Radiometric calibration of the Earth observing system's imaging sensors
NASA Technical Reports Server (NTRS)
Slater, P. N.
1987-01-01
Philosophy, requirements, and methods of calibration of multispectral space sensor systems as applicable to the Earth Observing System (EOS) are discussed. Vicarious methods for calibration of low spatial resolution systems, with respect to the Advanced Very High Resolution Radiometer (AVHRR), are then summarized. Finally, a theoretical introduction is given to a new vicarious method of calibration using the ratio of diffuse-to-global irradiance at the Earth's surfaces as the key input. This may provide an additional independent method for in-flight calibration.
Automatic Camera Calibration Using Multiple Sets of Pairwise Correspondences.
Vasconcelos, Francisco; Barreto, Joao P; Boyer, Edmond
2018-04-01
We propose a new method to add an uncalibrated node into a network of calibrated cameras using only pairwise point correspondences. While previous methods perform this task using triple correspondences, these are often difficult to establish when there is limited overlap between different views. In such challenging cases we must rely on pairwise correspondences and our solution becomes more advantageous. Our method includes an 11-point minimal solution for the intrinsic and extrinsic calibration of a camera from pairwise correspondences with other two calibrated cameras, and a new inlier selection framework that extends the traditional RANSAC family of algorithms to sampling across multiple datasets. Our method is validated on different application scenarios where a lack of triple correspondences might occur: addition of a new node to a camera network; calibration and motion estimation of a moving camera inside a camera network; and addition of views with limited overlap to a Structure-from-Motion model.
Iterative Strain-Gage Balance Calibration Data Analysis for Extended Independent Variable Sets
NASA Technical Reports Server (NTRS)
Ulbrich, Norbert Manfred
2011-01-01
A new method was developed that makes it possible to use an extended set of independent calibration variables for an iterative analysis of wind tunnel strain gage balance calibration data. The new method permits the application of the iterative analysis method whenever the total number of balance loads and other independent calibration variables is greater than the total number of measured strain gage outputs. Iteration equations used by the iterative analysis method have the limitation that the number of independent and dependent variables must match. The new method circumvents this limitation. It simply adds a missing dependent variable to the original data set by using an additional independent variable also as an additional dependent variable. Then, the desired solution of the regression analysis problem can be obtained that fits each gage output as a function of both the original and additional independent calibration variables. The final regression coefficients can be converted to data reduction matrix coefficients because the missing dependent variables were added to the data set without changing the regression analysis result for each gage output. Therefore, the new method still supports the application of the two load iteration equation choices that the iterative method traditionally uses for the prediction of balance loads during a wind tunnel test. An example is discussed in the paper that illustrates the application of the new method to a realistic simulation of temperature dependent calibration data set of a six component balance.
Simplified stereo-optical ultrasound plane calibration
NASA Astrophysics Data System (ADS)
Hoßbach, Martin; Noll, Matthias; Wesarg, Stefan
2013-03-01
Image guided therapy is a natural concept and commonly used in medicine. In anesthesia, a common task is the injection of an anesthetic close to a nerve under freehand ultrasound guidance. Several guidance systems exist using electromagnetic tracking of the ultrasound probe as well as the needle, providing the physician with a precise projection of the needle into the ultrasound image. This, however, requires additional expensive devices. We suggest using optical tracking with miniature cameras attached to a 2D ultrasound probe to achieve a higher acceptance among physicians. The purpose of this paper is to present an intuitive method to calibrate freehand ultrasound needle guidance systems employing a rigid stereo camera system. State of the art methods are based on a complex series of error prone coordinate system transformations which makes them susceptible to error accumulation. By reducing the amount of calibration steps to a single calibration procedure we provide a calibration method that is equivalent, yet not prone to error accumulation. It requires a linear calibration object and is validated on three datasets utilizing di erent calibration objects: a 6mm metal bar and a 1:25mm biopsy needle were used for experiments. Compared to existing calibration methods for freehand ultrasound needle guidance systems, we are able to achieve higher accuracy results while additionally reducing the overall calibration complexity. Ke
Viera, Mariela S; Rizzetti, Tiele M; de Souza, Maiara P; Martins, Manoel L; Prestes, Osmar D; Adaime, Martha B; Zanella, Renato
2017-12-01
In this study, a QuEChERS (Quick, Easy, Cheap, Effective, Rugged and Safe) method, optimized by a 2 3 full factorial design, was developed for the determination of 72 pesticides in plant parts of carrot, corn, melon, rice, soy, silage, tobacco, cassava, lettuce and wheat by ultra-high-performance liquid chromatographic tandem mass spectrometry (UHPLC-MS/MS). Considering the complexity of these matrices and the need of use calibration in matrix, a new calibration approach based on single level standard addition in the sample (SLSAS) was proposed in this work and compared with the matrix-matched calibration (MMC), the procedural standard calibration (PSC) and the diluted standard addition calibration (DSAC). All approaches presented satisfactory validation parameters with recoveries from 70 to 120% and relative standard deviations≤20%. SLSAS was the most practical from the evaluated approaches and proved to be an effective way of calibration. Method limit of detection were between 4.8 and 48μgkg -1 and limit of quantification were from 16 to 160μgkg -1 . Method application to different kinds of plants found residues of 20 pesticides that were quantified with z-scores values≤2 in comparison with other calibration approaches. The proposed QuEChERS method combined with UHPLC-MS/MS analysis and using an easy and effective calibration procedure presented satisfactory results for pesticide residues determination in different crop plants and is a good alternative for routine analysis. Copyright © 2017 Elsevier B.V. All rights reserved.
Novel Calibration Algorithm for a Three-Axis Strapdown Magnetometer
Liu, Yan Xia; Li, Xi Sheng; Zhang, Xiao Juan; Feng, Yi Bo
2014-01-01
A complete error calibration model with 12 independent parameters is established by analyzing the three-axis magnetometer error mechanism. The said model conforms to an ellipsoid restriction, the parameters of the ellipsoid equation are estimated, and the ellipsoid coefficient matrix is derived. However, the calibration matrix cannot be determined completely, as there are fewer ellipsoid parameters than calibration model parameters. Mathematically, the calibration matrix derived from the ellipsoid coefficient matrix by a different matrix decomposition method is not unique, and there exists an unknown rotation matrix R between them. This paper puts forward a constant intersection angle method (angles between the geomagnetic field and gravitational field are fixed) to estimate R. The Tikhonov method is adopted to solve the problem that rounding errors or other errors may seriously affect the calculation results of R when the condition number of the matrix is very large. The geomagnetic field vector and heading error are further corrected by R. The constant intersection angle method is convenient and practical, as it is free from any additional calibration procedure or coordinate transformation. In addition, the simulation experiment indicates that the heading error declines from ±1° calibrated by classical ellipsoid fitting to ±0.2° calibrated by a constant intersection angle method, and the signal-to-noise ratio is 50 dB. The actual experiment exhibits that the heading error is further corrected from ±0.8° calibrated by the classical ellipsoid fitting to ±0.3° calibrated by a constant intersection angle method. PMID:24831110
Zhang, Shangjian; Zou, Xinhai; Wang, Heng; Zhang, Yali; Lu, Rongguo; Liu, Yong
2015-10-15
A calibration-free electrical method is proposed for measuring the absolute frequency response of directly modulated semiconductor lasers based on additional modulation. The method achieves the electrical domain measurement of the modulation index of directly modulated lasers without the need for correcting the responsivity fluctuation in the photodetection. Moreover, it doubles measuring frequency range by setting a specific frequency relationship between the direct and additional modulation. Both the absolute and relative frequency response of semiconductor lasers are experimentally measured from the electrical spectrum of the twice-modulated optical signal, and the measured results are compared to those obtained with conventional methods to check the consistency. The proposed method provides calibration-free and accurate measurement for high-speed semiconductor lasers with high-resolution electrical spectrum analysis.
Verification of the ISO calibration method for field pyranometers under tropical sky conditions
NASA Astrophysics Data System (ADS)
Janjai, Serm; Tohsing, Korntip; Pattarapanitchai, Somjet; Detkhon, Pasakorn
2017-02-01
Field pyranomters need to be annually calibrated and the International Organization for Standardization (ISO) has defined a standard method (ISO 9847) for calibrating these pyranometers. According to this standard method for outdoor calibration, the field pyranometers have to be compared to a reference pyranometer for the period of 2 to 14 days, depending on sky conditions. In this work, the ISO 9847 standard method was verified under tropical sky conditions. To verify the standard method, calibration of field pyranometers was conducted at a tropical site located in Nakhon Pathom (13.82o N, 100.04o E), Thailand under various sky conditions. The conditions of the sky were monitored by using a sky camera. The calibration results for different time periods used for the calibration under various sky conditions were analyzed. It was found that the calibration periods given by this standard method could be reduced without significant change in the final calibration result. In addition, recommendation and discussion on the use of this standard method in the tropics were also presented.
Technique for Radiometer and Antenna Array Calibration with a Radiated Noise Diode
NASA Technical Reports Server (NTRS)
Srinivasan, Karthik; Limaye, Ashutosh; Laymon, Charles; Meyer, Paul
2009-01-01
This paper presents a new technique to calibrate a microwave radiometer and antenna array system. This calibration technique uses a radiated noise source in addition to two calibration sources internal to the radiometer. The method accurately calibrates antenna arrays with embedded active devices (such as amplifiers) which are used extensively in active phased array antennas.
NASA Astrophysics Data System (ADS)
Chen, Z.; Jones, C. M.
2002-05-01
Microchemistry of fish otoliths (fish ear bones) is a very useful tool for monitoring aquatic environments and fish migration. However, determination of the elemental composition in fish otolith by ICP-MS has been limited to either analysis of dissolved sample solution or measurement of limited number of trace elements by laser ablation (LA)- ICP-MS due to low sensitivity, lack of available calibration standards, and complexity of polyatomic molecular interference. In this study, a method was developed for in situ determination of trace elements in fish otoliths by laser ablation double focusing sector field ultra high sensitivity Finnigan Element 2 ICP-MS using a solution standard addition calibration method. Due to the lack of matrix-match solid calibration standards, sixteen trace elements (Na, Mg, P, Cr, Mn, Fe, Ni, Cu, Rb, Sr, Y, Cd, La, Ba, Pb and U) were determined using a solution standard calibration with Ca as an internal standard. Flexibility, easy preparation and stable signals are the advantages of using solution calibration standards. In order to resolve polyatomic molecular interferences, medium resolution (M/delta M > 4000) was used for some elements (Na, Mg, P, Cr, Mn, Fe, Ni, and Cu). Both external calibration and standard addition quantification strategies are compared and discussed. Precision, accuracy, and limits of detection are presented.
Jiang, Wenwen; Larson, Peder E Z; Lustig, Michael
2018-03-09
To correct gradient timing delays in non-Cartesian MRI while simultaneously recovering corruption-free auto-calibration data for parallel imaging, without additional calibration scans. The calibration matrix constructed from multi-channel k-space data should be inherently low-rank. This property is used to construct reconstruction kernels or sensitivity maps. Delays between the gradient hardware across different axes and RF receive chain, which are relatively benign in Cartesian MRI (excluding EPI), lead to trajectory deviations and hence data inconsistencies for non-Cartesian trajectories. These in turn lead to higher rank and corrupted calibration information which hampers the reconstruction. Here, a method named Simultaneous Auto-calibration and Gradient delays Estimation (SAGE) is proposed that estimates the actual k-space trajectory while simultaneously recovering the uncorrupted auto-calibration data. This is done by estimating the gradient delays that result in the lowest rank of the calibration matrix. The Gauss-Newton method is used to solve the non-linear problem. The method is validated in simulations using center-out radial, projection reconstruction and spiral trajectories. Feasibility is demonstrated on phantom and in vivo scans with center-out radial and projection reconstruction trajectories. SAGE is able to estimate gradient timing delays with high accuracy at a signal to noise ratio level as low as 5. The method is able to effectively remove artifacts resulting from gradient timing delays and restore image quality in center-out radial, projection reconstruction, and spiral trajectories. The low-rank based method introduced simultaneously estimates gradient timing delays and provides accurate auto-calibration data for improved image quality, without any additional calibration scans. © 2018 International Society for Magnetic Resonance in Medicine.
Hand-eye calibration for rigid laparoscopes using an invariant point.
Thompson, Stephen; Stoyanov, Danail; Schneider, Crispin; Gurusamy, Kurinchi; Ourselin, Sébastien; Davidson, Brian; Hawkes, David; Clarkson, Matthew J
2016-06-01
Laparoscopic liver resection has significant advantages over open surgery due to less patient trauma and faster recovery times, yet it can be difficult due to the restricted field of view and lack of haptic feedback. Image guidance provides a potential solution but one current challenge is in accurate "hand-eye" calibration, which determines the position and orientation of the laparoscope camera relative to the tracking markers. In this paper, we propose a simple and clinically feasible calibration method based on a single invariant point. The method requires no additional hardware, can be constructed by theatre staff during surgical setup, requires minimal image processing and can be visualised in real time. Real-time visualisation allows the surgical team to assess the calibration accuracy before use in surgery. In addition, in the laboratory, we have developed a laparoscope with an electromagnetic tracking sensor attached to the camera end and an optical tracking marker attached to the distal end. This enables a comparison of tracking performance. We have evaluated our method in the laboratory and compared it to two widely used methods, "Tsai's method" and "direct" calibration. The new method is of comparable accuracy to existing methods, and we show RMS projected error due to calibration of 1.95 mm for optical tracking and 0.85 mm for EM tracking, versus 4.13 and 1.00 mm respectively, using existing methods. The new method has also been shown to be workable under sterile conditions in the operating room. We have proposed a new method of hand-eye calibration, based on a single invariant point. Initial experience has shown that the method provides visual feedback, satisfactory accuracy and can be performed during surgery. We also show that an EM sensor placed near the camera would provide significantly improved image overlay accuracy.
The on-orbit calibration of geometric parameters of the Tian-Hui 1 (TH-1) satellite
NASA Astrophysics Data System (ADS)
Wang, Jianrong; Wang, Renxiang; Hu, Xin; Su, Zhongbo
2017-02-01
The on-orbit calibration of geometric parameters is a key step in improving the location accuracy of satellite images without using Ground Control Points (GCPs). Most methods of on-orbit calibration are based on the self-calibration using additional parameters. When using additional parameters, different number of additional parameters may lead to different results. The triangulation bundle adjustment is another way to calibrate the geometric parameters of camera, which can describe the changes in each geometric parameter. When triangulation bundle adjustment method is applied to calibrate geometric parameters, a prerequisite is that the strip model can avoid systematic deformation caused by the rate of attitude changes. Concerning the stereo camera, the influence of the intersection angle should be considered during calibration. The Equivalent Frame Photo (EFP) bundle adjustment based on the Line-Matrix CCD (LMCCD) image can solve the systematic distortion of the strip model, and obtain high accuracy location without using GCPs. In this paper, the triangulation bundle adjustment is used to calibrate the geometric parameters of TH-1 satellite cameras based on LMCCD image. During the bundle adjustment, the three-line array cameras are reconstructed by adopting the principle of inverse triangulation. Finally, the geometric accuracy is validated before and after on-orbit calibration using 5 testing fields. After on-orbit calibration, the 3D geometric accuracy is improved to 11.8 m from 170 m. The results show that the location accuracy of TH-1 without using GCPs is significantly improved using the on-orbit calibration of the geometric parameters.
Technique for Radiometer and Antenna Array Calibration with Two Antenna Noise Diodes
NASA Technical Reports Server (NTRS)
Srinivasan, Karthik; Limaye, Ashutosh; Laymon, Charles; Meyer, Paul
2011-01-01
This paper presents a new technique to calibrate a microwave radiometer and phased array antenna system. This calibration technique uses a radiated noise source in addition to an injected noise sources for calibration. The plane of reference for this calibration technique is the face of the antenna and therefore can effectively calibration the gain fluctuations in the active phased array antennas. This paper gives the mathematical formulation for the technique and discusses the improvements brought by the method over the existing calibration techniques.
A Comparison of Two Balance Calibration Model Building Methods
NASA Technical Reports Server (NTRS)
DeLoach, Richard; Ulbrich, Norbert
2007-01-01
Simulated strain-gage balance calibration data is used to compare the accuracy of two balance calibration model building methods for different noise environments and calibration experiment designs. The first building method obtains a math model for the analysis of balance calibration data after applying a candidate math model search algorithm to the calibration data set. The second building method uses stepwise regression analysis in order to construct a model for the analysis. Four balance calibration data sets were simulated in order to compare the accuracy of the two math model building methods. The simulated data sets were prepared using the traditional One Factor At a Time (OFAT) technique and the Modern Design of Experiments (MDOE) approach. Random and systematic errors were introduced in the simulated calibration data sets in order to study their influence on the math model building methods. Residuals of the fitted calibration responses and other statistical metrics were compared in order to evaluate the calibration models developed with different combinations of noise environment, experiment design, and model building method. Overall, predicted math models and residuals of both math model building methods show very good agreement. Significant differences in model quality were attributable to noise environment, experiment design, and their interaction. Generally, the addition of systematic error significantly degraded the quality of calibration models developed from OFAT data by either method, but MDOE experiment designs were more robust with respect to the introduction of a systematic component of the unexplained variance.
An overview of in-orbit radiometric calibration of typical satellite sensors
NASA Astrophysics Data System (ADS)
Zhou, G. Q.; Li, C. Y.; Yue, T.; Jiang, L. J.; Liu, N.; Sun, Y.; Li, M. Y.
2015-06-01
This paper reviews the development of in-orbit radiometric calibration methods in the past 40 years. It summarizes the development of in-orbit radiometric calibration technology of typical satellite sensors in the visible/near-infrared bands and the thermal infrared band. Focuses on the visible/near-infrared bands radiometric calibration method including: Lamp calibration and solar radiationbased calibration. Summarizes the calibration technology of Landsat series satellite sensors including MSS, TM, ETM+, OLI, TIRS; SPOT series satellite sensors including HRV, HRS. In addition to the above sensors, there are also summarizing ALI which was equipped on EO-1, IRMSS which was equipped on CBERS series satellite. Comparing the in-orbit radiometric calibration technology of different periods but the same type satellite sensors analyzes the similarities and differences of calibration technology. Meanwhile summarizes the in-orbit radiometric calibration technology in the same periods but different country satellite sensors advantages and disadvantages of calibration technology.
A New Calibration Method for Commercial RGB-D Sensors.
Darwish, Walid; Tang, Shenjun; Li, Wenbin; Chen, Wu
2017-05-24
Commercial RGB-D sensors such as Kinect and Structure Sensors have been widely used in the game industry, where geometric fidelity is not of utmost importance. For applications in which high quality 3D is required, i.e., 3D building models of centimeter‑level accuracy, accurate and reliable calibrations of these sensors are required. This paper presents a new model for calibrating the depth measurements of RGB-D sensors based on the structured light concept. Additionally, a new automatic method is proposed for the calibration of all RGB-D parameters, including internal calibration parameters for all cameras, the baseline between the infrared and RGB cameras, and the depth error model. When compared with traditional calibration methods, this new model shows a significant improvement in depth precision for both near and far ranges.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wood, Jordana R.; Gill, Gary A.; Kuo, Li-Jung
2016-04-20
Trace element determinations in seawater by inductively coupled plasma mass spectrometry are analytically challenging due to the typically very low concentrations of the trace elements and the potential interference of the salt matrix. In this study, we did a comparison for uranium analysis using inductively coupled plasma mass spectrometry (ICP-MS) of Sequim Bay seawater samples and three seawater certified reference materials (SLEW-3, CASS-5 and NASS-6) using seven different analytical approaches. The methods evaluated include: direct analysis, Fe/Pd reductive precipitation, standard addition calibration, online automated dilution using an external calibration with and without matrix matching, and online automated pre-concentration. The methodmore » which produced the most accurate results was the method of standard addition calibration, recovering uranium from a Sequim Bay seawater sample at 101 ± 1.2%. The on-line preconcentration method and the automated dilution with matrix-matched calibration method also performed well. The two least effective methods were the direct analysis and the Fe/Pd reductive precipitation using sodium borohydride« less
Li, Zhengqiang; Li, Kaitao; Li, Donghui; Yang, Jiuchun; Xu, Hua; Goloub, Philippe; Victori, Stephane
2016-09-20
The Cimel new technologies allow both daytime and nighttime aerosol optical depth (AOD) measurements. Although the daytime AOD calibration protocols are well established, accurate and simple nighttime calibration is still a challenging task. Standard lunar-Langley and intercomparison calibration methods both require specific conditions in terms of atmospheric stability and site condition. Additionally, the lunar irradiance model also has some known limits on its uncertainty. This paper presents a simple calibration method that transfers the direct-Sun calibration constant, V0,Sun, to the lunar irradiance calibration coefficient, CMoon. Our approach is a pure calculation method, independent of site limits, e.g., Moon phase. The method is also not affected by the lunar irradiance model limitations, which is the largest error source of traditional calibration methods. Besides, this new transfer calibration approach is easy to use in the field since CMoon can be obtained directly once V0,Sun is known. Error analysis suggests that the average uncertainty of CMoon over the 440-1640 nm bands obtained with the transfer method is 2.4%-2.8%, depending on the V0,Sun approach (Langley or intercomparison), which is comparable with that of lunar-Langley approach, theoretically. In this paper, the Sun-Moon transfer and the Langley methods are compared based on site measurements in Beijing, and the day-night measurement continuity and performance are analyzed.
Liu, Bingqi; Wei, Shihui; Su, Guohua; Wang, Jiping; Lu, Jiazhen
2018-01-01
The navigation accuracy of the inertial navigation system (INS) can be greatly improved when the inertial measurement unit (IMU) is effectively calibrated and compensated, such as gyro drifts and accelerometer biases. To reduce the requirement for turntable precision in the classical calibration method, a continuous dynamic self-calibration method based on a three-axis rotating frame for the hybrid inertial navigation system is presented. First, by selecting a suitable IMU frame, the error models of accelerometers and gyros are established. Then, by taking the navigation errors during rolling as the observations, the overall twenty-one error parameters of hybrid inertial navigation system (HINS) are identified based on the calculation of the intermediate parameter. The actual experiment verifies that the method can identify all error parameters of HINS and this method has equivalent accuracy to the classical calibration on a high-precision turntable. In addition, this method is rapid, simple and feasible. PMID:29695041
Liu, Bingqi; Wei, Shihui; Su, Guohua; Wang, Jiping; Lu, Jiazhen
2018-04-24
The navigation accuracy of the inertial navigation system (INS) can be greatly improved when the inertial measurement unit (IMU) is effectively calibrated and compensated, such as gyro drifts and accelerometer biases. To reduce the requirement for turntable precision in the classical calibration method, a continuous dynamic self-calibration method based on a three-axis rotating frame for the hybrid inertial navigation system is presented. First, by selecting a suitable IMU frame, the error models of accelerometers and gyros are established. Then, by taking the navigation errors during rolling as the observations, the overall twenty-one error parameters of hybrid inertial navigation system (HINS) are identified based on the calculation of the intermediate parameter. The actual experiment verifies that the method can identify all error parameters of HINS and this method has equivalent accuracy to the classical calibration on a high-precision turntable. In addition, this method is rapid, simple and feasible.
Volumetric calibration of a plenoptic camera.
Hall, Elise Munz; Fahringer, Timothy W; Guildenbecher, Daniel R; Thurow, Brian S
2018-02-01
The volumetric calibration of a plenoptic camera is explored to correct for inaccuracies due to real-world lens distortions and thin-lens assumptions in current processing methods. Two methods of volumetric calibration based on a polynomial mapping function that does not require knowledge of specific lens parameters are presented and compared to a calibration based on thin-lens assumptions. The first method, volumetric dewarping, is executed by creation of a volumetric representation of a scene using the thin-lens assumptions, which is then corrected in post-processing using a polynomial mapping function. The second method, direct light-field calibration, uses the polynomial mapping in creation of the initial volumetric representation to relate locations in object space directly to image sensor locations. The accuracy and feasibility of these methods is examined experimentally by capturing images of a known dot card at a variety of depths. Results suggest that use of a 3D polynomial mapping function provides a significant increase in reconstruction accuracy and that the achievable accuracy is similar using either polynomial-mapping-based method. Additionally, direct light-field calibration provides significant computational benefits by eliminating some intermediate processing steps found in other methods. Finally, the flexibility of this method is shown for a nonplanar calibration.
Wolski, Witold E; Lalowski, Maciej; Jungblut, Peter; Reinert, Knut
2005-01-01
Background Peptide Mass Fingerprinting (PMF) is a widely used mass spectrometry (MS) method of analysis of proteins and peptides. It relies on the comparison between experimentally determined and theoretical mass spectra. The PMF process requires calibration, usually performed with external or internal calibrants of known molecular masses. Results We have introduced two novel MS calibration methods. The first method utilises the local similarity of peptide maps generated after separation of complex protein samples by two-dimensional gel electrophoresis. It computes a multiple peak-list alignment of the data set using a modified Minimum Spanning Tree (MST) algorithm. The second method exploits the idea that hundreds of MS samples are measured in parallel on one sample support. It improves the calibration coefficients by applying a two-dimensional Thin Plate Splines (TPS) smoothing algorithm. We studied the novel calibration methods utilising data generated by three different MALDI-TOF-MS instruments. We demonstrate that a PMF data set can be calibrated without resorting to external or relying on widely occurring internal calibrants. The methods developed here were implemented in R and are part of the BioConductor package mscalib available from . Conclusion The MST calibration algorithm is well suited to calibrate MS spectra of protein samples resulting from two-dimensional gel electrophoretic separation. The TPS based calibration algorithm might be used to correct systematic mass measurement errors observed for large MS sample supports. As compared to other methods, our combined MS spectra calibration strategy increases the peptide/protein identification rate by an additional 5 – 15%. PMID:16102175
Calibration and accuracy analysis of a focused plenoptic camera
NASA Astrophysics Data System (ADS)
Zeller, N.; Quint, F.; Stilla, U.
2014-08-01
In this article we introduce new methods for the calibration of depth images from focused plenoptic cameras and validate the results. We start with a brief description of the concept of a focused plenoptic camera and how from the recorded raw image a depth map can be estimated. For this camera, an analytical expression of the depth accuracy is derived for the first time. In the main part of the paper, methods to calibrate a focused plenoptic camera are developed and evaluated. The optical imaging process is calibrated by using a method which is already known from the calibration of traditional cameras. For the calibration of the depth map two new model based methods, which make use of the projection concept of the camera are developed. These new methods are compared to a common curve fitting approach, which is based on Taylor-series-approximation. Both model based methods show significant advantages compared to the curve fitting method. They need less reference points for calibration than the curve fitting method and moreover, supply a function which is valid in excess of the range of calibration. In addition the depth map accuracy of the plenoptic camera was experimentally investigated for different focal lengths of the main lens and is compared to the analytical evaluation.
A New Calibration Method for Commercial RGB-D Sensors
Darwish, Walid; Tang, Shenjun; Li, Wenbin; Chen, Wu
2017-01-01
Commercial RGB-D sensors such as Kinect and Structure Sensors have been widely used in the game industry, where geometric fidelity is not of utmost importance. For applications in which high quality 3D is required, i.e., 3D building models of centimeter-level accuracy, accurate and reliable calibrations of these sensors are required. This paper presents a new model for calibrating the depth measurements of RGB-D sensors based on the structured light concept. Additionally, a new automatic method is proposed for the calibration of all RGB-D parameters, including internal calibration parameters for all cameras, the baseline between the infrared and RGB cameras, and the depth error model. When compared with traditional calibration methods, this new model shows a significant improvement in depth precision for both near and far ranges. PMID:28538695
NASA Technical Reports Server (NTRS)
Helder, Dennis; Thome, Kurtis John; Aaron, Dave; Leigh, Larry; Czapla-Myers, Jeff; Leisso, Nathan; Biggar, Stuart; Anderson, Nik
2012-01-01
A significant problem facing the optical satellite calibration community is limited knowledge of the uncertainties associated with fundamental measurements, such as surface reflectance, used to derive satellite radiometric calibration estimates. In addition, it is difficult to compare the capabilities of calibration teams around the globe, which leads to differences in the estimated calibration of optical satellite sensors. This paper reports on two recent field campaigns that were designed to isolate common uncertainties within and across calibration groups, particularly with respect to ground-based surface reflectance measurements. Initial results from these efforts suggest the uncertainties can be as low as 1.5% to 2.5%. In addition, methods for improving the cross-comparison of calibration teams are suggested that can potentially reduce the differences in the calibration estimates of optical satellite sensors.
Wind Tunnel Force Balance Calibration Study - Interim Results
NASA Technical Reports Server (NTRS)
Rhew, Ray D.
2012-01-01
Wind tunnel force balance calibration is preformed utilizing a variety of different methods and does not have a direct traceable standard such as standards used for most calibration practices (weights, and voltmeters). These different calibration methods and practices include, but are not limited to, the loading schedule, the load application hardware, manual and automatic systems, re-leveling and non-re-leveling. A study of the balance calibration techniques used by NASA was undertaken to develop metrics for reviewing and comparing results using sample calibrations. The study also includes balances of different designs, single and multi-piece. The calibration systems include, the manual, and the automatic that are provided by NASA and its vendors. The results to date will be presented along with the techniques for comparing the results. In addition, future planned calibrations and investigations based on the results will be provided.
In situ calibration of inductively coupled plasma-atomic emission and mass spectroscopy
Braymen, Steven D.
1996-06-11
A method and apparatus for in situ addition calibration of an inductively coupled plasma atomic emission spectrometer or mass spectrometer using a precision gas metering valve to introduce a volatile calibration gas of an element of interest directly into an aerosol particle stream. The present situ calibration technique is suitable for various remote, on-site sampling systems such as laser ablation or nebulization.
Comparison of infusion pumps calibration methods
NASA Astrophysics Data System (ADS)
Batista, Elsa; Godinho, Isabel; do Céu Ferreira, Maria; Furtado, Andreia; Lucas, Peter; Silva, Claudia
2017-12-01
Nowadays, several types of infusion pump are commonly used for drug delivery, such as syringe pumps and peristaltic pumps. These instruments present different measuring features and capacities according to their use and therapeutic application. In order to ensure the metrological traceability of these flow and volume measuring equipment, it is necessary to use suitable calibration methods and standards. Two different calibration methods can be used to determine the flow error of infusion pumps. One is the gravimetric method, considered as a primary method, commonly used by National Metrology Institutes. The other calibration method, a secondary method, relies on an infusion device analyser (IDA) and is typically used by hospital maintenance offices. The suitability of the IDA calibration method was assessed by testing several infusion instruments at different flow rates using the gravimetric method. In addition, a measurement comparison between Portuguese Accredited Laboratories and hospital maintenance offices was performed under the coordination of the Portuguese Institute for Quality, the National Metrology Institute. The obtained results were directly related to the used calibration method and are presented in this paper. This work has been developed in the framework of the EURAMET projects EMRP MeDD and EMPIR 15SIP03.
VIIRS reflective solar bands on-orbit calibration five-year update: extension and improvements
NASA Astrophysics Data System (ADS)
Sun, Junqiang; Wang, Menghua
2016-09-01
The Suomi National Polar-orbiting Partnership (SNPP) Visible Infrared Imaging Radiometer Suite (VIIRS) has been onorbit for almost five years. VIIRS has 22 spectral bands, among which fourteen are reflective solar bands (RSB) covering a spectral range from 0.410 to 2.25 μm. The SNPP VIIRS RSB have performed very well since launch. The radiometric calibration for the RSB has also reached a mature stage after almost five years since its launch. Numerous improvements have been made in the standard RSB calibration methodology. Additionally, a hybrid calibration method, which takes the advantages of both solar diffuser calibration and lunar calibration and avoids the drawbacks of the two methods, successfully finalizes the highly accurate calibration for VIIRS RSB. The successfully calibrated RSB data record significantly impacts the ocean color products, whose stringent requirements are especially sensitive to calibration accuracy, and helps the ocean color products to reach maturity and high quality. Nevertheless, there are still many challenge issues to be investigated for further improvements of the VIIRS sensor data records (SDR). In this presentation, the robust results of the RSB calibrations and the ocean product performance will be presented. The reprocessed SDR is now in more science tests, in addition to the ocean science tests already completed one year ago, readying to be the mission-long operational SDR.
Dong, Ren G.; Welcome, Daniel E.; McDowell, Thomas W.; Wu, John Z.
2015-01-01
While simulations of the measured biodynamic responses of the whole human body or body segments to vibration are conventionally interpreted as summaries of biodynamic measurements, and the resulting models are considered quantitative, this study looked at these simulations from a different angle: model calibration. The specific aims of this study are to review and clarify the theoretical basis for model calibration, to help formulate the criteria for calibration validation, and to help appropriately select and apply calibration methods. In addition to established vibration theory, a novel theorem of mechanical vibration is also used to enhance the understanding of the mathematical and physical principles of the calibration. Based on this enhanced understanding, a set of criteria was proposed and used to systematically examine the calibration methods. Besides theoretical analyses, a numerical testing method is also used in the examination. This study identified the basic requirements for each calibration method to obtain a unique calibration solution. This study also confirmed that the solution becomes more robust if more than sufficient calibration references are provided. Practically, however, as more references are used, more inconsistencies can arise among the measured data for representing the biodynamic properties. To help account for the relative reliabilities of the references, a baseline weighting scheme is proposed. The analyses suggest that the best choice of calibration method depends on the modeling purpose, the model structure, and the availability and reliability of representative reference data. PMID:26740726
Integrated calibration of multiview phase-measuring profilometry
NASA Astrophysics Data System (ADS)
Lee, Yeong Beum; Kim, Min H.
2017-11-01
Phase-measuring profilometry (PMP) measures per-pixel height information of a surface with high accuracy. Height information captured by a camera in PMP relies on its screen coordinates. Therefore, a PMP measurement from a view cannot be integrated directly to other measurements from different views due to the intrinsic difference of the screen coordinates. In order to integrate multiple PMP scans, an auxiliary calibration of each camera's intrinsic and extrinsic properties is required, in addition to principal PMP calibration. This is cumbersome and often requires physical constraints in the system setup, and multiview PMP is consequently rarely practiced. In this work, we present a novel multiview PMP method that yields three-dimensional global coordinates directly so that three-dimensional measurements can be integrated easily. Our PMP calibration parameterizes intrinsic and extrinsic properties of the configuration of both a camera and a projector simultaneously. It also does not require any geometric constraints on the setup. In addition, we propose a novel calibration target that can remain static without requiring any mechanical operation while conducting multiview calibrations, whereas existing calibration methods require manually changing the target's position and orientation. Our results validate the accuracy of measurements and demonstrate the advantages on our multiview PMP.
Temporal Analysis and Automatic Calibration of the Velodyne HDL-32E LiDAR System
NASA Astrophysics Data System (ADS)
Chan, T. O.; Lichti, D. D.; Belton, D.
2013-10-01
At the end of the first quarter of 2012, more than 600 Velodyne LiDAR systems had been sold worldwide for various robotic and high-accuracy survey applications. The ultra-compact Velodyne HDL-32E LiDAR has become a predominant sensor for many applications that require lower sensor size/weight and cost. For high accuracy applications, cost-effective calibration methods with minimal manual intervention are always desired by users. However, the calibrations are complicated by the Velodyne LiDAR's narrow vertical field of view and the very highly time-variant nature of its measurements. In the paper, the temporal stability of the HDL-32E is first analysed as the motivation for developing a new, automated calibration method. This is followed by a detailed description of the calibration method that is driven by a novel segmentation method for extracting vertical cylindrical features from the Velodyne point clouds. The proposed segmentation method utilizes the Velodyne point cloud's slice-like nature and first decomposes the point clouds into 2D layers. Then the layers are treated as 2D images and are processed with the Generalized Hough Transform which extracts the points distributed in circular patterns from the point cloud layers. Subsequently, the vertical cylindrical features can be readily extracted from the whole point clouds based on the previously extracted points. The points are passed to the calibration that estimates the cylinder parameters and the LiDAR's additional parameters simultaneously by constraining the segmented points to fit to the cylindrical geometric model in such a way the weighted sum of the adjustment residuals are minimized. The proposed calibration is highly automatic and this allows end users to obtain the time-variant additional parameters instantly and frequently whenever there are vertical cylindrical features presenting in scenes. The methods were verified with two different real datasets, and the results suggest that up to 78.43% accuracy improvement for the HDL-32E can be achieved using the proposed calibration method.
Volumetric calibration of a plenoptic camera
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hall, Elise Munz; Fahringer, Timothy W.; Guildenbecher, Daniel Robert
Here, the volumetric calibration of a plenoptic camera is explored to correct for inaccuracies due to real-world lens distortions and thin-lens assumptions in current processing methods. Two methods of volumetric calibration based on a polynomial mapping function that does not require knowledge of specific lens parameters are presented and compared to a calibration based on thin-lens assumptions. The first method, volumetric dewarping, is executed by creation of a volumetric representation of a scene using the thin-lens assumptions, which is then corrected in post-processing using a polynomial mapping function. The second method, direct light-field calibration, uses the polynomial mapping in creationmore » of the initial volumetric representation to relate locations in object space directly to image sensor locations. The accuracy and feasibility of these methods is examined experimentally by capturing images of a known dot card at a variety of depths. Results suggest that use of a 3D polynomial mapping function provides a significant increase in reconstruction accuracy and that the achievable accuracy is similar using either polynomial-mapping-based method. Additionally, direct light-field calibration provides significant computational benefits by eliminating some intermediate processing steps found in other methods. Finally, the flexibility of this method is shown for a nonplanar calibration.« less
Volumetric calibration of a plenoptic camera
Hall, Elise Munz; Fahringer, Timothy W.; Guildenbecher, Daniel Robert; ...
2018-02-01
Here, the volumetric calibration of a plenoptic camera is explored to correct for inaccuracies due to real-world lens distortions and thin-lens assumptions in current processing methods. Two methods of volumetric calibration based on a polynomial mapping function that does not require knowledge of specific lens parameters are presented and compared to a calibration based on thin-lens assumptions. The first method, volumetric dewarping, is executed by creation of a volumetric representation of a scene using the thin-lens assumptions, which is then corrected in post-processing using a polynomial mapping function. The second method, direct light-field calibration, uses the polynomial mapping in creationmore » of the initial volumetric representation to relate locations in object space directly to image sensor locations. The accuracy and feasibility of these methods is examined experimentally by capturing images of a known dot card at a variety of depths. Results suggest that use of a 3D polynomial mapping function provides a significant increase in reconstruction accuracy and that the achievable accuracy is similar using either polynomial-mapping-based method. Additionally, direct light-field calibration provides significant computational benefits by eliminating some intermediate processing steps found in other methods. Finally, the flexibility of this method is shown for a nonplanar calibration.« less
Load estimator (LOADEST): a FORTRAN program for estimating constituent loads in streams and rivers
Runkel, Robert L.; Crawford, Charles G.; Cohn, Timothy A.
2004-01-01
LOAD ESTimator (LOADEST) is a FORTRAN program for estimating constituent loads in streams and rivers. Given a time series of streamflow, additional data variables, and constituent concentration, LOADEST assists the user in developing a regression model for the estimation of constituent load (calibration). Explanatory variables within the regression model include various functions of streamflow, decimal time, and additional user-specified data variables. The formulated regression model then is used to estimate loads over a user-specified time interval (estimation). Mean load estimates, standard errors, and 95 percent confidence intervals are developed on a monthly and(or) seasonal basis. The calibration and estimation procedures within LOADEST are based on three statistical estimation methods. The first two methods, Adjusted Maximum Likelihood Estimation (AMLE) and Maximum Likelihood Estimation (MLE), are appropriate when the calibration model errors (residuals) are normally distributed. Of the two, AMLE is the method of choice when the calibration data set (time series of streamflow, additional data variables, and concentration) contains censored data. The third method, Least Absolute Deviation (LAD), is an alternative to maximum likelihood estimation when the residuals are not normally distributed. LOADEST output includes diagnostic tests and warnings to assist the user in determining the appropriate estimation method and in interpreting the estimated loads. This report describes the development and application of LOADEST. Sections of the report describe estimation theory, input/output specifications, sample applications, and installation instructions.
In situ calibration of inductively coupled plasma-atomic emission and mass spectroscopy
Braymen, S.D.
1996-06-11
A method and apparatus are disclosed for in situ addition calibration of an inductively coupled plasma atomic emission spectrometer or mass spectrometer using a precision gas metering valve to introduce a volatile calibration gas of an element of interest directly into an aerosol particle stream. The present in situ calibration technique is suitable for various remote, on-site sampling systems such as laser ablation or nebulization. 5 figs.
Lakshmi, Karunanidhi Santhana; Lakshmi, Sivasubramanian
2011-03-01
Simultaneous determination of valsartan and hydrochlorothiazide by the H-point standard additions method (HPSAM) and partial least squares (PLS) calibration is described. Absorbances at a pair of wavelengths, 216 and 228 nm, were monitored with the addition of standard solutions of valsartan. Results of applying HPSAM showed that valsartan and hydrochlorothiazide can be determined simultaneously at concentration ratios varying from 20:1 to 1:15 in a mixed sample. The proposed PLS method does not require chemical separation and spectral graphical procedures for quantitative resolution of mixtures containing the titled compounds. The calibration model was based on absorption spectra in the 200-350 nm range for 25 different mixtures of valsartan and hydrochlorothiazide. Calibration matrices contained 0.5-3 μg mL-1 of both valsartan and hydrochlorothiazide. The standard error of prediction (SEP) for valsartan and hydrochlorothiazide was 0.020 and 0.038 μg mL-1, respectively. Both proposed methods were successfully applied to the determination of valsartan and hydrochlorothiazide in several synthetic and real matrix samples.
NASA Astrophysics Data System (ADS)
Wesemann, Johannes; Burgholzer, Reinhard; Herrnegger, Mathew; Schulz, Karsten
2017-04-01
In recent years, a lot of research in hydrological modelling has been invested to improve the automatic calibration of rainfall-runoff models. This includes for example (1) the implementation of new optimisation methods, (2) the incorporation of new and different objective criteria and signatures in the optimisation and (3) the usage of auxiliary data sets apart from runoff. Nevertheless, in many applications manual calibration is still justifiable and frequently applied. The hydrologist performing the manual calibration, with his expert knowledge, is able to judge the hydrographs simultaneously concerning details but also in a holistic view. This integrated eye-ball verification procedure available to man can be difficult to formulate in objective criteria, even when using a multi-criteria approach. Comparing the results of automatic and manual calibration is not straightforward. Automatic calibration often solely involves objective criteria such as Nash-Sutcliffe Efficiency Coefficient or the Kling-Gupta-Efficiency as a benchmark during the calibration. Consequently, a comparison based on such measures is intrinsically biased towards automatic calibration. Additionally, objective criteria do not cover all aspects of a hydrograph leaving questions concerning the quality of a simulation open. This contribution therefore seeks to examine the quality of manually and automatically calibrated hydrographs by interactively involving expert knowledge in the evaluation. Simulations have been performed for the Mur catchment in Austria with the rainfall-runoff model COSERO using two parameter sets evolved from a manual and an automatic calibration. A subset of resulting hydrographs for observation and simulation, representing the typical flow conditions and events, will be evaluated in this study. In an interactive crowdsourcing approach experts attending the session can vote for their preferred simulated hydrograph without having information on the calibration method that produced the respective hydrograph. Therefore, the result of the poll can be seen as an additional quality criterion for the comparison of the two different approaches and help in the evaluation of the automatic calibration method.
Input variable selection and calibration data selection for storm water quality regression models.
Sun, Siao; Bertrand-Krajewski, Jean-Luc
2013-01-01
Storm water quality models are useful tools in storm water management. Interest has been growing in analyzing existing data for developing models for urban storm water quality evaluations. It is important to select appropriate model inputs when many candidate explanatory variables are available. Model calibration and verification are essential steps in any storm water quality modeling. This study investigates input variable selection and calibration data selection in storm water quality regression models. The two selection problems are mutually interacted. A procedure is developed in order to fulfil the two selection tasks in order. The procedure firstly selects model input variables using a cross validation method. An appropriate number of variables are identified as model inputs to ensure that a model is neither overfitted nor underfitted. Based on the model input selection results, calibration data selection is studied. Uncertainty of model performances due to calibration data selection is investigated with a random selection method. An approach using the cluster method is applied in order to enhance model calibration practice based on the principle of selecting representative data for calibration. The comparison between results from the cluster selection method and random selection shows that the former can significantly improve performances of calibrated models. It is found that the information content in calibration data is important in addition to the size of calibration data.
Hegazy, M A; Yehia, A M; Moustafa, A A
2013-05-01
The ability of bivariate and multivariate spectrophotometric methods was demonstrated in the resolution of a quaternary mixture of mosapride, pantoprazole and their degradation products. The bivariate calibrations include bivariate spectrophotometric method (BSM) and H-point standard addition method (HPSAM), which were able to determine the two drugs, simultaneously, but not in the presence of their degradation products, the results showed that simultaneous determinations could be performed in the concentration ranges of 5.0-50.0 microg/ml for mosapride and 10.0-40.0 microg/ml for pantoprazole by bivariate spectrophotometric method and in the concentration ranges of 5.0-45.0 microg/ml for both drugs by H-point standard addition method. Moreover, the applied multivariate calibration methods were able for the determination of mosapride, pantoprazole and their degradation products using concentration residuals augmented classical least squares (CRACLS) and partial least squares (PLS). The proposed multivariate methods were applied to 17 synthetic samples in the concentration ranges of 3.0-12.0 microg/ml mosapride, 8.0-32.0 microg/ml pantoprazole, 1.5-6.0 microg/ml mosapride degradation products and 2.0-8.0 microg/ml pantoprazole degradation products. The proposed bivariate and multivariate calibration methods were successfully applied to the determination of mosapride and pantoprazole in their pharmaceutical preparations.
Application of single-image camera calibration for ultrasound augmented laparoscopic visualization
NASA Astrophysics Data System (ADS)
Liu, Xinyang; Su, He; Kang, Sukryool; Kane, Timothy D.; Shekhar, Raj
2015-03-01
Accurate calibration of laparoscopic cameras is essential for enabling many surgical visualization and navigation technologies such as the ultrasound-augmented visualization system that we have developed for laparoscopic surgery. In addition to accuracy and robustness, there is a practical need for a fast and easy camera calibration method that can be performed on demand in the operating room (OR). Conventional camera calibration methods are not suitable for the OR use because they are lengthy and tedious. They require acquisition of multiple images of a target pattern in its entirety to produce satisfactory result. In this work, we evaluated the performance of a single-image camera calibration tool (rdCalib; Percieve3D, Coimbra, Portugal) featuring automatic detection of corner points in the image, whether partial or complete, of a custom target pattern. Intrinsic camera parameters of a 5-mm and a 10-mm standard Stryker® laparoscopes obtained using rdCalib and the well-accepted OpenCV camera calibration method were compared. Target registration error (TRE) as a measure of camera calibration accuracy for our optical tracking-based AR system was also compared between the two calibration methods. Based on our experiments, the single-image camera calibration yields consistent and accurate results (mean TRE = 1.18 ± 0.35 mm for the 5-mm scope and mean TRE = 1.13 ± 0.32 mm for the 10-mm scope), which are comparable to the results obtained using the OpenCV method with 30 images. The new single-image camera calibration method is promising to be applied to our augmented reality visualization system for laparoscopic surgery.
Application of single-image camera calibration for ultrasound augmented laparoscopic visualization
Liu, Xinyang; Su, He; Kang, Sukryool; Kane, Timothy D.; Shekhar, Raj
2017-01-01
Accurate calibration of laparoscopic cameras is essential for enabling many surgical visualization and navigation technologies such as the ultrasound-augmented visualization system that we have developed for laparoscopic surgery. In addition to accuracy and robustness, there is a practical need for a fast and easy camera calibration method that can be performed on demand in the operating room (OR). Conventional camera calibration methods are not suitable for the OR use because they are lengthy and tedious. They require acquisition of multiple images of a target pattern in its entirety to produce satisfactory result. In this work, we evaluated the performance of a single-image camera calibration tool (rdCalib; Percieve3D, Coimbra, Portugal) featuring automatic detection of corner points in the image, whether partial or complete, of a custom target pattern. Intrinsic camera parameters of a 5-mm and a 10-mm standard Stryker® laparoscopes obtained using rdCalib and the well-accepted OpenCV camera calibration method were compared. Target registration error (TRE) as a measure of camera calibration accuracy for our optical tracking-based AR system was also compared between the two calibration methods. Based on our experiments, the single-image camera calibration yields consistent and accurate results (mean TRE = 1.18 ± 0.35 mm for the 5-mm scope and mean TRE = 1.13 ± 0.32 mm for the 10-mm scope), which are comparable to the results obtained using the OpenCV method with 30 images. The new single-image camera calibration method is promising to be applied to our augmented reality visualization system for laparoscopic surgery. PMID:28943703
Application of single-image camera calibration for ultrasound augmented laparoscopic visualization.
Liu, Xinyang; Su, He; Kang, Sukryool; Kane, Timothy D; Shekhar, Raj
2015-03-01
Accurate calibration of laparoscopic cameras is essential for enabling many surgical visualization and navigation technologies such as the ultrasound-augmented visualization system that we have developed for laparoscopic surgery. In addition to accuracy and robustness, there is a practical need for a fast and easy camera calibration method that can be performed on demand in the operating room (OR). Conventional camera calibration methods are not suitable for the OR use because they are lengthy and tedious. They require acquisition of multiple images of a target pattern in its entirety to produce satisfactory result. In this work, we evaluated the performance of a single-image camera calibration tool ( rdCalib ; Percieve3D, Coimbra, Portugal) featuring automatic detection of corner points in the image, whether partial or complete, of a custom target pattern. Intrinsic camera parameters of a 5-mm and a 10-mm standard Stryker ® laparoscopes obtained using rdCalib and the well-accepted OpenCV camera calibration method were compared. Target registration error (TRE) as a measure of camera calibration accuracy for our optical tracking-based AR system was also compared between the two calibration methods. Based on our experiments, the single-image camera calibration yields consistent and accurate results (mean TRE = 1.18 ± 0.35 mm for the 5-mm scope and mean TRE = 1.13 ± 0.32 mm for the 10-mm scope), which are comparable to the results obtained using the OpenCV method with 30 images. The new single-image camera calibration method is promising to be applied to our augmented reality visualization system for laparoscopic surgery.
A novel calibration method of focused light field camera for 3-D reconstruction of flame temperature
NASA Astrophysics Data System (ADS)
Sun, Jun; Hossain, Md. Moinul; Xu, Chuan-Long; Zhang, Biao; Wang, Shi-Min
2017-05-01
This paper presents a novel geometric calibration method for focused light field camera to trace the rays of flame radiance and to reconstruct the three-dimensional (3-D) temperature distribution of a flame. A calibration model is developed to calculate the corner points and their projections of the focused light field camera. The characteristics of matching main lens and microlens f-numbers are used as an additional constrains for the calibration. Geometric parameters of the focused light field camera are then achieved using Levenberg-Marquardt algorithm. Total focused images in which all the points are in focus, are utilized to validate the proposed calibration method. Calibration results are presented and discussed in details. The maximum mean relative error of the calibration is found less than 0.13%, indicating that the proposed method is capable of calibrating the focused light field camera successfully. The parameters obtained by the calibration are then utilized to trace the rays of flame radiance. A least square QR-factorization algorithm with Plank's radiation law is used to reconstruct the 3-D temperature distribution of a flame. Experiments were carried out on an ethylene air fired combustion test rig to reconstruct the temperature distribution of flames. The flame temperature obtained by the proposed method is then compared with that obtained by using high-precision thermocouple. The difference between the two measurements was found no greater than 6.7%. Experimental results demonstrated that the proposed calibration method and the applied measurement technique perform well in the reconstruction of the flame temperature.
Updated radiometric calibration for the Landsat-5 thematic mapper reflective bands
Helder, D.L.; Markham, B.L.; Thome, K.J.; Barsi, J.A.; Chander, G.; Malla, R.
2008-01-01
The Landsat-5 Thematic Mapper (TM) has been the workhorse of the Landsat system. Launched in 1984, it continues collecting data through the time frame of this paper. Thus, it provides an invaluable link to the past history of the land features of the Earth's surface, and it becomes imperative to provide an accurate radiometric calibration of the reflective bands to the user community. Previous calibration has been based on information obtained from prelaunch, the onboard calibrator, vicarious calibration attempts, and cross-calibration with Landsat-7. Currently, additional data sources are available to improve this calibration. Specifically, improvements in vicarious calibration methods and development of the use of pseudoinvariant sites for trending provide two additional independent calibration sources. The use of these additional estimates has resulted in a consistent calibration approach that ties together all of the available calibration data sources. Results from this analysis indicate a simple exponential, or a constant model may be used for all bands throughout the lifetime of Landsat-5 TM. Where previously time constants for the exponential models were approximately one year, the updated model has significantly longer time constants in bands 1-3. In contrast, bands 4, 5, and 7 are shown to be best modeled by a constant. The models proposed in this paper indicate calibration knowledge of 5% or better early in life, decreasing to nearly 2% later in life. These models have been implemented at the U.S. Geological Survey Earth Resources Observation and Science (EROS) and are the default calibration used for all Landsat TM data now distributed through EROS. ?? 2008 IEEE.
A Review on Microdialysis Calibration Methods: the Theory and Current Related Efforts.
Kho, Chun Min; Enche Ab Rahim, Siti Kartini; Ahmad, Zainal Arifin; Abdullah, Norazharuddin Shah
2017-07-01
Microdialysis is a sampling technique first introduced in the late 1950s. Although this technique was originally designed to study endogenous compounds in animal brain, it is later modified to be used in other organs. Additionally, microdialysis is not only able to collect unbound concentration of compounds from tissue sites; this technique can also be used to deliver exogenous compounds to a designated area. Due to its versatility, microdialysis technique is widely employed in a number of areas, including biomedical research. However, for most in vivo studies, the concentration of substance obtained directly from the microdialysis technique does not accurately describe the concentration of the substance on-site. In order to relate the results collected from microdialysis to the actual in vivo condition, a calibration method is required. To date, various microdialysis calibration methods have been reported, with each method being capable to provide valuable insights of the technique itself and its applications. This paper aims to provide a critical review on various calibration methods used in microdialysis applications, inclusive of a detailed description of the microdialysis technique itself to start with. It is expected that this article shall review in detail, the various calibration methods employed, present examples of work related to each calibration method including clinical efforts, plus the advantages and disadvantages of each of the methods.
Jurowski, Kamil; Buszewski, Bogusław; Piekoszewski, Wojciech
2015-01-01
Nowadays, studies related to the distribution of metallic elements in biological samples are one of the most important issues. There are many articles dedicated to specific analytical atomic spectrometry techniques used for mapping/(bio)imaging the metallic elements in various kinds of biological samples. However, in such literature, there is a lack of articles dedicated to reviewing calibration strategies, and their problems, nomenclature, definitions, ways and methods used to obtain quantitative distribution maps. The aim of this article was to characterize the analytical calibration in the (bio)imaging/mapping of the metallic elements in biological samples including (1) nomenclature; (2) definitions, and (3) selected and sophisticated, examples of calibration strategies with analytical calibration procedures applied in the different analytical methods currently used to study an element's distribution in biological samples/materials such as LA ICP-MS, SIMS, EDS, XRF and others. The main emphasis was placed on the procedures and methodology of the analytical calibration strategy. Additionally, the aim of this work is to systematize the nomenclature for the calibration terms: analytical calibration, analytical calibration method, analytical calibration procedure and analytical calibration strategy. The authors also want to popularize the division of calibration methods that are different than those hitherto used. This article is the first work in literature that refers to and emphasizes many different and complex aspects of analytical calibration problems in studies related to (bio)imaging/mapping metallic elements in different kinds of biological samples. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Siu, Marie-Michele; Martos, Borja; Foster, John V.
2013-01-01
As part of a joint partnership between the NASA Aviation Safety Program (AvSP) and the University of Tennessee Space Institute (UTSI), research on advanced air data calibration methods has been in progress. This research was initiated to expand a novel pitot-static calibration method that was developed to allow rapid in-flight calibration for the NASA Airborne Subscale Transport Aircraft Research (AirSTAR) facility. This approach uses Global Positioning System (GPS) technology coupled with modern system identification methods that rapidly computes optimal pressure error models over a range of airspeed with defined confidence bounds. Subscale flight tests demonstrated small 2-s error bounds with significant reduction in test time compared to other methods. Recent UTSI full scale flight tests have shown airspeed calibrations with the same accuracy or better as the Federal Aviation Administration (FAA) accepted GPS 'four-leg' method in a smaller test area and in less time. The current research was motivated by the desire to extend this method for inflight calibration of angle of attack (AOA) and angle of sideslip (AOS) flow vanes. An instrumented Piper Saratoga research aircraft from the UTSI was used to collect the flight test data and evaluate flight test maneuvers. Results showed that the output-error approach produces good results for flow vane calibration. In addition, maneuvers for pitot-static and flow vane calibration can be integrated to enable simultaneous and efficient testing of each system.
Kulasekere, Ravi; Moran, Jean M.; Fraass, Benedick A.; Roberson, Peter L.
2006-01-01
A single calibration film method was evaluated for use with intensity‐modulated radiation therapy film quality assurance measurements. The single‐film method has the potential advantages of exposure simplicity, less media consumption, and improved processor quality control. Potential disadvantages include cross contamination of film exposure, implementation effort to document delivered dose, and added complication of film response analysis. Film response differences were measured between standard and single‐film calibration methods. Additional measurements were performed to help trace causes for the observed discrepancies. Kodak X‐OmatV (XV) film was found to have greater response variability than extended dose range (EDR) film. We found it advisable for XV film to relate the film response calibration for the single‐film method to a user‐defined optimal calibration geometry. Using a single calibration film exposed at the time of experiment, the total uncertainty of film response was estimated to be <2% (1%) for XV (EDR) film at 50 (100) cGy and higher, respectively. PACS numbers: 87.53.‐j, 87.53.Dq PMID:17533325
Hybrid Geometric Calibration Method for Multi-Platform Spaceborne SAR Image with Sparse Gcps
NASA Astrophysics Data System (ADS)
Lv, G.; Tang, X.; Ai, B.; Li, T.; Chen, Q.
2018-04-01
Geometric calibration is able to provide high-accuracy geometric coordinates of spaceborne SAR image through accurate geometric parameters in the Range-Doppler model by ground control points (GCPs). However, it is very difficult to obtain GCPs that covering large-scale areas, especially in the mountainous regions. In addition, the traditional calibration method is only used for single platform SAR images and can't support the hybrid geometric calibration for multi-platform images. To solve the above problems, a hybrid geometric calibration method for multi-platform spaceborne SAR images with sparse GCPs is proposed in this paper. First, we calibrate the master image that contains GCPs. Secondly, the point tracking algorithm is used to obtain the tie points (TPs) between the master and slave images. Finally, we calibrate the slave images using TPs as the GCPs. We take the Beijing-Tianjin- Hebei region as an example to study SAR image hybrid geometric calibration method using 3 TerraSAR-X images, 3 TanDEM-X images and 5 GF-3 images covering more than 235 kilometers in the north-south direction. Geometric calibration of all images is completed using only 5 GCPs. The GPS data extracted from GNSS receiver are used to assess the plane accuracy after calibration. The results after geometric calibration with sparse GCPs show that the geometric positioning accuracy is 3 m for TSX/TDX images and 7.5 m for GF-3 images.
A new method to calibrate the absolute sensitivity of a soft X-ray streak camera
NASA Astrophysics Data System (ADS)
Yu, Jian; Liu, Shenye; Li, Jin; Yang, Zhiwen; Chen, Ming; Guo, Luting; Yao, Li; Xiao, Shali
2016-12-01
In this paper, we introduce a new method to calibrate the absolute sensitivity of a soft X-ray streak camera (SXRSC). The calibrations are done in the static mode by using a small laser-produced X-ray source. A calibrated X-ray CCD is used as a secondary standard detector to monitor the X-ray source intensity. In addition, two sets of holographic flat-field grating spectrometers are chosen as the spectral discrimination systems of the SXRSC and the X-ray CCD. The absolute sensitivity of the SXRSC is obtained by comparing the signal counts of the SXRSC to the output counts of the X-ray CCD. Results show that the calibrated spectrum covers the range from 200 eV to 1040 eV. The change of the absolute sensitivity in the vicinity of the K-edge of the carbon can also be clearly seen. The experimental values agree with the calculated values to within 29% error. Compared with previous calibration methods, the proposed method has several advantages: a wide spectral range, high accuracy, and simple data processing. Our calibration results can be used to make quantitative X-ray flux measurements in laser fusion research.
Optimal Multicomponent Analysis Using the Generalized Standard Addition Method.
ERIC Educational Resources Information Center
Raymond, Margaret; And Others
1983-01-01
Describes an experiment on the simultaneous determination of chromium and magnesium by spectophotometry modified to include the Generalized Standard Addition Method computer program, a multivariate calibration method that provides optimal multicomponent analysis in the presence of interference and matrix effects. Provides instructions for…
Large-scale collision cross-section profiling on a travelling wave ion mobility mass spectrometer
Lietz, Christopher B.; Yu, Qing; Li, Lingjun
2014-01-01
Ion mobility (IM) is a gas-phase electrophoretic method that separates ions according to charge and ion-neutral collision cross-section (CCS). Herein, we attempt to apply a travelling wave (TW) IM polyalanine calibration method to shotgun proteomics and create a large peptide CCS database. Mass spectrometry methods that utilize IM, such as HDMSE, often use high transmission voltages for sensitive analysis. However, polyalanine calibration has only been demonstrated with low voltage transmission used to prevent gas-phase activation. If polyalanine ions change conformation under higher transmission voltages used for HDMSE, the calibration may no longer be valid. Thus, we aimed to characterize the accuracy of calibration and CCS measurement under high transmission voltages on a TW IM instrument using the polyalanine calibration method and found that the additional error was not significant. We also evaluated the potential error introduced by liquid chromatography (LC)-HDMSE analysis, and found it to be insignificant as well, validating the calibration method. Finally, we demonstrated the utility of building a large-population peptide CCS database by investigating the effects of terminal lysine position, via LysC or LysN digestion, on the formation of two structural sub-families formed by triply charged ions. PMID:24845359
Beam-based calibrations of the BPM offset at C-ADS Injector II
NASA Astrophysics Data System (ADS)
Chen, Wei-Long; Wang, Zhi-Jun; Feng, Chi; Dou, Wei-Ping; Tao, Yue; Jia, Huan; Wang, Wang-Sheng; Liu, Shu-Hui; He, Yuan
2016-07-01
Beam-based BPM offset calibration was carried out for Injector II at the C-ADS demonstration facility at the Institute of Modern Physics (IMP), Chinese Academy of Science (CAS). By using the steering coils integrated in the quadrupoles, the beam orbit can be effectively adjusted and BPM positions recorded at the Medium Energy Beam Transport of the Injector II Linac. The studies were done with a 2 mA, 2.1 MeV proton beam in pulsed mode. During the studies, the “null comparison method” was applied for the calibration. This method is less sensitive to errors compared with the traditional transmission matrix method. In addition, the quadrupole magnet’s center can also be calibrated with this method. Supported by National Natural Science Foundation of China (91426303, 11525523)
Zhang, Qian; Wang, Lei; Liu, Zengjun; Zhang, Yiming
2016-09-19
The calibration of an inertial measurement unit (IMU) is a key technique to improve the preciseness of the inertial navigation system (INS) for missile, especially for the calibration of accelerometer scale factor. Traditional calibration method is generally based on the high accuracy turntable, however, it leads to expensive costs and the calibration results are not suitable to the actual operating environment. In the wake of developments in multi-axis rotational INS (RINS) with optical inertial sensors, self-calibration is utilized as an effective way to calibrate IMU on missile and the calibration results are more accurate in practical application. However, the introduction of multi-axis RINS causes additional calibration errors, including non-orthogonality errors of mechanical processing and non-horizontal errors of operating environment, it means that the multi-axis gimbals could not be regarded as a high accuracy turntable. As for its application on missiles, in this paper, after analyzing the relationship between the calibration error of accelerometer scale factor and non-orthogonality and non-horizontal angles, an innovative calibration procedure using the signals of fiber optic gyro and photoelectric encoder is proposed. The laboratory and vehicle experiment results validate the theory and prove that the proposed method relaxes the orthogonality requirement of rotation axes and eliminates the strict application condition of the system.
Dried blood spot analysis of creatinine with LC-MS/MS in addition to immunosuppressants analysis.
Koster, Remco A; Greijdanus, Ben; Alffenaar, Jan-Willem C; Touw, Daan J
2015-02-01
In order to monitor creatinine levels or to adjust the dosage of renally excreted or nephrotoxic drugs, the analysis of creatinine in dried blood spots (DBS) could be a useful addition to DBS analysis. We developed a LC-MS/MS method for the analysis of creatinine in the same DBS extract that was used for the analysis of tacrolimus, sirolimus, everolimus, and cyclosporine A in transplant patients with the use of Whatman FTA DMPK-C cards. The method was validated using three different strategies: a seven-point calibration curve using the intercept of the calibration to correct for the natural presence of creatinine in reference samples, a one-point calibration curve at an extremely high concentration in order to diminish the contribution of the natural presence of creatinine, and the use of creatinine-[(2)H3] with an eight-point calibration curve. The validated range for creatinine was 120 to 480 μmol/L (seven-point calibration curve), 116 to 7000 μmol/L (1-point calibration curve), and 1.00 to 400.0 μmol/L for creatinine-[(2)H3] (eight-point calibration curve). The precision and accuracy results for all three validations showed a maximum CV of 14.0% and a maximum bias of -5.9%. Creatinine in DBS was found stable at ambient temperature and 32 °C for 1 week and at -20 °C for 29 weeks. Good correlations were observed between patient DBS samples and routine enzymatic plasma analysis and showed the capability of the DBS method to be used as an alternative for creatinine plasma measurement.
Liu, Xinyang; Plishker, William; Zaki, George; Kang, Sukryool; Kane, Timothy D.; Shekhar, Raj
2017-01-01
Purpose Common camera calibration methods employed in current laparoscopic augmented reality systems require the acquisition of multiple images of an entire checkerboard pattern from various poses. This lengthy procedure prevents performing laparoscope calibration in the operating room (OR). The purpose of this work was to develop a fast calibration method for electromagnetically (EM) tracked laparoscopes, such that calibration can be performed in the OR on demand. Methods We designed a mechanical tracking mount to uniquely and snugly position an EM sensor to an appropriate location on a conventional laparoscope. A tool named fCalib was developed to calibrate intrinsic camera parameters, distortion coefficients, and extrinsic parameters (transformation between the scope lens coordinate system and the EM sensor coordinate system) using a single image that shows an arbitrary portion of a special target pattern. For quick evaluation of calibration result in the OR, we integrated a tube phantom with fCalib and overlaid a virtual representation of the tube on the live video scene. Results We compared spatial target registration error between the common OpenCV method and the fCalib method in a laboratory setting. In addition, we compared the calibration re-projection error between the EM tracking-based fCalib and the optical tracking-based fCalib in a clinical setting. Our results suggested that the proposed method is comparable to the OpenCV method. However, changing the environment, e.g., inserting or removing surgical tools, would affect re-projection accuracy for the EM tracking-based approach. Computational time of the fCalib method averaged 14.0 s (range 3.5 s – 22.7 s). Conclusions We developed and validated a prototype for fast calibration and evaluation of EM tracked conventional (forward viewing) laparoscopes. The calibration method achieved acceptable accuracy and was relatively fast and easy to be performed in the OR on demand. PMID:27250853
Simple and accurate quantification of BTEX in ambient air by SPME and GC-MS.
Baimatova, Nassiba; Kenessov, Bulat; Koziel, Jacek A; Carlsen, Lars; Bektassov, Marat; Demyanenko, Olga P
2016-07-01
Benzene, toluene, ethylbenzene and xylenes (BTEX) comprise one of the most ubiquitous and hazardous groups of ambient air pollutants of concern. Application of standard analytical methods for quantification of BTEX is limited by the complexity of sampling and sample preparation equipment, and budget requirements. Methods based on SPME represent simpler alternative, but still require complex calibration procedures. The objective of this research was to develop a simpler, low-budget, and accurate method for quantification of BTEX in ambient air based on SPME and GC-MS. Standard 20-mL headspace vials were used for field air sampling and calibration. To avoid challenges with obtaining and working with 'zero' air, slope factors of external standard calibration were determined using standard addition and inherently polluted lab air. For polydimethylsiloxane (PDMS) fiber, differences between the slope factors of calibration plots obtained using lab and outdoor air were below 14%. PDMS fiber provided higher precision during calibration while the use of Carboxen/PDMS fiber resulted in lower detection limits for benzene and toluene. To provide sufficient accuracy, the use of 20mL vials requires triplicate sampling and analysis. The method was successfully applied for analysis of 108 ambient air samples from Almaty, Kazakhstan. Average concentrations of benzene, toluene, ethylbenzene and o-xylene were 53, 57, 11 and 14µgm(-3), respectively. The developed method can be modified for further quantification of a wider range of volatile organic compounds in air. In addition, the new method is amenable to automation. Copyright © 2016 Elsevier B.V. All rights reserved.
Exploring the calibration of a wind forecast ensemble for energy applications
NASA Astrophysics Data System (ADS)
Heppelmann, Tobias; Ben Bouallegue, Zied; Theis, Susanne
2015-04-01
In the German research project EWeLiNE, Deutscher Wetterdienst (DWD) and Fraunhofer Institute for Wind Energy and Energy System Technology (IWES) are collaborating with three German Transmission System Operators (TSO) in order to provide the TSOs with improved probabilistic power forecasts. Probabilistic power forecasts are derived from probabilistic weather forecasts, themselves derived from ensemble prediction systems (EPS). Since the considered raw ensemble wind forecasts suffer from underdispersiveness and bias, calibration methods are developed for the correction of the model bias and the ensemble spread bias. The overall aim is to improve the ensemble forecasts such that the uncertainty of the possible weather deployment is depicted by the ensemble spread from the first forecast hours. Additionally, the ensemble members after calibration should remain physically consistent scenarios. We focus on probabilistic hourly wind forecasts with horizon of 21 h delivered by the convection permitting high-resolution ensemble system COSMO-DE-EPS which has become operational in 2012 at DWD. The ensemble consists of 20 ensemble members driven by four different global models. The model area includes whole Germany and parts of Central Europe with a horizontal resolution of 2.8 km and a vertical resolution of 50 model levels. For verification we use wind mast measurements around 100 m height that corresponds to the hub height of wind energy plants that belong to wind farms within the model area. Calibration of the ensemble forecasts can be performed by different statistical methods applied to the raw ensemble output. Here, we explore local bivariate Ensemble Model Output Statistics at individual sites and quantile regression with different predictors. Applying different methods, we already show an improvement of ensemble wind forecasts from COSMO-DE-EPS for energy applications. In addition, an ensemble copula coupling approach transfers the time-dependencies of the raw ensemble to the calibrated ensemble. The calibrated wind forecasts are evaluated first with univariate probabilistic scores and additionally with diagnostics of wind ramps in order to assess the time-consistency of the calibrated ensemble members.
Waugh, C J; Rosenberg, M J; Zylstra, A B; Frenje, J A; Séguin, F H; Petrasso, R D; Glebov, V Yu; Sangster, T C; Stoeckl, C
2015-05-01
Neutron time of flight (nTOF) detectors are used routinely to measure the absolute DD neutron yield at OMEGA. To check the DD yield calibration of these detectors, originally calibrated using indium activation systems, which in turn were cross-calibrated to NOVA nTOF detectors in the early 1990s, a direct in situ calibration method using CR-39 range filter proton detectors has been successfully developed. By measuring DD neutron and proton yields from a series of exploding pusher implosions at OMEGA, a yield calibration coefficient of 1.09 ± 0.02 (relative to the previous coefficient) was determined for the 3m nTOF detector. In addition, comparison of these and other shots indicates that significant reduction in charged particle flux anisotropies is achieved when bang time occurs significantly (on the order of 500 ps) after the trailing edge of the laser pulse. This is an important observation as the main source of the yield calibration error is due to particle anisotropies caused by field effects. The results indicate that the CR-39-nTOF in situ calibration method can serve as a valuable technique for calibrating and reducing the uncertainty in the DD absolute yield calibration of nTOF detector systems on OMEGA, the National Ignition Facility, and laser megajoule.
Waugh, C. J.; Rosenberg, M. J.; Zylstra, A. B.; ...
2015-05-27
Neutron time of flight (nTOF) detectors are used routinely to measure the absolute DD neutron yield at OMEGA. To check the DD yield calibration of these detectors, originally calibrated using indium activation systems, which in turn were cross-calibrated to NOVA nTOF detectors in the early 1990s, a direct in situ calibration method using CR-39 range filter proton detectors has been successfully developed. By measuring DD neutron and proton yields from a series of exploding pusher implosions at OMEGA, a yield calibration coefficient of 1.09 ± 0.02 (relative to the previous coefficient) was determined for the 3m nTOF detector. In addition,more » comparison of these and other shots indicates that significant reduction in charged particle flux anisotropies is achieved when bang time occurs significantly (on the order of 500 ps) after the trailing edge of the laser pulse. This is an important observation as the main source of the yield calibration error is due to particle anisotropies caused by field effects. The results indicate that the CR-39-nTOF in situ calibration method can serve as a valuable technique for calibrating and reducing the uncertainty in the DD absolute yield calibration of nTOF detector systems on OMEGA, the National Ignition Facility, and laser megajoule.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Waugh, C. J.; Rosenberg, M. J.; Zylstra, A. B.
Neutron time of flight (nTOF) detectors are used routinely to measure the absolute DD neutron yield at OMEGA. To check the DD yield calibration of these detectors, originally calibrated using indium activation systems, which in turn were cross-calibrated to NOVA nTOF detectors in the early 1990s, a direct in situ calibration method using CR-39 range filter proton detectors has been successfully developed. By measuring DD neutron and proton yields from a series of exploding pusher implosions at OMEGA, a yield calibration coefficient of 1.09 ± 0.02 (relative to the previous coefficient) was determined for the 3m nTOF detector. In addition,more » comparison of these and other shots indicates that significant reduction in charged particle flux anisotropies is achieved when bang time occurs significantly (on the order of 500 ps) after the trailing edge of the laser pulse. This is an important observation as the main source of the yield calibration error is due to particle anisotropies caused by field effects. The results indicate that the CR-39-nTOF in situ calibration method can serve as a valuable technique for calibrating and reducing the uncertainty in the DD absolute yield calibration of nTOF detector systems on OMEGA, the National Ignition Facility, and laser megajoule.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Waugh, C. J., E-mail: cjwaugh@mit.edu; Zylstra, A. B.; Frenje, J. A.
2015-05-15
Neutron time of flight (nTOF) detectors are used routinely to measure the absolute DD neutron yield at OMEGA. To check the DD yield calibration of these detectors, originally calibrated using indium activation systems, which in turn were cross-calibrated to NOVA nTOF detectors in the early 1990s, a direct in situ calibration method using CR-39 range filter proton detectors has been successfully developed. By measuring DD neutron and proton yields from a series of exploding pusher implosions at OMEGA, a yield calibration coefficient of 1.09 ± 0.02 (relative to the previous coefficient) was determined for the 3m nTOF detector. In addition,more » comparison of these and other shots indicates that significant reduction in charged particle flux anisotropies is achieved when bang time occurs significantly (on the order of 500 ps) after the trailing edge of the laser pulse. This is an important observation as the main source of the yield calibration error is due to particle anisotropies caused by field effects. The results indicate that the CR-39-nTOF in situ calibration method can serve as a valuable technique for calibrating and reducing the uncertainty in the DD absolute yield calibration of nTOF detector systems on OMEGA, the National Ignition Facility, and laser megajoule.« less
Liu, Xinyang; Plishker, William; Zaki, George; Kang, Sukryool; Kane, Timothy D; Shekhar, Raj
2016-06-01
Common camera calibration methods employed in current laparoscopic augmented reality systems require the acquisition of multiple images of an entire checkerboard pattern from various poses. This lengthy procedure prevents performing laparoscope calibration in the operating room (OR). The purpose of this work was to develop a fast calibration method for electromagnetically (EM) tracked laparoscopes, such that the calibration can be performed in the OR on demand. We designed a mechanical tracking mount to uniquely and snugly position an EM sensor to an appropriate location on a conventional laparoscope. A tool named fCalib was developed to calibrate intrinsic camera parameters, distortion coefficients, and extrinsic parameters (transformation between the scope lens coordinate system and the EM sensor coordinate system) using a single image that shows an arbitrary portion of a special target pattern. For quick evaluation of calibration results in the OR, we integrated a tube phantom with fCalib prototype and overlaid a virtual representation of the tube on the live video scene. We compared spatial target registration error between the common OpenCV method and the fCalib method in a laboratory setting. In addition, we compared the calibration re-projection error between the EM tracking-based fCalib and the optical tracking-based fCalib in a clinical setting. Our results suggest that the proposed method is comparable to the OpenCV method. However, changing the environment, e.g., inserting or removing surgical tools, might affect re-projection accuracy for the EM tracking-based approach. Computational time of the fCalib method averaged 14.0 s (range 3.5 s-22.7 s). We developed and validated a prototype for fast calibration and evaluation of EM tracked conventional (forward viewing) laparoscopes. The calibration method achieved acceptable accuracy and was relatively fast and easy to be performed in the OR on demand.
Wang, Ching-Yun; Song, Xiao
2017-01-01
SUMMARY Biomedical researchers are often interested in estimating the effect of an environmental exposure in relation to a chronic disease endpoint. However, the exposure variable of interest may be measured with errors. In a subset of the whole cohort, a surrogate variable is available for the true unobserved exposure variable. The surrogate variable satisfies an additive measurement error model, but it may not have repeated measurements. The subset in which the surrogate variables are available is called a calibration sample. In addition to the surrogate variables that are available among the subjects in the calibration sample, we consider the situation when there is an instrumental variable available for all study subjects. An instrumental variable is correlated with the unobserved true exposure variable, and hence can be useful in the estimation of the regression coefficients. In this paper, we propose a nonparametric method for Cox regression using the observed data from the whole cohort. The nonparametric estimator is the best linear combination of a nonparametric correction estimator from the calibration sample and the difference of the naive estimators from the calibration sample and the whole cohort. The asymptotic distribution is derived, and the finite sample performance of the proposed estimator is examined via intensive simulation studies. The methods are applied to the Nutritional Biomarkers Study of the Women’s Health Initiative. PMID:27546625
Jones, Barry R; Schultz, Gary A; Eckstein, James A; Ackermann, Bradley L
2012-10-01
Quantitation of biomarkers by LC-MS/MS is complicated by the presence of endogenous analytes. This challenge is most commonly overcome by calibration using an authentic standard spiked into a surrogate matrix devoid of the target analyte. A second approach involves use of a stable-isotope-labeled standard as a surrogate analyte to allow calibration in the actual biological matrix. For both methods, parallelism between calibration standards and the target analyte in biological matrix must be demonstrated in order to ensure accurate quantitation. In this communication, the surrogate matrix and surrogate analyte approaches are compared for the analysis of five amino acids in human plasma: alanine, valine, methionine, leucine and isoleucine. In addition, methodology based on standard addition is introduced, which enables a robust examination of parallelism in both surrogate analyte and surrogate matrix methods prior to formal validation. Results from additional assays are presented to introduce the standard-addition methodology and to highlight the strengths and weaknesses of each approach. For the analysis of amino acids in human plasma, comparable precision and accuracy were obtained by the surrogate matrix and surrogate analyte methods. Both assays were well within tolerances prescribed by regulatory guidance for validation of xenobiotic assays. When stable-isotope-labeled standards are readily available, the surrogate analyte approach allows for facile method development. By comparison, the surrogate matrix method requires greater up-front method development; however, this deficit is offset by the long-term advantage of simplified sample analysis.
A combined microphone and camera calibration technique with application to acoustic imaging.
Legg, Mathew; Bradley, Stuart
2013-10-01
We present a calibration technique for an acoustic imaging microphone array, combined with a digital camera. Computer vision and acoustic time of arrival data are used to obtain microphone coordinates in the camera reference frame. Our new method allows acoustic maps to be plotted onto the camera images without the need for additional camera alignment or calibration. Microphones and cameras may be placed in an ad-hoc arrangement and, after calibration, the coordinates of the microphones are known in the reference frame of a camera in the array. No prior knowledge of microphone positions, inter-microphone spacings, or air temperature is required. This technique is applied to a spherical microphone array and a mean difference of 3 mm was obtained between the coordinates obtained with this calibration technique and those measured using a precision mechanical method.
Geometric artifacts reduction for cone-beam CT via L0-norm minimization without dedicated phantoms.
Gong, Changcheng; Cai, Yufang; Zeng, Li
2018-01-01
For cone-beam computed tomography (CBCT), transversal shifts of the rotation center exist inevitably, which will result in geometric artifacts in CT images. In this work, we propose a novel geometric calibration method for CBCT, which can also be used in micro-CT. The symmetry property of the sinogram is used for the first calibration, and then L0-norm of the gradient image from the reconstructed image is used as the cost function to be minimized for the second calibration. An iterative search method is adopted to pursue the local minimum of the L0-norm minimization problem. The transversal shift value is updated with affirmatory step size within a search range determined by the first calibration. In addition, graphic processing unit (GPU)-based FDK algorithm and acceleration techniques are designed to accelerate the calibration process of the presented new method. In simulation experiments, the mean absolute difference (MAD) and the standard deviation (SD) of the transversal shift value were less than 0.2 pixels between the noise-free and noisy projection images, which indicated highly accurate calibration applying the new calibration method. In real data experiments, the smaller entropies of the corrected images also indicated that higher resolution image was acquired using the corrected projection data and the textures were well protected. Study results also support the feasibility of applying the proposed method to other imaging modalities.
Non-orthogonal tool/flange and robot/world calibration.
Ernst, Floris; Richter, Lars; Matthäus, Lars; Martens, Volker; Bruder, Ralf; Schlaefer, Alexander; Schweikard, Achim
2012-12-01
For many robot-assisted medical applications, it is necessary to accurately compute the relation between the robot's coordinate system and the coordinate system of a localisation or tracking device. Today, this is typically carried out using hand-eye calibration methods like those proposed by Tsai/Lenz or Daniilidis. We present a new method for simultaneous tool/flange and robot/world calibration by estimating a solution to the matrix equation AX = YB. It is computed using a least-squares approach. Because real robots and localisation are all afflicted by errors, our approach allows for non-orthogonal matrices, partially compensating for imperfect calibration of the robot or localisation device. We also introduce a new method where full robot/world and partial tool/flange calibration is possible by using localisation devices providing less than six degrees of freedom (DOFs). The methods are evaluated on simulation data and on real-world measurements from optical and magnetical tracking devices, volumetric ultrasound providing 3-DOF data, and a surface laser scanning device. We compare our methods with two classical approaches: the method by Tsai/Lenz and the method by Daniilidis. In all experiments, the new algorithms outperform the classical methods in terms of translational accuracy by up to 80% and perform similarly in terms of rotational accuracy. Additionally, the methods are shown to be stable: the number of calibration stations used has far less influence on calibration quality than for the classical methods. Our work shows that the new method can be used for estimating the relationship between the robot's and the localisation device's coordinate systems. The new method can also be used for deficient systems providing only 3-DOF data, and it can be employed in real-time scenarios because of its speed. Copyright © 2012 John Wiley & Sons, Ltd.
An accurate system for onsite calibration of electronic transformers with digital output.
Zhi, Zhang; Li, Hong-Bin
2012-06-01
Calibration systems with digital output are used to replace conventional calibration systems because of principle diversity and characteristics of digital output of electronic transformers. But precision and unpredictable stability limit their onsite application even development. So fully considering the factors influencing accuracy of calibration system and employing simple but reliable structure, an all-digital calibration system with digital output is proposed in this paper. In complicated calibration environments, precision and dynamic range are guaranteed by A/D converter with 24-bit resolution, synchronization error limit is nanosecond by using the novelty synchronization method. In addition, an error correction algorithm based on the differential method by using two-order Hanning convolution window has good inhibition of frequency fluctuation and inter-harmonics interference. To verify the effectiveness, error calibration was carried out in the State Grid Electric Power Research Institute of China and results show that the proposed system can reach the precision class up to 0.05. Actual onsite calibration shows that the system has high accuracy, and is easy to operate with satisfactory stability.
An accurate system for onsite calibration of electronic transformers with digital output
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhi Zhang; Li Hongbin; State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Wuhan 430074
Calibration systems with digital output are used to replace conventional calibration systems because of principle diversity and characteristics of digital output of electronic transformers. But precision and unpredictable stability limit their onsite application even development. So fully considering the factors influencing accuracy of calibration system and employing simple but reliable structure, an all-digital calibration system with digital output is proposed in this paper. In complicated calibration environments, precision and dynamic range are guaranteed by A/D converter with 24-bit resolution, synchronization error limit is nanosecond by using the novelty synchronization method. In addition, an error correction algorithm based on the differentialmore » method by using two-order Hanning convolution window has good inhibition of frequency fluctuation and inter-harmonics interference. To verify the effectiveness, error calibration was carried out in the State Grid Electric Power Research Institute of China and results show that the proposed system can reach the precision class up to 0.05. Actual onsite calibration shows that the system has high accuracy, and is easy to operate with satisfactory stability.« less
An accurate system for onsite calibration of electronic transformers with digital output
NASA Astrophysics Data System (ADS)
Zhi, Zhang; Li, Hong-Bin
2012-06-01
Calibration systems with digital output are used to replace conventional calibration systems because of principle diversity and characteristics of digital output of electronic transformers. But precision and unpredictable stability limit their onsite application even development. So fully considering the factors influencing accuracy of calibration system and employing simple but reliable structure, an all-digital calibration system with digital output is proposed in this paper. In complicated calibration environments, precision and dynamic range are guaranteed by A/D converter with 24-bit resolution, synchronization error limit is nanosecond by using the novelty synchronization method. In addition, an error correction algorithm based on the differential method by using two-order Hanning convolution window has good inhibition of frequency fluctuation and inter-harmonics interference. To verify the effectiveness, error calibration was carried out in the State Grid Electric Power Research Institute of China and results show that the proposed system can reach the precision class up to 0.05. Actual onsite calibration shows that the system has high accuracy, and is easy to operate with satisfactory stability.
Frequency analysis of a step dynamic pressure calibrator.
Choi, In-Mook; Yang, Inseok; Yang, Tae-Heon
2012-09-01
A dynamic high pressure standard is becoming more essential in the fields of mobile engines, space science, and especially the area of defense such as long-range missile development. However, a complication arises when a dynamic high pressure sensor is compared with a reference dynamic pressure gauge calibrated in static mode. Also, it is difficult to determine a reference dynamic pressure signal from the calibrator because a dynamic high pressure calibrator generates unnecessary oscillations in a positive-going pressure step method. A dynamic high pressure calibrator, using a quick-opening ball valve, generates a fast step pressure change within 1 ms; however, the calibrator also generates a big impulse force that can lead to a short life-time of the system and to oscillating characteristics in response to the dynamic sensor to be calibrated. In this paper, unnecessary additional resonant frequencies besides those of the step function are characterized using frequency analysis. Accordingly, the main sources of resonance are described. In order to remove unnecessary frequencies, the post processing results, obtained by a filter, are given; also, a method for the modification of the dynamic calibration system is proposed.
Frequency analysis of a step dynamic pressure calibrator
NASA Astrophysics Data System (ADS)
Choi, In-Mook; Yang, Inseok; Yang, Tae-Heon
2012-09-01
A dynamic high pressure standard is becoming more essential in the fields of mobile engines, space science, and especially the area of defense such as long-range missile development. However, a complication arises when a dynamic high pressure sensor is compared with a reference dynamic pressure gauge calibrated in static mode. Also, it is difficult to determine a reference dynamic pressure signal from the calibrator because a dynamic high pressure calibrator generates unnecessary oscillations in a positive-going pressure step method. A dynamic high pressure calibrator, using a quick-opening ball valve, generates a fast step pressure change within 1 ms; however, the calibrator also generates a big impulse force that can lead to a short life-time of the system and to oscillating characteristics in response to the dynamic sensor to be calibrated. In this paper, unnecessary additional resonant frequencies besides those of the step function are characterized using frequency analysis. Accordingly, the main sources of resonance are described. In order to remove unnecessary frequencies, the post processing results, obtained by a filter, are given; also, a method for the modification of the dynamic calibration system is proposed.
Measuring the orthogonality error of coil systems
Heilig, B.; Csontos, A.; Pajunpää, K.; White, Tim; St. Louis, B.; Calp, D.
2012-01-01
Recently, a simple method was proposed for the determination of pitch angle between two coil axes by means of a total field magnetometer. The method is applicable when the homogeneous volume in the centre of the coil system is large enough to accommodate the total field sensor. Orthogonality of calibration coil systems used for calibrating vector magnetometers can be attained by this procedure. In addition, the method can be easily automated and applied to the calibration of delta inclination–delta declination (dIdD) magnetometers. The method was tested by several independent research groups, having a variety of test equipment, and located at differing geomagnetic observatories, including: Nurmijärvi, Finland; Hermanus, South Africa; Ottawa, Canada; Tihany, Hungary. This paper summarizes the test results, and discusses the advantages and limitations of the method.
An IMU-to-Body Alignment Method Applied to Human Gait Analysis.
Vargas-Valencia, Laura Susana; Elias, Arlindo; Rocon, Eduardo; Bastos-Filho, Teodiano; Frizera, Anselmo
2016-12-10
This paper presents a novel calibration procedure as a simple, yet powerful, method to place and align inertial sensors with body segments. The calibration can be easily replicated without the need of any additional tools. The proposed method is validated in three different applications: a computer mathematical simulation; a simplified joint composed of two semi-spheres interconnected by a universal goniometer; and a real gait test with five able-bodied subjects. Simulation results demonstrate that, after the calibration method is applied, the joint angles are correctly measured independently of previous sensor placement on the joint, thus validating the proposed procedure. In the cases of a simplified joint and a real gait test with human volunteers, the method also performs correctly, although secondary plane errors appear when compared with the simulation results. We believe that such errors are caused by limitations of the current inertial measurement unit (IMU) technology and fusion algorithms. In conclusion, the presented calibration procedure is an interesting option to solve the alignment problem when using IMUs for gait analysis.
Alamar, Priscila D; Caramês, Elem T S; Poppi, Ronei J; Pallone, Juliana A L
2016-07-01
The present study investigated the application of near infrared spectroscopy as a green, quick, and efficient alternative to analytical methods currently used to evaluate the quality (moisture, total sugars, acidity, soluble solids, pH and ascorbic acid) of frozen guava and passion fruit pulps. Fifty samples were analyzed by near infrared spectroscopy (NIR) and reference methods. Partial least square regression (PLSR) was used to develop calibration models to relate the NIR spectra and the reference values. Reference methods indicated adulteration by water addition in 58% of guava pulp samples and 44% of yellow passion fruit pulp samples. The PLS models produced lower values of root mean squares error of calibration (RMSEC), root mean squares error of prediction (RMSEP), and coefficient of determination above 0.7. Moisture and total sugars presented the best calibration models (RMSEP of 0.240 and 0.269, respectively, for guava pulp; RMSEP of 0.401 and 0.413, respectively, for passion fruit pulp) which enables the application of these models to determine adulteration in guava and yellow passion fruit pulp by water or sugar addition. The models constructed for calibration of quality parameters of frozen fruit pulps in this study indicate that NIR spectroscopy coupled with the multivariate calibration technique could be applied to determine the quality of guava and yellow passion fruit pulp. Copyright © 2016 Elsevier Ltd. All rights reserved.
Feng, Jingjie; Huang, Zhongyi; Zhou, Congcong; Ye, Xuesong
2018-06-01
It is widely recognized that pulse transit time (PTT) can track blood pressure (BP) over short periods of time, and hemodynamic covariates such as heart rate, stiffness index may also contribute to BP monitoring. In this paper, we derived a proportional relationship between BP and PPT -2 and proposed an improved method adopting hemodynamic covariates in addition to PTT for continuous BP estimation. We divided 28 subjects from the Multi-parameter Intelligent Monitoring for Intensive Care database into two groups (with/without cardiovascular diseases) and utilized a machine learning strategy based on regularized linear regression (RLR) to construct BP models with different covariates for corresponding groups. RLR was performed for individuals as the initial calibration, while recursive least square algorithm was employed for the re-calibration. The results showed that errors of BP estimation by our method stayed within the Association of Advancement of Medical Instrumentation limits (- 0.98 ± 6.00 mmHg @ SBP, 0.02 ± 4.98 mmHg @ DBP) when the calibration interval extended to 1200-beat cardiac cycles. In comparison with other two representative studies, Chen's method kept accurate (0.32 ± 6.74 mmHg @ SBP, 0.94 ± 5.37 mmHg @ DBP) using a 400-beat calibration interval, while Poon's failed (- 1.97 ± 10.59 mmHg @ SBP, 0.70 ± 4.10 mmHg @ DBP) when using a 200-beat calibration interval. With additional hemodynamic covariates utilized, our method improved the accuracy of PTT-based BP estimation, decreased the calibration frequency and had the potential for better continuous BP estimation.
Multi-projector auto-calibration and placement optimization for non-planar surfaces
NASA Astrophysics Data System (ADS)
Li, Dong; Xie, Jinghui; Zhao, Lu; Zhou, Lijing; Weng, Dongdong
2015-10-01
Non-planar projection has been widely applied in virtual reality and digital entertainment and exhibitions because of its flexible layout and immersive display effects. Compared with planar projection, a non-planar projection is more difficult to achieve because projector calibration and image distortion correction are difficult processes. This paper uses a cylindrical screen as an example to present a new method for automatically calibrating a multi-projector system in a non-planar environment without using 3D reconstruction. This method corrects the geometric calibration error caused by the screen's manufactured imperfections, such as an undulating surface or a slant in the vertical plane. In addition, based on actual projection demand, this paper presents the overall performance evaluation criteria for the multi-projector system. According to these criteria, we determined the optimal placement for the projectors. This method also extends to surfaces that can be parameterized, such as spheres, ellipsoids, and paraboloids, and demonstrates a broad applicability.
Absolute detector calibration using twin beams.
Peřina, Jan; Haderka, Ondřej; Michálek, Václav; Hamar, Martin
2012-07-01
A method for the determination of absolute quantum detection efficiency is suggested based on the measurement of photocount statistics of twin beams. The measured histograms of joint signal-idler photocount statistics allow us to eliminate an additional noise superimposed on an ideal calibration field composed of only photon pairs. This makes the method superior above other approaches presently used. Twin beams are described using a paired variant of quantum superposition of signal and noise.
Fu, J; Li, L; Yang, X Q; Zhu, M J
2011-01-01
Leucine carboxypeptidase (EC 3.4.16) activity in Actinomucor elegans bran koji was investigated via absorbance at 507 nm after stained by Cd-nihydrin solution, with calibration curve A, which was made by a set of known concentration standard leucine, calibration B, which was made by three sets of known concentration standard leucine solutions with the addition of three concentrations inactive crude enzyme extract, and calibration C, which was made by three sets of known concentration standard leucine solutions with the addition of three concentrations crude enzyme extract. The results indicated that application of pure amino acid standard curve was not a suitable way to determine carboxypeptidase in complicate mixture, and it probably led to overestimated carboxypeptidase activity. It was found that addition of crude exact into pure amino acid standard curve had a significant difference from pure amino acid standard curve method (p < 0.05). There was no significant enzyme activity difference (p > 0.05) between addition of active crude exact and addition of inactive crude kind, when the proper dilute multiple was used. It was concluded that the addition of crude enzyme extract to the calibration was needed to eliminate the interference of free amino acids and related compounds presented in crude enzyme extract.
Air data position-error calibration using state reconstruction techniques
NASA Technical Reports Server (NTRS)
Whitmore, S. A.; Larson, T. J.; Ehernberger, L. J.
1984-01-01
During the highly maneuverable aircraft technology (HiMAT) flight test program recently completed at NASA Ames Research Center's Dryden Flight Research Facility, numerous problems were experienced in airspeed calibration. This necessitated the use of state reconstruction techniques to arrive at a position-error calibration. For the HiMAT aircraft, most of the calibration effort was expended on flights in which the air data pressure transducers were not performing accurately. Following discovery of this problem, the air data transducers of both aircraft were wrapped in heater blankets to correct the problem. Additional calibration flights were performed, and from the resulting data a satisfactory position-error calibration was obtained. This calibration and data obtained before installation of the heater blankets were used to develop an alternate calibration method. The alternate approach took advantage of high-quality inertial data that was readily available. A linearized Kalman filter (LKF) was used to reconstruct the aircraft's wind-relative trajectory; the trajectory was then used to separate transducer measurement errors from the aircraft position error. This calibration method is accurate and inexpensive. The LKF technique has an inherent advantage of requiring that no flight maneuvers be specially designed for airspeed calibrations. It is of particular use when the measurements of the wind-relative quantities are suspected to have transducer-related errors.
Using the GOCE star trackers for validating the calibration of its accelerometers
NASA Astrophysics Data System (ADS)
Visser, P. N. A. M.
2017-12-01
A method for validating the calibration parameters of the six accelerometers on board the Gravity field and steady-state Ocean Circulation Explorer (GOCE) from star tracker observations that was originally tested by an end-to-end simulation, has been updated and applied to real data from GOCE. It is shown that the method provides estimates of scale factors for all three axes of the six GOCE accelerometers that are consistent at a level significantly better than 0.01 compared to the a priori calibrated value of 1. In addition, relative accelerometer biases and drift terms were estimated consistent with values obtained by precise orbit determination, where the first GOCE accelerometer served as reference. The calibration results clearly reveal the different behavior of the sensitive and less-sensitive accelerometer axes.
Wang, Ching-Yun; Song, Xiao
2016-11-01
Biomedical researchers are often interested in estimating the effect of an environmental exposure in relation to a chronic disease endpoint. However, the exposure variable of interest may be measured with errors. In a subset of the whole cohort, a surrogate variable is available for the true unobserved exposure variable. The surrogate variable satisfies an additive measurement error model, but it may not have repeated measurements. The subset in which the surrogate variables are available is called a calibration sample. In addition to the surrogate variables that are available among the subjects in the calibration sample, we consider the situation when there is an instrumental variable available for all study subjects. An instrumental variable is correlated with the unobserved true exposure variable, and hence can be useful in the estimation of the regression coefficients. In this paper, we propose a nonparametric method for Cox regression using the observed data from the whole cohort. The nonparametric estimator is the best linear combination of a nonparametric correction estimator from the calibration sample and the difference of the naive estimators from the calibration sample and the whole cohort. The asymptotic distribution is derived, and the finite sample performance of the proposed estimator is examined via intensive simulation studies. The methods are applied to the Nutritional Biomarkers Study of the Women's Health Initiative. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Zhou, Y.; Zhang, X.; Xiao, W.
2018-04-01
As the geomagnetic sensor is susceptible to interference, a pre-processing total least square iteration method is proposed for calibration compensation. Firstly, the error model of the geomagnetic sensor is analyzed and the correction model is proposed, then the characteristics of the model are analyzed and converted into nine parameters. The geomagnetic data is processed by Hilbert transform (HHT) to improve the signal-to-noise ratio, and the nine parameters are calculated by using the combination of Newton iteration method and the least squares estimation method. The sifter algorithm is used to filter the initial value of the iteration to ensure that the initial error is as small as possible. The experimental results show that this method does not need additional equipment and devices, can continuously update the calibration parameters, and better than the two-step estimation method, it can compensate geomagnetic sensor error well.
NASA Astrophysics Data System (ADS)
Lim, Sungsoo; Lee, Seohyung; Kim, Jun-geon; Lee, Daeho
2018-01-01
The around-view monitoring (AVM) system is one of the major applications of advanced driver assistance systems and intelligent transportation systems. We propose an on-line calibration method, which can compensate misalignments for AVM systems. Most AVM systems use fisheye undistortion, inverse perspective transformation, and geometrical registration methods. To perform these procedures, the parameters for each process must be known; the procedure by which the parameters are estimated is referred to as the initial calibration. However, when only using the initial calibration data, we cannot compensate misalignments, caused by changing equilibria of cars. Moreover, even small changes such as tire pressure levels, passenger weight, or road conditions can affect a car's equilibrium. Therefore, to compensate for this misalignment, additional techniques are necessary, specifically an on-line calibration method. On-line calibration can recalculate homographies, which can correct any degree of misalignment using the unique features of ordinary parking lanes. To extract features from the parking lanes, this method uses corner detection and a pattern matching algorithm. From the extracted features, homographies are estimated using random sample consensus and parameter estimation. Finally, the misaligned epipolar geographies are compensated via the estimated homographies. Thus, the proposed method can render image planes parallel to the ground. This method does not require any designated patterns and can be used whenever cars are placed in a parking lot. The experimental results show the robustness and efficiency of the method.
NASA Astrophysics Data System (ADS)
Cho, Ilje; Jung, Taehyun; Zhao, Guang-Yao; Akiyama, Kazunori; Sawada-Satoh, Satoko; Kino, Motoki; Byun, Do-Young; Sohn, Bong Won; Shibata, Katsunori M.; Hirota, Tomoya; Niinuma, Kotaro; Yonekura, Yoshinori; Fujisawa, Kenta; Oyama, Tomoaki
2017-12-01
We present the results of a comparative study of amplitude calibrations for the East Asia VLBI Network (EAVN) at 22 and 43 GHz using two different methods of an "a priori" and a "template spectrum", particularly on lower declination sources. Using observational data sets of early EAVN observations, we investigated the elevation-dependence of the gain values at seven stations of the KaVA (KVN and VERA Array) and three additional telescopes in Japan (Takahagi 32 m, Yamaguchi 32 m, and Nobeyama 45 m). By comparing the independently obtained gain values based on these two methods, we found that the gain values from each method were consistent within 10% at elevations higher than 10°. We also found that the total flux densities of two images produced from the different amplitude calibrations were in agreement within 10% at both 22 and 43 GHz. By using the template spectrum method, furthermore, the additional radio telescopes can participate in KaVA (i.e., EAVN), giving a notable sensitivity increase. Therefore, our results will constrain the detailed conditions in order to measure the VLBI amplitude reliably using EAVN, and discuss the potential of possible expansion to telescopes comprising EAVN.
Uplink Array Calibration via Far-Field Power Maximization
NASA Technical Reports Server (NTRS)
Vilnrotter, V.; Mukai, R.; Lee, D.
2006-01-01
Uplink antenna arrays have the potential to greatly increase the Deep Space Network s high-data-rate uplink capabilities as well as useful range, and to provide additional uplink signal power during critical spacecraft emergencies. While techniques for calibrating an array of receive antennas have been addressed previously, proven concepts for uplink array calibration have yet to be demonstrated. This article describes a method of utilizing the Moon as a natural far-field reflector for calibrating a phased array of uplink antennas. Using this calibration technique, the radio frequency carriers transmitted by each antenna of the array are optimally phased to ensure that the uplink power received by the spacecraft is maximized.
Cantwell, Caoimhe A; Byrne, Laurann A; Connolly, Cathal D; Hynes, Michael J; McArdle, Patrick; Murphy, Richard A
2017-08-01
The aim of the present work was to establish a reliable analytical method to determine the degree of complexation in commercial metal proteinates used as feed additives in the solid state. Two complementary techniques were developed. Firstly, a quantitative attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopic method investigated modifications in vibrational absorption bands of the ligand on complex formation. Secondly, a powder X-ray diffraction (PXRD) method to quantify the amount of crystalline material in the proteinate product was developed. These methods were developed in tandem and cross-validated with each other. Multivariate analysis (MVA) was used to develop validated calibration and prediction models. The FTIR and PXRD calibrations showed excellent linearity (R 2 > 0.99). The diagnostic model parameters showed that the FTIR and PXRD methods were robust with a root mean square error of calibration RMSEC ≤3.39% and a root mean square error of prediction RMSEP ≤7.17% respectively. Comparative statistics show excellent agreement between the MVA packages assessed and between the FTIR and PXRD methods. The methods can be used to determine the degree of complexation in complexes of both protein hydrolysates and pure amino acids.
Calibration strategies for the Cherenkov Telescope Array
NASA Astrophysics Data System (ADS)
Gaug, Markus; Berge, David; Daniel, Michael; Doro, Michele; Förster, Andreas; Hofmann, Werner; Maccarone, Maria C.; Parsons, Dan; de los Reyes Lopez, Raquel; van Eldik, Christopher
2014-08-01
The Central Calibration Facilities workpackage of the Cherenkov Telescope Array (CTA) observatory for very high energy gamma ray astronomy defines the overall calibration strategy of the array, develops dedicated hardware and software for the overall array calibration and coordinates the calibration efforts of the different telescopes. The latter include LED-based light pulsers, and various methods and instruments to achieve a calibration of the overall optical throughput. On the array level, methods for the inter-telescope calibration and the absolute calibration of the entire observatory are being developed. Additionally, the atmosphere above the telescopes, used as a calorimeter, will be monitored constantly with state-of-the-art instruments to obtain a full molecular and aerosol profile up to the stratosphere. The aim is to provide a maximal uncertainty of 10% on the reconstructed energy-scale, obtained through various independent methods. Different types of LIDAR in combination with all-sky-cameras will provide the observatory with an online, intelligent scheduling system, which, if the sky is partially covered by clouds, gives preference to sources observable under good atmospheric conditions. Wide-field optical telescopes and Raman Lidars will provide online information about the height-resolved atmospheric extinction, throughout the field-of-view of the cameras, allowing for the correction of the reconstructed energy of each gamma-ray event. The aim is to maximize the duty cycle of the observatory, in terms of usable data, while reducing the dead time introduced by calibration activities to an absolute minimum.
Grate, Jay W; Gonzalez, Jhanis J; O'Hara, Matthew J; Kellogg, Cynthia M; Morrison, Samuel S; Koppenaal, David W; Chan, George C-Y; Mao, Xianglei; Zorba, Vassilia; Russo, Richard E
2017-09-08
Solid sampling and analysis methods, such as laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS), are challenged by matrix effects and calibration difficulties. Matrix-matched standards for external calibration are seldom available and it is difficult to distribute spikes evenly into a solid matrix as internal standards. While isotopic ratios of the same element can be measured to high precision, matrix-dependent effects in the sampling and analysis process frustrate accurate quantification and elemental ratio determinations. Here we introduce a potentially general solid matrix transformation approach entailing chemical reactions in molten ammonium bifluoride (ABF) salt that enables the introduction of spikes as tracers or internal standards. Proof of principle experiments show that the decomposition of uranium ore in sealed PFA fluoropolymer vials at 230 °C yields, after cooling, new solids suitable for direct solid sampling by LA. When spikes are included in the molten salt reaction, subsequent LA-ICP-MS sampling at several spots indicate that the spikes are evenly distributed, and that U-235 tracer dramatically improves reproducibility in U-238 analysis. Precisions improved from 17% relative standard deviation for U-238 signals to 0.1% for the ratio of sample U-238 to spiked U-235, a factor of over two orders of magnitude. These results introduce the concept of solid matrix transformation (SMT) using ABF, and provide proof of principle for a new method of incorporating internal standards into a solid for LA-ICP-MS. This new approach, SMT-LA-ICP-MS, provides opportunities to improve calibration and quantification in solids based analysis. Looking forward, tracer addition to transformed solids opens up LA-based methods to analytical methodologies such as standard addition, isotope dilution, preparation of matrix-matched solid standards, external calibration, and monitoring instrument drift against external calibration standards.
Calibration and characterization of UV sensors for water disinfection
NASA Astrophysics Data System (ADS)
Larason, T.; Ohno, Y.
2006-04-01
The National Institute of Standards and Technology (NIST), USA is participating in a project with the American Water Works Association Research Foundation (AwwaRF) to develop new guidelines for ultraviolet (UV) sensor characteristics to monitor the performance of UV water disinfection plants. The current UV water disinfection standards, ÖNORM M5873-1 and M5873-2 (Austria) and DVGW W294 3 (Germany), on the requirements for UV sensors for low-pressure mercury (LPM) and medium-pressure mercury (MPM) lamp systems have been studied. Additionally, the characteristics of various types of UV sensors from several different commercial vendors have been measured and analysed. This information will aid in the development of new guidelines to address issues such as sensor requirements, calibration methods, uncertainty and traceability. Practical problems were found in the calibration methods and evaluation of spectral responsivity requirements for sensors designed for MPM lamp systems. To solve the problems, NIST is proposing an alternative sensor calibration method for MPM lamp systems. A future calibration service is described for UV sensors intended for low- and medium-pressure mercury lamp systems used in water disinfection applications.
An IMU-to-Body Alignment Method Applied to Human Gait Analysis
Vargas-Valencia, Laura Susana; Elias, Arlindo; Rocon, Eduardo; Bastos-Filho, Teodiano; Frizera, Anselmo
2016-01-01
This paper presents a novel calibration procedure as a simple, yet powerful, method to place and align inertial sensors with body segments. The calibration can be easily replicated without the need of any additional tools. The proposed method is validated in three different applications: a computer mathematical simulation; a simplified joint composed of two semi-spheres interconnected by a universal goniometer; and a real gait test with five able-bodied subjects. Simulation results demonstrate that, after the calibration method is applied, the joint angles are correctly measured independently of previous sensor placement on the joint, thus validating the proposed procedure. In the cases of a simplified joint and a real gait test with human volunteers, the method also performs correctly, although secondary plane errors appear when compared with the simulation results. We believe that such errors are caused by limitations of the current inertial measurement unit (IMU) technology and fusion algorithms. In conclusion, the presented calibration procedure is an interesting option to solve the alignment problem when using IMUs for gait analysis. PMID:27973406
NASA Astrophysics Data System (ADS)
Gu, Tingwei; Kong, Deren; Shang, Fei; Chen, Jing
2017-12-01
We present an optimization algorithm to obtain low-uncertainty dynamic pressure measurements from a force-transducer-based device. In this paper, the advantages and disadvantages of the methods that are commonly used to measure the propellant powder gas pressure, the applicable scope of dynamic pressure calibration devices, and the shortcomings of the traditional comparison calibration method based on the drop-weight device are firstly analysed in detail. Then, a dynamic calibration method for measuring pressure using a force sensor based on a drop-weight device is introduced. This method can effectively save time when many pressure sensors are calibrated simultaneously and extend the life of expensive reference sensors. However, the force sensor is installed between the drop-weight and the hammerhead by transition pieces through the connection mode of bolt fastening, which causes adverse effects such as additional pretightening and inertia forces. To solve these effects, the influence mechanisms of the pretightening force, the inertia force and other influence factors on the force measurement are theoretically analysed. Then a measurement correction method for the force measurement is proposed based on an artificial neural network optimized by a genetic algorithm. The training and testing data sets are obtained from calibration tests, and the selection criteria for the key parameters of the correction model is discussed. The evaluation results for the test data show that the correction model can effectively improve the force measurement accuracy of the force sensor. Compared with the traditional high-accuracy comparison calibration method, the percentage difference of the impact-force-based measurement is less than 0.6% and the relative uncertainty of the corrected force value is 1.95%, which can meet the requirements of engineering applications.
Method for controlling powertrain pumps
Sime, Karl Andrew; Spohn, Brian L; Demirovic, Besim; Martini, Ryan D; Miller, Jean Marie
2013-10-22
A method of controlling a pump supplying a fluid to a transmission includes sensing a requested power and an excess power for a powertrain. The requested power substantially meets the needs of the powertrain, while the excess power is not part of the requested power. The method includes sensing a triggering condition in response to the ability to convert the excess power into heat in the transmission, and determining that an operating temperature of the transmission is below a maximum. The method also includes determining a calibrated baseline and a dissipation command for the pump. The calibrated baseline command is configured to supply the fluid based upon the requested power, and the dissipation command is configured to supply additional fluid and consume the excess power with the pump. The method operates the pump at a combined command, which is equal to the calibrated baseline command plus the dissipation command.
NASA Technical Reports Server (NTRS)
Martos, Borja; Kiszely, Paul; Foster, John V.
2011-01-01
As part of the NASA Aviation Safety Program (AvSP), a novel pitot-static calibration method was developed to allow rapid in-flight calibration for subscale aircraft while flying within confined test areas. This approach uses Global Positioning System (GPS) technology coupled with modern system identification methods that rapidly computes optimal pressure error models over a range of airspeed with defined confidence bounds. This method has been demonstrated in subscale flight tests and has shown small 2- error bounds with significant reduction in test time compared to other methods. The current research was motivated by the desire to further evaluate and develop this method for full-scale aircraft. A goal of this research was to develop an accurate calibration method that enables reductions in test equipment and flight time, thus reducing costs. The approach involved analysis of data acquisition requirements, development of efficient flight patterns, and analysis of pressure error models based on system identification methods. Flight tests were conducted at The University of Tennessee Space Institute (UTSI) utilizing an instrumented Piper Navajo research aircraft. In addition, the UTSI engineering flight simulator was used to investigate test maneuver requirements and handling qualities issues associated with this technique. This paper provides a summary of piloted simulation and flight test results that illustrates the performance and capabilities of the NASA calibration method. Discussion of maneuver requirements and data analysis methods is included as well as recommendations for piloting technique.
NASA Astrophysics Data System (ADS)
Gu, Tingwei; Kong, Deren; Shang, Fei; Chen, Jing
2018-04-01
This paper describes the merits and demerits of different sensors for measuring propellant gas pressure, the applicable range of the frequently used dynamic pressure calibration methods, and the working principle of absolute quasi-static pressure calibration based on the drop-weight device. The main factors affecting the accuracy of pressure calibration are analyzed from two aspects of the force sensor and the piston area. To calculate the effective area of the piston rod and evaluate the uncertainty between the force sensor and the corresponding peak pressure in the absolute quasi-static pressure calibration process, a method for solving these problems based on the least squares principle is proposed. According to the relevant quasi-static pressure calibration experimental data, the least squares fitting model between the peak force and the peak pressure, and the effective area of the piston rod and its measurement uncertainty, are obtained. The fitting model is tested by an additional group of experiments, and the peak pressure obtained by the existing high-precision comparison calibration method is taken as the reference value. The test results show that the peak pressure obtained by the least squares fitting model is closer to the reference value than the one directly calculated by the cross-sectional area of the piston rod. When the peak pressure is higher than 150 MPa, the percentage difference is less than 0.71%, which can meet the requirements of practical application.
Domain-Invariant Partial-Least-Squares Regression.
Nikzad-Langerodi, Ramin; Zellinger, Werner; Lughofer, Edwin; Saminger-Platz, Susanne
2018-05-11
Multivariate calibration models often fail to extrapolate beyond the calibration samples because of changes associated with the instrumental response, environmental condition, or sample matrix. Most of the current methods used to adapt a source calibration model to a target domain exclusively apply to calibration transfer between similar analytical devices, while generic methods for calibration-model adaptation are largely missing. To fill this gap, we here introduce domain-invariant partial-least-squares (di-PLS) regression, which extends ordinary PLS by a domain regularizer in order to align the source and target distributions in the latent-variable space. We show that a domain-invariant weight vector can be derived in closed form, which allows the integration of (partially) labeled data from the source and target domains as well as entirely unlabeled data from the latter. We test our approach on a simulated data set where the aim is to desensitize a source calibration model to an unknown interfering agent in the target domain (i.e., unsupervised model adaptation). In addition, we demonstrate unsupervised, semisupervised, and supervised model adaptation by di-PLS on two real-world near-infrared (NIR) spectroscopic data sets.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saunders, P.
The majority of general-purpose low-temperature handheld radiation thermometers are severely affected by the size-of-source effect (SSE). Calibration of these instruments is pointless unless the SSE is accounted for in the calibration process. Traditional SSE measurement techniques, however, are costly and time consuming, and because the instruments are direct-reading in temperature, traditional SSE results are not easily interpretable, particularly by the general user. This paper describes a simplified method for measuring the SSE, suitable for second-tier calibration laboratories and requiring no additional equipment, and proposes a means of reporting SSE results on a calibration certificate that should be easily understood bymore » the non-specialist user.« less
Hot-wire calibration in subsonic/transonic flow regimes
NASA Technical Reports Server (NTRS)
Nagabushana, K. A.; Ash, Robert L.
1995-01-01
A different approach for calibrating hot-wires, which simplifies the calibration procedure and reduces the tunnel run-time by an order of magnitude was sought. In general, it is accepted that the directly measurable quantities in any flow are velocity, density, and total temperature. Very few facilities have the capability of varying the total temperature over an adequate range. However, if the overheat temperature parameter, a(sub w), is used to calibrate the hot-wire then the directly measurable quantity, voltage, will be a function of the flow variables and the overheat parameter i.e., E = f(u,p,a(sub w), T(sub w)) where a(sub w) will contain the needed total temperature information. In this report, various methods of evaluating sensitivities with different dependent and independent variables to calibrate a 3-Wire hot-wire probe using a constant temperature anemometer (CTA) in subsonic/transonic flow regimes is presented. The advantage of using a(sub w) as the independent variable instead of total temperature, t(sub o), or overheat temperature parameter, tau, is that while running a calibration test it is not necessary to know the recovery factor, the coefficients in a wire resistance to temperature relationship for a given probe. It was deduced that the method employing the relationship E = f (u,p,a(sub w)) should result in the most accurate calibration of hot wire probes. Any other method would require additional measurements. Also this method will allow calibration and determination of accurate temperature fluctuation information even in atmospheric wind tunnels where there is no ability to obtain any temperature sensitivity information at present. This technique greatly simplifies the calibration process for hot-wires, provides the required calibration information needed in obtaining temperature fluctuations, and reduces both the tunnel run-time and the test matrix required to calibrate hotwires. Some of the results using the above techniques are presented in an appendix.
Jiang, Jian; James, Christopher A; Wong, Philip
2016-09-05
A LC-MS/MS method has been developed and validated for the determination of glycine in human cerebrospinal fluid (CSF). The validated method used artificial cerebrospinal fluid as a surrogate matrix for calibration standards. The calibration curve range for the assay was 100-10,000ng/mL and (13)C2, (15)N-glycine was used as an internal standard (IS). Pre-validation experiments were performed to demonstrate parallelism with surrogate matrix and standard addition methods. The mean endogenous glycine concentration in a pooled human CSF determined on three days by using artificial CSF as a surrogate matrix and the method of standard addition was found to be 748±30.6 and 768±18.1ng/mL, respectively. A percentage difference of -2.6% indicated that artificial CSF could be used as a surrogate calibration matrix for the determination of glycine in human CSF. Quality control (QC) samples, except the lower limit of quantitation (LLOQ) QC and low QC samples, were prepared by spiking glycine into aliquots of pooled human CSF sample. The low QC sample was prepared from a separate pooled human CSF sample containing low endogenous glycine concentrations, while the LLOQ QC sample was prepared in artificial CSF. Standard addition was used extensively to evaluate matrix effects during validation. The validated method was used to determine the endogenous glycine concentrations in human CSF samples. Incurred sample reanalysis demonstrated reproducibility of the method. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Roehrig, Hans; Hashmi, Syed F.; Dallas, William J.; Krupinski, Elizabeth A.; Rehm, Kelly; Fan, Jiahua
2010-08-01
Our laboratory has investigated the efficacy of a suite of color calibration and monitor profiling packages which employ a variety of color measurement sensors. Each of the methods computes gamma correction tables for the red, green and blue color channels of a monitor that attempt to: a) match a desired luminance range and tone reproduction curve; and b) maintain a target neutral point across the range of grey values. All of the methods examined here produce International Color Consortium (ICC) profiles that describe the color rendering capabilities of the monitor after calibration. Color profiles incorporate a transfer matrix that establishes the relationship between RGB driving levels and the International Commission on Illumination (CIE) XYZ (tristimulus) values of the resulting on-screen color; the matrix is developed by displaying color patches of known RGB values on the monitor and measuring the tristimulus values with a sensor. The number and chromatic distribution of color patches varies across methods and is usually not under user control. In this work we examine the effect of employing differing calibration and profiling methods on rendition of color images. A series of color patches encoded in sRGB color space were presented on the monitor using color-management software that utilized the ICC profile produced by each method. The patches were displayed on the calibrated monitor and measured with a Minolta CS200 colorimeter. Differences in intended and achieved luminance and chromaticity were computed using the CIE DE2000 color-difference metric, in which a value of ΔE = 1 is generally considered to be approximately one just noticeable difference (JND) in color. We observed between one and 17 JND's for individual colors, depending on calibration method and target. As an extension of this fundamental work1, we further improved our calibration method by defining concrete calibration parameters for the display, using the NEC wide gamut puck, and making sure that those calibration parameters did conform, with the help of a state of the art Spectroradiometer, PR670. As a result of this addition of the PR670, and also an in-house developed method of profiling and characterization, it appears that there was much improvement in ΔE, the color difference.
Stepwise Regression Analysis of MDOE Balance Calibration Data Acquired at DNW
NASA Technical Reports Server (NTRS)
DeLoach, RIchard; Philipsen, Iwan
2007-01-01
This paper reports a comparison of two experiment design methods applied in the calibration of a strain-gage balance. One features a 734-point test matrix in which loads are varied systematically according to a method commonly applied in aerospace research and known in the literature of experiment design as One Factor At a Time (OFAT) testing. Two variations of an alternative experiment design were also executed on the same balance, each with different features of an MDOE experiment design. The Modern Design of Experiments (MDOE) is an integrated process of experiment design, execution, and analysis applied at NASA's Langley Research Center to achieve significant reductions in cycle time, direct operating cost, and experimental uncertainty in aerospace research generally and in balance calibration experiments specifically. Personnel in the Instrumentation and Controls Department of the German Dutch Wind Tunnels (DNW) have applied MDOE methods to evaluate them in the calibration of a balance using an automated calibration machine. The data have been sent to Langley Research Center for analysis and comparison. This paper reports key findings from this analysis. The chief result is that a 100-point calibration exploiting MDOE principles delivered quality comparable to a 700+ point OFAT calibration with significantly reduced cycle time and attendant savings in direct and indirect costs. While the DNW test matrices implemented key MDOE principles and produced excellent results, additional MDOE concepts implemented in balance calibrations at Langley Research Center are also identified and described.
Ottaway, Josh; Farrell, Jeremy A; Kalivas, John H
2013-02-05
An essential part to calibration is establishing the analyte calibration reference samples. These samples must characterize the sample matrix and measurement conditions (chemical, physical, instrumental, and environmental) of any sample to be predicted. Calibration usually requires measuring spectra for numerous reference samples in addition to determining the corresponding analyte reference values. Both tasks are typically time-consuming and costly. This paper reports on a method named pure component Tikhonov regularization (PCTR) that does not require laboratory prepared or determined reference values. Instead, an analyte pure component spectrum is used in conjunction with nonanalyte spectra for calibration. Nonanalyte spectra can be from different sources including pure component interference samples, blanks, and constant analyte samples. The approach is also applicable to calibration maintenance when the analyte pure component spectrum is measured in one set of conditions and nonanalyte spectra are measured in new conditions. The PCTR method balances the trade-offs between calibration model shrinkage and the degree of orthogonality to the nonanalyte content (model direction) in order to obtain accurate predictions. Using visible and near-infrared (NIR) spectral data sets, the PCTR results are comparable to those obtained using ridge regression (RR) with reference calibration sets. The flexibility of PCTR also allows including reference samples if such samples are available.
Shulman, Stanley A; Smith, Jerome P
2002-01-01
A method is presented for the evaluation of the bias, variability, and accuracy of gas monitors. This method is based on using the parameters for the fitted response curves of the monitors. Thereby, variability between calibrations, between dates within each calibration period, and between different units can be evaluated at several different standard concentrations. By combining variability information with bias information, accuracy can be assessed. An example using carbon monoxide monitor data is provided. Although the most general statistical software required for these tasks is not available on a spreadsheet, when the same number of dates in a calibration period are evaluated for each monitor unit, the calculations can be done on a spreadsheet. An example of such calculations, together with the formulas needed for their implementation, is provided. In addition, the methods can be extended by use of appropriate statistical models and software to evaluate monitor trends within calibration periods, as well as consider the effects of other variables, such as humidity and temperature, on monitor variability and bias.
Augmenting epidemiological models with point-of-care diagnostics data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pullum, Laura L.; Ramanathan, Arvind; Nutaro, James J.
Although adoption of newer Point-of-Care (POC) diagnostics is increasing, there is a significant challenge using POC diagnostics data to improve epidemiological models. In this work, we propose a method to process zip-code level POC datasets and apply these processed data to calibrate an epidemiological model. We specifically develop a calibration algorithm using simulated annealing and calibrate a parsimonious equation-based model of modified Susceptible-Infected-Recovered (SIR) dynamics. The results show that parsimonious models are remarkably effective in predicting the dynamics observed in the number of infected patients and our calibration algorithm is sufficiently capable of predicting peak loads observed in POC diagnosticsmore » data while staying within reasonable and empirical parameter ranges reported in the literature. Additionally, we explore the future use of the calibrated values by testing the correlation between peak load and population density from Census data. Our results show that linearity assumptions for the relationships among various factors can be misleading, therefore further data sources and analysis are needed to identify relationships between additional parameters and existing calibrated ones. As a result, calibration approaches such as ours can determine the values of newly added parameters along with existing ones and enable policy-makers to make better multi-scale decisions.« less
Augmenting epidemiological models with point-of-care diagnostics data
Pullum, Laura L.; Ramanathan, Arvind; Nutaro, James J.; ...
2016-04-20
Although adoption of newer Point-of-Care (POC) diagnostics is increasing, there is a significant challenge using POC diagnostics data to improve epidemiological models. In this work, we propose a method to process zip-code level POC datasets and apply these processed data to calibrate an epidemiological model. We specifically develop a calibration algorithm using simulated annealing and calibrate a parsimonious equation-based model of modified Susceptible-Infected-Recovered (SIR) dynamics. The results show that parsimonious models are remarkably effective in predicting the dynamics observed in the number of infected patients and our calibration algorithm is sufficiently capable of predicting peak loads observed in POC diagnosticsmore » data while staying within reasonable and empirical parameter ranges reported in the literature. Additionally, we explore the future use of the calibrated values by testing the correlation between peak load and population density from Census data. Our results show that linearity assumptions for the relationships among various factors can be misleading, therefore further data sources and analysis are needed to identify relationships between additional parameters and existing calibrated ones. As a result, calibration approaches such as ours can determine the values of newly added parameters along with existing ones and enable policy-makers to make better multi-scale decisions.« less
Xu, Guiling; Liang, Cai; Chen, Xiaoping; Liu, Daoyin; Xu, Pan; Shen, Liu; Zhao, Changsui
2013-01-01
This paper presents a review and analysis of the research that has been carried out on dynamic calibration for optical-fiber solids concentration probes. An introduction to the optical-fiber solids concentration probe was given. Different calibration methods of optical-fiber solids concentration probes reported in the literature were reviewed. In addition, a reflection-type optical-fiber solids concentration probe was uniquely calibrated at nearly full range of the solids concentration from 0 to packed bed concentration. The effects of particle properties (particle size, sphericity and color) on the calibration results were comprehensively investigated. The results show that the output voltage has a tendency to increase with the decreasing particle size, and the effect of particle color on calibration result is more predominant than that of sphericity. PMID:23867745
Reducing equifinality of hydrological models by integrating Functional Streamflow Disaggregation
NASA Astrophysics Data System (ADS)
Lüdtke, Stefan; Apel, Heiko; Nied, Manuela; Carl, Peter; Merz, Bruno
2014-05-01
A universal problem of the calibration of hydrological models is the equifinality of different parameter sets derived from the calibration of models against total runoff values. This is an intrinsic problem stemming from the quality of the calibration data and the simplified process representation by the model. However, discharge data contains additional information which can be extracted by signal processing methods. An analysis specifically developed for the disaggregation of runoff time series into flow components is the Functional Streamflow Disaggregation (FSD; Carl & Behrendt, 2008). This method is used in the calibration of an implementation of the hydrological model SWIM in a medium sized watershed in Thailand. FSD is applied to disaggregate the discharge time series into three flow components which are interpreted as base flow, inter-flow and surface runoff. In addition to total runoff, the model is calibrated against these three components in a modified GLUE analysis, with the aim to identify structural model deficiencies, assess the internal process representation and to tackle equifinality. We developed a model dependent (MDA) approach calibrating the model runoff components against the FSD components, and a model independent (MIA) approach comparing the FSD of the model results and the FSD of calibration data. The results indicate, that the decomposition provides valuable information for the calibration. Particularly MDA highlights and discards a number of standard GLUE behavioural models underestimating the contribution of soil water to river discharge. Both, MDA and MIA yield to a reduction of the parameter ranges by a factor up to 3 in comparison to standard GLUE. Based on these results, we conclude that the developed calibration approach is able to reduce the equifinality of hydrological model parameterizations. The effect on the uncertainty of the model predictions is strongest by applying MDA and shows only minor reductions for MIA. Besides further validation of FSD, the next steps include an extension of the study to different catchments and other hydrological models with a similar structure.
Investigation of factors affecting the heater wire method of calibrating fine wire thermocouples
NASA Technical Reports Server (NTRS)
Keshock, E. G.
1972-01-01
An analytical investigation was made of a transient method of calibrating fine wire thermocouples. The system consisted of a 10 mil diameter standard thermocouple (Pt, Pt-13% Rh) and an 0.8 mil diameter chromel-alumel thermocouple attached to a 20 mil diameter electrically heated platinum wire. The calibration procedure consisted of electrically heating the wire to approximately 2500 F within about a seven-second period in an environment approximating atmospheric conditions at 120,000 feet. Rapid periodic readout of the standard and fine wire thermocouple signals permitted a comparison of the two temperature indications. An analysis was performed which indicated that the temperature distortion at the heater wire produced by the thermocouple junctions appears to be of negligible magnitude. Consequently, the calibration technique appears to be basically sound, although several practical changes which appear desirable are presented and discussed. Additional investigation is warranted to evaluate radiation effects and transient response characteristics.
ITER-like antenna capacitors voltage probes: Circuit/electromagnetic calculations and calibrations.
Helou, W; Dumortier, P; Durodié, F; Lombard, G; Nicholls, K
2016-10-01
The analyses illustrated in this manuscript have been performed in order to provide the required data for the amplitude-and-phase calibration of the D-dot voltage probes used in the ITER-like antenna at the Joint European Torus tokamak. Their equivalent electrical circuit has been extracted and analyzed, and it has been compared to the one of voltage probes installed in simple transmission lines. A radio-frequency calibration technique has been formulated and exact mathematical relations have been derived. This technique mixes in an elegant fashion data extracted from measurements and numerical calculations to retrieve the calibration factors. The latter have been compared to previous calibration data with excellent agreement proving the robustness of the proposed radio-frequency calibration technique. In particular, it has been stressed that it is crucial to take into account environmental parasitic effects. A low-frequency calibration technique has been in addition formulated and analyzed in depth. The equivalence between the radio-frequency and low-frequency techniques has been rigorously demonstrated. The radio-frequency calibration technique is preferable in the case of the ITER-like antenna due to uncertainties on the characteristics of the cables connected at the inputs of the voltage probes. A method to extract the effect of a mismatched data acquisition system has been derived for both calibration techniques. Finally it has been outlined that in the case of the ITER-like antenna voltage probes can be in addition used to monitor the currents at the inputs of the antenna.
NASA Astrophysics Data System (ADS)
Reichert, Andreas; Rettinger, Markus; Sussmann, Ralf
2016-09-01
Quantitative knowledge of water vapor absorption is crucial for accurate climate simulations. An open science question in this context concerns the strength of the water vapor continuum in the near infrared (NIR) at atmospheric temperatures, which is still to be quantified by measurements. This issue can be addressed with radiative closure experiments using solar absorption spectra. However, the spectra used for water vapor continuum quantification have to be radiometrically calibrated. We present for the first time a method that yields sufficient calibration accuracy for NIR water vapor continuum quantification in an atmospheric closure experiment. Our method combines the Langley method with spectral radiance measurements of a high-temperature blackbody calibration source (< 2000 K). The calibration scheme is demonstrated in the spectral range 2500 to 7800 cm-1, but minor modifications to the method enable calibration also throughout the remainder of the NIR spectral range. The resulting uncertainty (2σ) excluding the contribution due to inaccuracies in the extra-atmospheric solar spectrum (ESS) is below 1 % in window regions and up to 1.7 % within absorption bands. The overall radiometric accuracy of the calibration depends on the ESS uncertainty, on which at present no firm consensus has been reached in the NIR. However, as is shown in the companion publication Reichert and Sussmann (2016), ESS uncertainty is only of minor importance for the specific aim of this study, i.e., the quantification of the water vapor continuum in a closure experiment. The calibration uncertainty estimate is substantiated by the investigation of calibration self-consistency, which yields compatible results within the estimated errors for 91.1 % of the 2500 to 7800 cm-1 range. Additionally, a comparison of a set of calibrated spectra to radiative transfer model calculations yields consistent results within the estimated errors for 97.7 % of the spectral range.
Flux-gate magnetometer spin axis offset calibration using the electron drift instrument
NASA Astrophysics Data System (ADS)
Plaschke, Ferdinand; Nakamura, Rumi; Leinweber, Hannes K.; Chutter, Mark; Vaith, Hans; Baumjohann, Wolfgang; Steller, Manfred; Magnes, Werner
2014-10-01
Spin-stabilization of spacecraft immensely supports the in-flight calibration of on-board flux-gate magnetometers (FGMs). From 12 calibration parameters in total, 8 can be easily obtained by spectral analysis. From the remaining 4, the spin axis offset is known to be particularly variable. It is usually determined by analysis of Alfvénic fluctuations that are embedded in the solar wind. In the absence of solar wind observations, the spin axis offset may be obtained by comparison of FGM and electron drift instrument (EDI) measurements. The aim of our study is to develop methods that are readily usable for routine FGM spin axis offset calibration with EDI. This paper represents a major step forward in this direction. We improve an existing method to determine FGM spin axis offsets from EDI time-of-flight measurements by providing it with a comprehensive error analysis. In addition, we introduce a new, complementary method that uses EDI beam direction data instead of time-of-flight data. Using Cluster data, we show that both methods yield similarly accurate results, which are comparable yet more stable than those from a commonly used solar wind-based method.
NASA Astrophysics Data System (ADS)
Butykai, A.; Domínguez-García, P.; Mor, F. M.; Gaál, R.; Forró, L.; Jeney, S.
2017-11-01
The present document is an update of the previously published MatLab code for the calibration of optical tweezers in the high-resolution detection of the Brownian motion of non-spherical probes [1]. In this instance, an alternative version of the original code, based on the same physical theory [2], but focused on the automation of the calibration of measurements using spherical probes, is outlined. The new added code is useful for high-frequency microrheology studies, where the probe radius is known but the viscosity of the surrounding fluid maybe not. This extended calibration methodology is automatic, without the need of a user's interface. A code for calibration by means of thermal noise analysis [3] is also included; this is a method that can be applied when using viscoelastic fluids if the trap stiffness is previously estimated [4]. The new code can be executed in MatLab and using GNU Octave. Program Files doi:http://dx.doi.org/10.17632/s59f3gz729.1 Licensing provisions: GPLv3 Programming language: MatLab 2016a (MathWorks Inc.) and GNU Octave 4.0 Operating system: Linux and Windows. Supplementary material: A new document README.pdf includes basic running instructions for the new code. Journal reference of previous version: Computer Physics Communications, 196 (2015) 599 Does the new version supersede the previous version?: No. It adds alternative but compatible code while providing similar calibration factors. Nature of problem (approx. 50-250 words): The original code uses a MatLab-provided user's interface, which is not available in GNU Octave, and cannot be used outside of a proprietary software as MatLab. Besides, the process of calibration when using spherical probes needs an automatic method when calibrating big amounts of different data focused to microrheology. Solution method (approx. 50-250 words): The new code can be executed in the latest version of MatLab and using GNU Octave, a free and open-source alternative to MatLab. This code generates an automatic calibration process which requires only to write the input data in the main script. Additionally, we include a calibration method based on thermal noise statistics, which can be used with viscoelastic fluids if the trap stiffness is previously estimated. Reasons for the new version: This version extends the functionality of PFMCal for the particular case of spherical probes and unknown fluid viscosities. The extended code is automatic, works in different operating systems and it is compatible with GNU Octave. Summary of revisions: The original MatLab program in the previous version, which is executed by PFMCal.m, is not changed. Here, we have added two additional main archives named PFMCal_auto.m and PFMCal_histo.m, which implement automatic calculations of the calibration process and calibration through Boltzmann statistics, respectively. The process of calibration using this code for spherical beads is described in the README.pdf file provided in the new code submission. Here, we obtain different calibration factors, β (given in μm/V), according to [2], related to two statistical quantities: the mean-squared displacement (MSD), βMSD, and the velocity autocorrelation function (VAF), βVAF. Using that methodology, the trap stiffness, k, and the zero-shear viscosity of the fluid, η, can be calculated if the value of the particle's radius, a, is previously known. For comparison, we include in the extended code the method of calibration using the corner frequency of the power-spectral density (PSD) [5], providing a calibration factor βPSD. Besides, with the prior estimation of the trap stiffness, along with the known value of the particle's radius, we can use thermal noise statistics to obtain calibration factors, β, according to the quadratic form of the optical potential, βE, and related to the Gaussian distribution of the bead's positions, βσ2. This method has been demonstrated to be applicable to the calibration of optical tweezers when using non-Newtonian viscoelastic polymeric liquids [4]. An example of the results using this calibration process is summarized in Table 1. Using the data provided in the new code submission, for water and acetone fluids, we calculate all the calibration factors by using the original PFMCal.m and by the new non-GUI code PFMCal_auto.m and PFMCal_histo.m. Regarding the new code, PFMCal_auto.m returns η, k, βMSD, βVAF and βPSD, while PFMCal_histo.m provides βσ2 and βE. Table 1 shows how we obtain the expected viscosity of the two fluids at this temperature and how the different methods provide good agreement between trap stiffnesses and calibration factors. Additional comments including Restrictions and Unusual features (approx. 50-250 words): The original code, PFMCal.m, runs under MatLab using the Statistics Toolbox. The extended code, PFMCal_auto.m and PFMCal_histo.m, can be executed without modification using MatLab or GNU Octave. The code has been tested in Linux and Windows operating systems.
LANDSAT-D conical scanner evaluation plan
NASA Technical Reports Server (NTRS)
Bilanow, S.; Chen, L. C. (Principal Investigator)
1982-01-01
The planned activities involved in the inflight sensor calibration and performance evaluation are discussed and the supporting software requirements are specified. The possible sensor error sources and their effects on sensor measurements are summarized. The methods by which the inflight sensor performance will be analyzed and the sensor modeling parameters will be calibrated are presented. In addition, a brief discussion on the data requirement for the study is provided.
NASA Astrophysics Data System (ADS)
Lu, Jiazhen; Liang, Shufang; Yang, Yanqiang
2017-10-01
Micro-electro-mechanical systems (MEMS) inertial measurement devices tend to be widely used in inertial navigation systems and have quickly emerged on the market due to their characteristics of low cost, high reliability and small size. Calibration is the most effective way to remove the deterministic error of an inertial reference unit (IRU), which in this paper consists of three orthogonally mounted MEMS gyros. However, common testing methods in the lab cannot predict the corresponding errors precisely when the turntable’s working condition is restricted. In this paper, the turntable can only provide a relatively small rotation angle. Moreover, the errors must be compensated exactly because of the great effect caused by the high angular velocity of the craft. To deal with this question, a new method is proposed to evaluate the MEMS IRU’s performance. In the calibration procedure, a one-axis table that can rotate a limited angle in the form of a sine function is utilized to provide the MEMS IRU’s angular velocity. A new algorithm based on Fourier series is designed to calculate the misalignment and scale factor errors. The proposed method is tested in a set of experiments, and the calibration results are compared to a traditional calibration method performed under normal working conditions to verify their correctness. In addition, a verification test in the given rotation speed is implemented for further demonstration.
Bakaikina, Nadezhda V; Kenessov, Bulat; Ul'yanovskii, Nikolay V; Kosyakov, Dmitry S
2018-07-01
Determination of transformation products (TPs) of rocket fuel unsymmetrical dimethylhydrazine (UDMH) in soil is highly important for environmental impact assessment of the launches of heavy space rockets from Kazakhstan, Russia, China and India. The method based on headspace solid-phase microextraction (HS SPME) and gas chromatography-mass spectrometry is advantageous over other known methods due to greater simplicity and cost efficiency. However, accurate quantification of these analytes using HS SPME is limited by the matrix effect. In this research, we proposed using internal standard and standard addition calibrations to achieve proper combination of accuracies of the quantification of key TPs of UDMH and cost efficiency. 1-Trideuteromethyl-1H-1,2,4-triazole (MTA-d3) was used as the internal standard. Internal standard calibration allowed controlling matrix effects during quantification of 1-methyl-1H-1,2,4-triazole (MTA), N,N-dimethylformamide (DMF), and N-nitrosodimethylamine (NDMA) in soils with humus content < 1%. Using SPME at 60 °C for 15 min by 65 µm Carboxen/polydimethylsiloxane fiber, recoveries of MTA, DMF and NDMA for sandy and loamy soil samples were 91-117, 85-123 and 64-132%, respectively. For improving the method accuracy and widening the range of analytes, standard addition and its combination with internal standard calibration were tested and compared on real soil samples. The combined calibration approach provided greatest accuracies for NDMA, DMF, N-methylformamide, formamide, 1H-pyrazole, 3-methyl-1H-pyrazole and 1H-pyrazole. For determination of 1-formyl-2,2-dimethylhydrazine, 3,5-dimethylpyrazole, 2-ethyl-1H-imidazole, 1H-imidazole, 1H-1,2,4-triazole, pyrazines and pyridines, standard addition calibration is more suitable. However, the proposed approach and collected data allow using both approaches simultaneously. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Labrador, A. W.; Sollitt, L. S.; Cohen, C.; Cummings, A. C.; Leske, R. A.; Mason, G. M.; Mewaldt, R. A.; Stone, E. C.; von Rosenvinge, T. T.; Wiedenbeck, M. E.
2017-12-01
We have estimated mean high-energy ionic charge states of solar energetic particles (SEPs) using the Sollitt et al. (2008) method. The method applies to abundant elements (e.g. N, O, Ne, Mg, Si, and Fe) in SEP events at the energy ranges covered by the STEREO/LET instrument (e.g. 2.7-70 MeV/nuc for Fe) and the ACE/SIS instrument (e.g. 11-168 MeV/nuc for Fe). The method starts by fitting SEP time-intensity profiles during the decay phase of a given, large SEP event in order to obtain energy-dependent decay times. The mean charge state for each element is estimated from the relationship between the energy dependence of its decay times to that for selected calibration references. For simultaneous estimates among multiple elements, we assume a common rigidity dependence across all elements. Earlier calculations by Sollitt et al. incorporated helium time intensity profile fits with an assumed charge state of 2. Subsequent analysis dropped helium as a reference element, for simplicity, but we have recently reincorporated He for calibration, from either STEREO/LET or ACE/SIS data, combined with C as an additional reference element with an assumed mean charge state of 5.9. For this presentation, we will present validation of the reanalysis using data from the 8 March 2012 SEP event in ACE data and the 28 September 2012 event in STEREO data. We will also introduce additional low-energy He from publicly available ACE/ULEIS and STEREO/SIT data, which should further constrain the charge state calibration. Better charge state calibration could yield more robust convergence to physical solutions for SEP events for which this method has not previously yielded results. Therefore, we will also present analysis for additional SEP events from 2005 to 2017, and we will investigate conditions for which this method yields or does not yield charge states.
Analysis of Phenolic Antioxidants in Navy Mobility Fuels by Gas Chromatography-Mass Spectrometry
2013-06-19
8.0 LITERATURE CITED .........................................................................................14 APPENDIX A: Calibration Curves for...chromatogram from an F-76 diesel fuel containing 24 ppm of the AO-37 additive package, analyzed using single column GC-MS-SIM method...sulfur diesel fuel containing 6.25 ppm of the AO-37 additive package, analyzed using dual column Deans switch GC-MS-SIM method
Indirect Correspondence-Based Robust Extrinsic Calibration of LiDAR and Camera
Sim, Sungdae; Sock, Juil; Kwak, Kiho
2016-01-01
LiDAR and cameras have been broadly utilized in computer vision and autonomous vehicle applications. However, in order to convert data between the local coordinate systems, we must estimate the rigid body transformation between the sensors. In this paper, we propose a robust extrinsic calibration algorithm that can be implemented easily and has small calibration error. The extrinsic calibration parameters are estimated by minimizing the distance between corresponding features projected onto the image plane. The features are edge and centerline features on a v-shaped calibration target. The proposed algorithm contributes two ways to improve the calibration accuracy. First, we use different weights to distance between a point and a line feature according to the correspondence accuracy of the features. Second, we apply a penalizing function to exclude the influence of outliers in the calibration datasets. Additionally, based on our robust calibration approach for a single LiDAR-camera pair, we introduce a joint calibration that estimates the extrinsic parameters of multiple sensors at once by minimizing one objective function with loop closing constraints. We conduct several experiments to evaluate the performance of our extrinsic calibration algorithm. The experimental results show that our calibration method has better performance than the other approaches. PMID:27338416
NASA Astrophysics Data System (ADS)
Didari, Shohreh; Ahmadi, Seyed Hamid
2018-05-01
Crop evapotranspiration (ET) is one of the main components in calculating the water balance in agricultural, hydrological, environmental, and climatological studies. Solar radiation (Rs) supplies the available energy for ET, and therefore, precise measurement of Rs is required for accurate ET estimation. However, measured Rs and ET and are not available in many areas and they should be estimated indirectly by the empirical methods. The Angström-Prescott (AP) is the most popular method for estimating Rs in areas where there are no measured data. In addition, the locally calibrated coefficients of AP are not yet available in many locations, and instead, the default coefficients are used. In this study, we investigated different approaches for Rs and ET calculations. The daily measured Rs values in 14 stations across arid and semi-arid areas of Fars province in south of Iran were used for calibrating the coefficients of the AP model. Results revealed that the calibrated AP coefficients were very different and higher than the default values. In addition, the reference ET (ET o ) was estimated by the FAO56 Penman-Monteith (FAO56 PM) and FAO24-radiation methods by using the measured Rs and were then compared with the measured pan evaporation as an indication of the potential atmospheric demand. Interestingly and unlike many previous studies, which have suggested the FAO56 PM as the standard method in calculation of ET o , the FAO24-radiation with the measured Rs showed better agreement with the mean pan evaporation. Therefore, the FAO24-radiation with the measured Rs was used as the reference method for the study area, which was also confirmed by the previous studies based on the lysimeter data. Moreover, the accuracy of calibrated Rs in the estimation of ET o by the FAO56 PM and FAO24-radiation was investigated. Results showed that the calibrated Rs improved the accuracy of the estimated ET o by the FAO24-radiation compared with the FAO24-radiation using the measured Rs as the reference method, whereas there was no improvement in the estimation of ET o by the FAO56 PM method compared with the FAO24-radiation using the measured Rs. Moreover, the empirical coefficient (α) of the Priestley and Taylor (PT) ET o estimation method was calibrated against the reference method and results indicated ca. 2 or higher α values than the recommended α = 1.26 in all stations. An empirical equation was suggested based on yearly mean relative humidity for estimation of α in the study area. Overall, this study showed that (1) the FAO24-radiation method with the either measured or calibrated Rs is more accurate than the FAO56 PM, (2) the spatially calibrated AP coefficients are very different from each other over an arid and semi-arid area and are higher than those proposed by the FAO56, (3) the original PT model is not applicable in arid and semi-arid area and substantially underestimates the ET o , and (4) the coefficient of the PT should be locally calibrated for each station over an arid and semi-arid area.
Lozano, Valeria A; Ibañez, Gabriela A; Olivieri, Alejandro C
2009-10-05
In the presence of analyte-background interactions and a significant background signal, both second-order multivariate calibration and standard addition are required for successful analyte quantitation achieving the second-order advantage. This report discusses a modified second-order standard addition method, in which the test data matrix is subtracted from the standard addition matrices, and quantitation proceeds via the classical external calibration procedure. It is shown that this novel data processing method allows one to apply not only parallel factor analysis (PARAFAC) and multivariate curve resolution-alternating least-squares (MCR-ALS), but also the recently introduced and more flexible partial least-squares (PLS) models coupled to residual bilinearization (RBL). In particular, the multidimensional variant N-PLS/RBL is shown to produce the best analytical results. The comparison is carried out with the aid of a set of simulated data, as well as two experimental data sets: one aimed at the determination of salicylate in human serum in the presence of naproxen as an additional interferent, and the second one devoted to the analysis of danofloxacin in human serum in the presence of salicylate.
Interferometric Imaging Directly with Closure Phases and Closure Amplitudes
NASA Astrophysics Data System (ADS)
Chael, Andrew A.; Johnson, Michael D.; Bouman, Katherine L.; Blackburn, Lindy L.; Akiyama, Kazunori; Narayan, Ramesh
2018-04-01
Interferometric imaging now achieves angular resolutions as fine as ∼10 μas, probing scales that are inaccessible to single telescopes. Traditional synthesis imaging methods require calibrated visibilities; however, interferometric calibration is challenging, especially at high frequencies. Nevertheless, most studies present only a single image of their data after a process of “self-calibration,” an iterative procedure where the initial image and calibration assumptions can significantly influence the final image. We present a method for efficient interferometric imaging directly using only closure amplitudes and closure phases, which are immune to station-based calibration errors. Closure-only imaging provides results that are as noncommittal as possible and allows for reconstructing an image independently from separate amplitude and phase self-calibration. While closure-only imaging eliminates some image information (e.g., the total image flux density and the image centroid), this information can be recovered through a small number of additional constraints. We demonstrate that closure-only imaging can produce high-fidelity results, even for sparse arrays such as the Event Horizon Telescope, and that the resulting images are independent of the level of systematic amplitude error. We apply closure imaging to VLBA and ALMA data and show that it is capable of matching or exceeding the performance of traditional self-calibration and CLEAN for these data sets.
In, Myung-Ho; Posnansky, Oleg; Speck, Oliver
2016-05-01
To accurately correct diffusion-encoding direction-dependent eddy-current-induced geometric distortions in diffusion-weighted echo-planar imaging (DW-EPI) and to minimize the calibration time at 7 Tesla (T). A point spread function (PSF) mapping based eddy-current calibration method is newly presented to determine eddy-current-induced geometric distortions even including nonlinear eddy-current effects within the readout acquisition window. To evaluate the temporal stability of eddy-current maps, calibration was performed four times within 3 months. Furthermore, spatial variations of measured eddy-current maps versus their linear superposition were investigated to enable correction in DW-EPIs with arbitrary diffusion directions without direct calibration. For comparison, an image-based eddy-current correction method was additionally applied. Finally, this method was combined with a PSF-based susceptibility-induced distortion correction approach proposed previously to correct both susceptibility and eddy-current-induced distortions in DW-EPIs. Very fast eddy-current calibration in a three-dimensional volume is possible with the proposed method. The measured eddy-current maps are very stable over time and very similar maps can be obtained by linear superposition of principal-axes eddy-current maps. High resolution in vivo brain results demonstrate that the proposed method allows more efficient eddy-current correction than the image-based method. The combination of both PSF-based approaches allows distortion-free images, which permit reliable analysis in diffusion tensor imaging applications at 7T. © 2015 Wiley Periodicals, Inc.
Kunz, Matthew Ross; Ottaway, Joshua; Kalivas, John H; Georgiou, Constantinos A; Mousdis, George A
2011-02-23
Detecting and quantifying extra virgin olive adulteration is of great importance to the olive oil industry. Many spectroscopic methods in conjunction with multivariate analysis have been used to solve these issues. However, successes to date are limited as calibration models are built to a specific set of geographical regions, growing seasons, cultivars, and oil extraction methods (the composite primary condition). Samples from new geographical regions, growing seasons, etc. (secondary conditions) are not always correctly predicted by the primary model due to different olive oil and/or adulterant compositions stemming from secondary conditions not matching the primary conditions. Three Tikhonov regularization (TR) variants are used in this paper to allow adulterant (sunflower oil) concentration predictions in samples from geographical regions not part of the original primary calibration domain. Of the three TR variants, ridge regression with an additional 2-norm penalty provides the smallest validation sample prediction errors. Although the paper reports on using TR for model updating to predict adulterant oil concentration, the methods should also be applicable to updating models distinguishing adulterated samples from pure extra virgin olive oil. Additionally, the approaches are general and can be used with other spectroscopic methods and adulterants as well as with other agriculture products.
Improved CRDS δ13C Stability Through New Calibration Application For CO2 And CH4
NASA Astrophysics Data System (ADS)
Rella, Chris; Arata, Caleb; Saad, Nabil; Leggett, Graham; Miles, Natasha; Richardson, Scott; Davis, Ken
2015-04-01
Stable carbon isotope ratio measurements of CO2 and CH4 provide valuable insight into global and regional sources and sinks of the two most important greenhouse gases. Methodologies based on Cavity Ring-Down Spectroscopy (CRDS) have been developed and are capable of delivering δ13C measurements with a precision better than 0.12 permil for CO2 and 0.4 permil for CH4 (1 hour window, 5 minute average). Here we present a method to further improve this measurement stability. We have developed a two-point calibration method which corrects for δ13C drift due to a dependence on carbon species concentration. This method calibrates for both carbon species concentration as well as δ13C. In addition, we further demonstrate that this added stability is especially valuable when using carbon isotope data in linear regression models such as Keeling plots, where even small amounts of error can be magnified to give inconclusive results. Furthermore, we show how this method is used to validate multiple instruments simultaneously and can be used to create the standard samples needed for field calibrations.
A Robust Bayesian Random Effects Model for Nonlinear Calibration Problems
Fong, Y.; Wakefield, J.; De Rosa, S.; Frahm, N.
2013-01-01
Summary In the context of a bioassay or an immunoassay, calibration means fitting a curve, usually nonlinear, through the observations collected on a set of samples containing known concentrations of a target substance, and then using the fitted curve and observations collected on samples of interest to predict the concentrations of the target substance in these samples. Recent technological advances have greatly improved our ability to quantify minute amounts of substance from a tiny volume of biological sample. This has in turn led to a need to improve statistical methods for calibration. In this paper, we focus on developing calibration methods robust to dependent outliers. We introduce a novel normal mixture model with dependent error terms to model the experimental noise. In addition, we propose a re-parameterization of the five parameter logistic nonlinear regression model that allows us to better incorporate prior information. We examine the performance of our methods with simulation studies and show that they lead to a substantial increase in performance measured in terms of mean squared error of estimation and a measure of the average prediction accuracy. A real data example from the HIV Vaccine Trials Network Laboratory is used to illustrate the methods. PMID:22551415
NASA Astrophysics Data System (ADS)
Sperling, A.; Meyer, M.; Pendsa, S.; Jordan, W.; Revtova, E.; Poikonen, T.; Renoux, D.; Blattner, P.
2018-04-01
Proper characterization of test setups used in industry for testing and traceable measurement of lighting devices by the substitution method is an important task. According to new standards for testing LED lamps, luminaires and modules, uncertainty budgets are requested because in many cases the properties of the device under test differ from the transfer standard used, which may cause significant errors, for example if a LED-based lamp is tested or calibrated in an integrating sphere which was calibrated with a tungsten lamp. This paper introduces a multiple transfer standard, which was designed not only to transfer a single calibration value (e.g. luminous flux) but also to characterize test setups used for LED measurements with additional provided and calibrated output features to enable the application of the new standards.
An inversion-based self-calibration for SIMS measurements: Application to H, F, and Cl in apatite
NASA Astrophysics Data System (ADS)
Boyce, J. W.; Eiler, J. M.
2011-12-01
Measurements of volatile abundances in igneous apatites can provide information regarding the abundances and evolution of volatiles in magmas, with applications to terrestrial volcanism and planetary evolution. Secondary ion mass spectrometry (SIMS) measurements can produce accurate and precise measurements of H and other volatiles in many materials including apatite. SIMS standardization generally makes use of empirical linear transfer functions that relate measured ion ratios to independently known concentrations. However, this approach is often limited by the lack of compositionally diverse, well-characterized, homogeneous standards. In general, SIMS calibrations are developed for minor and trace elements, and any two are treated as independent of one another. However, in crystalline materials, additional stoichiometric constraints may apply. In the case of apatite, the sum of concentrations of abundant volatile elements (H, Cl, and F) should closely approach 100% occupancy of their collective structural site. Here we propose and document the efficacy of a method for standardizing SIMS analyses of abundant volatiles in apatites that takes advantage of this stoichiometric constraint. The principle advantage of this method is that it is effectively self-standardizing; i.e., it requires no independently known homogeneous reference standards. We define a system of independent linear equations relating measured ion ratios (H/P, Cl/P, F/P) and unknown calibration slopes. Given sufficient range in the concentrations of the different elements among apatites measured in a single analytical session, solving this system of equations allows for the calibration slope for each element to be determined without standards, using only blank-corrected ion ratios. In the case that a data set of this kind lacks sufficient range in measured compositions of one or more of the relevant ion ratios, one can employ measurements of additional apatites of a variety of compositions to increase the statistical range and make the inversion more accurate and precise. These additional non-standard apatites need only be wide-ranging in composition: They need not be homogenous nor have known H, F, or Cl concentrations. Tests utilizing synthetic data and data generated in the laboratory indicate that this method should yield satisfactory results provided apatites meet the criteria of the model. The inversion method is able to reproduce conventional calibrations to within <2.5%, a level of accuracy comparable to or even better than the uncertainty of the conventional calibration, and one that includes both error in the inversion method as well as any true error in the independently determined values of the standards. Uncertainties in the inversion calibrations range from 0.1-1.7% (2σ), typically an order of magnitude smaller than the uncertainties in conventional calibrations (~4-5% for H2O, 1-19% for F and Cl). However, potential systematic errors stem from the model assumption of 100% occupancy of this site by the measured elements. Use of this method simplifies analysis of H, F, and Cl in apatites by SIMS, and may also be amenable to other stoichiometrically limited substitution groups, including P+As+S+Si+C in apatite, and Zr+Hf+U+Th in non-metamict zircon.
Mahmoudi, Zeinab; Johansen, Mette Dencker; Christiansen, Jens Sandahl
2014-01-01
Background: The purpose of this study was to investigate the effect of using a 1-point calibration approach instead of a 2-point calibration approach on the accuracy of a continuous glucose monitoring (CGM) algorithm. Method: A previously published real-time CGM algorithm was compared with its updated version, which used a 1-point calibration instead of a 2-point calibration. In addition, the contribution of the corrective intercept (CI) to the calibration performance was assessed. Finally, the sensor background current was estimated real-time and retrospectively. The study was performed on 132 type 1 diabetes patients. Results: Replacing the 2-point calibration with the 1-point calibration improved the CGM accuracy, with the greatest improvement achieved in hypoglycemia (18.4% median absolute relative differences [MARD] in hypoglycemia for the 2-point calibration, and 12.1% MARD in hypoglycemia for the 1-point calibration). Using 1-point calibration increased the percentage of sensor readings in zone A+B of the Clarke error grid analysis (EGA) in the full glycemic range, and also enhanced hypoglycemia sensitivity. Exclusion of CI from calibration reduced hypoglycemia accuracy, while slightly increased euglycemia accuracy. Both real-time and retrospective estimation of the sensor background current suggest that the background current can be considered zero in the calibration of the SCGM1 sensor. Conclusions: The sensor readings calibrated with the 1-point calibration approach indicated to have higher accuracy than those calibrated with the 2-point calibration approach. PMID:24876420
High-efficiency non-uniformity correction for wide dynamic linear infrared radiometry system
NASA Astrophysics Data System (ADS)
Li, Zhou; Yu, Yi; Tian, Qi-Jie; Chang, Song-Tao; He, Feng-Yun; Yin, Yan-He; Qiao, Yan-Feng
2017-09-01
Several different integration times are always set for a wide dynamic linear and continuous variable integration time infrared radiometry system, therefore, traditional calibration-based non-uniformity correction (NUC) are usually conducted one by one, and furthermore, several calibration sources required, consequently makes calibration and process of NUC time-consuming. In this paper, the difference of NUC coefficients between different integration times have been discussed, and then a novel NUC method called high-efficiency NUC, which combines the traditional calibration-based non-uniformity correction, has been proposed. It obtains the correction coefficients of all integration times in whole linear dynamic rangesonly by recording three different images of a standard blackbody. Firstly, mathematical procedure of the proposed non-uniformity correction method is validated and then its performance is demonstrated by a 400 mm diameter ground-based infrared radiometry system. Experimental results show that the mean value of Normalized Root Mean Square (NRMS) is reduced from 3.78% to 0.24% by the proposed method. In addition, the results at 4 ms and 70 °C prove that this method has a higher accuracy compared with traditional calibration-based NUC. In the meantime, at other integration time and temperature there is still a good correction effect. Moreover, it greatly reduces the number of correction time and temperature sampling point, and is characterized by good real-time performance and suitable for field measurement.
Regression Model Term Selection for the Analysis of Strain-Gage Balance Calibration Data
NASA Technical Reports Server (NTRS)
Ulbrich, Norbert Manfred; Volden, Thomas R.
2010-01-01
The paper discusses the selection of regression model terms for the analysis of wind tunnel strain-gage balance calibration data. Different function class combinations are presented that may be used to analyze calibration data using either a non-iterative or an iterative method. The role of the intercept term in a regression model of calibration data is reviewed. In addition, useful algorithms and metrics originating from linear algebra and statistics are recommended that will help an analyst (i) to identify and avoid both linear and near-linear dependencies between regression model terms and (ii) to make sure that the selected regression model of the calibration data uses only statistically significant terms. Three different tests are suggested that may be used to objectively assess the predictive capability of the final regression model of the calibration data. These tests use both the original data points and regression model independent confirmation points. Finally, data from a simplified manual calibration of the Ames MK40 balance is used to illustrate the application of some of the metrics and tests to a realistic calibration data set.
Dinç, Erdal; Ozdemir, Abdil
2005-01-01
Multivariate chromatographic calibration technique was developed for the quantitative analysis of binary mixtures enalapril maleate (EA) and hydrochlorothiazide (HCT) in tablets in the presence of losartan potassium (LST). The mathematical algorithm of multivariate chromatographic calibration technique is based on the use of the linear regression equations constructed using relationship between concentration and peak area at the five-wavelength set. The algorithm of this mathematical calibration model having a simple mathematical content was briefly described. This approach is a powerful mathematical tool for an optimum chromatographic multivariate calibration and elimination of fluctuations coming from instrumental and experimental conditions. This multivariate chromatographic calibration contains reduction of multivariate linear regression functions to univariate data set. The validation of model was carried out by analyzing various synthetic binary mixtures and using the standard addition technique. Developed calibration technique was applied to the analysis of the real pharmaceutical tablets containing EA and HCT. The obtained results were compared with those obtained by classical HPLC method. It was observed that the proposed multivariate chromatographic calibration gives better results than classical HPLC.
Taylor, Alexander J; Granwehr, Josef; Lesbats, Clémentine; Krupa, James L; Six, Joseph S; Pavlovskaya, Galina E; Thomas, Neil R; Auer, Dorothee P; Meersmann, Thomas; Faas, Henryk M
2016-01-01
Due to low fluorine background signal in vivo, 19F is a good marker to study the fate of exogenous molecules by magnetic resonance imaging (MRI) using equilibrium nuclear spin polarization schemes. Since 19F MRI applications require high sensitivity, it can be important to assess experimental feasibility during the design stage already by estimating the minimum detectable fluorine concentration. Here we propose a simple method for the calibration of MRI hardware, providing sensitivity estimates for a given scanner and coil configuration. An experimental "calibration factor" to account for variations in coil configuration and hardware set-up is specified. Once it has been determined in a calibration experiment, the sensitivity of an experiment or, alternatively, the minimum number of required spins or the minimum marker concentration can be estimated without the need for a pilot experiment. The definition of this calibration factor is derived based on standard equations for the sensitivity in magnetic resonance, yet the method is not restricted by the limited validity of these equations, since additional instrument-dependent factors are implicitly included during calibration. The method is demonstrated using MR spectroscopy and imaging experiments with different 19F samples, both paramagnetically and susceptibility broadened, to approximate a range of realistic environments.
CALCULATION OF NONLINEAR CONFIDENCE AND PREDICTION INTERVALS FOR GROUND-WATER FLOW MODELS.
Cooley, Richard L.; Vecchia, Aldo V.
1987-01-01
A method is derived to efficiently compute nonlinear confidence and prediction intervals on any function of parameters derived as output from a mathematical model of a physical system. The method is applied to the problem of obtaining confidence and prediction intervals for manually-calibrated ground-water flow models. To obtain confidence and prediction intervals resulting from uncertainties in parameters, the calibrated model and information on extreme ranges and ordering of the model parameters within one or more independent groups are required. If random errors in the dependent variable are present in addition to uncertainties in parameters, then calculation of prediction intervals also requires information on the extreme range of error expected. A simple Monte Carlo method is used to compute the quantiles necessary to establish probability levels for the confidence and prediction intervals. Application of the method to a hypothetical example showed that inclusion of random errors in the dependent variable in addition to uncertainties in parameters can considerably widen the prediction intervals.
Calibration of hydrological models using flow-duration curves
NASA Astrophysics Data System (ADS)
Westerberg, I. K.; Guerrero, J.-L.; Younger, P. M.; Beven, K. J.; Seibert, J.; Halldin, S.; Freer, J. E.; Xu, C.-Y.
2011-07-01
The degree of belief we have in predictions from hydrologic models will normally depend on how well they can reproduce observations. Calibrations with traditional performance measures, such as the Nash-Sutcliffe model efficiency, are challenged by problems including: (1) uncertain discharge data, (2) variable sensitivity of different performance measures to different flow magnitudes, (3) influence of unknown input/output errors and (4) inability to evaluate model performance when observation time periods for discharge and model input data do not overlap. This paper explores a calibration method using flow-duration curves (FDCs) to address these problems. The method focuses on reproducing the observed discharge frequency distribution rather than the exact hydrograph. It consists of applying limits of acceptability for selected evaluation points (EPs) on the observed uncertain FDC in the extended GLUE approach. Two ways of selecting the EPs were tested - based on equal intervals of discharge and of volume of water. The method was tested and compared to a calibration using the traditional model efficiency for the daily four-parameter WASMOD model in the Paso La Ceiba catchment in Honduras and for Dynamic TOPMODEL evaluated at an hourly time scale for the Brue catchment in Great Britain. The volume method of selecting EPs gave the best results in both catchments with better calibrated slow flow, recession and evaporation than the other criteria. Observed and simulated time series of uncertain discharges agreed better for this method both in calibration and prediction in both catchments. An advantage with the method is that the rejection criterion is based on an estimation of the uncertainty in discharge data and that the EPs of the FDC can be chosen to reflect the aims of the modelling application, e.g. using more/less EPs at high/low flows. While the method appears less sensitive to epistemic input/output errors than previous use of limits of acceptability applied directly to the time series of discharge, it still requires a reasonable representation of the distribution of inputs. Additional constraints might therefore be required in catchments subject to snow and where peak-flow timing at sub-daily time scales is of high importance. The results suggest that the calibration method can be useful when observation time periods for discharge and model input data do not overlap. The method could also be suitable for calibration to regional FDCs while taking uncertainties in the hydrological model and data into account.
Calibration of hydrological models using flow-duration curves
NASA Astrophysics Data System (ADS)
Westerberg, I. K.; Guerrero, J.-L.; Younger, P. M.; Beven, K. J.; Seibert, J.; Halldin, S.; Freer, J. E.; Xu, C.-Y.
2010-12-01
The degree of belief we have in predictions from hydrologic models depends on how well they can reproduce observations. Calibrations with traditional performance measures such as the Nash-Sutcliffe model efficiency are challenged by problems including: (1) uncertain discharge data, (2) variable importance of the performance with flow magnitudes, (3) influence of unknown input/output errors and (4) inability to evaluate model performance when observation time periods for discharge and model input data do not overlap. A new calibration method using flow-duration curves (FDCs) was developed which addresses these problems. The method focuses on reproducing the observed discharge frequency distribution rather than the exact hydrograph. It consists of applying limits of acceptability for selected evaluation points (EPs) of the observed uncertain FDC in the extended GLUE approach. Two ways of selecting the EPs were tested - based on equal intervals of discharge and of volume of water. The method was tested and compared to a calibration using the traditional model efficiency for the daily four-parameter WASMOD model in the Paso La Ceiba catchment in Honduras and for Dynamic TOPMODEL evaluated at an hourly time scale for the Brue catchment in Great Britain. The volume method of selecting EPs gave the best results in both catchments with better calibrated slow flow, recession and evaporation than the other criteria. Observed and simulated time series of uncertain discharges agreed better for this method both in calibration and prediction in both catchments without resulting in overpredicted simulated uncertainty. An advantage with the method is that the rejection criterion is based on an estimation of the uncertainty in discharge data and that the EPs of the FDC can be chosen to reflect the aims of the modelling application e.g. using more/less EPs at high/low flows. While the new method is less sensitive to epistemic input/output errors than the normal use of limits of acceptability applied directly to the time series of discharge, it still requires a reasonable representation of the distribution of inputs. Additional constraints might therefore be required in catchments subject to snow. The results suggest that the new calibration method can be useful when observation time periods for discharge and model input data do not overlap. The new method could also be suitable for calibration to regional FDCs while taking uncertainties in the hydrological model and data into account.
Application of Temperature Sensitivities During Iterative Strain-Gage Balance Calibration Analysis
NASA Technical Reports Server (NTRS)
Ulbrich, N.
2011-01-01
A new method is discussed that may be used to correct wind tunnel strain-gage balance load predictions for the influence of residual temperature effects at the location of the strain-gages. The method was designed for the iterative analysis technique that is used in the aerospace testing community to predict balance loads from strain-gage outputs during a wind tunnel test. The new method implicitly applies temperature corrections to the gage outputs during the load iteration process. Therefore, it can use uncorrected gage outputs directly as input for the load calculations. The new method is applied in several steps. First, balance calibration data is analyzed in the usual manner assuming that the balance temperature was kept constant during the calibration. Then, the temperature difference relative to the calibration temperature is introduced as a new independent variable for each strain--gage output. Therefore, sensors must exist near the strain--gages so that the required temperature differences can be measured during the wind tunnel test. In addition, the format of the regression coefficient matrix needs to be extended so that it can support the new independent variables. In the next step, the extended regression coefficient matrix of the original calibration data is modified by using the manufacturer specified temperature sensitivity of each strain--gage as the regression coefficient of the corresponding temperature difference variable. Finally, the modified regression coefficient matrix is converted to a data reduction matrix that the iterative analysis technique needs for the calculation of balance loads. Original calibration data and modified check load data of NASA's MC60D balance are used to illustrate the new method.
Measuring the electrical properties of soil using a calibrated ground-coupled GPR system
Oden, C.P.; Olhoeft, G.R.; Wright, D.L.; Powers, M.H.
2008-01-01
Traditional methods for estimating vadose zone soil properties using ground penetrating radar (GPR) include measuring travel time, fitting diffraction hyperbolae, and other methods exploiting geometry. Additional processing techniques for estimating soil properties are possible with properly calibrated GPR systems. Such calibration using ground-coupled antennas must account for the effects of the shallow soil on the antenna's response, because changing soil properties result in a changing antenna response. A prototype GPR system using ground-coupled antennas was calibrated using laboratory measurements and numerical simulations of the GPR components. Two methods for estimating subsurface properties that utilize the calibrated response were developed. First, a new nonlinear inversion algorithm to estimate shallow soil properties under ground-coupled antennas was evaluated. Tests with synthetic data showed that the inversion algorithm is well behaved across the allowed range of soil properties. A preliminary field test gave encouraging results, with estimated soil property uncertainties (????) of ??1.9 and ??4.4 mS/m for the relative dielectric permittivity and the electrical conductivity, respectively. Next, a deconvolution method for estimating the properties of subsurface reflectors with known shapes (e.g., pipes or planar interfaces) was developed. This method uses scattering matrices to account for the response of subsurface reflectors. The deconvolution method was evaluated for use with noisy data using synthetic data. Results indicate that the deconvolution method requires reflected waves with a signal/noise ratio of about 10:1 or greater. When applied to field data with a signal/noise ratio of 2:1, the method was able to estimate the reflection coefficient and relative permittivity, but the large uncertainty in this estimate precluded inversion for conductivity. ?? Soil Science Society of America.
NASA Astrophysics Data System (ADS)
Hewitson, Martin R.
Gravitational waves are small disturbances, or strains, in the fabric of space-time. The detection of these waves has been a major goal of modern physics since they were predicted as a consequence of Einstein's General Theory of Relativity. Large-scale astro- physical events, such as colliding neutron stars or supernovae, are predicted to release energy in the form of gravitational waves. However, even with such cataclysmic events, the strain amplitudes of the gravitational waves expected to be seen at the Earth are incredibly small: of the order 1 part in 10. 21 or less at audio frequencies. Because of theseextremely small amplitudes, the search for gravitational waves remains one of the most challenging goals of modem physics. This thesis starts by detailing the data recording system of GEO 600: an essential part of producing a calibrated data set. The full data acquisition system, including all hardware and software aspects, is described in detail. Comprehensive tests of the stability and timing accuracy of the system show that it has a typical duty cycle of greater than 99% with an absolute timing accuracy (measured against GPS) of the order 15 mus. The thesis then goes on to describe the design and implementation of a time-domain calibration method, based on the use of time-domain filters, for the power-recycled configuration of GEO 600. This time-domain method is then extended to deal with the more complicated case of calibrating the dual-recycled configuration of GEO 600. The time-domain calibration method was applied to two long data-taking (science) runs. The method proved successful in recovering (in real-time) a calibrated strain time-series suitable for use in astrophysical searches. The accuracy of the calibration process was shown to be good to 10% or less across the detection band of the detector. In principle, the time-domain method presents no restrictions in the achievable calibration accuracy; most of the uncertainty in the calibration process is shown to arise from the actuator used to inject the calibradon signals. The recovered strain series was shown to be equivalent to a frequency-domain calibration at the level of a few percent. A number of ways are presented in which the initial calibration pipeline can be improved to increase the calibration accuracy. The production and subsequent distribution of a calibrated time- series allows for a single point of control over the validity and quality of the calibrated data. The techniques developed in this thesis are currently being adopted by the LIGO interferometers to perform time-domain calibration of their three long-baseline detectors. In addition, a data storage system is currently being developed by the author, together with the LIGO calibration team, to allow all the information used in the time-domain calibration process to be captured in a concise and coherent form that is consistent across multiple detectors in the LSC. (Abstract shortened by ProQuest.).
High Performance Liquid Chromatography of Vitamin A: A Quantitative Determination.
ERIC Educational Resources Information Center
Bohman, Ove; And Others
1982-01-01
Experimental procedures are provided for the quantitative determination of Vitamin A (retinol) in food products by analytical liquid chromatography. Standard addition and calibration curve extraction methods are outlined. (SK)
Thermographic Microstructure Monitoring in Electron Beam Additive Manufacturing.
Raplee, J; Plotkowski, A; Kirka, M M; Dinwiddie, R; Okello, A; Dehoff, R R; Babu, S S
2017-03-03
To reduce the uncertainty of build performance in metal additive manufacturing, robust process monitoring systems that can detect imperfections and improve repeatability are desired. One of the most promising methods for in situ monitoring is thermographic imaging. However, there is a challenge in using this technology due to the difference in surface emittance between the metal powder and solidified part being observed that affects the accuracy of the temperature data collected. The purpose of the present study was to develop a method for properly calibrating temperature profiles from thermographic data to account for this emittance change and to determine important characteristics of the build through additional processing. The thermographic data was analyzed to identify the transition of material from metal powder to a solid as-printed part. A corrected temperature profile was then assembled for each point using calibrations for these surface conditions. Using this data, the thermal gradient and solid-liquid interface velocity were approximated and correlated to experimentally observed microstructural variation within the part. This work shows that by using a method of process monitoring, repeatability of a build could be monitored specifically in relation to microstructure control.
Thermographic Microstructure Monitoring in Electron Beam Additive Manufacturing
Raplee, Jake B.; Plotkowski, Alex J.; Kirka, Michael M.; ...
2017-03-03
To reduce the uncertainty of build performance in metal additive manufacturing, robust process monitoring systems that can detect imperfections and improve repeatability are desired. One of the most promising methods for in-situ monitoring is thermographic imaging. However, there is a challenge in using this technology due to the difference in surface emittance between the metal powder and solidified part being observed that affects the accuracy of the temperature data collected. This developed a method for properly calibrating temperature profiles from thermographic data and then determining important characteristics of the build through additional processing. The thermographic data was analyzed to determinemore » the transition of material from metal powder to a solid as-printed part. A corrected temperature profile was then assembled for each point using calibrations for these surface conditions. Using this data, we calculated the thermal gradient and solid-liquid interface velocity and correlated it to microstructural variation within the part experimentally. This work shows that by using a method of process monitoring, repeatability of a build could be monitored specifically in relation to microstructure control.« less
Calibrating Laser Gas Measurements by Use of Natural CO2
NASA Technical Reports Server (NTRS)
Webster, Chris
2003-01-01
An improved method of calibration has been devised for instruments that utilize tunable lasers to measure the absorption spectra of atmospheric gases in order to determine the relative abundances of the gases. In this method, CO2 in the atmosphere is used as a natural calibration standard. Unlike in one prior calibration method, it is not necessary to perform calibration measurements in advance of use of the instrument and to risk deterioration of accuracy with time during use. Unlike in another prior calibration method, it is not necessary to include a calibration gas standard (and the attendant additional hardware) in the instrument and to interrupt the acquisition of atmospheric data to perform calibration measurements. In the operation of an instrument of this type, the beam from a tunable diode laser or a tunable quantum-cascade laser is directed along a path through the atmosphere, the laser is made to scan in wavelength over an infrared spectral region that contains one or two absorption spectral lines of a gas of interest, and the transmission (and, thereby, the absorption) of the beam is measured. The concentration of the gas of interest can then be calculated from the observed depth of the absorption line(s), given the temperature, pressure, and path length. CO2 is nearly ideal as a natural calibration gas for the following reasons: CO2 has numerous rotation/vibration infrared spectral lines, many of which are near absorption lines of other gases. The concentration of CO2 relative to the concentrations of the major constituents of the atmosphere is well known and varies slowly and by a small enough amount to be considered constant for calibration in the present context. Hence, absorption-spectral measurements of the concentrations of gases of interest can be normalized to the concentrations of CO2. Because at least one CO2 calibration line is present in every spectral scan of the laser during absorption measurements, the atmospheric CO2 serves continuously as a calibration standard for every measurement point. Figure 1 depicts simulated spectral transmission measurements in a wavenumber range that contains two absorption lines of N2O and one of CO2. The simulations were performed for two different upper-atmospheric pressures for an airborne instrument that has a path length of 80 m. The relative abundance of CO2 in air was assumed to be 360 parts per million by volume (approximately its natural level in terrestrial air). In applying the present method to measurements like these, one could average the signals from the two N2O absorption lines and normalize their magnitudes to that of the CO2 absorption line. Other gases with which this calibration method can be used include H2O, CH4, CO, NO, NO2, HOCl, C2H2, NH3, O3, and HCN. One can also take advantage of this method to eliminate an atmospheric-pressure gauge and thereby reduce the mass of the instrument: The atmospheric pressure can be calculated from the temperature, the known relative abundance of CO2, and the concentration of CO2 as measured by spectral absorption. Natural CO2 levels on Mars provide an ideal calibration standard. Figure 2 shows a second example of the application of this method to Mars atmospheric gas measurements. For sticky gases like H2O, the method is particularly powerful, since water is notoriously difficult to handle at low concentrations in pre-flight calibration procedures.
[Preparation of chicken red blood cells for calibration of flow cytometry].
Yin, Jian; Zhao, Shutao; Wu, Xiaodong; Wang, Ce; Wu, Yunliang
2013-01-01
To prepare stable chicken red blood cells for the calibration of flow cytometry. The traditional isolation method of chicken red blood cells was modified by incorporating gelatin technique, Ca2+-free HBSS treatment and low-speed centrifugation. The effect of fluorescence staining of the cells was improved by the addition of TritonX-100 to enhance the membrane permeability and Rnase enzymes to disintegrate RNA tiles. The modified method was compared with the traditional method for viability of the freshly isolated cells and the DNA content coefficient of variation (CV) of the fixed cells. Chicken red blood cells obtained by the modified method showed a significantly higher viability than those obtained by the traditional method [(98.5∓3.5)% vs (93.5∓2.7)%, P<0.05]. After glutaraldehyde fixation, the isolated cells with the modified method were stable during the 90-day preservation with a significantly lower CV than the cells obtained by the traditional method [(6.0∓0.3)% to 6.2∓0.4% vs (8.6∓0.5)% to (13.1∓1.4)%, P<0.01]. The chicken red blood cells isolated using the modified method can be applicable for calibration of flow cytometry.
Castillo-Hair, Sebastian M.; Sexton, John T.; Landry, Brian P.; Olson, Evan J.; Igoshin, Oleg A.; Tabor, Jeffrey J.
2017-01-01
Flow cytometry is widely used to measure gene expression and other molecular biological processes with single cell resolution via fluorescent probes. Flow cytometers output data in arbitrary units (a.u.) that vary with the probe, instrument, and settings. Arbitrary units can be converted to the calibrated unit molecules of equivalent fluorophore (MEF) using commercially available calibration particles. However, there is no convenient, non-proprietary tool available to perform this calibration. Consequently, most researchers report data in a.u., limiting interpretation. Here, we report a software tool named FlowCal to overcome current limitations. FlowCal can be run using an intuitive Microsoft Excel interface, or customizable Python scripts. The software accepts Flow Cytometry Standard (FCS) files as inputs and is compatible with different calibration particles, fluorescent probes, and cell types. Additionally, FlowCal automatically gates data, calculates common statistics, and produces publication quality plots. We validate FlowCal by calibrating a.u. measurements of E. coli expressing superfolder GFP (sfGFP) collected at 10 different detector sensitivity (gain) settings to a single MEF value. Additionally, we reduce day-to-day variability in replicate E. coli sfGFP expression measurements due to instrument drift by 33%, and calibrate S. cerevisiae mVenus expression data to MEF units. Finally, we demonstrate a simple method for using FlowCal to calibrate fluorescence units across different cytometers. FlowCal should ease the quantitative analysis of flow cytometry data within and across laboratories and facilitate the adoption of standard fluorescence units in synthetic biology and beyond. PMID:27110723
Wideband Single Crystal Transducer for Bone Characterization
NASA Technical Reports Server (NTRS)
Sahul, Raffi
2015-01-01
Phase II objectives: Optimize the Phase I transducer for sensitivity; Test different transmit signals for optimum performance; Demonstrate compatibility with electronics; Confirm additional transducer capabilities over conventional systems by calibrating with other methods.
NASA Astrophysics Data System (ADS)
Lobb, Dan
2017-11-01
One of the most significant problems for space-based spectro-radiometer systems, observing Earth from space in the solar spectral band (UV through short-wave IR), is in achievement of the required absolute radiometric accuracy. Classical methods, for example using one or more sun-illuminated diffusers as reflectance standards, do not generally provide methods for monitoring degradation of the in-flight reference after pre-flight characterisation. Ratioing methods have been proposed that provide monitoring of degradation of solar attenuators in flight, thus in principle allowing much higher confidence in absolute response calibration. Two example methods are described. It is shown that systems can be designed for relatively low size and without significant additions to the complexity of flight hardware.
Requirements for Calibration in Noninvasive Glucose Monitoring by Raman Spectroscopy
Lipson, Jan; Bernhardt, Jeff; Block, Ueyn; Freeman, William R.; Hofmeister, Rudy; Hristakeva, Maya; Lenosky, Thomas; McNamara, Robert; Petrasek, Danny; Veltkamp, David; Waydo, Stephen
2009-01-01
Background In the development of noninvasive glucose monitoring technology, it is highly desirable to derive a calibration that relies on neither person-dependent calibration information nor supplementary calibration points furnished by an existing invasive measurement technique (universal calibration). Method By appropriate experimental design and associated analytical methods, we establish the sufficiency of multiple factors required to permit such a calibration. Factors considered are the discrimination of the measurement technique, stabilization of the experimental apparatus, physics–physiology-based measurement techniques for normalization, the sufficiency of the size of the data set, and appropriate exit criteria to establish the predictive value of the algorithm. Results For noninvasive glucose measurements, using Raman spectroscopy, the sufficiency of the scale of data was demonstrated by adding new data into an existing calibration algorithm and requiring that (a) the prediction error should be preserved or improved without significant re-optimization, (b) the complexity of the model for optimum estimation not rise with the addition of subjects, and (c) the estimation for persons whose data were removed entirely from the training set should be no worse than the estimates on the remainder of the population. Using these criteria, we established guidelines empirically for the number of subjects (30) and skin sites (387) for a preliminary universal calibration. We obtained a median absolute relative difference for our entire data set of 30 mg/dl, with 92% of the data in the Clarke A and B ranges. Conclusions Because Raman spectroscopy has high discrimination for glucose, a data set of practical dimensions appears to be sufficient for universal calibration. Improvements based on reducing the variance of blood perfusion are expected to reduce the prediction errors substantially, and the inclusion of supplementary calibration points for the wearable device under development will be permissible and beneficial. PMID:20144354
Gravity gradient preprocessing at the GOCE HPF
NASA Astrophysics Data System (ADS)
Bouman, J.; Rispens, S.; Gruber, T.; Schrama, E.; Visser, P.; Tscherning, C. C.; Veicherts, M.
2009-04-01
One of the products derived from the GOCE observations are the gravity gradients. These gravity gradients are provided in the Gradiometer Reference Frame (GRF) and are calibrated in-flight using satellite shaking and star sensor data. In order to use these gravity gradients for application in Earth sciences and gravity field analysis, additional pre-processing needs to be done, including corrections for temporal gravity field signals to isolate the static gravity field part, screening for outliers, calibration by comparison with existing external gravity field information and error assessment. The temporal gravity gradient corrections consist of tidal and non-tidal corrections. These are all generally below the gravity gradient error level, which is predicted to show a 1/f behaviour for low frequencies. In the outlier detection the 1/f error is compensated for by subtracting a local median from the data, while the data error is assessed using the median absolute deviation. The local median acts as a high-pass filter and it is robust as is the median absolute deviation. Three different methods have been implemented for the calibration of the gravity gradients. All three methods use a high-pass filter to compensate for the 1/f gravity gradient error. The baseline method uses state-of-the-art global gravity field models and the most accurate results are obtained if star sensor misalignments are estimated along with the calibration parameters. A second calibration method uses GOCE GPS data to estimate a low degree gravity field model as well as gravity gradient scale factors. Both methods allow to estimate gravity gradient scale factors down to the 10-3 level. The third calibration method uses high accurate terrestrial gravity data in selected regions to validate the gravity gradient scale factors, focussing on the measurement band. Gravity gradient scale factors may be estimated down to the 10-2 level with this method.
Preprocessing of gravity gradients at the GOCE high-level processing facility
NASA Astrophysics Data System (ADS)
Bouman, Johannes; Rispens, Sietse; Gruber, Thomas; Koop, Radboud; Schrama, Ernst; Visser, Pieter; Tscherning, Carl Christian; Veicherts, Martin
2009-07-01
One of the products derived from the gravity field and steady-state ocean circulation explorer (GOCE) observations are the gravity gradients. These gravity gradients are provided in the gradiometer reference frame (GRF) and are calibrated in-flight using satellite shaking and star sensor data. To use these gravity gradients for application in Earth scienes and gravity field analysis, additional preprocessing needs to be done, including corrections for temporal gravity field signals to isolate the static gravity field part, screening for outliers, calibration by comparison with existing external gravity field information and error assessment. The temporal gravity gradient corrections consist of tidal and nontidal corrections. These are all generally below the gravity gradient error level, which is predicted to show a 1/ f behaviour for low frequencies. In the outlier detection, the 1/ f error is compensated for by subtracting a local median from the data, while the data error is assessed using the median absolute deviation. The local median acts as a high-pass filter and it is robust as is the median absolute deviation. Three different methods have been implemented for the calibration of the gravity gradients. All three methods use a high-pass filter to compensate for the 1/ f gravity gradient error. The baseline method uses state-of-the-art global gravity field models and the most accurate results are obtained if star sensor misalignments are estimated along with the calibration parameters. A second calibration method uses GOCE GPS data to estimate a low-degree gravity field model as well as gravity gradient scale factors. Both methods allow to estimate gravity gradient scale factors down to the 10-3 level. The third calibration method uses high accurate terrestrial gravity data in selected regions to validate the gravity gradient scale factors, focussing on the measurement band. Gravity gradient scale factors may be estimated down to the 10-2 level with this method.
NASA Astrophysics Data System (ADS)
Coburn, Craig A.; Logie, Gordon S. J.
2018-01-01
Attempts to use pseudoinvariant calibration sites (PICS) for establishing absolute radiometric calibration of Earth observation (EO) satellites requires high-quality information about the nature of the bidirectional reflectance distribution function (BRDF) of the surfaces used for these calibrations. Past studies have shown that the PICS method is useful for evaluating the trend of sensors over time or for the intercalibration of sensors. The PICS method was not considered until recently for deriving absolute radiometric calibration. This paper presents BRDF data collected by a high-performance portable goniometer system to develop a temporal BRDF model for the Algodones Dunes in California. By sampling the BRDF of the sand surface at similar solar zenith angles to those normally encountered by EO satellites, additional information on the changing nature of the surface can improve models used to provide absolute radiometric correction. The results demonstrated that the BRDF of a reasonably simple sand surface was complex with changes in anisotropy taking place in response to changing solar zenith angles. For the majority of observation and illumination angles, the spectral reflectance anisotropy observed varied between 1% and 5% in patterns that repeat around solar noon.
Wagner, Randall P.; Guthrie, William F.
2015-01-01
The devices calibrated most frequently by the acoustical measurement services at the National Institute of Standards and Technology (NIST) over the 50-year period from 1963 to 20121 were one-inch condenser microphones of three specific standard types: LS1Pn, LS1Po, and WS1P. Due to its long history of providing calibrations of such microphones to customers, NIST is in a unique position to analyze data concerning the long-term stability of these devices. This long history has enabled NIST to acquire and aggregate a substantial amount of repeat calibration data for a large number of microphones that belong to various other standards and calibration laboratories. In addition to determining microphone sensitivities at the time of calibration, it is important to have confidence that the microphones do not typically undergo significant drift as compared to the calibration uncertainty during the periods between calibrations. For each of the three microphone types, an average drift rate and approximate 95 % confidence interval were computed by two different statistical methods, and the results from the two methods were found to differ insignificantly in each case. These results apply to typical microphones of these types that are used in a suitable environment and handled with care. The average drift rate for Type LS1Pn microphones was −0.004 dB/year to 0.003 dB/year. The average drift rate for Type LS1Po microphones was −0.016 dB/year to 0.008 dB/year. The average drift rate for Type WS1P microphones was −0.004 dB/year to 0.018 dB/year. For each of these microphone types, the average drift rate is not significantly different from zero. This result is consistent with the performance expected of condenser microphones designed for use as transfer standards. In addition, the values that bound the confidence intervals are well within the limits specified for long-term stability in international standards. Even though these results show very good long-term stability historically for these microphone types, it is expected that periodic calibrations will always be done to track the calibration history of individual microphones and check for anomalies indicative of shifts in sensitivity. PMID:26958445
On Inertial Body Tracking in the Presence of Model Calibration Errors
Miezal, Markus; Taetz, Bertram; Bleser, Gabriele
2016-01-01
In inertial body tracking, the human body is commonly represented as a biomechanical model consisting of rigid segments with known lengths and connecting joints. The model state is then estimated via sensor fusion methods based on data from attached inertial measurement units (IMUs). This requires the relative poses of the IMUs w.r.t. the segments—the IMU-to-segment calibrations, subsequently called I2S calibrations—to be known. Since calibration methods based on static poses, movements and manual measurements are still the most widely used, potentially large human-induced calibration errors have to be expected. This work compares three newly developed/adapted extended Kalman filter (EKF) and optimization-based sensor fusion methods with an existing EKF-based method w.r.t. their segment orientation estimation accuracy in the presence of model calibration errors with and without using magnetometer information. While the existing EKF-based method uses a segment-centered kinematic chain biomechanical model and a constant angular acceleration motion model, the newly developed/adapted methods are all based on a free segments model, where each segment is represented with six degrees of freedom in the global frame. Moreover, these methods differ in the assumed motion model (constant angular acceleration, constant angular velocity, inertial data as control input), the state representation (segment-centered, IMU-centered) and the estimation method (EKF, sliding window optimization). In addition to the free segments representation, the optimization-based method also represents each IMU with six degrees of freedom in the global frame. In the evaluation on simulated and real data from a three segment model (an arm), the optimization-based method showed the smallest mean errors, standard deviations and maximum errors throughout all tests. It also showed the lowest dependency on magnetometer information and motion agility. Moreover, it was insensitive w.r.t. I2S position and segment length errors in the tested ranges. Errors in the I2S orientations were, however, linearly propagated into the estimated segment orientations. In the absence of magnetic disturbances, severe model calibration errors and fast motion changes, the newly developed IMU centered EKF-based method yielded comparable results with lower computational complexity. PMID:27455266
Out of lab calibration of a rotating 2D scanner for 3D mapping
NASA Astrophysics Data System (ADS)
Koch, Rainer; Böttcher, Lena; Jahrsdörfer, Maximilian; Maier, Johannes; Trommer, Malte; May, Stefan; Nüchter, Andreas
2017-06-01
Mapping is an essential task in mobile robotics. To fulfil advanced navigation and manipulation tasks a 3D representation of the environment is required. Applying stereo cameras or Time-of-flight cameras (TOF cameras) are one way to archive this requirement. Unfortunately, they suffer from drawbacks which makes it difficult to map properly. Therefore, costly 3D laser scanners are applied. An inexpensive way to build a 3D representation is to use a 2D laser scanner and rotate the scan plane around an additional axis. A 3D point cloud acquired with such a custom device consists of multiple 2D line scans. Therefore the scanner pose of each line scan need to be determined as well as parameters resulting from a calibration to generate a 3D point cloud. Using external sensor systems are a common method to determine these calibration parameters. This is costly and difficult when the robot needs to be calibrated outside the lab. Thus, this work presents a calibration method applied on a rotating 2D laser scanner. It uses a hardware setup to identify the required parameters for calibration. This hardware setup is light, small, and easy to transport. Hence, an out of lab calibration is possible. Additional a theoretical model was created to test the algorithm and analyse impact of the scanner accuracy. The hardware components of the 3D scanner system are an HOKUYO UTM-30LX-EW 2D laser scanner, a Dynamixel servo-motor, and a control unit. The calibration system consists of an hemisphere. In the inner of the hemisphere a circular plate is mounted. The algorithm needs to be provided with a dataset of a single rotation from the laser scanner. To achieve a proper calibration result the scanner needs to be located in the middle of the hemisphere. By means of geometric formulas the algorithms determine the individual deviations of the placed laser scanner. In order to minimize errors, the algorithm solves the formulas in an iterative process. First, the calibration algorithm was tested with an ideal hemisphere model created in Matlab. Second, laser scanner was mounted differently, the scanner position and the rotation axis was modified. In doing so, every deviation, was compared with the algorithm results. Several measurement settings were tested repeatedly with the 3D scanner system and the calibration system. The results show that the length accuracy of the laser scanner is most critical. It influences the required size of the hemisphere and the calibration accuracy.
System calibration method for Fourier ptychographic microscopy
NASA Astrophysics Data System (ADS)
Pan, An; Zhang, Yan; Zhao, Tianyu; Wang, Zhaojun; Dan, Dan; Lei, Ming; Yao, Baoli
2017-09-01
Fourier ptychographic microscopy (FPM) is a recently proposed computational imaging technique with both high-resolution and wide field of view. In current FPM imaging platforms, systematic error sources come from aberrations, light-emitting diode (LED) intensity fluctuation, parameter imperfections, and noise, all of which may severely corrupt the reconstruction results with similar artifacts. Therefore, it would be unlikely to distinguish the dominating error from these degraded reconstructions without any preknowledge. In addition, systematic error is generally a mixture of various error sources in the real situation, and it cannot be separated due to their mutual restriction and conversion. To this end, we report a system calibration procedure, termed SC-FPM, to calibrate the mixed systematic errors simultaneously from an overall perspective, based on the simulated annealing algorithm, the LED intensity correction method, the nonlinear regression process, and the adaptive step-size strategy, which involves the evaluation of an error metric at each iteration step, followed by the re-estimation of accurate parameters. The performance achieved both in simulations and experiments demonstrates that the proposed method outperforms other state-of-the-art algorithms. The reported system calibration scheme improves the robustness of FPM, relaxes the experiment conditions, and does not require any preknowledge, which makes the FPM more pragmatic.
Landsat-7 Enhanced Thematic Mapper plus radiometric calibration
Markham, B.L.; Boncyk, Wayne C.; Helder, D.L.; Barker, J.L.
1997-01-01
Landsat-7 is currently being built and tested for launch in 1998. The Enhanced Thematic Mapper Plus (ETM+) sensor for Landsat-7, a derivative of the highly successful Thematic Mapper (TM) sensors on Landsats 4 and 5, and the Landsat-7 ground system are being built to provide enhanced radiometric calibration performance. In addition, regular vicarious calibration campaigns are being planned to provide additional information for calibration of the ETM+ instrument. The primary upgrades to the instrument include the addition of two solar calibrators: the full aperture solar calibrator, a deployable diffuser, and the partial aperture solar calibrator, a passive device that allows the ETM+ to image the sun. The ground processing incorporates for the first time an off-line facility, the Image Assessment System (IAS), to perform calibration, evaluation and analysis. Within the IAS, processing capabilities include radiometric artifact characterization and correction, radiometric calibration from the multiple calibrator sources, inclusion of results from vicarious calibration and statistical trending of calibration data to improve calibration estimation. The Landsat Product Generation System, the portion of the ground system responsible for producing calibrated products, will incorporate the radiometric artifact correction algorithms and will use the calibration information generated by the IAS. This calibration information will also be supplied to ground processing systems throughout the world.
Besseling, T H; Jose, J; Van Blaaderen, A
2015-02-01
Accurate distance measurement in 3D confocal microscopy is important for quantitative analysis, volume visualization and image restoration. However, axial distances can be distorted by both the point spread function (PSF) and by a refractive-index mismatch between the sample and immersion liquid, which are difficult to separate. Additionally, accurate calibration of the axial distances in confocal microscopy remains cumbersome, although several high-end methods exist. In this paper we present two methods to calibrate axial distances in 3D confocal microscopy that are both accurate and easily implemented. With these methods, we measured axial scaling factors as a function of refractive-index mismatch for high-aperture confocal microscopy imaging. We found that our scaling factors are almost completely linearly dependent on refractive index and that they were in good agreement with theoretical predictions that take the full vectorial properties of light into account. There was however a strong deviation with the theoretical predictions using (high-angle) geometrical optics, which predict much lower scaling factors. As an illustration, we measured the PSF of a correctly calibrated point-scanning confocal microscope and showed that a nearly index-matched, micron-sized spherical object is still significantly elongated due to this PSF, which signifies that care has to be taken when determining axial calibration or axial scaling using such particles. © 2014 The Authors Journal of Microscopy published by John Wiley & Sons Ltd on behalf of Royal Microscopical Society.
NASA Astrophysics Data System (ADS)
Darwish, Hany W.; Hassan, Said A.; Salem, Maissa Y.; El-Zeany, Badr A.
2013-09-01
Four simple, accurate and specific methods were developed and validated for the simultaneous estimation of Amlodipine (AML), Valsartan (VAL) and Hydrochlorothiazide (HCT) in commercial tablets. The derivative spectrophotometric methods include Derivative Ratio Zero Crossing (DRZC) and Double Divisor Ratio Spectra-Derivative Spectrophotometry (DDRS-DS) methods, while the multivariate calibrations used are Principal Component Regression (PCR) and Partial Least Squares (PLSs). The proposed methods were applied successfully in the determination of the drugs in laboratory-prepared mixtures and in commercial pharmaceutical preparations. The validity of the proposed methods was assessed using the standard addition technique. The linearity of the proposed methods is investigated in the range of 2-32, 4-44 and 2-20 μg/mL for AML, VAL and HCT, respectively.
Calibration of laser vibrometers at frequencies up to 100 kHz and higher
NASA Astrophysics Data System (ADS)
Silva Pineda, Guillermo; von Martens, Hans-Jürgen; Rojas, Sergio; Ruiz, Arturo; Muñiz, Lorenzo
2008-06-01
Manufacturers and users of laser vibrometers exploit the wide frequency and intensity ranges of laser techniques, ranging over many decades (e.g., from 0.1 Hz to 100 MHz). Traceability to primary measurement standards is demanded over the specified measurement ranges of any measurement instrumentation. As the primary documentary standard ISO 16063-11 for the calibration of vibration transducers is restricted to 10 kHz, a new international standard for the calibration of laser vibrometers, ISO 16063-41, is under development. The current stage of the 2nd Committee Draft (CD) of the ISO standard specifies calibration methods for frequencies from 0.4 Hz to 50 kHz which does not meet the demand for providing traceability at higher frequencies. New investigations will be presented which demonstrate the applicability of the laser interferometer methods specified in ISO 16063-11 and in the 2nd CD also at higher frequencies of 100 kHz and beyond. The three standard methods were simultaneously used for vibration displacement and acceleration measurements up to 100 kHz, and a fourth high-accuracy method has been developed and used. Their results in displacement and acceleration measurements deviated by less than 1 % from each other at vibration displacement amplitudes in the order of 100 nm. In addition to the three interferometer methods specified in ISO 16063-11 and 16063-15, and in the 2nd Committee Draft of 16063-41 as well, measurement results will be presented. Examples of laser vibrometer calibrations will bedemonstrated. Further investigations are aimed
eSIP: A Novel Solution-Based Sectioned Image Property Approach for Microscope Calibration
Butzlaff, Malte; Weigel, Arwed; Ponimaskin, Evgeni; Zeug, Andre
2015-01-01
Fluorescence confocal microscopy represents one of the central tools in modern sciences. Correspondingly, a growing amount of research relies on the development of novel microscopic methods. During the last decade numerous microscopic approaches were developed for the investigation of various scientific questions. Thereby, the former qualitative imaging methods became replaced by advanced quantitative methods to gain more and more information from a given sample. However, modern microscope systems being as complex as they are, require very precise and appropriate calibration routines, in particular when quantitative measurements should be compared over longer time scales or between different setups. Multispectral beads with sub-resolution size are often used to describe the point spread function and thus the optical properties of the microscope. More recently, a fluorescent layer was utilized to describe the axial profile for each pixel, which allows a spatially resolved characterization. However, fabrication of a thin fluorescent layer with matching refractive index is technically not solved yet. Therefore, we propose a novel type of calibration concept for sectioned image property (SIP) measurements which is based on fluorescent solution and makes the calibration concept available for a broader number of users. Compared to the previous approach, additional information can be obtained by application of this extended SIP chart approach, including penetration depth, detected number of photons, and illumination profile shape. Furthermore, due to the fit of the complete profile, our method is less susceptible to noise. Generally, the extended SIP approach represents a simple and highly reproducible method, allowing setup independent calibration and alignment procedures, which is mandatory for advanced quantitative microscopy. PMID:26244982
DOE Office of Scientific and Technical Information (OSTI.GOV)
Narlesky, Joshua Edward; Kelly, Elizabeth J.
2015-09-10
This report documents the new PG calibration regression equation. These calibration equations incorporate new data that have become available since revision 1 of “A Calibration to Predict the Concentrations of Impurities in Plutonium Oxide by Prompt Gamma Analysis” was issued [3] The calibration equations are based on a weighted least squares (WLS) approach for the regression. The WLS method gives each data point its proper amount of influence over the parameter estimates. This gives two big advantages, more precise parameter estimates and better and more defensible estimates of uncertainties. The WLS approach makes sense both statistically and experimentally because themore » variances increase with concentration, and there are physical reasons that the higher measurements are less reliable and should be less influential. The new magnesium calibration includes a correction for sodium and separate calibration equation for items with and without chlorine. These additional calibration equations allow for better predictions and smaller uncertainties for sodium in materials with and without chlorine. Chlorine and sodium have separate equations for RICH materials. Again, these equations give better predictions and smaller uncertainties chlorine and sodium for RICH materials.« less
Landsat-7 ETM+ Radiometric Calibration Status
NASA Technical Reports Server (NTRS)
Barsi, Julia A.; Markham, Brian L.; Czapla-Myers, Jeffrey S.; Helder, Dennis L.; Hook, Simon J.; Schott, John R; Haque, Md. Obaidul
2016-01-01
Now in its 17th year of operation, the Enhanced Thematic Mapper + (ETM+), on board the Landsat-7 satellite, continues to systematically acquire imagery of the Earth to add to the 40+ year archive of Landsat data. Characterization of the ETM+ on-orbit radiometric performance has been on-going since its launch in 1999. The radiometric calibration of the reflective bands is still monitored using on-board calibration devices, though the Pseudo-Invariant Calibration Sites (PICS) method has proven to be an effect tool as well. The calibration gains were updated in April 2013 based primarily on PICS results, which corrected for a change of as much as -0.2%/year degradation in the worst case bands. A new comparison with the SADE database of PICS results indicates no additional degradation in the updated calibration. PICS data are still being tracked though the recent trends are not well understood. The thermal band calibration was updated last in October 2013 based on a continued calibration effort by NASA/Jet Propulsion Lab and Rochester Institute of Technology. The update accounted for a 0.31 W/sq m/ sr/micron bias error. The updated lifetime trend is now stable to within + 0.4K.
NASA Astrophysics Data System (ADS)
Derajat; Hariowibowo, Hindawan
2018-04-01
The new proposed In-Flight Pitot Static Calibration Method has been carried out during Development and Qualification of CN235-100 MPA (Military Patrol Aircraft). This method is expected to reduce flight hours, less human resources required, no additional special equipment, simple analysis calculation and finally by using this method it is expected to automatically minimized operational cost. At The Indonesian Aerospace (IAe) Flight Test Center Division, the development and updating of new flight test technique and data analysis method as specially for flight physics test subject are still continued to be developed as long as it safety for flight and give additional value for the industrial side. More than 30 years, Flight Test Data Engineers at The Flight Test center Division work together with the Air Crew (Test Pilots, Co-Pilots, and Flight Test Engineers) to execute the flight test activity with standard procedure for both the existance or development test techniques and test data analysis. In this paper the approximation of mathematical model, data reduction and flight test technique of The In-Flight Pitot Static Calibration by using Radio Altimeter as reference will be described and the test results had been compared with another methods ie. By using Global Position System (GPS) and the traditional method (Tower Fly By Method) which were used previously during this Flight Test Program (Ref. [10]). The flight test data case are using CN235-100 MPA flight test data during development and Qualification Flight Test Program at Cazaux Airport, France, in June-November 2009 (Ref. [2]).
NASA Astrophysics Data System (ADS)
Mfumu Kihumba, Antoine; Vanclooster, Marnik; Ndembo Longo, Jean
2017-02-01
This study assessed the vulnerability of groundwater against pollution in the Kinshasa region, DR Congo, as a support of a groundwater protection program. The parametric vulnerability model (DRASTIC) was modified and calibrated to predict the intrinsic vulnerability as well as the groundwater pollution risk. The method uses groundwater body specific parameters for the calibration of the factor ratings and weightings of the original DRASTIC model. These groundwater specific parameters are inferred from the statistical relation between the original DRASTIC model and observed nitrate pollution for a specific period. In addition, site-specific land use parameters are integrated into the method. The method is fully embedded in a Geographic Information System (GIS). Following these modifications, the correlation coefficient between groundwater pollution risk and observed nitrate concentrations for the 2013-2014 survey improved from r = 0.42, for the original DRASTIC model, to r = 0.61 for the calibrated model. As a way to validate this pollution risk map, observed nitrate concentrations from another survey (2008) are compared to pollution risk indices showing a good degree of coincidence with r = 0.51. The study shows that a calibration of a vulnerability model is recommended when vulnerability maps are used for groundwater resource management and land use planning at the regional scale and that it is adapted to a specific area.
Wind Tunnel Strain-Gage Balance Calibration Data Analysis Using a Weighted Least Squares Approach
NASA Technical Reports Server (NTRS)
Ulbrich, N.; Volden, T.
2017-01-01
A new approach is presented that uses a weighted least squares fit to analyze wind tunnel strain-gage balance calibration data. The weighted least squares fit is specifically designed to increase the influence of single-component loadings during the regression analysis. The weighted least squares fit also reduces the impact of calibration load schedule asymmetries on the predicted primary sensitivities of the balance gages. A weighting factor between zero and one is assigned to each calibration data point that depends on a simple count of its intentionally loaded load components or gages. The greater the number of a data point's intentionally loaded load components or gages is, the smaller its weighting factor becomes. The proposed approach is applicable to both the Iterative and Non-Iterative Methods that are used for the analysis of strain-gage balance calibration data in the aerospace testing community. The Iterative Method uses a reasonable estimate of the tare corrected load set as input for the determination of the weighting factors. The Non-Iterative Method, on the other hand, uses gage output differences relative to the natural zeros as input for the determination of the weighting factors. Machine calibration data of a six-component force balance is used to illustrate benefits of the proposed weighted least squares fit. In addition, a detailed derivation of the PRESS residuals associated with a weighted least squares fit is given in the appendices of the paper as this information could not be found in the literature. These PRESS residuals may be needed to evaluate the predictive capabilities of the final regression models that result from a weighted least squares fit of the balance calibration data.
A calibration method for fringe reflection technique based on the analytical phase-slope description
NASA Astrophysics Data System (ADS)
Wu, Yuxiang; Yue, Huimin; Pan, Zhipeng; Liu, Yong
2018-05-01
The fringe reflection technique (FRT) has been one of the most popular methods to measure the shape of specular surface these years. The existing system calibration methods of FRT usually contain two parts, which are camera calibration and geometric calibration. In geometric calibration, the liquid crystal display (LCD) screen position calibration is one of the most difficult steps among all the calibration procedures, and its accuracy is affected by the factors such as the imaging aberration, the plane mirror flatness, and LCD screen pixel size accuracy. In this paper, based on the deduction of FRT analytical phase-slope description, we present a novel calibration method with no requirement to calibrate the position of LCD screen. On the other hand, the system can be arbitrarily arranged, and the imaging system can either be telecentric or non-telecentric. In our experiment of measuring the 5000mm radius sphere mirror, the proposed calibration method achieves 2.5 times smaller measurement error than the geometric calibration method. In the wafer surface measuring experiment, the measurement result with the proposed calibration method is closer to the interferometer result than the geometric calibration method.
Retrieving Storm Electric Fields from Aircraft Field Mill Data. Part 1; Theory
NASA Technical Reports Server (NTRS)
Koshak, W. J.
2006-01-01
It is shown that the problem of retrieving storm electric fields from an aircraft instrumented with several electric field mill sensors can be expressed in terms of a standard Lagrange multiplier optimization problem. The method naturally removes aircraft charge from the retrieval process without having to use a high voltage stinger and linearly combined mill data values. It allows a variety of user-supplied physical constraints (the so-called side constraints in the theory of Lagrange multipliers) and also helps improve absolute calibration. Additionally, this paper introduces an alternate way of performing the absolute calibration of an aircraft that has some benefits over conventional analyses. It is accomplished by using the time derivatives of mill and pitch data for a pitch down maneuver performed at high (greater than 1 km) altitude. In Part II of this study, the above methods are tested and then applied to complete a full calibration of a Citation aircraft.
Retrieving Storm Electric Fields From Aircraft Field Mill Data. Part I: Theory
NASA Technical Reports Server (NTRS)
Koshak, W. J.
2005-01-01
It is shown that the problem of retrieving storm electric fields from an aircraft instrumented with several electric field mill sensors can be expressed in terms of a standard Lagrange multiplier optimization problem. The method naturally removes aircraft charge from the retrieval process without having to use a high voltage stinger and linearly combined mill data values. It also allows a variety of user-supplied physical constraints (the so-called side constraints in the theory of Lagrange multipliers). Additionally, this paper introduces a novel way of performing the absolute calibration of an aircraft that has several benefits over conventional analyses. In the new approach, absolute calibration is completed by inspecting the time derivatives of mill and pitch data for a pitch down maneuver performed at high (greater than 1 km) altitude. In Part II of this study, the above methods are tested and then applied to complete a full calibration of a Citation aircraft.
NASA Astrophysics Data System (ADS)
Pospichal, Bernhard; Küchler, Nils; Löhnert, Ulrich; Crewell, Susanne; Czekala, Harald; Güldner, Jürgen
2016-04-01
Ground-based microwave radiometers (MWR) are becoming widely used in atmospheric remote sensing and start to be routinely operated by national weather services and other institutions. However, common standards for calibration of these radiometers and a detailed knowledge about the error characteristics is needed, in order to assimilate the data into models. Intercomparisons of calibrations by different MWRs have rarely been done. Therefore, two calibration experiments in Lindenberg (2014) and Meckenheim (2015) were performed in the frame of TOPROF (Cost action ES1303) in order to assess uncertainties and differences between various instruments. In addition, a series of experiments were taken in Oklahoma in autumn 2014. The focus lay on the performance of the two main instrument types, which are currently used operationally. These are the MP-Profiler series by Radiometrics Corporation as well as the HATPRO series by Radiometer Physics GmbH (RPG). Both instrument types are operating in two frequency bands, one along the 22 GHz water vapour line, the other one at the lower wing of the 60 GHz oxygen absorption complex. The goal was to establish protocols for providing quality controlled (QC) MWR data and their uncertainties. To this end, standardized calibration procedures for MWR were developed and recommendations for radiometer users were compiled. We focus here mainly on data types, integration times and optimal settings for calibration intervals, both for absolute (liquid nitrogen, tipping curve) as well as relative (hot load, noise diode) calibrations. Besides the recommendations for ground-based MWR operators, we will present methods to determine the accuracy of the calibration as well as means for automatic data quality control. In addition, some results from the intercomparison of different radiometers will be discussed.
GIFTS SM EDU Data Processing and Algorithms
NASA Technical Reports Server (NTRS)
Tian, Jialin; Johnson, David G.; Reisse, Robert A.; Gazarik, Michael J.
2007-01-01
The Geosynchronous Imaging Fourier Transform Spectrometer (GIFTS) Sensor Module (SM) Engineering Demonstration Unit (EDU) is a high resolution spectral imager designed to measure infrared (IR) radiances using a Fourier transform spectrometer (FTS). The GIFTS instrument employs three Focal Plane Arrays (FPAs), which gather measurements across the long-wave IR (LWIR), short/mid-wave IR (SMWIR), and visible spectral bands. The raw interferogram measurements are radiometrically and spectrally calibrated to produce radiance spectra, which are further processed to obtain atmospheric profiles via retrieval algorithms. This paper describes the processing algorithms involved in the calibration stage. The calibration procedures can be subdivided into three stages. In the pre-calibration stage, a phase correction algorithm is applied to the decimated and filtered complex interferogram. The resulting imaginary part of the spectrum contains only the noise component of the uncorrected spectrum. Additional random noise reduction can be accomplished by applying a spectral smoothing routine to the phase-corrected blackbody reference spectra. In the radiometric calibration stage, we first compute the spectral responsivity based on the previous results, from which, the calibrated ambient blackbody (ABB), hot blackbody (HBB), and scene spectra can be obtained. During the post-processing stage, we estimate the noise equivalent spectral radiance (NESR) from the calibrated ABB and HBB spectra. We then implement a correction scheme that compensates for the effect of fore-optics offsets. Finally, for off-axis pixels, the FPA off-axis effects correction is performed. To estimate the performance of the entire FPA, we developed an efficient method of generating pixel performance assessments. In addition, a random pixel selection scheme is designed based on the pixel performance evaluation.
NASA Technical Reports Server (NTRS)
Ji, Qiang; Tsay, Si-Chee; Lau, K. M.; Hansell, R. A.; Butler, J. J.; Cooper, J. W.
2011-01-01
Traditionally the calibration equation for pyranometers assumes that the measured solar irradiance is solely proportional to the thermopile's output voltage; therefore only a single calibration factor is derived. This causes additional measurement uncertainties because it does not capture sufficient information to correctly account for a pyranometer's thermal effect. In our updated calibration equation, temperatures from the pyranometer's dome and case are incorporated to describe the instrument's thermal behavior, and a new set of calibration constants are determined, thereby reducing measurement uncertainties. In this paper, we demonstrate why a pyranometer's uncertainty using the traditional calibration equation is always larger than a-few-percent, but with the new approach can become much less than 1% after the thermal issue is resolved. The highlighted calibration results are based on NIST-traceable light sources under controlled laboratory conditions. The significance of the new approach lends itself to not only avoiding the uncertainty caused by a pyranometer's thermal effect but also the opportunity to better isolate and characterize other instrumental artifacts, such as angular response and non-linearity of the thermopile, to further reduce additional uncertainties. We also discuss some of the implications, including an example of how the thermal issue can potentially impact climate studies by evaluating aerosol's direct-radiative effect using field measurements with and without considering the pyranometer's thermal effect. The results of radiative transfer model simulation show that a pyranometer's thermal effect on solar irradiance measurements at the surface can be translated into a significant alteration of the calculated distribution of solar energy inside the column atmosphere.
NASA Technical Reports Server (NTRS)
Ji. Q.; Tsay, S.-C.; Lau, K. M.; Hansell, R. A.; Butler, J. J.; Cooper, J. W.
2011-01-01
Traditionally the calibration equation for pyranometers assumes that the measured solar irradiance is solely proportional to the thermopile s output voltage; therefore, only a single calibration factor is derived. This causes additional measurement uncertainties because it does not capture sufficient information to correctly account for a pyranometer s thermal effect. In our updated calibration equation, temperatures from the pyranometer's dome and case are incorporated to describe the instrument's thermal behavior, and a new set of calibration constants are determined, thereby reducing measurement uncertainties. In this paper, we demonstrate why a pyranometer's uncertainty using the traditional calibration equation is always larger than a few percent, but with the new approach can become much less than 1% after the thermal issue is resolved. The highlighted calibration results are based on NIST traceable light sources under controlled laboratory conditions. The significance of the new approach lends itself to not only avoiding the uncertainty caused by a pyranometer's thermal effect but also the opportunity to better isolate and characterize other instrumental artifacts, such as angular response and nonlinearity of the thermopile, to further reduce additional uncertainties. We also discuss some of the implications, including an example of how the thermal issue can potentially impact climate studies by evaluating aerosol s direct radiative effect using field measurements with and without considering the pyranometer s thermal effect. The results of radiative transfer model simulation show that a pyranometer s thermal effect on solar irradiance measurements at the surface can be translated into a significant alteration of the calculated distribution of solar energy inside the column atmosphere.
Van Daele, Timothy; Gernaey, Krist V; Ringborg, Rolf H; Börner, Tim; Heintz, Søren; Van Hauwermeiren, Daan; Grey, Carl; Krühne, Ulrich; Adlercreutz, Patrick; Nopens, Ingmar
2017-09-01
The aim of model calibration is to estimate unique parameter values from available experimental data, here applied to a biocatalytic process. The traditional approach of first gathering data followed by performing a model calibration is inefficient, since the information gathered during experimentation is not actively used to optimize the experimental design. By applying an iterative robust model-based optimal experimental design, the limited amount of data collected is used to design additional informative experiments. The algorithm is used here to calibrate the initial reaction rate of an ω-transaminase catalyzed reaction in a more accurate way. The parameter confidence region estimated from the Fisher Information Matrix is compared with the likelihood confidence region, which is not only more accurate but also a computationally more expensive method. As a result, an important deviation between both approaches is found, confirming that linearization methods should be applied with care for nonlinear models. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:1278-1293, 2017. © 2017 American Institute of Chemical Engineers.
Vaccarono, Mattia; Bechini, Renzo; Chandrasekar, Chandra V.; ...
2016-11-08
The stability of weather radar calibration is a mandatory aspect for quantitative applications, such as rainfall estimation, short-term weather prediction and initialization of numerical atmospheric and hydrological models. Over the years, calibration monitoring techniques based on external sources have been developed, specifically calibration using the Sun and calibration based on ground clutter returns. In this paper, these two techniques are integrated and complemented with a self-consistency procedure and an intercalibration technique. The aim of the integrated approach is to implement a robust method for online monitoring, able to detect significant changes in the radar calibration. The physical consistency of polarimetricmore » radar observables is exploited using the self-consistency approach, based on the expected correspondence between dual-polarization power and phase measurements in rain. This technique allows a reference absolute value to be provided for the radar calibration, from which eventual deviations may be detected using the other procedures. In particular, the ground clutter calibration is implemented on both polarization channels (horizontal and vertical) for each radar scan, allowing the polarimetric variables to be monitored and hardware failures to promptly be recognized. The Sun calibration allows monitoring the calibration and sensitivity of the radar receiver, in addition to the antenna pointing accuracy. It is applied using observations collected during the standard operational scans but requires long integration times (several days) in order to accumulate a sufficient amount of useful data. Finally, an intercalibration technique is developed and performed to compare colocated measurements collected in rain by two radars in overlapping regions. The integrated approach is performed on the C-band weather radar network in northwestern Italy, during July–October 2014. The set of methods considered appears suitable to establish an online tool to monitor the stability of the radar calibration with an accuracy of about 2 dB. In conclusion, this is considered adequate to automatically detect any unexpected change in the radar system requiring further data analysis or on-site measurements.« less
NASA Astrophysics Data System (ADS)
Sokol, Zbyněk; Mejsnar, Jan; Pop, Lukáš; Bližňák, Vojtěch
2017-09-01
A new method for the probabilistic nowcasting of instantaneous rain rates (ENS) based on the ensemble technique and extrapolation along Lagrangian trajectories of current radar reflectivity is presented. Assuming inaccurate forecasts of the trajectories, an ensemble of precipitation forecasts is calculated and used to estimate the probability that rain rates will exceed a given threshold in a given grid point. Although the extrapolation neglects the growth and decay of precipitation, their impact on the probability forecast is taken into account by the calibration of forecasts using the reliability component of the Brier score (BS). ENS forecasts the probability that the rain rates will exceed thresholds of 0.1, 1.0 and 3.0 mm/h in squares of 3 km by 3 km. The lead times were up to 60 min, and the forecast accuracy was measured by the BS. The ENS forecasts were compared with two other methods: combined method (COM) and neighbourhood method (NEI). NEI considered the extrapolated values in the square neighbourhood of 5 by 5 grid points of the point of interest as ensemble members, and the COM ensemble was comprised of united ensemble members of ENS and NEI. The results showed that the calibration technique significantly improves bias of the probability forecasts by including additional uncertainties that correspond to neglected processes during the extrapolation. In addition, the calibration can also be used for finding the limits of maximum lead times for which the forecasting method is useful. We found that ENS is useful for lead times up to 60 min for thresholds of 0.1 and 1 mm/h and approximately 30 to 40 min for a threshold of 3 mm/h. We also found that a reasonable size of the ensemble is 100 members, which provided better scores than ensembles with 10, 25 and 50 members. In terms of the BS, the best results were obtained by ENS and COM, which are comparable. However, ENS is better calibrated and thus preferable.
Darwish, Hany W; Hassan, Said A; Salem, Maissa Y; El-Zeany, Badr A
2013-09-01
Four simple, accurate and specific methods were developed and validated for the simultaneous estimation of Amlodipine (AML), Valsartan (VAL) and Hydrochlorothiazide (HCT) in commercial tablets. The derivative spectrophotometric methods include Derivative Ratio Zero Crossing (DRZC) and Double Divisor Ratio Spectra-Derivative Spectrophotometry (DDRS-DS) methods, while the multivariate calibrations used are Principal Component Regression (PCR) and Partial Least Squares (PLSs). The proposed methods were applied successfully in the determination of the drugs in laboratory-prepared mixtures and in commercial pharmaceutical preparations. The validity of the proposed methods was assessed using the standard addition technique. The linearity of the proposed methods is investigated in the range of 2-32, 4-44 and 2-20 μg/mL for AML, VAL and HCT, respectively. Copyright © 2013 Elsevier B.V. All rights reserved.
Thermographic Microstructure Monitoring in Electron Beam Additive Manufacturing
Raplee, J.; Plotkowski, A.; Kirka, M. M.; Dinwiddie, R.; Okello, A.; Dehoff, R. R.; Babu, S. S.
2017-01-01
To reduce the uncertainty of build performance in metal additive manufacturing, robust process monitoring systems that can detect imperfections and improve repeatability are desired. One of the most promising methods for in situ monitoring is thermographic imaging. However, there is a challenge in using this technology due to the difference in surface emittance between the metal powder and solidified part being observed that affects the accuracy of the temperature data collected. The purpose of the present study was to develop a method for properly calibrating temperature profiles from thermographic data to account for this emittance change and to determine important characteristics of the build through additional processing. The thermographic data was analyzed to identify the transition of material from metal powder to a solid as-printed part. A corrected temperature profile was then assembled for each point using calibrations for these surface conditions. Using this data, the thermal gradient and solid-liquid interface velocity were approximated and correlated to experimentally observed microstructural variation within the part. This work shows that by using a method of process monitoring, repeatability of a build could be monitored specifically in relation to microstructure control. PMID:28256595
DOE Office of Scientific and Technical Information (OSTI.GOV)
Valenta, J., E-mail: jan.valenta@mff.cuni.cz; Greben, M.
2015-04-15
Application capabilities of optical microscopes and microspectroscopes can be considerably enhanced by a proper calibration of their spectral sensitivity. We propose and demonstrate a method of relative and absolute calibration of a microspectroscope over an extraordinary broad spectral range covered by two (parallel) detection branches in visible and near-infrared spectral regions. The key point of the absolute calibration of a relative spectral sensitivity is application of the standard sample formed by a thin layer of Si nanocrystals with stable and efficient photoluminescence. The spectral PL quantum yield and the PL spatial distribution of the standard sample must be characterized bymore » separate experiments. The absolutely calibrated microspectroscope enables to characterize spectral photon emittance of a studied object or even its luminescence quantum yield (QY) if additional knowledge about spatial distribution of emission and about excitance is available. Capabilities of the calibrated microspectroscope are demonstrated by measuring external QY of electroluminescence from a standard poly-Si solar-cell and of photoluminescence of Er-doped Si nanocrystals.« less
Calibration method for a large-scale structured light measurement system.
Wang, Peng; Wang, Jianmei; Xu, Jing; Guan, Yong; Zhang, Guanglie; Chen, Ken
2017-05-10
The structured light method is an effective non-contact measurement approach. The calibration greatly affects the measurement precision of structured light systems. To construct a large-scale structured light system with high accuracy, a large-scale and precise calibration gauge is always required, which leads to an increased cost. To this end, in this paper, a calibration method with a planar mirror is proposed to reduce the calibration gauge size and cost. An out-of-focus camera calibration method is also proposed to overcome the defocusing problem caused by the shortened distance during the calibration procedure. The experimental results verify the accuracy of the proposed calibration method.
Calibration of NASA Turbulent Air Motion Measurement System
NASA Technical Reports Server (NTRS)
Barrick, John D. W.; Ritter, John A.; Watson, Catherine E.; Wynkoop, Mark W.; Quinn, John K.; Norfolk, Daniel R.
1996-01-01
A turbulent air motion measurement system (TAMMS) was integrated onboard the Lockheed 188 Electra airplane (designated NASA 429) based at the Wallops Flight Facility in support of the NASA role in global tropospheric research. The system provides air motion and turbulence measurements from an airborne platform which is capable of sampling tropospheric and planetary boundary-layer conditions. TAMMS consists of a gust probe with free-rotating vanes mounted on a 3.7-m epoxy-graphite composite nose boom, a high-resolution inertial navigation system (INS), and data acquisition system. A variation of the tower flyby method augmented with radar tracking was implemented for the calibration of static pressure position error and air temperature probe. Additional flight calibration maneuvers were performed remote from the tower in homogeneous atmospheric conditions. System hardware and instrumentation are described and the calibration procedures discussed. Calibration and flight results are presented to illustrate the overall ability of the system to determine the three-component ambient wind fields during straight and level flight conditions.
On constraining pilot point calibration with regularization in PEST
Fienen, M.N.; Muffels, C.T.; Hunt, R.J.
2009-01-01
Ground water model calibration has made great advances in recent years with practical tools such as PEST being instrumental for making the latest techniques available to practitioners. As models and calibration tools get more sophisticated, however, the power of these tools can be misapplied, resulting in poor parameter estimates and/or nonoptimally calibrated models that do not suit their intended purpose. Here, we focus on an increasingly common technique for calibrating highly parameterized numerical models - pilot point parameterization with Tikhonov regularization. Pilot points are a popular method for spatially parameterizing complex hydrogeologic systems; however, additional flexibility offered by pilot points can become problematic if not constrained by Tikhonov regularization. The objective of this work is to explain and illustrate the specific roles played by control variables in the PEST software for Tikhonov regularization applied to pilot points. A recent study encountered difficulties implementing this approach, but through examination of that analysis, insight into underlying sources of potential misapplication can be gained and some guidelines for overcoming them developed. ?? 2009 National Ground Water Association.
Polarized Redundant-Baseline Calibration for 21 cm Cosmology Without Adding Spectral Structure
NASA Astrophysics Data System (ADS)
Dillon, Joshua S.; Kohn, Saul A.; Parsons, Aaron R.; Aguirre, James E.; Ali, Zaki S.; Bernardi, Gianni; Kern, Nicholas S.; Li, Wenyang; Liu, Adrian; Nunhokee, Chuneeta D.; Pober, Jonathan C.
2018-04-01
21 cm cosmology is a promising new probe of the evolution of visible matter in our universe, especially during the poorly-constrained Cosmic Dawn and Epoch of Reionization. However, in order to separate the 21 cm signal from bright astrophysical foregrounds, we need an exquisite understanding of our telescopes so as to avoid adding spectral structure to spectrally-smooth foregrounds. One powerful calibration method relies on repeated simultaneous measurements of the same interferometric baseline to solve for the sky signal and for instrumental parameters simultaneously. However, certain degrees of freedom are not constrained by asserting internal consistency between redundant measurements. In this paper, we review the origin of these degeneracies of redundant-baseline calibration and demonstrate how they can source unwanted spectral structure in our measurement and show how to eliminate that additional, artificial structure. We also generalize redundant calibration to dual-polarization instruments, derive the degeneracy structure, and explore the unique challenges to calibration and preserving spectral smoothness presented by a polarized measurement.
Polarized redundant-baseline calibration for 21 cm cosmology without adding spectral structure
NASA Astrophysics Data System (ADS)
Dillon, Joshua S.; Kohn, Saul A.; Parsons, Aaron R.; Aguirre, James E.; Ali, Zaki S.; Bernardi, Gianni; Kern, Nicholas S.; Li, Wenyang; Liu, Adrian; Nunhokee, Chuneeta D.; Pober, Jonathan C.
2018-07-01
21 cm cosmology is a promising new probe of the evolution of visible matter in our universe, especially during the poorly constrained Cosmic Dawn and Epoch of Reionization. However, in order to separate the 21 cm signal from bright astrophysical foregrounds, we need an exquisite understanding of our telescopes so as to avoid adding spectral structure to spectrally smooth foregrounds. One powerful calibration method relies on repeated simultaneous measurements of the same interferometric baseline to solve for the sky signal and for instrumental parameters simultaneously. However, certain degrees of freedom are not constrained by asserting internal consistency between redundant measurements. In this paper, we review the origin of these degeneracies of redundant-baseline calibration and demonstrate how they can source unwanted spectral structure in our measurement and show how to eliminate that additional, artificial structure. We also generalize redundant calibration to dual-polarization instruments, derive the degeneracy structure, and explore the unique challenges to calibration and preserving spectral smoothness presented by a polarized measurement.
Pre-hibernation performances of the OSIRIS cameras onboard the Rosetta spacecraft
NASA Astrophysics Data System (ADS)
Magrin, S.; La Forgia, F.; Da Deppo, V.; Lazzarin, M.; Bertini, I.; Ferri, F.; Pajola, M.; Barbieri, M.; Naletto, G.; Barbieri, C.; Tubiana, C.; Küppers, M.; Fornasier, S.; Jorda, L.; Sierks, H.
2015-02-01
Context. The ESA cometary mission Rosetta was launched in 2004. In the past years and until the spacecraft hibernation in June 2011, the two cameras of the OSIRIS imaging system (Narrow Angle and Wide Angle Camera, NAC and WAC) observed many different sources. On 20 January 2014 the spacecraft successfully exited hibernation to start observing the primary scientific target of the mission, comet 67P/Churyumov-Gerasimenko. Aims: A study of the past performances of the cameras is now mandatory to be able to determine whether the system has been stable through the time and to derive, if necessary, additional analysis methods for the future precise calibration of the cometary data. Methods: The instrumental responses and filter passbands were used to estimate the efficiency of the system. A comparison with acquired images of specific calibration stars was made, and a refined photometric calibration was computed, both for the absolute flux and for the reflectivity of small bodies of the solar system. Results: We found a stability of the instrumental performances within ±1.5% from 2007 to 2010, with no evidence of an aging effect on the optics or detectors. The efficiency of the instrumentation is found to be as expected in the visible range, but lower than expected in the UV and IR range. A photometric calibration implementation was discussed for the two cameras. Conclusions: The calibration derived from pre-hibernation phases of the mission will be checked as soon as possible after the awakening of OSIRIS and will be continuously monitored until the end of the mission in December 2015. A list of additional calibration sources has been determined that are to be observed during the forthcoming phases of the mission to ensure a better coverage across the wavelength range of the cameras and to study the possible dust contamination of the optics.
Ex vivo validation of a stoichiometric dual energy CT proton stopping power ratio calibration
NASA Astrophysics Data System (ADS)
Xie, Yunhe; Ainsley, Christopher; Yin, Lingshu; Zou, Wei; McDonough, James; Solberg, Timothy D.; Lin, Alexander; Teo, Boon-Keng Kevin
2018-03-01
A major source of uncertainty in proton therapy is the conversion of Hounsfield unit (HU) to proton stopping power ratio relative to water (SPR). In this study, we measured and quantified the accuracy of a stoichiometric dual energy CT (DECT) SPR calibration. We applied a stoichiometric DECT calibration method to derive the SPR using CT images acquired sequentially at 80 kVp and 140 kVp . The dual energy index was derived based on the HUs of the paired spectral images and used to calculate the effective atomic number (Z eff), relative electron density ({{ρ }e} ), and SPRs of phantom and biological materials. Two methods were used to verify the derived SPRs. The first method measured the sample’s water equivalent thicknesses to deduce the SPRs using a multi-layer ion chamber (MLIC) device. The second method utilized Gafchromic EBT3 film to directly compare relative ranges between sample and water after proton pencil beam irradiation. Ex vivo validation was performed using five different types of frozen animal tissues with the MLIC and three types of fresh animal tissues using film. In addition, the residual ranges recorded on the film were used to compare with those from the treatment planning system using both DECT and SECT derived SPRs. Bland-Altman analysis indicates that the differences between DECT and SPR measurement of tissue surrogates, frozen and fresh animal tissues has a mean of 0.07% and standard deviation of 0.58% compared to 0.55% and 1.94% respectively for single energy CT (SECT) and SPR measurement. Our ex vivo study indicates that the stoichiometric DECT SPR calibration method has the potential to be more accurate than SECT calibration under ideal conditions although beam hardening effects and other image artifacts may increase this uncertainty.
Lin, Yiqing; Li, Weiyong; Xu, Jin; Boulas, Pierre
2015-07-05
The aim of this study is to develop an at-line near infrared (NIR) method for the rapid and simultaneous determination of four structurally similar active pharmaceutical ingredients (APIs) in powder blends intended for the manufacturing of tablets. Two of the four APIs in the formula are present in relatively small amounts, one at 0.95% and the other at 0.57%. Such small amounts in addition to the similarity in structures add significant complexity to the blend uniformity analysis. The NIR method is developed using spectra from six laboratory-created calibration samples augmented by a small set of spectra from a large-scale blending sample. Applying the quality by design (QbD) principles, the calibration design included concentration variations of the four APIs and a main excipient, microcrystalline cellulose. A bench-top FT-NIR instrument was used to acquire the spectra. The obtained NIR spectra were analyzed by applying principal component analysis (PCA) before calibration model development. Score patterns from the PCA were analyzed to reveal relationship between latent variables and concentration variations of the APIs. In calibration model development, both PLS-1 and PLS-2 models were created and evaluated for their effectiveness in predicting API concentrations in the blending samples. The final NIR method shows satisfactory specificity and accuracy. Copyright © 2015 Elsevier B.V. All rights reserved.
LIDAR TS for ITER core plasma. Part III: calibration and higher edge resolution
NASA Astrophysics Data System (ADS)
Nielsen, P.; Gowers, C.; Salzmann, H.
2017-12-01
Calibration, after initial installation, of the proposed two wavelength LIDAR Thomson Scattering System requires no access to the front end and does not require a foreign gas fill for Raman scattering. As already described, the variation of solid angle of collection with scattering position is a simple geometrical variation over the unvignetted region. The additional loss over the vignetted region can easily be estimated and in the case of a small beam dump located between the Be tiles, it is within the specified accuracy of the density. The only additional calibration is the absolute spectral transmission of the front-end optics. Over time we expect the transmission of the two front-end mirrors to suffer a deterioration mainly due to depositions. The reduction in transmission is likely to be worse towards the blue end of the scattering spectrum. It is therefore necessary to have a method to monitor such changes and to determine its spectral variation. Standard methods use two lasers at different wavelength with a small time separation. Using the two-wavelength approach, a method has been developed to determine the relative spectral variation of the transmission loss, using simply the measured signals in plasmas with peak temperatures of 4-6 keV . Comparing the calculated line integral of the fitted density over the full chord to the corresponding interferometer data we also have an absolute calibration. At the outer plasma boundary, the standard resolution of the LIDAR Thomson Scattering System is not sufficient to determine the edge gradient in an H-mode plasma. However, because of the step like nature of the signal here, it is possible to carry out a deconvolution of the scattered signals, thereby achieving an effective resolution of ~ 1-2 cm in the outer 10-20 cm.
NASA Astrophysics Data System (ADS)
Yao, Lin; Meng, Jianjun; Sheng, Xinjun; Zhang, Dingguo; Zhu, Xiangyang
2015-02-01
Objective. Lack of efficient calibration and task guidance in motor imagery (MI) based brain-computer interface (BCI) would result in the failure of communication or control, especially in patients, such as a stroke with motor impairment and intact sensation, locked-in state amyotrophic lateral sclerosis, in which the sources of data for calibration may worsen the subsequent decoding. In addition, enhancing the proprioceptive experience in MI might improve the BCI performance. Approach. In this work, we propose a new calibrating and task guidance methodology to further improve the MI BCI, exploiting the afferent nerve system through tendon vibration stimulation to induce a sensation with kinesthesia illusion. A total of 30 subjects’ experiments were carried out, and randomly divided into a control group (control-group) and calibration and task guidance group (CTG-group). Main results. Online experiments have shown that MI could be decoded by classifier calibrated solely using sensation data, with 8 of the 15 subjects in the CTG-Group above 80%, 3 above 95% and all above 65%. Offline chronological cross-validation analysis shows that it has reached a comparable performance with the traditional calibration method (F(1,14)=0.14,P=0.7176). In addition, the discrimination accuracy of MI in the CTG-Group is significantly 12.17% higher on average than that in the control-group (unpaired-T test, P = 0.0086), and illusory sensation indicates no significant difference (unpaired-T test, p = 0.3412). The finding of the existed similarity of the discriminative brain patterns and grand averaged ERD/ERS between imagined movement (actively induced) and illusory movement (passively evoked) also validates the proposed calibration and task guidance framework. Significance. The cognitive complexity of the illusory sensation task is much lower and more objective than that of MI. In addition, subjects’ kinesthetic experience mentally simulated during the MI task might be enhanced by accessing sensory experiences from the illusory stimulation. This sensory stimulation aided BCI design could help make MI BCI more applicable.
NASA Astrophysics Data System (ADS)
Feng, Zhixin
2018-02-01
Projector calibration is crucial for a camera-projector three-dimensional (3-D) structured light measurement system, which has one camera and one projector. In this paper, a novel projector calibration method is proposed based on digital image correlation. In the method, the projector is viewed as an inverse camera, and a plane calibration board with feature points is used to calibrate the projector. During the calibration processing, a random speckle pattern is projected onto the calibration board with different orientations to establish the correspondences between projector images and camera images. Thereby, dataset for projector calibration are generated. Then the projector can be calibrated using a well-established camera calibration algorithm. The experiment results confirm that the proposed method is accurate and reliable for projector calibration.
[Numerical simulation and operation optimization of biological filter].
Zou, Zong-Sen; Shi, Han-Chang; Chen, Xiang-Qiang; Xie, Xiao-Qing
2014-12-01
BioWin software and two sensitivity analysis methods were used to simulate the Denitrification Biological Filter (DNBF) + Biological Aerated Filter (BAF) process in Yuandang Wastewater Treatment Plant. Based on the BioWin model of DNBF + BAF process, the operation data of September 2013 were used for sensitivity analysis and model calibration, and the operation data of October 2013 were used for model validation. The results indicated that the calibrated model could accurately simulate practical DNBF + BAF processes, and the most sensitive parameters were the parameters related to biofilm, OHOs and aeration. After the validation and calibration of model, it was used for process optimization with simulating operation results under different conditions. The results showed that, the best operation condition for discharge standard B was: reflux ratio = 50%, ceasing methanol addition, influent C/N = 4.43; while the best operation condition for discharge standard A was: reflux ratio = 50%, influent COD = 155 mg x L(-1) after methanol addition, influent C/N = 5.10.
Landsat-7 ETM+ radiometric calibration status
Barsi, Julia A.; Markham, Brian L.; Czapla-Myers, J. S.; Helder, Dennis L.; Hook, Simon; Schott, John R.; Haque, Md. Obaidul
2016-01-01
Now in its 17th year of operation, the Enhanced Thematic Mapper + (ETM+), on board the Landsat-7 satellite, continues to systematically acquire imagery of the Earth to add to the 40+ year archive of Landsat data. Characterization of the ETM+ on-orbit radiometric performance has been on-going since its launch in 1999. The radiometric calibration of the reflective bands is still monitored using on-board calibration devices, though the Pseudo-Invariant Calibration Sites (PICS) method has proven to be an effective tool as well. The calibration gains were updated in April 2013 based primarily on PICS results, which corrected for a change of as much as -0.2%/year degradation in the worst case bands. A new comparison with the SADE database of PICS results indicates no additional degradation in the updated calibration. PICS data are still being tracked though the recent trends are not well understood. The thermal band calibration was updated last in October 2013 based on a continued calibration effort by NASA/Jet Propulsion Lab and Rochester Institute of Technology. The update accounted for a 0.036 W/m2 sr μm or 0.26K at 300K bias error. The updated lifetime trend is now stable to within +/- 0.4K.
The calibration and flight test performance of the space shuttle orbiter air data system
NASA Technical Reports Server (NTRS)
Dean, A. S.; Mena, A. L.
1983-01-01
The Space Shuttle air data system (ADS) is used by the guidance, navigation and control system (GN&C) to guide the vehicle to a safe landing. In addition, postflight aerodynamic analysis requires a precise knowledge of flight conditions. Since the orbiter is essentially an unpowered vehicle, the conventional methods of obtaining the ADS calibration were not available; therefore, the calibration was derived using a unique and extensive wind tunnel test program. This test program included subsonic tests with a 0.36-scale orbiter model, transonic and supersonic tests with a smaller 0.2-scale model, and numerous ADS probe-alone tests. The wind tunnel calibration was further refined with subsonic results from the approach and landing test (ALT) program, thus producing the ADS calibration for the orbital flight test (OFT) program. The calibration of the Space Shuttle ADS and its performance during flight are discussed in this paper. A brief description of the system is followed by a discussion of the calibration methodology, and then by a review of the wind tunnel and flight test programs. Finally, the flight results are presented, including an evaluation of the system performance for on-board systems use and a description of the calibration refinements developed to provide the best possible air data for postflight analysis work.
A Quantitative Comparison of Calibration Methods for RGB-D Sensors Using Different Technologies.
Villena-Martínez, Víctor; Fuster-Guilló, Andrés; Azorín-López, Jorge; Saval-Calvo, Marcelo; Mora-Pascual, Jeronimo; Garcia-Rodriguez, Jose; Garcia-Garcia, Alberto
2017-01-27
RGB-D (Red Green Blue and Depth) sensors are devices that can provide color and depth information from a scene at the same time. Recently, they have been widely used in many solutions due to their commercial growth from the entertainment market to many diverse areas (e.g., robotics, CAD, etc.). In the research community, these devices have had good uptake due to their acceptable levelofaccuracyformanyapplicationsandtheirlowcost,butinsomecases,theyworkatthelimitof their sensitivity, near to the minimum feature size that can be perceived. For this reason, calibration processes are critical in order to increase their accuracy and enable them to meet the requirements of such kinds of applications. To the best of our knowledge, there is not a comparative study of calibration algorithms evaluating its results in multiple RGB-D sensors. Specifically, in this paper, a comparison of the three most used calibration methods have been applied to three different RGB-D sensors based on structured light and time-of-flight. The comparison of methods has been carried out by a set of experiments to evaluate the accuracy of depth measurements. Additionally, an object reconstruction application has been used as example of an application for which the sensor works at the limit of its sensitivity. The obtained results of reconstruction have been evaluated through visual inspection and quantitative measurements.
System calibration method for Fourier ptychographic microscopy.
Pan, An; Zhang, Yan; Zhao, Tianyu; Wang, Zhaojun; Dan, Dan; Lei, Ming; Yao, Baoli
2017-09-01
Fourier ptychographic microscopy (FPM) is a recently proposed computational imaging technique with both high-resolution and wide field of view. In current FPM imaging platforms, systematic error sources come from aberrations, light-emitting diode (LED) intensity fluctuation, parameter imperfections, and noise, all of which may severely corrupt the reconstruction results with similar artifacts. Therefore, it would be unlikely to distinguish the dominating error from these degraded reconstructions without any preknowledge. In addition, systematic error is generally a mixture of various error sources in the real situation, and it cannot be separated due to their mutual restriction and conversion. To this end, we report a system calibration procedure, termed SC-FPM, to calibrate the mixed systematic errors simultaneously from an overall perspective, based on the simulated annealing algorithm, the LED intensity correction method, the nonlinear regression process, and the adaptive step-size strategy, which involves the evaluation of an error metric at each iteration step, followed by the re-estimation of accurate parameters. The performance achieved both in simulations and experiments demonstrates that the proposed method outperforms other state-of-the-art algorithms. The reported system calibration scheme improves the robustness of FPM, relaxes the experiment conditions, and does not require any preknowledge, which makes the FPM more pragmatic. (2017) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).
NASA Technical Reports Server (NTRS)
Crowley, James; Rowan, Lawrence; Podwysocki, Melvin; Meyer, David
1988-01-01
Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data of the Mountain Pass, California carbonatite complex were examined to evaluate the AVIRIS instrument performance and to explore alternative methods of data calibration. Although signal-to-noise estimates derived from the data indicated that the A, B, and C spectrometers generally met the original instrument design objectives, the S/N performance of the D spectrometer was below expectations. Signal-to-noise values of 20 to 1 or lower were typical of the D spectrometer and several detectors in the D spectrometer array were shown to have poor electronic stability. The AVIRIS data also exhibited periodic noise, and were occasionally subject to abrupt dark current offsets. Despite these limitations, a number of mineral absorption bands, including CO3, Al-OH, and unusual rare earth element bands, were observed for mine areas near the main carbonatite body. To discern these bands, two different calibration procedures were applied to remove atmospheric and solar components from the remote sensing data. The two procedures, referred to as the single spectrum and the flat field calibration methods gave distinctly different results. In principle, the single spectrum method should be more accurate; however, additional fieldwork is needed to rigorously determine the degree of calibration success.
Zhang, Xiao-Hua; Wu, Hai-Long; Wang, Jian-Yao; Tu, De-Zhu; Kang, Chao; Zhao, Juan; Chen, Yao; Miu, Xiao-Xia; Yu, Ru-Qin
2013-05-01
This paper describes the use of second-order calibration for development of HPLC-DAD method to quantify nine polyphenols in five kinds of honey samples. The sample treatment procedure was simplified effectively relative to the traditional ways. Baselines drift was also overcome by means of regarding the drift as additional factor(s) as well as the analytes of interest in the mathematical model. The contents of polyphenols obtained by the alternating trilinear decomposition (ATLD) method have been successfully used to distinguish different types of honey. This method shows good linearity (r>0.99), rapidity (t<7.60 min) and accuracy, which may be extremely promising as an excellent routine strategy for identification and quantification of polyphenols in the complex matrices. Copyright © 2012 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Dutton, John A.; James, Richard P.; Ross, Jeremy D.
2013-06-01
Seasonal probability forecasts produced with numerical dynamics on supercomputers offer great potential value in managing risk and opportunity created by seasonal variability. The skill and reliability of contemporary forecast systems can be increased by calibration methods that use the historical performance of the forecast system to improve the ongoing real-time forecasts. Two calibration methods are applied to seasonal surface temperature forecasts of the US National Weather Service, the European Centre for Medium Range Weather Forecasts, and to a World Climate Service multi-model ensemble created by combining those two forecasts with Bayesian methods. As expected, the multi-model is somewhat more skillful and more reliable than the original models taken alone. The potential value of the multimodel in decision making is illustrated with the profits achieved in simulated trading of a weather derivative. In addition to examining the seasonal models, the article demonstrates that calibrated probability forecasts of weekly average temperatures for leads of 2-4 weeks are also skillful and reliable. The conversion of ensemble forecasts into probability distributions of impact variables is illustrated with degree days derived from the temperature forecasts. Some issues related to loss of stationarity owing to long-term warming are considered. The main conclusion of the article is that properly calibrated probabilistic forecasts possess sufficient skill and reliability to contribute to effective decisions in government and business activities that are sensitive to intraseasonal and seasonal climate variability.
A novel method to calibrate DOI function of a PET detector with a dual-ended-scintillator readout.
Shao, Yiping; Yao, Rutao; Ma, Tianyu
2008-12-01
The detection of depth-of-interaction (DOI) is a critical detector capability to improve the PET spatial resolution uniformity across the field-of-view and will significantly enhance, in particular, small bore system performance for brain, breast, and small animal imaging. One promising technique of DOI detection is to use dual-ended-scintillator readout that uses two photon sensors to detect scintillation light from both ends of a scintillator array and estimate DOI based on the ratio of signals (similar to Anger logic). This approach needs a careful DOI function calibration to establish accurate relationship between DOI and signal ratios, and to recalibrate if the detection condition is shifted due to the drift of sensor gain, bias variations, or degraded optical coupling, etc. However, the current calibration method that uses coincident events to locate interaction positions inside a single scintillator crystal has severe drawbacks, such as complicated setup, long and repetitive measurements, and being prone to errors from various possible misalignments among the source and detector components. This method is also not practically suitable to calibrate multiple DOI functions of a crystal array. To solve these problems, a new method has been developed that requires only a uniform flood source to irradiate a crystal array without the need to locate the interaction positions, and calculates DOI functions based solely on the uniform probability distribution of interactions over DOI positions without knowledge or assumption of detector responses. Simulation and experiment have been studied to validate the new method, and the results show that the new method, with a simple setup and one single measurement, can provide consistent and accurate DOI functions for the entire array of multiple scintillator crystals. This will enable an accurate, simple, and practical DOI function calibration for the PET detectors based on the design of dual-ended-scintillator readout. In addition, the new method can be generally applied to calibrating other types of detectors that use the similar dual-ended readout to acquire the radiation interaction position.
A novel method to calibrate DOI function of a PET detector with a dual-ended-scintillator readout
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shao Yiping; Yao Rutao; Ma Tianyu
The detection of depth-of-interaction (DOI) is a critical detector capability to improve the PET spatial resolution uniformity across the field-of-view and will significantly enhance, in particular, small bore system performance for brain, breast, and small animal imaging. One promising technique of DOI detection is to use dual-ended-scintillator readout that uses two photon sensors to detect scintillation light from both ends of a scintillator array and estimate DOI based on the ratio of signals (similar to Anger logic). This approach needs a careful DOI function calibration to establish accurate relationship between DOI and signal ratios, and to recalibrate if the detectionmore » condition is shifted due to the drift of sensor gain, bias variations, or degraded optical coupling, etc. However, the current calibration method that uses coincident events to locate interaction positions inside a single scintillator crystal has severe drawbacks, such as complicated setup, long and repetitive measurements, and being prone to errors from various possible misalignments among the source and detector components. This method is also not practically suitable to calibrate multiple DOI functions of a crystal array. To solve these problems, a new method has been developed that requires only a uniform flood source to irradiate a crystal array without the need to locate the interaction positions, and calculates DOI functions based solely on the uniform probability distribution of interactions over DOI positions without knowledge or assumption of detector responses. Simulation and experiment have been studied to validate the new method, and the results show that the new method, with a simple setup and one single measurement, can provide consistent and accurate DOI functions for the entire array of multiple scintillator crystals. This will enable an accurate, simple, and practical DOI function calibration for the PET detectors based on the design of dual-ended-scintillator readout. In addition, the new method can be generally applied to calibrating other types of detectors that use the similar dual-ended readout to acquire the radiation interaction position.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vaccarono, Mattia; Bechini, Renzo; Chandrasekar, Chandra V.
The stability of weather radar calibration is a mandatory aspect for quantitative applications, such as rainfall estimation, short-term weather prediction and initialization of numerical atmospheric and hydrological models. Over the years, calibration monitoring techniques based on external sources have been developed, specifically calibration using the Sun and calibration based on ground clutter returns. In this paper, these two techniques are integrated and complemented with a self-consistency procedure and an intercalibration technique. The aim of the integrated approach is to implement a robust method for online monitoring, able to detect significant changes in the radar calibration. The physical consistency of polarimetricmore » radar observables is exploited using the self-consistency approach, based on the expected correspondence between dual-polarization power and phase measurements in rain. This technique allows a reference absolute value to be provided for the radar calibration, from which eventual deviations may be detected using the other procedures. In particular, the ground clutter calibration is implemented on both polarization channels (horizontal and vertical) for each radar scan, allowing the polarimetric variables to be monitored and hardware failures to promptly be recognized. The Sun calibration allows monitoring the calibration and sensitivity of the radar receiver, in addition to the antenna pointing accuracy. It is applied using observations collected during the standard operational scans but requires long integration times (several days) in order to accumulate a sufficient amount of useful data. Finally, an intercalibration technique is developed and performed to compare colocated measurements collected in rain by two radars in overlapping regions. The integrated approach is performed on the C-band weather radar network in northwestern Italy, during July–October 2014. The set of methods considered appears suitable to establish an online tool to monitor the stability of the radar calibration with an accuracy of about 2 dB. In conclusion, this is considered adequate to automatically detect any unexpected change in the radar system requiring further data analysis or on-site measurements.« less
Calibrating page sized Gafchromic EBT3 films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crijns, W.; Maes, F.; Heide, U. A. van der
2013-01-15
Purpose: The purpose is the development of a novel calibration method for dosimetry with Gafchromic EBT3 films. The method should be applicable for pretreatment verification of volumetric modulated arc, and intensity modulated radiotherapy. Because the exposed area on film can be large for such treatments, lateral scan errors must be taken into account. The correction for the lateral scan effect is obtained from the calibration data itself. Methods: In this work, the film measurements were modeled using their relative scan values (Transmittance, T). Inside the transmittance domain a linear combination and a parabolic lateral scan correction described the observed transmittancemore » values. The linear combination model, combined a monomer transmittance state (T{sub 0}) and a polymer transmittance state (T{sub {infinity}}) of the film. The dose domain was associated with the observed effects in the transmittance domain through a rational calibration function. On the calibration film only simple static fields were applied and page sized films were used for calibration and measurements (treatment verification). Four different calibration setups were considered and compared with respect to dose estimation accuracy. The first (I) used a calibration table from 32 regions of interest (ROIs) spread on 4 calibration films, the second (II) used 16 ROIs spread on 2 calibration films, the third (III), and fourth (IV) used 8 ROIs spread on a single calibration film. The calibration tables of the setups I, II, and IV contained eight dose levels delivered to different positions on the films, while for setup III only four dose levels were applied. Validation was performed by irradiating film strips with known doses at two different time points over the course of a week. Accuracy of the dose response and the lateral effect correction was estimated using the dose difference and the root mean squared error (RMSE), respectively. Results: A calibration based on two films was the optimal balance between cost effectiveness and dosimetric accuracy. The validation resulted in dose errors of 1%-2% for the two different time points, with a maximal absolute dose error around 0.05 Gy. The lateral correction reduced the RMSE values on the sides of the film to the RMSE values at the center of the film. Conclusions: EBT3 Gafchromic films were calibrated for large field dosimetry with a limited number of page sized films and simple static calibration fields. The transmittance was modeled as a linear combination of two transmittance states, and associated with dose using a rational calibration function. Additionally, the lateral scan effect was resolved in the calibration function itself. This allows the use of page sized films. Only two calibration films were required to estimate both the dose and the lateral response. The calibration films were used over the course of a week, with residual dose errors Less-Than-Or-Slanted-Equal-To 2% or Less-Than-Or-Slanted-Equal-To 0.05 Gy.« less
SuperDARN elevation angle calibration using HAARP-induced backscatter
NASA Astrophysics Data System (ADS)
Shepherd, S. G.; Thomas, E. G.; Palinski, T. J.; Bristow, W.
2017-12-01
SuperDARN radars rely on refraction in the ionosphere to make Doppler measurements of backscatter from ionospheric irregularities or the ground/sea, often to ranges of 4000 km or more. Elevation angle measurements of backscattered signals can be important for proper geolocation, mode identification and Doppler velocity corrections to the data. SuperDARN radars are equipped with a secondary array to make elevation angle measurements, however, calibration is often difficult. One method of calibration is presented here, whereby backscatter from HAARP-induced irregularities, at a known location, is used to independently determine the elevation angle of signals. Comparisons are made for several radars with HAARP in their field-of-view in addition to the results obtained fromray-tracing in a model ionosphere.
Akkaynak, Derya; Treibitz, Tali; Xiao, Bei; Gürkan, Umut A.; Allen, Justine J.; Demirci, Utkan; Hanlon, Roger T.
2014-01-01
Commercial off-the-shelf digital cameras are inexpensive and easy-to-use instruments that can be used for quantitative scientific data acquisition if images are captured in raw format and processed so that they maintain a linear relationship with scene radiance. Here we describe the image-processing steps required for consistent data acquisition with color cameras. In addition, we present a method for scene-specific color calibration that increases the accuracy of color capture when a scene contains colors that are not well represented in the gamut of a standard color-calibration target. We demonstrate applications of the proposed methodology in the fields of biomedical engineering, artwork photography, perception science, marine biology, and underwater imaging. PMID:24562030
NASA Astrophysics Data System (ADS)
Tan, Xihe; Mester, Achim; von Hebel, Christian; van der Kruk, Jan; Zimmermann, Egon; Vereecken, Harry; van Waasen, Stefan
2017-04-01
Electromagnetic induction (EMI) systems offer a great potential to obtain highly resolved layered electrical conductivity models of the shallow subsurface. State-of-the-art inversion procedures require quantitative calibration of EMI data, especially for short-offset EMI systems where significant data shifts are often observed. These shifts are caused by external influences such as the presence of the operator, zero-leveling procedures, the field setup used to move the EMI system and/or cables close by. Calibrations can be performed by using collocated electrical resistivity measurements or taking soil samples, however, these two methods take a lot of time in the field. To improve the calibration in a fast and concise way, we introduce a novel on-site calibration method using a series of apparent electrical conductivity (ECa) values acquired at multiple elevations for a multi-configuration EMI system. No additional instrument or pre-knowledge of the subsurface is needed to acquire quantitative ECa data. By using this calibration method, we correct each coil configuration, i.e., transmitter and receiver coil separation and the horizontal or vertical coplanar (HCP or VCP) coil orientation with a unique set of calibration parameters. A multi-layer soil structure at the corresponding measurement location is inverted together with the calibration parameters using full-solution Maxwell equations for the forward modelling within the shuffled complex evolution (SCE) algorithm to find the optimum solution under a user-defined parameter space. Synthetic data verified the feasibility for calibrating HCP and VCP measurements of a custom made six-coil EMI system with coil offsets between 0.35 m and 1.8 m for quantitative data inversions. As a next step, we applied the calibration approach on acquired experimental data from a bare soil test field (Selhausen, Germany) for the considered EMI system. The obtained calibration parameters were applied to measurements over a 30 m transect line that covers a range of conductivities between 5 and 40 mS/m. Inverted calibrated EMI data of the transect line showed very similar electrical conductivity distributions and layer interfaces of the subsurface compared to reference data obtained from vertical electrical sounding (VES) measurements. These results show that a combined calibration and inversion of multi-configuration EMI data is possible when including measurements at different elevations, which will speed up the measurement process to obtain quantitative EMI data since the labor intensive electrical resistivity measurement or soil coring is not necessary anymore.
NASA Technical Reports Server (NTRS)
Meyer, Scott A.; Bershader, Daniel; Sharma, Surendra P.; Deiwert, George S.
1996-01-01
Absorption measurements with a tunable vacuum ultraviolet light source have been proposed as a concentration diagnostic for atomic oxygen, and the viability of this technique is assessed in light of recent measurements. The instrumentation, as well as initial calibration measurements, have been reported previously. We report here additional calibration measurements performed to study the resonance broadening line shape for atomic oxygen. The application of this diagnostic is evaluated by considering the range of suitable test conditions and requirements, and by identifying issues that remain to be addressed.
Image synthesis for SAR system, calibration and processor design
NASA Technical Reports Server (NTRS)
Holtzman, J. C.; Abbott, J. L.; Kaupp, V. H.; Frost, V. S.
1978-01-01
The Point Scattering Method of simulating radar imagery rigorously models all aspects of the imaging radar phenomena. Its computational algorithms operate on a symbolic representation of the terrain test site to calculate such parameters as range, angle of incidence, resolution cell size, etc. Empirical backscatter data and elevation data are utilized to model the terrain. Additionally, the important geometrical/propagation effects such as shadow, foreshortening, layover, and local angle of incidence are rigorously treated. Applications of radar image simulation to a proposed calibrated SAR system are highlighted: soil moisture detection and vegetation discrimination.
Barkley, Sarice S; Deng, Zhao; Gates, Richard S; Reitsma, Mark G; Cannara, Rachel J
2012-02-01
Two independent lateral-force calibration methods for the atomic force microscope (AFM)--the hammerhead (HH) technique and the diamagnetic lateral force calibrator (D-LFC)--are systematically compared and found to agree to within 5 % or less, but with precision limited to about 15 %, using four different tee-shaped HH reference probes. The limitations of each method, both of which offer independent yet feasible paths toward traceable accuracy, are discussed and investigated. We find that stiff cantilevers may produce inconsistent D-LFC values through the application of excessively high normal loads. In addition, D-LFC results vary when the method is implemented using different modes of AFM feedback control, constant height and constant force modes, where the latter is more consistent with the HH method and closer to typical experimental conditions. Specifically, for the D-LFC apparatus used here, calibration in constant height mode introduced errors up to 14 %. In constant force mode using a relatively stiff cantilever, we observed an ≈ 4 % systematic error per μN of applied load for loads ≤ 1 μN. The issue of excessive load typically emerges for cantilevers whose flexural spring constant is large compared with the normal spring constant of the D-LFC setup (such that relatively small cantilever flexural displacements produce relatively large loads). Overall, the HH method carries a larger uncertainty, which is dominated by uncertainty in measurement of the flexural spring constant of the HH cantilever as well as in the effective length dimension of the cantilever probe. The D-LFC method relies on fewer parameters and thus has fewer uncertainties associated with it. We thus show that it is the preferred method of the two, as long as care is taken to perform the calibration in constant force mode with low applied loads.
Automatic multi-camera calibration for deployable positioning systems
NASA Astrophysics Data System (ADS)
Axelsson, Maria; Karlsson, Mikael; Rudner, Staffan
2012-06-01
Surveillance with automated positioning and tracking of subjects and vehicles in 3D is desired in many defence and security applications. Camera systems with stereo or multiple cameras are often used for 3D positioning. In such systems, accurate camera calibration is needed to obtain a reliable 3D position estimate. There is also a need for automated camera calibration to facilitate fast deployment of semi-mobile multi-camera 3D positioning systems. In this paper we investigate a method for automatic calibration of the extrinsic camera parameters (relative camera pose and orientation) of a multi-camera positioning system. It is based on estimation of the essential matrix between each camera pair using the 5-point method for intrinsically calibrated cameras. The method is compared to a manual calibration method using real HD video data from a field trial with a multicamera positioning system. The method is also evaluated on simulated data from a stereo camera model. The results show that the reprojection error of the automated camera calibration method is close to or smaller than the error for the manual calibration method and that the automated calibration method can replace the manual calibration.
A Novel Multi-Camera Calibration Method based on Flat Refractive Geometry
NASA Astrophysics Data System (ADS)
Huang, S.; Feng, M. C.; Zheng, T. X.; Li, F.; Wang, J. Q.; Xiao, L. F.
2018-03-01
Multi-camera calibration plays an important role in many field. In the paper, we present a novel multi-camera calibration method based on flat refractive geometry. All cameras can acquire calibration images of transparent glass calibration board (TGCB) at the same time. The application of TGCB leads to refractive phenomenon which can generate calibration error. The theory of flat refractive geometry is employed to eliminate the error. The new method can solve the refractive phenomenon of TGCB. Moreover, the bundle adjustment method is used to minimize the reprojection error and obtain optimized calibration results. Finally, the four-cameras calibration results of real data show that the mean value and standard deviation of the reprojection error of our method are 4.3411e-05 and 0.4553 pixel, respectively. The experimental results show that the proposed method is accurate and reliable.
NASA Astrophysics Data System (ADS)
Li, N.; Yue, X. Y.
2018-03-01
Macroscopic root water uptake models proportional to a root density distribution function (RDDF) are most commonly used to model water uptake by plants. As the water uptake is difficult and labor intensive to measure, these models are often calibrated by inverse modeling. Most previous inversion studies assume RDDF to be constant with depth and time or dependent on only depth for simplification. However, under field conditions, this function varies with type of soil and root growth and thus changes with both depth and time. This study proposes an inverse method to calibrate both spatially and temporally varying RDDF in unsaturated water flow modeling. To overcome the difficulty imposed by the ill-posedness, the calibration is formulated as an optimization problem in the framework of the Tikhonov regularization theory, adding additional constraint to the objective function. Then the formulated nonlinear optimization problem is numerically solved with an efficient algorithm on the basis of the finite element method. The advantage of our method is that the inverse problem is translated into a Tikhonov regularization functional minimization problem and then solved based on the variational construction, which circumvents the computational complexity in calculating the sensitivity matrix involved in many derivative-based parameter estimation approaches (e.g., Levenberg-Marquardt optimization). Moreover, the proposed method features optimization of RDDF without any prior form, which is applicable to a more general root water uptake model. Numerical examples are performed to illustrate the applicability and effectiveness of the proposed method. Finally, discussions on the stability and extension of this method are presented.
Information Management Systems in the Undergraduate Instrumental Analysis Laboratory.
ERIC Educational Resources Information Center
Merrer, Robert J.
1985-01-01
Discusses two applications of Laboratory Information Management Systems (LIMS) in the undergraduate laboratory. They are the coulometric titration of thiosulfate with electrogenerated triiodide ion and the atomic absorption determination of calcium using both analytical calibration curve and standard addition methods. (JN)
Self-Calibration Approach for Mixed Signal Circuits in Systems-on-Chip
NASA Astrophysics Data System (ADS)
Jung, In-Seok
MOSFET scaling has served industry very well for a few decades by proving improvements in transistor performance, power, and cost. However, they require high test complexity and cost due to several issues such as limited pin count and integration of analog and digital mixed circuits. Therefore, self-calibration is an excellent and promising method to improve yield and to reduce manufacturing cost by simplifying the test complexity, because it is possible to address the process variation effects by means of self-calibration technique. Since the prior published calibration techniques were developed for a specific targeted application, it is not easy to be utilized for other applications. In order to solve the aforementioned issues, in this dissertation, several novel self-calibration design techniques in mixed-signal mode circuits are proposed for an analog to digital converter (ADC) to reduce mismatch error and improve performance. These are essential components in SOCs and the proposed self-calibration approach also compensates the process variations. The proposed novel self-calibration approach targets the successive approximation (SA) ADC. First of all, the offset error of the comparator in the SA-ADC is reduced using the proposed approach by enabling the capacitor array in the input nodes for better matching. In addition, the auxiliary capacitors for each capacitor of DAC in the SA-ADC are controlled by using synthesized digital controller to minimize the mismatch error of the DAC. Since the proposed technique is applied during foreground operation, the power overhead in SA-ADC case is minimal because the calibration circuit is deactivated during normal operation time. Another benefit of the proposed technique is that the offset voltage of the comparator is continuously adjusted for every step to decide one-bit code, because not only the inherit offset voltage of the comparator but also the mismatch of DAC are compensated simultaneously. Synthesized digital calibration control circuit operates as fore-ground mode, and the controller has been highly optimized for low power and better performance with simplified structure. In addition, in order to increase the sampling clock frequency of proposed self-calibration approach, novel variable clock period method is proposed. To achieve high speed SAR operation, a variable clock time technique is used to reduce not only peak current but also die area. The technique removes conversion time waste and extends the SAR operation speed easily. To verify and demonstrate the proposed techniques, a prototype charge-redistribution SA-ADCs with the proposed self-calibration is implemented in a 130nm standard CMOS process. The prototype circuit's silicon area is 0.0715 mm 2 and consumers 4.62mW with 1.2V power supply.
A calibration method of infrared LVF based spectroradiometer
NASA Astrophysics Data System (ADS)
Liu, Jiaqing; Han, Shunli; Liu, Lei; Hu, Dexin
2017-10-01
In this paper, a calibration method of LVF-based spectroradiometer is summarize, including spectral calibration and radiometric calibration. The spectral calibration process as follow: first, the relationship between stepping motor's step number and transmission wavelength is derivative by theoretical calculation, including a non-linearity correction of LVF;second, a line-to-line method was used to corrected the theoretical wavelength; Finally, the 3.39 μm and 10.69 μm laser is used for spectral calibration validation, show the sought 0.1% accuracy or better is achieved.A new sub-region multi-point calibration method is used for radiometric calibration to improving accuracy, results show the sought 1% accuracy or better is achieved.
Optics-Only Calibration of a Neural-Net Based Optical NDE Method for Structural Health Monitoring
NASA Technical Reports Server (NTRS)
Decker, Arthur J.
2004-01-01
A calibration process is presented that uses optical measurements alone to calibrate a neural-net based NDE method. The method itself detects small changes in the vibration mode shapes of structures. The optics-only calibration process confirms previous work that the sensitivity to vibration-amplitude changes can be as small as 10 nanometers. A more practical value in an NDE service laboratory is shown to be 50 nanometers. Both model-generated and experimental calibrations are demonstrated using two implementations of the calibration technique. The implementations are based on previously published demonstrations of the NDE method and an alternative calibration procedure that depends on comparing neural-net and point sensor measurements. The optics-only calibration method, unlike the alternative method, does not require modifications of the structure being tested or the creation of calibration objects. The calibration process can be used to test improvements in the NDE process and to develop a vibration-mode-independence of damagedetection sensitivity. The calibration effort was intended to support NASA s objective to promote safety in the operations of ground test facilities or aviation safety, in general, by allowing the detection of the gradual onset of structural changes and damage.
ERIC Educational Resources Information Center
Pezzolo, Alessandra De Lorenzi
2011-01-01
In this experiment, students are given a fanciful application of the standard addition method to evaluate the approximate quantity of the shell component in a sample of sand collected on the Lido di Venezia seashore. Several diffuse reflectance infrared Fourier transform (DRIFT) spectra are recorded from a sand sample before and after addition of…
NASA Astrophysics Data System (ADS)
Leinweber, H. K.; Russell, C. T.; Torkar, K.
2012-10-01
We show that the spin axis offset of a fluxgate magnetometer can be calibrated with an electron drift instrument (EDI) and that the required input time interval is relatively short. For missions such as Cluster or the upcoming Magnetospheric Multiscale (MMS) mission the spin axis offset of a fluxgate magnetometer could be determined on an orbital basis. An improvement of existing methods for finding spin axis offsets via comparison of accurate measurements of the field magnitude is presented, that additionally matches the gains of the two instruments that are being compared. The technique has been applied to EDI data from the Cluster Active Archive and fluxgate magnetometer data processed with calibration files also from the Cluster Active Archive. The method could prove to be valuable for the MMS mission because the four MMS spacecraft will only be inside the interplanetary field (where spin axis offsets can be calculated from Alfvénic fluctuations) for short periods of time and during unusual solar wind conditions.
Digital Correlation Microwave Polarimetry: Analysis and Demonstration
NASA Technical Reports Server (NTRS)
Piepmeier, J. R.; Gasiewski, A. J.; Krebs, Carolyn A. (Technical Monitor)
2000-01-01
The design, analysis, and demonstration of a digital-correlation microwave polarimeter for use in earth remote sensing is presented. We begin with an analysis of three-level digital correlation and develop the correlator transfer function and radiometric sensitivity. A fifth-order polynomial regression is derived for inverting the digital correlation coefficient into the analog statistic. In addition, the effects of quantizer threshold asymmetry and hysteresis are discussed. A two-look unpolarized calibration scheme is developed for identifying correlation offsets. The developed theory and calibration method are verified using a 10.7 GHz and a 37.0 GHz polarimeter. The polarimeters are based upon 1-GS/s three-level digital correlators and measure the first three Stokes parameters. Through experiment, the radiometric sensitivity is shown to approach the theoretical as derived earlier in the paper and the two-look unpolarized calibration method is successfully compared with results using a polarimetric scheme. Finally, sample data from an aircraft experiment demonstrates that the polarimeter is highly-useful for ocean wind-vector measurement.
Calibration Uncertainties in the Droplet Measurement Technologies Cloud Condensation Nuclei Counter
NASA Astrophysics Data System (ADS)
Hibert, Kurt James
Cloud condensation nuclei (CCN) serve as the nucleation sites for the condensation of water vapor in Earth's atmosphere and are important for their effect on climate and weather. The influence of CCN on cloud radiative properties (aerosol indirect effect) is the most uncertain of quantified radiative forcing changes that have occurred since pre-industrial times. CCN influence the weather because intrinsic and extrinsic aerosol properties affect cloud formation and precipitation development. To quantify these effects, it is necessary to accurately measure CCN, which requires accurate calibrations using a consistent methodology. Furthermore, the calibration uncertainties are required to compare measurements from different field projects. CCN uncertainties also aid the integration of CCN measurements with atmospheric models. The commercially available Droplet Measurement Technologies (DMT) CCN Counter is used by many research groups, so it is important to quantify its calibration uncertainty. Uncertainties in the calibration of the DMT CCN counter exist in the flow rate and supersaturation values. The concentration depends on the accuracy of the flow rate calibration, which does not have a large (4.3 %) uncertainty. The supersaturation depends on chamber pressure, temperature, and flow rate. The supersaturation calibration is a complex process since the chamber's supersaturation must be inferred from a temperature difference measurement. Additionally, calibration errors can result from the Kohler theory assumptions, fitting methods utilized, the influence of multiply-charged particles, and calibration points used. In order to determine the calibration uncertainties and the pressure dependence of the supersaturation calibration, three calibrations are done at each pressure level: 700, 840, and 980 hPa. Typically 700 hPa is the pressure used for aircraft measurements in the boundary layer, 840 hPa is the calibration pressure at DMT in Boulder, CO, and 980 hPa is the average surface pressure at Grand Forks, ND. The supersaturation calibration uncertainty is 2.3, 3.1, and 4.4 % for calibrations done at 700, 840, and 980 hPa respectively. The supersaturation calibration change with pressure is on average 0.047 % supersaturation per 100 hPa. The supersaturation calibrations done at UND are 42-45 % lower than supersaturation calibrations done at DMT approximately 1 year previously. Performance checks confirmed that all major leaks developed during shipping were fixed before conducting the supersaturation calibrations. Multiply-charged particles passing through the Electrostatic Classifier may have influenced DMT's activation curves, which is likely part of the supersaturation calibration difference. Furthermore, the fitting method used to calculate the activation size and the limited calibration points are likely significant sources of error in DMT's supersaturation calibration. While the DMT CCN counter's calibration uncertainties are relatively small, and the pressure dependence is easily accounted for, the calibration methodology used by different groups can be very important. The insights gained from the careful calibration of the DMT CCN counter indicate that calibration of scientific instruments using complex methodology is not trivial.
NASA Astrophysics Data System (ADS)
Kim, Ji-hyun; Han, Jae-Ho; Jeong, Jichai
2016-05-01
The commonly employed calibration methods for laboratory-made spectrometers have several disadvantages, including poor calibration when the number of characteristic spectral peaks is low. Therefore, we present a wavelength calibration method using relative k-space distribution with low coherence interferometer. The proposed method utilizes an interferogram with a perfect sinusoidal pattern in k-space for calibration. Zero-crossing detection extracts the k-space distribution of a spectrometer from the interferogram in the wavelength domain, and a calibration lamp provides information about absolute wavenumbers. To assign wavenumbers, wavelength-to-k-space conversion is required for the characteristic spectrum of the calibration lamp with the extracted k-space distribution. Then, the wavelength calibration is completed by inverse conversion of the k-space into wavelength domain. The calibration performance of the proposed method was demonstrated with two experimental conditions of four and eight characteristic spectral peaks. The proposed method elicited reliable calibration results in both cases, whereas the conventional method of third-order polynomial curve fitting failed to determine wavelengths in the case of four characteristic peaks. Moreover, for optical coherence tomography imaging, the proposed method could improve axial resolution due to higher suppression of sidelobes in point spread function than the conventional method. We believe that our findings can improve not only wavelength calibration accuracy but also resolution for optical coherence tomography.
A Bionic Polarization Navigation Sensor and Its Calibration Method.
Zhao, Huijie; Xu, Wujian
2016-08-03
The polarization patterns of skylight which arise due to the scattering of sunlight in the atmosphere can be used by many insects for deriving compass information. Inspired by insects' polarized light compass, scientists have developed a new kind of navigation method. One of the key techniques in this method is the polarimetric sensor which is used to acquire direction information from skylight. In this paper, a polarization navigation sensor is proposed which imitates the working principles of the polarization vision systems of insects. We introduce the optical design and mathematical model of the sensor. In addition, a calibration method based on variable substitution and non-linear curve fitting is proposed. The results obtained from the outdoor experiments provide support for the feasibility and precision of the sensor. The sensor's signal processing can be well described using our mathematical model. A relatively high degree of accuracy in polarization measurement can be obtained without any error compensation.
A Bionic Polarization Navigation Sensor and Its Calibration Method
Zhao, Huijie; Xu, Wujian
2016-01-01
The polarization patterns of skylight which arise due to the scattering of sunlight in the atmosphere can be used by many insects for deriving compass information. Inspired by insects’ polarized light compass, scientists have developed a new kind of navigation method. One of the key techniques in this method is the polarimetric sensor which is used to acquire direction information from skylight. In this paper, a polarization navigation sensor is proposed which imitates the working principles of the polarization vision systems of insects. We introduce the optical design and mathematical model of the sensor. In addition, a calibration method based on variable substitution and non-linear curve fitting is proposed. The results obtained from the outdoor experiments provide support for the feasibility and precision of the sensor. The sensor’s signal processing can be well described using our mathematical model. A relatively high degree of accuracy in polarization measurement can be obtained without any error compensation. PMID:27527171
A self-modifying cellular automaton model of historical urbanization in the San Francisco Bay area
Clarke, K.C.; Hoppen, S.; Gaydos, L.
1997-01-01
In this paper we describe a cellular automaton (CA) simulation model developed to predict urban growth as part of a project for estimating the regional and broader impact of urbanization on the San Francisco Bay area's climate. The rules of the model are more complex than those of a typical CA and involve the use of multiple data sources, including topography, road networks, and existing settlement distributions, and their modification over time. In addition, the control parameters of the model are allowed to self-modify: that is, the CA adapts itself to the circumstances it generates, in particular, during periods of rapid growth or stagnation. In addition, the model was written to allow the accumulation of probabilistic estimates based on Monte Carlo methods. Calibration of the model has been accomplished by the use of historical maps to compare model predictions of urbanization, based solely upon the distribution in year 1900, with observed data for years 1940, 1954, 1962, 1974, and 1990. The complexity of this model has made calibration a particularly demanding step. Lessons learned about the methods, measures, and strategies developed to calibrate the model may be of use in other environmental modeling contexts. With the calibration complete, the model is being used to generate a set of future scenarios for the San Francisco Bay area along with their probabilities based on the Monte Carlo version of the model. Animated dynamic mapping of the simulations will be used to allow visualization of the impact of future urban growth.
Research on camera on orbit radial calibration based on black body and infrared calibration stars
NASA Astrophysics Data System (ADS)
Wang, YuDu; Su, XiaoFeng; Zhang, WanYing; Chen, FanSheng
2018-05-01
Affected by launching process and space environment, the response capability of a space camera must be attenuated. So it is necessary for a space camera to have a spaceborne radiant calibration. In this paper, we propose a method of calibration based on accurate Infrared standard stars was proposed for increasing infrared radiation measurement precision. As stars can be considered as a point target, we use them as the radiometric calibration source and establish the Taylor expansion method and the energy extrapolation model based on WISE catalog and 2MASS catalog. Then we update the calibration results from black body. Finally, calibration mechanism is designed and the technology of design is verified by on orbit test. The experimental calibration result shows the irradiance extrapolation error is about 3% and the accuracy of calibration methods is about 10%, the results show that the methods could satisfy requirements of on orbit calibration.
Utilization of Expert Knowledge in a Multi-Objective Hydrologic Model Automatic Calibration Process
NASA Astrophysics Data System (ADS)
Quebbeman, J.; Park, G. H.; Carney, S.; Day, G. N.; Micheletty, P. D.
2016-12-01
Spatially distributed continuous simulation hydrologic models have a large number of parameters for potential adjustment during the calibration process. Traditional manual calibration approaches of such a modeling system is extremely laborious, which has historically motivated the use of automatic calibration procedures. With a large selection of model parameters, achieving high degrees of objective space fitness - measured with typical metrics such as Nash-Sutcliffe, Kling-Gupta, RMSE, etc. - can easily be achieved using a range of evolutionary algorithms. A concern with this approach is the high degree of compensatory calibration, with many similarly performing solutions, and yet grossly varying parameter set solutions. To help alleviate this concern, and mimic manual calibration processes, expert knowledge is proposed for inclusion within the multi-objective functions, which evaluates the parameter decision space. As a result, Pareto solutions are identified with high degrees of fitness, but also create parameter sets that maintain and utilize available expert knowledge resulting in more realistic and consistent solutions. This process was tested using the joint SNOW-17 and Sacramento Soil Moisture Accounting method (SAC-SMA) within the Animas River basin in Colorado. Three different elevation zones, each with a range of parameters, resulted in over 35 model parameters simultaneously calibrated. As a result, high degrees of fitness were achieved, in addition to the development of more realistic and consistent parameter sets such as those typically achieved during manual calibration procedures.
An atlas of selected calibrated stellar spectra
NASA Technical Reports Server (NTRS)
Walker, Russell G.; Cohen, Martin
1992-01-01
Five hundred and fifty six stars in the IRAS PSC-2 that are suitable for stellar radiometric standards and are brighter than 1 Jy at 25 microns were identified. In addition, 123 stars that meet all of our criteria for calibration standards, but which lack a luminosity class were identified. An approach to absolute stellar calibration of broadband infrared filters based upon new models of Vega and Sirius due to Kurucz (1992) is presented. A general technique used to assemble continuous wide-band calibrated infrared spectra is described and an absolutely calibrated 1-35 micron spectrum of alpha(Tau) is constructed and the method using new and carefully designed observations is independently validated. The absolute calibration of the IRAS Low Resolution Spectrometer (LRS) database is investigated by comparing the observed spectrum of alpha(Tau) with that assumed in the original LRS calibration scheme. Neglect of the SiO fundamental band in alpha(Tau) has led to the presence of a specious 'emission' feature in all LRS spectra near 8.5 microns, and to an incorrect spectral slope between 8 and 12 microns. Finally, some of the properties of asteroids that effect their utility as calibration objects for the middle and far infrared region are examined. A technique to determine, from IRAS multiwaveband observations, the basic physical parameters needed by various asteroid thermal models that minimize the number of assumptions required is developed.
Multielevation calibration of frequency-domain electromagnetic data
Minsley, Burke J.; Kass, M. Andy; Hodges, Greg; Smith, Bruce D.
2014-01-01
Systematic calibration errors must be taken into account because they can substantially impact the accuracy of inverted subsurface resistivity models derived from frequency-domain electromagnetic data, resulting in potentially misleading interpretations. We have developed an approach that uses data acquired at multiple elevations over the same location to assess calibration errors. A significant advantage is that this method does not require prior knowledge of subsurface properties from borehole or ground geophysical data (though these can be readily incorporated if available), and is, therefore, well suited to remote areas. The multielevation data were used to solve for calibration parameters and a single subsurface resistivity model that are self consistent over all elevations. The deterministic and Bayesian formulations of the multielevation approach illustrate parameter sensitivity and uncertainty using synthetic- and field-data examples. Multiplicative calibration errors (gain and phase) were found to be better resolved at high frequencies and when data were acquired over a relatively conductive area, whereas additive errors (bias) were reasonably resolved over conductive and resistive areas at all frequencies. The Bayesian approach outperformed the deterministic approach when estimating calibration parameters using multielevation data at a single location; however, joint analysis of multielevation data at multiple locations using the deterministic algorithm yielded the most accurate estimates of calibration parameters. Inversion results using calibration-corrected data revealed marked improvement in misfit, lending added confidence to the interpretation of these models.
Ding, Xiaorong; Yan, Bryan P; Zhang, Yuan-Ting; Liu, Jing; Zhao, Ni; Tsang, Hon Ki
2017-09-14
Cuffless technique enables continuous blood pressure (BP) measurement in an unobtrusive manner, and thus has the potential to revolutionize the conventional cuff-based approaches. This study extends the pulse transit time (PTT) based cuffless BP measurement method by introducing a new indicator - the photoplethysmogram (PPG) intensity ratio (PIR). The performance of the models with PTT and PIR was comprehensively evaluated in comparison with six models that are based on sole PTT. The validation conducted on 33 subjects with and without hypertension, at rest and under various maneuvers with induced BP changes, and over an extended calibration interval, respectively. The results showed that, comparing to the PTT models, the proposed methods achieved better accuracy on each subject group at rest state and over 24 hours calibration interval. Although the BP estimation errors under dynamic maneuvers and over extended calibration interval were significantly increased for all methods, the proposed methods still outperformed the compared methods in the latter situation. These findings suggest that additional BP-related indicator other than PTT has added value for improving the accuracy of cuffless BP measurement. This study also offers insights into future research in cuffless BP measurement for tracking dynamic BP changes and over extended periods of time.
Quantifying Particle Numbers and Mass Flux in Drifting Snow
NASA Astrophysics Data System (ADS)
Crivelli, Philip; Paterna, Enrico; Horender, Stefan; Lehning, Michael
2016-12-01
We compare two of the most common methods of quantifying mass flux, particle numbers and particle-size distribution for drifting snow events, the snow-particle counter (SPC), a laser-diode-based particle detector, and particle tracking velocimetry based on digital shadowgraphic imaging. The two methods were correlated for mass flux and particle number flux. For the SPC measurements, the device was calibrated by the manufacturer beforehand. The shadowgrapic imaging method measures particle size and velocity directly from consecutive images, and before each new test the image pixel length is newly calibrated. A calibration study with artificially scattered sand particles and glass beads provides suitable settings for the shadowgraphical imaging as well as obtaining a first correlation of the two methods in a controlled environment. In addition, using snow collected in trays during snowfall, several experiments were performed to observe drifting snow events in a cold wind tunnel. The results demonstrate a high correlation between the mass flux obtained for the calibration studies (r ≥slant 0.93) and good correlation for the drifting snow experiments (r ≥slant 0.81). The impact of measurement settings is discussed in order to reliably quantify particle numbers and mass flux in drifting snow. The study was designed and performed to optimize the settings of the digital shadowgraphic imaging system for both the acquisition and the processing of particles in a drifting snow event. Our results suggest that these optimal settings can be transferred to different imaging set-ups to investigate sediment transport processes.
NASA Astrophysics Data System (ADS)
Lu, Dan; Ricciuto, Daniel; Walker, Anthony; Safta, Cosmin; Munger, William
2017-09-01
Calibration of terrestrial ecosystem models is important but challenging. Bayesian inference implemented by Markov chain Monte Carlo (MCMC) sampling provides a comprehensive framework to estimate model parameters and associated uncertainties using their posterior distributions. The effectiveness and efficiency of the method strongly depend on the MCMC algorithm used. In this work, a differential evolution adaptive Metropolis (DREAM) algorithm is used to estimate posterior distributions of 21 parameters for the data assimilation linked ecosystem carbon (DALEC) model using 14 years of daily net ecosystem exchange data collected at the Harvard Forest Environmental Measurement Site eddy-flux tower. The calibration of DREAM results in a better model fit and predictive performance compared to the popular adaptive Metropolis (AM) scheme. Moreover, DREAM indicates that two parameters controlling autumn phenology have multiple modes in their posterior distributions while AM only identifies one mode. The application suggests that DREAM is very suitable to calibrate complex terrestrial ecosystem models, where the uncertain parameter size is usually large and existence of local optima is always a concern. In addition, this effort justifies the assumptions of the error model used in Bayesian calibration according to the residual analysis. The result indicates that a heteroscedastic, correlated, Gaussian error model is appropriate for the problem, and the consequent constructed likelihood function can alleviate the underestimation of parameter uncertainty that is usually caused by using uncorrelated error models.
NASA Astrophysics Data System (ADS)
Koopman, Brian; ACTPol Collaboration
2015-04-01
The Atacama Cosmology Telescope Polarimeter (ACTPol) is a polarization sensitive upgrade for the Atacama Cosmology Telescope, located at an elevation of 5190 m on Cerro Toco in Chile. Achieving first light in 2013, ACTPol is entering its third observation season. Advanced ACTPol is a next generation upgrade for ACTPol, with additional frequencies, polarization modulation, and new detector arrays, that will begin in 2016. I will first present an overview of the two projects and then focus on describing the methods used for polarization angle calibration of the ACTPol detectors. These methods utilize polarization ray tracing in the optical design software CODEV together with detector positions determined from planet observations and represent a critical input for mapping the polarization of the CMB.
BRDF invariant stereo using light transport constancy.
Wang, Liang; Yang, Ruigang; Davis, James E
2007-09-01
Nearly all existing methods for stereo reconstruction assume that scene reflectance is Lambertian and make use of brightness constancy as a matching invariant. We introduce a new invariant for stereo reconstruction called light transport constancy (LTC), which allows completely arbitrary scene reflectance (bidirectional reflectance distribution functions (BRDFs)). This invariant can be used to formulate a rank constraint on multiview stereo matching when the scene is observed by several lighting configurations in which only the lighting intensity varies. In addition, we show that this multiview constraint can be used with as few as two cameras and two lighting configurations. Unlike previous methods for BRDF invariant stereo, LTC does not require precisely configured or calibrated light sources or calibration objects in the scene. Importantly, the new constraint can be used to provide BRDF invariance to any existing stereo method whenever appropriate lighting variation is available.
Farzanehfar, Vahid; Faizi, Mehrdad; Naderi, Nima; Kobarfard, Farzad
2017-01-01
Dibutyl phthalate (DBP) is a phthalic acid ester and is widely used in polymeric products to make them more flexible. DBP is found in almost every plastic material and is believed to be persistent in the environment. Various analytical methods have been used to measure DBP in different matrices. Considering the ubiquitous nature of DBP, the most important challenge in DBP analyses is the contamination of even analytical grade organic solvents with this compound and lack of availability of a true blank matrix to construct the calibration line. Standard addition method or using artificial matrices reduce the precision and accuracy of the results. In this study a surrogate analyte approach that is based on using deuterium labeled analyte (DBP-d4) to construct the calibration line was applied to determine DBP in hexane samples. PMID:28496469
A rapid tool for determination of titanium dioxide content in white chickpea samples.
Sezer, Banu; Bilge, Gonca; Berkkan, Aysel; Tamer, Ugur; Hakki Boyaci, Ismail
2018-02-01
Titanium dioxide (TiO 2 ) is a widely used additive in foods. However, in the scientific community there is an ongoing debate on health concerns about TiO 2 . The main goal of this study is to determine TiO 2 content by using laser induced breakdown spectroscopy (LIBS). To this end, different amounts of TiO 2 was added to white chickpeas and analyzed by using LIBS. Calibration curve was obtained by following Ti emissions at 390.11nm for univariate calibration, and partial least square (PLS) calibration curve was obtained by evaluating the whole spectra. The results showed that Ti calibration curve at 390.11nm provides successful determination of Ti level with 0.985 of R 2 and 33.9ppm of limit of detection (LOD) value, while PLS has 0.989 of R 2 and 60.9ppm of LOD. Furthermore, commercial white chickpea samples were used to validate the method, and validation R 2 for simple calibration and PLS were calculated as 0.989 and 0.951, respectively. Copyright © 2017 Elsevier Ltd. All rights reserved.
Geometric calibration of Colour and Stereo Surface Imaging System of ESA's Trace Gas Orbiter
NASA Astrophysics Data System (ADS)
Tulyakov, Stepan; Ivanov, Anton; Thomas, Nicolas; Roloff, Victoria; Pommerol, Antoine; Cremonese, Gabriele; Weigel, Thomas; Fleuret, Francois
2018-01-01
There are many geometric calibration methods for "standard" cameras. These methods, however, cannot be used for the calibration of telescopes with large focal lengths and complex off-axis optics. Moreover, specialized calibration methods for the telescopes are scarce in literature. We describe the calibration method that we developed for the Colour and Stereo Surface Imaging System (CaSSIS) telescope, on board of the ExoMars Trace Gas Orbiter (TGO). Although our method is described in the context of CaSSIS, with camera-specific experiments, it is general and can be applied to other telescopes. We further encourage re-use of the proposed method by making our calibration code and data available on-line.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Masters, Daniel; Steinhardt, Charles; Faisst, Andreas
2015-11-01
Calibrating the photometric redshifts of ≳10{sup 9} galaxies for upcoming weak lensing cosmology experiments is a major challenge for the astrophysics community. The path to obtaining the required spectroscopic redshifts for training and calibration is daunting, given the anticipated depths of the surveys and the difficulty in obtaining secure redshifts for some faint galaxy populations. Here we present an analysis of the problem based on the self-organizing map, a method of mapping the distribution of data in a high-dimensional space and projecting it onto a lower-dimensional representation. We apply this method to existing photometric data from the COSMOS survey selectedmore » to approximate the anticipated Euclid weak lensing sample, enabling us to robustly map the empirical distribution of galaxies in the multidimensional color space defined by the expected Euclid filters. Mapping this multicolor distribution lets us determine where—in galaxy color space—redshifts from current spectroscopic surveys exist and where they are systematically missing. Crucially, the method lets us determine whether a spectroscopic training sample is representative of the full photometric space occupied by the galaxies in a survey. We explore optimal sampling techniques and estimate the additional spectroscopy needed to map out the color–redshift relation, finding that sampling the galaxy distribution in color space in a systematic way can efficiently meet the calibration requirements. While the analysis presented here focuses on the Euclid survey, similar analysis can be applied to other surveys facing the same calibration challenge, such as DES, LSST, and WFIRST.« less
NASA Astrophysics Data System (ADS)
Pavlovic, J.; Kinsey, J. S.; Hays, M. D.
2014-09-01
Thermal-optical analysis (TOA) is a widely used technique that fractionates carbonaceous aerosol particles into organic and elemental carbon (OC and EC), or carbonate. Thermal sub-fractions of evolved OC and EC are also used for source identification and apportionment; thus, oven temperature accuracy during TOA analysis is essential. Evidence now indicates that the "actual" sample (filter) temperature and the temperature measured by the built-in oven thermocouple (or set-point temperature) can differ by as much as 50 °C. This difference can affect the OC-EC split point selection and consequently the OC and EC fraction and sub-fraction concentrations being reported, depending on the sample composition and in-use TOA method and instrument. The present study systematically investigates the influence of an oven temperature calibration procedure for TOA. A dual-optical carbon analyzer that simultaneously measures transmission and reflectance (TOT and TOR) is used, functioning under the conditions of both the National Institute of Occupational Safety and Health Method 5040 (NIOSH) and Interagency Monitoring of Protected Visual Environment (IMPROVE) protocols. The application of the oven calibration procedure to our dual-optics instrument significantly changed NIOSH 5040 carbon fractions (OC and EC) and the IMPROVE OC fraction. In addition, the well-known OC-EC split difference between NIOSH and IMPROVE methods is even further perturbed following the instrument calibration. Further study is needed to determine if the widespread application of this oven temperature calibration procedure will indeed improve accuracy and our ability to compare among carbonaceous aerosol studies that use TOA.
Design of k-Space Channel Combination Kernels and Integration with Parallel Imaging
Beatty, Philip J.; Chang, Shaorong; Holmes, James H.; Wang, Kang; Brau, Anja C. S.; Reeder, Scott B.; Brittain, Jean H.
2014-01-01
Purpose In this work, a new method is described for producing local k-space channel combination kernels using a small amount of low-resolution multichannel calibration data. Additionally, this work describes how these channel combination kernels can be combined with local k-space unaliasing kernels produced by the calibration phase of parallel imaging methods such as GRAPPA, PARS and ARC. Methods Experiments were conducted to evaluate both the image quality and computational efficiency of the proposed method compared to a channel-by-channel parallel imaging approach with image-space sum-of-squares channel combination. Results Results indicate comparable image quality overall, with some very minor differences seen in reduced field-of-view imaging. It was demonstrated that this method enables a speed up in computation time on the order of 3–16X for 32-channel data sets. Conclusion The proposed method enables high quality channel combination to occur earlier in the reconstruction pipeline, reducing computational and memory requirements for image reconstruction. PMID:23943602
NASA Technical Reports Server (NTRS)
Hooker, Stanford B. (Editor); Firestone, Elaine R. (Editor); Johnson, B. Carol; Early, Edward E.; Eplee, Robert E., Jr.; Barnes, Robert A.; Caffrey, Robert T.
1999-01-01
The Sea-viewing Wide Field-of-view Sensor (SeaWiFS) was originally calibrated by the instrument's manufacturer, Santa Barbara Research Center (SBRC), in November 1993. In preparation for an August 1997 launch, the SeaWiFS Project and the National Institute of Standards and Technology (NIST) undertook a second calibration of SeaWiFS in January and April 1997 at the facility of the spacecraft integrator, Orbital Sciences Corporation (OSC). This calibration occurred in two phases, the first after the final thermal vacuum test, and the second after the final vibration test of the spacecraft. For the calibration, SeaWiFS observed an integrating sphere from the National Aeronautics and Space Administration (NASA) Goddard Space Flight Center (GSFC) at four radiance levels. The spectral radiance of the sphere at these radiance levels was also measured by the SeaWiFS Transfer Radiometer (SXR). In addition, during the calibration, SeaWiFS and the SXR observed the sphere at 16 radiance levels to determine the linearity of the SeaWiFS response. As part of the calibration analysis, the GSFC sphere was also characterized using a GSFC spectroradiometer. The 1997 calibration agrees with the initial 1993 calibration to within +/- 4%. The new calibration coefficients, computed before and after the vibration test, agree to within 0.5%. The response of the SeaWiFS channels in each band is linear to better than 1%. In order to compare to previous and current methods, the SeaWiFS radiometric responses are presented in two ways: using the nominal center wave-lengths for the eight bands; and using band-averaged spectral radiances. The band-averaged values are used in the flight calibration table. An uncertainty analysis for the calibration coefficients is also presented.
Calibration methods for explosives detectors
NASA Astrophysics Data System (ADS)
MacDonald, Stephen J.; Rounbehler, David P.
1992-05-01
Airport security has become an important concern to cultures in every corner of the world. Presently, efforts to improve airport security have brought additional technological solutions, in the form of advanced instrumentation for the detection of explosives, into use at airport terminals in many countries. This new generation of explosives detectors is often used to augment existing security measures and provide a more encompassing screening capability for airline passengers. This paper describes two calibration procedures used for the Thermedics' EGIS explosives detectors. The systems were designed to screen people, electronic components, luggage, automobiles, and other objects for the presence of concealed explosives. The detectors have the ability to detect a wide range of explosives in both the vapor state or as surface adsorbed solids, therefore, calibrations were designed to challenge the system with explosives in each form.
USE OF THE SDO POINTING CONTROLLERS FOR INSTRUMENT CALIBRATION MANEUVERS
NASA Technical Reports Server (NTRS)
Vess, Melissa F.; Starin, Scott R.; Morgenstern, Wendy M.
2005-01-01
During the science phase of the Solar Dynamics Observatory mission, the three science instruments require periodic instrument calibration maneuvers with a frequency of up to once per month. The command sequences for these maneuvers vary in length from a handful of steps to over 200 steps, and individual steps vary in size from 5 arcsec per step to 22.5 degrees per step. Early in the calibration maneuver development, it was determined that the original attitude sensor complement could not meet the knowledge requirements for the instrument calibration maneuvers in the event of a sensor failure. Because the mission must be single fault tolerant, an attitude determination trade study was undertaken to determine the impact of adding an additional attitude sensor versus developing alternative, potentially complex, methods of performing the maneuvers in the event of a sensor failure. To limit the impact to the science data capture budget, these instrument calibration maneuvers must be performed as quickly as possible while maintaining the tight pointing and knowledge required to obtain valid data during the calibration. To this end, the decision was made to adapt a linear pointing controller by adjusting gains and adding an attitude limiter so that it would be able to slew quickly and still achieve steady pointing once on target. During the analysis of this controller, questions arose about the stability of the controller during slewing maneuvers due to the combination of the integral gain, attitude limit, and actuator saturation. Analysis was performed and a method for disabling the integral action while slewing was incorporated to ensure stability. A high fidelity simulation is used to simulate the various instrument calibration maneuvers.
Uncertainty quantification for constitutive model calibration of brain tissue.
Brewick, Patrick T; Teferra, Kirubel
2018-05-31
The results of a study comparing model calibration techniques for Ogden's constitutive model that describes the hyperelastic behavior of brain tissue are presented. One and two-term Ogden models are fit to two different sets of stress-strain experimental data for brain tissue using both least squares optimization and Bayesian estimation. For the Bayesian estimation, the joint posterior distribution of the constitutive parameters is calculated by employing Hamiltonian Monte Carlo (HMC) sampling, a type of Markov Chain Monte Carlo method. The HMC method is enriched in this work to intrinsically enforce the Drucker stability criterion by formulating a nonlinear parameter constraint function, which ensures the constitutive model produces physically meaningful results. Through application of the nested sampling technique, 95% confidence bounds on the constitutive model parameters are identified, and these bounds are then propagated through the constitutive model to produce the resultant bounds on the stress-strain response. The behavior of the model calibration procedures and the effect of the characteristics of the experimental data are extensively evaluated. It is demonstrated that increasing model complexity (i.e., adding an additional term in the Ogden model) improves the accuracy of the best-fit set of parameters while also increasing the uncertainty via the widening of the confidence bounds of the calibrated parameters. Despite some similarity between the two data sets, the resulting distributions are noticeably different, highlighting the sensitivity of the calibration procedures to the characteristics of the data. For example, the amount of uncertainty reported on the experimental data plays an essential role in how data points are weighted during the calibration, and this significantly affects how the parameters are calibrated when combining experimental data sets from disparate sources. Published by Elsevier Ltd.
Calibration Variable Selection and Natural Zero Determination for Semispan and Canard Balances
NASA Technical Reports Server (NTRS)
Ulbrich, Norbert M.
2013-01-01
Independent calibration variables for the characterization of semispan and canard wind tunnel balances are discussed. It is shown that the variable selection for a semispan balance is determined by the location of the resultant normal and axial forces that act on the balance. These two forces are the first and second calibration variable. The pitching moment becomes the third calibration variable after the normal and axial forces are shifted to the pitch axis of the balance. Two geometric distances, i.e., the rolling and yawing moment arms, are the fourth and fifth calibration variable. They are traditionally substituted by corresponding moments to simplify the use of calibration data during a wind tunnel test. A canard balance is related to a semispan balance. It also only measures loads on one half of a lifting surface. However, the axial force and yawing moment are of no interest to users of a canard balance. Therefore, its calibration variable set is reduced to the normal force, pitching moment, and rolling moment. The combined load diagrams of the rolling and yawing moment for a semispan balance are discussed. They may be used to illustrate connections between the wind tunnel model geometry, the test section size, and the calibration load schedule. Then, methods are reviewed that may be used to obtain the natural zeros of a semispan or canard balance. In addition, characteristics of three semispan balance calibration rigs are discussed. Finally, basic requirements for a full characterization of a semispan balance are reviewed.
Summarising the retinal vascular calibres in healthy, diabetic and diabetic retinopathy eyes.
Leontidis, Georgios; Al-Diri, Bashir; Hunter, Andrew
2016-05-01
Retinal vessel calibre has been found to be an important biomarker of several retinal diseases, including diabetic retinopathy (DR). Quantifying the retinal vessel calibres is an important step for estimating the central retinal artery and vein equivalents. In this study, an alternative method to the already established branching coefficient (BC) is proposed for summarising the vessel calibres in retinal junctions. This new method combines the mean diameter ratio with an alternative to Murray׳s cube law exponent, derived by the fractal dimension,experimentally, and the branch exponent of cerebral vessels, as has been suggested in previous studies with blood flow modelling. For the above calculations, retinal images from healthy, diabetic and DR subjects were used. In addition, the above method was compared with the BC and was also applied to the evaluation of arteriovenous ratio as a biomarker of progression from diabetes to DR in four consecutive years, i.e. three/two/one years before the onset of DR and the first year of DR. Moreover, the retinal arteries and veins around the optic nerve head were also evaluated. The new approach quantifies the vessels more accurately. The decrease in terms of the mean absolute percentage error was between 0.24% and 0.49%, extending at the same time the quantification beyond healthy subjects. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Eskins, Jonathan
1988-01-01
The problem of determining the forces and moments acting on a wind tunnel model suspended in a Magnetic Suspension and Balance System is addressed. Two calibration methods were investigated for three types of model cores, i.e., Alnico, Samarium-Cobalt, and a superconducting solenoid. Both methods involve calibrating the currents in the electromagnetic array against known forces and moments. The first is a static calibration method using calibration weights and a system of pulleys. The other method, dynamic calibration, involves oscillating the model and using its inertia to provide calibration forces and moments. Static calibration data, found to produce the most reliable results, is presented for three degrees of freedom at 0, 15, and -10 deg angle of attack. Theoretical calculations are hampered by the inability to represent iron-cored electromagnets. Dynamic calibrations, despite being quicker and easier to perform, are not as accurate as static calibrations. Data for dynamic calibrations at 0 and 15 deg is compared with the relevant static data acquired. Distortion of oscillation traces is cited as a major source of error in dynamic calibrations.
The calibration methods for Multi-Filter Rotating Shadowband Radiometer: a review
NASA Astrophysics Data System (ADS)
Chen, Maosi; Davis, John; Tang, Hongzhao; Ownby, Carolyn; Gao, Wei
2013-09-01
The continuous, over two-decade data record from the Multi-Filter Rotating Shadowband Radiometer (MFRSR) is ideal for climate research which requires timely and accurate information of important atmospheric components such as gases, aerosols, and clouds. Except for parameters derived from MFRSR measurement ratios, which are not impacted by calibration error, most applications require accurate calibration factor(s), angular correction, and spectral response function(s) from calibration. Although a laboratory lamp (or reference) calibration can provide all the information needed to convert the instrument readings to actual radiation, in situ calibration methods are implemented routinely (daily) to fill the gaps between lamp calibrations. In this paper, the basic structure and the data collection and pretreatment of the MFRSR are described. The laboratory lamp calibration and its limitations are summarized. The cloud screening algorithms for MFRSR data are presented. The in situ calibration methods, the standard Langley method and its variants, the ratio-Langley method, the general method, Alexandrov's comprehensive method, and Chen's multi-channel method, are outlined. The reason that all these methods do not fit for all situations is that they assume some properties, such as aerosol optical depth (AOD), total optical depth (TOD), precipitable water vapor (PWV), effective size of aerosol particles, or angstrom coefficient, are invariant over time. These properties are not universal and some of them rarely happen. In practice, daily calibration factors derived from these methods should be smoothed to restrain error.
Ferreira, Vicente; Herrero, Paula; Zapata, Julián; Escudero, Ana
2015-08-14
SPME is extremely sensitive to experimental parameters affecting liquid-gas and gas-solid distribution coefficients. Our aims were to measure the weights of these factors and to design a multivariate strategy based on the addition of a pool of internal standards, to minimize matrix effects. Synthetic but real-like wines containing selected analytes and variable amounts of ethanol, non-volatile constituents and major volatile compounds were prepared following a factorial design. The ANOVA study revealed that even using a strong matrix dilution, matrix effects are important and additive with non-significant interaction effects and that it is the presence of major volatile constituents the most dominant factor. A single internal standard provided a robust calibration for 15 out of 47 analytes. Then, two different multivariate calibration strategies based on Partial Least Square Regression were run in order to build calibration functions based on 13 different internal standards able to cope with matrix effects. The first one is based in the calculation of Multivariate Internal Standards (MIS), linear combinations of the normalized signals of the 13 internal standards, which provide the expected area of a given unit of analyte present in each sample. The second strategy is a direct calibration relating concentration to the 13 relative areas measured in each sample for each analyte. Overall, 47 different compounds can be reliably quantified in a single fully automated method with overall uncertainties better than 15%. Copyright © 2015 Elsevier B.V. All rights reserved.
Optimized star sensors laboratory calibration method using a regularization neural network.
Zhang, Chengfen; Niu, Yanxiong; Zhang, Hao; Lu, Jiazhen
2018-02-10
High-precision ground calibration is essential to ensure the performance of star sensors. However, the complex distortion and multi-error coupling have brought great difficulties to traditional calibration methods, especially for large field of view (FOV) star sensors. Although increasing the complexity of models is an effective way to improve the calibration accuracy, it significantly increases the demand for calibration data. In order to achieve high-precision calibration of star sensors with large FOV, a novel laboratory calibration method based on a regularization neural network is proposed. A multi-layer structure neural network is designed to represent the mapping of the star vector and the corresponding star point coordinate directly. To ensure the generalization performance of the network, regularization strategies are incorporated into the net structure and the training algorithm. Simulation and experiment results demonstrate that the proposed method can achieve high precision with less calibration data and without any other priori information. Compared with traditional methods, the calibration error of the star sensor decreased by about 30%. The proposed method can satisfy the precision requirement for large FOV star sensors.
Features calibration of the dynamic force transducers
NASA Astrophysics Data System (ADS)
Sc., M. Yu Prilepko D.; Lysenko, V. G.
2018-04-01
The article discusses calibration methods of dynamic forces measuring instruments. The relevance of work is dictated by need to valid definition of the dynamic forces transducers metrological characteristics taking into account their intended application. The aim of this work is choice justification of calibration method, which provides the definition dynamic forces transducers metrological characteristics under simulation operating conditions for determining suitability for using in accordance with its purpose. The following tasks are solved: the mathematical model and the main measurements equation of calibration dynamic forces transducers by load weight, the main budget uncertainty components of calibration are defined. The new method of dynamic forces transducers calibration with use the reference converter “force-deformation” based on the calibrated elastic element and measurement of his deformation by a laser interferometer is offered. The mathematical model and the main measurements equation of the offered method is constructed. It is shown that use of calibration method based on measurements by the laser interferometer of calibrated elastic element deformations allows to exclude or to considerably reduce the uncertainty budget components inherent to method of load weight.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Habte, Aron; Sengupta, Manajit; Andreas, Afshin
Accurate solar radiation measured by radiometers depends on instrument performance specifications, installation method, calibration procedure, measurement conditions, maintenance practices, location, and environmental conditions. This study addresses the effect of different calibration methodologies and resulting differences provided by radiometric calibration service providers such as the National Renewable Energy Laboratory (NREL) and manufacturers of radiometers. Some of these methods calibrate radiometers indoors and some outdoors. To establish or understand the differences in calibration methodologies, we processed and analyzed field-measured data from radiometers deployed for 10 months at NREL's Solar Radiation Research Laboratory. These different methods of calibration resulted in a difference ofmore » +/-1% to +/-2% in solar irradiance measurements. Analyzing these differences will ultimately assist in determining the uncertainties of the field radiometer data and will help develop a consensus on a standard for calibration. Further advancing procedures for precisely calibrating radiometers to world reference standards that reduce measurement uncertainties will help the accurate prediction of the output of planned solar conversion projects and improve the bankability of financing solar projects.« less
Research on the calibration methods of the luminance parameter of radiation luminance meters
NASA Astrophysics Data System (ADS)
Cheng, Weihai; Huang, Biyong; Lin, Fangsheng; Li, Tiecheng; Yin, Dejin; Lai, Lei
2017-10-01
This paper introduces standard diffusion reflection white plate method and integrating sphere standard luminance source method to calibrate the luminance parameter. The paper compares the effects of calibration results by using these two methods through principle analysis and experimental verification. After using two methods to calibrate the same radiation luminance meter, the data obtained verifies the testing results of the two methods are both reliable. The results show that the display value using standard white plate method has fewer errors and better reproducibility. However, standard luminance source method is more convenient and suitable for on-site calibration. Moreover, standard luminance source method has wider range and can test the linear performance of the instruments.
NASA Astrophysics Data System (ADS)
Vaishali, S.; Narendranath, S.; Sreekumar, P.
An IDL (interactive data language) based widget application developed for the calibration of C1XS (Narendranath et al., 2010) instrument on Chandrayaan-1 is modified to provide a generic package for the analysis of data from x-ray detectors. The package supports files in ascii as well as FITS format. Data can be fitted with a list of inbuilt functions to derive the spectral redistribution function (SRF). We have incorporated functions such as `HYPERMET' (Philips & Marlow 1976) including non Gaussian components in the SRF such as low energy tail, low energy shelf and escape peak. In addition users can incorporate additional models which may be required to model detector specific features. Spectral fits use a routine `mpfit' which uses Leven-Marquardt least squares fitting method. The SRF derived from this tool can be fed into an accompanying program to generate a redistribution matrix file (RMF) compatible with the X-ray spectral analysis package XSPEC. The tool provides a user friendly interface of help to beginners and also provides transparency and advanced features for experts.
DOE Office of Scientific and Technical Information (OSTI.GOV)
DOUGLAS, J.G.
2006-07-06
This document presents the technical justification for choosing and using propane as a calibration standard for estimating total flammable volatile organic compounds (VOCs) in an air matrix. A propane-in-nitrogen standard was selected based on a number of criteria: (1) has an analytical response similar to the VOCs of interest, (2) can be made with known accuracy and traceability, (3) is available with good purity, (4) has a matrix similar to the sample matrix, (5) is stable during storage and use, (6) is relatively non-hazardous, and (7) is a recognized standard for similar analytical applications. The Waste Retrieval Project (WRP) desiresmore » a fast, reliable, and inexpensive method for screening the flammable VOC content in the vapor-phase headspace of waste containers. Table 1 lists the flammable VOCs of interest to the WRP. The current method used to determine the VOC content of a container is to sample the container's headspace and submit the sample for gas chromatography--mass spectrometry (GC-MS) analysis. The driver for the VOC measurement requirement is safety: potentially flammable atmospheres in the waste containers must be allowed to diffuse prior to processing the container. The proposed flammable VOC screening method is to inject an aliquot of the headspace sample into an argon-doped pulsed-discharge helium ionization detector (Ar-PDHID) contained within a gas chromatograph. No actual chromatography is performed; the sample is transferred directly from a sample loop to the detector through a short, inert transfer line. The peak area resulting from the injected sample is proportional to the flammable VOC content of the sample. However, because the Ar-PDHID has different response factors for different flammable VOCs, a fundamental assumption must be made that the agent used to calibrate the detector is representative of the flammable VOCs of interest that may be in the headspace samples. At worst, we desire that calibration with the selected calibrating agent overestimate the value of the VOCs in a sample. By overestimating the VOC content of a sample, we want to minimize false negatives. A false negative is defined as incorrectly estimating the VOC content of the sample to be below programmatic action limits when, in fact, the sample,exceeds the action limits. The disadvantage of overestimating the flammable VOC content of a sample is that additional cost may be incurred because additional sampling and GC-MS analysis may be required to confirm results over programmatic action limits. Therefore, choosing an appropriate calibration standard for the Ar-PDHID is critical to avoid false negatives and to minimize additional analytical costs.« less
Automatic Calibration of Stereo-Cameras Using Ordinary Chess-Board Patterns
NASA Astrophysics Data System (ADS)
Prokos, A.; Kalisperakis, I.; Petsa, E.; Karras, G.
2012-07-01
Automation of camera calibration is facilitated by recording coded 2D patterns. Our toolbox for automatic camera calibration using images of simple chess-board patterns is freely available on the Internet. But it is unsuitable for stereo-cameras whose calibration implies recovering camera geometry and their true-to-scale relative orientation. In contrast to all reported methods requiring additional specific coding to establish an object space coordinate system, a toolbox for automatic stereo-camera calibration relying on ordinary chess-board patterns is presented here. First, the camera calibration algorithm is applied to all image pairs of the pattern to extract nodes of known spacing, order them in rows and columns, and estimate two independent camera parameter sets. The actual node correspondences on stereo-pairs remain unknown. Image pairs of a textured 3D scene are exploited for finding the fundamental matrix of the stereo-camera by applying RANSAC to point matches established with the SIFT algorithm. A node is then selected near the centre of the left image; its match on the right image is assumed as the node closest to the corresponding epipolar line. This yields matches for all nodes (since these have already been ordered), which should also satisfy the 2D epipolar geometry. Measures for avoiding mismatching are taken. With automatically estimated initial orientation values, a bundle adjustment is performed constraining all pairs on a common (scaled) relative orientation. Ambiguities regarding the actual exterior orientations of the stereo-camera with respect to the pattern are irrelevant. Results from this automatic method show typical precisions not above 1/4 pixels for 640×480 web cameras.
Calibration of PCB-132 Sensors in a Shock Tube
NASA Technical Reports Server (NTRS)
Berridge, Dennis C.; Schneider, Steven P.
2012-01-01
While PCB-132 sensors have proven useful for measuring second-mode instability waves in many hypersonic wind tunnels, they are currently limited by their calibration. Until now, the factory calibration has been all that was available, which is a single-point calibration at an amplitude three orders of magnitude higher than a second-mode wave. In addition, little information has been available about the frequency response or spatial resolution of the sensors, which is important for measuring high-frequency instability waves. These shortcomings make it difficult to compare measurements at different conditions and between different sensors. If accurate quantitative measurements could be performed, comparisons of the growth and breakdown of instability waves could be made in different facilities, possibly leading to a method of predicting the amplitude at which the waves break down into turbulence, improving transition prediction. A method for calibrating the sensors is proposed using a newly-built shock tube at Purdue University. This shock tube, essentially a half-scale version of the 6-Inch shock tube at the Graduate Aerospace Laboratories at Caltech, has been designed to attain a moderate vacuum in the driven section. Low driven pressures should allow the creation of very weak, yet still relatively thin shock waves. It is expected that static pressure rises within the range of second-mode amplitudes should be possible. The shock tube has been designed to create clean, planar shock waves with a laminar boundary layer to allow for accurate calibrations. Stronger shock waves can be used to identify the frequency response of the sensors out to hundreds of kilohertz.
Hoge, Richard D
2012-08-15
Functional magnetic resonance imaging with blood oxygenation level-dependent (BOLD) contrast has had a tremendous influence on human neuroscience in the last twenty years, providing a non-invasive means of mapping human brain function with often exquisite sensitivity and detail. However the BOLD method remains a largely qualitative approach. While the same can be said of anatomic MRI techniques, whose clinical and research impact has not been diminished in the slightest by the lack of a quantitative interpretation of their image intensity, the quantitative expression of BOLD responses as a percent of the baseline T2*- weighted signal has been viewed as necessary since the earliest days of fMRI. Calibrated MRI attempts to dissociate changes in oxygen metabolism from changes in blood flow and volume, the latter three quantities contributing jointly to determine the physiologically ambiguous percent BOLD change. This dissociation is typically performed using a "calibration" procedure in which subjects inhale a gas mixture containing small amounts of carbon dioxide or enriched oxygen to produce changes in blood flow and BOLD signal which can be measured under well-defined hemodynamic conditions. The outcome is a calibration parameter M which can then be substituted into an expression providing the fractional change in oxygen metabolism given changes in blood flow and BOLD signal during a task. The latest generation of calibrated MRI methods goes beyond fractional changes to provide absolute quantification of resting-state oxygen consumption in micromolar units, in addition to absolute measures of evoked metabolic response. This review discusses the history, challenges, and advances in calibrated MRI, from the personal perspective of the author. Copyright © 2012 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Bilardi, S.; Barjatya, A.; Gasdia, F.
OSCOM, Optical tracking and Spectral characterization of CubeSats for Operational Missions, is a system capable of providing time-resolved satellite photometry using commercial-off-the-shelf (COTS) hardware and custom tracking and analysis software. This system has acquired photometry of objects as small as CubeSats using a Celestron 11” RASA and an inexpensive CMOS machine vision camera. For satellites with known shapes, these light curves can be used to verify a satellite’s attitude and the state of its deployed solar panels or antennae. While the OSCOM system can successfully track satellites and produce light curves, there is ongoing improvement towards increasing its automation while supporting additional mounts and telescopes. A newly acquired Celestron 14” Edge HD can be used with a Starizona Hyperstar to increase the SNR for small objects as well as extend beyond the limiting magnitude of the 11” RASA. OSCOM currently corrects instrumental brightness measurements for satellite range and observatory site average atmospheric extinction, but calibrated absolute brightness is required to determine information about satellites other than their spin rate, such as surface albedo. A calibration method that automatically detects and identifies background stars can use their catalog magnitudes to calibrate the brightness of the satellite in the image. We present a photometric light curve from both the 14” Edge HD and 11” RASA optical systems as well as plans for a calibration method that will perform background star photometry to efficiently determine calibrated satellite brightness in each frame.
A novel dual-camera calibration method for 3D optical measurement
NASA Astrophysics Data System (ADS)
Gai, Shaoyan; Da, Feipeng; Dai, Xianqiang
2018-05-01
A novel dual-camera calibration method is presented. In the classic methods, the camera parameters are usually calculated and optimized by the reprojection error. However, for a system designed for 3D optical measurement, this error does not denote the result of 3D reconstruction. In the presented method, a planar calibration plate is used. In the beginning, images of calibration plate are snapped from several orientations in the measurement range. The initial parameters of the two cameras are obtained by the images. Then, the rotation and translation matrix that link the frames of two cameras are calculated by using method of Centroid Distance Increment Matrix. The degree of coupling between the parameters is reduced. Then, 3D coordinates of the calibration points are reconstructed by space intersection method. At last, the reconstruction error is calculated. It is minimized to optimize the calibration parameters. This error directly indicates the efficiency of 3D reconstruction, thus it is more suitable for assessing the quality of dual-camera calibration. In the experiments, it can be seen that the proposed method is convenient and accurate. There is no strict requirement on the calibration plate position in the calibration process. The accuracy is improved significantly by the proposed method.
Finding trap stiffness of optical tweezers using digital filters.
Almendarez-Rangel, Pedro; Morales-Cruzado, Beatriz; Sarmiento-Gómez, Erick; Pérez-Gutiérrez, Francisco G
2018-02-01
Obtaining trap stiffness and calibration of the position detection system is the basis of a force measurement using optical tweezers. Both calibration quantities can be calculated using several experimental methods available in the literature. In most cases, stiffness determination and detection system calibration are performed separately, often requiring procedures in very different conditions, and thus confidence of calibration methods is not assured due to possible changes in the environment. In this work, a new method to simultaneously obtain both the detection system calibration and trap stiffness is presented. The method is based on the calculation of the power spectral density of positions through digital filters to obtain the harmonic contributions of the position signal. This method has the advantage of calculating both trap stiffness and photodetector calibration factor from the same dataset in situ. It also provides a direct method to avoid unwanted frequencies that could greatly affect calibration procedure, such as electric noise, for example.
Improvement of Gaofen-3 Absolute Positioning Accuracy Based on Cross-Calibration
Deng, Mingjun; Li, Jiansong
2017-01-01
The Chinese Gaofen-3 (GF-3) mission was launched in August 2016, equipped with a full polarimetric synthetic aperture radar (SAR) sensor in the C-band, with a resolution of up to 1 m. The absolute positioning accuracy of GF-3 is of great importance, and in-orbit geometric calibration is a key technology for improving absolute positioning accuracy. Conventional geometric calibration is used to accurately calibrate the geometric calibration parameters of the image (internal delay and azimuth shifts) using high-precision ground control data, which are highly dependent on the control data of the calibration field, but it remains costly and labor-intensive to monitor changes in GF-3’s geometric calibration parameters. Based on the positioning consistency constraint of the conjugate points, this study presents a geometric cross-calibration method for the rapid and accurate calibration of GF-3. The proposed method can accurately calibrate geometric calibration parameters without using corner reflectors and high-precision digital elevation models, thus improving absolute positioning accuracy of the GF-3 image. GF-3 images from multiple regions were collected to verify the absolute positioning accuracy after cross-calibration. The results show that this method can achieve a calibration accuracy as high as that achieved by the conventional field calibration method. PMID:29240675
Configurations and calibration methods for passive sampling techniques.
Ouyang, Gangfeng; Pawliszyn, Janusz
2007-10-19
Passive sampling technology has developed very quickly in the past 15 years, and is widely used for the monitoring of pollutants in different environments. The design and quantification of passive sampling devices require an appropriate calibration method. Current calibration methods that exist for passive sampling, including equilibrium extraction, linear uptake, and kinetic calibration, are presented in this review. A number of state-of-the-art passive sampling devices that can be used for aqueous and air monitoring are introduced according to their calibration methods.
Xiu, Junshan; Liu, Shiming; Sun, Meiling; Dong, Lili
2018-01-20
The photoelectric performance of metal ion-doped TiO 2 film will be improved with the changing of the compositions and concentrations of additive elements. In this work, the TiO 2 films doped with different Sn concentrations were obtained with the hydrothermal method. Qualitative and quantitative analysis of the Sn element in TiO 2 film was achieved with laser induced breakdown spectroscopy (LIBS) with the calibration curves plotted accordingly. The photoelectric characteristics of TiO 2 films doped with different Sn content were observed with UV visible absorption spectra and J-V curves. All results showed that Sn doping could improve the optical absorption to be red-shifted and advance the photoelectric properties of the TiO 2 films. We had obtained that when the concentration of Sn doping in TiO 2 films was 11.89 mmol/L, which was calculated by the LIBS calibration curves, the current density of the film was the largest, which indicated the best photoelectric performance. It indicated that LIBS was a potential and feasible measured method, which was applied to qualitative and quantitative analysis of the additive element in metal oxide nanometer film.
Application of composite small calibration objects in traffic accident scene photogrammetry.
Chen, Qiang; Xu, Hongguo; Tan, Lidong
2015-01-01
In order to address the difficulty of arranging large calibration objects and the low measurement accuracy of small calibration objects in traffic accident scene photogrammetry, a photogrammetric method based on a composite of small calibration objects is proposed. Several small calibration objects are placed around the traffic accident scene, and the coordinate system of the composite calibration object is given based on one of them. By maintaining the relative position and coplanar relationship of the small calibration objects, the local coordinate system of each small calibration object is transformed into the coordinate system of the composite calibration object. The two-dimensional direct linear transformation method is improved based on minimizing the reprojection error of the calibration points of all objects. A rectified image is obtained using the nonlinear optimization method. The increased accuracy of traffic accident scene photogrammetry using a composite small calibration object is demonstrated through the analysis of field experiments and case studies.
Signal inference with unknown response: calibration-uncertainty renormalized estimator.
Dorn, Sebastian; Enßlin, Torsten A; Greiner, Maksim; Selig, Marco; Boehm, Vanessa
2015-01-01
The calibration of a measurement device is crucial for every scientific experiment, where a signal has to be inferred from data. We present CURE, the calibration-uncertainty renormalized estimator, to reconstruct a signal and simultaneously the instrument's calibration from the same data without knowing the exact calibration, but its covariance structure. The idea of the CURE method, developed in the framework of information field theory, is to start with an assumed calibration to successively include more and more portions of calibration uncertainty into the signal inference equations and to absorb the resulting corrections into renormalized signal (and calibration) solutions. Thereby, the signal inference and calibration problem turns into a problem of solving a single system of ordinary differential equations and can be identified with common resummation techniques used in field theories. We verify the CURE method by applying it to a simplistic toy example and compare it against existent self-calibration schemes, Wiener filter solutions, and Markov chain Monte Carlo sampling. We conclude that the method is able to keep up in accuracy with the best self-calibration methods and serves as a noniterative alternative to them.
ROx3: Retinal oximetry utilizing the blue-green oximetry method
NASA Astrophysics Data System (ADS)
Parsons, Jennifer Kathleen Hendryx
The ROx is a retinal oximeter under development with the purpose of non-invasively and accurately measuring oxygen saturation (SO2) in vivo. It is novel in that it utilizes the blue-green oximetry technique with on-axis illumination. ROx calibration tests were performed by inducing hypoxia in live anesthetized swine and comparing ROx measurements to SO 2 values measured by a CO-Oximeter. Calibration was not achieved to the precision required for clinical use, but limiting factors were identified and improved. The ROx was used in a set of sepsis experiments on live pigs with the intention of tracking retinal SO2 during the development of sepsis. Though conclusions are qualitative due to insufficient calibration of the device, retinal venous SO2 is shown to trend generally with central venous SO2 as sepsis develops. The novel sepsis model developed in these experiments is also described. The method of cecal ligation and perforation with additional soiling of the abdomen consistently produced controllable severe sepsis/septic shock in a matter of hours. In addition, the ROx was used to collect retinal images from a healthy human volunteer. These experiments served as a bench test for several of the additions/modifications made to the ROx. This set of experiments specifically served to illuminate problems with various light paths and image acquisition. The analysis procedure for the ROx is under development, particularly automating the process for consistency, accuracy, and time efficiency. The current stage of automation is explained, including data acquisition processes and the automated vessel fit routine. Suggestions for the next generation of device minimization are also described.
Structured light system calibration method with optimal fringe angle.
Li, Beiwen; Zhang, Song
2014-11-20
For structured light system calibration, one popular approach is to treat the projector as an inverse camera. This is usually performed by projecting horizontal and vertical sequences of patterns to establish one-to-one mapping between camera points and projector points. However, for a well-designed system, either horizontal or vertical fringe images are not sensitive to depth variation and thus yield inaccurate mapping. As a result, the calibration accuracy is jeopardized if a conventional calibration method is used. To address this limitation, this paper proposes a novel calibration method based on optimal fringe angle determination. Experiments demonstrate that our calibration approach can increase the measurement accuracy up to 38% compared to the conventional calibration method with a calibration volume of 300(H) mm×250(W) mm×500(D) mm.
Simultaneous calibration phantom commission and geometry calibration in cone beam CT
NASA Astrophysics Data System (ADS)
Xu, Yuan; Yang, Shuai; Ma, Jianhui; Li, Bin; Wu, Shuyu; Qi, Hongliang; Zhou, Linghong
2017-09-01
Geometry calibration is a vital step for describing the geometry of a cone beam computed tomography (CBCT) system and is a prerequisite for CBCT reconstruction. In current methods, calibration phantom commission and geometry calibration are divided into two independent tasks. Small errors in ball-bearing (BB) positioning in the phantom-making step will severely degrade the quality of phantom calibration. To solve this problem, we propose an integrated method to simultaneously realize geometry phantom commission and geometry calibration. Instead of assuming the accuracy of the geometry phantom, the integrated method considers BB centers in the phantom as an optimized parameter in the workflow. Specifically, an evaluation phantom and the corresponding evaluation contrast index are used to evaluate geometry artifacts for optimizing the BB coordinates in the geometry phantom. After utilizing particle swarm optimization, the CBCT geometry and BB coordinates in the geometry phantom are calibrated accurately and are then directly used for the next geometry calibration task in other CBCT systems. To evaluate the proposed method, both qualitative and quantitative studies were performed on simulated and realistic CBCT data. The spatial resolution of reconstructed images using dental CBCT can reach up to 15 line pair cm-1. The proposed method is also superior to the Wiesent method in experiments. This paper shows that the proposed method is attractive for simultaneous and accurate geometry phantom commission and geometry calibration.
NASA Astrophysics Data System (ADS)
Xu, T.; Valocchi, A. J.; Ye, M.; Liang, F.
2016-12-01
Due to simplification and/or misrepresentation of the real aquifer system, numerical groundwater flow and solute transport models are usually subject to model structural error. During model calibration, the hydrogeological parameters may be overly adjusted to compensate for unknown structural error. This may result in biased predictions when models are used to forecast aquifer response to new forcing. In this study, we extend a fully Bayesian method [Xu and Valocchi, 2015] to calibrate a real-world, regional groundwater flow model. The method uses a data-driven error model to describe model structural error and jointly infers model parameters and structural error. In this study, Bayesian inference is facilitated using high performance computing and fast surrogate models. The surrogate models are constructed using machine learning techniques to emulate the response simulated by the computationally expensive groundwater model. We demonstrate in the real-world case study that explicitly accounting for model structural error yields parameter posterior distributions that are substantially different from those derived by the classical Bayesian calibration that does not account for model structural error. In addition, the Bayesian with error model method gives significantly more accurate prediction along with reasonable credible intervals.
Gotanda, Tatsuhiro; Katsuda, Toshizo; Gotanda, Rumi; Kuwano, Tadao; Akagawa, Takuya; Tanki, Nobuyoshi; Tabuchi, Akihiko; Shimono, Tetsunori; Kawaji, Yasuyuki
2016-01-01
Radiochromic film dosimeters have a disadvantage in comparison with an ionization chamber in that the dosimetry process is time-consuming for creating a density-absorbed dose calibration curve. The purpose of this study was the development of a simplified method of creating a density-absorbed dose calibration curve from radiochromic film within a short time. This simplified method was performed using Gafchromic EBT3 film with a low energy dependence and step-shaped Al filter. The simplified method was compared with the standard method. The density-absorbed dose calibration curves created using the simplified and standard methods exhibited approximately similar straight lines, and the gradients of the density-absorbed dose calibration curves were -32.336 and -33.746, respectively. The simplified method can obtain calibration curves within a much shorter time compared to the standard method. It is considered that the simplified method for EBT3 film offers a more time-efficient means of determining the density-absorbed dose calibration curve within a low absorbed dose range such as the diagnostic range.
Gotanda, Tatsuhiro; Katsuda, Toshizo; Gotanda, Rumi; Kuwano, Tadao; Akagawa, Takuya; Tanki, Nobuyoshi; Tabuchi, Akihiko; Shimono, Tetsunori; Kawaji, Yasuyuki
2016-01-01
Radiochromic film dosimeters have a disadvantage in comparison with an ionization chamber in that the dosimetry process is time-consuming for creating a density-absorbed dose calibration curve. The purpose of this study was the development of a simplified method of creating a density-absorbed dose calibration curve from radiochromic film within a short time. This simplified method was performed using Gafchromic EBT3 film with a low energy dependence and step-shaped Al filter. The simplified method was compared with the standard method. The density-absorbed dose calibration curves created using the simplified and standard methods exhibited approximately similar straight lines, and the gradients of the density-absorbed dose calibration curves were −32.336 and −33.746, respectively. The simplified method can obtain calibration curves within a much shorter time compared to the standard method. It is considered that the simplified method for EBT3 film offers a more time-efficient means of determining the density-absorbed dose calibration curve within a low absorbed dose range such as the diagnostic range. PMID:28144120
Hill, Mary C.
1985-01-01
The purpose of this study was to develop a methodology to be used to investigate the aquifer characteristics and water supply potential of an aquifer system. In particular, the geohydrology of northern Long Valley, New Jersey, was investigated. Geohydrologic data were collected and analyzed to characterize the site. Analysis was accomplished by interpreting the available data and by using a numerical simulation of the watertable aquifer. Special attention was given to the estimation of hydraulic conductivity values and hydraulic conductivity structure which together define the hydraulic conductivity of the modeled aquifer. Hydraulic conductivity and all other aspects of the system were first estimated using the trial-and-error method of calibration. The estimation of hydraulic conductivity was improved using a least squares method to estimate hydraulic conductivity values and by improvements in the parameter structure. These efforts improved the calibration of the model far more than a preceding period of similar effort using the trial-and-error method of calibration. In addition, the proposed method provides statistical information on the reliability of estimated hydraulic conductivity values, calculated heads, and calculated flows. The methodology developed and applied in this work proved to be of substantial value in the evaluation of the aquifer considered.
A new systematic calibration method of ring laser gyroscope inertial navigation system
NASA Astrophysics Data System (ADS)
Wei, Guo; Gao, Chunfeng; Wang, Qi; Wang, Qun; Xiong, Zhenyu; Long, Xingwu
2016-10-01
Inertial navigation system has been the core component of both military and civil navigation systems. Before the INS is put into application, it is supposed to be calibrated in the laboratory in order to compensate repeatability error caused by manufacturing. Discrete calibration method cannot fulfill requirements of high-accurate calibration of the mechanically dithered ring laser gyroscope navigation system with shock absorbers. This paper has analyzed theories of error inspiration and separation in detail and presented a new systematic calibration method for ring laser gyroscope inertial navigation system. Error models and equations of calibrated Inertial Measurement Unit are given. Then proper rotation arrangement orders are depicted in order to establish the linear relationships between the change of velocity errors and calibrated parameter errors. Experiments have been set up to compare the systematic errors calculated by filtering calibration result with those obtained by discrete calibration result. The largest position error and velocity error of filtering calibration result are only 0.18 miles and 0.26m/s compared with 2 miles and 1.46m/s of discrete calibration result. These results have validated the new systematic calibration method and proved its importance for optimal design and accuracy improvement of calibration of mechanically dithered ring laser gyroscope inertial navigation system.
A Fully Integrated Sensor SoC with Digital Calibration Hardware and Wireless Transceiver at 2.4 GHz
Kim, Dong-Sun; Jang, Sung-Joon; Hwang, Tae-Ho
2013-01-01
A single-chip sensor system-on-a-chip (SoC) that implements radio for 2.4 GHz, complete digital baseband physical layer (PHY), 10-bit sigma-delta analog-to-digital converter and dedicated sensor calibration hardware for industrial sensing systems has been proposed and integrated in a 0.18-μm CMOS technology. The transceiver's building block includes a low-noise amplifier, mixer, channel filter, receiver signal-strength indicator, frequency synthesizer, voltage-controlled oscillator, and power amplifier. In addition, the digital building block consists of offset quadrature phase-shift keying (OQPSK) modulation, demodulation, carrier frequency offset compensation, auto-gain control, digital MAC function, sensor calibration hardware and embedded 8-bit microcontroller. The digital MAC function supports cyclic redundancy check (CRC), inter-symbol timing check, MAC frame control, and automatic retransmission. The embedded sensor signal processing block consists of calibration coefficient calculator, sensing data calibration mapper and sigma-delta analog-to-digital converter with digital decimation filter. The sensitivity of the overall receiver and the error vector magnitude (EVM) of the overall transmitter are −99 dBm and 18.14%, respectively. The proposed calibration scheme has a reduction of errors by about 45.4% compared with the improved progressive polynomial calibration (PPC) method and the maximum current consumption of the SoC is 16 mA. PMID:23698271
Calibration of weak-lensing shear in the Kilo-Degree Survey
NASA Astrophysics Data System (ADS)
Fenech Conti, I.; Herbonnet, R.; Hoekstra, H.; Merten, J.; Miller, L.; Viola, M.
2017-05-01
We describe and test the pipeline used to measure the weak-lensing shear signal from the Kilo-Degree Survey (KiDS). It includes a novel method of 'self-calibration' that partially corrects for the effect of noise bias. We also discuss the 'weight bias' that may arise in optimally weighted measurements, and present a scheme to mitigate that bias. To study the residual biases arising from both galaxy selection and shear measurement, and to derive an empirical correction to reduce the shear biases to ≲1 per cent, we create a suite of simulated images whose properties are close to those of the KiDS survey observations. We find that the use of 'self-calibration' reduces the additive and multiplicative shear biases significantly, although further correction via a calibration scheme is required, which also corrects for a dependence of the bias on galaxy properties. We find that the calibration relation itself is biased by the use of noisy, measured galaxy properties, which may limit the final accuracy that can be achieved. We assess the accuracy of the calibration in the tomographic bins used for the KiDS cosmic shear analysis, testing in particular the effect of possible variations in the uncertain distributions of galaxy size, magnitude and ellipticity, and conclude that the calibration procedure is accurate at the level of multiplicative bias ≲1 per cent required for the KiDS cosmic shear analysis.
NASA Astrophysics Data System (ADS)
Doihara, R.; Shimada, T.; Cheong, K. H.; Terao, Y.
2017-06-01
A flow calibration facility based on the gravimetric method using a double-wing diverter for hydrocarbon flows from 0.1 m3 h-1 to 15 m3 h-1 was constructed as a national measurement standard in Japan. The original working liquids were kerosene and light oil. The calibration facility was modified to calibrate flowmeters with two additional working liquids, industrial gasoline (flash point > 40 °C) and spindle oil, to achieve calibration over a wide viscosity range at the same calibration test rig. The kinematic viscosity range is 1.2 mm2 s-1 to 24 mm2 s-1. The contributions to the measurement uncertainty due to different types of working liquids were evaluated experimentally in this study. The evaporation error was reduced by using a seal system at the weighing tank inlet. The uncertainty due to droplets from the diverter wings was reduced by a modified diverter operation. The diverter timing errors for all types of working liquids were estimated. The expanded uncertainties for the calibration facility were estimated to be 0.020% for mass flow and 0.030% for volumetric flow for all considered types of liquids. Internal comparisons with other calibration facilities were also conducted, and the agreement was confirmed to be within the claimed expanded uncertainties.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Osthus, Dave; Godinez, Humberto C.; Rougier, Esteban
We presenmore » t a generic method for automatically calibrating a computer code to an experiment, with uncertainty, for a given “training” set of computer code runs. The calibration technique is general and probabilistic, meaning the calibration uncertainty is represented in the form of a probability distribution. We demonstrate the calibration method by calibrating a combined Finite-Discrete Element Method (FDEM) to a Split Hopkinson Pressure Bar (SHPB) experiment with a granite sample. The probabilistic calibration method combines runs of a FDEM computer simulation for a range of “training” settings and experimental uncertainty to develop a statistical emulator. The process allows for calibration of input parameters and produces output quantities with uncertainty estimates for settings where simulation results are desired. Input calibration and FDEM fitted results are presented. We find that the maximum shear strength σ t max and to a lesser extent maximum tensile strength σ n max govern the behavior of the stress-time curve before and around the peak, while the specific energy in Mode II (shear) E t largely governs the post-peak behavior of the stress-time curve. Good agreement is found between the calibrated FDEM and the SHPB experiment. Interestingly, we find the SHPB experiment to be rather uninformative for calibrating the softening-curve shape parameters (a, b, and c). This work stands as a successful demonstration of how a general probabilistic calibration framework can automatically calibrate FDEM parameters to an experiment.« less
Osthus, Dave; Godinez, Humberto C.; Rougier, Esteban; ...
2018-05-01
We presenmore » t a generic method for automatically calibrating a computer code to an experiment, with uncertainty, for a given “training” set of computer code runs. The calibration technique is general and probabilistic, meaning the calibration uncertainty is represented in the form of a probability distribution. We demonstrate the calibration method by calibrating a combined Finite-Discrete Element Method (FDEM) to a Split Hopkinson Pressure Bar (SHPB) experiment with a granite sample. The probabilistic calibration method combines runs of a FDEM computer simulation for a range of “training” settings and experimental uncertainty to develop a statistical emulator. The process allows for calibration of input parameters and produces output quantities with uncertainty estimates for settings where simulation results are desired. Input calibration and FDEM fitted results are presented. We find that the maximum shear strength σ t max and to a lesser extent maximum tensile strength σ n max govern the behavior of the stress-time curve before and around the peak, while the specific energy in Mode II (shear) E t largely governs the post-peak behavior of the stress-time curve. Good agreement is found between the calibrated FDEM and the SHPB experiment. Interestingly, we find the SHPB experiment to be rather uninformative for calibrating the softening-curve shape parameters (a, b, and c). This work stands as a successful demonstration of how a general probabilistic calibration framework can automatically calibrate FDEM parameters to an experiment.« less
Calibrating a Rainfall-Runoff and Routing Model for the Continental United States
NASA Astrophysics Data System (ADS)
Jankowfsky, S.; Li, S.; Assteerawatt, A.; Tillmanns, S.; Hilberts, A.
2014-12-01
Catastrophe risk models are widely used in the insurance industry to estimate the cost of risk. The models consist of hazard models linked to vulnerability and financial loss models. In flood risk models, the hazard model generates inundation maps. In order to develop country wide inundation maps for different return periods a rainfall-runoff and routing model is run using stochastic rainfall data. The simulated discharge and runoff is then input to a two dimensional inundation model, which produces the flood maps. In order to get realistic flood maps, the rainfall-runoff and routing models have to be calibrated with observed discharge data. The rainfall-runoff model applied here is a semi-distributed model based on the Topmodel (Beven and Kirkby, 1979) approach which includes additional snowmelt and evapotranspiration models. The routing model is based on the Muskingum-Cunge (Cunge, 1969) approach and includes the simulation of lakes and reservoirs using the linear reservoir approach. Both models were calibrated using the multiobjective NSGA-II (Deb et al., 2002) genetic algorithm with NLDAS forcing data and around 4500 USGS discharge gauges for the period from 1979-2013. Additional gauges having no data after 1979 were calibrated using CPC rainfall data. The model performed well in wetter regions and shows the difficulty of simulating areas with sinks such as karstic areas or dry areas. Beven, K., Kirkby, M., 1979. A physically based, variable contributing area model of basin hydrology. Hydrol. Sci. Bull. 24 (1), 43-69. Cunge, J.A., 1969. On the subject of a flood propagation computation method (Muskingum method), J. Hydr. Research, 7(2), 205-230. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T., 2002. A fast and elitist multiobjective genetic algorithm: NSGA-II, IEEE Transactions on evolutionary computation, 6(2), 182-197.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Habte, Aron; Sengupta, Manajit; Andreas, Afshin
Banks financing solar energy projects require assurance that these systems will produce the energy predicted. Furthermore, utility planners and grid system operators need to understand the impact of the variable solar resource on solar energy conversion system performance. Accurate solar radiation data sets reduce the expense associated with mitigating performance risk and assist in understanding the impacts of solar resource variability. The accuracy of solar radiation measured by radiometers depends on the instrument performance specification, installation method, calibration procedure, measurement conditions, maintenance practices, location, and environmental conditions. This study addresses the effect of different calibration methods provided by radiometric calibrationmore » service providers, such as NREL and manufacturers of radiometers, on the resulting calibration responsivity. Some of these radiometers are calibrated indoors and some outdoors. To establish or understand the differences in calibration methodology, we processed and analyzed field-measured data from these radiometers. This study investigates calibration responsivities provided by NREL's broadband outdoor radiometer calibration (BORCAL) and a few prominent manufacturers. The BORCAL method provides the outdoor calibration responsivity of pyranometers and pyrheliometers at 45 degree solar zenith angle, and as a function of solar zenith angle determined by clear-sky comparisons with reference irradiance. The BORCAL method also employs a thermal offset correction to the calibration responsivity of single-black thermopile detectors used in pyranometers. Indoor calibrations of radiometers by their manufacturers are performed using a stable artificial light source in a side-by-side comparison between the test radiometer under calibration and a reference radiometer of the same type. In both methods, the reference radiometer calibrations are traceable to the World Radiometric Reference (WRR). These different methods of calibration demonstrated +1% to +2% differences in solar irradiance measurement. Analyzing these differences will ultimately help determine the uncertainty of the field radiometer data and guide the development of a consensus standard for calibration. Further advancing procedures for precisely calibrating radiometers to world reference standards that reduce measurement uncertainty will allow more accurate prediction of solar output and improve the bankability of solar projects.« less
Kinoshita, Kohnosuke; Jingu, Shigeji; Yamaguchi, Jun-ichi
2013-01-15
A bioanalytical method for determining endogenous d-serine levels in the mouse brain using a surrogate analyte and liquid chromatography-tandem mass spectrometry (LC-MS/MS) was developed. [2,3,3-(2)H]D-serine and [(15)N]D-serine were used as a surrogate analyte and an internal standard, respectively. The surrogate analyte was spiked into brain homogenate to yield calibration standards and quality control (QC) samples. Both endogenous and surrogate analytes were extracted using protein precipitation followed by solid phase extraction. Enantiomeric separation was achieved on a chiral crown ether column with an analysis time of only 6 min without any derivatization. The column eluent was introduced into an electrospray interface of a triple-quadrupole mass spectrometer. The calibration range was 1.00 to 300 nmol/g, and the method showed acceptable accuracy and precision at all QC concentration levels from a validation point of view. In addition, the brain d-serine levels of normal mice determined using this method were the same as those obtained by a standard addition method, which is time-consuming but is often used for the accurate measurement of endogenous substances. Thus, this surrogate analyte method should be applicable to the measurement of d-serine levels as a potential biomarker for monitoring certain effects of drug candidates on the central nervous system. Copyright © 2012 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Mu, Tingkui; Bao, Donghao; Zhang, Chunmin; Chen, Zeyu; Song, Jionghui
2018-07-01
During the calibration of the system matrix of a Stokes polarimeter using reference polarization states (RPSs) and pseudo-inversion estimation method, the measurement intensities are usually noised by the signal-independent additive Gaussian noise or signal-dependent Poisson shot noise, the precision of the estimated system matrix is degraded. In this paper, we present a paradigm for selecting RPSs to improve the precision of the estimated system matrix in the presence of both types of noise. The analytical solution of the precision of the system matrix estimated with the RPSs are derived. Experimental measurements from a general Stokes polarimeter show that accurate system matrix is estimated with the optimal RPSs, which are generated using two rotating quarter-wave plates. The advantage of using optimal RPSs is a reduction in measurement time with high calibration precision.
Calibration Method to Eliminate Zeroth Order Effect in Lateral Shearing Interferometry
NASA Astrophysics Data System (ADS)
Fang, Chao; Xiang, Yang; Qi, Keqi; Chen, Dawei
2018-04-01
In this paper, a calibration method is proposed which eliminates the zeroth order effect in lateral shearing interferometry. An analytical expression of the calibration error function is deduced, and the relationship between the phase-restoration error and calibration error is established. The analytical results show that the phase-restoration error introduced by the calibration error is proportional to the phase shifting error and zeroth order effect. The calibration method is verified using simulations and experiments. The simulation results show that the phase-restoration error is approximately proportional to the phase shift error and zeroth order effect, when the phase shifting error is less than 2° and the zeroth order effect is less than 0.2. The experimental result shows that compared with the conventional method with 9-frame interferograms, the calibration method with 5-frame interferograms achieves nearly the same restoration accuracy.
NASA Astrophysics Data System (ADS)
Krimi, Soufiene; Beigang, René
2017-02-01
In this contribution, we present a highly accurate approach for real-time thickness measurements of multilayered coatings using terahertz time domain spectroscopy in reflection geometry. The proposed approach combines the benefits of a model-based material parameters extraction method to calibrate the specimen under test, a generalized modeling method to simulate the terahertz radiation behavior within arbitrary thin films, and the robustness of a powerful evolutionary optimization algorithm to increase the sensitivity and the precision of the minimum thickness measurement limit. Furthermore, a novel self-calibration model is introduced, which takes into consideration the real industrial challenges such as the effect of wet-on-wet spray in the car painting process and the influence of the spraying conditions and the sintering process on ceramic thermal barrier coatings (TBCs) in aircraft industry. In addition, the developed approach enables for some applications the simultaneous determination of the complex refractive index and the coating thickness. Hence, a pre-calibration of the specimen under test is not required for such cases. Due to the high robustness of the self-calibration method and the genetic optimization algorithms, the approach has been successfully applied to resolve individual layer thicknesses within multi-layered coated samples down to less than 10 µm. The regression method can be applied in time-domain, frequency-domain or in both the time and frequency-domain simultaneously. The data evaluation uses general-purpose computing on graphics processing units and thanks to the developed highly parallelized algorithm lasts less than 300 ms. Thus, industrial requirements for fast thickness measurements with an "every-second-cycle" can be fulfilled.
Strain gage installation and survivability on geosynthetics used in flexible pavements
NASA Astrophysics Data System (ADS)
Brooks, Jeremy A.
The use of foil type strain gages on geosynthetics is poorly documented. In addition, very few individuals are versed in proper installation techniques or calibration methods. Due to the limited number of knowledgeable technicians there is no information regarding the susceptibility of theses gages to errors in installation by inexperienced installers. Also lacking in the documentation related to the use of foil type strain gages on geosynthetics is the survivability of the gages in field conditions. This research documented procedures for installation, calibration, and survivability used by the project team to instruments a full scale field installation in Marked Tree, AR. This research also addressed sensitivity to installation errors on both geotextile and geogrid. To document the process of gage installation an experienced technician, Mr. Joe Ables, formerly of the UASCE Waterways Experiment Station, was consulted. His techniques were combined with those discovered in related literature and those developed by the research team to develop processes that were adaptable to multiple gage geometries and parent geosynthetics. These processes were described and documented in a step by step manner with accompanying photographs, which should allow virtually anyone with basic electronics knowledge to install these gages properly. Calibration of the various geosynthetic / strain gage combinations was completed using wide width tensile testing on multiple samples of each material. The tensile testing process was documented and analyzed using digital photography to analyze strain on the strain gage itself. Calibration factors for each geosynthtics used in the full scale field testing were developed. In addition, the process was thoroughly documented to allow future researchers to calibrate additional strain gage and geosynthetic combinations. The sensitivity of the strain gages to installation errors was analyzed using wide width tensile testing and digital photography to determine the variability of the data collected from gages with noticeable installation errors as compared to properly installed gages. Induced errors varied based on the parent geosynthetics material, but included excessive and minimal waterproofing, gage rotation, gage shift, excessive and minimal adhesive, and excessive and minimal adhesive impregnation loads. The results of this work indicated that minor errors in geotextile gage installation that are noticeable and preventable by the experienced installer have no statistical significance on the data recorded during the life span of geotextile gages; however the lifespan of the gage may be noticeably shortened by such errors. Geogrid gage installation errors were found to cause statistically significant changes in the data recorded from improper installations. The issue of gage survivability was analyzed using small scale test sections instrumented and loaded similarly to field conditions anticipated during traditional roadway construction. Five methods of protection were tested for both geotextile and geogrid including a sand blanket, inversion, semi-hemispherical PCV sections, neoprene mats, and geosynthetic wick drain. Based on this testing neoprene mats were selected to protect geotextile installed gages, and wick drains were selected to protect geogrid installed gages. These methods resulted in survivability rates of 73% and 100% in the full scale installation respectively. This research and documentation may be used to train technicians to install and calibrate geosynthetic mounted foil type strain gages. In addition, technicians should be able to install gages in the field with a high probability of gage survivability using the protection methods recommended.
NASA Technical Reports Server (NTRS)
Wang, Menghua
2003-01-01
The primary focus of this proposed research is for the atmospheric correction algorithm evaluation and development and satellite sensor calibration and characterization. It is well known that the atmospheric correction, which removes more than 90% of sensor-measured signals contributed from atmosphere in the visible, is the key procedure in the ocean color remote sensing (Gordon and Wang, 1994). The accuracy and effectiveness of the atmospheric correction directly affect the remotely retrieved ocean bio-optical products. On the other hand, for ocean color remote sensing, in order to obtain the required accuracy in the derived water-leaving signals from satellite measurements, an on-orbit vicarious calibration of the whole system, i.e., sensor and algorithms, is necessary. In addition, it is important to address issues of (i) cross-calibration of two or more sensors and (ii) in-orbit vicarious calibration of the sensor-atmosphere system. The goal of these researches is to develop methods for meaningful comparison and possible merging of data products from multiple ocean color missions. In the past year, much efforts have been on (a) understanding and correcting the artifacts appeared in the SeaWiFS-derived ocean and atmospheric produces; (b) developing an efficient method in generating the SeaWiFS aerosol lookup tables, (c) evaluating the effects of calibration error in the near-infrared (NIR) band to the atmospheric correction of the ocean color remote sensors, (d) comparing the aerosol correction algorithm using the singlescattering epsilon (the current SeaWiFS algorithm) vs. the multiple-scattering epsilon method, and (e) continuing on activities for the International Ocean-Color Coordinating Group (IOCCG) atmospheric correction working group. In this report, I will briefly present and discuss these and some other research activities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, Dan; Ricciuto, Daniel M.; Walker, Anthony P.
Calibration of terrestrial ecosystem models is important but challenging. Bayesian inference implemented by Markov chain Monte Carlo (MCMC) sampling provides a comprehensive framework to estimate model parameters and associated uncertainties using their posterior distributions. The effectiveness and efficiency of the method strongly depend on the MCMC algorithm used. In this work, a differential evolution adaptive Metropolis (DREAM) algorithm is used to estimate posterior distributions of 21 parameters for the data assimilation linked ecosystem carbon (DALEC) model using 14 years of daily net ecosystem exchange data collected at the Harvard Forest Environmental Measurement Site eddy-flux tower. The calibration of DREAM results inmore » a better model fit and predictive performance compared to the popular adaptive Metropolis (AM) scheme. Moreover, DREAM indicates that two parameters controlling autumn phenology have multiple modes in their posterior distributions while AM only identifies one mode. The application suggests that DREAM is very suitable to calibrate complex terrestrial ecosystem models, where the uncertain parameter size is usually large and existence of local optima is always a concern. In addition, this effort justifies the assumptions of the error model used in Bayesian calibration according to the residual analysis. Here, the result indicates that a heteroscedastic, correlated, Gaussian error model is appropriate for the problem, and the consequent constructed likelihood function can alleviate the underestimation of parameter uncertainty that is usually caused by using uncorrelated error models.« less
Lu, Dan; Ricciuto, Daniel M.; Walker, Anthony P.; ...
2017-09-27
Calibration of terrestrial ecosystem models is important but challenging. Bayesian inference implemented by Markov chain Monte Carlo (MCMC) sampling provides a comprehensive framework to estimate model parameters and associated uncertainties using their posterior distributions. The effectiveness and efficiency of the method strongly depend on the MCMC algorithm used. In this work, a differential evolution adaptive Metropolis (DREAM) algorithm is used to estimate posterior distributions of 21 parameters for the data assimilation linked ecosystem carbon (DALEC) model using 14 years of daily net ecosystem exchange data collected at the Harvard Forest Environmental Measurement Site eddy-flux tower. The calibration of DREAM results inmore » a better model fit and predictive performance compared to the popular adaptive Metropolis (AM) scheme. Moreover, DREAM indicates that two parameters controlling autumn phenology have multiple modes in their posterior distributions while AM only identifies one mode. The application suggests that DREAM is very suitable to calibrate complex terrestrial ecosystem models, where the uncertain parameter size is usually large and existence of local optima is always a concern. In addition, this effort justifies the assumptions of the error model used in Bayesian calibration according to the residual analysis. Here, the result indicates that a heteroscedastic, correlated, Gaussian error model is appropriate for the problem, and the consequent constructed likelihood function can alleviate the underestimation of parameter uncertainty that is usually caused by using uncorrelated error models.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
De Putter, Roland; Doré, Olivier; Das, Sudeep
2014-01-10
Cross correlations between the galaxy number density in a lensing source sample and that in an overlapping spectroscopic sample can in principle be used to calibrate the lensing source redshift distribution. In this paper, we study in detail to what extent this cross-correlation method can mitigate the loss of cosmological information in upcoming weak lensing surveys (combined with a cosmic microwave background prior) due to lack of knowledge of the source distribution. We consider a scenario where photometric redshifts are available and find that, unless the photometric redshift distribution p(z {sub ph}|z) is calibrated very accurately a priori (bias andmore » scatter known to ∼0.002 for, e.g., EUCLID), the additional constraint on p(z {sub ph}|z) from the cross-correlation technique to a large extent restores the cosmological information originally lost due to the uncertainty in dn/dz(z). Considering only the gain in photo-z accuracy and not the additional cosmological information, enhancements of the dark energy figure of merit of up to a factor of four (40) can be achieved for a SuMIRe-like (EUCLID-like) combination of lensing and redshift surveys, where SuMIRe stands for Subaru Measurement of Images and Redshifts). However, the success of the method is strongly sensitive to our knowledge of the galaxy bias evolution in the source sample and we find that a percent level bias prior is needed to optimize the gains from the cross-correlation method (i.e., to approach the cosmology constraints attainable if the bias was known exactly).« less
Advances in spectroscopic methods for quantifying soil carbon
Reeves, James B.; McCarty, Gregory W.; Calderon, Francisco; Hively, W. Dean
2012-01-01
The current gold standard for soil carbon (C) determination is elemental C analysis using dry combustion. However, this method requires expensive consumables, is limited by the number of samples that can be processed (~100/d), and is restricted to the determination of total carbon. With increased interest in soil C sequestration, faster methods of analysis are needed, and there is growing interest in methods based on diffuse reflectance spectroscopy in the visible, near-infrared or mid-infrared spectral ranges. These spectral methods can decrease analytical requirements and speed sample processing, be applied to large landscape areas using remote sensing imagery, and be used to predict multiple analytes simultaneously. However, the methods require localized calibrations to establish the relationship between spectral data and reference analytical data, and also have additional, specific problems. For example, remote sensing is capable of scanning entire watersheds for soil carbon content but is limited to the surface layer of tilled soils and may require difficult and extensive field sampling to obtain proper localized calibration reference values. The objective of this chapter is to discuss the present state of spectroscopic methods for determination of soil carbon.
NASA Astrophysics Data System (ADS)
Bai, Xue-Mei; Liu, Tie; Liu, De-Long; Wei, Yong-Ju
2018-02-01
A chemometrics-assisted excitation-emission matrix (EEM) fluorescence method was proposed for simultaneous determination of α-asarone and β-asarone in Acorus tatarinowii. Using the strategy of combining EEM data with chemometrics methods, the simultaneous determination of α-asarone and β-asarone in the complex Traditional Chinese medicine system was achieved successfully, even in the presence of unexpected interferents. The physical or chemical separation step was avoided due to the use of ;mathematical separation;. Six second-order calibration methods were used including parallel factor analysis (PARAFAC), alternating trilinear decomposition (ATLD), alternating penalty trilinear decomposition (APTLD), self-weighted alternating trilinear decomposition (SWATLD), the unfolded partial least-squares (U-PLS) and multidimensional partial least-squares (N-PLS) with residual bilinearization (RBL). In addition, HPLC method was developed to further validate the presented strategy. Consequently, for the validation samples, the analytical results obtained by six second-order calibration methods were almost accurate. But for the Acorus tatarinowii samples, the results indicated a slightly better predictive ability of N-PLS/RBL procedure over other methods.
Application of Composite Small Calibration Objects in Traffic Accident Scene Photogrammetry
Chen, Qiang; Xu, Hongguo; Tan, Lidong
2015-01-01
In order to address the difficulty of arranging large calibration objects and the low measurement accuracy of small calibration objects in traffic accident scene photogrammetry, a photogrammetric method based on a composite of small calibration objects is proposed. Several small calibration objects are placed around the traffic accident scene, and the coordinate system of the composite calibration object is given based on one of them. By maintaining the relative position and coplanar relationship of the small calibration objects, the local coordinate system of each small calibration object is transformed into the coordinate system of the composite calibration object. The two-dimensional direct linear transformation method is improved based on minimizing the reprojection error of the calibration points of all objects. A rectified image is obtained using the nonlinear optimization method. The increased accuracy of traffic accident scene photogrammetry using a composite small calibration object is demonstrated through the analysis of field experiments and case studies. PMID:26011052
Vision-Aided RAIM: A New Method for GPS Integrity Monitoring in Approach and Landing Phase
Fu, Li; Zhang, Jun; Li, Rui; Cao, Xianbin; Wang, Jinling
2015-01-01
In the 1980s, Global Positioning System (GPS) receiver autonomous integrity monitoring (RAIM) was proposed to provide the integrity of a navigation system by checking the consistency of GPS measurements. However, during the approach and landing phase of a flight path, where there is often low GPS visibility conditions, the performance of the existing RAIM method may not meet the stringent aviation requirements for availability and integrity due to insufficient observations. To solve this problem, a new RAIM method, named vision-aided RAIM (VA-RAIM), is proposed for GPS integrity monitoring in the approach and landing phase. By introducing landmarks as pseudo-satellites, the VA-RAIM enriches the navigation observations to improve the performance of RAIM. In the method, a computer vision system photographs and matches these landmarks to obtain additional measurements for navigation. Nevertheless, the challenging issue is that such additional measurements may suffer from vision errors. To ensure the reliability of the vision measurements, a GPS-based calibration algorithm is presented to reduce the time-invariant part of the vision errors. Then, the calibrated vision measurements are integrated with the GPS observations for integrity monitoring. Simulation results show that the VA-RAIM outperforms the conventional RAIM with a higher level of availability and fault detection rate. PMID:26378533
Vision-Aided RAIM: A New Method for GPS Integrity Monitoring in Approach and Landing Phase.
Fu, Li; Zhang, Jun; Li, Rui; Cao, Xianbin; Wang, Jinling
2015-09-10
In the 1980s, Global Positioning System (GPS) receiver autonomous integrity monitoring (RAIM) was proposed to provide the integrity of a navigation system by checking the consistency of GPS measurements. However, during the approach and landing phase of a flight path, where there is often low GPS visibility conditions, the performance of the existing RAIM method may not meet the stringent aviation requirements for availability and integrity due to insufficient observations. To solve this problem, a new RAIM method, named vision-aided RAIM (VA-RAIM), is proposed for GPS integrity monitoring in the approach and landing phase. By introducing landmarks as pseudo-satellites, the VA-RAIM enriches the navigation observations to improve the performance of RAIM. In the method, a computer vision system photographs and matches these landmarks to obtain additional measurements for navigation. Nevertheless, the challenging issue is that such additional measurements may suffer from vision errors. To ensure the reliability of the vision measurements, a GPS-based calibration algorithm is presented to reduce the time-invariant part of the vision errors. Then, the calibrated vision measurements are integrated with the GPS observations for integrity monitoring. Simulation results show that the VA-RAIM outperforms the conventional RAIM with a higher level of availability and fault detection rate.
A Survey of Clinical Faculty Calibration in Dental Hygiene Programs.
Dicke, Nichole L; Hodges, Kathleen O; Rogo, Ellen J; Hewett, Beverly J
2015-08-01
This study investigated the calibration efforts of entry-level dental hygiene programs in the U.S. Four aspects were explored, including attitudes, characteristics, quality and satisfaction, to evaluate current calibration practices. A descriptive comparative survey design was used. Directors of accredited dental hygiene programs (n=345) were asked to forward an electronic survey invitation to clinical faculty. Eighty-five directors forwarded the survey to 847 faculty; 45.3% (n=384) participated. The 37-item survey contained multiple-choice and Likert scale questions and was available for 3 weeks. Descriptive statistics were used to analyze demographic data and research questions. The Kruskal-Wallis, Spearman Correlation Coefficient and Mann-Whitney U tests were employed to analyze hypotheses (p=0.05). The demographic profile for participants revealed that most worked for institutions awarding associate entry-level degrees, had 1 to 10 years' experience, taught clinically and didactically, and held a master's degree. Clinical instructors valued calibration, believed it reduced variation and wanted more calibration. Some were not offered quality calibration. There was a difference between the entry-level degree awarded and the program's evaluation of clinical skill faculty reliability, as analyzed using the Kruskal-Wallis test (p=0.008). Additionally, full-time versus part-time educators reported more observed student frustration with faculty variance, as evaluated using the Mann-Whitney U test (p=0.001, bfp=0.004). Faculty members value calibration's potential benefits and want enhanced calibration efforts. Calibration efforts need to be improved to include standards for measuring intra- and inter-rater reliability and plans for resolving inconsistencies. More research is needed to determine effective calibration methods and their impact on student learning. Copyright © 2015 The American Dental Hygienists’ Association.
An Overview of Lunar Calibration and Characterization for the EOS Terra and Aqua MODIS
NASA Technical Reports Server (NTRS)
Xiong, X.; Salomonson, V. V.; Sun, J.; Chiang, K.; Xiong, S.; Humphries, S.; Barnes, W.; Guenther, B.
2004-01-01
The Moon can be used as a stable source for Earth-observing sensors on-orbit radiometric and spatial stability monitoring in the VIS and NIR spectral regions. It can also serve as a calibration transfer vehicle among multiple sensors. Nearly identical copies of the Moderate Resolution Imaging Spectroradiometer (MODE) have been operating on-board the NASA's Earth Observing System (EOS) Terra and Aqua satellites since their launches in December 1999 and May 2002, respectively. Terra and Aqua MODIS each make observations in 36 spectral bands covering the spectral range from 0.41 to 14.5 microns and are calibrated on-orbit by a set of on-board calibrations (OBCs) including: 1) a solar diffuser (SD), 2) a solar diffuser stability monitor (SDSM), 3) a blackbody (BB), and 4) a spectro-radiometric calibration assembly (SRCA). In addition to fully utilizing the OBCs, the Moon has been used extensively by both Terra and Aqua MODIS to support their on-orbit calibration and characterization. A 4 This paper provides an overview of applications of lunar calibration and characterization from the MODIS perspective, including monitoring radiometric calibration stability for the reflective solar bands (RSBs), tracking changes of the sensors response versus scan-angle (RVS), examining the sensors spatial performance , and characterizing optical leaks and electronic crosstalk among different spectral bands and detectors. On-orbit calibration consistency between the two MODIS instruments is also addressed. Based on the existing on-orbit time series of the Terra and Aqua MODIS lunar observations, the radiometric difference between the two sensors is less than +/-1% for the RSBs. This method provides a powerful means of performing calibration comparisons among Earth-observing sensors and assures consistent data and science products for the long-term studies of climate and environmental changes.
Using the entire history in the analysis of nested case cohort samples.
Rivera, C L; Lumley, T
2016-08-15
Countermatching designs can provide more efficient estimates than simple matching or case-cohort designs in certain situations such as when good surrogate variables for an exposure of interest are available. We extend pseudolikelihood estimation for the Cox model under countermatching designs to models where time-varying covariates are considered. We also implement pseudolikelihood with calibrated weights to improve efficiency in nested case-control designs in the presence of time-varying variables. A simulation study is carried out, which considers four different scenarios including a binary time-dependent variable, a continuous time-dependent variable, and the case including interactions in each. Simulation results show that pseudolikelihood with calibrated weights under countermatching offers large gains in efficiency if compared to case-cohort. Pseudolikelihood with calibrated weights yielded more efficient estimators than pseudolikelihood estimators. Additionally, estimators were more efficient under countermatching than under case-cohort for the situations considered. The methods are illustrated using the Colorado Plateau uranium miners cohort. Furthermore, we present a general method to generate survival times with time-varying covariates. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Keich, Uri; Noble, William Stafford
2017-01-01
Estimating the false discovery rate (FDR) among a list of tandem mass spectrum identifications is mostly done through target-decoy competition (TDC). Here we offer two new methods that can use an arbitrarily small number of additional randomly drawn decoy databases to improve TDC. Specifically, “Partial Calibration” utilizes a new meta-scoring scheme that allows us to gradually benefit from the increase in the number of identifications calibration yields and “Averaged TDC” (a-TDC) reduces the liberal bias of TDC for small FDR values and its variability throughout. Combining a-TDC with “Progressive Calibration” (PC), which attempts to find the “right” number of decoys required for calibration we see substantial impact in real datasets: when analyzing the Plasmodium falciparum data it typically yields almost the entire 17% increase in discoveries that “full calibration” yields (at FDR level 0.05) using 60 times fewer decoys. Our methods are further validated using a novel realistic simulation scheme and importantly, they apply more generally to the problem of controlling the FDR among discoveries from searching an incomplete database. PMID:29326989
Development of one-shot aspheric measurement system with a Shack-Hartmann sensor.
Furukawa, Yasunori; Takaie, Yuichi; Maeda, Yoshiki; Ohsaki, Yumiko; Takeuchi, Seiji; Hasegawa, Masanobu
2016-10-10
We present a measurement system for a rotationally symmetric aspheric surface that is designed for accurate and high-volume measurements. The system uses the Shack-Hartmann sensor and is capable of measuring aspheres with a maximum diameter of 90 mm in one shot. In our system, a reference surface, made with the same aspheric parameter as the test surface, is prepared. The test surface is recovered as the deviation from the reference surface using a figure-error reconstruction algorithm with a ray coordinate and angle variant table. In addition, we developed a method to calibrate the rotationally symmetric system error. These techniques produce stable measurements and high accuracy. For high-throughput measurements, a single measurement scheme and auto alignment are implemented; they produce a 4.5 min measurement time, including calibration and alignment. In this paper, we introduce the principle and calibration method of our system. We also demonstrate that our system achieved an accuracy better than 5.8 nm RMS and a repeatability of 0.75 nm RMS by comparing our system's aspheric measurement results with those of a probe measurement machine.
NASA Astrophysics Data System (ADS)
Bagán, H.; Tarancón, A.; Rauret, G.; García, J. F.
2008-07-01
The quenching parameters used to model detection efficiency variations in scintillation measurements have not evolved since the decade of 1970s. Meanwhile, computer capabilities have increased enormously and ionization quenching has appeared in practical measurements using plastic scintillation. This study compares the results obtained in activity quantification by plastic scintillation of 14C samples that contain colour and ionization quenchers, using classical (SIS, SCR-limited, SCR-non-limited, SIS(ext), SQP(E)) and evolved (MWA-SCR and WDW) parameters and following three calibration approaches: single step, which does not take into account the quenching mechanism; two steps, which takes into account the quenching phenomena; and multivariate calibration. Two-step calibration (ionization followed by colour) yielded the lowest relative errors, which means that each quenching phenomenon must be specifically modelled. In addition, the sample activity was quantified more accurately when the evolved parameters were used. Multivariate calibration-PLS also yielded better results than those obtained using classical parameters, which confirms that the quenching phenomena must be taken into account. The detection limits for each calibration method and each parameter were close to those obtained theoretically using the Currie approach.
Ito, Shinya; Tsukada, Katsuo
2002-01-11
An evaluation of the feasibility of liquid chromatography-mass spectrometry (LC-MS) with atmospheric pressure ionization was made for quantitation of four diarrhetic shellfish poisoning toxins, okadaic acid, dinophysistoxin-1, pectenotoxin-6 and yessotoxin in scallops. When LC-MS was applied to the analysis of scallop extracts, large signal suppressions were observed due to coeluting substances from the column. To compensate for these matrix signal suppressions, the standard addition method was applied. First, the sample was analyzed and then the sample involving the addition of calibration standards is analyzed. Although this method requires two LC-MS runs per analysis, effective correction of quantitative errors was found.
Comparison of TLD calibration methods for 192Ir dosimetry
Butler, Duncan J.; Wilfert, Lisa; Ebert, Martin A.; Todd, Stephen P.; Hayton, Anna J.M.; Kron, Tomas
2013-01-01
For the purpose of dose measurement using a high‐dose rate 192Ir source, four methods of thermoluminescent dosimeter (TLD) calibration were investigated. Three of the four calibration methods used the 192Ir source. Dwell times were calculated to deliver 1 Gy to the TLDs irradiated either in air or water. Dwell time calculations were confirmed by direct measurement using an ionization chamber. The fourth method of calibration used 6 MV photons from a medical linear accelerator, and an energy correction factor was applied to account for the difference in sensitivity of the TLDs in 192Ir and 6 M V. The results of the four TLD calibration methods are presented in terms of the results of a brachytherapy audit where seven Australian centers irradiated three sets of TLDs in a water phantom. The results were in agreement within estimated uncertainties when the TLDs were calibrated with the 192Ir source. Calibrating TLDs in a phantom similar to that used for the audit proved to be the most practical method and provided the greatest confidence in measured dose. When calibrated using 6 MV photons, the TLD results were consistently higher than the 192Ir−calibrated TLDs, suggesting this method does not fully correct for the response of the TLDs when irradiated in the audit phantom. PACS number: 87 PMID:23318392
Methods for Calibration of Prout-Tompkins Kinetics Parameters Using EZM Iteration and GLO
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wemhoff, A P; Burnham, A K; de Supinski, B
2006-11-07
This document contains information regarding the standard procedures used to calibrate chemical kinetics parameters for the extended Prout-Tompkins model to match experimental data. Two methods for calibration are mentioned: EZM calibration and GLO calibration. EZM calibration matches kinetics parameters to three data points, while GLO calibration slightly adjusts kinetic parameters to match multiple points. Information is provided regarding the theoretical approach and application procedure for both of these calibration algorithms. It is recommended that for the calibration process, the user begin with EZM calibration to provide a good estimate, and then fine-tune the parameters using GLO. Two examples have beenmore » provided to guide the reader through a general calibrating process.« less
Analysis of the Best-Fit Sky Model Produced Through Redundant Calibration of Interferometers
NASA Astrophysics Data System (ADS)
Storer, Dara; Pober, Jonathan
2018-01-01
21 cm cosmology provides unique insights into the formation of stars and galaxies in the early universe, and particularly the Epoch of Reionization. Detection of the 21 cm line is challenging because it is generally 4-5 magnitudes weaker than the emission from foreground sources, and therefore the instruments used for detection must be carefully designed and calibrated. 21 cm cosmology is primarily conducted using interferometers, which are difficult to calibrate because of their complex structure. Here I explore the relationship between sky-based calibration, which relies on an accurate and comprehensive sky model, and redundancy-based calibration, which makes use of redundancies in the orientation of the interferometer's dishes. In addition to producing calibration parameters, redundant calibration also produces a best fit model of the sky. In this work I examine that sky model and explore the possibility of using that best fit model as an additional input to improve on sky-based calibration.
A calibration method based on virtual large planar target for cameras with large FOV
NASA Astrophysics Data System (ADS)
Yu, Lei; Han, Yangyang; Nie, Hong; Ou, Qiaofeng; Xiong, Bangshu
2018-02-01
In order to obtain high precision in camera calibration, a target should be large enough to cover the whole field of view (FOV). For cameras with large FOV, using a small target will seriously reduce the precision of calibration. However, using a large target causes many difficulties in making, carrying and employing the large target. In order to solve this problem, a calibration method based on the virtual large planar target (VLPT), which is virtually constructed with multiple small targets (STs), is proposed for cameras with large FOV. In the VLPT-based calibration method, first, the positions and directions of STs are changed several times to obtain a number of calibration images. Secondly, the VLPT of each calibration image is created by finding the virtual point corresponding to the feature points of the STs. Finally, intrinsic and extrinsic parameters of the camera are calculated by using the VLPTs. Experiment results show that the proposed method can not only achieve the similar calibration precision as those employing a large target, but also have good stability in the whole measurement area. Thus, the difficulties to accurately calibrate cameras with large FOV can be perfectly tackled by the proposed method with good operability.
NASA Technical Reports Server (NTRS)
Taylor, Brian R.
2012-01-01
A novel, efficient air data calibration method is proposed for aircraft with limited envelopes. This method uses output-error optimization on three-dimensional inertial velocities to estimate calibration and wind parameters. Calibration parameters are based on assumed calibration models for static pressure, angle of attack, and flank angle. Estimated wind parameters are the north, east, and down components. The only assumptions needed for this method are that the inertial velocities and Euler angles are accurate, the calibration models are correct, and that the steady-state component of wind is constant throughout the maneuver. A two-minute maneuver was designed to excite the aircraft over the range of air data calibration parameters and de-correlate the angle-of-attack bias from the vertical component of wind. Simulation of the X-48B (The Boeing Company, Chicago, Illinois) aircraft was used to validate the method, ultimately using data derived from wind-tunnel testing to simulate the un-calibrated air data measurements. Results from the simulation were accurate and robust to turbulence levels comparable to those observed in flight. Future experiments are planned to evaluate the proposed air data calibration in a flight environment.
Monitoring soil water dynamics at 0.1-1000 m scales using active DTS: the MOISST experience
NASA Astrophysics Data System (ADS)
Sayde, C.; Moreno, D.; Legrand, C.; Dong, J.; Steele-Dunne, S. C.; Ochsner, T. E.; Selker, J. S.
2014-12-01
The Actively Heated Fiber Optics (AHFO) method can measure soil water content at high temporal (<1hr) and spatial (every 0.25 m) resolutions along buried fiber optics (FO) cables multiple kilometers in length. As observed by Sayde et al. 2014, this unprecedented density of measurements captures soil water dynamics over four orders of magnitude in spatial scale (0.1-1000 m), bridging the gap between point scale measurements and large scale remote sensing. 4900 m of FO sensing cables were installed at the MOISST experimental site in Stillwater, Ok. The FO cables were deployed at 3 depths: 5, 10, and 15 cm. In this system the FO sensing system provides measurements of soil moisture at >39,000 locations simultaneously for each heat pulse. Six soil monitoring stations along the fiber optic path were installed to provide additional validation and calibration of the AHFO data. Gravimetric soil moisture and soil thermal samplings were performed periodically to provide additional distributed validation and calibration of the DTS data. In this work we present the preliminary results of this experiment. We will also address the experience learned from this large scale deployment of the AHFO method. In particular, we will present the in-situ soil moisture calibration method developed to tackle the calibration challenges associated with the high spatial heterogeneity of the soil physical and thermal properties. The material is based upon work supported by NASA under award NNX12AP58G, with equipment and assistance also provided by CTEMPs.org with support from the National Science Foundation under Grant Number 1129003. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of NASA or the National Science Foundation. Sayde, C., J. Benitez Buelga, L. Rodriguez-Sinobas, L. El Khoury, M. English, N. van de Giesen, and J.S. Selker (2014). Mapping Variability of Soil Water Content and Flux across 1-1,000 m scales using the Actively Heated Fiber Optic Method, Accepted for publication in Water Resour. Res.
NASA Astrophysics Data System (ADS)
Ferus, Martin; Koukal, Jakub; Lenža, Libor; Srba, Jiří; Kubelík, Petr; Laitl, Vojtěch; Zanozina, Ekaterina M.; Váňa, Pavel; Kaiserová, Tereza; Knížek, Antonín; Rimmer, Paul; Chatzitheodoridis, Elias; Civiš, Svatopluk
2018-03-01
Aims: We aim to analyse real-time Perseid and Leonid meteor spectra using a novel calibration-free (CF) method, which is usually applied in the laboratory for laser-induced breakdown spectroscopic (LIBS) chemical analysis. Methods: Reference laser ablation spectra of specimens of chondritic meteorites were measured in situ simultaneously with a high-resolution laboratory echelle spectrograph and a spectral camera for meteor observation. Laboratory data were subsequently evaluated via the CF method and compared with real meteor emission spectra. Additionally, spectral features related to airglow plasma were compared with the spectra of laser-induced breakdown and electric discharge in the air. Results: We show that this method can be applied in the evaluation of meteor spectral data observed in real time. Specifically, CF analysis can be used to determine the chemical composition of meteor plasma, which, in the case of the Perseid and Leonid meteors analysed in this study, corresponds to that of the C-group of chondrites.
Get the Red Out: Removing Diffuse Sky Illumination from Mars Pathfinder Images
NASA Technical Reports Server (NTRS)
Stoker, Carol; Rages, Kathy
2001-01-01
Radiative transfer calculations are performed to remove the effect of diffuse illumination on the color of the martian surface. We describe the methods and apply them to a radiometric calibration target, and to a superpan cube of the rock Yogi. Additional information is contained in the original extended abstract.
ASTROPOP: ASTROnomical Polarimetry and Photometry pipeline
NASA Astrophysics Data System (ADS)
Campagnolo, Julio C. N.
2018-05-01
AstroPoP reduces almost any CCD photometry and image polarimetry data. For photometry reduction, the code performs source finding, aperture and PSF photometry, astrometry calibration using different automated and non-automated methods and automated source identification and magnitude calibration based on online and local catalogs. For polarimetry, the code resolves linear and circular Stokes parameters produced by image beam splitter or polarizer polarimeters. In addition to the modular functions, ready-to-use pipelines based in configuration files and header keys are also provided with the code. AstroPOP was initially developed to reduce the IAGPOL polarimeter data installed at Observatório Pico dos Dias (Brazil).
A fast calibration method for 3-D tracking of ultrasound images using a spatial localizer.
Pagoulatos, N; Haynor, D R; Kim, Y
2001-09-01
We have developed a fast calibration method for computing the position and orientation of 2-D ultrasound (US) images in 3-D space where a position sensor is mounted on the US probe. This calibration is required in the fields of 3-D ultrasound and registration of ultrasound with other imaging modalities. Most of the existing calibration methods require a complex and tedious experimental procedure. Our method is simple and it is based on a custom-built phantom. Thirty N-fiducials (markers in the shape of the letter "N") embedded in the phantom provide the basis for our calibration procedure. We calibrated a 3.5-MHz sector phased-array probe with a magnetic position sensor, and we studied the accuracy and precision of our method. A typical calibration procedure requires approximately 2 min. We conclude that we can achieve accurate and precise calibration using a single US image, provided that a large number (approximately ten) of N-fiducials are captured within the US image, enabling a representative sampling of the imaging plane.
Wu, Jun; Yu, Zhijing; Zhuge, Jingchang
2016-04-01
A rotating laser positioning system (RLPS) is an efficient measurement method for large-scale metrology. Due to multiple transmitter stations, which consist of a measurement network, the position relationship of these stations must be first calibrated. However, with such auxiliary devices such as a laser tracker, scale bar, and complex calibration process, the traditional calibration methods greatly reduce the measurement efficiency. This paper proposes a self-calibration method for RLPS, which can automatically obtain the position relationship. The method is implemented through interscanning technology by using a calibration bar mounted on the transmitter station. Each bar is composed of three RLPS receivers and one ultrasonic sensor whose coordinates are known in advance. The calibration algorithm is mainly based on multiplane and distance constraints and is introduced in detail through a two-station mathematical model. The repeated experiments demonstrate that the coordinate measurement uncertainty of spatial points by using this method is about 0.1 mm, and the accuracy experiments show that the average coordinate measurement deviation is about 0.3 mm compared with a laser tracker. The accuracy can meet the requirements of most applications, while the calibration efficiency is significantly improved.
Nieć, Dawid; Kunicki, Paweł K
2015-10-01
Measurements of plasma concentrations of free normetanephrine (NMN), metanephrine (MN) and methoxytyramine (MTY) constitute the most diagnostically accurate screening test for pheochromocytomas and paragangliomas. The aim of this article is to present the results from a validation of an analytical method utilizing high performance liquid chromatography with coulometric detection (HPLC-CD) for quantifying plasma free NMN, MN and MTY. Additionally, peak integration by height and area and the use of one calibration curve for all batches or individual calibration curve for each batch of samples was explored as to determine the optimal approach with regard to accuracy and precision. The method was validated using charcoal stripped plasma spiked with solutions of NMN, MN, MTY and internal standard (4-hydroxy-3-methoxybenzylamine) with the exception of selectivity which was evaluated by analysis of real plasma samples. Calibration curve performance, accuracy, precision and recovery were determined following both peak-area and peak-height measurements and the obtained results were compared. The most accurate and precise method of calibration was evaluated by analyzing quality control samples at three concentration levels in 30 analytical runs. The detector response was linear over the entire tested concentration range from 10 to 2000pg/mL with R(2)≥0.9988. The LLOQ was 10pg/mL for each analyte of interest. To improve accuracy for measurements at low concentrations, a weighted (1/amount) linear regression model was employed, which resulted in inaccuracies of -2.48 to 9.78% and 0.22 to 7.81% following peak-area and peak-height integration, respectively. The imprecisions ranged from 1.07 to 15.45% and from 0.70 to 11.65% for peak-area and peak-height measurements, respectively. The optimal approach to calibration was the one utilizing an individual calibration curve for each batch of samples and peak-height measurements. It was characterized by inaccuracies ranging from -3.39 to +3.27% and imprecisions from 2.17 to 13.57%. The established HPLC-CD method enables accurate and precise measurements of plasma free NMN, MN and MTY with reasonable selectivity. Preparing calibration curve based on peak-height measurements for each batch of samples yields optimal accuracy and precision. Copyright © 2015. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
McCorkel, J.; Kuester, M. A.; Johnson, B. R.; Krause, K.; Kampe, T. U.; Moore, D. J.
2011-12-01
The National Ecological Observatory Network (NEON) is a research facility under development by the National Science Foundation to improve our understanding of and ability to forecast the impacts of climate change, land-use change, and invasive species on ecology. The infrastructure, designed to operate over 30 years or more, includes site-based flux tower and field measurements, coordinated with airborne remote sensing observations to observe key ecological processes over a broad range of temporal and spatial scales. NEON airborne data on vegetation biochemical, biophysical, and structural properties and on land use and land cover will be captured at 1 to 2 meter resolution by an imaging spectrometer, a small-footprint waveform-LiDAR and a high-resolution digital camera. Annual coverage of the 60 NEON sites and capacity to support directed research flights or respond to unexpected events will require three airborne observation platforms (AOP). The integration of field and airborne data with satellite observations and other national geospatial data for analysis, monitoring and input to ecosystem models will extend NEON observations to regions across the United States not directly sampled by the observatory. The different spatial scales and measurement methods make quantitative comparisons between remote sensing and field data, typically collected over small sample plots (e.g. < 0.2 ha), difficult. New approaches to developing temporal and spatial scaling relationships between these data are necessary to enable validation of airborne and satellite remote sensing data and for incorporation of these data into continental or global scale ecological models. In addition to consideration of the methods used to collect ground-based measurements, careful calibration of the remote sensing instrumentation and an assessment of the accuracy of algorithms used to derive higher-level science data products are needed. Furthermore, long-term consistency of the data collected by all three airborne instrument packages over the NEON sites requires traceability of the calibration to national standards, field-based verification of instrument calibration and stability in the aircraft environment, and an independent assessment of the quality of derived data products. This work describes the development of the calibration laboratory, early evaluation of field-based vicarious calibration, development of scaling relationships, and test flights. Complementary laboratory- and field-based calibration of the AOP in addition to consistency with on-board calibration methods provide confidence that low-level data such as radiance and surface reflectance measurements are accurate and comparable among different sensors. Algorithms that calculate higher-level data products including essential climate variables will be validated against equivalent ground- and satellite-based results. Such a validated data set across multiple spatial and temporal scales is key to enabling ecosystem models to forecast the effects of climate change, land-use change and invasive species on the continental scale.
Coupling HYDRUS-1D Code with PA-DDS Algorithms for Inverse Calibration
NASA Astrophysics Data System (ADS)
Wang, Xiang; Asadzadeh, Masoud; Holländer, Hartmut
2017-04-01
Numerical modelling requires calibration to predict future stages. A standard method for calibration is inverse calibration where generally multi-objective optimization algorithms are used to find a solution, e.g. to find an optimal solution of the van Genuchten Mualem (VGM) parameters to predict water fluxes in the vadose zone. We coupled HYDRUS-1D with PA-DDS to add a new, robust function for inverse calibration to the model. The PA-DDS method is a recently developed multi-objective optimization algorithm, which combines Dynamically Dimensioned Search (DDS) and Pareto Archived Evolution Strategy (PAES). The results were compared to a standard method (Marquardt-Levenberg method) implemented in HYDRUS-1D. Calibration performance is evaluated using observed and simulated soil moisture at two soil layers in the Southern Abbotsford, British Columbia, Canada in the terms of the root mean squared error (RMSE) and the Nash-Sutcliffe Efficiency (NSE). Results showed low RMSE values of 0.014 and 0.017 and strong NSE values of 0.961 and 0.939. Compared to the results by the Marquardt-Levenberg method, we received better calibration results for deeper located soil sensors. However, VGM parameters were similar comparing with previous studies. Both methods are equally computational efficient. We claim that a direct implementation of PA-DDS into HYDRUS-1D should reduce the computation effort further. This, the PA-DDS method is efficient for calibrating recharge for complex vadose zone modelling with multiple soil layer and can be a potential tool for calibration of heat and solute transport. Future work should focus on the effectiveness of PA-DDS for calibrating more complex versions of the model with complex vadose zone settings, with more soil layers, and against measured heat and solute transport. Keywords: Recharge, Calibration, HYDRUS-1D, Multi-objective Optimization
Novel crystal timing calibration method based on total variation
NASA Astrophysics Data System (ADS)
Yu, Xingjian; Isobe, Takashi; Watanabe, Mitsuo; Liu, Huafeng
2016-11-01
A novel crystal timing calibration method based on total variation (TV), abbreviated as ‘TV merge’, has been developed for a high-resolution positron emission tomography (PET) system. The proposed method was developed for a system with a large number of crystals, it can provide timing calibration at the crystal level. In the proposed method, the timing calibration process was formulated as a linear problem. To robustly optimize the timing resolution, a TV constraint was added to the linear equation. Moreover, to solve the computer memory problem associated with the calculation of the timing calibration factors for systems with a large number of crystals, the merge component was used for obtaining the crystal level timing calibration values. Compared with other conventional methods, the data measured from a standard cylindrical phantom filled with a radioisotope solution was sufficient for performing a high-precision crystal-level timing calibration. In this paper, both simulation and experimental studies were performed to demonstrate the effectiveness and robustness of the TV merge method. We compare the timing resolutions of a 22Na point source, which was located in the field of view (FOV) of the brain PET system, with various calibration techniques. After implementing the TV merge method, the timing resolution improved from 3.34 ns at full width at half maximum (FWHM) to 2.31 ns FWHM.
method for testing home energy audit software and associated calibration methods. BESTEST-EX is one of Energy Analysis Model Calibration Methods. When completed, the ANSI/RESNET SMOT will specify test procedures for evaluating calibration methods used in conjunction with predicting building energy use and
Aleixandre-Tudo, José Luis; Nieuwoudt, Helené; Aleixandre, José Luis; Du Toit, Wessel J
2015-02-04
The validation of ultraviolet-visible (UV-vis) spectroscopy combined with partial least-squares (PLS) regression to quantify red wine tannins is reported. The methylcellulose precipitable (MCP) tannin assay and the bovine serum albumin (BSA) tannin assay were used as reference methods. To take the high variability of wine tannins into account when the calibration models were built, a diverse data set was collected from samples of South African red wines that consisted of 18 different cultivars, from regions spanning the wine grape-growing areas of South Africa with their various sites, climates, and soils, ranging in vintage from 2000 to 2012. A total of 240 wine samples were analyzed, and these were divided into a calibration set (n = 120) and a validation set (n = 120) to evaluate the predictive ability of the models. To test the robustness of the PLS calibration models, the predictive ability of the classifying variables cultivar, vintage year, and experimental versus commercial wines was also tested. In general, the statistics obtained when BSA was used as a reference method were slightly better than those obtained with MCP. Despite this, the MCP tannin assay should also be considered as a valid reference method for developing PLS calibrations. The best calibration statistics for the prediction of new samples were coefficient of correlation (R 2 val) = 0.89, root mean standard error of prediction (RMSEP) = 0.16, and residual predictive deviation (RPD) = 3.49 for MCP and R 2 val = 0.93, RMSEP = 0.08, and RPD = 4.07 for BSA, when only the UV region (260-310 nm) was selected, which also led to a faster analysis time. In addition, a difference in the results obtained when the predictive ability of the classifying variables vintage, cultivar, or commercial versus experimental wines was studied suggests that tannin composition is highly affected by many factors. This study also discusses the correlations in tannin values between the methylcellulose and protein precipitation methods.
High-accuracy self-calibration method for dual-axis rotation-modulating RLG-INS
NASA Astrophysics Data System (ADS)
Wei, Guo; Gao, Chunfeng; Wang, Qi; Wang, Qun; Long, Xingwu
2017-05-01
Inertial navigation system has been the core component of both military and civil navigation systems. Dual-axis rotation modulation can completely eliminate the inertial elements constant errors of the three axes to improve the system accuracy. But the error caused by the misalignment angles and the scale factor error cannot be eliminated through dual-axis rotation modulation. And discrete calibration method cannot fulfill requirements of high-accurate calibration of the mechanically dithered ring laser gyroscope navigation system with shock absorbers. This paper has analyzed the effect of calibration error during one modulated period and presented a new systematic self-calibration method for dual-axis rotation-modulating RLG-INS. Procedure for self-calibration of dual-axis rotation-modulating RLG-INS has been designed. The results of self-calibration simulation experiment proved that: this scheme can estimate all the errors in the calibration error model, the calibration precision of the inertial sensors scale factor error is less than 1ppm and the misalignment is less than 5″. These results have validated the systematic self-calibration method and proved its importance for accuracy improvement of dual -axis rotation inertial navigation system with mechanically dithered ring laser gyroscope.
Uncertainty propagation in the calibration equations for NTC thermistors
NASA Astrophysics Data System (ADS)
Liu, Guang; Guo, Liang; Liu, Chunlong; Wu, Qingwen
2018-06-01
The uncertainty propagation problem is quite important for temperature measurements, since we rely so much on the sensors and calibration equations. Although uncertainty propagation for platinum resistance or radiation thermometers is well known, there have been few publications concerning negative temperature coefficient (NTC) thermistors. Insight into the propagation characteristics of uncertainty that develop when equations are determined using the Lagrange interpolation or least-squares fitting method is presented here with respect to several of the most common equations used in NTC thermistor calibration. Within this work, analytical expressions of the propagated uncertainties for both fitting methods are derived for the uncertainties in the measured temperature and resistance at each calibration point. High-precision calibration of an NTC thermistor in a precision water bath was performed by means of the comparison method. Results show that, for both fitting methods, the propagated uncertainty is flat in the interpolation region but rises rapidly beyond the calibration range. Also, for temperatures interpolated between calibration points, the propagated uncertainty is generally no greater than that associated with the calibration points. For least-squares fitting, the propagated uncertainty is significantly reduced by increasing the number of calibration points and can be well kept below the uncertainty of the calibration points.
A New Online Calibration Method Based on Lord's Bias-Correction.
He, Yinhong; Chen, Ping; Li, Yong; Zhang, Shumei
2017-09-01
Online calibration technique has been widely employed to calibrate new items due to its advantages. Method A is the simplest online calibration method and has attracted many attentions from researchers recently. However, a key assumption of Method A is that it treats person-parameter estimates θ ^ s (obtained by maximum likelihood estimation [MLE]) as their true values θ s , thus the deviation of the estimated θ ^ s from their true values might yield inaccurate item calibration when the deviation is nonignorable. To improve the performance of Method A, a new method, MLE-LBCI-Method A, is proposed. This new method combines a modified Lord's bias-correction method (named as maximum likelihood estimation-Lord's bias-correction with iteration [MLE-LBCI]) with the original Method A in an effort to correct the deviation of θ ^ s which may adversely affect the item calibration precision. Two simulation studies were carried out to explore the performance of both MLE-LBCI and MLE-LBCI-Method A under several scenarios. Simulation results showed that MLE-LBCI could make a significant improvement over the ML ability estimates, and MLE-LBCI-Method A did outperform Method A in almost all experimental conditions.
Simultaneous Calibration: A Joint Optimization Approach for Multiple Kinect and External Cameras.
Liao, Yajie; Sun, Ying; Li, Gongfa; Kong, Jianyi; Jiang, Guozhang; Jiang, Du; Cai, Haibin; Ju, Zhaojie; Yu, Hui; Liu, Honghai
2017-06-24
Camera calibration is a crucial problem in many applications, such as 3D reconstruction, structure from motion, object tracking and face alignment. Numerous methods have been proposed to solve the above problem with good performance in the last few decades. However, few methods are targeted at joint calibration of multi-sensors (more than four devices), which normally is a practical issue in the real-time systems. In this paper, we propose a novel method and a corresponding workflow framework to simultaneously calibrate relative poses of a Kinect and three external cameras. By optimizing the final cost function and adding corresponding weights to the external cameras in different locations, an effective joint calibration of multiple devices is constructed. Furthermore, the method is tested in a practical platform, and experiment results show that the proposed joint calibration method can achieve a satisfactory performance in a project real-time system and its accuracy is higher than the manufacturer's calibration.
Simultaneous Calibration: A Joint Optimization Approach for Multiple Kinect and External Cameras
Liao, Yajie; Sun, Ying; Li, Gongfa; Kong, Jianyi; Jiang, Guozhang; Jiang, Du; Cai, Haibin; Ju, Zhaojie; Yu, Hui; Liu, Honghai
2017-01-01
Camera calibration is a crucial problem in many applications, such as 3D reconstruction, structure from motion, object tracking and face alignment. Numerous methods have been proposed to solve the above problem with good performance in the last few decades. However, few methods are targeted at joint calibration of multi-sensors (more than four devices), which normally is a practical issue in the real-time systems. In this paper, we propose a novel method and a corresponding workflow framework to simultaneously calibrate relative poses of a Kinect and three external cameras. By optimizing the final cost function and adding corresponding weights to the external cameras in different locations, an effective joint calibration of multiple devices is constructed. Furthermore, the method is tested in a practical platform, and experiment results show that the proposed joint calibration method can achieve a satisfactory performance in a project real-time system and its accuracy is higher than the manufacturer’s calibration. PMID:28672823
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reda, Ibrahim M.; Andreas, Afshin M.
2017-08-01
Accurate pyranometer calibrations, traceable to internationally recognized standards, are critical for solar irradiance measurements. One calibration method is the component summation method, where the pyranometers are calibrated outdoors under clear sky conditions, and the reference global solar irradiance is calculated as the sum of two reference components, the diffuse horizontal and subtended beam solar irradiances. The beam component is measured with pyrheliometers traceable to the World Radiometric Reference, while there is no internationally recognized reference for the diffuse component. In the absence of such a reference, we present a method to consistently calibrate pyranometers for measuring the diffuse component. Themore » method is based on using a modified shade/unshade method and a pyranometer with less than 0.5 W/m2 thermal offset. The calibration result shows that the responsivity of Hukseflux SR25 pyranometer equals 10.98 uV/(W/m2) with +/-0.86 percent uncertainty.« less
Radiation calibration for LWIR Hyperspectral Imager Spectrometer
NASA Astrophysics Data System (ADS)
Yang, Zhixiong; Yu, Chunchao; Zheng, Wei-jian; Lei, Zhenggang; Yan, Min; Yuan, Xiaochun; Zhang, Peizhong
2014-11-01
The radiometric calibration of LWIR Hyperspectral imager Spectrometer is presented. The lab has been developed to LWIR Interferometric Hyperspectral imager Spectrometer Prototype(CHIPED-I) to study Lab Radiation Calibration, Two-point linear calibration is carried out for the spectrometer by using blackbody respectively. Firstly, calibration measured relative intensity is converted to the absolute radiation lightness of the object. Then, radiation lightness of the object is is converted the brightness temperature spectrum by the method of brightness temperature. The result indicated †that this method of Radiation Calibration calibration was very good.
A proposed standard method for polarimetric calibration and calibration verification
NASA Astrophysics Data System (ADS)
Persons, Christopher M.; Jones, Michael W.; Farlow, Craig A.; Morell, L. Denise; Gulley, Michael G.; Spradley, Kevin D.
2007-09-01
Accurate calibration of polarimetric sensors is critical to reducing and analyzing phenomenology data, producing uniform polarimetric imagery for deployable sensors, and ensuring predictable performance of polarimetric algorithms. It is desirable to develop a standard calibration method, including verification reporting, in order to increase credibility with customers and foster communication and understanding within the polarimetric community. This paper seeks to facilitate discussions within the community on arriving at such standards. Both the calibration and verification methods presented here are performed easily with common polarimetric equipment, and are applicable to visible and infrared systems with either partial Stokes or full Stokes sensitivity. The calibration procedure has been used on infrared and visible polarimetric imagers over a six year period, and resulting imagery has been presented previously at conferences and workshops. The proposed calibration method involves the familiar calculation of the polarimetric data reduction matrix by measuring the polarimeter's response to a set of input Stokes vectors. With this method, however, linear combinations of Stokes vectors are used to generate highly accurate input states. This allows the direct measurement of all system effects, in contrast with fitting modeled calibration parameters to measured data. This direct measurement of the data reduction matrix allows higher order effects that are difficult to model to be discovered and corrected for in calibration. This paper begins with a detailed tutorial on the proposed calibration and verification reporting methods. Example results are then presented for a LWIR rotating half-wave retarder polarimeter.
The Impact of Indoor and Outdoor Radiometer Calibration on Solar Measurements
DOE Office of Scientific and Technical Information (OSTI.GOV)
Habte, Aron; Sengupta, Manajit; Andreas, Afshin
2016-06-02
This study addresses the effect of calibration methodologies on calibration responsivities and the resulting impact on radiometric measurements. The calibration responsivities used in this study are provided by NREL's broadband outdoor radiometer calibration (BORCAL) and a few prominent manufacturers. The BORCAL method provides outdoor calibration responsivity of pyranometers and pyrheliometers at a 45 degree solar zenith angle and responsivity as a function of solar zenith angle determined by clear-sky comparisons to reference irradiance. The BORCAL method also employs a thermal offset correction to the calibration responsivity of single-black thermopile detectors used in pyranometers. Indoor calibrations of radiometers by their manufacturersmore » are performed using a stable artificial light source in a side-by-side comparison of the test radiometer under calibration to a reference radiometer of the same type. These different methods of calibration demonstrated 1percent to 2 percent differences in solar irradiance measurement. Analyzing these values will ultimately enable a reduction in radiometric measurement uncertainties and assist in developing consensus on a standard for calibration.« less
Results of the 1980 NASA/JPL balloon flight solar cell calibration program
NASA Technical Reports Server (NTRS)
Seaman, C. H.; Weiss, R. S.
1981-01-01
Thirty-eight modules were carried to an altitude of about 36 kilometers. In addition to the cell calibration program, an experiment to evaluate the calibration error versus altitude was performed. The calibrated cells can be used as reference standards in simulator testing of cells and arrays.
Direct injection GC method for measuring light hydrocarbon emissions from cooling-tower water.
Lee, Max M; Logan, Tim D; Sun, Kefu; Hurley, N Spencer; Swatloski, Robert A; Gluck, Steve J
2003-12-15
A Direct Injection GC method for quantifying low levels of light hydrocarbons (C6 and below) in cooling water has been developed. It is intended to overcome the limitations of the currently available technology. The principle of this method is to use a stripper column in a GC to strip waterfrom the hydrocarbons prior to entering the separation column. No sample preparation is required since the water sample is introduced directly into the GC. Method validation indicates that the Direct Injection GC method offers approximately 15 min analysis time with excellent precision and recovery. The calibration studies with ethylene and propylene show that both liquid and gas standards are suitable for routine calibration and calibration verification. The sampling method using zero headspace traditional VOA (Volatile Organic Analysis) vials and a sample chiller has also been validated. It is apparent that the sampling method is sufficient to minimize the potential for losses of light hydrocarbons, and samples can be held at 4 degrees C for up to 7 days with more than 93% recovery. The Direct Injection GC method also offers <1 ppb (w/v) level method detection limits for ethylene, propylene, and benzene. It is superior to the existing El Paso stripper method. In addition to lower detection limits for ethylene and propylene, the Direct Injection GC method quantifies individual light hydrocarbons in cooling water, provides better recoveries, and requires less maintenance and setup costs. Since the instrumentation and supplies are readily available, this technique could easily be established as a standard or alternative method for routine emission monitoring and leak detection of light hydrocarbons in cooling-tower water.
A low-cost and portable realization on fringe projection three-dimensional measurement
NASA Astrophysics Data System (ADS)
Xiao, Suzhi; Tao, Wei; Zhao, Hui
2015-12-01
Fringe projection three-dimensional measurement is widely applied in a wide range of industrial application. The traditional fringe projection system has the disadvantages of high expense, big size, and complicated calibration requirements. In this paper we introduce a low-cost and portable realization on three-dimensional measurement with Pico projector. It has the advantages of low cost, compact physical size, and flexible configuration. For the proposed fringe projection system, there is no restriction to camera and projector's relative alignment on parallelism and perpendicularity for installation. Moreover, plane-based calibration method is adopted in this paper that avoids critical requirements on calibration system such as additional gauge block or precise linear z stage. What is more, error sources existing in the proposed system are introduced in this paper. The experimental results demonstrate the feasibility of the proposed low cost and portable fringe projection system.
Gamma/Hadron Separation for the HAWC Observatory
NASA Astrophysics Data System (ADS)
Gerhardt, Michael J.
The High-Altitude Water Cherenkov (HAWC) Observatory is a gamma-ray observatory sensitive to gamma rays from 100 GeV to 100 TeV with an instantaneous field of view of ˜2 sr. It is located on the Sierra Negra plateau in Mexico at an elevation of 4,100 m and began full operation in March 2015. The purpose of the detector is to study relativistic particles that are produced by interstellar and intergalactic objects such as: pulsars, supernova remnants, molecular clouds, black holes and more. To achieve optimal angular resolution, energy reconstruction and cosmic ray background suppression for the extensive air showers detected by HAWC, good timing and charge calibration are crucial, as well as optimization of quality cuts on background suppression variables. Additions to the HAWC timing calibration, in particular automating the calibration quality checks and a new method for background suppression using a multivariate analysis are presented in this thesis.
High accuracy wavelength calibration for a scanning visible spectrometer.
Scotti, Filippo; Bell, Ronald E
2010-10-01
Spectroscopic applications for plasma velocity measurements often require wavelength accuracies ≤0.2 Å. An automated calibration, which is stable over time and environmental conditions without the need to recalibrate after each grating movement, was developed for a scanning spectrometer to achieve high wavelength accuracy over the visible spectrum. This method fits all relevant spectrometer parameters using multiple calibration spectra. With a stepping-motor controlled sine drive, an accuracy of ∼0.25 Å has been demonstrated. With the addition of a high resolution (0.075 arc sec) optical encoder on the grating stage, greater precision (∼0.005 Å) is possible, allowing absolute velocity measurements within ∼0.3 km/s. This level of precision requires monitoring of atmospheric temperature and pressure and of grating bulk temperature to correct for changes in the refractive index of air and the groove density, respectively.
Root zone water quality model (RZWQM2): Model use, calibration and validation
Ma, Liwang; Ahuja, Lajpat; Nolan, B.T.; Malone, Robert; Trout, Thomas; Qi, Z.
2012-01-01
The Root Zone Water Quality Model (RZWQM2) has been used widely for simulating agricultural management effects on crop production and soil and water quality. Although it is a one-dimensional model, it has many desirable features for the modeling community. This article outlines the principles of calibrating the model component by component with one or more datasets and validating the model with independent datasets. Users should consult the RZWQM2 user manual distributed along with the model and a more detailed protocol on how to calibrate RZWQM2 provided in a book chapter. Two case studies (or examples) are included in this article. One is from an irrigated maize study in Colorado to illustrate the use of field and laboratory measured soil hydraulic properties on simulated soil water and crop production. It also demonstrates the interaction between soil and plant parameters in simulated plant responses to water stresses. The other is from a maize-soybean rotation study in Iowa to show a manual calibration of the model for crop yield, soil water, and N leaching in tile-drained soils. Although the commonly used trial-and-error calibration method works well for experienced users, as shown in the second example, an automated calibration procedure is more objective, as shown in the first example. Furthermore, the incorporation of the Parameter Estimation Software (PEST) into RZWQM2 made the calibration of the model more efficient than a grid (ordered) search of model parameters. In addition, PEST provides sensitivity and uncertainty analyses that should help users in selecting the right parameters to calibrate.
A method for measuring low-weight carboxylic acids from biosolid compost.
Himanen, Marina; Latva-Kala, Kyösti; Itävaara, Merja; Hänninen, Kari
2006-01-01
Concentration of low-weight carboxylic acids (LWCA) is one of the important parameters that should be taken into consideration when compost is applied as soil improver for plant cultivation, because high amounts of LWCA can be toxic to plants. The present work describes a method for analysis of LWCA in compost as a useful tool for monitoring compost quality and safety. The method was tested on compost samples of two different ages: 3 (immature) and 6 (mature) months old. Acids from compost samples were extracted at high pH, filtered, and freeze-dried. The dried sodium salts were derivatized with a sulfuric acid-methanol mixture and concentrations of 11 low-weight fatty acids (C1-C10) were analyzed using headspace gas chromatography. The material was analyzed with two analytical techniques: the external calibration method (tested on 11 LWCA) and the standard addition method (tested only on formic, acetic, propionic, butyric, and iso-butyric acids). The two techniques were compared for efficiency of acids quantification. The method allowed good separation and quantification of a wide range of individual acids with high sensitivity at low concentrations. Detection limit for propionic, butyric, caproic, caprylic, and capric acids was 1 mg kg(-1) compost; for formic, acetic, valeric, enanthoic and pelargonic acids it was 5 mg kg(-1) compost; and for iso-butyric acid it was 10 mg kg(-1) compost. Recovery rates of LWCA were higher in 3-mo-old compost (57-99%) than in 6-mo-old compost (29-45%). In comparison with the external calibration technique the standard addition technique proved to be three to four times more precise for older compost and two times for younger compost. Disadvantages of the standard addition technique are that it is more time demanding and laborious.
NASA Astrophysics Data System (ADS)
Moustafa, Azza A.; Hegazy, Maha A.; Mohamed, Dalia; Ali, Omnia
2016-02-01
A novel approach for the resolution and quantitation of severely overlapped quaternary mixture of carbinoxamine maleate (CAR), pholcodine (PHL), ephedrine hydrochloride (EPH) and sunset yellow (SUN) in syrup was demonstrated utilizing different spectrophotometric assisted multivariate calibration methods. The applied methods have used different processing and pre-processing algorithms. The proposed methods were partial least squares (PLS), concentration residuals augmented classical least squares (CRACLS), and a novel method; continuous wavelet transforms coupled with partial least squares (CWT-PLS). These methods were applied to a training set in the concentration ranges of 40-100 μg/mL, 40-160 μg/mL, 100-500 μg/mL and 8-24 μg/mL for the four components, respectively. The utilized methods have not required any preliminary separation step or chemical pretreatment. The validity of the methods was evaluated by an external validation set. The selectivity of the developed methods was demonstrated by analyzing the drugs in their combined pharmaceutical formulation without any interference from additives. The obtained results were statistically compared with the official and reported methods where no significant difference was observed regarding both accuracy and precision.
Le, Huy Q.; Molloi, Sabee
2011-01-01
Purpose: Energy resolving detectors provide more than one spectral measurement in one image acquisition. The purpose of this study is to investigate, with simulation, the ability to decompose four materials using energy discriminating detectors and least squares minimization techniques. Methods: Three least squares parameter estimation decomposition techniques were investigated for four-material breast imaging tasks in the image domain. The first technique treats the voxel as if it consisted of fractions of all the materials. The second method assumes that a voxel primarily contains one material and divides the decomposition process into segmentation and quantification tasks. The third is similar to the second method but a calibration was used. The simulated computed tomography (CT) system consisted of an 80 kVp spectrum and a CdZnTe (CZT) detector that could resolve the x-ray spectrum into five energy bins. A postmortem breast specimen was imaged with flat panel CT to provide a model for the digital phantoms. Hydroxyapatite (HA) (50, 150, 250, 350, 450, and 550 mg∕ml) and iodine (4, 12, 20, 28, 36, and 44 mg∕ml) contrast elements were embedded into the glandular region of the phantoms. Calibration phantoms consisted of a 30∕70 glandular-to-adipose tissue ratio with embedded HA (100, 200, 300, 400, and 500 mg∕ml) and iodine (5, 15, 25, 35, and 45 mg∕ml). The x-ray transport process was simulated where the Beer–Lambert law, Poisson process, and CZT absorption efficiency were applied. Qualitative and quantitative evaluations of the decomposition techniques were performed and compared. The effect of breast size was also investigated. Results: The first technique decomposed iodine adequately but failed for other materials. The second method separated the materials but was unable to quantify the materials. With the addition of a calibration, the third technique provided good separation and quantification of hydroxyapatite, iodine, glandular, and adipose tissues. Quantification with this technique was accurate with errors of 9.83% and 6.61% for HA and iodine, respectively. Calibration at one point (one breast size) showed increased errors as the mismatch in breast diameters between calibration and measurement increased. A four-point calibration successfully decomposed breast diameter spanning the entire range from 8 to 20 cm. For a 14 cm breast, errors were reduced from 5.44% to 1.75% and from 6.17% to 3.27% with the multipoint calibration for HA and iodine, respectively. Conclusions: The results of the simulation study showed that a CT system based on CZT detectors in conjunction with least squares minimization technique can be used to decompose four materials. The calibrated least squares parameter estimation decomposition technique performed the best, separating and accurately quantifying the concentrations of hydroxyapatite and iodine. PMID:21361193
Model Robust Calibration: Method and Application to Electronically-Scanned Pressure Transducers
NASA Technical Reports Server (NTRS)
Walker, Eric L.; Starnes, B. Alden; Birch, Jeffery B.; Mays, James E.
2010-01-01
This article presents the application of a recently developed statistical regression method to the controlled instrument calibration problem. The statistical method of Model Robust Regression (MRR), developed by Mays, Birch, and Starnes, is shown to improve instrument calibration by reducing the reliance of the calibration on a predetermined parametric (e.g. polynomial, exponential, logarithmic) model. This is accomplished by allowing fits from the predetermined parametric model to be augmented by a certain portion of a fit to the residuals from the initial regression using a nonparametric (locally parametric) regression technique. The method is demonstrated for the absolute scale calibration of silicon-based pressure transducers.
A Consistent EPIC Visible Channel Calibration Using VIIRS and MODIS as a Reference.
NASA Astrophysics Data System (ADS)
Haney, C.; Doelling, D. R.; Minnis, P.; Bhatt, R.; Scarino, B. R.; Gopalan, A.
2017-12-01
The Earth Polychromatic Imaging Camera (EPIC) aboard the Deep Space Climate Observatory (DSCOVR) satellite constantly images the sunlit disk of Earth from the Lagrange-1 (L1) point in 10 spectral channels spanning the UV, VIS, and NIR spectrums. Recently, the DSCOVR EPIC team has publicly released version 2 dataset, which has implemented improved navigation, stray-light correction, and flat-fielding of the CCD array. The EPIC 2-year data record must be well-calibrated for consistent cloud, aerosol, trace gas, land use and other retrievals. Because EPIC lacks onboard calibrators, the observations made by EPIC channels must be calibrated vicariously using the coincident measurements from radiometrically stable instruments that have onboard calibration systems. MODIS and VIIRS are best-suited instruments for this task as they contain similar spectral bands that are well-calibrated onboard using solar diffusers and lunar tracking. We have previously calibrated the EPIC version 1 dataset by using EPIC and VIIRS angularly matched radiance pairs over both all-sky ocean and deep convective clouds (DCC). We noted that the EPIC image required navigations adjustments, and that the EPIC stray-light correction provided an offset term closer to zero based on the linear regression of the EPIC and VIIRS ray-matched radiance pairs. We will evaluate the EPIC version 2 navigation and stray-light improvements using the same techniques. In addition, we will monitor the EPIC channel calibration over the two years for any temporal degradation or anomalous behavior. These two calibration methods will be further validated using desert and DCC invariant Earth targets. The radiometric characterization of the selected invariant targets is performed using multiple years of MODIS and VIIRS measurements. Results of these studies will be shown at the conference.
A Consistent EPIC Visible Channel Calibration using VIIRS and MODIS as a Reference
NASA Technical Reports Server (NTRS)
Haney, C. O.; Doelling, D. R.; Minnis, P.; Bhatt, R.; Scarino, B. R.; Gopalan, A.
2017-01-01
The Earth Polychromatic Imaging Camera (EPIC) aboard the Deep Space Climate Observatory (DSCOVR) satellite constantly images the sunlit disk of Earth from the Lagrange-1 (L1) point in 10 spectral channels spanning the UV, VIS, and NIR spectrums. Recently, the DSCOVR EPIC team has publicly released version 2 dataset, which has implemented improved navigation, stray-light correction, and flat-fielding of the CCD array. The EPIC 2-year data record must be well-calibrated for consistent cloud, aerosol, trace gas, land use and other retrievals. Because EPIC lacks onboard calibrators, the observations made by EPIC channels must be calibrated vicariously using the coincident measurements from radiometrically stable instruments that have onboard calibration systems. MODIS and VIIRS are best-suited instruments for this task as they contain similar spectral bands that are well-calibrated onboard using solar diffusers and lunar tracking. We have previously calibrated the EPIC version 1 dataset by using EPIC and VIIRS angularly matched radiance pairs over both all-sky ocean and deep convective clouds (DCC). We noted that the EPIC image required navigations adjustments, and that the EPIC stray-light correction provided an offset term closer to zero based on the linear regression of the EPIC and VIIRS ray-matched radiance pairs. We will evaluate the EPIC version 2 navigation and stray-light improvements using the same techniques. In addition, we will monitor the EPIC channel calibration over the two years for any temporal degradation or anomalous behavior. These two calibration methods will be further validated using desert and DCC invariant Earth targets. The radiometric characterization of the selected invariant targets is performed using multiple years of MODIS and VIIRS measurements. Results of these studies will be shown at the conference.
NASA Astrophysics Data System (ADS)
Park, Suhyung; Park, Jaeseok
2015-05-01
Accelerated dynamic MRI, which exploits spatiotemporal redundancies in k - t space and coil dimension, has been widely used to reduce the number of signal encoding and thus increase imaging efficiency with minimal loss of image quality. Nonetheless, particularly in cardiac MRI it still suffers from artifacts and amplified noise in the presence of time-drifting coil sensitivity due to relative motion between coil and subject (e.g. free breathing). Furthermore, a substantial number of additional calibrating signals is to be acquired to warrant accurate calibration of coil sensitivity. In this work, we propose a novel, accelerated dynamic cardiac MRI with sparse-Kalman-smoother self-calibration and reconstruction (k - t SPARKS), which is robust to time-varying coil sensitivity even with a small number of calibrating signals. The proposed k - t SPARKS incorporates Kalman-smoother self-calibration in k - t space and sparse signal recovery in x - f space into a single optimization problem, leading to iterative, joint estimation of time-varying convolution kernels and missing signals in k - t space. In the Kalman-smoother calibration, motion-induced uncertainties over the entire time frames were included in modeling state transition while a coil-dependent noise statistic in describing measurement process. The sparse signal recovery iteratively alternates with the self-calibration to tackle the ill-conditioning problem potentially resulting from insufficient calibrating signals. Simulations and experiments were performed using both the proposed and conventional methods for comparison, revealing that the proposed k - t SPARKS yields higher signal-to-error ratio and superior temporal fidelity in both breath-hold and free-breathing cardiac applications over all reduction factors.
Park, Suhyung; Park, Jaeseok
2015-05-07
Accelerated dynamic MRI, which exploits spatiotemporal redundancies in k - t space and coil dimension, has been widely used to reduce the number of signal encoding and thus increase imaging efficiency with minimal loss of image quality. Nonetheless, particularly in cardiac MRI it still suffers from artifacts and amplified noise in the presence of time-drifting coil sensitivity due to relative motion between coil and subject (e.g. free breathing). Furthermore, a substantial number of additional calibrating signals is to be acquired to warrant accurate calibration of coil sensitivity. In this work, we propose a novel, accelerated dynamic cardiac MRI with sparse-Kalman-smoother self-calibration and reconstruction (k - t SPARKS), which is robust to time-varying coil sensitivity even with a small number of calibrating signals. The proposed k - t SPARKS incorporates Kalman-smoother self-calibration in k - t space and sparse signal recovery in x - f space into a single optimization problem, leading to iterative, joint estimation of time-varying convolution kernels and missing signals in k - t space. In the Kalman-smoother calibration, motion-induced uncertainties over the entire time frames were included in modeling state transition while a coil-dependent noise statistic in describing measurement process. The sparse signal recovery iteratively alternates with the self-calibration to tackle the ill-conditioning problem potentially resulting from insufficient calibrating signals. Simulations and experiments were performed using both the proposed and conventional methods for comparison, revealing that the proposed k - t SPARKS yields higher signal-to-error ratio and superior temporal fidelity in both breath-hold and free-breathing cardiac applications over all reduction factors.
Spectral characterization and calibration of AOTF spectrometers and hyper-spectral imaging system
NASA Astrophysics Data System (ADS)
Katrašnik, Jaka; Pernuš, Franjo; Likar, Boštjan
2010-02-01
The goal of this article is to present a novel method for spectral characterization and calibration of spectrometers and hyper-spectral imaging systems based on non-collinear acousto-optical tunable filters. The method characterizes the spectral tuning curve (frequency-wavelength characteristic) of the AOTF (Acousto-Optic Tunable Filter) filter by matching the acquired and modeled spectra of the HgAr calibration lamp, which emits line spectrum that can be well modeled via AOTF transfer function. In this way, not only tuning curve characterization and corresponding spectral calibration but also spectral resolution assessment is performed. The obtained results indicated that the proposed method is efficient, accurate and feasible for routine calibration of AOTF spectrometers and hyper-spectral imaging systems and thereby a highly competitive alternative to the existing calibration methods.
The Calibration of AVHRR/3 Visible Dual Gain Using Meteosat-8 as a MODIS Calibration Transfer Medium
NASA Technical Reports Server (NTRS)
Avey, Lance; Garber, Donald; Nguyen, Louis; Minnis, Patrick
2007-01-01
This viewgraph presentation reviews the NOAA-17 AVHRR visible channels calibrated against MET-8/MODIS using dual gain regression methods. The topics include: 1) Motivation; 2) Methodology; 3) Dual Gain Regression Methods; 4) Examples of Regression methods; 5) AVHRR/3 Regression Strategy; 6) Cross-Calibration Method; 7) Spectral Response Functions; 8) MET8/NOAA-17; 9) Example of gain ratio adjustment; 10) Effect of mixed low/high count FOV; 11) Monitor dual gains over time; and 12) Conclusions
Calibration of Viking imaging system pointing, image extraction, and optical navigation measure
NASA Technical Reports Server (NTRS)
Breckenridge, W. G.; Fowler, J. W.; Morgan, E. M.
1977-01-01
Pointing control and knowledge accuracy of Viking Orbiter science instruments is controlled by the scan platform. Calibration of the scan platform and the imaging system was accomplished through mathematical models. The calibration procedure and results obtained for the two Viking spacecraft are described. Included are both ground and in-flight scan platform calibrations, and the additional calibrations unique to optical navigation.
Experimental validation of a self-calibrating cryogenic mass flowmeter
NASA Astrophysics Data System (ADS)
Janzen, A.; Boersch, M.; Burger, B.; Drache, J.; Ebersoldt, A.; Erni, P.; Feldbusch, F.; Oertig, D.; Grohmann, S.
2017-12-01
The Karlsruhe Institute of Technology (KIT) and the WEKA AG jointly develop a commercial flowmeter for application in helium cryostats. The flowmeter functions according to a new thermal measurement principle that eliminates all systematic uncertainties and enables self-calibration during real operation. Ideally, the resulting uncertainty of the measured flow rate is only dependent on signal noises, which are typically very small with regard to the measured value. Under real operating conditions, cryoplant-dependent flow rate fluctuations induce an additional uncertainty, which follows from the sensitivity of the method. This paper presents experimental results with helium at temperatures between 30 and 70 K and flow rates in the range of 4 to 12 g/s. The experiments were carried out in a control cryostat of the 2 kW helium refrigerator of the TOSKA test facility at KIT. Inside the cryostat, the new flowmeter was installed in series with a Venturi tube that was used for reference measurements. The measurement results demonstrate the self-calibration capability during real cryoplant operation. The influences of temperature and flow rate fluctuations on the self-calibration uncertainty are discussed.
40 CFR 86.125-94 - Methane analyzer calibration.
Code of Federal Regulations, 2012 CFR
2012-07-01
.... Additional calibration points may be generated. For each range calibrated, if the deviation from a least-squares best-fit straight line is 2 percent or less of the value at each data point, concentration values...
40 CFR 86.125-94 - Methane analyzer calibration.
Code of Federal Regulations, 2014 CFR
2014-07-01
.... Additional calibration points may be generated. For each range calibrated, if the deviation from a least-squares best-fit straight line is 2 percent or less of the value at each data point, concentration values...
40 CFR 86.125-94 - Methane analyzer calibration.
Code of Federal Regulations, 2013 CFR
2013-07-01
.... Additional calibration points may be generated. For each range calibrated, if the deviation from a least-squares best-fit straight line is 2 percent or less of the value at each data point, concentration values...
Steuer, Christian; Schütz, Philipp; Bernasconi, Luca; Huber, Andreas R
2016-01-01
The determination of circulating trimethylamine-N-oxide (TMAO), choline, betaine, l-carnitine and O-acetyl-l-carnitine concentration in different human matrices is of great clinical interest. Recent results highlighted the prognostic value of TMAO and quaternary ammonium containing metabolites in the field of cardiovascular and kidney diseases. Herein, we report a method for the rapid and simultaneous measurement of closely related phosphatidylcholine-derived metabolites in three different biological matrices by stable isotope dilution assay. Plasma, serum and urine samples were simply deproteinized and separated by HILIC-chromatography. Detection and quantification were performed using LC-MS/MS with electrospray ionization in positive mode. For accuracy and precision, full calibration was performed covering more than the full reference range. Assay performance metrics include intra- and interday imprecision were below 10% for all analytes. To exclude matrix effects standard addition methods were applied for all matrices. It was shown that calibration standards and quality control prepared in water can be used instead of matrix-matched calibration and controls. The LC/MS/MS-based assay described in this article may improve future clinical studies evaluating TMAO and related substances as prognostic markers for cardiovascular risk and all-cause mortality in different patient populations. Copyright © 2015 Elsevier B.V. All rights reserved.
Systematic Calibration for Ultra-High Accuracy Inertial Measurement Units.
Cai, Qingzhong; Yang, Gongliu; Song, Ningfang; Liu, Yiliang
2016-06-22
An inertial navigation system (INS) has been widely used in challenging GPS environments. With the rapid development of modern physics, an atomic gyroscope will come into use in the near future with a predicted accuracy of 5 × 10(-6)°/h or better. However, existing calibration methods and devices can not satisfy the accuracy requirements of future ultra-high accuracy inertial sensors. In this paper, an improved calibration model is established by introducing gyro g-sensitivity errors, accelerometer cross-coupling errors and lever arm errors. A systematic calibration method is proposed based on a 51-state Kalman filter and smoother. Simulation results show that the proposed calibration method can realize the estimation of all the parameters using a common dual-axis turntable. Laboratory and sailing tests prove that the position accuracy in a five-day inertial navigation can be improved about 8% by the proposed calibration method. The accuracy can be improved at least 20% when the position accuracy of the atomic gyro INS can reach a level of 0.1 nautical miles/5 d. Compared with the existing calibration methods, the proposed method, with more error sources and high order small error parameters calibrated for ultra-high accuracy inertial measurement units (IMUs) using common turntables, has a great application potential in future atomic gyro INSs.
IMU-based online kinematic calibration of robot manipulator.
Du, Guanglong; Zhang, Ping
2013-01-01
Robot calibration is a useful diagnostic method for improving the positioning accuracy in robot production and maintenance. An online robot self-calibration method based on inertial measurement unit (IMU) is presented in this paper. The method requires that the IMU is rigidly attached to the robot manipulator, which makes it possible to obtain the orientation of the manipulator with the orientation of the IMU in real time. This paper proposed an efficient approach which incorporates Factored Quaternion Algorithm (FQA) and Kalman Filter (KF) to estimate the orientation of the IMU. Then, an Extended Kalman Filter (EKF) is used to estimate kinematic parameter errors. Using this proposed orientation estimation method will result in improved reliability and accuracy in determining the orientation of the manipulator. Compared with the existing vision-based self-calibration methods, the great advantage of this method is that it does not need the complex steps, such as camera calibration, images capture, and corner detection, which make the robot calibration procedure more autonomous in a dynamic manufacturing environment. Experimental studies on a GOOGOL GRB3016 robot show that this method has better accuracy, convenience, and effectiveness than vision-based methods.
SU-E-I-38: Improved Metal Artifact Correction Using Adaptive Dual Energy Calibration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dong, X; Elder, E; Roper, J
2015-06-15
Purpose: The empirical dual energy calibration (EDEC) method corrects for beam-hardening artifacts, but shows limited performance on metal artifact correction. In this work, we propose an adaptive dual energy calibration (ADEC) method to correct for metal artifacts. Methods: The empirical dual energy calibration (EDEC) method corrects for beam-hardening artifacts, but shows limited performance on metal artifact correction. In this work, we propose an adaptive dual energy calibration (ADEC) method to correct for metal artifacts. Results: Highly attenuating copper rods cause severe streaking artifacts on standard CT images. EDEC improves the image quality, but cannot eliminate the streaking artifacts. Compared tomore » EDEC, the proposed ADEC method further reduces the streaking resulting from metallic inserts and beam-hardening effects and obtains material decomposition images with significantly improved accuracy. Conclusion: We propose an adaptive dual energy calibration method to correct for metal artifacts. ADEC is evaluated with the Shepp-Logan phantom, and shows superior metal artifact correction performance. In the future, we will further evaluate the performance of the proposed method with phantom and patient data.« less
The determination of water in crude oil and transformer oil reference materials.
Margolis, Sam A; Hagwood, Charles
2003-05-01
The measurement of the amount of water in oils is of significant economic importance to the industrial community, particularly to the electric power and crude oil industries. The amount of water in transformer oils is critical to their normal function and the amount of water in crude oils affects the cost of the crude oil at the well head, the pipeline, and the refinery. Water in oil Certified Reference Materials (CRM) are essential for the accurate calibration of instruments that are used by these industries. Three NIST Standard Reference Materials (SRMs) have been prepared for this purpose. The water in these oils has been measured by both coulometric and volumetric Karl Fischer methods. The compounds (such as sulfur compounds) that interfere with the Karl Fischer reaction (interfering substances) and inflate the values for water by also reacting with iodine have been measured coulometrically. The measured water content of Reference Material (RM) 8506a Transformer Oil is 12.1+/-1.9 mg kg(-1) (plus an additional 6.2+/-0.9 mg kg(-1) of interfering substances). The measured water content of SRM 2722 Sweet Crude Oil, is 99+/-6 mg kg(-1) (plus an additional 5+/-2 mg kg(-1) of interfering substances). The measured water content of SRM 2721 Sour Crude Oil, is 134+/-18 mg kg(-1) plus an additional 807+/-43 mg kg(-1) of interfering substances. Interlaboratory studies conducted with these oil samples (using SRM 2890, water saturated 1-octanol, as a calibrant) are reported. Some of the possible sources of bias in these measurements were identified, These include: improperly calibrated instruments, inability to measure the calibrant accurately, Karl Fischer reagent selection, and volatilization of the interfering substances in SRM 2721.
A Self-Adaptive Model-Based Wi-Fi Indoor Localization Method.
Tuta, Jure; Juric, Matjaz B
2016-12-06
This paper presents a novel method for indoor localization, developed with the main aim of making it useful for real-world deployments. Many indoor localization methods exist, yet they have several disadvantages in real-world deployments-some are static, which is not suitable for long-term usage; some require costly human recalibration procedures; and others require special hardware such as Wi-Fi anchors and transponders. Our method is self-calibrating and self-adaptive thus maintenance free and based on Wi-Fi only. We have employed two well-known propagation models-free space path loss and ITU models-which we have extended with additional parameters for better propagation simulation. Our self-calibrating procedure utilizes one propagation model to infer parameters of the space and the other to simulate the propagation of the signal without requiring any additional hardware beside Wi-Fi access points, which is suitable for real-world usage. Our method is also one of the few model-based Wi-Fi only self-adaptive approaches that do not require the mobile terminal to be in the access-point mode. The only input requirements of the method are Wi-Fi access point positions, and positions and properties of the walls. Our method has been evaluated in single- and multi-room environments, with measured mean error of 2-3 and 3-4 m, respectively, which is similar to existing methods. The evaluation has proven that usable localization accuracy can be achieved in real-world environments solely by the proposed Wi-Fi method that relies on simple hardware and software requirements.
A Self-Adaptive Model-Based Wi-Fi Indoor Localization Method
Tuta, Jure; Juric, Matjaz B.
2016-01-01
This paper presents a novel method for indoor localization, developed with the main aim of making it useful for real-world deployments. Many indoor localization methods exist, yet they have several disadvantages in real-world deployments—some are static, which is not suitable for long-term usage; some require costly human recalibration procedures; and others require special hardware such as Wi-Fi anchors and transponders. Our method is self-calibrating and self-adaptive thus maintenance free and based on Wi-Fi only. We have employed two well-known propagation models—free space path loss and ITU models—which we have extended with additional parameters for better propagation simulation. Our self-calibrating procedure utilizes one propagation model to infer parameters of the space and the other to simulate the propagation of the signal without requiring any additional hardware beside Wi-Fi access points, which is suitable for real-world usage. Our method is also one of the few model-based Wi-Fi only self-adaptive approaches that do not require the mobile terminal to be in the access-point mode. The only input requirements of the method are Wi-Fi access point positions, and positions and properties of the walls. Our method has been evaluated in single- and multi-room environments, with measured mean error of 2–3 and 3–4 m, respectively, which is similar to existing methods. The evaluation has proven that usable localization accuracy can be achieved in real-world environments solely by the proposed Wi-Fi method that relies on simple hardware and software requirements. PMID:27929453
A holistic calibration method with iterative distortion compensation for stereo deflectometry
NASA Astrophysics Data System (ADS)
Xu, Yongjia; Gao, Feng; Zhang, Zonghua; Jiang, Xiangqian
2018-07-01
This paper presents a novel holistic calibration method for stereo deflectometry system to improve the system measurement accuracy. The reconstruction result of stereo deflectometry is integrated with the calculated normal data of the measured surface. The calculation accuracy of the normal data is seriously influenced by the calibration accuracy of the geometrical relationship of the stereo deflectometry system. Conventional calibration approaches introduce form error to the system due to inaccurate imaging model and distortion elimination. The proposed calibration method compensates system distortion based on an iterative algorithm instead of the conventional distortion mathematical model. The initial value of the system parameters are calculated from the fringe patterns displayed on the systemic LCD screen through a reflection of a markless flat mirror. An iterative algorithm is proposed to compensate system distortion and optimize camera imaging parameters and system geometrical relation parameters based on a cost function. Both simulation work and experimental results show the proposed calibration method can significantly improve the calibration and measurement accuracy of a stereo deflectometry. The PV (peak value) of measurement error of a flat mirror can be reduced to 69.7 nm by applying the proposed method from 282 nm obtained with the conventional calibration approach.
Multimodal Spatial Calibration for Accurately Registering EEG Sensor Positions
Chen, Shengyong; Xiao, Gang; Li, Xiaoli
2014-01-01
This paper proposes a fast and accurate calibration method to calibrate multiple multimodal sensors using a novel photogrammetry system for fast localization of EEG sensors. The EEG sensors are placed on human head and multimodal sensors are installed around the head to simultaneously obtain all EEG sensor positions. A multiple views' calibration process is implemented to obtain the transformations of multiple views. We first develop an efficient local repair algorithm to improve the depth map, and then a special calibration body is designed. Based on them, accurate and robust calibration results can be achieved. We evaluate the proposed method by corners of a chessboard calibration plate. Experimental results demonstrate that the proposed method can achieve good performance, which can be further applied to EEG source localization applications on human brain. PMID:24803954
NASA Astrophysics Data System (ADS)
Chiarucci, Simone; Wijnholds, Stefan J.
2018-02-01
Blind calibration, i.e. calibration without a priori knowledge of the source model, is robust to the presence of unknown sources such as transient phenomena or (low-power) broad-band radio frequency interference that escaped detection. In this paper, we present a novel method for blind calibration of a radio interferometric array assuming that the observed field only contains a small number of discrete point sources. We show the huge computational advantage over previous blind calibration methods and we assess its statistical efficiency and robustness to noise and the quality of the initial estimate. We demonstrate the method on actual data from a Low-Frequency Array low-band antenna station showing that our blind calibration is able to recover the same gain solutions as the regular calibration approach, as expected from theory and simulations. We also discuss the implications of our findings for the robustness of regular self-calibration to poor starting models.
Image-guided Navigation of Single-element Focused Ultrasound Transducer
Kim, Hyungmin; Chiu, Alan; Park, Shinsuk; Yoo, Seung-Schik
2014-01-01
The spatial specificity and controllability of focused ultrasound (FUS), in addition to its ability to modify the excitability of neural tissue, allows for the selective and reversible neuromodulation of the brain function, with great potential in neurotherapeutics. Intra-operative magnetic resonance imaging (MRI) guidance (in short, MRg) has limitations due to its complicated examination logistics, such as fixation through skull screws to mount the stereotactic frame, simultaneous sonication in the MRI environment, and restrictions in choosing MR-compatible materials. In order to overcome these limitations, an image-guidance system based on optical tracking and pre-operative imaging data is developed, separating the imaging acquisition for guidance and sonication procedure for treatment. Techniques to define the local coordinates of the focal point of sonication are presented. First, mechanical calibration detects the concentric rotational motion of a rigid-body optical tracker, attached to a straight rod mimicking the sonication path, pivoted at the virtual FUS focus. The spatial error presented in the mechanical calibration was compensated further by MRI-based calibration, which estimates the spatial offset between the navigated focal point and the ground-truth location of the sonication focus obtained from a temperature-sensitive MR sequence. MRI-based calibration offered a significant decrease in spatial errors (1.9±0.8 mm; 57% reduction) compared to the mechanical calibration method alone (4.4±0.9 mm). Using the presented method, pulse-mode FUS was applied to the motor area of the rat brain, and successfully stimulated the motor cortex. The presented techniques can be readily adapted for the transcranial application of FUS to intact human brain. PMID:25232203
An Accurate Projector Calibration Method Based on Polynomial Distortion Representation
Liu, Miao; Sun, Changku; Huang, Shujun; Zhang, Zonghua
2015-01-01
In structure light measurement systems or 3D printing systems, the errors caused by optical distortion of a digital projector always affect the precision performance and cannot be ignored. Existing methods to calibrate the projection distortion rely on calibration plate and photogrammetry, so the calibration performance is largely affected by the quality of the plate and the imaging system. This paper proposes a new projector calibration approach that makes use of photodiodes to directly detect the light emitted from a digital projector. By analyzing the output sequence of the photoelectric module, the pixel coordinates can be accurately obtained by the curve fitting method. A polynomial distortion representation is employed to reduce the residuals of the traditional distortion representation model. Experimental results and performance evaluation show that the proposed calibration method is able to avoid most of the disadvantages in traditional methods and achieves a higher accuracy. This proposed method is also practically applicable to evaluate the geometric optical performance of other optical projection system. PMID:26492247
NASA Astrophysics Data System (ADS)
Wang, Mi; Fang, Chengcheng; Yang, Bo; Cheng, Yufeng
2016-06-01
The low frequency error is a key factor which has affected uncontrolled geometry processing accuracy of the high-resolution optical image. To guarantee the geometric quality of imagery, this paper presents an on-orbit calibration method for the low frequency error based on geometric calibration field. Firstly, we introduce the overall flow of low frequency error on-orbit analysis and calibration, which includes optical axis angle variation detection of star sensor, relative calibration among star sensors, multi-star sensor information fusion, low frequency error model construction and verification. Secondly, we use optical axis angle change detection method to analyze the law of low frequency error variation. Thirdly, we respectively use the method of relative calibration and information fusion among star sensors to realize the datum unity and high precision attitude output. Finally, we realize the low frequency error model construction and optimal estimation of model parameters based on DEM/DOM of geometric calibration field. To evaluate the performance of the proposed calibration method, a certain type satellite's real data is used. Test results demonstrate that the calibration model in this paper can well describe the law of the low frequency error variation. The uncontrolled geometric positioning accuracy of the high-resolution optical image in the WGS-84 Coordinate Systems is obviously improved after the step-wise calibration.
Wang, Junqiang; Wang, Yu; Zhu, Gang; Chen, Xiangqian; Zhao, Xiangrui; Qiao, Huiting; Fan, Yubo
2018-06-01
Spatial positioning accuracy is a key issue in a computer-assisted orthopaedic surgery (CAOS) system. Since intraoperative fluoroscopic images are one of the most important input data to the CAOS system, the quality of these images should have a significant influence on the accuracy of the CAOS system. But the regularities and mechanism of the influence of the quality of intraoperative images on the accuracy of a CAOS system have yet to be studied. Two typical spatial positioning methods - a C-arm calibration-based method and a bi-planar positioning method - are used to study the influence of different image quality parameters, such as resolution, distortion, contrast and signal-to-noise ratio, on positioning accuracy. The error propagation rules of image error in different spatial positioning methods are analyzed by the Monte Carlo method. Correlation analysis showed that resolution and distortion had a significant influence on spatial positioning accuracy. In addition the C-arm calibration-based method was more sensitive to image distortion, while the bi-planar positioning method was more susceptible to image resolution. The image contrast and signal-to-noise ratio have no significant influence on the spatial positioning accuracy. The result of Monte Carlo analysis proved that generally the bi-planar positioning method was more sensitive to image quality than the C-arm calibration-based method. The quality of intraoperative fluoroscopic images is a key issue in the spatial positioning accuracy of a CAOS system. Although the 2 typical positioning methods have very similar mathematical principles, they showed different sensitivities to different image quality parameters. The result of this research may help to create a realistic standard for intraoperative fluoroscopic images for CAOS systems. Copyright © 2018 John Wiley & Sons, Ltd.
Code of Federal Regulations, 2013 CFR
2013-01-01
... design; (3) Details of the method of incorporation and binding of the americium-241 or radium-226 in the source; (4) Procedures for and results of prototype testing of sources, which are designed to contain... additional information, including experimental studies and tests, required by the Commission to facilitate a...
Code of Federal Regulations, 2012 CFR
2012-01-01
... design; (3) Details of the method of incorporation and binding of the americium-241 or radium-226 in the source; (4) Procedures for and results of prototype testing of sources, which are designed to contain... additional information, including experimental studies and tests, required by the Commission to facilitate a...
Code of Federal Regulations, 2010 CFR
2010-01-01
... design; (3) Details of the method of incorporation and binding of the americium-241 or radium-226 in the source; (4) Procedures for and results of prototype testing of sources, which are designed to contain... additional information, including experimental studies and tests, required by the Commission to facilitate a...
Code of Federal Regulations, 2014 CFR
2014-01-01
... design; (3) Details of the method of incorporation and binding of the americium-241 or radium-226 in the source; (4) Procedures for and results of prototype testing of sources, which are designed to contain... additional information, including experimental studies and tests, required by the Commission to facilitate a...
Code of Federal Regulations, 2011 CFR
2011-01-01
... design; (3) Details of the method of incorporation and binding of the americium-241 or radium-226 in the source; (4) Procedures for and results of prototype testing of sources, which are designed to contain... additional information, including experimental studies and tests, required by the Commission to facilitate a...
Design of an ultra-portable field transfer radiometer supporting automated vicarious calibration
NASA Astrophysics Data System (ADS)
Anderson, Nikolaus; Thome, Kurtis; Czapla-Myers, Jeffrey; Biggar, Stuart
2015-09-01
The University of Arizona Remote Sensing Group (RSG) began outfitting the radiometric calibration test site (RadCaTS) at Railroad Valley Nevada in 2004 for automated vicarious calibration of Earth-observing sensors. RadCaTS was upgraded to use RSG custom 8-band ground viewing radiometers (GVRs) beginning in 2011 and currently four GVRs are deployed providing an average reflectance for the test site. This measurement of ground reflectance is the most critical component of vicarious calibration using the reflectance-based method. In order to ensure the quality of these measurements, RSG has been exploring more efficient and accurate methods of on-site calibration evaluation. This work describes the design of, and initial results from, a small portable transfer radiometer for the purpose of GVR calibration validation on site. Prior to deployment, RSG uses high accuracy laboratory calibration methods in order to provide radiance calibrations with low uncertainties for each GVR. After deployment, a solar radiation based calibration has typically been used. The method is highly dependent on a clear, stable atmosphere, requires at least two people to perform, is time consuming in post processing, and is dependent on several large pieces of equipment. In order to provide more regular and more accurate calibration monitoring, the small portable transfer radiometer is designed for quick, one-person operation and on-site field calibration comparison results. The radiometer is also suited for laboratory calibration use and thus could be used as a transfer radiometer calibration standard for ground viewing radiometers of a RadCalNet site.
Automatic Calibration Method for Driver’s Head Orientation in Natural Driving Environment
Fu, Xianping; Guan, Xiao; Peli, Eli; Liu, Hongbo; Luo, Gang
2013-01-01
Gaze tracking is crucial for studying driver’s attention, detecting fatigue, and improving driver assistance systems, but it is difficult in natural driving environments due to nonuniform and highly variable illumination and large head movements. Traditional calibrations that require subjects to follow calibrators are very cumbersome to be implemented in daily driving situations. A new automatic calibration method, based on a single camera for determining the head orientation and which utilizes the side mirrors, the rear-view mirror, the instrument board, and different zones in the windshield as calibration points, is presented in this paper. Supported by a self-learning algorithm, the system tracks the head and categorizes the head pose in 12 gaze zones based on facial features. The particle filter is used to estimate the head pose to obtain an accurate gaze zone by updating the calibration parameters. Experimental results show that, after several hours of driving, the automatic calibration method without driver’s corporation can achieve the same accuracy as a manual calibration method. The mean error of estimated eye gazes was less than 5°in day and night driving. PMID:24639620
Evaluation of Automated Model Calibration Techniques for Residential Building Energy Simulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robertson, J.; Polly, B.; Collis, J.
2013-09-01
This simulation study adapts and applies the general framework described in BESTEST-EX (Judkoff et al 2010) for self-testing residential building energy model calibration methods. BEopt/DOE-2.2 is used to evaluate four mathematical calibration methods in the context of monthly, daily, and hourly synthetic utility data for a 1960's-era existing home in a cooling-dominated climate. The home's model inputs are assigned probability distributions representing uncertainty ranges, random selections are made from the uncertainty ranges to define 'explicit' input values, and synthetic utility billing data are generated using the explicit input values. The four calibration methods evaluated in this study are: an ASHRAEmore » 1051-RP-based approach (Reddy and Maor 2006), a simplified simulated annealing optimization approach, a regression metamodeling optimization approach, and a simple output ratio calibration approach. The calibration methods are evaluated for monthly, daily, and hourly cases; various retrofit measures are applied to the calibrated models and the methods are evaluated based on the accuracy of predicted savings, computational cost, repeatability, automation, and ease of implementation.« less
Evaluation of Automated Model Calibration Techniques for Residential Building Energy Simulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
and Ben Polly, Joseph Robertson; Polly, Ben; Collis, Jon
2013-09-01
This simulation study adapts and applies the general framework described in BESTEST-EX (Judkoff et al 2010) for self-testing residential building energy model calibration methods. BEopt/DOE-2.2 is used to evaluate four mathematical calibration methods in the context of monthly, daily, and hourly synthetic utility data for a 1960's-era existing home in a cooling-dominated climate. The home's model inputs are assigned probability distributions representing uncertainty ranges, random selections are made from the uncertainty ranges to define "explicit" input values, and synthetic utility billing data are generated using the explicit input values. The four calibration methods evaluated in this study are: an ASHRAEmore » 1051-RP-based approach (Reddy and Maor 2006), a simplified simulated annealing optimization approach, a regression metamodeling optimization approach, and a simple output ratio calibration approach. The calibration methods are evaluated for monthly, daily, and hourly cases; various retrofit measures are applied to the calibrated models and the methods are evaluated based on the accuracy of predicted savings, computational cost, repeatability, automation, and ease of implementation.« less
Fast wavelength calibration method for spectrometers based on waveguide comb optical filter
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, Zhengang; Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240; Huang, Meizhen, E-mail: mzhuang@sjtu.edu.cn
2015-04-15
A novel fast wavelength calibration method for spectrometers based on a standard spectrometer and a double metal-cladding waveguide comb optical filter (WCOF) is proposed and demonstrated. By using the WCOF device, a wide-spectrum beam is comb-filtered, which is very suitable for spectrometer wavelength calibration. The influence of waveguide filter’s structural parameters and the beam incident angle on the comb absorption peaks’ wavelength and its bandwidth are also discussed. The verification experiments were carried out in the wavelength range of 200–1100 nm with satisfactory results. Comparing with the traditional wavelength calibration method based on discrete sparse atomic emission or absorption lines,more » the new method has some advantages: sufficient calibration data, high accuracy, short calibration time, fit for produce process, stability, etc.« less
A Flexile and High Precision Calibration Method for Binocular Structured Light Scanning System
Yuan, Jianying; Wang, Qiong; Li, Bailin
2014-01-01
3D (three-dimensional) structured light scanning system is widely used in the field of reverse engineering, quality inspection, and so forth. Camera calibration is the key for scanning precision. Currently, 2D (two-dimensional) or 3D fine processed calibration reference object is usually applied for high calibration precision, which is difficult to operate and the cost is high. In this paper, a novel calibration method is proposed with a scale bar and some artificial coded targets placed randomly in the measuring volume. The principle of the proposed method is based on hierarchical self-calibration and bundle adjustment. We get initial intrinsic parameters from images. Initial extrinsic parameters in projective space are estimated with the method of factorization and then upgraded to Euclidean space with orthogonality of rotation matrix and rank 3 of the absolute quadric as constraint. Last, all camera parameters are refined through bundle adjustment. Real experiments show that the proposed method is robust, and has the same precision level as the result using delicate artificial reference object, but the hardware cost is very low compared with the current calibration method used in 3D structured light scanning system. PMID:25202736
Radiometric calibration method for large aperture infrared system with broad dynamic range.
Sun, Zhiyuan; Chang, Songtao; Zhu, Wei
2015-05-20
Infrared radiometric measurements can acquire important data for missile defense systems. When observation is carried out by ground-based infrared systems, a missile is characterized by long distance, small size, and large variation of radiance. Therefore, the infrared systems should be manufactured with a larger aperture to enhance detection ability and calibrated at a broader dynamic range to extend measurable radiance. Nevertheless, the frequently used calibration methods demand an extended-area blackbody with broad dynamic range or a huge collimator for filling the system's field stop, which would greatly increase manufacturing costs and difficulties. To overcome this restriction, a calibration method based on amendment of inner and outer calibration is proposed. First, the principles and procedures of this method are introduced. Then, a shifting strategy of infrared systems for measuring targets with large fluctuations of infrared radiance is put forward. Finally, several experiments are performed on a shortwave infrared system with Φ400 mm aperture. The results indicate that the proposed method cannot only ensure accuracy of calibration but have the advantage of low cost, low power, and high motility. Hence, it is an effective radiometric calibration method in the outfield.
Fu, Jian; Li, Chen; Liu, Zhenzhong
2015-10-01
Synchrotron radiation nanoscale computed tomography (SR nano-CT) is a powerful analysis tool and can be used to perform chemical identification, mapping, or speciation of carbon and other elements together with X-ray fluorescence and X-ray absorption near edge structure (XANES) imaging. In practical applications, there are often challenges for SR nano-CT due to the misaligned geometry caused by the sample stage axial vibration. It occurs quite frequently because of experimental constraints from the mechanical error of manufacturing and assembly and the thermal expansion during the time-consuming scanning. The axial vibration will lead to the structure overlap among neighboring layers and degrade imaging results by imposing artifacts into the nano-CT images. It becomes worse for samples with complicated axial structure. In this work, we analyze the influence of axial vibration on nano-CT image by partial derivative. Then, an axial vibration calibration method for SR nano-CT is developed and investigated. It is based on the cross correlation of plane integral curves of the sample at different view angles. This work comprises a numerical study of the method and its experimental verification using a dataset measured with the full-field transmission X-ray microscope nano-CT setup at the beamline 4W1A of the Beijing Synchrotron Radiation Facility. The results demonstrate that the presented method can handle the stage axial vibration. It can work for random axial vibration and needs neither calibration phantom nor additional calibration scanning. It will be helpful for the development and application of synchrotron radiation nano-CT systems.
Cross Calibration of TOMS, SBUV/2 and SCIAMACHY Radiances from Ground Observations
NASA Technical Reports Server (NTRS)
Hilsenrath, Ernest; Bhartia, P. K.; Bojkov, B.; Kowaleski, M.; Labow, G.; Ahmad, Z.
2002-01-01
We have shown that validation of radiances is a very effective means for correcting absolute accuracy and long term drifts of backscatter type satellite measurements. This method by-passes the algorithms used for both satellite and ground based measurements which are normally used to validate and correct the satellite data. A new method for satellite validation is planned which will compliment measurements from the existing ground-based networks. This method will employ very accurate comparisons between ground based zenith sky radiances and satellite nadir radiances. These comparisons will rely heavily on the experience derived from the Shuttle SBUV (SSBUV) program which provided a reference standard of radiance measurements for SBUV/2, TOMS, and GOME. This new measurement program, called 'Skyrad', employs two well established capabilities at the Goddard Space Flight Center, 1) the SSBUV calibration facilities and 2) the radiative transfer codes used for the TOMS and SBUV/2 algorithms and their subsequent refinements. Radiative transfer calculations show that ground based zenith sky and satellite nadir backscatter ultraviolet comparisons can be made very accurately under certain viewing conditions. The Skyrad instruments (SSBUV, Brewer spectrophotometers, and possibly others) will be calibrated and maintained to a precision of a few tenths of a percent. Skyrad data will then enable long term calibration of upcoming satellite instruments such as QuickTOMS, SBUV/2s and SCIAMACHY with a high degree of precision. This technique can be further employed to monitor the performance of future instruments such as GOMEZ, OMI, and OMPS. Additional information is included in the original extended abstract.
A quantitative comparison of two methods to correct eddy current-induced distortions in DT-MRI.
Muñoz Maniega, Susana; Bastin, Mark E; Armitage, Paul A
2007-04-01
Eddy current-induced geometric distortions of single-shot, diffusion-weighted, echo-planar (DW-EP) images are a major confounding factor to the accurate determination of water diffusion parameters in diffusion tensor MRI (DT-MRI). Previously, it has been suggested that these geometric distortions can be removed from brain DW-EP images using affine transformations determined from phantom calibration experiments using iterative cross-correlation (ICC). Since this approach was first described, a number of image-based registration methods have become available that can also correct eddy current-induced distortions in DW-EP images. However, as yet no study has investigated whether separate eddy current calibration or image-based registration provides the most accurate way of removing these artefacts from DT-MRI data. Here we compare how ICC phantom calibration and affine FLIRT (http://www.fmrib.ox.ac.uk), a popular image-based multi-modal registration method that can correct both eddy current-induced distortions and bulk subject motion, perform when registering DW-EP images acquired with different slice thicknesses (2.8 and 5 mm) and b-values (1000 and 3000 s/mm(2)). With the use of consistency testing, it was found that ICC was a more robust algorithm for correcting eddy current-induced distortions than affine FLIRT, especially at high b-value and small slice thickness. In addition, principal component analysis demonstrated that the combination of ICC phantom calibration (to remove eddy current-induced distortions) with rigid body FLIRT (to remove bulk subject motion) provided a more accurate registration of DT-MRI data than that achieved by affine FLIRT.
Automatic alignment method for calibration of hydrometers
NASA Astrophysics Data System (ADS)
Lee, Y. J.; Chang, K. H.; Chon, J. C.; Oh, C. Y.
2004-04-01
This paper presents a new method to automatically align specific scale-marks for the calibration of hydrometers. A hydrometer calibration system adopting the new method consists of a vision system, a stepping motor, and software to control the system. The vision system is composed of a CCD camera and a frame grabber, and is used to acquire images. The stepping motor moves the camera, which is attached to the vessel containing a reference liquid, along the hydrometer. The operating program has two main functions: to process images from the camera to find the position of the horizontal plane and to control the stepping motor for the alignment of the horizontal plane with a particular scale-mark. Any system adopting this automatic alignment method is a convenient and precise means of calibrating a hydrometer. The performance of the proposed method is illustrated by comparing the calibration results using the automatic alignment method with those obtained using the manual method.
Taverniers, Isabel; Van Bockstaele, Erik; De Loose, Marc
2004-03-01
Analytical real-time PCR technology is a powerful tool for implementation of the GMO labeling regulations enforced in the EU. The quality of analytical measurement data obtained by quantitative real-time PCR depends on the correct use of calibrator and reference materials (RMs). For GMO methods of analysis, the choice of appropriate RMs is currently under debate. So far, genomic DNA solutions from certified reference materials (CRMs) are most often used as calibrators for GMO quantification by means of real-time PCR. However, due to some intrinsic features of these CRMs, errors may be expected in the estimations of DNA sequence quantities. In this paper, two new real-time PCR methods are presented for Roundup Ready soybean, in which two types of plasmid DNA fragments are used as calibrators. Single-target plasmids (STPs) diluted in a background of genomic DNA were used in the first method. Multiple-target plasmids (MTPs) containing both sequences in one molecule were used as calibrators for the second method. Both methods simultaneously detect a promoter 35S sequence as GMO-specific target and a lectin gene sequence as endogenous reference target in a duplex PCR. For the estimation of relative GMO percentages both "delta C(T)" and "standard curve" approaches are tested. Delta C(T) methods are based on direct comparison of measured C(T) values of both the GMO-specific target and the endogenous target. Standard curve methods measure absolute amounts of target copies or haploid genome equivalents. A duplex delta C(T) method with STP calibrators performed at least as well as a similar method with genomic DNA calibrators from commercial CRMs. Besides this, high quality results were obtained with a standard curve method using MTP calibrators. This paper demonstrates that plasmid DNA molecules containing either one or multiple target sequences form perfect alternative calibrators for GMO quantification and are especially suitable for duplex PCR reactions.
Kraemer, D; Chen, G
2014-02-01
Accurate measurements of thermal conductivity are of great importance for materials research and development. Steady-state methods determine thermal conductivity directly from the proportionality between heat flow and an applied temperature difference (Fourier Law). Although theoretically simple, in practice, achieving high accuracies with steady-state methods is challenging and requires rather complex experimental setups due to temperature sensor uncertainties and parasitic heat loss. We developed a simple differential steady-state method in which the sample is mounted between an electric heater and a temperature-controlled heat sink. Our method calibrates for parasitic heat losses from the electric heater during the measurement by maintaining a constant heater temperature close to the environmental temperature while varying the heat sink temperature. This enables a large signal-to-noise ratio which permits accurate measurements of samples with small thermal conductance values without an additional heater calibration measurement or sophisticated heater guards to eliminate parasitic heater losses. Additionally, the differential nature of the method largely eliminates the uncertainties of the temperature sensors, permitting measurements with small temperature differences, which is advantageous for samples with high thermal conductance values and/or with strongly temperature-dependent thermal conductivities. In order to accelerate measurements of more than one sample, the proposed method allows for measuring several samples consecutively at each temperature measurement point without adding significant error. We demonstrate the method by performing thermal conductivity measurements on commercial bulk thermoelectric Bi2Te3 samples in the temperature range of 30-150 °C with an error below 3%.
Distinguishing Biologically Relevant Hexoses by Water Adduction to the Lithium-Cationized Molecule.
Campbell, Matthew T; Chen, Dazhe; Wallbillich, Nicholas J; Glish, Gary L
2017-10-03
A method to distinguish the four most common biologically relevant underivatized hexoses, d-glucose, d-galactose, d-mannose, and d-fructose, using only mass spectrometry with no prior separation/derivatization step has been developed. Electrospray of a solution containing hexose and a lithium salt generates [Hexose+Li] + . The lithium-cationized hexoses adduct water in a quadrupole ion trap. The rate of this water adduction reaction can be used to distinguish the four hexoses. Additionally, for each hexose, multiple lithiation sites are possible, allowing for multiple structures of [Hexose+Li] + . Electrospray produces at least one structure that reacts with water and at least one that does not. The ratio of unreactive lithium-cationized hexose to total lithium-cationized hexose is unique for the four hexoses studied, providing a second method for distinguishing the isomers. Use of the water adduction reaction rate or the unreactive ratio provides two separate methods for confidently (p ≤ 0.02) distinguishing the most common biologically relevant hexoses using only femtomoles of hexose. Additionally, binary mixtures of glucose and fructose were studied. A calibration curve was created by measuring the reaction rate of various samples with different ratios of fructose and glucose. The calibration curve was used to accurately measure the percentage of fructose in three samples of high fructose corn syrup (<4% error).
Rubio, L; Ortiz, M C; Sarabia, L A
2014-04-11
A non-separative, fast and inexpensive spectrofluorimetric method based on the second order calibration of excitation-emission fluorescence matrices (EEMs) was proposed for the determination of carbaryl, carbendazim and 1-naphthol in dried lime tree flowers. The trilinearity property of three-way data was used to handle the intrinsic fluorescence of lime flowers and the difference in the fluorescence intensity of each analyte. It also made possible to identify unequivocally each analyte. Trilinearity of the data tensor guarantees the uniqueness of the solution obtained through parallel factor analysis (PARAFAC), so the factors of the decomposition match up with the analytes. In addition, an experimental procedure was proposed to identify, with three-way data, the quenching effect produced by the fluorophores of the lime flowers. This procedure also enabled the selection of the adequate dilution of the lime flowers extract to minimize the quenching effect so the three analytes can be quantified. Finally, the analytes were determined using the standard addition method for a calibration whose standards were chosen with a D-optimal design. The three analytes were unequivocally identified by the correlation between the pure spectra and the PARAFAC excitation and emission spectral loadings. The trueness was established by the accuracy line "calculated concentration versus added concentration" in all cases. Better decision limit values (CCα), in x0=0 with the probability of false positive fixed at 0.05, were obtained for the calibration performed in pure solvent: 2.97 μg L(-1) for 1-naphthol, 3.74 μg L(-1) for carbaryl and 23.25 μg L(-1) for carbendazim. The CCα values for the second calibration carried out in matrix were 1.61, 4.34 and 51.75 μg L(-1) respectively; while the values obtained considering only the pure samples as calibration set were: 2.65, 8.61 and 28.7 μg L(-1), respectively. Copyright © 2014 Elsevier B.V. All rights reserved.
GIFTS SM EDU Level 1B Algorithms
NASA Technical Reports Server (NTRS)
Tian, Jialin; Gazarik, Michael J.; Reisse, Robert A.; Johnson, David G.
2007-01-01
The Geosynchronous Imaging Fourier Transform Spectrometer (GIFTS) SensorModule (SM) Engineering Demonstration Unit (EDU) is a high resolution spectral imager designed to measure infrared (IR) radiances using a Fourier transform spectrometer (FTS). The GIFTS instrument employs three focal plane arrays (FPAs), which gather measurements across the long-wave IR (LWIR), short/mid-wave IR (SMWIR), and visible spectral bands. The raw interferogram measurements are radiometrically and spectrally calibrated to produce radiance spectra, which are further processed to obtain atmospheric profiles via retrieval algorithms. This paper describes the GIFTS SM EDU Level 1B algorithms involved in the calibration. The GIFTS Level 1B calibration procedures can be subdivided into four blocks. In the first block, the measured raw interferograms are first corrected for the detector nonlinearity distortion, followed by the complex filtering and decimation procedure. In the second block, a phase correction algorithm is applied to the filtered and decimated complex interferograms. The resulting imaginary part of the spectrum contains only the noise component of the uncorrected spectrum. Additional random noise reduction can be accomplished by applying a spectral smoothing routine to the phase-corrected spectrum. The phase correction and spectral smoothing operations are performed on a set of interferogram scans for both ambient and hot blackbody references. To continue with the calibration, we compute the spectral responsivity based on the previous results, from which, the calibrated ambient blackbody (ABB), hot blackbody (HBB), and scene spectra can be obtained. We now can estimate the noise equivalent spectral radiance (NESR) from the calibrated ABB and HBB spectra. The correction schemes that compensate for the fore-optics offsets and off-axis effects are also implemented. In the third block, we developed an efficient method of generating pixel performance assessments. In addition, a random pixel selection scheme is designed based on the pixel performance evaluation. Finally, in the fourth block, the single pixel algorithms are applied to the entire FPA.
Experimental Demonstration of In-Place Calibration for Time Domain Microwave Imaging System
NASA Astrophysics Data System (ADS)
Kwon, S.; Son, S.; Lee, K.
2018-04-01
In this study, the experimental demonstration of in-place calibration was conducted using the developed time domain measurement system. Experiments were conducted using three calibration methods—in-place calibration and two existing calibrations, that is, array rotation and differential calibration. The in-place calibration uses dual receivers located at an equal distance from the transmitter. The received signals at the dual receivers contain similar unwanted signals, that is, the directly received signal and antenna coupling. In contrast to the simulations, the antennas are not perfectly matched and there might be unexpected environmental errors. Thus, we experimented with the developed experimental system to demonstrate the proposed method. The possible problems with low signal-to-noise ratio and clock jitter, which may exist in time domain systems, were rectified by averaging repeatedly measured signals. The tumor was successfully detected using the three calibration methods according to the experimental results. The cross correlation was calculated using the reconstructed image of the ideal differential calibration for a quantitative comparison between the existing rotation calibration and the proposed in-place calibration. The mean value of cross correlation between the in-place calibration and ideal differential calibration was 0.80, and the mean value of cross correlation of the rotation calibration was 0.55. Furthermore, the results of simulation were compared with the experimental results to verify the in-place calibration method. A quantitative analysis was also performed, and the experimental results show a tendency similar to the simulation.
Influence of Installation Errors On the Output Data of the Piezoelectric Vibrations Transducers
NASA Astrophysics Data System (ADS)
Kozuch, Barbara; Chelmecki, Jaroslaw; Tatara, Tadeusz
2017-10-01
The paper examines an influence of installation errors of the piezoelectric vibrations transducers on the output data. PCB Piezotronics piezoelectric accelerometers were used to perform calibrations by comparison. The measurements were performed with TMS 9155 Calibration Workstation version 5.4.0 at frequency in the range of 5Hz - 2000Hz. Accelerometers were fixed on the calibration station in a so-called back-to-back configuration in accordance with the applicable international standard - ISO 16063-21: Methods for the calibration of vibration and shock transducers - Part 21: Vibration calibration by comparison to a reference transducer. The first accelerometer was calibrated by suitable methods with traceability to a primary reference transducer. Each subsequent calibration was performed when changing one setting in relation to the original calibration. The alterations were related to negligence and failures in relation to the above-mentioned standards and operating guidelines - e.g. the sensor was not tightened or appropriate substance was not placed. Also, there was modified the method of connection which was in the standards requirements. Different kind of wax, light oil, grease and other assembly methods were used. The aim of the study was to verify the significance of standards requirements and to estimate of their validity. The authors also wanted to highlight the most significant calibration errors. Moreover, relation between various appropriate methods of the connection was demonstrated.
Efficient calibration for imperfect computer models
Tuo, Rui; Wu, C. F. Jeff
2015-12-01
Many computer models contain unknown parameters which need to be estimated using physical observations. Furthermore, the calibration method based on Gaussian process models may lead to unreasonable estimate for imperfect computer models. In this work, we extend their study to calibration problems with stochastic physical data. We propose a novel method, called the L 2 calibration, and show its semiparametric efficiency. The conventional method of the ordinary least squares is also studied. Theoretical analysis shows that it is consistent but not efficient. Here, numerical examples show that the proposed method outperforms the existing ones.
Augmented classical least squares multivariate spectral analysis
Haaland, David M.; Melgaard, David K.
2004-02-03
A method of multivariate spectral analysis, termed augmented classical least squares (ACLS), provides an improved CLS calibration model when unmodeled sources of spectral variation are contained in a calibration sample set. The ACLS methods use information derived from component or spectral residuals during the CLS calibration to provide an improved calibration-augmented CLS model. The ACLS methods are based on CLS so that they retain the qualitative benefits of CLS, yet they have the flexibility of PLS and other hybrid techniques in that they can define a prediction model even with unmodeled sources of spectral variation that are not explicitly included in the calibration model. The unmodeled sources of spectral variation may be unknown constituents, constituents with unknown concentrations, nonlinear responses, non-uniform and correlated errors, or other sources of spectral variation that are present in the calibration sample spectra. Also, since the various ACLS methods are based on CLS, they can incorporate the new prediction-augmented CLS (PACLS) method of updating the prediction model for new sources of spectral variation contained in the prediction sample set without having to return to the calibration process. The ACLS methods can also be applied to alternating least squares models. The ACLS methods can be applied to all types of multivariate data.
Augmented Classical Least Squares Multivariate Spectral Analysis
Haaland, David M.; Melgaard, David K.
2005-07-26
A method of multivariate spectral analysis, termed augmented classical least squares (ACLS), provides an improved CLS calibration model when unmodeled sources of spectral variation are contained in a calibration sample set. The ACLS methods use information derived from component or spectral residuals during the CLS calibration to provide an improved calibration-augmented CLS model. The ACLS methods are based on CLS so that they retain the qualitative benefits of CLS, yet they have the flexibility of PLS and other hybrid techniques in that they can define a prediction model even with unmodeled sources of spectral variation that are not explicitly included in the calibration model. The unmodeled sources of spectral variation may be unknown constituents, constituents with unknown concentrations, nonlinear responses, non-uniform and correlated errors, or other sources of spectral variation that are present in the calibration sample spectra. Also, since the various ACLS methods are based on CLS, they can incorporate the new prediction-augmented CLS (PACLS) method of updating the prediction model for new sources of spectral variation contained in the prediction sample set without having to return to the calibration process. The ACLS methods can also be applied to alternating least squares models. The ACLS methods can be applied to all types of multivariate data.
Augmented Classical Least Squares Multivariate Spectral Analysis
Haaland, David M.; Melgaard, David K.
2005-01-11
A method of multivariate spectral analysis, termed augmented classical least squares (ACLS), provides an improved CLS calibration model when unmodeled sources of spectral variation are contained in a calibration sample set. The ACLS methods use information derived from component or spectral residuals during the CLS calibration to provide an improved calibration-augmented CLS model. The ACLS methods are based on CLS so that they retain the qualitative benefits of CLS, yet they have the flexibility of PLS and other hybrid techniques in that they can define a prediction model even with unmodeled sources of spectral variation that are not explicitly included in the calibration model. The unmodeled sources of spectral variation may be unknown constituents, constituents with unknown concentrations, nonlinear responses, non-uniform and correlated errors, or other sources of spectral variation that are present in the calibration sample spectra. Also, since the various ACLS methods are based on CLS, they can incorporate the new prediction-augmented CLS (PACLS) method of updating the prediction model for new sources of spectral variation contained in the prediction sample set without having to return to the calibration process. The ACLS methods can also be applied to alternating least squares models. The ACLS methods can be applied to all types of multivariate data.
Improvement in QEPAS system utilizing a second harmonic based wavelength calibration technique
NASA Astrophysics Data System (ADS)
Zhang, Qinduan; Chang, Jun; Wang, Fupeng; Wang, Zongliang; Xie, Yulei; Gong, Weihua
2018-05-01
A simple laser wavelength calibration technique, based on second harmonic signal, is demonstrated in this paper to improve the performance of quartz enhanced photoacoustic spectroscopy (QEPAS) gas sensing system, e.g. improving the signal to noise ratio (SNR), detection limit and long-term stability. Constant current, corresponding to the gas absorption line, combining f/2 frequency sinusoidal signal are used to drive the laser (constant driving mode), a software based real-time wavelength calibration technique is developed to eliminate the wavelength drift due to ambient fluctuations. Compared to conventional wavelength modulation spectroscopy (WMS), this method allows lower filtering bandwidth and averaging algorithm applied to QEPAS system, improving SNR and detection limit. In addition, the real-time wavelength calibration technique guarantees the laser output is modulated steadily at gas absorption line. Water vapor is chosen as an objective gas to evaluate its performance compared to constant driving mode and conventional WMS system. The water vapor sensor was designed insensitive to the incoherent external acoustic noise by the numerical averaging technique. As a result, the SNR increases 12.87 times in wavelength calibration technique based system compared to conventional WMS system. The new system achieved a better linear response (R2 = 0 . 9995) in concentration range from 300 to 2000 ppmv, and achieved a minimum detection limit (MDL) of 630 ppbv.
Panda, Rakhi; Fiedler, Katherine L; Cho, Chung Y; Cheng, Raymond; Stutts, Whitney L; Jackson, Lauren S; Garber, Eric A E
2015-12-09
The effectiveness of a proline endopeptidase (PEP) in hydrolyzing gluten and its putative immunopathogenic sequences was examined using antibody-based methods and mass spectrometry (MS). Based on the results of the antibody-based methods, fermentation of wheat gluten containing sorghum beer resulted in a reduction in the detectable gluten concentration. The addition of PEP further reduced the gluten concentration. Only one sandwich ELISA was able to detect the apparent low levels of gluten present in the beers. A competitive ELISA using a pepsin-trypsin hydrolysate calibrant was unreliable because the peptide profiles of the beers were inconsistent with that of the hydrolysate calibrant. Analysis by MS indicated that PEP enhanced the loss of a fragment of an immunopathogenic 33-mer peptide in the beer. However, Western blot results indicated partial resistance of the high molecular weight (HMW) glutenins to the action of PEP, questioning the ability of PEP in digesting all immunopathogenic sequences present in gluten.
Reimer, G.M.; Szarzi, S.L.; Dolan, Michael P.
1998-01-01
An examination of year-long, in-home radon measurement in Colorado from commercial companies applying typical methods indicates that considerable variation in precision exists. This variation can have a substantial impact on any mitigation decisions, either voluntary or mandated by law, especially regarding property sale or exchange. Both long-term exposure (nuclear track greater than 90 days), and short-term (charcoal adsorption 4-7 days) exposure methods were used. In addition, periods of continuous monitoring with a highly calibrated alpha-scintillometer took place for accuracy calibration. The results of duplicate commercial analysis show that typical results are no better than ??25 percent with occasional outliers (up to 5 percent of all analyses) well beyond that limit. Differential seasonal measurements (winter/summer) by short-term methods provide equivalent information to single long-term measurements. Action levels in the U.S. for possible mitigation decisions should be selected so that they consider the measurement variability; specifically, they should reflect a concentration range similar to that adopted by the European Community.
Wang, Ling; Muralikrishnan, Bala; Rachakonda, Prem; Sawyer, Daniel
2017-01-01
Terrestrial laser scanners (TLS) are increasingly used in large-scale manufacturing and assembly where required measurement uncertainties are on the order of few tenths of a millimeter or smaller. In order to meet these stringent requirements, systematic errors within a TLS are compensated in-situ through self-calibration. In the Network method of self-calibration, numerous targets distributed in the work-volume are measured from multiple locations with the TLS to determine parameters of the TLS error model. In this paper, we propose two new self-calibration methods, the Two-face method and the Length-consistency method. The Length-consistency method is proposed as a more efficient way of realizing the Network method where the length between any pair of targets from multiple TLS positions are compared to determine TLS model parameters. The Two-face method is a two-step process. In the first step, many model parameters are determined directly from the difference between front-face and back-face measurements of targets distributed in the work volume. In the second step, all remaining model parameters are determined through the Length-consistency method. We compare the Two-face method, the Length-consistency method, and the Network method in terms of the uncertainties in the model parameters, and demonstrate the validity of our techniques using a calibrated scale bar and front-face back-face target measurements. The clear advantage of these self-calibration methods is that a reference instrument or calibrated artifacts are not required, thus significantly lowering the cost involved in the calibration process. PMID:28890607
Scientific impact of MODIS C5 calibration degradation and C6+ improvements
NASA Astrophysics Data System (ADS)
Lyapustin, A.; Wang, Y.; Xiong, X.; Meister, G.; Platnick, S.; Levy, R.; Franz, B.; Korkin, S.; Hilker, T.; Tucker, J.; Hall, F.; Sellers, P.; Wu, A.; Angal, A.
2014-12-01
The Collection 6 (C6) MODIS (Moderate Resolution Imaging Spectroradiometer) land and atmosphere data sets are scheduled for release in 2014. C6 contains significant revisions of the calibration approach to account for sensor aging. This analysis documents the presence of systematic temporal trends in the visible and near-infrared (500 m) bands of the Collection 5 (C5) MODIS Terra and, to lesser extent, in MODIS Aqua geophysical data sets. Sensor degradation is largest in the blue band (B3) of the MODIS sensor on Terra and decreases with wavelength. Calibration degradation causes negative global trends in multiple MODIS C5 products including the dark target algorithm's aerosol optical depth over land and Ångström exponent over the ocean, global liquid water and ice cloud optical thickness, as well as surface reflectance and vegetation indices, including the normalized difference vegetation index (NDVI) and enhanced vegetation index (EVI). As the C5 production will be maintained for another year in parallel with C6, one objective of this paper is to raise awareness of the calibration-related trends for the broad MODIS user community. The new C6 calibration approach removes major calibrations trends in the Level 1B (L1B) data. This paper also introduces an enhanced C6+ calibration of the MODIS data set which includes an additional polarization correction (PC) to compensate for the increased polarization sensitivity of MODIS Terra since about 2007, as well as detrending and Terra-Aqua cross-calibration over quasi-stable desert calibration sites. The PC algorithm, developed by the MODIS ocean biology processing group (OBPG), removes residual scan angle, mirror side and seasonal biases from aerosol and surface reflectance (SR) records along with spectral distortions of SR. Using the multiangle implementation of atmospheric correction (MAIAC) algorithm over deserts, we have also developed a detrending and cross-calibration method which removes residual decadal trends on the order of several tenths of 1% of the top-of-atmosphere (TOA) reflectance in the visible and near-infrared MODIS bands B1-B4, and provides a good consistency between the two MODIS sensors. MAIAC analysis over the southern USA shows that the C6+ approach removed an additional negative decadal trend of Terra ΔNDVI ~ 0.01 as compared to Aqua data. This change is particularly important for analysis of vegetation dynamics and trends in the tropics, e.g., Amazon rainforest, where the morning orbit of Terra provides considerably more cloud-free observations compared to the afternoon Aqua measurements.
Scientific Impact of MODIS C5 Calibration Degradation and C6+ Improvements
NASA Technical Reports Server (NTRS)
Lyapustin, A.; Wang, Y.; Xiong, X.; Meister, G.; Platnick, S.; Levy, R.; Franz, B.; Korkin, S.; Hilker, T.; Tucker, J.;
2014-01-01
The Collection 6 (C6) MODIS (Moderate Resolution Imaging Spectroradiometer) land and atmosphere data sets are scheduled for release in 2014. C6 contains significant revisions of the calibration approach to account for sensor aging. This analysis documents the presence of systematic temporal trends in the visible and near-infrared (500 m) bands of the Collection 5 (C5) MODIS Terra and, to lesser extent, in MODIS Aqua geophysical data sets. Sensor degradation is largest in the blue band (B3) of the MODIS sensor on Terra and decreases with wavelength. Calibration degradation causes negative global trends in multiple MODIS C5 products including the dark target algorithm's aerosol optical depth over land and Ångstrom exponent over the ocean, global liquid water and ice cloud optical thickness, as well as surface reflectance and vegetation indices, including the normalized difference vegetation index (NDVI) and enhanced vegetation index (EVI). As the C5 production will be maintained for another year in parallel with C6, one objective of this paper is to raise awareness of the calibration-related trends for the broad MODIS user community. The new C6 calibration approach removes major calibrations trends in the Level 1B (L1B) data. This paper also introduces an enhanced C6C calibration of the MODIS data set which includes an additional polarization correction (PC) to compensate for the increased polarization sensitivity of MODIS Terra since about 2007, as well as detrending and Terra- Aqua cross-calibration over quasi-stable desert calibration sites. The PC algorithm, developed by the MODIS ocean biology processing group (OBPG), removes residual scan angle, mirror side and seasonal biases from aerosol and surface reflectance (SR) records along with spectral distortions of SR. Using the multiangle implementation of atmospheric correction (MAIAC) algorithm over deserts, we have also developed a detrending and cross-calibration method which removes residual decadal trends on the order of several tenths of 1% of the top-of-atmosphere (TOA) reflectance in the visible and near-infrared MODIS bands B1-B4, and provides a good consistency between the two MODIS sensors. MAIAC analysis over the southern USA shows that the C6C approach removed an additional negative decadal trend of Terra (Delta)NDVI approx.0.01 as compared to Aqua data. This change is particularly important for analysis of vegetation dynamics and trends in the tropics, e.g., Amazon rainforest, where the morning orbit of Terra provides considerably more cloud-free observations compared to the afternoon Aqua measurements.
USDA-ARS?s Scientific Manuscript database
Although many near infrared (NIR) spectrometric calibrations exist for a variety of components in soy, current calibration methods are often limited by either a small sample size on which the calibrations are based or a wide variation in sample preparation and measurement methods, which yields unrel...
Multiplexed fluctuation-dissipation-theorem calibration of optical tweezers inside living cells
NASA Astrophysics Data System (ADS)
Yan, Hao; Johnston, Jessica F.; Cahn, Sidney B.; King, Megan C.; Mochrie, Simon G. J.
2017-11-01
In order to apply optical tweezers-based force measurements within an uncharacterized viscoelastic medium such as the cytoplasm of a living cell, a quantitative calibration method that may be applied in this complex environment is needed. We describe an improved version of the fluctuation-dissipation-theorem calibration method, which has been developed to perform in situ calibration in viscoelastic media without prior knowledge of the trapped object. Using this calibration procedure, it is possible to extract values of the medium's viscoelastic moduli as well as the force constant describing the optical trap. To demonstrate our method, we calibrate an optical trap in water, in polyethylene oxide solutions of different concentrations, and inside living fission yeast (S. pombe).
NASA Astrophysics Data System (ADS)
Sakamoto, Toshihiro
2018-04-01
Crop phenological information is a critical variable in evaluating the influence of environmental stress on the final crop yield in spatio-temporal dimensions. Although the MODIS (Moderate Resolution Imaging Spectroradiometer) Land Cover Dynamics product (MCD12Q2) is widely used in place of crop phenological information, the definitions of MCD12Q2-derived phenological events (e.g. green-up date, dormancy date) were not completely consistent with those of crop development stages used in statistical surveys (e.g. emerged date, harvested date). It has been necessary to devise an alternative method focused on detecting continental-scale crop developmental stages using a different approach. Therefore, this study aimed to refine the Shape Model Fitting (SMF) method to improve its applicability to multiple major U.S. crops. The newly-refined SMF methods could estimate the timing of 36 crop-development stages of major U.S. crops, including corn, soybeans, winter wheat, spring wheat, barley, sorghum, rice, and cotton. The newly-developed calibration process did not require any long-term field observation data, and could calibrate crop-specific phenological parameters, which were used as coefficients in estimated equation, by using only freely accessible public data. The calibration of phenological parameters was conducted in two steps. In the first step, the national common phenological parameters, referred to as X0[base], were calibrated by using the statistical data of 2008. The SMF method coupled using X0[base] was named the rSMF[base] method. The second step was a further calibration to gain regionally-adjusted phenological parameters for each state, referred to as X0[local], by using additional statistical data of 2015 and 2016. The rSMF method using the X0[local] was named the rSMF[local] method. This second calibration process improved the estimation accuracy for all tested crops. When applying the rSMF[base] method to the validation data set (2009-2014), the root mean square error (RMSE) of the rSMF[base]-derived estimates ranged from 7.1 days (corn) to 15.7 days (winter wheat). When using the rSMF[local] method, the RMSE of the rSMF[local]-derived estimates improved and ranged from 5.6 days (corn) to 12.3 days (winter wheat). The results showed that the second calibration step for the rSMF[local] method could correct the region-dependent bias error between the rSMF[base]-derived estimates and the statistical data. A comparison between the performances of the refined SMF methods and the MCD12Q2 products, indicated that both of the rSMF methods were superior to the MCD12Q2 products in estimating all phenological stages, except for the case of the rSMF[base]-derived barley emerged stages. The phenological stages for which the rSMF[local] showed the best estimation accuracy were the corn silking stage (RMSE = 4.3 days); the soybeans dropping leaves stage (RMSE = 4.9 days); the headed stages of winter wheat (RMSE = 11.1 days), barley (RMSE = 6.1 days), and sorghum (RMSE = 9.5 days); the spring-wheat harvested stage (RMSE = 5.5 days); the rice emerged stage (RMSE = 5.5 days), and the cotton squaring stage (RMSE = 6.6 days). These were more accurate than the results achieved by the MCD12Q2 products. In addition, the rSMF[local]-derived estimates were superior in terms of the reproducibility of the annual variation range, particularly of the late reproductive stages, such as the mature and harvested stages. The crop phenology maps derived from the SMF [local] method were also in good agreement with the relevant maps derived from statistics, and could reveal the characteristic spatial pattern of the key phenological stages at the continental scale with fine spatial resolution. For example, the winter-wheat headed stage clearly became later from south to north. The cotton squaring stage became earlier from the central region towards both coastal regions.
NASA Astrophysics Data System (ADS)
Scott, M. L.; Gagarin, N.; Mekemson, J. R.; Chintakunta, S. R.
2011-06-01
Until recently, civil engineering material calibration data could only be obtained from material sample cores or via time consuming, stationary calibration measurements in a limited number of locations. Calibration data are used to determine material propagation velocities of electromagnetic waves in test materials for use in layer thickness measurements and subsurface imaging. Limitations these calibration methods impose have been a significant impediment to broader use of nondestructive evaluation methods such as ground-penetrating radar (GPR). In 2006, a new rapid, continuous calibration approach was designed using simulation software to address these measurement limitations during a Federal Highway Administration (FHWA) research and development effort. This continuous calibration method combines a digitally-synthesized step-frequency (SF)-GPR array and a data collection protocol sequence for the common midpoint (CMP) method. Modeling and laboratory test results for various data collection protocols and materials are presented in this paper. The continuous-CMP concept was finally implemented for FHWA in a prototype demonstration system called the Advanced Pavement Evaluation (APE) system in 2009. Data from the continuous-CMP protocol is processed using a semblance/coherency analysis to determine material propagation velocities. Continuously calibrated pavement thicknesses measured with the APE system in 2009 are presented. This method is efficient, accurate, and cost-effective.
User-friendly freehand ultrasound calibration using Lego bricks and automatic registration.
Xiao, Yiming; Yan, Charles Xiao Bo; Drouin, Simon; De Nigris, Dante; Kochanowska, Anna; Collins, D Louis
2016-09-01
As an inexpensive, noninvasive, and portable clinical imaging modality, ultrasound (US) has been widely employed in many interventional procedures for monitoring potential tissue deformation, surgical tool placement, and locating surgical targets. The application requires the spatial mapping between 2D US images and 3D coordinates of the patient. Although positions of the devices (i.e., ultrasound transducer) and the patient can be easily recorded by a motion tracking system, the spatial relationship between the US image and the tracker attached to the US transducer needs to be estimated through an US calibration procedure. Previously, various calibration techniques have been proposed, where a spatial transformation is computed to match the coordinates of corresponding features in a physical phantom and those seen in the US scans. However, most of these methods are difficult to use for novel users. We proposed an ultrasound calibration method by constructing a phantom from simple Lego bricks and applying an automated multi-slice 2D-3D registration scheme without volumetric reconstruction. The method was validated for its calibration accuracy and reproducibility. Our method yields a calibration accuracy of [Formula: see text] mm and a calibration reproducibility of 1.29 mm. We have proposed a robust, inexpensive, and easy-to-use ultrasound calibration method.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scott, M. L.; Gagarin, N.; Mekemson, J. R.
Until recently, civil engineering material calibration data could only be obtained from material sample cores or via time consuming, stationary calibration measurements in a limited number of locations. Calibration data are used to determine material propagation velocities of electromagnetic waves in test materials for use in layer thickness measurements and subsurface imaging. Limitations these calibration methods impose have been a significant impediment to broader use of nondestructive evaluation methods such as ground-penetrating radar (GPR). In 2006, a new rapid, continuous calibration approach was designed using simulation software to address these measurement limitations during a Federal Highway Administration (FHWA) research andmore » development effort. This continuous calibration method combines a digitally-synthesized step-frequency (SF)-GPR array and a data collection protocol sequence for the common midpoint (CMP) method. Modeling and laboratory test results for various data collection protocols and materials are presented in this paper. The continuous-CMP concept was finally implemented for FHWA in a prototype demonstration system called the Advanced Pavement Evaluation (APE) system in 2009. Data from the continuous-CMP protocol is processed using a semblance/coherency analysis to determine material propagation velocities. Continuously calibrated pavement thicknesses measured with the APE system in 2009 are presented. This method is efficient, accurate, and cost-effective.« less
NASA Technical Reports Server (NTRS)
Arnold, G. Thomas; Fitzgerald, Michael; Grant, Patrick S.; King, Michael D.
1994-01-01
Calibration of the visible and near-infrared (near-IR) channels of the MODIS Airborne Simulator (MAS) is derived from observations of a calibrated light source. For the 1992 Atlantic Stratocumulus Transition Experiment (ASTEX) field deployment, the calibrated light source was the NASA Goddard 48-inch integrating hemisphere. Tests during the ASTEX deployment were conducted to calibrate the hemisphere and then the MAS. This report summarizes the ASTEX hemisphere calibration, and then describes how the MAS was calibrated from the hemisphere data. All MAS calibration measurements are presented and determination of the MAS calibration coefficients (raw counts to radiance conversion) is discussed. In addition, comparisons to an independent MAS calibration by Ames personnel using their 30-inch integrating sphere is discussed.
Psychophysical Calibration of Mobile Touch-Screens for Vision Testing in the Field
NASA Technical Reports Server (NTRS)
Mulligan, Jeffrey B.
2015-01-01
The now ubiquitous nature of touch-screen displays in cell phones and tablet computers makes them an attractive option for vision testing outside of the laboratory or clinic. Accurate measurement of parameters such as contrast sensitivity, however, requires precise control of absolute and relative screen luminances. The nonlinearity of the display response (gamma) can be measured or checked using a minimum motion technique similar to that developed by Anstis and Cavanagh (1983) for the determination of isoluminance. While the relative luminances of the color primaries vary between subjects (due to factors such as individual differences in pre-retinal pigment densities), the gamma nonlinearity can be checked in the lab using a photometer. Here we compare results obtained using the psychophysical method with physical measurements for a number of different devices. In addition, we present a novel physical method using the device's built-in front-facing camera in conjunction with a mirror to jointly calibrate the camera and display. A high degree of consistency between devices is found, but some departures from ideal performance are observed. In spite of this, the effects of calibration errors and display artifacts on estimates of contrast sensitivity are found to be small.
Cao, Jianping; Xiong, Jianyin; Wang, Lixin; Xu, Ying; Zhang, Yinping
2016-09-06
Solid-phase microextraction (SPME) is regarded as a nonexhaustive sampling technique with a smaller extraction volume and a shorter extraction time than traditional sampling techniques and is hence widely used. The SPME sampling process is affected by the convection or diffusion effect along the coating surface, but this factor has seldom been studied. This paper derives an analytical model to characterize SPME sampling for semivolatile organic compounds (SVOCs) as well as for volatile organic compounds (VOCs) by considering the surface mass transfer process. Using this model, the chemical concentrations in a sample matrix can be conveniently calculated. In addition, the model can be used to determine the characteristic parameters (partition coefficient and diffusion coefficient) for typical SPME chemical samplings (SPME calibration). Experiments using SPME samplings of two typical SVOCs, dibutyl phthalate (DBP) in sealed chamber and di(2-ethylhexyl) phthalate (DEHP) in ventilated chamber, were performed to measure the two characteristic parameters. The experimental results demonstrated the effectiveness of the model and calibration method. Experimental data from the literature (VOCs sampled by SPME) were used to further validate the model. This study should prove useful for relatively rapid quantification of concentrations of different chemicals in various circumstances with SPME.
IMU-Based Online Kinematic Calibration of Robot Manipulator
2013-01-01
Robot calibration is a useful diagnostic method for improving the positioning accuracy in robot production and maintenance. An online robot self-calibration method based on inertial measurement unit (IMU) is presented in this paper. The method requires that the IMU is rigidly attached to the robot manipulator, which makes it possible to obtain the orientation of the manipulator with the orientation of the IMU in real time. This paper proposed an efficient approach which incorporates Factored Quaternion Algorithm (FQA) and Kalman Filter (KF) to estimate the orientation of the IMU. Then, an Extended Kalman Filter (EKF) is used to estimate kinematic parameter errors. Using this proposed orientation estimation method will result in improved reliability and accuracy in determining the orientation of the manipulator. Compared with the existing vision-based self-calibration methods, the great advantage of this method is that it does not need the complex steps, such as camera calibration, images capture, and corner detection, which make the robot calibration procedure more autonomous in a dynamic manufacturing environment. Experimental studies on a GOOGOL GRB3016 robot show that this method has better accuracy, convenience, and effectiveness than vision-based methods. PMID:24302854
Extrinsic Calibration of Camera Networks Based on Pedestrians
Guan, Junzhi; Deboeverie, Francis; Slembrouck, Maarten; Van Haerenborgh, Dirk; Van Cauwelaert, Dimitri; Veelaert, Peter; Philips, Wilfried
2016-01-01
In this paper, we propose a novel extrinsic calibration method for camera networks by analyzing tracks of pedestrians. First of all, we extract the center lines of walking persons by detecting their heads and feet in the camera images. We propose an easy and accurate method to estimate the 3D positions of the head and feet w.r.t. a local camera coordinate system from these center lines. We also propose a RANSAC-based orthogonal Procrustes approach to compute relative extrinsic parameters connecting the coordinate systems of cameras in a pairwise fashion. Finally, we refine the extrinsic calibration matrices using a method that minimizes the reprojection error. While existing state-of-the-art calibration methods explore epipolar geometry and use image positions directly, the proposed method first computes 3D positions per camera and then fuses the data. This results in simpler computations and a more flexible and accurate calibration method. Another advantage of our method is that it can also handle the case of persons walking along straight lines, which cannot be handled by most of the existing state-of-the-art calibration methods since all head and feet positions are co-planar. This situation often happens in real life. PMID:27171080
Weykamp, C W; Penders, T J; Miedema, K; Muskiet, F A; van der Slik, W
1995-01-01
We investigated the effect of calibration with lyophilized calibrators on whole-blood glycohemoglobin (glyHb) results. One hundred three laboratories, using 20 different methods, determined glyHb in two lyophilized calibrators and two whole-blood samples. For whole-blood samples with low (5%) and high (9%) glyHb percentages, respectively, calibration decreased overall interlaboratory variation (CV) from 16% to 9% and from 11% to 6% and decreased intermethod variation from 14% to 6% and from 12% to 5%. Forty-seven laboratories, using 14 different methods, determined mean glyHb percentages in self-selected groups of 10 nondiabetic volunteers each. With calibration their overall mean (2SD) was 5.0% (0.5%), very close to the 5.0% (0.3%) derived from the reference method used in the Diabetes Control and Complications Trial. In both experiments the Abbott IMx and Vision showed deviating results. We conclude that, irrespective of the analytical method used, calibration enables standardization of glyHb results, reference values, and interpretation criteria.
Laser projection positioning of spatial contour curves via a galvanometric scanner
NASA Astrophysics Data System (ADS)
Tu, Junchao; Zhang, Liyan
2018-04-01
The technology of laser projection positioning is widely applied in advanced manufacturing fields (e.g. composite plying, parts location and installation). In order to use it better, a laser projection positioning (LPP) system is designed and implemented. Firstly, the LPP system is built by a laser galvanometric scanning (LGS) system and a binocular vision system. Applying Single-hidden Layer Feed-forward Neural Network (SLFN), the system model is constructed next. Secondly, the LGS system and the binocular system, which are respectively independent, are integrated through a datadriven calibration method based on extreme learning machine (ELM) algorithm. Finally, a projection positioning method is proposed within the framework of the calibrated SLFN system model. A well-designed experiment is conducted to verify the viability and effectiveness of the proposed system. In addition, the accuracy of projection positioning are evaluated to show that the LPP system can achieves the good localization effect.
Error analysis of integrated water vapor measured by CIMEL photometer
NASA Astrophysics Data System (ADS)
Berezin, I. A.; Timofeyev, Yu. M.; Virolainen, Ya. A.; Frantsuzova, I. S.; Volkova, K. A.; Poberovsky, A. V.; Holben, B. N.; Smirnov, A.; Slutsker, I.
2017-01-01
Water vapor plays a key role in weather and climate forming, which leads to the need for continuous monitoring of its content in different parts of the Earth. Intercomparison and validation of different methods for integrated water vapor (IWV) measurements are essential for determining the real accuracies of these methods. CIMEL photometers measure IWV at hundreds of ground-based stations of the AERONET network. We analyze simultaneous IWV measurements performed by a CIMEL photometer, an RPG-HATPRO MW radiometer, and a FTIR Bruker 125-HR spectrometer at the Peterhof station of St. Petersburg State University. We show that the CIMEL photometer calibrated by the manufacturer significantly underestimates the IWV obtained by other devices. We may conclude from this intercomparison that it is necessary to perform an additional calibration of the CIMEL photometer, as well as a possible correction of the interpretation technique for CIMEL measurements at the Peterhof site.
NASA Astrophysics Data System (ADS)
Toman, Blaza; Nelson, Michael A.; Bedner, Mary
2017-06-01
Chemical measurement methods are designed to promote accurate knowledge of a measurand or system. As such, these methods often allow elicitation of latent sources of variability and correlation in experimental data. They typically implement measurement equations that support quantification of effects associated with calibration standards and other known or observed parametric variables. Additionally, multiple samples and calibrants are usually analyzed to assess accuracy of the measurement procedure and repeatability by the analyst. Thus, a realistic assessment of uncertainty for most chemical measurement methods is not purely bottom-up (based on the measurement equation) or top-down (based on the experimental design), but inherently contains elements of both. Confidence in results must be rigorously evaluated for the sources of variability in all of the bottom-up and top-down elements. This type of analysis presents unique challenges due to various statistical correlations among the outputs of measurement equations. One approach is to use a Bayesian hierarchical (BH) model which is intrinsically rigorous, thus making it a straightforward method for use with complex experimental designs, particularly when correlations among data are numerous and difficult to elucidate or explicitly quantify. In simpler cases, careful analysis using GUM Supplement 1 (MC) methods augmented with random effects meta analysis yields similar results to a full BH model analysis. In this article we describe both approaches to rigorous uncertainty evaluation using as examples measurements of 25-hydroxyvitamin D3 in solution reference materials via liquid chromatography with UV absorbance detection (LC-UV) and liquid chromatography mass spectrometric detection using isotope dilution (LC-IDMS).
NASA Astrophysics Data System (ADS)
Koshti, Ajay M.
2015-04-01
The paper provides information on a new infrared (IR) image contrast data post-processing method that involves converting raw data to normalized contrast versus time evolutions from the flash infrared thermography inspection video data. Thermal measurement features such as peak contrast, peak contrast time, persistence time, and persistence energy are calculated from the contrast evolutions. In addition, simulation of the contrast evolution is achieved through calibration on measured contrast evolutions from many flat bottom holes in a test plate of the subject material. The measurement features are used to monitor growth of anomalies and to characterize the void-like anomalies. The method was developed to monitor and analyze void-like anomalies in reinforced carbon-carbon (RCC) materials used on the wing leading edge of the NASA Space Shuttle Orbiters, but the method is equally applicable to other materials. The thermal measurement features relate to the anomaly characteristics such as depth and size. Calibration of the contrast is used to provide an assessment of the anomaly depth and width which correspond to the depth and diameter of the equivalent flat bottom hole (EFBH) from the calibration data. An edge detection technique called the half-max is used to measure width and length of the anomaly. Results of the half-max width and the EFBH diameter are compared with actual widths to evaluate utility of IR Contrast method. Some thermal measurements relate to gap thickness of the delaminations. Results of IR Contrast method on RCC hardware are provided. Keywords: normalized contrast, flash infrared thermography.
NASA Astrophysics Data System (ADS)
Demirel, M. C.; Mai, J.; Stisen, S.; Mendiguren González, G.; Koch, J.; Samaniego, L. E.
2016-12-01
Distributed hydrologic models are traditionally calibrated and evaluated against observations of streamflow. Spatially distributed remote sensing observations offer a great opportunity to enhance spatial model calibration schemes. For that it is important to identify the model parameters that can change spatial patterns before the satellite based hydrologic model calibration. Our study is based on two main pillars: first we use spatial sensitivity analysis to identify the key parameters controlling the spatial distribution of actual evapotranspiration (AET). Second, we investigate the potential benefits of incorporating spatial patterns from MODIS data to calibrate the mesoscale Hydrologic Model (mHM). This distributed model is selected as it allows for a change in the spatial distribution of key soil parameters through the calibration of pedo-transfer function parameters and includes options for using fully distributed daily Leaf Area Index (LAI) directly as input. In addition the simulated AET can be estimated at the spatial resolution suitable for comparison to the spatial patterns observed using MODIS data. We introduce a new dynamic scaling function employing remotely sensed vegetation to downscale coarse reference evapotranspiration. In total, 17 parameters of 47 mHM parameters are identified using both sequential screening and Latin hypercube one-at-a-time sampling methods. The spatial patterns are found to be sensitive to the vegetation parameters whereas streamflow dynamics are sensitive to the PTF parameters. The results of multi-objective model calibration show that calibration of mHM against observed streamflow does not reduce the spatial errors in AET while they improve only the streamflow simulations. We will further examine the results of model calibration using only multi spatial objective functions measuring the association between observed AET and simulated AET maps and another case including spatial and streamflow metrics together.
Umchid, S.; Gopinath, R.; Srinivasan, K.; Lewin, P. A.; Daryoush, A. S.; Bansal, L.; El-Sherif, M.
2009-01-01
The primary objective of this work was to develop and optimize the calibration techniques for ultrasonic hydrophone probes used in acoustic field measurements up to 100 MHz. A dependable, 100 MHz calibration method was necessary to examine the behavior of a sub-millimeter spatial resolution fiber optic (FO) sensor and assess the need for such a sensor as an alternative tool for high frequency characterization of ultrasound fields. Also, it was of interest to investigate the feasibility of using FO probes in high intensity fields such as those employed in HIFU (High Intensity Focused Ultrasound) applications. In addition to the development and validation of a novel, 100 MHz calibration technique the innovative elements of this research include implementation and testing of a prototype FO sensor with an active diameter of about 10 μm that exhibits uniform sensitivity over the considered frequency range and does not require any spatial averaging corrections up to about 75 MHz. The results of the calibration measurements are presented and it is shown that the optimized calibration technique allows the sensitivity of the hydrophone probes to be determined as a virtually continuous function of frequency and is also well suited to verify the uniformity of the FO sensor frequency response. As anticipated, the overall uncertainty of the calibration was dependent on frequency and determined to be about ±12% (±1 dB) up to 40 MHz, ±20% (±1.5 dB) from 40 to 60 MHz and ±25% (±2 dB) from 60 to 100 MHz. The outcome of this research indicates that once fully developed and calibrated, the combined acousto-optic system will constitute a universal reference tool in the wide, 100 MHz bandwidth. PMID:19110289
Kramer, Kirsten E; Small, Gary W
2009-02-01
Fourier transform near-infrared (NIR) transmission spectra are used for quantitative analysis of glucose for 17 sets of prediction data sampled as much as six months outside the timeframe of the corresponding calibration data. Aqueous samples containing physiological levels of glucose in a matrix of bovine serum albumin and triacetin are used to simulate clinical samples such as blood plasma. Background spectra of a single analyte-free matrix sample acquired during the instrumental warm-up period on the prediction day are used for calibration updating and for determining the optimal frequency response of a preprocessing infinite impulse response time-domain digital filter. By tuning the filter and the calibration model to the specific instrumental response associated with the prediction day, the calibration model is given enhanced ability to operate over time. This methodology is demonstrated in conjunction with partial least squares calibration models built with a spectral range of 4700-4300 cm(-1). By using a subset of the background spectra to evaluate the prediction performance of the updated model, projections can be made regarding the success of subsequent glucose predictions. If a threshold standard error of prediction (SEP) of 1.5 mM is used to establish successful model performance with the glucose samples, the corresponding threshold for the SEP of the background spectra is found to be 1.3 mM. For calibration updating in conjunction with digital filtering, SEP values of all 17 prediction sets collected over 3-178 days displaced from the calibration data are below 1.5 mM. In addition, the diagnostic based on the background spectra correctly assesses the prediction performance in 16 of the 17 cases.
New Submersed Chamber for Calibration of Relative Humidity Instruments at HMI/FSB-LPM
NASA Astrophysics Data System (ADS)
Sestan, D.; Zvizdic, D.; Sariri, K.
2018-02-01
This paper gives a detailed description of a new chamber designed for calibration of relative humidity (RH) instruments at Laboratory for Process Measurement (HMI/FSB-LPM). To the present time, the calibrations of RH instruments at the HMI/FSB-LPM were done by comparison method using a climatic chamber of large volume and calibrated dew point hygrometer with an additional thermometer. Since 2010, HMI/FSB-LPM in cooperation with Centre for Metrology and Accreditation in Finland (MIKES) developed the two primary dew point generators which cover the dew point temperature range between - 70 {°}C and 60 {°}C. In order to utilize these facilities for calibrations of the RH instruments, the new chamber was designed, manufactured and installed in the existing system, aiming to extend its range and reduce the related calibration uncertainties. The chamber construction allows its use in a thermostatic bath of larger volume as well as in the climatic chambers. In the scope of this paper, performances of the new chamber were tested while it was submersed in a thermostated bath. The chamber can simultaneously accommodate up to three RH sensors. In order to keep the design of the chamber simple, only cylindrical RH sensors detachable from display units can be calibrated. Possible optimizations are also discussed, and improvements in the design proposed. By using the new chamber, HMI/FSB-LPM reduced the expanded calibration uncertainties (level of confidence 95 %, coverage factor k=2) from 0.6 %rh to 0.25 %rh at 30 %rh (23 {°}C), and from 0.8 %rh to 0.53 %rh at 70 %rh (23 {°}C).
A method for soil moisture probes calibration and validation of satellite estimates.
Holzman, Mauro; Rivas, Raúl; Carmona, Facundo; Niclòs, Raquel
2017-01-01
Optimization of field techniques is crucial to ensure high quality soil moisture data. The aim of the work is to present a sampling method for undisturbed soil and soil water content to calibrated soil moisture probes, in a context of the SMOS (Soil Moisture and Ocean Salinity) mission MIRAS Level 2 soil moisture product validation in Pampean Region of Argentina. The method avoids soil alteration and is recommended to calibrated probes based on soil type under a freely drying process at ambient temperature. A detailed explanation of field and laboratory procedures to obtain reference soil moisture is shown. The calibration results reflected accurate operation for the Delta-T thetaProbe ML2x probes in most of analyzed cases (RMSE and bias ≤ 0.05 m 3 /m 3 ). Post-calibration results indicated that the accuracy improves significantly applying the adjustments of the calibration based on soil types (RMSE ≤ 0.022 m 3 /m 3 , bias ≤ -0.010 m 3 /m 3 ). •A sampling method that provides high quality data of soil water content for calibration of probes is described.•Importance of calibration based on soil types.•A calibration process for similar soil types could be suitable in practical terms, depending on the required accuracy level.
An Introduction to the Global Space-based Inter-Calibration System from a EUMETSAT Perspective
NASA Astrophysics Data System (ADS)
Wagner, S. C.; Hewison, T.; Roebeling, R. A.; Koenig, M.; Schulz, J.; Miu, P.
2012-04-01
The Global Space-based Inter-Calibration System (GSICS) (Goldberg and al. 2011) is an international collaborative effort which aims to monitor, improve and harmonize the quality of observations from operational weather and environmental satellites of the Global Observing System (GOS). GSICS aims at ensuring consistent accuracy among space-based observations worldwide for climate monitoring, weather forecasting, and environmental applications. This is achieved through a comprehensive calibration strategy, which involves monitoring instrument performances, operational inter-calibration of satellite instruments, tying the measurements to absolute references and standards, and recalibration of archived data. A major part of this strategy involves direct comparison of collocated observations from pairs of satellite instruments, which are used to systematically generate calibration functions to compare and correct the calibration of monitored instruments to references. These GSICS Corrections are needed for accurately integrating data from multiple observing systems into both near real-time and re-analysis products, applications and services. This paper gives more insight into the activities carried out by EUMETSAT as a GSICS Processing and Research Centre. Currently these are closely bound to the in-house development and operational implementation of calibration methods for solar and thermal band channels of geostationary and polar-orbiting satellites. They include inter-calibration corrections for Meteosat imagers using reference instruments such as the Moderate Resolution Imaging Spectroradiometer (MODIS) on-board the Aqua satellite for solar band channels, the Infrared Atmospheric Sounding Interferometer (IASI) on-board Metop-A and, for historic archive data, the High-resolution InfraRed Sounder (HIRS). Additionally, bias monitoring is routinely performed, allowing users to visualise the calibration accuracy of the instruments in near real-time. These activities are based on principles and protocols defined by the GSICS Research Working Group and Data Management Working Group, which require assessment of the calibration uncertainties to ensure the traceability to community references.
Simultaneous multi-headed imager geometry calibration method
Tran, Vi-Hoa [Newport News, VA; Meikle, Steven Richard [Penshurst, AU; Smith, Mark Frederick [Yorktown, VA
2008-02-19
A method for calibrating multi-headed high sensitivity and high spatial resolution dynamic imaging systems, especially those useful in the acquisition of tomographic images of small animals. The method of the present invention comprises: simultaneously calibrating two or more detectors to the same coordinate system; and functionally correcting for unwanted detector movement due to gantry flexing.
Model independent approach to the single photoelectron calibration of photomultiplier tubes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saldanha, R.; Grandi, L.; Guardincerri, Y.
2017-08-01
The accurate calibration of photomultiplier tubes is critical in a wide variety of applications in which it is necessary to know the absolute number of detected photons or precisely determine the resolution of the signal. Conventional calibration methods rely on fitting the photomultiplier response to a low intensity light source with analytical approximations to the single photoelectron distribution, often leading to biased estimates due to the inability to accurately model the full distribution, especially at low charge values. In this paper we present a simple statistical method to extract the relevant single photoelectron calibration parameters without making any assumptions aboutmore » the underlying single photoelectron distribution. We illustrate the use of this method through the calibration of a Hamamatsu R11410 photomultiplier tube and study the accuracy and precision of the method using Monte Carlo simulations. The method is found to have significantly reduced bias compared to conventional methods and works under a wide range of light intensities, making it suitable for simultaneously calibrating large arrays of photomultiplier tubes.« less
NASA Astrophysics Data System (ADS)
Leisso, N.
2015-12-01
The National Ecological Observatory Network (NEON) is being constructed by the National Science Foundation and is slated for completion in 2017. NEON is designed to collect data to improve the understanding of changes in observed ecosystems. The observatory will produce data products on a variety of spatial and temporal scales collected from individual sites strategically located across the U.S. including Alaska, Hawaii, and Puerto Rico. Data sources include standardized terrestrial, instrumental, and aquatic observation systems in addition to three airborne remote sensing observation systems installed into leased Twin Otter aircraft. The Airborne Observation Platforms (AOP) are designed to collect 3-band aerial imagery, waveform and discrete LiDAR, and high-fidelity imaging spectroscopy data over the NEON sites annually at or near peak-greenness. The NEON Imaging Spectrometer (NIS) is a Visible and Shortwave Infrared (VSWIR) sensor designed by NASA JPL for ecological applications. Spectroscopic data is collected at 5-nm intervals across the solar-reflective spectral region (380-nm to 2500-nm) in a 34-degree FOV swath. A key uncertainty driver to the derived remote sensing NEON data products is the calibration of the imaging spectrometers. In addition, the calibration and accuracy of the higher-level data product algorithms is essential to the overall NEON mission to detect changes in the collected ecosystems over the 30-year expected lifetime. The typical calibration workflow of the NIS consists of the characterizing the focal plane, spectral calibration, and radiometric calibration. Laboratory spectral calibration is based on well-defined emission lines in conjunction with a scanning monochromator to define the individual spectral response functions. The radiometric calibration is NIST traceable and transferred to the NIS with an integrating sphere calibrated through the use of transfer radiometers. The laboratory calibration is monitored and maintained through the use of an On-Board Calibration (OBC) system. Recent advances in the understanding of the NIS sensor that have led to improvements in the overall calibration accuracy are reported. In addition, the NIS calibration and data products are compared to Earth-observing satellite sensors.
Tuo, Rui; Jeff Wu, C. F.
2016-07-19
Calibration parameters in deterministic computer experiments are those attributes that cannot be measured or available in physical experiments. Here, an approach to estimate them by using data from physical experiments and computer simulations. A theoretical framework is given which allows us to study the issues of parameter identifiability and estimation. We define the L 2-consistency for calibration as a justification for calibration methods. It is shown that a simplified version of the original KO method leads to asymptotically L 2-inconsistent calibration. This L 2-inconsistency can be remedied by modifying the original estimation procedure. A novel calibration method, called the Lmore » 2 calibration, is proposed and proven to be L 2-consistent and enjoys optimal convergence rate. Furthermore a numerical example and some mathematical analysis are used to illustrate the source of the L 2-inconsistency problem.« less
ASTER preflight and inflight calibration and the validation of level 2 products
Thome, K.; Aral, K.; Hook, S.; Kieffer, H.; Lang, H.; Matsunaga, T.; Ono, A.; Palluconi, F. D.; Sakuma, H.; Slater, P.; Takashima, T.; Tonooka, H.; Tsuchida, S.; Welch, R.M.; Zalewski, E.
1998-01-01
This paper describes the preflight and inflight calibration approaches used for the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER). The system is a multispectral, high-spatial resolution sensor on the Earth Observing System's (EOS)-AMl platform. Preflight calibration of ASTER uses well-characterized sources to provide calibration and preflight round-robin exercises to understand biases between the calibration sources of ASTER and other EOS sensors. These round-robins rely on well-characterized, ultra-stable radiometers. An experiment held in Yokohama, Japan, showed that the output from the source used for the visible and near-infrared (VNIR) subsystem of ASTER may be underestimated by 1.5%, but this is still within the 4% specification for the absolute, radiometric calibration of these bands. Inflight calibration will rely on vicarious techniques and onboard blackbodies and lamps. Vicarious techniques include ground-reference methods using desert and water sites. A recent joint field campaign gives confidence that these methods currently provide absolute calibration to better than 5%, and indications are that uncertainties less than the required 4% should be achievable at launch. The EOS-AMI platform will also provide a spacecraft maneuver that will allow ASTER to see the moon, allowing further characterization of the sensor. A method for combining the results of these independent calibration results is presented. The paper also describes the plans for validating the Level 2 data products from ASTER. These plans rely heavily upon field campaigns using methods similar to those used for the ground-reference, vicarious calibration methods. ?? 1998 IEEE.
Apparatus for in-situ calibration of instruments that measure fluid depth
Campbell, Melvin D.
1994-01-01
The present invention provides a method and apparatus for in-situ calibration of distance measuring equipment. The method comprises obtaining a first distance measurement in a first location, then obtaining at least one other distance measurement in at least one other location of a precisely known distance from the first location, and calculating a calibration constant. The method is applied specifically to calculating a calibration constant for obtaining fluid level and embodied in an apparatus using a pressure transducer and a spacer of precisely known length. The calibration constant is used to calculate the depth of a fluid from subsequent single pressure measurements at any submerged position.
Adaptive Prior Variance Calibration in the Bayesian Continual Reassessment Method
Zhang, Jin; Braun, Thomas M.; Taylor, Jeremy M.G.
2012-01-01
Use of the Continual Reassessment Method (CRM) and other model-based approaches to design in Phase I clinical trials has increased due to the ability of the CRM to identify the maximum tolerated dose (MTD) better than the 3+3 method. However, the CRM can be sensitive to the variance selected for the prior distribution of the model parameter, especially when a small number of patients are enrolled. While methods have emerged to adaptively select skeletons and to calibrate the prior variance only at the beginning of a trial, there has not been any approach developed to adaptively calibrate the prior variance throughout a trial. We propose three systematic approaches to adaptively calibrate the prior variance during a trial and compare them via simulation to methods proposed to calibrate the variance at the beginning of a trial. PMID:22987660
The Use of Color Sensors for Spectrographic Calibration
NASA Astrophysics Data System (ADS)
Thomas, Neil B.
2018-04-01
The wavelength calibration of spectrographs is an essential but challenging task in many disciplines. Calibration is traditionally accomplished by imaging the spectrum of a light source containing features that are known to appear at certain wavelengths and mapping them to their location on the sensor. This is typically required in conjunction with each scientific observation to account for mechanical and optical variations of the instrument over time, which may span years for certain projects. The method presented here investigates the usage of color itself instead of spectral features to calibrate a spectrograph. The primary advantage of such a calibration is that any broad-spectrum light source such as the sky or an incandescent bulb is suitable. This method allows for calibration using the full optical pathway of the instrument instead of incorporating separate calibration equipment that may introduce errors. This paper focuses on the potential for color calibration in the field of radial velocity astronomy, in which instruments must be finely calibrated for long periods of time to detect tiny Doppler wavelength shifts. This method is not restricted to radial velocity, however, and may find application in any field requiring calibrated spectrometers such as sea water analysis, cellular biology, chemistry, atmospheric studies, and so on. This paper demonstrates that color sensors have the potential to provide calibration with greatly reduced complexity.
On-orbit characterization of hyperspectral imagers
NASA Astrophysics Data System (ADS)
McCorkel, Joel
Remote Sensing Group (RSG) at the University of Arizona has a long history of using ground-based test sites for the calibration of airborne- and satellite-based sensors. Often, ground-truth measurements at these tests sites are not always successful due to weather and funding availability. Therefore, RSG has also employed automated ground instrument approaches and cross-calibration methods to verify the radiometric calibration of a sensor. The goal in the cross-calibration method is to transfer the calibration of a well-known sensor to that of a different sensor. This dissertation presents a method for determining the radiometric calibration of a hyperspectral imager using multispectral imagery. The work relies on a multispectral sensor, Moderate-resolution Imaging Spectroradiometer (MODIS), as a reference for the hyperspectral sensor Hyperion. Test sites used for comparisons are Railroad Valley in Nevada and a portion of the Libyan Desert in North Africa. A method to predict hyperspectral surface reflectance using a combination of MODIS data and spectral shape information is developed and applied for the characterization of Hyperion. Spectral shape information is based on RSG's historical in situ data for the Railroad Valley test site and spectral library data for the Libyan test site. Average atmospheric parameters, also based on historical measurements, are used in reflectance prediction and transfer to space. Results of several cross-calibration scenarios that differ in image acquisition coincidence, test site, and reference sensor are found for the characterization of Hyperion. These are compared with results from the reflectance-based approach of vicarious calibration, a well-documented method developed by the RSG that serves as a baseline for calibration performance for the cross-calibration method developed here. Cross-calibration provides results that are within 2% of those of reflectance-based results in most spectral regions. Larger disagreements exist for shorter wavelengths studied in this work as well as in spectral areas that experience absorption by the atmosphere.
NASA Astrophysics Data System (ADS)
Li, Wenlong; Cheng, Zhiwei; Wang, Yuefei; Qu, Haibin
2013-01-01
In this paper we describe the strategy used in the development and validation of a near infrared spectroscopy method for the rapid determination of baicalin, chlorogenic acid, ursodeoxycholic acid (UDCA), chenodeoxycholic acid (CDCA), and the total solid contents (TSCs) in the Tanreqing injection. To increase the representativeness of calibration sample set, a concentrating-diluting method was adopted to artificially prepare samples. Partial least square regression (PLSR) was used to establish calibration models, with which the five quality indicators can be determined with satisfied accuracy and repeatability. In addition, the slope/bias (S/B) method was used for the models transfer between two different types of NIR instruments from the same manufacturer, which is contributing to enlarge the application range of the established models. With the presented method, a great deal of time, effort and money can be saved when large amounts of Tanreqing injection samples need to be analyzed in a relatively short period of time, which is of great significance to the traditional Chinese medicine (TCM) industries.
Elkhoudary, Mahmoud M; Abdel Salam, Randa A; Hadad, Ghada M
2014-09-15
Metronidazole (MNZ) is a widely used antibacterial and amoebicide drug. Therefore, it is important to develop a rapid and specific analytical method for the determination of MNZ in mixture with Spiramycin (SPY), Diloxanide (DIX) and Cliquinol (CLQ) in pharmaceutical preparations. This work describes simple, sensitive and reliable six multivariate calibration methods, namely linear and nonlinear artificial neural networks preceded by genetic algorithm (GA-ANN) and principle component analysis (PCA-ANN) as well as partial least squares (PLS) either alone or preceded by genetic algorithm (GA-PLS) for UV spectrophotometric determination of MNZ, SPY, DIX and CLQ in pharmaceutical preparations with no interference of pharmaceutical additives. The results manifest the problem of nonlinearity and how models like ANN can handle it. Analytical performance of these methods was statistically validated with respect to linearity, accuracy, precision and specificity. The developed methods indicate the ability of the previously mentioned multivariate calibration models to handle and solve UV spectra of the four components' mixtures using easy and widely used UV spectrophotometer. Copyright © 2014 Elsevier B.V. All rights reserved.
Characterizing Facesheet/Core Disbonding in Honeycomb Core Sandwich Structure
NASA Technical Reports Server (NTRS)
Rinker, Martin; Ratcliffe, James G.; Adams, Daniel O.; Krueger, Ronald
2013-01-01
Results are presented from an experimental investigation into facesheet core disbonding in carbon fiber reinforced plastic/Nomex honeycomb sandwich structures using a Single Cantilever Beam test. Specimens with three, six and twelve-ply facesheets were tested. Specimens with different honeycomb cores consisting of four different cell sizes were also tested, in addition to specimens with three different widths. Three different data reduction methods were employed for computing apparent fracture toughness values from the test data, namely an area method, a compliance calibration technique and a modified beam theory method. The compliance calibration and modified beam theory approaches yielded comparable apparent fracture toughness values, which were generally lower than those computed using the area method. Disbonding in the three-ply facesheet specimens took place at the facesheet/core interface and yielded the lowest apparent fracture toughness values. Disbonding in the six and twelve-ply facesheet specimens took place within the core, near to the facesheet/core interface. Specimen width was not found to have a significant effect on apparent fracture toughness. The amount of scatter in the apparent fracture toughness data was found to increase with honeycomb core cell size.
NASA Astrophysics Data System (ADS)
Elkhoudary, Mahmoud M.; Abdel Salam, Randa A.; Hadad, Ghada M.
2014-09-01
Metronidazole (MNZ) is a widely used antibacterial and amoebicide drug. Therefore, it is important to develop a rapid and specific analytical method for the determination of MNZ in mixture with Spiramycin (SPY), Diloxanide (DIX) and Cliquinol (CLQ) in pharmaceutical preparations. This work describes simple, sensitive and reliable six multivariate calibration methods, namely linear and nonlinear artificial neural networks preceded by genetic algorithm (GA-ANN) and principle component analysis (PCA-ANN) as well as partial least squares (PLS) either alone or preceded by genetic algorithm (GA-PLS) for UV spectrophotometric determination of MNZ, SPY, DIX and CLQ in pharmaceutical preparations with no interference of pharmaceutical additives. The results manifest the problem of nonlinearity and how models like ANN can handle it. Analytical performance of these methods was statistically validated with respect to linearity, accuracy, precision and specificity. The developed methods indicate the ability of the previously mentioned multivariate calibration models to handle and solve UV spectra of the four components’ mixtures using easy and widely used UV spectrophotometer.
The research on calibration methods of dual-CCD laser three-dimensional human face scanning system
NASA Astrophysics Data System (ADS)
Wang, Jinjiang; Chang, Tianyu; Ge, Baozhen; Tian, Qingguo; Yang, Fengting; Shi, Shendong
2013-09-01
In this paper, on the basis of considering the performance advantages of two-step method, we combines the stereo matching of binocular stereo vision with active laser scanning to calibrate the system. Above all, we select a reference camera coordinate system as the world coordinate system and unity the coordinates of two CCD cameras. And then obtain the new perspective projection matrix (PPM) of each camera after the epipolar rectification. By those, the corresponding epipolar equation of two cameras can be defined. So by utilizing the trigonometric parallax method, we can measure the space point position after distortion correction and achieve stereo matching calibration between two image points. Experiments verify that this method can improve accuracy and system stability is guaranteed. The stereo matching calibration has a simple process with low-cost, and simplifies regular maintenance work. It can acquire 3D coordinates only by planar checkerboard calibration without the need of designing specific standard target or using electronic theodolite. It is found that during the experiment two-step calibration error and lens distortion lead to the stratification of point cloud data. The proposed calibration method which combining active line laser scanning and binocular stereo vision has the both advantages of them. It has more flexible applicability. Theory analysis and experiment shows the method is reasonable.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Le, Huy Q.; Molloi, Sabee
Purpose: Energy resolving detectors provide more than one spectral measurement in one image acquisition. The purpose of this study is to investigate, with simulation, the ability to decompose four materials using energy discriminating detectors and least squares minimization techniques. Methods: Three least squares parameter estimation decomposition techniques were investigated for four-material breast imaging tasks in the image domain. The first technique treats the voxel as if it consisted of fractions of all the materials. The second method assumes that a voxel primarily contains one material and divides the decomposition process into segmentation and quantification tasks. The third is similar tomore » the second method but a calibration was used. The simulated computed tomography (CT) system consisted of an 80 kVp spectrum and a CdZnTe (CZT) detector that could resolve the x-ray spectrum into five energy bins. A postmortem breast specimen was imaged with flat panel CT to provide a model for the digital phantoms. Hydroxyapatite (HA) (50, 150, 250, 350, 450, and 550 mg/ml) and iodine (4, 12, 20, 28, 36, and 44 mg/ml) contrast elements were embedded into the glandular region of the phantoms. Calibration phantoms consisted of a 30/70 glandular-to-adipose tissue ratio with embedded HA (100, 200, 300, 400, and 500 mg/ml) and iodine (5, 15, 25, 35, and 45 mg/ml). The x-ray transport process was simulated where the Beer-Lambert law, Poisson process, and CZT absorption efficiency were applied. Qualitative and quantitative evaluations of the decomposition techniques were performed and compared. The effect of breast size was also investigated. Results: The first technique decomposed iodine adequately but failed for other materials. The second method separated the materials but was unable to quantify the materials. With the addition of a calibration, the third technique provided good separation and quantification of hydroxyapatite, iodine, glandular, and adipose tissues. Quantification with this technique was accurate with errors of 9.83% and 6.61% for HA and iodine, respectively. Calibration at one point (one breast size) showed increased errors as the mismatch in breast diameters between calibration and measurement increased. A four-point calibration successfully decomposed breast diameter spanning the entire range from 8 to 20 cm. For a 14 cm breast, errors were reduced from 5.44% to 1.75% and from 6.17% to 3.27% with the multipoint calibration for HA and iodine, respectively. Conclusions: The results of the simulation study showed that a CT system based on CZT detectors in conjunction with least squares minimization technique can be used to decompose four materials. The calibrated least squares parameter estimation decomposition technique performed the best, separating and accurately quantifying the concentrations of hydroxyapatite and iodine.« less
NASA Astrophysics Data System (ADS)
Ward, Jacob Wolfgang; Nave, Gillian
2016-01-01
Recent measurements of four times ionized iron and nickel (Fe V & Ni V) wavelengths in the vacuum ultraviolet (VUV) have been taken using the National Institute for Standards and Technology (NIST) Normal Incidence Vacuum Spectrograph (NIVS) with a sliding spark light source with invar electrodes. The wavelengths observed in those measurements make use of high resolution photographic plates with the majority of observed lines having uncertainties of approximately 3mÅ. In addition to observations made with photographic plates, the same wavelength region was observed with phosphor image plates, which have been demonstrated to be accurate as a method of intensity calibration when used with a deuterium light source. This work will evaluate the use of phosphor image plates and deuterium lamps as an intensity calibration method for the Ni V spectrum in the 1200-1600Å region of the VUV. Additionally, by pairing the observed wavelengths of Ni V with accurate line intensities, it is possible to create an energy level optimization for Ni V providing high accuracy Ritz wavelengths. This process has previously been applied to Fe V and produced Ritz wavelengths that agreed with the above experimental observations.
NASA Technical Reports Server (NTRS)
Zalovick, John A; Lina, Lindsay J; Trant, James P , Jr
1953-01-01
A method is described for calibrating airspeed installation on airplanes at transonic and supersonic speeds in vertical-plane maneuvers in which use is made of measurements of normal and longitudinal accelerations and attitude angle. In this method all the required instrumentation is carried within the airplane. An analytical study of the effects of various sources of error on the accuracy of an airspeed calibration by the accelerometer method indicated that the required measurements can be made accurately enough to insure a satisfactory calibration.
A variable acceleration calibration system
NASA Astrophysics Data System (ADS)
Johnson, Thomas H.
2011-12-01
A variable acceleration calibration system that applies loads using gravitational and centripetal acceleration serves as an alternative, efficient and cost effective method for calibrating internal wind tunnel force balances. Two proof-of-concept variable acceleration calibration systems are designed, fabricated and tested. The NASA UT-36 force balance served as the test balance for the calibration experiments. The variable acceleration calibration systems are shown to be capable of performing three component calibration experiments with an approximate applied load error on the order of 1% of the full scale calibration loads. Sources of error are indentified using experimental design methods and a propagation of uncertainty analysis. Three types of uncertainty are indentified for the systems and are attributed to prediction error, calibration error and pure error. Angular velocity uncertainty is shown to be the largest indentified source of prediction error. The calibration uncertainties using a production variable acceleration based system are shown to be potentially equivalent to current methods. The production quality system can be realized using lighter materials and a more precise instrumentation. Further research is needed to account for balance deflection, forcing effects due to vibration, and large tare loads. A gyroscope measurement technique is shown to be capable of resolving the balance deflection angle calculation. Long term research objectives include a demonstration of a six degree of freedom calibration, and a large capacity balance calibration.
Fast calibration of electromagnetically tracked oblique-viewing rigid endoscopes.
Liu, Xinyang; Rice, Christina E; Shekhar, Raj
2017-10-01
The oblique-viewing (i.e., angled) rigid endoscope is a commonly used tool in conventional endoscopic surgeries. The relative rotation between its two moveable parts, the telescope and the camera head, creates a rotation offset between the actual and the projection of an object in the camera image. A calibration method tailored to compensate such offset is needed. We developed a fast calibration method for oblique-viewing rigid endoscopes suitable for clinical use. In contrast to prior approaches based on optical tracking, we used electromagnetic (EM) tracking as the external tracking hardware to improve compactness and practicality. Two EM sensors were mounted on the telescope and the camera head, respectively, with considerations to minimize EM tracking errors. Single-image calibration was incorporated into the method, and a sterilizable plate, laser-marked with the calibration pattern, was also developed. Furthermore, we proposed a general algorithm to estimate the rotation center in the camera image. Formulas for updating the camera matrix in terms of clockwise and counterclockwise rotations were also developed. The proposed calibration method was validated using a conventional [Formula: see text], 5-mm laparoscope. Freehand calibrations were performed using the proposed method, and the calibration time averaged 2 min and 8 s. The calibration accuracy was evaluated in a simulated clinical setting with several surgical tools present in the magnetic field of EM tracking. The root-mean-square re-projection error averaged 4.9 pixel (range 2.4-8.5 pixel, with image resolution of [Formula: see text] for rotation angles ranged from [Formula: see text] to [Formula: see text]. We developed a method for fast and accurate calibration of oblique-viewing rigid endoscopes. The method was also designed to be performed in the operating room and will therefore support clinical translation of many emerging endoscopic computer-assisted surgical systems.
Model Calibration with Censored Data
Cao, Fang; Ba, Shan; Brenneman, William A.; ...
2017-06-28
Here, the purpose of model calibration is to make the model predictions closer to reality. The classical Kennedy-O'Hagan approach is widely used for model calibration, which can account for the inadequacy of the computer model while simultaneously estimating the unknown calibration parameters. In many applications, the phenomenon of censoring occurs when the exact outcome of the physical experiment is not observed, but is only known to fall within a certain region. In such cases, the Kennedy-O'Hagan approach cannot be used directly, and we propose a method to incorporate the censoring information when performing model calibration. The method is applied tomore » study the compression phenomenon of liquid inside a bottle. The results show significant improvement over the traditional calibration methods, especially when the number of censored observations is large.« less
Assessment of opacimeter calibration according to International Standard Organization 10155.
Gomes, J F
2001-01-01
This paper compares the calibration method for opacimeters issued by the International Standard Organization (ISO) 10155 with the manual reference method for determination of dust content in stack gases. ISO 10155 requires at least nine operational measurements, corresponding to three operational measurements per each dust emission range within the stack. The procedure is assessed by comparison with previous calibration methods for opacimeters using only two operational measurements from a set of measurements made at stacks from pulp mills. The results show that even if the international standard for opacimeter calibration requires that the calibration curve is to be obtained using 3 x 3 points, a calibration curve derived using 3 points could be, at times, acceptable in statistical terms, provided that the amplitude of individual measurements is low.
MacFarlane, Michael; Wong, Daniel; Hoover, Douglas A; Wong, Eugene; Johnson, Carol; Battista, Jerry J; Chen, Jeff Z
2018-03-01
In this work, we propose a new method of calibrating cone beam computed tomography (CBCT) data sets for radiotherapy dose calculation and plan assessment. The motivation for this patient-specific calibration (PSC) method is to develop an efficient, robust, and accurate CBCT calibration process that is less susceptible to deformable image registration (DIR) errors. Instead of mapping the CT numbers voxel-by-voxel with traditional DIR calibration methods, the PSC methods generates correlation plots between deformably registered planning CT and CBCT voxel values, for each image slice. A linear calibration curve specific to each slice is then obtained by least-squares fitting, and applied to the CBCT slice's voxel values. This allows each CBCT slice to be corrected using DIR without altering the patient geometry through regional DIR errors. A retrospective study was performed on 15 head-and-neck cancer patients, each having routine CBCTs and a middle-of-treatment re-planning CT (reCT). The original treatment plan was re-calculated on the patient's reCT image set (serving as the gold standard) as well as the image sets produced by voxel-to-voxel DIR, density-overriding, and the new PSC calibration methods. Dose accuracy of each calibration method was compared to the reference reCT data set using common dose-volume metrics and 3D gamma analysis. A phantom study was also performed to assess the accuracy of the DIR and PSC CBCT calibration methods compared with planning CT. Compared with the gold standard using reCT, the average dose metric differences were ≤ 1.1% for all three methods (PSC: -0.3%; DIR: -0.7%; density-override: -1.1%). The average gamma pass rates with thresholds 3%, 3 mm were also similar among the three techniques (PSC: 95.0%; DIR: 96.1%; density-override: 94.4%). An automated patient-specific calibration method was developed which yielded strong dosimetric agreement with the results obtained using a re-planning CT for head-and-neck patients. © 2018 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.
Yeung, Joanne Chung Yan; de Lannoy, Inés; Gien, Brad; Vuckovic, Dajana; Yang, Yingbo; Bojko, Barbara; Pawliszyn, Janusz
2012-09-12
In vivo solid-phase microextraction (SPME) can be used to sample the circulating blood of animals without the need to withdraw a representative blood sample. In this study, in vivo SPME in combination with liquid-chromatography tandem mass spectrometry (LC-MS/MS) was used to determine the pharmacokinetics of two drug analytes, R,R-fenoterol and R,R-methoxyfenoterol, administered as 5 mg kg(-1) i.v. bolus doses to groups of 5 rats. This research illustrates, for the first time, the feasibility of the diffusion-based calibration interface model for in vivo SPME studies. To provide a constant sampling rate as required for the diffusion-based interface model, partial automation of the SPME sampling of the analytes from the circulating blood was accomplished using an automated blood sampling system. The use of the blood sampling system allowed automation of all SPME sampling steps in vivo, except for the insertion and removal of the SPME probe from the sampling interface. The results from in vivo SPME were compared to the conventional method based on blood withdrawal and sample clean up by plasma protein precipitation. Both whole blood and plasma concentrations were determined by the conventional method. The concentrations of methoxyfenoterol and fenoterol obtained by SPME generally concur with the whole blood concentrations determined by the conventional method indicating the utility of the proposed method. The proposed diffusion-based interface model has several advantages over other kinetic calibration models for in vivo SPME sampling including (i) it does not require the addition of a standard into the sample matrix during in vivo studies, (ii) it is simple and rapid and eliminates the need to pre-load appropriate standard onto the SPME extraction phase and (iii) the calibration constant for SPME can be calculated based on the diffusion coefficient, extraction time, fiber length and radius, and size of the boundary layer. In the current study, the experimental calibration constants of 338.9±30 mm(-3) and 298.5±25 mm(-3) are in excellent agreement with the theoretical calibration constants of 307.9 mm(-3) and 316.0 mm(-3) for fenoterol and methoxyfenoterol respectively. Copyright © 2012 Elsevier B.V. All rights reserved.
Research on orbit prediction for solar-based calibration proper satellite
NASA Astrophysics Data System (ADS)
Chen, Xuan; Qi, Wenwen; Xu, Peng
2018-03-01
Utilizing the mathematical model of the orbit mechanics, the orbit prediction is to forecast the space target's orbit information of a certain time based on the orbit of the initial moment. The proper satellite radiometric calibration and calibration orbit prediction process are introduced briefly. On the basis of the research of the calibration space position design method and the radiative transfer model, an orbit prediction method for proper satellite radiometric calibration is proposed to select the appropriate calibration arc for the remote sensor and to predict the orbit information of the proper satellite and the remote sensor. By analyzing the orbit constraint of the proper satellite calibration, the GF-1solar synchronous orbit is chose as the proper satellite orbit in order to simulate the calibration visible durance for different satellites to be calibrated. The results of simulation and analysis provide the basis for the improvement of the radiometric calibration accuracy of the satellite remote sensor, which lays the foundation for the high precision and high frequency radiometric calibration.
Evaluation of a physically based quasi-linear and a conceptually based nonlinear Muskingum methods
NASA Astrophysics Data System (ADS)
Perumal, Muthiah; Tayfur, Gokmen; Rao, C. Madhusudana; Gurarslan, Gurhan
2017-03-01
Two variants of the Muskingum flood routing method formulated for accounting nonlinearity of the channel routing process are investigated in this study. These variant methods are: (1) The three-parameter conceptual Nonlinear Muskingum (NLM) method advocated by Gillin 1978, and (2) The Variable Parameter McCarthy-Muskingum (VPMM) method recently proposed by Perumal and Price in 2013. The VPMM method does not require rigorous calibration and validation procedures as required in the case of NLM method due to established relationships of its parameters with flow and channel characteristics based on hydrodynamic principles. The parameters of the conceptual nonlinear storage equation used in the NLM method were calibrated using the Artificial Intelligence Application (AIA) techniques, such as the Genetic Algorithm (GA), the Differential Evolution (DE), the Particle Swarm Optimization (PSO) and the Harmony Search (HS). The calibration was carried out on a given set of hypothetical flood events obtained by routing a given inflow hydrograph in a set of 40 km length prismatic channel reaches using the Saint-Venant (SV) equations. The validation of the calibrated NLM method was investigated using a different set of hypothetical flood hydrographs obtained in the same set of channel reaches used for calibration studies. Both the sets of solutions obtained in the calibration and validation cases using the NLM method were compared with the corresponding solutions of the VPMM method based on some pertinent evaluation measures. The results of the study reveal that the physically based VPMM method is capable of accounting for nonlinear characteristics of flood wave movement better than the conceptually based NLM method which requires the use of tedious calibration and validation procedures.
Assessment of soil moisture dynamics on an irrigated maize field using cosmic ray neutron sensing
NASA Astrophysics Data System (ADS)
Scheiffele, Lena Maria; Baroni, Gabriele; Oswald, Sascha E.
2015-04-01
In recent years cosmic ray neutron sensing (CRS) developed as a valuable, indirect and non-invasive method to estimate soil moisture at a scale of tens of hectares, covering the gap between point scale measurements and large scale remote sensing techniques. The method is particularly promising in cropped and irrigated fields where invasive installation of belowground measurement devices could conflict with the agricultural management. However, CRS is affected by all hydrogen pools in the measurement footprint and a fast growing biomass provides some challenges for the interpretation of the signal and application of the method for detecting soil moisture. For this aim, in this study a cosmic ray probe was installed on a field near Braunschweig (Germany) during one maize growing season (2014). The field was irrigated in stripes of 50 m width using sprinkler devices for a total of seven events. Three soil sampling campaigns were conducted throughout the growing season to assess the effect of different hydrogen pools on calibration results. Additionally, leaf area index and biomass measurements were collected to provide the relative contribution of the biomass on the CRS signal. Calibration results obtained with the different soil sampling campaigns showed some discrepancy well correlated with the biomass growth. However, after the calibration function was adjusted to account also for lattice water and soil organic carbon, thus representing an equivalent water content of the soil, the differences decreased. Soil moisture estimated with CRS responded well to precipitation and irrigation events, confirming also the effective footprint of the method (i.e., radius 300 m) and showing occurring water stress for the crop. Thus, the dynamics are in agreement with the soil moisture determined with point scale measurements but they are less affected by the heterogeneous moisture conditions within the field. For this reason, by applying a detailed calibration, CRS proves to be a valuable method for the application on agricultural sites to assess and improve irrigation management.
On-orbit calibration for star sensors without priori information.
Zhang, Hao; Niu, Yanxiong; Lu, Jiazhen; Zhang, Chengfen; Yang, Yanqiang
2017-07-24
The star sensor is a prerequisite navigation device for a spacecraft. The on-orbit calibration is an essential guarantee for its operation performance. However, traditional calibration methods rely on ground information and are invalid without priori information. The uncertain on-orbit parameters will eventually influence the performance of guidance navigation and control system. In this paper, a novel calibration method without priori information for on-orbit star sensors is proposed. Firstly, the simplified back propagation neural network is designed for focal length and main point estimation along with system property evaluation, called coarse calibration. Then the unscented Kalman filter is adopted for the precise calibration of all parameters, including focal length, main point and distortion. The proposed method benefits from self-initialization and no attitude or preinstalled sensor parameter is required. Precise star sensor parameter estimation can be achieved without priori information, which is a significant improvement for on-orbit devices. Simulations and experiments results demonstrate that the calibration is easy for operation with high accuracy and robustness. The proposed method can satisfy the stringent requirement for most star sensors.
A Visual Servoing-Based Method for ProCam Systems Calibration
Berry, Francois; Aider, Omar Ait; Mosnier, Jeremie
2013-01-01
Projector-camera systems are currently used in a wide field of applications, such as 3D reconstruction and augmented reality, and can provide accurate measurements, depending on the configuration and calibration. Frequently, the calibration task is divided into two steps: camera calibration followed by projector calibration. The latter still poses certain problems that are not easy to solve, such as the difficulty in obtaining a set of 2D–3D points to compute the projection matrix between the projector and the world. Existing methods are either not sufficiently accurate or not flexible. We propose an easy and automatic method to calibrate such systems that consists in projecting a calibration pattern and superimposing it automatically on a known printed pattern. The projected pattern is provided by a virtual camera observing a virtual pattern in an OpenGL model. The projector displays what the virtual camera visualizes. Thus, the projected pattern can be controlled and superimposed on the printed one with the aid of visual servoing. Our experimental results compare favorably with those of other methods considering both usability and accuracy. PMID:24084121
Consideration of Real World Factors Influencing Greenhouse ...
Discuss a variety of factors that influence the simulated fuel economy and GHG emissions that are often overlooked and updates made to ALPHA based on actual benchmarking data observed across a range of vehicles and transmissions. ALPHA model calibration is also examined, focusing on developing generic calibrations for driver behavior, transmission gear selection and torque converter lockup. In addition, show the derivation of correction factors needed to estimate cold start emission results. To provide an overview of the ALPHA tool with additional focus on recent updates by presenting the approach for validating and calibrating ALPHA to match particular vehicles in a general sense, then by looking at the individual losses, and calibration factors likely to influence fuel economy.
Autonomous On-Board Calibration of Attitude Sensors and Gyros
NASA Technical Reports Server (NTRS)
Pittelkau, Mark E.
2007-01-01
This paper presents the state of the art and future prospects for autonomous real-time on-orbit calibration of gyros and attitude sensors. The current practice in ground-based calibration is presented briefly to contrast it with on-orbit calibration. The technical and economic benefits of on-orbit calibration are discussed. Various algorithms for on-orbit calibration are evaluated, including some that are already operating on board spacecraft. Because Redundant Inertial Measurement Units (RIMUs, which are IMUs that have more than three sense axes) are almost ubiquitous on spacecraft, special attention will be given to calibration of RIMUs. In addition, we discuss autonomous on board calibration and how it may be implemented.
75 FR 8039 - Announcement of the American Petroleum Institute's Standards Activities
Federal Register 2010, 2011, 2012, 2013, 2014
2010-02-23
... Provers, 3rd Ed. MPMS Ch. 4.9.3, Methods of Calibration for Displacement and Volumetric Tank Provers, Part 3--Determination of the Volume of Displacement Provers by the Master Meter Method of Calibration, 1st Ed. MPMS Ch. 4.9.4, Methods of Calibration for Displacement and Volumetric Tank Provers, Part 4...
NASA Technical Reports Server (NTRS)
McCorkel, Joel; Thome, Kurtis; Lockwood, Ronald
2012-01-01
An inter-calibration method is developed to provide absolute radiometric calibration of narrow-swath imaging sensors with reference to non-coincident wide-swath sensors. The method predicts at-sensor radiance using non-coincident imagery from the reference sensor and knowledge of spectral reflectance of the test site. The imagery of the reference sensor is restricted to acquisitions that provide similar view and solar illumination geometry to reduce uncertainties due to directional reflectance effects. Spectral reflectance of the test site is found with a simple iterative radiative transfer method using radiance values of a well-understood wide-swath sensor and spectral shape information based on historical ground-based measurements. At-sensor radiance is calculated for the narrow-swath sensor using this spectral reflectance and atmospheric parameters that are also based on historical in situ measurements. Results of the inter-calibration method show agreement on the 2 5 percent level in most spectral regions with the vicarious calibration technique relying on coincident ground-based measurements referred to as the reflectance-based approach. While the variability of the inter-calibration method based on non-coincident image pairs is significantly larger, results are consistent with techniques relying on in situ measurements. The method is also insensitive to spectral differences between the sensors by transferring to surface spectral reflectance prior to prediction of at-sensor radiance. The utility of this inter-calibration method is made clear by its flexibility to utilize image pairings with acquisition dates differing in excess of 30 days allowing frequent absolute calibration comparisons between wide- and narrow-swath sensors.
Calibration of Swarm accelerometer data by GPS positioning and linear temperature correction
NASA Astrophysics Data System (ADS)
Bezděk, Aleš; Sebera, Josef; Klokočník, Jaroslav
2018-07-01
Swarm, a mission of the European Space Agency, consists of three satellites orbiting the Earth since November 2013. In addition to the instrumentation aimed at fulfilling the mission's main goal, which is the observation of Earth's magnetic field, each satellite carries a geodetic quality GPS receiver and an accelerometer. Initially put in a 500-km altitude, all Swarm spacecraft slowly decay due to the action of atmospheric drag. Atmospheric particles and radiation forces impinge on the satellite's surface and thus create the main part of the nongravitational force, which together with satellite-induced thrusts can be measured by space accelerometers. Unfortunately, the Swarm accelerometer data are heavily disturbed by the varying onboard temperature. We calibrate the accelerometer data against a calibration standard derived from observed GPS positions, while making use of the models to represent the forces of gravity origin. We show that this procedure can be extended to incorporate the temperature signal. The obtained calibrated accelerations are validated in several different ways; namely by (i) physically modelled nongravitational forces, by (ii) intercomparison of calibrated accelerometer data from two Swarm satellites flying side-by-side, and by (iii) good agreement of our calibrated signals with those released by ESA, obtained via a different approach for reducing temperature effects. Finally, the presented method is applied to the Swarm C accelerometer data set covering almost two years (July 2014-April 2016), which ESA recently released to scientific users.
Meijer, Piet; Kynde, Karin; van den Besselaar, Antonius M H P; Van Blerk, Marjan; Woods, Timothy A L
2018-04-12
This study was designed to obtain an overview of the analytical quality of the prothrombin time, reported as international normalized ratio (INR) and to assess the variation of INR results between European laboratories, the difference between Quick-type and Owren-type methods and the effect of using local INR calibration or not. In addition, we assessed the variation in INR results obtained for a single donation in comparison with a pool of several plasmas. A set of four different lyophilized plasma samples were distributed via national EQA organizations to participating laboratories for INR measurement. Between-laboratory variation was lower in the Owren group than in the Quick group (on average: 6.7% vs. 8.1%, respectively). Differences in the mean INR value between the Owren and Quick group were relatively small (<0.20 INR). Between-laboratory variation was lower after local INR calibration (CV: 6.7% vs. 8.6%). For laboratories performing local calibration, the between-laboratory variation was quite similar for the Owren and Quick group (on average: 6.5% and 6.7%, respectively). Clinically significant differences in INR results (difference in INR>0.5) were observed between different reagents. No systematic significant differences in the between-laboratory variation for a single-plasma sample and a pooled plasma sample were observed. The comparability for laboratories using local calibration of their thromboplastin reagent is better than for laboratories not performing local calibration. Implementing local calibration is strongly recommended for the measurement of INR.
Wang, Jindong; Chen, Peng; Deng, Yufen; Guo, Junjie
2018-01-01
As a three-dimensional measuring instrument, the laser tracker is widely used in industrial measurement. To avoid the influence of angle measurement error on the overall measurement accuracy, the multi-station and time-sharing measurement with a laser tracker is introduced on the basis of the global positioning system (GPS) principle in this paper. For the proposed method, how to accurately determine the coordinates of each measuring point by using a large amount of measured data is a critical issue. Taking detecting motion error of a numerical control machine tool, for example, the corresponding measurement algorithms are investigated thoroughly. By establishing the mathematical model of detecting motion error of a machine tool with this method, the analytical algorithm concerning on base station calibration and measuring point determination is deduced without selecting the initial iterative value in calculation. However, when the motion area of the machine tool is in a 2D plane, the coefficient matrix of base station calibration is singular, which generates a distortion result. In order to overcome the limitation of the original algorithm, an improved analytical algorithm is also derived. Meanwhile, the calibration accuracy of the base station with the improved algorithm is compared with that with the original analytical algorithm and some iterative algorithms, such as the Gauss-Newton algorithm and Levenberg-Marquardt algorithm. The experiment further verifies the feasibility and effectiveness of the improved algorithm. In addition, the different motion areas of the machine tool have certain influence on the calibration accuracy of the base station, and the corresponding influence of measurement error on the calibration result of the base station depending on the condition number of coefficient matrix are analyzed.
NASA Astrophysics Data System (ADS)
Wang, Jindong; Chen, Peng; Deng, Yufen; Guo, Junjie
2018-01-01
As a three-dimensional measuring instrument, the laser tracker is widely used in industrial measurement. To avoid the influence of angle measurement error on the overall measurement accuracy, the multi-station and time-sharing measurement with a laser tracker is introduced on the basis of the global positioning system (GPS) principle in this paper. For the proposed method, how to accurately determine the coordinates of each measuring point by using a large amount of measured data is a critical issue. Taking detecting motion error of a numerical control machine tool, for example, the corresponding measurement algorithms are investigated thoroughly. By establishing the mathematical model of detecting motion error of a machine tool with this method, the analytical algorithm concerning on base station calibration and measuring point determination is deduced without selecting the initial iterative value in calculation. However, when the motion area of the machine tool is in a 2D plane, the coefficient matrix of base station calibration is singular, which generates a distortion result. In order to overcome the limitation of the original algorithm, an improved analytical algorithm is also derived. Meanwhile, the calibration accuracy of the base station with the improved algorithm is compared with that with the original analytical algorithm and some iterative algorithms, such as the Gauss-Newton algorithm and Levenberg-Marquardt algorithm. The experiment further verifies the feasibility and effectiveness of the improved algorithm. In addition, the different motion areas of the machine tool have certain influence on the calibration accuracy of the base station, and the corresponding influence of measurement error on the calibration result of the base station depending on the condition number of coefficient matrix are analyzed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bevins, N; Vanderhoek, M; Lang, S
2014-06-15
Purpose: Medical display monitor calibration and quality control present challenges to medical physicists. The purpose of this work is to demonstrate and share experiences with an open source package that allows for both initial monitor setup and routine performance evaluation. Methods: A software package, pacsDisplay, has been developed over the last decade to aid in the calibration of all monitors within the radiology group in our health system. The software is used to calibrate monitors to follow the DICOM Grayscale Standard Display Function (GSDF) via lookup tables installed on the workstation. Additional functionality facilitates periodic evaluations of both primary andmore » secondary medical monitors to ensure satisfactory performance. This software is installed on all radiology workstations, and can also be run as a stand-alone tool from a USB disk. Recently, a database has been developed to store and centralize the monitor performance data and to provide long-term trends for compliance with internal standards and various accrediting organizations. Results: Implementation and utilization of pacsDisplay has resulted in improved monitor performance across the health system. Monitor testing is now performed at regular intervals and the software is being used across multiple imaging modalities. Monitor performance characteristics such as maximum and minimum luminance, ambient luminance and illuminance, color tracking, and GSDF conformity are loaded into a centralized database for system performance comparisons. Compliance reports for organizations such as MQSA, ACR, and TJC are generated automatically and stored in the same database. Conclusion: An open source software solution has simplified and improved the standardization of displays within our health system. This work serves as an example method for calibrating and testing monitors within an enterprise health system.« less
Hewavitharana, Amitha K; Abu Kassim, Nur Sofiah; Shaw, Paul Nicholas
2018-06-08
With mass spectrometric detection in liquid chromatography, co-eluting impurities affect the analyte response due to ion suppression/enhancement. Internal standard calibration method, using co-eluting stable isotope labelled analogue of each analyte as the internal standard, is the most appropriate technique available to correct for these matrix effects. However, this technique is not without drawbacks, proved to be expensive because separate internal standard for each analyte is required, and the labelled compounds are expensive or require synthesising. Traditionally, standard addition method has been used to overcome the matrix effects in atomic spectroscopy and was a well-established method. This paper proposes the same for mass spectrometric detection, and demonstrates that the results are comparable to those with the internal standard method using labelled analogues, for vitamin D assay. As conventional standard addition procedure does not address procedural errors, we propose the inclusion of an additional internal standard (not co-eluting). Recoveries determined on human serum samples show that the proposed method of standard addition yields more accurate results than the internal standardisation using stable isotope labelled analogues. The precision of the proposed method of standard addition is superior to the conventional standard addition method. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Ulbrich, N.; Volden, T.
2018-01-01
Analysis and use of temperature-dependent wind tunnel strain-gage balance calibration data are discussed in the paper. First, three different methods are presented and compared that may be used to process temperature-dependent strain-gage balance data. The first method uses an extended set of independent variables in order to process the data and predict balance loads. The second method applies an extended load iteration equation during the analysis of balance calibration data. The third method uses temperature-dependent sensitivities for the data analysis. Physical interpretations of the most important temperature-dependent regression model terms are provided that relate temperature compensation imperfections and the temperature-dependent nature of the gage factor to sets of regression model terms. Finally, balance calibration recommendations are listed so that temperature-dependent calibration data can be obtained and successfully processed using the reviewed analysis methods.
Alignment and Calibration of an Airborne Infrared Spectrometer
NASA Astrophysics Data System (ADS)
Vira, A.
2017-12-01
The airborne infrared spectrometer (AIR-Spec) will measure the coronal plasma emission lines in the infrared at high spatial and spectral resolution. These results will enhance our understanding of the coronal dynamics and improve solar forecasting models. To measure the infrared coronal emission lines, the airborne system will fly on the NSF/NCAR High-Performance Instrumented Airborne Platform for Environmental Research (HIAPER) during the total solar eclipse in August 2017. The flight path was calculated to maximize the observation time. A detailed analysis of our flight path will be reported. The optical system consists of a fast steering mirror, telescope, grating spectrometer, and slit-jaw imager. Light from the sun is directed into the f/15 telescope by a fast steering mirror. The telescope focuses the light on the slitjaw and the remaining light enters the grating spectrometer through the slit. The poster will include a discussion of the alignment procedures for the telescope and spectrograph. All of the spectrometer optics are cooled to cryogenic temperatures, which complicates the alignment process. After the telescope and spectrometer are aligned independently, the telescope needs to be precisely aligned to the spectrometer. Several alignment methods were used to ensure that the telescope is focused at the slitjaw and normal to the spectrometer. In addition to the optical alignment, there are a few calibrations to complete: 1) flat field, 2) spectral, and 3) radiometric. The flat field gives us a measure of the pixel to pixel variations. The spectral calibration is used to determine the conversion factor between wavelength and pixel. The radiometric calibration is used to map the camera output to radiance. All these calibrations are necessary for processing our data from the solar eclipse. We will report on our methods and results for the optical alignment and calibration for AIR-Spec. AIR-Spec is supported by NSF and Smithsonian Institution through the Major Research Instrumentation program. This work is supported by the NSF-REU solar physics program at SAO, grant number AGS-1560313.
NASA Astrophysics Data System (ADS)
Grotti, Marco; Abelmoschi, Maria Luisa; Soggia, Francesco; Tiberiade, Christian; Frache, Roberto
2000-12-01
The multivariate effects of Na, K, Mg and Ca as nitrates on the electrothermal atomisation of manganese, cadmium and iron were studied by multiple linear regression modelling. Since the models proved to efficiently predict the effects of the considered matrix elements in a wide range of concentrations, they were applied to correct the interferences occurring in the determination of trace elements in seawater after pre-concentration of the analytes. In order to obtain a statistically significant number of samples, a large volume of the certified seawater reference materials CASS-3 and NASS-3 was treated with Chelex-100 resin; then, the chelating resin was separated from the solution, divided into several sub-samples, each of them was eluted with nitric acid and analysed by electrothermal atomic absorption spectrometry (for trace element determinations) and inductively coupled plasma optical emission spectrometry (for matrix element determinations). To minimise any other systematic error besides that due to matrix effects, accuracy of the pre-concentration step and contamination levels of the procedure were checked by inductively coupled plasma mass spectrometric measurements. Analytical results obtained by applying the multiple linear regression models were compared with those obtained with other calibration methods, such as external calibration using acid-based standards, external calibration using matrix-matched standards and the analyte addition technique. Empirical models proved to efficiently reduce interferences occurring in the analysis of real samples, allowing an improvement of accuracy better than for other calibration methods.
Dinç, Erdal; Ertekin, Zehra Ceren; Büker, Eda
2016-09-01
Two-way and three-way calibration models were applied to ultra high performance liquid chromatography with photodiode array data with coeluted peaks in the same wavelength and time regions for the simultaneous quantitation of ciprofloxacin and ornidazole in tablets. The chromatographic data cube (tensor) was obtained by recording chromatographic spectra of the standard and sample solutions containing ciprofloxacin and ornidazole with sulfadiazine as an internal standard as a function of time and wavelength. Parallel factor analysis and trilinear partial least squares were used as three-way calibrations for the decomposition of the tensor, whereas three-way unfolded partial least squares was applied as a two-way calibration to the unfolded dataset obtained from the data array of ultra high performance liquid chromatography with photodiode array detection. The validity and ability of two-way and three-way analysis methods were tested by analyzing validation samples: synthetic mixture, interday and intraday samples, and standard addition samples. Results obtained from two-way and three-way calibrations were compared to those provided by traditional ultra high performance liquid chromatography. The proposed methods, parallel factor analysis, trilinear partial least squares, unfolded partial least squares, and traditional ultra high performance liquid chromatography were successfully applied to the quantitative estimation of the solid dosage form containing ciprofloxacin and ornidazole. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Barr, D.; Gilpatrick, J. D.; Martinez, D.; Shurter, R. B.
2004-11-01
The Los Alamos Neutron Science Center (LANSCE) facility at Los Alamos National Laboratory has constructed both an Isotope Production Facility (IPF) and a Switchyard Kicker (XDK) as additions to the H+ and H- accelerator. These additions contain eleven Beam Position Monitors (BPMs) that measure the beam's position throughout the transport. The analog electronics within each processing module determines the beam position using the log-ratio technique. For system reliability, calibrations compensate for various temperature drifts and other imperfections in the processing electronics components. Additionally, verifications are periodically implemented by a PC running a National Instruments LabVIEW virtual instrument (VI) to verify continued system and cable integrity. The VI communicates with the processor cards via a PCI/MXI-3 VXI-crate communication module. Previously, accelerator operators performed BPM system calibrations typically once per day while beam was explicitly turned off. One of this new measurement system's unique achievements is its automated calibration and verification capability. Taking advantage of the pulsed nature of the LANSCE-facility beams, the integrated electronics hardware and VI perform calibration and verification operations between beam pulses without interrupting production beam delivery. The design, construction, and performance results of the automated calibration and verification portion of this position measurement system will be the topic of this paper.
Apparatus for in-situ calibration of instruments that measure fluid depth
Campbell, M.D.
1994-01-11
The present invention provides a method and apparatus for in-situ calibration of distance measuring equipment. The method comprises obtaining a first distance measurement in a first location, then obtaining at least one other distance measurement in at least one other location of a precisely known distance from the first location, and calculating a calibration constant. The method is applied specifically to calculating a calibration constant for obtaining fluid level and embodied in an apparatus using a pressure transducer and a spacer of precisely known length. The calibration constant is used to calculate the depth of a fluid from subsequent single pressure measurements at any submerged position. 8 figures.
Curtis, Tyler E; Roeder, Ryan K
2017-10-01
Advances in photon-counting detectors have enabled quantitative material decomposition using multi-energy or spectral computed tomography (CT). Supervised methods for material decomposition utilize an estimated attenuation for each material of interest at each photon energy level, which must be calibrated based upon calculated or measured values for known compositions. Measurements using a calibration phantom can advantageously account for system-specific noise, but the effect of calibration methods on the material basis matrix and subsequent quantitative material decomposition has not been experimentally investigated. Therefore, the objective of this study was to investigate the influence of the range and number of contrast agent concentrations within a modular calibration phantom on the accuracy of quantitative material decomposition in the image domain. Gadolinium was chosen as a model contrast agent in imaging phantoms, which also contained bone tissue and water as negative controls. The maximum gadolinium concentration (30, 60, and 90 mM) and total number of concentrations (2, 4, and 7) were independently varied to systematically investigate effects of the material basis matrix and scaling factor calibration on the quantitative (root mean squared error, RMSE) and spatial (sensitivity and specificity) accuracy of material decomposition. Images of calibration and sample phantoms were acquired using a commercially available photon-counting spectral micro-CT system with five energy bins selected to normalize photon counts and leverage the contrast agent k-edge. Material decomposition of gadolinium, calcium, and water was performed for each calibration method using a maximum a posteriori estimator. Both the quantitative and spatial accuracy of material decomposition were most improved by using an increased maximum gadolinium concentration (range) in the basis matrix calibration; the effects of using a greater number of concentrations were relatively small in magnitude by comparison. The material basis matrix calibration was more sensitive to changes in the calibration methods than the scaling factor calibration. The material basis matrix calibration significantly influenced both the quantitative and spatial accuracy of material decomposition, while the scaling factor calibration influenced quantitative but not spatial accuracy. Importantly, the median RMSE of material decomposition was as low as ~1.5 mM (~0.24 mg/mL gadolinium), which was similar in magnitude to that measured by optical spectroscopy on the same samples. The accuracy of quantitative material decomposition in photon-counting spectral CT was significantly influenced by calibration methods which must therefore be carefully considered for the intended diagnostic imaging application. © 2017 American Association of Physicists in Medicine.
Zhang, Man; Zhou, Zhuhuang; Wu, Shuicai; Lin, Lan; Gao, Hongjian; Feng, Yusheng
2015-12-21
This study aims at improving the accuracy of temperature simulation for temperature-controlled radio frequency ablation (RFA). We proposed a new voltage-calibration method in the simulation and investigated the feasibility of a hyperbolic bioheat equation (HBE) in the RFA simulation with longer durations and higher power. A total of 40 RFA experiments was conducted in a liver-mimicking phantom. Four mathematical models with multipolar electrodes were developed by the finite element method in COMSOL software: HBE with/without voltage calibration, and the Pennes bioheat equation (PBE) with/without voltage calibration. The temperature-varied voltage calibration used in the simulation was calculated from an experimental power output and temperature-dependent resistance of liver tissue. We employed the HBE in simulation by considering the delay time τ of 16 s. First, for simulations by each kind of bioheat equation (PBE or HBE), we compared the differences between the temperature-varied voltage-calibration and the fixed-voltage values used in the simulations. Then, the comparisons were conducted between the PBE and the HBE in the simulations with temperature-varied voltage calibration. We verified the simulation results by experimental temperature measurements on nine specific points of the tissue phantom. The results showed that: (1) the proposed voltage-calibration method improved the simulation accuracy of temperature-controlled RFA for both the PBE and the HBE, and (2) for temperature-controlled RFA simulation with the temperature-varied voltage calibration, the HBE method was 0.55 °C more accurate than the PBE method. The proposed temperature-varied voltage calibration may be useful in temperature field simulations of temperature-controlled RFA. Besides, the HBE may be used as an alternative in the simulation of long-duration high-power RFA.
Distance measures and optimization spaces in quantitative fatty acid signature analysis
Bromaghin, Jeffrey F.; Rode, Karyn D.; Budge, Suzanne M.; Thiemann, Gregory W.
2015-01-01
Quantitative fatty acid signature analysis has become an important method of diet estimation in ecology, especially marine ecology. Controlled feeding trials to validate the method and estimate the calibration coefficients necessary to account for differential metabolism of individual fatty acids have been conducted with several species from diverse taxa. However, research into potential refinements of the estimation method has been limited. We compared the performance of the original method of estimating diet composition with that of five variants based on different combinations of distance measures and calibration-coefficient transformations between prey and predator fatty acid signature spaces. Fatty acid signatures of pseudopredators were constructed using known diet mixtures of two prey data sets previously used to estimate the diets of polar bears Ursus maritimus and gray seals Halichoerus grypus, and their diets were then estimated using all six variants. In addition, previously published diets of Chukchi Sea polar bears were re-estimated using all six methods. Our findings reveal that the selection of an estimation method can meaningfully influence estimates of diet composition. Among the pseudopredator results, which allowed evaluation of bias and precision, differences in estimator performance were rarely large, and no one estimator was universally preferred, although estimators based on the Aitchison distance measure tended to have modestly superior properties compared to estimators based on the Kullback-Leibler distance measure. However, greater differences were observed among estimated polar bear diets, most likely due to differential estimator sensitivity to assumption violations. Our results, particularly the polar bear example, suggest that additional research into estimator performance and model diagnostics is warranted.
NASA Astrophysics Data System (ADS)
Fu, X.; Hu, L.; Lee, K. M.; Zou, J.; Ruan, X. D.; Yang, H. Y.
2010-10-01
This paper presents a method for dry calibration of an electromagnetic flowmeter (EMF). This method, which determines the voltage induced in the EMF as conductive liquid flows through a magnetic field, numerically solves a coupled set of multiphysical equations with measured boundary conditions for the magnetic, electric, and flow fields in the measuring pipe of the flowmeter. Specifically, this paper details the formulation of dry calibration and an efficient algorithm (that adaptively minimizes the number of measurements and requires only the normal component of the magnetic flux density as boundary conditions on the pipe surface to reconstruct the magnetic field involved) for computing the sensitivity of EMF. Along with an in-depth discussion on factors that could significantly affect the final precision of a dry calibrated EMF, the effects of flow disturbance on measuring errors have been experimentally studied by installing a baffle at the inflow port of the EMF. Results of the dry calibration on an actual EMF were compared against flow-rig calibration; excellent agreements (within 0.3%) between dry calibration and flow-rig tests verify the multiphysical computation of the fields and the robustness of the method. As requiring no actual flow, the dry calibration is particularly useful for calibrating large-diameter EMFs where conventional flow-rig methods are often costly and difficult to implement.
NASA Astrophysics Data System (ADS)
He, Zhihua; Vorogushyn, Sergiy; Unger-Shayesteh, Katy; Gafurov, Abror; Kalashnikova, Olga; Omorova, Elvira; Merz, Bruno
2018-03-01
This study refines the method for calibrating a glacio-hydrological model based on Hydrograph Partitioning Curves (HPCs), and evaluates its value in comparison to multidata set optimization approaches which use glacier mass balance, satellite snow cover images, and discharge. The HPCs are extracted from the observed flow hydrograph using catchment precipitation and temperature gradients. They indicate the periods when the various runoff processes, such as glacier melt or snow melt, dominate the basin hydrograph. The annual cumulative curve of the difference between average daily temperature and melt threshold temperature over the basin, as well as the annual cumulative curve of average daily snowfall on the glacierized areas are used to identify the starting and end dates of snow and glacier ablation periods. Model parameters characterizing different runoff processes are calibrated on different HPCs in a stepwise and iterative way. Results show that the HPC-based method (1) delivers model-internal consistency comparably to the tri-data set calibration method; (2) improves the stability of calibrated parameter values across various calibration periods; and (3) estimates the contributions of runoff components similarly to the tri-data set calibration method. Our findings indicate the potential of the HPC-based approach as an alternative for hydrological model calibration in glacierized basins where other calibration data sets than discharge are often not available or very costly to obtain.
In-Space Calibration of a Gyro Quadruplet
NASA Technical Reports Server (NTRS)
Bar-Itzhack, Itzhack Y.; Harman, Richard R.
2001-01-01
This work presents a new approach to gyro calibration where, in addition to being used for computing attitude that is needed in the calibration process, the gyro outputs are also used as measurements in a Kalman filter. This work also presents an algorithm for calibrating a quadruplet rather than the customary triad gyro set. In particular, a new misalignment error model is derived for this case. The new calibration algorithm is applied to the EOS-AQUA satellite gyros. The effectiveness of the new algorithm is demonstrated through simulations.
Mencarelli, D; Djafari-Rouhani, B; Pennec, Y; Pitanti, A; Zanotto, S; Stocchi, M; Pierantoni, L
2018-06-18
In this contribution, a rigorous numerical calibration is proposed to characterize the excitation of propagating mechanical waves by interdigitated transducers (IDTs). The transition from IDT terminals to phonon waveguides is modeled by means of a general circuit representation that makes use of Scattering Matrix (SM) formalism. In particular, the three-step calibration approach called the Thru-Reflection-Line (TRL), that is a well-established technique in microwave engineering, has been successfully applied to emulate typical experimental conditions. The proposed procedure is suitable for the synthesis/optimization of surface-acoustic-wave (SAW) based devices: the TRL calibration allows to extract/de-embed the acoustic component, namely resonator or filter, from the outer IDT structure, regardless of complexity and size of the letter. We report, as a result, the hybrid scattering parameters of the IDT transition to a mechanical waveguide formed by a phononic crystal patterned on a piezoelectric AlN membrane, where the effect of a discontinuity from periodic to uniform mechanical waveguide is also characterized. In addition, to ensure the correctness of our numerical calculations, the proposed method has been validated by independent calculations.
Testing the molecular clock using mechanistic models of fossil preservation and molecular evolution
2017-01-01
Molecular sequence data provide information about relative times only, and fossil-based age constraints are the ultimate source of information about absolute times in molecular clock dating analyses. Thus, fossil calibrations are critical to molecular clock dating, but competing methods are difficult to evaluate empirically because the true evolutionary time scale is never known. Here, we combine mechanistic models of fossil preservation and sequence evolution in simulations to evaluate different approaches to constructing fossil calibrations and their impact on Bayesian molecular clock dating, and the relative impact of fossil versus molecular sampling. We show that divergence time estimation is impacted by the model of fossil preservation, sampling intensity and tree shape. The addition of sequence data may improve molecular clock estimates, but accuracy and precision is dominated by the quality of the fossil calibrations. Posterior means and medians are poor representatives of true divergence times; posterior intervals provide a much more accurate estimate of divergence times, though they may be wide and often do not have high coverage probability. Our results highlight the importance of increased fossil sampling and improved statistical approaches to generating calibrations, which should incorporate the non-uniform nature of ecological and temporal fossil species distributions. PMID:28637852
Arctic Clouds Infrared Imaging Field Campaign Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shaw, J. A.
2016-03-01
The Infrared Cloud Imager (ICI), a passive thermal imaging system, was deployed at the North Slope of Alaska site in Barrow, Alaska, from July 2012 to July 2014 for measuring spatial-temporal cloud statistics. Thermal imaging of the sky from the ground provides high radiometric contrast during night and polar winter when visible sensors and downward-viewing thermal sensors experience low contrast. In addition to demonstrating successful operation in the Arctic for an extended period and providing data for Arctic cloud studies, a primary objective of this deployment was to validate novel instrument calibration algorithms that will allow more compact ICI instrumentsmore » to be deployed without the added expense, weight, size, and operational difficulty of a large-aperture onboard blackbody calibration source. This objective was successfully completed with a comparison of the two-year data set calibrated with and without the onboard blackbody. The two different calibration methods produced daily-average cloud amount data sets with correlation coefficient = 0.99, mean difference = 0.0029 (i.e., 0.29% cloudiness), and a difference standard deviation = 0.054. Finally, the ICI instrument generally detected more thin clouds than reported by other ARM cloud products available as of late 2015.« less
Calibration Technique for Polarization-Sensitive Lidars
NASA Technical Reports Server (NTRS)
Alvarez, J. M.; Vaughan, M. A.; Hostetler, C. A.; Hung, W. H.; Winker, D. M.
2006-01-01
Polarization-sensitive lidars have proven to be highly effective in discriminating between spherical and non-spherical particles in the atmosphere. These lidars use a linearly polarized laser and are equipped with a receiver that can separately measure the components of the return signal polarized parallel and perpendicular to the outgoing beam. In this work we describe a technique for calibrating polarization-sensitive lidars that was originally developed at NASA s Langley Research Center (LaRC) and has been used continually over the past fifteen years. The procedure uses a rotatable half-wave plate inserted into the optical path of the lidar receiver to introduce controlled amounts of polarization cross-talk into a sequence of atmospheric backscatter measurements. Solving the resulting system of nonlinear equations generates the system calibration constants (gain ratio, G, and offset angle, theta) required for deriving calibrated measurements of depolarization ratio from the lidar signals. In addition, this procedure also determines the mean depolarization ratio within the region of the atmosphere that is analyzed. Simulations and error propagation studies show the method to be both reliable and well behaved. Operational details of the technique are illustrated using measurements obtained as part of Langley Research Center s participation in the First ISCCP Regional Experiment (FIRE).
Thornhill, Andrew H; Popple, Lindsay W; Carter, Richard J; Ho, Simon Y W; Crisp, Michael D
2012-04-01
The identification and application of reliable fossil calibrations represents a key component of many molecular studies of evolutionary timescales. In studies of plants, most paleontological calibrations are associated with macrofossils. However, the pollen record can also inform age calibrations if fossils matching extant pollen groups are found. Recent work has shown that pollen of the myrtle family, Myrtaceae, can be classified into a number of morphological groups that are synapomorphic with molecular groups. By assembling a data matrix of pollen morphological characters from extant and fossil Myrtaceae, we were able to measure the fit of 26 pollen fossils to a molecular phylogenetic tree using parsimony optimisation of characters. We identified eight Myrtaceidites fossils as appropriate for calibration based on the most parsimonious placements of these fossils on the tree. These fossils were used to inform age constraints in a Bayesian phylogenetic analysis of a sequence alignment comprising two sequences from the chloroplast genome (matK and ndhF) and one nuclear locus (ITS), sampled from 106 taxa representing 80 genera. Three additional analyses were calibrated by placing pollen fossils using geographic and morphological information (eight calibrations), macrofossils (five calibrations), and macrofossils and pollen fossils in combination (12 calibrations). The addition of new fossil pollen calibrations led to older crown ages than have previously been found for tribes such as Eucalypteae and Myrteae. Estimates of rate variation among lineages were affected by the choice of calibrations, suggesting that the use of multiple calibrations can improve estimates of rate heterogeneity among lineages. This study illustrates the potential of including pollen-based calibrations in molecular studies of divergence times. Copyright © 2011 Elsevier Inc. All rights reserved.
A new time calibration method for switched-capacitor-array-based waveform samplers
NASA Astrophysics Data System (ADS)
Kim, H.; Chen, C.-T.; Eclov, N.; Ronzhin, A.; Murat, P.; Ramberg, E.; Los, S.; Moses, W.; Choong, W.-S.; Kao, C.-M.
2014-12-01
We have developed a new time calibration method for the DRS4 waveform sampler that enables us to precisely measure the non-uniform sampling interval inherent in the switched-capacitor cells of the DRS4. The method uses the proportionality between the differential amplitude and sampling interval of adjacent switched-capacitor cells responding to a sawtooth-shape pulse. In the experiment, a sawtooth-shape pulse with a 40 ns period generated by a Tektronix AWG7102 is fed to a DRS4 evaluation board for calibrating the sampling intervals of all 1024 cells individually. The electronic time resolution of the DRS4 evaluation board with the new time calibration is measured to be 2.4 ps RMS by using two simultaneous Gaussian pulses with 2.35 ns full-width at half-maximum and applying a Gaussian fit. The time resolution dependencies on the time difference with the new time calibration are measured and compared to results obtained by another method. The new method could be applicable for other switched-capacitor-array technology-based waveform samplers for precise time calibration.
A New Time Calibration Method for Switched-capacitor-array-based Waveform Samplers.
Kim, H; Chen, C-T; Eclov, N; Ronzhin, A; Murat, P; Ramberg, E; Los, S; Moses, W; Choong, W-S; Kao, C-M
2014-12-11
We have developed a new time calibration method for the DRS4 waveform sampler that enables us to precisely measure the non-uniform sampling interval inherent in the switched-capacitor cells of the DRS4. The method uses the proportionality between the differential amplitude and sampling interval of adjacent switched-capacitor cells responding to a sawtooth-shape pulse. In the experiment, a sawtooth-shape pulse with a 40 ns period generated by a Tektronix AWG7102 is fed to a DRS4 evaluation board for calibrating the sampling intervals of all 1024 cells individually. The electronic time resolution of the DRS4 evaluation board with the new time calibration is measured to be ~2.4 ps RMS by using two simultaneous Gaussian pulses with 2.35 ns full-width at half-maximum and applying a Gaussian fit. The time resolution dependencies on the time difference with the new time calibration are measured and compared to results obtained by another method. The new method could be applicable for other switched-capacitor-array technology-based waveform samplers for precise time calibration.
A New Time Calibration Method for Switched-capacitor-array-based Waveform Samplers
Kim, H.; Chen, C.-T.; Eclov, N.; Ronzhin, A.; Murat, P.; Ramberg, E.; Los, S.; Moses, W.; Choong, W.-S.; Kao, C.-M.
2014-01-01
We have developed a new time calibration method for the DRS4 waveform sampler that enables us to precisely measure the non-uniform sampling interval inherent in the switched-capacitor cells of the DRS4. The method uses the proportionality between the differential amplitude and sampling interval of adjacent switched-capacitor cells responding to a sawtooth-shape pulse. In the experiment, a sawtooth-shape pulse with a 40 ns period generated by a Tektronix AWG7102 is fed to a DRS4 evaluation board for calibrating the sampling intervals of all 1024 cells individually. The electronic time resolution of the DRS4 evaluation board with the new time calibration is measured to be ~2.4 ps RMS by using two simultaneous Gaussian pulses with 2.35 ns full-width at half-maximum and applying a Gaussian fit. The time resolution dependencies on the time difference with the new time calibration are measured and compared to results obtained by another method. The new method could be applicable for other switched-capacitor-array technology-based waveform samplers for precise time calibration. PMID:25506113
NASA Astrophysics Data System (ADS)
Rimantho, Dino; Rahman, Tomy Abdul; Cahyadi, Bambang; Tina Hernawati, S.
2017-02-01
Calibration of instrumentation equipment in the pharmaceutical industry is an important activity to determine the true value of a measurement. Preliminary studies indicated that occur lead-time calibration resulted in disruption of production and laboratory activities. This study aimed to analyze the causes of lead-time calibration. Several methods used in this study such as, Six Sigma in order to determine the capability process of the calibration instrumentation of equipment. Furthermore, the method of brainstorming, Pareto diagrams, and Fishbone diagrams were used to identify and analyze the problems. Then, the method of Hierarchy Analytical Process (AHP) was used to create a hierarchical structure and prioritize problems. The results showed that the value of DPMO around 40769.23 which was equivalent to the level of sigma in calibration equipment approximately 3,24σ. This indicated the need for improvements in the calibration process. Furthermore, the determination of problem-solving strategies Lead Time Calibration such as, shortens the schedule preventive maintenance, increase the number of instrument Calibrators, and train personnel. Test results on the consistency of the whole matrix of pairwise comparisons and consistency test showed the value of hierarchy the CR below 0.1.
Comparison of global optimization approaches for robust calibration of hydrologic model parameters
NASA Astrophysics Data System (ADS)
Jung, I. W.
2015-12-01
Robustness of the calibrated parameters of hydrologic models is necessary to provide a reliable prediction of future performance of watershed behavior under varying climate conditions. This study investigated calibration performances according to the length of calibration period, objective functions, hydrologic model structures and optimization methods. To do this, the combination of three global optimization methods (i.e. SCE-UA, Micro-GA, and DREAM) and four hydrologic models (i.e. SAC-SMA, GR4J, HBV, and PRMS) was tested with different calibration periods and objective functions. Our results showed that three global optimization methods provided close calibration performances under different calibration periods, objective functions, and hydrologic models. However, using the agreement of index, normalized root mean square error, Nash-Sutcliffe efficiency as the objective function showed better performance than using correlation coefficient and percent bias. Calibration performances according to different calibration periods from one year to seven years were hard to generalize because four hydrologic models have different levels of complexity and different years have different information content of hydrological observation. Acknowledgements This research was supported by a grant (14AWMP-B082564-01) from Advanced Water Management Research Program funded by Ministry of Land, Infrastructure and Transport of Korean government.
NASA Astrophysics Data System (ADS)
Yoshioka, Masahiro; Sato, Sojun; Kikuchi, Tsuneo; Matsuda, Yoichi
2006-05-01
In this study, the influence of ultrasonic nonlinear propagation on hydrophone calibration by the two-transducer reciprocity method is investigated quantitatively using the Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation. It is proposed that the correction for the diffraction and attenuation of ultrasonic waves used in two-transducer reciprocity calibration can be derived using the KZK equation to remove the influence of nonlinear propagation. The validity of the correction is confirmed by comparing the sensitivities calibrated by the two-transducer reciprocity method and laser interferometry.
Technique for Radiometer and Antenna Array Calibration - TRAAC
NASA Technical Reports Server (NTRS)
Meyer, Paul; Sims, William; Varnavas, Kosta; McCracken, Jeff; Srinivasan, Karthik; Limaye, Ashutosh; Laymon, Charles; Richeson. James
2012-01-01
Highly sensitive receivers are used to detect minute amounts of emitted electromagnetic energy. Calibration of these receivers is vital to the accuracy of the measurements. Traditional calibration techniques depend on calibration reference internal to the receivers as reference for the calibration of the observed electromagnetic energy. Such methods can only calibrate errors in measurement introduced by the receiver only. The disadvantage of these existing methods is that they cannot account for errors introduced by devices, such as antennas, used for capturing electromagnetic radiation. This severely limits the types of antennas that can be used to make measurements with a high degree of accuracy. Complex antenna systems, such as electronically steerable antennas (also known as phased arrays), while offering potentially significant advantages, suffer from a lack of a reliable and accurate calibration technique. The proximity of antenna elements in an array results in interaction between the electromagnetic fields radiated (or received) by the individual elements. This phenomenon is called mutual coupling. The new calibration method uses a known noise source as a calibration load to determine the instantaneous characteristics of the antenna. The noise source is emitted from one element of the antenna array and received by all the other elements due to mutual coupling. This received noise is used as a calibration standard to monitor the stability of the antenna electronics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tuo, Rui; Jeff Wu, C. F.
Calibration parameters in deterministic computer experiments are those attributes that cannot be measured or available in physical experiments. Here, an approach to estimate them by using data from physical experiments and computer simulations. A theoretical framework is given which allows us to study the issues of parameter identifiability and estimation. We define the L 2-consistency for calibration as a justification for calibration methods. It is shown that a simplified version of the original KO method leads to asymptotically L 2-inconsistent calibration. This L 2-inconsistency can be remedied by modifying the original estimation procedure. A novel calibration method, called the Lmore » 2 calibration, is proposed and proven to be L 2-consistent and enjoys optimal convergence rate. Furthermore a numerical example and some mathematical analysis are used to illustrate the source of the L 2-inconsistency problem.« less
Assessment of bitterness intensity and suppression effects using an Electronic Tongue
NASA Astrophysics Data System (ADS)
Legin, A.; Rudnitskaya, A.; Kirsanov, D.; Frolova, Yu.; Clapham, D.; Caricofe, R.
2009-05-01
Quantification of bitterness intensity and effectivness of bitterness suppression of a novel active pharmacological ingredient (API) being developed by GSK was performed using an Electronic Tongue (ET) based on potentiometric chemical sensors. Calibration of the ET was performed with solutions of quinine hydrochloride in the concentration range 0.4-360 mgL-1. An MLR calibration model was developed for predicting bitterness intensity expressed as "equivalent quinine concentration" of a series of solutions of quinine, bittrex and the API. Additionally the effectiveness of sucralose, mixture of aspartame and acesulfame K, and grape juice in masking the bitter taste of the API was assessed using two approaches. PCA models were produced and distances between compound containing solutions and corresponding placebos were calculated. The other approach consisted in calculating "equivalent quinine concentration" using a calibration model with respect to quinine concentration. According to both methods, the most effective taste masking was produced by grape juice, followed by the mixture of aspartame and acesulfame K.
Mathematical Model and Calibration Procedure of a PSD Sensor Used in Local Positioning Systems.
Rodríguez-Navarro, David; Lázaro-Galilea, José Luis; Bravo-Muñoz, Ignacio; Gardel-Vicente, Alfredo; Domingo-Perez, Francisco; Tsirigotis, Georgios
2016-09-15
Here, we propose a mathematical model and a calibration procedure for a PSD (position sensitive device) sensor equipped with an optical system, to enable accurate measurement of the angle of arrival of one or more beams of light emitted by infrared (IR) transmitters located at distances of between 4 and 6 m. To achieve this objective, it was necessary to characterize the intrinsic parameters that model the system and obtain their values. This first approach was based on a pin-hole model, to which system nonlinearities were added, and this was used to model the points obtained with the nA currents provided by the PSD. In addition, we analyzed the main sources of error, including PSD sensor signal noise, gain factor imbalances and PSD sensor distortion. The results indicated that the proposed model and method provided satisfactory calibration and yielded precise parameter values, enabling accurate measurement of the angle of arrival with a low degree of error, as evidenced by the experimental results.
Takahashi, Kayori; Kishine, Kana; Matsuyama, Shigetomo; Saito, Takeshi; Kato, Haruhisa; Kinugasa, Shinichi
2008-07-01
Poly(ethylene glycol) (PEG) is a useful water-soluble polymer that has attracted considerable interest in medical and biological science applications as well as in polymer physics. Through the use of a well-calibrated evaporative light-scattering detector coupled with high performance supercritical fluid chromatography, we are able to determine exactly not only the average mass but also all of the molecular mass fractions of PEG samples needed for certified reference materials issued by the National Metrology Institute of Japan. In addition, experimental uncertainty was determined in accordance with the Guide to the expression of uncertainty in measurement (GUM). This reference material can be used to calibrate measuring instruments, to control measurement precision, and to confirm the validity of measurement methods when determining molecular mass distributions and average molecular masses. Especially, it is suitable for calibration against both masses and intensities for matrix-assisted laser desorption/ionization time-of-flight mass spectrometry.
40 CFR 1065.920 - PEMS calibrations and verifications.
Code of Federal Regulations, 2014 CFR
2014-07-01
....920 PEMS calibrations and verifications. (a) Subsystem calibrations and verifications. Use all the... verifications and analysis. It may also be necessary to limit the range of conditions under which the PEMS can... additional information or analysis to support your conclusions. (b) Overall verification. This paragraph (b...
LRFD Resistance Factor Calibration for Axially Loaded Drilled Shafts in the Las Vegas Valley
DOT National Transportation Integrated Search
2016-07-19
Resistance factors for LRFD of axially loaded drilled shafts in the Las Vegas Valley are calibrated using data from 41 field load tests. In addition to the traditional implementation of Monte Carlo (MC) simulations for calibration, a more robust tech...
Verhoeven, Thibault; Schmid, Konstantin; Müller, Klaus-Robert; Tangermann, Michael; Kindermans, Pieter-Jan
2017-01-01
Objective Using traditional approaches, a brain-computer interface (BCI) requires the collection of calibration data for new subjects prior to online use. Calibration time can be reduced or eliminated e.g., by subject-to-subject transfer of a pre-trained classifier or unsupervised adaptive classification methods which learn from scratch and adapt over time. While such heuristics work well in practice, none of them can provide theoretical guarantees. Our objective is to modify an event-related potential (ERP) paradigm to work in unison with the machine learning decoder, and thus to achieve a reliable unsupervised calibrationless decoding with a guarantee to recover the true class means. Method We introduce learning from label proportions (LLP) to the BCI community as a new unsupervised, and easy-to-implement classification approach for ERP-based BCIs. The LLP estimates the mean target and non-target responses based on known proportions of these two classes in different groups of the data. We present a visual ERP speller to meet the requirements of LLP. For evaluation, we ran simulations on artificially created data sets and conducted an online BCI study with 13 subjects performing a copy-spelling task. Results Theoretical considerations show that LLP is guaranteed to minimize the loss function similar to a corresponding supervised classifier. LLP performed well in simulations and in the online application, where 84.5% of characters were spelled correctly on average without prior calibration. Significance The continuously adapting LLP classifier is the first unsupervised decoder for ERP BCIs guaranteed to find the optimal decoder. This makes it an ideal solution to avoid tedious calibration sessions. Additionally, LLP works on complementary principles compared to existing unsupervised methods, opening the door for their further enhancement when combined with LLP. PMID:28407016
Yandayan, T; Geckeler, R D; Aksulu, M; Akgoz, S A; Ozgur, B
2016-05-01
The application of advanced error-separating shearing techniques to the precise calibration of autocollimators with Small Angle Generators (SAGs) was carried out for the first time. The experimental realization was achieved using the High Precision Small Angle Generator (HPSAG) of TUBITAK UME under classical dimensional metrology laboratory environmental conditions. The standard uncertainty value of 5 mas (24.2 nrad) reached by classical calibration method was improved to the level of 1.38 mas (6.7 nrad). Shearing techniques, which offer a unique opportunity to separate the errors of devices without recourse to any external standard, were first adapted by Physikalisch-Technische Bundesanstalt (PTB) to the calibration of autocollimators with angle encoders. It has been demonstrated experimentally in a clean room environment using the primary angle standard of PTB (WMT 220). The application of the technique to a different type of angle measurement system extends the range of the shearing technique further and reveals other advantages. For example, the angular scales of the SAGs are based on linear measurement systems (e.g., capacitive nanosensors for the HPSAG). Therefore, SAGs show different systematic errors when compared to angle encoders. In addition to the error-separation of HPSAG and the autocollimator, detailed investigations on error sources were carried out. Apart from determination of the systematic errors of the capacitive sensor used in the HPSAG, it was also demonstrated that the shearing method enables the unique opportunity to characterize other error sources such as errors due to temperature drift in long term measurements. This proves that the shearing technique is a very powerful method for investigating angle measuring systems, for their improvement, and for specifying precautions to be taken during the measurements.
NASA Technical Reports Server (NTRS)
Scott, W. A.
1984-01-01
The propulsion simulator calibration laboratory (PSCL) in which calibrations can be performed to determine the gross thrust and airflow of propulsion simulators installed in wind tunnel models is described. The preliminary checkout, evaluation and calibration of the PSCL's 3 component force measurement system is reported. Methods and equipment were developed for the alignment and calibration of the force measurement system. The initial alignment of the system demonstrated the need for more efficient means of aligning system's components. The use of precision alignment jigs increases both the speed and accuracy with which the system is aligned. The calibration of the force measurement system shows that the methods and equipment for this procedure can be successful.
Two laboratory methods for the calibration of GPS speed meters
NASA Astrophysics Data System (ADS)
Bai, Yin; Sun, Qiao; Du, Lei; Yu, Mei; Bai, Jie
2015-01-01
The set-ups of two calibration systems are presented to investigate calibration methods of GPS speed meters. The GPS speed meter calibrated is a special type of high accuracy speed meter for vehicles which uses Doppler demodulation of GPS signals to calculate the measured speed of a moving target. Three experiments are performed: including simulated calibration, field-test signal replay calibration, and in-field test comparison with an optical speed meter. The experiments are conducted at specific speeds in the range of 40-180 km h-1 with the same GPS speed meter as the device under calibration. The evaluation of measurement results validates both methods for calibrating GPS speed meters. The relative deviations between the measurement results of the GPS-based high accuracy speed meter and those of the optical speed meter are analyzed, and the equivalent uncertainty of the comparison is evaluated. The comparison results justify the utilization of GPS speed meters as reference equipment if no fewer than seven satellites are available. This study contributes to the widespread use of GPS-based high accuracy speed meters as legal reference equipment in traffic speed metrology.
Basin-scale geothermal model calibration: experience from the Perth Basin, Australia
NASA Astrophysics Data System (ADS)
Wellmann, Florian; Reid, Lynn
2014-05-01
The calibration of large-scale geothermal models for entire sedimentary basins is challenging as direct measurements of rock properties and subsurface temperatures are commonly scarce and the basal boundary conditions poorly constrained. Instead of the often applied "trial-and-error" manual model calibration, we examine here if we can gain additional insight into parameter sensitivities and model uncertainty with a model analysis and calibration study. Our geothermal model is based on a high-resolution full 3-D geological model, covering an area of more than 100,000 square kilometers and extending to a depth of 55 kilometers. The model contains all major faults (>80 ) and geological units (13) for the entire basin. This geological model is discretised into a rectilinear mesh with a lateral resolution of 500 x 500 m, and a variable resolution at depth. The highest resolution of 25 m is applied to a depth range of 1000-3000 m where most temperature measurements are available. The entire discretised model consists of approximately 50 million cells. The top thermal boundary condition is derived from surface temperature measurements on land and ocean floor. The base of the model extents below the Moho, and we apply the heat flux over the Moho as a basal heat flux boundary condition. Rock properties (thermal conductivity, porosity, and heat production) have been compiled from several existing data sets. The conductive geothermal forward simulation is performed with SHEMAT, and we then use the stand-alone capabilities of iTOUGH2 for sensitivity analysis and model calibration. Simulated temperatures are compared to 130 quality weighted bottom hole temperature measurements. The sensitivity analysis provided a clear insight into the most sensitive parameters and parameter correlations. This proved to be of value as strong correlations, for example between basal heat flux and heat production in deep geological units, can significantly influence the model calibration procedure. The calibration resulted in a better determination of subsurface temperatures, and, in addition, provided an insight into model quality. Furthermore, a detailed analysis of the measurements used for calibration highlighted potential outliers, and limitations with the model assumptions. Extending the previously existing large-scale geothermal simulation with iTOUGH2 provided us with a valuable insight into the sensitive parameters and data in the model, which would clearly not be possible with a simple trial-and-error calibration method. Using the gained knowledge, future work will include more detailed studies on the influence of advection and convection.
Data Adjustments for TRACE-P, INTEX-A and INTEX-B
Atmospheric Science Data Center
2013-08-06
... that time, we have done repeated calibrations with two other methods: measuring the production of ozone from oxygen photolysis and the ... this notification. All of our four calibration methods indicate that the PMT calibration is incorrect, but they differ in the ...
Contributions to the problem of piezoelectric accelerometer calibration. [using lock-in voltmeter
NASA Technical Reports Server (NTRS)
Jakab, I.; Bordas, A.
1974-01-01
After discussing the principal calibration methods for piezoelectric accelerometers, an experimental setup for accelerometer calibration by the reciprocity method is described It is shown how the use of a lock-in voltmeter eliminates errors due to viscous damping and electrical loading.
A novel calibration method for non-orthogonal shaft laser theodolite measurement system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Bin, E-mail: wubin@tju.edu.cn, E-mail: xueting@tju.edu.cn; Yang, Fengting; Ding, Wen
2016-03-15
Non-orthogonal shaft laser theodolite (N-theodolite) is a new kind of large-scale metrological instrument made up by two rotary tables and one collimated laser. There are three axes for an N-theodolite. According to naming conventions in traditional theodolite, rotary axes of two rotary tables are called as horizontal axis and vertical axis, respectively, and the collimated laser beam is named as sight axis. And the difference between N-theodolite and traditional theodolite is obvious, since the former one with no orthogonal and intersecting accuracy requirements. So the calibration method for traditional theodolite is no longer suitable for N-theodolite, while the calibration methodmore » applied currently is really complicated. Thus this paper introduces a novel calibration method for non-orthogonal shaft laser theodolite measurement system to simplify the procedure and to improve the calibration accuracy. A simple two-step process, calibration for intrinsic parameters and for extrinsic parameters, is proposed by the novel method. And experiments have shown its efficiency and accuracy.« less
A new method to calibrate Lagrangian model with ASAR images for oil slick trajectory.
Tian, Siyu; Huang, Xiaoxia; Li, Hongga
2017-03-15
Since Lagrangian model coefficients vary with different conditions, it is necessary to calibrate the model to obtain optimal coefficient combination for special oil spill accident. This paper focuses on proposing a new method to calibrate Lagrangian model with time series of Envisat ASAR images. Oil slicks extracted from time series images form a detected trajectory of special oil slick. Lagrangian model is calibrated by minimizing the difference between simulated trajectory and detected trajectory. mean center position distance difference (MCPD) and rotation difference (RD) of Oil slicks' or particles' standard deviational ellipses (SDEs) are calculated as two evaluations. The two parameters are taken to evaluate the performance of Lagrangian transport model with different coefficient combinations. This method is applied to Penglai 19-3 oil spill accident. The simulation result with calibrated model agrees well with related satellite observations. It is suggested the new method is effective to calibrate Lagrangian model. Copyright © 2016 Elsevier Ltd. All rights reserved.
HosseiniAliabadi, S. J.; Hosseini Pooya, S. M.; Afarideh, H.; Mianji, F.
2015-01-01
Introduction The angular dependency of response for TLD cards may cause deviation from its true value on the results of environmental dosimetry, since TLDs may be exposed to radiation at different angles of incidence from the surrounding area. Objective A 3D setting of TLD cards has been calibrated isotropically in a standard radiation field to evaluate the improvement of the accuracy of measurement for environmental dosimetry. Method Three personal TLD cards were rectangularly placed in a cylindrical holder, and calibrated using 1D and 3D calibration methods. Then, the dosimeter has been used simultaneously with a reference instrument in a real radiation field measuring the accumulated dose within a time interval. Result The results show that the accuracy of measurement has been improved by 6.5% using 3D calibration factor in comparison with that of normal 1D calibration method. Conclusion This system can be utilized in large scale environmental monitoring with a higher accuracy. PMID:26157729
Calibration of gravitational radiation antenna by dynamic Newton field
NASA Astrophysics Data System (ADS)
Suzuki, T.; Tsubono, K.; Kuroda, K.; Hirakawa, H.
1981-07-01
A method is presented of calibrating antennas for gravitational radiation. The method, which used the dynamic Newton field of a rotating body, is suitable in experiments for frequencies up to several hundred hertz. What is more, the method requires no hardware inside the vacuum chamber of the antenna and is particularly convenient for calibration of low-temperature antenna systems.
NASA Astrophysics Data System (ADS)
Lawrence, Kurt C.; Park, Bosoon; Windham, William R.; Mao, Chengye; Poole, Gavin H.
2003-03-01
A method to calibrate a pushbroom hyperspectral imaging system for "near-field" applications in agricultural and food safety has been demonstrated. The method consists of a modified geometric control point correction applied to a focal plane array to remove smile and keystone distortion from the system. Once a FPA correction was applied, single wavelength and distance calibrations were used to describe all points on the FPA. Finally, a percent reflectance calibration, applied on a pixel-by-pixel basis, was used for accurate measurements for the hyperspectral imaging system. The method was demonstrated with a stationary prism-grating-prism, pushbroom hyperspectral imaging system. For the system described, wavelength and distance calibrations were used to reduce the wavelength errors to <0.5 nm and distance errors to <0.01mm (across the entrance slit width). The pixel-by-pixel percent reflectance calibration, which was performed at all wavelengths with dark current and 99% reflectance calibration-panel measurements, was verified with measurements on a certified gradient Spectralon panel with values ranging from about 14% reflectance to 99% reflectance with errors generally less than 5% at the mid-wavelength measurements. Results from the calibration method, indicate the hyperspectral imaging system has a usable range between 420 nm and 840 nm. Outside this range, errors increase significantly.
NASA Astrophysics Data System (ADS)
Kowalewski, M. G.; Janz, S. J.
2015-02-01
Methods of absolute radiometric calibration of backscatter ultraviolet (BUV) satellite instruments are compared as part of an effort to minimize pre-launch calibration uncertainties. An internally illuminated integrating sphere source has been used for the Shuttle Solar BUV, Total Ozone Mapping Spectrometer, Ozone Mapping Instrument, and Global Ozone Monitoring Experiment 2 using standardized procedures traceable to national standards. These sphere-based spectral responsivities agree to within the derived combined standard uncertainty of 1.87% relative to calibrations performed using an external diffuser illuminated by standard irradiance sources, the customary spectral radiance responsivity calibration method for BUV instruments. The combined standard uncertainty for these calibration techniques as implemented at the NASA Goddard Space Flight Center’s Radiometric Calibration and Development Laboratory is shown to less than 2% at 250 nm when using a single traceable calibration standard.
NASA Astrophysics Data System (ADS)
Lifton, Nathaniel
2016-01-01
The geomagnetic field is a major influence on in situ cosmogenic nuclide production rates at a given location (in addition to atmospheric pressure and, to a lesser extent, solar modulation effects). A better understanding of how past fluctuations in these influences affected production rates should allow more accurate application of cosmogenic nuclides. As such, this work explores the cosmogenic nuclide production rate scaling implications of two recent time-dependent spherical harmonic geomagnetic models spanning the Holocene. Korte and Constable (2011, Phys. Earth Planet. Inter.188, 247-259) and Korte et al. (2011, Earth Planet. Sci. Lett. 312, 497-505) recently updated earlier spherical harmonic paleomagnetic models with new paleomagnetic data from sediment cores in addition to new archeomagnetic and volcanic data. These updated models offer improved resolution and accuracy over the previous versions, in part due to increased temporal and spatial data coverage. In addition, Pavón-Carrasco et al. (2014, Earth Planet. Sci. Lett. 388, 98-109) developed another time-dependent spherical harmonic model of the Holocene geomagnetic field, based solely on archeomagnetic and volcanic paleomagnetic data from the same underlying paleomagnetic database as the Korte et al. models, but extending to 14 ka. With the new models as input, trajectory-traced estimates of effective vertical cutoff rigidity (RC - the standard method for ordering cosmic ray data) yield significantly different time-integrated scaling predictions when compared to each other and to results using the earlier models. In addition, predictions of each new model using RC are tested empirically using recently published production rate calibration data for both 10Be and 3He, and compared to predictions using corresponding time-varying geocentric dipolar RC formulations and a static geocentric axial dipole (GAD) model. Results for the few calibration sites from geomagnetically sensitive regions suggest that the Pavón-Carrasco et al. (2014) time-varying dipolar model tends to predict sea level, high latitude production rates more in line with those from calibration sites not affected by geomagnetic variations. This suggests that uncertainties arising from hemispheric and temporal sampling biases in the Holocene spherical harmonic models considered here, combined with the currently limited spatial and temporal distribution of production rate calibration sites as empirical tests, limit the robustness of the non-dipole aspects of these models for production rate scaling. These analyses should be revisited as such models improve and additional calibration sites become available.
Absolute calorimetric calibration of low energy brachytherapy sources
NASA Astrophysics Data System (ADS)
Stump, Kurt E.
In the past decade there has been a dramatic increase in the use of permanent radioactive source implants in the treatment of prostate cancer. A small radioactive source encapsulated in a titanium shell is used in this type of treatment. The radioisotopes used are generally 125I or 103Pd. Both of these isotopes have relatively short half-lives, 59.4 days and 16.99 days, respectively, and have low-energy emissions and a low dose rate. These factors make these sources well suited for this application, but the calibration of these sources poses significant metrological challenges. The current standard calibration technique involves the measurement of ionization in air to determine the source air-kerma strength. While this has proved to be an improvement over previous techniques, the method has been shown to be metrologically impure and may not be the ideal means of calbrating these sources. Calorimetric methods have long been viewed to be the most fundamental means of determining source strength for a radiation source. This is because calorimetry provides a direct measurement of source energy. However, due to the low energy and low power of the sources described above, current calorimetric methods are inadequate. This thesis presents work oriented toward developing novel methods to provide direct and absolute measurements of source power for low-energy low dose rate brachytherapy sources. The method is the first use of an actively temperature-controlled radiation absorber using the electrical substitution method to determine total contained source power of these sources. The instrument described operates at cryogenic temperatures. The method employed provides a direct measurement of source power. The work presented here is focused upon building a metrological foundation upon which to establish power-based calibrations of clinical-strength sources. To that end instrument performance has been assessed for these source strengths. The intent is to establish the limits of the current instrument to direct further work in this field. It has been found that for sources with powers above approximately 2 muW the instrument is able to determine the source power in agreement to within less than 7% of what is expected based upon the current source strength standard. For lower power sources, the agreement is still within the uncertainty of the power measurement, but the calorimeter noise dominates. Thus, to provide absolute calibration of lower power sources additional measures must be taken. The conclusion of this thesis describes these measures and how they will improve the factors that limit the current instrument. The results of the work presented in this thesis establish the methodology of active radiometric calorimetey for the absolute calibration of radioactive sources. The method is an improvement over previous techniques in that there is no reliance upon the thermal properties of the materials used or the heat flow pathways on the source measurements. The initial work presented here will help to shape future refinements of this technique to allow lower power sources to be calibrated with high precision and high accuracy.