%, respectively. Tannase activity under the optimized process conditions was 6.36 times higher than that under the initial process conditions. The optimized parameters were directly applied to the traditional tea stalk SSF system. Tannase activity reached 245 U/gds, which is 2.9 times higher than our previously reported value. In this study, a modified SSF system was established to address the shortcomings of the traditional SSF system. Analysis revealed that enzymatic activity and microbial biomass are closely related, and different carbon and nitrogen sources have different effects on microbial growth and enzyme production. The maximal tannase activity was obtained under the optimal combination of nutrient sources that enhances cell growth and tannase accumulation. Moreover, tannase production through the traditional tea stalk SSF was markedly improved when the optimized parameters were applied. This work provides an innovative approach to bioproduction research through SSF.
Chen, He; Niu, Jinfeng; Qin, Tao; Ma, Qi; Wang, Lei; Shu, Guowei
2015-01-01
Lactobacillus acidophilus not only improves the intestinal flora balance but also inhabits the growth of undesirable microorganisms in intestine, which is benefit to the health of humans and animals. Plackett-Burman and steepest ascent experiment are the rapid and concise ways of screening the main effective factors. This study is aimed to select the main influence factors and optimize the medium for Lactobacillus acidophilus by Plackett-Burman experiment and steepest ascent experiment. The ideal carbon source was screened among glucose, maltose, lactose and whey powder, and the ideal nitrogen source was screened among casein hydrolysate, peptone, yeast extract powder, fish meal, carbamide, ammonium sulfate and sodium nitrate by single factor experiment. Plackett-Burman and steepest ascent experiment were applied to screen the main effective factors of Lactobacillus acidophilus among peptone, beef extract, yeast extract powder, glucose, K2HPO4, C6H14O7N2, CH3COONa, MgSO4 and Tween-80. Result. The results indicated that glucose (p = 0.01510) as negative factor and K2HPO4 (p = 0.02017) as positive effect were the significant growth factors of Lactobacillus acidophilus, CH3COONa (p = 0.09273) as positive effect was an important factor, and the optimized medium was as follows: glucose - 21 g/L, K2HPO4 - 3.5 g/L, CH3COONa - 6.5 g/L, peptone - 10 g/L, beef extract - 8 g/L, yeast extract pow. nd. Lactobacillus acidophilus not only improves the intestinal flora balance but also inhabits the growth of undesirable microorganisms in intestine, which is benefit to the health of humans and animals. Plackett-Burman and steepest ascent experiment are the rapid and concise ways of screening the main effective factors. This study is aimed to select the main influence factors and optimize the medium for Lactobacillus acidophilus by Plackett-Burman experiment and steepest ascent experiment. Material and methods. The ideal carbon source was screened among glucose, maltose, lactose and whey powder, and the ideal nitrogen source was screened among casein hydrolysate, peptone, yeast extract powder, fish meal, carbamide, ammonium sulfate and sodium nitrate by single factor experiment. Plackett-Burman and steepest ascent experiment were applied to screen the main effective factors of Lactobacillus acidophilus among peptone, beef extract, yeast extract powder, glucose, K2HPO4, C6H14O7N2, CH3COONa, MgSO4 and Tween-80. Result. The results indicated that glucose (p = 0.01510) as negative factor and K2HPO4 (p = 0.02017) as positive effect were the significant growth factors of Lactobacillus acidophilus, CH3COONa (p = 0.09273) as positive effect was an important factor, and the optimized medium was as follows: glucose - 21 g/L, K2HPO4 - 3.5 g/L, CH3COONa - 6.5 g/L, peptone - 10 g/L, beef extract - 8 g/L, yeast extract powder - 8 g/L, C6H14O7N2 - 2 g/L, MgSO4 - 0.2 g/L and Tween-80 - 1 mL/L when the maximum viable count could achieve 2.72·109 cfu/mL. The experimental model is reliable and the experimental results are of good stability. Variance analysis is performed to determine the adequacy and significance of the linear model. Thus, Plackett-Burman and steepest ascent experiment improve the veracity of optimization the medium for Lactobacillus acidophilus compared with the previous research.
The Effect of Detergents on the Morphology and Immunomodulatory Activity of Malassezia furfur.
Kim, Su-Han; Ko, Hyun-Chang; Kim, Moon-Bum; Kwon, Kyung-Sool; Oh, Chang-Keun
2009-05-01
Several workers have found that Malassezia are capable of suppressing cytokine release and downregulating the phagocytic function of monocytes. But lipid-depleted Malassezia furfur (M. furfur) extracts have also been shown to induce increased production of TNF-alpha, IL-6 and IL-1beta in monocytes. We thought that the detergents in shampoos or soaps could change the composition of the lipid in the M. furfur cell wall. We studied whether detergents affect the morphology of M. furfur and if the inflammatory cytokine profiles change in the monocytes treated with detergent-treated M. furfur. Commonly used detergents such as sodium lauryl sulfate, ammonium lauryl sulfate and tween-80 were respectively added to the modified Leeming-Notman's media. M. furfur was cultivated in each media (detergent-added or untreated). Thereafter, the surface morphology of the yeast was evaluated by scanning and transmission electron microscopy. The cytokine profiles of monocytes, which were treated by M. furfur with or without detergents, were also evaluated. The detergent-treated M. furfur were similar to the lipid-extracted form of M. furfur on the electron microscopic study, with a recessed, withered surface and with thinner and rather electron transparent cell walls than the detergent-untreated M. furfur. The levels of TNF-alpha were higher in monocytes treated with detergent-treated Malassezia than that in the monocytes treated with the detergent-untreated Malassezia (p<0.05). According to the findings in this study, it could be inferred that the detergents in shampoos or soaps affect the lipid layers of the Malassezia cell wall and these lipid-extracted Malassezia induce or aggravate some inflammatory conditions. But to correlate the relationship between detergents and Malassezia-associated diseases, in vivo experiments that will focus on short-term contact with detergents in real life conditions should be done.
Safety and regulation of yeasts used for biocontrol or biopreservation in the food or feed chain.
Sundh, Ingvar; Melin, Petter
2011-01-01
Yeasts have been important components of spontaneous fermentations in food and beverage processing for millennia. More recently, the potential of utilising antagonistic yeasts, e.g. Pichia anomala and Candida spp., for post-harvest biological control of spoilage fungi during storage of plant-derived produce ('biopreservation') has been clearly demonstrated. Although some yeast species are among the safest microorganisms known, several have been reported in opportunistic infections in humans, including P. anomala and bakers' yeast, Saccharomyces cerevisiae. More research is needed about the dominant pathogenicity and virulence factors in opportunistic yeasts, and whether increased utilisation of biopreservative yeasts in general could contribute to an increased prevalence of yeast infections. The regulatory situation for yeasts used in post-harvest biocontrol is complex and the few products that have reached the market are mainly registered as biological pesticides. The qualified presumption of safety (QPS) approach to safety assessments of microorganisms intentionally added to food or feed, recently launched by the European Food Safety Authority, can lead to more efficient evaluations of new products containing microbial species with a sufficient body of knowledge or long-term experience on their safety. P. anomala is one of several yeast species that have been given QPS status, although the status is restricted to use of this yeast for enzyme and metabolite production purposes. With regard to authorisation of new biopreservative yeasts, we recommend that the possibility to regulate microorganisms for food biopreservation as food additives be considered.
He, Cuiwen H; Xie, Letian X; Allan, Christopher M; Tran, Uyenphuong C; Clarke, Catherine F
2014-04-04
Coenzyme Q biosynthesis in yeast requires a multi-subunit Coq polypeptide complex. Deletion of any one of the COQ genes leads to respiratory deficiency and decreased levels of the Coq4, Coq6, Coq7, and Coq9 polypeptides, suggesting that their association in a high molecular mass complex is required for stability. Over-expression of the putative Coq8 kinase in certain coq null mutants restores steady-state levels of the sensitive Coq polypeptides and promotes the synthesis of late-stage Q-intermediates. Here we show that over-expression of Coq8 in yeast coq null mutants profoundly affects the association of several of the Coq polypeptides in high molecular mass complexes, as assayed by separation of digitonin extracts of mitochondria by two-dimensional blue-native/SDS PAGE. The Coq4 polypeptide persists at high molecular mass with over-expression of Coq8 in coq3, coq5, coq6, coq7, coq9, and coq10 mutants, indicating that Coq4 is a central organizer of the Coq complex. Supplementation with exogenous Q6 increased the steady-state levels of Coq4, Coq7, and Coq9, and several other mitochondrial polypeptides in select coq null mutants, and also promoted the formation of late-stage Q-intermediates. Q supplementation may stabilize this complex by interacting with one or more of the Coq polypeptides. The stabilizing effects of exogenously added Q6 or over-expression of Coq8 depend on Coq1 and Coq2 production of a polyisoprenyl intermediate. Based on the observed interdependence of the Coq polypeptides, the effect of exogenous Q6, and the requirement for an endogenously produced polyisoprenyl intermediate, we propose a new model for the Q-biosynthetic complex, termed the CoQ-synthome. Copyright © 2014 Elsevier B.V. All rights reserved.
He, Cuiwen H.; Xie, Letian X.; Allan, Christopher M.; Tran, UyenPhuong C.; Clarke, Catherine F.
2014-01-01
Coenzyme Q biosynthesis in yeast requires a multi-subunit Coq polypeptide complex. Deletion of any one of the COQ genes leads to respiratory deficiency and decreased levels of the Coq4, Coq6, Coq7, and Coq9 polypeptides, suggesting that their association in a high molecular mass complex is required for stability. Over-expression of the putative Coq8 kinase in certain coq null mutants restores steady-state levels of the sensitive Coq polypeptides and promotes the synthesis of late-stage Q-intermediates. Here we show that over-expression of Coq8 in yeast coq null mutants profoundly affects the association of several of the Coq polypeptides in high molecular mass complexes, as assayed by separation of digitonin extracts of mitochondria by two-dimensional blue-native/SDS PAGE. The Coq4 polypeptide persists at high molecular mass with over-expression of Coq8 in coq3, coq5, coq6, coq7, coq9, and coq10 mutants, indicating that Coq4 is a central organizer of the Coq complex. Supplementation with exogenous Q6 increased the steady-state levels of Coq4, Coq7, Coq9, and several other mitochondrial polypeptides in select coq null mutants, and also promoted the formation of late-stage Q-intermediates. Q supplementation may stabilize this complex by interacting with one or more of the Coq polypeptides. The stabilizing effects of exogenously added Q6 or over-expression of Coq8 depend on Coq1 and Coq2 production of a polyisoprenyl intermediate. Based on the observed interdependence of the Coq polypeptides, the effect of exogenous Q6, and the requirement for an endogenously produced polyisoprenyl intermediate, we propose a new model for the Q-biosynthetic complex, termed the CoQ-synthome. PMID:24406904
Chlorhexidine: beta-cyclodextrin inhibits yeast growth by extraction of ergosterol.
Teixeira, K I R; Araújo, P V; Sinisterra, R D; Cortés, M E
2012-04-01
Chlorhexidine (Cx) augmented with beta-cyclodextrin (β-cd) inclusion compounds, termed Cx:β-cd complexes, have been developed for use as antiseptic agents. The aim of this study was to examine the interactions of Cx:β-cd complexes, prepared at different molecular ratios, with sterol and yeast membranes. The Minimal Inhibitory Concentration (MIC) against the yeast Candida albicans (C.a.) was determined for each complex; the MICs were found to range from 0.5 to 2 μg/mL. To confirm the MIC data, quantitative analysis of viable cells was performed using trypan blue staining. Mechanistic characterization of the interactions that the Cx:β-cd complexes have with the yeast membrane and assessment of membrane morphology following exposure to Cx:β-cd complexes were performed using Sterol Quantification Method analysis (SQM) and scanning electron microscopy (SEM). SQM revealed that sterol extraction increased with increasing β-cd concentrations (1.71 ×10(3); 1.4 ×10(3); 3.45 ×10(3), and 3.74 ×10(3) CFU for 1:1, 1:2, 1:3, and 1:4, respectively), likely as a consequence of membrane ergosterol solubilization. SEM images demonstrated that cell membrane damage is a visible and significant mechanism that contributes to the antimicrobial effects of Cx:β-cd complexes. Cell disorganization increased significantly as the proportion of β-cyclodextrin present in the complex increased. Morphology of cells exposed to complexes with 1:3 and 1:4 molar ratios of Cx:β-cd were observed to have large aggregates mixed with yeast remains, representing more membrane disruption than that observed in cells treated with Cx alone. In conclusion, nanoaggregates of Cx:β-cd complexes block yeast growth via ergosterol extraction, permeabilizing the membrane by creating cluster-like structures within the cell membrane, possibly due to high amounts of hydrogen bonding.
Kanetsuna, Fuminori; Carbonell, Luis M.
1966-01-01
Kanetsuna, Fuminori (Instituto Venezolano de Investigaciones Cientificas, Caracas, Venezuela), and Luis M. Carbonell. Enzymes in glycolysis and the citric acid cycle in the yeast and mycelial forms of Paracoccidioides brasiliensis. J. Bacteriol. 92:1315–1320. 1966.—Enzymatic activities in glycolysis, the hexose monophosphate shunt, and the citric acid cycle in cell-free extracts of the yeast and mycelial forms of Paracoccidioides brasiliensis were examined comparatively. Both forms have the enzymes of these pathways. Activities of glucose-6-phosphate dehydrogenase and malic dehydrogenase of the mycelial form were higher than those of the yeast form. Another 15 enzymatic activities of the mycelial form were lower than those of the yeast form. The activity of glyceraldehyde-3-phosphate dehydrogenase showed the most marked difference between the two forms, its activity in the mycelial form being about 20% of that in the yeast form. PMID:5924267
Zhang, Yueping; Nielsen, Jens; Liu, Zihe
2017-12-01
Terpenoids represent a large class of natural products with significant commercial applications. These chemicals are currently mainly obtained through extraction from plants and microbes or through chemical synthesis. However, these sources often face challenges of unsustainability and low productivity. In order to address these issues, Escherichia coli and yeast have been metabolic engineered to produce non-native terpenoids. With recent reports of engineering yeast metabolism to produce several terpenoids at high yields, it has become possible to establish commercial yeast production of terpenoids that find applications as perfume ingredients, pharmaceuticals and advanced biofuels. In this review, we describe the strategies to rewire the yeast pathway for terpenoid biosynthesis. Recent advances will be discussed together with challenges and perspectives of yeast as a cell factory to produce different terpenoids. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Decamps, Karolien; Joye, Iris J; De Vos, Dirk E; Courtin, Christophe M; Delcour, Jan A
2016-01-01
In bread making, O2 is consumed by flour constituents, yeast, and, optionally, some additives optimizing dough processing and/or product quality. It plays a major role especially in the oxidation/reduction phenomena in dough, impacting gluten network structure. The O2 level is about 7.2 mmol/kg dough, of which a significant part stems from wheat flour. We speculate that O2 is quickly lost to the atmosphere during flour hydration. Later, when the gluten network structure develops, some O2 is incorporated in dough through mixing-in of air. O2 is consumed by yeast respiration and in a number of reactions catalyzed by a wide range of enzymes present or added. About 60% of the O2 consumption in yeastless dough is ascribed to oxidation of fatty acids by wheat lipoxygenase activity. In yeasted dough, about 70% of the O2 in dough is consumed by yeast and wheat lipoxygenase. This would leave only about 30% for other reactions. The severe competition between endogenous (and added) O2-consuming systems impacts the gluten network. Moreover, the scarce literature data available suggest that exogenous oxidative enzymes but not those in flour may promote crosslinking of arabinoxylan in yeastless dough. In any case, dough turns anaerobic during the first minutes of fermentation.
Krasowska, Anna; Murzyn, Anna; Dyjankiewicz, Agnieszka; Łukaszewicz, Marcin; Dziadkowiec, Dorota
2009-12-01
The dimorphic fungus Candida albicans is a member of the normal flora residing in the intestinal tract of humans. In spite of this, under certain conditions it can induce both superficial and serious systemic diseases, as well as be the cause of gastrointestinal infections. Saccharomyces boulardii is a yeast strain that has been shown to have applications in the prevention and treatment of intestinal infections caused by bacterial pathogens. The purpose of this study was to determine whether S. boulardii affects the virulence factors of C. albicans. We demonstrate the inhibitory effect of live S. boulardii cells on the filamentation (hyphae and pseudohyphae formation) of C. albicans SC5314 strain proportional to the amount of S. boulardii added. An extract from S. boulardii culture has a similar effect. Live S. boulardii and the extract from S. boulardii culture filtrate diminish C. albicans adhesion to and subsequent biofilm formation on polystyrene surfaces under both aerobic and microaerophilic conditions. This effect is very strong and requires lower doses of S. boulardii cells or concentrations of the extract than serum-induced filamentation tests. Saccharomyces boulardii has a strong negative effect on very important virulence factors of C. albicans, i.e. the ability to form filaments and to adhere and form biofilms on plastic surfaces.
Kozyra, Małgorzata; Biernasiuk, Anna; Malm, Anna; Chowaniec, Marcin
2015-01-01
The aim of this study was to investigate phenolic acids and flavonoids in methanolic, dichloromethane, acetone and ethyl acetate extracts and fractions from inflorescences of Cirsium canum (L.). RP-HPLC analysis enabled identification of the following: chlorogenic acid, caffeic acid, p-coumaric acid, protocatechuic acid, p-hydroxybenzoic acid, vanillic acid, syringic acid, trans-cinnamic acid, luteolin-7-glucoside, apigenin-7-glucoside, kaempferol-3-glucoside, linarin, apigenin, rutoside, luteolin and kaempferol. The antimicrobial activity of tested extracts was determined in vitro against reference microorganisms, including bacteria or fungi, belonging to yeasts. Our data showed that the tested extracts had no influence on the growth of the reference strains of Gram-negative bacteria and yeasts belonging to Candida spp. Among them, the fractions possessed the highest activity against Gram-positive bacteria, especially Streptococcus aureus and Streptococcus pneumoniae belonging to pathogens and Streptococcus epidermidis, Bacilluscereus and Bacillus subtilis belonging to opportunistic microorganisms.
Barnhart, Elliott P.; Davis, Katherine J.; Varonka, Matthew; Orem, William H.; Cunningham, Alfred B.; Ramsay, Bradley D.; Fields, Matthew W.
2017-01-01
Many coal beds contain microbial communities that can convert coal to natural gas (coalbed methane). Native microorganisms were obtained from Powder River Basin (PRB) coal seams with a diffusive microbial sampler placed downhole and used as an inoculum for enrichments with different nutrients to investigate microbially-enhanced coalbed methane production (MECoM). Coal-dependent methanogenesis more than doubled when yeast extract (YE) and several less complex components (proteins and amino acids) were added to the laboratory microcosms. Stimulated coal-dependent methanogenesis with peptone was 86% of that with YE while glutamate-stimulated activity was 65% of that with YE, and a vitamin mix had only 33% of the YE stimulated activity. For field application of MECoM, there is interest in identifying cost-effective alternatives to YE and other expensive nutrients. In laboratory studies, adding algal extract (AE) with lipids removed stimulated coal-dependent methanogenesis and the activity was 60% of that with YE at 27 d and almost 90% of YE activity at 1406 d. Analysis of British Thermal Unit (BTU) content of coal (a measure of potential energy yield) from long-term incubations indicated > 99.5% of BTU content remained after coalbed methane (CBM) stimulation with either AE or YE. Thus, the coal resource remains largely unchanged following stimulated microbial methane production. Algal CBM stimulation could lead to technologies that utilize coupled biological systems (photosynthesis and methane production) that sustainably enhance CBM production and generate algal biofuels while also sequestering carbon dioxide (CO2).
Evaluation of selenium in dietary supplements using elemental speciation.
Kubachka, Kevin M; Hanley, Traci; Mantha, Madhavi; Wilson, Robert A; Falconer, Travis M; Kassa, Zena; Oliveira, Aline; Landero, Julio; Caruso, Joseph
2017-03-01
Selenium-enriched dietary supplements containing various selenium compounds are readily available to consumers. To ensure proper selenium intake and consumer confidence, these dietary supplements must be safe and have accurate label claims. Varying properties among selenium species requires information beyond total selenium concentration to fully evaluate health risk/benefits A LC-ICP-MS method was developed and multiple extraction methods were implemented for targeted analysis of common "seleno-amino acids" and related oxidation products, selenate, selenite, and other species relatable to the quality and/or accuracy of the labeled selenium ingredients. Ultimately, a heated water extraction was applied to recover selenium species from non-selenized yeast supplements in capsule, tablet, and liquid forms. For selenized yeast supplements, inorganic selenium was monitored as a means of assessing selenium yeast quality. A variety of commercially available selenium supplements were evaluated and discrepancies between labeled ingredients and detected species were noted. Published by Elsevier Ltd.
Evaluation of selenium in dietary supplements using elemental speciation
Kubachka, Kevin M.; Hanley, Traci; Mantha, Madhavi; Wilson, Robert A.; Falconer, Travis M.; Kassa, Zena; Oliveira, Aline; Landero, Julio; Caruso, Joseph
2016-01-01
Selenium-enriched dietary supplements containing various selenium compounds are readily available to consumers. To ensure proper selenium intake and consumer confidence, these dietary supplements must be safe and have accurate label claims. Varying properties among selenium species requires information beyond total selenium concentration to fully evaluate health risk/benefits A LC-ICP-MS method was developed and multiple extraction methods were implemented for targeted analysis of common “seleno-amino acids” and related oxidation products, selenate, selenite, and other species relatable to the quality and/or accuracy of the labeled selenium ingredients. Ultimately, a heated water extraction was applied to recover selenium species from non-selenized yeast supplements in capsule, tablet, and liquid forms. For selenized yeast supplements, inorganic selenium was monitored as a means of assessing selenium yeast quality. A variety of commercially available selenium supplements were evaluated and discrepancies between labeled ingredients and detected species were noted. PMID:27719915
FORMATE—PYRUVATE EXCHANGE REACTION IN STREPTOCOCCUS FAECALIS II.
Oster, M. O.; Wood, N. P.
1964-01-01
Oster, M. O. (A. & M. College of Texas, College Station), and N. P. Wood. Formate-pyruvate exchange reaction in Streptococcus faecalis. II. Reaction conditions for cell extracts. J. Bacteriol. 87:104–113. 1964.—In contrast to intact cells of Streptococcus faecalis, no stimulation of the formate-pyruvate exchange reaction was observed in cell extracts when yeast extract was added to the reaction mixture. A heated extract of Micrococcus lactilyticus, vitamin K5, ferrous sulfate, and ferrous ammonium sulfate stimulated an active exchange by protecting the system from oxygen. Tetrahydrofolate, 2,3-dimercaptopropanol, and sodium sulfide provided partial protection, whereas ascorbate, glutathione, sodium hydrosulfite, ammonium sulfide, and sodium bisulfite gave insufficient protection or were inhibitory. Oxidation-reduction (O-R) indicators were not inhibitory and were used to estimate the O-R potentials of reaction mixtures. A potential at least as negative as −125 mv was estimated to be necessary to preserve or initiate formate-pyruvate exchange activity. The reaction operated over a narrow pH range when strict anaerobic conditions were not maintained but, when the system was suitably poised, the pH range was broader. The influence of high phosphate concentrations was less under strictly anaerobic conditions, and orthophosphate could be replaced by small amounts of pyrophosphate. Effect of temperature, time, and amount of extract is presented. Addition of reduced benzyl viologen and hydrogen-saturated palladium in the buffer during 8 hr of dialysis prevented inactivation of extracts. Recovery of activity could be obtained after ammonium sulfate treatment when a combination of palladium chloride, neutral red, and hydrogen bubbling were used. PMID:14102842
Effect of biostimulation and bioaugmentation on degradation of polyurethane buried in soil.
Cosgrove, L; McGeechan, P L; Handley, P S; Robson, G D
2010-02-01
This work investigated biostimulation and bioaugmentation as strategies for removing polyurethane (PU) waste in soil. Soil microcosms were biostimulated with the PU dispersion agent "Impranil" and/or yeast extract or were bioaugmented with PU-degrading fungi, and the degradation of subsequently buried PU was determined. Fungal communities in the soil and colonizing buried PU were enumerated on solid media and were analyzed using denaturing gradient gel electrophoresis (DGGE). Biostimulation with yeast extract alone or in conjunction with Impranil increased PU degradation 62% compared to the degradation in untreated control soil and was associated with a 45% increase in putative PU degraders colonizing PU. Specific fungi were enriched in soil following biostimulation; however, few of these fungi colonized the surface of buried PU. Fungi used for soil bioaugmentation were cultivated on the surface of sterile wheat to form a mycelium-rich inoculum. Wheat, when added alone to soil, increased PU degradation by 28%, suggesting that wheat biomass had a biostimulating effect. Addition of wheat colonized with Nectria haematococca, Penicillium viridicatum, Penicillium ochrochloron, or an unidentified Mucormycotina sp. increased PU degradation a further 30 to 70%, suggesting that biostimulation and bioaugmentation were operating in concert to enhance PU degradation. Interestingly, few of the inoculated fungi could be detected by DGGE in the soil or on the surface of the PU 4 weeks after inoculation. Bioaugmentation did, however, increase the numbers of indigenous PU-degrading fungi and caused an inoculum-dependent change in the composition of the native fungal populations, which may explain the increased degradation observed. These results demonstrate that both biostimulation and bioaugmentation may be viable tools for the remediation of environments contaminated with polyurethane waste.
Protein Hydrolysates as Hypoallergenic, Flavors and Palatants for Companion Animals
NASA Astrophysics Data System (ADS)
Nagodawithana, Tilak W.; Nelles, Lynn; Trivedi, Nayan B.
Early civilizations have relied upon their good sense and experience to develop and improve their food quality. The discovery of soy sauce centuries ago can now be considered one of the earliest protein hydrolysates made by man to improve palatability of foods. Now, it is well known that such savory systems are not just sources for enjoyment but complex semiotic systems that direct the humans to satisfy the body's protein need for their sustenance. Recent developments have resulted in a wide range of cost effective savory flavorings, the best known of which are autolyzed yeast extracts and hydrolyzed vegetable proteins. New technologies have helped researchers to improve the savory characteristics of yeast extracts through the application of Maillard reaction and by generating specific flavor enhancers through the use of enzymes. An interesting parallel exists in the pet food industry, where a similar approach is taken in using animal protein hydrolysates to create palatability enhancers via Maillard reaction scheme. Protein hydrolysates are also utilized extensively as a source of nutrition to the elderly, young children and immuno-compromised patient population. These hydrolysates have an added advantage in having peptides small enough to avoid any chance of an allergenic reaction which sometimes occur with the consumption of larger sized peptides or proteins. Accordingly, protein hydrolysates are required to have an average molecular weight distribution in the range 800-1,500 Da to make them non-allergenic. The technical challenge for scientists involved in food and feed manufacture is to use an appropriate combination of enzymes within the existing economic constraints and other physical factors/limitations, such as heat, pH, and time, to create highly palatable, yet still nutritious and hypoallergenic food formulations.
Alderete, J F; Newton, E; Dennis, C; Neale, K A
1991-12-01
Patients with trichomoniasis have serum antibody to numerous T. vaginalis cysteine proteinases, indicating that the proteinases are expressed in vivo. It was important, therefore, to examine for the presence of soluble trichomonad proteinases and/or antibody to the proteinases in the vagina of infected women. Vaginal washes (VWs) from 20 women were examined for the presence of proteinases by electrophoresis using acrylamide co-polymerised with gelatin as the indicator system. Antibody to proteinases in VWs was detected by an immunoprecipitation assay involving protein A-bearing Staphylococcus aureus first coated with anti-human immunoglobulin G (IgG) antibody, which was then added to VWs. For VWs having soluble proteinases, the bacteria were used to determine whether immune complexes between antibody and proteinases were present. VWs without soluble proteinases were incubated with the anti-human IgG treated bacteria before adding to detergent extracts of T. vaginalis. Individual isolates from the patients examined in this study were also analysed by one- and two-dimensional electrophoresis for their proteinase content. Finally, VWs were from patients without any history of other sexually transmitted diseases (STDs) as well as from individuals having numerous other STDs, including yeast, group B streptococcus, chlamydia, and syphilis. Approximately one-third of patients had soluble proteinases in the VWs; the remaining two-thirds (70%) of patients and normal women had no detectable proteinases in VWs. Half of the patients without soluble proteinases had IgG which, when bound to S. aureus, immunoprecipitated many proteinases from a detergent extract of T. vaginalis. All soluble proteinases and those precipitated from trichomonal extracts were inhibited by inhibitors of cysteine proteinases. Finally, patients having trichomoniasis in addition to numerous other STD agents, including yeast, group B streptococcus, chlamydia, and syphilis did not have soluble proteinases in VWs. Equally noteworthy, some patients with soluble proteinases in VWs did not have other detectable STD agents. Proteinases were detected in the vagina of some patients with trichomoniasis, and in most cases the proteinases were complexed with IgG, which was precipitated by S. aureus. Patients without soluble proteinases in VWs also had antibody specifically to trichomonad proteinases, again demonstrating both the expression and immunogenic nature of the proteinases in vivo. The absence of soluble proteinases in normal women and in patients having other STD agents as well as the presence of proteinases in VWs of patients without other detectable STD pathogens reinforced the idea that the proteinases were of T. vaginalis parasite origin. The findings of this study indicate that proteinases may be important to the T. vaginalis-host interrelationship.
Yeast identification in floral nectar of Mimulus aurantiacus (Invited)
NASA Astrophysics Data System (ADS)
Kyauk, C.; Belisle, M.; Fukami, T.
2009-12-01
Nectar is such a sugar-rich resource that serves as a natural habitat in which microbes thrive. As a result, yeasts arrive to nectar on the bodies of pollinators such as hummingbirds and bees. Yeasts use the sugar in nectar for their own needs when introduced. This research focuses on the identification of different types of yeast that are found in the nectar of Mimulus aurantiacus (commonly known as sticky monkey-flower). Unopened Mimulus aurantiacus flower buds were tagged at Jasper Ridge and bagged three days later. Floral nectar was then extracted and plated on potato dextrose agar. Colonies on the plates were isolated and DNA was extracted from each sample using QIAGEN DNeasy Plant Mini Kit. The DNA was amplified through PCR and ran through gel electrophoresis. The PCR product was used to clone the nectar samples into an E.coli vector. Finally, a phylogenetic tree was created by BLAST searching sequences in GenBank using the Internal Transcribed Space (ITS) locus. It was found that 18 of the 50 identified species were Candida magnifica, 14 was Candida rancensis, 6 were Crytococcus albidus and there were 3 or less of the following: Starmella bombicola, Candida floricola, Aureobasidium pullulans, Pichia kluyvera, Metschnikowa cibodaserisis, Rhodotorua colostri, and Malassezia globosa. The low diversity of the yeast could have been due to several factors: time of collection, demographics of Jasper Ridge, low variety of pollinators, and sugar concentration of the nectar. The results of this study serve as a necessary first step for a recently started research project on ecological interactions between plants, pollinators, and nectar-living yeast. More generally, this research studies the use of the nectar-living yeast community as a natural microcosm for addressing basic questions about the role of dispersal and competitive and facilitative interactions in ecological succession.
Isoflavone formononetin from red propolis acts as a fungicide against Candida sp.
das Neves, Michelline Viviane Marques; da Silva, Tânia Maria Sarmento; Lima, Edeltrudes de Oliveira; da Cunha, Emídio Vasconcelos Leitão; Oliveira, Eduardo de Jesus
2016-01-01
A bioassay-guided fractionation of two samples of Brazilian red propolis (from Igarassu, PE, Brazil, hereinafter propolis 1 and 2) was conducted in order to determine the components responsible for its antimicrobial activity, especially against Candida spp. Samples of both the crude powdered resin and the crude ethanolic extract of propolis from both locations inhibited the growth of all 12 tested Candida strains, with a minimum inhibitory concentration of 256μg/mL. The hexane, acetate and methanol fractions of propolis 1 also inhibited all strains with minimum inhibitory concentration values ranging from 128 to 512μg/mL for the six bacteria tested and from 32 to 1024μg/mL for the yeasts. Similarly, hexane and acetate fractions of propolis sample 2 inhibited all microorganisms tested, with minimum inhibitory concentration values of 512μg/mL for bacteria and 32μg/mL for yeasts. The extracts were analyzed by HPLC and their phenolic profile allowed us to identify and quantitate one phenolic acid and seven flavonoids in the crude ethanolic extract. Formononetin and pinocembrin were the major constituents amongst the identified compounds. Formononetin was detected in all extracts and fractions tested, except for the methanolic fraction of sample 2. The isolated isoflavone formononetin inhibited the growth of all the microorganisms tested, with a minimum inhibitory concentration of 200μg/mL for the six bacteria strains tested and 25μg/mL for the six yeasts. Formononetin also exhibited fungicidal activity against five of the six yeasts tested. Taken together our results demonstrate that the isoflavone formononetin is implicated in the reported antimicrobial activity of red propolis. Copyright © 2015 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.
Isoflavone formononetin from red propolis acts as a fungicide against Candida sp
das Neves, Michelline Viviane Marques; da Silva, Tânia Maria Sarmento; Lima, Edeltrudes de Oliveira; da Cunha, Emídio Vasconcelos Leitão; Oliveira, Eduardo de Jesus
2016-01-01
A bioassay-guided fractionation of two samples of Brazilian red propolis (from Igarassu, PE, Brazil, hereinafter propolis 1 and 2) was conducted in order to determine the components responsible for its antimicrobial activity, especially against Candida spp. Samples of both the crude powdered resin and the crude ethanolic extract of propolis from both locations inhibited the growth of all 12 tested Candida strains, with a minimum inhibitory concentration of 256 μg/mL. The hexane, acetate and methanol fractions of propolis 1 also inhibited all strains with minimum inhibitory concentration values ranging from 128 to 512 μg/mL for the six bacteria tested and from 32 to 1024 μg/mL for the yeasts. Similarly, hexane and acetate fractions of propolis sample 2 inhibited all microorganisms tested, with minimum inhibitory concentration values of 512 μg/mL for bacteria and 32 μg/mL for yeasts. The extracts were analyzed by HPLC and their phenolic profile allowed us to identify and quantitate one phenolic acid and seven flavonoids in the crude ethanolic extract. Formononetin and pinocembrin were the major constituents amongst the identified compounds. Formononetin was detected in all extracts and fractions tested, except for the methanolic fraction of sample 2. The isolated isoflavone formononetin inhibited the growth of all the microorganisms tested, with a minimum inhibitory concentration of 200 μg/mL for the six bacteria strains tested and 25 μg/mL for the six yeasts. Formononetin also exhibited fungicidal activity against five of the six yeasts tested. Taken together our results demonstrate that the isoflavone formononetin is implicated in the reported antimicrobial activity of red propolis. PMID:26887239
Park, Ho-Won; Choi, Kyu-Duck; Shin, Il-Shik
2013-01-01
The antimicrobial activity of isothiocyanates (ITCs) extracted from horseradish root was investigated against oral microorganisms: 6 strains of facultative anaerobic bacteria, Streptococcus mutans, Streptococcus sobrinus, Lactobacillus casei, Staphylococcus aureus, Enterococcus faecalis and Aggregatibacter actinomycetemcomitans; one strain of yeast, Candida albicans, and 3 strains of anaerobic bacteria, Fusobacterium nucleatum, Prevotella nigrescens, and Clostridium perfringens. The ITCs extracted from horseradish root showed antimicrobial activity against all oral microorganisms by the paper disk method. The minimum bactericidal concentration (MBC) of the ITCs extracted from horseradish root ranged from 1.25 to 5.00 mg/ml against 6 strains of facultative anaerobic bacteria and one strain of yeast, and 4.17 to 16.67 mg/ml against 3 strains of anaerobic bacteria. The ITCs extracted from horseradish root showed the strongest antimicrobial activity, with a MBC of 1.25 mg/ml, against C. albicans among facultative microorganisms, and 4.17 mg/ml against F. nucleatum among anaerobic bacteria. These results suggest that the ITCs extracted from horseradish root may be a candidate for use as an antimicrobial agent against oral microorganisms.
2010-01-01
Background Carbon dioxide (CO2) plays an important role in the host-seeking process of opportunistic, zoophilic and anthropophilic mosquito species and is, therefore, commonly added to mosquito sampling tools. The African malaria vector Anopheles gambiae sensu stricto is attracted to human volatiles augmented by CO2. This study investigated whether CO2, usually supplied from gas cylinders acquired from commercial industry, could be replaced by CO2 derived from fermenting yeast (yeast-produced CO2). Methods Trapping experiments were conducted in the laboratory, semi-field and field, with An. gambiae s.s. as the target species. MM-X traps were baited with volatiles produced by mixtures of yeast, sugar and water, prepared in 1.5, 5 or 25 L bottles. Catches were compared with traps baited with industrial CO2. The additional effect of human odours was also examined. In the laboratory and semi-field facility dual-choice experiments were conducted. The effect of traps baited with yeast-produced CO2 on the number of mosquitoes entering an African house was studied in the MalariaSphere. Carbon dioxide baited traps, placed outside human dwellings, were also tested in an African village setting. The laboratory and semi-field data were analysed by a χ2-test, the field data by GLM. In addition, CO2 concentrations produced by yeast-sugar solutions were measured over time. Results Traps baited with yeast-produced CO2 caught significantly more mosquitoes than unbaited traps (up to 34 h post mixing the ingredients) and also significantly more than traps baited with industrial CO2, both in the laboratory and semi-field. Adding yeast-produced CO2 to traps baited with human odour significantly increased trap catches. In the MalariaSphere, outdoor traps baited with yeast-produced or industrial CO2 + human odour reduced house entry of mosquitoes with a human host sleeping under a bed net indoors. Anopheles gambiae s.s. was not caught during the field trials. However, traps baited with yeast-produced CO2 caught similar numbers of Anopheles arabiensis as traps baited with industrial CO2. Addition of human odour increased trap catches. Conclusions Yeast-produced CO2 can effectively replace industrial CO2 for sampling of An. gambiae s.s.. This will significantly reduce costs and allow sustainable mass-application of odour-baited devices for mosquito sampling in remote areas. PMID:20973963
Application of proanthocyanidins from peanut skins as a natural yeast inhibitory agent.
Sarnoski, Paul J; Boyer, Renee R; O'Keefe, Sean F
2012-04-01
Proanthocyanidins were extracted from peanut skins and investigated for their antimicrobial activity against Saccharomyces cerevisiae, Zygosaccharomyces bailii, and Zygosaccharomyces bisporus in traditional growth media (Sabouraud Dextrose and Maltose broth) and a simulated apple juice beverage. Peanut skins extracts (PSE) were prepared through a multisolvent extraction procedure. The PSE extended the lag phase growth of the 3 yeasts studied at a concentration of 1 mg/mL and at 10 mg/mL yeast growth was totally inhibited for 120 h. PSE was fractionated by normal phase high performance liquid chromatography and the active components/fractions were determined. Compounds present in the fractions were identified by liquid chromatography-mass spectrometry to determine the compounds responsible for inhibition. Fractions consisting mostly of A-type proanthocyanidin dimers, trimers, and tetramers showed the highest percent inhibition toward the yeasts tested in this study. Both optical density (OD) and standard enumeration plating methods were performed in this study. The OD method led to an overestimation of the inhibitory effects of PSE, the 2 methods agreed in respect to treatment effects but not the severity of the inhibition. There is a growing consumer demand for "fresh like" products containing reduced amounts of chemical preservatives without compromising food safety and quality. Therefore, the goal of this study was to determine if an extract of peanut skins containing flavonoid rich compounds could function as a natural antimicrobial in a model beverage system. Proteins were removed through the process of producing the peanut skin extract, thus it is unlikely to contain peanut allergens. The antimicrobial compounds mentioned in this study were successfully integrated into a model beverage system, and were found to have antimicrobial effect. However, the incorporation of these compounds would likely lead to negative sensory attributes at the concentration needed to achieve an appreciable antimicrobial effect alone. © 2012 Institute of Food Technologists®
Ran, Chao; Huang, Lu; Liu, Zhi; Xu, Li; Yang, Yalin; Tacon, Philippe; Auclair, Eric; Zhou, Zhigang
2015-01-01
Yeast is frequently used as a probiotic in aquaculture with the potential to substitute for antibiotics. In this study, the involvement and extent to which the viability of yeast cells and thus the secretory metabolites released from the yeast contribute to effects of baker's yeast was investigated in Nile tilapia. No yeast, live yeast or heat-inactivated baker's yeast were added to basal diets high in fishmeal and low in soybean (diet A) or low in fishmeal and high in soybean (diet B), which were fed to fish for 8 weeks. Growth, feed utilization, gut microvilli morphology, and expressions of hsp70 and inflammation-related cytokines in the intestine and head kidney were assessed. Intestinal microbiota was investigated using 16S rRNA gene pyrosequencing. Gut alkaline phosphatase (AKP) activity was measured after challenging the fish with Aeromonas hydrophila. Results showed that live yeast significantly improved FBW and WG (P < 0.05), and tended to improve FCR (P = 0.06) of fish compared to the control (no yeast). No significant differences were observed between inactivated yeast and control. Live yeast improved gut microvilli length (P < 0.001) and density (P < 0.05) while inactivated yeast did not. The hsp70 expression level in both the intestine and head kidney of fish was significantly reduced by live yeast (P < 0.05) but not inactivated yeast. Live yeast but not inactivated yeast reduced intestinal expression of tnfα (P < 0.05), tgfβ (P < 0.05 under diet A) and il1β (P = 0.08). Intestinal Lactococcus spp. numbers were enriched by both live and inactivated yeast. Lastly, both live and inactivated yeast reduced the gut AKP activity compared to the control (P < 0.001), indicating protection of the host against infection by A. hydrophila. In conclusion, secretory metabolites did not play major roles in the growth promotion and disease protection effects of yeast. Nevertheless, secretory metabolites were the major contributing factor towards improved gut microvilli morphology, relieved stress status, and reduced intestinal inflammation of Nile tilapia fed diets supplemented with baker's yeast.
de Souza, Rafael Barros; dos Santos, Billy Manoel; de Fátima Rodrigues de Souza, Raquel; da Silva, Paula Katharina Nogueira; Lucena, Brígida Thais Luckwu; de Morais, Marcos Antonio
2012-11-01
This work describes the effects of the presence of the yeast Dekkera bruxellensis and the bacterium Lactobacillus vini on the industrial production of ethanol from sugarcane fermentation. Both contaminants were quantified in industrial samples, and their presence was correlated to a decrease in ethanol concentration and accumulation of sugar. Then, laboratory mixed-cell fermentations were carried out to evaluate the effects of these presumed contaminants on the viability of Saccharomyces cerevisiae and the overall ethanol yield. The results showed that high residual sugar seemed the most significant factor arising from the presence of D. bruxellensis in the industrial process when compared to pure S. cerevisiae cultures. Moreover, when L. vini was added to S. cerevisiae cultures it did not appear to affect the yeast cells by any kind of antagonistic effect under stable fermentations. In addition, when L. vini was added to D. bruxellensis cultures, it showed signs of being able to stimulate the fermentative activity of the yeast cells in a way that led to an increase in the ethanol yield.
Subhaswaraj, Pattnaik; Sowmya, M; Bhavana, V; Dyavaiah, Madhu; Siddhardha, Busi
2017-08-01
From ancient times, plants and plant derived products are exploited as a prominent source of folkloric medicines with tremendous therapeutic potential for an array of health disorders. In the present study, ethanolic leaf extract of Hibiscus sabdariffa and Croton caudatus were evaluated for free radical scavenging activity in Saccharomyces cerevisiae model system. H. sabdariffa and C. caudatus showed tremendous DPPH free radical scavenging potential with an IC 50 value of 184.88 and 305.39 µg/mL respectively at a concentration of 500 µg/mL. The ethanolic leaf extract of H. sabdariffa and C. caudatus also showed significant hydoxyl radical scavenging and total antioxidant activity. Ascorbic acid was used as positive control. The in vitro antioxidant activity was further supported by in vivo studies using radical scavenging mechanism in S. cerevisiae wild type and its isogenic deletion strains sod1∆ and tsa1∆ . The mutant yeast cells substantially scavenged the stress generated by H 2 O 2 when supplemented with ethanolic leaf extract of H. sabdariffa and C. caudatus as evident from spot assays followed by fluorescence assay (DCF-DA) using fluorescence microscopic and intensity studies. H. sabdariffa and C.caudatus significantly neutralize the ROS level in yeast mutants with concomitant decrease in fluorescence intensity as compared to the untreated yeast cells. The results suggested the efficacy of H. sabdariffa and C. caudatus as potent antioxidants in yeast system and thus their futuristic applications in therapeutics.
Jayakody, Lahiru N; Tsuge, Keisuke; Suzuki, Akihiro; Shimoi, Hitoshi; Kitagaki, Hiroshi
2013-01-01
Because of the growing market for sports drinks, prevention of yeast contamination of these beverages is of significant concern. This research was performed to achieve insight into the physiology of yeast growing in sports drinks through a genome-wide approach to prevent microbial spoilage of sports drinks. The genome-wide gene expression profile of Saccharomyces cerevisiae growing in the representative sports drink was investigated. Genes that were relevant to sulphate ion starvation response were upregulated in the yeast cells growing in the drink. These results suggest that yeast cells are suffering from deficiency of extracellular sulphate ions during growth in the sports drink. Indeed, the concentration of sulphate ions was far lower in the sports drink than in a medium that allows the optimal growth of yeast. To prove the starvation of sulphate ions of yeast, several ions were added to the beverage and its effects were investigated. The addition of sulphate ions, but not chloride ions or sodium ions, to the beverage stimulated yeast growth in the beverage in a dose-dependent manner. Moreover, the addition of sulphate ions to the sports drink increased the biosynthesis of sulphur-containing amino acids in yeast cells and hydrogen sulphide in the beverage. These results indicate that sulphate ion concentration should be regulated to prevent microbial spoilage of sports drinks.
Taggiasca extra virgin olive oil colonization by yeasts during the extraction process.
Ciafardini, G; Cioccia, G; Zullo, B A
2017-04-01
The opalescent appearance of the newly produced olive oil is due to the presence of solid particles and microdrops of vegetation water in which the microorganisms from the olives' carposphere are trapped. Present research has demonstrated that the microbiota of the fresh extracted olive oil, produced in the mills, is mainly composed of yeasts and to a lesser extent of molds. The close link between the composition of the microbiota of the olives' carposphere undergoing to processing, and that of the microbiota of the newly produced olive oil, concerns only the yeasts and molds, given that the bacterial component is by and large destroyed mainly in the kneaded paste during the malaxation process. Six physiologically homogenous yeast groups were highlighted in the wash water, kneaded paste and newly produced olive oil from the Taggiasca variety which had been collected in mills located in the Liguria region. The more predominant yeasts of each group belonged to a single species called respectively: Kluyveromyces marxianus, Candida oleophila, Candida diddensiae, Candida norvegica, Wickerhamomyces anomalus and Debaryomyces hansenii. Apart from K. marxianus, which was found only in the wash water, all the other species were found in the wash water and in the kneaded paste as well as in the newly produced olive oil, while in the six-month stored olive oil, was found only one physiologically homogeneous group of yeast represented by the W. anomalus specie. These findings in according to our previous studies carried out on other types of mono varietal olive oils, confirms that the habitat of the Taggiascas' extra virgin olive oil, had a strong selective pressure on the yeast biota, allowing only to a few member of yeast species, contaminating the fresh product, to survive and reproduce in it during storage. Copyright © 2016 Elsevier Ltd. All rights reserved.
Transformations of inorganic mercury by Candida albicans and Saccharomyces cerevisiae
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yannai, S.; Berdicevsky, I.; Duek, L.
1991-01-01
Saccharomyces cerevisiae and Candida albicans were incubated with 0.25, 0.5, or 0.75 {mu}g of Hg (as HgCl{sub 2}) per ml of Nelson's medium in the presence of trace amounts of oxygen at 28{degree}C for 12 days. Two control media were used, one without added Hg and one without yeast inoculum. Yeast cell growth was estimated after 1, 2, 3, and 8 days of incubation. The contents of organomercury in the system and of elemental mercury released from the media and collected in traps were determined at the end of the experiments. The results were as follows: (1) C. albicans wasmore » the more mercury-resistant species, but both yeast species failed to grown in the media containing 0.75 {mu}g of Hg per ml.; (2) The amounts of organomercury produced by the two species were proportional to the amount of HgCl{sub 2} added to the medium. In all cases C. albicans produced considerably larger amounts of methylmercury than S. cerevisiae; (3) The amounts of elemental Hg produced were inversely proportional to the HgCl{sub 2} level added in the case of S. cerevisiae but were all similar in the case of C. albicans;and (4) Neither organomercury nor elemental Hg was produced in any of the control media.« less
Enhanced biotransformation of TCE using plant terpenoids in contaminated groundwater.
Brown, J R-M; Thompson, I P; Paton, G I; Singer, A C
2009-12-01
To examine plant terpenoids as inducers of TCE (trichloroethylene) biotransformation by an indigenous microbial community originating from a plume of TCE-contaminated groundwater. One-litre microcosms of groundwater were spiked with 100 micromol 1(-1) of TCE and amended weekly for 16 weeks with 20 microl 1(-1) of the following plant monoterpenes: linalool, pulegone, R-(+) carvone, S-(-) carvone, farnesol, cumene. Yeast extract-amended and unamended control treatments were also prepared. The addition of R-carvone and S-carvone, linalool and cumene resulted in the biotransformation of upwards of 88% of the TCE, significantly more than the unamendment control (61%). The aforementioned group of terpenes also significantly (P < 0.05) allowed more TCE to be degraded than the remaining two terpenes (farnesol and pulegone), and the yeast extract treatment which biotransformed 74-75% of the TCE. The microbial community profile was monitored by denaturing gradient gel electrophoresis and demonstrated much greater similarities between the microbial communities in terpene-amended treatments than in the yeast extract or unamended controls. TCE biotransformation can be significantly enhanced through the addition of selected plant terpenoids. Plant terpenoid and nutrient supplementation to groundwater might provide an environmentally benign means of enhancing the rate of in situ TCE bioremediation.
Improvement of submerged culture conditions to produce colorants by Penicillium purpurogenum
Santos-Ebinuma, Valéria Carvalho; Roberto, Inês Conceição; Teixeira, Maria Francisca Simas; Pessoa, Adalberto
2014-01-01
Safety issues related to the employment of synthetic colorants in different industrial segments have increased the interest in the production of colorants from natural sources, such as microorganisms. Improved cultivation technologies have allowed the use of microorganisms as an alternative source of natural colorants. The objective of this work was to evaluate the influence of some factors on natural colorants production by a recently isolated from Amazon Forest, Penicillium purpurogenum DPUA 1275 employing statistical tools. To this purpose the following variables: orbital stirring speed, pH, temperature, sucrose and yeast extract concentrations and incubation time were studied through two fractional factorial, one full factorial and a central composite factorial designs. The regression analysis pointed out that sucrose and yeast extract concentrations were the variables that influenced more in colorants production. Under the best conditions (yeast extract concentration around 10 g/L and sucrose concentration of 50 g/L) an increase of 10, 33 and 23% respectively to yellow, orange and red colorants absorbance was achieved. These results show that P. purpurogenum is an alternative colorants producer and the production of these biocompounds can be improved employing statistical tool. PMID:25242965
Leong, Lex E X; Denman, Stuart E; Hugenholtz, Philip; McSweeney, Christopher S
2016-02-01
Synergistetes strain MFA1 is an asaccharolytic ruminal bacterium isolated based on its ability to degrade fluoroacetate, a plant toxin. The amino acid and peptide requirements of the bacterium were investigated under different culturing conditions. The growth of strain MFA1 and its fluoroacetate degradation rate were enhanced by peptide-rich protein hydrolysates (tryptone and yeast extract) compared to casamino acid, an amino acid-rich protein hydrolysate. Complete utilization and preference for arginine, asparagine, glutamate, glycine, and histidine as free amino acids from yeast extract were observed, while the utilization of serine, threonine, and lysine in free form and peptide-bound glutamate was stimulated during growth on fluoroacetate. A predominant peptide in yeast extract preferentially utilized by strain MFA1 was partially characterized by high-liquid performance chromatography-mass spectrometry as a hepta-glutamate oligopeptide. Similar utilization profiles of amino acids were observed between the co-culture of strain MFA1 with Methanobrevibacter smithii without fluoroacetate and pure strain MFA1 culture with fluoroacetate. This suggests that growth of strain MFA1 could be enhanced by a reduction of hydrogen partial pressure as a result of hydrogen removal by a methanogen or reduction of fluoroacetate.
Optimizing pressurized liquid extraction of microbial lipids using the response surface method.
Cescut, J; Severac, E; Molina-Jouve, C; Uribelarrea, J-L
2011-01-21
Response surface methodology (RSM) was used for the determination of optimum extraction parameters to reach maximum lipid extraction yield with yeast. Total lipids were extracted from oleaginous yeast (Rhodotorula glutinis) using pressurized liquid extraction (PLE). The effects of extraction parameters on lipid extraction yield were studied by employing a second-order central composite design. The optimal condition was obtained as three cycles of 15 min at 100°C with a ratio of 144 g of hydromatrix per 100 g of dry cell weight. Different analysis methods were used to compare the optimized PLE method with two conventional methods (Soxhlet and modification of Bligh and Dyer methods) under efficiency, selectivity and reproducibility criteria thanks to gravimetric analysis, GC with flame ionization detector, High Performance Liquid Chromatography linked to Evaporative Light Scattering Detector (HPLC-ELSD) and thin-layer chromatographic analysis. For each sample, the lipid extraction yield with optimized PLE was higher than those obtained with referenced methods (Soxhlet and Bligh and Dyer methods with, respectively, a recovery of 78% and 85% compared to PLE method). Moreover, the use of PLE led to major advantages such as an analysis time reduction by a factor of 10 and solvent quantity reduction by 70%, compared with traditional extraction methods. Copyright © 2010 Elsevier B.V. All rights reserved.
Rapid Methods for the Laboratory Identification of Pathogenic Microorganisms.
1981-09-01
Preliminary results provide strong evidence to show that the fungi, Candida and Cryptococcus , can be raoidly differentiated by a lectin test. SFor Oro...SUMMATION LECTIN-YEAST INTERACTIONS Objective: To find a lectin that selectively agglutinates Cryptococcus neoformans (the etiologic agent of...peanut), Conavalia ensiformis (Con A) and mango extract may potentially be utilized to differentiate Cryptococcus from the other yeasts most commonly
Balsiger, Heather A.; de la Torre, Roberto; Lee, Wen-Yee; Cox, Marc B.
2010-01-01
The assay described here represents an improved yeast bioassay that provides a rapid yet sensitive screening method for EDCs with very little hands-on time and without the need for sample preparation. Traditional receptor-mediated reporter assays in yeast were performed twelve to twenty four hours after ligand addition, used colorimetric substrates, and, in many cases, required high, non-physiological concentrations of ligand. With the advent of new chemiluminescent substrates a ligand-induced signal can be detected within thirty minutes using high picomolar to low nanomolar concentrations of estrogen. As a result of the sensitivity (EC50 for estradiol is ~ 0.7 nM) and the very short assay time (2-4 hours) environmental water samples can typically be assayed directly without sterilization, extraction, and concentration. Thus, these assays represent rapid and sensitive approaches for determining the presence of contaminants in environmental samples. As proof of principle, we directly assayed wastewater influent and effluent taken from a wastewater treatment plant in the El Paso, TX area for the presence of estrogenic activity. The data obtained in the four-hour yeast bioassay directly correlated with GC-mass spectrometry analysis of these same water samples. PMID:20074779
Nor Qhairul Izzreen, M N; Hansen, Se S; Petersen, Mikael A
2016-11-01
The influence of fermentation temperatures (8°C, 16°C, and 32°C) and yeast levels (2%, 4%, and 6% of the flour) on the formation of volatile compounds in the crust of whole meal wheat bread was investigated. The fermentation times were regulated to optimum bread height for each treatment. The volatile compounds were extracted by dynamic headspace extraction and analyzed by gas chromatography-mass spectrometry. The results were evaluated using multivariate data analysis and ANOVA. In all crust samples 28 volatile compounds out of 58 compounds were identified and the other 30 compounds were tentatively identified. Higher fermentation temperatures promoted the formation of Maillard reaction products 3-methyl-1-butanol, pyrazine, 2-ethylpyrazine, 2-ethyl-3-methylpyrazine, 2-vinylpyrazine, 3-hydroxy-2-butanone, 3-(methylsulfanyl)-propanal, and 5-methyl-2-furancarboxaldehyde whereas at lower temperature (8°C) the formation of 2- and 3-methylbutanal was favored. Higher levels of yeast promoted the formation of 3-methyl-1-butanol, 2-methyl-1-propanol and 3-(methylsulfanyl)-propanal, whereas hexanal was promoted in the crust fermented with lower yeast level. Copyright © 2016 Elsevier Ltd. All rights reserved.
Phytate destruction by yeast fermentation in whole wheat meals. Study of high-extraction rate meals.
Reinhold, J G
1975-01-01
Destruction of phytate by yeast fermentation is compared in sponges prepared from Iranian whole wheat meals of different extraction rates. Phytate was destroyed rapidly in whole meals of 75 to 85 and 85 to 90 per cent extraction, but destruction was retarded in those of 95 to 100 per cent extraction. Production of acid-soluble phosphorus kept pace with phytate destruction in the two whole meals of lower extraction rates but was delayed with less-than-expected yield in those of 95 to 100 per cent rate. Unleavened whole meal bread contains little acid-soluble phosphorus. Leavened breads made from whole meals of slightly lower extraction rate average five times as much. Since phytate phosphorus appears to remain unavailable in the small intestine in many circumstances, dependece on unleavened whole meal bread may result in critically low intakes of available phosphorus when other sources are lacking in the diet. It is concluded that replacement of the whole meals of 95 to 100 per cent extraction rate, presently the main staple of the diet of rural Iran, by those of somewhat lower rate is an important preliminary to the introduction of leaven and fermentation into village bread-making methods.
Hashi, Hiroki; Nakamura, Yasuyuki; Ishii, Jun; Kondo, Akihiko
2018-04-01
Neurotensin receptor type 1 (NTSR1), a member of the G-protein-coupled receptor (GPCR) family, is naturally activated by binding of a neurotensin peptide, leading to a variety of physiological effects. The budding yeast Saccharomyces cerevisiae is a proven host organism for assaying the agonistic activation of human GPCRs. Previous studies showed that yeast cells can functionally express human NTSR1 receptor, permitting the detection of neurotensin-promoted signaling using a ZsGreen fluorescent reporter gene. However, the fluorescence intensity (sensitivity) of NTSR1-expressing yeast cells is low compared to that of yeast cells expressing other human GPCRs (e.g., human somatostatin receptors). The present study sought to increase the sensitivity of the NTSR1-expressing yeast for use as a fluorescent biosensor, including modification of the expression of human NTSR1 in yeast. Changes in the transcription, translation, and transport of the receptor are attempted by altering the promoter, consensus Kozak-like sequence, and secretion signal sequences of the NTSR1-encoding gene. The resulting yeast cells exhibited increased sensitivity to exogenously added peptide. The cells are further engineered by using cell-surface display technology to ensure that the agonistic peptides are secreted and tethered to the yeast cell wall, yielding cells with enhanced NTSR1 activation. This yeast biosensor holds promise for the identification of agonists to treat NTSR1-related diseases. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Flores, Jose-Axel; Gschaedler, Anne; Amaya-Delgado, Lorena; Herrera-López, Enrique J; Arellano, Melchor; Arrizon, Javier
2013-10-01
Agave tequilana fructans (ATF) constitute a substrate for bioethanol and tequila industries. As Kluyveromyces marxianus produces specific fructanases for ATF hydrolysis, as well as ethanol, it can perform simultaneous saccharification and fermentation. In this work, fifteen K. marxianus yeasts were evaluated to develop inoculums with fructanase activity on ATF. These inoculums were added to an ATF medium for simultaneous saccharification and fermentation. All the yeasts, showed exo-fructanhydrolase activity with different substrate specificities. The yeast with highest fructanase activity in the inoculums showed the lowest ethanol production level (20 g/l). Five K. marxianus strains were the most suitable for the simultaneous saccharification and fermentation of ATF. The volatile compounds composition was evaluated at the end of fermentation, and a high diversity was observed between yeasts, nevertheless all of them produced high levels of isobutyl alcohol. The simultaneous saccharification and fermentation of ATF with K. marxianus strains has potential for industrial application. Copyright © 2013 Elsevier Ltd. All rights reserved.
Pacheco-Cano, R D; Salcedo-Hernández, R; López-Meza, J E; Bideshi, D K; Barboza-Corona, J E
2018-01-01
The objective of this study was to show whether the edible part of broccoli has antibacterial and antifungal activity against micro-organism of importance in human health and vegetable spoilage, and to test if this effect was partially due to antimicrobial peptides (AMPs). Crude extracts were obtained from florets and stems of broccoli cultivar Avenger and the inhibitory effect was demonstrated against pathogenic bacteria (Bacillus cereus, Staphylococcus xylosus, Staphylococcus aureus, Shigella flexneri, Shigella sonnei, Proteus vulgaris), phytopathogenic fungi (Colletotrichum gloeosporioides, Asperigillus niger) and yeasts (Candida albicans and Rhodotorula sp.). It was shown that samples treated with proteolytic enzymes had a reduction of approximately 60% in antibacterial activity against Staph. xylosus, suggesting that proteinaceous compounds might play a role in the inhibitory effect. Antimicrobial components in crude extracts were thermoresistant and the highest activity was observed under acidic conditions. It was shown that antifungal activity of broccoli's crude extracts might not be attributed to chitinases. Organic broccoli cultivar Avenger has antimicrobial activity against pathogenic bacteria, yeast and phytophatogenic fungi. Data suggest that this effect is partially due to AMPs. Broccoli's crude extracts have activity not only against pathogenic bacteria but also against phytophatogenic fungi of importance in agriculture. We suggest for first time that the inhibitory effect is probably due to AMPs. © 2017 The Society for Applied Microbiology.
Legionella oakridgensis: unusual new species isolated from cooling tower water
DOE Office of Scientific and Technical Information (OSTI.GOV)
Orrison, L.H.; Cherry, W.B.; Tyndall, R.L.
1983-02-01
A new species of Legionella represented by 10 strains isolated from industrial cooling towers is described. Legionella oakridgensis differed genetically from the other seven species of Legionella in DNA hybridization studies and differed serologically in direct fluorescent-antibody tests. The new species, unlike all other species except L. jordanis, did not require added L-cysteine for growth in serial transfer on charcoal-yeast extract agar. L. oakridgensis, as well as three other species tested, required L-cysteine for primary isolation from animal tissues. L. oakridgensis was the only species of Legionella that failed to produce alkaline phosphatase at pH 8.5. In all other respects,more » it resembled other species of Legionella, including having a high content of branched-chain cellular fatty acids and being pathogenic for guinea pigs. These bacteria have not yet been associated with human disease, but they are potential causes of legionellosis.« less
2017-01-01
We characterize the diversity of nectar-living yeasts of a tropical host plant community at different hierarchical sampling levels, measure the associations between yeasts and nectariferous plants, and measure the effect of yeasts on nectar traits. Using a series of hierarchically nested sampling units, we extracted nectar from an assemblage of host plants that were representative of the diversity of life forms, flower shapes, and pollinator types in the tropical area of Yucatan, Mexico. Yeasts were isolated from single nectar samples; their DNA was identified, the yeast cell density was estimated, and the sugar composition and concentration of nectar were quantified using HPLC. In contrast to previous studies from temperate regions, the diversity of nectar-living yeasts in the plant community was characterized by a relatively high number of equally common species with low dominance. Analyses predict highly diverse nectar yeast communities in a relatively narrow range of tropical vegetation, suggesting that the diversity of yeasts will increase as the number of sampling units increases at the level of the species, genera, and botanical families of the hosts. Significant associations between specific yeast species and host plants were also detected; the interaction between yeasts and host plants impacted the effect of yeast cell density on nectar sugars. This study provides an overall picture of the diversity of nectar-living yeasts in tropical host plants and suggests that the key factor that affects the community-wide patterns of nectar traits is not nectar chemistry, but rather the type of yeasts interacting with host plants. PMID:28717591
Potential application of Candida melibiosica in biofuel cells.
Hubenova, Yolina; Mitov, Mario
2010-04-01
Various prokaryote species have been widely studied for microbial fuel cell (MFC) application. However, the information about yeast utilization into biofuel cells is still scanty. The aim of this investigation is to verify if Candida melibiosica 2491, a yeast strain, possessing high phytase activity, could be applied as a biocatalyst in a yeast biofuel cell. The microbiological requirements were coupled with the electrochemical ones tracing main biochemical pathway metabolites such as different carbohydrate and inorganic phosphates and their assimilation with time. The obtained results show that from the three carbohydrates investigated - glucose, fructose and sucrose, fructose is the most suitable for the yeast cultivation. The presence of yeast extract and peptone improves the performance into the biofuel cell. The relationship between the yeast cell amount and the biofuel cell characteristics was determined. Analyses showed that electricity was generated by the yeast culture even in the absence of an artificial mediator. The addition of methylene blue at concentrations higher than 0.1 mM improves the current and power density output. The obtained experimental results proved that C. melibiosica 2491 belongs to the electrogenic strains. 2009 Elsevier B.V. All rights reserved.
USDA-ARS?s Scientific Manuscript database
A synthetic Candida antarctica lipase B (CALB) gene open reading frame (ORF) for expression in yeast was produced using an automated PCR assembly and DNA purification protocol on an integrated robotic workcell. The lycotoxin-1 (Lyt-1) C3 variant gene ORF was added in-frame with the CALB ORF to pote...
Tadros, Susan
2017-01-01
Background. Allergy to beer is often due to specific proteins in barley and sometimes to lipid transfer protein. Allergy to wine is frequently due to a sensitivity to grape proteins. We present a rare case of allergy to beer, wine, and cider resulting from IgE reactivity to yeasts and moulds which also explained the patient's additional sensitivity to yeast extracts and blue cheese. Case Presentation. The patient's symptoms included throat and facial itching accompanied by mild wheeze and severe urticaria. Diagnosis of allergy to yeast was confirmed by specific IgE testing as well as that to relevant foods and beverages. The patient's ongoing management included advice to avoid beer, wine, and other food groups containing specific yeasts, in addition to carrying a short acting nonsedating antihistamine as well as an adrenaline autoinjector. Conclusions. Cases of yeast allergy are extremely rare in medical literature but may be underrecognised and should be considered in patients presenting with reactions to alcoholic beverages and other yeast-containing products. PMID:28396809
Kogure, H; Kawasaki, S; Nakajima, K; Sakai, N; Futase, K; Inatsu, Y; Bari, M L; Isshiki, K; Kawamoto, S
2005-01-01
A novel microbial sensor containing a commercial baker's yeast with a high freeze tolerance was developed for visibly detecting inappropriate temperature control of food. When the yeast cells fermented glucose, the resulting gas production triggered the microbial sensor. The biosensor was a simple, small bag containing a solution of yeast cells, yeast extract, glucose, and glycerol sealed up with multilayer transparent film with barriers against oxygen and humidity. Fine adjustment of gas productivity in the biosensor at low temperatures was achieved by changing either or both concentrations of glucose and yeast cells. Moreover, the amount of time that food was exposed to inappropriate temperatures could be deduced by the amount of gas produced in the biosensor. The biosensor was stable without any functional loss for up to 1 week in frozen storage. The biosensor could offer a useful tool for securing food safety by maintaining low-temperature control in every stage from farm to fork, including during transportation, in the store, and at home.
Beer, Cider, and Wine Allergy.
Bansal, Rhea A; Tadros, Susan; Bansal, Amolak S
2017-01-01
Background . Allergy to beer is often due to specific proteins in barley and sometimes to lipid transfer protein. Allergy to wine is frequently due to a sensitivity to grape proteins. We present a rare case of allergy to beer, wine, and cider resulting from IgE reactivity to yeasts and moulds which also explained the patient's additional sensitivity to yeast extracts and blue cheese. Case Presentation . The patient's symptoms included throat and facial itching accompanied by mild wheeze and severe urticaria. Diagnosis of allergy to yeast was confirmed by specific IgE testing as well as that to relevant foods and beverages. The patient's ongoing management included advice to avoid beer, wine, and other food groups containing specific yeasts, in addition to carrying a short acting nonsedating antihistamine as well as an adrenaline autoinjector. Conclusions . Cases of yeast allergy are extremely rare in medical literature but may be underrecognised and should be considered in patients presenting with reactions to alcoholic beverages and other yeast-containing products.
Analyzing and Understanding Lipids of Yeast: A Challenging Endeavor.
Kohlwein, Sepp D
2017-05-01
Lipids are essential biomolecules with diverse biological functions, ranging from building blocks for all biological membranes to energy substrates, signaling molecules, and protein modifiers. Despite advances in lipid analytics by mass spectrometry, the extraction and quantitative analysis of the diverse classes of lipids are still an experimental challenge. Yeast is a model organism that provides several advantages for studying lipid metabolism, because most biosynthetic pathways are well described and a great deal of information is available on the regulatory mechanisms that control lipid homeostasis. In addition, the composition of yeast lipids is much less complex than that of mammalian lipids, making yeast an excellent reference system for studying lipid-associated cell functions. © 2017 Cold Spring Harbor Laboratory Press.
Technical note: use of internal transcribed spacer for ruminal yeast identification in dairy cows.
Vargas-Bello-Pérez, E; Cancino-Padilla, N; Romero, J
2016-12-01
Molecular techniques are important tools for microbiological studies in different habitats, and the internal transcribed spacer (ITS) has been proved to be useful for analyzing fungal diversity. The aim of this study was to use the ITS region to generate ruminal yeast profile and to identify ruminal yeast. DNA from ruminal digesta was extracted to amplify the ribosomal ITS region. The profile from the PCR products was visualized and the excised bands from the profile were identified as the genera Millerozyma, Pichia, Rhizomucor and Hyphopichia. Overall, the ITS resulted to be a simple, fast and sensitive approach that allowed profiling and identification of ruminal yeast that have not been previously described (Millerozyma and Hyphopichia) in the rumen microbial community.
Theel, Elitza S.; Schmitt, Bryan H.; Hall, Leslie; Cunningham, Scott A.; Walchak, Robert C.; Patel, Robin
2012-01-01
An on-plate testing method using formic acid was evaluated on the Bruker Biotyper matrix-assisted laser desorption ionization–time of flight (MALDI-TOF) mass spectrometry system using 90 yeast and 78 Corynebacterium species isolates, and 95.6 and 81.1% of yeast and 96.1 and 92.3% of Corynebacterium isolates were correctly identified to the genus and species levels, respectively. The on-plate method using formic acid yielded identification percentages similar to those for the conventional but more laborious tube-based extraction. PMID:22760034
Theel, Elitza S; Schmitt, Bryan H; Hall, Leslie; Cunningham, Scott A; Walchak, Robert C; Patel, Robin; Wengenack, Nancy L
2012-09-01
An on-plate testing method using formic acid was evaluated on the Bruker Biotyper matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry system using 90 yeast and 78 Corynebacterium species isolates, and 95.6 and 81.1% of yeast and 96.1 and 92.3% of Corynebacterium isolates were correctly identified to the genus and species levels, respectively. The on-plate method using formic acid yielded identification percentages similar to those for the conventional but more laborious tube-based extraction.
Bruce S. Dien; Junyong Zhu; Patricia J. Slininger; Cletus P. Kurtzman; Bryan R. Moser; Patricia J. O' Bryan; Roland Gleisner; Michael A. Cotta
2016-01-01
Douglas fir is the dominant commercial tree grown in the United States. In this study Douglas fir residue was converted to single cell oils (SCO) using oleaginous yeasts. Monosaccharides were extracted from the woody biomass by pretreating with sulfite and dilute sulfuric acid (SPORL process) and hydrolyzing using commercial cellulases. A new SPORL process that uses pH...
Two novel species of Aspergillus section Nigri from indoor air
USDA-ARS?s Scientific Manuscript database
Aspergillus collinsii, Aspergillus floridensis, and Aspergillus trinidadensis are described as novel uniseriate species of Aspergillus section Nigri isolated from air samples. To describe the species we used phenotypes from 7-d Czapek yeast extract agar culture (CYA) and malt extract agar culture (M...
Evaluation of the anti-pyretic potential of Orthosiphon stamineus Benth standardized extract.
Yam, M F; Ang, L F; Basir, R; Salman, I M; Ameer, O Z; Asmawi, M Z
2009-02-01
The anti-pyretic activity of a standardized methanol/water (50/50) extract of Orthosiphon stamineus Benth. (SEOS) was investigated for its effect on normal body temperature and yeast-induced pyrexia in Sprague Dawley (SD) rats. The SEOS showed no effect on normal body temperature. Doses of 500 and 1000 mg/kg body weight of SEOS significantly reduced the yeast-induced elevation in body temperature. This effect persisted up to 4 h following the administration of the extract. The anti-pyretic effect of SEOS was comparable with that of paracetamol (acetaminophen in U.S) (150 mg/kg p.o.), a standard anti-pyretic agent. HPLC study revealed that rosmarinic acid, sinensetin, eupatorin and tetramethoxyflavone were present in SEOS in the amounts of 7.58%, 0.2%, 0.34% and 0.24% respectively. The LD(50) of the extract in rats was higher than 5000 mg/kg body weight. Therefore, the present study ascertained that SEOS possesses a significant anti-pyretic activity.
Mekoue Nguela, J; Poncet-Legrand, C; Sieczkowski, N; Vernhet, A
2016-11-01
At present, there is a great interest in enology for yeast derived products to replace aging on lees in winemaking or as an alternative for wine fining. These are yeast protein extracts (YPE), cell walls and mannoproteins. Our aim was to further understand the mechanisms that drive interactions between these components and red wine polyphenols. To this end, interactions between grape skin tannins or wine polyphenols or tannins and a YPE, a mannoprotein fraction and a β-glucan were monitored by binding experiments, ITC and DLS. Depending on the tannin structure, a different affinity between the polyphenols and the YPE was observed, as well as differences in the stability of the aggregates. This was attributed to the mean degree of polymerization of tannins in the polyphenol fractions and to chemical changes that occur during winemaking. Much lower affinities were found between polyphenols and polysaccharides, with different behaviors between mannoproteins and β-glucans. Copyright © 2016 Elsevier Ltd. All rights reserved.
[Evaluation of mass spectrometry: MALDI-TOF MS for fast and reliable yeast identification].
Relloso, María S; Nievas, Jimena; Fares Taie, Santiago; Farquharson, Victoria; Mujica, María T; Romano, Vanesa; Zarate, Mariela S; Smayevsky, Jorgelina
2015-01-01
The matrix-assisted laser desorption/ionization time-of-flight mass spectrometry technique known as MALDI-TOF MS is a tool used for the identification of clinical pathogens by generating a protein spectrum that is unique for a given species. In this study we assessed the identification of clinical yeast isolates by MALDI-TOF MS in a university hospital from Argentina and compared two procedures for protein extraction: a rapid method and a procedure based on the manufacturer's recommendations. A short protein extraction procedure was applied in 100 isolates and the rate of correct identification at genus and species level was 98.0%. In addition, we analyzed 201 isolates, previously identified by conventional methods, using the methodology recommended by the manufacturer and there was 95.38% coincidence in the identification at species level. MALDI TOF MS showed to be a fast, simple and reliable tool for yeast identification. Copyright © 2014 Asociación Argentina de Microbiología. Publicado por Elsevier España, S.L.U. All rights reserved.
Food-related applications of Yarrowia lipolytica.
Zinjarde, Smita S
2014-01-01
Yarrowia lipolytica is a non-pathogenic generally regarded as safe yeast. It displays unique physiological as well as biochemical properties that are relevant in food-related applications. Strains naturally associated with meat and dairy products contribute towards specific textures and flavours. On some occasions they cause food spoilage. They produce food-additives such as aroma compounds, organic acids, polyalcohols, emulsifiers and surfactants. The yeast biomass has been projected as single cell oil and single cell protein. Y. lipolytica degrades or upgrades different types of food wastes and in some cases, value-added products have also been obtained. The yeast is thus involved in the manufacture of food stuffs, making of food ingredients, generation of biomass that can be used as food or feed and in the effective treatment of food wastes. On account of all these features, this versatile yeast is of considerable significance in food-related applications. Copyright © 2013 Elsevier Ltd. All rights reserved.
Ramanavicius, Arunas; Andriukonis, Eivydas; Stirke, Arunas; Mikoliunaite, Lina; Balevicius, Zigmas; Ramanaviciene, Almira
2016-02-01
Yeast cells are often used as a model system in various experiments. Moreover, due to their high metabolic activity, yeast cells have a potential to be applied as elements in the design of biofuel cells and biosensors. However a wider application of yeast cells in electrochemical systems is limited due to high electric resistance of their cell wall. In order to reduce this problem we have polymerized conducting polymer polypyrrole (Ppy) directly in the cell wall and/or within periplasmic membrane. In this research the formation of Ppy was induced by [Fe(CN)6](3-)ions, which were generated from K4[Fe(CN)6], which was initially added to polymerization solution. The redox process was catalyzed by oxido-reductases, which are present in the plasma membrane of yeast cells. The formation of Ppy was confirmed by spectrophotometry and atomic force microscopy. It was confirmed that the conducting polymer polypyrrole was formed within periplasmic space and/or within the cell wall of yeast cells, which were incubated in solution containing pyrrole, glucose and [Fe(CN)6](4-). After 24h drying at room temperature we have observed that Ppy-modified yeast cell walls retained their initial spherical form. In contrast to Ppy-modified cells, the walls of unmodified yeast have wrinkled after 24h drying. The viability of yeast cells in the presence of different pyrrole concentrations has been evaluated. Copyright © 2015 Elsevier Inc. All rights reserved.
Phenotypic evaluation and characterization of 21 industrial Saccharomyces cerevisiae yeast strains.
Kong, In Iok; Turner, Timothy Lee; Kim, Heejin; Kim, Soo Rin; Jin, Yong-Su
2018-02-01
Microorganisms have been studied and used extensively to produce value-added fuels and chemicals. Yeasts, specifically Saccharomyces cerevisiae, receive industrial attention because of their well-known ability to ferment glucose and produce ethanol. Thousands of natural or genetically modified S. cerevisiae have been found in industrial environments for various purposes. These industrial strains are isolated from industrial fermentation sites, and they are considered as potential host strains for superior fermentation processes. In many cases, industrial yeast strains have higher thermotolerance, increased resistances towards fermentation inhibitors and increased glucose fermentation rates under anaerobic conditions when compared with laboratory yeast strains. Despite the advantages of industrial strains, they are often not well characterized. Through screening and phenotypic characterization of commercially available industrial yeast strains, industrial fermentation processes requiring specific environmental conditions may be able to select an ideal starting yeast strain to be further engineered. Here, we have characterized and compared 21 industrial S. cerevisiae strains under multiple conditions, including their tolerance to varying pH conditions, resistance to fermentation inhibitors, sporulation efficiency and ability to ferment lignocellulosic sugars. These data may be useful for the selection of a parental strain for specific biotechnological applications of engineered yeast. © FEMS 2018. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Yeast diversity of sourdoughs and associated metabolic properties and functionalities.
De Vuyst, Luc; Harth, Henning; Van Kerrebroeck, Simon; Leroy, Frédéric
2016-12-19
Together with acidifying lactic acid bacteria, yeasts play a key role in the production process of sourdough, where they are either naturally present or added as a starter culture. Worldwide, a diversity of yeast species is encountered, with Saccharomyces cerevisiae, Candida humilis, Kazachstania exigua, Pichia kudriavzevii, Wickerhamomyces anomalus, and Torulaspora delbrueckii among the most common ones. Sourdough-adapted yeasts are able to withstand the stress conditions encountered during their growth, including nutrient starvation as well as the effects of acidic, oxidative, thermal, and osmotic stresses. From a technological point of view, their metabolism primarily contributes to the leavening and flavour of sourdough products. Besides ethanol and carbon dioxide, yeasts can produce metabolites that specifically affect flavour, such as organic acids, diacetyl, higher alcohols from branched-chain amino acids, and esters derived thereof. Additionally, several yeast strains possess functional properties that can potentially lead to nutritional and safety advantages. These properties encompass the production of vitamins, an improvement of the bioavailability of phenolic compounds, the dephosphorylation of phytic acid, the presence of probiotic potential, and the inhibition of fungi and their mycotoxin production. Strains of diverse species are new candidate functional starter cultures, offering opportunities beyond the conventional use of baker's yeast. Copyright © 2016 Elsevier B.V. All rights reserved.
Medkour, Younes; Dakik, Paméla; McAuley, Mélissa; Mohammad, Karamat; Mitrofanova, Darya
2017-01-01
The functional state of mitochondria is vital to cellular and organismal aging in eukaryotes across phyla. Studies in the yeast Saccharomyces cerevisiae have provided evidence that age-related changes in some aspects of mitochondrial functionality can create certain molecular signals. These signals can then define the rate of cellular aging by altering unidirectional and bidirectional communications between mitochondria and other organelles. Several aspects of mitochondrial functionality are known to impact the replicative and/or chronological modes of yeast aging. They include mitochondrial electron transport, membrane potential, reactive oxygen species, and protein synthesis and proteostasis, as well as mitochondrial synthesis of iron-sulfur clusters, amino acids, and NADPH. Our recent findings have revealed that the composition of mitochondrial membrane lipids is one of the key aspects of mitochondrial functionality affecting yeast chronological aging. We demonstrated that exogenously added lithocholic bile acid can delay chronological aging in yeast because it elicits specific changes in mitochondrial membrane lipids. These changes allow mitochondria to operate as signaling platforms that delay yeast chronological aging by orchestrating an institution and maintenance of a distinct cellular pattern. In this review, we discuss molecular and cellular mechanisms underlying the essential role of mitochondrial membrane lipids in yeast chronological aging. PMID:28593023
Liu, Zhi; Xu, Li; Yang, Yalin; Tacon, Philippe; Auclair, Eric; Zhou, Zhigang
2015-01-01
Yeast is frequently used as a probiotic in aquaculture with the potential to substitute for antibiotics. In this study, the involvement and extent to which the viability of yeast cells and thus the secretory metabolites released from the yeast contribute to effects of baker’s yeast was investigated in Nile tilapia. No yeast, live yeast or heat-inactivated baker’s yeast were added to basal diets high in fishmeal and low in soybean (diet A) or low in fishmeal and high in soybean (diet B), which were fed to fish for 8 weeks. Growth, feed utilization, gut microvilli morphology, and expressions of hsp70 and inflammation-related cytokines in the intestine and head kidney were assessed. Intestinal microbiota was investigated using 16S rRNA gene pyrosequencing. Gut alkaline phosphatase (AKP) activity was measured after challenging the fish with Aeromonas hydrophila. Results showed that live yeast significantly improved FBW and WG (P < 0.05), and tended to improve FCR (P = 0.06) of fish compared to the control (no yeast). No significant differences were observed between inactivated yeast and control. Live yeast improved gut microvilli length (P < 0.001) and density (P < 0.05) while inactivated yeast did not. The hsp70 expression level in both the intestine and head kidney of fish was significantly reduced by live yeast (P < 0.05) but not inactivated yeast. Live yeast but not inactivated yeast reduced intestinal expression of tnfα (P < 0.05), tgfβ (P < 0.05 under diet A) and il1β (P = 0.08). Intestinal Lactococcus spp. numbers were enriched by both live and inactivated yeast. Lastly, both live and inactivated yeast reduced the gut AKP activity compared to the control (P < 0.001), indicating protection of the host against infection by A. hydrophila. In conclusion, secretory metabolites did not play major roles in the growth promotion and disease protection effects of yeast. Nevertheless, secretory metabolites were the major contributing factor towards improved gut microvilli morphology, relieved stress status, and reduced intestinal inflammation of Nile tilapia fed diets supplemented with baker’s yeast. PMID:26696403
Bacillus stearothermophilus sporulation response to different composition media.
Penna, T C; Machoshvili, I A; Taqueda, M E; Ferraz, C A
1998-01-01
To evaluate the effectiveness of 11 commonly used ingredients to improve Bacillus stearothermophilus ATCC 7953 sporulation, with high spore yields in a short period of incubation, 32 composition media were set up by a fractional factorial 2IV11-6 design at two levels: D-glucose (0.018-0.25%), L-glutamic acid (0.040-0.10%), yeast extract (0.050-0.40%), peptone (0.30-0.50%), sodium chloride (0.001-1.0%), magnesium sulfate (0.001-0.20%), ammonium phosphate (0.010-0.035%), potassium phosphate monobasic (0.050-0.25%), calcium chloride (0.001-0.05%), ferrous sulfate (0.0003-0.002%), manganese sulfate (0.001-0.50%). The largest variation on Log10 CFU response took place due to sodium chloride main effect, by changing it from low to high levels. Magnesium sulfate, calcium chloride, and ferrous sulfate were split and exerted no detectable main effect influence on sporulation. Setting up two 16 runs for sodium chloride effect, in each of which the remainder levels were kept constant, other components contribution was studied. At low sodium chloride, best average 7.25 Log10 CFU yielded by fastening yeast extract and peptone at high level, and remainders at low level. Considering high level of sodium chloride, peptone, yeast extract and ammonium phosphate kept at high level and remainders at low level confirmed the best sporulation yield. Adjusted models evidenced a strong influence of joint yeast/peptone effect, associated to ammonium phosphate contributing positively. The reduced incubation period from 15 days to 3-6 days at 62 degrees C was attained for all 32 experimental runs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barnhart, Elliott P.; Davis, Katherine J.; Varonka, Matthew
Many coal beds contain microbial communities that can convert coal to natural gas (coalbed methane). Native microorganisms were obtained from Powder River Basin (PRB) coal seams with a diffusive microbial sampler placed downhole and used as an inoculum for enrichments with different nutrients to investigate microbially-enhanced coalbed methane production (MECoM). Coal-dependent methanogenesis more than doubled when yeast extract (YE) and several less complex components (proteins and amino acids) were added to the laboratory microcosms. Stimulated coal-dependent methanogenesis with peptone was 86% of that with YE while glutamate-stimulated activity was 65% of that with YE, and a vitamin mix had onlymore » 33% of the YE stimulated activity. For field application of MECoM, there is interest in identifying cost-effective alternatives to YE and other expensive nutrients. In laboratory studies, adding algal extract (AE) with lipids removed stimulated coal-dependent methanogenesis and the activity was 60% of that with YE at 27 d and almost 90% of YE activity at 1406 d. Analysis of British Thermal Unit (BTU) content of coal (a measure of potential energy yield) from long-term incubations indicated > 99.5% of BTU content remained after coalbed methane (CBM) stimulation with either AE or YE. Thus, the coal resource remains largely unchanged following stimulated microbial methane production. Algal CBM stimulation could lead to technologies that utilize coupled biological systems (photosynthesis and methane production) that sustainably enhance CBM production and generate algal biofuels while also sequestering carbon dioxide (CO 2).« less
Barnhart, Elliott P.; Davis, Katherine J.; Varonka, Matthew; ...
2017-01-05
Many coal beds contain microbial communities that can convert coal to natural gas (coalbed methane). Native microorganisms were obtained from Powder River Basin (PRB) coal seams with a diffusive microbial sampler placed downhole and used as an inoculum for enrichments with different nutrients to investigate microbially-enhanced coalbed methane production (MECoM). Coal-dependent methanogenesis more than doubled when yeast extract (YE) and several less complex components (proteins and amino acids) were added to the laboratory microcosms. Stimulated coal-dependent methanogenesis with peptone was 86% of that with YE while glutamate-stimulated activity was 65% of that with YE, and a vitamin mix had onlymore » 33% of the YE stimulated activity. For field application of MECoM, there is interest in identifying cost-effective alternatives to YE and other expensive nutrients. In laboratory studies, adding algal extract (AE) with lipids removed stimulated coal-dependent methanogenesis and the activity was 60% of that with YE at 27 d and almost 90% of YE activity at 1406 d. Analysis of British Thermal Unit (BTU) content of coal (a measure of potential energy yield) from long-term incubations indicated > 99.5% of BTU content remained after coalbed methane (CBM) stimulation with either AE or YE. Thus, the coal resource remains largely unchanged following stimulated microbial methane production. Algal CBM stimulation could lead to technologies that utilize coupled biological systems (photosynthesis and methane production) that sustainably enhance CBM production and generate algal biofuels while also sequestering carbon dioxide (CO 2).« less
NASA Astrophysics Data System (ADS)
Shalini, S.; Balasundaraprabhu, R.; Satish Kumar, T.; Sivakumaran, K.; Kannan, M. D.
2018-05-01
TiO2 nanostructures with two different dopants, sodium and yeast have been successfully synthesized by hydrothermal method. Doping sodium is found to extend the absorbance of TiO2 into the visible region as well as it acts as mordant in fixing and improving the absorption of dye. Yeast, as a dopant, can help in absorption of more anthocyanins from the natural dye extract by TiO2 and also aids in retaining the colour of the dye and increases the stability of the dye at varying pH. Anthocyanins are the major class of pigment present in the newly addressed maroon, velvety and trumpet shaped flower "Kigelia Africana". X-ray diffraction analysis revealed the formation of rutile phase for all the samples. Field Emission Scanning Electron microscopy images revealed the formation of nanorods and nanoflowers with change in dopant as well as their concentration. The photoelectric conversion efficiency of DSSC with undoped TiO2 photoelectrode is 0.87% and DSSC with 6% Na doped TiO2 photoelectrode is 1.56%. The efficiency of DSSC with 6% Na+6% yeast doped TiO2 photoelectrode is found to increase from 2.09% (DSSC with 6% Na+4% yeast doped TiO2 photoelectrode) to 2.31% on varying the dopant concentration. Doping is also found to increase the dye absorption and superior charge transport efficiency which in turn helps to improve the performance of DSSC.
Oropharyngeal candidiasis in HIV-infected patients under treatment with protease inhibitors.
Migliorati, Cesar Augusto; Birman, Esther Goldenberg; Cury, Arlete Emily
2004-09-01
Oropharyngeal candidiasis decreased when protease inhibitors were included with other antiretrovirals to treat HIV infection. We tested oral yeast isolates of Brazilian HIV-infected individuals receiving antiretroviral therapy for protease secretion and susceptibility to ritonavir and some antifungals. We collected oral samples and identified yeasts from 19 HIV-infected patients receiving highly active antiretroviral therapy (HAART) and suspected of having oral candidiasis. Ritonavir and its excipients' effects on the isolated yeasts were tested for protease secretion by Rüchel's technique. The yeasts' susceptibility to amphotericin B (AnB), fluorocitosine (5FC), fluconazole (FZL), ketoconazole (KZL), and itraconazole (IZL) was determined by E-test (AB Biodisk). Chi-squared test determined the statistical differences. Twenty-five different positive isolates were obtained. Sixty-eight percent were C. albicans. Other isolates included C. famata (16%), C. glabrata (4%), C. tropicalis (4%), T. capitatum (4%), and 1 isolate not identified. High protease secretion was observed for most of the isolates (20/25). Ritonavir only altered enzyme secretion in 6/20 of the protease-secreting isolates. All isolates were highly sensitive to both AnB and 5FC. Antifungal activity did not change when ritonavir was added to the culture media. Some isolates were highly resistant to studied antifungals (52.2% KZL, 30.4% FZL, and 26% IZL). Resistance significantly decreased when ritonavir was added to the medium with KZL and IZL (P <.5 by chi-squared). A trend to decreased resistance was also observed with FZL but the results were not statistically significant. Candida continues to be the most prevalent fungus in the oral cavity. Although oral candidal isolates secrete protease, ritonavir does not inhibit all protease-secreting oral yeast isolates. There seems to be a synergistic effect between ritonavir and oral antifungals against fungal resistance.
Daenen, L; Saison, D; Sterckx, F; Delvaux, F R; Verachtert, H; Derdelinckx, G
2008-02-01
The aim of this study was to select and examine Saccharomyces and Brettanomyces brewing yeasts for hydrolase activity towards glycosidically bound volatile compounds. A screening for glucoside hydrolase activity of 58 brewing yeasts belonging to the genera Saccharomyces and Brettanomyces was performed. The studied Saccharomyces brewing yeasts did not show 1,4-beta-glucosidase activity, but a strain dependent beta-glucanase activity was observed. Some Brettanomyces species did show 1,4-beta-glucosidase activity. The highest constitutive activity was found in Brettanomyces custersii. For the most interesting strains the substrate specificity was studied and their activity was evaluated in fermentation experiments with added hop glycosides. Fermentations with Br. custersii led to the highest release of aglycones. Pronounced exo-beta-glucanase activity in Saccharomyces brewing yeasts leads to a higher release of certain aglycones. Certain Brettanomyces brewing yeasts, however, are more interesting for hydrolysis of glycosidically bound volatiles of hops. The release of flavour active compounds from hop glycosides opens perspectives for the bioflavouring and product diversification of beverages like beer. The release can be enhanced by using Saccharomyces strains with high exo-beta-glucanase activity. Higher activities can be found in Brettanomyces species with beta-glucosidase activity.
Sagdic, Osman; Ozturk, Ismet; Yilmaz, Mustafa Tahsin; Yetim, Hasan
2011-09-01
Grape pomace extracts were obtained from 5 different grape varieties grown in Turkey. The extracts were concentrated to obtain crude extracts; and incorporated into beef patties at 0% (Control), 1%, 2%, 5%, and 10% concentrations to test their antimicrobial effects in different storage periods (first, 12, 24, and 48 h). The numbers of microorganism were generally decreased by the extract concentration during the storage period. All the microorganisms tested were inhibited by the extract concentration of 10% in all the storage periods. Furthermore, the foodborne pathogens including Enterobacteriaceae and coliform bacteria, and the spoilage microorganisms including yeasts and moulds and lipolytic bacteria were also inhibited by 5% of Emir, Gamay, and Kalecik Karasi varieties in beef patties. Considering the results, the extracts of grape pomaces might be a good choice in the microbial shelf life extension of the food products as well as inhibiting the food pathogens as the case of beef patties. Grape pomace consists of seeds, skins, and stems, and an important by-product that is well known to be the rich source of phenolic compounds, both flavonoids and non-flavonoids. These substances have considerable beneficial effects on human health. The use of natural antimicrobial compounds, like plant extracts of herbs and spices for the preservation of foods has been very popular issue because of their antimicrobial activity. Therefore, grape pomace should be added into some food formulations to benefit from their protective effects. In this respect, this study reports the effect of addition of grape pomace extracts obtained from different grape varieties on microbial quality of beef patty. The results obtained in this study may be useful for food industry, which has recently tended to use natural antimicrobial sources in place of synthetic preservatives to prevent microbial spoilage. © 2011 Institute of Food Technologists®
High power density yeast catalyzed microbial fuel cells
NASA Astrophysics Data System (ADS)
Ganguli, Rahul
Microbial fuel cells leverage whole cell biocatalysis to convert the energy stored in energy-rich renewable biomolecules such as sugar, directly to electrical energy at high efficiencies. Advantages of the process include ambient temperature operation, operation in natural streams such as wastewater without the need to clean electrodes, minimal balance-of-plant requirements compared to conventional fuel cells, and environmentally friendly operation. These make the technology very attractive as portable power sources and waste-to-energy converters. The principal problem facing the technology is the low power densities compared to other conventional portable power sources such as batteries and traditional fuel cells. In this work we examined the yeast catalyzed microbial fuel cell and developed methods to increase the power density from such fuel cells. A combination of cyclic voltammetry and optical absorption measurements were used to establish significant adsorption of electron mediators by the microbes. Mediator adsorption was demonstrated to be an important limitation in achieving high power densities in yeast-catalyzed microbial fuel cells. Specifically, the power densities are low for the length of time mediator adsorption continues to occur. Once the mediator adsorption stops, the power densities increase. Rotating disk chronoamperometry was used to extract reaction rate information, and a simple kinetic expression was developed for the current observed in the anodic half-cell. Since the rate expression showed that the current was directly related to microbe concentration close to the electrode, methods to increase cell mass attached to the anode was investigated. Electrically biased electrodes were demonstrated to develop biofilm-like layers of the Baker's yeast with a high concentration of cells directly connected to the electrode. The increased cell mass did increase the power density 2 times compared to a non biofilm fuel cell, but the power density increase was shown to quickly saturate with cell mass attached on the electrode. Based on recent modelling data that suggested that the electrode currents might be limited by the poor electrical conductivity of the anode, the power density versus electrical conductivity of a yeast-immobilized anode was investigated. Introduction of high aspect ratio carbon fiber filaments to the immobilization matrix increased the electrical conductivity of the anode. Although a higher electrical conductivity clearly led to an increase in power densities, it was shown that the principal limitation to power density increase was coming from proton transfer limitations in the immobilized anode. Partial overcoming of the gradients lead a power density of ca. 250 microW cm-2, which is the highest reported for yeast powered MFCs. A yeast-catalyzed microbial fuel cell was investigated as a power source for low power sensors using raw tree sap. It was shown that yeast can efficiently utilize the sucrose present in the raw tree sap to produce electricity when excess salt is added to the medium. Therefore the salinity of a potential energy source is an important consideration when MFCs are being considered for energy harvesting from natural sources.
Antipyretic potential of herbal coded formulation (Pyrexol).
Khan, Muhammad Sajid; Hamid, Abdul; Akram, Muhammad; Mustafa, Sodah Bint; Sami, Abdul; Shah, Syed Muhammad Ali; Usmanghani, Khan
2017-01-01
The antipyretic effect of the aqueous extract of herbal coded formulation containing equal amount of Salix alba, Emblica officinalis, Glycyrrhiza glabra, Adhatoda vasica, Viola odorata, Thea sinensis, Veleriana officinalis, Foeniculum vulgare, Sisymbrium irrio and Achillea millefolium was investigated using the yeast induced pyrexia model in rabbits. Paracetamol was used as a control group. Rectal temperatures of all rabbits were recorded immediately before the administration of the extract or paracetamol and again at 1 hour, after this, temperature was noted at 1 hrs interval for 5 hrs using digital thermometer. At 240mg/kg dose the extract showed significant reduction in yeast-induced elevated temperature as compared with that of standard drug paracetamol (150mg/kg). It is concluded that herbal coded medicine at a dose of 240mg/kg has marked antipyretic activity in animal models and this strongly supports the ethno pharmacological uses of medicinal plants of this formulation.
Pinho, Antonio Ivanildo; Oliveira, Cláudia Sirlene; Lovato, Fabricio Luís; Waczuk, Emily Pansera; Piccoli, Bruna Candia; Boligon, Aline Augusti; Leite, Nadghia Figueredo; Coutinho, Henrique Douglas Melo; Posser, Thais; Da Rocha, João Batista Teixeira; Franco, Jeferson Luis
2017-01-01
Mercury (Hg) is widely distributed in the environment and is known to produce several adverse effects in organisms. The aim of the present study was to examine the in vitro antioxidant activity and Hg chelating ability of the hydroalcoholic extract of Psidium guajava leaves (HEPG). In addition, the potential protective effects of HEPG against Hg(II) were evaluated using a yeast model (Saccharomyces cerevisiae). HEPG was found to exert significant antioxidant activity in 2,2-diphenyl-1-picrylhydrazyl scavenger and inhibition of lipid peroxidation induced by Fe(II) assays in a concentration-dependent manner. The extract also exhibited significant Hg(II) chelating activity. In yeast, Hg(II) induced a significant decrease in cell viability. In contrast, HEPG partially prevented the fall in cell viability induced by Hg(II). In conclusion, HEPG exhibited protective effects against Hg(II)-mediated toxicity, which may be related to both antioxidant and Hg(II)-chelating activities.
NASA Astrophysics Data System (ADS)
Sriramulu, Mohana; Sumathi, Shanmugam
2018-06-01
In this article, we have discussed the biosynthesis of palladium nanoparticles (PdNPs) using aqueous Saccharomyces cerevisiae extract and its photocatalytic application. The biosynthesised PdNPs were characterised by UV-Vis spectroscopy (UV-Vis), Fourier transform infrared spectroscopy (FTIR), x-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDX) and Atomic force microscopy (AFM). The formation of PdNPs was confirmed from the disappearance of the peak at 405 nm in the UV-Vis spectrum. Agglomerated and hexagonal shaped PdNPs were noted by SEM. FTIR was performed to identify the biomolecules responsible for the synthesis of PdNPs. Bioactive compounds in the yeast extract acted as secondary metabolites which facilitated the formation of PdNPs. The yeast synthesised PdNPs degraded 98% of direct blue 71 dye photochemically within 60 min under UV light.
NASA Astrophysics Data System (ADS)
Kato, Katsuya; Nakamura, Hitomi; Nakanishi, Kazuma
2014-02-01
Baker's yeast (BY) encapsulated in silica materials was synthesized using a yeast cell suspension and its cell-free extract during a sol-gel reaction of tetramethoxysilane with nitric acid as a catalyst. The synthesized samples were fully characterized using various methods, such as scanning electron microscopy, nitrogen adsorption-desorption, Fourier transform infrared spectroscopy, thermogravimetry, and differential thermal analysis. The BY cells were easily encapsulated inside silica-gel networks, and the ratio of the cells in the silica gel was approximately 75 wt%, which indicated that a large volume of BY was trapped with a small amount of silica. The enzyme activity (asymmetric reduction of prochiral ketones) of BY and its cell-free extract encapsulated in silica gel was investigated in detail. The activities and enantioselectivities of free and encapsulated BY were similar to those of acetophenone and its fluorine derivatives, which indicated that the conformation structure of BY enzymes inside silica-gel networks did not change. In addition, the encapsulated BY exhibited considerably better solvent (methanol) stability and recyclability compared to free BY solution. We expect that the development of BY encapsulated in sol-gel silica materials will significantly impact the industrial-scale advancement of high-efficiency and low-cost biocatalysts for the synthesis of valuable chiral alcohols.
Coelho, Luciana Fontes; Beitel, Susan Michelz; Sass, Daiane Cristina; Neto, Paulo Marcelo Avila; Contiero, Jonas
2018-04-01
Bacillus coagulans arr4 is a thermotolerant microorganism with great biotechnological potential for l-(+)-lactic acid production from granulated sugar and yeast extract. The highest l-(+)-lactic acid production was obtained with Ca(OH) 2 . The maximum production of l-(+)-lactic acid (206.81 g/L) was observed in exponential feeding using granulated sugar solution (900 g/L) and yeast extract (1%) at 50 °C, pH 6.5, and initial granulated sugar concentration of 100 g/L at 39 h. 5.3 g/L h productivity and 97% yield were observed, and no sugar remained. Comparing the simple batch with exponential fed-batch fermentation, the l(+) lactic acid production was improved in 133.22% and dry cell weight was improved in 83.29%, using granulated sugar and yeast extract. This study presents the highest productivity of lactic acid ever observed in the literature, on the fermentation of thermotolerant Bacillus sp. as well as an innovative and high-efficiency purification technology, using low-cost substances as Celite and charcoal. The recovery of lactic acid was 86%, with 100% protein removal, and the fermentation medium (brown color) became a colorless solution.
Dong, Tao; Yu, Liang; Gao, Difeng; Yu, Xiaochen; Miao, Chao; Zheng, Yubin; Lian, Jieni; Li, Tingting; Chen, Shulin
2015-12-01
Accurate determination of fatty acid contents is routinely required in microalgal and yeast biofuel studies. A method of rapid in situ fatty acid methyl ester (FAME) derivatization directly from wet fresh microalgal and yeast biomass was developed in this study. This method does not require prior solvent extraction or dehydration. FAMEs were prepared with a sequential alkaline hydrolysis (15 min at 85 °C) and acidic esterification (15 min at 85 °C) process. The resulting FAMEs were extracted into n-hexane and analyzed using gas chromatography. The effects of each processing parameter (temperature, reaction time, and water content) upon the lipids quantification in the alkaline hydrolysis step were evaluated with a full factorial design. This method could tolerate water content up to 20% (v/v) in total reaction volume, which equaled up to 1.2 mL of water in biomass slurry (with 0.05-25 mg of fatty acid). There were no significant differences in FAME quantification (p>0.05) between the standard AOAC 991.39 method and the proposed wet in situ FAME preparation method. This fatty acid quantification method is applicable to fresh wet biomass of a wide range of microalgae and yeast species.
Phenylalanine ammonia-lyase. Induction and purification from yeast and clearance in mammals.
Fritz, R R; Hodgins, D S; Abell, C W
1976-08-10
Yeast phenylalanine ammonia-lyase (EC 4.3.1.5) catalyzes the deamination of L-phenylalanine to form trans-cinnamic acid and tyrosine to trans-coumaric acid. Maximal enzyme activity in Rhodotorula glutinis (2 units/g, wet weight, of yeast) was induced in late-log phase (12 to 14 hours) of growth in a culture medium containing 1.0% malt extract, 0.1% yeast extract, and 0.1% L-phenylalanine. A highly purified enzyme was obtained by fractionation with ammonium sulfate and sodium citrate followed by chromatography on DEAE-cellulose and Sephadex G-200. The active preparation yielded a major component on three different polyacrylamide gel electrophoretic systems. Antisera to phenylalanine ammonia-lyase was raised in rabbits and detected by double immunodiffusion. The antigen-antibody complex was enzymatically active in vitro. The biological half-life of the enzyme was approximately 21 hours in several mammalian species (mice without and with BW10232 adenocarcinoma and B16 melanoma, rats, and monkeys) after a single injection; however, upon repeated administration, phenylalanine ammonia-lyase had a much shorter biological half-life. The onset of rapid clearance occurred earlier in tumor-bearing than in nontumor-bearing mice indicating a direct or indirect influence by the tumor on the biological half-life of phenylalanine ammonia-lyase.
Malcov, Mira; Cesarkas, Karen; Stelzer, Gil; Shalom, Sarah; Dicken, Yosef; Naor, Yaniv; Goldstein, Ronald S; Sagee, Shira; Kassir, Yona; Don, Jeremy
2004-12-01
Our understanding of the molecular mechanisms that operate during differentiation of mitotically dividing spermatogonia cells into spermatocytes lags way behind what is known about other differentiating systems. Given the evolutionary conservation of the meiotic process, we screened for mouse proteins that could specifically activate early meiotic promoters in Saccharomyces cerevisiae yeast cells, when fused to the Gal4 activation domain (Gal4AD). Our screen yielded the Aym1 gene that encodes a short peptide of 45 amino acids. We show that a Gal4AD-AYM1 fusion protein activates expression of reporter genes through the promoters of the early meiosis-specific genes IME2 and HOP1, and that this activation is dependent on the DNA-binding protein Ume6. Aym1 is transcribed predominantly in mouse primary spermatocytes and in gonads of female embryos undergoing the corresponding meiotic divisions. Aym1 immunolocalized to nuclei of primary spermatocytes and oocytes and to specific type A spermatogonia cells, suggesting it might play a role in the processes leading to meiotic competence. The potential functional relationship between AYM1 and yeast proteins that regulate expression of early meiotic genes is discussed.
Hierro, Núria; Esteve-Zarzoso, Braulio; González, Ángel; Mas, Albert; Guillamón, Jose M.
2006-01-01
Real-time PCR, or quantitative PCR (QPCR), has been developed to rapidly detect and quantify the total number of yeasts in wine without culturing. Universal yeast primers were designed from the variable D1/D2 domains of the 26S rRNA gene. These primers showed good specificity with all the wine yeasts tested, and they did not amplify the most representative wine species of acetic acid bacteria and lactic acid bacteria. Numerous standard curves were constructed with different strains and species grown in yeast extract-peptone-dextrose medium or incubated in wine. The small standard errors with these replicas proved that the assay is reproducible and highly robust. This technique was validated with artificially contaminated and natural wine samples. We also performed a reverse transcription-QPCR (RT-QPCR) assay from rRNA for total viable yeast quantification. This technique had a low detection limit and was more accurate than QPCR because the dead cells were not quantified. As far as we know, this is the first time that RT-QPCR has been performed to quantify viable yeasts from rRNA. RT-QPCR is a rapid and accurate technique for enumerating yeasts during industrial wine fermentation and controlling the risk of wine spoilage. PMID:17088381
Microbial biodiversity of Sardinian oleic ecosystems.
Santona, Mario; Sanna, Maria Lina; Multineddu, Chiara; Fancello, Francesco; de la Fuente, Sara Audije; Dettori, Sandro; Zara, Severino
2018-04-01
The olives are rich in microorganisms that, during the extraction process may persist in the oils and can influence their physicochemical and sensory characteristics. In this work, and for the first time, we isolated and identified microbial species, yeast and bacteria, present during the production process in four Sardinian (Italy) oleic ecosystems. Among these varieties, we found that Nera di Gonnos was associated to the highest microbial biodiversity, which was followed by Bosana, Nocellara del Belice and Semidana. Among the different microbial species isolated, some are specific of olive ecological niches, such as Cryptococcus spp and Serratia spp; and others to olive oils such as Candida spp and Saccharomyces. Some other species identified in this work were not found before in oleic ecosystems. The enzymatic analyses of yeast and bacteria showed that they have good β-glucosidase activity and yeast also showed good β-glucanase activity. The majority of bacteria presented lipolytic and catalase activities while in yeast were species-specific. Interestingly, yeast and bacteria isolates presented a high resistance to bile acid, and about 65% of the yeast were able to resist at pH 2.5 for 2 h. Finally, bacteria showed no biofilm activity compared to yeast. Copyright © 2017 Elsevier Ltd. All rights reserved.
Williams, Roderick; Dias, Daniel A; Jayasinghe, Nirupama; Roessner, Ute; Bennett, Louise E
2016-04-15
Regulation of the human immune system requires controlled pro- and anti-inflammatory responses for host defence against infection and disease states. Yeasts (Saccharomyces cerevisiae), as used in brewing and baking, are mostly known for ability to stimulate the human immune-system predominantly reflecting the pro-inflammatory cell wall β-glucans. However, in this study, using food-compatible processing methods, glycopeptide-enriched and β-glucan-depleted products were each prepared from Brewer's and Baker's yeasts, which suppressed production of interferon-γ (IFN-γ) in human whole blood cell assay, signifying that anti-inflammatory factors are also present in yeast. Anti-inflammatory bioactivities of products prepared from Brewer's and Baker's yeast were compared with the commercial yeast product, Epicor®. While unfractionated Epicor was inactive, the C18 resin-binding fractions of Brewer's and Baker's yeast products and Epicor dose-dependently lowered IFN-γ, demonstrating that Epicor also contained both pro-inflammatory (β-glucans) and anti-inflammatory components. Anti-inflammatory activity was attributed to C18 resin-binding species glyco-peptides in Epicor and experimental yeast products. This study demonstrated that pro- and anti-inflammatory factors could be resolved and enriched in yeasts by suitable processing, with potential to improve specific activities. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.
Liu, Yen-Yu; Chen, Hung-Wei; Chou, Jui-Yu
2016-01-01
Phytohormone indole-3-acetic acid (IAA) is the most common naturally occurring and most thoroughly studied plant growth regulator. Microbial synthesis of IAA has long been known. Microbial IAA biosynthesis has been proposed as possibly occurring through multiple pathways, as has been proven in plants. However, the biosynthetic pathways of IAA and the ecological roles of IAA in yeast have not been widely studied. In this study, we investigated the variation in IAA production and its effect on the growth of Saccharomyces cerevisiae and its closest relative Saccharomyces paradoxus yeasts from diverse ecological sources. We found that almost all Saccharomyces yeasts produced IAA when cultured in medium supplemented with the primary precursor of IAA, L-tryptophan (L-Trp). However, when cultured in medium without L-Trp, IAA production was only detected in three strains. Furthermore, exogenous added IAA exerted stimulatory and inhibitory effects on yeast growth. Interestingly, a negative correlation was observed between the amount of IAA production in the yeast cultures and the IAA inhibition ratio of their growth. PMID:27483373
Liu, Yen-Yu; Chen, Hung-Wei; Chou, Jui-Yu
2016-01-01
Phytohormone indole-3-acetic acid (IAA) is the most common naturally occurring and most thoroughly studied plant growth regulator. Microbial synthesis of IAA has long been known. Microbial IAA biosynthesis has been proposed as possibly occurring through multiple pathways, as has been proven in plants. However, the biosynthetic pathways of IAA and the ecological roles of IAA in yeast have not been widely studied. In this study, we investigated the variation in IAA production and its effect on the growth of Saccharomyces cerevisiae and its closest relative Saccharomyces paradoxus yeasts from diverse ecological sources. We found that almost all Saccharomyces yeasts produced IAA when cultured in medium supplemented with the primary precursor of IAA, L-tryptophan (L-Trp). However, when cultured in medium without L-Trp, IAA production was only detected in three strains. Furthermore, exogenous added IAA exerted stimulatory and inhibitory effects on yeast growth. Interestingly, a negative correlation was observed between the amount of IAA production in the yeast cultures and the IAA inhibition ratio of their growth.
Short communication: Conversion of lactose and whey into lactic acid by engineered yeast.
Turner, Timothy L; Kim, Eunbee; Hwang, ChangHoon; Zhang, Guo-Chang; Liu, Jing-Jing; Jin, Yong-Su
2017-01-01
Lactose is often considered an unwanted and wasted byproduct, particularly lactose trapped in acid whey from yogurt production. But using specialized microbial fermentation, the surplus wasted acid whey could be converted into value-added chemicals. The baker's yeast Saccharomyces cerevisiae, which is commonly used for industrial fermentation, cannot natively ferment lactose. The present study describes how an engineered S. cerevisiae yeast was constructed to produce lactic acid from purified lactose, whey, or dairy milk. Lactic acid is an excellent proof-of-concept chemical to produce from lactose, because lactic acid has many food, pharmaceutical, and industrial uses, and over 250,000 t are produced for industrial use annually. To ferment the milk sugar lactose, a cellodextrin transporter (CDT-1, which also transports lactose) and a β-glucosidase (GH1-1, which also acts as a β-galactosidase) from Neurospora crassa were expressed in a S. cerevisiae strain. A heterologous lactate dehydrogenase (encoded by ldhA) from the fungus Rhizopus oryzae was integrated into the CDT-1/GH1-1-expressing strain of S. cerevisiae. As a result, the engineered strain was able to produce lactic acid from purified lactose, whey, and store-bought milk. A lactic acid yield of 0.358g/g of lactose was achieved from whey fermentation, providing an initial proof of concept for the production of value-added chemicals from excess industrial whey using engineered yeast. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Kashani, Masoud Soheili; Tavirani, Mostafa Rezaei; Talaei, Sayyed Alireza; Salami, Mahmoud
2011-04-01
Alzheimer's disease (AD) is one of the most important neurodegenerative disorders. It is characterized by dementia including deficits in learning and memory. The present study aimed to evaluate the effects of aqueous extract of lavender (Lavandula angustifolia) on spatial performance of AD rats. Male Wistar rats were first divided into control and AD groups. Rat model of AD was established by intracerebroventricular injection of 10 μg Aβ1-42 20 d prior to administration of the lavender extract. Rats in both groups were then introduced to 2 stages of task learning (with an interval of 20 d) in Morris water maze, each followed by one probe test. After the first stage of spatial learning, control and AD animals received different doses (50, 100 and 200 mg/kg) of the lavender extract. In the first stage of experiment, the latency to locate the hidden platform in AD group was significantly higher than that in control group. However, in the second stage of experiment, control and AD rats that received distilled water (vehicle) showed similar performance, indicating that the maze navigation itself could improve the spatial learning of AD animals. Besides, in the second stage of experiment, control and AD rats that received lavender extract administration at different doses (50, 100, and 200 mg/ kg) spent less time locating the platform (except for the AD rats with 50 mg/kg extract treatment), as compared with their counterparts with vehicle treatment, respectively. In addition, lavender extract significantly improved the performance of control and AD rats in the probe test, only at the dose of 200 mg/kg, as compared with their counterparts with vehicle treatment. The lavender extract can effectively reverse spatial learning deficits in AD rats.
Costa, G M; Endo, E H; Cortez, D A G; Nakamura, T U; Nakamura, C V; Dias Filho, B P
2016-09-01
Three chalcones, 2'-hydroxy-4,4',6'-trimethoxychalcone, 2'-hydroxy-4,4',6'-tetramethoxychalcone, and 3,2'-dihydroxy-4,4',6'-trimethoxychalcone, were isolated from the leaves of Piper hispidum in a bioguided fractionation of crude extract. The antimicrobial activity of crude extract of P. hispidum leaves was determined against bacteria Escherichia coli, Pseudomonas aeruginosa, Bacillus subtilis, Staphylococcus aureus and yeasts Candida albicans, C. parapsilosis and C. tropicalis. Fractions and chalcones were tested against C. albicans and S. aureus. The checkerboard assay was performed to assess synergic interactions between extract and antifungal drugs, and the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) reduction assay was used to evaluate anti-biofilm effects of extract. The extract was active against yeasts, S. aureus and B. subtilis with MIC values between 15.6 and 62.5μg/mL. Synergistic effects of extract associated with fluconazole and nystatin were observed against C. albicans, with fractional inhibitory concentration indices of 0.37 and 0.24, respectively. The extract was also effective against C. albicans and S. aureus biofilm cells at concentrations of 62.5 and 200μg/mL, respectively. Thus, P. hispidum may be a possible source of bioactive substances with antimicrobial properties. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
Aghazadeh, Mahdieh; Ladisch, Michael R; Engelberth, Abigail S
2016-07-08
Acetic acid is introduced into cellulose conversion processes as a consequence of composition of lignocellulose feedstocks, causing significant inhibition of adapted, genetically modified and wild-type S. cerevisiae in bioethanol fermentation. While adaptation or modification of yeast may reduce inhibition, the most effective approach is to remove the acetic acid prior to fermentation. This work addresses liquid-liquid extraction of acetic acid from biomass hydrolysate through a pathway that mitigates acetic acid inhibition while avoiding the negative effects of the extractant, which itself may exhibit inhibition. Candidate solvents were selected using simulation results from Aspen Plus™, based on their ability to extract acetic acid which was confirmed by experimentation. All solvents showed varying degrees of toxicity toward yeast, but the relative volatility of ethyl acetate enabled its use as simple vacuum evaporation could reduce small concentrations of aqueous ethyl acetate to minimally inhibitory levels. The toxicity threshold of ethyl acetate, in the presence of acetic acid, was found to be 10 g L(-1) . The fermentation was enhanced by extracting 90% of the acetic acid using ethyl acetate, followed by vacuum evaporation to remove 88% removal of residual ethyl acetate along with 10% of the broth. NRRL Y-1546 yeast was used to demonstrate a 13% increase in concentration, 14% in ethanol specific production rate, and 11% ethanol yield. This study demonstrated that extraction of acetic acid with ethyl acetate followed by evaporative removal of ethyl acetate from the raffinate phase has potential to significantly enhance ethanol fermentation in a corn stover bioethanol facility. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:929-937, 2016. © 2016 American Institute of Chemical Engineers.
Simple, miniaturized blood plasma extraction method.
Kim, Jin-Hee; Woenker, Timothy; Adamec, Jiri; Regnier, Fred E
2013-12-03
A rapid plasma extraction technology that collects a 2.5 μL aliquot of plasma within three minutes from a finger-stick derived drop of blood was evaluated. The utility of the plasma extraction cards used was that a paper collection disc bearing plasma was produced that could be air-dried in fifteen minutes and placed in a mailing envelop for transport to an analytical laboratory. This circumvents the need for venipuncture and blood collection in specialized vials by a phlebotomist along with centrifugation and refrigerated storage. Plasma extraction was achieved by applying a blood drop to a membrane stack through which plasma was drawn by capillary action. During the course of plasma migration to a collection disc at the bottom of the membrane stack blood cells were removed by a combination of adsorption and filtration. After the collection disc filled with an aliquot of plasma the upper membranes were stripped from the collection card and the collection disc was air-dried. Intercard differences in the volume of plasma collected varied approximately 1% while volume variations of less than 2% were seen with hematocrit levels ranging from 20% to 71%. Dried samples bearing metabolites and proteins were then extracted from the disc and analyzed. 25-Hydroxy vitamin D was quantified by LC-MS/MS analysis following derivatization with a secosteroid signal enhancing tag that imparted a permanent positive charge to the vitamin and reduced the limit of quantification (LOQ) to 1 pg of collected vitamin on the disc; comparable to values observed with liquid-liquid extraction (LLE) of a venipuncture sample. A similar study using conventional proteomics methods and spectral counting for quantification was conducted with yeast enolase added to serum as an internal standard. The LOQ with extracted serum samples for enolase was 1 μM, linear from 1 to 40 μM, the highest concentration examined. In all respects protein quantification with extracted serum samples was comparable to that observed with serum samples obtained by venipuncture.
Influence of Culture Media on the Radiation Resistance of Micrococcus radiodurans
Krabbenhoft, K. L.; Anderson, A. W.; Elliker, P. R.
1967-01-01
The addition of NZ-case (a tryptic digest of casein) to a growth medium (PC) consisting of tryptone, glucose, and yeast extract caused a significant decrease in γ radiation resistance of Micrococcus radiodurans. The level of radiation resistance was inversely related to the concentration of NZ-case. The ld50 for this organism was approximately 700 krad when grown in tryptone, glucose, yeast extract, and dl-methionine (TGYM) broth, but it was approximately one-half as resistant when grown in a PC medium containing 0.5% NZ-case (PCNZ). The resistance to ultraviolet light was also reduced. Cultures transferred from PCNZ to TGYM media regained the high level of resistance. Images Fig. 2 Fig. 3 PMID:5340165
Yeast effects on Pinot noir wine phenolics, color, and tannin composition.
Carew, Anna L; Smith, Paul; Close, Dugald C; Curtin, Chris; Dambergs, Robert G
2013-10-16
Extraction and stabilization of wine phenolics can be challenging for wine makers. This study examined how yeast choice affected phenolic outcomes in Pinot noir wine. Five yeast treatments were applied in replicated microvinification, and wines were analyzed by UV-visible spectrophotometry. At bottling, yeast treatment Saccharomyces cerevisiae RC212 wine had significantly higher concentrations of total pigment, free anthocyanin, nonbleachable pigment, and total tannin and showed high color density. Some phenolic effects were retained at 6 months' bottle age, and RC212 and S. cerevisae EC1118 wines showed increased mean nonbleachable pigment concentrations. Wine tannin composition analysis showed three treatments were associated with a higher percentage of trihydroxylated subunits (skin tannin indicator). A high degree of tannin polymerization was observed in wines made with RC212 and Torulaspora delbruekii , whereas tannin size by gel permeation chromatography was higher only in the RC212 wines. The results emphasize the importance of yeast strain choice for optimizing Pinot noir wine phenolics.
Peng, Huadong; Moghaddam, Lalehvash; Brinin, Anthony; Williams, Brett; Mundree, Sagadevan; Haritos, Victoria S
2018-03-01
As promising alternatives to fossil-derived oils, microbial lipids are important as industrial feedstocks for biofuels and oleochemicals. Our broad aim is to increase lipid content in oleaginous yeast through expression of lipid accumulation genes and use Saccharomyces cerevisiae to functionally assess genes obtained from oil-producing plants and microalgae. Lipid accumulation genes DGAT (diacylglycerol acyltransferase), PDAT (phospholipid: diacylglycerol acyltransferase), and ROD1 (phosphatidylcholine: diacylglycerol choline-phosphotransferase) were separately expressed in yeast and lipid production measured by fluorescence, solvent extraction, thin layer chromatography, and gas chromatography (GC) of fatty acid methyl esters. Expression of DGAT1 from Arabidopsis thaliana effectively increased total fatty acids by 1.81-fold above control, and ROD1 led to increased unsaturated fatty acid content of yeast lipid. The functional assessment approach enabled the fast selection of candidate genes for metabolic engineering of yeast for production of lipid feedstocks. © 2017 International Union of Biochemistry and Molecular Biology, Inc.
NASA Astrophysics Data System (ADS)
Miles, Jeff; Formosa, Tim
1992-02-01
We have overexpressed the POL1 gene of the yeast Saccharomyces cerevisiae and purified the resulting DNA polymerase α polypeptide in an apparently intact form. We attached the purified DNA polymerase covalently to an agarose matrix and used this matrix to chromatograph extracts prepared from yeast cells. At least six proteins bound to the yeast DNA polymerase α matrix that did not bind to a control matrix. We speculate that these proteins might be DNA polymerase α accessory proteins. Consistent with this interpretation, one of the binding proteins, which we have named POB1 (polymerase one binding), is required for normal chromosome transmission. Mutations in this gene cause increased chromosome loss and an abnormal cell morphology, phenotypes that also occur in the presence of mutations in the yeast α or δ polymerase genes. These results suggest that the interactions detected by polymerase affinity chromatography are biologically relevant and may help to illuminate the architecture of the eukaryotic DNA replication machinery.
The Effect of Detergents on the Morphology and Immunomodulatory Activity of Malassezia furfur
Kim, Su-Han; Ko, Hyun-Chang; Kwon, Kyung-Sool; Oh, Chang-Keun
2009-01-01
Background Several workers have found that Malassezia are capable of suppressing cytokine release and downregulating the phagocytic function of monocytes. But lipid-depleted Malassezia furfur (M. furfur) extracts have also been shown to induce increased production of TNF-α, IL-6 and IL-1β in monocytes. We thought that the detergents in shampoos or soaps could change the composition of the lipid in the M. furfur cell wall. Objective We studied whether detergents affect the morphology of M. furfur and if the inflammatory cytokine profiles change in the monocytes treated with detergent-treated M. furfur. Methods Commonly used detergents such as sodium lauryl sulfate, ammonium lauryl sulfate and tween-80 were respectively added to the modified Leeming-Notman's media. M. furfur was cultivated in each media (detergent-added or untreated). Thereafter, the surface morphology of the yeast was evaluated by scanning and transmission electron microscopy. The cytokine profiles of monocytes, which were treated by M. furfur with or without detergents, were also evaluated. Results The detergent-treated M. furfur were similar to the lipid-extracted form of M. furfur on the electron microscopic study, with a recessed, withered surface and with thinner and rather electron transparent cell walls than the detergent-untreated M. furfur. The levels of TNF-α were higher in monocytes treated with detergent-treated Malassezia than that in the monocytes treated with the detergent-untreated Malassezia (p<0.05). Conclusion According to the findings in this study, it could be inferred that the detergents in shampoos or soaps affect the lipid layers of the Malassezia cell wall and these lipid-extracted Malassezia induce or aggravate some inflammatory conditions. But to correlate the relationship between detergents and Malassezia-associated diseases, in vivo experiments that will focus on short-term contact with detergents in real life conditions should be done. PMID:20523770
Ahoua, Angora Rémi Constant; Konan, Amoin Georgette; Bonfoh, Bassirou; Koné, Mamidou Witabouna
2015-10-23
Due to their genetic proximity, chimpanzees share with human several diseases including bacterial, fungal and viral infections, such as candidiasis, acquired immune deficiency syndrome (AIDS), Ebola virus disease. However, in its natural environment, chimpanzees are tolerant to several pathogens including simian immunodeficiency virus (SIV), virus related to human immunodeficiency virus (HIV) that contribute to the emergence of opportunistic diseases such as microbial infections. Twenty seven species of plants consumed by chimpanzees were evaluated for their antimicrobial potential against Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, Candida albicans, Candida tropicalis and Candida glabrata using the agar diffusion technique and micro-dilution in 96-well plates. In total 132 extracts (33 dichloromethane, 33 methanol, 33 ethyl acetate and 33 aqueous) were tested. The results showed that 24 extracts (18 %) showed activity against bacteria and 6 extracts (5 %) were active against yeasts. The minimal inhibitory concentrations (MICs) values of active extracts ranged between 23 and 750 μg/ml for bacteria and between 188 and 1500 μg/ml for yeasts. Tristemma coronatum was the most promising on the studied microorganisms followed by Beilschmiedia mannii. The extracts of the two plants indicated by chimpanzees have potential for antimicrobial use in human.
Driscoll, Heather E; Murray, Janet M; English, Erika L; Hunter, Timothy C; Pivarski, Kara; Dolci, Elizabeth D
2017-08-01
Here we describe microarray expression data (raw and normalized), experimental metadata, and gene-level data with expression statistics from Saccharomyces cerevisiae exposed to simulated asbestos mine drainage from the Vermont Asbestos Group (VAG) Mine on Belvidere Mountain in northern Vermont, USA. For nearly 100 years (between the late 1890s and 1993), chrysotile asbestos fibers were extracted from serpentinized ultramafic rock at the VAG Mine for use in construction and manufacturing industries. Studies have shown that water courses and streambeds nearby have become contaminated with asbestos mine tailings runoff, including elevated levels of magnesium, nickel, chromium, and arsenic, elevated pH, and chrysotile asbestos-laden mine tailings, due to leaching and gradual erosion of massive piles of mine waste covering approximately 9 km 2 . We exposed yeast to simulated VAG Mine tailings leachate to help gain insight on how eukaryotic cells exposed to VAG Mine drainage may respond in the mine environment. Affymetrix GeneChip® Yeast Genome 2.0 Arrays were utilized to assess gene expression after 24-h exposure to simulated VAG Mine tailings runoff. The chemistry of mine-tailings leachate, mine-tailings leachate plus yeast extract peptone dextrose media, and control yeast extract peptone dextrose media is also reported. To our knowledge this is the first dataset to assess global gene expression patterns in a eukaryotic model system simulating asbestos mine tailings runoff exposure. Raw and normalized gene expression data are accessible through the National Center for Biotechnology Information Gene Expression Omnibus (NCBI GEO) Database Series GSE89875 (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE89875).
Bille, E; Dauphin, B; Leto, J; Bougnoux, M-E; Beretti, J-L; Lotz, A; Suarez, S; Meyer, J; Join-Lambert, O; Descamps, P; Grall, N; Mory, F; Dubreuil, L; Berche, P; Nassif, X; Ferroni, A
2012-11-01
All organisms usually isolated in our laboratory are now routinely identified by matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) using the Andromas software. The aim of this study was to describe the use of this strategy in a routine clinical microbiology laboratory. The microorganisms identified included bacteria, mycobacteria, yeasts and Aspergillus spp. isolated on solid media or extracted directly from blood cultures. MALDI-TOF MS was performed on 2665 bacteria isolated on solid media, corresponding to all bacteria isolated during this period except Escherichia coli grown on chromogenic media. All acquisitions were performed without extraction. After a single acquisition, 93.1% of bacteria grown on solid media were correctly identified. When the first acquisition was not contributory, a second acquisition was performed either the same day or the next day. After two acquisitions, the rate of bacteria identified increased to 99.2%. The failures reported on 21 strains were due to an unknown profile attributed to new species (9) or an insufficient quality of the spectrum (12). MALDI-TOF MS has been applied to 162 positive blood cultures. The identification rate was 91.4%. All mycobacteria isolated during this period (22) were correctly identified by MALDI-TOF MS without any extraction. For 96.3% and 92.2% of yeasts and Aspergillus spp., respectively, the identification was obtained with a single acquisition. After a second acquisition, the overall identification rate was 98.8% for yeasts (160/162) and 98.4% (63/64) for Aspergillus spp. In conclusion, the MALDI-TOF MS strategy used in this work allows a rapid and efficient identification of all microorganisms isolated routinely. © 2011 The Authors. Clinical Microbiology and Infection © 2011 European Society of Clinical Microbiology and Infectious Diseases.
The effect of wasabi rhizome extract on atopic dermatitis-like symptoms in HR-1 hairless mice.
Nagai, Masashi; Okunishi, Isao
2009-04-01
We investigated the effect of wasabi rhizome extract on atopic dermatitis (AD) model mice. The wasabi extract was fed to the HR-1 hairless mice, which develop AD-like symptoms with a special diet (HR-AD diet). The extract was expected to reduce the symptoms induced. Wasabi rhizome-containing HR-AD diet (5% and 10%) reduced the scratching behavior, and the 10% wasabi rhizome HR-AD diet significantly reduced scratching behavior on days 28, 35 and 42. Plasma components (histamine, eotaxin, IgE and thymus and activation-regulated chemokine (TARC)) were decreased in the 10% wasabi rhizome HR-AD diet. In histopathological examinations (toluidine blue (T.B.), major basic protein (MBP), CD4, IL-4, IL-5, eotaxin, TARC and IgE), the wasabi rhizome-containing HR-AD diet (5% and 10%) significantly reduced the number of positive stained cells. These results suggested that the wasabi rhizome extract improved the AD-like symptoms of HR-1 hairless mice.
Oh, Byung-Taek; Jeong, Seong-Yeop; Velmurugan, Palanivel; Park, Jung-Hee; Jeong, Do-Youn
2017-11-01
The aim of this study was to investigate the fermentation of blueberry fruit with selected probiotic bacteria (Bacillus amyloliquefaciens and Lactobacillus brevis) and yeast (Starmerella bombicola) isolated from fermented starfish for the extraction of functionalized products for biomedical applications. All probiotic-based fermented extracts showed augmented antibacterial and antioxidant activity compared to the control. Biochemical parameters of viable cell count, titratable acidity, total phenol, total anthocyanin, total flavonoids, total sugar, and reducing sugar were analyzed during a 0-96 h fermentation period. In addition, Fourier transform infrared (FTIR) spectroscopy was performed to determine the functional groups in the control and fermented extracts and it signifies the presence of alcohol groups, phenol groups, carboxylic acids, and aliphatic amines, respectively. The well diffusion, minimum inhibitory concentration (MIC), and minimum bactericidal concentration (MBC) assays determined that the S. bombicola-mediated fermented extract has excellent activity, followed by B. amyloliquefaciens and L. brevis, at a high concentration of 1.0 g/mL fermented extract. The ABTS and DPPH showed significant scavenging activity with IC 50 values of (30.52 ± 0.08)/(155.10 ± 0.06) μg/mL, (24.82 ± 0.16)/(74.21 ± 1.26) μg/mL, and (21.81 ± 0.08)/(125.11 ± 0.04) μg/mL for B. amyloliquefaciens, L. brevis, and S. bombicola, respectively. Developing a value-added fermented blueberry product will help circumvent losses because of the highly perishable nature of the fruit. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
Rapid presumptive identification of Cryptococcus neoformans by staphylococcal coagglutination.
Maccani, J E
1981-01-01
A coagglutination reagent was prepared by sensitizing the Cowan I strain of Staphylococcus aureus with rabbit immune globulin directed against Cryptococcus neofromans A15 and absorbed with C. laurentii. This reagent was evaluated for its usefulness in differentiating C. neoformans from other yeast colonies rapidly. Antigen-containing extracts were prepared form Sabouraud dextrose agar cultures of 48 C. neoformans, 33 other Cryptococcus species, 21 Candida, 4 Torulopsis, 3 Saccharomyces, and 2 Rhodotorula strains. This was done by suspending a 0.001-ml loopful of colony growth in 0.5 ml of phenolized saline, mixing for 30 s, and then centrifuging. Equal volumes (50 microliters) of coagglutination reagent and yeast extract were mixed within marked circles on a glass slide and then mechanically rotated at 180 rpm for 8 min. Forty-five of the 48 strains of C. neoformans produced strong (3+ to 4+) agglutination, and 3 strains of serotype C produced weak (1+ to 2+) agglutination with the reagent. Other Cryptococcus species which reacted positively were 4 C. albidus subsp. diffluens, 7 C. albidus subsp. albidus, and 2 C. terreus strains; however, false-positive errors in identification were circumvented by performing a supplemental rapid test for nitrate utilization which differentiated these yeasts from C. neoformans. None of the other yeasts tested (including 14 C. laurentii, 2 C. luteolus, and 2 C. uniguttulatus strains) produced any degree of agglutination with the reagent. A commercial cryptococcal latex agglutination reagent (Crypto-Test, Microbiological Associates, Walkersville, Md.) proved less reliable for identifying C. neoformans yeast colonies because of cross-reactions which occurred with all other species of Cryptococcus tested. PMID:7016909
Xiong, Jukun; An, Taicheng; Li, Guiying; Peng, Ping'an
2017-10-01
Bisphenol A (BPA) is a synthetic chemical primarily used to produce polycarbonate plastics and epoxy resins. Significant industrial and consumer's consumption of BPA-containing products has contributed to extensive contamination in different environmental matrices. In this study, microcosms bioaugmented with Bacillus sp. GZB were constructed to investigate BPA biodegradation, identify the main bacterial community, and evaluate bacterial community responses in the microcosms. Under aerobic conditions, BPA was quickly depleted as a result of bioaugmentation with Bacillus sp. GZB in water-sediment contaminated with pollutants. The pollutants used were generally associated with the electronic wastes (mobile phones, computers, televisions) dismantling process. Adding BPA affected the bacterial community composition in the water-sediment. Furthermore, BPA biodegradation was enhanced by adding electron donors/co-substrates: humic acid, NaCl, glucose, and yeast extract. Metagenomic analysis of the total 16S rRNA genes from the BPA-degrading microcosms with bioaugmentation illustrated that the genera Bacillus, Thiobacillus, Phenylobacterium, and Cloacibacterium were dominant after a 7-week incubation period. A consortium of microorganisms from different bacterial genera may be involved in BPA biodegradation in electronic waste contaminated water-sediment. This study provides new insights about BPA bioaugmentation and bacterial ecology in the BPA-degrading environment. Copyright © 2017 Elsevier Ltd. All rights reserved.
Bae, Jae-Han; Suh, Min-Jung; Kim, Beom-Soo; Hou, Ching T; Lee, In-Jung; Kim, In-Hwan; Kim, Hak-Ryul
2010-09-30
The hydroxylation of unsaturated fatty acids by bacterial strains is one type of value-adding bioconversion processes. This process generates new hydroxy fatty acids (HFA) carrying special properties such as higher viscosity and reactivity compared with normal fatty acids. Among microbial strains tested for HFA production, Pseudomonas aeruginosa PR3 is well known to utilize various unsaturated fatty acids to produce mono-, di- and tri-hydroxy fatty acids. Previously we reported that strain PR3 could produce a novel value-added hydroxy fatty acid 7,10-dihydroxy-8(E)-hexadecenoic acid (DHD) from palmitoleic acid (Bae et al. (2007) Appl. Microbiol. Biotechnol. 75, 435-440). In this study, we focused on the development of the optimal nutritional and environmental conditions for DHD production from palmitoleic acid by PR3. Optimal carbon and nitrogen sources for DHD production were fructose and yeast extract, respectively. Optimal initial medium pH and incubation temperature were pH 8.0 and 30 degrees C and magnesium ion was essentially required for DHD production. Substrate concentration and time of substrate addition were also optimized. Under optimized conditions, maximal DHD production was 1600mg/l representing 26.7% conversion yield. Copyright 2009 Elsevier B.V. All rights reserved.
Rucklidge, Julia J
2013-01-01
Micronutrients are increasingly used to treat psychiatric disorders including attention-deficit/hyperactivity disorder (ADHD), mood disorders, stress, and anxiety. However, a number of factors influence optimal response and absorption of nutrients, including the health of the gut, particularly the presence of yeast infections, such as Candida. As part of a wider investigation into the impact of micronutrients on psychiatric symptoms, many participants who experienced a yeast infection during their treatment showed a diminished response to the micronutrients. One case was followed systematically over a period of 3 y with documentation of deterioration in psychiatric symptoms (ADHD and mood) when infected with Candida and then symptom improvement following successful treatment of the infection with olive leaf extract (OLE) and probiotics. This case outlines that micronutrient treatment might be severely compromised by infections such as Candida and may highlight the importance of gut health when treating psychiatric disorders with nutrients. Given the role that inflammation can play in absorption of nutrients, it was hypothesized that the infection was impairing absorption of the micronutrients.
Modifications of Saccharomyces pastorianus cell wall polysaccharides with brewing process.
Bastos, Rita; Coelho, Elisabete; Coimbra, Manuel A
2015-06-25
The cell wall polysaccharides of brewers spent yeast Saccharomyces pastorianus (BSY) and the inoculum yeast (IY) were studied in order to understand the changes induced by the brewing process. The hot water and alkali extractions performed solubilized mainly mannoproteins, more branched for BSY than those of IY. Also, (31)P solid state NMR showed that the BSY mannoproteins were 3 times more phosphorylated. By electron microscopy it was observed that the final residues of alkali sequential extraction until 4M KOH preserved the yeast three-dimensional structure. The final residues, composed mainly by glucans (92%), showed that the BSY, when compared with IY, contained higher amount of (1→4)-linked Glc (43% for BSY and 16% for IY) and lower (1→3)-linked Glc (17% for BSY and 42% for IY). The enzymatic treatment of final residue showed that both BSY and IY had (α1→4)-linked Glc and (β1→4)-linked Glc, in a 2:1 ratio, showing that S. pastorianus increases their cellulose-like linkages with the brewing process. Copyright © 2015 Elsevier Ltd. All rights reserved.
Patel, Alok; Pravez, Mohammad; Deeba, Farha; Pruthi, Vikas; Singh, Rajesh P; Pruthi, Parul A
2014-08-01
Hemp seeds aqueous extract (HSAE) was used as cheap renewable feedstocks to grow novel oleaginous yeast Rhodosporidium kratochvilovae HIMPA1 isolated from Himalayan permafrost soil. The yeast showed boosted triglyceride (TAG) accumulation in the lipid droplets (LDs) which were transesterified to biodiesel. The sonicated HSAE prepared lacked toxic inhibitors and showed enhanced total lipid content and lipid yield 55.56%, 8.39±0.57g/l in comparison to 41.92%, 6.2±0.8g/l from industrially used glucose synthetic medium, respectively. Supersized LDs (5.95±1.02μm) accumulated maximum TAG in sonicated HSAE grown cells were visualized by fluorescent BODIPY (505/515nm) stain. GC-MS analysis revealed unique longer carbon chain FAME profile containing Arachidic acid (C20:0) 5%, Behenic acid (C22:0) 9.7%, Heptacosanoic acid (C27:0) 14.98%, for the first time in this yeast when grown on industrially competent sonicated HSAE, showing more similarity to algal oils. Crown Copyright © 2014. Published by Elsevier Ltd. All rights reserved.
A proteomics performance standard to support measurement quality in proteomics.
Beasley-Green, Ashley; Bunk, David; Rudnick, Paul; Kilpatrick, Lisa; Phinney, Karen
2012-04-01
The emergence of MS-based proteomic platforms as a prominent technology utilized in biochemical and biomedical research has increased the need for high-quality MS measurements. To address this need, National Institute of Standards and Technology (NIST) reference material (RM) 8323 yeast protein extract is introduced as a proteomics quality control material for benchmarking the preanalytical and analytical performance of proteomics-based experimental workflows. RM 8323 yeast protein extract is based upon the well-characterized eukaryote Saccharomyces cerevisiae and can be utilized in the design and optimization of proteomics-based methodologies from sample preparation to data analysis. To demonstrate its utility as a proteomics quality control material, we coupled LC-MS/MS measurements of RM 8323 with the NIST MS Quality Control (MSQC) performance metrics to quantitatively assess the LC-MS/MS instrumentation parameters that influence measurement accuracy, repeatability, and reproducibility. Due to the complexity of the yeast proteome, we also demonstrate how NIST RM 8323, along with the NIST MSQC performance metrics, can be used in the evaluation and optimization of proteomics-based sample preparation methods. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Phukoetphim, Niphaphat; Salakkam, Apilak; Laopaiboon, Pattana; Laopaiboon, Lakkana
2017-02-10
The aim of this study was to model batch ethanol production from sweet sorghum juice (SSJ), under normal gravity (NG, 160g/L of total sugar) and high gravity (HG, 240g/L of total sugar) conditions with and without nutrient supplementation (9g/L of yeast extract), by Saccharomyces cerevisiae NP 01. Growth and ethanol production increased with increasing initial sugar concentration, and the addition of yeast extract enhanced both cell growth and ethanol production. From the results, either logistic or a modified Gompertz equation could be used to describe yeast growth, depending on information required. Furthermore, the modified Gompertz model was suitable for modeling ethanol production. Both the models fitted the data very well with coefficients of determination exceeding 0.98. The results clearly showed that these models can be employed in the development of ethanol production processes using SSJ under both NG and HG conditions. The models were also shown to be applicable to other ethanol fermentation systems employing pure and mixed sugars as carbon sources. Copyright © 2016 Elsevier B.V. All rights reserved.
Landa, Premysl; Marsik, Petr; Havlik, Jaroslav; Kloucek, Pavel; Vanek, Tomas; Kokoska, Ladislav
2009-04-01
Seed extracts from six species of the genus Nigella (Family Ranunculaceae)-Nigella arvensis, Nigella damascena, Nigella hispanica, Nigella nigellastrum, Nigella orientalis, and Nigella sativa-obtained by successive extraction with n-hexane, chloroform, and methanol, were tested for their antimicrobial activity against 10 strains of pathogenic bacteria and yeast using the microdilution method as well as for anti-inflammatory properties by in vitro cyclooxygenase (COX)-1 and COX-2 assay. Chemical characterization of active extracts was carried out including free and fixed fatty acid analysis. Comparison of antimicrobial activity showed that N. arvensis chloroform extract was the most potent among all species tested, inhibiting Gram-positive bacterial and yeast strains with minimum inhibitory concentration (MIC) values ranging from 0.25 to 1 mg/mL. With the exception of selective inhibitory action of n-hexane extract of N. orientalis on growth of Bacteroides fragilis (MIC = 0.5 mg/mL), we observed no antimicrobial activity for other Nigella species. Anti-inflammatory screening revealed that N. sativa, N. orientalis, N. hispanica, N. arvensis n-hexane, and N. hispanica chloroform extracts had strong inhibitory activity (more than 80%) on COX-1 and N. orientalis, N. arvensis, and N. hispanica n-hexane extracts were most effective against COX-2, when the concentration of extracts was 100 microg/mL in both COX assays. In conclusion, N. arvensis, N. orientalis, and N. hispanica seeds, for the first time examined for antimicrobial and anti-inflammatory effects, revealed their significant activity in one or both assays.
Naseri, Gita; Balazadeh, Salma; Machens, Fabian; Kamranfar, Iman; Messerschmidt, Katrin; Mueller-Roeber, Bernd
2017-09-15
Control of gene expression by transcription factors (TFs) is central in many synthetic biology projects for which a tailored expression of one or multiple genes is often needed. As TFs from evolutionary distant organisms are unlikely to affect gene expression in a host of choice, they represent excellent candidates for establishing orthogonal control systems. To establish orthogonal regulators for use in yeast (Saccharomyces cerevisiae), we chose TFs from the plant Arabidopsis thaliana. We established a library of 106 different combinations of chromosomally integrated TFs, activation domains (yeast GAL4 AD, herpes simplex virus VP64, and plant EDLL) and synthetic promoters harboring cognate cis-regulatory motifs driving a yEGFP reporter. Transcriptional output of the different driver/reporter combinations varied over a wide spectrum, with EDLL being a considerably stronger transcription activation domain in yeast than the GAL4 activation domain, in particular when fused to Arabidopsis NAC TFs. Notably, the strength of several NAC-EDLL fusions exceeded that of the strong yeast TDH3 promoter by 6- to 10-fold. We furthermore show that plant TFs can be used to build regulatory systems encoded by centromeric or episomal plasmids. Our library of TF-DNA binding site combinations offers an excellent tool for diverse synthetic biology applications in yeast.
Wei, Yongjun; Siewers, Verena; Nielsen, Jens
2017-05-01
Cocoa butter (CB) extracted from cocoa beans is the main raw material for chocolate production. However, growing chocolate demands and limited CB production has resulted in a shortage of CB supply. CB is mainly composed of three different kinds of triacylglycerols (TAGs), POP (C16:0-C18:1-C16:0), POS (C16:0-C18:1-C18:0), and SOS (C18:0-C18:1-C18:0). The storage lipids of yeasts, mainly TAGs, also contain relative high-level of C16 and C18 fatty acids and might be used as CB-like lipids (CBL). In this study, we cultivated six different yeasts, including one non-oleaginous yeast strain, Saccharomyces cerevisiae CEN.PK113-7D, and five oleaginous yeast strains, Trichosporon oleaginosus DSM11815, Rhodotorula graminis DSM 27356, Lipomyces starkeyi DSM 70296, Rhodosporidium toruloides DSM 70398, and Yarrowia lipolytica CBS 6124, in nitrogen-limited medium and compared their CBL production ability. Under the same growth conditions, we found that TAGs were the main lipids in all six yeasts and that T. oleaginosus can produce more TAGs than the other five yeasts. Less than 3% of the total TAGs were identified as potential SOS in the six yeasts. However, T. oleaginosus produced 27.8% potential POP and POS at levels of 378 mg TAGs/g dry cell weight, hinting that this yeast may have potential as a CBL production host after further metabolic engineering in future.
1990-01-01
SSB-1, the yeast single-strand RNA-binding protein, is demonstrated to be a yeast nucleolar-specific, silver-binding protein. In double-label immunofluorescence microscopy experiments antibodies to two other nucleolar proteins, RNA Pol I 190-kD and fibrillarin, were used to reveal the site of rRNA transcription; i.e., the fibrillar region of the nucleolus. SSB-1 colocalized with fibrillarin in a double-label immunofluorescence mapping experiment to the yeast nucleolus. SSB-1 is located, though, over a wider region of the nucleolus than the transcription site marker. Immunoprecipitations of yeast cell extracts with the SSB-1 antibody reveal that in 150 mM NaCl SSB-1 is bound to two small nuclear RNAs (snRNAs). These yeast snRNAs are snR10 and snR11, with snR10 being predominant. Since snR10 has been implicated in pre-rRNA processing, the association of SSB-1 and snR10 into a nucleolar snRNP particle indicates SSB-1 involvement in rRNA processing as well. Also, another yeast protein, SSB-36-kD, isolated by single- strand DNA chromatography, is shown to bind silver under the conditions used for nucleolar-specific staining. It is, most likely, another yeast nucleolar protein. PMID:2121740
Evaluation of the Microbial Identification System for identification of clinically isolated yeasts.
Crist, A E; Johnson, L M; Burke, P J
1996-01-01
The Microbial Identification System (MIS; Microbial ID, Inc., Newark, Del.) was evaluated for the identification of 550 clinically isolated yeasts. The organisms evaluated were fresh clinical isolates identified by methods routinely used in our laboratory (API 20C and conventional methods) and included Candida albicans (n = 294), C. glabrata (n = 145), C. tropicalis (n = 58), C. parapsilosis (n = 33), and other yeasts (n = 20). In preparation for fatty acid analysis, yeasts were inoculated onto Sabouraud dextrose agar and incubated at 28 degrees C for 24 h. Yeasts were harvested, saponified, derivatized, and extracted, and fatty acid analysis was performed according to the manufacturer's instructions. Fatty acid profiles were analyzed, and computer identifications were made with the Yeast Clinical Library (database version 3.8). Of the 550 isolates tested, 374 (68.0%) were correctly identified to the species level, with 87 (15.8%) being incorrectly identified and 89 (16.2%) giving no identification. Repeat testing of isolates giving no identification resulted in an additional 18 isolates being correctly identified. This gave the MIS an overall identification rate of 71.3%. The most frequently misidentified yeast was C. glabrata, which was identified as Saccharomyces cerevisiae 32.4% of the time. On the basis of these results, the MIS, with its current database, does not appear suitable for the routine identification of clinically important yeasts. PMID:8880489
Murzyn, Anna; Krasowska, Anna; Stefanowicz, Piotr; Dziadkowiec, Dorota; Łukaszewicz, Marcin
2010-01-01
Candidiasis are life-threatening systemic fungal diseases, especially of gastro intestinal track, skin and mucous membranes lining various body cavities like the nostrils, the mouth, the lips, the eyelids, the ears or the genital area. Due to increasing resistance of candidiasis to existing drugs, it is very important to look for new strategies helping the treatment of such fungal diseases. One promising strategy is the use of the probiotic microorganisms, which when administered in adequate amounts confer a health benefit. Such a probiotic microorganism is yeast Saccharomyces boulardii, a close relative of baker yeast. Saccharomyces boulardii cells and their extract affect the virulence factors of the important human fungal pathogen C. albicans, its hyphae formation, adhesion and biofilm development. Extract prepared from S. boulardii culture filtrate was fractionated and GC-MS analysis showed that the active fraction contained, apart from 2-phenylethanol, caproic, caprylic and capric acid whose presence was confirmed by ESI-MS analysis. Biological activity was tested on C. albicans using extract and pure identified compounds. Our study demonstrated that this probiotic yeast secretes into the medium active compounds reducing candidal virulence factors. The chief compound inhibiting filamentous C. albicans growth comparably to S. boulardii extract was capric acid, which is thus responsible for inhibition of hyphae formation. It also reduced candidal adhesion and biofilm formation, though three times less than the extract, which thus contains other factors suppressing C. albicans adherence. The expression profile of selected genes associated with C. albicans virulence by real-time PCR showed a reduced expression of HWP1, INO1 and CSH1 genes in C. albicans cells treated with capric acid and S. boulardii extract. Hence capric acid secreted by S. boulardii is responsible for inhibition of C. albicans filamentation and partially also adhesion and biofilm formation. PMID:20706577
Antifungal activity of acetone extracts from Punica granatum L., Quercus suber L. and Vicia faba L.
Akroum, S
2017-03-01
Human and animal mycoses become more frequent and more resistant to traditional treatments. In this work, we tested the in vitro antifungal activity of acetonic extracts of Punica granatum L., Quercus suber L. and Vicia faba L. against seven pathogen fungi and the in vivo antifungal activity against Candida albicans and Trichophyton mentagrophytes. The phytochemical screening was also carried out and showed that the extracts contained mainly proanthocyanidins. Other polyphenols were also present but in low quantity. The acetone extract of V. faba L. gave a good in vitro inhibition of yeasts and was the most active for treating candidiasis in mice. It decreased the percentage of mortality with only 20μg. But the in vivo antifungal activity of this extract on T. mentagrophytes was low. It only showed a small diminution of crusting and erythema after the administration of 100μg. On the contrary, the acetone extracts of P. granatum L. had a poor activity against yeasts and a better one against moulds. It gave the best in vivo antifungal activity against T. mentagrophytes by healing animals with 40μg. The extract of P. granatum L. gave also an interesting in vivo antifungal activity against T. mentagrophytes with an active dose of 80μg. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
Elevated atmospheric CO2 increases microbial growth rates and enzymes activity in soil
NASA Astrophysics Data System (ADS)
Blagodatskaya, Evgenia; Blagodatsky, Sergey; Dorodnikov, Maxim; Kuzyakov, Yakov
2010-05-01
Increasing the belowground translocation of assimilated carbon by plants grown under elevated CO2 can cause a shift in the structure and activity of the microbial community responsible for the turnover of organic matter in soil. We investigated the long-term effect of elevated CO2 in the atmosphere on microbial biomass and specific growth rates in root-free and rhizosphere soil. The experiments were conducted under two free air carbon dioxide enrichment (FACE) systems: in Hohenheim and Braunschweig, as well as in the intensively managed forest mesocosm of the Biosphere 2 Laboratory (B2L) in Oracle, AZ. Specific microbial growth rates (μ) were determined using the substrate-induced respiration response after glucose and/or yeast extract addition to the soil. We evaluated the effect of elevated CO2 on b-glucosidase, chitinase, phosphatase, and sulfatase to estimate the potential enzyme activity after soil amendment with glucose and nutrients. For B2L and both FACE systems, up to 58% higher μ were observed under elevated vs. ambient CO2, depending on site, plant species and N fertilization. The μ-values increased linearly with atmospheric CO2 concentration at all three sites. The effect of elevated CO2 on rhizosphere microorganisms was plant dependent and increased for: Brassica napus=Triticum aestivum
Maciel, Natália O P; Piló, Fernanda B; Freitas, Larissa F D; Gomes, Fátima C O; Johann, Susana; Nardi, Regina M D; Lachance, Marc-André; Rosa, Carlos A
2013-01-01
The aims of this study were to characterise the yeasts present in the reconstituted fruit juices and coconut water extracted with "coconut machines", both collected from commercial outlets in a Brazilian city, and to investigate the antifungal resistance of isolates from these beverages that were able to grow at 37°C. The yeast population counts in the coconut water samples ranged from 1.7 to >6.5logcfu/ml, and in the reconstituted fruit juices, the counts ranged from 1.5 to >5.5logcfu/ml. Aureobasidium pullulans, Candida boidinii, Candidaintermedia, Candidaoleophila, Candidaparapsilosis, Candidasantamariae, Candidatropicalis, Clavispora lusitaniae, Kloeckera apis, Lachancea fermentati, Pichia fermentans and Rhodotorula mucilaginosa were the most frequent species isolated from these beverages. At least 18 yeast species isolated from these beverages have been reported as opportunistic pathogens. Eight yeast isolates were resistant to fluconazole, seven were resistant to itraconazole, and 26 to amphotericin B. Some yeast species were resistant to more than one of the antifungal drugs tested. Two isolates of C. tropicalis from the reconstituted fruit juices exhibited resistance to all three drugs. The presence of yeast strains that are resistant to commonly used antifungal drugs suggests a potential risk, at least to immunocompromised individuals who consume these beverages. Copyright © 2012 Elsevier B.V. All rights reserved.
Role of S-Adenosylmethionine in Methionine Biosynthesis in Yeast
Botsford, J. L.; Parks, L. W.
1967-01-01
Extracts of Saccharomyces cerevisiae were used to develop a cell-free system capable of converting the β-carbon of serine into the methyl group of methionine. No requirement for either S-adenosylmethionine or S-adenosylhomocysteine could be demonstrated for net methionine biosynthesis. Growth of the cells in B12 did not affect the reaction. The mechanism for the methylation of homocysteine in yeast appears to be similar to the non-B12 system in Escherichia coli. PMID:4293082
Binding mechanism of patulin to heat-treated yeast cell.
Guo, C; Yuan, Y; Yue, T; Hatab, S; Wang, Z
2012-12-01
This study aims to assess the removal mechanism of patulin using heat-treated Saccharomyces cerevisiae cells and identify the role of different cell wall components in the binding process. In order to understand the binding mechanism, viable cells, heat-treated cells, cell wall and intracellular extract were performed to assess their ability to remove patulin. Additionally, the effects of chemical and enzymatic treatments of yeast on the binding ability were tested. The results showed that there was no significant difference between viable (53·28%) and heat-treated yeast cells (51·71%) in patulin binding. In addition, the cell wall fraction decreased patulin by 35·05%, and the cell extract nearly failed to bind patulin. Treatments with protease E, methanol, formaldehyde, periodate or urea significantly decreased (P < 0·05) the ability of heat-treated cells to remove patulin. Fourier transform infrared (FTIR) analysis indicated that more functional groups were involved in the binding process of heat-treated cells. Polysaccharides and protein are important components of yeast cell wall involved in patulin removal. In addition, hydrophobic interactions play a major role in binding processes. Heat-treated S. cerevisiae cells could be used to control patulin contamination in the apple juice industry. Also, our results proof that the patulin removal process is based mainly on the adsorption not degradation. © 2012 The Society for Applied Microbiology.
Involvement of thermophilic archaea in the biocorrosion of oil pipelines.
Davidova, Irene A; Duncan, Kathleen E; Perez-Ibarra, B Monica; Suflita, Joseph M
2012-07-01
Two thermophilic archaea, strain PK and strain MG, were isolated from a culture enriched at 80°C from the inner surface material of a hot oil pipeline. Strain PK could ferment complex organic nitrogen sources (e.g. yeast extract, peptone, tryptone) and was able to reduce elemental sulfur (S°), Fe(3+) and Mn(4+) . Phylogenetic analysis revealed that the organism belonged to the order Thermococcales. Incubations of this strain with elemental iron (Fe°) resulted in the abiotic formation of ferrous iron and the accumulation of volatile fatty acids during yeast extract fermentation. The other isolate, strain MG, was a H(2) :CO(2) -utilizing methanogen, phylogenetically affiliated with the genus Methanothermobacter family. Co-cultures of the strains grew as aggregates that produced CH(4) without exogenous H(2) amendment. The co-culture produced the same suite but greater concentrations of fatty acids from yeast extract than did strain PK alone. Thus, the physiological characteristics of organisms both alone and in combination could conceivably contribute to pipeline corrosion. The Thermococcus strain PK could reduce elemental sulfur to sulfide, produce fatty acids and reduce ferric iron. The hydrogenotrophic methanogen strain MG enhanced fatty acid production by fermentative organisms but could not couple the dissolution Fe° with the consumption of water-derived H(2) like other methanogens. © 2012 Society for Applied Microbiology and Blackwell Publishing Ltd.
Resinless section electron microscopy reveals the yeast cytoskeleton
Penman, Joshua; Penman, Sheldon
1997-01-01
The cytoskeleton of Saccharomyces cerevisiae is essentially invisible using conventional microscopy techniques. A similar problem was solved for the mammalian cell cytoskeleton using resinless section electron microscopy, a technique applied here to yeast. In the resinless image, soluble proteins are no longer cloaked by embedding medium and must be removed by selective detergent extraction. In yeast, this requires breaching the cell wall by digesting with Zymolyase sufficiently to allow detergent extraction of the plasma membrane lipids. Gel electropherograms show that the extracted or “soluble” proteins are distinct from the retained or “structural” proteins that presumably comprise the cytoskeleton. These putative cytoskeleton proteins include the major portions of a 43-kDa protein, which is presumably actin, and of proteins in a band appearing at 55 kDa, as well as numerous less abundant, nonactin proteins. Resinless section electron micrographs show a dense, three-dimensional web of anastomosing, polymorphic filaments bounded by the remnant cell wall. Although the filament network is very heterogenous, there appear to be two principal classes of filament diameters—5 nm and 15–20 nm—which may correspond to actin and intermediate filaments, respectively. A large oval region of lower filament density probably corresponds to the vacuole, and an electron dense spheroidal body, 300–500 nm in diameter, is likely the nucleus. The techniques detailed in this report afford new approaches to the study of yeast cytoarchitecture. PMID:9108046
Ma, Xiao-kui; Daugulis, Andrew J
2014-05-01
This study investigated the effects of transformation conditions such as initial pH, the initial concentration of glucose and yeast extract in the medium, and the separate addition of ferulic acid and vanillic acid, on the production of vanillin through an analysis of competing by-product formation by Amycolatopsis sp. ATCC 39116. The extent and nature of by-product formation and vanillin yield were affected by initial pH and different initial concentrations of glucose and yeast extract in the medium, with a high yield of vanillin and high cell density obtained at pH 8.0, 10 g/l glucose, and 8 g/l yeast extract. High concentrations of ferulic acid were found to negatively affect cell density. Additional supplementation of 100 mg/l vanillic acid, a metabolically linked by-product, was found to result in a high concentration of vanillin and guaiacol, an intermediate of vanillin. Via an analysis of the effect of these transformation conditions on competing by-product formation, high concentrations of ferulic acid were transformed with a molar yield to vanillin of 96.1 and 95.2 %, by Amycolatopsis sp. ATCC 39116 and Streptomyces V1, respectively, together with a minor accumulation of by-products. These are among the highest performance values reported in the literature to date for Streptomyces in batch cultures.
Musatti, Alida; Manzoni, Matilde; Rollini, Manuela
2013-01-25
The study was aimed at investigating the best biotransformation conditions to increase intracellular glutathione (GSH) levels in samples of baker's yeast (Saccharomyces cerevisiae) employing either the commercially available compressed and dried forms. Glucose, GSH precursors amino acids, as well as other cofactors, were dissolved in a biotransformation solution and yeast cells were added (5%dcw). Two response surface central composite designs (RSCCDs) were performed in sequence: in the first step the influence of amino acid composition (cysteine, glycine, glutamic acid and serine) on GSH accumulation was investigated; once their formulation was set up, the influence of other components was studied. Initial GSH content was found 0.53 and 0.47%dcw for compressed and dried forms. GSH accumulation ability of baker's yeast in compressed form was higher at the beginning of shelf life, that is, in the first week, and a maximum of 2.04%dcw was obtained. Performance of yeast in dried form was not found satisfactory, as the maximum GSH level was 1.18%dcw. When cysteine lacks from the reaction solution, yeast cells do not accumulate GSH. With dried yeast, the highest GSH yields occurred when cysteine was set at 3 g/L, glycine and glutamic acid at least at 4 g/L, without serine. Employing compressed yeast, the highest GSH yields occurred when cysteine and glutamic acid were set at 2-3 g/L, while glycine and serine higher than 2 g/L. Results allowed to set up an optimal and feasible procedure to obtain GSH-enriched yeast biomass, with up to threefold increase with respect to initial content. Copyright © 2012 Elsevier B.V. All rights reserved.
Mutants of Saccharomyces cerevisiae defective in the farnesylation of Ras proteins.
Goodman, L E; Judd, S R; Farnsworth, C C; Powers, S; Gelb, M H; Glomset, J A; Tamanoi, F
1990-01-01
Ras proteins are post-translationally modified by farnesylation. In the present investigation, we identified an activity in crude soluble extracts of yeast cells that catalyzes the transfer of a farnesyl moiety from farnesyl pyrophosphate to yeast RAS2 protein. RAS2 proteins having a C-terminal Cys-Ali-Ali-Xaa sequence (where Ali is an aliphatic amino acid and Xaa is the unspecified C-terminal amino acid) served as substrates for this reaction, whereas RAS2 proteins with an altered or deleted Cys-Ali-Ali-Xaa sequence did not. A yeast mutant, dpr1/ram1, originally isolated as a Ras-processing mutant was shown to be defective in farnesyltransferase activity. In addition, another mutant, ram2, also was defective in the transferase activity. These results demonstrate that at least two genes, DPR1/RAM1 and RAM2, are required for the farnesyltransferase activity in yeast. Images PMID:2124698
Dynamic speckle study of microbial growth
NASA Astrophysics Data System (ADS)
Vincitorio, F. M.; Mulone, C.; Marcuzzi, P. A.; Budini, N.; Freyre, C.; Lopez, A. J.; Ramil, A.
2015-08-01
In this work we present a characterization of yeast dynamic speckle activity during growth in an isolated agar culture medium. We found that it is possible to detect the growth of the microorganisms even before they turn out to be visible. By observing the time evolution of the speckle activity at different regions of the culture medium we could extract a map of the growth process, which served to analyze how the yeast develops and spreads over the agar's medium. An interesting point of this study concerns with the influence of the laser light on the yeast growth rate. We have found that yeast finds hard to develop at regions with higher laser light illumination, although we used a synchronous system to capture the speckle pattern. The results obtained in this work would serve us as a starting point to fabricate a detector of growing microorganism colonies, with obvious interesting applications in diverse areas.
Koutinas, A A; Wang, R; Webb, C
2004-03-05
Restructuring and optimization of the conventional fermentation industry for fuel and chemical production is necessary to replace petrochemical production routes. Guided by this concept, a novel biorefinery process has been developed as an alternative to conventional upstream processing routes, leading to the production of a generic fermentation feedstock from wheat. The robustness of Aspergillus awamori as enzyme producer is exploited in a continuous fungal fermentation on whole wheat flour. Vital gluten is extracted as an added-value byproduct by the conventional Martin process from a fraction of the overall wheat used. Enzymatic hydrolysis of gluten-free flour by the enzyme complex produced by A. awamori during fermentation produces a liquid stream rich in glucose (320 g/L). Autolysis of fungal cells produces a micronutrient-rich solution similar to yeast extract (1.6 g/L nitrogen, 0.5 g/L phosphorus). The case-specific combination of these two liquid streams can provide a nutrient-complete fermentation medium for a spectrum of microbial bioconversions for the production of such chemicals as organic acids, amino acids, bioethanol, glycerol, solvents, and microbial biodegradable plastics. Preliminary economic analysis has shown that the operating cost required to produce the feedstock is dependent on the plant capacity, cereal market price, presence and market value of added-value byproducts, labor costs, and mode of processing (batch or continuous). Integration of this process in an existing fermentation plant could lead to the production of a generic feedstock at an operating cost lower than the market price of glucose syrup (90% to 99% glucose) in the EU, provided that the plant capacity exceeds 410 m(3)/day. Further process improvements are also suggested. Copyright 2004 Wiley Periodicals, Inc.
Michel, Maximilian; Kopecká, Jana; Meier-Dörnberg, Tim; Zarnkow, Martin; Jacob, Fritz; Hutzler, Mathias
2016-04-01
This study describes a screening system for future brewing yeasts focusing on non-Saccharomyces yeasts. The aim was to find new yeast strains that can ferment beer wort into a respectable beer. Ten Torulaspora delbrueckii strains were put through the screening system, which included sugar utilization tests, hop resistance tests, ethanol resistance tests, polymerase chain reaction fingerprinting, propagation tests, amino acid catabolism and anabolism, phenolic off-flavour tests and trial fermentations. Trial fermentations were analysed for extract reduction, pH drop, yeast concentration in bulk fluid and fermentation by-products. All investigated strains were able to partly ferment wort sugars and showed high tolerance to hop compounds and ethanol. One of the investigated yeast strains fermented all the wort sugars and produced a respectable fruity flavour and a beer of average ethanol content with a high volatile flavour compound concentration. Two other strains could possibly be used for pre-fermentation as a bio-flavouring agent for beers that have been post-fermented by Saccharomyces strains as a consequence of their low sugar utilization but good flavour-forming properties. Copyright © 2015 John Wiley & Sons, Ltd.
Impact of culture conditions on β-carotene encapsulation using Yarrowia lipolytica cells
NASA Astrophysics Data System (ADS)
Dang, Tran Hai; Minh, Ho Thi Thu; Van Nhi, Tran Nguyen; Ngoc, Ta Thi Minh
2017-09-01
Yeast cell was reported as an effective natural preformed material for use in encapsulation of hydrophobic compounds. The encapsulation process was normally considered as passive transfer through cellular wall and cellular membrane. Beside solubility of hydrophobic compound in phospholipid membrane or plasmolysis, membrane characteristics of yeast cell which are differed between strains and influenced by culture conditions are main factors involving the accumulation of hydrophobic compound into yeast cell. In this study, the oleaginous yeast Yarrowia lipolytica was used as micro-container shell to encapsulate a high hydrophobic compound - β-carotene. Yeast cell was cultured under different conditions and wet yeast biomass was incubated with β-carotene which was dissolved in soybean oil overnight. β-carotene accumulation was then extracted and evaluated by UV-VIS spectrometry. Optimization of culture condition was investigated using the Box-Behnken model. β-carotene encapsulation efficiency in Y. lipolytica was showed to be affected by both pH of medium and agitation conditions. The highest β-carotene encapsulation efficiency was optimized at 42.8 μg/g with Y. lipolytica cultured at pH 4.5, medium volume equal to 115 ml and agitation speed at 211 rpm.
Wang, Jun; Varghese, Merina; Ono, Kenjiro; Yamada, Masahito; Levine, Samara; Tzavaras, Nikos; Gong, Bing; Hurst, William J; Blitzer, Robert D; Pasinetti, Giulio Maria
2014-01-01
Alzheimer's disease (AD) is the most common age-related neurodegenerative disorder, characterized by pathological aggregates of amyloid peptide-β (Aβ) and tau protein. Currently available therapies mediate AD symptoms without modifying disease progression. Polyphenol-rich diets are reported to reduce the risk for AD. In the present study, we investigated the AD disease-modifying effects of cocoa, a rich source of flavanols, which are a class of polyphenols. We hypothesized that cocoa extracts interfere with amyloid-β oligomerization to prevent synaptic deficits. We tested the effects of three different cocoa extracts, viz. Natural, Dutched, and Lavado extracts, on Aβ42 and Aβ40 oligomerization, using photo-induced cross-linking of unmodified proteins technique. To assess the effects of cocoa extracts on synaptic function, we measured long term potentiation in mouse brain hippocampal slices exposed to oligomeric Aβ. Our results indicate that cocoa extracts are effective in preventing the oligomerization of Aβ, with Lavado extract being most effective. Lavado extract, but not Dutched extract, was effective in restoring the long term potentiation response reduced by oligomeric Aβ. Our findings indicate that cocoa extracts have multiple disease-modifying properties in AD and present a promising route of therapeutic and/or preventative initiatives.
21 CFR 155.201 - Canned mushrooms.
Code of Federal Regulations, 2010 CFR
2010-04-01
... provisions of § 172.530 of this chapter. (v) Hydrolyzed vegetable protein. (vi) Autolyzed yeast extract. (vii... CONSUMPTION CANNED VEGETABLES Requirements for Specific Standardized Canned Vegetables § 155.201 Canned...
21 CFR 155.201 - Canned mushrooms.
Code of Federal Regulations, 2011 CFR
2011-04-01
... provisions of § 172.530 of this chapter. (v) Hydrolyzed vegetable protein. (vi) Autolyzed yeast extract. (vii... CONSUMPTION CANNED VEGETABLES Requirements for Specific Standardized Canned Vegetables § 155.201 Canned...
Bodem, J; Dobreva, G; Hoffmann-Rohrer, U; Iben, S; Zentgraf, H; Delius, H; Vingron, M; Grummt, I
2000-08-01
Cells carefully modulate the rate of rRNA transcription in order to prevent an overinvestment in ribosome synthesis under less favorable nutritional conditions. In mammals, growth-dependent regulation of RNA polymerase I (Pol I) transcription is mediated by TIF-IA, an essential initiation factor that is active in extracts from growing but not starved or cycloheximide-treated mammalian cells. Here we report the molecular cloning and functional characterization of recombinant TIF-IA, which turns out to be the mammalian homolog of the yeast factor Rrn3p. We demonstrate that TIF-IA interacts with Pol I in the absence of template DNA, augments Pol I transcription in vivo and rescues transcription in extracts from growth-arrested cells in vitro.
Bodem, Jochen; Dobreva, Gergana; Hoffmann-Rohrer, Urs; Iben, Sebastian; Zentgraf, Hanswalter; Delius, Hajo; Vingron, Martin; Grummt, Ingrid
2000-01-01
Cells carefully modulate the rate of rRNA transcription in order to prevent an overinvestment in ribosome synthesis under less favorable nutritional conditions. In mammals, growth-dependent regulation of RNA polymerase I (Pol I) transcription is mediated by TIF-IA, an essential initiation factor that is active in extracts from growing but not starved or cycloheximide-treated mammalian cells. Here we report the molecular cloning and functional characterization of recombinant TIF-IA, which turns out to be the mammalian homolog of the yeast factor Rrn3p. We demonstrate that TIF-IA interacts with Pol I in the absence of template DNA, augments Pol I transcription in vivo and rescues transcription in extracts from growth-arrested cells in vitro. PMID:11265758
A genome-scale metabolic model of the lipid-accumulating yeast Yarrowia lipolytica
2012-01-01
Background Yarrowia lipolytica is an oleaginous yeast which has emerged as an important microorganism for several biotechnological processes, such as the production of organic acids, lipases and proteases. It is also considered a good candidate for single-cell oil production. Although some of its metabolic pathways are well studied, its metabolic engineering is hindered by the lack of a genome-scale model that integrates the current knowledge about its metabolism. Results Combining in silico tools and expert manual curation, we have produced an accurate genome-scale metabolic model for Y. lipolytica. Using a scaffold derived from a functional metabolic model of the well-studied but phylogenetically distant yeast S. cerevisiae, we mapped conserved reactions, rewrote gene associations, added species-specific reactions and inserted specialized copies of scaffold reactions to account for species-specific expansion of protein families. We used physiological measures obtained under lab conditions to validate our predictions. Conclusions Y. lipolytica iNL895 represents the first well-annotated metabolic model of an oleaginous yeast, providing a base for future metabolic improvement, and a starting point for the metabolic reconstruction of other species in the Yarrowia clade and other oleaginous yeasts. PMID:22558935
Gharwalova, Lucia; Sigler, Karel; Dolezalova, Jana; Masak, Jan; Rezanka, Tomas; Kolouchova, Irena
2017-11-03
Mid-exponential cultures of two traditional biotechnological yeast species, winery Saccharomyces cerevisiae and the less ethanol tolerant bottom-fermenting brewery Saccharomyces pastorianus, were exposed to different concentrations of added ethanol (3, 5 and 8%) The degree of ethanol-induced cell stress was assessed by measuring the cellular activity of superoxide dismutase (SOD), level of lipid peroxidation products, changes in cell lipid content and fatty acid profile. The resveratrol as an antioxidant was found to decrease the ethanol-induced rise of SOD activity and suppress the ethanol-induced decrease in cell lipids. A lower resveratrol concentration (0.5 mg/l) even reduced the extent of lipid peroxidation in cells. Resveratrol also alleviated ethanol-induced changes in cell lipid composition in both species by strongly enhancing the proportion of saturated fatty acids and contributing thereby to membrane stabilization. Lower resveratrol concentrations could thus diminish the negative effects of ethanol stress on yeast cells and improve their physiological state. These effects may be utilized to enhance yeast vitality in high-ethanol-producing fermentations or to increase the number of yeast generations in brewery.
Biodegradation of the High Explosive Hexanitrohexaazaiso-wurtzitane (CL-20)
Karakaya, Pelin; Christodoulatos, Christos; Koutsospyros, Agamemnon; Balas, Wendy; Nicolich, Steve; Sidhoum, Mohammed
2009-01-01
The aerobic biodegradability of the high explosive CL-20 by activated sludge and the white rot fungus Phanerochaete chrysosporium has been investigated. Although activated sludge is not effective in degrading CL-20 directly, it can mineralize the alkaline hydrolysis products. Phanerochaete chrysosporium degrades CL-20 in the presence of supplementary carbon and nitrogen sources. Biodegradation studies were conducted using various nutrient media under diverse conditions. Variables included the CL-20 concentration; levels of carbon (as glycerol) and ammonium sulfate and yeast extract as sources of nitrogen. Cultures that received CL-20 at the time of inoculation transformed CL-20 completely under all nutrient conditions studied. When CL-20 was added to pre-grown cultures, degradation was limited. The extent of mineralization was monitored by the 14CO2 time evolution; up to 51% mineralization was achieved when the fungus was incubated with [14C]-CL-20. The kinetics of CL-20 biodegradation by Phanerochaete chrysosporium follows the logistic kinetic growth model. PMID:19440524
Biodegradation of the high explosive hexanitrohexaazaiso-wurtzitane (CL-20).
Karakaya, Pelin; Christodoulatos, Christos; Koutsospyros, Agamemnon; Balas, Wendy; Nicolich, Steve; Sidhoum, Mohammed
2009-04-01
The aerobic biodegradability of the high explosive CL-20 by activated sludge and the white rot fungus Phanerochaete chrysosporium has been investigated. Although activated sludge is not effective in degrading CL-20 directly, it can mineralize the alkaline hydrolysis products. Phanerochaete chrysosporium degrades CL-20 in the presence of supplementary carbon and nitrogen sources. Biodegradation studies were conducted using various nutrient media under diverse conditions. Variables included the CL-20 concentration; levels of carbon (as glycerol) and ammonium sulfate and yeast extract as sources of nitrogen. Cultures that received CL-20 at the time of inoculation transformed CL-20 completely under all nutrient conditions studied. When CL-20 was added to pre-grown cultures, degradation was limited. The extent of mineralization was monitored by the (14)CO(2) time evolution; up to 51% mineralization was achieved when the fungus was incubated with [(14)C]-CL-20. The kinetics of CL-20 biodegradation by Phanerochaete chrysosporium follows the logistic kinetic growth model.
[Enhanced ε-poly-L-lysine production by improving cellular activity during fermentation].
Liu, Shengrong; Wu, Qingping; Zhang, Jumei; Yang, Xiaojuan; Cai, Shuzhen
2015-06-04
To assess the effect of cellular activity on ε-poly-1-lysine (ε-PL) biosynthesis and thereby to rationally improve the production, we studied the cellular activity, ε-PL formation and other parameters cross flask fermentation by Streptomyces ahygroscopicus. Laser scanning confocal microscopy and a colorimetric method were used to determine cellular activity using BacLight Live/Dead and 5-cyano-2,3-ditolyl tetrazolium chloride (CTC) as viable stains. To enhance the activity of the cells in the ε-PL production period, yeast extract was added. During ε-PL submerged fermentation in flasks, most cells were active in the growth period (0 - 16 h); cells had metabolic activity in the growth and earlier ε-PL production periods between 0 and 30 h fermentation. Almost no activity was detected after 48 h fermentation when no ε-PL was produced. The improved fermentation achieved 2. 24 g/L ε-PL from 1.04 g/L. Biosynthesis of ε-PL can be boosted by up-regulating cell activity in its production phase.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Francis, A.J.; Gillow, J.B.
1993-09-01
Microbial processes involved in gas generation from degradation of the organic constituents of transuranic waste under conditions expected at the Waste Isolation Pilot Plant (WIPP) repository are being investigated at Brookhaven National Laboratory. These laboratory studies are part of the Sandia National Laboratories -- WIPP Gas Generation Program. Gas generation due to microbial degradation of representative cellulosic waste was investigated in short-term (< 6 months) and long-term (> 6 months) experiments by incubating representative paper (filter paper, paper towels, and tissue) in WIPP brine under initially aerobic (air) and anaerobic (nitrogen) conditions. Samples from the WIPP surficial environment and undergroundmore » workings harbor gas-producing halophilic microorganisms, the activities of which were studied in short-term experiments. The microorganisms metabolized a variety of organic compounds including cellulose under aerobic, anaerobic, and denitrifying conditions. In long-term experiments, the effects of added nutrients (trace amounts of ammonium nitrate, phosphate, and yeast extract), no nutrients, and nutrients plus excess nitrate on gas production from cellulose degradation.« less
Carosia, Mariana Fronja; Okada, Dagoberto Yukio; Sakamoto, Isabel Kimiko; Silva, Edson Luiz; Varesche, Maria Bernadete Amâncio
2014-09-01
The aim of this study was to evaluate the removal of linear alkylbenzene sulfonate (LAS) in an anaerobic fluidized bed reactor (AFBR) treating wastewater containing soap powder as LAS source. At Stage I, the AFBR was fed with a synthetic substrate containing yeast extract and ethanol as carbon sources, and without LAS; at Stage II, soap powder was added to this synthetic substrate obtaining an LAS concentration of 14 ± 3 mg L(-1). The compounds of soap powder probably inhibited some groups of microorganisms, increasing the concentration of volatile fatty acids (VFA) from 91 to 143 mg HAc L(-1). Consequently, the LAS removal rate was 48 ± 10% after the 156 days of operation. By sequencing, 16S rRNA clones belonging to the phyla Proteobacteria and Synergistetes were identified in the samples taken at the end of the experiment, with a remarkable presence of Dechloromonas sp. and Geobacter sp. Copyright © 2014 Elsevier Ltd. All rights reserved.
Extraction of ethanol with higher carboxylic acid solvents and their toxicity to yeast
USDA-ARS?s Scientific Manuscript database
In a screening exercise for ethanol-selective extraction solvents, partitioning of ethanol and water from a 5 wt% aqueous solution into several C8 – C18 carboxylic acids was studied. Results for the acids are compared with those from alcohols of similar structure. In all cases studied, the acids exh...
Rasdhari, M; Parekh, T; Dave, N; Patel, V; Subhash, R
2008-09-01
The present investigation was carried out to examine the effect of Hibiscus sabdariffa Calyx extract on the physico-chemical properties, sensory attributes, texture and microbial analysis of L. casei incorporated in probiotic yoghurt after manufacture and during storage. Incorporation of Hibiscus sabdariffa Calyx extract into the probiotic yoghurt resulted into decrease in coagulation time by 25 min. The pH ranged from 4.39 to 4.59, TA 0.81 to 1.14%, moisture 3.05 to 3.37 g%, syneresis 18.85 to 24.90 mL/50 g of sample, % inhibition 12.32 to 59.43, TS 21.27 to 24.90 g% and beta-galactosidase activity 1.041 to 3.277. The protein content ranged between 4.11 and 4.14 g% while the fat content ranged between 3.43 and 3.49 g%. No major changes in sensory evaluation were observed on the day of manufacture and during storage for 7 days. Sabdariffa added yoghurt showed a higher score in almost all sensory attributes. Microbial analysis showed a total plate count ranging from 1.8 x 10(4) to 1.85 x 10(7) cfu mL(-1). Yeast and mold counts were negligible in the Sabdariffa yoghurts. Thus the study concludes that incorporation of Hibiscus sabdariffa extract in yoghurt improved the total antioxidant property, organoleptic qualities and decreased the exudation of whey proteins (Syneresis). Thus, Hibiscus sabdariffa Calyces has beneficial influence on the quality of L. casei incorporated probiotic yoghurt.
21 CFR 184.1983 - Bakers yeast extract.
Code of Federal Regulations, 2011 CFR
2011-04-01
... Salmonella, E. coli, coagulase positive Staphylococci, Clostridium perfringens, Clostridium botulinum, or any... in food. (e) This regulation is issued prior to general evaluation of use of this ingredient in order...
21 CFR 184.1983 - Bakers yeast extract.
Code of Federal Regulations, 2010 CFR
2010-04-01
... Salmonella, E. coli, coagulase positive Staphylococci, Clostridium perfringens, Clostridium botulinum, or any... in food. (e) This regulation is issued prior to general evaluation of use of this ingredient in order...
Miso. III. Pure culture fermentation with Saccharomyces rouxii.
HESSELTINE, C W; SHIBASAKI, K
1961-11-01
Excellent miso has been prepared with soybean grits inoculated with a pure culture of Saccharomyces rouxii strain NRRL Y-2547. Pure culture inoculum of this osmophilic yeast was prepared by growing the culture in aerated flasks on a yeast extract medium with a salt concentration equal to that used in the manufacture of miso. It has also been found possible to make miso from whole beans with the above culture. The advantages of pure culture fermentation in producing miso are discussed.
Duan, Jiankun; He, Man; Hu, Bin
2012-12-14
A new phenylalanine derivative (L-N-(2-hydroxy-propyl)-phenylalanine, L-HP-Phe) was synthesized and its chelate with Cu(II) (Cu(II)-(L-HP-Phe)(2)) was used as the chiral selector for the ligand-exchange (LE) chiral separation of D,L-selenomethionine (SeMet) in selenized yeast samples by micelle electrokinetic capillary chromatography (MEKC). In order to improve the sensitivity of MEKC-UV, two-step preconcentration strategy was employed, off-line solid phase extraction (SPE) and on-line large volume sample stacking (LVSS). D,L-SeMet was first retained on the Cu(II) loaded mesoporous TiO(2), then eluted by 0.1 mL of 5 mol L(-1) ammonia, and finally introduced for MEKC-UV analysis by LVSS injection after evaporation of NH(3). With the enrichment factors of 1400 and 1378, the LODs of 0.44 and 0.60 ng mL(-1) for L-SeMet and D-SeMet was obtained, respectively. The developed method was applied to the analysis of D,L-SeMet in a certified reference material of SELM-1 and a commercial nutrition yeast, and the results showed that most of SeMet in the SELM-1 selenized yeast was l isomer and the recovery for L and D isomers in the spiked commercial nutrition yeast was 96.3% and 103%, respectively. This method is featured with low running cost, high sensitivity and selectivity, and exhibits application potential in chiral analysis of seleno amino acids in real world samples. Copyright © 2012 Elsevier B.V. All rights reserved.
Kim, Kang-Hyun; Choung, Se-Young
2014-12-01
Atopic dermatitis (AD) is a chronic relapsing inflammatory skin disease that responds to the interplay of environmental, immunological, and genetic factors. To explore the effect of Vaccinium uliginosum (VU) extract on AD, we orally administrated VU total water extract to AD-induced NC/Nga mice. VU extract reduced AD-like skin lesions, ear thickness, and the frequency of scratching episodes in a time-dependent manner. VU also suppressed the levels of IgE and histamine and the ratio of IgG1/IgG2a in the serum of AD-induced NC/Nga mice. VU administration resulted in the reduction of splenic cytokine production, epidermal thickening, and the infiltration of eosinophils, mast cells, and degranulated mast cells induced by 2,4-dinitrochlorobenzene (DNCB). In addition, VU significantly reduced the mRNA expression of chemokine ligands in dorsal skin. Total water extract and subfractions of VU inhibited interleukin (IL)-4 production in splenocytes, suggesting that VU total extract has a Th2 cytokine modulating effect. These results suggest that the VU total water extract could be a candidate therapeutic agent for the treatment of AD through an immunoregulatory effect.
Advancing secondary metabolite biosynthesis in yeast with synthetic biology tools.
Siddiqui, Michael S; Thodey, Kate; Trenchard, Isis; Smolke, Christina D
2012-03-01
Secondary metabolites are an important source of high-value chemicals, many of which exhibit important pharmacological properties. These valuable natural products are often difficult to synthesize chemically and are commonly isolated through inefficient extractions from natural biological sources. As such, they are increasingly targeted for production by biosynthesis from engineered microorganisms. The budding yeast species Saccharomyces cerevisiae has proven to be a powerful microorganism for heterologous expression of biosynthetic pathways. S. cerevisiae's usefulness as a host organism is owed in large part to the wealth of knowledge accumulated over more than a century of intense scientific study. Yet many challenges are currently faced in engineering yeast strains for the biosynthesis of complex secondary metabolite production. However, synthetic biology is advancing the development of new tools for constructing, controlling, and optimizing complex metabolic pathways in yeast. Here, we review how the coupling between yeast biology and synthetic biology is advancing the use of S. cerevisiae as a microbial host for the construction of secondary metabolic pathways. © 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.
Leite, Tonny Cley Campos; de Sena, Amanda Reges; Dos Santos Silva, Tânia Regina; Dos Santos, Andrea Karla Almeida; Uetanabaro, Ana Paula Trovatti; Branco, Alexsandro
2012-07-01
Marcetia genera currently comprises 29 species, with approximately 90% inhabiting Bahia (Brazil), and most are endemic to the highlands of the Chapada Diamantina (Bahia). Among the species, only M. taxifolia (A.St.-Hil.) DC. populates Brazil (state of Roraima to Paraná) and also Venezuela, Colombia, and Guyana. This work evaluated the antimicrobial activity of hexane, ethyl acetate, and methanol extracts of three species of Marcetia (Marcetia canescens Naud., M. macrophylla Wurdack, and M. taxifolia A.StHil) against several microorganism. In addition, the flavonoids were analyzed in extracts by HPLC-DAD. The tests were made using Gram-positive (three strains of Staphylococcus aureus) and Gram-negative (two strains of Escherichia coli, a strain of Pseudomonas aeruginosa and another of Salmonella choleraesius) bacteria resistant and nonresistant to antibiotics and yeasts (two strains of Candida albicans and one of C. parapsilosis) by the disk diffusion method. Solid-phase extraction (SPE) was performed on the above extracts to isolate flavonoids, which were subsequently analyzed by high performance liquid chromatography coupled diode array detector (HPLC-DAD). Results showed that extracts inhibited the Gram-positive bacteria and yeast. The hexane extracts possessed the lowest activity, while the ethyl acetate and methanolic extracts were more active. Marcetia taxifolia was more effective (active against 10 microorganisms studied), and only its methanol extract inhibited Gram-negative bacteria (P. aeruginosa and S. choleraesius). SPE and HPLC-DAD analysis showed that M. canescens and M. macrophylla contain glycosylated flavonoids, while the majority of extracts from M. taxifolia were aglycone flavonoids.
Yeast derivatives and wheat germ in the adult diet modulates fecundity in a tephritid pest.
Goane, L; Pereyra, P M; Castro, F; Ruiz, M J; Juárez, M L; Segura, D F; Vera, M T
2018-05-22
Anastrepha fraterculus (Wiedemann), a pest of great economic importance in South America, needs urgently to be controlled by environmentally friendly methods such as the sterile insect technique for which mass rearing of insects is required. Because oogenesis takes place during the adult stage, mass-rearing facilities should provide the females a diet that maximizes egg production at the lowest cost. Accordingly, we investigated the effect of artificial protein sources in the adult diet (yeast derivatives of different cost but with similar amino acids profiles, and the addition of wheat germ) on fecundity. Additionally, we evaluated different ratios of yeast derivatives or wheat germ on ovary maturation, fecundity, and fertility as well as their association with the nutrient content of females. Females fed hydrolyzed yeast and yeast extract attained the highest fecundity level, and those fed brewer's yeast the lowest. Reducing the amount of hydrolyzed yeast, an expensive protein source, in the diet negatively affected fecundity and ovary maturation. Increasing the amount of brewer's yeast, a low-cost protein source, did not favor fecundity. The addition of wheat germ in the adult diet improved fecundity regardless of the yeast derivate considered. Percentage of egg hatch was not affected by the diet. Nutrient content of A. fraterculus females varied according to the adult diet provided and mating status. Our findings provide novel baseline information to understand the role of nutrition on reproductive performance of A. fraterculus females and are discussed in the context of resource allocation. They also provide valuable advances in the search for cost-effective adult diets at fruit fly mass rearing facilities.
Ismail, S A; Deak, T; El-Rahman, H A; Yassien, M A; Beuchat, L R
2000-12-05
A study was undertaken to determine populations and profiles of yeast species on fresh and processed poultry products upon purchase from retail supermarkets and after storage at 5 degrees C until shelf life expiration, and to assess the potential role of these yeasts in product spoilage. Fifty samples representing 15 commercial raw, marinated, smoked, or roasted chicken and turkey products were analyzed. Yeast populations were determined by plating on dichloran rose bengal chloramphenicol (DRBC) agar and tryptone glucose yeast extract (TGY) agar. Proteolytic activity was determined using caseinate and gelatin agars and lipolytic activity was determined on plate count agar supplemented with tributyrin. Populations of aerobic microorganisms were also determined. Initial populations of yeasts (log10 cfu/g) ranged from less than 1 (detection limit) to 2.89, and increased by the expiration date to 0.37-5.06, indicating the presence of psychrotrophic species. Highest initial populations were detected in raw chicken breast, wings, and ground chicken, as well as in turkey necks and legs, whereas roasted chicken and turkey products contained less than 1 log10 cfu/g. During storage, yeast populations increased significantly (P < or = 0.05) in whole chicken, ground chicken, liver, heart and gizzard, and in ground turkey and turkey sausage. Isolates (152 strains) of yeasts from poultry products consisted of 12 species. Yarrowia lipolytica and Candida zeylanoides were predominant, making up 39 and 26% of the isolates, respectively. Six different species of basidiomycetous yeasts representing 24% of the isolates were identified. Most Y. lipolytica strains showed strong proteolytic and lipolytic activities, whereas C. zeylanoides was weakly lipolytic. Results suggest that yeasts, particularly Y. lipolytica, may play a more prominent role than previously recognized in the spoilage of fresh and processed poultry stored at 5 degrees C.
Diederichs, Sylvia; Korona, Anna; Staaden, Antje; Kroutil, Wolfgang; Honda, Kohsuke; Ohtake, Hisao; Büchs, Jochen
2014-11-07
Media containing yeast extracts and other complex raw materials are widely used for the cultivation of microorganisms. However, variations in the specific nutrient composition can occur, due to differences in the complex raw material ingredients and in the production of these components. These lot-to-lot variations can affect growth rate, product yield and product quality in laboratory investigations and biopharmaceutical production processes. In the FDA's Process Analytical Technology (PAT) initiative, the control and assessment of the quality of critical raw materials is one key aspect to maintain product quality and consistency. In this study, the Respiration Activity Monitoring System (RAMOS) was used to evaluate the impact of different yeast extracts and commercial complex auto-induction medium lots on metabolic activity and product yield of four recombinant Escherichia coli variants encoding different enzymes. Under non-induced conditions, the oxygen transfer rate (OTR) of E. coli was not affected by a variation of the supplemented yeast extract lot. The comparison of E. coli cultivations under induced conditions exhibited tremendous differences in OTR profiles and volumetric activity for all investigated yeast extract lots of different suppliers as well as lots of the same supplier independent of the E. coli variant. Cultivation in the commercial auto-induction medium lots revealed the same reproducible variations. In cultivations with parallel offline analysis, the highest volumetric activity was found at different cultivation times. Only by online monitoring of the cultures, a distinct cultivation phase (e.g. glycerol depletion) could be detected and chosen for comparable and reproducible offline analysis of the yield of functional product. This work proves that cultivations conducted in complex media may be prone to significant variation in final product quality and quantity if the quality of the raw material for medium preparation is not thoroughly checked. In this study, the RAMOS technique enabled a reliable and reproducible screening and phenotyping of complex raw material lots by online measurement of the respiration activity. Consequently, complex raw material lots can efficiently be assessed if the distinct effects on culture behavior and final product quality and quantity are visualized.
Tárrega, Maria Amparo; Varela, Paula; Fromentin, Emilie; Feuillère, Nicolas; Issaly, Nicolas; Roller, Marc; Sanz-Buenhombre, Marisa; Villanueva, Sonia; Moro, Carlos; Guadarrama, Alberto; Fiszman, Susana
2014-09-01
The pomegranate (Punica granatum L.) fruit has a long history of human consumption and possesses notable antioxidant and cardiovascular properties. This work evaluated the feasibility to provide a new functional beverage based on a dealcoholized red wine matrix supplemented by a pomegranate extract. The potential bioactive compounds in the pomegranate extract, punicalagin A and B and ellagic acid, were analyzed during the downstream process in order to evaluate the functional dose in the final beverage. The addition of pomegranate extract to the dealcoholized red wine resulted in a product with more intense yeast odor, acidity, yeast flavor, and astringency and with a less intense berry flavor. Consumer acceptance of the product was also investigated and the results revealed the existence of a niche of consumers willing to consume dealcoholized wine enriched with pomegranate extract. After tasting, 50% and 40% of those consumers initially interested by this product concept declared to be interested to purchase the control sample and the functional beverage, respectively. The daily consumption of two servings of 250 mL of this new pomegranate-enriched dealcoholized wine provides 82 mg of total ellagitannins, corresponding to the sum of punicalagin A and B and ellagic acid. © The Author(s) 2013 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.
Wolski, E; Rigo, E; Di Luccio, M; Oliveira, J V; de Oliveira, D; Treichel, H
2009-07-01
The objective of this work was to investigate the lipase production by a newly isolated Penicillium sp., using experimental design technique, in submerged fermentation using a medium based on peptone, yeast extract, NaCl and olive oil, as well as to characterize the crude enzymatic extracts obtained. Lipase activity values of 9.5 U ml(-1) in 96 h of fermentation was obtained at the maximized operational conditions of peptone, yeast extract, NaCl and olive oil concentrations (g l(-1)) of 20.0, 5.0, 5.0 and of 10.0 respectively. The partial characterization of crude enzymatic extract obtained by submerged fermentation showed optimum activity at pH range from 4.9 to 5.5 and temperature from 37 degrees C to 42 degrees C. The crude extract maintained its initial activity at freezing temperatures up to 100 days. A newly isolated strain of Penicillium sp. used in this work yielded good lipase activities compared to the literature. The growing interest in lipase production is related to the potential biotechnological applications that these enzymes present. New lipase producers are relevant to finding enzymes with different catalytic properties of commercial interest could be obtained, without using genetically modified organisms (GMO).
Ateba, Sylvin Benjamin; Njamen, Dieudonné; Medjakovic, Svjetlana; Zehl, Martin; Kaehlig, Hanspeter; Jungbauer, Alois; Krenn, Liselotte
2014-08-09
Eriosema laurentii De Wild. (Leguminosae) is a plant used in Cameroon against infertility and gynecological or menopausal complaints. In our previous report, a methanol extract of its aerial parts was shown to exhibit estrogenic and aryl hydrocarbon receptor agonistic activities in vitro and to prevent menopausal symptoms in ovariectomized Wistar rats. In order to determine the major estrogen receptor α (ERα) agonists in the extract, an activity-guided fractionation was performed using the ERα yeast screen. To check whether the ERα active fractions/compounds also accounted for the aryl hydrocarbon receptor (AhR) agonistic activity of the crude methanol extract, they were further tested on the AhR yeast screen. This study led to the identification of 2'-hydroxygenistein, lupinalbin A and genistein as major estrogenic principles of the extract. 2'-hydroxygenistein and lupinalbin A were, for the first time, also shown to possess an AhR agonistic activity, whereas genistein was not active in this assay. In addition, it was possible to deduce structure-activity relationships. These results suggest that the identified compounds are the major active principles responsible for the estrogenic and AhR agonistic activities of the crude methanol extract of the aerial parts of Eriosema laurentii.
Kunjadia, Prashant D; Nagee, Anju; Pandya, Parth Y; Mukhopadhyaya, Pratap N; Sanghvi, Gaurav V; Dave, Gaurav S
2014-01-01
Oyster mushrooms, species of the genus Pleurotus, are recognized for producing secondary metabolites with important medicinal properties. Investigations were carried out to evaluate the antioxidative and antimicrobial properties of the edible mushroom Pleurotus ostreatus (MTCC142) extracts cultivated on banana agrowastes. Ethanolic extracts showed antimicrobial activities against gram-positive and gram-negative bacteria, and their in vitro antifungal activities against all fungi tested revealed a promising role. Qualitative phytochemical analysis of Pleurotus grown on yeast dextrose broth and banana agrowaste confirmed the presence of steroids, cardiac glycosides, terpenoids, and alkaloids, whereas ethanolic extract after 40 days exhibited a phenol concentration of 521.67 µg/mL in banana waste compared to 155 µg/mL in yeast dextrose broth. The minimum inhibitory concentration of ethanolic extracts ranged from 19.74 to 56.84 mg/mL and 35.53 to 102.31 mg/mL in solid-state and submerged grown mycelium extracts, respectively, after 40 days. Moreover, banana agrowaste could be a significant economic source for the production of the oyster mushroom P. ostreatus. The nutritive, medicinal, and antimicrobial properties of P. ostreatus can be used to develop a new nutraceutical formulation; it can also be used as an additive to routine and fast food.
Bhimathati, Solomon Sunder Raj
2014-01-01
Desmostachya bipinnata Stapf (Poaceae/Gramineae) is an official drug of ayurvedic pharmacopoeia. Various parts of this plant were used extensively in traditional and folklore medicine to cure various human ailments. The present study was aimed to evaluate the antioxidant and DNA damage protection activity of hydroalcoholic extract of Desmostachya bipinnata both in vitro and in vivo, to provide scientific basis for traditional usage of this plant. The extract showed significant antioxidant activity in a dose-dependent manner with an IC50 value of 264.18 ± 3.47 μg/mL in H2O2 scavenging assay and prevented the oxidative damage to DNA in presence of DNA damaging agent (Fenton's reagent) at a concentration of 50 μg/mL. Also, the presence of extract protected yeast cells in a dose-dependent manner against DNA damaging agent (Hydroxyurea) in spot assay. Moreover, the presence of extract exhibited significant antioxidant activity in vivo by protecting yeast cells against oxidative stressing agent (H2O2). Altogether, the results of current study revealed that Desmostachya bipinnata is a potential source of antioxidants and lends pharmacological credence to the ethnomedical use of this plant in traditional system of medicine, justifying its therapeutic application for free-radical-induced diseases. PMID:24574873
Golla, Upendarrao; Bhimathati, Solomon Sunder Raj
2014-01-01
Desmostachya bipinnata Stapf (Poaceae/Gramineae) is an official drug of ayurvedic pharmacopoeia. Various parts of this plant were used extensively in traditional and folklore medicine to cure various human ailments. The present study was aimed to evaluate the antioxidant and DNA damage protection activity of hydroalcoholic extract of Desmostachya bipinnata both in vitro and in vivo, to provide scientific basis for traditional usage of this plant. The extract showed significant antioxidant activity in a dose-dependent manner with an IC50 value of 264.18±3.47 μg/mL in H2O2 scavenging assay and prevented the oxidative damage to DNA in presence of DNA damaging agent (Fenton's reagent) at a concentration of 50 μg/mL. Also, the presence of extract protected yeast cells in a dose-dependent manner against DNA damaging agent (Hydroxyurea) in spot assay. Moreover, the presence of extract exhibited significant antioxidant activity in vivo by protecting yeast cells against oxidative stressing agent (H2O2). Altogether, the results of current study revealed that Desmostachya bipinnata is a potential source of antioxidants and lends pharmacological credence to the ethnomedical use of this plant in traditional system of medicine, justifying its therapeutic application for free-radical-induced diseases.
Analgesic and antipyretic effects of Sansevieria trifasciata leaves.
Anbu, Jeba Sunilson J; Jayaraj, P; Varatharajan, R; Thomas, John; Jisha, James; Muthappan, M
2009-07-03
The ethanol and water extracts of Sansevieria trifasciata leaves showed dose-dependent and significant (P < 0.05) increase in pain threshold in tail-immersion test. Moreover, both the extracts (100 - 200 mg/kg) exhibited a dose-dependent inhibition of writhing and also showed a significant (P < 0.001) inhibition of both phases of the formalin pain test. The ethanol extract (200 mg/kg) significantly (P < 0.01) reversed yeast-induced fever. Preliminary phytochemical screening of the extracts showed the presence of alkaloids, flavonoids, saponins, glycosides, terpenoids, tannins, proteins and carbohydrates.
Druvefors, Ulrika Ädel; Passoth, Volkmar; Schnürer, Johan
2005-01-01
The biocontrol yeast Pichia anomala inhibits the growth of a variety of mold species. We examined the mechanism underlying the inhibition of the grain spoilage mold Penicillium roqueforti by the biocontrol yeast P. anomala J121 during airtight storage. The biocontrol effect in a model grain silo with moist wheat (water activity of 0.96) was enhanced when complex medium, maltose, or glucose was added. Supplementation with additional nitrogen or vitamin sources did not affect the biocontrol activity of the yeast. The addition of complex medium or glucose did not significantly influence the yeast cell numbers in the silos, whether in the presence or absence of P. roqueforti. Mold growth was not influenced by the addition of nutrients, if cultivated without yeast. The products of glucose metabolism, mainly ethanol and ethyl acetate, increased after glucose addition to P. anomala-inoculated treatments. Our results suggest that neither competition for nutrients nor production of a glucose-repressible cell wall lytic enzyme is the main mode of action of biocontrol by P. anomala in this grain system. Instead, the mold-inhibiting effect probably is due to the antifungal action of metabolites, most likely a combination of ethyl acetate and ethanol, derived from glycolysis. The discovery that sugar amendments enhance the biocontrol effect of P. anomala suggests novel ways of formulating biocontrol yeasts. PMID:15812013
Sulphur tracer experiments in laboratory animals using 34S-labelled yeast.
Martínez-Sierra, J Giner; Moreno Sanz, F; Herrero Espílez, P; Marchante Gayón, J M; Rodríguez Fernández, J; García Alonso, J I
2013-03-01
We have evaluated the use of (34)S-labelled yeast to perform sulphur metabolic tracer experiments in laboratory animals. The proof of principle work included the selection of the culture conditions for the preparation of sulphur labelled yeast, the study of the suitability of this labelled yeast as sulphur source for tracer studies using in vitro gastrointestinal digestion and the administration of the (34)S-labelled yeast to laboratory animals to follow the fate and distribution of (34)S in the organism. For in vitro gastrointestinal digestion, the combination of sodium dodecyl sulphate-polyacrylamide gel electrophoresis and high-performance liquid chromatography and inductively coupled plasma mass spectrometry (HPLC-ICP-MS) showed that labelled methionine, cysteine and other low molecular weight sulphur-containing biomolecules were the major components in the digested extracts of the labelled yeast. Next, in vivo kinetic experiments were performed in healthy Wistar rats after the oral administration of (34)S-labelled yeast. The isotopic composition of total sulphur in tissues, urine and faeces was measured by double-focusing inductively coupled plasma mass spectrometry after microwave digestion. It was observed that measurable isotopic enrichments were detected in all samples. Finally, initial investigations on sulphur isotopic composition of serum and urine samples by HPLC-ICP-MS have been carried out. For serum samples, no conclusive data were obtained. Interestingly, chromatographic analysis of urine samples showed differential isotope enrichment for several sulphur-containing biomolecules.
Changes in volatile profile of soybean residue (okara) upon solid-state fermentation by yeasts.
Vong, Weng Chan; Liu, Shao-Quan
2017-01-01
Soybean residue (okara), a by-product of soymilk, is produced in large volumes by the soy food industry and is often discarded due to its undesirable flavour. As it contains a considerable amount of protein and fats, biotransformation of okara to improve its flavour presents an opportunity for alternative utilisation. This paper evaluated 10 yeasts in the solid-state fermentation of okara based on their volatile profiles as analysed with HS-SPME GC-MS/FID. Four 'dairy yeasts' (Geotrichum candidum, Yarrowia lipolytica, Debaryomyces hansenii and Kluyveromyces lactis) and six 'wine yeasts' (Saccharomyces cerevisiae, Lachancea thermotolerans, Metschnikowia pulcherrima, Pichia kluyveri, Torulaspora delbrueckii, and Williopsis saturnus) were studied. The main off-odourants in okara, hexanal and trans-2-hexenal, significantly decreased after fermentation due to their bioconversion into methyl ketones and/or esters. The okara fermented by dairy yeasts contained greater proportions of methyl ketones, while that by wine yeasts contained more ethyl and acetyl esters. Notably, the okara fermented by W. saturnus contained 13 esters and the total GC-FID peak area of esters was about 380 times that in fresh okara, leading to a perceptible fruity note. Okara can be exploited as an inexpensive substrate for bioflavour extraction and/or a more pleasant food ingredient via yeast fermentation. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.
Aqueous Extract of Annona macroprophyllata: A Potential α-Glucosidase Inhibitor
Brindis, F.; González-Trujano, M. E.; González-Andrade, M.; Aguirre-Hernández, E.; Villalobos-Molina, R.
2013-01-01
Annona genus contains plants used in folk medicine for the treatment of diabetes. In the present study, an aqueous extract prepared from Annona macroprophyllata (Annonaceae, also known as A. diversifolia) leaves was evaluated on both the activity of yeast α-glucosidase (an in vitro assay) and sucrose tolerance in Wistar rats. The results have shown that the aqueous extract from A. macroprophyllata inhibits the yeast α-glucosidase with an IC50 = 1.18 mg/mL, in a competitive manner with a K i = 0.97 mg/mL, a similar value to that of acarbose (K i = 0.79 mg/mL). The inhibitory activity of A. macroprophyllata was reinforced by its antihyperglycemic effect, at doses of 100, 300, and 500 mg/kg in rats. Chromatographic analysis identified the flavonoids rutin and isoquercitrin in the most polar fractions of A. macroprophyllata crude extract, suggesting that these flavonoids are part of the active constituents in the plant. Our results support the use of A. macroprophyllata in Mexican folk medicine to control postprandial glycemia in people with diabetes mellitus, involving active constituents of flavonoid nature. PMID:24298552
Juturu, Veeresh; Wu, Jin Chuan
2018-03-01
Thermophilic Bacillus coagulans JI12 was used to ferment hemicellulose hydrolysate obtained by acid hydrolysis of oil palm empty fruit bunch at 50 °C and pH 6, producing 105.4 g/L of l-lactic acid with a productivity of 9.3 g/L/H by fed-batch fermentation under unsterilized conditions. Simultaneous saccharification and fermentation (SSF) was performed at pH 5.5 and 50 °C to convert both hemicellulose hydrolysate and cellulose-lignin complex in the presence of Cellic Ctec2 cellulases using yeast extract (20 g/L) as the nitrogen source, giving 114.0 g/L of l-lactic acid with a productivity of 5.7 g/L/H. The SSF was also conducted by replacing yeast extract with equal amount of dry Bakers' yeast, achieving 120.0 g/L of l-lactic acid with a productivity of 4.3 g/L/H. To the best of our knowledge, these lactic acid titers and productivities are the highest ever reported from lignocellulose hydrolysates. © 2017 International Union of Biochemistry and Molecular Biology, Inc.
Efficacy of medicinal essential oils against pathogenic Malassezia sp. isolates.
Khosravi, A R; Shokri, H; Fahimirad, S
2016-03-01
The purposes of this study were to evaluate the distribution pattern and population size of Malassezia species in dogs with atopic dermatitis (AD) and the inhibitory efficacy of Zataria multiflora, Thymus kotschyanus, Mentha spicata, Artemisia sieberi, Rosmarinus officinalis and Heracleum persicum essential oils against pathogenic Malassezia isolates. The samples were collected from 5 different anatomical sites of 33 atopic dogs and cultured onto modified Dixon agar (MDA) and Sabouraud dextrose agar (SDA) media. The essential oil extraction was performed by steam distillation using Clevenger system. Anti-Malassezia efficacy of medicinal essential oils and standard drugs was evaluated using broth microdilution method. A total of 103 yeast colonies were isolated from dogs with AD. Eight different Malassezia species were identified as follows: Malassezia pachydermatis (81.4%), M. globosa (7.8%), M. restricta (3.9%), M. sloofiae (2.9%), M. furfur (1%), M. nana (1%), M. obtusa (1%) and M. sympodialis (1%). The most and least infected sites were: anal (21.2%) and ear (10.6%) respectively. M. pachydermatis was the most frequent Malassezia species isolated from both skin and mucosa of dogs with AD. Antifungal susceptibility test revealed the inhibitory efficacy of essential oils on pathogenic Malassezia isolates with minimum inhibitory concentration (MIC(90)) values ranging from 30 to 850 μg/mL. Among the tested oils, Z. multiflora and T. kotschyanus exhibited the highest inhibitory effects (P<0.05). The essential oils of Z. multiflora and T. kotschyanus showed strong antifungal activity against pathogenic Malassezia species tested. Copyright © 2015 Elsevier Masson SAS. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vipulanandan, C.; Ghurye, G.L.; Willson, R.C.
The use of surfactants is of increasing interest for remediation of petroleum hydrocarbons in groundwater and soil. Surfactants increase the accessibility of adsorbed hydrocarbons and mobilize immiscible petroleum hydrocarbons for treatment. Biosurfactants have the advantage of biodegradability and non-toxicity over their synthetic counterparts, and can be produced from renewable sources. In this study the production of biosurfactant from molasses was investigated in continuously stirred batch reactors. The effects of substrate concentration, yeast extract and peptone on biomass accumulation and biosurfactant production were investigated. Biosurfactant production was quantified by surface tension reduction and critical micelle dilution (CMD). Biosurfactant production was directlymore » correlated with biomass production, and was improved with the addition of yeast extract. Centrifugation of the whole broth reduced surface tension. The performance of the biosurfactant produced from molasses under non-aseptic condition is comparable to other published results.« less
Cheng, Yu-Shen; Labavitch, John; VanderGheynst, Jean S
2015-05-01
Microalgae have been proposed as a potential feedstock for biofuel production; however, cell disruption is usually required for collection and utilization of cytoplasmic polysaccharides and lipids. Virus infection might be one approach to disrupt the cell wall. The concentration of yeast extract and presence of KNO3 in algae cultivation media were investigated to observe their effects on Chlorella variabilis NC64A physiology and composition and the subsequent effect on production of Chlorella virus and disruption of infected cells. Cytoplasmic starch accumulation increased from 5% to approximately 35% of the total dry weight when yeast extract decreased from 1 to 0.25 g L(-1). When cells were cultured with the lowest nitrogen levels, the total polysaccharide accounted for more than 50% of the cell wall, which was 1.7 times higher than the content in cells cultured with the highest nitrogen levels. The C/N ratio of the algal biomass decreased by a factor of approximately 2 when yeast extract increased from 0.25 to 1 g L(-1). After virus infection, cells with a low C/N ratio produced a 7.6 times higher burst size than cells with a high C/N ratio, suggesting that the nitrogen content in C. variabilis has a large influence on viral production and cell lysis. The results have implications on management of nitrogen for both the synthesis of products from algae and product recovery via viral lysis.
Arachidonic acid production by Mortierella alpina using raw crop materials.
Cao, Ganggang; Guan, Zhengbing; Liu, Feixian G; Liao, Xiangru; Cai, Yujie
2015-01-01
Arachidonic acid (ARA) is one of the three essential fatty acids, and it is important for human body to keep healthy and is widely used. At present, expensive materials such as glucose and yeast extract are generally reported to be optimal for ARA production. A new cost-effective fermentation process including cheaper material for ARA production is of great significance. Feasibility of using corn meal and powdered soybean for fungal growth and lipid accumulation was evaluated by means of single factor test. N-hexadecane concentration was optimized, and the effect of temperature on biomass and ARA content was examined. Mortierella alpina made better use of the aforementioned material as carbon and nitrogen sources for both hyphae growth and ARA production compared with glucose and yeast extract. Maximal levels of 10.9 g/L ARA and 26.1 g/L total lipids were obtained when 66 g/L corn meal, 54 g/L soybean meal and 6% (v/v) n-hexadecane were supplemented. A temperature-shift strategy involved three steps, namely, 30°C (3 days) - 25°C (4 days) - 20°C (4 days), which further improved ARA production by 24.7%. Several factors such as carbon and nitrogen sources, temperature and dissolved oxygen had great influence on biomass and microbial oil production. Mortierella alpina preferred corn and soybean meal compared with glucose and yeast extract, which would surely alleviate the high cost of ARA production. Based on this study, the new process is both low cost and practicable.
Li, Yun; Guo, Shoujun; Zhu, Hui
2016-01-01
Endophytic fungi have been recognized as possible useful sources of bioactive metabolites. However, exopolysaccharide (EPS) production from endophytic fungi and its antitumor activity have been less explored. In the present study, endophtic fungus Bionectria ochroleuca M21 was exploited for the production of EPS in submerged culture. Among tested medium components, glucose, yeast extract, MgSO4 and Tween80 were found to be effective and significant on EPS production. Response surface methodology (RSM) was employed to optimize medium composition. The results showed that the significant factors were glucose, yeast extract and Tween80. The optimal medium was observed at the composition of glucose 55.7 g/L, yeast extract 6.04 g/L, MgSO4 0.25g/L and Tween80 0.1 % (v/v). Using the optimized medium, EPS production was achieve at 2.65 ± 0.16 g/L after 4 days fermentation in a 5L bioreactor. Examination of cytotoxicity showed that the EPS from B. ochroleuca M21 did not have cytotoxic activity on human liver HL-7702 cells at concentration 0.025-1.6 mg/mL. In contrast, the EPS exhibited antiproliferative activities against cell lines of liver cancer (HepG2), gastric cancer (SGC-7901) and colon cancer (HT29) in a dose- and time-dependent manner in the concentration ranges of 0.1-0.45 mg/mL. PMID:27330527
Optimization of lipids production by Cryptococcus laurentii 11 using cheese whey with molasses.
Castanha, Rodrigo Fernandes; Mariano, Adriano Pinto; de Morais, Lilia Aparecida Salgado; Scramin, Shirlei; Monteiro, Regina Teresa Rosim
2014-01-01
This study aimed the optimization of culture condition and composition for production of Cryptococcus laurentii 11 biomass and lipids in cheese whey medium supplemented with sugarcane molasses. The optimization of pH, fermentation time, and molasses concentration according to a full factorial statistical experimental design was followed by a Plackett-Burman experimental design, which was used to determine whether the supplementation of the culture medium by yeast extract and inorganic salts could provide a further enhancement of lipids production. The following conditions and composition of the culture medium were found to optimize biomass and lipids production: 360 h fermentation, 6.5 pH and supplementation of (g L(-1)): 50 molasses, 0.5 yeast extract, 4 KH2PO4, 1 Na2HPO4, 0.75 MgSO4 · 7H2O and 0.002 ZnSO4 · H2O. Additional supplementation with inorganic salts and yeast extract was essential to optimize the production, in terms of product concentration and productivity, of neutral lipids by C. laurentii 11. Under this optimized condition, the production of total lipids increased by 133% in relation to control experiment (from 1.27 to 2.96 g L(-1)). The total lipids indicated a predominant (86%) presence of neutral lipids with high content of 16- and 18-carbon-chain saturated and monosaturated fatty acids. This class of lipids is considered especially suitable for the production of biodiesel.
Karp, Susan Grace; Faraco, Vincenza; Amore, Antonella; Letti, Luiz Alberto Junior; Thomaz Soccol, Vanete; Soccol, Carlos Ricardo
2015-01-01
Laccases are oxidative enzymes related to the degradation of phenolic compounds, including lignin units, with concomitant reduction of oxygen to water. Delignification is a necessary pretreatment step in the process of converting plant biomass into fermentable sugars. The objective of this work was to optimize the production of laccases and to evaluate the delignification of sugarcane bagasse by Pleurotus ostreatus in solid-state fermentation. Among eight variables (pH, water activity, temperature, and concentrations of CuSO4, (NH4)2SO4, KH2PO4, asparagine, and yeast extract), copper sulfate and ammonium sulfate concentrations were demonstrated to significantly influence laccase production. The replacement of ammonium sulfate by yeast extract and the addition of ferulic acid as inducer provided increases of 5.7- and 2.0-fold, respectively, in laccase activity. Optimization of laccase production as a function of yeast extract, copper sulfate, and ferulic acid concentrations was performed by response surface methodology and optimal concentrations were 6.4 g/L, 172.6 μM, and 1.86 mM, respectively. Experimentally, the maximum laccase activity of 151.6 U/g was produced at the 5th day of solid-state fermentation. Lignin content in sugarcane bagasse was reduced from 31.89% to 26.36% after 5 days and to 20.79% after 15 days by the biological treatment of solid-state fermentation. PMID:26180784
Patrignani, Francesca; Tabanelli, Giulia; Siroli, Lorenzo; Gardini, Fausto; Lanciotti, Rosalba
2013-01-01
High pressure homogenization (HPH) technique is able to significantly reduce spoilage microbiota in fruit juice. On the other hand, aroma compounds and essential oils can have a key role in the microbial stability of these products. For this reason, the aim of this work was to evaluate the combined effects of an aroma compound (citral, used at a concentration of 50 mg/l) and HPH treatments (performed at 100 MPa for 1-8 successive passes) on the inactivation dynamics of Saccharomyces cerevisiae SPA strain inoculated in apricot juices at level of about 4.5 log CFU/ml. Moreover, growth of surviving yeast cells was measured during the storage of the treated juice at 10°C and pH, water activity, viscosity and volatile molecule profile of apricot juice were studied. Since citral had been diluted in ethanol before the addition to juice, also samples with only ethanol added at the same volume used to dissolve citral were considered. The results showed that yeast cell viability decreased with the increases of passes at 100 MPa and the relationship between yeast cell loads and number of passes at 100 MPa followed a linear trend. In addition, the effect of HPH treatment can be notably potentiated throughout the presence of citral and ethanol, increasing the time necessary to reach a spoilage threshold during storage. The volatile profiles of the juices added with citral showed a substitution by yeast metabolism of this aldehyde with molecule characterized by a lower antimicrobial activity such as alcohols. The HPH treatments had also a significant effect on pH and viscosity of apricot juices while did not affect a(w). Copyright © 2012 Elsevier B.V. All rights reserved.
Muñoz-Arellano, Ana Joyce; Chen, Xin; Molt, Andrea; Meza, Eugenio; Petranovic, Dina
2018-01-01
The ubiquitin-proteasome system (UPS) is the main pathway responsible for the degradation of misfolded proteins, and its dysregulation has been implicated in several neurodegenerative diseases, including Alzheimer’s disease (AD). UBB+1, a mutant variant of ubiquitin B, was found to accumulate in neurons of AD patients and it has been linked to UPS dysfunction and neuronal death. Using the yeast Saccharomyces cerevisiae as a model system, we constitutively expressed UBB+1 to evaluate its effects on proteasome function and cell death, particularly under conditions of chronological aging. We showed that the expression of UBB+1 caused inhibition of the three proteasomal proteolytic activities (caspase-like (β1), trypsin-like (β2) and chymotrypsin-like (β5) activities) in yeast. Interestingly, this inhibition did not alter cell viability of growing cells. Moreover, we showed that cells expressing UBB+1 at lower level displayed an increased capacity to degrade induced misfolded proteins. When we evaluated cells during chronological aging, UBB+1 expression at lower level, prevented cells to accumulate reactive oxygen species (ROS) and avert apoptosis, dramatically increasing yeast life span. Since proteasome inhibition by UBB+1 has previously been shown to induce chaperone expression and thus protect against stress, we evaluated our UBB+1 model under heat shock and oxidative stress. Higher expression of UBB+1 caused thermotolerance in yeast due to induction of chaperones, which occurred to a lesser extent at lower expression level of UBB+1 (where we observed the phenotype of extended life span). Altering UPS capacity by differential expression of UBB+1 protects cells against several stresses during chronological aging. This system can be valuable to study the effects of UBB+1 on misfolded proteins involved in neurodegeneration and aging.
Beyond Tomorrow - A Look at 2050 A.D.
1992-04-15
347 Photochemical smog is created by a complex series of reac- tions between hydrocarbons released by fermenting yeast, evapo- rating dry cleaning...electricity, use mass transportation, walk and ride bicycles more, and use natural cleaners such as baking soda and vinegar instead of many commercial
Effectiveness of methods for reducing acrylamide in bakery products.
Sadd, Peter A; Hamlet, Colin G; Liang, Li
2008-08-13
Pilot-scale bread, biscuit, and cracker doughs have been baked to assess how well recipe changes could reduce acrylamide in commercial bakery products. Removing ammonium-based raising agents was beneficial in biscuits. In doughs, long yeast fermentations were an effective way of reducing asparagine levels and hence acrylamide. At moderate fermentation times fructose levels increased, but the yeast later absorbed this, so the net effect on acrylamide was beneficial. Metal ions such as calcium reduced acrylamide when added as the carbonate or chloride. Hence, the fortification of flour with calcium carbonate, over and above its natural mineral content, has an additional benefit. However, some other possible methods of adding calcium to bakery doughs, for example, via the permitted preservative calcium propionate, were not beneficial. Amino acid addition to doughs gave modest reductions in acrylamide. Lowering the dough pH reduced acrylamide, but at the expense of higher levels of other process contaminants such as 3-monochloropropane-1,2-diol (3-MCPD).
Production of Bakers' Yeast in Cheese Whey Ultrafiltrate †
Champagne, C. P.; Goulet, J.; Lachance, R. A.
1990-01-01
A process for the production of bakers' yeast in whey ultrafiltrate (WU) is described. Lactose in WU was converted to lactic acid and galactose by fermentation. Streptococcus thermophilus was selected for this purpose. Preculturing of S. thermophilus in skim milk considerably reduced its lag. Lactic fermentation in 2.3×-concentrated WU was delayed compared with that in unconcentrated whey, and fermentation could not be completed within 60 h. The growth rate of bakers' yeast in fermented WU differed among strains. The rate of galactose utilization was similar for all strains, but differences in lactic acid utilization occurred. Optimal pH ranges for galactose and lactic acid utilization were 5.5 to 6.0 and 5.0 to 5.5, respectively. The addition of 4 g of corn steep liquor per liter to fermented WU increased cell yields. Two sources of nitrogen were available for growth of Saccharomyces cerevisiae: amino acids (corn steep liquor) and ammonium (added during the lactic acid fermentation). Ammonium was mostly assimilated during growth on lactic acid. This process could permit the substitution of molasses by WU for the industrial production of bakers' yeast. PMID:16348117
Engineering of biotin-prototrophy in Pichia pastoris for robust production processes.
Gasser, Brigitte; Dragosits, Martin; Mattanovich, Diethard
2010-11-01
Biotin plays an essential role as cofactor for biotin-dependent carboxylases involved in essential metabolic pathways. The cultivation of Pichia pastoris, a methylotrophic yeast that is successfully used as host for the production of recombinant proteins, requires addition of high dosage of biotin. As biotin is the only non-salt media component used during P. pastoris fermentation (apart from the carbon source), nonconformities during protein production processes are usually attributed to poor quality of the added biotin. In order to avoid dismissed production runs due to biotin quality issues, we engineered the biotin-requiring yeast P. pastoris to become a biotin-prototrophic yeast. Integration of four genes involved in the biotin biosynthesis from brewing yeast into the P. pastoris genome rendered P. pastoris biotin-prototrophic. The engineered strain has successfully been used as production host for both intracellular and secreted heterologous proteins in fed-batch processes, employing mineral media without vitamins. Another field of application for these truly prototrophic hosts is the production of biochemicals and small metabolites, where defined mineral media leads to easier purification procedures. Copyright © 2010 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Li, Jing; Peng, Ying; Wang, Xianghong; Chi, Zhenming
2010-12-01
The marine yeast strain W6b isolated from sediment of the South China Sea was found to produce a cell-bound acid protease. The crude acid protease produced by this marine yeast showed the highest activity at pH 3.5 and 40 °C. The optimal pH and temperature for the crude acid protease were in agreement with those for acid protease produced by the terrestrial yeasts. The optimal medium of the acid protease production was seawater containing 1.0% glucose, 1.5% casein, and 0.5% yeast extract, and the optimal cultivation conditions of the acid protease production were pH 4.0, a temperature of 25 °C and a shaking speed of 140 rmin-1. Under the optimal conditions, 72.5 UmL-1 of acid protease activity could be obtained in cell suspension within 48 h of fermentation at shake flask level. The acid protease production was induced by high-molecular-weight nitrogen sources and repressed by low-molecular-weight nitrogen sources. Skimmed-milk-clotting test showed that the crude acid protease from the cell suspension of the yeast W6b had high skimmed milk coagulability. The acid protease produced by M. reukaufii W6b may have highly potential applications in cheese, food and fermentation industries.
Yarrowia lipolytica: a model yeast for citric acid production.
Cavallo, Ema; Charreau, Hernán; Cerrutti, Patricia; Foresti, María Laura
2017-12-01
Every year more than 2 million tons of citric acid (CA) are produced around the world for industrial uses. Although initially extracted from citrus, the low profitability of the process and the increasing demand soon stimulated the search for more efficient methods to produce CA. Currently, most world CA demand (99%) is satisfied by fermentations with microorganisms, especially filamentous fungi and yeasts. CA production with yeasts has certain advantages over molds (e.g. higher productivity and easier cultivation), which in the last two decades have triggered a clear increase in publications and patents devoted to the use of yeasts in this field. Yarrowia lipolytica has become a model yeast that proved to be successful in different production systems. Considering the current interest evidenced in the literature, the most significant information on CA production using Y. lipolytica is summarized. The relevance on CA yields of key factors such as strains, media formulation, environmental conditions and production regimes is thoroughly discussed, with particular focus on increasing CA productivity. Besides, the possibility of tuning the mentioned variables to reduce concomitant isocitric acid production-the biggest disadvantage of using yeasts-is analyzed. Available methods for CA purification/quantification are also discussed. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Ducommun, Raphaël; Favre, Marie-France; Carrard, Delphine; Fischer, Fabian
2010-03-01
A Janus head-like bi-cathodic microbial fuel cell was constructed to monitor the electron transfer from Saccharomyces cerevisiae to a woven carbon anode. The experiments were conducted during an ethanol cultivation of 170 g/l glucose in the presence and absence of yeast-peptone medium. First, using a basic fuel-cell type activity sensor, it was shown that yeast-peptone medium contains electroactive compounds. For this purpose, 1% solutions of soy peptone and yeast extract were subjected to oxidative conditions, using a microbial fuel cell set-up corresponding to a typical galvanic cell, consisting of culture medium in the anodic half-cell and 0.5 M K(3)Fe(CN)(6) in the cathodic half-cell. Second, using a bi-cathodic microbial fuel cell, it was shown that electrons were transferred from yeast cells to the carbon anode. The participation of electroactive compounds in the electron transport was separated as background current. This result was verified by applying medium-free conditions, where only glucose was fed, confirming that electrons are transferred from yeast cells to the woven carbon anode. Knowledge about the electron transfer through the cell membrane is of importance in amperometric online monitoring of yeast fermentations and for electricity production with microbial fuel cells. Copyright (c) 2009 John Wiley & Sons, Ltd.
Díaz-Nava, L E; Montes-Garcia, N; Domínguez, J M; Aguilar-Uscanga, M G
2017-07-01
The importance of non-Saccharomyces yeast species in fermentation processes is widely acknowledged. Within this group, Pichia kudriavzevii ITV-S42 yeast strain shows particularly desirable characteristics for ethanol production. Despite this fact, a thorough study of the metabolic and kinetic characteristics of this strain is currently unavailable. The aim of this work is to study the nutritional requirements of Pichia kudriavzevii ITV-S42 strain and the effect of different carbon sources on the growth and ethanol production. Results showed that glucose and fructose were both assimilated and fermented, achieving biomass and ethanol yields of 0.37 and 0.32 gg -1 , respectively. Glycerol was assimilated but not fermented; achieving a biomass yield of 0.88 gg -1 . Xylose and sucrose were not metabolized by the yeast strain. Finally, the use of a culture medium enriched with salts and yeast extract favored glucose consumption both for growth and ethanol production, improving ethanol tolerance reported for this genre (35 g L -1 ) to 90 g L -1 maximum ethanol concentration (over 100%). Furthermore Pichia kudriavzevii ITV-S42 maintained its fermentative capacity up to 200 g L -1 initial glucose, demonstrating that this yeast is osmotolerant.
NASA Astrophysics Data System (ADS)
Tamai, Katherine T.; Gralla, Edith B.; Ellerby, Lisa M.; Valentine, Joan S.; Thiele, Dennis J.
1993-09-01
Copper-zinc superoxide dismutase catalyzes the disproportionation of superoxide anion to hydrogen peroxide and dioxygen and is thought to play an important role in protecting cells from oxygen toxicity. Saccharomyces cerevisiae strains lacking copper-zinc superoxide dismutase, which is encoded by the SOD1 gene, are sensitive to oxidative stress and exhibit a variety of growth defects including hypersensitivity to dioxygen and to superoxide-generating drugs such as paraquat. We have found that in addition to these known phenotypes, SOD1-deletion strains fail to grow on agar containing the respiratory carbon source lactate. We demonstrate here that expression of the yeast or monkey metallothionein proteins in the presence of copper suppresses the lactate growth defect and some other phenotypes associated with SOD1-deletion strains, indicating that copper metallothioneins substitute for copper-zinc superoxide dismutase in vivo to protect cells from oxygen toxicity. Consistent with these results, we show that yeast metallothionein mRNA levels are dramatically elevated under conditions of oxidative stress. Furthermore, in vitro assays demonstrate that yeast metallothionein, purified or from whole-cell extracts, exhibits copper-dependent antioxidant activity. Taken together, these data suggest that both yeast and mammalian metallothioneins may play a direct role in the cellular defense against oxidative stress by functioning as antioxidants.
Marchal, Axel; Marullo, Philippe; Moine, Virginie; Dubourdieu, Denis
2011-03-09
Yeast autolysis during lees contact influences the organoleptic properties of wines especially by increasing their sweet taste. Although observed by winemakers, this phenomenon is poorly explained in enology. Moreover, the compounds responsible for sweetness in wine remain unidentified. This work provides new insights in this way by combining sensorial, biochemical and genetic approaches. First, we verified by sensory analysis that yeast autolysis in red wine has a significant effect on sweetness. Moderate additions of ethanol or glycerol did not have the same effect. Second, a sapid fraction was isolated from lees extracts by successive ultrafiltrations and HPLC purifications. Using nano-LC-MS/MS, peptides released by the yeast heat shock protein Hsp12p were distinctly identified in this sample. Third, we confirmed the sweet contribution of this protein by sensorial comparison of red wines incubated with two kinds of yeast strains: a wild-type strain containing the native Hsp12p and a deletion mutant strain that lacks the Hsp12p protein (Δ°HSP12 strain). Red wines incubated with wild-type strain showed a significantly higher sweetness than control wines incubated with Δ°HSP12 strains. These results demonstrated the contribution of protein Hsp12p in the sweet perception consecutive to yeast autolysis in wine.
Evaluation of Widely Consumed Botanicals as Immunological Adjuvants
Ragupathi, Govind; Hood, Chandra; Yeung, K. Simon; Vickers, Andrew; Hood, Chandra; Deng, Gary; Cheung, Nai-Kong; Vickers, Andrew; Cassileth, Barrie; Livingston, Philip
2008-01-01
Background Many widely used botanical medicines are claimed to be immune enhancers. Clear evidence of augmentation of immune responses in vivo is lacking in most cases. To select botanicals for further study based on immune enhancing activity, we study them here mixed with antigen and injected subcutaneously (s.c.). Globo H and GD3 are cell surface carbohydrates expressed on glycolipids or glycoproteins on the cell surface of many cancers. When conjugated to keyhole limpet hemocyanin (KLH), mixed with an immunological adjuvant and administered s.c. the magnitude of the antibody responses against globo H, GD3 and KLH depend largely on the potency of the adjuvant. We describe here the results obtained using this s.c. immunization model with 7 botanicals purported to have immune stimulant effects. Methods Groups of 5–10 mice were immunized with globo H–KLH or GD3-KLH mixed with botanical, saline or positive control immunological adjuvant, s.c. 3 times at 1 week intervals. Antibody responses were measured 1 and 2 weeks after the 3rd immunization. The following seven botanicals and fractions were tested: (1) H-48 (Honso USA Co.), (2) Coriolus vesicolor raw water extract, purified polysaccharide-K (PSK) or purified polysaccharide-peptide (PSP) (Institute of Chinese Medicine (ICM)), (3) Maitake extract (Yukiguni Maitake Co Ltd. and Tradeworks Group), (4) Echinacea lipophilic, neutral and acidic extracts (Gaia Herbs), (5) Astragalus water, 50% or 95% ethanol extracts (ICM), (6) Turmeric supercritical (SC) or hydro-ethanolic (HE) extracts (New Chapter) or 60% ethanol extract (ICM) and (7) yeast β-glucan (Biotec Pharmacon). Purified saponin extract QS-21 (Antigenics) and semi-synthetic saponin GPI-0100 (Advanced BioTherapies) were used as positive control adjuvants. Sera were analyzed by ELISA against synthetic globo H ceramide or GD3 and KLH. Results Consistent significant adjuvant activity was observed after s.c vaccination with the Coriolus extracts (especially PSK), a 95% ethanol extract of astragalus and yeast β-glucan, and (to a lesser extent) Maitake. Antibodies against KLH in all cases and against globo H in most cases were induced by these botanicals. Little or no adjuvant activity was demonstrated with H48 or Echinacea extracts or the astragalus water extract. Experiments with GD3-KLH as immunogen confirmed the adjuvant activity of the Coriolus, yeast β-glucan and Astragalus extracts. While extraction with ethanol concentrated the active ingredients in astragalus, it had no impact on coriolus where the 90% ethanol precipitate and solute were equally active. Conclusions Some, but not all, botanicals purported to be immune stimulants had adjuvant activity in our model. PSK and astragalus were surprisingly active and are being further fractionated to identify the most active adjuvant components. PMID:18640165
Characterization of the respiration-induced yeast mitochondrial permeability transition pore.
Bradshaw, Patrick C; Pfeiffer, Douglas R
2013-12-01
When isolated mitochondria from the yeast Saccharomyces cerevisiae oxidize respiratory substrates in the absence of phosphate and ADP, the yeast mitochondrial unselective channel, also called the yeast permeability transition pore (yPTP), opens in the inner membrane, dissipating the electrochemical gradient. ATP also induces yPTP opening. yPTP opening allows mannitol transport into isolated mitochondria of laboratory yeast strains, but mannitol is not readily permeable through the yPTP in an industrial yeast strain, Yeast Foam. The presence of oligomycin, an inhibitor of ATP synthase, allowed for respiration-induced mannitol permeability in mitochondria from this strain. Potassium (K+) had varied effects on the respiration-induced yPTP, depending on the concentration of the respiratory substrate added. At low respiratory substrate concentrations K+ inhibited respiration-induced yPTP opening, while at high substrate concentrations this effect diminished. However, at the high respiratory substrate concentrations, the presence of K+ partially prevented phosphate inhibition of yPTP opening. Phosphate was found to inhibit respiration-induced yPTP opening by binding a site on the matrix space side of the inner membrane in addition to its known inhibitory effect of donating protons to the matrix space to prevent the pH change necessary for yPTP opening. The respiration-induced yPTP was also inhibited by NAD, Mg2+, NH4 + or the oxyanion vanadate polymerized to decavanadate. The results demonstrate similar effectors of the respiration-induced yPTP as those previously described for the ATP-induced yPTP and reconcile previous strain-dependent differences in yPTP solute selectivity. Copyright © 2013 John Wiley & Sons, Ltd.
Cell cycle-regulated proteolysis of mitotic target proteins.
Bastians, H; Topper, L M; Gorbsky, G L; Ruderman, J V
1999-11-01
The ubiquitin-dependent proteolysis of mitotic cyclin B, which is catalyzed by the anaphase-promoting complex/cyclosome (APC/C) and ubiquitin-conjugating enzyme H10 (UbcH10), begins around the time of the metaphase-anaphase transition and continues through G1 phase of the next cell cycle. We have used cell-free systems from mammalian somatic cells collected at different cell cycle stages (G0, G1, S, G2, and M) to investigate the regulated degradation of four targets of the mitotic destruction machinery: cyclins A and B, geminin H (an inhibitor of S phase identified in Xenopus), and Cut2p (an inhibitor of anaphase onset identified in fission yeast). All four are degraded by G1 extracts but not by extracts of S phase cells. Maintenance of destruction during G1 requires the activity of a PP2A-like phosphatase. Destruction of each target is dependent on the presence of an N-terminal destruction box motif, is accelerated by additional wild-type UbcH10 and is blocked by dominant negative UbcH10. Destruction of each is terminated by a dominant activity that appears in nuclei near the start of S phase. Previous work indicates that the APC/C-dependent destruction of anaphase inhibitors is activated after chromosome alignment at the metaphase plate. In support of this, we show that addition of dominant negative UbcH10 to G1 extracts blocks destruction of the yeast anaphase inhibitor Cut2p in vitro, and injection of dominant negative UbcH10 blocks anaphase onset in vivo. Finally, we report that injection of dominant negative Ubc3/Cdc34, whose role in G1-S control is well established and has been implicated in kinetochore function during mitosis in yeast, dramatically interferes with congression of chromosomes to the metaphase plate. These results demonstrate that the regulated ubiquitination and destruction of critical mitotic proteins is highly conserved from yeast to humans.
Distribution of dimorphic yeast species in commercial extra virgin olive oil.
Zullo, B A; Cioccia, G; Ciafardini, G
2010-12-01
Recent microbiological research has demonstrated the presence of a rich microflora mainly composed of yeasts in the suspended fraction of freshly produced olive oil. Some of the yeasts are considered useful as they improve the organoleptic characteristics of the oil during preservation, whereas others are considered harmful as they can damage the quality of the oil through the hydrolysis of the triglycerides. However, some dimorphic species can also be found among the unwanted yeasts present in the oil, considered to be opportunistic pathogens to man as they have often been isolated from immunocompromised hospital patients. Present research demonstrates the presence of dimorphic yeast forms in 26% of the commercial extra virgin olive oil originating from different geographical areas, where the dimorphic yeasts are represented by 3-99.5% of the total yeasts. The classified isolates belonged to the opportunistic pathogen species Candida parapsilosis and Candida guilliermondii, while among the dimorphic yeasts considered not pathogenic to man, the Candida diddensiae species was highlighted for the first time in olive oil. The majority of the studied yeast strains resulted lipase positive, and can consequently negatively influence the oil quality through the hydrolysis of the triglycerides. Furthermore, all the strains showed a high level of affinity with some organic solvents and a differing production of biofilm in "vitro" corresponded to a greater or lesser hydrophobia of their cells. Laboratory trials indicated that the dimorphic yeasts studied are sensitive towards some components of the oil among which oleic acid, linoleic acid and triolein, whereas a less inhibiting effect was observed with tricaprilin or when the total polyphenols extracted from the oil were used. The observations carried out on a scanning electron microscope (SEM), demonstrated the production of long un-branched pseudohyphae in all the tested dimorphic yeasts when cultivated on nutrient-deficient substrates. Copyright © 2010 Elsevier Ltd. All rights reserved.
The effect of yeast weight and temperature on ethanol production from sorghum and iles-iles flour
NASA Astrophysics Data System (ADS)
Kusmiyati, Shitophyta, Lukhi Mulia
2015-12-01
An increased of human need that spend a lot of energy, especially fuel resulting in excessive energy consumption. Therefore, the existence of alternative energy that renewable and environmentally friendly, such as bioethanol is required. In this study the use of sorghum and iles-iles as raw materials for bioethanol production were investigated. The variables studied were the saccharification time, weight of dry yeast Saccharomyces cerevisiae added in the starter culture (2.5, 5, 10, 15, 20 g) and fermentation temperature (30, 35, 40, 45, 50°C). Bioethanol production consisted of the enzymatic hydrolysis (liquefaction and saccharification), and fermentation. For liquefaction, 1.6% v/w α-amylase enzyme, 1 hour, T = 95-100° C, pH 6 were used. For saccharification, 3.2% v/w b-amylase enzyme, time 4,8,24,48 hours, T = 60°C, pH 5 were used. For fermentation, Saccharomyces cerevisiae yeast were used with conditions of time for 120 hours, pH 4.5. The effect of dry yeast weight and fermentation temperature indicated that 15 g yeast weight and temperature 30° C were found to be the best condition which resulted the highest ethanol concentration of 85.20 g/L and 79.94 g/L for sorghum and iles-iles flour, respectively.
Zhao, X Q; Xue, C; Ge, X M; Yuan, W J; Wang, J Y; Bai, F W
2009-01-01
The effects of zinc supplementation were investigated in the continuous ethanol fermentation using self-flocculating yeast. Zinc sulfate was added at the concentrations of 0.01, 0.05 and 0.1 g l(-1), respectively. Reduced average floc sizes were observed in all the zinc-supplemented cultures. Both the ethanol tolerance and thermal tolerance were significantly improved by zinc supplements, which correlated well with the increased ergosterol and trehalose contents in the yeast flocs. The highest ethanol concentration by 0.05 g l(-1) zinc sulfate supplementation attained 114.5 g l(-1), in contrast to 104.1 g l(-1) in the control culture. Glycerol production was decreased by zinc supplementations, with the lowest level 3.21 g l(-1), about 58% of the control. Zinc content in yeast cells was about 1.4 microMol g(-1) dry cell weight, about sixfold higher than that of control in all the zinc-supplemented cultures, and close correlation of zinc content in yeast cells with the cell viability against ethanol and heat shock treatment was observed. These studies suggest that exogenous zinc addition led to a reprogramming of cellular metabolic network, resulting in enhanced ethanol tolerance and ethanol production.
Dongari-Bagtzoglou, A; Kashleva, H
2003-06-01
Candida albicans is the principal fungal species responsible for oropharyngeal candidiasis, the most frequent opportunistic infection associated with immune deficiencies. Cytokines, such as granulocyte-macrophage colony-stimulating factor (GM-CSF), are important in the generation of effective immunity to C. albicans. The purposes of this investigation were to determine whether C. albicans triggers secretion of GM-CSF by oral epithelial cells in vitro and to investigate mechanisms of host cell-fungal interactions that trigger such responses. Oral epithelial cell lines as well as primary oral mucosal epithelial cells were challenged with stationary phase viable C. albicans, added to human cell cultures at varying yeast:oral cell ratios. Yeast were allowed to germinate for up to 48 h and supernatants were analyzed for GM-CSF by ELISA. Fixed organisms, germination-deficient mutants and separation of yeast from epithelial cells using cell culture inserts were used to assess the effects of viability, germination and physical contact, respectively, on the GM-CSF responses of these cells. Two out of three cell lines and three out of six primary cultures responded to C. albicans with an increase in GM-CSF secretion. GM-CSF responses were contact-dependent, strain-dependent, required yeast viability and were optimal when the yeast germinated into hyphae.
Harmonic generation by yeast cells in response to low-frequency electric fields
NASA Astrophysics Data System (ADS)
Nawarathna, D.; Claycomb, J. R.; Cardenas, G.; Gardner, J.; Warmflash, D.; Miller, J. H., Jr.; Widger, W. R.
2006-05-01
We report on harmonic generation by budding yeast cells (Saccharomyces cerevisiae, 108cells/ml ) in response to sinusoidal electric fields with amplitudes ranging from zero to 5V/cm in the frequency range 10-300Hz . The cell-generated harmonics are found to exhibit strong amplitude and frequency dependence. Sodium metavanadate, an inhibitor of the proton pump known as H+ -ATPase, and glucose, a substrate of H+ -ATPase, are found to increase harmonic production at low amplitudes while reducing it at large amplitudes. This P-type proton pump can be driven by an oscillatory transmembrane potential, and its nonlinear response is believed to be largely responsible for harmonic production at low frequencies in yeast cells. We find that the observed harmonics show dramatic changes with time and in their field and frequency dependence after perturbing the system by adding an inhibitor, substrate, or membrane depolarizer to the cell suspension.
Almeida, Catia Amancio; de Campos-Takaki, Galba Maria; Portela, Maristela Barbosa; Travassos, Luiz R; Alviano, Celuta Sales; Alviano, Daniela Sales
2013-10-01
The possible role of sialic acids in host cells-fungi interaction and their association with glycoproteins were evaluated using a clinical isolate of the dimorphic fungus Mucor polymorphosporus. Lectin-binding assays with spores and yeast cells denoted the presence of surface sialoglycoconjugates containing 2,3- and 2,6-linked sialylglycosyl groups. Western blotting with peroxidase-labeled Limulus polyphemus agglutinin revealed the occurrence of different sialoglycoprotein types in both cell lysates and cell wall protein extracts of mycelia, spores, and yeasts of M. polymorphosporus. Sialic acids contributed to the surface negative charge of spores and yeast forms as evaluated by adherence to a cationic substrate. Sialidase-treated spores were less resistant to phagocytosis by human neutrophils and monocytes from healthy individuals than control (untreated) fungal suspensions. The results suggest that sialic acids are terminal units of various glycoproteins of M. polymorphosporus, contributing to negative charge of yeasts and spore cells and protecting infectious propagules from destruction by host cells.
One-Cell Doubling Evaluation by Living Arrays of Yeast, ODELAY!
Herricks, Thurston; Dilworth, David J.; Mast, Fred D.; ...
2016-11-16
Cell growth is a complex phenotype widely used in systems biology to gauge the impact of genetic and environmental perturbations. Due to the magnitude of genome-wide studies, resolution is often sacrificed in favor of throughput, creating a demand for scalable, time-resolved, quantitative methods of growth assessment. We present ODELAY (One-cell Doubling Evaluation by Living Arrays of Yeast), an automated and scalable growth analysis platform. High measurement density and single-cell resolution provide a powerful tool for large-scale multiparameter growth analysis based on the modeling of microcolony expansion on solid media. Pioneered in yeast but applicable to other colony forming organisms, ODELAYmore » extracts the three key growth parameters (lag time, doubling time, and carrying capacity) that define microcolony expansion from single cells, simultaneously permitting the assessment of population heterogeneity. The utility of ODELAY is illustrated using yeast mutants, revealing a spectrum of phenotypes arising from single and combinatorial growth parameter perturbations.« less
One-Cell Doubling Evaluation by Living Arrays of Yeast, ODELAY!
DOE Office of Scientific and Technical Information (OSTI.GOV)
Herricks, Thurston; Dilworth, David J.; Mast, Fred D.
Cell growth is a complex phenotype widely used in systems biology to gauge the impact of genetic and environmental perturbations. Due to the magnitude of genome-wide studies, resolution is often sacrificed in favor of throughput, creating a demand for scalable, time-resolved, quantitative methods of growth assessment. We present ODELAY (One-cell Doubling Evaluation by Living Arrays of Yeast), an automated and scalable growth analysis platform. High measurement density and single-cell resolution provide a powerful tool for large-scale multiparameter growth analysis based on the modeling of microcolony expansion on solid media. Pioneered in yeast but applicable to other colony forming organisms, ODELAYmore » extracts the three key growth parameters (lag time, doubling time, and carrying capacity) that define microcolony expansion from single cells, simultaneously permitting the assessment of population heterogeneity. The utility of ODELAY is illustrated using yeast mutants, revealing a spectrum of phenotypes arising from single and combinatorial growth parameter perturbations.« less
Cheirsilp, Benjamas; Louhasakul, Yasmi
2013-08-01
Two strategies of converting industrial wastes to microbial lipid and direct transesterification of obtained lipid into biodiesel were attempted. Several oleaginous yeasts were cultivated on industrial wastes. The yeasts grew well on the wastes with low C/N ratio (i.e. serum latex) but accumulated high lipid content only when the wastes had a high C/N ratio (i.e. palm oil mill effluent and crude glycerol). The yeast lipids have similar fatty acid composition to that of plant oil indicating their potential use as biodiesel feedstocks. The combination of these wastes and two-phase cultivation for cell growth and lipid accumulation improved lipid productivity of the selected yeast. The direct transesterification process that eliminates cell drying and lipid extraction steps, gave comparable yield of biodiesel (fatty acid methyl ester >70% within 1h) to that of conventional method. These two successful strategies may contribute greatly to industrializing oil production from microbes and industrial wastes. Copyright © 2013 Elsevier Ltd. All rights reserved.
Detection of the osmoregulator betaine in methanogens.
Robertson, D E; Noll, D; Roberts, M F; Menaia, J A; Boone, D R
1990-02-01
Trimethyl glycine (glycine betaine) was detected by 13C nuclear magnetic resonance spectroscopy at high intracellular concentrations in several methanogens (Methanogenium cariaci, "Methanogenium anulus" AN9, Methanohalophilus zhilinae, Methanohalophilus mahii, and Methanococcus voltae) grown on marine media containing yeast extract. 13C labeling studies with Methanogenium cariaci suggested that the betaine which accumulated inside the cells was not synthesized de novo but was transported in from the medium. Proof of such a transport system was provided by growing Methanogenium cariaci on yeast-free medium supplemented with betaine. Under these conditions, betaine was the dominant osmoregulator.
Leite, Tonny Cley Campos; de Sena, Amanda Reges; dos Santos Silva, Tânia Regina; dos Santos, Andrea Karla Almeida; Uetanabaro, Ana Paula Trovatti; Branco, Alexsandro
2012-01-01
Background: Marcetia genera currently comprises 29 species, with approximately 90% inhabiting Bahia (Brazil), and most are endemic to the highlands of the Chapada Diamantina (Bahia). Among the species, only M. taxifolia (A.St.-Hil.) DC. populates Brazil (state of Roraima to Paraná) and also Venezuela, Colombia, and Guyana. Objective: This work evaluated the antimicrobial activity of hexane, ethyl acetate, and methanol extracts of three species of Marcetia (Marcetia canescens Naud., M. macrophylla Wurdack, and M. taxifolia A.StHil) against several microorganism. In addition, the flavonoids were analyzed in extracts by HPLC-DAD. Materials and methods: The tests were made using Gram-positive (three strains of Staphylococcus aureus) and Gram-negative (two strains of Escherichia coli, a strain of Pseudomonas aeruginosa and another of Salmonella choleraesius) bacteria resistant and nonresistant to antibiotics and yeasts (two strains of Candida albicans and one of C. parapsilosis) by the disk diffusion method. Solid-phase extraction (SPE) was performed on the above extracts to isolate flavonoids, which were subsequently analyzed by high performance liquid chromatography coupled diode array detector (HPLC-DAD). Results: Results showed that extracts inhibited the Gram-positive bacteria and yeast. The hexane extracts possessed the lowest activity, while the ethyl acetate and methanolic extracts were more active. Conclusion: Marcetia taxifolia was more effective (active against 10 microorganisms studied), and only its methanol extract inhibited Gram-negative bacteria (P. aeruginosa and S. choleraesius). SPE and HPLC-DAD analysis showed that M. canescens and M. macrophylla contain glycosylated flavonoids, while the majority of extracts from M. taxifolia were aglycone flavonoids. PMID:23060695
dos Santos, Elisane Odriosolla; Michelon, Mariano; Furlong, Eliana Badiale; Burkert, Janaína Fernandes de Medeiros; Kalil, Susana Juliano; Burkert, Carlos André Veiga
2012-01-01
The work herewith investigated the production of yeast biomass as a source of protein, using Yarrowia lipolytica NRRL YB-423 and raw glycerol from biodiesel synthesis as the main carbon source. A significant influence of glycerol concentration, initial pH and yeast extract concentration on biomass and protein content was observed according to the 2v5-1 fractional design. These factors were further evaluated using a central composite design and response surface methodology, and an empirical model for protein content was established and validated. The biomass of Yarrowia lipolytica NRRL YB-423 reached 19.5 ± 1.0 g/L in shaken flasks cultivation, with a protein content of 20.1 ± 0.6% (w/w). PMID:24031849
Alcohol Dehydrogenase Activities of Wine Yeasts in Relation to Higher Alcohol Formation
Singh, Rajendra; Kunkee, Ralph E.
1976-01-01
Alcohol dehydrogenase activities were examined in cell-free extracts of 10 representative wine yeast strains having various productivities of higher alcohols (fusel oil). The amount of fusel alcohols (n-propanol, isobutanol, active pentanol, and isopentanol) produced by the different yeasts and the specific alcohol dehydrogenase activities with the corresponding alcohols as substrates were found to be significantly related. No such relationship was found for ethanol. The amounts of higher alcohols formed during vinification could be predicted from the specific activities of the alcohol dehydrogenases with high accuracy. The results suggest a close relationship between the control of the activities of alcohol dehydrogenase and the formation of fusel oil alcohols. Also, new procedures for the prediction of higher alcohol formation during alcoholic beverage fermentation are suggested. PMID:16345179
Functional expression of amine oxidase from Aspergillus niger (AO-I) in Saccharomyces cerevisiae.
Kolaríková, Katerina; Galuszka, Petr; Sedlárová, Iva; Sebela, Marek; Frébort, Ivo
2009-01-01
The aim of this work was to prepare recombinant amine oxidase from Aspergillus niger after overexpressing in yeast. The yeast expression vector pDR197 that includes a constitutive PMA1 promoter was used for the expression in Saccharomyces cerevisiae. Recombinant amine oxidase was extracted from the growth medium of the yeast, purified to homogeneity and identified by activity assay and MALDI-TOF peptide mass fingerprinting. Similarity search in the newly published A. niger genome identified six genes coding for copper amine oxidase, two of them corresponding to the previously described enzymes AO-I a methylamine oxidase and three other genes coding for FAD amine oxidases. Thus, A. niger possesses an enormous metabolic gear to grow on amine compounds and thus support its saprophytic lifestyle.
USDA-ARS?s Scientific Manuscript database
Antibiotic resistance is forcing us to revisit when, where, how and how much we use antibiotics. Bacteriophage endolysins show great promise as alternative antimicrobials with the added advantage that they are highly refractory to resistance development. As protein antimicrobials, there are hurdle...
Potential of Glycosidase from Non-Saccharomyces Isolates for Enhancement of Wine Aroma.
Hu, Kai; Qin, Yi; Tao, Yong-Sheng; Zhu, Xiao-Lin; Peng, Chuan-Tao; Ullah, Niamat
2016-04-01
The aim of this work was to rapidly screen indigenous yeasts with high levels of β-glucosidase activity and assess the potential of glycosidase extracts for aroma enhancement in winemaking. A semiquantitative colorimetric assay was applied using 96-well plates to screen yeasts from 3 different regions of China. Isolates with high β-glucosidase activity were confirmed by the commonly used pNP assay. Among 493 non-Saccharomyces isolates belonging to 8 generas, 3 isolates were selected for their high levels of β-glucosidase activity and were identified as Hanseniaspora uvarum, Pichia membranifaciens, and Rhodotorula mucilaginosa by sequence analysis of the 26S rDNA D1/D2 domain. β-Glucosidase in the glycosidase extract from H. uvarum strain showed the highest activity in winemaking conditions among the selected isolates. For aroma enhancement in winemaking, the glycosidase extract from H. uvarum strain exhibited catalytic specificity for aromatic glycosides of C13 -norisoprenoids and some terpenes, enhancing fresh floral, sweet, berry, and nutty aroma characteristics in wine. © 2016 Institute of Food Technologists®
WATANABE, Shion; KOIKE, Anna; KANO, Rui; NAGATA, Masahiko; CHEN, Charles; HWANG, Cheol-Yong; HASEGAWA, Atsuhiko; KAMATA, Hiroshi
2013-01-01
ABSTRACT Topical or oral azole antifungals are commonly used in canine atopic dermatitis (AD), as the lipophilic yeast Malassezia pachydermatis exacerbates canine AD. To examine whether canine AD lesions harbor azole-resistant M. pachydermatis isolates in East Asia, we investigated the in vitro susceptibility of M. pachydermatis isolates to ketoconazole (KTZ) and itraconazole (ITZ) obtained from AD lesions of canines in Japan, Korea and Taiwan. The minimum inhibitory concentrations (MICs) of KTZ and ITZ were measured by the E-test using Sabouraud dextrose agar with 0.5% Tween 40. The MICs of KTZ and ITZ for isolates from canines with AD were significantly higher than the MICs for isolates from healthy canines. Our findings suggested that the clinical isolates from canine AD skin lesions were less susceptible to azoles than those from normal canine skin in East Asia. PMID:24334863
Watanabe, Shion; Koike, Anna; Kano, Rui; Nagata, Masahiko; Chen, Charles; Hwang, Cheol-Yong; Hasegawa, Atsuhiko; Kamata, Hiroshi
2014-04-01
Topical or oral azole antifungals are commonly used in canine atopic dermatitis (AD), as the lipophilic yeast Malassezia pachydermatis exacerbates canine AD. To examine whether canine AD lesions harbor azole-resistant M. pachydermatis isolates in East Asia, we investigated the in vitro susceptibility of M. pachydermatis isolates to ketoconazole (KTZ) and itraconazole (ITZ) obtained from AD lesions of canines in Japan, Korea and Taiwan. The minimum inhibitory concentrations (MICs) of KTZ and ITZ were measured by the E-test using Sabouraud dextrose agar with 0.5% Tween 40. The MICs of KTZ and ITZ for isolates from canines with AD were significantly higher than the MICs for isolates from healthy canines. Our findings suggested that the clinical isolates from canine AD skin lesions were less susceptible to azoles than those from normal canine skin in East Asia.
Antimicrobial activity of Gentiana lutea L. extracts.
Savikin, Katarina; Menković, Nebojsa; Zdunić, Gordana; Stević, Tatjana; Radanović, Dragoja; Janković, Teodora
2009-01-01
Methanolic extracts of flowers and leaves of Gentiana lutea L., together with the isolated compounds mangiferin, isogentisin and gentiopicrin, were used to investigate the antimicrobial activity of the plant. A variety of Gram-positive and Gram-negative bacteria as well as the yeast Candida albicans has been included in this study. Both extracts and isolated compounds showed antimicrobial activity with MIC values ranging from 0.12-0.31 mg/ml. Our study indicated that the synergistic activity of the pure compounds may be responsible for the good antimicrobial effect of the extracts. Quantification of the secondary metabolites was performed using HPLC.
Production of bioethanol from effluents of the dairy industry by Kluyveromyces marxianus.
Zoppellari, Francesca; Bardi, Laura
2013-09-25
Whey and scotta are effluents coming from cheese and ricotta processing respectively. Whey contains minerals, lipids, lactose and proteins; scotta contains mainly lactose. Whey can be reused in several ways, such as protein extraction or animal feeding, while nowadays scotta is just considered as a waste; moreover, due to very high volumes of whey produced in the world, it poses serious environmental and disposal problems. Alternative destinations of these effluents, such as biotechnological transformations, can be a way to reach both goals of improving the added value of the agroindustrial processes and reducing their environmental impact. In this work we investigated the way to produce bioethanol from lactose of whey and scotta and to optimize the fermentation yields. Kluyveromyces marxianus var. marxianus was chosen as lactose-fermenting yeast. Batch, aerobic and anaerobic, fermentations and semicontinuous fermentations in dispersed phase and in packed bed reactor were carried out of row whey, scotta and mix 1:1 whey:scotta at a laboratory scale. Different temperatures (28-40°C) were also tested to check whether the thermotolerance of the chosen yeast could be useful to improve the ethanol yield. The best performances were reached at low temperatures (28°C); high temperatures are also compatible with good ethanol yields in whey fermentations, but not in scotta fermentations. Semicontinuous fermentations in dispersed phase gave the best fermentation performances, particularly with scotta. Then both effluents can be considered suitable for ethanol production. The good yields obtained from scotta allow us to transform this waste in a source. Copyright © 2012 Elsevier B.V. All rights reserved.
Yang, Jinlong; Cheng, Yichao; Zhu, Yuanyuan; Zhu, Junjun; Chen, Tingting; Xu, Yong; Yong, Qiang; Yu, Shiyuan
2016-02-01
Lignin degradation products are toxic to microorganisms, which is one of the bottlenecks for fuel ethanol production. We studied the effects of phenolic ketones (4-hydroxyacetophenone, 4-hydroxy-3-methoxy-acetophenone and 4-hydroxy-3,5-dimethoxy-acetophenone) derived from lignin degradation on ethanol fermentation of xylose and cellular lipid composition of Pichia stipitis NLP31. Ethanol and the cellular fatty acid of yeast were analyzed by high performance liquid chromatography (HPLC) and gas chromatography/mass spectrometry (GC/MS). Results indicate that phenolic ketones negatively affected ethanol fermentation of yeast and the lower molecular weight phenolic ketone compound was more toxic. When the concentration of 4-hydroxyacetophenone was 1.5 g/L, at fermentation of 24 h, the xylose utilization ratio, ethanol yield and ethanol concentration decreased by 42.47%, 5.30% and 9.76 g/L, respectively, compared to the control. When phenolic ketones were in the medium, the ratio of unsaturated fatty acids to saturated fatty acids (UFA/SFA) of yeast cells was improved. When 1.5 g/L of three aforementioned phenolic ketones was added to the fermentation medium, the UFA/SFA ratio of yeast cells increased to 3.03, 3.06 and 3.61, respectively, compared to 2.58 of the control, which increased cell membrane fluidity and instability. Therefore, phenolic ketones can reduce the yeast growth, increase the UFA/SFA ratio of yeast and lower ethanol productivity. Effectively reduce or remove the content of lignin degradation products is the key to improve lignocellulose biorefinery.
Rigby, Susan; Procop, Gary W.; Haase, Gerhard; Wilson, Deborah; Hall, Geraldine; Kurtzman, Cletus; Oliveira, Kenneth; Von Oy, Sabina; Hyldig-Nielsen, Jens J.; Coull, James; Stender, Henrik
2002-01-01
A new fluorescence in situ hybridization (FISH) method that uses peptide nucleic acid (PNA) probes for identification of Candida albicans directly from positive-blood-culture bottles in which yeast was observed by Gram staining (herein referred to as yeast-positive blood culture bottles) is described. The test (the C. albicans PNA FISH method) is based on a fluorescein-labeled PNA probe that targets C. albicans 26S rRNA. The PNA probe is added to smears made directly from the contents of the blood culture bottle and hybridized for 90 min at 55°C. Unhybridized PNA probe is removed by washing of the mixture (30 min), and the smears are examined by fluorescence microscopy. The specificity of the method was confirmed with 23 reference strains representing phylogenetically related yeast species and 148 clinical isolates covering the clinically most significant yeast species, including C. albicans (n = 72), C. dubliniensis (n = 58), C. glabrata (n = 5), C. krusei (n = 2), C. parapsilosis (n = 4), and C. tropicalis (n = 3). The performance of the C. albicans PNA FISH method as a diagnostic test was evaluated with 33 routine and 25 simulated yeast-positive blood culture bottles and showed 100% sensitivity and 100% specificity. It is concluded that this 2.5-h method for the definitive identification of C. albicans directly from yeast-positive blood culture bottles provides important information for optimal antifungal therapy and patient management. PMID:12037084
Mendes de Toledo, Cleyton Eduardo; Santos, Patrícia Regina; Palazzo de Mello, João Carlos; Dias Filho, Benedito Prado; Ueda-Nakamura, Tânia
2015-01-01
The ethnomedicinal plant Curatella americana L. (Dilleniaceae) is a common shrub in the Brazilian cerrado, in which crude extract showed antifungal activity in a preliminary study. In this work, the antifungal and cytotoxic properties of the crude extract, fractions, and isolated compounds from C. americana were evaluated against the standard yeast strains Candida albicans, C. tropicalis, and C. parapsilosis, clinical isolates, and fluconazole-resistant strains. The combinatory effects between subfractions and isolated compounds and effects on cell morphology, virulence factors, and exogenous ergosterol were also evaluated. The MIC obtained against the Candida species including fluconazole-resistant strain ranged from 15.3 to 31.3 µg/mL for crude extract, 3.9 to 15.6 µg/mL for ethyl acetate fraction, and 7.8 to 31.3 µg/mL for subfractions. The isolated compounds identified as 4′-O-methyl-catechin, epicatechin-3-O-gallate, and 4′-O-methyl-catechin-3-O-gallate showed lower antifungal activity than the crude extract and fractions (MIC ranging from 31.3 to 125.0 µg/mL). The addition of exogenous ergosterol to yeast culture did not interfere in the antifungal activity of the extract and its fractions. Synergistic antifungal activity was observed between subfractions and isolated compounds. The effects on virulence factors and the different mechanisms of action compared to fluconazole and nystatin suggest that this ethnomedicinal plant may be an effective alternative treatment for candidiasis. PMID:26347790
Classification of yeast cells from image features to evaluate pathogen conditions
NASA Astrophysics Data System (ADS)
van der Putten, Peter; Bertens, Laura; Liu, Jinshuo; Hagen, Ferry; Boekhout, Teun; Verbeek, Fons J.
2007-01-01
Morphometrics from images, image analysis, may reveal differences between classes of objects present in the images. We have performed an image-features-based classification for the pathogenic yeast Cryptococcus neoformans. Building and analyzing image collections from the yeast under different environmental or genetic conditions may help to diagnose a new "unseen" situation. Diagnosis here means that retrieval of the relevant information from the image collection is at hand each time a new "sample" is presented. The basidiomycetous yeast Cryptococcus neoformans can cause infections such as meningitis or pneumonia. The presence of an extra-cellular capsule is known to be related to virulence. This paper reports on the approach towards developing classifiers for detecting potentially more or less virulent cells in a sample, i.e. an image, by using a range of features derived from the shape or density distribution. The classifier can henceforth be used for automating screening and annotating existing image collections. In addition we will present our methods for creating samples, collecting images, image preprocessing, identifying "yeast cells" and creating feature extraction from the images. We compare various expertise based and fully automated methods of feature selection and benchmark a range of classification algorithms and illustrate successful application to this particular domain.
A mitochondria-dependent pathway mediates the apoptosis of GSE-induced yeast.
Cao, Sishuo; Xu, Wentao; Zhang, Nan; Wang, Yan; Luo, YunBo; He, Xiaoyun; Huang, Kunlun
2012-01-01
Grapefruit seed extract (GSE), which has powerful anti-fungal activity, can induce apoptosis in S. cerevisiae. The yeast cells underwent apoptosis as determined by testing for apoptotic markers of DNA cleavage and typical chromatin condensation by Terminal Deoxynucleotidyl Transferase-mediated dUTP Nick End Labeling (TUNEL) and 4,6'-diaminidino-2-phenylindole (DAPI) staining and electron microscopy. The changes of ΔΨmt (mitochondrial transmembrane potential) and ROS (reactive oxygen species) indicated that the mitochondria took part in the apoptotic process. Changes in this process detected by metabonomics and proteomics revealed that the yeast cells tenaciously resisted adversity. Proteins related to redox, cellular structure, membrane, energy and DNA repair were significantly increased. In this study, the relative changes in the levels of proteins and metabolites showed the tenacious resistance of yeast cells. However, GSE induced apoptosis in the yeast cells by destruction of the mitochondrial 60 S ribosomal protein, L14-A, and prevented the conversion of pantothenic acid to coenzyme A (CoA). The relationship between the proteins and metabolites was analyzed by orthogonal projections to latent structures (OPLS). We found that the changes of the metabolites and the protein changes had relevant consistency.
A Mitochondria-Dependent Pathway Mediates the Apoptosis of GSE-Induced Yeast
Cao, Sishuo; Xu, Wentao; Zhang, Nan; Wang, Yan; Luo, YunBo; He, Xiaoyun; Huang, Kunlun
2012-01-01
Grapefruit seed extract (GSE), which has powerful anti-fungal activity, can induce apoptosis in S. cerevisiae. The yeast cells underwent apoptosis as determined by testing for apoptotic markers of DNA cleavage and typical chromatin condensation by Terminal Deoxynucleotidyl Transferase–mediated dUTP Nick End Labeling (TUNEL) and 4,6′-diaminidino-2-phenylindole (DAPI) staining and electron microscopy. The changes of ΔΨmt (mitochondrial transmembrane potential) and ROS (reactive oxygen species) indicated that the mitochondria took part in the apoptotic process. Changes in this process detected by metabonomics and proteomics revealed that the yeast cells tenaciously resisted adversity. Proteins related to redox, cellular structure, membrane, energy and DNA repair were significantly increased. In this study, the relative changes in the levels of proteins and metabolites showed the tenacious resistance of yeast cells. However, GSE induced apoptosis in the yeast cells by destruction of the mitochondrial 60 S ribosomal protein, L14-A, and prevented the conversion of pantothenic acid to coenzyme A (CoA). The relationship between the proteins and metabolites was analyzed by orthogonal projections to latent structures (OPLS). We found that the changes of the metabolites and the protein changes had relevant consistency. PMID:22403727
Synthesis of Melanin-Like Pigments by Sporothrix schenckii In Vitro and during Mammalian Infection
Morris-Jones, Rachael; Youngchim, Sirida; Gomez, Beatriz L.; Aisen, Phil; Hay, Roderick J.; Nosanchuk, Joshua D.; Casadevall, Arturo; Hamilton, Andrew J.
2003-01-01
Melanin has been implicated in the pathogenesis of several important human fungal pathogens. Existing data suggest that the conidia of the dimorphic fungal pathogen Sporothrix schenckii produce melanin or melanin-like compounds; in this study we aimed to confirm this suggestion and to demonstrate in vitro and in vivo production of melanin by yeast cells. S. schenckii grown on Mycosel agar produced visibly pigmented conidia, although yeast cells grown in brain heart infusion and minimal medium broth appeared to be nonpigmented macroscopically. However, treatment of both conidia and yeast cells with proteolytic enzymes, denaturant, and concentrated hot acid yielded dark particles similar in shape and size to the corresponding propagules, which were stable free radicals consistent with identification as melanins. Melanin particles extracted from S. schenckii yeast cells were used to produce a panel of murine monoclonal antibodies (MAbs) which labeled pigmented conidia, yeast cells, and the isolated particles. Tissue from hamster testicles infected with S. schenckii contained fungal cells that were labeled by melanin-binding MAbs, and digestion of infected hamster tissue yielded dark particles that were also reactive. Additionally, sera from humans with sporotrichosis contained antibodies that bound melanin particles. These findings indicate that S. schenckii conidia and yeast cells can produce melanin or melanin-like compounds in vitro and that yeast cells can synthesize pigment in vivo. Since melanin is an important virulence factor in other pathogenic fungi, this pigment may have a similar role in the pathogenesis of sporotrichosis. PMID:12819091
Ryu, Young-Hyo; Kim, Yong-Hee; Lee, Jin-Young; Shim, Gun-Bo; Uhm, Han-Sup; Park, Gyungsoon; Choi, Eun Ha
2013-01-01
Non-thermal plasma at atmospheric pressure has been actively applied to sterilization. However, its efficiency for inactivating microorganisms often varies depending on microbial species and environments surrounding the microorganisms. We investigated the influence of environmental factors (surrounding media) on the efficiency of microbial inactivation by plasma using an eukaryotic model microbe, Saccharomyces cerevisiae, to elucidate the mechanisms for differential efficiency of sterilization by plasma. Yeast cells treated with plasma in water showed the most severe damage in viability and cell morphology as well as damage to membrane lipids, and genomic DNA. Cells in saline were less damaged compared to those in water, and those in YPD (Yeast extract, Peptone, Dextrose) were least impaired. HOG1 mitogen activated protein kinase was activated in cells exposed to plasma in water and saline. Inactivation of yeast cells in water and saline was due to the acidification of the solutions by plasma, but higher survival of yeast cells treated in saline may have resulted from the additional effect related to salt strength. Levels of hydroxyl radical (OH.) produced by plasma were the highest in water and the lowest in YPD. This may have resulted in differential inactivation of yeast cells in water, saline, and YPD by plasma. Taken together, our data suggest that the surrounding media (environment) can crucially affect the outcomes of yeast cell plasma treatment because plasma modulates vital properties of media, and the toxic nature of plasma can also be altered by the surrounding media. PMID:23799081
Antimicrobial activity of some Pacific Northwest woods against anaerobic bacteria and yeast.
Johnston, W H; Karchesy, J J; Constantine, G H; Craig, A M
2001-11-01
Extracts of woods commonly used for animal bedding were tested for antimicrobial activity. Essential oils from Alaska cedar (Chamaecyparis nootkatensis), western juniper (Juniperus occidentalis) and old growth Douglas fir (Pseudotsuga menziesii) as well as methanol extracts of wood from these trees plus western red cedar (Thuja plicata) and ponderosa pine (Pinus ponderosa) were tested for antimicrobial activity against anaerobic bacteria and yeast. The test microbes included Fusobacterium necrophorum, Clostridium perfringens, Actinomyces bovis and Candida albicans which are common to foot diseases and other infections in animals. The essential oils and methanol extracts were tested using a standardized broth assay. Only extracts of Alaska cedar and western juniper showed significant antimicrobial activity against each of the microbes tested. The essential oil of Douglas fir did show antimicrobial activity against A. bovis at the concentrations tested. The methanol extracts of the heartwood of Douglas fir and the sapwood of ponderosa pine showed no antimicrobial activity. The major chemical components of western juniper (cedrol and alpha- and beta-cedrene) and Alaska cedar (nootkatin) were also tested. In western juniper, alpha- and beta-cedrene were found to be active components. Nootkatin showed activity only against C. albicans. The inhibitory activity in Alaska cedar oil was high enough to justify further efforts to define the other chemical components responsible for the antimicrobial activity. Copyright 2001 John Wiley & Sons, Ltd.
ERIC Educational Resources Information Center
School Science Review, 1982
1982-01-01
Describes laboratory procedures, demonstrations, and classroom materials, including "diet poker" (nutrition game); an experiment on enzyme characteristics; demonstrations of yeast anaerobic respiration and color preference in Calliphora larvae; method to extract eugenol from clove oil to show antibiotic properties; and Benedict's test.…
21 CFR 155.120 - Canned green beans and canned wax beans.
Code of Federal Regulations, 2011 CFR
2011-04-01
...) Disodium inosinate. (iv) Disodium guanylate. (v) Hydrolyzed vegetable protein. (vi) Autolyzed yeast extract... pack”, or if the pods are cut at both ends and are of substantially equal lengths, the words “asparagus...
Fuel ethanol production from Jerusalem artichoke stalks using different yeasts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Margaritis, A.; Bajpai, P.; Bajpai, P.K.
1983-01-01
The inulin-type sugars present in the stalks of Jerusalem artichoke (Helianthus tuberosus) were extracted with hot water and were used as a substrate to produce fuel EtOH. Seven different yeasts were used to obtain batch kinetic data. The medium consisted of stalk extract from Jerusalem artichoke containing 7.3% total sugars, supplemented with 0.01% oleic acid, 0.01% corn steep liquor, and 0.05% Tween 80. All batch fermentations were carried out in a 1-L bioreactor at 35 degrees and pH 4.6, and the following parameters were measured as a function of time: total sugars, EtOH and biomass concentration, maximum specific growth rate,more » and biomass and EtOH yields. The best EtOH producer was Kluyveromyces marxianus UCD (FST) 55-82 which gave an EtOH-to-sugar yield 97% of the theoretical maximum value, with almost 100% sugar utilization.« less
Mohamed, S; Flint, S; Palmer, J; Fletcher, G C; Pitt, J I
2013-09-01
A simple and rapid screening method was developed for the detection of citrinin in fungal cultures using Coconut Cream Agar (CCA) described previously for detecting aflatoxin and ochratoxin A. Fifteen isolates of Penicillium citrinum were inoculated onto CCA and incubated at 25 and 30°C for 10 days. All isolates produced a distinct yellow green fluorescence on CCA when the reverse side of the agar plates were viewed under long wavelength UV light. Detection was optimal at 25°C after four to 5 days of incubation. Isolates positive by the CCA method also tested positive for citrinin production by the TLC agar plug method after growth on CCA, Czapek yeast extract agar and yeast extract sucrose agar. Control cultures were negative by both methods, indicating that the CCA Petri dish method was suitable for screening cultures for citrinin production. © 2013 The Society for Applied Microbiology.
Shen, Naikun; Qin, Yan; Wang, Qingyan; Xie, Nengzhong; Mi, Huizhi; Zhu, Qixia; Liao, Siming; Huang, Ribo
2013-10-01
Succinic acid is an important C4 platform chemical in the synthesis of many commodity and special chemicals. In the present work, different compounds were evaluated for succinic acid production by Actinobacillus succinogenes GXAS 137. Important parameters were screened by the single factor experiment and Plackeet-Burman design. Subsequently, the highest production of succinic acid was approached by the path of steepest ascent. Then, the optimum values of the parameters were obtained by Box-Behnken design. The results show that the important parameters were glucose, yeast extract and MgCO3 concentrations. The optimum condition was as follows (g/L): glucose 70.00, yeast extract 9.20 and MgCO3 58.10. Succinic acid yield reached 47.64 g/L at the optimal condition. Succinic acid increased by 29.14% than that before the optimization (36.89 g/L). Response surface methodology was proven to be a powerful tool to optimize succinic acid production.
The xylooligosaccharide addition and sodium reduction in requeijão cremoso processed cheese.
Ferrão, Luana L; Ferreira, Marcus Vinícius S; Cavalcanti, Rodrigo N; Carvalho, Ana Flávia A; Pimentel, Tatiana C; Silva, Hugo L A; Silva, Ramon; Esmerino, Erick A; Neto, Roberto P C; Tavares, Maria Inês B; Freitas, Mônica Q; Menezes, Jaqueline C V; Cabral, Lúcio M; Moraes, Jeremias; Silva, Márcia C; Mathias, Simone P; Raices, Renata S L; Pastore, Gláucia M; Cruz, Adriano G
2018-05-01
The addition of xylooligosaccharide (XOS), sodium reduction and flavor enhancers (arginine and yeast extract) on the manufacture of requeijão cremoso processed cheese was investigated. The addition of XOS resulted in a denser and compact structure, with increased apparent viscosity, elasticity (G') and firmness (G*). The addition of XOS and yeast extract improved the rheological and physicochemical properties (decrease in viscosity and particle size and increase in melting rate) and sensory characteristics (improvement in salty and acid taste, greater homogeneity, and lower bitter taste). In addition, a positive effect of arginine was observed in the sensory characteristics of the requeijão cremoso processed cheese, but without improvements in the physicochemical and rheological characteristics. Overall, the XOS addition and sodium reduction proportionated the development of a healthier processed cheese formulation. Copyright © 2018 Elsevier Ltd. All rights reserved.
Sar, Taner; Stark, Benjamin C; Yesilcimen Akbas, Meltem
2017-03-04
Ethanol production from whey powder was investigated by using free as well as alginate immobilized E. coli and E. coli expressing Vitreoscilla hemoglobin (VHb) in both shake flask and fermenter cultures. Media with varying levels of whey (lactose contents of 3%, 5%, 8% or 15%) and yeast extract (0.3% or 0.5%) were evaluated with fermentation times of 48-96 h. Immobilization and VHb expression resulted in higher ethanol production with all media; the increases ranged from 2% to 89% for immobilization and from 2% to 182% for VHb expression. It was determined that growth medium containing 8% lactose with 0.5% yeast extract yielded the highest ethanol production for free or immobilized strains, with or without VHb expression, in both shake flask and fermenter cultures. Immobilization with alginate was found to be a promising process for ethanol production by VHb-expressing ethanologenic E. coli.
Sar, Taner; Stark, Benjamin C.; Yesilcimen Akbas, Meltem
2017-01-01
ABSTRACT Ethanol production from whey powder was investigated by using free as well as alginate immobilized E. coli and E. coli expressing Vitreoscilla hemoglobin (VHb) in both shake flask and fermenter cultures. Media with varying levels of whey (lactose contents of 3%, 5%, 8% or 15%) and yeast extract (0.3% or 0.5%) were evaluated with fermentation times of 48–96 h. Immobilization and VHb expression resulted in higher ethanol production with all media; the increases ranged from 2% to 89% for immobilization and from 2% to 182% for VHb expression. It was determined that growth medium containing 8% lactose with 0.5% yeast extract yielded the highest ethanol production for free or immobilized strains, with or without VHb expression, in both shake flask and fermenter cultures. Immobilization with alginate was found to be a promising process for ethanol production by VHb-expressing ethanologenic E. coli. PMID:27579556
NASA Astrophysics Data System (ADS)
Özdal, Murat; Özdal, Özlem Gür; Gürkök, Sümeyra
2017-04-01
β-carotene is a commercially important natural pigment and has been widely applied in the medicine, pharmaceutical, food, feed and cosmetic industries. The current study aimed to investigate the usability of molasses for β-carotene production by Arthrobacter agilis A17 (KP318146) and to optimize the production process. Box-Behnken Design of Response Surface Methodology was used to determine the optimum levels and the interactions of three independent variables namely molasses, yeast extract and KH2PO4 at three different levels. β-carotene yield in optimized medium containing 70 g/l molasses, 25 g/l yeast extract and 0.96 g/l KH2PO4, reached up to 100 mg/l, which is approximately 2.5-fold higher than the yield, obtained from control cultivation. A remarkable β-carotene production on inexpensive carbon source was achieved with the use of statistical optimization.
Hierarchic spatio-temporal dynamics in glycolysis
NASA Astrophysics Data System (ADS)
Shinjyo, Takahiro; Nakagawa, Yoshiyuki; Ueda, Tetsuo
Yeast extracts exhibit oscillations when the glycolytic system is far away from equilibrium. Spatio-temporal dynamics in this system was studied in the newly developed gel as well as in the solution. Small regions (about 10 um) with very complex shape with high or low concentrations of NADH appeared, and upon these small structures large-scale dynamics were superimposed. Concentration waves propagated, and the source of wave was induced by contact with high ADP. Sink of waves was generated by contacting the reaction gel to two small gels rich in ADP. Upon these spatio-temporal dynamics were superimposed much slower global oscillations throughout the system with a period of about 40 min. Similar dynamics was seen in a solution of yeast extract, but the size of domains was about ten times larger than that in the gel. In this way, the multi-enzyme system of glycolysis exhibits self-organization of hierarchy in spatio-temporal dynamics.
Ishikawa, Hiroshi; Kasahara, Kohei; Sato, Sumie; Shimakawa, Yasuhisa; Watanabe, Koichi
2014-05-16
Yeast contamination is a serious problem in the food industry and a major cause of food spoilage. Several yeasts, such as Filobasidiella neoformans, which cause cryptococcosis in humans, are also opportunistic pathogens, so a simple and rapid method for monitoring yeast contamination in food is essential. Here, we developed a simple and rapid method that utilizes loop-mediated isothermal amplification (LAMP) for the detection of F. neoformans. A set of five specific LAMP primers was designed that targeted the 5.8S-26S rDNA internal transcribed spacer 2 region of F. neoformans, and the primer set's specificity was confirmed. In a pure culture of F. neoformans, the LAMP assay had a lower sensitivity threshold of 10(2)cells/mL at a runtime of 60min. In a probiotic dairy product artificially contaminated with F. neoformans, the LAMP assay also had a lower sensitivity threshold of 10(2)cells/mL, which was comparable to the sensitivity of a quantitative PCR (qPCR) assay. We also developed a simple two-step method for the extraction of DNA from a probiotic dairy product that can be performed within 15min. This method involves initial protease treatment of the test sample at 45°C for 3min followed by boiling at 100°C for 5min under alkaline conditions. In a probiotic dairy product artificially contaminated with F. neoformans, analysis by means of our novel DNA extraction method followed by LAMP with our specific primer set had a lower sensitivity threshold of 10(3)cells/mL at a runtime of 60min. In contrast, use of our novel method of DNA extraction followed by qPCR assay had a lower sensitivity threshold of only 10(5)cells/mL at a runtime of 3 to 4h. Therefore, unlike the PCR assay, our LAMP assay can be used to quickly evaluate yeast contamination and is sensitive even for crude samples containing bacteria or background impurities. Our study provides a powerful tool for the primary screening of large numbers of food samples for yeast contamination. Copyright © 2014 Elsevier B.V. All rights reserved.
Synthesis of hydrophilic and hydrophobic carbon quantum dots from waste of wine fermentation
NASA Astrophysics Data System (ADS)
Varisco, Massimo; Zufferey, Denis; Ruggi, Albert; Zhang, Yucheng; Erni, Rolf; Mamula, Olimpia
2017-12-01
Wine lees are one of the main residues formed in vast quantities during the fermentation of wine. While toxic when applied to plants and wetlands, it is a biodegradable material, and several alternatives have been proposed for its valorization as: dietary supplement in animal feed, source for various yeast extracts and bioconversion feedstock. The implementation of stricter environment protection regulations resulted in increasing costs for wineries as their treatment process constitutes an unavoidable and expensive step in wine production. We propose here an alternative method to reduce waste and add value to wine production by exploiting this rich carbon source and use it as a raw material for producing carbon quantum dots (CQDs). A complete synthetic pathway is discussed, comprising the carbonization of the starting material, the screening of the most suitable solvent for the extraction of CQDs from the carbonized mass and their hydrophobic or hydrophilic functionalization. CQDs synthesized with the reported procedure show a bright blue emission (λmax = 433 ± 13 nm) when irradiated at 366 nm, which is strongly shifted when the wavelength is increased (e.g. emission at around 515 nm when excited at 460 nm). Yields and luminescent properties of CQDs, obtained with two different methods, namely microwave and ultrasound-based extraction, are discussed and compared. This study shows how easy a residue can be converted into an added-value material, thus not only reducing waste and saving costs for the wine-manufacturing industry but also providing a reliable, affordable and sustainable source for valuable materials.
Synthesis of hydrophilic and hydrophobic carbon quantum dots from waste of wine fermentation
Varisco, Massimo; Zufferey, Denis; Ruggi, Albert; Zhang, Yucheng; Erni, Rolf
2017-01-01
Wine lees are one of the main residues formed in vast quantities during the fermentation of wine. While toxic when applied to plants and wetlands, it is a biodegradable material, and several alternatives have been proposed for its valorization as: dietary supplement in animal feed, source for various yeast extracts and bioconversion feedstock. The implementation of stricter environment protection regulations resulted in increasing costs for wineries as their treatment process constitutes an unavoidable and expensive step in wine production. We propose here an alternative method to reduce waste and add value to wine production by exploiting this rich carbon source and use it as a raw material for producing carbon quantum dots (CQDs). A complete synthetic pathway is discussed, comprising the carbonization of the starting material, the screening of the most suitable solvent for the extraction of CQDs from the carbonized mass and their hydrophobic or hydrophilic functionalization. CQDs synthesized with the reported procedure show a bright blue emission (λmax = 433 ± 13 nm) when irradiated at 366 nm, which is strongly shifted when the wavelength is increased (e.g. emission at around 515 nm when excited at 460 nm). Yields and luminescent properties of CQDs, obtained with two different methods, namely microwave and ultrasound-based extraction, are discussed and compared. This study shows how easy a residue can be converted into an added-value material, thus not only reducing waste and saving costs for the wine-manufacturing industry but also providing a reliable, affordable and sustainable source for valuable materials. PMID:29308232
Hwang, Ko-Eun
2017-01-01
The effect of fermented spinach extracts on color development in cured meats was investigated in this study. The pH values of raw cured meats without addition of fermented spinach extract or nitrite (negative control) were higher (p<0.05) than those added with fermented spinach extract. The pH values of raw and cooked cured meats in treatment groups were decreased with increasing addition levels of fermented spinach extract. The lightness and yellowness values of raw cured meats formulated with fermented spinach extract were higher (p<0.05) than those of the control groups (both positive and negative controls). The redness values of cooked cured meats were increased with increasing fermented spinach extract levels, whereas the yellowness values of cooked cured meats were decreased with increasing levels of fermented spinach extract. The lowest volatile basic nitrogen (VBN) and thiobarbituric acid reactive substances (TBARS) values were observed in the positive control group with addition of nitrite. TBARS values of cured meats added with fermented spinach extract were decreased with increasing levels of fermented spinach extract and VBN values of curing meat with 30% fermented spinach extract was lower than the other treatments. Total viable bacterial counts in cured meats added with fermented spinach extract ranged from 0.34-1.01 Log CFU/g. E. coli and coliform bacteria were not observed in any of the cured meats treated with fermented spinach extracts or nitrite. Residual nitrite contents in treatment groups were increased with increasing levels of fermented spinach extract added. These results demonstrated that fermented spinach could be added to meat products to improve own curing characteristics. PMID:28316477
Kim, Tae-Kyung; Kim, Young-Boong; Jeon, Ki-Hong; Park, Jong-Dae; Sung, Jung-Min; Choi, Hyun-Wook; Hwang, Ko-Eun; Choi, Yun-Sang
2017-01-01
The effect of fermented spinach extracts on color development in cured meats was investigated in this study. The pH values of raw cured meats without addition of fermented spinach extract or nitrite (negative control) were higher ( p <0.05) than those added with fermented spinach extract. The pH values of raw and cooked cured meats in treatment groups were decreased with increasing addition levels of fermented spinach extract. The lightness and yellowness values of raw cured meats formulated with fermented spinach extract were higher ( p <0.05) than those of the control groups (both positive and negative controls). The redness values of cooked cured meats were increased with increasing fermented spinach extract levels, whereas the yellowness values of cooked cured meats were decreased with increasing levels of fermented spinach extract. The lowest volatile basic nitrogen (VBN) and thiobarbituric acid reactive substances (TBARS) values were observed in the positive control group with addition of nitrite. TBARS values of cured meats added with fermented spinach extract were decreased with increasing levels of fermented spinach extract and VBN values of curing meat with 30% fermented spinach extract was lower than the other treatments. Total viable bacterial counts in cured meats added with fermented spinach extract ranged from 0.34-1.01 Log CFU/g. E. coli and coliform bacteria were not observed in any of the cured meats treated with fermented spinach extracts or nitrite. Residual nitrite contents in treatment groups were increased with increasing levels of fermented spinach extract added. These results demonstrated that fermented spinach could be added to meat products to improve own curing characteristics.
The Cryptococcus neoformans Transcriptome at the Site of Human Meningitis
Chen, Yuan; Toffaletti, Dena L.; Tenor, Jennifer L.; Litvintseva, Anastasia P.; Fang, Charles; Mitchell, Thomas G.; McDonald, Tami R.; Nielsen, Kirsten; Boulware, David R.; Bicanic, Tihana; Perfect, John R.
2014-01-01
ABSTRACT Cryptococcus neoformans is the leading cause of fungal meningitis worldwide. Previous studies have characterized the cryptococcal transcriptome under various stress conditions, but a comprehensive profile of the C. neoformans transcriptome in the human host has not been attempted. Here, we extracted RNA from yeast cells taken directly from the cerebrospinal fluid (CSF) of two AIDS patients with cryptococcal meningitis prior to antifungal therapy. The patients were infected with strains of C. neoformans var. grubii of molecular type VNI and VNII. Using RNA-seq, we compared the transcriptional profiles of these strains under three environmental conditions (in vivo CSF, ex vivo CSF, and yeast extract-peptone-dextrose [YPD]). Although we identified a number of differentially expressed genes, single nucleotide variants, and novel genes that were unique to each strain, the overall expression patterns of the two strains were similar under the same environmental conditions. Specifically, yeast cells obtained directly from each patient’s CSF were more metabolically active than cells that were incubated ex vivo in CSF. Compared with growth in YPD, some genes were identified as significantly upregulated in both in vivo and ex vivo CSF, and they were associated with genes previously recognized for contributing to pathogenicity. For example, genes with known stress response functions, such as RIM101, ENA1, and CFO1, were regulated similarly in the two clinical strains. Conversely, many genes that were differentially regulated between the two strains appeared to be transporters. These findings establish a platform for further studies of how this yeast survives and produces disease. PMID:24496797
LAMP-PCR detection of ochratoxigenic Aspergillus species collected from peanut kernel.
Al-Sheikh, H M
2015-01-30
Over the last decade, ochratoxin A (OTA) has been widely described and is ubiquitous in several agricultural products. Ochratoxins represent the second-most important mycotoxin group after aflatoxins. A total of 34 samples were surveyed from 3 locations, including Mecca, Madina, and Riyadh, Saudi Arabia, during 2012. Fungal contamination frequency was determined for surface-sterilized peanut seeds, which were seeded onto malt extract agar media. Aspergillus niger (35%), Aspergillus ochraceus (30%), and Aspergillus carbonarius (25%) were the most frequently observed Aspergillius species, while Aspergillus flavus and Aspergillus phoenicis isolates were only infrequently recovered and in small numbers (10%). OTA production was evaluated on yeast extract sucrose medium, which revealed that 57% of the isolates were A. niger and 60% of A. carbonarius isolates were OTA producers; 100% belonged to A. ochraceus. Only one isolate, morphologically identified as A. carbonarius, and 3 A. niger isolates unstably produced OTA. A polymerase chain reaction (PCR)-based identification and detection assay was used to identify A. ochraceus isolates. Using the primer sets OCRA1/OCRA2, 400-base pair PCR fragments were produced only when genomic DNA from A. ochraceus isolates was used. Recently, the loop-mediated isothermal amplification assay using recombinase polymerase amplification chemistry was used for A. carbonarius and A. niger DNA identification. As a non-gel-based technique, the amplification product was directly visualized in the reaction tube after adding calcein for naked-eye examination.