Science.gov

Sample records for addition computer simulations

  1. Theory and computer simulation for the equation of state of additive hard-disk fluid mixtures

    NASA Astrophysics Data System (ADS)

    Barrio, C.; Solana, J. R.

    2001-01-01

    A procedure previously developed by the authors to obtain the equation of state for a mixture of additive hard spheres on the basis of a pure fluid equation of state is applied here to a binary mixture of additive hard disks in two dimensions. The equation of state depends on two parameters which are determined from the second and third virial coefficients for the mixture, which are known exactly. Results are compared with Monte Carlo calculations which are also reported. The agreement between theory and simulation is very good. For the fourth and fifth virial coefficients of the mixture, the equation of state gives results which are also in close agreement with exact numerical values reported in the literature.

  2. Learning through Computer Simulations.

    ERIC Educational Resources Information Center

    Braun, Ludwig

    Prior to the relatively easy access to computers which began in the mid-1960's, simulation was a tool only of researchers. Even now, students are frequently excluded from direct laboratory experiences for many reasons. However, computer simulation can open up these experiences, providing a powerful teaching tool for individuals, for small and…

  3. Computer Modeling and Simulation

    SciTech Connect

    Pronskikh, V. S.

    2014-05-09

    Verification and validation of computer codes and models used in simulation are two aspects of the scientific practice of high importance and have recently been discussed by philosophers of science. While verification is predominantly associated with the correctness of the way a model is represented by a computer code or algorithm, validation more often refers to model’s relation to the real world and its intended use. It has been argued that because complex simulations are generally not transparent to a practitioner, the Duhem problem can arise for verification and validation due to their entanglement; such an entanglement makes it impossible to distinguish whether a coding error or model’s general inadequacy to its target should be blamed in the case of the model failure. I argue that in order to disentangle verification and validation, a clear distinction between computer modeling (construction of mathematical computer models of elementary processes) and simulation (construction of models of composite objects and processes by means of numerical experimenting with them) needs to be made. Holding on to that distinction, I propose to relate verification (based on theoretical strategies such as inferences) to modeling and validation, which shares the common epistemology with experimentation, to simulation. To explain reasons of their intermittent entanglement I propose a weberian ideal-typical model of modeling and simulation as roles in practice. I suggest an approach to alleviate the Duhem problem for verification and validation generally applicable in practice and based on differences in epistemic strategies and scopes

  4. Computer Simulation of Diffraction Patterns.

    ERIC Educational Resources Information Center

    Dodd, N. A.

    1983-01-01

    Describes an Apple computer program (listing available from author) which simulates Fraunhofer and Fresnel diffraction using vector addition techniques (vector chaining) and allows user to experiment with different shaped multiple apertures. Graphics output include vector resultants, phase difference, diffraction patterns, and the Cornu spiral…

  5. Computer simulation of earthquakes

    NASA Technical Reports Server (NTRS)

    Cohen, S. C.

    1977-01-01

    In a computer simulation study of earthquakes a seismically active strike slip fault is represented by coupled mechanical blocks which are driven by a moving plate and which slide on a friction surface. Elastic forces and time independent friction are used to generate main shock events, while viscoelastic forces and time dependent friction add aftershock features. The study reveals that the size, length, and time and place of event occurrence are strongly influenced by the magnitude and degree of homogeneity in the elastic, viscous, and friction parameters of the fault region. For example, periodically reoccurring similar events are observed in simulations with near-homogeneous parameters along the fault, whereas seismic gaps are a common feature of simulations employing large variations in the fault parameters. The study also reveals correlations between strain energy release and fault length and average displacement and between main shock and aftershock displacements.

  6. Computer simulation of earthquakes

    NASA Technical Reports Server (NTRS)

    Cohen, S. C.

    1976-01-01

    Two computer simulation models of earthquakes were studied for the dependence of the pattern of events on the model assumptions and input parameters. Both models represent the seismically active region by mechanical blocks which are connected to one another and to a driving plate. The blocks slide on a friction surface. In the first model elastic forces were employed and time independent friction to simulate main shock events. The size, length, and time and place of event occurrence were influenced strongly by the magnitude and degree of homogeniety in the elastic and friction parameters of the fault region. Periodically reoccurring similar events were frequently observed in simulations with near homogeneous parameters along the fault, whereas, seismic gaps were a common feature of simulations employing large variations in the fault parameters. The second model incorporated viscoelastic forces and time-dependent friction to account for aftershock sequences. The periods between aftershock events increased with time and the aftershock region was confined to that which moved in the main event.

  7. Computer Maintenance Operations Center (CMOC), additional computer support equipment ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Computer Maintenance Operations Center (CMOC), additional computer support equipment - Beale Air Force Base, Perimeter Acquisition Vehicle Entry Phased-Array Warning System, Techinical Equipment Building, End of Spencer Paul Road, north of Warren Shingle Road (14th Street), Marysville, Yuba County, CA

  8. Computational Process Modeling for Additive Manufacturing

    NASA Technical Reports Server (NTRS)

    Bagg, Stacey; Zhang, Wei

    2014-01-01

    Computational Process and Material Modeling of Powder Bed additive manufacturing of IN 718. Optimize material build parameters with reduced time and cost through modeling. Increase understanding of build properties. Increase reliability of builds. Decrease time to adoption of process for critical hardware. Potential to decrease post-build heat treatments. Conduct single-track and coupon builds at various build parameters. Record build parameter information and QM Meltpool data. Refine Applied Optimization powder bed AM process model using data. Report thermal modeling results. Conduct metallography of build samples. Calibrate STK models using metallography findings. Run STK models using AO thermal profiles and report STK modeling results. Validate modeling with additional build. Photodiode Intensity measurements highly linear with power input. Melt Pool Intensity highly correlated to Melt Pool Size. Melt Pool size and intensity increase with power. Applied Optimization will use data to develop powder bed additive manufacturing process model.

  9. Grid computing and biomolecular simulation.

    PubMed

    Woods, Christopher J; Ng, Muan Hong; Johnston, Steven; Murdock, Stuart E; Wu, Bing; Tai, Kaihsu; Fangohr, Hans; Jeffreys, Paul; Cox, Simon; Frey, Jeremy G; Sansom, Mark S P; Essex, Jonathan W

    2005-08-15

    Biomolecular computer simulations are now widely used not only in an academic setting to understand the fundamental role of molecular dynamics on biological function, but also in the industrial context to assist in drug design. In this paper, two applications of Grid computing to this area will be outlined. The first, involving the coupling of distributed computing resources to dedicated Beowulf clusters, is targeted at simulating protein conformational change using the Replica Exchange methodology. In the second, the rationale and design of a database of biomolecular simulation trajectories is described. Both applications illustrate the increasingly important role modern computational methods are playing in the life sciences.

  10. Software simulator for multiple computer simulation system

    NASA Technical Reports Server (NTRS)

    Ogrady, E. P.

    1983-01-01

    A description is given of the structure and use of a computer program that simulates the operation of a parallel processor simulation system. The program is part of an investigation to determine algorithms that are suitable for simulating continous systems on a parallel processor configuration. The simulator is designed to accurately simulate the problem-solving phase of a simulation study. Care has been taken to ensure the integrity and correctness of data exchanges and to correctly sequence periods of computation and periods of data exchange. It is pointed out that the functions performed during a problem-setup phase or a reset phase are not simulated. In particular, there is no attempt to simulate the downloading process that loads object code into the local, transfer, and mapping memories of processing elements or the memories of the run control processor and the system control processor. The main program of the simulator carries out some problem-setup functions of the system control processor in that it requests the user to enter values for simulation system parameters and problem parameters. The method by which these values are transferred to the other processors, however, is not simulated.

  11. Computer Simulation of Mutagenesis.

    ERIC Educational Resources Information Center

    North, J. C.; Dent, M. T.

    1978-01-01

    A FORTRAN program is described which simulates point-substitution mutations in the DNA strands of typical organisms. Its objective is to help students to understand the significance and structure of the genetic code, and the mechanisms and effect of mutagenesis. (Author/BB)

  12. Simulation method for evaluating progressive addition lenses.

    PubMed

    Qin, Linling; Qian, Lin; Yu, Jingchi

    2013-06-20

    Since progressive addition lenses (PALs) are currently state-of-the-art in multifocal correction for presbyopia, it is important to study the methods for evaluating PALs. A nonoptical simulation method used to accurately characterize PALs during the design and optimization process is proposed in this paper. It involves the direct calculation of each surface of the lens according to the lens heights of front and rear surfaces. The validity of this simulation method for the evaluation of PALs is verified by the good agreement with Rotlex method. In particular, the simulation with a "correction action" included into the design process is potentially a useful method with advantages of time-saving, convenience, and accuracy. Based on the eye-plus-lens model, which is established through an accurate ray tracing calculation along the gaze direction, the method can find an excellent application in actually evaluating the wearer performance for optimal design of more comfortable, satisfactory, and personalized PALs. PMID:23842170

  13. Composite Erosion by Computational Simulation

    NASA Technical Reports Server (NTRS)

    Chamis, Christos C.

    2006-01-01

    Composite degradation is evaluated by computational simulation when the erosion degradation occurs on a ply-by-ply basis and the degrading medium (device) is normal to the ply. The computational simulation is performed by a multi factor interaction model and by a multi scale and multi physics available computer code. The erosion process degrades both the fiber and the matrix simultaneously in the same slice (ply). Both the fiber volume ratio and the matrix volume ratio approach zero while the void volume ratio increases as the ply degrades. The multi factor interaction model simulates the erosion degradation, provided that the exponents and factor ratios are selected judiciously. Results obtained by the computational composite mechanics show that most composite characterization properties degrade monotonically and approach "zero" as the ply degrades completely.

  14. Computed tomography characterisation of additive manufacturing materials.

    PubMed

    Bibb, Richard; Thompson, Darren; Winder, John

    2011-06-01

    Additive manufacturing, covering processes frequently referred to as rapid prototyping and rapid manufacturing, provides new opportunities in the manufacture of highly complex and custom-fitting medical devices and products. Whilst many medical applications of AM have been explored and physical properties of the resulting parts have been studied, the characterisation of AM materials in computed tomography has not been explored. The aim of this study was to determine the CT number of commonly used AM materials. There are many potential applications of the information resulting from this study in the design and manufacture of wearable medical devices, implants, prostheses and medical imaging test phantoms. A selection of 19 AM material samples were CT scanned and the resultant images analysed to ascertain the materials' CT number and appearance in the images. It was found that some AM materials have CT numbers very similar to human tissues, FDM, SLA and SLS produce samples that appear uniform on CT images and that 3D printed materials show a variation in internal structure.

  15. Computational Process Modeling for Additive Manufacturing (OSU)

    NASA Technical Reports Server (NTRS)

    Bagg, Stacey; Zhang, Wei

    2015-01-01

    Powder-Bed Additive Manufacturing (AM) through Direct Metal Laser Sintering (DMLS) or Selective Laser Melting (SLM) is being used by NASA and the Aerospace industry to "print" parts that traditionally are very complex, high cost, or long schedule lead items. The process spreads a thin layer of metal powder over a build platform, then melts the powder in a series of welds in a desired shape. The next layer of powder is applied, and the process is repeated until layer-by-layer, a very complex part can be built. This reduces cost and schedule by eliminating very complex tooling and processes traditionally used in aerospace component manufacturing. To use the process to print end-use items, NASA seeks to understand SLM material well enough to develop a method of qualifying parts for space flight operation. Traditionally, a new material process takes many years and high investment to generate statistical databases and experiential knowledge, but computational modeling can truncate the schedule and cost -many experiments can be run quickly in a model, which would take years and a high material cost to run empirically. This project seeks to optimize material build parameters with reduced time and cost through modeling.

  16. Computer simulation of polymer surfaces

    NASA Astrophysics Data System (ADS)

    Jang, Jee Hwan

    One of the main objectives of computer simulation is to isolate the effect of a specific variable in a physical or chemical system of interest, but with ambiguity in experimental interpretation. The area of polymer surface or interface contains such an ambiguity due to absence of a major thermodynamic driving force and difficulty of the complete control of experimental design. Considering the length and the time scales that define a phenomenon observed in polymeric systems, the appropriate choice of a method among the currently available methodologies in computational chemistry that have been developed mostly for small molecules is very demanding because of the Imitation of computational resources. In this study, a computationally efficient Monte Carlo simulation on a high coordination lattice employing the RIS scheme for short range interactions and a Lennard-Jones potential for long-range interaction has been applied to various boundary situations which define the material status and distinguish the properties of the material at an interface or surface from those in the bulk state. The polymer surfaces of interest in this study include a free polymer surface, a surface near an attractive solid substrate, a polymer surface generated by compression between two repulsive hard walls, and a polymer-polymer interface. Several focuses are on the change of the static properties and dynamic properties at the interfaces, which includes density profiles, distribution of a specific constituent of a polymer chain at the interfaces, chain orientation, local conformational state, and chain diffusivity. Each property at an interface is greatly affected by the characteristic of the imposed heterogeneity. One common feature is that the chains are confined at an interface along the direction normal to a surface regardless of the detailed nature of the surface. In addition, the effect of a surface gradually diminishes toward a bulk region and each property has its own effective

  17. Computer Simulation of Aircraft Aerodynamics

    NASA Technical Reports Server (NTRS)

    Inouye, Mamoru

    1989-01-01

    The role of Ames Research Center in conducting basic aerodynamics research through computer simulations is described. The computer facilities, including supercomputers and peripheral equipment that represent the state of the art, are described. The methodology of computational fluid dynamics is explained briefly. Fundamental studies of turbulence and transition are being pursued to understand these phenomena and to develop models that can be used in the solution of the Reynolds-averaged Navier-Stokes equations. Four applications of computer simulations for aerodynamics problems are described: subsonic flow around a fuselage at high angle of attack, subsonic flow through a turbine stator-rotor stage, transonic flow around a flexible swept wing, and transonic flow around a wing-body configuration that includes an inlet and a tail.

  18. Computer simulation of the threshold sensitivity determinations

    NASA Technical Reports Server (NTRS)

    Gayle, J. B.

    1974-01-01

    A computer simulation study was carried out to evaluate various methods for determining threshold stimulus levels for impact sensitivity tests. In addition, the influence of a number of variables (initial stimulus level, particular stimulus response curve, and increment size) on the apparent threshold values and on the corresponding population response levels was determined. Finally, a critical review of previous assumptions regarding the stimulus response curve for impact testing is presented in the light of the simulation results.

  19. Computer simulation for the growing probability of additional offspring with an advantageous reversal allele in the decoupled continuous-time mutation-selection model

    NASA Astrophysics Data System (ADS)

    Gill, Wonpyong

    2016-01-01

    This study calculated the growing probability of additional offspring with the advantageous reversal allele in an asymmetric sharply-peaked landscape using the decoupled continuous-time mutation-selection model. The growing probability was calculated for various population sizes, N, sequence lengths, L, selective advantages, s, fitness parameters, k and measuring parameters, C. The saturated growing probability in the stochastic region was approximately the effective selective advantage, s*, when C≫1/Ns* and s*≪1. The present study suggests that the growing probability in the stochastic region in the decoupled continuous-time mutation-selection model can be described using the theoretical formula for the growing probability in the Moran two-allele model. The selective advantage ratio, which represents the ratio of the effective selective advantage to the selective advantage, does not depend on the population size, selective advantage, measuring parameter and fitness parameter; instead the selective advantage ratio decreases with the increasing sequence length.

  20. Taxis through Computer Simulation Programs.

    ERIC Educational Resources Information Center

    Park, David

    1983-01-01

    Describes a sequence of five computer programs (listings for Apple II available from author) on tactic responses (oriented movement of a cell, cell group, or whole organism in reponse to stimuli). The simulation programs are useful in helping students examine mechanisms at work in real organisms. (JN)

  1. Computer simulation: A modern day crystal ball?

    NASA Technical Reports Server (NTRS)

    Sham, Michael; Siprelle, Andrew

    1994-01-01

    It has long been the desire of managers to be able to look into the future and predict the outcome of decisions. With the advent of computer simulation and the tremendous capability provided by personal computers, that desire can now be realized. This paper presents an overview of computer simulation and modeling, and discusses the capabilities of Extend. Extend is an iconic-driven Macintosh-based software tool that brings the power of simulation to the average computer user. An example of an Extend based model is presented in the form of the Space Transportation System (STS) Processing Model. The STS Processing Model produces eight shuttle launches per year, yet it takes only about ten minutes to run. In addition, statistical data such as facility utilization, wait times, and processing bottlenecks are produced. The addition or deletion of resources, such as orbiters or facilities, can be easily modeled and their impact analyzed. Through the use of computer simulation, it is possible to look into the future to see the impact of today's decisions.

  2. Enabling Computational Technologies for Terascale Scientific Simulations

    SciTech Connect

    Ashby, S.F.

    2000-08-24

    We develop scalable algorithms and object-oriented code frameworks for terascale scientific simulations on massively parallel processors (MPPs). Our research in multigrid-based linear solvers and adaptive mesh refinement enables Laboratory programs to use MPPs to explore important physical phenomena. For example, our research aids stockpile stewardship by making practical detailed 3D simulations of radiation transport. The need to solve large linear systems arises in many applications, including radiation transport, structural dynamics, combustion, and flow in porous media. These systems result from discretizations of partial differential equations on computational meshes. Our first research objective is to develop multigrid preconditioned iterative methods for such problems and to demonstrate their scalability on MPPs. Scalability describes how total computational work grows with problem size; it measures how effectively additional resources can help solve increasingly larger problems. Many factors contribute to scalability: computer architecture, parallel implementation, and choice of algorithm. Scalable algorithms have been shown to decrease simulation times by several orders of magnitude.

  3. Computer simulation of liquid metals

    NASA Astrophysics Data System (ADS)

    Belashchenko, D. K.

    2013-12-01

    Methods for and the results of the computer simulation of liquid metals are reviewed. Two basic methods, classical molecular dynamics with known interparticle potentials and the ab initio method, are considered. Most attention is given to the simulated results obtained using the embedded atom model (EAM). The thermodynamic, structural, and diffusion properties of liquid metal models under normal and extreme (shock) pressure conditions are considered. Liquid-metal simulated results for the Groups I - IV elements, a number of transition metals, and some binary systems (Fe - C, Fe - S) are examined. Possibilities for the simulation to account for the thermal contribution of delocalized electrons to energy and pressure are considered. Solidification features of supercooled metals are also discussed.

  4. Computer simulation of martensitic transformations

    SciTech Connect

    Xu, Ping

    1993-11-01

    The characteristics of martensitic transformations in solids are largely determined by the elastic strain that develops as martensite particles grow and interact. To study the development of microstructure, a finite-element computer simulation model was constructed to mimic the transformation process. The transformation is athermal and simulated at each incremental step by transforming the cell which maximizes the decrease in the free energy. To determine the free energy change, the elastic energy developed during martensite growth is calculated from the theory of linear elasticity for elastically homogeneous media, and updated as the transformation proceeds.

  5. Using Computational Simulations to Confront Students' Mental Models

    ERIC Educational Resources Information Center

    Rodrigues, R.; Carvalho, P. Simeão

    2014-01-01

    In this paper we show an example of how to use a computational simulation to obtain visual feedback for students' mental models, and compare their predictions with the simulated system's behaviour. Additionally, we use the computational simulation to incrementally modify the students' mental models in order to accommodate new data,…

  6. Computer simulation and scientific visualization

    SciTech Connect

    Weber, D.P.; Moszur, F.M.

    1990-01-01

    The simulation of processes in engineering and the physical sciences has progressed rapidly over the last several years. With rapid developments in supercomputers, parallel processing, numerical algorithms and software, scientists and engineers are now positioned to quantitatively simulate systems requiring many billions of arithmetic operations. The need to understand and assimilate such massive amounts of data has been a driving force in the development of both hardware and software to create visual representations of the underling physical systems. In this paper, and the accompanying videotape, the evolution and development of the visualization process in scientific computing will be reviewed. Specific applications and associated imaging hardware and software technology illustrate both the computational needs and the evolving trends. 6 refs.

  7. Biomes computed from simulated climatologies

    NASA Astrophysics Data System (ADS)

    Claussen, Martin; Esch, Monika

    1994-01-01

    The biome model of Prentice et al. (1992a) is used to predict global patterns of potential natural plant formations, or biomes, from climatologies simulated by ECHAM, a model used for climate simulations at the Max-Planck-Institut fur Meteorologie. This study is undertaken in order to show the advantage of this biome model in diagnosing the performance of a climate model and assessing effects of past and future climate changes predicted by a climate model. Good overall agreement is found between global patterns of biomes computed from observed and simulated data of present climate. But there are also major discrepancies indicated by a difference in biomes in Australia, in the Kalahari Desert, and in the Middle West of North America. These discrepancies can be traced back to failures in simulated rainfall as well as summer or winter temperatures. Global patterns of biomes computed from an ice age simulation reveal that North America, Europe, and Siberia should have been covered largely by tundra and taiga, whereas only small differences are seen for the tropical rain forests. A potential northeast shift of biomes is expected from a simulation with enhanced C02 concentration according to the IPCC Scenario A. Little change is seen in the tropical rain forest and the Sahara. Since the biome model used is not capable of predicting changes in vegetation patterns due to a rapid climate change, the latter simulation has to be taken as a prediction of changes in conditions favourable for the existence of certain biomes, not as a prediction of a future distribution of biomes.[/ab

  8. Biomes computed from simulated climatologies

    SciTech Connect

    Claussen, M.; Esch, M.

    1994-01-01

    The biome model of Prentice et al. is used to predict global patterns of potential natural plant formations, or biomes, from climatologies simulated by ECHAM, a model used for climate simulations at the Max-Planck-Institut fuer Meteorologie. This study undertaken in order to show the advantage of this biome model in diagnosing the performance of a climate model and assessing effects of past and future climate changes predicted by a climate model. Good overall agreement is found between global patterns of biomes computed from observed and simulated data of present climate. But there are also major discrepancies indicated by a difference in biomes in Australia, in the Kalahari Desert, and in the Middle West of North America. These discrepancies can be traced back to in simulated rainfall as well as summer or winter temperatures. Global patterns of biomes computed from an ice age simulation reveal that North America, Europe, and Siberia should have been covered largely by tundra and taiga, whereas only small differences are for the tropical rain forests. A potential northeast shift of biomes is expected from a simulation with enhanced CO{sub 2} concentration according to the IPCC Scenario A. Little change is seen in the tropical rain forest and the Sahara. Since the biome model used is not capable of predicting chances in vegetation patterns due to a rapid climate change, the latter simulation to be taken as a prediction of chances in conditions favourable for the existence of certain biomes, not as a reduction of a future distribution of biomes. 15 refs., 8 figs., 2 tabs.

  9. Computer simulation of nonequilibrium processes

    SciTech Connect

    Wallace, D.C.

    1985-07-01

    The underlying concepts of nonequilibrium statistical mechanics, and of irreversible thermodynamics, will be described. The question at hand is then, how are these concepts to be realize in computer simulations of many-particle systems. The answer will be given for dissipative deformation processes in solids, on three hierarchical levels: heterogeneous plastic flow, dislocation dynamics, an molecular dynamics. Aplication to the shock process will be discussed.

  10. Inversion based on computational simulations

    SciTech Connect

    Hanson, K.M.; Cunningham, G.S.; Saquib, S.S.

    1998-09-01

    A standard approach to solving inversion problems that involve many parameters uses gradient-based optimization to find the parameters that best match the data. The authors discuss enabling techniques that facilitate application of this approach to large-scale computational simulations, which are the only way to investigate many complex physical phenomena. Such simulations may not seem to lend themselves to calculation of the gradient with respect to numerous parameters. However, adjoint differentiation allows one to efficiently compute the gradient of an objective function with respect to all the variables of a simulation. When combined with advanced gradient-based optimization algorithms, adjoint differentiation permits one to solve very large problems of optimization or parameter estimation. These techniques will be illustrated through the simulation of the time-dependent diffusion of infrared light through tissue, which has been used to perform optical tomography. The techniques discussed have a wide range of applicability to modeling including the optimization of models to achieve a desired design goal.

  11. Computer simulation of engine systems

    NASA Technical Reports Server (NTRS)

    Fishbach, L. H.

    1980-01-01

    The use of computerized simulations of the steady state and transient performance of jet engines throughout the flight regime is discussed. In addition, installation effects on thrust and specific fuel consumption is accounted for as well as engine weight, dimensions and cost. The availability throughout the government and industry of analytical methods for calculating these quantities are pointed out.

  12. Displaying Computer Simulations Of Physical Phenomena

    NASA Technical Reports Server (NTRS)

    Watson, Val

    1991-01-01

    Paper discusses computer simulation as means of experiencing and learning to understand physical phenomena. Covers both present simulation capabilities and major advances expected in near future. Visual, aural, tactile, and kinesthetic effects used to teach such physical sciences as dynamics of fluids. Recommends classrooms in universities, government, and industry be linked to advanced computing centers so computer simulations integrated into education process.

  13. Computer Simulations Improve University Instructional Laboratories1

    PubMed Central

    2004-01-01

    Laboratory classes are commonplace and essential in biology departments but can sometimes be cumbersome, unreliable, and a drain on time and resources. As university intakes increase, pressure on budgets and staff time can often lead to reduction in practical class provision. Frequently, the ability to use laboratory equipment, mix solutions, and manipulate test animals are essential learning outcomes, and “wet” laboratory classes are thus appropriate. In others, however, interpretation and manipulation of the data are the primary learning outcomes, and here, computer-based simulations can provide a cheaper, easier, and less time- and labor-intensive alternative. We report the evaluation of two computer-based simulations of practical exercises: the first in chromosome analysis, the second in bioinformatics. Simulations can provide significant time savings to students (by a factor of four in our first case study) without affecting learning, as measured by performance in assessment. Moreover, under certain circumstances, performance can be improved by the use of simulations (by 7% in our second case study). We concluded that the introduction of these simulations can significantly enhance student learning where consideration of the learning outcomes indicates that it might be appropriate. In addition, they can offer significant benefits to teaching staff. PMID:15592599

  14. Computer simulation of microstructural dynamics

    SciTech Connect

    Grest, G.S.; Anderson, M.P.; Srolovitz, D.J.

    1985-01-01

    Since many of the physical properties of materials are determined by their microstructure, it is important to be able to predict and control microstructural development. A number of approaches have been taken to study this problem, but they assume that the grains can be described as spherical or hexagonal and that growth occurs in an average environment. We have developed a new technique to bridge the gap between the atomistic interactions and the macroscopic scale by discretizing the continuum system such that the microstructure retains its topological connectedness, yet is amenable to computer simulations. Using this technique, we have studied grain growth in polycrystalline aggregates. The temporal evolution and grain morphology of our model are in excellent agreement with experimental results for metals and ceramics.

  15. Priority Queues for Computer Simulations

    NASA Technical Reports Server (NTRS)

    Steinman, Jeffrey S. (Inventor)

    1998-01-01

    The present invention is embodied in new priority queue data structures for event list management of computer simulations, and includes a new priority queue data structure and an improved event horizon applied to priority queue data structures. ne new priority queue data structure is a Qheap and is made out of linked lists for robust, fast, reliable, and stable event list management and uses a temporary unsorted list to store all items until one of the items is needed. Then the list is sorted, next, the highest priority item is removed, and then the rest of the list is inserted in the Qheap. Also, an event horizon is applied to binary tree and splay tree priority queue data structures to form the improved event horizon for event management.

  16. Computer Simulation for Emergency Incident Management

    SciTech Connect

    Brown, D L

    2004-12-03

    This report describes the findings and recommendations resulting from the Department of Homeland Security (DHS) Incident Management Simulation Workshop held by the DHS Advanced Scientific Computing Program in May 2004. This workshop brought senior representatives of the emergency response and incident-management communities together with modeling and simulation technologists from Department of Energy laboratories. The workshop provided an opportunity for incident responders to describe the nature and substance of the primary personnel roles in an incident response, to identify current and anticipated roles of modeling and simulation in support of incident response, and to begin a dialog between the incident response and simulation technology communities that will guide and inform planned modeling and simulation development for incident response. This report provides a summary of the discussions at the workshop as well as a summary of simulation capabilities that are relevant to incident-management training, and recommendations for the use of simulation in both incident management and in incident management training, based on the discussions at the workshop. In addition, the report discusses areas where further research and development will be required to support future needs in this area.

  17. Computer simulations of liquid crystals

    NASA Astrophysics Data System (ADS)

    Smondyrev, Alexander M.

    Liquid crystal physics is an exciting interdisciplinary field of research with important practical applications. Their complexity and the presence of strong translational and orientational fluctuations require a computational approach, especially in the studies of nonequlibrium phenomena. In this dissertation we present the results of computer simulation studies of liquid crystals using the molecular dynamics technique. We employed the Gay-Berne phenomenological model of liquid crystals to describe the interaction between the molecules. Both equilibrium and non-equilibrium phenomena were studied. In the first case we studied the flow properties of the liquid crystal system in equilibrium as well as the dynamics of the director. We measured the viscosities of the Gay-Berne model in the nematic and isotropic phases. The temperature-dependence of the rotational and shear viscosities, including the nonmonotonic behavior of one shear viscosity, are in good agreement with experimental data. The bulk viscosities are significantly larger than the shear viscosities, again in agreement with experiment. The director motion was found to be ballistic at short times and diffusive at longer times. The second class of problems we focused on is the properties of the system which was rapidly quenched to very low temperatures from the nematic phase. We find a glass transition to a metastable phase with nematic order and frozen translational and orientational degrees of freedom. For fast quench rates the local structure is nematic-like, while for slower quench rates smectic order is present as well. Finally, we considered a system in the isotropic phase which is then cooled to temperatures below the isotropic-nematic transition temperature. We expect topological defects to play a central role in the subsequent equilibration of the system. To identify and study these defects we require a simulation of a system with several thousand particles. We present the results of large

  18. The Shuttle Mission Simulator computer generated imagery

    NASA Technical Reports Server (NTRS)

    Henderson, T. H.

    1984-01-01

    Equipment available in the primary training facility for the Space Transportation System (STS) flight crews includes the Fixed Base Simulator, the Motion Base Simulator, the Spacelab Simulator, and the Guidance and Navigation Simulator. The Shuttle Mission Simulator (SMS) consists of the Fixed Base Simulator and the Motion Base Simulator. The SMS utilizes four visual Computer Generated Image (CGI) systems. The Motion Base Simulator has a forward crew station with six-degrees of freedom motion simulation. Operation of the Spacelab Simulator is planned for the spring of 1983. The Guidance and Navigation Simulator went into operation in 1982. Aspects of orbital visual simulation are discussed, taking into account the earth scene, payload simulation, the generation and display of 1079 stars, the simulation of sun glare, and Reaction Control System jet firing plumes. Attention is also given to landing site visual simulation, and night launch and landing simulation.

  19. Simulating Drosophila Genetics with the Computer.

    ERIC Educational Resources Information Center

    Small, James W., Jr.; Edwards, Kathryn L.

    1979-01-01

    Presents some techniques developed to help improve student understanding of Mendelian principles through the use of a computer simulation model by the genetic system of the fruit fly. Includes discussion and evaluation of this computer assisted program. (MA)

  20. Protocols for Handling Messages Between Simulation Computers

    NASA Technical Reports Server (NTRS)

    Balcerowski, John P.; Dunnam, Milton

    2006-01-01

    Practical Simulator Network (PSimNet) is a set of data-communication protocols designed especially for use in handling messages between computers that are engaging cooperatively in real-time or nearly-real-time training simulations. In a typical application, computers that provide individualized training at widely dispersed locations would communicate, by use of PSimNet, with a central host computer that would provide a common computational- simulation environment and common data. Originally intended for use in supporting interfaces between training computers and computers that simulate the responses of spacecraft scientific payloads, PSimNet could be especially well suited for a variety of other applications -- for example, group automobile-driver training in a classroom. Another potential application might lie in networking of automobile-diagnostic computers at repair facilities to a central computer that would compile the expertise of numerous technicians and engineers and act as an expert consulting technician.

  1. Monte Carlo Computer Simulation of a Rainbow.

    ERIC Educational Resources Information Center

    Olson, Donald; And Others

    1990-01-01

    Discusses making a computer-simulated rainbow using principles of physics, such as reflection and refraction. Provides BASIC program for the simulation. Appends a program illustrating the effects of dispersion of the colors. (YP)

  2. Computer Based Simulation of Laboratory Experiments.

    ERIC Educational Resources Information Center

    Edward, Norrie S.

    1997-01-01

    Examines computer based simulations of practical laboratory experiments in engineering. Discusses the aims and achievements of lab work (cognitive, process, psychomotor, and affective); types of simulations (model building and behavioral); and the strengths and weaknesses of simulations. Describes the development of a centrifugal pump simulation,…

  3. Parallel Proximity Detection for Computer Simulations

    NASA Technical Reports Server (NTRS)

    Steinman, Jeffrey S. (Inventor); Wieland, Frederick P. (Inventor)

    1998-01-01

    The present invention discloses a system for performing proximity detection in computer simulations on parallel processing architectures utilizing a distribution list which includes movers and sensor coverages which check in and out of grids. Each mover maintains a list of sensors that detect the mover's motion as the mover and sensor coverages check in and out of the grids. Fuzzy grids are included by fuzzy resolution parameters to allow movers and sensor coverages to check in and out of grids without computing exact grid crossings. The movers check in and out of grids while moving sensors periodically inform the grids of their coverage. In addition, a lookahead function is also included for providing a generalized capability without making any limiting assumptions about the particular application to which it is applied. The lookahead function is initiated so that risk-free synchronization strategies never roll back grid events. The lookahead function adds fixed delays as events are scheduled for objects on other nodes.

  4. Parallel Proximity Detection for Computer Simulation

    NASA Technical Reports Server (NTRS)

    Steinman, Jeffrey S. (Inventor); Wieland, Frederick P. (Inventor)

    1997-01-01

    The present invention discloses a system for performing proximity detection in computer simulations on parallel processing architectures utilizing a distribution list which includes movers and sensor coverages which check in and out of grids. Each mover maintains a list of sensors that detect the mover's motion as the mover and sensor coverages check in and out of the grids. Fuzzy grids are includes by fuzzy resolution parameters to allow movers and sensor coverages to check in and out of grids without computing exact grid crossings. The movers check in and out of grids while moving sensors periodically inform the grids of their coverage. In addition, a lookahead function is also included for providing a generalized capability without making any limiting assumptions about the particular application to which it is applied. The lookahead function is initiated so that risk-free synchronization strategies never roll back grid events. The lookahead function adds fixed delays as events are scheduled for objects on other nodes.

  5. Computer Simulation in Chemical Kinetics

    ERIC Educational Resources Information Center

    Anderson, Jay Martin

    1976-01-01

    Discusses the use of the System Dynamics technique in simulating a chemical reaction for kinetic analysis. Also discusses the use of simulation modelling in biology, ecology, and the social sciences, where experimentation may be impractical or impossible. (MLH)

  6. Computer Simulation in Undergraduate Instruction: A Symposium.

    ERIC Educational Resources Information Center

    Street, Warren R.; And Others

    These symposium papers discuss the instructional use of computers in psychology, with emphasis on computer-produced simulations. The first, by Rich Edwards, briefly outlines LABSIM, a general purpose system of FORTRAN programs which simulate data collection in more than a dozen experimental models in psychology and are designed to train students…

  7. Computer simulation of inhibitor application -- A review

    SciTech Connect

    Banerjee, G.; Vasanth, K.L.

    1997-12-01

    The rapid development of powerful software as well as hardware in computer technology has changed the traditional approach to all areas of science and technology. In the field of corrosion inhibitors, computers are used to model, simulate, analyze and monitor inhibitor applications in both laboratory and industrial environments. This paper will present an up-to-date critical review of such simulation studies.

  8. A computer simulation of chromosomal instability

    NASA Astrophysics Data System (ADS)

    Goodwin, E.; Cornforth, M.

    The transformation of a normal cell into a cancerous growth can be described as a process of mutation and selection occurring within the context of clonal expansion. Radiation, in addition to initial DNA damage, induces a persistent and still poorly understood genomic instability process that contributes to the mutational burden. It will be essential to include a quantitative description of this phenomenon in any attempt at science-based risk assessment. Monte Carlo computer simulations are a relatively simple way to model processes that are characterized by an element of randomness. A properly constructed simulation can capture the essence of a phenomenon that, as is often the case in biology, can be extraordinarily complex, and can do so even though the phenomenon itself is incompletely understood. A simple computer simulation of one manifestation of genomic instability known as chromosomal instability will be presented. The model simulates clonal expansion of a single chromosomally unstable cell into a colony. Instability is characterized by a single parameter, the rate of chromosomal rearrangement. With each new chromosome aberration, a unique subclone arises (subclones are defined as having a unique karyotype). The subclone initially has just one cell, but it can expand with cell division if the aberration is not lethal. The computer program automatically keeps track of the number of subclones within the expanding colony, and the number of cells within each subclone. Because chromosome aberrations kill some cells during colony growth, colonies arising from unstable cells tend to be smaller than those arising from stable cells. For any chosen level of instability, the computer program calculates the mean number of cells per colony averaged over many runs. These output should prove useful for investigating how such radiobiological phenomena as slow growth colonies, increased doubling time, and delayed cell death depend on chromosomal instability. Also of

  9. Multiscale Computer Simulation of Failure in Aerogels

    NASA Technical Reports Server (NTRS)

    Good, Brian S.

    2008-01-01

    Aerogels have been of interest to the aerospace community primarily for their thermal properties, notably their low thermal conductivities. While such gels are typically fragile, recent advances in the application of conformal polymer layers to these gels has made them potentially useful as lightweight structural materials as well. We have previously performed computer simulations of aerogel thermal conductivity and tensile and compressive failure, with results that are in qualitative, and sometimes quantitative, agreement with experiment. However, recent experiments in our laboratory suggest that gels having similar densities may exhibit substantially different properties. In this work, we extend our original diffusion limited cluster aggregation (DLCA) model for gel structure to incorporate additional variation in DLCA simulation parameters, with the aim of producing DLCA clusters of similar densities that nevertheless have different fractal dimension and secondary particle coordination. We perform particle statics simulations of gel strain on these clusters, and consider the effects of differing DLCA simulation conditions, and the resultant differences in fractal dimension and coordination, on gel strain properties.

  10. Additional development of the XTRAN3S computer program

    NASA Technical Reports Server (NTRS)

    Borland, C. J.

    1989-01-01

    Additional developments and enhancements to the XTRAN3S computer program, a code for calculation of steady and unsteady aerodynamics, and associated aeroelastic solutions, for 3-D wings in the transonic flow regime are described. Algorithm improvements for the XTRAN3S program were provided including an implicit finite difference scheme to enhance the allowable time step and vectorization for improved computational efficiency. The code was modified to treat configurations with a fuselage, multiple stores/nacelles/pylons, and winglets. Computer program changes (updates) for error corrections and updates for version control are provided.

  11. Recent advances in computer image generation simulation.

    PubMed

    Geltmacher, H E

    1988-11-01

    An explosion in flight simulator technology over the past 10 years is revolutionizing U.S. Air Force (USAF) operational training. The single, most important development has been in computer image generation. However, other significant advances are being made in simulator handling qualities, real-time computation systems, and electro-optical displays. These developments hold great promise for achieving high fidelity combat mission simulation. This article reviews the progress to date and predicts its impact, along with that of new computer science advances such as very high speed integrated circuits (VHSIC), on future USAF aircrew simulator training. Some exciting possibilities are multiship, full-mission simulators at replacement training units, miniaturized unit level mission rehearsal training simulators, onboard embedded training capability, and national scale simulator networking.

  12. Frontiers in the Teaching of Physiology. Computer Literacy and Simulation.

    ERIC Educational Resources Information Center

    Tidball, Charles S., Ed.; Shelesnyak, M. C., Ed.

    Provided is a collection of papers on computer literacy and simulation originally published in The Physiology Teacher, supplemented by additional papers and a glossary of terms relevant to the field. The 12 papers are presented in five sections. An affirmation of conventional physiology laboratory exercises, coping with computer terminology, and…

  13. Computer simulation of nonequilibrium processes

    SciTech Connect

    Hoover, W.G.; Moran, B.; Holian, B.L.; Posch, H.A.; Bestiale, S.

    1987-01-01

    Recent atomistic simulations of irreversible macroscopic hydrodynamic flows are illustrated. An extension of Nose's reversible atomistic mechanics makes it possible to simulate such non-equilibrium systems with completely reversible equations of motion. The new techniques show that macroscopic irreversibility is a natural inevitable consequence of time-reversible Lyapunov-unstable microscopic equations of motion.

  14. Computed Tomography Inspection and Analysis for Additive Manufacturing Components

    NASA Technical Reports Server (NTRS)

    Beshears, Ronald D.

    2016-01-01

    Computed tomography (CT) inspection was performed on test articles additively manufactured from metallic materials. Metallic AM and machined wrought alloy test articles with programmed flaws were inspected using a 2MeV linear accelerator based CT system. Performance of CT inspection on identically configured wrought and AM components and programmed flaws was assessed using standard image analysis techniques to determine the impact of additive manufacturing on inspectability of objects with complex geometries.

  15. Filtration theory using computer simulations

    SciTech Connect

    Bergman, W.; Corey, I.

    1997-08-01

    We have used commercially available fluid dynamics codes based on Navier-Stokes theory and the Langevin particle equation of motion to compute the particle capture efficiency and pressure drop through selected two- and three-dimensional fiber arrays. The approach we used was to first compute the air velocity vector field throughout a defined region containing the fiber matrix. The particle capture in the fiber matrix is then computed by superimposing the Langevin particle equation of motion over the flow velocity field. Using the Langevin equation combines the particle Brownian motion, inertia and interception mechanisms in a single equation. In contrast, most previous investigations treat the different capture mechanisms separately. We have computed the particle capture efficiency and the pressure drop through one, 2-D and two, 3-D fiber matrix elements. 5 refs., 11 figs.

  16. Filtration theory using computer simulations

    SciTech Connect

    Bergman, W.; Corey, I.

    1997-01-01

    We have used commercially available fluid dynamics codes based on Navier-Stokes theory and the Langevin particle equation of motion to compute the particle capture efficiency and pressure drop through selected two- and three- dimensional fiber arrays. The approach we used was to first compute the air velocity vector field throughout a defined region containing the fiber matrix. The particle capture in the fiber matrix is then computed by superimposing the Langevin particle equation of motion over the flow velocity field. Using the Langevin equation combines the particle Brownian motion, inertia and interception mechanisms in a single equation. In contrast, most previous investigations treat the different capture mechanisms separately. We have computed the particle capture efficiency and the pressure drop through one, 2-D and two, 3-D fiber matrix elements.

  17. Evaluation of Visual Computer Simulator for Computer Architecture Education

    ERIC Educational Resources Information Center

    Imai, Yoshiro; Imai, Masatoshi; Moritoh, Yoshio

    2013-01-01

    This paper presents trial evaluation of a visual computer simulator in 2009-2011, which has been developed to play some roles of both instruction facility and learning tool simultaneously. And it illustrates an example of Computer Architecture education for University students and usage of e-Learning tool for Assembly Programming in order to…

  18. Computational Spectrum of Agent Model Simulation

    SciTech Connect

    Perumalla, Kalyan S

    2010-01-01

    The study of human social behavioral systems is finding renewed interest in military, homeland security and other applications. Simulation is the most generally applied approach to studying complex scenarios in such systems. Here, we outline some of the important considerations that underlie the computational aspects of simulation-based study of human social systems. The fundamental imprecision underlying questions and answers in social science makes it necessary to carefully distinguish among different simulation problem classes and to identify the most pertinent set of computational dimensions associated with those classes. We identify a few such classes and present their computational implications. The focus is then shifted to the most challenging combinations in the computational spectrum, namely, large-scale entity counts at moderate to high levels of fidelity. Recent developments in furthering the state-of-the-art in these challenging cases are outlined. A case study of large-scale agent simulation is provided in simulating large numbers (millions) of social entities at real-time speeds on inexpensive hardware. Recent computational results are identified that highlight the potential of modern high-end computing platforms to push the envelope with respect to speed, scale and fidelity of social system simulations. Finally, the problem of shielding the modeler or domain expert from the complex computational aspects is discussed and a few potential solution approaches are identified.

  19. Computational simulation methods for composite fracture mechanics

    NASA Technical Reports Server (NTRS)

    Murthy, Pappu L. N.

    1988-01-01

    Structural integrity, durability, and damage tolerance of advanced composites are assessed by studying damage initiation at various scales (micro, macro, and global) and accumulation and growth leading to global failure, quantitatively and qualitatively. In addition, various fracture toughness parameters associated with a typical damage and its growth must be determined. Computational structural analysis codes to aid the composite design engineer in performing these tasks were developed. CODSTRAN (COmposite Durability STRuctural ANalysis) is used to qualitatively and quantitatively assess the progressive damage occurring in composite structures due to mechanical and environmental loads. Next, methods are covered that are currently being developed and used at Lewis to predict interlaminar fracture toughness and related parameters of fiber composites given a prescribed damage. The general purpose finite element code MSC/NASTRAN was used to simulate the interlaminar fracture and the associated individual as well as mixed-mode strain energy release rates in fiber composites.

  20. Infrared Flight Simulation Using Computer Generated Imagery

    NASA Astrophysics Data System (ADS)

    Weathersby, Marshall R.; Finlay, W. Mark

    1985-01-01

    A sophisticated deterministic interactive software model for computer generation of three-dimensionally projected infrared scenes has been developed. Scenes can be produced using either a self-emission or near infrared reflectance model. The software allows for generation of flight paths through a data base consisting of both feature and topography and near real-time display of stored precomputed images. The emphasis in the model development has been in computer generation of infrared scenes which accurately reproduce the characteristics of real-world imagery. The software combines computer graphics and infrared physics to produce synthetic scenes with the statistical properties of real scenes. Options exist for generation of images in near-infrared, 3-5 or 8-12 micron spectral bands including atmospheric attenuation effects. The three-dimensional projection algorithms allow for viewing of the scenes from any geometry and include concave and convex surfaces as well as hidden objects. Features exist for insertion of additional objects into the three-dimensional scenes. Thus targets, buildings, and other natural or man-made objects can be inserted with any orientation anywhere in the scenes. This allows full simulation of varying depression angles, range closure, and fly-over. The three-dimensional infrared background clutter model is an evaluation tool capable of both assessing system performance in clutter and increasing our understanding of clutter itself. The model in its current form represents a powerful tool for the fundamental understanding of infrared clutter. Possible applications include, but are most certainly not limited to, sensor operator training in the area of target discrimination with dynamic imagery, evaluation of automatic target recognizer (ATR) algorithms, and simulations allowing pilots to pre-fly missions.

  1. Computer Simulation and ESL Reading.

    ERIC Educational Resources Information Center

    Wu, Mary A.

    It is noted that although two approaches to second language instruction--the communicative approach emphasizing genuine language use and computer assisted instruction--have come together in the form of some lower level reading instruction materials for English as a second language (ESL), advanced level ESL reading materials using computer…

  2. Fiber Composite Sandwich Thermostructural Behavior: Computational Simulation

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.; Aiello, R. A.; Murthy, P. L. N.

    1986-01-01

    Several computational levels of progressive sophistication/simplification are described to computationally simulate composite sandwich hygral, thermal, and structural behavior. The computational levels of sophistication include: (1) three-dimensional detailed finite element modeling of the honeycomb, the adhesive and the composite faces; (2) three-dimensional finite element modeling of the honeycomb assumed to be an equivalent continuous, homogeneous medium, the adhesive and the composite faces; (3) laminate theory simulation where the honeycomb (metal or composite) is assumed to consist of plies with equivalent properties; and (4) derivations of approximate, simplified equations for thermal and mechanical properties by simulating the honeycomb as an equivalent homogeneous medium. The approximate equations are combined with composite hygrothermomechanical and laminate theories to provide a simple and effective computational procedure for simulating the thermomechanical/thermostructural behavior of fiber composite sandwich structures.

  3. Augmented Reality Simulations on Handheld Computers

    ERIC Educational Resources Information Center

    Squire, Kurt; Klopfer, Eric

    2007-01-01

    Advancements in handheld computing, particularly its portability, social interactivity, context sensitivity, connectivity, and individuality, open new opportunities for immersive learning environments. This article articulates the pedagogical potential of augmented reality simulations in environmental engineering education by immersing students in…

  4. Astronomy Simulation with Computer Graphics.

    ERIC Educational Resources Information Center

    Thomas, William E.

    1982-01-01

    "Planetary Motion Simulations" is a system of programs designed for students to observe motions of a superior planet (one whose orbit lies outside the orbit of the earth). Programs run on the Apple II microcomputer and employ high-resolution graphics to present the motions of Saturn. (Author/JN)

  5. Economic Analysis. Computer Simulation Models.

    ERIC Educational Resources Information Center

    Sterling Inst., Washington, DC. Educational Technology Center.

    A multimedia course in economic analysis was developed and used in conjunction with the United States Naval Academy. (See ED 043 790 and ED 043 791 for final reports of the project evaluation and development model.) This volume of the text discusses the simulation of behavioral relationships among variable elements in an economy and presents…

  6. Psychology on Computers: Simulations, Experiments and Projects.

    ERIC Educational Resources Information Center

    Belcher, Duane M.; Smith, Stephen D.

    PSYCOM is a unique mixed media package which combines high interest projects on the computer with a written text of expository material. It goes beyond most computer-assisted instruction which emphasizes drill and practice and testing of knowledge. A project might consist of a simulation or an actual experiment, or it might be a demonstration, a…

  7. Teaching Environmental Systems Modelling Using Computer Simulation.

    ERIC Educational Resources Information Center

    Moffatt, Ian

    1986-01-01

    A computer modeling course in environmental systems and dynamics is presented. The course teaches senior undergraduates to analyze a system of interest, construct a system flow chart, and write computer programs to simulate real world environmental processes. An example is presented along with a course evaluation, figures, tables, and references.…

  8. Computer Simulation Of A Small Turboshaft Engine

    NASA Technical Reports Server (NTRS)

    Ballin, Mark G.

    1991-01-01

    Component-type mathematical model of small turboshaft engine developed for use in real-time computer simulations of dynamics of helicopter flight. Yields shaft speeds, torques, fuel-consumption rates, and other operating parameters with sufficient accuracy for use in real-time simulation of maneuvers involving large transients in power and/or severe accelerations.

  9. Salesperson Ethics: An Interactive Computer Simulation

    ERIC Educational Resources Information Center

    Castleberry, Stephen

    2014-01-01

    A new interactive computer simulation designed to teach sales ethics is described. Simulation learner objectives include gaining a better understanding of legal issues in selling; realizing that ethical dilemmas do arise in selling; realizing the need to be honest when selling; seeing that there are conflicting demands from a salesperson's…

  10. Simulations of Probabilities for Quantum Computing

    NASA Technical Reports Server (NTRS)

    Zak, M.

    1996-01-01

    It has been demonstrated that classical probabilities, and in particular, probabilistic Turing machine, can be simulated by combining chaos and non-LIpschitz dynamics, without utilization of any man-made devices (such as random number generators). Self-organizing properties of systems coupling simulated and calculated probabilities and their link to quantum computations are discussed.

  11. Reservoir Thermal Recover Simulation on Parallel Computers

    NASA Astrophysics Data System (ADS)

    Li, Baoyan; Ma, Yuanle

    The rapid development of parallel computers has provided a hardware background for massive refine reservoir simulation. However, the lack of parallel reservoir simulation software has blocked the application of parallel computers on reservoir simulation. Although a variety of parallel methods have been studied and applied to black oil, compositional, and chemical model numerical simulations, there has been limited parallel software available for reservoir simulation. Especially, the parallelization study of reservoir thermal recovery simulation has not been fully carried out, because of the complexity of its models and algorithms. The authors make use of the message passing interface (MPI) standard communication library, the domain decomposition method, the block Jacobi iteration algorithm, and the dynamic memory allocation technique to parallelize their serial thermal recovery simulation software NUMSIP, which is being used in petroleum industry in China. The parallel software PNUMSIP was tested on both IBM SP2 and Dawn 1000A distributed-memory parallel computers. The experiment results show that the parallelization of I/O has great effects on the efficiency of parallel software PNUMSIP; the data communication bandwidth is also an important factor, which has an influence on software efficiency. Keywords: domain decomposition method, block Jacobi iteration algorithm, reservoir thermal recovery simulation, distributed-memory parallel computer

  12. Understanding Islamist political violence through computational social simulation

    SciTech Connect

    Watkins, Jennifer H; Mackerrow, Edward P; Patelli, Paolo G; Eberhardt, Ariane; Stradling, Seth G

    2008-01-01

    Understanding the process that enables political violence is of great value in reducing the future demand for and support of violent opposition groups. Methods are needed that allow alternative scenarios and counterfactuals to be scientifically researched. Computational social simulation shows promise in developing 'computer experiments' that would be unfeasible or unethical in the real world. Additionally, the process of modeling and simulation reveals and challenges assumptions that may not be noted in theories, exposes areas where data is not available, and provides a rigorous, repeatable, and transparent framework for analyzing the complex dynamics of political violence. This paper demonstrates the computational modeling process using two simulation techniques: system dynamics and agent-based modeling. The benefits and drawbacks of both techniques are discussed. In developing these social simulations, we discovered that the social science concepts and theories needed to accurately simulate the associated psychological and social phenomena were lacking.

  13. Computer simulation of gear tooth manufacturing processes

    NASA Technical Reports Server (NTRS)

    Mavriplis, Dimitri; Huston, Ronald L.

    1990-01-01

    The use of computer graphics to simulate gear tooth manufacturing procedures is discussed. An analytical basis for the simulation is established for spur gears. The simulation itself, however, is developed not only for spur gears, but for straight bevel gears as well. The applications of the developed procedure extend from the development of finite element models of heretofore intractable geometrical forms, to exploring the fabrication of nonstandard tooth forms.

  14. Biocellion: accelerating computer simulation of multicellular biological system models

    PubMed Central

    Kang, Seunghwa; Kahan, Simon; McDermott, Jason; Flann, Nicholas; Shmulevich, Ilya

    2014-01-01

    Motivation: Biological system behaviors are often the outcome of complex interactions among a large number of cells and their biotic and abiotic environment. Computational biologists attempt to understand, predict and manipulate biological system behavior through mathematical modeling and computer simulation. Discrete agent-based modeling (in combination with high-resolution grids to model the extracellular environment) is a popular approach for building biological system models. However, the computational complexity of this approach forces computational biologists to resort to coarser resolution approaches to simulate large biological systems. High-performance parallel computers have the potential to address the computing challenge, but writing efficient software for parallel computers is difficult and time-consuming. Results: We have developed Biocellion, a high-performance software framework, to solve this computing challenge using parallel computers. To support a wide range of multicellular biological system models, Biocellion asks users to provide their model specifics by filling the function body of pre-defined model routines. Using Biocellion, modelers without parallel computing expertise can efficiently exploit parallel computers with less effort than writing sequential programs from scratch. We simulate cell sorting, microbial patterning and a bacterial system in soil aggregate as case studies. Availability and implementation: Biocellion runs on x86 compatible systems with the 64 bit Linux operating system and is freely available for academic use. Visit http://biocellion.com for additional information. Contact: seunghwa.kang@pnnl.gov PMID:25064572

  15. Cluster computing software for GATE simulations

    SciTech Connect

    Beenhouwer, Jan de; Staelens, Steven; Kruecker, Dirk; Ferrer, Ludovic; D'Asseler, Yves; Lemahieu, Ignace; Rannou, Fernando R.

    2007-06-15

    Geometry and tracking (GEANT4) is a Monte Carlo package designed for high energy physics experiments. It is used as the basis layer for Monte Carlo simulations of nuclear medicine acquisition systems in GEANT4 Application for Tomographic Emission (GATE). GATE allows the user to realistically model experiments using accurate physics models and time synchronization for detector movement through a script language contained in a macro file. The downside of this high accuracy is long computation time. This paper describes a platform independent computing approach for running GATE simulations on a cluster of computers in order to reduce the overall simulation time. Our software automatically creates fully resolved, nonparametrized macros accompanied with an on-the-fly generated cluster specific submit file used to launch the simulations. The scalability of GATE simulations on a cluster is investigated for two imaging modalities, positron emission tomography (PET) and single photon emission computed tomography (SPECT). Due to a higher sensitivity, PET simulations are characterized by relatively high data output rates that create rather large output files. SPECT simulations, on the other hand, have lower data output rates but require a long collimator setup time. Both of these characteristics hamper scalability as a function of the number of CPUs. The scalability of PET simulations is improved here by the development of a fast output merger. The scalability of SPECT simulations is improved by greatly reducing the collimator setup time. Accordingly, these two new developments result in higher scalability for both PET and SPECT simulations and reduce the computation time to more practical values.

  16. Computer Code for Nanostructure Simulation

    NASA Technical Reports Server (NTRS)

    Filikhin, Igor; Vlahovic, Branislav

    2009-01-01

    Due to their small size, nanostructures can have stress and thermal gradients that are larger than any macroscopic analogue. These gradients can lead to specific regions that are susceptible to failure via processes such as plastic deformation by dislocation emission, chemical debonding, and interfacial alloying. A program has been developed that rigorously simulates and predicts optoelectronic properties of nanostructures of virtually any geometrical complexity and material composition. It can be used in simulations of energy level structure, wave functions, density of states of spatially configured phonon-coupled electrons, excitons in quantum dots, quantum rings, quantum ring complexes, and more. The code can be used to calculate stress distributions and thermal transport properties for a variety of nanostructures and interfaces, transport and scattering at nanoscale interfaces and surfaces under various stress states, and alloy compositional gradients. The code allows users to perform modeling of charge transport processes through quantum-dot (QD) arrays as functions of inter-dot distance, array order versus disorder, QD orientation, shape, size, and chemical composition for applications in photovoltaics and physical properties of QD-based biochemical sensors. The code can be used to study the hot exciton formation/relation dynamics in arrays of QDs of different shapes and sizes at different temperatures. It also can be used to understand the relation among the deposition parameters and inherent stresses, strain deformation, heat flow, and failure of nanostructures.

  17. Computer simulation of bubble formation.

    SciTech Connect

    Insepov, Z.; Bazhirov, T.; Norman, G.; Stegailov, V.; Mathematics and Computer Science; Institute for High Energy Densities of Joint Institute for High Temperatures of RAS

    2007-01-01

    Properties of liquid metals (Li, Pb, Na) containing nanoscale cavities were studied by atomistic Molecular Dynamics (MD). Two atomistic models of cavity simulation were developed that cover a wide area in the phase diagram with negative pressure. In the first model, the thermodynamics of cavity formation, stability and the dynamics of cavity evolution in bulk liquid metals have been studied. Radial densities, pressures, surface tensions, and work functions of nano-scale cavities of various radii were calculated for liquid Li, Na, and Pb at various temperatures and densities, and at small negative pressures near the liquid-gas spinodal, and the work functions for cavity formation in liquid Li were calculated and compared with the available experimental data. The cavitation rate can further be obtained by using the classical nucleation theory (CNT). The second model is based on the stability study and on the kinetics of cavitation of the stretched liquid metals. A MD method was used to simulate cavitation in a metastable Pb and Li melts and determine the stability limits. States at temperatures below critical (T < 0.5Tc) and large negative pressures were considered. The kinetic boundary of liquid phase stability was shown to be different from the spinodal. The kinetics and dynamics of cavitation were studied. The pressure dependences of cavitation frequencies were obtained for several temperatures. The results of MD calculations were compared with estimates based on classical nucleation theory.

  18. Polymer Composites Corrosive Degradation: A Computational Simulation

    NASA Technical Reports Server (NTRS)

    Chamis, Christos C.; Minnetyan, Levon

    2007-01-01

    A computational simulation of polymer composites corrosive durability is presented. The corrosive environment is assumed to manage the polymer composite degradation on a ply-by-ply basis. The degradation is correlated with a measured pH factor and is represented by voids, temperature and moisture which vary parabolically for voids and linearly for temperature and moisture through the laminate thickness. The simulation is performed by a computational composite mechanics computer code which includes micro, macro, combined stress failure and laminate theories. This accounts for starting the simulation from constitutive material properties and up to the laminate scale which exposes the laminate to the corrosive environment. Results obtained for one laminate indicate that the ply-by-ply degradation degrades the laminate to the last one or the last several plies. Results also demonstrate that the simulation is applicable to other polymer composite systems as well.

  19. Computer simulation of space station computer steered high gain antenna

    NASA Technical Reports Server (NTRS)

    Beach, S. W.

    1973-01-01

    The mathematical modeling and programming of a complete simulation program for a space station computer-steered high gain antenna are described. The program provides for reading input data cards, numerically integrating up to 50 first order differential equations, and monitoring up to 48 variables on printed output and on plots. The program system consists of a high gain antenna, an antenna gimbal control system, an on board computer, and the environment in which all are to operate.

  20. Airport Simulations Using Distributed Computational Resources

    NASA Technical Reports Server (NTRS)

    McDermott, William J.; Maluf, David A.; Gawdiak, Yuri; Tran, Peter; Clancy, Daniel (Technical Monitor)

    2002-01-01

    The Virtual National Airspace Simulation (VNAS) will improve the safety of Air Transportation. In 2001, using simulation and information management software running over a distributed network of super-computers, researchers at NASA Ames, Glenn, and Langley Research Centers developed a working prototype of a virtual airspace. This VNAS prototype modeled daily operations of the Atlanta airport by integrating measured operational data and simulation data on up to 2,000 flights a day. The concepts and architecture developed by NASA for this prototype are integral to the National Airspace Simulation to support the development of strategies improving aviation safety, identifying precursors to component failure.

  1. Computer Series, 108. Computer Simulation of Chemical Equilibrium.

    ERIC Educational Resources Information Center

    Cullen, John F., Jr.

    1989-01-01

    Presented is a computer simulation called "The Great Chemical Bead Game" which can be used to teach the concepts of equilibrium and kinetics to introductory chemistry students more clearly than through an experiment. Discussed are the rules of the game, the application of rate laws and graphical analysis. (CW)

  2. Computational methods for coupling microstructural and micromechanical materials response simulations

    SciTech Connect

    HOLM,ELIZABETH A.; BATTAILE,CORBETT C.; BUCHHEIT,THOMAS E.; FANG,HUEI ELIOT; RINTOUL,MARK DANIEL; VEDULA,VENKATA R.; GLASS,S. JILL; KNOROVSKY,GERALD A.; NEILSEN,MICHAEL K.; WELLMAN,GERALD W.; SULSKY,DEBORAH; SHEN,YU-LIN; SCHREYER,H. BUCK

    2000-04-01

    Computational materials simulations have traditionally focused on individual phenomena: grain growth, crack propagation, plastic flow, etc. However, real materials behavior results from a complex interplay between phenomena. In this project, the authors explored methods for coupling mesoscale simulations of microstructural evolution and micromechanical response. In one case, massively parallel (MP) simulations for grain evolution and microcracking in alumina stronglink materials were dynamically coupled. In the other, codes for domain coarsening and plastic deformation in CuSi braze alloys were iteratively linked. this program provided the first comparison of two promising ways to integrate mesoscale computer codes. Coupled microstructural/micromechanical codes were applied to experimentally observed microstructures for the first time. In addition to the coupled codes, this project developed a suite of new computational capabilities (PARGRAIN, GLAD, OOF, MPM, polycrystal plasticity, front tracking). The problem of plasticity length scale in continuum calculations was recognized and a solution strategy was developed. The simulations were experimentally validated on stockpile materials.

  3. Computer simulation of breathing systems for divers

    SciTech Connect

    Sexton, P.G.; Nuckols, M.L.

    1983-02-01

    A powerful new tool for the analysis and design of underwater breathing gas systems is being developed. A versatile computer simulator is described which makes possible the modular ''construction'' of any conceivable breathing gas system from computer memory-resident components. The analysis of a typical breathing gas system is demonstrated using this simulation technique, and the effects of system modifications on performance of the breathing system are shown. This modeling technique will ultimately serve as the foundation for a proposed breathing system simulator under development by the Navy. The marriage of this computer modeling technique with an interactive graphics system will provide the designer with an efficient, cost-effective tool for the development of new and improved diving systems.

  4. Simulation methods for advanced scientific computing

    SciTech Connect

    Booth, T.E.; Carlson, J.A.; Forster, R.A.

    1998-11-01

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The objective of the project was to create effective new algorithms for solving N-body problems by computer simulation. The authors concentrated on developing advanced classical and quantum Monte Carlo techniques. For simulations of phase transitions in classical systems, they produced a framework generalizing the famous Swendsen-Wang cluster algorithms for Ising and Potts models. For spin-glass-like problems, they demonstrated the effectiveness of an extension of the multicanonical method for the two-dimensional, random bond Ising model. For quantum mechanical systems, they generated a new method to compute the ground-state energy of systems of interacting electrons. They also improved methods to compute excited states when the diffusion quantum Monte Carlo method is used and to compute longer time dynamics when the stationary phase quantum Monte Carlo method is used.

  5. Software Engineering for Scientific Computer Simulations

    NASA Astrophysics Data System (ADS)

    Post, Douglass E.; Henderson, Dale B.; Kendall, Richard P.; Whitney, Earl M.

    2004-11-01

    Computer simulation is becoming a very powerful tool for analyzing and predicting the performance of fusion experiments. Simulation efforts are evolving from including only a few effects to many effects, from small teams with a few people to large teams, and from workstations and small processor count parallel computers to massively parallel platforms. Successfully making this transition requires attention to software engineering issues. We report on the conclusions drawn from a number of case studies of large scale scientific computing projects within DOE, academia and the DoD. The major lessons learned include attention to sound project management including setting reasonable and achievable requirements, building a good code team, enforcing customer focus, carrying out verification and validation and selecting the optimum computational mathematics approaches.

  6. Automatic temperature computation for realistic IR simulation

    NASA Astrophysics Data System (ADS)

    Le Goff, Alain; Kersaudy, Philippe; Latger, Jean; Cathala, Thierry; Stolte, Nilo; Barillot, Philippe

    2000-07-01

    Polygon temperature computation in 3D virtual scenes is fundamental for IR image simulation. This article describes in detail the temperature calculation software and its current extensions, briefly presented in [1]. This software, called MURET, is used by the simulation workshop CHORALE of the French DGA. MURET is a one-dimensional thermal software, which accurately takes into account the material thermal attributes of three-dimensional scene and the variation of the environment characteristics (atmosphere) as a function of the time. Concerning the environment, absorbed incident fluxes are computed wavelength by wavelength, for each half an hour, druing 24 hours before the time of the simulation. For each polygon, incident fluxes are compsed of: direct solar fluxes, sky illumination (including diffuse solar fluxes). Concerning the materials, classical thermal attributes are associated to several layers, such as conductivity, absorption, spectral emissivity, density, specific heat, thickness and convection coefficients are taken into account. In the future, MURET will be able to simulate permeable natural materials (water influence) and vegetation natural materials (woods). This model of thermal attributes induces a very accurate polygon temperature computation for the complex 3D databases often found in CHORALE simulations. The kernel of MUET consists of an efficient ray tracer allowing to compute the history (over 24 hours) of the shadowed parts of the 3D scene and a library, responsible for the thermal computations. The great originality concerns the way the heating fluxes are computed. Using ray tracing, the flux received in each 3D point of the scene accurately takes into account the masking (hidden surfaces) between objects. By the way, this library supplies other thermal modules such as a thermal shows computation tool.

  7. Structural Composites Corrosive Management by Computational Simulation

    NASA Technical Reports Server (NTRS)

    Chamis, Christos C.; Minnetyan, Levon

    2006-01-01

    A simulation of corrosive management on polymer composites durability is presented. The corrosive environment is assumed to manage the polymer composite degradation on a ply-by-ply basis. The degradation is correlated with a measured Ph factor and is represented by voids, temperature, and moisture which vary parabolically for voids and linearly for temperature and moisture through the laminate thickness. The simulation is performed by a computational composite mechanics computer code which includes micro, macro, combined stress failure, and laminate theories. This accounts for starting the simulation from constitutive material properties and up to the laminate scale which exposes the laminate to the corrosive environment. Results obtained for one laminate indicate that the ply-by-ply managed degradation degrades the laminate to the last one or the last several plies. Results also demonstrate that the simulation is applicable to other polymer composite systems as well.

  8. Enabling computational technologies for subsurface simulations

    SciTech Connect

    Falgout, R D

    1999-02-22

    We collaborated with Environmental Programs to develop and apply advanced computational methodologies for simulating multiphase flow through heterogeneous porous media. The primary focus was on developing a fast accurate advection scheme using a new temporal subcycling technique and on the scalable and efficient solution of the nonlinear Richards' equation used to model two-phase (variably saturated) flow. The resulting algorithms can be orders-of-magnitude faster than existing methods. Our computational technologies were applied to the simulation of subsurface fluid flow and chemical transport in the context of two important applications: water resource management and groundwater remediation.

  9. Task simulation in computer-based training

    SciTech Connect

    Gardner, P.R.

    1988-02-01

    Westinghouse Hanford Company (WHC) makes extensive use of job-task simulations in company-developed computer-based training (CBT) courseware. This courseware is different from most others because it does not simulate process control machinery or other computer programs, instead the WHC Excerises model day-to-day tasks such as physical work preparations, progress, and incident handling. These Exercises provide a higher level of motivation and enable the testing of more complex patterns of behavior than those typically measured by multiple-choice and short questions. Examples from the WHC Radiation Safety and Crane Safety courses will be used as illustrations. 3 refs.

  10. Computer simulation in sport and industry.

    PubMed

    Hubbard, M

    1993-01-01

    The last several decades have brought decreases in the specific cost of computer memory and increases in processor throughput. As a result simulation has become correspondingly more important as a component of industrial design and as a method for the study of general biomechanics and sports techniques. This paper illustrates, by way of examples, several of the more important aspects of the application of computer simulation to dynamic problems. Topics include (1) the ideas of suitable model complexity and its tradeoff with interpretability; (2) the sequential and iterative nature of model building and the importance of experimental data in the modelling and validation process; (3) the essential role of user-friendly software and graphical interfaces in the interchange of information between simulation programs and the users; and 4) the role of computer simulation in learning feedback loops, both in the field and in the computer laboratory. Most industrial use of simulation is in the design process. A similar approach is equally valid in biomechanics and sport applications through the incorporation of design variables, which may be easily changed in the model experiment.

  11. Computation Simulation Of Autonomous Vehicle Navigation

    NASA Astrophysics Data System (ADS)

    Meystel, A.; Koch, E.

    1984-06-01

    A concept of navigation is simulated based upon heuristic search. A mobile robot with a vision system navigates with an unknown or an unclear map. The range of vision is limited, thus, inflicting various judgments concerned with the comparison of alternatives of motion. The frequency of the decision-making procedure is limited by a definite time of computation. The system is simulated with a number of maps and the results of navigation are compared.

  12. Perspective: Computer simulations of long time dynamics

    PubMed Central

    Elber, Ron

    2016-01-01

    Atomically detailed computer simulations of complex molecular events attracted the imagination of many researchers in the field as providing comprehensive information on chemical, biological, and physical processes. However, one of the greatest limitations of these simulations is of time scales. The physical time scales accessible to straightforward simulations are too short to address many interesting and important molecular events. In the last decade significant advances were made in different directions (theory, software, and hardware) that significantly expand the capabilities and accuracies of these techniques. This perspective describes and critically examines some of these advances. PMID:26874473

  13. Uncertainty and error in computational simulations

    SciTech Connect

    Oberkampf, W.L.; Diegert, K.V.; Alvin, K.F.; Rutherford, B.M.

    1997-10-01

    The present paper addresses the question: ``What are the general classes of uncertainty and error sources in complex, computational simulations?`` This is the first step of a two step process to develop a general methodology for quantitatively estimating the global modeling and simulation uncertainty in computational modeling and simulation. The second step is to develop a general mathematical procedure for representing, combining and propagating all of the individual sources through the simulation. The authors develop a comprehensive view of the general phases of modeling and simulation. The phases proposed are: conceptual modeling of the physical system, mathematical modeling of the system, discretization of the mathematical model, computer programming of the discrete model, numerical solution of the model, and interpretation of the results. This new view is built upon combining phases recognized in the disciplines of operations research and numerical solution methods for partial differential equations. The characteristics and activities of each of these phases is discussed in general, but examples are given for the fields of computational fluid dynamics and heat transfer. They argue that a clear distinction should be made between uncertainty and error that can arise in each of these phases. The present definitions for uncertainty and error are inadequate and. therefore, they propose comprehensive definitions for these terms. Specific classes of uncertainty and error sources are then defined that can occur in each phase of modeling and simulation. The numerical sources of error considered apply regardless of whether the discretization procedure is based on finite elements, finite volumes, or finite differences. To better explain the broad types of sources of uncertainty and error, and the utility of their categorization, they discuss a coupled-physics example simulation.

  14. Quantitative computer simulations of extraterrestrial processing operations

    NASA Technical Reports Server (NTRS)

    Vincent, T. L.; Nikravesh, P. E.

    1989-01-01

    The automation of a small, solid propellant mixer was studied. Temperature control is under investigation. A numerical simulation of the system is under development and will be tested using different control options. Control system hardware is currently being put into place. The construction of mathematical models and simulation techniques for understanding various engineering processes is also studied. Computer graphics packages were utilized for better visualization of the simulation results. The mechanical mixing of propellants is examined. Simulation of the mixing process is being done to study how one can control for chaotic behavior to meet specified mixing requirements. An experimental mixing chamber is also being built. It will allow visual tracking of particles under mixing. The experimental unit will be used to test ideas from chaos theory, as well as to verify simulation results. This project has applications to extraterrestrial propellant quality and reliability.

  15. Progress in Computational Simulation of Earthquakes

    NASA Technical Reports Server (NTRS)

    Donnellan, Andrea; Parker, Jay; Lyzenga, Gregory; Judd, Michele; Li, P. Peggy; Norton, Charles; Tisdale, Edwin; Granat, Robert

    2006-01-01

    GeoFEST(P) is a computer program written for use in the QuakeSim project, which is devoted to development and improvement of means of computational simulation of earthquakes. GeoFEST(P) models interacting earthquake fault systems from the fault-nucleation to the tectonic scale. The development of GeoFEST( P) has involved coupling of two programs: GeoFEST and the Pyramid Adaptive Mesh Refinement Library. GeoFEST is a message-passing-interface-parallel code that utilizes a finite-element technique to simulate evolution of stress, fault slip, and plastic/elastic deformation in realistic materials like those of faulted regions of the crust of the Earth. The products of such simulations are synthetic observable time-dependent surface deformations on time scales from days to decades. Pyramid Adaptive Mesh Refinement Library is a software library that facilitates the generation of computational meshes for solving physical problems. In an application of GeoFEST(P), a computational grid can be dynamically adapted as stress grows on a fault. Simulations on workstations using a few tens of thousands of stress and displacement finite elements can now be expanded to multiple millions of elements with greater than 98-percent scaled efficiency on over many hundreds of parallel processors (see figure).

  16. A School Finance Computer Simulation Model

    ERIC Educational Resources Information Center

    Boardman, Gerald R.

    1974-01-01

    Presents a description of the computer simulation model developed by the National Educational Finance Project for use by States in planning and evaluating alternative approaches for State support programs. Provides a general introduction to the model, a program operation overview, a sample run, and some conclusions. (Author/WM)

  17. Factors Promoting Engaged Exploration with Computer Simulations

    ERIC Educational Resources Information Center

    Podolefsky, Noah S.; Perkins, Katherine K.; Adams, Wendy K.

    2010-01-01

    This paper extends prior research on student use of computer simulations (sims) to engage with and explore science topics, in this case wave interference. We describe engaged exploration; a process that involves students actively interacting with educational materials, sense making, and exploring primarily via their own questioning. We analyze…

  18. Assessing Moderator Variables: Two Computer Simulation Studies.

    ERIC Educational Resources Information Center

    Mason, Craig A.; And Others

    1996-01-01

    A strategy is proposed for conceptualizing moderating relationships based on their type (strictly correlational and classically correlational) and form, whether continuous, noncontinuous, logistic, or quantum. Results of computer simulations comparing three statistical approaches for assessing moderator variables are presented, and advantages of…

  19. Decision Making in Computer-Simulated Experiments.

    ERIC Educational Resources Information Center

    Suits, J. P.; Lagowski, J. J.

    A set of interactive, computer-simulated experiments was designed to respond to the large range of individual differences in aptitude and reasoning ability generally exhibited by students enrolled in first-semester general chemistry. These experiments give students direct experience in the type of decision making needed in an experimental setting.…

  20. GENMAP--A Microbial Genetics Computer Simulation.

    ERIC Educational Resources Information Center

    Day, M. J.; And Others

    1985-01-01

    An interactive computer program in microbial genetics is described. The simulation allows students to work at their own pace and develop understanding of microbial techniques as they choose donor bacterial strains, specify selective media, and interact with demonstration experiments. Sample questions and outputs are included. (DH)

  1. Designing Online Scaffolds for Interactive Computer Simulation

    ERIC Educational Resources Information Center

    Chen, Ching-Huei; Wu, I-Chia; Jen, Fen-Lan

    2013-01-01

    The purpose of this study was to examine the effectiveness of online scaffolds in computer simulation to facilitate students' science learning. We first introduced online scaffolds to assist and model students' science learning and to demonstrate how a system embedded with online scaffolds can be designed and implemented to help high…

  2. Spiking network simulation code for petascale computers

    PubMed Central

    Kunkel, Susanne; Schmidt, Maximilian; Eppler, Jochen M.; Plesser, Hans E.; Masumoto, Gen; Igarashi, Jun; Ishii, Shin; Fukai, Tomoki; Morrison, Abigail; Diesmann, Markus; Helias, Moritz

    2014-01-01

    Brain-scale networks exhibit a breathtaking heterogeneity in the dynamical properties and parameters of their constituents. At cellular resolution, the entities of theory are neurons and synapses and over the past decade researchers have learned to manage the heterogeneity of neurons and synapses with efficient data structures. Already early parallel simulation codes stored synapses in a distributed fashion such that a synapse solely consumes memory on the compute node harboring the target neuron. As petaflop computers with some 100,000 nodes become increasingly available for neuroscience, new challenges arise for neuronal network simulation software: Each neuron contacts on the order of 10,000 other neurons and thus has targets only on a fraction of all compute nodes; furthermore, for any given source neuron, at most a single synapse is typically created on any compute node. From the viewpoint of an individual compute node, the heterogeneity in the synaptic target lists thus collapses along two dimensions: the dimension of the types of synapses and the dimension of the number of synapses of a given type. Here we present a data structure taking advantage of this double collapse using metaprogramming techniques. After introducing the relevant scaling scenario for brain-scale simulations, we quantitatively discuss the performance on two supercomputers. We show that the novel architecture scales to the largest petascale supercomputers available today. PMID:25346682

  3. Spiking network simulation code for petascale computers.

    PubMed

    Kunkel, Susanne; Schmidt, Maximilian; Eppler, Jochen M; Plesser, Hans E; Masumoto, Gen; Igarashi, Jun; Ishii, Shin; Fukai, Tomoki; Morrison, Abigail; Diesmann, Markus; Helias, Moritz

    2014-01-01

    Brain-scale networks exhibit a breathtaking heterogeneity in the dynamical properties and parameters of their constituents. At cellular resolution, the entities of theory are neurons and synapses and over the past decade researchers have learned to manage the heterogeneity of neurons and synapses with efficient data structures. Already early parallel simulation codes stored synapses in a distributed fashion such that a synapse solely consumes memory on the compute node harboring the target neuron. As petaflop computers with some 100,000 nodes become increasingly available for neuroscience, new challenges arise for neuronal network simulation software: Each neuron contacts on the order of 10,000 other neurons and thus has targets only on a fraction of all compute nodes; furthermore, for any given source neuron, at most a single synapse is typically created on any compute node. From the viewpoint of an individual compute node, the heterogeneity in the synaptic target lists thus collapses along two dimensions: the dimension of the types of synapses and the dimension of the number of synapses of a given type. Here we present a data structure taking advantage of this double collapse using metaprogramming techniques. After introducing the relevant scaling scenario for brain-scale simulations, we quantitatively discuss the performance on two supercomputers. We show that the novel architecture scales to the largest petascale supercomputers available today. PMID:25346682

  4. Spiking network simulation code for petascale computers.

    PubMed

    Kunkel, Susanne; Schmidt, Maximilian; Eppler, Jochen M; Plesser, Hans E; Masumoto, Gen; Igarashi, Jun; Ishii, Shin; Fukai, Tomoki; Morrison, Abigail; Diesmann, Markus; Helias, Moritz

    2014-01-01

    Brain-scale networks exhibit a breathtaking heterogeneity in the dynamical properties and parameters of their constituents. At cellular resolution, the entities of theory are neurons and synapses and over the past decade researchers have learned to manage the heterogeneity of neurons and synapses with efficient data structures. Already early parallel simulation codes stored synapses in a distributed fashion such that a synapse solely consumes memory on the compute node harboring the target neuron. As petaflop computers with some 100,000 nodes become increasingly available for neuroscience, new challenges arise for neuronal network simulation software: Each neuron contacts on the order of 10,000 other neurons and thus has targets only on a fraction of all compute nodes; furthermore, for any given source neuron, at most a single synapse is typically created on any compute node. From the viewpoint of an individual compute node, the heterogeneity in the synaptic target lists thus collapses along two dimensions: the dimension of the types of synapses and the dimension of the number of synapses of a given type. Here we present a data structure taking advantage of this double collapse using metaprogramming techniques. After introducing the relevant scaling scenario for brain-scale simulations, we quantitatively discuss the performance on two supercomputers. We show that the novel architecture scales to the largest petascale supercomputers available today.

  5. The Australian Computational Earth Systems Simulator

    NASA Astrophysics Data System (ADS)

    Mora, P.; Muhlhaus, H.; Lister, G.; Dyskin, A.; Place, D.; Appelbe, B.; Nimmervoll, N.; Abramson, D.

    2001-12-01

    Numerical simulation of the physics and dynamics of the entire earth system offers an outstanding opportunity for advancing earth system science and technology but represents a major challenge due to the range of scales and physical processes involved, as well as the magnitude of the software engineering effort required. However, new simulation and computer technologies are bringing this objective within reach. Under a special competitive national funding scheme to establish new Major National Research Facilities (MNRF), the Australian government together with a consortium of Universities and research institutions have funded construction of the Australian Computational Earth Systems Simulator (ACcESS). The Simulator or computational virtual earth will provide the research infrastructure to the Australian earth systems science community required for simulations of dynamical earth processes at scales ranging from microscopic to global. It will consist of thematic supercomputer infrastructure and an earth systems simulation software system. The Simulator models and software will be constructed over a five year period by a multi-disciplinary team of computational scientists, mathematicians, earth scientists, civil engineers and software engineers. The construction team will integrate numerical simulation models (3D discrete elements/lattice solid model, particle-in-cell large deformation finite-element method, stress reconstruction models, multi-scale continuum models etc) with geophysical, geological and tectonic models, through advanced software engineering and visualization technologies. When fully constructed, the Simulator aims to provide the software and hardware infrastructure needed to model solid earth phenomena including global scale dynamics and mineralisation processes, crustal scale processes including plate tectonics, mountain building, interacting fault system dynamics, and micro-scale processes that control the geological, physical and dynamic

  6. CHARMM additive and polarizable force fields for biophysics and computer-aided drug design

    PubMed Central

    Vanommeslaeghe, K.

    2014-01-01

    Background Molecular Mechanics (MM) is the method of choice for computational studies of biomolecular systems owing to its modest computational cost, which makes it possible to routinely perform molecular dynamics (MD) simulations on chemical systems of biophysical and biomedical relevance. Scope of Review As one of the main factors limiting the accuracy of MD results is the empirical force field used, the present paper offers a review of recent developments in the CHARMM additive force field, one of the most popular bimolecular force fields. Additionally, we present a detailed discussion of the CHARMM Drude polarizable force field, anticipating a growth in the importance and utilization of polarizable force fields in the near future. Throughout the discussion emphasis is placed on the force fields’ parametrization philosophy and methodology. Major Conclusions Recent improvements in the CHARMM additive force field are mostly related to newly found weaknesses in the previous generation of additive force fields. Beyond the additive approximation is the newly available CHARMM Drude polarizable force field, which allows for MD simulations of up to 1 microsecond on proteins, DNA, lipids and carbohydrates. General Significance Addressing the limitations ensures the reliability of the new CHARMM36 additive force field for the types of calculations that are presently coming into routine computational reach while the availability of the Drude polarizable force fields offers a model that is an inherently more accurate model of the underlying physical forces driving macromolecular structures and dynamics. PMID:25149274

  7. Two Computer Simulations for Astronomy Education

    NASA Astrophysics Data System (ADS)

    Stoner, Ronald

    1997-05-01

    Two-dimensional media, such as transparencies and textbook illustrations are often inadequate for representing three-dimensional phenomena. Computer simulation using animation and interactive graphics can solve the pedagogic problem of allowing students to visualize inherently 3-D phenomena in physics and astronomy. This paper demonstrates two such computer simulations intended for use in introductory astronomy courses. The first permits visualization of astronomical structures on several different size scales by converting catalogs of astronomical objects at known distances (stars, star clusters, galaxies, etc.) to 3-D arrays of color-coded points that can be rotated in simulation to reveal 3-D structure. The second simulates the apparent motion of the sun in the sky of an arbitrary planet, simultaneously with the combined rotational and orbital motion of the planet that is responsible for it. These simulations were written in Borland Pascal for MS-DOS computers using the utilities package distributed with CUPS software (Educational software packages produced by the Consortium on Upper-level Physics Software (CUPS) are available from John Wiley & Sons, Inc.).

  8. Computational algorithms for simulations in atmospheric optics.

    PubMed

    Konyaev, P A; Lukin, V P

    2016-04-20

    A computer simulation technique for atmospheric and adaptive optics based on parallel programing is discussed. A parallel propagation algorithm is designed and a modified spectral-phase method for computer generation of 2D time-variant random fields is developed. Temporal power spectra of Laguerre-Gaussian beam fluctuations are considered as an example to illustrate the applications discussed. Implementation of the proposed algorithms using Intel MKL and IPP libraries and NVIDIA CUDA technology is shown to be very fast and accurate. The hardware system for the computer simulation is an off-the-shelf desktop with an Intel Core i7-4790K CPU operating at a turbo-speed frequency up to 5 GHz and an NVIDIA GeForce GTX-960 graphics accelerator with 1024 1.5 GHz processors.

  9. Computational algorithms for simulations in atmospheric optics.

    PubMed

    Konyaev, P A; Lukin, V P

    2016-04-20

    A computer simulation technique for atmospheric and adaptive optics based on parallel programing is discussed. A parallel propagation algorithm is designed and a modified spectral-phase method for computer generation of 2D time-variant random fields is developed. Temporal power spectra of Laguerre-Gaussian beam fluctuations are considered as an example to illustrate the applications discussed. Implementation of the proposed algorithms using Intel MKL and IPP libraries and NVIDIA CUDA technology is shown to be very fast and accurate. The hardware system for the computer simulation is an off-the-shelf desktop with an Intel Core i7-4790K CPU operating at a turbo-speed frequency up to 5 GHz and an NVIDIA GeForce GTX-960 graphics accelerator with 1024 1.5 GHz processors. PMID:27140113

  10. Computer simulations of WIGWAM underwater experiment

    SciTech Connect

    Kamegai, Minao; White, J.W.

    1993-11-01

    We performed computer simulations of the WIGWAM underwater experiment with a 2-D hydro-code, CALE. First, we calculated the bubble pulse and the signal strength at the closest gauge in one-dimensional geometry. The calculation shows excellent agreement with the measured data. Next, we made two-dimensional simulations of WIGWAM applying the gravity over-pressure, and calculated the signals at three selected gauge locations where measurements were recorded. The computed peak pressures at those gauge locations come well within the 15% experimental error bars. The signal at the farthest gauge is of the order of 200 bars. This is significant, because at this pressure the CALE output can be linked to a hydro-acoustics computer program, NPE Code (Nonlinear Progressive Wave-equation Code), to analyze the long distance propagation of acoustical signals from the underwater explosions on a global scale.

  11. Cosmological Simulations on a Grid of Computers

    NASA Astrophysics Data System (ADS)

    Depardon, Benjamin; Caron, Eddy; Desprez, Frédéric; Blaizot, Jérémy; Courtois, Hélène

    2010-06-01

    The work presented in this paper aims at restricting the input parameter values of the semi-analytical model used in GALICS and MOMAF, so as to derive which parameters influence the most the results, e.g., star formation, feedback and halo recycling efficiencies, etc. Our approach is to proceed empirically: we run lots of simulations and derive the correct ranges of values. The computation time needed is so large, that we need to run on a grid of computers. Hence, we model GALICS and MOMAF execution time and output files size, and run the simulation using a grid middleware: DIET. All the complexity of accessing resources, scheduling simulations and managing data is harnessed by DIET and hidden behind a web portal accessible to the users.

  12. Computational Simulation of Composite Structural Fatigue

    NASA Technical Reports Server (NTRS)

    Minnetyan, Levon; Chamis, Christos C. (Technical Monitor)

    2005-01-01

    Progressive damage and fracture of composite structures subjected to monotonically increasing static, tension-tension cyclic, pressurization, and flexural cyclic loading are evaluated via computational simulation. Constituent material properties, stress and strain limits are scaled up to the structure level to evaluate the overall damage and fracture propagation for composites. Damage initiation, growth, accumulation, and propagation to fracture due to monotonically increasing static and cyclic loads are included in the simulations. Results show the number of cycles to failure at different temperatures and the damage progression sequence during different degradation stages. A procedure is outlined for use of computational simulation data in the assessment of damage tolerance, determination of sensitive parameters affecting fracture, and interpretation of results with insight for design decisions.

  13. Computational Simulation of Composite Structural Fatigue

    NASA Technical Reports Server (NTRS)

    Minnetyan, Levon

    2004-01-01

    Progressive damage and fracture of composite structures subjected to monotonically increasing static, tension-tension cyclic, pressurization, and flexural cyclic loading are evaluated via computational simulation. Constituent material properties, stress and strain limits are scaled up to the structure level to evaluate the overall damage and fracture propagation for composites. Damage initiation, growth, accumulation, and propagation to fracture due to monotonically increasing static and cyclic loads are included in the simulations. Results show the number of cycles to failure at different temperatures and the damage progression sequence during different degradation stages. A procedure is outlined for use of computational simulation data in the assessment of damage tolerance, determination of sensitive parameters affecting fracture, and interpretation of results with insight for design decisions.

  14. High-performance computing MRI simulations.

    PubMed

    Stöcker, Tony; Vahedipour, Kaveh; Pflugfelder, Daniel; Shah, N Jon

    2010-07-01

    A new open-source software project is presented, JEMRIS, the Jülich Extensible MRI Simulator, which provides an MRI sequence development and simulation environment for the MRI community. The development was driven by the desire to achieve generality of simulated three-dimensional MRI experiments reflecting modern MRI systems hardware. The accompanying computational burden is overcome by means of parallel computing. Many aspects are covered that have not hitherto been simultaneously investigated in general MRI simulations such as parallel transmit and receive, important off-resonance effects, nonlinear gradients, and arbitrary spatiotemporal parameter variations at different levels. The latter can be used to simulate various types of motion, for instance. The JEMRIS user interface is very simple to use, but nevertheless it presents few limitations. MRI sequences with arbitrary waveforms and complex interdependent modules are modeled in a graphical user interface-based environment requiring no further programming. This manuscript describes the concepts, methods, and performance of the software. Examples of novel simulation results in active fields of MRI research are given.

  15. Multiscale simulation process and application to additives in porous composite battery electrodes

    NASA Astrophysics Data System (ADS)

    Wieser, Christian; Prill, Torben; Schladitz, Katja

    2015-03-01

    Structure-resolving simulation of porous materials in electrochemical cells such as fuel cells and lithium ion batteries allows for correlating electrical performance with material morphology. In lithium ion batteries characteristic length scales of active material particles and additives range several orders of magnitude. Hence, providing a computational mesh resolving all length scales is not reasonably feasible and requires alternative approaches. In the work presented here a virtual process to simulate lithium ion batteries by bridging the scales is introduced. Representative lithium ion battery electrode coatings comprised of μm-scale graphite particles as active material and a nm-scale carbon/polymeric binder mixture as an additive are imaged with synchrotron radiation computed tomography (SR-CT) and sequential focused ion beam/scanning electron microscopy (FIB/SEM), respectively. Applying novel image processing methodologies for the FIB/SEM images, data sets are binarized to provide a computational grid for calculating the effective mass transport properties of the electrolyte phase in the nanoporous additive. Afterwards, the homogenized additive is virtually added to the micropores of the binarized SR-CT data set representing the active particle structure, and the resulting electrode structure is assembled to a virtual half-cell for electrochemical microheterogeneous simulation. Preliminary battery performance simulations indicate non-negligible impact of the consideration of the additive.

  16. Additive Manufacturing of Anatomical Models from Computed Tomography Scan Data.

    PubMed

    Gür, Y

    2014-12-01

    The purpose of the study presented here was to investigate the manufacturability of human anatomical models from Computed Tomography (CT) scan data via a 3D desktop printer which uses fused deposition modelling (FDM) technology. First, Digital Imaging and Communications in Medicine (DICOM) CT scan data were converted to 3D Standard Triangle Language (STL) format by using In Vaselius digital imaging program. Once this STL file is obtained, a 3D physical version of the anatomical model can be fabricated by a desktop 3D FDM printer. As a case study, a patient's skull CT scan data was considered, and a tangible version of the skull was manufactured by a 3D FDM desktop printer. During the 3D printing process, the skull was built using acrylonitrile-butadiene-styrene (ABS) co-polymer plastic. The printed model showed that the 3D FDM printing technology is able to fabricate anatomical models with high accuracy. As a result, the skull model can be used for preoperative surgical planning, medical training activities, implant design and simulation to show the potential of the FDM technology in medical field. It will also improve communication between medical stuff and patients. Current result indicates that a 3D desktop printer which uses FDM technology can be used to obtain accurate anatomical models.

  17. Additive Manufacturing of Anatomical Models from Computed Tomography Scan Data.

    PubMed

    Gür, Y

    2014-12-01

    The purpose of the study presented here was to investigate the manufacturability of human anatomical models from Computed Tomography (CT) scan data via a 3D desktop printer which uses fused deposition modelling (FDM) technology. First, Digital Imaging and Communications in Medicine (DICOM) CT scan data were converted to 3D Standard Triangle Language (STL) format by using In Vaselius digital imaging program. Once this STL file is obtained, a 3D physical version of the anatomical model can be fabricated by a desktop 3D FDM printer. As a case study, a patient's skull CT scan data was considered, and a tangible version of the skull was manufactured by a 3D FDM desktop printer. During the 3D printing process, the skull was built using acrylonitrile-butadiene-styrene (ABS) co-polymer plastic. The printed model showed that the 3D FDM printing technology is able to fabricate anatomical models with high accuracy. As a result, the skull model can be used for preoperative surgical planning, medical training activities, implant design and simulation to show the potential of the FDM technology in medical field. It will also improve communication between medical stuff and patients. Current result indicates that a 3D desktop printer which uses FDM technology can be used to obtain accurate anatomical models. PMID:26336695

  18. Simulation of Laser Additive Manufacturing and its Applications

    NASA Astrophysics Data System (ADS)

    Lee, Yousub

    Laser and metal powder based additive manufacturing (AM), a key category of advanced Direct Digital Manufacturing (DDM), produces metallic components directly from a digital representation of the part such as a CAD file. It is well suited for the production of high-value, customizable components with complex geometry and the repair of damaged components. Currently, the main challenges for laser and metal powder based AM include the formation of defects (e.g., porosity), low surface finish quality, and spatially non-uniform properties of material. Such challenges stem largely from the limited knowledge of complex physical processes in AM especially the molten pool physics such as melting, molten metal flow, heat conduction, vaporization of alloying elements, and solidification. Direct experimental measurement of melt pool phenomena is highly difficult since the process is localized (on the order of 0.1 mm to 1 mm melt pool size) and transient (on the order of 1 m/s scanning speed). Furthermore, current optical and infrared cameras are limited to observe the melt pool surface. As a result, fluid flows in the melt pool, melt pool shape and formation of sub-surface defects are difficult to be visualized by experiment. On the other hand, numerical simulation, based on rigorous solution of mass, momentum and energy transport equations, can provide important quantitative knowledge of complex transport phenomena taking place in AM. The overarching goal of this dissertation research is to develop an analytical foundation for fundamental understanding of heat transfer, molten metal flow and free surface evolution. Two key types of laser AM processes are studied: a) powder injection, commonly used for repairing of turbine blades, and b) powder bed, commonly used for manufacturing of new parts with complex geometry. In the powder injection simulation, fluid convection, temperature gradient (G), solidification rate (R) and melt pool shape are calculated using a heat transfer

  19. Computational Challenges in Nuclear Weapons Simulation

    SciTech Connect

    McMillain, C F; Adams, T F; McCoy, M G; Christensen, R B; Pudliner, B S; Zika, M R; Brantley, P S; Vetter, J S; May, J M

    2003-08-29

    After a decade of experience, the Stockpile Stewardship Program continues to ensure the safety, security and reliability of the nation's nuclear weapons. The Advanced Simulation and Computing (ASCI) program was established to provide leading edge, high-end simulation capabilities needed to meet the program's assessment and certification requirements. The great challenge of this program lies in developing the tools and resources necessary for the complex, highly coupled, multi-physics calculations required to simulate nuclear weapons. This paper describes the hardware and software environment we have applied to fulfill our nuclear weapons responsibilities. It also presents the characteristics of our algorithms and codes, especially as they relate to supercomputing resource capabilities and requirements. It then addresses impediments to the development and application of nuclear weapon simulation software and hardware and concludes with a summary of observations and recommendations on an approach for working with industry and government agencies to address these impediments.

  20. Memory interface simulator: A computer design aid

    NASA Technical Reports Server (NTRS)

    Taylor, D. S.; Williams, T.; Weatherbee, J. E.

    1972-01-01

    Results are presented of a study conducted with a digital simulation model being used in the design of the Automatically Reconfigurable Modular Multiprocessor System (ARMMS), a candidate computer system for future manned and unmanned space missions. The model simulates the activity involved as instructions are fetched from random access memory for execution in one of the system central processing units. A series of model runs measured instruction execution time under various assumptions pertaining to the CPU's and the interface between the CPU's and RAM. Design tradeoffs are presented in the following areas: Bus widths, CPU microprogram read only memory cycle time, multiple instruction fetch, and instruction mix.

  1. Introduction to computational oral absorption simulation.

    PubMed

    Sugano, Kiyohiko

    2009-03-01

    Computational oral absorption simulation (COAS) is anticipated to be a powerful tool in improving the productivity of drug discovery and development. This article reviews the theories of pharmaceutical sciences that consist of COAS. Although most of these theories are classical, they are revisited from the context of modern drug discovery and development. The theories of solubility, diffusion, dissolution, precipitation, intestinal membrane permeation and gastrointestinal transit are comprehensively described. Prediction strategy is then discussed based on the biopharmaceutical classification system. In the final part, good simulation practice is proposed and many frequently asked questions answered.

  2. Computer Simulation of the VASIMR Engine

    NASA Technical Reports Server (NTRS)

    Garrison, David

    2005-01-01

    The goal of this project is to develop a magneto-hydrodynamic (MHD) computer code for simulation of the VASIMR engine. This code is designed be easy to modify and use. We achieve this using the Cactus framework, a system originally developed for research in numerical relativity. Since its release, Cactus has become an extremely powerful and flexible open source framework. The development of the code will be done in stages, starting with a basic fluid dynamic simulation and working towards a more complex MHD code. Once developed, this code can be used by students and researchers in order to further test and improve the VASIMR engine.

  3. Fiber Composite Sandwich Thermostructural Behavior - Computational Simulation

    NASA Technical Reports Server (NTRS)

    Chamis, Christos C.; Aiello, Robert A.; Murthy, Pappu L. N.

    1988-01-01

    Four computational simulation methods with different levels of sophistication were used to simulate thermal behavior and structural changes of composite sandwich panels with a honeycomb core subjected to a variety of environmental effects. The models on thich these methods are based include three-dimensional finite-element modeling, three-dimensional finite-element modeling assuming a homogeneous core, laminate theory, and simple equations for predicting the equivalent properties of the honeycomb core. A procedure was developed and embedded in a composite mechanics computer code, which made it possile to conduct parametric studies to determine 'optimum' composite sandwich configurations for specific applications. The procedure was applied for the evaluation of composite sandwich behavior at the global, local, laminate, ply, and micromechanics levels when the composite sandwich is subjected to hygral, thermal, and mechanical loading environments.

  4. X-ray computed tomography for additive manufacturing: a review

    NASA Astrophysics Data System (ADS)

    Thompson, A.; Maskery, I.; Leach, R. K.

    2016-07-01

    In this review, the use of x-ray computed tomography (XCT) is examined, identifying the requirement for volumetric dimensional measurements in industrial verification of additively manufactured (AM) parts. The XCT technology and AM processes are summarised, and their historical use is documented. The use of XCT and AM as tools for medical reverse engineering is discussed, and the transition of XCT from a tool used solely for imaging to a vital metrological instrument is documented. The current states of the combined technologies are then examined in detail, separated into porosity measurements and general dimensional measurements. In the conclusions of this review, the limitation of resolution on improvement of porosity measurements and the lack of research regarding the measurement of surface texture are identified as the primary barriers to ongoing adoption of XCT in AM. The limitations of both AM and XCT regarding slow speeds and high costs, when compared to other manufacturing and measurement techniques, are also noted as general barriers to continued adoption of XCT and AM.

  5. Additional support for the TDK/MABL computer program

    NASA Technical Reports Server (NTRS)

    Nickerson, G. R.; Dunn, Stuart S.

    1993-01-01

    An advanced version of the Two-Dimensional Kinetics (TDK) computer program was developed under contract and released to the propulsion community in early 1989. Exposure of the code to this community indicated a need for improvements in certain areas. In particular, the TDK code needed to be adapted to the special requirements imposed by the Space Transportation Main Engine (STME) development program. This engine utilizes injection of the gas generator exhaust into the primary nozzle by means of a set of slots. The subsequent mixing of this secondary stream with the primary stream with finite rate chemical reaction can have a major impact on the engine performance and the thermal protection of the nozzle wall. In attempting to calculate this reacting boundary layer problem, the Mass Addition Boundary Layer (MABL) module of TDK was found to be deficient in several respects. For example, when finite rate chemistry was used to determine gas properties, (MABL-K option) the program run times became excessive because extremely small step sizes were required to maintain numerical stability. A robust solution algorithm was required so that the MABL-K option could be viable as a rocket propulsion industry design tool. Solving this problem was a primary goal of the phase 1 work effort.

  6. Metal matrix composites microfracture: Computational simulation

    NASA Technical Reports Server (NTRS)

    Mital, Subodh K.; Caruso, John J.; Chamis, Christos C.

    1990-01-01

    Fiber/matrix fracture and fiber-matrix interface debonding in a metal matrix composite (MMC) are computationally simulated. These simulations are part of a research activity to develop computational methods for microfracture, microfracture propagation and fracture toughness of the metal matrix composites. The three-dimensional finite element model used in the simulation consists of a group of nine unidirectional fibers in three by three unit cell array of SiC/Ti15 metal matrix composite with a fiber volume ration of 0.35. This computational procedure is used to predict the fracture process and establish the hierarchy of fracture modes based on strain energy release rate. It is also used to predict stress redistribution to surrounding matrix-fibers due to initial and progressive fracture of fiber/matrix and due to debonding of fiber-matrix interface. Microfracture results for various loading cases such as longitudinal, transverse, shear and bending are presented and discussed. Step-by-step procedures are outlined to evaluate composite microfracture for a given composite system.

  7. Integrated computer simulation on FIR FEL dynamics

    SciTech Connect

    Furukawa, H.; Kuruma, S.; Imasaki, K.

    1995-12-31

    An integrated computer simulation code has been developed to analyze the RF-Linac FEL dynamics. First, the simulation code on the electron beam acceleration and transport processes in RF-Linac: (LUNA) has been developed to analyze the characteristics of the electron beam in RF-Linac and to optimize the parameters of RF-Linac. Second, a space-time dependent 3D FEL simulation code (Shipout) has been developed. The RF-Linac FEL total simulations have been performed by using the electron beam data from LUNA in Shipout. The number of particles using in a RF-Linac FEL total simulation is approximately 1000. The CPU time for the simulation of 1 round trip is about 1.5 minutes. At ILT/ILE, Osaka, a 8.5MeV RF-Linac with a photo-cathode RF-gun is used for FEL oscillation experiments. By using 2 cm wiggler, the FEL oscillation in the wavelength approximately 46 {mu}m are investigated. By the simulations using LUNA with the parameters of an ILT/ILE experiment, the pulse shape and the energy spectra of the electron beam at the end of the linac are estimated. The pulse shape of the electron beam at the end of the linac has sharp rise-up and it slowly decays as a function of time. By the RF-linac FEL total simulations with the parameters of an ILT/ILE experiment, the dependencies of the start up of the FEL oscillations on the pulse shape of the electron beam at the end of the linac are estimated. The coherent spontaneous emission effects and the quick start up of FEL oscillations have been observed by the RF-Linac FEL total simulations.

  8. Accelerating Climate Simulations Through Hybrid Computing

    NASA Technical Reports Server (NTRS)

    Zhou, Shujia; Sinno, Scott; Cruz, Carlos; Purcell, Mark

    2009-01-01

    Unconventional multi-core processors (e.g., IBM Cell B/E and NYIDIDA GPU) have emerged as accelerators in climate simulation. However, climate models typically run on parallel computers with conventional processors (e.g., Intel and AMD) using MPI. Connecting accelerators to this architecture efficiently and easily becomes a critical issue. When using MPI for connection, we identified two challenges: (1) identical MPI implementation is required in both systems, and; (2) existing MPI code must be modified to accommodate the accelerators. In response, we have extended and deployed IBM Dynamic Application Virtualization (DAV) in a hybrid computing prototype system (one blade with two Intel quad-core processors, two IBM QS22 Cell blades, connected with Infiniband), allowing for seamlessly offloading compute-intensive functions to remote, heterogeneous accelerators in a scalable, load-balanced manner. Currently, a climate solar radiation model running with multiple MPI processes has been offloaded to multiple Cell blades with approx.10% network overhead.

  9. Computer model to simulate testing at the National Transonic Facility

    NASA Technical Reports Server (NTRS)

    Mineck, Raymond E.; Owens, Lewis R., Jr.; Wahls, Richard A.; Hannon, Judith A.

    1995-01-01

    A computer model has been developed to simulate the processes involved in the operation of the National Transonic Facility (NTF), a large cryogenic wind tunnel at the Langley Research Center. The simulation was verified by comparing the simulated results with previously acquired data from three experimental wind tunnel test programs in the NTF. The comparisons suggest that the computer model simulates reasonably well the processes that determine the liquid nitrogen (LN2) consumption, electrical consumption, fan-on time, and the test time required to complete a test plan at the NTF. From these limited comparisons, it appears that the results from the simulation model are generally within about 10 percent of the actual NTF test results. The use of actual data acquisition times in the simulation produced better estimates of the LN2 usage, as expected. Additional comparisons are needed to refine the model constants. The model will typically produce optimistic results since the times and rates included in the model are typically the optimum values. Any deviation from the optimum values will lead to longer times or increased LN2 and electrical consumption for the proposed test plan. Computer code operating instructions and listings of sample input and output files have been included.

  10. Neural network computer simulation of medical aerosols.

    PubMed

    Richardson, C J; Barlow, D J

    1996-06-01

    Preliminary investigations have been conducted to assess the potential for using artificial neural networks to simulate aerosol behaviour, with a view to employing this type of methodology in the evaluation and design of pulmonary drug-delivery systems. Details are presented of the general purpose software developed for these tasks; it implements a feed-forward back-propagation algorithm with weight decay and connection pruning, the user having complete run-time control of the network architecture and mode of training. A series of exploratory investigations is then reported in which different network structures and training strategies are assessed in terms of their ability to simulate known patterns of fluid flow in simple model systems. The first of these involves simulations of cellular automata-generated data for fluid flow through a partially obstructed two-dimensional pipe. The artificial neural networks are shown to be highly successful in simulating the behaviour of this simple linear system, but with important provisos relating to the information content of the training data and the criteria used to judge when the network is properly trained. A second set of investigations is then reported in which similar networks are used to simulate patterns of fluid flow through aerosol generation devices, using training data furnished through rigorous computational fluid dynamics modelling. These more complex three-dimensional systems are modelled with equal success. It is concluded that carefully tailored, well trained networks could provide valuable tools not just for predicting but also for analysing the spatial dynamics of pharmaceutical aerosols.

  11. Utility of computer simulations in landscape genetics.

    PubMed

    Epperson, Bryan K; McRae, Brad H; Scribner, Kim; Cushman, Samuel A; Rosenberg, Michael S; Fortin, Marie-Josée; James, Patrick M A; Murphy, Melanie; Manel, Stéphanie; Legendre, Pierre; Dale, Mark R T

    2010-09-01

    Population genetics theory is primarily based on mathematical models in which spatial complexity and temporal variability are largely ignored. In contrast, the field of landscape genetics expressly focuses on how population genetic processes are affected by complex spatial and temporal environmental heterogeneity. It is spatially explicit and relates patterns to processes by combining complex and realistic life histories, behaviours, landscape features and genetic data. Central to landscape genetics is the connection of spatial patterns of genetic variation to the usually highly stochastic space-time processes that create them over both historical and contemporary time periods. The field should benefit from a shift to computer simulation approaches, which enable incorporation of demographic and environmental stochasticity. A key role of simulations is to show how demographic processes such as dispersal or reproduction interact with landscape features to affect probability of site occupancy, population size, and gene flow, which in turn determine spatial genetic structure. Simulations could also be used to compare various statistical methods and determine which have correct type I error or the highest statistical power to correctly identify spatio-temporal and environmental effects. Simulations may also help in evaluating how specific spatial metrics may be used to project future genetic trends. This article summarizes some of the fundamental aspects of spatial-temporal population genetic processes. It discusses the potential use of simulations to determine how various spatial metrics can be rigorously employed to identify features of interest, including contrasting locus-specific spatial patterns due to micro-scale environmental selection.

  12. Additional Developments in Atmosphere Revitalization Modeling and Simulation

    NASA Technical Reports Server (NTRS)

    Coker, Robert F.; Knox, James C.; Cummings, Ramona; Brooks, Thomas; Schunk, Richard G.; Gomez, Carlos

    2013-01-01

    NASA's Advanced Exploration Systems (AES) program is developing prototype systems, demonstrating key capabilities, and validating operational concepts for future human missions beyond Earth orbit. These forays beyond the confines of earth's gravity will place unprecedented demands on launch systems. They must launch the supplies needed to sustain a crew over longer periods for exploration missions beyond earth's moon. Thus all spacecraft systems, including those for the separation of metabolic carbon dioxide and water from a crewed vehicle, must be minimized with respect to mass, power, and volume. Emphasis is also placed on system robustness both to minimize replacement parts and ensure crew safety when a quick return to earth is not possible. Current efforts are focused on improving the current state-of-the-art systems utilizing fixed beds of sorbent pellets by evaluating structured sorbents, seeking more robust pelletized sorbents, and examining alternate bed configurations to improve system efficiency and reliability. These development efforts combine testing of sub-scale systems and multi-physics computer simulations to evaluate candidate approaches, select the best performing options, and optimize the configuration of the selected approach. This paper describes the continuing development of atmosphere revitalization models and simulations in support of the Atmosphere Revitalization Recovery and Environmental Monitoring (ARREM) project within the AES program.

  13. Additional Developments in Atmosphere Revitalization Modeling and Simulation

    NASA Technical Reports Server (NTRS)

    Coker, Robert F.; Knox, James C.; Cummings, Ramona; Brooks, Thomas; Schunk, Richard G.

    2013-01-01

    NASA's Advanced Exploration Systems (AES) program is developing prototype systems, demonstrating key capabilities, and validating operational concepts for future human missions beyond Earth orbit. These forays beyond the confines of earth's gravity will place unprecedented demands on launch systems. They must launch the supplies needed to sustain a crew over longer periods for exploration missions beyond earth's moon. Thus all spacecraft systems, including those for the separation of metabolic carbon dioxide and water from a crewed vehicle, must be minimized with respect to mass, power, and volume. Emphasis is also placed on system robustness both to minimize replacement parts and ensure crew safety when a quick return to earth is not possible. Current efforts are focused on improving the current state-of-the-art systems utilizing fixed beds of sorbent pellets by evaluating structured sorbents, seeking more robust pelletized sorbents, and examining alternate bed configurations to improve system efficiency and reliability. These development efforts combine testing of sub-scale systems and multi-physics computer simulations to evaluate candidate approaches, select the best performing options, and optimize the configuration of the selected approach. This paper describes the continuing development of atmosphere revitalization models and simulations in support of the Atmosphere Revitalization Recovery and Environmental Monitoring (ARREM)

  14. New Computer Simulations of Macular Neural Functioning

    NASA Technical Reports Server (NTRS)

    Ross, Muriel D.; Doshay, D.; Linton, S.; Parnas, B.; Montgomery, K.; Chimento, T.

    1994-01-01

    We use high performance graphics workstations and supercomputers to study the functional significance of the three-dimensional (3-D) organization of gravity sensors. These sensors have a prototypic architecture foreshadowing more complex systems. Scaled-down simulations run on a Silicon Graphics workstation and scaled-up, 3-D versions run on a Cray Y-MP supercomputer. A semi-automated method of reconstruction of neural tissue from serial sections studied in a transmission electron microscope has been developed to eliminate tedious conventional photography. The reconstructions use a mesh as a step in generating a neural surface for visualization. Two meshes are required to model calyx surfaces. The meshes are connected and the resulting prisms represent the cytoplasm and the bounding membranes. A finite volume analysis method is employed to simulate voltage changes along the calyx in response to synapse activation on the calyx or on calyceal processes. The finite volume method insures that charge is conserved at the calyx-process junction. These and other models indicate that efferent processes act as voltage followers, and that the morphology of some afferent processes affects their functioning. In a final application, morphological information is symbolically represented in three dimensions in a computer. The possible functioning of the connectivities is tested using mathematical interpretations of physiological parameters taken from the literature. Symbolic, 3-D simulations are in progress to probe the functional significance of the connectivities. This research is expected to advance computer-based studies of macular functioning and of synaptic plasticity.

  15. Computer Simulation of the Beating Human Heart

    NASA Astrophysics Data System (ADS)

    Peskin, Charles S.; McQueen, David M.

    2001-06-01

    The mechanical function of the human heart couples together the fluid mechanics of blood and the soft tissue mechanics of the muscular heart walls and flexible heart valve leaflets. We discuss a unified mathematical formulation of this problem in which the soft tissue looks like a specialized part of the fluid in which additional forces are applied. This leads to a computational scheme known as the Immersed Boundary (IB) method for solving the coupled equations of motion of the whole system. The IB method is used to construct a three-dimensional Virtual Heart, including representations of all four chambers of the heart and all four valves, in addition to the large arteries and veins that connect the heart to the rest of the circulation. The chambers, valves, and vessels are all modeled as collections of elastic (and where appropriate, actively contractile) fibers immersed in viscous incompressible fluid. Results are shown as a computer-generated video animation of the beating heart.

  16. Computer simulations of the Ni2MnGa alloys

    NASA Astrophysics Data System (ADS)

    Breczko, Teodor M.; Nelayev, Vladislav; Dovzhik, Krishna; Najbuk, Miroslaw

    2008-07-01

    This article reports an computer simulations of physical properties of Heusler NiMnGa alloy. Computer simulation are devoted to austenite phase. The chemical composition of researched specimens causes generation martesite and austenite phases.

  17. Investigation of Carbohydrate Recognition via Computer Simulation

    SciTech Connect

    Johnson, Quentin R.; Lindsay, Richard J.; Petridis, Loukas; Shen, Tongye

    2015-04-28

    Carbohydrate recognition by proteins, such as lectins and other (bio)molecules, can be essential for many biological functions. Interest has arisen due to potential protein and drug design and future bioengineering applications. A quantitative measurement of carbohydrate-protein interaction is thus important for the full characterization of sugar recognition. Here, we focus on the aspect of utilizing computer simulations and biophysical models to evaluate the strength and specificity of carbohydrate recognition in this review. With increasing computational resources, better algorithms and refined modeling parameters, using state-of-the-art supercomputers to calculate the strength of the interaction between molecules has become increasingly mainstream. We review the current state of this technique and its successful applications for studying protein-sugar interactions in recent years.

  18. Investigation of Carbohydrate Recognition via Computer Simulation.

    PubMed

    Johnson, Quentin R; Lindsay, Richard J; Petridis, Loukas; Shen, Tongye

    2015-01-01

    Carbohydrate recognition by proteins, such as lectins and other (bio)molecules, can be essential for many biological functions. Recently, interest has arisen due to potential protein and drug design and future bioengineering applications. A quantitative measurement of carbohydrate-protein interaction is thus important for the full characterization of sugar recognition. We focus on the aspect of utilizing computer simulations and biophysical models to evaluate the strength and specificity of carbohydrate recognition in this review. With increasing computational resources, better algorithms and refined modeling parameters, using state-of-the-art supercomputers to calculate the strength of the interaction between molecules has become increasingly mainstream. We review the current state of this technique and its successful applications for studying protein-sugar interactions in recent years. PMID:25927900

  19. Investigation of Carbohydrate Recognition via Computer Simulation

    DOE PAGES

    Johnson, Quentin R.; Lindsay, Richard J.; Petridis, Loukas; Shen, Tongye

    2015-04-28

    Carbohydrate recognition by proteins, such as lectins and other (bio)molecules, can be essential for many biological functions. Interest has arisen due to potential protein and drug design and future bioengineering applications. A quantitative measurement of carbohydrate-protein interaction is thus important for the full characterization of sugar recognition. Here, we focus on the aspect of utilizing computer simulations and biophysical models to evaluate the strength and specificity of carbohydrate recognition in this review. With increasing computational resources, better algorithms and refined modeling parameters, using state-of-the-art supercomputers to calculate the strength of the interaction between molecules has become increasingly mainstream. We reviewmore » the current state of this technique and its successful applications for studying protein-sugar interactions in recent years.« less

  20. Investigation of Carbohydrate Recognition via Computer Simulation.

    PubMed

    Johnson, Quentin R; Lindsay, Richard J; Petridis, Loukas; Shen, Tongye

    2015-04-28

    Carbohydrate recognition by proteins, such as lectins and other (bio)molecules, can be essential for many biological functions. Recently, interest has arisen due to potential protein and drug design and future bioengineering applications. A quantitative measurement of carbohydrate-protein interaction is thus important for the full characterization of sugar recognition. We focus on the aspect of utilizing computer simulations and biophysical models to evaluate the strength and specificity of carbohydrate recognition in this review. With increasing computational resources, better algorithms and refined modeling parameters, using state-of-the-art supercomputers to calculate the strength of the interaction between molecules has become increasingly mainstream. We review the current state of this technique and its successful applications for studying protein-sugar interactions in recent years.

  1. Computer simulation of spacecraft/environment interaction.

    PubMed

    Krupnikov, K K; Makletsov, A A; Mileev, V N; Novikov, L S; Sinolits, V V

    1999-10-01

    This report presents some examples of a computer simulation of spacecraft interaction with space environment. We analysed a set data on electron and ion fluxes measured in 1991 1994 on geostationary satellite GORIZONT-35. The influence of spacecraft eclipse and device eclipse by solar-cell panel on spacecraft charging was investigated. A simple method was developed for an estimation of spacecraft potentials in LEO. Effects of various particle flux impact and spacecraft orientation are discussed. A computer engineering model for a calculation of space radiation is presented. This model is used as a client/server model with WWW interface, including spacecraft model description and results representation based on the virtual reality markup language. PMID:11542669

  2. Computer simulation of spacecraft/environment interaction.

    PubMed

    Krupnikov, K K; Makletsov, A A; Mileev, V N; Novikov, L S; Sinolits, V V

    1999-10-01

    This report presents some examples of a computer simulation of spacecraft interaction with space environment. We analysed a set data on electron and ion fluxes measured in 1991 1994 on geostationary satellite GORIZONT-35. The influence of spacecraft eclipse and device eclipse by solar-cell panel on spacecraft charging was investigated. A simple method was developed for an estimation of spacecraft potentials in LEO. Effects of various particle flux impact and spacecraft orientation are discussed. A computer engineering model for a calculation of space radiation is presented. This model is used as a client/server model with WWW interface, including spacecraft model description and results representation based on the virtual reality markup language.

  3. Multidimensional computer simulation of Stirling cycle engines

    NASA Technical Reports Server (NTRS)

    Hall, C. A.; Porsching, T. A.; Medley, J.; Tew, R. C.

    1990-01-01

    The computer code ALGAE (algorithms for the gas equations) treats incompressible, thermally expandable, or locally compressible flows in complicated two-dimensional flow regions. The solution method, finite differencing schemes, and basic modeling of the field equations in ALGAE are applicable to engineering design settings of the type found in Stirling cycle engines. The use of ALGAE to model multiple components of the space power research engine (SPRE) is reported. Videotape computer simulations of the transient behavior of the working gas (helium) in the heater-regenerator-cooler complex of the SPRE demonstrate the usefulness of such a program in providing information on thermal and hydraulic phenomena in multiple component sections of the SPRE.

  4. Proton transport in functionalised additives for PEM fuel cells: contributions from atomistic simulations.

    PubMed

    Tölle, Pia; Köhler, Christof; Marschall, Roland; Sharifi, Monir; Wark, Michael; Frauenheim, Thomas

    2012-08-01

    The conventional polymer electrolyte membrane (PEM) materials for fuel cell applications strongly rely on temperature and pressure conditions for optimal performance. In order to expand the range of operating conditions of these conventional PEM materials, mesoporous functionalised SiO(2) additives are developed. It has been demonstrated that these additives themselves achieve proton conductivities approaching those of conventional materials. However, the proton conduction mechanisms and especially factors influencing charge carrier mobility under different hydration conditions are not well known and difficult to separate from concentration effects in experiments. This tutorial review highlights contributions of atomistic computer simulations to the basic understanding and eventual design of these materials. Some basic introduction to the theoretical and computational framework is provided to introduce the reader to the field, the techniques are in principle applicable to a wide range of other situations as well. Simulation results are directly compared to experimental data as far as possible.

  5. Computer Simulation Studies of Gramicidin Channel

    NASA Astrophysics Data System (ADS)

    Song, Hyundeok; Beck, Thomas

    2009-04-01

    Ion channels are large membrane proteins, and their function is to facilitate the passage of ions across biological membranes. Recently, Dr. John Cuppoletti's group at UC showed that the gramicidin channel could function at high temperatures (360 -- 390K) with significant currents. This finding may have large implications for fuel cell technology. In this project, we will examine the experimental system by computer simulation. We will investigate how the temperature affects the current and differences in magnitude of the currents between two forms of Gramicidin, A and D. This research will help to elucidate the underlying molecular mechanism in this promising new technology.

  6. A Generic Scheduling Simulator for High Performance Parallel Computers

    SciTech Connect

    Yoo, B S; Choi, G S; Jette, M A

    2001-08-01

    It is well known that efficient job scheduling plays a crucial role in achieving high system utilization in large-scale high performance computing environments. A good scheduling algorithm should schedule jobs to achieve high system utilization while satisfying various user demands in an equitable fashion. Designing such a scheduling algorithm is a non-trivial task even in a static environment. In practice, the computing environment and workload are constantly changing. There are several reasons for this. First, the computing platforms constantly evolve as the technology advances. For example, the availability of relatively powerful commodity off-the-shelf (COTS) components at steadily diminishing prices have made it feasible to construct ever larger massively parallel computers in recent years [1, 4]. Second, the workload imposed on the system also changes constantly. The rapidly increasing compute resources have provided many applications developers with the opportunity to radically alter program characteristics and take advantage of these additional resources. New developments in software technology may also trigger changes in user applications. Finally, political climate change may alter user priorities or the mission of the organization. System designers in such dynamic environments must be able to accurately forecast the effect of changes in the hardware, software, and/or policies under consideration. If the environmental changes are significant, one must also reassess scheduling algorithms. Simulation has frequently been relied upon for this analysis, because other methods such as analytical modeling or actual measurements are usually too difficult or costly. A drawback of the simulation approach, however, is that developing a simulator is a time-consuming process. Furthermore, an existing simulator cannot be easily adapted to a new environment. In this research, we attempt to develop a generic job-scheduling simulator, which facilitates the evaluation of

  7. Computer simulation of solder joint failure

    SciTech Connect

    Burchett, S.N.; Frear, D.R.; Rashid, M.M.

    1997-04-01

    The thermomechanical fatigue failure of solder joints is increasingly becoming an important reliability issue for electronic packages. The purpose of this Laboratory Directed Research and Development (LDRD) project was to develop computational tools for simulating the behavior of solder joints under strain and temperature cycling, taking into account the microstructural heterogeneities that exist in as-solidified near eutectic Sn-Pb joints, as well as subsequent microstructural evolution. The authors present two computational constitutive models, a two-phase model and a single-phase model, that were developed to predict the behavior of near eutectic Sn-Pb solder joints under fatigue conditions. Unique metallurgical tests provide the fundamental input for the constitutive relations. The two-phase model mathematically predicts the heterogeneous coarsening behavior of near eutectic Sn-Pb solder. The finite element simulations with this model agree qualitatively with experimental thermomechanical fatigue tests. The simulations show that the presence of an initial heterogeneity in the solder microstructure could significantly degrade the fatigue lifetime. The single-phase model was developed to predict solder joint behavior using materials data for constitutive relation constants that could be determined through straightforward metallurgical experiments. Special thermomechanical fatigue tests were developed to give fundamental materials input to the models, and an in situ SEM thermomechanical fatigue test system was developed to characterize microstructural evolution and the mechanical behavior of solder joints during the test. A shear/torsion test sample was developed to impose strain in two different orientations. Materials constants were derived from these tests. The simulation results from the two-phase model showed good fit to the experimental test results.

  8. Computer Simulation of Fracture in Aerogels

    NASA Technical Reports Server (NTRS)

    Good, Brian S.

    2006-01-01

    Aerogels are of interest to the aerospace community primarily for their thermal properties, notably their low thermal conductivities. While the gels are typically fragile, recent advances in the application of conformal polymer layers to these gels has made them potentially useful as lightweight structural materials as well. In this work, we investigate the strength and fracture behavior of silica aerogels using a molecular statics-based computer simulation technique. The gels' structure is simulated via a Diffusion Limited Cluster Aggregation (DLCA) algorithm, which produces fractal structures representing experimentally observed aggregates of so-called secondary particles, themselves composed of amorphous silica primary particles an order of magnitude smaller. We have performed multi-length-scale simulations of fracture in silica aerogels, in which the interaction b e e n two secondary particles is assumed to be described by a Morse pair potential parameterized such that the potential range is much smaller than the secondary particle size. These Morse parameters are obtained by atomistic simulation of models of the experimentally-observed amorphous silica "bridges," with the fracture behavior of these bridges modeled via molecular statics using a Morse/Coulomb potential for silica. We consider the energetics of the fracture, and compare qualitative features of low-and high-density gel fracture.

  9. Computational performance of a smoothed particle hydrodynamics simulation for shared-memory parallel computing

    NASA Astrophysics Data System (ADS)

    Nishiura, Daisuke; Furuichi, Mikito; Sakaguchi, Hide

    2015-09-01

    The computational performance of a smoothed particle hydrodynamics (SPH) simulation is investigated for three types of current shared-memory parallel computer devices: many integrated core (MIC) processors, graphics processing units (GPUs), and multi-core CPUs. We are especially interested in efficient shared-memory allocation methods for each chipset, because the efficient data access patterns differ between compute unified device architecture (CUDA) programming for GPUs and OpenMP programming for MIC processors and multi-core CPUs. We first introduce several parallel implementation techniques for the SPH code, and then examine these on our target computer architectures to determine the most effective algorithms for each processor unit. In addition, we evaluate the effective computing performance and power efficiency of the SPH simulation on each architecture, as these are critical metrics for overall performance in a multi-device environment. In our benchmark test, the GPU is found to produce the best arithmetic performance as a standalone device unit, and gives the most efficient power consumption. The multi-core CPU obtains the most effective computing performance. The computational speed of the MIC processor on Xeon Phi approached that of two Xeon CPUs. This indicates that using MICs is an attractive choice for existing SPH codes on multi-core CPUs parallelized by OpenMP, as it gains computational acceleration without the need for significant changes to the source code.

  10. Mapping lava flow hazards using computer simulation

    NASA Astrophysics Data System (ADS)

    Wadge, G.; Young, P. A. V.; McKendrick, I. J.

    1994-01-01

    Computer simulations of the paths of flowing lava are achieved using a program, FLOWFRONT, that describes the behavior of flow and digital models of the terrain. Two methods of application of simulations of the hazards posed by lava flows are described. The first, deterministic, method requires that program parameters such as vent position, minimum flow thickness, and thickness/slope relationship be based on the ambient eruptive conditions so that the future course of a specific lava flow can be simulated. This is illustrated using retrospective modeling of the first 21 days of the eruption of an andesitic lava flow at Lonquimay volcano, Chile, in 1988-1989. The usefulness of this method for real-time predictive modeling is likely to be limited by the lack of accurate field data on flow characteristics, the simple nature of the model, and the sensitivity to parameter choice of the final planimetric form of the model flow. The second application is probabilistic in nature and creates a map of the likelihood of inundation by lava flows that is useful for long-term land use planning. This method uses the historical record of past eruptions to constrain a series of Monte Carlo simulations and is illustrated using data from Etna volcano in Sicily. A multivariate statistical analysis of nine parameters for the 1763-1989 eruption catalog using simulated annealing permitted a classification of Etna's flank eruptions into two types: A and B. Type A eruptions are short-lived and produce linear lava flows; type B eruptions are long-lived, and produce lava flows that are much broader in shape, and their vents are restricted to the eastern flank of the volcano. The simulation method consists of creating a probability surface of the location of future eruption vents and segmenting the region according to the most likely historical eruption on which to base the simulation. Analysis of the autocorrelation of the historical eruptions shows that type A eruptions are strongly

  11. Computer Simulations in Science Education: Implications for Distance Education

    ERIC Educational Resources Information Center

    Sahin, Sami

    2006-01-01

    This paper is a review of literature about the use of computer simulations in science education. This review examines types and examples of computer simulations. The literature review indicated that although computer simulations cannot replace science classroom and laboratory activities completely, they offer various advantages both for classroom…

  12. The Learning Effects of Computer Simulations in Science Education

    ERIC Educational Resources Information Center

    Rutten, Nico; van Joolingen, Wouter R.; van der Veen, Jan T.

    2012-01-01

    This article reviews the (quasi)experimental research of the past decade on the learning effects of computer simulations in science education. The focus is on two questions: how use of computer simulations can enhance traditional education, and how computer simulations are best used in order to improve learning processes and outcomes. We report on…

  13. Using computer simulations to facilitate conceptual understanding of electromagnetic induction

    NASA Astrophysics Data System (ADS)

    Lee, Yu-Fen

    This study investigated the use of computer simulations to facilitate conceptual understanding in physics. The use of computer simulations in the present study was grounded in a conceptual framework drawn from findings related to the use of computer simulations in physics education. To achieve the goal of effective utilization of computers for physics education, I first reviewed studies pertaining to computer simulations in physics education categorized by three different learning frameworks and studies comparing the effects of different simulation environments. My intent was to identify the learning context and factors for successful use of computer simulations in past studies and to learn from the studies which did not obtain a significant result. Based on the analysis of reviewed literature, I proposed effective approaches to integrate computer simulations in physics education. These approaches are consistent with well established education principles such as those suggested by How People Learn (Bransford, Brown, Cocking, Donovan, & Pellegrino, 2000). The research based approaches to integrated computer simulations in physics education form a learning framework called Concept Learning with Computer Simulations (CLCS) in the current study. The second component of this study was to examine the CLCS learning framework empirically. The participants were recruited from a public high school in Beijing, China. All participating students were randomly assigned to two groups, the experimental (CLCS) group and the control (TRAD) group. Research based computer simulations developed by the physics education research group at University of Colorado at Boulder were used to tackle common conceptual difficulties in learning electromagnetic induction. While interacting with computer simulations, CLCS students were asked to answer reflective questions designed to stimulate qualitative reasoning and explanation. After receiving model reasoning online, students were asked to submit

  14. Computational simulation of liquid fuel rocket injectors

    NASA Technical Reports Server (NTRS)

    Landrum, D. Brian

    1994-01-01

    A major component of any liquid propellant rocket is the propellant injection system. Issues of interest include the degree of liquid vaporization and its impact on the combustion process, the pressure and temperature fields in the combustion chamber, and the cooling of the injector face and chamber walls. The Finite Difference Navier-Stokes (FDNS) code is a primary computational tool used in the MSFC Computational Fluid Dynamics Branch. The branch has dedicated a significant amount of resources to development of this code for prediction of both liquid and solid fuel rocket performance. The FDNS code is currently being upgraded to include the capability to model liquid/gas multi-phase flows for fuel injection simulation. An important aspect of this effort is benchmarking the code capabilities to predict existing experimental injection data. The objective of this MSFC/ASEE Summer Faculty Fellowship term was to evaluate the capabilities of the modified FDNS code to predict flow fields with liquid injection. Comparisons were made between code predictions and existing experimental data. A significant portion of the effort included a search for appropriate validation data. Also, code simulation deficiencies were identified.

  15. Mapping lava flow hazards using computer simulation

    SciTech Connect

    Wadge, G.; Young, P.A.V.; Mckendrick, I.J.

    1994-01-01

    Computer simulations of the paths of flowing lava are achieved using a program, FLOWFRONT, that describes the behavior of flow and digital models of the terrain. Two methods of application of simulations of the hazards posed by lava flows are described. The first, deterministic, method requires that program parameters such as vent position, minimum flow thickness, and thickness/slope relationship be based on the ambient eruptive conditions so that the future course of a specific lava flow can be simulated. This is illustrated using retrospective modeling of the first 21 days of the eruption of an andesitic lava flow at Lonquimay volcano, Chile, in 1988-1989. The usefulness of this method for real-time predictive modeling is likely to be limited by the lack of accurate field data on flow characteristics, the simple nature of the model, and the sensitivity to parameter choice of the final planimetric form of the model flow. The second application is probabilistic in nature and creates a map of the likelihood of inundation by lava flows that is useful for long-term land use planning. This method uses the historical record of past eruptions to constrain a series of Monte Carlo simulations and is illustrated using data from Etna volcano in Sicily. A multivariate statistical analysis of nine parameters for the 1763-1989 eruption catalog using simulated annealing permitted a classification of Etna`s flank eruptions into two types: A and B. Type A eruptions are short-lived and produce linear lava flows; type B eruptions are long-lived, and produce lava flows that are much broader in shape, and their vents are restricted to the eastern flank of the volcano.

  16. Computational simulation of concurrent engineering for aerospace propulsion systems

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.; Singhal, S. N.

    1992-01-01

    Results are summarized of an investigation to assess the infrastructure available and the technology readiness in order to develop computational simulation methods/software for concurrent engineering. These results demonstrate that development of computational simulations methods for concurrent engineering is timely. Extensive infrastructure, in terms of multi-discipline simulation, component-specific simulation, system simulators, fabrication process simulation, and simulation of uncertainties - fundamental in developing such methods, is available. An approach is recommended which can be used to develop computational simulation methods for concurrent engineering for propulsion systems and systems in general. Benefits and facets needing early attention in the development are outlined.

  17. Computational simulation for concurrent engineering of aerospace propulsion systems

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.; Singhal, S. N.

    1993-01-01

    Results are summarized for an investigation to assess the infrastructure available and the technology readiness in order to develop computational simulation methods/software for concurrent engineering. These results demonstrate that development of computational simulation methods for concurrent engineering is timely. Extensive infrastructure, in terms of multi-discipline simulation, component-specific simulation, system simulators, fabrication process simulation, and simulation of uncertainties--fundamental to develop such methods, is available. An approach is recommended which can be used to develop computational simulation methods for concurrent engineering of propulsion systems and systems in general. Benefits and issues needing early attention in the development are outlined.

  18. Ku-Band rendezvous radar performance computer simulation model

    NASA Technical Reports Server (NTRS)

    Magnusson, H. G.; Goff, M. F.

    1984-01-01

    All work performed on the Ku-band rendezvous radar performance computer simulation model program since the release of the preliminary final report is summarized. Developments on the program fall into three distinct categories: (1) modifications to the existing Ku-band radar tracking performance computer model; (2) the addition of a highly accurate, nonrealtime search and acquisition performance computer model to the total software package developed on this program; and (3) development of radar cross section (RCS) computation models for three additional satellites. All changes in the tracking model involved improvements in the automatic gain control (AGC) and the radar signal strength (RSS) computer models. Although the search and acquisition computer models were developed under the auspices of the Hughes Aircraft Company Ku-Band Integrated Radar and Communications Subsystem program office, they have been supplied to NASA as part of the Ku-band radar performance comuter model package. Their purpose is to predict Ku-band acquisition performance for specific satellite targets on specific missions. The RCS models were developed for three satellites: the Long Duration Exposure Facility (LDEF) spacecraft, the Solar Maximum Mission (SMM) spacecraft, and the Space Telescopes.

  19. Computer simulation of surface and film processes

    NASA Technical Reports Server (NTRS)

    Tiller, W. A.; Halicioglu, M. T.

    1984-01-01

    All the investigations which were performed employed in one way or another a computer simulation technique based on atomistic level considerations. In general, three types of simulation methods were used for modeling systems with discrete particles that interact via well defined potential functions: molecular dynamics (a general method for solving the classical equations of motion of a model system); Monte Carlo (the use of Markov chain ensemble averaging technique to model equilibrium properties of a system); and molecular statics (provides properties of a system at T = 0 K). The effects of three-body forces on the vibrational frequencies of triatomic cluster were investigated. The multilayer relaxation phenomena for low index planes of an fcc crystal was analyzed also as a function of the three-body interactions. Various surface properties for Si and SiC system were calculated. Results obtained from static simulation calculations for slip formation were presented. The more elaborate molecular dynamics calculations on the propagation of cracks in two-dimensional systems were outlined.

  20. Computer simulation of fatigue under diametrical compression

    SciTech Connect

    Carmona, H. A.; Kun, F.; Andrade, J. S. Jr.; Herrmann, H. J.

    2007-04-15

    We study the fatigue fracture of disordered materials by means of computer simulations of a discrete element model. We extend a two-dimensional fracture model to capture the microscopic mechanisms relevant for fatigue and we simulate the diametric compression of a disc shape specimen under a constant external force. The model allows us to follow the development of the fracture process on the macrolevel and microlevel varying the relative influence of the mechanisms of damage accumulation over the load history and healing of microcracks. As a specific example we consider recent experimental results on the fatigue fracture of asphalt. Our numerical simulations show that for intermediate applied loads the lifetime of the specimen presents a power law behavior. Under the effect of healing, more prominent for small loads compared to the tensile strength of the material, the lifetime of the sample increases and a fatigue limit emerges below which no macroscopic failure occurs. The numerical results are in a good qualitative agreement with the experimental findings.

  1. Adding computationally efficient realism to Monte Carlo turbulence simulation

    NASA Technical Reports Server (NTRS)

    Campbell, C. W.

    1985-01-01

    Frequently in aerospace vehicle flight simulation, random turbulence is generated using the assumption that the craft is small compared to the length scales of turbulence. The turbulence is presumed to vary only along the flight path of the vehicle but not across the vehicle span. The addition of the realism of three-dimensionality is a worthy goal, but any such attempt will not gain acceptance in the simulator community unless it is computationally efficient. A concept for adding three-dimensional realism with a minimum of computational complexity is presented. The concept involves the use of close rational approximations to irrational spectra and cross-spectra so that systems of stable, explicit difference equations can be used to generate the turbulence.

  2. A framework of modeling detector systems for computed tomography simulations

    NASA Astrophysics Data System (ADS)

    Youn, H.; Kim, D.; Kim, S. H.; Kam, S.; Jeon, H.; Nam, J.; Kim, H. K.

    2016-01-01

    Ultimate development in computed tomography (CT) technology may be a system that can provide images with excellent lesion conspicuity with the patient dose as low as possible. Imaging simulation tools have been cost-effectively used for these developments and will continue. For a more accurate and realistic imaging simulation, the signal and noise propagation through a CT detector system has been modeled in this study using the cascaded linear-systems theory. The simulation results are validated in comparisons with the measured results using a laboratory flat-panel micro-CT system. Although the image noise obtained from the simulations at higher exposures is slightly smaller than that obtained from the measurements, the difference between them is reasonably acceptable. According to the simulation results for various exposure levels and additive electronic noise levels, x-ray quantum noise is more dominant than the additive electronic noise. The framework of modeling a CT detector system suggested in this study will be helpful for the development of an accurate and realistic projection simulation model.

  3. A Mass Spectrometer Simulator in Your Computer

    NASA Astrophysics Data System (ADS)

    Gagnon, Michel

    2012-12-01

    Introduced to study components of ionized gas, the mass spectrometer has evolved into a highly accurate device now used in many undergraduate and research laboratories. Unfortunately, despite their importance in the formation of future scientists, mass spectrometers remain beyond the financial reach of many high schools and colleges. As a result, it is not possible for instructors to take full advantage of this equipment. Therefore, to facilitate accessibility to this tool, we have developed a realistic computer-based simulator. Using this software, students are able to practice their ability to identify the components of the original gas, thereby gaining a better understanding of the underlying physical laws. The software is available as a free download.

  4. Miller experiments in atomistic computer simulations

    PubMed Central

    Saitta, Antonino Marco; Saija, Franz

    2014-01-01

    The celebrated Miller experiments reported on the spontaneous formation of amino acids from a mixture of simple molecules reacting under an electric discharge, giving birth to the research field of prebiotic chemistry. However, the chemical reactions involved in those experiments have never been studied at the atomic level. Here we report on, to our knowledge, the first ab initio computer simulations of Miller-like experiments in the condensed phase. Our study, based on the recent method of treatment of aqueous systems under electric fields and on metadynamics analysis of chemical reactions, shows that glycine spontaneously forms from mixtures of simple molecules once an electric field is switched on and identifies formic acid and formamide as key intermediate products of the early steps of the Miller reactions, and the crucible of formation of complex biological molecules. PMID:25201948

  5. Computer simulation of a general purpose satellite modem

    NASA Astrophysics Data System (ADS)

    Montgomery, William L., Jr.

    1992-12-01

    The performance of a digital phase shift keyed satellite modem was modeled and simulated. The probability of bit error (P(sub b)) at different levels of energy per bit to noise power ratio (E( sub b)/N(sub o)) was the performance measure. The channel was assumed to contribute only additive white Gaussian noise. A second order Costas loop performs demodulation in the modem and was the key part of the simulation. The Costas loop with second order Butterworth arm filters was tested by finding the response to a phase or frequency step. The Costas loop response was found to be in agreement with theoretical predictions in the absence of noise. Finally, the effect on P(sub b) of a rate 1/2 constraint length 7 convolutional code with eight level soft Viterbi decoding was demonstrated by the simulation. The simulation results were within 0.7 dB of theoretical. All computer simulations were done at baseband to reduce simulation times. The Monte Carlo error counting technique was used to estimate P(sub b). The effect of increasing the samples per bit in the simulation was demonstrated by the 0.4 dB improvement in P(sub b) caused by doubling the number of samples.

  6. Additional extensions to the NASCAP computer code, volume 3

    NASA Technical Reports Server (NTRS)

    Mandell, M. J.; Cooke, D. L.

    1981-01-01

    The ION computer code is designed to calculate charge exchange ion densities, electric potentials, plasma temperatures, and current densities external to a neutralized ion engine in R-Z geometry. The present version assumes the beam ion current and density to be known and specified, and the neutralizing electrons to originate from a hot-wire ring surrounding the beam orifice. The plasma is treated as being resistive, with an electron relaxation time comparable to the plasma frequency. Together with the thermal and electrical boundary conditions described below and other straightforward engine parameters, these assumptions suffice to determine the required quantities. The ION code, written in ASCII FORTRAN for UNIVAC 1100 series computers, is designed to be run interactively, although it can also be run in batch mode. The input is free-format, and the output is mainly graphical, using the machine-independent graphics developed for the NASCAP code. The executive routine calls the code's major subroutines in user-specified order, and the code allows great latitude for restart and parameter change.

  7. Adv. Simulation for Additive Manufacturing: 11/2014 Wkshp. Report for U.S. DOE/EERE/AMO

    SciTech Connect

    Turner, John A.; Babu, Sudarsanam Suresh; Blue, Craig A.

    2015-07-01

    The overarching question for the workshop was as following: How do we best utilize advanced modeling and high-performance computing (HPC) to address key challenges and opportunities in order to realize the full potential of additive manufacturing; and what are the key challenges of additive manufacturing to which modeling and simulation can contribute solutions, and what will it take to meet these challenges?

  8. Additional extensions to the NASCAP computer code, volume 1

    NASA Technical Reports Server (NTRS)

    Mandell, M. J.; Katz, I.; Stannard, P. R.

    1981-01-01

    Extensions and revisions to a computer code that comprehensively analyzes problems of spacecraft charging (NASCAP) are documented. Using a fully three dimensional approach, it can accurately predict spacecraft potentials under a variety of conditions. Among the extensions are a multiple electron/ion gun test tank capability, and the ability to model anisotropic and time dependent space environments. Also documented are a greatly extended MATCHG program and the preliminary version of NASCAP/LEO. The interactive MATCHG code was developed into an extremely powerful tool for the study of material-environment interactions. The NASCAP/LEO, a three dimensional code to study current collection under conditions of high voltages and short Debye lengths, was distributed for preliminary testing.

  9. Engineering Fracking Fluids with Computer Simulation

    NASA Astrophysics Data System (ADS)

    Shaqfeh, Eric

    2015-11-01

    There are no comprehensive simulation-based tools for engineering the flows of viscoelastic fluid-particle suspensions in fully three-dimensional geometries. On the other hand, the need for such a tool in engineering applications is immense. Suspensions of rigid particles in viscoelastic fluids play key roles in many energy applications. For example, in oil drilling the ``drilling mud'' is a very viscous, viscoelastic fluid designed to shear-thin during drilling, but thicken at stoppage so that the ``cuttings'' can remain suspended. In a related application known as hydraulic fracturing suspensions of solids called ``proppant'' are used to prop open the fracture by pumping them into the well. It is well-known that particle flow and settling in a viscoelastic fluid can be quite different from that which is observed in Newtonian fluids. First, it is now well known that the ``fluid particle split'' at bifurcation cracks is controlled by fluid rheology in a manner that is not understood. Second, in Newtonian fluids, the presence of an imposed shear flow in the direction perpendicular to gravity (which we term a cross or orthogonal shear flow) has no effect on the settling of a spherical particle in Stokes flow (i.e. at vanishingly small Reynolds number). By contrast, in a non-Newtonian liquid, the complex rheological properties induce a nonlinear coupling between the sedimentation and shear flow. Recent experimental data have shown both the shear thinning and the elasticity of the suspending polymeric solutions significantly affects the fluid-particle split at bifurcations, as well as the settling rate of the solids. In the present work, we use the Immersed Boundary Method to develop computer simulations of viscoelastic flow in suspensions of spheres to study these problems. These simulations allow us to understand the detailed physical mechanisms for the remarkable physical behavior seen in practice, and actually suggest design rules for creating new fluid recipes.

  10. COMPUTER MODEL AND SIMULATION OF A GLOVE BOX PROCESS

    SciTech Connect

    C. FOSTER; ET AL

    2001-01-01

    The development of facilities to deal with the disposition of nuclear materials at an acceptable level of Occupational Radiation Exposure (ORE) is a significant issue facing the nuclear community. One solution is to minimize the worker's exposure though the use of automated systems. However, the adoption of automated systems for these tasks is hampered by the challenging requirements that these systems must meet in order to be cost effective solutions in the hazardous nuclear materials processing environment. Retrofitting current glove box technologies with automation systems represents potential near-term technology that can be applied to reduce worker ORE associated with work in nuclear materials processing facilities. Successful deployment of automation systems for these applications requires the development of testing and deployment strategies to ensure the highest level of safety and effectiveness. Historically, safety tests are conducted with glove box mock-ups around the finished design. This late detection of problems leads to expensive redesigns and costly deployment delays. With wide spread availability of computers and cost effective simulation software it is possible to discover and fix problems early in the design stages. Computer simulators can easily create a complete model of the system allowing a safe medium for testing potential failures and design shortcomings. The majority of design specification is now done on computer and moving that information to a model is relatively straightforward. With a complete model and results from a Failure Mode Effect Analysis (FMEA), redesigns can be worked early. Additional issues such as user accessibility, component replacement, and alignment problems can be tackled early in the virtual environment provided by computer simulation. In this case, a commercial simulation package is used to simulate a lathe process operation at the Los Alamos National Laboratory (LANL). The Lathe process operation is indicative of

  11. Duality quantum computer and the efficient quantum simulations

    NASA Astrophysics Data System (ADS)

    Wei, Shi-Jie; Long, Gui-Lu

    2016-03-01

    Duality quantum computing is a new mode of a quantum computer to simulate a moving quantum computer passing through a multi-slit. It exploits the particle wave duality property for computing. A quantum computer with n qubits and a qudit simulates a moving quantum computer with n qubits passing through a d-slit. Duality quantum computing can realize an arbitrary sum of unitaries and therefore a general quantum operator, which is called a generalized quantum gate. All linear bounded operators can be realized by the generalized quantum gates, and unitary operators are just the extreme points of the set of generalized quantum gates. Duality quantum computing provides flexibility and a clear physical picture in designing quantum algorithms, and serves as a powerful bridge between quantum and classical algorithms. In this paper, after a brief review of the theory of duality quantum computing, we will concentrate on the applications of duality quantum computing in simulations of Hamiltonian systems. We will show that duality quantum computing can efficiently simulate quantum systems by providing descriptions of the recent efficient quantum simulation algorithm of Childs and Wiebe (Quantum Inf Comput 12(11-12):901-924, 2012) for the fast simulation of quantum systems with a sparse Hamiltonian, and the quantum simulation algorithm by Berry et al. (Phys Rev Lett 114:090502, 2015), which provides exponential improvement in precision for simulating systems with a sparse Hamiltonian.

  12. Problems in Conducting Research on Computer-Based Simulation.

    ERIC Educational Resources Information Center

    Crawford, Alice M.

    Computer-based simulation (CBS) represents a unique utilization of computers for instruction that combines some of the best features of the technologies of simulation and computer assisted instruction (CAI). CBS grew out of an interest in testing the application of CAI to procedural and perceptual motor skills. With the sophisticated graphics…

  13. Simulation of Powder Layer Deposition in Additive Manufacturing Processes Using the Discrete Element Method

    SciTech Connect

    Herbold, E. B.; Walton, O.; Homel, M. A.

    2015-10-26

    This document serves as a final report to a small effort where several improvements were added to a LLNL code GEODYN-­L to develop Discrete Element Method (DEM) algorithms coupled to Lagrangian Finite Element (FE) solvers to investigate powder-­bed formation problems for additive manufacturing. The results from these simulations will be assessed for inclusion as the initial conditions for Direct Metal Laser Sintering (DMLS) simulations performed with ALE3D. The algorithms were written and performed on parallel computing platforms at LLNL. The total funding level was 3-­4 weeks of an FTE split amongst two staff scientists and one post-­doc. The DEM simulations emulated, as much as was feasible, the physical process of depositing a new layer of powder over a bed of existing powder. The DEM simulations utilized truncated size distributions spanning realistic size ranges with a size distribution profile consistent with realistic sample set. A minimum simulation sample size on the order of 40-­particles square by 10-­particles deep was utilized in these scoping studies in order to evaluate the potential effects of size segregation variation with distance displaced in front of a screed blade. A reasonable method for evaluating the problem was developed and validated. Several simulations were performed to show the viability of the approach. Future investigations will focus on running various simulations investigating powder particle sizing and screen geometries.

  14. Computer-aided simulation study of photomultiplier tubes

    NASA Technical Reports Server (NTRS)

    Zaghloul, Mona E.; Rhee, Do Jun

    1989-01-01

    A computer model that simulates the response of photomultiplier tubes (PMTs) and the associated voltage divider circuit is developed. An equivalent circuit that approximates the operation of the device is derived and then used to develop a computer simulation of the PMT. Simulation results are presented and discussed.

  15. A COMPUTATIONAL WORKBENCH ENVIRONMENT FOR VIRTUAL POWER PLANT SIMULATION

    SciTech Connect

    Mike Bockelie; Dave Swensen; Martin Denison; Zumao Chen; Temi Linjewile; Mike Maguire; Adel Sarofim; Connie Senior; Changguan Yang; Hong-Shig Shim

    2004-04-28

    This is the fourteenth Quarterly Technical Report for DOE Cooperative Agreement No: DE-FC26-00NT41047. The goal of the project is to develop and demonstrate a Virtual Engineering-based framework for simulating the performance of Advanced Power Systems. Within the last quarter, good progress has been made on all aspects of the project. Software development efforts have focused primarily on completing a prototype detachable user interface for the framework and on integrating Carnegie Mellon Universities IECM model core with the computational engine. In addition to this work, progress has been made on several other development and modeling tasks for the program. These include: (1) improvements to the infrastructure code of the computational engine, (2) enhancements to the model interfacing specifications, (3) additional development to increase the robustness of all framework components, (4) enhanced coupling of the computational and visualization engine components, (5) a series of detailed simulations studying the effects of gasifier inlet conditions on the heat flux to the gasifier injector, and (6) detailed plans for implementing models for mercury capture for both warm and cold gas cleanup have been created.

  16. Computational calculation of equilibrium constants: addition to carbonyl compounds.

    PubMed

    Gómez-Bombarelli, Rafael; González-Pérez, Marina; Pérez-Prior, María Teresa; Calle, Emilio; Casado, Julio

    2009-10-22

    Hydration reactions are relevant for understanding many organic mechanisms. Since the experimental determination of hydration and hemiacetalization equilibrium constants is fairly complex, computational calculations now offer a useful alternative to experimental measurements. In this work, carbonyl hydration and hemiacetalization constants were calculated from the free energy differences between compounds in solution, using absolute and relative approaches. The following conclusions can be drawn: (i) The use of a relative approach in the calculation of hydration and hemiacetalization constants allows compensation of systematic errors in the solvation energies. (ii) On average, the methodology proposed here can predict hydration constants within +/- 0.5 log K(hyd) units for aldehydes. (iii) Hydration constants can be calculated for ketones and carboxylic acid derivatives within less than +/- 1.0 log K(hyd), on average, at the CBS-Q level of theory. (iv) The proposed methodology can predict hemiacetal formation constants accurately at the MP2 6-31++G(d,p) level using a common reference. If group references are used, the results obtained using the much cheaper DFT-B3LYP 6-31++G(d,p) level are almost as accurate. (v) In general, the best results are obtained if a common reference for all compounds is used. The use of group references improves the results at the lower levels of theory, but at higher levels, this becomes unnecessary. PMID:19761202

  17. Computational Calculation of Equilibrium Constants: Addition to Carbonyl Compounds

    NASA Astrophysics Data System (ADS)

    Gómez-Bombarelli, Rafael; González-Pérez, Marina; Pérez-Prior, María Teresa; Calle, Emilio; Casado, Julio

    2009-09-01

    Hydration reactions are relevant for understanding many organic mechanisms. Since the experimental determination of hydration and hemiacetalization equilibrium constants is fairly complex, computational calculations now offer a useful alternative to experimental measurements. In this work, carbonyl hydration and hemiacetalization constants were calculated from the free energy differences between compounds in solution, using absolute and relative approaches. The following conclusions can be drawn: (i) The use of a relative approach in the calculation of hydration and hemiacetalization constants allows compensation of systematic errors in the solvation energies. (ii) On average, the methodology proposed here can predict hydration constants within ± 0.5 log Khyd units for aldehydes. (iii) Hydration constants can be calculated for ketones and carboxylic acid derivatives within less than ± 1.0 log Khyd, on average, at the CBS-Q level of theory. (iv) The proposed methodology can predict hemiacetal formation constants accurately at the MP2 6-31++G(d,p) level using a common reference. If group references are used, the results obtained using the much cheaper DFT-B3LYP 6-31++G(d,p) level are almost as accurate. (v) In general, the best results are obtained if a common reference for all compounds is used. The use of group references improves the results at the lower levels of theory, but at higher levels, this becomes unnecessary.

  18. Computer simulation in the daily practice of orthognathic surgery.

    PubMed

    Schendel, S A

    2015-12-01

    The availability of computers and advances in imaging, especially over the last 10 years, have allowed the adoption of three-dimensional (3D) imaging in the office setting. The affordability and ease of use of this modality has led to its widespread implementation in diagnosis and treatment planning, teaching, and follow-up care. 3D imaging is particularly useful when the deformities are complex and involve both function and aesthetics, such as those in the dentofacial area, and for orthognathic surgery. Computer imaging involves combining images obtained from different modalities to create a virtual record of an individual. In this article, the system is described and its use in the office demonstrated. Computer imaging with simulation, and more specifically patient-specific anatomic records (PSAR), permit a more accurate analysis of the deformity as an aid to diagnosis and treatment planning. 3D imaging and computer simulation can be used effectively for the planning of office-based procedures. The technique can be used to perform virtual surgery and establish a definitive and objective treatment plan for correction of the facial deformity. In addition, patient education and follow-up can be facilitated. The end result is improved patient care and decreased expense.

  19. Computer simulation of industrial hazards1

    PubMed Central

    Knox, E. G.

    1973-01-01

    Knox, E. G. (1973).Brit. J. industr. Med.,30, 54-63. Computer simulation of industrial hazards. A computer simulation system for a range of industrial hazards provided for model experiments which manipulated (a) the sub-structure of an exposed population in terms of age-distributions and levels of exposure, (b) the nature of the dose/response relationship, (c) the latent interval and its variability, (d) normal life-table expectations, and (e) employment turnover rates. The development of the system led to clarification of terms and concepts with ambiguous current usages, notably in relation to latency. Distinction is made between the notions of `biological' and `observable' latent intervals. Hypothetical exercises with the model tested its technical validity and at the same time demonstrated in quantitative terms the relationships between `biological' and `observable' latent intervals, employment turnover rates, total mortalities, and the distribution of illnesses and death between those currently employed in the exposing industry, those employed elsewhere, and those retired. Prospects of success for personnel engineering techniques, which manipulate age-distributions of exposed work people in relation to diseases with long latent intervals, were examined. Published asbestos cancer data were used as a basis for specific model fitting and resulted in a numerical formulation of the exposure/response relationships. Severe exposure results in an increment of risk of death of about 0·02 unit per person per annum for those exposed for around six years, but with higher rates for shorter exposures and lower rates for longer ones. The mean biological latent interval was about 25 years with a coefficient of variation of about 25%. These suppositions explained a range of published data comprehensively and at the same time predicted that (a) persons exposed at severe levels for a working lifetime of 50 years have a 40% risk of dying from asbestos cancer, and (b) industrial

  20. A computer simulation study of racemic mixtures

    NASA Astrophysics Data System (ADS)

    Largo, J.; Vega, C.; MacDowell, L. G.; Solana, J. R.

    A simple model for a chiral molecule is proposed. The model consists of a central atom bonded to four different atoms in tetrahedral coordination. Two different potentials were used to describe the pair potentials between atoms: the hard sphere potential and the Lennard-Jones potential. For both the hard sphere and the Lennard-Jones chiral models, computer simulations have been performed for the pure enantiomers and also for the racemic mixture. The racemic mixture consisted of an equimolar mixture of the two optically active enantiomers. It is found that the equations of state are the same, within statistical uncertainty, for the pure enantiomer fluid and for the racemic mixture. Only at high pressures does the racemic mixture seem to have a higher density, for a given pressure, than the pure enantiomer. Concering the structure, no difference is found in the site-site correlation functions between like and unlike molecules in the racemic mixture either at low or at high densities. However, small differences are found for the site-site correlations of the pure enantiomer and those of the racemic mixtures. In the Lennard-Jones model, similar conclusions are drawn. The extension of Wertheim's first-order perturbation theory, denoted bonded hard sphere theory (ARCHER, A. L., and JACKSON, G., 1991, Molec. Phys. , 73 , 881; AMOS, M. D., and JACKSON, G., 1992, J. chem. Phys. , 96 , 4604), successfully reproduces the simulation results for the hard chiral model. Virial coefficients of the hard chiral model up to the fourth have also been evaluated. Again, no differences are found between virial coefficients of the pure fluid and of the racemic mixture. All the results of this work illustrate the quasi-ideal behaviour of racemic mixtures in the fluid phase.

  1. Computer simulation of vasectomy for wolf control

    USGS Publications Warehouse

    Haight, R.G.; Mech, L.D.

    1997-01-01

    Recovering gray wolf (Canis lupus) populations in the Lake Superior region of the United States are prompting state management agencies to consider strategies to control population growth. In addition to wolf removal, vasectomy has been proposed. To predict the population effects of different sterilization and removal strategies, we developed a simulation model of wolf dynamics using simple rules for demography and dispersal. Simulations suggested that the effects of vasectomy and removal in a disjunct population depend largely on the degree of annual immigration. With low immigration, periodic sterilization reduced pup production and resulted in lower rates of territory recolonization. Consequently, average pack size, number of packs, and population size were significantly less than those for an untreated population. Periodically removing a proportion of the population produced roughly the same trends as did sterilization; however, more than twice as many wolves had to be removed than sterilized. With high immigration, periodic sterilization reduced pup production but not territory recolonization and produced only moderate reductions in population size relative to an untreated population. Similar reductions in population size were obtained by periodically removing large numbers of wolves. Our analysis does not address the possible effects of vasectomy on larger wolf populations, but it suggests that the subject should be considered through modeling or field testing.

  2. Towards the design of new and improved drilling fluid additives using molecular dynamics simulations.

    PubMed

    Anderson, Richard L; Greenwel, H Christopher; Suter, James L; Jarvis, Rebecca M; Coveney, Peter V

    2010-03-01

    During exploration for oil and gas, a technical drilling fluid is used to lubricate the drill bit, maintain hydrostatic pressure, transmit sensor readings, remove rock cuttings and inhibit swelling of unstable clay based reactive shale formations. Increasing environmental awareness and resulting legislation has led to the search for new, improved biodegradable drilling fluid components. In the case of additives for clay swelling inhibition, an understanding of how existing effective additives interact with clays must be gained to allow the design of improved molecules. Owing to the disordered nature and nanoscopic dimension of the interlayer pores of clay minerals, computer simulations have become an increasingly useful tool for studying clay-swelling inhibitor interactions. In this work we briefly review the history of the development of technical drilling fluids, the environmental impact of drilling fluids and the use of computer simulations to study the interactions between clay minerals and swelling inhibitors. We report on results from some recent large-scale molecular dynamics simulation studies on low molecular weight water-soluble macromolecular inhibitor molecules. The structure and interactions of poly(propylene oxide)-diamine, poly(ethylene glycol) and poly(ethylene oxide)-diacrylate inhibitor molecules with montmorillonite clay are studied.

  3. Computer simulation of nanocube self-assemblies

    NASA Astrophysics Data System (ADS)

    Zhang, Xi

    Self-assembly of nanoscale building blocks and molecules into ordered nanostructures is a promising venue for bottom-up materials design. A wide variety of nanoparticles with unique shapes and uniform sizes have been successfully synthesized. However, organizing these nanoparticles into desired, predefined nanostructures is a formidable challenge now facing the materials community. For example, simple 2-D arrays and 3-D superlattices are the prevalent structures from most nanocube self-assemblies. Two practical strategies to impart anisotropy onto nanocubes, namely, attaching polymer tethers to nanoparticle surfaces and introducing directional dipolar interactions, can be applied to achieve more complex assembled structures. In this dissertation, we conduct computer simulations on nanocube self-assemblies induced by polymer tethers and directional dipole interactions, to examine the various parameters involved in such complicated self-assembly processes, including temperature, concentration, solvent condition, cube size, tether length, tether topology, tether placement, tether number, dipole direction, dipole strength and polydispersity, in order to understand how the packing geometry and interactions between nanocubes can be manipulated to confer precise control over the assembled structures and the phase behavior. First, we simulate monotethered nanocubes and find that the nanocubes favor face-to-face packing in poor solvents, stabilizing the lamellae phases. Next, we simulate different architectures of tethered nanocubes and demonstrate that the steric influence of tether beads can be manipulated to interfere with the face-to-face packing of nanocubes and alter the phase behaviors. We also study the self-assembly of nanocubes with dipoles. We find that the head-to-tail alignment of dipoles, coupled with the face-to-face close packing of nanocubes, dictates the assembled structures. The face-face attraction between nanocubes can also be utilized to control the

  4. Computational simulation of liquid rocket injector anomalies

    NASA Technical Reports Server (NTRS)

    Przekwas, A. J.; Singhal, A. K.; Tam, L. T.; Davidian, K.

    1986-01-01

    A computer model has been developed to analyze the three-dimensional two-phase reactive flows in liquid fueled rocket combustors. The model is designed to study the influence of liquid propellant injection nonuniformities on the flow pattern, combustion and heat transfer within the combustor. The Eulerian-Lagrangian approach for simulating polidisperse spray flow, evaporation and combustion has been used. Full coupling between the phases is accounted for. A nonorthogonal, body fitted coordinate system along with a conservative control volume formulation is employed. The physical models built into the model include a kappa-epsilon turbulence model, a two-step chemical reaction, and the six-flux radiation model. Semiempirical models are used to describe all interphase coupling terms as well as chemical reaction rates. The purpose of this study was to demonstrate an analytical capability to predict the effects of reactant injection nonuniformities (injection anomalies) on combustion and heat transfer within the rocket combustion chamber. The results show promising application of the model to comprehensive modeling of liquid propellant rocket engines.

  5. Computer simulation of FCC riser reactors.

    SciTech Connect

    Chang, S. L.; Golchert, B.; Lottes, S. A.; Petrick, M.; Zhou, C. Q.

    1999-04-20

    A three-dimensional computational fluid dynamics (CFD) code, ICRKFLO, was developed to simulate the multiphase reacting flow system in a fluid catalytic cracking (FCC) riser reactor. The code solve flow properties based on fundamental conservation laws of mass, momentum, and energy for gas, liquid, and solid phases. Useful phenomenological models were developed to represent the controlling FCC processes, including droplet dispersion and evaporation, particle-solid interactions, and interfacial heat transfer between gas, droplets, and particles. Techniques were also developed to facilitate numerical calculations. These techniques include a hybrid flow-kinetic treatment to include detailed kinetic calculations, a time-integral approach to overcome numerical stiffness problems of chemical reactions, and a sectional coupling and blocked-cell technique for handling complex geometry. The copyrighted ICRKFLO software has been validated with experimental data from pilot- and commercial-scale FCC units. The code can be used to evaluate the impacts of design and operating conditions on the production of gasoline and other oil products.

  6. A computationally efficient particle-simulation method suited to vector-computer architectures

    SciTech Connect

    McDonald, J.D.

    1990-01-01

    Recent interest in a National Aero-Space Plane (NASP) and various Aero-assisted Space Transfer Vehicles (ASTVs) presents the need for a greater understanding of high-speed rarefied flight conditions. Particle simulation techniques such as the Direct Simulation Monte Carlo (DSMC) method are well suited to such problems, but the high cost of computation limits the application of the methods to two-dimensional or very simple three-dimensional problems. This research re-examines the algorithmic structure of existing particle simulation methods and re-structures them to allow efficient implementation on vector-oriented supercomputers. A brief overview of the DSMC method and the Cray-2 vector computer architecture are provided, and the elements of the DSMC method that inhibit substantial vectorization are identified. One such element is the collision selection algorithm. A complete reformulation of underlying kinetic theory shows that this may be efficiently vectorized for general gas mixtures. The mechanics of collisions are vectorizable in the DSMC method, but several optimizations are suggested that greatly enhance performance. Also this thesis proposes a new mechanism for the exchange of energy between vibration and other energy modes. The developed scheme makes use of quantized vibrational states and is used in place of the Borgnakke-Larsen model. Finally, a simplified representation of physical space and boundary conditions is utilized to further reduce the computational cost of the developed method. Comparison to solutions obtained from the DSMC method for the relaxation of internal energy modes in a homogeneous gas, as well as single and multiple specie shock wave profiles, are presented. Additionally, a large scale simulation of the flow about the proposed Aeroassisted Flight Experiment (AFE) vehicle is included as an example of the new computational capability of the developed particle simulation method.

  7. Inhibition of quorum sensing in a computational biofilm simulation.

    PubMed

    Fozard, J A; Lees, M; King, J R; Logan, B S

    2012-08-01

    Bacteria communicate through small diffusible molecules in a process known as quorum sensing. Quorum-sensing inhibitors are compounds which interfere with this, providing a potential treatment for infections associated with bacterial biofilms. We present an individual-based computational model for a developing biofilm. Cells are aggregated into particles for computational efficiency, but the quorum-sensing mechanism is modelled as a stochastic process on the level of individual cells. Simulations are used to investigate different treatment regimens. The response to the addition of inhibitor is found to depend significantly on the form of the positive feedback in the quorum-sensing model; in cases where the model exhibits bistability, the time at which treatment is initiated proves to be critical for the effective prevention of quorum sensing and hence potentially of virulence. PMID:22374433

  8. A COMPUTATIONAL WORKBENCH ENVIRONMENT FOR VIRTUAL POWER PLANT SIMULATION

    SciTech Connect

    Mike Bockelie; Dave Swensen; Martin Denison; Connie Senior; Zumao Chen; Temi Linjewile; Adel Sarofim; Bene Risio

    2003-01-25

    This is the eighth Quarterly Technical Report for DOE Cooperative Agreement No: DE-FC26-00NT41047. The goal of the project is to develop and demonstrate a computational workbench for simulating the performance of Vision 21 Power Plant Systems. Within the last quarter, good progress has been made on all aspects of the project. Calculations for a full Vision 21 plant configuration have been performed for two coal types and two gasifier types. Good agreement with DOE computed values has been obtained for the Vision 21 configuration under ''baseline'' conditions. Additional model verification has been performed for the flowing slag model that has been implemented into the CFD based gasifier model. Comparisons for the slag, wall and syngas conditions predicted by our model versus values from predictive models that have been published by other researchers show good agreement. The software infrastructure of the Vision 21 workbench has been modified to use a recently released, upgraded version of SCIRun.

  9. Computer simulations for internal dosimetry using voxel models.

    PubMed

    Kinase, Sakae; Mohammadi, Akram; Takahashi, Masa; Saito, Kimiaki; Zankl, Maria; Kramer, Richard

    2011-07-01

    In the Japan Atomic Energy Agency, several studies have been conducted on the use of voxel models for internal dosimetry. Absorbed fractions (AFs) and S values have been evaluated for preclinical assessments of radiopharmaceuticals using human voxel models and a mouse voxel model. Computational calibration of in vivo measurement system has been also made using Japanese and Caucasian voxel models. In addition, for radiation protection of the environment, AFs have been evaluated using a frog voxel model. Each study was performed by using Monte Carlo simulations. Consequently, it was concluded that these data of Monte Carlo simulations and voxel models could adequately reproduce measurement results. Voxel models were found to be a significant tool for internal dosimetry since the models are anatomically realistic. This fact indicates that several studies on correction of the in vivo measurement efficiency for the variability of human subjects and interspecies scaling of organ doses will succeed.

  10. Multipole Algorithms for Molecular Dynamics Simulation on High Performance Computers.

    NASA Astrophysics Data System (ADS)

    Elliott, William Dewey

    1995-01-01

    A fundamental problem in modeling large molecular systems with molecular dynamics (MD) simulations is the underlying N-body problem of computing the interactions between all pairs of N atoms. The simplest algorithm to compute pair-wise atomic interactions scales in runtime {cal O}(N^2), making it impractical for interesting biomolecular systems, which can contain millions of atoms. Recently, several algorithms have become available that solve the N-body problem by computing the effects of all pair-wise interactions while scaling in runtime less than {cal O}(N^2). One algorithm, which scales {cal O}(N) for a uniform distribution of particles, is called the Greengard-Rokhlin Fast Multipole Algorithm (FMA). This work describes an FMA-like algorithm called the Molecular Dynamics Multipole Algorithm (MDMA). The algorithm contains several features that are new to N-body algorithms. MDMA uses new, efficient series expansion equations to compute general 1/r^{n } potentials to arbitrary accuracy. In particular, the 1/r Coulomb potential and the 1/r^6 portion of the Lennard-Jones potential are implemented. The new equations are based on multivariate Taylor series expansions. In addition, MDMA uses a cell-to-cell interaction region of cells that is closely tied to worst case error bounds. The worst case error bounds for MDMA are derived in this work also. These bounds apply to other multipole algorithms as well. Several implementation enhancements are described which apply to MDMA as well as other N-body algorithms such as FMA and tree codes. The mathematics of the cell -to-cell interactions are converted to the Fourier domain for reduced operation count and faster computation. A relative indexing scheme was devised to locate cells in the interaction region which allows efficient pre-computation of redundant information and prestorage of much of the cell-to-cell interaction. Also, MDMA was integrated into the MD program SIgMA to demonstrate the performance of the program over

  11. Simulation of reliability in multiserver computer networks

    NASA Astrophysics Data System (ADS)

    Minkevičius, Saulius

    2012-11-01

    The performance in terms of reliability of computer multiserver networks motivates this paper. The probability limit theorem is derived on the extreme queue length in open multiserver queueing networks in heavy traffic and applied to a reliability model for multiserver computer networks where we relate the time of failure of a multiserver computer network to the system parameters.

  12. Computational simulations of vorticity enhanced diffusion

    NASA Astrophysics Data System (ADS)

    Vold, Erik L.

    1999-11-01

    Computer simulations are used to investigate a phenomenon of vorticity enhanced diffusion (VED), a net transport and mixing of a passive scalar across a prescribed vortex flow field driven by a background gradient in the scalar quantity. The central issue under study here is the increase in scalar flux down the gradient and across the vortex field. The numerical scheme uses cylindrical coordinates centered with the vortex flow which allows an exact advective solution and 1D or 2D diffusion using simple numerical methods. In the results, the ratio of transport across a localized vortex region in the presence of the vortex flow over that expected for diffusion alone is evaluated as a measure of VED. This ratio is seen to increase dramatically while the absolute flux across the vortex decreases slowly as the diffusion coefficient is decreased. Similar results are found and compared for varying diffusion coefficient, D, or vortex rotation time, τv, for a constant background gradient in the transported scalar vs an interface in the transported quantity, and for vortex flow fields constant in time vs flow which evolves in time from an initial state and with a Schmidt number of order unity. A simple analysis shows that for a small diffusion coefficient, the flux ratio measure of VED scales as the vortex radius over the thickness for mass diffusion in a viscous shear layer within the vortex characterized by (Dτv)1/2. The phenomenon is linear as investigated here and suggests that a significant enhancement of mixing in fluids may be a relatively simple linear process. Discussion touches on how this vorticity enhanced diffusion may be related to mixing in nonlinear turbulent flows.

  13. Computer simulator for a mobile telephone system

    NASA Technical Reports Server (NTRS)

    Schilling, D. L.; Ziegler, C.

    1983-01-01

    A software simulator to help NASA in the design of the LMSS was developed. The simulator will be used to study the characteristics of implementation requirements of the LMSS's configuration with specifications as outlined by NASA.

  14. Laser powder bed fusion additive manufacturing of metals; physics, computational, and materials challenges

    NASA Astrophysics Data System (ADS)

    King, W. E.; Anderson, A. T.; Ferencz, R. M.; Hodge, N. E.; Kamath, C.; Khairallah, S. A.; Rubenchik, A. M.

    2015-12-01

    The production of metal parts via laser powder bed fusion additive manufacturing is growing exponentially. However, the transition of this technology from production of prototypes to production of critical parts is hindered by a lack of confidence in the quality of the part. Confidence can be established via a fundamental understanding of the physics of the process. It is generally accepted that this understanding will be increasingly achieved through modeling and simulation. However, there are significant physics, computational, and materials challenges stemming from the broad range of length and time scales and temperature ranges associated with the process. In this paper, we review the current state of the art and describe the challenges that need to be met to achieve the desired fundamental understanding of the physics of the process.

  15. Laser powder bed fusion additive manufacturing of metals; physics, computational, and materials challenges

    SciTech Connect

    King, W. E.; Anderson, A. T.; Ferencz, R. M.; Hodge, N. E.; Kamath, C.; Khairallah, S. A.; Rubencik, A. M.

    2015-12-29

    The production of metal parts via laser powder bed fusion additive manufacturing is growing exponentially. However, the transition of this technology from production of prototypes to production of critical parts is hindered by a lack of confidence in the quality of the part. Confidence can be established via a fundamental understanding of the physics of the process. It is generally accepted that this understanding will be increasingly achieved through modeling and simulation. However, there are significant physics, computational, and materials challenges stemming from the broad range of length and time scales and temperature ranges associated with the process. In this study, we review the current state of the art and describe the challenges that need to be met to achieve the desired fundamental understanding of the physics of the process.

  16. Laser powder bed fusion additive manufacturing of metals; physics, computational, and materials challenges

    DOE PAGES

    King, W. E.; Anderson, A. T.; Ferencz, R. M.; Hodge, N. E.; Kamath, C.; Khairallah, S. A.; Rubencik, A. M.

    2015-12-29

    The production of metal parts via laser powder bed fusion additive manufacturing is growing exponentially. However, the transition of this technology from production of prototypes to production of critical parts is hindered by a lack of confidence in the quality of the part. Confidence can be established via a fundamental understanding of the physics of the process. It is generally accepted that this understanding will be increasingly achieved through modeling and simulation. However, there are significant physics, computational, and materials challenges stemming from the broad range of length and time scales and temperature ranges associated with the process. In thismore » study, we review the current state of the art and describe the challenges that need to be met to achieve the desired fundamental understanding of the physics of the process.« less

  17. Additive Manufacturing and High-Performance Computing: a Disruptive Latent Technology

    NASA Astrophysics Data System (ADS)

    Goodwin, Bruce

    2015-03-01

    This presentation will discuss the relationship between recent advances in Additive Manufacturing (AM) technology, High-Performance Computing (HPC) simulation and design capabilities, and related advances in Uncertainty Quantification (UQ), and then examines their impacts upon national and international security. The presentation surveys how AM accelerates the fabrication process, while HPC combined with UQ provides a fast track for the engineering design cycle. The combination of AM and HPC/UQ almost eliminates the engineering design and prototype iterative cycle, thereby dramatically reducing cost of production and time-to-market. These methods thereby present significant benefits for US national interests, both civilian and military, in an age of austerity. Finally, considering cyber security issues and the advent of the ``cloud,'' these disruptive, currently latent technologies may well enable proliferation and so challenge both nuclear and non-nuclear aspects of international security.

  18. Laser powder bed fusion additive manufacturing of metals; physics, computational, and materials challenges

    SciTech Connect

    King, W. E.; Anderson, A. T.; Ferencz, R. M.; Hodge, N. E.; Khairallah, S. A.; Kamath, C.; Rubenchik, A. M.

    2015-12-15

    The production of metal parts via laser powder bed fusion additive manufacturing is growing exponentially. However, the transition of this technology from production of prototypes to production of critical parts is hindered by a lack of confidence in the quality of the part. Confidence can be established via a fundamental understanding of the physics of the process. It is generally accepted that this understanding will be increasingly achieved through modeling and simulation. However, there are significant physics, computational, and materials challenges stemming from the broad range of length and time scales and temperature ranges associated with the process. In this paper, we review the current state of the art and describe the challenges that need to be met to achieve the desired fundamental understanding of the physics of the process.

  19. Additives

    NASA Technical Reports Server (NTRS)

    Smalheer, C. V.

    1973-01-01

    The chemistry of lubricant additives is discussed to show what the additives are chemically and what functions they perform in the lubrication of various kinds of equipment. Current theories regarding the mode of action of lubricant additives are presented. The additive groups discussed include the following: (1) detergents and dispersants, (2) corrosion inhibitors, (3) antioxidants, (4) viscosity index improvers, (5) pour point depressants, and (6) antifouling agents.

  20. New Pedagogies on Teaching Science with Computer Simulations

    ERIC Educational Resources Information Center

    Khan, Samia

    2011-01-01

    Teaching science with computer simulations is a complex undertaking. This case study examines how an experienced science teacher taught chemistry using computer simulations and the impact of his teaching on his students. Classroom observations over 3 semesters, teacher interviews, and student surveys were collected. The data was analyzed for (1)…

  1. How Effective Is Instructional Support for Learning with Computer Simulations?

    ERIC Educational Resources Information Center

    Eckhardt, Marc; Urhahne, Detlef; Conrad, Olaf; Harms, Ute

    2013-01-01

    The study examined the effects of two different instructional interventions as support for scientific discovery learning using computer simulations. In two well-known categories of difficulty, data interpretation and self-regulation, instructional interventions for learning with computer simulations on the topic "ecosystem water" were developed…

  2. Computer-Based Simulation Models for Community College Business Students.

    ERIC Educational Resources Information Center

    Kahl, James

    Instructors at Lower Columbia College in Longview, Washington use computer-based simulation models in lower level business administration courses. Prior to use, teachers must select and obtain a simulation, discuss it with campus computer personnel, set an operations schedule, obtain the necessary supplementary material, and test run the program.…

  3. Explore Effective Use of Computer Simulations for Physics Education

    ERIC Educational Resources Information Center

    Lee, Yu-Fen; Guo, Yuying

    2008-01-01

    The dual purpose of this article is to provide a synthesis of the findings related to the use of computer simulations in physics education and to present implications for teachers and researchers in science education. We try to establish a conceptual framework for the utilization of computer simulations as a tool for learning and instruction in…

  4. Evaluation of Computer Simulations for Teaching Apparel Merchandising Concepts.

    ERIC Educational Resources Information Center

    Jolly, Laura D.; Sisler, Grovalynn

    1988-01-01

    The study developed and evaluated computer simulations for teaching apparel merchandising concepts. Evaluation results indicated that teaching method (computer simulation versus case study) does not significantly affect cognitive learning. Student attitudes varied, however, according to topic (profitable merchandising analysis versus retailing…

  5. Cognitive Effects from Process Learning with Computer-Based Simulations.

    ERIC Educational Resources Information Center

    Breuer, Klaus; Kummer, Ruediger

    1990-01-01

    Discusses content learning versus process learning, describes process learning with computer-based simulations, and highlights an empirical study on the effects of process learning with problem-oriented, computer-managed simulations in technical vocational education classes in West Germany. Process learning within a model of the cognitive system…

  6. Nonlinear simulations with and computational issues for NIMROD

    SciTech Connect

    Sovinec, C.R.

    1998-12-31

    The NIMROD (Non-Ideal Magnetohydrodynamics with Rotation, Open Discussion) code development project was commissioned by the US Department of Energy in February, 1996 to provide the fusion research community with a computational tool for studying low-frequency behavior in experiments. Specific problems of interest include the neoclassical evolution of magnetic islands and the nonlinear behavior of tearing modes in the presence of rotation and nonideal walls in tokamaks; they also include topics relevant to innovative confinement concepts such as magnetic turbulence. Besides having physics models appropriate for these phenomena, an additional requirement is the ability to perform the computations in realistic geometries. The NIMROD Team is using contemporary management and computational methods to develop a computational tool for investigating low-frequency behavior in plasma fusion experiments. The authors intend to make the code freely available, and are taking steps to make it as easy to learn and use as possible. An example application for NIMROD is the nonlinear toroidal RFP simulation--the first in a series to investigate how toroidal geometry affects MHD activity in RFPs. Finally, the most important issue facing the project is execution time, and they are exploring better matrix solvers and a better parallel decomposition to address this.

  7. Computers for real time flight simulation: A market survey

    NASA Technical Reports Server (NTRS)

    Bekey, G. A.; Karplus, W. J.

    1977-01-01

    An extensive computer market survey was made to determine those available systems suitable for current and future flight simulation studies at Ames Research Center. The primary requirement is for the computation of relatively high frequency content (5 Hz) math models representing powered lift flight vehicles. The Rotor Systems Research Aircraft (RSRA) was used as a benchmark vehicle for computation comparison studies. The general nature of helicopter simulations and a description of the benchmark model are presented, and some of the sources of simulation difficulties are examined. A description of various applicable computer architectures is presented, along with detailed discussions of leading candidate systems and comparisons between them.

  8. Performance Analysis of Cloud Computing Architectures Using Discrete Event Simulation

    NASA Technical Reports Server (NTRS)

    Stocker, John C.; Golomb, Andrew M.

    2011-01-01

    Cloud computing offers the economic benefit of on-demand resource allocation to meet changing enterprise computing needs. However, the flexibility of cloud computing is disadvantaged when compared to traditional hosting in providing predictable application and service performance. Cloud computing relies on resource scheduling in a virtualized network-centric server environment, which makes static performance analysis infeasible. We developed a discrete event simulation model to evaluate the overall effectiveness of organizations in executing their workflow in traditional and cloud computing architectures. The two part model framework characterizes both the demand using a probability distribution for each type of service request as well as enterprise computing resource constraints. Our simulations provide quantitative analysis to design and provision computing architectures that maximize overall mission effectiveness. We share our analysis of key resource constraints in cloud computing architectures and findings on the appropriateness of cloud computing in various applications.

  9. CPU SIM: A Computer Simulator for Use in an Introductory Computer Organization-Architecture Class.

    ERIC Educational Resources Information Center

    Skrein, Dale

    1994-01-01

    CPU SIM, an interactive low-level computer simulation package that runs on the Macintosh computer, is described. The program is designed for instructional use in the first or second year of undergraduate computer science, to teach various features of typical computer organization through hands-on exercises. (MSE)

  10. GPU-accelerated micromagnetic simulations using cloud computing

    NASA Astrophysics Data System (ADS)

    Jermain, C. L.; Rowlands, G. E.; Buhrman, R. A.; Ralph, D. C.

    2016-03-01

    Highly parallel graphics processing units (GPUs) can improve the speed of micromagnetic simulations significantly as compared to conventional computing using central processing units (CPUs). We present a strategy for performing GPU-accelerated micromagnetic simulations by utilizing cost-effective GPU access offered by cloud computing services with an open-source Python-based program for running the MuMax3 micromagnetics code remotely. We analyze the scaling and cost benefits of using cloud computing for micromagnetics.

  11. Case Studies in Computer Adaptive Test Design through Simulation.

    ERIC Educational Resources Information Center

    Eignor, Daniel R.; And Others

    The extensive computer simulation work done in developing the computer adaptive versions of the Graduate Record Examinations (GRE) Board General Test and the College Board Admissions Testing Program (ATP) Scholastic Aptitude Test (SAT) is described in this report. Both the GRE General and SAT computer adaptive tests (CATs), which are fixed length…

  12. Computational Electromagnetics (CEM) Laboratory: Simulation Planning Guide

    NASA Technical Reports Server (NTRS)

    Khayat, Michael A.

    2011-01-01

    The simulation process, milestones and inputs are unknowns to first-time users of the CEM Laboratory. The Simulation Planning Guide aids in establishing expectations for both NASA and non-NASA facility customers. The potential audience for this guide includes both internal and commercial spaceflight hardware/software developers. It is intended to assist their engineering personnel in simulation planning and execution. Material covered includes a roadmap of the simulation process, roles and responsibilities of facility and user, major milestones, facility capabilities, and inputs required by the facility. Samples of deliverables, facility interfaces, and inputs necessary to define scope, cost, and schedule are included as an appendix to the guide.

  13. Matching of additive and polarizable force fields for multiscale condensed phase simulations

    PubMed Central

    Baker, Christopher M.; Best, Robert B.

    2013-01-01

    Inclusion of electronic polarization effects is one of the key aspects in which the accuracy of current biomolecular force fields may be improved. The principal drawback of such approaches is the computational cost, which typically ranges from 3 – 10 times that of the equivalent additive model, and may be greater for more sophisticated treatments of polarization or other many-body effects. Here, we present a multiscale approach which may be used to enhance the sampling in simulations with polarizable models, by using the additive model as a tool to explore configuration space. We use a method based on information theory to determine the charges for an additive model that has optimal overlap with the polarizable one, and we demonstrate the feasibility of enhancing sampling via a hybrid replica exchange scheme for several model systems. An additional advantage is that, in the process, we obtain a systematic method for deriving charges for an additive model that will be the natural complement to its polarizable parent. The additive charges are found by an effective coarse-graining of the polarizable force field, rather than by ad hoc procedures. PMID:23997691

  14. Creating Science Simulations through Computational Thinking Patterns

    ERIC Educational Resources Information Center

    Basawapatna, Ashok Ram

    2012-01-01

    Computational thinking aims to outline fundamental skills from computer science that everyone should learn. As currently defined, with help from the National Science Foundation (NSF), these skills include problem formulation, logically organizing data, automating solutions through algorithmic thinking, and representing data through abstraction.…

  15. Realistic Display of Simulated Dynamic Response Using the Analog/Logic Computer.

    ERIC Educational Resources Information Center

    Cutchins, Malcolm A.

    1982-01-01

    Illustrates use of analog/logic computer to produce realistic display of the actual motion of computer simulations in addition to the usual variable-versus-time solution. An arbitrary vector-generating circuit is postulated and utilized in several examples, the most general of which shows vector length, angle, and position all changing with time.…

  16. Genetic Crossing vs Cloning by Computer Simulation

    NASA Astrophysics Data System (ADS)

    Dasgupta, Subinay

    We perform Monte Carlo simulation using Penna's bit string model, and compare the process of asexual reproduction by cloning with that by genetic crossover. We find them to be comparable as regards survival of a species, and also if a natural disaster is simulated.

  17. Spatial Learning and Computer Simulations in Science

    ERIC Educational Resources Information Center

    Lindgren, Robb; Schwartz, Daniel L.

    2009-01-01

    Interactive simulations are entering mainstream science education. Their effects on cognition and learning are often framed by the legacy of information processing, which emphasized amodal problem solving and conceptual organization. In contrast, this paper reviews simulations from the vantage of research on perception and spatial learning,…

  18. Genetic crossing vs cloning by computer simulation

    SciTech Connect

    Dasgupta, S.

    1997-06-01

    We perform Monte Carlo simulation using Penna`s bit string model, and compare the process of asexual reproduction by cloning with that by genetic crossover. We find them to be comparable as regards survival of a species, and also if a natural disaster is simulated.

  19. Computer-aided simulation of piston and piston ring dynamics

    SciTech Connect

    Knoll, G.; Peeken, H.; Lechtape-Grueter, R.; Lang, J.

    1996-10-01

    A numerical computer simulation program was developed, aiding in finding optimum design parameters in the multibody-system piston, piston-rings, and cylinder with respect to optimum sealing, minimal friction, and minimum noise stimulation(impact impulse). In the simulation of piston secondary movement and piston ring motion, forces arising from the combustion process, subsonic/supersonic gas flow between the combustion chamber and the crank case, inertial forces and forces resulting from the hydrodynamic lubrication between cylinder liner and piston shaft and piston rings and between piston ring flanks and piston grooves are considered. In addition it is possible to account for effects of global, three-dimensional ring deformation as well as local piston deformation, roughness effects in lubricated contacts, and variable viscosity and variable oil supply. The governing differential equations for the pressure as well as the deformation are solved via finite element techniques, while initial value problems are solved by efficient implicit time integration schemes. The application of the developed computer code is presented in examples.

  20. Parallel Computing Environments and Methods for Power Distribution System Simulation

    SciTech Connect

    Lu, Ning; Taylor, Zachary T.; Chassin, David P.; Guttromson, Ross T.; Studham, Scott S.

    2005-11-10

    The development of cost-effective high-performance parallel computing on multi-processor super computers makes it attractive to port excessively time consuming simulation software from personal computers (PC) to super computes. The power distribution system simulator (PDSS) takes a bottom-up approach and simulates load at appliance level, where detailed thermal models for appliances are used. This approach works well for a small power distribution system consisting of a few thousand appliances. When the number of appliances increases, the simulation uses up the PC memory and its run time increases to a point where the approach is no longer feasible to model a practical large power distribution system. This paper presents an effort made to port a PC-based power distribution system simulator (PDSS) to a 128-processor shared-memory super computer. The paper offers an overview of the parallel computing environment and a description of the modification made to the PDSS model. The performances of the PDSS running on a standalone PC and on the super computer are compared. Future research direction of utilizing parallel computing in the power distribution system simulation is also addressed.

  1. Use of advanced computers for aerodynamic flow simulation

    NASA Technical Reports Server (NTRS)

    Bailey, F. R.; Ballhaus, W. F.

    1980-01-01

    The current and projected use of advanced computers for large-scale aerodynamic flow simulation applied to engineering design and research is discussed. The design use of mature codes run on conventional, serial computers is compared with the fluid research use of new codes run on parallel and vector computers. The role of flow simulations in design is illustrated by the application of a three dimensional, inviscid, transonic code to the Sabreliner 60 wing redesign. Research computations that include a more complete description of the fluid physics by use of Reynolds averaged Navier-Stokes and large-eddy simulation formulations are also presented. Results of studies for a numerical aerodynamic simulation facility are used to project the feasibility of design applications employing these more advanced three dimensional viscous flow simulations.

  2. Radiotherapy Monte Carlo simulation using cloud computing technology.

    PubMed

    Poole, C M; Cornelius, I; Trapp, J V; Langton, C M

    2012-12-01

    Cloud computing allows for vast computational resources to be leveraged quickly and easily in bursts as and when required. Here we describe a technique that allows for Monte Carlo radiotherapy dose calculations to be performed using GEANT4 and executed in the cloud, with relative simulation cost and completion time evaluated as a function of machine count. As expected, simulation completion time decreases as 1/n for n parallel machines, and relative simulation cost is found to be optimal where n is a factor of the total simulation time in hours. Using the technique, we demonstrate the potential usefulness of cloud computing as a solution for rapid Monte Carlo simulation for radiotherapy dose calculation without the need for dedicated local computer hardware as a proof of principal.

  3. Some theoretical issues on computer simulations

    SciTech Connect

    Barrett, C.L.; Reidys, C.M.

    1998-02-01

    The subject of this paper is the development of mathematical foundations for a theory of simulation. Sequentially updated cellular automata (sCA) over arbitrary graphs are employed as a paradigmatic framework. In the development of the theory, the authors focus on the properties of causal dependencies among local mappings in a simulation. The main object of and study is the mapping between a graph representing the dependencies among entities of a simulation and a representing the equivalence classes of systems obtained by all possible updates.

  4. Atomistic Simulations of Ti Additions to NiAl

    NASA Technical Reports Server (NTRS)

    Bozzolo, Guillermo; Noebe, Ronald D.; Garg, Anita; Ferrante, John; Amador, Carlos

    1997-01-01

    The development of more efficient engines and power plants for future supersonic transports depends on the advancement of new high-temperature materials with temperature capabilities exceeding those of Ni-based superalloys. Having theoretical modelling techniques to aid in the design of these alloys would greatly facilitate this development. The present paper discusses a successful attempt to correlate theoretical predictions of alloy properties with experimental confirmation for ternary NiAl-Ti alloys. The B.F.S. (Bozzolo-Ferrante-Smith) method for alloys is used to predict the solubility limit and site preference energies for Ti additions of 1 to 25 at.% to NiAl. The results show the solubility limit to be around 5% Ti, above which the formation of Heusler precipitates is favored. These results were confirmed by transmission electron microscopy performed on a series of NiAl-Ti alloys.

  5. Computer simulation of water reclamation processors

    NASA Technical Reports Server (NTRS)

    Fisher, John W.; Hightower, T. M.; Flynn, Michael T.

    1991-01-01

    The development of detailed simulation models of water reclamation processors based on the ASPEN PLUS simulation program is discussed. Individual models have been developed for vapor compression distillation, vapor phase catalytic ammonia removal, and supercritical water oxidation. These models are used for predicting the process behavior. Particular attention is given to methodology which is used to complete this work, and the insights which are gained by this type of model development.

  6. Computer simulation of a few common process control systems

    SciTech Connect

    Muncy, M.P.

    1986-06-01

    This paper shows how to simulate five common process control systems on an IBM PC with a commercially available software package named TUTSIM. All steps involved in producing and checking each simulation are described as clearly as possible. Complete computer listings and output line plots are included to fully document each simulation. Sufficient information is provided so that readers of this paper can duplicate each simulation if they desire to do so. 10 refs., 13 figs., 11 tbls.

  7. Computer Simulation Performed for Columbia Project Cooling System

    NASA Technical Reports Server (NTRS)

    Ahmad, Jasim

    2005-01-01

    This demo shows a high-fidelity simulation of the air flow in the main computer room housing the Columbia (10,024 intel titanium processors) system. The simulation asseses the performance of the cooling system and identified deficiencies, and recommended modifications to eliminate them. It used two in house software packages on NAS supercomputers: Chimera Grid tools to generate a geometric model of the computer room, OVERFLOW-2 code for fluid and thermal simulation. This state-of-the-art technology can be easily extended to provide a general capability for air flow analyses on any modern computer room. Columbia_CFD_black.tiff

  8. A scalable parallel black oil simulator on distributed memory parallel computers

    NASA Astrophysics Data System (ADS)

    Wang, Kun; Liu, Hui; Chen, Zhangxin

    2015-11-01

    This paper presents our work on developing a parallel black oil simulator for distributed memory computers based on our in-house parallel platform. The parallel simulator is designed to overcome the performance issues of common simulators that are implemented for personal computers and workstations. The finite difference method is applied to discretize the black oil model. In addition, some advanced techniques are employed to strengthen the robustness and parallel scalability of the simulator, including an inexact Newton method, matrix decoupling methods, and algebraic multigrid methods. A new multi-stage preconditioner is proposed to accelerate the solution of linear systems from the Newton methods. Numerical experiments show that our simulator is scalable and efficient, and is capable of simulating extremely large-scale black oil problems with tens of millions of grid blocks using thousands of MPI processes on parallel computers.

  9. Additions and Improvements to the FLASH Code for Simulating High Energy Density Physics Experiments

    NASA Astrophysics Data System (ADS)

    Lamb, D. Q.; Daley, C.; Dubey, A.; Fatenejad, M.; Flocke, N.; Graziani, C.; Lee, D.; Tzeferacos, P.; Weide, K.

    2015-11-01

    FLASH is an open source, finite-volume Eulerian, spatially adaptive radiation hydrodynamics and magnetohydrodynamics code that incorporates capabilities for a broad range of physical processes, performs well on a wide range of computer architectures, and has a broad user base. Extensive capabilities have been added to FLASH to make it an open toolset for the academic high energy density physics (HEDP) community. We summarize these capabilities, with particular emphasis on recent additions and improvements. These include advancements in the optical ray tracing laser package, with methods such as bi-cubic 2D and tri-cubic 3D interpolation of electron number density, adaptive stepping and 2nd-, 3rd-, and 4th-order Runge-Kutta integration methods. Moreover, we showcase the simulated magnetic field diagnostic capabilities of the code, including induction coils, Faraday rotation, and proton radiography. We also describe several collaborations with the National Laboratories and the academic community in which FLASH has been used to simulate HEDP experiments. This work was supported in part at the University of Chicago by the DOE NNSA ASC through the Argonne Institute for Computing in Science under field work proposal 57789; and the NSF under grant PHY-0903997.

  10. Icing simulation: A survey of computer models and experimental facilities

    NASA Technical Reports Server (NTRS)

    Potapczuk, M. G.; Reinmann, J. J.

    1991-01-01

    A survey of the current methods for simulation of the response of an aircraft or aircraft subsystem to an icing encounter is presented. The topics discussed include a computer code modeling of aircraft icing and performance degradation, an evaluation of experimental facility simulation capabilities, and ice protection system evaluation tests in simulated icing conditions. Current research focussed on upgrading simulation fidelity of both experimental and computational methods is discussed. The need for increased understanding of the physical processes governing ice accretion, ice shedding, and iced airfoil aerodynamics is examined.

  11. Two inviscid computational simulations of separated flow about airfoils

    NASA Technical Reports Server (NTRS)

    Barnwell, R. W.

    1976-01-01

    Two inviscid computational simulations of separated flow about airfoils are described. The basic computational method is the line relaxation finite-difference method. Viscous separation is approximated with inviscid free-streamline separation. The point of separation is specified, and the pressure in the separation region is calculated. In the first simulation, the empiricism of constant pressure in the separation region is employed. This empiricism is easier to implement with the present method than with singularity methods. In the second simulation, acoustic theory is used to determine the pressure in the separation region. The results of both simulations are compared with experiment.

  12. Computer simulator for a mobile telephone system

    NASA Technical Reports Server (NTRS)

    Schilling, D. L.

    1981-01-01

    A software simulator was developed to assist NASA in the design of the land mobile satellite service. Structured programming techniques were used by developing the algorithm using an ALCOL-like pseudo language and then encoding the algorithm into FORTRAN 4. The basic input data to the system is a sine wave signal although future plans call for actual sampled voice as the input signal. The simulator is capable of studying all the possible combinations of types and modes of calls through the use of five communication scenarios: single hop systems; double hop, signal gateway system; double hop, double gateway system; mobile to wireline system; and wireline to mobile system. The transmitter, fading channel, and interference source simulation are also discussed.

  13. Wall-models for large eddy simulation based on a generic additive-filter formulation

    NASA Astrophysics Data System (ADS)

    Sanchez Rocha, Martin

    Based on the philosophy of only resolving the large scales of turbulent motion, Large Eddy Simulation (LES) has demonstrated potential to provide high-fidelity turbulence simulations at low computational cost. However, when the scales that control the turbulence in a particular flow are not large, LES has to increase significantly its computational cost to provide accurate predictions. This is the case in wall-bounded flows, where the grid resolution required by LES to resolve the near-wall structures is close to the requirements to resolve the smallest dissipative scales in turbulence. Therefore, to reduce this demanding requirement, it has been proposed to model the near-wall region with Reynolds-Averaged Navier-Stokes (RANS) models, in what is known as hybrid RANS/LES approach. In this work, the mathematical implications of merging two different turbulence modeling approaches are addressed by deriving the exact hybrid RANS/LES Navier-Stokes equations. These equations are derived by introducing an additive-filter, which linearly combines the RANS and LES operators with a blending function. The equations derived with the additive-filter predict additional hybrid terms, which represent the interactions between RANS and LES formulations. Theoretically, the prediction of the hybrid terms demonstrates that the hybridization of the two approaches cannot be accomplished only by the turbulence model equations, as it is claimed in current hybrid RANS/LES models. The importance of the exact hybrid RANS/LES equations is demonstrated by conducting numerical calculations on a turbulent flat-plate boundary layer. Results indicate that the hybrid terms help to maintain an equilibrated model transition when the hybrid formulation switches from RANS to LES. Results also indicate, that when the hybrid terms are not included, the accuracy of the calculations strongly relies on the blending function implemented in the additive-filter. On the other hand, if the exact equations are

  14. Numerical simulation of supersonic wake flow with parallel computers

    SciTech Connect

    Wong, C.C.; Soetrisno, M.

    1995-07-01

    Simulating a supersonic wake flow field behind a conical body is a computing intensive task. It requires a large number of computational cells to capture the dominant flow physics and a robust numerical algorithm to obtain a reliable solution. High performance parallel computers with unique distributed processing and data storage capability can provide this need. They have larger computational memory and faster computing time than conventional vector computers. We apply the PINCA Navier-Stokes code to simulate a wind-tunnel supersonic wake experiment on Intel Gamma, Intel Paragon, and IBM SP2 parallel computers. These simulations are performed to study the mean flow in the near wake region of a sharp, 7-degree half-angle, adiabatic cone at Mach number 4.3 and freestream Reynolds number of 40,600. Overall the numerical solutions capture the general features of the hypersonic laminar wake flow and compare favorably with the wind tunnel data. With a refined and clustering grid distribution in the recirculation zone, the calculated location of the rear stagnation point is consistent with the 2D axisymmetric and 3D experiments. In this study, we also demonstrate the importance of having a large local memory capacity within a computer node and the effective utilization of the number of computer nodes to achieve good parallel performance when simulating a complex, large-scale wake flow problem.

  15. Computer Simulation of Electric Field Lines.

    ERIC Educational Resources Information Center

    Kirkup, L.

    1985-01-01

    Describes a computer program which plots electric field line plots. Includes program listing, sample diagrams produced on a BBC model B microcomputer (which could be produced on other microcomputers by modifying the program), and a discussion of the properties of field lines. (JN)

  16. How Real Is a Computer Simulation?

    ERIC Educational Resources Information Center

    Higgins, John J.

    Two keywords "input" and "get," in the BASIC programming language provide a metaphor of the processes of response and intervention in a dialogue situation. Computer teaching activities can be programmed using one or both of these commands. There are at least five main types: the quiz or overt teaching program, the text processsing program, the…

  17. An Exercise in Biometrical Genetics Based on a Computer Simulation.

    ERIC Educational Resources Information Center

    Murphy, P. J.

    1983-01-01

    Describes an exercise in biometrical genetics based on the noninteractive use of a computer simulation of a wheat hydridization program. Advantages of using the material in this way are also discussed. (Author/JN)

  18. MINEXP, A Computer-Simulated Mineral Exploration Program

    ERIC Educational Resources Information Center

    Smith, Michael J.; And Others

    1978-01-01

    This computer simulation is designed to put students into a realistic decision making situation in mineral exploration. This program can be used with different exploration situations such as ore deposits, petroleum, ground water, etc. (MR)

  19. Parallel solvers for reservoir simulation on MIMD computers

    SciTech Connect

    Piault, E.; Willien, F.; Roux, F.X.

    1995-12-01

    We have investigated parallel solvers for reservoir simulation. We compare different solvers and preconditioners using T3D and SP1 parallel computers. We use block diagonal domain decomposition preconditioner with non-overlapping sub-domains.

  20. Computational Fluid Dynamic simulations of pipe elbow flow.

    SciTech Connect

    Homicz, Gregory Francis

    2004-08-01

    One problem facing today's nuclear power industry is flow-accelerated corrosion and erosion in pipe elbows. The Korean Atomic Energy Research Institute (KAERI) is performing experiments in their Flow-Accelerated Corrosion (FAC) test loop to better characterize these phenomena, and develop advanced sensor technologies for the condition monitoring of critical elbows on a continuous basis. In parallel with these experiments, Sandia National Laboratories is performing Computational Fluid Dynamic (CFD) simulations of the flow in one elbow of the FAC test loop. The simulations are being performed using the FLUENT commercial software developed and marketed by Fluent, Inc. The model geometry and mesh were created using the GAMBIT software, also from Fluent, Inc. This report documents the results of the simulations that have been made to date; baseline results employing the RNG k-e turbulence model are presented. The predicted value for the diametrical pressure coefficient is in reasonably good agreement with published correlations. Plots of the velocities, pressure field, wall shear stress, and turbulent kinetic energy adjacent to the wall are shown within the elbow section. Somewhat to our surprise, these indicate that the maximum values of both wall shear stress and turbulent kinetic energy occur near the elbow entrance, on the inner radius of the bend. Additional simulations were performed for the same conditions, but with the RNG k-e model replaced by either the standard k-{var_epsilon}, or the realizable k-{var_epsilon} turbulence model. The predictions using the standard k-{var_epsilon} model are quite similar to those obtained in the baseline simulation. However, with the realizable k-{var_epsilon} model, more significant differences are evident. The maximums in both wall shear stress and turbulent kinetic energy now appear on the outer radius, near the elbow exit, and are {approx}11% and 14% greater, respectively, than those predicted in the baseline calculation

  1. Advances in Monte Carlo computer simulation

    NASA Astrophysics Data System (ADS)

    Swendsen, Robert H.

    2011-03-01

    Since the invention of the Metropolis method in 1953, Monte Carlo methods have been shown to provide an efficient, practical approach to the calculation of physical properties in a wide variety of systems. In this talk, I will discuss some of the advances in the MC simulation of thermodynamics systems, with an emphasis on optimization to obtain a maximum of useful information.

  2. Bodies Falling with Air Resistance: Computer Simulation.

    ERIC Educational Resources Information Center

    Vest, Floyd

    1982-01-01

    Two models are presented. The first assumes that air resistance is proportional to the velocity of the falling body. The second assumes that air resistance is proportional to the square of the velocity. A program written in BASIC that simulates the second model is presented. (MP)

  3. Advanced Simulation and Computing Business Plan

    SciTech Connect

    Rummel, E.

    2015-07-09

    To maintain a credible nuclear weapons program, the National Nuclear Security Administration’s (NNSA’s) Office of Defense Programs (DP) needs to make certain that the capabilities, tools, and expert staff are in place and are able to deliver validated assessments. This requires a complete and robust simulation environment backed by an experimental program to test ASC Program models. This ASC Business Plan document encapsulates a complex set of elements, each of which is essential to the success of the simulation component of the Nuclear Security Enterprise. The ASC Business Plan addresses the hiring, mentoring, and retaining of programmatic technical staff responsible for building the simulation tools of the nuclear security complex. The ASC Business Plan describes how the ASC Program engages with industry partners—partners upon whom the ASC Program relies on for today’s and tomorrow’s high performance architectures. Each piece in this chain is essential to assure policymakers, who must make decisions based on the results of simulations, that they are receiving all the actionable information they need.

  4. Student Ecosystems Problem Solving Using Computer Simulation.

    ERIC Educational Resources Information Center

    Howse, Melissa A.

    The purpose of this study was to determine the procedural knowledge brought to, and created within, a pond ecology simulation by students. Environmental Decision Making (EDM) is an ecosystems modeling tool that allows users to pose their own problems and seek satisfying solutions. Of specific interest was the performance of biology majors who had…

  5. Monte Carlo simulations on SIMD computer architectures

    SciTech Connect

    Burmester, C.P.; Gronsky, R.; Wille, L.T.

    1992-03-01

    Algorithmic considerations regarding the implementation of various materials science applications of the Monte Carlo technique to single instruction multiple data (SMM) computer architectures are presented. In particular, implementation of the Ising model with nearest, next nearest, and long range screened Coulomb interactions on the SIMD architecture MasPar MP-1 (DEC mpp-12000) series of massively parallel computers is demonstrated. Methods of code development which optimize processor array use and minimize inter-processor communication are presented including lattice partitioning and the use of processor array spanning tree structures for data reduction. Both geometric and algorithmic parallel approaches are utilized. Benchmarks in terms of Monte Carlo updates per second for the MasPar architecture are presented and compared to values reported in the literature from comparable studies on other architectures.

  6. Launch Site Computer Simulation and its Application to Processes

    NASA Technical Reports Server (NTRS)

    Sham, Michael D.

    1995-01-01

    This paper provides an overview of computer simulation, the Lockheed developed STS Processing Model, and the application of computer simulation to a wide range of processes. The STS Processing Model is an icon driven model that uses commercial off the shelf software and a Macintosh personal computer. While it usually takes one year to process and launch 8 space shuttles, with the STS Processing Model this process is computer simulated in about 5 minutes. Facilities, orbiters, or ground support equipment can be added or deleted and the impact on launch rate, facility utilization, or other factors measured as desired. This same computer simulation technology can be used to simulate manufacturing, engineering, commercial, or business processes. The technology does not require an 'army' of software engineers to develop and operate, but instead can be used by the layman with only a minimal amount of training. Instead of making changes to a process and realizing the results after the fact, with computer simulation, changes can be made and processes perfected before they are implemented.

  7. Conceptually enhanced simulations: A computer tool for science teaching

    NASA Astrophysics Data System (ADS)

    Snir, Joseph; Smith, Carol; Grosslight, Lorraine

    1993-06-01

    In this paper, we consider a way computer simulations can be used to address the problem of teaching for conceptual change and understanding. After identifying three levels of understanding of a natural phenomenon (concrete, conceptual, and metaconceptual) that need to be addressed in school science, and classifying computer model systems and simulations more generally in terms of the design choices facing the programmer, we argue that there are ways to design computer simulations that can make them more powerful than laboratory models. In particular, computer simulations that provide an explicit representation for a set of interrelated concepts allow students to perceive what cannot be directly observed in laboratory experiments: representations for the concepts and ideas used for interpreting the experiment. Further, by embedding the relevant physical laws directly into the program code, these simulations allow for genuine discoveries. We describe how we applied these ideas in developing a computer simulation for a particular set of purposes: to help students grasp the distinction between mass and density and to understand the phenomenon of flotation in terms of these concepts. Finally, we reflect on the kinds of activities such conceptually enhanced simulations allow that may be important in bringing about the desired conceptual change.

  8. Computational Aerothermodynamic Simulation Issues on Unstructured Grids

    NASA Technical Reports Server (NTRS)

    Gnoffo, Peter A.; White, Jeffery A.

    2004-01-01

    The synthesis of physical models for gas chemistry and turbulence from the structured grid codes LAURA and VULCAN into the unstructured grid code FUN3D is described. A directionally Symmetric, Total Variation Diminishing (STVD) algorithm and an entropy fix (eigenvalue limiter) keyed to local cell Reynolds number are introduced to improve solution quality for hypersonic aeroheating applications. A simple grid-adaptation procedure is incorporated within the flow solver. Simulations of flow over an ellipsoid (perfect gas, inviscid), Shuttle Orbiter (viscous, chemical nonequilibrium) and comparisons to the structured grid solvers LAURA (cylinder, Shuttle Orbiter) and VULCAN (flat plate) are presented to show current capabilities. The quality of heating in 3D stagnation regions is very sensitive to algorithm options in general, high aspect ratio tetrahedral elements complicate the simulation of high Reynolds number, viscous flow as compared to locally structured meshes aligned with the flow.

  9. Computer simulations of particle-surface dynamics

    SciTech Connect

    Karo, A.M.; Hiskes, J.R.; DeBoni, T.M.

    1986-10-01

    Our simulations of particle-surface dynamics use the molecular dynamics codes that we have developed over the past several years. The initial state of a molecule and the parameters defining the incoming trajectory can be specifically described or randomly selected. Statistical analyses of the states of the particles and their trajectories following wall collisions are carried out by the code. We have carried out calculations at high center-of-mass energies and low incidence angles and have examined the survival fraction of molecules and the dependence upon the incoming trajectory. We report also on preliminary efforts that are being made to simulate sputtering and recombinant desorption processes, since the recombinant desorption of hydrogen from typical wall materials may be an important source for vibrationally-excited hydrogen in volume sources; for surface sources the presence of occluded hydrogen may affect the concentration of atomic species.

  10. Computer simulation of surface and film processes

    NASA Technical Reports Server (NTRS)

    Tiller, W. A.

    1981-01-01

    A molecular dynamics technique based upon Lennard-Jones type pair interactions is used to investigate time-dependent as well as equilibrium properties. The case study deals with systems containing Si and O atoms. In this case a more involved potential energy function (PEF) is employed and the system is simulated via a Monte-Carlo procedure. This furnishes the equilibrium properties of the system at its interfaces and surfaces as well as in the bulk.

  11. Computer simulation of a geomagnetic substorm

    NASA Technical Reports Server (NTRS)

    Lyon, J. G.; Brecht, S. H.; Huba, J. D.; Fedder, J. A.; Palmadesso, P. J.

    1981-01-01

    A global two-dimensional simulation of a substormlike process occurring in earth's magnetosphere is presented. The results are consistent with an empirical substorm model - the neutral-line model. Specifically, the introduction of a southward interplanetary magnetic field forms an open magnetosphere. Subsequently, a substorm neutral line forms at about 15 earth radii or closer in the magnetotail, and plasma sheet thinning and plasma acceleration occur. Eventually the substorm neutral line moves tailward toward its presubstorm position.

  12. The Use of Computer Simulations in High School Curricula.

    ERIC Educational Resources Information Center

    Visich, Marian, Jr.; Braun, Ludwig

    The Huntington Computer Project has developed 17 simulation games which can be used for instructional purposes in high schools. These games were designed to run on digital computers and to deal with material from either biology, physics, or social studies. Distribution was achieved through the Digital Equipment Corporation, which disseminated…

  13. Evaluation of a Computer Simulation in a Therapeutics Case Discussion.

    ERIC Educational Resources Information Center

    Kinkade, Raenel E.; And Others

    1995-01-01

    A computer program was used to simulate a case presentation in pharmacotherapeutics. Students (n=24) used their knowledge of the disease (glaucoma) and various topical agents on the computer program's formulary to "treat" the patient. Comparison of results with a control group found the method as effective as traditional case presentation on…

  14. Application Of Computer Simulation To The Entertainment Industry

    NASA Astrophysics Data System (ADS)

    Mittelman, Phillip S.

    1983-10-01

    Images generated by computer have started to appear in feature films (TRON, Star Trek II), in television commercials and in animated films. Of particular interest is the use of computer generated imagery which simulates the images which a real camera might have made if the imaged objects had been real.

  15. A Digital Computer Simulation of Cardiovascular and Renal Physiology.

    ERIC Educational Resources Information Center

    Tidball, Charles S.

    1979-01-01

    Presents the physiological MACPEE, one of a family of digital computer simulations used in Canada and Great Britain. A general description of the model is provided, along with a sample of computer output format, options for making interventions, advanced capabilities, an evaluation, and technical information for running a MAC model. (MA)

  16. COFLO: A Computer Aid for Teaching Ecological Simulation.

    ERIC Educational Resources Information Center

    Le vow, Roy B.

    A computer-assisted course was designed to provide students with an understanding of modeling and simulation techniques in quantitiative ecology. It deals with continuous systems and has two segments. One develops mathematical and computer tools, beginning with abstract systems and their relation to physical systems. Modeling principles are next…

  17. Remote access of the ILLIAC 4. [computer flow distribution simulations

    NASA Technical Reports Server (NTRS)

    Stevens, K. G., Jr.

    1975-01-01

    The ILLIAC-4 hardware is described. The Illiac system, the Advanced Research Projects Agency computer network, and IMLAC PDS-1 are included. The space shuttle flow simulation is demonstrated to show the feasibility of using an advanced computer from a remote location.

  18. Cardiovascular Physiology Teaching: Computer Simulations vs. Animal Demonstrations.

    ERIC Educational Resources Information Center

    Samsel, Richard W.; And Others

    1994-01-01

    At the introductory level, the computer provides an effective alternative to using animals for laboratory teaching. Computer software can simulate the operation of multiple organ systems. Advantages of software include alteration of variables that are not easily changed in vivo, repeated interventions, and cost-effective hands-on student access.…

  19. Use of Computer Simulations in Microbial and Molecular Genetics.

    ERIC Educational Resources Information Center

    Wood, Peter

    1984-01-01

    Describes five computer programs: four simulations of genetic and physical mapping experiments and one interactive learning program on the genetic coding mechanism. The programs were originally written in BASIC for the VAX-11/750 V.3. mainframe computer and have been translated into Applesoft BASIC for Apple IIe microcomputers. (JN)

  20. Coached, Interactive Computer Simulations: A New Technology for Training.

    ERIC Educational Resources Information Center

    Hummel, Thomas J.

    This paper provides an overview of a prototype simulation-centered intelligent computer-based training (CBT) system--implemented using expert system technology--which provides: (1) an environment in which trainees can learn and practice complex skills; (2) a computer-based coach or mentor to critique performance, suggest improvements, and provide…

  1. The Design, Development, and Evaluation of an Evaluative Computer Simulation.

    ERIC Educational Resources Information Center

    Ehrlich, Lisa R.

    This paper discusses evaluation design considerations for a computer based evaluation simulation developed at the University of Iowa College of Medicine in Cardiology to assess the diagnostic skills of primary care physicians and medical students. The simulation developed allows for the assessment of diagnostic skills of physicians in the…

  2. Computer Simulation of Laboratory Experiments: An Unrealized Potential.

    ERIC Educational Resources Information Center

    Magin, D. J.; Reizes, J. A.

    1990-01-01

    Discussion of the use of computer simulation for laboratory experiments in undergraduate engineering education focuses on work at the University of New South Wales in the instructional design and software development of a package simulating a heat exchange device. The importance of integrating theory, design, and experimentation is also discussed.…

  3. Students from Many Countries Use Computers to Simulate International Negotiations.

    ERIC Educational Resources Information Center

    Wilson, David L.

    1991-01-01

    College students around the world confer by computer in the International Communications and Negotiation Simulation. The simulation is offered by schools within the curriculum or as an extracurricular activity, with faculty as coordinators. Student teams are given scenarios and country assignments, prepare a position paper, and participate in the…

  4. Investigating the Effectiveness of Computer Simulations for Chemistry Learning

    ERIC Educational Resources Information Center

    Plass, Jan L.; Milne, Catherine; Homer, Bruce D.; Schwartz, Ruth N.; Hayward, Elizabeth O.; Jordan, Trace; Verkuilen, Jay; Ng, Florrie; Wang, Yan; Barrientos, Juan

    2012-01-01

    Are well-designed computer simulations an effective tool to support student understanding of complex concepts in chemistry when integrated into high school science classrooms? We investigated scaling up the use of a sequence of simulations of kinetic molecular theory and associated topics of diffusion, gas laws, and phase change, which we designed…

  5. Computer Simulation of the Population Growth (Schizosaccharomyces Pombe) Experiment.

    ERIC Educational Resources Information Center

    Daley, Michael; Hillier, Douglas

    1981-01-01

    Describes a computer program (available from authors) developed to simulate "Growth of a Population (Yeast) Experiment." Students actively revise the counting techniques with realistically simulated haemocytometer or eye-piece grid and are reminded of the necessary dilution technique. Program can be modified to introduce such variables as…

  6. Computer Simulation as an Aid to Managers of Training.

    ERIC Educational Resources Information Center

    Wagner, Harold; Butler, Patrick J.

    Research investigated computer simulations of a hypothetical self-paced training program to determine the utility of this technique as a planning aid for Army training program managers. The General Purpose Simulation System (GPSS) was selected as the programing language and the study was divided into three stages. In Stage I, the daily number of…

  7. Effectiveness of an Endodontic Diagnosis Computer Simulation Program.

    ERIC Educational Resources Information Center

    Fouad, Ashraf F.; Burleson, Joseph A.

    1997-01-01

    Effectiveness of a computer simulation to teach endodontic diagnosis was assessed using three groups (n=34,32,24) of dental students. All were lectured on diagnosis, pathology, and radiographic interpretation. One group then used the simulation, another had a seminar on the same material, and the third group had no further instruction. Results…

  8. Enhancing Computer Science Education with a Wireless Intelligent Simulation Environment

    ERIC Educational Resources Information Center

    Cook, Diane J.; Huber, Manfred; Yerraballi, Ramesh; Holder, Lawrence B.

    2004-01-01

    The goal of this project is to develop a unique simulation environment that can be used to increase students' interest and expertise in Computer Science curriculum. Hands-on experience with physical or simulated equipment is an essential ingredient for learning, but many approaches to training develop a separate piece of equipment or software for…

  9. Design Model for Learner-Centered, Computer-Based Simulations.

    ERIC Educational Resources Information Center

    Hawley, Chandra L.; Duffy, Thomas M.

    This paper presents a model for designing computer-based simulation environments within a constructivist framework for the K-12 school setting. The following primary criteria for the development of simulations are proposed: (1) the problem needs to be authentic; (2) the cognitive demand in learning should be authentic; (3) scaffolding supports a…

  10. Computer simulation program is adaptable to industrial processes

    NASA Technical Reports Server (NTRS)

    Schultz, F. E.

    1966-01-01

    The Reaction kinetics ablation program /REKAP/, developed to simulate ablation of various materials, provides mathematical formulations for computer programs which can simulate certain industrial processes. The programs are based on the use of nonsymmetrical difference equations that are employed to solve complex partial differential equation systems.

  11. A computer simulator for development of engineering system design methodologies

    NASA Technical Reports Server (NTRS)

    Padula, S. L.; Sobieszczanski-Sobieski, J.

    1987-01-01

    A computer program designed to simulate and improve engineering system design methodology is described. The simulator mimics the qualitative behavior and data couplings occurring among the subsystems of a complex engineering system. It eliminates the engineering analyses in the subsystems by replacing them with judiciously chosen analytical functions. With the cost of analysis eliminated, the simulator is used for experimentation with a large variety of candidate algorithms for multilevel design optimization to choose the best ones for the actual application. Thus, the simulator serves as a development tool for multilevel design optimization strategy. The simulator concept, implementation, and status are described and illustrated with examples.

  12. Computer simulation of chemical reactions in porous materials

    NASA Astrophysics Data System (ADS)

    Turner, Christoffer Heath

    Understanding reactions in nanoporous materials from a purely experimental perspective is a difficult task. Measuring the chemical composition of a reacting system within a catalytic material is usually only accomplished through indirect methods, and it is usually impossible to distinguish between true chemical equilibrium and metastable states. In addition, measuring molecular orientation or distribution profiles within porous systems is not easily accomplished. However, molecular simulation techniques are well-suited to these challenges. With appropriate simulation techniques and realistic molecular models, it is possible to validate the dominant physical and chemical forces controlling nanoscale reactivity. Novel nanostructured catalysts and supports can be designed, optimized, and tested using high-performance computing and advanced modeling techniques in order to guide the search for next-generation catalysts---setting new targets for the materials synthesis community. We have simulated the conversion of several different equilibrium-limited reactions within microporous carbons and we find that the pore size, pore geometry, and surface chemistry are important factors for determining the reaction yield. The equilibrium-limited reactions that we have modeled include nitric oxide dimerization, ammonia synthesis, and the esterification of acetic acid, all of which show yield enhancements within microporous carbons. In conjunction with a yield enhancement of the esterification reaction, selective adsorption of ethyl acetate within carbon micropores demonstrates an efficient method for product recovery. Additionally, a new method has been developed for simulating reaction kinetics within porous materials and other heterogeneous environments. The validity of this technique is first demonstrated by reproducing the kinetics of hydrogen iodide decomposition in the gas phase, and then predictions are made within slit-shaped carbon pores and carbon nanotubes. The rate

  13. Computer Models Simulate Fine Particle Dispersion

    NASA Technical Reports Server (NTRS)

    2010-01-01

    Through a NASA Seed Fund partnership with DEM Solutions Inc., of Lebanon, New Hampshire, scientists at Kennedy Space Center refined existing software to study the electrostatic phenomena of granular and bulk materials as they apply to planetary surfaces. The software, EDEM, allows users to import particles and obtain accurate representations of their shapes for modeling purposes, such as simulating bulk solids behavior, and was enhanced to be able to more accurately model fine, abrasive, cohesive particles. These new EDEM capabilities can be applied in many industries unrelated to space exploration and have been adopted by several prominent U.S. companies, including John Deere, Pfizer, and Procter & Gamble.

  14. Computer Simulations of Coupled Piano Strings

    NASA Astrophysics Data System (ADS)

    Albert, Destiny L.

    1997-03-01

    The behavior of coupled piano strings is studied by using a finite difference scheme. The coupling of the strings produce motion in two transverse directions, parallel and perpendicular to the soundboard. The sound induced shows two decay rates, a rapid decay followed by a slow decay. These effects are in agreement with experimental results. (Weinreich, Gabriel. "The Coupled Motion of Piano Strings." Scientific American. January 1979) . Our simulations suggest that the motion of the end supports contributes to the elliptical motion of the strings. Furthermore, multiple strings contribute to the quality of the sound produced by a piano.

  15. Computer simulations for minds-on learning with ``Project Spectra!''

    NASA Astrophysics Data System (ADS)

    Wood, E. L.; Renfrow, S.; Marks, N.; Christofferson, R.

    2010-12-01

    How do we gain information about the Sun? How do we know Mars has CO2 or that Titan has a nitrogen-rich atmosphere? How do we use light in astronomy? These concepts are something education professionals generally struggle with because they are abstract. Making use of visualizations and presenting material so it can be manipulated is the easiest way to conquer abstractions to bring them home to students. Using simulations and computer interactives (games) where students experience and manipulate the information makes concepts accessible. “Project Spectra!” is a science and engineering program that uses computer-based Flash interactives to expose students to astronomical spectroscopy and actual data in a way that is not possible with traditional in-class activities. Visualizing lessons with multi-media is a way to solidify understanding and retention of knowledge and is completely unlike its paper-and-pencil counterpart. To engage students in “Project Spectra!”, students are given a mission, which connects them with the research at hand. Missions range from exploring remote planetary atmospheres and surfaces, experimenting with the Sun using different filters, and comparing spectroscopic atmospheric features between different bodies. Additionally, students have an opportunity to learn about NASA missions, view movies, and see images connected with their mission. In the end, students are asked critical thinking questions and conduct web-based research. These interactives complement the in-class activities where students engineer spectrographs and explore the electromagnetic spectrum.

  16. Computer Simulations to Support Science Instruction and Learning: A critical review of the literature

    NASA Astrophysics Data System (ADS)

    Smetana, Lara Kathleen; Bell, Randy L.

    2012-06-01

    Researchers have explored the effectiveness of computer simulations for supporting science teaching and learning during the past four decades. The purpose of this paper is to provide a comprehensive, critical review of the literature on the impact of computer simulations on science teaching and learning, with the goal of summarizing what is currently known and providing guidance for future research. We report on the outcomes of 61 empirical studies dealing with the efficacy of, and implications for, computer simulations in science instruction. The overall findings suggest that simulations can be as effective, and in many ways more effective, than traditional (i.e. lecture-based, textbook-based and/or physical hands-on) instructional practices in promoting science content knowledge, developing process skills, and facilitating conceptual change. As with any other educational tool, the effectiveness of computer simulations is dependent upon the ways in which they are used. Thus, we outline specific research-based guidelines for best practice. Computer simulations are most effective when they (a) are used as supplements; (b) incorporate high-quality support structures; (c) encourage student reflection; and (d) promote cognitive dissonance. Used appropriately, computer simulations involve students in inquiry-based, authentic science explorations. Additionally, as educational technologies continue to evolve, advantages such as flexibility, safety, and efficiency deserve attention.

  17. Advanced computer graphic techniques for laser range finder (LRF) simulation

    NASA Astrophysics Data System (ADS)

    Bedkowski, Janusz; Jankowski, Stanislaw

    2008-11-01

    This paper show an advanced computer graphic techniques for laser range finder (LRF) simulation. The LRF is the common sensor for unmanned ground vehicle, autonomous mobile robot and security applications. The cost of the measurement system is extremely high, therefore the simulation tool is designed. The simulation gives an opportunity to execute algorithm such as the obstacle avoidance[1], slam for robot localization[2], detection of vegetation and water obstacles in surroundings of the robot chassis[3], LRF measurement in crowd of people[1]. The Axis Aligned Bounding Box (AABB) and alternative technique based on CUDA (NVIDIA Compute Unified Device Architecture) is presented.

  18. A heterogeneous computing environment for simulating astrophysical fluid flows

    NASA Technical Reports Server (NTRS)

    Cazes, J.

    1994-01-01

    In the Concurrent Computing Laboratory in the Department of Physics and Astronomy at Louisiana State University we have constructed a heterogeneous computing environment that permits us to routinely simulate complicated three-dimensional fluid flows and to readily visualize the results of each simulation via three-dimensional animation sequences. An 8192-node MasPar MP-1 computer with 0.5 GBytes of RAM provides 250 MFlops of execution speed for our fluid flow simulations. Utilizing the parallel virtual machine (PVM) language, at periodic intervals data is automatically transferred from the MP-1 to a cluster of workstations where individual three-dimensional images are rendered for inclusion in a single animation sequence. Work is underway to replace executions on the MP-1 with simulations performed on the 512-node CM-5 at NCSA and to simultaneously gain access to more potent volume rendering workstations.

  19. Positive Wigner Functions Render Classical Simulation of Quantum Computation Efficient

    NASA Astrophysics Data System (ADS)

    Mari, A.; Eisert, J.

    2012-12-01

    We show that quantum circuits where the initial state and all the following quantum operations can be represented by positive Wigner functions can be classically efficiently simulated. This is true both for continuous-variable as well as discrete variable systems in odd prime dimensions, two cases which will be treated on entirely the same footing. Noting the fact that Clifford and Gaussian operations preserve the positivity of the Wigner function, our result generalizes the Gottesman-Knill theorem. Our algorithm provides a way of sampling from the output distribution of a computation or a simulation, including the efficient sampling from an approximate output distribution in the case of sampling imperfections for initial states, gates, or measurements. In this sense, this work highlights the role of the positive Wigner function as separating classically efficiently simulable systems from those that are potentially universal for quantum computing and simulation, and it emphasizes the role of negativity of the Wigner function as a computational resource.

  20. A demonstrative model of a lunar base simulation on a personal computer

    NASA Technical Reports Server (NTRS)

    1985-01-01

    The initial demonstration model of a lunar base simulation is described. This initial model was developed on the personal computer level to demonstrate feasibility and technique before proceeding to a larger computer-based model. Lotus Symphony Version 1.1 software was used to base the demonstration model on an personal computer with an MS-DOS operating system. The personal computer-based model determined the applicability of lunar base modeling techniques developed at an LSPI/NASA workshop. In addition, the personnal computer-based demonstration model defined a modeling structure that could be employed on a larger, more comprehensive VAX-based lunar base simulation. Refinement of this personal computer model and the development of a VAX-based model is planned in the near future.

  1. Computer Simulations of Supercooled Liquids and Glasses

    NASA Astrophysics Data System (ADS)

    Kob, Walter

    Glasses are materials that are ubiquitous in our daily life. We find them in such diverse items as window pans, optical fibers, computer chips, ceramics, all of which are oxide glasses, as well as in food, foams, polymers, gels, which are mainly of organic nature. Roughly speaking glasses are solid materials that have no translational or orientational order on the scale beyond O(10) diameters of the constituent particles (atoms, colloids, …) [1]. Note that these materials are not necessarily homogeneous since, e.g., alkali-glasses such as Na2O-SiO2 show (disordered!) structural features on the length scale of 6-10 Å (compare to the interatomic distance of 1-2 Å) and gels can have structural inhomogeneities that extend up to macroscopic length scales.

  2. Computing abstraction hierarchies by numerical simulation

    SciTech Connect

    Bundy, A.; Giunchiglia, F.; Sebastiani, R.; Walsh, T.

    1996-12-31

    We present a novel method for building ABSTRIPS-style abstraction hierarchies in planning. The aim of this method is to minimize the amount of backtracking between abstraction levels. Previous approaches have determined the criticality of operator preconditions by reasoning about plans directly. Here, we adopt a simpler and faster approach where we use numerical simulation of the planning process. We demonstrate the theoretical advantages of our approach by identifying some simple properties lacking in previous approaches but possessed by our method. We demonstrate the empirical advantages of our approach by a set of four benchmark experiments using the ABTWEAK system. We compare the quality of the abstraction hierarchies generated with those built by the ALPINE and HIGHPOINT algorithms.

  3. Computer simulations of adsorbed liquid crystal films

    NASA Astrophysics Data System (ADS)

    Wall, Greg D.; Cleaver, Douglas J.

    2003-01-01

    The structures adopted by adsorbed thin films of Gay-Berne particles in the presence of a coexisting vapour phase are investigated by molecular dynamics simulation. The films are adsorbed at a flat substrate which favours planar anchoring, whereas the nematic-vapour interface favours normal alignment. On cooling, a system with a high molecule-substrate interaction strength exhibits substrate-induced planar orientational ordering and considerable stratification is observed in the density profiles. In contrast, a system with weak molecule-substrate coupling adopts a director orientation orthogonal to the substrate plane, owing to the increased influence of the nematic-vapour interface. There are significant differences between the structures adopted at the two interfaces, in contrast with the predictions of density functional treatments of such systems.

  4. Computational Simulations and the Scientific Method

    NASA Technical Reports Server (NTRS)

    Kleb, Bil; Wood, Bill

    2005-01-01

    As scientific simulation software becomes more complicated, the scientific-software implementor's need for component tests from new model developers becomes more crucial. The community's ability to follow the basic premise of the Scientific Method requires independently repeatable experiments, and model innovators are in the best position to create these test fixtures. Scientific software developers also need to quickly judge the value of the new model, i.e., its cost-to-benefit ratio in terms of gains provided by the new model and implementation risks such as cost, time, and quality. This paper asks two questions. The first is whether other scientific software developers would find published component tests useful, and the second is whether model innovators think publishing test fixtures is a feasible approach.

  5. Osmosis : a molecular dynamics computer simulation study

    NASA Astrophysics Data System (ADS)

    Lion, Thomas

    Osmosis is a phenomenon of critical importance in a variety of processes ranging from the transport of ions across cell membranes and the regulation of blood salt levels by the kidneys to the desalination of water and the production of clean energy using potential osmotic power plants. However, despite its importance and over one hundred years of study, there is an ongoing confusion concerning the nature of the microscopic dynamics of the solvent particles in their transfer across the membrane. In this thesis the microscopic dynamical processes underlying osmotic pressure and concentration gradients are investigated using molecular dynamics (MD) simulations. I first present a new derivation for the local pressure that can be used for determining osmotic pressure gradients. Using this result, the steady-state osmotic pressure is studied in a minimal model for an osmotic system and the steady-state density gradients are explained using a simple mechanistic hopping model for the solvent particles. The simulation setup is then modified, allowing us to explore the timescales involved in the relaxation dynamics of the system in the period preceding the steady state. Further consideration is also given to the relative roles of diffusive and non-diffusive solvent transport in this period. Finally, in a novel modification to the classic osmosis experiment, the solute particles are driven out-of-equilibrium by the input of energy. The effect of this modification on the osmotic pressure and the osmotic ow is studied and we find that active solute particles can cause reverse osmosis to occur. The possibility of defining a new "osmotic effective temperature" is also considered and compared to the results of diffusive and kinetic temperatures..

  6. Computation simulation of the nonlinear response of suspension bridges

    SciTech Connect

    McCallen, D.B.; Astaneh-Asl, A.

    1997-10-01

    Accurate computational simulation of the dynamic response of long- span bridges presents one of the greatest challenges facing the earthquake engineering community The size of these structures, in terms of physical dimensions and number of main load bearing members, makes computational simulation of transient response an arduous task. Discretization of a large bridge with general purpose finite element software often results in a computational model of such size that excessive computational effort is required for three dimensional nonlinear analyses. The aim of the current study was the development of efficient, computationally based methodologies for the nonlinear analysis of cable supported bridge systems which would allow accurate characterization of a bridge with a relatively small number of degrees of freedom. This work has lead to the development of a special purpose software program for the nonlinear analysis of cable supported bridges and the methodologies and software are described and illustrated in this paper.

  7. Toward real-time Monte Carlo simulation using a commercial cloud computing infrastructure.

    PubMed

    Wang, Henry; Ma, Yunzhi; Pratx, Guillem; Xing, Lei

    2011-09-01

    Monte Carlo (MC) methods are the gold standard for modeling photon and electron transport in a heterogeneous medium; however, their computational cost prohibits their routine use in the clinic. Cloud computing, wherein computing resources are allocated on-demand from a third party, is a new approach for high performance computing and is implemented to perform ultra-fast MC calculation in radiation therapy. We deployed the EGS5 MC package in a commercial cloud environment. Launched from a single local computer with Internet access, a Python script allocates a remote virtual cluster. A handshaking protocol designates master and worker nodes. The EGS5 binaries and the simulation data are initially loaded onto the master node. The simulation is then distributed among independent worker nodes via the message passing interface, and the results aggregated on the local computer for display and data analysis. The described approach is evaluated for pencil beams and broad beams of high-energy electrons and photons. The output of cloud-based MC simulation is identical to that produced by single-threaded implementation. For 1 million electrons, a simulation that takes 2.58 h on a local computer can be executed in 3.3 min on the cloud with 100 nodes, a 47× speed-up. Simulation time scales inversely with the number of parallel nodes. The parallelization overhead is also negligible for large simulations. Cloud computing represents one of the most important recent advances in supercomputing technology and provides a promising platform for substantially improved MC simulation. In addition to the significant speed up, cloud computing builds a layer of abstraction for high performance parallel computing, which may change the way dose calculations are performed and radiation treatment plans are completed.

  8. Toward real-time Monte Carlo simulation using a commercial cloud computing infrastructure

    NASA Astrophysics Data System (ADS)

    Wang, Henry; Ma, Yunzhi; Pratx, Guillem; Xing, Lei

    2011-09-01

    Monte Carlo (MC) methods are the gold standard for modeling photon and electron transport in a heterogeneous medium; however, their computational cost prohibits their routine use in the clinic. Cloud computing, wherein computing resources are allocated on-demand from a third party, is a new approach for high performance computing and is implemented to perform ultra-fast MC calculation in radiation therapy. We deployed the EGS5 MC package in a commercial cloud environment. Launched from a single local computer with Internet access, a Python script allocates a remote virtual cluster. A handshaking protocol designates master and worker nodes. The EGS5 binaries and the simulation data are initially loaded onto the master node. The simulation is then distributed among independent worker nodes via the message passing interface, and the results aggregated on the local computer for display and data analysis. The described approach is evaluated for pencil beams and broad beams of high-energy electrons and photons. The output of cloud-based MC simulation is identical to that produced by single-threaded implementation. For 1 million electrons, a simulation that takes 2.58 h on a local computer can be executed in 3.3 min on the cloud with 100 nodes, a 47× speed-up. Simulation time scales inversely with the number of parallel nodes. The parallelization overhead is also negligible for large simulations. Cloud computing represents one of the most important recent advances in supercomputing technology and provides a promising platform for substantially improved MC simulation. In addition to the significant speed up, cloud computing builds a layer of abstraction for high performance parallel computing, which may change the way dose calculations are performed and radiation treatment plans are completed. This work was presented in part at the 2010 Annual Meeting of the American Association of Physicists in Medicine (AAPM), Philadelphia, PA.

  9. A COMPUTATIONAL WORKBENCH ENVIRONMENT FOR VIRTUAL POWER PLANT SIMULATION

    SciTech Connect

    Mike Bockelie; Dave Swensen; Martin Denison; Zumao Chen; Mike Maguire; Adel Sarofim; Changguan Yang; Hong-Shig Shim

    2004-01-28

    This is the thirteenth Quarterly Technical Report for DOE Cooperative Agreement No: DE-FC26-00NT41047. The goal of the project is to develop and demonstrate a Virtual Engineering-based framework for simulating the performance of Advanced Power Systems. Within the last quarter, good progress has been made on all aspects of the project. Software development efforts have focused on a preliminary detailed software design for the enhanced framework. Given the complexity of the individual software tools from each team (i.e., Reaction Engineering International, Carnegie Mellon University, Iowa State University), a robust, extensible design is required for the success of the project. In addition to achieving a preliminary software design, significant progress has been made on several development tasks for the program. These include: (1) the enhancement of the controller user interface to support detachment from the Computational Engine and support for multiple computer platforms, (2) modification of the Iowa State University interface-to-kernel communication mechanisms to meet the requirements of the new software design, (3) decoupling of the Carnegie Mellon University computational models from their parent IECM (Integrated Environmental Control Model) user interface for integration with the new framework and (4) development of a new CORBA-based model interfacing specification. A benchmarking exercise to compare process and CFD based models for entrained flow gasifiers was completed. A summary of our work on intrinsic kinetics for modeling coal gasification has been completed. Plans for implementing soot and tar models into our entrained flow gasifier models are outlined. Plans for implementing a model for mercury capture based on conventional capture technology, but applied to an IGCC system, are outlined.

  10. Assessment methodology for computer-based instructional simulations.

    PubMed

    Koenig, Alan; Iseli, Markus; Wainess, Richard; Lee, John J

    2013-10-01

    Computer-based instructional simulations are becoming more and more ubiquitous, particularly in military and medical domains. As the technology that drives these simulations grows ever more sophisticated, the underlying pedagogical models for how instruction, assessment, and feedback are implemented within these systems must evolve accordingly. In this article, we review some of the existing educational approaches to medical simulations, and present pedagogical methodologies that have been used in the design and development of games and simulations at the University of California, Los Angeles, Center for Research on Evaluation, Standards, and Student Testing. In particular, we present a methodology for how automated assessments of computer-based simulations can be implemented using ontologies and Bayesian networks, and discuss their advantages and design considerations for pedagogical use.

  11. Macroevolution simulated with autonomously replicating computer programs.

    PubMed

    Yedid, Gabriel; Bell, Graham

    The process of adaptation occurs on two timescales. In the short term, natural selection merely sorts the variation already present in a population, whereas in the longer term genotypes quite different from any that were initially present evolve through the cumulation of new mutations. The first process is described by the mathematical theory of population genetics. However, this theory begins by defining a fixed set of genotypes and cannot provide a satisfactory analysis of the second process because it does not permit any genuinely new type to arise. The evolutionary outcome of selection acting on novel variation arising over long periods is therefore difficult to predict. The classical problem of this kind is whether 'replaying the tape of life' would invariably lead to the familiar organisms of the modern biota. Here we study the long-term behaviour of populations of autonomously replicating computer programs and find that the same type, introduced into the same simple environment, evolves on any given occasion along a unique trajectory towards one of many well-adapted end points.

  12. Computer simulation of normal and pathological copper metabolism in man.

    PubMed

    Blincoe, C

    1993-01-01

    A digital computer simulation of copper metabolism was used to simulate human copper metabolism. The simulation agrees well with the normal data extant. Wilson's disease (hepatolenticular degeneration) and Menkes' disease (steely-hair syndrome) were simulated. Simulation of the unavailability of accumulated liver copper simulated Wilson's disease if it was assumed that the increased urinary excretion was due to induction of an enzymic mechanism for enhanced excretion. This would be consistent with the genetic defect causing only the sequestering of unavailable copper in the liver. Other genetic defects need not be present. Menkes' disease is also a genetic disease affecting the newborn. It was simulated successfully as a defect in absorption of copper from the gastrointestinal tract.

  13. High field electrophoresis—computer simulations

    NASA Astrophysics Data System (ADS)

    Krawczyk, M. J.; Kułakowski, K.

    2004-11-01

    We describe for the first time the results, obtained by means of a new two-dimensional version of a cellular automaton (2DA), designed for the simulation of the gel electrophoresis at high fields. The calculations are performed up to N=442 reptons. The results are compared with those from a modified version of the one-dimensional automaton (1DA), which has been constructed previously. The modification is that the movements of different parts of a molecule of DNA are treated as statistically independent events. This approach is applied also for 2DA. Main results are: (i) for long molecules (N≫1) the velocity v tends to a constant both for 1DA and 2DA; (ii) the diffusion coefficient D for 2DA increases with N; (iii) 2DA enables the formation of so-called hernias, i.e. fragments of DNA locally perpendicular to the molecule, and (iv) a direct observation of the geometration effect. The results (i) and (ii) mimic the experimental behavior at high electric fields. We also calculate a dimensionless quantity y=D/(Lv), where L=Na is the molecule length and a is the stiffness length. The discussion of y reveals the role of the length fluctuations.

  14. Computer simulation of polypeptides in a confinement.

    PubMed

    Sikorski, Andrzej; Romiszowski, Piotr

    2007-02-01

    A coarse-grained model of polypeptide chains confined in a slit formed by two parallel impenetrable surfaces was studied. The chains were flexible heteropolymers (polypeptides) built of two kinds of united atoms-hydrophobic and hydrophilic. The positions of the united atoms were restricted to the vertices of a [310] lattice. The force field consisted of a rigorous excluded volume, a long-distance potential between a pair of amino-acid residues and a local preference for forming secondary structure (helices). The properties of the chains were studied at a wide range of temperatures from good to bad solvent conditions. Monte-Carlo simulations were carried out using the algorithm based on the chain's local changes of conformation and employing the Replica Exchange technique. The influence of the chain length, the distances between the confining surfaces, the temperature and the force field on the dimension and the structure of chains were studied. It was shown that the presence of the confinement chain complicates the process of the chain collapse to low-temperature structures. For some conditions, one can find a rapid decrease of chain size and a second transition indicated by the rapid decrease of the total energy of the system.

  15. Computational algorithms to simulate the steel continuous casting

    NASA Astrophysics Data System (ADS)

    Ramírez-López, A.; Soto-Cortés, G.; Palomar-Pardavé, M.; Romero-Romo, M. A.; Aguilar-López, R.

    2010-10-01

    Computational simulation is a very powerful tool to analyze industrial processes to reduce operating risks and improve profits from equipment. The present work describes the development of some computational algorithms based on the numerical method to create a simulator for the continuous casting process, which is the most popular method to produce steel products for metallurgical industries. The kinematics of industrial processing was computationally reproduced using subroutines logically programmed. The cast steel by each strand was calculated using an iterative method nested in the main loop. The process was repeated at each time step (Δ t) to calculate the casting time, simultaneously, the steel billets produced were counted and stored. The subroutines were used for creating a computational representation of a continuous casting plant (CCP) and displaying the simulation of the steel displacement through the CCP. These algorithms have been developed to create a simulator using the programming language C++. Algorithms for computer animation of the continuous casting process were created using a graphical user interface (GUI). Finally, the simulator functionality was shown and validated by comparing with the industrial information of the steel production of three casters.

  16. Combining high performance simulation, data acquisition, and graphics display computers

    NASA Technical Reports Server (NTRS)

    Hickman, Robert J.

    1989-01-01

    Issues involved in the continuing development of an advanced simulation complex are discussed. This approach provides the capability to perform the majority of tests on advanced systems, non-destructively. The controlled test environments can be replicated to examine the response of the systems under test to alternative treatments of the system control design, or test the function and qualification of specific hardware. Field tests verify that the elements simulated in the laboratories are sufficient. The digital computer is hosted by a Digital Equipment Corp. MicroVAX computer with an Aptec Computer Systems Model 24 I/O computer performing the communication function. An Applied Dynamics International AD100 performs the high speed simulation computing and an Evans and Sutherland PS350 performs on-line graphics display. A Scientific Computer Systems SCS40 acts as a high performance FORTRAN program processor to support the complex, by generating numerous large files from programs coded in FORTRAN that are required for the real time processing. Four programming languages are involved in the process, FORTRAN, ADSIM, ADRIO, and STAPLE. FORTRAN is employed on the MicroVAX host to initialize and terminate the simulation runs on the system. The generation of the data files on the SCS40 also is performed with FORTRAN programs. ADSIM and ADIRO are used to program the processing elements of the AD100 and its IOCP processor. STAPLE is used to program the Aptec DIP and DIA processors.

  17. Modeling and Computer Simulation: Molecular Dynamics and Kinetic Monte Carlo

    SciTech Connect

    Wirth, B.D.; Caturla, M.J.; Diaz de la Rubia, T.

    2000-10-10

    Recent years have witnessed tremendous advances in the realistic multiscale simulation of complex physical phenomena, such as irradiation and aging effects of materials, made possible by the enormous progress achieved in computational physics for calculating reliable, yet tractable interatomic potentials and the vast improvements in computational power and parallel computing. As a result, computational materials science is emerging as an important complement to theory and experiment to provide fundamental materials science insight. This article describes the atomistic modeling techniques of molecular dynamics (MD) and kinetic Monte Carlo (KMC), and an example of their application to radiation damage production and accumulation in metals. It is important to note at the outset that the primary objective of atomistic computer simulation should be obtaining physical insight into atomic-level processes. Classical molecular dynamics is a powerful method for obtaining insight about the dynamics of physical processes that occur on relatively short time scales. Current computational capability allows treatment of atomic systems containing as many as 10{sup 9} atoms for times on the order of 100 ns (10{sup -7}s). The main limitation of classical MD simulation is the relatively short times accessible. Kinetic Monte Carlo provides the ability to reach macroscopic times by modeling diffusional processes and time-scales rather than individual atomic vibrations. Coupling MD and KMC has developed into a powerful, multiscale tool for the simulation of radiation damage in metals.

  18. Embedding quantum simulators for quantum computation of entanglement.

    PubMed

    Di Candia, R; Mejia, B; Castillo, H; Pedernales, J S; Casanova, J; Solano, E

    2013-12-13

    We introduce the concept of embedding quantum simulators, a paradigm allowing the efficient quantum computation of a class of bipartite and multipartite entanglement monotones. It consists in the suitable encoding of a simulated quantum dynamics in the enlarged Hilbert space of an embedding quantum simulator. In this manner, entanglement monotones are conveniently mapped onto physical observables, overcoming the necessity of full tomography and reducing drastically the experimental requirements. Furthermore, this method is directly applicable to pure states and, assisted by classical algorithms, to the mixed-state case. Finally, we expect that the proposed embedding framework paves the way for a general theory of enhanced one-to-one quantum simulators.

  19. Computer simulation tests of optimized neutron powder diffractometer configurations

    NASA Astrophysics Data System (ADS)

    Cussen, L. D.; Lieutenant, K.

    2016-06-01

    Recent work has developed a new mathematical approach to optimally choose beam elements for constant wavelength neutron powder diffractometers. This article compares Monte Carlo computer simulations of existing instruments with simulations of instruments using configurations chosen using the new approach. The simulations show that large performance improvements over current best practice are possible. The tests here are limited to instruments optimized for samples with a cubic structure which differs from the optimization for triclinic structure samples. A novel primary spectrometer design is discussed and simulation tests show that it performs as expected and allows a single instrument to operate flexibly over a wide range of measurement resolution.

  20. Executive Summary: Special Section on Credible Computational Fluid Dynamics Simulations

    NASA Technical Reports Server (NTRS)

    Mehta, Unmeel B.

    1998-01-01

    This summary presents the motivation for the Special Section on the credibility of computational fluid dynamics (CFD) simulations, its objective, its background and context, its content, and its major conclusions. Verification and validation (V&V) are the processes for establishing the credibility of CFD simulations. Validation assesses whether correct things are performed and verification assesses whether they are performed correctly. Various aspects of V&V are discussed. Progress is made in verification of simulation models. Considerable effort is still needed for developing a systematic validation method that can assess the credibility of simulated reality.

  1. HPC Infrastructure for Solid Earth Simulation on Parallel Computers

    NASA Astrophysics Data System (ADS)

    Nakajima, K.; Chen, L.; Okuda, H.

    2004-12-01

    Recently, various types of parallel computers with various types of architectures and processing elements (PE) have emerged, which include PC clusters and the Earth Simulator. Moreover, users can easily access to these computer resources through network on Grid environment. It is well-known that thorough tuning is required for programmers to achieve excellent performance on each computer. The method for tuning strongly depends on the type of PE and architecture. Optimization by tuning is a very tough work, especially for developers of applications. Moreover, parallel programming using message passing library such as MPI is another big task for application programmers. In GeoFEM project (http://gefeom.tokyo.rist.or.jp), authors have developed a parallel FEM platform for solid earth simulation on the Earth Simulator, which supports parallel I/O, parallel linear solvers and parallel visualization. This platform can efficiently hide complicated procedures for parallel programming and optimization on vector processors from application programmers. This type of infrastructure is very useful. Source codes developed on PC with single processor is easily optimized on massively parallel computer by linking the source code to the parallel platform installed on the target computer. This parallel platform, called HPC Infrastructure will provide dramatic efficiency, portability and reliability in development of scientific simulation codes. For example, line number of the source codes is expected to be less than 10,000 and porting legacy codes to parallel computer takes 2 or 3 weeks. Original GeoFEM platform supports only I/O, linear solvers and visualization. In the present work, further development for adaptive mesh refinement (AMR) and dynamic load-balancing (DLB) have been carried out. In this presentation, examples of large-scale solid earth simulation using the Earth Simulator will be demonstrated. Moreover, recent results of a parallel computational steering tool using an

  2. Computer simulation for optimization of offshore platform evacuation

    SciTech Connect

    Soma, H.; Drager, K.H.; Bjoerdal, P.

    1996-12-31

    A method for optimizing the evacuation system on offshore platforms, in which computer simulation provides a main contribution, is presented. The use of computer simulation in offshore projects is explained, and the contribution with respect to input to the Quantitative Risk Analyses (QRA) and to the engineering is also presented. In order to design an optimum evacuation system on offshore platforms, detailed analyses and sensitivity calculations are required. By utilizing computer programs and simulation tools, the work load is no longer prohibitive for comprehensive optimization calculations to be performed. The evacuation system can accordingly be designed based on engineering considerations, rather than mainly relying on the preferences of the design team involved in the project. A description of three computer programs which perform stochastic reliability analyses of evacuation operations is presented; Evacuation Simulations (EVACSIM) simulates the evacuation (egress) of personnel on the platform, Lifeboat Launch for Conventional lifeboats (LBL-C) simulates the launch and escape operation of davit launched lifeboats and Lifeboat Launch for Free fall lifeboats (LBL-F) simulates the launch and escape operation of slide launched or vertical drop free fall lifeboats. Other computer programs that analyze parts of the evacuation process, such as Offshore Rescue Simulation (ORS), are mentioned. The result of this synthesis is an estimate of the yearly number of lives lost during evacuation of a platform, which is a suitable parameter for optimizing the evacuation system and deciding improvements. The impact of changing design parameters is found by carrying out evacuation analyses for the revised design (i.e., a sensitivity) and comparing the resulting loss of lives with the Base Case results. By systematizing this approach, the evacuation system on the platform can thus be optimized.

  3. Computers vs. wind tunnels for aerodynamic flow simulations

    NASA Technical Reports Server (NTRS)

    Chapman, D. R.; Mark, H.; Pirtle, M. W.

    1975-01-01

    It is pointed out that in other fields of computational physics, such as ballistics, celestial mechanics, and neutronics, computations have already displaced experiments as the principal means of obtaining dynamic simulations. In the case of aerodynamic investigations, the complexity of the computational work involved in solving the Navier-Stokes equations is the reason that such investigations rely currently mainly on wind-tunnel testing. However, because of inherent limitations of the wind-tunnel approach and economic considerations, it appears that at some time in the future aerodynamic studies will chiefly rely on computational flow data provided by the computer. Taking into account projected development trends, it is estimated that computers with the required capabilities for a solution of the complete viscous, time-dependent Navier-Stokes equations will be available in the mid-1980s.

  4. High performance computing for domestic petroleum reservoir simulation

    SciTech Connect

    Zyvoloski, G.; Auer, L.; Dendy, J.

    1996-06-01

    This is the final report of a two-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory. High-performance computing offers the prospect of greatly increasing the resolution at which petroleum reservoirs can be represented in simulation models. The increases in resolution can be achieved through large increases in computational speed and memory, if machine architecture and numerical methods for solution of the multiphase flow equations can be used to advantage. Perhaps more importantly, the increased speed and size of today`s computers make it possible to add physical processes to simulation codes that heretofore were too expensive in terms of computer time and memory to be practical. These factors combine to allow the development of new, more accurate methods for optimizing petroleum reservoir production.

  5. KU-Band rendezvous radar performance computer simulation model

    NASA Technical Reports Server (NTRS)

    Griffin, J. W.

    1980-01-01

    The preparation of a real time computer simulation model of the KU band rendezvous radar to be integrated into the shuttle mission simulator (SMS), the shuttle engineering simulator (SES), and the shuttle avionics integration laboratory (SAIL) simulator is described. To meet crew training requirements a radar tracking performance model, and a target modeling method were developed. The parent simulation/radar simulation interface requirements, and the method selected to model target scattering properties, including an application of this method to the SPAS spacecraft are described. The radar search and acquisition mode performance model and the radar track mode signal processor model are examined and analyzed. The angle, angle rate, range, and range rate tracking loops are also discussed.

  6. High performance stream computing for particle beam transport simulations

    NASA Astrophysics Data System (ADS)

    Appleby, R.; Bailey, D.; Higham, J.; Salt, M.

    2008-07-01

    Understanding modern particle accelerators requires simulating charged particle transport through the machine elements. These simulations can be very time consuming due to the large number of particles and the need to consider many turns of a circular machine. Stream computing offers an attractive way to dramatically improve the performance of such simulations by calculating the simultaneous transport of many particles using dedicated hardware. Modern Graphics Processing Units (GPUs) are powerful and affordable stream computing devices. The results of simulations of particle transport through the booster-to-storage-ring transfer line of the DIAMOND synchrotron light source using an NVidia GeForce 7900 GPU are compared to the standard transport code MAD. It is found that particle transport calculations are suitable for stream processing and large performance increases are possible. The accuracy and potential speed gains are compared and the prospects for future work in the area are discussed.

  7. Accuracy vs. computational time: translating aortic simulations to the clinic.

    PubMed

    Brown, Alistair G; Shi, Yubing; Marzo, Alberto; Staicu, Cristina; Valverde, Isra; Beerbaum, Philipp; Lawford, Patricia V; Hose, D Rodney

    2012-02-01

    State of the art simulations of aortic haemodynamics feature full fluid-structure interaction (FSI) and coupled 0D boundary conditions. Such analyses require not only significant computational resource but also weeks to months of run time, which compromises the effectiveness of their translation to a clinical workflow. This article employs three computational fluid methodologies, of varying levels of complexity with coupled 0D boundary conditions, to simulate the haemodynamics within a patient-specific aorta. The most comprehensive model is a full FSI simulation. The simplest is a rigid walled incompressible fluid simulation while an alternative middle-ground approach employs a compressible fluid, tuned to elicit a response analogous to the compliance of the aortic wall. The results demonstrate that, in the context of certain clinical questions, the simpler analysis methods may capture the important characteristics of the flow field.

  8. Simulation of an interferometric computed tomography system for intraocular lenses

    NASA Astrophysics Data System (ADS)

    Tayag, Tristan J.; Bachim, Brent L.

    2010-08-01

    In this paper, we present a metrology system to characterize the refractive index profile of intraocular lenses (IOLs). Our system is based on interferometric optical phase computed tomography. We believe this metrology system to be a key enabling technology in the development of the next generation of IOLs. We propose a Fizeau-based optical configuration and present a simulation study on the application of computed tomography to IOL characterization.

  9. Method for simulating paint mixing on computer monitors

    NASA Astrophysics Data System (ADS)

    Carabott, Ferdinand; Lewis, Garth; Piehl, Simon

    2002-06-01

    Computer programs like Adobe Photoshop can generate a mixture of two 'computer' colors by using the Gradient control. However, the resulting colors diverge from the equivalent paint mixtures in both hue and value. This study examines why programs like Photoshop are unable to simulate paint or pigment mixtures, and offers a solution using Photoshops existing tools. The article discusses how a library of colors, simulating paint mixtures, is created from 13 artists' colors. The mixtures can be imported into Photoshop as a color swatch palette of 1248 colors and as 78 continuous or stepped gradient files, all accessed in a new software package, Chromafile.

  10. Energy Efficient Biomolecular Simulations with FPGA-based Reconfigurable Computing

    SciTech Connect

    Hampton, Scott S; Agarwal, Pratul K

    2010-05-01

    Reconfigurable computing (RC) is being investigated as a hardware solution for improving time-to-solution for biomolecular simulations. A number of popular molecular dynamics (MD) codes are used to study various aspects of biomolecules. These codes are now capable of simulating nanosecond time-scale trajectories per day on conventional microprocessor-based hardware, but biomolecular processes often occur at the microsecond time-scale or longer. A wide gap exists between the desired and achievable simulation capability; therefore, there is considerable interest in alternative algorithms and hardware for improving the time-to-solution of MD codes. The fine-grain parallelism provided by Field Programmable Gate Arrays (FPGA) combined with their low power consumption make them an attractive solution for improving the performance of MD simulations. In this work, we use an FPGA-based coprocessor to accelerate the compute-intensive calculations of LAMMPS, a popular MD code, achieving up to 5.5 fold speed-up on the non-bonded force computations of the particle mesh Ewald method and up to 2.2 fold speed-up in overall time-to-solution, and potentially an increase by a factor of 9 in power-performance efficiencies for the pair-wise computations. The results presented here provide an example of the multi-faceted benefits to an application in a heterogeneous computing environment.

  11. Urban earthquake simulation of Tokyo metropolis using full K computer

    NASA Astrophysics Data System (ADS)

    Fujita, Kohei; Ichimura, Tsuyoshi; Hori, Muneo

    2016-04-01

    Reflecting detailed urban geographic information data to earthquake simulation of cities is expected to improve the reliability of damage estimates for future earthquakes. Such simulations require high resolution computation of large and complex domains and thus fast and scalable finite element solver capable of utilizing supercomputers are needed. Targeting massively parallel scalar supercomputers, we have been developing a fast low-ordered unstructured finite element solver by combining multi-precision arithmetic, multi-grid method, predictors, and techniques for utilizing multi-cores and SIMD units of CPUs. In this talk, I will show the developed method and its scalability/performance on the K computer. Together, I will show some small scale measurement results on Intel Haswell CPU servers for checking performance portability. As an application example, I will show an urban earthquake simulation targeted on a 10 km by 9 km area of central Tokyo with 320 thousand structures. Here the surface ground is modeled by 33 billion elements and 133 billion degrees-of-freedom, and its seismic response is computed using the whole K computer with 82944 compute nodes. The fast and scalable finite element method can be applied to earthquake wave propagation problems through earth crust or elastic/viscoelastic crustal deformation analyses and is expected to be useful for improving resolution of such simulations in the future.

  12. Parallelized computation for computer simulation of electrocardiograms using personal computers with multi-core CPU and general-purpose GPU.

    PubMed

    Shen, Wenfeng; Wei, Daming; Xu, Weimin; Zhu, Xin; Yuan, Shizhong

    2010-10-01

    Biological computations like electrocardiological modelling and simulation usually require high-performance computing environments. This paper introduces an implementation of parallel computation for computer simulation of electrocardiograms (ECGs) in a personal computer environment with an Intel CPU of Core (TM) 2 Quad Q6600 and a GPU of Geforce 8800GT, with software support by OpenMP and CUDA. It was tested in three parallelization device setups: (a) a four-core CPU without a general-purpose GPU, (b) a general-purpose GPU plus 1 core of CPU, and (c) a four-core CPU plus a general-purpose GPU. To effectively take advantage of a multi-core CPU and a general-purpose GPU, an algorithm based on load-prediction dynamic scheduling was developed and applied to setting (c). In the simulation with 1600 time steps, the speedup of the parallel computation as compared to the serial computation was 3.9 in setting (a), 16.8 in setting (b), and 20.0 in setting (c). This study demonstrates that a current PC with a multi-core CPU and a general-purpose GPU provides a good environment for parallel computations in biological modelling and simulation studies.

  13. Parallelized computation for computer simulation of electrocardiograms using personal computers with multi-core CPU and general-purpose GPU.

    PubMed

    Shen, Wenfeng; Wei, Daming; Xu, Weimin; Zhu, Xin; Yuan, Shizhong

    2010-10-01

    Biological computations like electrocardiological modelling and simulation usually require high-performance computing environments. This paper introduces an implementation of parallel computation for computer simulation of electrocardiograms (ECGs) in a personal computer environment with an Intel CPU of Core (TM) 2 Quad Q6600 and a GPU of Geforce 8800GT, with software support by OpenMP and CUDA. It was tested in three parallelization device setups: (a) a four-core CPU without a general-purpose GPU, (b) a general-purpose GPU plus 1 core of CPU, and (c) a four-core CPU plus a general-purpose GPU. To effectively take advantage of a multi-core CPU and a general-purpose GPU, an algorithm based on load-prediction dynamic scheduling was developed and applied to setting (c). In the simulation with 1600 time steps, the speedup of the parallel computation as compared to the serial computation was 3.9 in setting (a), 16.8 in setting (b), and 20.0 in setting (c). This study demonstrates that a current PC with a multi-core CPU and a general-purpose GPU provides a good environment for parallel computations in biological modelling and simulation studies. PMID:20674066

  14. [Computer simulated images of radiopharmaceutical distributions in anthropomorphic phantoms

    SciTech Connect

    Not Available

    1991-05-17

    We have constructed an anatomically correct human geometry, which can be used to store radioisotope concentrations in 51 various internal organs. Each organ is associated with an index number which references to its attenuating characteristics (composition and density). The initial development of Computer Simulated Images of Radiopharmaceuticals in Anthropomorphic Phantoms (CSIRDAP) over the first 3 years has been very successful. All components of the simulation have been coded, made operational and debugged.

  15. Computer Simulation of Sexual Selection on Age-Structured Populations

    NASA Astrophysics Data System (ADS)

    Martins, S. G. F.; Penna, T. J. P.

    Using computer simulations of a bit-string model for age-structured populations, we found that sexual selection of older males is advantageous, from an evolutionary point of view. These results are in opposition to a recent proposal of females choosing younger males. Our simulations are based on findings from recent studies of polygynous bird species. Since secondary sex characters are found mostly in males, we could make use of asexual populations that can be implemented in a fast and efficient way.

  16. Computer simulations of ions in radio-frequency traps

    NASA Technical Reports Server (NTRS)

    Williams, A.; Prestage, J. D.; Maleki, L.; Djomehri, J.; Harabetian, E.

    1990-01-01

    The motion of ions in a trapped-ion frequency standard affects the stability of the standard. In order to study the motion and structures of large ion clouds in a radio-frequency (RF) trap, a computer simulation of the system that incorporates the effect of thermal excitation of the ions was developed. Results are presented from the simulation for cloud sizes up to 512 ions, emphasizing cloud structures in the low-temperature regime.

  17. A Computer Simulation of Community Pharmacy Practice for Educational Use

    PubMed Central

    Ling, Tristan; Bereznicki, Luke; Westbury, Juanita; Chalmers, Leanne; Peterson, Gregory; Ollington, Robert

    2014-01-01

    Objective. To provide a computer-based learning method for pharmacy practice that is as effective as paper-based scenarios, but more engaging and less labor-intensive. Design. We developed a flexible and customizable computer simulation of community pharmacy. Using it, the students would be able to work through scenarios which encapsulate the entirety of a patient presentation. We compared the traditional paper-based teaching method to our computer-based approach using equivalent scenarios. The paper-based group had 2 tutors while the computer group had none. Both groups were given a prescenario and postscenario clinical knowledge quiz and survey. Assessment. Students in the computer-based group had generally greater improvements in their clinical knowledge score, and third-year students using the computer-based method also showed more improvements in history taking and counseling competencies. Third-year students also found the simulation fun and engaging. Conclusion. Our simulation of community pharmacy provided an educational experience as effective as the paper-based alternative, despite the lack of a human tutor. PMID:26056406

  18. The advanced computational testing and simulation toolkit (ACTS)

    SciTech Connect

    Drummond, L.A.; Marques, O.

    2002-05-21

    During the past decades there has been a continuous growth in the number of physical and societal problems that have been successfully studied and solved by means of computational modeling and simulation. Distinctively, a number of these are important scientific problems ranging in scale from the atomic to the cosmic. For example, ionization is a phenomenon as ubiquitous in modern society as the glow of fluorescent lights and the etching on silicon computer chips; but it was not until 1999 that researchers finally achieved a complete numerical solution to the simplest example of ionization, the collision of a hydrogen atom with an electron. On the opposite scale, cosmologists have long wondered whether the expansion of the Universe, which began with the Big Bang, would ever reverse itself, ending the Universe in a Big Crunch. In 2000, analysis of new measurements of the cosmic microwave background radiation showed that the geometry of the Universe is flat, and thus the Universe will continue expanding forever. Both of these discoveries depended on high performance computer simulations that utilized computational tools included in the Advanced Computational Testing and Simulation (ACTS) Toolkit. The ACTS Toolkit is an umbrella project that brought together a number of general purpose computational tool development projects funded and supported by the U.S. Department of Energy (DOE). These tools, which have been developed independently, mainly at DOE laboratories, make it easier for scientific code developers to write high performance applications for parallel computers. They tackle a number of computational issues that are common to a large number of scientific applications, mainly implementation of numerical algorithms, and support for code development, execution and optimization. The ACTS Toolkit Project enables the use of these tools by a much wider community of computational scientists, and promotes code portability, reusability, reduction of duplicate efforts

  19. Modeling emergency department operations using advanced computer simulation systems.

    PubMed

    Saunders, C E; Makens, P K; Leblanc, L J

    1989-02-01

    We developed a computer simulation model of emergency department operations using simulation software. This model uses multiple levels of preemptive patient priority; assigns each patient to an individual nurse and physician; incorporates all standard tests, procedures, and consultations; and allows patient service processes to proceed simultaneously, sequentially, repetitively, or a combination of these. Selected input data, including the number of physicians, nurses, and treatment beds, and the blood test turnaround time, then were varied systematically to determine their simulated effect on patient throughput time, selected queue sizes, and rates of resource utilization. Patient throughput time varied directly with laboratory service times and inversely with the number of physician or nurse servers. Resource utilization rates varied inversely with resource availability, and patient waiting time and patient throughput time varied indirectly with the level of patient acuity. The simulation can be animated on a computer monitor, showing simulated patients, specimens, and staff members moving throughout the ED. Computer simulation is a potentially useful tool that can help predict the results of changes in the ED system without actually altering it and may have implications for planning, optimizing resources, and improving the efficiency and quality of care.

  20. A compositional reservoir simulator on distributed memory parallel computers

    SciTech Connect

    Rame, M.; Delshad, M.

    1995-12-31

    This paper presents the application of distributed memory parallel computes to field scale reservoir simulations using a parallel version of UTCHEM, The University of Texas Chemical Flooding Simulator. The model is a general purpose highly vectorized chemical compositional simulator that can simulate a wide range of displacement processes at both field and laboratory scales. The original simulator was modified to run on both distributed memory parallel machines (Intel iPSC/960 and Delta, Connection Machine 5, Kendall Square 1 and 2, and CRAY T3D) and a cluster of workstations. A domain decomposition approach has been taken towards parallelization of the code. A portion of the discrete reservoir model is assigned to each processor by a set-up routine that attempts a data layout as even as possible from the load-balance standpoint. Each of these subdomains is extended so that data can be shared between adjacent processors for stencil computation. The added routines that make parallel execution possible are written in a modular fashion that makes the porting to new parallel platforms straight forward. Results of the distributed memory computing performance of Parallel simulator are presented for field scale applications such as tracer flood and polymer flood. A comparison of the wall-clock times for same problems on a vector supercomputer is also presented.

  1. Quantum ring-polymer contraction method: Including nuclear quantum effects at no additional computational cost in comparison to ab initio molecular dynamics.

    PubMed

    John, Christopher; Spura, Thomas; Habershon, Scott; Kühne, Thomas D

    2016-04-01

    We present a simple and accurate computational method which facilitates ab initio path-integral molecular dynamics simulations, where the quantum-mechanical nature of the nuclei is explicitly taken into account, at essentially no additional computational cost in comparison to the corresponding calculation using classical nuclei. The predictive power of the proposed quantum ring-polymer contraction method is demonstrated by computing various static and dynamic properties of liquid water at ambient conditions using density functional theory. This development will enable routine inclusion of nuclear quantum effects in ab initio molecular dynamics simulations of condensed-phase systems. PMID:27176426

  2. Quantum ring-polymer contraction method: Including nuclear quantum effects at no additional computational cost in comparison to ab initio molecular dynamics

    NASA Astrophysics Data System (ADS)

    John, Christopher; Spura, Thomas; Habershon, Scott; Kühne, Thomas D.

    2016-04-01

    We present a simple and accurate computational method which facilitates ab initio path-integral molecular dynamics simulations, where the quantum-mechanical nature of the nuclei is explicitly taken into account, at essentially no additional computational cost in comparison to the corresponding calculation using classical nuclei. The predictive power of the proposed quantum ring-polymer contraction method is demonstrated by computing various static and dynamic properties of liquid water at ambient conditions using density functional theory. This development will enable routine inclusion of nuclear quantum effects in ab initio molecular dynamics simulations of condensed-phase systems.

  3. Dynamic computer simulation of the Fort St. Vrain steam turbines

    SciTech Connect

    Conklin, J.C.

    1983-01-01

    A computer simulation is described for the dynamic response of the Fort St. Vrain nuclear reactor regenerative intermediate- and low-pressure steam turbines. The fundamental computer-modeling assumptions for the turbines and feedwater heaters are developed. A turbine heat balance specifying steam and feedwater conditions at a given generator load and the volumes of the feedwater heaters are all that are necessary as descriptive input parameters. Actual plant data for a generator load reduction from 100 to 50% power (which occurred as part of a plant transient on November 9, 1981) are compared with computer-generated predictions, with reasonably good agreement.

  4. Incorporation of shuttle CCT parameters in computer simulation models

    NASA Technical Reports Server (NTRS)

    Huntsberger, Terry

    1990-01-01

    Computer simulations of shuttle missions have become increasingly important during recent years. The complexity of mission planning for satellite launch and repair operations which usually involve EVA has led to the need for accurate visibility and access studies. The PLAID modeling package used in the Man-Systems Division at Johnson currently has the necessary capabilities for such studies. In addition, the modeling package is used for spatial location and orientation of shuttle components for film overlay studies such as the current investigation of the hydrogen leaks found in the shuttle flight. However, there are a number of differences between the simulation studies and actual mission viewing. These include image blur caused by the finite resolution of the CCT monitors in the shuttle and signal noise from the video tubes of the cameras. During the course of this investigation the shuttle CCT camera and monitor parameters are incorporated into the existing PLAID framework. These parameters are specific for certain camera/lens combinations and the SNR characteristics of these combinations are included in the noise models. The monitor resolution is incorporated using a Gaussian spread function such as that found in the screen phosphors in the shuttle monitors. Another difference between the traditional PLAID generated images and actual mission viewing lies in the lack of shadows and reflections of light from surfaces. Ray tracing of the scene explicitly includes the lighting and material characteristics of surfaces. The results of some preliminary studies using ray tracing techniques for the image generation process combined with the camera and monitor effects are also reported.

  5. AKSATINT - SATELLITE INTERFERENCE ANALYSIS AND SIMULATION USING PERSONAL COMPUTERS

    NASA Technical Reports Server (NTRS)

    Kantak, A.

    1994-01-01

    In the late seventies, the number of communication satellites in service increased, and interference has become an increasingly important consideration in designing satellite/ground station communications systems. Satellite Interference Analysis and Simulation Using Personal Computers, AKSATINT, models the interference experienced by a generic satellite communications receiving station due to an interfering satellite. Both the desired and the interfering satellites are considered to be in elliptical orbits. The simulation contains computation of orbital positions of both satellites using classical orbital elements, calculation of the satellite antennae look angles for both satellites and elevation angles at the desired-satellite ground-station antenna, and computation of Doppler effect due to the motions of the satellites and the Earth's rotation. AKSATINT also computes the interference-tosignal-power ratio, taking into account losses suffered by the links. After computing the interference-to-signal-power ratio, the program computes the statistical quantities. The statistical formulation of the interference effect is presented in the form of a histogram of the interference to the desired signal power ratio. The program includes a flowchart, a sample run, and results of that run. AKSATINT is expected to be of general use to system designers and frequency managers in selecting the proper frequency under an interference scenario. The AKSATINT program is written in BASIC. It was designed to operate on the IBM Personal Computer AT or compatibles, and has been implemented under MS DOS 3.2. AKSATINT was developed in 1987.

  6. Utilizing a Collaborative Cross Number Puzzle Game to Develop the Computing Ability of Addition and Subtraction

    ERIC Educational Resources Information Center

    Chen, Yen-Hua; Looi, Chee-Kit; Lin, Chiu-Pin; Shao, Yin-Juan; Chan, Tak-Wai

    2012-01-01

    While addition and subtraction is a key mathematical skill for young children, a typical activity for them in classrooms involves doing repetitive arithmetic calculation exercises. In this study, we explore a collaborative way for students to learn these skills in a technology-enabled way with wireless computers. Two classes, comprising a total of…

  7. Computer simulation of the mechanical properties of metamaterials

    NASA Astrophysics Data System (ADS)

    Gerasimov, R. A.; Eremeyev, V. A.; Petrova, T. O.; Egorov, V. I.; Maksimova, O. G.; Maksimov, A. V.

    2016-08-01

    For a hybrid discrete-continual model describing a system which consists of a substrate and polymer coating, we provide computer simulation of its mechanical properties for various levels of deformations. For the substrate, we apply the elastic model with the Hooke law while for the polymeric coating, we use a discrete model. Here we use the Stockmayer potential which is a Lennard-Jones potential with additional term which describes the dipole interactions between neighbour segments of polymer chains, that is Keesom energy. Using Monte-Carlo method with Metropolis algorithm for a given temperature the equilibrium state is determined. We obtain dependencies of the energy, force, bending moment and Young's modulus for various levels of deformations and for different values of temperature. We show that for the increase of the deformations level the influence of surface coating on the considered material parameters is less pronounced. We provide comparison of obtained results with experimental data on deformations of crystalline polymers (gutta-percha, etc.)

  8. Computer simulation of optimal sensor locations in loading identification

    NASA Astrophysics Data System (ADS)

    Li, Dong-Sheng; Li, Hong-Nan; Guo, Xing L.

    2003-07-01

    A method is presented for the selection of a set of sensor locations from a larger candidate sent for the purpose of structural loading identification. The method ranks the candidate sensor locations according to their effectiveness for identifying the given known loadings. Measurement locations that yield abnormal jumps in identification results or increase the condition number of the frequency response function are removed. The final sensor configuration tends to minimize the error of the loading identification results and the condition number of the frequency response function. The initial candidate set is selected based on the modal kinetic energy distribution that gives a measure of the dynamic contribution of each physical degree freedom to each of the target mode shapes of interest. In addition, excitation location is considered when selecting appropriate response measurement locations. This method was successfully applied to the optimal sensor location selection and loading identification of a uniform cantilever beam in experiment. It is shown that computer simulation is a good way to select the optimal sensor location for loading identification.

  9. A Computational Workbench Environment For Virtual Power Plant Simulation

    SciTech Connect

    Bockelie, Michael J.; Swensen, David A.; Denison, Martin K.; Sarofim, Adel F.

    2001-11-06

    In this paper we describe our progress toward creating a computational workbench for performing virtual simulations of Vision 21 power plants. The workbench provides a framework for incorporating a full complement of models, ranging from simple heat/mass balance reactor models that run in minutes to detailed models that can require several hours to execute. The workbench is being developed using the SCIRun software system. To leverage a broad range of visualization tools the OpenDX visualization package has been interfaced to the workbench. In Year One our efforts have focused on developing a prototype workbench for a conventional pulverized coal fired power plant. The prototype workbench uses a CFD model for the radiant furnace box and reactor models for downstream equipment. In Year Two and Year Three, the focus of the project will be on creating models for gasifier based systems and implementing these models into an improved workbench. In this paper we describe our work effort for Year One and outline our plans for future work. We discuss the models included in the prototype workbench and the software design issues that have been addressed to incorporate such a diverse range of models into a single software environment. In addition, we highlight our plans for developing the energyplex based workbench that will be developed in Year Two and Year Three.

  10. Computer simulation of Aphis gossypii insects using Penna aging model

    NASA Astrophysics Data System (ADS)

    Giarola, L. T. P.; Martins, S. G. F.; Toledo Costa, M. C. P.

    2006-08-01

    A computer simulation was made for the population dynamics of Aphis gossypii in laboratory and field conditions. The age structure was inserted in the dynamics through bit string model for biological aging, proposed by Penna in 1995. The influence of different host plants and of climatic factors such as temperature and precipitation was considered in the simulation starting from experimental data. The results obtained indicate that the simulation is an appropriate instrument for understanding of the population dynamics of these species and for the establishment of biological control strategies.

  11. Computer simulation of plasma and N-body problems

    NASA Technical Reports Server (NTRS)

    Harries, W. L.; Miller, J. B.

    1975-01-01

    The following FORTRAN language computer codes are presented: (1) efficient two- and three-dimensional central force potential solvers; (2) a three-dimensional simulator of an isolated galaxy which incorporates the potential solver; (3) a two-dimensional particle-in-cell simulator of the Jeans instability in an infinite self-gravitating compressible gas; and (4) a two-dimensional particle-in-cell simulator of a rotating self-gravitating compressible gaseous system of which rectangular coordinate and superior polar coordinate versions were written.

  12. Computer simulation of multigrid body dynamics and control

    NASA Technical Reports Server (NTRS)

    Swaminadham, M.; Moon, Young I.; Venkayya, V. B.

    1990-01-01

    The objective is to set up and analyze benchmark problems on multibody dynamics and to verify the predictions of two multibody computer simulation codes. TREETOPS and DISCOS have been used to run three example problems - one degree-of-freedom spring mass dashpot system, an inverted pendulum system, and a triple pendulum. To study the dynamics and control interaction, an inverted planar pendulum with an external body force and a torsional control spring was modeled as a hinge connected two-rigid body system. TREETOPS and DISCOS affected the time history simulation of this problem. System state space variables and their time derivatives from two simulation codes were compared.

  13. Multiscale approaches for simulation of nucleation, growth, and additive chemistry during electrochemical deposition of thin metal films

    NASA Astrophysics Data System (ADS)

    Stephens, Ryan Mark

    Molecularly engineered deposition processes require computational algorithms that efficiently capture phenomena present at widely varying length and time scales. In this work, the island dynamics method was applied to simulation of kinetically-limited metal nucleation and growth by electrodeposition in the presence of additives. The model included additive kinetics, surface diffusion of adatoms, nucleation, and growth. The model was demonstrated for copper deposition in acid sulfate electrolyte containing [bis(3-sulfopropyl)disulfide], polyethylene glycol, and chloride. Simulation results were compared with kinetic Monte Carlo (KMC) calculations and found to be within 1% for fractional coverage values, and within 10% for nucleation density. The computational time was more than 10X faster than comparable KMC simulations over the range studied. The island dynamics algorithm was applied to the electrodeposition of a metal onto a substrate initially configured with an array of hemispherical seed clusters. It was found that the presence of chloride in the model additive system caused high densities of nuclei on the substrate surrounding the initial seed clusters, which led to the formation of a continuous thin metal film. Simulations carried out under low-chloride conditions resulted in the growth only of the initial seed clusters, without significant nucleation or thin film formation. Additional phenomena were explored by linking the molecular scale island dynamics algorithm to a continuum model that described the migration and diffusion in the diffusion layer near the electrode surface. The multiscale linkage allowed simulation of nucleation, growth, and additive chemistry under mass transport limited conditions, including the formation of nucleation exclusion zones surrounding growing nuclei. A two-step approach was used to calculate the spatial distribution of nucleation events on an electrode undergoing deposition by electrolysis under the influence of mass

  14. Interval sampling methods and measurement error: a computer simulation.

    PubMed

    Wirth, Oliver; Slaven, James; Taylor, Matthew A

    2014-01-01

    A simulation study was conducted to provide a more thorough account of measurement error associated with interval sampling methods. A computer program simulated the application of momentary time sampling, partial-interval recording, and whole-interval recording methods on target events randomly distributed across an observation period. The simulation yielded measures of error for multiple combinations of observation period, interval duration, event duration, and cumulative event duration. The simulations were conducted up to 100 times to yield measures of error variability. Although the present simulation confirmed some previously reported characteristics of interval sampling methods, it also revealed many new findings that pertain to each method's inherent strengths and weaknesses. The analysis and resulting error tables can help guide the selection of the most appropriate sampling method for observation-based behavioral assessments.

  15. A Computer Simulated Experiment in Complex Order Kinetics

    ERIC Educational Resources Information Center

    Merrill, J. C.; And Others

    1975-01-01

    Describes a computer simulation experiment in which physical chemistry students can determine all of the kinetic parameters of a reaction, such as order of the reaction with respect to each reagent, forward and reverse rate constants for the overall reaction, and forward and reverse activation energies. (MLH)

  16. Effectiveness of Computer Simulation for Enhancing Higher Order Thinking.

    ERIC Educational Resources Information Center

    Gokhale, Anu A.

    1996-01-01

    Electronics students (16 controls, 16 experimentals) designed, built, and tested an amplifier. The experimentals did so after it was designed through computer simulation (using Electronics Workbench software). The experimental group performed significantly better on problem-solving tests; both groups did the same on drill and practice tests. (SK)

  17. Computer Simulations and Problem-Solving in Probability.

    ERIC Educational Resources Information Center

    Camp, John S.

    1978-01-01

    The purpose of this paper is to present problems (and solutions) from the areas of marketing, population planning, system reliability, and mathematics to show how a computer simulation can be used as a problem-solving strategy in probability. Examples using BASIC and two methods of generating random numbers are given. (Author/MP)

  18. Social Choice in a Computer-Assisted Simulation

    ERIC Educational Resources Information Center

    Thavikulwat, Precha

    2009-01-01

    Pursuing a line of inquiry suggested by Crookall, Martin, Saunders, and Coote, the author applied, within the framework of design science, an optimal-design approach to incorporate into a computer-assisted simulation two innovative social choice processes: the multiple period double auction and continuous voting. Expectations that the…

  19. Simulations Using a Computer/Videodisc System: Instructional Design Considerations.

    ERIC Educational Resources Information Center

    Ehrlich, Lisa R.

    Instructional design considerations involved in using level four videodisc systems when designing simulations are explored. Discussion of the hardware and software system characteristics notes that computer based training offers the features of text, graphics, color, animation, and highlighting techniques, while a videodisc player offers all of…

  20. Computational Simulation of a Water-Cooled Heat Pump

    NASA Technical Reports Server (NTRS)

    Bozarth, Duane

    2008-01-01

    A Fortran-language computer program for simulating the operation of a water-cooled vapor-compression heat pump in any orientation with respect to gravity has been developed by modifying a prior general-purpose heat-pump design code used at Oak Ridge National Laboratory (ORNL).

  1. Improving a Computer Networks Course Using the Partov Simulation Engine

    ERIC Educational Resources Information Center

    Momeni, B.; Kharrazi, M.

    2012-01-01

    Computer networks courses are hard to teach as there are many details in the protocols and techniques involved that are difficult to grasp. Employing programming assignments as part of the course helps students to obtain a better understanding and gain further insight into the theoretical lectures. In this paper, the Partov simulation engine and…

  2. Advanced Simulation and Computing Co-Design Strategy

    SciTech Connect

    Ang, James A.; Hoang, Thuc T.; Kelly, Suzanne M.; McPherson, Allen; Neely, Rob

    2015-11-01

    This ASC Co-design Strategy lays out the full continuum and components of the co-design process, based on what we have experienced thus far and what we wish to do more in the future to meet the program’s mission of providing high performance computing (HPC) and simulation capabilities for NNSA to carry out its stockpile stewardship responsibility.

  3. Biology Students Building Computer Simulations Using StarLogo TNG

    ERIC Educational Resources Information Center

    Smith, V. Anne; Duncan, Ishbel

    2011-01-01

    Confidence is an important issue for biology students in handling computational concepts. This paper describes a practical in which honours-level bioscience students simulate complex animal behaviour using StarLogo TNG, a freely-available graphical programming environment. The practical consists of two sessions, the first of which guides students…

  4. Robotics, Artificial Intelligence, Computer Simulation: Future Applications in Special Education.

    ERIC Educational Resources Information Center

    Moore, Gwendolyn B.; And Others

    1986-01-01

    Describes possible applications of new technologies to special education. Discusses results of a study designed to explore the use of robotics, artificial intelligence, and computer simulations to aid people with handicapping conditions. Presents several scenarios in which specific technological advances may contribute to special education…

  5. Computer Simulation of Small Group Decisions: Model Three.

    ERIC Educational Resources Information Center

    Hare, A.P.; Scheiblechner, Hartmann

    In a test of three computer models to simulate group decisions, data were used from 31 American and Austrian groups on a total of 307 trials. The task for each group was to predict a series of answers of an unknown subject on a value-orientation questionnaire, after being given a sample of his typical responses. The first model, used the mean of…

  6. Role of Computer Graphics in Simulations for Teaching Physiology.

    ERIC Educational Resources Information Center

    Modell, H. I.; And Others

    1983-01-01

    Discusses a revision of existing respiratory physiology simulations to promote active learning experiences for individual students. Computer graphics were added to aid student's conceptualization of the physiological system. Specific examples are provided, including those dealing with alveolar gas equations and effects of anatomic shunt flow on…

  7. Systematic error analysis of rotating coil using computer simulation

    SciTech Connect

    Li, Wei-chuan; Coles, M.

    1993-04-01

    This report describes a study of the systematic and random measurement uncertainties of magnetic multipoles which are due to construction errors, rotational speed variation, and electronic noise in a digitally bucked tangential coil assembly with dipole bucking windings. The sensitivities of the systematic multipole uncertainty to construction errors are estimated analytically and using a computer simulation program.

  8. Highway traffic simulation on multi-processor computers

    SciTech Connect

    Hanebutte, U.R.; Doss, E.; Tentner, A.M.

    1997-04-01

    A computer model has been developed to simulate highway traffic for various degrees of automation with a high level of fidelity in regard to driver control and vehicle characteristics. The model simulates vehicle maneuvering in a multi-lane highway traffic system and allows for the use of Intelligent Transportation System (ITS) technologies such as an Automated Intelligent Cruise Control (AICC). The structure of the computer model facilitates the use of parallel computers for the highway traffic simulation, since domain decomposition techniques can be applied in a straight forward fashion. In this model, the highway system (i.e. a network of road links) is divided into multiple regions; each region is controlled by a separate link manager residing on an individual processor. A graphical user interface augments the computer model kv allowing for real-time interactive simulation control and interaction with each individual vehicle and road side infrastructure element on each link. Average speed and traffic volume data is collected at user-specified loop detector locations. Further, as a measure of safety the so- called Time To Collision (TTC) parameter is being recorded.

  9. Robotics, Artificial Intelligence, Computer Simulation: Future Applications in Special Education.

    ERIC Educational Resources Information Center

    Moore, Gwendolyn B.; And Others

    The report describes three advanced technologies--robotics, artificial intelligence, and computer simulation--and identifies the ways in which they might contribute to special education. A hybrid methodology was employed to identify existing technology and forecast future needs. Following this framework, each of the technologies is defined,…

  10. Accelerating sino-atrium computer simulations with graphic processing units.

    PubMed

    Zhang, Hong; Xiao, Zheng; Lin, Shien-fong

    2015-01-01

    Sino-atrial node cells (SANCs) play a significant role in rhythmic firing. To investigate their role in arrhythmia and interactions with the atrium, computer simulations based on cellular dynamic mathematical models are generally used. However, the large-scale computation usually makes research difficult, given the limited computational power of Central Processing Units (CPUs). In this paper, an accelerating approach with Graphic Processing Units (GPUs) is proposed in a simulation consisting of the SAN tissue and the adjoining atrium. By using the operator splitting method, the computational task was made parallel. Three parallelization strategies were then put forward. The strategy with the shortest running time was further optimized by considering block size, data transfer and partition. The results showed that for a simulation with 500 SANCs and 30 atrial cells, the execution time taken by the non-optimized program decreased 62% with respect to a serial program running on CPU. The execution time decreased by 80% after the program was optimized. The larger the tissue was, the more significant the acceleration became. The results demonstrated the effectiveness of the proposed GPU-accelerating methods and their promising applications in more complicated biological simulations. PMID:26406070

  11. Computers With Wings: Flight Simulation and Personalized Landscapes

    NASA Astrophysics Data System (ADS)

    Oss, Stefano

    2005-03-01

    We propose, as a special way to explore the physics of flying objects, to use a flight simulator with a personalized scenery to reproduce the territory where students live. This approach increases the participation and attention of students to physics classes but also creates several opportunities for addressing side activities and arguments of various nature, from history to geography, computer science, and much more.

  12. Simulation of a National Computer Network in a Gaming Environment

    ERIC Educational Resources Information Center

    Segal, Ronald; O'Neal, Beverly

    1978-01-01

    A national computer services network simulation model was used in a 3-day gaming exercise involving 16 institutional teams who made decisions about their likely long-term network participation. Participants were able to react to others' decisions and actions, and to critical overriding political, economical, and organizational issues. (CMV)

  13. Modeling and Computer Simulation of AN Insurance Policy:

    NASA Astrophysics Data System (ADS)

    Acharyya, Muktish; Acharyya, Ajanta Bhowal

    We have developed a model for a life-insurance policy. In this model, the net gain is calculated by computer simulation for a particular type of lifetime distribution function. We observed that the net gain becomes maximum for a particular value of upper age for last premium.

  14. Computational Modelling and Simulation Fostering New Approaches in Learning Probability

    ERIC Educational Resources Information Center

    Kuhn, Markus; Hoppe, Ulrich; Lingnau, Andreas; Wichmann, Astrid

    2006-01-01

    Discovery learning in mathematics in the domain of probability based on hands-on experiments is normally limited because of the difficulty in providing sufficient materials and data volume in terms of repetitions of the experiments. Our cooperative, computational modelling and simulation environment engages students and teachers in composing and…

  15. Time Advice and Learning Questions in Computer Simulations

    ERIC Educational Resources Information Center

    Rey, Gunter Daniel

    2011-01-01

    Students (N = 101) used an introductory text and a computer simulation to learn fundamental concepts about statistical analyses (e.g., analysis of variance, regression analysis and General Linear Model). Each learner was randomly assigned to one cell of a 2 (with or without time advice) x 3 (with learning questions and corrective feedback, with…

  16. Accelerating sino-atrium computer simulations with graphic processing units.

    PubMed

    Zhang, Hong; Xiao, Zheng; Lin, Shien-fong

    2015-01-01

    Sino-atrial node cells (SANCs) play a significant role in rhythmic firing. To investigate their role in arrhythmia and interactions with the atrium, computer simulations based on cellular dynamic mathematical models are generally used. However, the large-scale computation usually makes research difficult, given the limited computational power of Central Processing Units (CPUs). In this paper, an accelerating approach with Graphic Processing Units (GPUs) is proposed in a simulation consisting of the SAN tissue and the adjoining atrium. By using the operator splitting method, the computational task was made parallel. Three parallelization strategies were then put forward. The strategy with the shortest running time was further optimized by considering block size, data transfer and partition. The results showed that for a simulation with 500 SANCs and 30 atrial cells, the execution time taken by the non-optimized program decreased 62% with respect to a serial program running on CPU. The execution time decreased by 80% after the program was optimized. The larger the tissue was, the more significant the acceleration became. The results demonstrated the effectiveness of the proposed GPU-accelerating methods and their promising applications in more complicated biological simulations.

  17. Symbolic Quantum Computation Simulation in SymPy

    NASA Astrophysics Data System (ADS)

    Cugini, Addison; Curry, Matt; Granger, Brian

    2010-10-01

    Quantum computing is an emerging field which aims to use quantum mechanics to solve difficult computational problems with greater efficiency than on a classical computer. There is a need to create software that i) helps newcomers to learn the field, ii) enables practitioners to design and simulate quantum circuits and iii) provides an open foundation for further research in the field. Towards these ends we have created a package, in the open-source symbolic computation library SymPy, that simulates the quantum circuit model of quantum computation using Dirac notation. This framework builds on the extant powerful symbolic capabilities of SymPy to preform its simulations in a fully symbolic manner. We use object oriented design to abstract circuits as ordered collections of quantum gate and qbit objects. The gate objects can either be applied directly to the qbit objects or be represented as matrices in different bases. The package is also capable of performing the quantum Fourier transform and Shor's algorithm. A notion of measurement is made possible through the use of a non-commutative gate object. In this talk, we describe the software and show examples of quantum circuits on single and multi qbit states that involve common algorithms, gates and measurements.

  18. Computer-simulated development process of Chinese characters font cognition

    NASA Astrophysics Data System (ADS)

    Chen, Jing; Mu, Zhichun; Sun, Dehui; Hu, Dunli

    2008-10-01

    The research of Chinese characters cognition is an important research aspect of cognitive science and computer science, especially artificial intelligence. In this paper, according as the traits of Chinese characters the database of Chinese characters font representations and the model of computer simulation of Chinese characters font cognition are constructed from the aspect of cognitive science. The font cognition of Chinese characters is actual a gradual process and there is the accumulation of knowledge. Through using the method of computer simulation, the development model of Chinese characters cognition was constructed. And this is the important research content of Chinese characters cognition. This model is based on self-organizing neural network and adaptive resonance theory (ART) neural network. By Combining the SOFM and ART2 network, two sets of input were trained. Through training and testing methods, the development process of Chinese characters cognition based on Chinese characters cognition was simulated. Then the results from this model and could be compared with the results that were obtained only using SOFM. By analyzing the results, this simulation suggests that the model is able to account for some empirical results. So, the model can simulate the development process of Chinese characters cognition in a way.

  19. Computer simulations of isolated conductors in electrostatic equilibrium.

    PubMed

    Chang, Herng-Hua

    2008-11-01

    A computer simulation model is introduced to study the characteristics of isolated conductors in electrostatic equilibrium. Drawing an analogy between electrons and how they move to the surface of isolated conductors, we randomly initialize a large number of particles inside a small region at the center of simulated conductors and advance them according to their forces of repulsion. By use of optimized numerical techniques of the finite-size particle method associated with Poisson's equation, the particles are quickly advanced using a fast Fourier transform and their charge is efficiently shared using the clouds-in-cells method. The particle populations in the simulations range from 50x10;{3} to 1x10;{6} that move in various computation domains equal to 128x128 , 256x256 , and 512x512 grids. When the particles come to an electrostatic equilibrium, they lie on the boundaries of the simulated conductors, from which the equilibrium properties are obtained. Consistent with the theory of electrostatics and charged conductors, we found that the particles move in response to the conductor geometry in such a way that the electrostatic energy is minimized. Good approximation results for the equilibrium properties were obtained using the proposed computer simulation model.

  20. Computer Simulation Of Radiographic Screen-Film Images

    NASA Astrophysics Data System (ADS)

    Metter, Richard V.; Dillon, Peter L.; Huff, Kenneth E.; Rabbani, Majid

    1986-06-01

    A method is described for computer simulation of radiographic screen-film images. This method is based on a previously published model of the screen-film imaging process.l The x-ray transmittance of a test object is sampled at a pitch of 50 μm by scanning a high-resolution, low-noise direct-exposure radiograph. This transmittance is then used, along with the x-ray exposure incident upon the object, to determine the expected number of quanta per pixel incident upon the screen. The random nature of x-ray arrival and absorption, x-ray quantum to light photon conversion, and photon absorption by the film is simulated by appropriate random number generation. Standard FFT techniques are used for computing the effects of scattering. Finally, the computed film density for each pixel is produced on a high-resolution, low-noise output film by a scanning printer. The simulation allows independent specification of x-ray exposure, x-ray quantum absorption, light conversion statistics, light scattering, and film characteristics (sensitometry and gran-ularity). Each of these parameters is independently measured for radiographic systems of interest. The simulator is tested by comparing actual radiographic images with simulated images resulting from the independently measured parameters. Images are also shown illustrating the effects of changes in these parameters on image quality. Finally, comparison is made with a "perfect" imaging system where information content is only limited by the finite number of x-rays.

  1. Bibliography for Verification and Validation in Computational Simulations

    SciTech Connect

    Oberkampf, W.L.

    1998-10-01

    A bibliography has been compiled dealing with the verification and validation of computational simulations. The references listed in this bibliography are concentrated in the field of computational fluid dynamics (CFD). However, references from the following fields are also included: operations research, heat transfer, solid dynamics, software quality assurance, software accreditation, military systems, and nuclear reactor safety. This bibliography, containing 221 references, is not meant to be comprehensive. It was compiled during the last ten years in response to the author's interest and research in the methodology for verification and validation. The emphasis in the bibliography is in the following areas: philosophy of science underpinnings, development of terminology and methodology, high accuracy solutions for CFD verification, experimental datasets for CFD validation, and the statistical quantification of model validation. This bibliography should provide a starting point for individual researchers in many fields of computational simulation in science and engineering.

  2. Computational simulation of high temperature metal matrix composites cyclic behavior

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.; Murthy, P. L. N.; Hopkins, D. A.

    1988-01-01

    A procedure was developed and is described which can be used to computationally simulate the cyclic behavior of high temperature metal matrix composites (HTMMC) and its degradation effects on the structural response. This procedure consists of HTMMC mechanics coupled with a multifactor interaction constituent material relationship and with an incremental iterative nonlinear analysis. The procedure is implemented in a computer code that can be used to computationally simulate the thermomechanical behavior of HTMMC starting from the fabrication process and proceeding through thermomechanical cycling, accounting for the interface/interphase region. Results show that combined thermal/mechanical cycling, the interphase, and in situ matrix properties have significant effects on the structural integrity of HTMMC.

  3. Computer simulation for hormones related to primary thyropathy.

    PubMed

    Hatakeyama, T; Yagi, H

    1985-01-01

    We propose a mathematical model of the human hypothalamus-anterior pituitary-thyroid system regulating basal metabolism, and practice computer simulation concerning primary thyropathy such as Graves' disease, hypothyroidism, T4-toxicosis and T3-toxicosis by use of this model. In order to throw light on properties of the system, indicial responses of the hormones, T4, T3, rT3, and TSH, and the function of the thyroid gland are computed. Medical treatments for Graves' disease and for hypothyroidism are simulated with a view to enhancing clinical significance. Performance of the simulation leads to an interesting result that when the convertion rate of blood T4 to blood T3 increases, explicit T3-toxicosis occurs, although the function of the thyroid gland is normal.

  4. Paediatric bed fall computer simulation model development and validation.

    PubMed

    Thompson, Angela K; Bertocci, Gina E

    2013-01-01

    Falls from beds and other household furniture are common scenarios stated to conceal child abuse. Knowledge of the biomechanics associated with short-distance falls may aid clinicians in distinguishing between abusive and accidental injuries. Computer simulation is a useful tool to investigate injury-producing events and to study the effect of altering event parameters on injury risk. In this study, a paediatric bed fall computer simulation model was developed and validated. The simulation was created using Mathematical Dynamic Modeling(®) software with a child restraint air bag interaction (CRABI) 12-month-old anthropomorphic test device (ATD) representing the fall victim. The model was validated using data from physical fall experiments of the same scenario with an instrumented CRABI ATD. Validation was conducted using both observational and statistical comparisons. Future parametric sensitivity studies using this model will lead to an improved understanding of relationships between child (fall victim) parameters, fall environment parameters and injury potential.

  5. Reproducible computational biology experiments with SED-ML - The Simulation Experiment Description Markup Language

    PubMed Central

    2011-01-01

    Background The increasing use of computational simulation experiments to inform modern biological research creates new challenges to annotate, archive, share and reproduce such experiments. The recently published Minimum Information About a Simulation Experiment (MIASE) proposes a minimal set of information that should be provided to allow the reproduction of simulation experiments among users and software tools. Results In this article, we present the Simulation Experiment Description Markup Language (SED-ML). SED-ML encodes in a computer-readable exchange format the information required by MIASE to enable reproduction of simulation experiments. It has been developed as a community project and it is defined in a detailed technical specification and additionally provides an XML schema. The version of SED-ML described in this publication is Level 1 Version 1. It covers the description of the most frequent type of simulation experiments in the area, namely time course simulations. SED-ML documents specify which models to use in an experiment, modifications to apply on the models before using them, which simulation procedures to run on each model, what analysis results to output, and how the results should be presented. These descriptions are independent of the underlying model implementation. SED-ML is a software-independent format for encoding the description of simulation experiments; it is not specific to particular simulation tools. Here, we demonstrate that with the growing software support for SED-ML we can effectively exchange executable simulation descriptions. Conclusions With SED-ML, software can exchange simulation experiment descriptions, enabling the validation and reuse of simulation experiments in different tools. Authors of papers reporting simulation experiments can make their simulation protocols available for other scientists to reproduce the results. Because SED-ML is agnostic about exact modeling language(s) used, experiments covering models from

  6. Adaptive scapula bone remodeling computational simulation: Relevance to regenerative medicine

    SciTech Connect

    Sharma, Gulshan B.; Robertson, Douglas D.

    2013-07-01

    Shoulder arthroplasty success has been attributed to many factors including, bone quality, soft tissue balancing, surgeon experience, and implant design. Improved long-term success is primarily limited by glenoid implant loosening. Prosthesis design examines materials and shape and determines whether the design should withstand a lifetime of use. Finite element (FE) analyses have been extensively used to study stresses and strains produced in implants and bone. However, these static analyses only measure a moment in time and not the adaptive response to the altered environment produced by the therapeutic intervention. Computational analyses that integrate remodeling rules predict how bone will respond over time. Recent work has shown that subject-specific two- and three dimensional adaptive bone remodeling models are feasible and valid. Feasibility and validation were achieved computationally, simulating bone remodeling using an intact human scapula, initially resetting the scapular bone material properties to be uniform, numerically simulating sequential loading, and comparing the bone remodeling simulation results to the actual scapula’s material properties. Three-dimensional scapula FE bone model was created using volumetric computed tomography images. Muscle and joint load and boundary conditions were applied based on values reported in the literature. Internal bone remodeling was based on element strain-energy density. Initially, all bone elements were assigned a homogeneous density. All loads were applied for 10 iterations. After every iteration, each bone element’s remodeling stimulus was compared to its corresponding reference stimulus and its material properties modified. The simulation achieved convergence. At the end of the simulation the predicted and actual specimen bone apparent density were plotted and compared. Location of high and low predicted bone density was comparable to the actual specimen. High predicted bone density was greater than

  7. Adaptive scapula bone remodeling computational simulation: Relevance to regenerative medicine

    NASA Astrophysics Data System (ADS)

    Sharma, Gulshan B.; Robertson, Douglas D.

    2013-07-01

    Shoulder arthroplasty success has been attributed to many factors including, bone quality, soft tissue balancing, surgeon experience, and implant design. Improved long-term success is primarily limited by glenoid implant loosening. Prosthesis design examines materials and shape and determines whether the design should withstand a lifetime of use. Finite element (FE) analyses have been extensively used to study stresses and strains produced in implants and bone. However, these static analyses only measure a moment in time and not the adaptive response to the altered environment produced by the therapeutic intervention. Computational analyses that integrate remodeling rules predict how bone will respond over time. Recent work has shown that subject-specific two- and three dimensional adaptive bone remodeling models are feasible and valid. Feasibility and validation were achieved computationally, simulating bone remodeling using an intact human scapula, initially resetting the scapular bone material properties to be uniform, numerically simulating sequential loading, and comparing the bone remodeling simulation results to the actual scapula's material properties. Three-dimensional scapula FE bone model was created using volumetric computed tomography images. Muscle and joint load and boundary conditions were applied based on values reported in the literature. Internal bone remodeling was based on element strain-energy density. Initially, all bone elements were assigned a homogeneous density. All loads were applied for 10 iterations. After every iteration, each bone element's remodeling stimulus was compared to its corresponding reference stimulus and its material properties modified. The simulation achieved convergence. At the end of the simulation the predicted and actual specimen bone apparent density were plotted and compared. Location of high and low predicted bone density was comparable to the actual specimen. High predicted bone density was greater than actual

  8. An Efficient Multi-Scale Simulation Architecture for the Prediction of Performance Metrics of Parts Fabricated Using Additive Manufacturing

    NASA Astrophysics Data System (ADS)

    Pal, Deepankar; Patil, Nachiket; Zeng, Kai; Teng, Chong; Stucker, Brent

    2015-09-01

    In this study, an overview of the computational tools developed in the area of metal-based additively manufactured (AM) to simulate the performance metrics along with their experimental validations will be presented. The performance metrics of the AM fabricated parts such as the inter- and intra-layer strengths could be characterized in terms of the melt pool dimensions, solidification times, cooling rates, granular microstructure, and phase morphologies along with defect distributions which are a function of the energy source, scan pattern(s), and the material(s). The four major areas of AM simulation included in this study are thermo-mechanical constitutive relationships during fabrication and in- service, the use of Euler angles for gaging static and dynamic strengths, the use of algorithms involving intelligent use of matrix algebra and homogenization extracting the spatiotemporal nature of these processes, a fast GPU architecture, and specific challenges targeted toward attaining a faster than real-time simulation efficiency and accuracy.

  9. Additive Manufacturing Modeling and Simulation A Literature Review for Electron Beam Free Form Fabrication

    NASA Technical Reports Server (NTRS)

    Seufzer, William J.

    2014-01-01

    Additive manufacturing is coming into industrial use and has several desirable attributes. Control of the deposition remains a complex challenge, and so this literature review was initiated to capture current modeling efforts in the field of additive manufacturing. This paper summarizes about 10 years of modeling and simulation related to both welding and additive manufacturing. The goals were to learn who is doing what in modeling and simulation, to summarize various approaches taken to create models, and to identify research gaps. Later sections in the report summarize implications for closed-loop-control of the process, implications for local research efforts, and implications for local modeling efforts.

  10. Computer-intensive simulation of solid-state NMR experiments using SIMPSON

    NASA Astrophysics Data System (ADS)

    Tošner, Zdeněk; Andersen, Rasmus; Stevensson, Baltzar; Edén, Mattias; Nielsen, Niels Chr.; Vosegaard, Thomas

    2014-09-01

    Conducting large-scale solid-state NMR simulations requires fast computer software potentially in combination with efficient computational resources to complete within a reasonable time frame. Such simulations may involve large spin systems, multiple-parameter fitting of experimental spectra, or multiple-pulse experiment design using parameter scan, non-linear optimization, or optimal control procedures. To efficiently accommodate such simulations, we here present an improved version of the widely distributed open-source SIMPSON NMR simulation software package adapted to contemporary high performance hardware setups. The software is optimized for fast performance on standard stand-alone computers, multi-core processors, and large clusters of identical nodes. We describe the novel features for fast computation including internal matrix manipulations, propagator setups and acquisition strategies. For efficient calculation of powder averages, we implemented interpolation method of Alderman, Solum, and Grant, as well as recently introduced fast Wigner transform interpolation technique. The potential of the optimal control toolbox is greatly enhanced by higher precision gradients in combination with the efficient optimization algorithm known as limited memory Broyden-Fletcher-Goldfarb-Shanno. In addition, advanced parallelization can be used in all types of calculations, providing significant time reductions. SIMPSON is thus reflecting current knowledge in the field of numerical simulations of solid-state NMR experiments. The efficiency and novel features are demonstrated on the representative simulations.

  11. Computational simulation for analysis and synthesis of impact resilient structure

    NASA Astrophysics Data System (ADS)

    Djojodihardjo, Harijono

    2013-10-01

    Impact resilient structures are of great interest in many engineering applications varying from civil, land vehicle, aircraft and space structures, to mention a few examples. To design such structure, one has to resort fundamental principles and take into account progress in analytical and computational approaches as well as in material science and technology. With such perspectives, this work looks at a generic beam and plate structure subject to impact loading and carry out analysis and numerical simulation. The first objective of the work is to develop a computational algorithm to analyze flat plate as a generic structure subjected to impact loading for numerical simulation and parametric study. The analysis will be based on dynamic response analysis. Consideration is given to the elastic-plastic region. The second objective is to utilize the computational algorithm for direct numerical simulation, and as a parallel scheme, commercial off-the shelf numerical code is utilized for parametric study, optimization and synthesis. Through such analysis and numerical simulation, effort is devoted to arrive at an optimum configuration in terms of loading, structural dimensions, material properties and composite lay-up, among others. Results will be discussed in view of practical applications.

  12. SAFSIM: A computer program for engineering simulations of space reactor system performance

    SciTech Connect

    Dobranich, D.

    1992-07-01

    SAFSIM (System Analysis Flow SIMulator) is a FORTRAN computer program that provides engineering simulations of user-specified flow networks at the system level. It includes fluid mechanics, heat transfer, and reactor dynamics capabilities. SAFSIM provides sufficient versatility to allow the simulation of almost any flow system, from a backyard sprinkler system to a clustered nuclear reactor propulsion system. In addition to versatility, speed and robustness are primary goals of SAFSIM. The current capabilities of SAFSIM are summarized, and some illustrative example results are presented.

  13. Cosmic Reionization on Computers. I. Design and Calibration of Simulations

    NASA Astrophysics Data System (ADS)

    Gnedin, Nickolay Y.

    2014-09-01

    Cosmic Reionization On Computers is a long-term program of numerical simulations of cosmic reionization. Its goal is to model fully self-consistently (albeit not necessarily from the first principles) all relevant physics, from radiative transfer to gas dynamics and star formation, in simulation volumes of up to 100 comoving Mpc, and with spatial resolution approaching 100 pc in physical units. In this method paper, we describe our numerical method, the design of simulations, and the calibration of numerical parameters. Using several sets (ensembles) of simulations in 20 h -1 Mpc and 40 h -1 Mpc boxes with spatial resolution reaching 125 pc at z = 6, we are able to match the observed galaxy UV luminosity functions at all redshifts between 6 and 10, as well as obtain reasonable agreement with the observational measurements of the Gunn-Peterson optical depth at z < 6.

  14. Computational Aerodynamic Simulations of a Spacecraft Cabin Ventilation Fan Design

    NASA Technical Reports Server (NTRS)

    Tweedt, Daniel L.

    2010-01-01

    Quieter working environments for astronauts are needed if future long-duration space exploration missions are to be safe and productive. Ventilation and payload cooling fans are known to be dominant sources of noise, with the International Space Station being a good case in point. To address this issue cost effectively, early attention to fan design, selection, and installation has been recommended, leading to an effort by NASA to examine the potential for small-fan noise reduction by improving fan aerodynamic design. As a preliminary part of that effort, the aerodynamics of a cabin ventilation fan designed by Hamilton Sundstrand has been simulated using computational fluid dynamics codes, and the computed solutions analyzed to quantify various aspects of the fan aerodynamics and performance. Four simulations were performed at the design rotational speed: two at the design flow rate and two at off-design flow rates. Following a brief discussion of the computational codes, various aerodynamic- and performance-related quantities derived from the computed flow fields are presented along with relevant flow field details. The results show that the computed fan performance is in generally good agreement with stated design goals.

  15. Multi-dimensional computer simulation of MHD combustor hydrodynamics

    SciTech Connect

    Berry, G.F.; Chang, S.L.; Lottes, S.A.; Rimkus, W.A.

    1991-04-04

    Argonne National Laboratory is investigating the nonreacting jet-gas mixing patterns in an MHD second stage combustor by using a two-dimensional multi-phase hydrodynamics computer program and a three-dimensional single-phase hydrodynamics computer program. The computer simulations are intended to enhance the understanding of flow and mixing patterns in the combustor, which in turn may lead to improvement of the downstream MHD channel performance. A two-dimensional steady state computer model, based on mass and momentum conservation laws for multiple gas species, is used to simulate the hydrodynamics of the combustor in which a jet of oxidizer is injected into an unconfined cross-stream gas flow. A three-dimensional code is used to examine the effects of the side walls and the distributed jet flows on the non-reacting jet-gas mixing patterns. The code solves the conservation equations of mass, momentum, and energy, and a transport equation of a turbulence parameter and allows permeable surfaces to be specified for any computational cell. 17 refs., 25 figs.

  16. Development of magnetron sputtering simulator with GPU parallel computing

    NASA Astrophysics Data System (ADS)

    Sohn, Ilyoup; Kim, Jihun; Bae, Junkyeong; Lee, Jinpil

    2014-12-01

    Sputtering devices are widely used in the semiconductor and display panel manufacturing process. Currently, a number of surface treatment applications using magnetron sputtering techniques are being used to improve the efficiency of the sputtering process, through the installation of magnets outside the vacuum chamber. Within the internal space of the low pressure chamber, plasma generated from the combination of a rarefied gas and an electric field is influenced interactively. Since the quality of the sputtering and deposition rate on the substrate is strongly dependent on the multi-physical phenomena of the plasma regime, numerical simulations using PIC-MCC (Particle In Cell, Monte Carlo Collision) should be employed to develop an efficient sputtering device. In this paper, the development of a magnetron sputtering simulator based on the PIC-MCC method and the associated numerical techniques are discussed. To solve the electric field equations in the 2-D Cartesian domain, a Poisson equation solver based on the FDM (Finite Differencing Method) is developed and coupled with the Monte Carlo Collision method to simulate the motion of gas particles influenced by an electric field. The magnetic field created from the permanent magnet installed outside the vacuum chamber is also numerically calculated using Biot-Savart's Law. All numerical methods employed in the present PIC code are validated by comparison with analytical and well-known commercial engineering software results, with all of the results showing good agreement. Finally, the developed PIC-MCC code is parallelized to be suitable for general purpose computing on graphics processing unit (GPGPU) acceleration, so as to reduce the large computation time which is generally required for particle simulations. The efficiency and accuracy of the GPGPU parallelized magnetron sputtering simulator are examined by comparison with the calculated results and computation times from the original serial code. It is found that

  17. A distributed computing tool for generating neural simulation databases.

    PubMed

    Calin-Jageman, Robert J; Katz, Paul S

    2006-12-01

    After developing a model neuron or network, it is important to systematically explore its behavior across a wide range of parameter values or experimental conditions, or both. However, compiling a very large set of simulation runs is challenging because it typically requires both access to and expertise with high-performance computing facilities. To lower the barrier for large-scale model analysis, we have developed NeuronPM, a client/server application that creates a "screen-saver" cluster for running simulations in NEURON (Hines & Carnevale, 1997). NeuronPM provides a user-friendly way to use existing computing resources to catalog the performance of a neural simulation across a wide range of parameter values and experimental conditions. The NeuronPM client is a Windows-based screen saver, and the NeuronPM server can be hosted on any Apache/PHP/MySQL server. During idle time, the client retrieves model files and work assignments from the server, invokes NEURON to run the simulation, and returns results to the server. Administrative panels make it simple to upload model files, define the parameters and conditions to vary, and then monitor client status and work progress. NeuronPM is open-source freeware and is available for download at http://neuronpm.homeip.net . It is a useful entry-level tool for systematically analyzing complex neuron and network simulations.

  18. Computer Science Techniques Applied to Parallel Atomistic Simulation

    NASA Astrophysics Data System (ADS)

    Nakano, Aiichiro

    1998-03-01

    Recent developments in parallel processing technology and multiresolution numerical algorithms have established large-scale molecular dynamics (MD) simulations as a new research mode for studying materials phenomena such as fracture. However, this requires large system sizes and long simulated times. We have developed: i) Space-time multiresolution schemes; ii) fuzzy-clustering approach to hierarchical dynamics; iii) wavelet-based adaptive curvilinear-coordinate load balancing; iv) multilevel preconditioned conjugate gradient method; and v) spacefilling-curve-based data compression for parallel I/O. Using these techniques, million-atom parallel MD simulations are performed for the oxidation dynamics of nanocrystalline Al. The simulations take into account the effect of dynamic charge transfer between Al and O using the electronegativity equalization scheme. The resulting long-range Coulomb interaction is calculated efficiently with the fast multipole method. Results for temperature and charge distributions, residual stresses, bond lengths and bond angles, and diffusivities of Al and O will be presented. The oxidation of nanocrystalline Al is elucidated through immersive visualization in virtual environments. A unique dual-degree education program at Louisiana State University will also be discussed in which students can obtain a Ph.D. in Physics & Astronomy and a M.S. from the Department of Computer Science in five years. This program fosters interdisciplinary research activities for interfacing High Performance Computing and Communications with large-scale atomistic simulations of advanced materials. This work was supported by NSF (CAREER Program), ARO, PRF, and Louisiana LEQSF.

  19. The very local Hubble flow: Computer simulations of dynamical history

    NASA Astrophysics Data System (ADS)

    Chernin, A. D.; Karachentsev, I. D.; Valtonen, M. J.; Dolgachev, V. P.; Domozhilova, L. M.; Makarov, D. I.

    2004-02-01

    The phenomenon of the very local (≤3 Mpc) Hubble flow is studied on the basis of the data of recent precision observations. A set of computer simulations is performed to trace the trajectories of the flow galaxies back in time to the epoch of the formation of the Local Group. It is found that the ``initial conditions'' of the flow are drastically different from the linear velocity-distance relation. The simulations enable one also to recognize the major trends of the flow evolution and identify the dynamical role of universal antigravity produced by the cosmic vacuum.

  20. Methodology for characterizing modeling and discretization uncertainties in computational simulation

    SciTech Connect

    ALVIN,KENNETH F.; OBERKAMPF,WILLIAM L.; RUTHERFORD,BRIAN M.; DIEGERT,KATHLEEN V.

    2000-03-01

    This research effort focuses on methodology for quantifying the effects of model uncertainty and discretization error on computational modeling and simulation. The work is directed towards developing methodologies which treat model form assumptions within an overall framework for uncertainty quantification, for the purpose of developing estimates of total prediction uncertainty. The present effort consists of work in three areas: framework development for sources of uncertainty and error in the modeling and simulation process which impact model structure; model uncertainty assessment and propagation through Bayesian inference methods; and discretization error estimation within the context of non-deterministic analysis.

  1. A computer simulation approach to measurement of human control strategy

    NASA Technical Reports Server (NTRS)

    Green, J.; Davenport, E. L.; Engler, H. F.; Sears, W. E., III

    1982-01-01

    Human control strategy is measured through use of a psychologically-based computer simulation which reflects a broader theory of control behavior. The simulation is called the human operator performance emulator, or HOPE. HOPE was designed to emulate control learning in a one-dimensional preview tracking task and to measure control strategy in that setting. When given a numerical representation of a track and information about current position in relation to that track, HOPE generates positions for a stick controlling the cursor to be moved along the track. In other words, HOPE generates control stick behavior corresponding to that which might be used by a person learning preview tracking.

  2. Computer simulations of the motion and decay of global strings

    SciTech Connect

    Hagmann, C.; Sikivie, P.

    1990-01-01

    Computer simulations have been carried out of the motion and decay of global strings, including spectrum analysis of the energy stored in the scalar field which describes the global string and the radiated Nambu-Goldstone bosons. We simulated relaxing pieces of bent string and collapsing loops. We find, for the string sizes investigated, that the spectrum of field energy hardens rather than softens while the string decays into Nambu-Goldstone radiation. We argue on theoretical grounds that is indeed the most plausible general behaviour. 19 refs., 12 figs.

  3. [Economic benefits of overlapping induction: investigation using a computer simulation model].

    PubMed

    Hunziker, S; Baumgart, A; Denz, C; Schüpfer, G

    2009-06-01

    The aim of this study was to investigate the potential economic benefit of overlapping anaesthesia induction given that all patient diagnosis-related groups (AP DRG) are used as the model for hospital reimbursement. A computer simulation model was used for this purpose. Due to the resource-intensive production process, the operating room (OR) environment is the most expensive part of the supply chain for surgical disciplines. The economical benefit of a parallel production process (additional personnel, adaptation of the process) as compared to a conventional serial layout was assessed. A computer-based simulation method was used with commercially available simulation software. Assumptions for revenues were made by reimbursement based on AP DRG. Based on a system analysis a model for the computer simulation was designed on a step-by-step abstraction process. In the model two operating rooms were used for parallel processing and two operating rooms for a serial production process. Six different types of surgical procedures based on historical case durations were investigated. The contribution margin was calculated based on the increased revenues minus the cost for the additional anaesthesia personnel. Over a period of 5 weeks 41 additional surgical cases were operated under the assumption of duration of surgery of 89+/-4 min (mean+/-SD). The additional contribution margin was CHF 104,588. In the case of longer surgical procedures with 103+/-25 min duration (mean+/-SD), an increase of 36 cases was possible in the same time period and the contribution margin was increased by CHF 384,836. When surgical cases with a mean procedural time of 243+/-55 min were simulated, 15 additional cases were possible. Therefore, the additional contribution margin was CHF 321,278. Although costs increased in this simulation when a serial production process was changed to a parallel system layout due to more personnel, an increase of the contribution margin was possible, especially with

  4. Development of computer simulations for landfill methane recovery

    SciTech Connect

    Massmann, J.W.; Moore, C.A.; Sykes, R.M.

    1981-12-01

    Two- and three-dimensional finite-difference computer programs simulating methane recovery systems in landfills have been developed. These computer programs model multicomponent combined pressure and diffusional flow in porous media. Each program and the processes it models are described in this report. Examples of the capabilities of each program are also presented. The two-dimensional program was used to simulate methane recovery systems in a cylindrically shaped landfill. The effects of various pump locations, geometries, and extraction rates were determined. The three-dimensional program was used to model the Puente Hills landfill, a field test site in southern California. The biochemical and microbiological details of methane generation in landfills are also given. Effects of environmental factors, such as moisture, oxygen, temperature, and nutrients on methane generation are discussed and an analytical representation of the gas generation rate is developed.

  5. Using Computer Simulation for Neurolab 2 Mission Planning

    NASA Technical Reports Server (NTRS)

    Sanders, Betty M.

    1997-01-01

    This paper presents an overview of the procedure used in the creation of a computer simulation video generated by the Graphics Research and Analysis Facility at NASA/Johnson Space Center. The simulation was preceded by an analysis of anthropometric characteristics of crew members and workspace requirements for 13 experiments to be conducted on Neurolab 2 which is dedicated to neuroscience and behavioral research. Neurolab 2 is being carried out as a partnership among national domestic research institutes and international space agencies. The video is a tour of the Spacelab module as it will be configured for STS-90, scheduled for launch in the spring of 1998, and identifies experiments that can be conducted in parallel during that mission. Therefore, this paper will also address methods for using computer modeling to facilitate the mission planning activity.

  6. A Computational Approach for Probabilistic Analysis of Water Impact Simulations

    NASA Technical Reports Server (NTRS)

    Horta, Lucas G.; Mason, Brian H.; Lyle, Karen H.

    2009-01-01

    NASA's development of new concepts for the Crew Exploration Vehicle Orion presents many similar challenges to those worked in the sixties during the Apollo program. However, with improved modeling capabilities, new challenges arise. For example, the use of the commercial code LS-DYNA, although widely used and accepted in the technical community, often involves high-dimensional, time consuming, and computationally intensive simulations. The challenge is to capture what is learned from a limited number of LS-DYNA simulations to develop models that allow users to conduct interpolation of solutions at a fraction of the computational time. This paper presents a description of the LS-DYNA model, a brief summary of the response surface techniques, the analysis of variance approach used in the sensitivity studies, equations used to estimate impact parameters, results showing conditions that might cause injuries, and concluding remarks.

  7. Computer simulations for the adsorption of polymers onto surfaces

    SciTech Connect

    Balazs, A.C.

    1993-01-01

    Polymer-surface interactions are important in every stage of oil and coal production, production of new energy-efficient composite materials, and in medicine. Therefore, it is important to isolate the factors that influence the interfacial activity of polymer chains. We developed theoretical models and computer simulations to determine effects of polymer architecture, solvent quality, and surface morphology on properties of chains at penetrable and impenetrable interfaces. 7 figs, 27 refs.

  8. pV3-Gold Visualization Environment for Computer Simulations

    NASA Technical Reports Server (NTRS)

    Babrauckas, Theresa L.

    1997-01-01

    A new visualization environment, pV3-Gold, can be used during and after a computer simulation to extract and visualize the physical features in the results. This environment, which is an extension of the pV3 visualization environment developed at the Massachusetts Institute of Technology with guidance and support by researchers at the NASA Lewis Research Center, features many tools that allow users to display data in various ways.

  9. Para: a computer simulation code for plasma driven electromagnetic launchers

    SciTech Connect

    Thio, Y.-C.

    1983-03-01

    A computer code for simulation of rail-type accelerators utilizing a plasma armature has been developed and is described in detail. Some time varying properties of the plasma are taken into account in this code thus allowing the development of a dynamical model of the behavior of a plasma in a rail-type electromagnetic launcher. The code is being successfully used to predict and analyse experiments on small calibre rail-gun launchers.

  10. Cane Toad or Computer Mouse? Real and Computer-Simulated Laboratory Exercises in Physiology Classes

    ERIC Educational Resources Information Center

    West, Jan; Veenstra, Anneke

    2012-01-01

    Traditional practical classes in many countries are being rationalised to reduce costs. The challenge for university educators is to provide students with the opportunity to reinforce theoretical concepts by running something other than a traditional practical program. One alternative is to replace wet labs with comparable computer simulations.…

  11. Improving computational efficiency of Monte Carlo simulations with variance reduction

    SciTech Connect

    Turner, A.

    2013-07-01

    CCFE perform Monte-Carlo transport simulations on large and complex tokamak models such as ITER. Such simulations are challenging since streaming and deep penetration effects are equally important. In order to make such simulations tractable, both variance reduction (VR) techniques and parallel computing are used. It has been found that the application of VR techniques in such models significantly reduces the efficiency of parallel computation due to 'long histories'. VR in MCNP can be accomplished using energy-dependent weight windows. The weight window represents an 'average behaviour' of particles, and large deviations in the arriving weight of a particle give rise to extreme amounts of splitting being performed and a long history. When running on parallel clusters, a long history can have a detrimental effect on the parallel efficiency - if one process is computing the long history, the other CPUs complete their batch of histories and wait idle. Furthermore some long histories have been found to be effectively intractable. To combat this effect, CCFE has developed an adaptation of MCNP which dynamically adjusts the WW where a large weight deviation is encountered. The method effectively 'de-optimises' the WW, reducing the VR performance but this is offset by a significant increase in parallel efficiency. Testing with a simple geometry has shown the method does not bias the result. This 'long history method' has enabled CCFE to significantly improve the performance of MCNP calculations for ITER on parallel clusters, and will be beneficial for any geometry combining streaming and deep penetration effects. (authors)

  12. Computer Simulation of Intergranular Stress Corrosion Cracking via Hydrogen Embrittlement

    SciTech Connect

    Smith, R.W.

    2000-04-01

    Computer simulation has been applied to the investigation of intergranular stress corrosion cracking in Ni-based alloys based on a hydrogen embrittlement mechanism. The simulation employs computational modules that address (a) transport and reactions of aqueous species giving rise to hydrogen generation at the liquid-metal interface, (b) solid state transport of hydrogen via intergranular and transgranular diffusion pathways, and (c) fracture due to the embrittlement of metallic bonds by hydrogen. A key focus of the computational model development has been the role of materials microstructure (precipitate particles and grain boundaries) on hydrogen transport and embrittlement. Simulation results reveal that intergranular fracture is enhanced as grain boundaries are weakened and that microstructures with grains elongated perpendicular to the stress axis are more susceptible to cracking. The presence of intergranular precipitates may be expected to either enhance or impede cracking depending on the relative distribution of hydrogen between the grain boundaries and the precipitate-matrix interfaces. Calculations of hydrogen outgassing and in gassing demonstrate a strong effect of charging method on the fracture behavior.

  13. Scalable High Performance Computing: Direct and Large-Eddy Turbulent Flow Simulations Using Massively Parallel Computers

    NASA Technical Reports Server (NTRS)

    Morgan, Philip E.

    2004-01-01

    This final report contains reports of research related to the tasks "Scalable High Performance Computing: Direct and Lark-Eddy Turbulent FLow Simulations Using Massively Parallel Computers" and "Devleop High-Performance Time-Domain Computational Electromagnetics Capability for RCS Prediction, Wave Propagation in Dispersive Media, and Dual-Use Applications. The discussion of Scalable High Performance Computing reports on three objectives: validate, access scalability, and apply two parallel flow solvers for three-dimensional Navier-Stokes flows; develop and validate a high-order parallel solver for Direct Numerical Simulations (DNS) and Large Eddy Simulation (LES) problems; and Investigate and develop a high-order Reynolds averaged Navier-Stokes turbulence model. The discussion of High-Performance Time-Domain Computational Electromagnetics reports on five objectives: enhancement of an electromagnetics code (CHARGE) to be able to effectively model antenna problems; utilize lessons learned in high-order/spectral solution of swirling 3D jets to apply to solving electromagnetics project; transition a high-order fluids code, FDL3DI, to be able to solve Maxwell's Equations using compact-differencing; develop and demonstrate improved radiation absorbing boundary conditions for high-order CEM; and extend high-order CEM solver to address variable material properties. The report also contains a review of work done by the systems engineer.

  14. IMPROVING TACONITE PROCESSING PLANT EFFICIENCY BY COMPUTER SIMULATION, Final Report

    SciTech Connect

    William M. Bond; Salih Ersayin

    2007-03-30

    This project involved industrial scale testing of a mineral processing simulator to improve the efficiency of a taconite processing plant, namely the Minorca mine. The Concentrator Modeling Center at the Coleraine Minerals Research Laboratory, University of Minnesota Duluth, enhanced the capabilities of available software, Usim Pac, by developing mathematical models needed for accurate simulation of taconite plants. This project provided funding for this technology to prove itself in the industrial environment. As the first step, data representing existing plant conditions were collected by sampling and sample analysis. Data were then balanced and provided a basis for assessing the efficiency of individual devices and the plant, and also for performing simulations aimed at improving plant efficiency. Performance evaluation served as a guide in developing alternative process strategies for more efficient production. A large number of computer simulations were then performed to quantify the benefits and effects of implementing these alternative schemes. Modification of makeup ball size was selected as the most feasible option for the target performance improvement. This was combined with replacement of existing hydrocyclones with more efficient ones. After plant implementation of these modifications, plant sampling surveys were carried out to validate findings of the simulation-based study. Plant data showed very good agreement with the simulated data, confirming results of simulation. After the implementation of modifications in the plant, several upstream bottlenecks became visible. Despite these bottlenecks limiting full capacity, concentrator energy improvement of 7% was obtained. Further improvements in energy efficiency are expected in the near future. The success of this project demonstrated the feasibility of a simulation-based approach. Currently, the Center provides simulation-based service to all the iron ore mining companies operating in northern

  15. Numerical simulations of the thermoacoustic computed tomography breast imaging system

    NASA Astrophysics Data System (ADS)

    Kiser, William Lester, Jr.

    A thermoacoustic wave is produced when an object absorbs energy and experiences a subsequent thermal expansion. We have developed a Thermoacoustic Computed Tomography (TACT) breast imaging system to exploit the thermoacoustic phenomena as a method of soft tissue imaging. By exposing the breast to short pulses of 434 MHz microwaves, ultrasonic pulses are generated and detected with a hemispherical transducer array submersed in a water bath. Filtering and back projecting the transducer signals generates a 3-D image that maps the localized microwave absorption properties of the breast. In an effort to understand the factors limiting image quality, the TACT system was numerically simulated. The simulations were used to generate the transducer signals that would be collected by the TACT system during a scan of an object. These simulated data streams were then fed into the system image reconstruction software to provide images of simulated phantoms. The effects of transducer diameter, transducer response, transducer array geometry and stimulating pulse width on the spatial and contrast resolution of the system were quantified using the simulations. The spatial resolution was highly dependent upon location in the imaging volume. This was due to the off axis response of transducers of finite aperture. Simulated data were compared with experimental data, obtained by imaging a parallel-piped resolution phantom, to verify the accuracy of the simulation code. A contrast-detail phantom was numerically simulated to determine the ability of the system to image spheres of diameters <1 cm with absorption values on the order of physiologic saline, when located in a background of noise. The results of the contrast-detail analysis were dependent on the location of the spheres in the imaging volume and the diameter of the simulated transducers. This work sets the foundation for the initial image quality studies of the TACT system. Improvements to the current imaging system, based on

  16. Computer Simulations of Voltage-Gated Cation Channels

    PubMed Central

    Treptow, Werner; Klein, Michael L.

    2012-01-01

    The relentless growth in computational power has seen increasing applications of molecular dynamics (MD) simulation to the study of membrane proteins in realistic membrane environments, which include explicit membrane lipids, water and ions. The concomitant increasing availability of membrane protein structures for ion channels, and transporters -- to name just two examples -- has stimulated many of these MD studies. In the case of voltage-gated cation channels (VGCCs) recent computational works have focused on ion-conduction and gating mechanisms, along with their regulation by agonist/antagonist ligands. The information garnered from these computational studies is largely inaccessible to experiment and is crucial for understanding the interplay between the structure and function as well as providing new directions for experiments. This article highlights recent advances in probing the structure and function of potassium channels and offers a perspective on the challenges likely to arise in making analogous progress in characterizing sodium channels. PMID:22523619

  17. The smart vapor retarder: An innovation inspired by computer simulations

    SciTech Connect

    Kuenzel, H.M.

    1998-12-31

    Water management is the new trend in civil engineering. Since it is difficult to ensure perfect vapor- and watertightness of building components, a limited moisture ingress is acceptable as long as the drying process is effective enough to avoid moisture damage. Recent computer models for the simulation of heat and moisture transport are valuable tools for the risk assessment of structures and their repair or retrofit. Unventilated, insulated assemblies with a vapor-resistant exterior layer can accumulate water because winter condensation and summer drying are not balanced. The balance can be reestablished if the vapor retarder is more permeable in summer than in winter. Parametric computer studies have defined the required properties of such a vapor retarder. Developed according to the computed specifications, the smart vapor retarder shows a seasonal variation in vapor permeability of a factor of ten. The secret of this behavior lies in the humidity-dependent vapor diffusion resistance of the film material.

  18. An FPGA computing demo core for space charge simulation

    SciTech Connect

    Wu, Jinyuan; Huang, Yifei; /Fermilab

    2009-01-01

    In accelerator physics, space charge simulation requires large amount of computing power. In a particle system, each calculation requires time/resource consuming operations such as multiplications, divisions, and square roots. Because of the flexibility of field programmable gate arrays (FPGAs), we implemented this task with efficient use of the available computing resources and completely eliminated non-calculating operations that are indispensable in regular micro-processors (e.g. instruction fetch, instruction decoding, etc.). We designed and tested a 16-bit demo core for computing Coulomb's force in an Altera Cyclone II FPGA device. To save resources, the inverse square-root cube operation in our design is computed using a memory look-up table addressed with nine to ten most significant non-zero bits. At 200 MHz internal clock, our demo core reaches a throughput of 200 M pairs/s/core, faster than a typical 2 GHz micro-processor by about a factor of 10. Temperature and power consumption of FPGAs were also lower than those of micro-processors. Fast and convenient, FPGAs can serve as alternatives to time-consuming micro-processors for space charge simulation.

  19. Numerical simulation of landfill aeration using computational fluid dynamics.

    PubMed

    Fytanidis, Dimitrios K; Voudrias, Evangelos A

    2014-04-01

    The present study is an application of Computational Fluid Dynamics (CFD) to the numerical simulation of landfill aeration systems. Specifically, the CFD algorithms provided by the commercial solver ANSYS Fluent 14.0, combined with an in-house source code developed to modify the main solver, were used. The unsaturated multiphase flow of air and liquid phases and the biochemical processes for aerobic biodegradation of the organic fraction of municipal solid waste were simulated taking into consideration their temporal and spatial evolution, as well as complex effects, such as oxygen mass transfer across phases, unsaturated flow effects (capillary suction and unsaturated hydraulic conductivity), temperature variations due to biochemical processes and environmental correction factors for the applied kinetics (Monod and 1st order kinetics). The developed model results were compared with literature experimental data. Also, pilot scale simulations and sensitivity analysis were implemented. Moreover, simulation results of a hypothetical single aeration well were shown, while its zone of influence was estimated using both the pressure and oxygen distribution. Finally, a case study was simulated for a hypothetical landfill aeration system. Both a static (steadily positive or negative relative pressure with time) and a hybrid (following a square wave pattern of positive and negative values of relative pressure with time) scenarios for the aeration wells were examined. The results showed that the present model is capable of simulating landfill aeration and the obtained results were in good agreement with corresponding previous experimental and numerical investigations.

  20. Precision Constraints from Computational Cosmology and Type Ia Supernova Simulations

    NASA Astrophysics Data System (ADS)

    Bernstein, Joseph P.; Kuhlmann, S. E.; Norris, B.; Biswas, R.

    2011-01-01

    The evidence for dark energy represents one of the greatest mysteries of modern science. The research undertaken probes the implications of dark energy via analysis of large scale structure and detonation-based Type Ia supernova light curve simulations. It is presently an exciting time to be involved in cosmology because planned astronomical surveys will effectively result in dark sector probes becoming systematics-limited, making numerical simulations crucial to the formulation of precision constraints. This work aims to assist in reaching the community goal of 1% constraints on the dark energy equation of state parameter. Reaching this goal will require 1) hydrodynamic+N-body simulations with a minimum of a 1 Gpc box size, 20483 hydrodynamic cells, and 1011 dark matter particles, which push the limits of existing codes, and 2) a better understanding of the explosion mechanism(s) for Type Ia supernovae, together with larger, high-quality data sets from present and upcoming supernova surveys. Initial results are discussed from two projects. The first is computational cosmology studies aimed at enabling the large simulations discussed above. The second is radiative transfer calculations drawn from Type Ia supernova explosion simulations aimed at bridging the gap between simulated light curves and those observed from, e.g., the Sloan Digital Sky Survey II and, eventually, the Dark Energy Survey.

  1. Simulation of Tailrace Hydrodynamics Using Computational Fluid Dynamics Models

    SciTech Connect

    Cook, Christopher B.; Richmond, Marshall C.

    2001-05-01

    This report investigates the feasibility of using computational fluid dynamics (CFD) tools to investigate hydrodynamic flow fields surrounding the tailrace zone below large hydraulic structures. Previous and ongoing studies using CFD tools to simulate gradually varied flow with multiple constituents and forebay/intake hydrodynamics have shown that CFD tools can provide valuable information for hydraulic and biological evaluation of fish passage near hydraulic structures. These studies however are incapable of simulating the rapidly varying flow fields that involving breakup of the free-surface, such as those through and below high flow outfalls and spillways. Although the use of CFD tools for these types of flow are still an active area of research, initial applications discussed in this report show that these tools are capable of simulating the primary features of these highly transient flow fields.

  2. Lightweight computational steering of very large scale molecular dynamics simulations

    SciTech Connect

    Beazley, D.M.; Lomdahl, P.S.

    1996-09-01

    We present a computational steering approach for controlling, analyzing, and visualizing very large scale molecular dynamics simulations involving tens to hundreds of millions of atoms. Our approach relies on extensible scripting languages and an easy to use tool for building extensions and modules. The system is extremely easy to modify, works with existing C code, is memory efficient, and can be used from inexpensive workstations and networks. We demonstrate how we have used this system to manipulate data from production MD simulations involving as many as 104 million atoms running on the CM-5 and Cray T3D. We also show how this approach can be used to build systems that integrate common scripting languages (including Tcl/Tk, Perl, and Python), simulation code, user extensions, and commercial data analysis packages.

  3. Computer simulation of cardiovascular changes during extended duration space flights

    NASA Technical Reports Server (NTRS)

    Srinivasan, R. Srini; Charles, John B.; Leonard, Joel I.

    1990-01-01

    The application of mathematical modeling and computer simulation to the study of spaceflight cardiovascular changes is examined using a multicompartment representation model of the entire human cardiovascular system including its control elements. The model simulates the beat-to-beat dynamic responses of the cardiovascular system to orthostatic stresses. Simulation results pertaining to long-term space flight, the combined effect of +G(z) and blood volume loss, and the effect of anti-G suit inflation are discussed, including past results on the original version of the model which has been used in a number of analysis applications at NASA. New results pertain to analysis of cardiovascular changes in extended duration space flights and demonstrate the use of this model in evaluation of physiological factors that contribute to orthostatic intolerance following an exposure to weightlessness, in particular, blood volume loss and changes in the sensitivity of baroreceptors.

  4. “CHRIS”: A Computer Simulation of Schizophrenia*

    PubMed Central

    Santo, Yoav; Finkel, Andy

    1982-01-01

    “CHRIS” is an experimental computer simulation of a patient with a schizophrenic disorder responding to an initial diagnostic interview with a clinician. The program is designed as a teaching aid in psychiatric interviewing and diagnosis. The user of the simulation assumes the role of the “clinician” conducting a diagnostic interview, Upon completion of the interview, the program checks the user's diagnosis for accuracy; it reports a corrected diagnosis if necessary; and finally, it lists all schizophrenic symptoms displayed during that interview. The program is composed of a dictionary of about 800 words including their functional part of speech, a list of about 200 output sentences, and a parser. The simulation provides the student with training experience in specific aspects of a mental disorder without posing any burden upon a human patient.

  5. Computer simulation of spectrometer magnets for some experimental installations

    NASA Astrophysics Data System (ADS)

    Zhidkov, E. P.; Poljakova, R. V.; Voloshina, I. G.; Perepelkin, E. E.; Rossiyskaya, N. S.; Shavrina, T. V.; Yudin, I. P.

    2009-03-01

    The significance of numerical simulation in the research of magnetic systems is determined by not only known advantages of the computing experiment, but also by the fact that the measurement of a magnetic field is a labour-consuming and expensive problem. Mathematical simulation allows one to investigate those parts of the magnet’s design where the measurements of the magnetic field are extremely complicated or even impossible. This work is aimed to generalize experience of the mathematical simulation of magnetic systems of various-type physical and electromechanical installations and to work out some recommendations of the optimal use of some software products for the numerical modeling of magnetostatic problems. This work also presents some results of a numerical analysis of the magnetic systems of the JINR’s physical installation MARUSYA with the purpose of studying an opportunity of designing magnetic systems with predetermined characteristics of the magnetic field.

  6. Advanced manned space flight simulation and training: An investigation of simulation host computer system concepts

    NASA Technical Reports Server (NTRS)

    Montag, Bruce C.; Bishop, Alfred M.; Redfield, Joe B.

    1989-01-01

    The findings of a preliminary investigation by Southwest Research Institute (SwRI) in simulation host computer concepts is presented. It is designed to aid NASA in evaluating simulation technologies for use in spaceflight training. The focus of the investigation is on the next generation of space simulation systems that will be utilized in training personnel for Space Station Freedom operations. SwRI concludes that NASA should pursue a distributed simulation host computer system architecture for the Space Station Training Facility (SSTF) rather than a centralized mainframe based arrangement. A distributed system offers many advantages and is seen by SwRI as the only architecture that will allow NASA to achieve established functional goals and operational objectives over the life of the Space Station Freedom program. Several distributed, parallel computing systems are available today that offer real-time capabilities for time critical, man-in-the-loop simulation. These systems are flexible in terms of connectivity and configurability, and are easily scaled to meet increasing demands for more computing power.

  7. Computer Support of Operator Training: Constructing and Testing a Prototype of a CAL (Computer Aided Learning) Supported Simulation Environment.

    ERIC Educational Resources Information Center

    Zillesen, P. G. van Schaick; And Others

    Instructional feedback given to the learners during computer simulation sessions may be greatly improved by integrating educational computer simulation programs with hypermedia-based computer-assisted learning (CAL) materials. A prototype of a learning environment of this type called BRINE PURIFICATION was developed for use in corporate training…

  8. Molecular Dynamic Simulations of Nanostructured Ceramic Materials on Parallel Computers

    SciTech Connect

    Vashishta, Priya; Kalia, Rajiv

    2005-02-24

    Large-scale molecular-dynamics (MD) simulations have been performed to gain insight into: (1) sintering, structure, and mechanical behavior of nanophase SiC and SiO2; (2) effects of dynamic charge transfers on the sintering of nanophase TiO2; (3) high-pressure structural transformation in bulk SiC and GaAs nanocrystals; (4) nanoindentation in Si3N4; and (5) lattice mismatched InAs/GaAs nanomesas. In addition, we have designed a multiscale simulation approach that seamlessly embeds MD and quantum-mechanical (QM) simulations in a continuum simulation. The above research activities have involved strong interactions with researchers at various universities, government laboratories, and industries. 33 papers have been published and 22 talks have been given based on the work described in this report.

  9. Accelerating Climate and Weather Simulations through Hybrid Computing

    NASA Technical Reports Server (NTRS)

    Zhou, Shujia; Cruz, Carlos; Duffy, Daniel; Tucker, Robert; Purcell, Mark

    2011-01-01

    Unconventional multi- and many-core processors (e.g. IBM (R) Cell B.E.(TM) and NVIDIA (R) GPU) have emerged as effective accelerators in trial climate and weather simulations. Yet these climate and weather models typically run on parallel computers with conventional processors (e.g. Intel, AMD, and IBM) using Message Passing Interface. To address challenges involved in efficiently and easily connecting accelerators to parallel computers, we investigated using IBM's Dynamic Application Virtualization (TM) (IBM DAV) software in a prototype hybrid computing system with representative climate and weather model components. The hybrid system comprises two Intel blades and two IBM QS22 Cell B.E. blades, connected with both InfiniBand(R) (IB) and 1-Gigabit Ethernet. The system significantly accelerates a solar radiation model component by offloading compute-intensive calculations to the Cell blades. Systematic tests show that IBM DAV can seamlessly offload compute-intensive calculations from Intel blades to Cell B.E. blades in a scalable, load-balanced manner. However, noticeable communication overhead was observed, mainly due to IP over the IB protocol. Full utilization of IB Sockets Direct Protocol and the lower latency production version of IBM DAV will reduce this overhead.

  10. Computer assisted preoperative planning of bone fracture reduction: Simulation techniques and new trends.

    PubMed

    Jiménez-Delgado, Juan J; Paulano-Godino, Félix; PulidoRam-Ramírez, Rubén; Jiménez-Pérez, J Roberto

    2016-05-01

    The development of support systems for surgery significantly increases the likelihood of obtaining satisfactory results. In the case of fracture reduction interventions these systems enable surgery planning, training, monitoring and assessment. They allow improvement of fracture stabilization, a minimizing of health risks and a reduction of surgery time. Planning a bone fracture reduction by means of a computer assisted simulation involves several semiautomatic or automatic steps. The simulation deals with the correct position of osseous fragments and fixation devices for a fracture reduction. Currently, to the best of our knowledge there is no computer assisted methods to plan an entire fracture reduction process. This paper presents an overall scheme of the computer based process for planning a bone fracture reduction, as described above, and details its main steps, the most common proposed techniques and their main shortcomings. In addition, challenges and new trends of this research field are depicted and analyzed.

  11. Average-Case Complexity Versus Approximate Simulation of Commuting Quantum Computations

    NASA Astrophysics Data System (ADS)

    Bremner, Michael J.; Montanaro, Ashley; Shepherd, Dan J.

    2016-08-01

    We use the class of commuting quantum computations known as IQP (instantaneous quantum polynomial time) to strengthen the conjecture that quantum computers are hard to simulate classically. We show that, if either of two plausible average-case hardness conjectures holds, then IQP computations are hard to simulate classically up to constant additive error. One conjecture relates to the hardness of estimating the complex-temperature partition function for random instances of the Ising model; the other concerns approximating the number of zeroes of random low-degree polynomials. We observe that both conjectures can be shown to be valid in the setting of worst-case complexity. We arrive at these conjectures by deriving spin-based generalizations of the boson sampling problem that avoid the so-called permanent anticoncentration conjecture.

  12. Average-Case Complexity Versus Approximate Simulation of Commuting Quantum Computations.

    PubMed

    Bremner, Michael J; Montanaro, Ashley; Shepherd, Dan J

    2016-08-19

    We use the class of commuting quantum computations known as IQP (instantaneous quantum polynomial time) to strengthen the conjecture that quantum computers are hard to simulate classically. We show that, if either of two plausible average-case hardness conjectures holds, then IQP computations are hard to simulate classically up to constant additive error. One conjecture relates to the hardness of estimating the complex-temperature partition function for random instances of the Ising model; the other concerns approximating the number of zeroes of random low-degree polynomials. We observe that both conjectures can be shown to be valid in the setting of worst-case complexity. We arrive at these conjectures by deriving spin-based generalizations of the boson sampling problem that avoid the so-called permanent anticoncentration conjecture. PMID:27588839

  13. Evaluation of a novel method of noise reduction using computer-simulated mammograms.

    PubMed

    Tischenko, Oleg; Hoeschen, Christoph; Dance, David R; Hunt, Roger A; Maidment, Andrew D A; Bakic, Predrag R

    2005-01-01

    A novel method of noise reduction has been tested for mammography using computer-simulated images for which the truth is known exactly. This method is based on comparing two images. The images are compared at different scales, using a cross-correlation function as a measure of similarity to define the image modifications in the wavelet domain. The computer-simulated images were calculated for noise-free primary radiation using a quasi-realistic voxel phantom. Two images corresponding to slightly different geometry were produced. Gaussian noise was added with certain properties to simulate quantum noise. The added noise could be reduced by >70% using the proposed method without any noticeable corruption of the structures. It is possible to save 50% dose in mammography by producing two images (each 25% of the dose for a standard mammogram). Additionally, a reduction of the anatomical noise and, therefore, better detection rates of breast cancer in mammography are possible.

  14. Computational simulation of materials notes for lectures given at UCSB, May 1996--June 1996

    SciTech Connect

    LeSar, R.

    1997-01-01

    This report presents information from a lecture given on the computational simulation of materials. The purpose is to introduce modern computerized simulation methods for materials properties and response.

  15. Addition of flexible body option to the TOLA computer program, part 1

    NASA Technical Reports Server (NTRS)

    Dick, J. W.; Benda, B. J.

    1975-01-01

    This report describes a flexible body option that was developed and added to the Takeoff and Landing Analysis (TOLA) computer program. The addition of the flexible body option to TOLA allows it to be used to study essentially any conventional type airplane in the ground operating environment. It provides the capability to predict the total motion of selected points on the analytical methods incorporated in the program and operating instructions for the option are described. A program listing is included along with several example problems to aid in interpretation of the operating instructions and to illustrate program usage.

  16. Three Dimensional Computer Graphics Federates for the 2012 Smackdown Simulation

    NASA Technical Reports Server (NTRS)

    Fordyce, Crystal; Govindaiah, Swetha; Muratet, Sean; O'Neil, Daniel A.; Schricker, Bradley C.

    2012-01-01

    The Simulation Interoperability Standards Organization (SISO) Smackdown is a two-year old annual event held at the 2012 Spring Simulation Interoperability Workshop (SIW). A primary objective of the Smackdown event is to provide college students with hands-on experience in developing distributed simulations using High Level Architecture (HLA). Participating for the second time, the University of Alabama in Huntsville (UAHuntsville) deployed four federates, two federates simulated a communications server and a lunar communications satellite with a radio. The other two federates generated 3D computer graphics displays for the communication satellite constellation and for the surface based lunar resupply mission. Using the Light-Weight Java Graphics Library, the satellite display federate presented a lunar-texture mapped sphere of the moon and four Telemetry Data Relay Satellites (TDRS), which received object attributes from the lunar communications satellite federate to drive their motion. The surface mission display federate was an enhanced version of the federate developed by ForwardSim, Inc. for the 2011 Smackdown simulation. Enhancements included a dead-reckoning algorithm and a visual indication of which communication satellite was in line of sight of Hadley Rille. This paper concentrates on these two federates by describing the functions, algorithms, HLA object attributes received from other federates, development experiences and recommendations for future, participating Smackdown teams.

  17. Further developments in cloud statistics for computer simulations

    NASA Technical Reports Server (NTRS)

    Chang, D. T.; Willand, J. H.

    1972-01-01

    This study is a part of NASA's continued program to provide global statistics of cloud parameters for computer simulation. The primary emphasis was on the development of the data bank of the global statistical distributions of cloud types and cloud layers and their applications in the simulation of the vertical distributions of in-cloud parameters such as liquid water content. These statistics were compiled from actual surface observations as recorded in Standard WBAN forms. Data for a total of 19 stations were obtained and reduced. These stations were selected to be representative of the 19 primary cloud climatological regions defined in previous studies of cloud statistics. Using the data compiled in this study, a limited study was conducted of the hemogeneity of cloud regions, the latitudinal dependence of cloud-type distributions, the dependence of these statistics on sample size, and other factors in the statistics which are of significance to the problem of simulation. The application of the statistics in cloud simulation was investigated. In particular, the inclusion of the new statistics in an expanded multi-step Monte Carlo simulation scheme is suggested and briefly outlined.

  18. An analysis of the 70-meter antenna hydrostatic bearing by means of computer simulation

    NASA Technical Reports Server (NTRS)

    Bartos, R. D.

    1993-01-01

    Recently, the computer program 'A Computer Solution for Hydrostatic Bearings with Variable Film Thickness,' used to design the hydrostatic bearing of the 70-meter antennas, was modified to improve the accuracy with which the program predicts the film height profile and oil pressure distribution between the hydrostatic bearing pad and the runner. This article presents a description of the modified computer program, the theory upon which the computer program computations are based, computer simulation results, and a discussion of the computer simulation results.

  19. Fast computer simulation of reconstructed image from rainbow hologram based on GPU

    NASA Astrophysics Data System (ADS)

    Shuming, Jiao; Yoshikawa, Hiroshi

    2015-10-01

    A fast computer simulation solution for rainbow hologram reconstruction based on GPU is proposed. In the commonly used segment Fourier transform method for rainbow hologram reconstruction, the computation of 2D Fourier transform on each hologram segment is very time consuming. GPU-based parallel computing can be applied to improve the computing speed. Compared with CPU computing, simulation results indicate that our proposed GPU computing can effectively reduce the computation time by as much as eight times.

  20. Numerical simulation of NQR/NMR: Applications in quantum computing.

    PubMed

    Possa, Denimar; Gaudio, Anderson C; Freitas, Jair C C

    2011-04-01

    A numerical simulation program able to simulate nuclear quadrupole resonance (NQR) as well as nuclear magnetic resonance (NMR) experiments is presented, written using the Mathematica package, aiming especially applications in quantum computing. The program makes use of the interaction picture to compute the effect of the relevant nuclear spin interactions, without any assumption about the relative size of each interaction. This makes the program flexible and versatile, being useful in a wide range of experimental situations, going from NQR (at zero or under small applied magnetic field) to high-field NMR experiments. Some conditions specifically required for quantum computing applications are implemented in the program, such as the possibility of use of elliptically polarized radiofrequency and the inclusion of first- and second-order terms in the average Hamiltonian expansion. A number of examples dealing with simple NQR and quadrupole-perturbed NMR experiments are presented, along with the proposal of experiments to create quantum pseudopure states and logic gates using NQR. The program and the various application examples are freely available through the link http://www.profanderson.net/files/nmr_nqr.php.

  1. Use of a Computer Simulation To Develop Mental Simulations for Understanding Relative Motion Concepts.

    ERIC Educational Resources Information Center

    Monaghan, James M.; Clement, John

    1999-01-01

    Presents evidence for students' qualitative and quantitative difficulties with apparently simple one-dimensional relative-motion problems, students' spontaneous visualization of relative-motion problems, the visualizations facilitating solution of these problems, and students' memories of the online computer simulation used as a framework for…

  2. Written debriefing: Evaluating the impact of the addition of a written component when debriefing simulations.

    PubMed

    Reed, Shelly J

    2015-11-01

    Debriefing, the reflective period following a simulation, is said to be where the bulk of simulation learning takes place. Many expert opinions regarding debriefing exist, but evidence-based best practices have yet to be identified. Written debriefing is one of these practices; experts state learning can be extended through the addition of a written component to the debriefing process, but no evidence exists to support this. This study compares three debriefing types: discussion alone, and discussion followed by journaling or blogging. Undergraduate nursing students participating in a simulation were randomized as a simulation group to one of these three debriefing types. Following completion of debriefing activities, students completed a Debriefing Experience Scale, a tool designed to evaluate the student experience during debriefing. Data obtained from completed scales were analyzed with ANOVA followed by Fisher LSD post hoc testing. The results showed the students preferred their experience with discussion debriefing over discussion debriefing with a written component added.

  3. A COMPUTATIONAL WORKBENCH ENVIRONMENT FOR VIRTUAL POWER PLANT SIMULATION

    SciTech Connect

    Mike Bockelie; Dave Swensen; Martin Denison; Connie Senior; Zumao Chen; Temi Linjewile; Adel Sarofim; Bene Risio

    2003-04-25

    This is the tenth Quarterly Technical Report for DOE Cooperative Agreement No: DE-FC26-00NT41047. The goal of the project is to develop and demonstrate a computational workbench for simulating the performance of Vision 21 Power Plant Systems. Within the last quarter, good progress has been made on all aspects of the project. Calculations for a full Vision 21 plant configuration have been performed for two gasifier types. An improved process model for simulating entrained flow gasifiers has been implemented into the workbench. Model development has focused on: a pre-processor module to compute global gasification parameters from standard fuel properties and intrinsic rate information; a membrane based water gas shift; and reactors to oxidize fuel cell exhaust gas. The data visualization capabilities of the workbench have been extended by implementing the VTK visualization software that supports advanced visualization methods, including inexpensive Virtual Reality techniques. The ease-of-use, functionality and plug-and-play features of the workbench were highlighted through demonstrations of the workbench at a DOE sponsored coal utilization conference. A white paper has been completed that contains recommendations on the use of component architectures, model interface protocols and software frameworks for developing a Vision 21 plant simulator.

  4. Gastric flow and mixing studied using computer simulation.

    PubMed

    Pal, Anupam; Indireshkumar, Keshavamurthy; Schwizer, Werner; Abrahamsson, Bertil; Fried, Michael; Brasseur, James G

    2004-12-22

    The fed human stomach displays regular peristaltic contraction waves that originate in the proximal antrum and propagate to the pylorus. High-resolution concurrent manometry and magnetic resonance imaging (MRI) studies of the stomach suggest a primary function of antral contraction wave (ACW) activity unrelated to gastric emptying. Detailed evaluation is difficult, however, in vivo. Here we analyse the role of ACW activity on intragastric fluid motions, pressure, and mixing with computer simulation. A two-dimensional computer model of the stomach was developed with the 'lattice-Boltzmann' numerical method from the laws of physics, and stomach geometry modelled from MRI. Time changes in gastric volume were specified to match global physiological rates of nutrient liquid emptying. The simulations predicted two basic fluid motions: retrograde 'jets' through ACWs, and circulatory flow between ACWs, both of which contribute to mixing. A well-defined 'zone of mixing', confined to the antrum, was created by the ACWs, with mixing motions enhanced by multiple and narrower ACWs. The simulations also predicted contraction-induced peristaltic pressure waves in the distal antrum consistent with manometric measurements, but with a much lower pressure amplitude than manometric data, indicating that manometric pressure amplitudes reflect direct contact of the catheter with the gastric wall. We conclude that the ACWs are central to gastric mixing, and may also play an indirect role in gastric emptying through local alterations in common cavity pressure. PMID:15615685

  5. Simulating Subsurface Reactive Flows on Ultrascale Computers with PFLOTRAN

    NASA Astrophysics Data System (ADS)

    Mills, R. T.; Hammond, G. E.; Lichtner, P. C.; Lu, C.; Smith, B. F.; Philip, B.

    2009-12-01

    To provide true predictive utility, subsurface simulations often must accurately resolve--in three dimensions--complicated, multi-phase flow fields in highly heterogeneous geology with numerous chemical species and complex chemistry. This task is especially daunting because of the wide range of spatial scales involved--from the pore scale to the field scale--ranging over six orders of magnitude, and the wide range of time scales ranging from seconds or less to millions of years. This represents a true "Grand Challenge" computational problem, requiring not only the largest-scale ("ultrascale") supercomputers, but accompanying advances in algorithms for the efficient numerical solution of systems of PDEs using these machines, and in mathematical modeling techniques that can adequately capture the truly multi-scale nature of these problems. We describe some of the specific challenges involved and present the software and algorithmic approaches that are being using in the computer code PFLOTRAN to provide scalable performance for such simulations on tens of thousands of processors. We focus particularly on scalable techniques for solving the large (up to billions of total degrees of freedom), sparse algebraic systems that arise. We also describe ongoing work to address disparate time and spatial scales by both the development of adaptive mesh refinement methods and the use of multiple continuum formulations. Finally, we present some examples from recent simulations conducted on Jaguar, the 150152 processor core Cray XT5 system at Oak Ridge National Laboratory that is currently one of the most powerful supercomputers in the world.

  6. Trace contaminant control simulation computer program, version 8.1

    NASA Technical Reports Server (NTRS)

    Perry, J. L.

    1994-01-01

    The Trace Contaminant Control Simulation computer program is a tool for assessing the performance of various process technologies for removing trace chemical contamination from a spacecraft cabin atmosphere. Included in the simulation are chemical and physical adsorption by activated charcoal, chemical adsorption by lithium hydroxide, absorption by humidity condensate, and low- and high-temperature catalytic oxidation. Means are provided for simulating regenerable as well as nonregenerable systems. The program provides an overall mass balance of chemical contaminants in a spacecraft cabin given specified generation rates. Removal rates are based on device flow rates specified by the user and calculated removal efficiencies based on cabin concentration and removal technology experimental data. Versions 1.0 through 8.0 are documented in NASA TM-108409. TM-108409 also contains a source file listing for version 8.0. Changes to version 8.0 are documented in this technical memorandum and a source file listing for the modified version, version 8.1, is provided. Detailed descriptions for the computer program subprograms are extracted from TM-108409 and modified as necessary to reflect version 8.1. Version 8.1 supersedes version 8.0. Information on a separate user's guide is available from the author.

  7. Benchmarking computational fluid dynamics models for lava flow simulation

    NASA Astrophysics Data System (ADS)

    Dietterich, Hannah; Lev, Einat; Chen, Jiangzhi

    2016-04-01

    Numerical simulations of lava flow emplacement are valuable for assessing lava flow hazards, forecasting active flows, interpreting past eruptions, and understanding the controls on lava flow behavior. Existing lava flow models vary in simplifying assumptions, physics, dimensionality, and the degree to which they have been validated against analytical solutions, experiments, and natural observations. In order to assess existing models and guide the development of new codes, we conduct a benchmarking study of computational fluid dynamics models for lava flow emplacement, including VolcFlow, OpenFOAM, FLOW-3D, and COMSOL. Using the new benchmark scenarios defined in Cordonnier et al. (Geol Soc SP, 2015) as a guide, we model viscous, cooling, and solidifying flows over horizontal and sloping surfaces, topographic obstacles, and digital elevation models of natural topography. We compare model results to analytical theory, analogue and molten basalt experiments, and measurements from natural lava flows. Overall, the models accurately simulate viscous flow with some variability in flow thickness where flows intersect obstacles. OpenFOAM, COMSOL, and FLOW-3D can each reproduce experimental measurements of cooling viscous flows, and FLOW-3D simulations with temperature-dependent rheology match results from molten basalt experiments. We can apply these models to reconstruct past lava flows in Hawai'i and Saudi Arabia using parameters assembled from morphology, textural analysis, and eruption observations as natural test cases. Our study highlights the strengths and weaknesses of each code, including accuracy and computational costs, and provides insights regarding code selection.

  8. Computer simulation on reconstruction of 3-D flame temperature distribution

    NASA Astrophysics Data System (ADS)

    Xu, Y.; Yung, K. L.; Wu, Z.; Li, T.

    To measure non-symmetric unsteady three dimensional temperature distribution in flame by simple, economic, fast and accurate means, and to apply a priori information to the measurement both sufficiently and efficiently, we conducted computer simulations. Simulation results proved that finite series-expansion reconstruction method is more suitable for measurement of temperature distribution in flame than transform method which is widely used in medical scanning and nondestructive testing. By comparing errors of simulations with different numbers of views, different domain shapes, different numbers of projections per view, different angles of views and different grid shapes, etc., we find that circle domain, triangular grid and sufficient number of projections per view, can improve the accuracy in the reconstruction of 3-D temperature distribution with limited views. With six views, errors caused by reconstruction computation are reduced, they are smaller than those caused by measurement. Therefore, a comparatively better means of measuring 3-D temperature distribution in flame with limited projection views by emission tomography is achieved. Experimental results also showed that the method we used was appropriate for measurement of 3-D temperature distribution with limited number of views [1].

  9. Textbook Multigrid Efficiency for Computational Fluid Dynamics Simulations

    NASA Technical Reports Server (NTRS)

    Brandt, Achi; Thomas, James L.; Diskin, Boris

    2001-01-01

    Considerable progress over the past thirty years has been made in the development of large-scale computational fluid dynamics (CFD) solvers for the Euler and Navier-Stokes equations. Computations are used routinely to design the cruise shapes of transport aircraft through complex-geometry simulations involving the solution of 25-100 million equations; in this arena the number of wind-tunnel tests for a new design has been substantially reduced. However, simulations of the entire flight envelope of the vehicle, including maximum lift, buffet onset, flutter, and control effectiveness have not been as successful in eliminating the reliance on wind-tunnel testing. These simulations involve unsteady flows with more separation and stronger shock waves than at cruise. The main reasons limiting further inroads of CFD into the design process are: (1) the reliability of turbulence models; and (2) the time and expense of the numerical simulation. Because of the prohibitive resolution requirements of direct simulations at high Reynolds numbers, transition and turbulence modeling is expected to remain an issue for the near term. The focus of this paper addresses the latter problem by attempting to attain optimal efficiencies in solving the governing equations. Typically current CFD codes based on the use of multigrid acceleration techniques and multistage Runge-Kutta time-stepping schemes are able to converge lift and drag values for cruise configurations within approximately 1000 residual evaluations. An optimally convergent method is defined as having textbook multigrid efficiency (TME), meaning the solutions to the governing system of equations are attained in a computational work which is a small (less than 10) multiple of the operation count in the discretized system of equations (residual equations). In this paper, a distributed relaxation approach to achieving TME for Reynolds-averaged Navier-Stokes (RNAS) equations are discussed along with the foundations that form the

  10. A digital computer program for the dynamic interaction simulation of controls and structure (DISCOS), volume 1

    NASA Technical Reports Server (NTRS)

    Bodley, C. S.; Devers, A. D.; Park, A. C.; Frisch, H. P.

    1978-01-01

    A theoretical development and associated digital computer program system for the dynamic simulation and stability analysis of passive and actively controlled spacecraft are presented. The dynamic system (spacecraft) is modeled as an assembly of rigid and/or flexible bodies not necessarily in a topological tree configuration. The computer program system is used to investigate total system dynamic characteristics, including interaction effects between rigid and/or flexible bodies, control systems, and a wide range of environmental loadings. In addition, the program system is used for designing attitude control systems and for evaluating total dynamic system performance, including time domain response and frequency domain stability analyses.

  11. A Computer-Based Simulation of an Acid-Base Titration

    ERIC Educational Resources Information Center

    Boblick, John M.

    1971-01-01

    Reviews the advantages of computer simulated environments for experiments, referring in particular to acid-base titrations. Includes pre-lab instructions and a sample computer printout of a student's use of an acid-base simulation. Ten references. (PR)

  12. The TeraShake Computational Platform for Large-Scale Earthquake Simulations

    NASA Astrophysics Data System (ADS)

    Cui, Yifeng; Olsen, Kim; Chourasia, Amit; Moore, Reagan; Maechling, Philip; Jordan, Thomas

    Geoscientific and computer science researchers with the Southern California Earthquake Center (SCEC) are conducting a large-scale, physics-based, computationally demanding earthquake system science research program with the goal of developing predictive models of earthquake processes. The computational demands of this program continue to increase rapidly as these researchers seek to perform physics-based numerical simulations of earthquake processes for larger meet the needs of this research program, a multiple-institution team coordinated by SCEC has integrated several scientific codes into a numerical modeling-based research tool we call the TeraShake computational platform (TSCP). A central component in the TSCP is a highly scalable earthquake wave propagation simulation program called the TeraShake anelastic wave propagation (TS-AWP) code. In this chapter, we describe how we extended an existing, stand-alone, wellvalidated, finite-difference, anelastic wave propagation modeling code into the highly scalable and widely used TS-AWP and then integrated this code into the TeraShake computational platform that provides end-to-end (initialization to analysis) research capabilities. We also describe the techniques used to enhance the TS-AWP parallel performance on TeraGrid supercomputers, as well as the TeraShake simulations phases including input preparation, run time, data archive management, and visualization. As a result of our efforts to improve its parallel efficiency, the TS-AWP has now shown highly efficient strong scaling on over 40K processors on IBM’s BlueGene/L Watson computer. In addition, the TSCP has developed into a computational system that is useful to many members of the SCEC community for performing large-scale earthquake simulations.

  13. Vibrational computing: simulation of a full adder by optimal control.

    PubMed

    Bomble, L; Lauvergnat, D; Remacle, F; Desouter-Lecomte, M

    2008-02-14

    Within the context of vibrational molecular quantum computing, we investigate the implementation of a full addition of two binary digits and a carry that provides the sum and the carry out. Four qubits are necessary and they are encoded into four different normal vibrational modes of a molecule. We choose the bromoacetyl chloride molecule because it possesses four bright infrared active modes. The ground and first excited states of each mode form the one-qubit computational basis set. Two approaches are proposed for the realization of the full addition. In the first one, we optimize a pulse that implements directly the entire addition by a single unitary transformation. In the second one, we decompose the full addition in elementary quantum gates, following a scheme proposed by Vedral et al. [Phys. Rev. A 54, 147 (1996)]. Four elementary quantum gates are necessary, two two-qubit CNOT gates (controlled NOT) and two three-qubit TOFFOLI gates (controlled-controlled NOT). All the logic operations consist in one-qubit flip. The logic implementation is therefore quasiclassical and the readout is based on a population analysis of the vibrational modes that does not take the phases into account. The fields are optimized by the multitarget extension of the optimal control theory involving all the transformations among the 2(4) qubit states. A single cycle of addition without considering the preparation or the measure or copy of the result can be carried out in a very competitive time, on a picosecond time scale. PMID:18282031

  14. Computational study of the rate constants and free energies of intramolecular radical addition to substituted anilines.

    PubMed

    Gansäuer, Andreas; Seddiqzai, Meriam; Dahmen, Tobias; Sure, Rebecca; Grimme, Stefan

    2013-01-01

    The intramolecular radical addition to aniline derivatives was investigated by DFT calculations. The computational methods were benchmarked by comparing the calculated values of the rate constant for the 5-exo cyclization of the hexenyl radical with the experimental values. The dispersion-corrected PW6B95-D3 functional provided very good results with deviations for the free activation barrier compared to the experimental values of only about 0.5 kcal mol(-1) and was therefore employed in further calculations. Corrections for intramolecular London dispersion and solvation effects in the quantum chemical treatment are essential to obtain consistent and accurate theoretical data. For the investigated radical addition reaction it turned out that the polarity of the molecules is important and that a combination of electrophilic radicals with preferably nucleophilic arenes results in the highest rate constants. This is opposite to the Minisci reaction where the radical acts as nucleophile and the arene as electrophile. The substitution at the N-atom of the aniline is crucial. Methyl substitution leads to slower addition than phenyl substitution. Carbamates as substituents are suitable only when the radical center is not too electrophilic. No correlations between free reaction barriers and energies (ΔG (‡) and ΔG R) are found. Addition reactions leading to indanes or dihydrobenzofurans are too slow to be useful synthetically.

  15. Computational study of the rate constants and free energies of intramolecular radical addition to substituted anilines.

    PubMed

    Gansäuer, Andreas; Seddiqzai, Meriam; Dahmen, Tobias; Sure, Rebecca; Grimme, Stefan

    2013-01-01

    The intramolecular radical addition to aniline derivatives was investigated by DFT calculations. The computational methods were benchmarked by comparing the calculated values of the rate constant for the 5-exo cyclization of the hexenyl radical with the experimental values. The dispersion-corrected PW6B95-D3 functional provided very good results with deviations for the free activation barrier compared to the experimental values of only about 0.5 kcal mol(-1) and was therefore employed in further calculations. Corrections for intramolecular London dispersion and solvation effects in the quantum chemical treatment are essential to obtain consistent and accurate theoretical data. For the investigated radical addition reaction it turned out that the polarity of the molecules is important and that a combination of electrophilic radicals with preferably nucleophilic arenes results in the highest rate constants. This is opposite to the Minisci reaction where the radical acts as nucleophile and the arene as electrophile. The substitution at the N-atom of the aniline is crucial. Methyl substitution leads to slower addition than phenyl substitution. Carbamates as substituents are suitable only when the radical center is not too electrophilic. No correlations between free reaction barriers and energies (ΔG (‡) and ΔG R) are found. Addition reactions leading to indanes or dihydrobenzofurans are too slow to be useful synthetically. PMID:24062821

  16. Computational study of the rate constants and free energies of intramolecular radical addition to substituted anilines

    PubMed Central

    Seddiqzai, Meriam; Dahmen, Tobias; Sure, Rebecca

    2013-01-01

    Summary The intramolecular radical addition to aniline derivatives was investigated by DFT calculations. The computational methods were benchmarked by comparing the calculated values of the rate constant for the 5-exo cyclization of the hexenyl radical with the experimental values. The dispersion-corrected PW6B95-D3 functional provided very good results with deviations for the free activation barrier compared to the experimental values of only about 0.5 kcal mol−1 and was therefore employed in further calculations. Corrections for intramolecular London dispersion and solvation effects in the quantum chemical treatment are essential to obtain consistent and accurate theoretical data. For the investigated radical addition reaction it turned out that the polarity of the molecules is important and that a combination of electrophilic radicals with preferably nucleophilic arenes results in the highest rate constants. This is opposite to the Minisci reaction where the radical acts as nucleophile and the arene as electrophile. The substitution at the N-atom of the aniline is crucial. Methyl substitution leads to slower addition than phenyl substitution. Carbamates as substituents are suitable only when the radical center is not too electrophilic. No correlations between free reaction barriers and energies (ΔG ‡ and ΔG R) are found. Addition reactions leading to indanes or dihydrobenzofurans are too slow to be useful synthetically. PMID:24062821

  17. Probabilistic lifetime strength of aerospace materials via computational simulation

    NASA Technical Reports Server (NTRS)

    Boyce, Lola; Keating, Jerome P.; Lovelace, Thomas B.; Bast, Callie C.

    1991-01-01

    The results of a second year effort of a research program are presented. The research included development of methodology that provides probabilistic lifetime strength of aerospace materials via computational simulation. A probabilistic phenomenological constitutive relationship, in the form of a randomized multifactor interaction equation, is postulated for strength degradation of structural components of aerospace propulsion systems subjected to a number of effects of primitive variables. These primitive variables often originate in the environment and may include stress from loading, temperature, chemical, or radiation attack. This multifactor interaction constitutive equation is included in the computer program, PROMISS. Also included in the research is the development of methodology to calibrate the constitutive equation using actual experimental materials data together with the multiple linear regression of that data.

  18. Computational strategies in the dynamic simulation of constrained flexible MBS

    NASA Technical Reports Server (NTRS)

    Amirouche, F. M. L.; Xie, M.

    1993-01-01

    This research focuses on the computational dynamics of flexible constrained multibody systems. At first a recursive mapping formulation of the kinematical expressions in a minimum dimension as well as the matrix representation of the equations of motion are presented. The method employs Kane's equation, FEM, and concepts of continuum mechanics. The generalized active forces are extended to include the effects of high temperature conditions, such as creep, thermal stress, and elastic-plastic deformation. The time variant constraint relations for rolling/contact conditions between two flexible bodies are also studied. The constraints for validation of MBS simulation of gear meshing contact using a modified Timoshenko beam theory are also presented. The last part deals with minimization of vibration/deformation of the elastic beam in multibody systems making use of time variant boundary conditions. The above methodologies and computational procedures developed are being implemented in a program called DYAMUS.

  19. Flight Simulation of Taketombo Based on Computational Fluid Dynamics and Computational Flight Dynamics

    NASA Astrophysics Data System (ADS)

    Kawamura, Kohei; Ueno, Yosuke; Nakamura, Yoshiaki

    In the present study we have developed a numerical method to simulate the flight dynamics of a small flying body with unsteady motion, where both aerodynamics and flight dynamics are fully considered. A key point of this numerical code is to use computational fluid dynamics and computational flight dynamics at the same time, which is referred to as CFD2, or double CFDs, where several new ideas are adopted in the governing equations, the method to make each quantity nondimensional, and the coupling method between aerodynamics and flight dynamics. This numerical code can be applied to simulate the unsteady motion of small vehicles such as micro air vehicles (MAV). As a sample calculation, we take up Taketombo, or a bamboo dragonfly, and its free flight in the air is demonstrated. The eventual aim of this research is to virtually fly an aircraft with arbitrary motion to obtain aerodynamic and flight dynamic data, which cannot be taken in the conventional wind tunnel.

  20. Using computer simulations to study relativistic heavy ion collisions

    NASA Astrophysics Data System (ADS)

    Murray, Joelle Lynn

    1998-12-01

    One of the most exciting topics in high-energy nuclear physics is the study of the potential phase transition between hadronic and partonic matter. Information about this transition, if it exists and can be experimentally determined, would be vital in understanding confinement of quarks and gluons inside hadrons. New accelerators, RHIC and LIIC, will be online in the next few years and will focus on finding evidence for this transition. RHIC will collide Au on Au at center of mass energies equal to 200 GeV/nucleon and create a high density, high temperature state of matter. To study the large particle multiplicities that will occur at these experiments, computer simulations are being developed. Within this thesis, one type of simulation will be detailed and used to study the invariant mass spectrum of leptons pairs measured at CERN SPS and several hadronic observables that could be measured at RHIC.

  1. Software Development Processes Applied to Computational Icing Simulation

    NASA Technical Reports Server (NTRS)

    Levinson, Laurie H.; Potapezuk, Mark G.; Mellor, Pamela A.

    1999-01-01

    The development of computational icing simulation methods is making the transition form the research to common place use in design and certification efforts. As such, standards of code management, design validation, and documentation must be adjusted to accommodate the increased expectations of the user community with respect to accuracy, reliability, capability, and usability. This paper discusses these concepts with regard to current and future icing simulation code development efforts as implemented by the Icing Branch of the NASA Lewis Research Center in collaboration with the NASA Lewis Engineering Design and Analysis Division. With the application of the techniques outlined in this paper, the LEWICE ice accretion code has become a more stable and reliable software product.

  2. Computer simulation of macrosegregation in directionally solidified circular ingots

    NASA Technical Reports Server (NTRS)

    Yeum, K. S.; Poirier, D. R.

    1988-01-01

    The formulation and employment of a computer code designed to simulate the directional solidification of lead-rich Pb-Sn alloys in the form of an ingot with a uniform and circular cross-section are described. The formulation is for steady-state solidification in which convection in the all-liquid zone is ignored. Particular attention was given to designing a code to simulate the effect of a subtle variation of temperature in the radial direction. This is important because a very small temperature difference between the center and the surface of the ingot (e.g., less than 0.5 C ) is enough to cause substantial convection within the mushy-zone when the solidification rate is approximately 0.001 to 0.0001 cm/s.

  3. Adaptive quantum computation in changing environments using projective simulation

    PubMed Central

    Tiersch, M.; Ganahl, E. J.; Briegel, H. J.

    2015-01-01

    Quantum information processing devices need to be robust and stable against external noise and internal imperfections to ensure correct operation. In a setting of measurement-based quantum computation, we explore how an intelligent agent endowed with a projective simulator can act as controller to adapt measurement directions to an external stray field of unknown magnitude in a fixed direction. We assess the agent’s learning behavior in static and time-varying fields and explore composition strategies in the projective simulator to improve the agent’s performance. We demonstrate the applicability by correcting for stray fields in a measurement-based algorithm for Grover’s search. Thereby, we lay out a path for adaptive controllers based on intelligent agents for quantum information tasks. PMID:26260263

  4. Adaptive quantum computation in changing environments using projective simulation

    NASA Astrophysics Data System (ADS)

    Tiersch, M.; Ganahl, E. J.; Briegel, H. J.

    2015-08-01

    Quantum information processing devices need to be robust and stable against external noise and internal imperfections to ensure correct operation. In a setting of measurement-based quantum computation, we explore how an intelligent agent endowed with a projective simulator can act as controller to adapt measurement directions to an external stray field of unknown magnitude in a fixed direction. We assess the agent’s learning behavior in static and time-varying fields and explore composition strategies in the projective simulator to improve the agent’s performance. We demonstrate the applicability by correcting for stray fields in a measurement-based algorithm for Grover’s search. Thereby, we lay out a path for adaptive controllers based on intelligent agents for quantum information tasks.

  5. Automatic computer-aided system of simulating solder joint formation

    NASA Astrophysics Data System (ADS)

    Zhao, Xiujuan; Wang, Chunqing; Zheng, Guanqun; Wang, Gouzhong; Yang, Shiqin

    1999-08-01

    One critical aspect in electronic packaging is the fatigue/creep-induced failure in solder interconnections, which is found to be highly dependent on the shape of solder joints. Thus predicting and analyzing the solder joint shape is warranted. In this paper, an automatic computer-aided system is developed to simulate the formation of solder joint and analyze the influence of the different process parameters on the solder joint shape. The developed system is capable of visually designing the process parameters and calculating the solder joint shape automatically without any intervention from the user. The automation achieved will enable fast shape estimation with the variation of process parameters without time consuming experiments, and the simulating system provides the design and manufacturing engineers an efficient software tools to design soldering process in design environment. Moreover, a program developed from the system can serve as the preprocessor for subsequent finite element joint analysis program.

  6. Simulation of computed radiography with imaging plate detectors

    SciTech Connect

    Tisseur, D.; Costin, M.; Mathy, F.; Schumm, A.

    2014-02-18

    Computed radiography (CR) using phosphor imaging plate detectors is taking an increasing place in Radiography Testing. CR uses similar equipment as conventional radiography except that the classical X-ray film is replaced by a numerical detector, called image plate (IP), which is made of a photostimulable layer and which is read by a scanning device through photostimulated luminescence. Such digital radiography has already demonstrated important benefits in terms of exposure time, decrease of source energies and thus reduction of radioprotection area besides being a solution without effluents. This paper presents a model for the simulation of radiography with image plate detectors in CIVA together with examples of validation of the model. The study consists in a cross comparison between experimental and simulation results obtained on a step wedge with a classical X-ray tube. Results are proposed in particular with wire Image quality Indicator (IQI) and duplex IQI.

  7. Computer simulation in template-directed oligonucleotide synthesis

    NASA Technical Reports Server (NTRS)

    Kanavarioti, Anastassia; Benasconi, Claude F.

    1990-01-01

    It is commonly assumed that template-directed polymerizations have played a key role in prebiotic evolution. A computer simulation that models up to 33 competing reactions was used to investigate the product distribution in a template-directed oligonucleotide synthesis as a function of time and concentration of the reactants. The study focuses on the poly(C)-directed elongation reaction of oligoguanylates, and how it is affected by the competing processes of hydrolysis and dimerization of the activated monomer, which have the potential of severely curtailing the elongation and reducing the size and yield of the synthesized polymers. The simulations show that realistic and probably prebiotically plausible conditions can be found where hydrolysis and dimerization are either negligible or where a high degree of polymerization can be attained even in the face of substantial hydrolysis and/or dimerization.

  8. A COMPUTATIONAL WORKBENCH ENVIRONMENT FOR VIRTUAL POWER PLANT SIMULATION

    SciTech Connect

    Mike Bockelie; Dave Swensen; Martin Denison; Connie Senior; Adel Sarofim; Bene Risio

    2002-07-28

    This is the seventh Quarterly Technical Report for DOE Cooperative Agreement No.: DE-FC26-00NT41047. The goal of the project is to develop and demonstrate a computational workbench for simulating the performance of Vision 21 Power Plant Systems. Within the last quarter, good progress has been made on the development of the IGCC workbench. A series of parametric CFD simulations for single stage and two stage generic gasifier configurations have been performed. An advanced flowing slag model has been implemented into the CFD based gasifier model. A literature review has been performed on published gasification kinetics. Reactor models have been developed and implemented into the workbench for the majority of the heat exchangers, gas clean up system and power generation system for the Vision 21 reference configuration. Modifications to the software infrastructure of the workbench have been commenced to allow interfacing to the workbench reactor models that utilize the CAPE{_}Open software interface protocol.

  9. Computer aided analysis, simulation and optimisation of thermal sterilisation processes.

    PubMed

    Narayanan, C M; Banerjee, Arindam

    2013-04-01

    Although thermal sterilisation is a widely employed industrial process, little work is reported in the available literature including patents on the mathematical analysis and simulation of these processes. In the present work, software packages have been developed for computer aided optimum design of thermal sterilisation processes. Systems involving steam sparging, jacketed heating/cooling, helical coils submerged in agitated vessels and systems that employ external heat exchangers (double pipe, shell and tube and plate exchangers) have been considered. Both batch and continuous operations have been analysed and simulated. The dependence of del factor on system / operating parameters such as mass or volume of substrate to be sterilised per batch, speed of agitation, helix diameter, substrate to steam ratio, rate of substrate circulation through heat exchanger and that through holding tube have been analysed separately for each mode of sterilisation. Axial dispersion in the holding tube has also been adequately accounted for through an appropriately defined axial dispersion coefficient. The effect of exchanger characteristics/specifications on the system performance has also been analysed. The multiparameter computer aided design (CAD) software packages prepared are thus highly versatile in nature and they permit to make the most optimum choice of operating variables for the processes selected. The computed results have been compared with extensive data collected from a number of industries (distilleries, food processing and pharmaceutical industries) and pilot plants and satisfactory agreement has been observed between the two, thereby ascertaining the accuracy of the CAD softwares developed. No simplifying assumptions have been made during the analysis and the design of associated heating / cooling equipment has been performed utilising the most updated design correlations and computer softwares. PMID:23294402

  10. Computer aided analysis, simulation and optimisation of thermal sterilisation processes.

    PubMed

    Narayanan, C M; Banerjee, Arindam

    2013-04-01

    Although thermal sterilisation is a widely employed industrial process, little work is reported in the available literature including patents on the mathematical analysis and simulation of these processes. In the present work, software packages have been developed for computer aided optimum design of thermal sterilisation processes. Systems involving steam sparging, jacketed heating/cooling, helical coils submerged in agitated vessels and systems that employ external heat exchangers (double pipe, shell and tube and plate exchangers) have been considered. Both batch and continuous operations have been analysed and simulated. The dependence of del factor on system / operating parameters such as mass or volume of substrate to be sterilised per batch, speed of agitation, helix diameter, substrate to steam ratio, rate of substrate circulation through heat exchanger and that through holding tube have been analysed separately for each mode of sterilisation. Axial dispersion in the holding tube has also been adequately accounted for through an appropriately defined axial dispersion coefficient. The effect of exchanger characteristics/specifications on the system performance has also been analysed. The multiparameter computer aided design (CAD) software packages prepared are thus highly versatile in nature and they permit to make the most optimum choice of operating variables for the processes selected. The computed results have been compared with extensive data collected from a number of industries (distilleries, food processing and pharmaceutical industries) and pilot plants and satisfactory agreement has been observed between the two, thereby ascertaining the accuracy of the CAD softwares developed. No simplifying assumptions have been made during the analysis and the design of associated heating / cooling equipment has been performed utilising the most updated design correlations and computer softwares.

  11. Scientific and Computational Challenges of the Fusion Simulation Program (FSP)

    SciTech Connect

    William M. Tang

    2011-02-09

    This paper highlights the scientific and computational challenges facing the Fusion Simulation Program (FSP) a major national initiative in the United States with the primary objective being to enable scientific discovery of important new plasma phenomena with associated understanding that emerges only upon integration. This requires developing a predictive integrated simulation capability for magnetically-confined fusion plasmas that are properly validated against experiments in regimes relevant for producing practical fusion energy. It is expected to provide a suite of advanced modeling tools for reliably predicting fusion device behavior with comprehensive and targeted science-based simulations of nonlinearly-coupled phenomena in the core plasma, edge plasma, and wall region on time and space scales required for fusion energy production. As such, it will strive to embody the most current theoretical and experimental understanding of magnetic fusion plasmas and to provide a living framework for the simulation of such plasmas as the associated physics understanding continues to advance over the next several decades. Substantive progress on answering the outstanding scientific questions in the field will drive the FSP toward its ultimate goal of developing the ability to predict the behavior of plasma discharges in toroidal magnetic fusion devices with high physics fidelity on all relevant time and space scales. From a computational perspective, this will demand computing resources in the petascale range and beyond together with the associated multi-core algorithmic formulation needed to address burning plasma issues relevant to ITER - a multibillion dollar collaborative experiment involving seven international partners representing over half the world's population. Even more powerful exascale platforms will be needed to meet the future challenges of designing a demonstration fusion reactor (DEMO). Analogous to other major applied physics modeling projects (e

  12. Computational Materials: Modeling and Simulation of Nanostructured Materials and Systems

    NASA Technical Reports Server (NTRS)

    Gates, Thomas S.; Hinkley, Jeffrey A.

    2003-01-01

    The paper provides details on the structure and implementation of the Computational Materials program at the NASA Langley Research Center. Examples are given that illustrate the suggested approaches to predicting the behavior and influencing the design of nanostructured materials such as high-performance polymers, composites, and nanotube-reinforced polymers. Primary simulation and measurement methods applicable to multi-scale modeling are outlined. Key challenges including verification and validation of models are highlighted and discussed within the context of NASA's broad mission objectives.

  13. Tracking Non-rigid Structures in Computer Simulations

    SciTech Connect

    Gezahegne, A; Kamath, C

    2008-01-10

    A key challenge in tracking moving objects is the correspondence problem, that is, the correct propagation of object labels from one time step to another. This is especially true when the objects are non-rigid structures, changing shape, and merging and splitting over time. In this work, we describe a general approach to tracking thousands of non-rigid structures in an image sequence. We show how we can minimize memory requirements and generate accurate results while working with only two frames of the sequence at a time. We demonstrate our results using data from computer simulations of a fluimix problem.

  14. Computational Strategies for Polymer Coated Steel Sheet Forming Simulations

    SciTech Connect

    Owen, D. R. J.; Andrade Pires, F. M.; Dutko, M.

    2007-05-17

    This contribution discusses current issues involved in the numerical simulation of large scale industrial forming processes that employ polymer coated steel sheet. The need for rigorous consideration of both theoretical and algorithmic issues is emphasized, particularly in relation to the computational treatment of finite strain deformation of polymer coated steel sheet in the presence of internal degradation. Other issues relevant to the effective treatment of the problem, including the modelling of frictional contact between the work piece and tools, low order element technology capable of dealing with plastic incompressibility and thermo mechanical coupling, are also addressed. The suitability of the overall approach is illustrated by the solution of an industrially relevant problem.

  15. Computer Simulation of Einstein-Podolsky-Rosen-Bohm Experiments

    NASA Astrophysics Data System (ADS)

    de Raedt, H.; Michielsen, K.

    2016-07-01

    We review an event-based simulation approach which reproduces the statistical distributions of quantum physics experiments by generating detection events one-by-one according to an unknown distribution and without solving a wave equation. Einstein-Podolsky-Rosen-Bohm laboratory experiments are used as an example to illustrate the applicability of this approach. It is shown that computer experiments that employ the same post-selection procedure as the one used in laboratory experiments produce data that is in excellent agreement with quantum theory.

  16. Computer simulations of human interferon gamma mutated forms

    NASA Astrophysics Data System (ADS)

    Lilkova, E.; Litov, L.; Petkov, P.; Petkov, P.; Markov, S.; Ilieva, N.

    2010-01-01

    In the general framework of the computer-aided drug design, the method of molecular-dynamics simulations is applied for investigation of the human interferon-gamma (hIFN-γ) binding to its two known ligands (its extracellular receptor and the heparin-derived oligosaccharides). A study of 100 mutated hIFN-γ forms is presented, the mutations encompassing residues 86-88. The structural changes are investigated by comparing the lengths of the α-helices, in which these residues are included, in the native hIFN-γ molecule and in the mutated forms. The most intriguing cases are examined in detail.

  17. Computational challenges for beam-beam simulation for RHIC

    SciTech Connect

    Luo, Y.; Fischer, W.

    2010-10-01

    In this article we will review the computational challenges in the beam-beam simulation for the polarized proton run of the Relativistic Heavy Ion Collider (RHIC). The difficulties in our multi-particle and million turn tracking to calculate the proton beam lifetime and proton beam emittance growth due to head-on beam-beam interaction and head-on beam-beam compensation are presented and discussed. Solutions to obtain meaningful physics results from these trackings are proposed and tested. In the end we will present the progress in the benchmarking of the RHIC operational proton beam lifetime.

  18. Time-partitioning simulation models for calculation on parallel computers

    NASA Technical Reports Server (NTRS)

    Milner, Edward J.; Blech, Richard A.; Chima, Rodrick V.

    1987-01-01

    A technique allowing time-staggered solution of partial differential equations is presented in this report. Using this technique, called time-partitioning, simulation execution speedup is proportional to the number of processors used because all processors operate simultaneously, with each updating of the solution grid at a different time point. The technique is limited by neither the number of processors available nor by the dimension of the solution grid. Time-partitioning was used to obtain the flow pattern through a cascade of airfoils, modeled by the Euler partial differential equations. An execution speedup factor of 1.77 was achieved using a two processor Cray X-MP/24 computer.

  19. Computational Simulation of Semispan Wings in Wind Tunnels

    NASA Technical Reports Server (NTRS)

    Olsen, Mike; Rizk, Yehia

    1998-01-01

    The computational modelling of experiments, with the end aim of providing sufficiently accurate simulations to assess and improve turbulence models is described. Solid wall tunnels are the only tunnels in which the boundary conditions can, in principle, be known exactly. The modelling of the tunnel walls for transonic flows requires the accurate modelling of the viscous displacement effects on the tunnel walls. This paper describes the modelling of semispan wing experiments in solid wall tunnels, with the tunnel walls modelled as inviscid walls, and with all 4 walls modelled viscously. The effect of the viscous effects is discussed, as well as the feasibility of modelling these effects in an inviscid, apriori manner.

  20. GENOA-PFA: Progressive Fracture in Composites Simulated Computationally

    NASA Technical Reports Server (NTRS)

    Murthy, Pappu L. N.

    2000-01-01

    GENOA-PFA is a commercial version of the Composite Durability Structural Analysis (CODSTRAN) computer program that simulates the progression of damage ultimately leading to fracture in polymer-matrix-composite (PMC) material structures under various loading and environmental conditions. GENOA-PFA offers several capabilities not available in other programs developed for this purpose, making it preferable for use in analyzing the durability and damage tolerance of complex PMC structures in which the fiber reinforcements occur in two- and three-dimensional weaves and braids. GENOA-PFA implements a progressive-fracture methodology based on the idea that a structure fails when flaws that may initially be small (even microscopic) grow and/or coalesce to a critical dimension where the structure no longer has an adequate safety margin to avoid catastrophic global fracture. Damage is considered to progress through five stages: (1) initiation, (2) growth, (3) accumulation (coalescence of propagating flaws), (4) stable propagation (up to the critical dimension), and (5) unstable or very rapid propagation (beyond the critical dimension) to catastrophic failure. The computational simulation of progressive failure involves formal procedures for identifying the five different stages of damage and for relating the amount of damage at each stage to the overall behavior of the deteriorating structure. In GENOA-PFA, mathematical modeling of the composite physical behavior involves an integration of simulations at multiple, hierarchical scales ranging from the macroscopic (lamina, laminate, and structure) to the microscopic (fiber, matrix, and fiber/matrix interface), as shown in the figure. The code includes algorithms to simulate the progression of damage from various source defects, including (1) through-the-thickness cracks and (2) voids with edge, pocket, internal, or mixed-mode delaminations.

  1. The operant reserve: a computer simulation in (accelerated) real time.

    PubMed

    Catania, A Charles

    2005-05-31

    In Skinner's Reflex Reserve theory, reinforced responses added to a reserve depleted by responding. It could not handle the finding that partial reinforcement generated more responding than continuous reinforcement, but it would have worked if its growth had depended not just on the last response but also on earlier responses preceding a reinforcer, each weighted by delay. In that case, partial reinforcement generates steady states in which reserve decrements produced by responding balance increments produced when reinforcers follow responding. A computer simulation arranged schedules for responses produced with probabilities proportional to reserve size. Each response subtracted a fixed amount from the reserve and added an amount weighted by the reciprocal of the time to the next reinforcer. Simulated cumulative records and quantitative data for extinction, random-ratio, random-interval, and other schedules were consistent with those of real performances, including some effects of history. The model also simulated rapid performance transitions with changed contingencies that did not depend on molar variables or on differential reinforcement of inter-response times. The simulation can be extended to inhomogeneous contingencies by way of continua of reserves arrayed along response and time dimensions, and to concurrent performances and stimulus control by way of different reserves created for different response classes. PMID:15845312

  2. A multisegment computer simulation of normal human gait.

    PubMed

    Gilchrist, L A; Winter, D A

    1997-12-01

    The goal of this project was to develop a computer simulation of normal human walking that would use as driving moments resultant joint moments from a gait analysis. The system description, initial conditions and driving moments were taken from an inverse dynamics analysis of a normal walking trial. A nine-segment three-dimensional (3-D) model, including a two-part foot, was used. Torsional, linear springs and dampers were used at the hip joints to keep the trunk vertical and at the knee and ankle joints to prevent nonphysiological motion. Dampers at other joints were required to ensure a smooth and realistic motion. The simulated human successfully completed one step (550 ms), including both single and double support phases. The model proved to be sensitive to changes in the spring stiffness values of the trunk controllers. Similar sensitivity was found with the springs used to prevent hyperextension of the knee at heel contact and of the metatarsal-phalangeal joint at push-off. In general, there was much less sensitivity to the damping coefficients. This simulation improves on previous efforts because it incorporates some features necessary in simulations designed to answer clinical science questions. Other control algorithms are required, however, to ensure that the model can be realistically adapted to different subjects.

  3. Computer simulations of enzyme catalysis: methods, progress, and insights.

    PubMed

    Warshel, Arieh

    2003-01-01

    Understanding the action of enzymes on an atomistic level is one of the important aims of modern biophysics. This review describes the state of the art in addressing this challenge by simulating enzymatic reactions. It considers different modeling methods including the empirical valence bond (EVB) and more standard molecular orbital quantum mechanics/molecular mechanics (QM/MM) methods. The importance of proper configurational averaging of QM/MM energies is emphasized, pointing out that at present such averages are performed most effectively by the EVB method. It is clarified that all properly conducted simulation studies have identified electrostatic preorganization effects as the source of enzyme catalysis. It is argued that the ability to simulate enzymatic reactions also provides the chance to examine the importance of nonelectrostatic contributions and the validity of the corresponding proposals. In fact, simulation studies have indicated that prominent proposals such as desolvation, steric strain, near attack conformation, entropy traps, and coherent dynamics do not account for a major part of the catalytic power of enzymes. Finally, it is pointed out that although some of the issues are likely to remain controversial for some time, computer modeling approaches can provide a powerful tool for understanding enzyme catalysis.

  4. Pitch-angle scattering of cometary ions: Computer simulations

    SciTech Connect

    Gary, S.P.; Winske, D. ); Miller, R.H. )

    1991-06-01

    Pitch-angle evolution of newborn cometary ion is studied by means of one-dimensional electromagnetic hybrid computer simulations of homogeneous plasmas. Newborn ions are injected into the simulations at a constant rate, with a velocity relative to the solar wind which makes an angle {alpha} with respect to the ambient magnetic field. The simulations are done with relatively weak ion injection rates commensurate with those in the distant environment of comet Halley. In response to the linear temporal growth of the fluctuating magnetic field energy, the injected ions pitch-angle scatter toward isotropy in both the quasi-parallel (0{degree} {le} {alpha} {approx} {le} 60{degree}) and quasi-perpendicular(60{degree} < {alpha} {le} 90{degree}) regimes. For the injection of cometary oxygen ions the simulations show pitch angle scattering rates that are essentially independent of the solar wind ion/cometary ion relative speed, and increase as the square root of the injection rate. Furthermore, the oxygen ion pitch angle scattering rate at perpendicular injection is approximately twice that in the quasi-parallel regime, in qualitative agreement with observations at comet Halley.

  5. Extending a Flight Management Computer for Simulation and Flight Experiments

    NASA Technical Reports Server (NTRS)

    Madden, Michael M.; Sugden, Paul C.

    2005-01-01

    In modern transport aircraft, the flight management computer (FMC) has evolved from a flight planning aid to an important hub for pilot information and origin-to-destination optimization of flight performance. Current trends indicate increasing roles of the FMC in aviation safety, aviation security, increasing airport capacity, and improving environmental impact from aircraft. Related research conducted at the Langley Research Center (LaRC) often requires functional extension of a modern, full-featured FMC. Ideally, transport simulations would include an FMC simulation that could be tailored and extended for experiments. However, due to the complexity of a modern FMC, a large investment (millions of dollars over several years) and scarce domain knowledge are needed to create such a simulation for transport aircraft. As an intermediate alternative, the Flight Research Services Directorate (FRSD) at LaRC created a set of reusable software products to extend flight management functionality upstream of a Boeing-757 FMC, transparently simulating or sharing its operator interfaces. The paper details the design of these products and highlights their use on NASA projects.

  6. The operant reserve: a computer simulation in (accelerated) real time.

    PubMed

    Catania, A Charles

    2005-05-31

    In Skinner's Reflex Reserve theory, reinforced responses added to a reserve depleted by responding. It could not handle the finding that partial reinforcement generated more responding than continuous reinforcement, but it would have worked if its growth had depended not just on the last response but also on earlier responses preceding a reinforcer, each weighted by delay. In that case, partial reinforcement generates steady states in which reserve decrements produced by responding balance increments produced when reinforcers follow responding. A computer simulation arranged schedules for responses produced with probabilities proportional to reserve size. Each response subtracted a fixed amount from the reserve and added an amount weighted by the reciprocal of the time to the next reinforcer. Simulated cumulative records and quantitative data for extinction, random-ratio, random-interval, and other schedules were consistent with those of real performances, including some effects of history. The model also simulated rapid performance transitions with changed contingencies that did not depend on molar variables or on differential reinforcement of inter-response times. The simulation can be extended to inhomogeneous contingencies by way of continua of reserves arrayed along response and time dimensions, and to concurrent performances and stimulus control by way of different reserves created for different response classes.

  7. Computational Simulation of Blood Flow through Bileaflet Heart Valve Prostheses

    NASA Astrophysics Data System (ADS)

    Healy, Timothy; Sotiropoulos, Fotis; Yoganathan, Ajit

    2001-11-01

    Non-physiologic flow patterns and levels of turbulence caused by contemporary bileaflet mechanical heart valve (MHV) designs are believed to be partially responsible for thromboembolic complications caused by these valves. Presently, computer-based flow assessment is not employed as a design tool. Rather, CFD is used to understand flow dynamics under highly-specialized circumstances after a design has been selected and tested experimentally. The absence of CFD from the design-screening process is most likely due to undeveloped tools specific to the heart valve problem. CFD tools for assessing MHV flow performance should be efficient at simulating the fluid-structure interaction and the resulting leaflet motion. As the first stage in the development of MHV simulation tools, a high-accuracy Chimera solver was developed and tested for laminar flow through two bileaflet MHV designs. Steady and time-dependent simulations were performed providing the highest resolution simulations of three-dimensional MHV flow fields to date. Flow structures and time-dependent flow phenomena were investigated and interpreted in the context of the clinical performance of each design studied.

  8. Computational strategies for three-dimensional flow simulations on distributed computer systems

    NASA Technical Reports Server (NTRS)

    Sankar, Lakshmi N.; Weed, Richard A.

    1995-01-01

    This research effort is directed towards an examination of issues involved in porting large computational fluid dynamics codes in use within the industry to a distributed computing environment. This effort addresses strategies for implementing the distributed computing in a device independent fashion and load balancing. A flow solver called TEAM presently in use at Lockheed Aeronautical Systems Company was acquired to start this effort. The following tasks were completed: (1) The TEAM code was ported to a number of distributed computing platforms including a cluster of HP workstations located in the School of Aerospace Engineering at Georgia Tech; a cluster of DEC Alpha Workstations in the Graphics visualization lab located at Georgia Tech; a cluster of SGI workstations located at NASA Ames Research Center; and an IBM SP-2 system located at NASA ARC. (2) A number of communication strategies were implemented. Specifically, the manager-worker strategy and the worker-worker strategy were tested. (3) A variety of load balancing strategies were investigated. Specifically, the static load balancing, task queue balancing and the Crutchfield algorithm were coded and evaluated. (4) The classical explicit Runge-Kutta scheme in the TEAM solver was replaced with an LU implicit scheme. And (5) the implicit TEAM-PVM solver was extensively validated through studies of unsteady transonic flow over an F-5 wing, undergoing combined bending and torsional motion. These investigations are documented in extensive detail in the dissertation, 'Computational Strategies for Three-Dimensional Flow Simulations on Distributed Computing Systems', enclosed as an appendix.

  9. Advances in computer simulation of genome evolution: toward more realistic evolutionary genomics analysis by approximate bayesian computation.

    PubMed

    Arenas, Miguel

    2015-04-01

    NGS technologies present a fast and cheap generation of genomic data. Nevertheless, ancestral genome inference is not so straightforward due to complex evolutionary processes acting on this material such as inversions, translocations, and other genome rearrangements that, in addition to their implicit complexity, can co-occur and confound ancestral inferences. Recently, models of genome evolution that accommodate such complex genomic events are emerging. This letter explores these novel evolutionary models and proposes their incorporation into robust statistical approaches based on computer simulations, such as approximate Bayesian computation, that may produce a more realistic evolutionary analysis of genomic data. Advantages and pitfalls in using these analytical methods are discussed. Potential applications of these ancestral genomic inferences are also pointed out.

  10. Using Microcomputer Simulations in the Classroom: Examples from Undergraduate and Faculty Computer Literacy Courses.

    ERIC Educational Resources Information Center

    Hart, Jeffrey A.

    Examples of the use of computer simulations in two undergraduate courses, (American Foreign Policy and Introduction to International Politics), and a faculty computer literacy course on simulations and artificial intelligence, are provided in this compilation of various instructional items. A list of computer simulations available for various…

  11. The effects of computer simulation versus hands-on dissection and the placement of computer simulation within the learning cycle on student achievement and attitude

    NASA Astrophysics Data System (ADS)

    Hopkins, Kathryn Susan

    The value of dissection as an instructional strategy has been debated, but not evidenced in research literature. The purpose of this study was to examine the efficacy of using computer simulated frog dissection as a substitute for traditional hands-on frog dissection and to examine the possible enhancement of achievement by combining the two strategies in a specific sequence. In this study, 134 biology students at two Central Texas schools were divided into the five following treatment groups: computer simulation of frog dissection, computer simulation before dissection, traditional hands-on frog dissection, dissection before computer simulation, and textual worksheet materials. The effects on achievement were evaluated by labeling 10 structures on three diagrams, identifying 11 pinned structures on a prosected frog, and answering 9 multiple-choice questions over the dissection process. Attitude was evaluated using a thirty item survey with a five-point Likert scale. The quasi-experimental design was pretest/post-test/post-test nonequivalent group for both control and experimental groups, a 2 x 2 x 5 completely randomized factorial design (gender, school, five treatments). The pretest/post-test design was incorporated to control for prior knowledge using analysis of covariance. The dissection only group evidenced a significantly higher performance than all other treatments except dissection-then-computer on the post-test segment requiring students to label pinned anatomical parts on a prosected frog. Interactions between treatment and school in addition to interaction between treatment and gender were found to be significant. The diagram and attitude post-tests evidenced no significant difference. Results on the nine multiple-choice questions about dissection procedures indicated a significant difference between schools. The interaction between treatment and school was also found to be significant. On a delayed post-test, a significant difference in gender was

  12. Computer simulation of coal preparation plants. Part 2. User's manual. Final report

    SciTech Connect

    Gottfried, B.S.; Tierney, J.W.

    1985-12-01

    This report describes a comprehensive computer program that allows the user to simulate the performance of realistic coal preparation plants. The program is very flexible in the sense that it can accommodate any particular plant configuration that may be of interest. This allows the user to compare the performance of different plant configurations and to determine the impact of various modes of operation with the same configuration. In addition, the program can be used to assess the degree of cleaning obtained with different coal feeds for a given plant configuration and a given mode of operation. Use of the simulator requires that the user specify the appearance of the plant configuration, the plant operating conditions, and a description of the coal feed. The simulator will then determine the flowrates within the plant, and a description of each flowrate (i.e., the weight distribution, percent ash, pyritic sulfur and total sulfur, moisture, and Btu content). The simulation program has been written in modular form using the Fortran language. It can be implemented on a great many different types of computers, ranging from large scientific mainframes to IBM-type personal computers with a fixed disk. Some customization may be required, however, to ensure compatibility with the features of Fortran available on a particular computer. Part I of this report contains a general description of the methods used to carry out the simulation. Each of the major types of units is described separately, in addition to a description of the overall system analysis. Part II is intended as a user's manual. It contains a listing of the mainframe version of the program, instructions for its use (on both a mainframe and a microcomputer), and output for a representative sample problem.

  13. A COMPUTATIONAL WORKBENCH ENVIRONMENT FOR VIRTUAL POWER PLANT SIMULATION

    SciTech Connect

    Mike Bockelie; Dave Swensen; Martin Denison; Adel Sarofim; Connie Senior

    2004-12-22

    , immersive environment. The Virtual Engineering Framework (VEF), in effect a prototype framework, was developed through close collaboration with NETL supported research teams from Iowa State University Virtual Reality Applications Center (ISU-VRAC) and Carnegie Mellon University (CMU). The VEF is open source, compatible across systems ranging from inexpensive desktop PCs to large-scale, immersive facilities and provides support for heterogeneous distributed computing of plant simulations. The ability to compute plant economics through an interface that coupled the CMU IECM tool to the VEF was demonstrated, and the ability to couple the VEF to Aspen Plus, a commercial flowsheet modeling tool, was demonstrated. Models were interfaced to the framework using VES-Open. Tests were performed for interfacing CAPE-Open-compliant models to the framework. Where available, the developed models and plant simulations have been benchmarked against data from the open literature. The VEF has been installed at NETL. The VEF provides simulation capabilities not available in commercial simulation tools. It provides DOE engineers, scientists, and decision makers with a flexible and extensible simulation system that can be used to reduce the time, technical risk, and cost to develop the next generation of advanced, coal-fired power systems that will have low emissions and high efficiency. Furthermore, the VEF provides a common simulation system that NETL can use to help manage Advanced Power Systems Research projects, including both combustion- and gasification-based technologies.

  14. Electrical properties of polarizable ionic solutions. II. Computer simulation results

    NASA Astrophysics Data System (ADS)

    Caillol, J. M.; Levesque, D.; Weis, J. J.

    1989-11-01

    We present molecular dynamics simulations for two limiting models of ionic solutions: one where the solvent molecules are polar, but nonpolarizable; the other where they are only polarizable (but have no permanent dipole moment). For both models, the static two-body correlation functions, the frequency-dependent dielectric constant and conductivity are calculated and the statistical uncertainty on these quantities estimated for molecular dynamics runs of the order of 105 integration steps. For the case of the polar solvent, the accuracy of the computed static interionic correlation functions allows a valuable test of the hypernetted chain integral equation theory at an ionic concentration of 0.04. The quantitative variation of the fluctuations of polarization and electrical current with change of boundary conditions is evaluated within the context of the second model (polarizable nonpolar solvent). Applying the relationships derived in Part I between the phenomenological coefficients and susceptibilities, it is shown that consistent values for the dielectric constant and electrical conductivity are obtained. The sum rules which generalize the Stillinger-Lovett conditions to ionic solutions are computed and shown to be satisfied in our simulations. The evaluation of these sum rules constitutes an important test of the convergence of the electrolyte system to an equilibrium state.

  15. GUI for Computational Simulation of a Propellant Mixer

    NASA Technical Reports Server (NTRS)

    Figueroa, Fernando; Richter, Hanz; Barbieri, Enrique; Granger, Jamie

    2005-01-01

    Control Panel is a computer program that generates a graphical user interface (GUI) for computational simulation of a rocket-test-stand propellant mixer in which gaseous hydrogen (GH2) is injected into flowing liquid hydrogen (LH2) to obtain a combined flow having desired thermodynamic properties. The GUI is used in conjunction with software that models the mixer as a system having three inputs (the positions of the GH2 and LH2 inlet valves and an outlet valve) and three outputs (the pressure inside the mixer and the outlet flow temperature and flow rate). The user can specify valve characteristics and thermodynamic properties of the input fluids via userfriendly dialog boxes. The user can enter temporally varying input values or temporally varying desired output values. The GUI provides (1) a set-point calculator function for determining fixed valve positions that yield desired output values and (2) simulation functions that predict the response of the mixer to variations in the properties of the LH2 and GH2 and manual- or feedback-control variations in valve positions. The GUI enables scheduling of a sequence of operations that includes switching from manual to feedback control when a certain event occurs.

  16. Molecular Dynamics Simulations on High-Performance Reconfigurable Computing Systems

    PubMed Central

    CHIU, MATT; HERBORDT, MARTIN C.

    2011-01-01

    The acceleration of molecular dynamics (MD) simulations using high-performance reconfigurable computing (HPRC) has been much studied. Given the intense competition from multicore and GPUs, there is now a question whether MD on HPRC can be competitive. We concentrate here on the MD kernel computation: determining the short-range force between particle pairs. In one part of the study, we systematically explore the design space of the force pipeline with respect to arithmetic algorithm, arithmetic mode, precision, and various other optimizations. We examine simplifications and find that some have little effect on simulation quality. In the other part, we present the first FPGA study of the filtering of particle pairs with nearly zero mutual force, a standard optimization in MD codes. There are several innovations, including a novel partitioning of the particle space, and new methods for filtering and mapping work onto the pipelines. As a consequence, highly efficient filtering can be implemented with only a small fraction of the FPGA’s resources. Overall, we find that, for an Altera Stratix-III EP3ES260, 8 force pipelines running at nearly 200 MHz can fit on the FPGA, and that they can perform at 95% efficiency. This results in an 80-fold per core speed-up for the short-range force, which is likely to make FPGAs highly competitive for MD. PMID:21660208

  17. Computer simulation of orthognathic surgery with video imaging

    NASA Astrophysics Data System (ADS)

    Sader, Robert; Zeilhofer, Hans-Florian U.; Horch, Hans-Henning

    1994-04-01

    Patients with extreme jaw imbalance must often undergo operative corrections. The goal of therapy is to harmonize the stomatognathic system and an aesthetical correction of the face profile. A new procedure will be presented which supports the maxillo-facial surgeon in planning the operation and which also presents the patient the result of the treatment by video images. Once an x-ray has been digitized it is possible to produce individualized cephalometric analyses. Using a ceph on screen, all current orthognathic operations can be simulated, whereby the bony segments are moved according to given parameters, and a new soft tissue profile can be calculated. The profile of the patient is fed into the computer by way of a video system and correlated to the ceph. Using the simulated operation the computer calculates a new video image of the patient which presents the expected postoperative appearance. In studies of patients treated between 1987-91, 76 out of 121 patients were able to be evaluated. The deviation in profile change varied between .0 and 1.6mm. A side effect of the practical applications was an increase in patient compliance.

  18. Computer simulations of glasses: the potential energy landscape

    NASA Astrophysics Data System (ADS)

    Raza, Zamaan; Alling, Björn; Abrikosov, Igor A.

    2015-07-01

    We review the current state of research on glasses, discussing the theoretical background and computational models employed to describe them. This article focuses on the use of the potential energy landscape (PEL) paradigm to account for the phenomenology of glassy systems, and the way in which it can be applied in simulations and the interpretation of their results. This article provides a broad overview of the rich phenomenology of glasses, followed by a summary of the theoretical frameworks developed to describe this phenomonology. We discuss the background of the PEL in detail, the onerous task of how to generate computer models of glasses, various methods of analysing numerical simulations, and the literature on the most commonly used model systems. Finally, we tackle the problem of how to distinguish a good glass former from a good crystal former from an analysis of the PEL. In summarising the state of the potential energy landscape picture, we develop the foundations for new theoretical methods that allow the ab initio prediction of the glass-forming ability of new materials by analysis of the PEL.

  19. Enhancing simulation of efficiency with analytical tools. [combining computer simulation and analytical techniques for cost reduction

    NASA Technical Reports Server (NTRS)

    Seltzer, S. M.

    1974-01-01

    Some means of combining both computer simulation and anlytical techniques are indicated in order to mutually enhance their efficiency as design tools and to motivate those involved in engineering design to consider using such combinations. While the idea is not new, heavy reliance on computers often seems to overshadow the potential utility of analytical tools. Although the example used is drawn from the area of dynamics and control, the principles espoused are applicable to other fields. In the example the parameter plane stability analysis technique is described briefly and extended beyond that reported in the literature to increase its utility (through a simple set of recursive formulas) and its applicability (through the portrayal of the effect of varying the sampling period of the computer). The numerical values that were rapidly selected by analysis were found to be correct for the hybrid computer simulation for which they were needed. This obviated the need for cut-and-try methods to choose the numerical values, thereby saving both time and computer utilization.

  20. Laser Additive Melting and Solidification of Inconel 718: Finite Element Simulation and Experiment

    NASA Astrophysics Data System (ADS)

    Romano, John; Ladani, Leila; Sadowski, Magda

    2016-03-01

    The field of powdered metal additive manufacturing is experiencing a surge in public interest finding uses in aerospace, defense, and biomedical industries. The relative youth of the technology coupled with public interest makes the field a vibrant research topic. The authors have expanded upon previously published finite element models used to analyze the processing of novel engineering materials through the use of laser- and electron beam-based additive manufacturing. In this work, the authors present a model for simulating fabrication of Inconel 718 using laser melting processes. Thermal transport phenomena and melt pool geometries are discussed and validation against experimental findings is presented. After comparing experimental and simulation results, the authors present two correction correlations to transform the modeling results into meaningful predictions of actual laser melting melt pool geometries in Inconel 718.

  1. Computer Simulations of Small Molecules in Membranes: Insights from Computer Simulations into the Interactions of Small Molecules with Lipid Bilayers

    NASA Technical Reports Server (NTRS)

    Pohorille, Andrew; New, Michael H.; Schweighofer, Karl; Wilson, Michael A.; DeVincenzi, Donald L. (Technical Monitor)

    2000-01-01

    Two of Ernest Overton's lasting contributions to biology are the Meyer-Overton relationship between the potency of an anesthetic and its solubility in oil, and the Overton rule which relates the permeability of a membrane to the oil-water partition coefficient of the permeating molecule. A growing body of experimental evidence, however, cannot be reconciled with these theories. In particular, the molecular nature of membranes, unknown to Overton, needs to be included in any description of these phenomena. Computer simulations are ideally suited for providing atomic-level information about the behavior of small molecules in membranes. The authors discuss simulation studies relevant to Overton's ideas. Through simulations it was found that anesthetics tend to concentrate at interfaces and their anesthetic potency correlates better with solubility at the water-membrane interface than with solubility in oil. Simulation studies of membrane permeation revealed the anisotropic nature of the membranes, as evidenced, for example, by the highly nonuniform distribution of free volume in the bilayer. This, in turn, influences the diffusion rates of solutes, which increase with the depth in the membrane. Small solutes tend to move by hopping between voids in the bilayer, and this hopping motion may be responsible for the deviation from the Overton rule of the permeation rates of these molecules.

  2. Computational Simulation of Acoustic Modes in Rocket Combustors

    NASA Technical Reports Server (NTRS)

    Harper, Brent (Technical Monitor); Merkle, C. L.; Sankaran, V.; Ellis, M.

    2004-01-01

    A combination of computational fluid dynamic analysis and analytical solutions is being used to characterize the dominant modes in liquid rocket engines in conjunction with laboratory experiments. The analytical solutions are based on simplified geometries and flow conditions and are used for careful validation of the numerical formulation. The validated computational model is then extended to realistic geometries and flow conditions to test the effects of various parameters on chamber modes, to guide and interpret companion laboratory experiments in simplified combustors, and to scale the measurements to engine operating conditions. In turn, the experiments are used to validate and improve the model. The present paper gives an overview of the numerical and analytical techniques along with comparisons illustrating the accuracy of the computations as a function of grid resolution. A representative parametric study of the effect of combustor mean flow Mach number and combustor aspect ratio on the chamber modes is then presented for both transverse and longitudinal modes. The results show that higher mean flow Mach numbers drive the modes to lower frequencies. Estimates of transverse wave mechanics in a high aspect ratio combustor are then contrasted with longitudinal modes in a long and narrow combustor to provide understanding of potential experimental simulations.

  3. Computational simulation of acoustic fatigue for hot composite structures

    NASA Technical Reports Server (NTRS)

    Singhal, Surendra N.; Murthy, Pappu L. N.; Chamis, Christos C.; Nagpal, Vinod K.; Sutjahjo, Edhi

    1991-01-01

    Predictive methods/computer codes for the computational simulation of acoustic fatigue resistance of hot composite structures subjected to acoustic excitation emanating from an adjacent vibrating component are discussed. Select codes developed over the past two decades at the NASA Lewis Research Center are used. The codes include computation of acoustic noise generated from a vibrating component, degradation in material properties of a composite laminate at use temperature, dynamic response of acoustically excited hot multilayered composite structure, degradation in the first ply strength of the excited structure due to acoustic loading, and acoustic fatigue resistance of the excited structure, including the propulsion environment. Effects of the laminate lay-up and environment on the acoustic fatigue life are evaluated. The results show that, by keeping the angled plies on the outer surface of the laminate, a substantial increase in the acoustic fatigue life is obtained. The effect of environment (temperature and moisture) is to relieve the residual stresses leading to an increase in the acoustic fatigue life of the excited panel.

  4. Computational Hemodynamic Simulation of Human Circulatory System under Altered Gravity

    NASA Technical Reports Server (NTRS)

    Kim. Chang Sung; Kiris, Cetin; Kwak, Dochan

    2003-01-01

    A computational hemodynamics approach is presented to simulate the blood flow through the human circulatory system under altered gravity conditions. Numerical techniques relevant to hemodynamics issues are introduced to non-Newtonian modeling for flow characteristics governed by red blood cells, distensible wall motion due to the heart pulse, and capillary bed modeling for outflow boundary conditions. Gravitational body force terms are added to the Navier-Stokes equations to study the effects of gravity on internal flows. Six-type gravity benchmark problems are originally presented to provide the fundamental understanding of gravitational effects on the human circulatory system. For code validation, computed results are compared with steady and unsteady experimental data for non-Newtonian flows in a carotid bifurcation model and a curved circular tube, respectively. This computational approach is then applied to the blood circulation in the human brain as a target problem. A three-dimensional, idealized Circle of Willis configuration is developed with minor arteries truncated based on anatomical data. Demonstrated is not only the mechanism of the collateral circulation but also the effects of gravity on the distensible wall motion and resultant flow patterns.

  5. A computer program for simulating geohydrologic systems in three dimensions

    USGS Publications Warehouse

    Posson, D.R.; Hearne, G.A.; Tracy, J.V.; Frenzel, P.F.

    1980-01-01

    This document is directed toward individuals who wish to use a computer program to simulate ground-water flow in three dimensions. The strongly implicit procedure (SIP) numerical method is used to solve the set of simultaneous equations. New data processing techniques and program input and output options are emphasized. The quifer system to be modeled may be heterogeneous and anisotropic, and may include both artesian and water-table conditions. Systems which consist of well defined alternating layers of highly permeable and poorly permeable material may be represented by a sequence of equations for two dimensional flow in each of the highly permeable units. Boundaries where head or flux is user-specified may be irregularly shaped. The program also allows the user to represent streams as limited-source boundaries when the streamflow is small in relation to the hydraulic stress on the system. The data-processing techniques relating to ' cube ' input and output, to swapping of layers, to restarting of simulation, to free-format NAMELIST input, to the details of each sub-routine 's logic, and to the overlay program structure are discussed. The program is capable of processing large models that might overflow computer memories with conventional programs. Detailed instructions for selecting program options, for initializing the data arrays, for defining ' cube ' output lists and maps, and for plotting hydrographs of calculated and observed heads and/or drawdowns are provided. Output may be restricted to those nodes of particular interest, thereby reducing the volumes of printout for modelers, which may be critical when working at remote terminals. ' Cube ' input commands allow the modeler to set aquifer parameters and initialize the model with very few input records. Appendixes provide instructions to compile the program, definitions and cross-references for program variables, summary of the FLECS structured FORTRAN programming language, listings of the FLECS and

  6. Multiscale modeling and computer simulation of polyhedral oligomeric silsesquioxane assemblies

    NASA Astrophysics Data System (ADS)

    Chan, Elaine R.

    Self-assembly offers a promising strategy for manipulating the bottom-up assembly of nanometer-scale objects into useful structures for many diverse applications. Polyhedral oligomeric silsesquioxane (POSS) molecules are nanoscale building blocks with immense potential for constructing hybrid organic/inorganic materials with superior physical properties. The silicon corners of the inorganic nanocubes can be functionalized with a variety of organic tethers to precisely tailor assembly of the molecules into specific structures. To successfully control fabrication of POSS-based materials requires an understanding of the atomic- and nanoscale processes that occur during the assembly process. In conjunction with ongoing experiments, computer simulations and theory can provide fundamental insight into the self-assembly process, and are valuable tools for identifying and efficiently mapping the vast parameter space of complex POSS/polymer assemblies. The objective of this dissertation is to elucidate the self-assembly properties of polymer-tethered POSS at large length (˜100 nanometers) and time (˜10--100 nanoseconds) scales. These length and time scales are often difficult to assess experimentally. Simulation studies of self-assembly in these regimes require sufficiently large numbers of molecules, and coarse-grained mesoscale models have been developed based on electronic structure calculations and all-atom simulations of small numbers of molecules to reduce overall computation time. Model molecules are initially developed that capture the essential features of connectivity and interaction specificity of mono- and tetratethered POSS nanoparticles functionalized with block copolymer and homopolymer chains. Simulations of these model molecules are conducted over wide ranges of temperature and concentration to probe the influence of tether chemical composition, molecular weight, and number on self-assembly. The tethered POSS systems are predicted to exhibit several of

  7. A COMPUTATIONAL WORKBENCH ENVIRONMENT FOR VIRTUAL POWER PLANT SIMULATION

    SciTech Connect

    Mike Bockelie; Dave Swensen; Martin Denison

    2002-01-31

    This is the fifth Quarterly Technical Report for DOE Cooperative Agreement No: DE-FC26-00NT41047. The goal of the project is to develop and demonstrate a computational workbench for simulating the performance of Vision 21 Power Plant Systems. Within the last quarter, our efforts have become focused on developing an improved workbench for simulating a gasifier based Vision 21 energyplex. To provide for interoperability of models developed under Vision 21 and other DOE programs, discussions have been held with DOE and other organizations developing plant simulator tools to review the possibility of establishing a common software interface or protocol to use when developing component models. A component model that employs the CCA protocol has successfully been interfaced to our CCA enabled workbench. To investigate the software protocol issue, DOE has selected a gasifier based Vision 21 energyplex configuration for use in testing and evaluating the impacts of different software interface methods. A Memo of Understanding with the Cooperative Research Centre for Coal in Sustainable Development (CCSD) in Australia has been completed that will enable collaborative research efforts on gasification issues. Preliminary results have been obtained for a CFD model of a pilot scale, entrained flow gasifier. A paper was presented at the Vision 21 Program Review Meeting at NETL (Morgantown) that summarized our accomplishments for Year One and plans for Year Two and Year Three.

  8. (Artificial intelligence, human factors, robotics, and computer simulation)

    SciTech Connect

    Spelt, P.F.

    1990-09-06

    Traveler was invited to participate in information exchange between Oak Ridge National Laboratory (ORNL) and CISC/JAERI on four topics: Artificial Intelligence, Human Factors, robotics, and computer simulation. This exchange took the form of 9 (2-hour) lectures presented by traveler on work done in CS HF Group, and four presentations by Japanese for traveler's edification. Seven of traveler's lectures were to CISC/JAERI, one to Toshiba Corporation, and one to the AI Steering Committee of JAERI. There was also a presentation by Toshiba Corporation on HF work connected with their Boiling Water Reactor (BWR) control room. Final discussion between traveler and JAERI personnel concerned an umbrella agreement with the US Department of Energy (DOE) permitting researcher exchange similar to nuclear researchers. Conclusions are: the US has definite advantages in most areas of AI progress; the Japanese are creating a Monte Carlo radiation dose calculation simulation which will operate at the level of radiating particles (neutrons) with doses calculated for all major organ systems of humans, and major circuits for robots; they are gaining experience in creating major integrated simulations of human/robot activity in a nuclear reactor; and that it would be advantageous for us to have a formal agreement permitting scientists to visit there for more than 15 days at a time.

  9. A COMPUTATIONAL WORKBENCH ENVIRONMENT FOR VIRTUAL POWER PLANT SIMULATION

    SciTech Connect

    Mike Bockelie; Dave Swensen; Martin Denison

    2002-04-30

    This is the sixth Quarterly Technical Report for DOE Cooperative Agreement No: DE-FC26-00NT41047. The goal of the project is to develop and demonstrate a computational workbench for simulating the performance of Vision 21 Power Plant Systems. Within the last quarter, good progress has been made on the development of our IGCC workbench. Preliminary CFD simulations for single stage and two stage ''generic'' gasifiers using firing conditions based on the Vision 21 reference configuration have been performed. Work is continuing on implementing an advanced slagging model into the CFD based gasifier model. An investigation into published gasification kinetics has highlighted a wide variance in predicted performance due to the choice of kinetic parameters. A plan has been outlined for developing the reactor models required to simulate the heat transfer and gas clean up equipment downstream of the gasifier. Three models that utilize the CCA software protocol have been integrated into a version of the IGCC workbench. Tests of a CCA implementation of our CFD code into the workbench demonstrated that the CCA CFD module can execute on a geographically remote PC (linked via the Internet) in a manner that is transparent to the user. Software tools to create ''walk-through'' visualizations of the flow field within a gasifier have been demonstrated.

  10. Radical initiated polymerization in a bifunctional mixture via computer simulation

    NASA Astrophysics Data System (ADS)

    Diamond, Keri L.; Pandey, Ras B.; Thames, Shelby F.

    2004-06-01

    Computer simulations are performed to study the polymerization behavior in a mixture of bifunctional groups such as olefins (A) and acrylates (B) in an effective solvent (a coarse description for vegetable oil derived macromonomers (VOMMs) in solution) on a cubic lattice. A set of interactions between these units and solvent (S) constituents and their relative concentrations (pA, pB, and pS) are considered. Samples are equilibrated with Metropolis algorithm to model the perceived behavior of VOMMs. The covalent bonding between monomeric units is then implemented via reaction pathways initiated by stochastic motion of free radicals (a very small fraction). The rate of reaction shows decay patterns with the time steps (t) with power laws (i.e., Rabαt-r, r≅0.4-0.8), exponential decays (i.e., Rabαe-0.001t), and their combination. Growth of A-B bonding is studied as a function of polymer concentration p=pA+pB for four different model systems appropriate for VOMMs. The data from the free radical initiated simulations are compared to the original simulations with homopolymerization. While most of the data are consistent with experimental observations, the variations are found to be model dependent.

  11. Computer simulation of macromolecular crystals and their defects

    SciTech Connect

    Wunderlich, B.; Sumpter, B.G.; Noid, D.W.; Liang, G.L. |

    1993-06-01

    Computational results on dynamics of polyethylene, are reviewed and connected to experiment. It can be demonstrated that conformational defects can be created at temperatures as much as 100 K below the melting point and that the concentration continues to increase exponentially with temperature, ultimately leading to disordered crystals along the polymer chains (high temperature CONDIS crystals). Although rate of formation of these defects is high, approximately 1 {times} 10{sup 10} s{sup {minus}1} at 350 K, the defects do not, by themselves, lead at low temperature to lamellar thickening or deformation. Diffusion mechanisms involve coupling of large-amplitude torsional motion with transverse and longitudinal vibrations of the crystal, which lead to formation of disclinations, dispirations, and twists. Such defects can, move towards the end of the crystal, thereby causing a chain diffusion process leading to lamellar thickening and deformation processes. Collective twisting of the chains without major influence of conformational defects leads to hexagonal or pseudo-hexagonal structures of the asymmetric motifs, involving dynamic multidomain arrangements of the chains. The especially efficient molecular dynamics simulation-code produces reasonable agreement with experiment on density, defect concentration, heat capacity, vibrational spectra (including stress-induced frequency shifts), melting temperature, and speed of sound. The simulations produced data on crystals of up to 30,000 atoms for times of up to 100 picoseconds (10{sup {minus}10} s). Total simulation efforts needed 8,000 hours of supercomputer CPU time between 1988 and 1993.

  12. Protein adsorption on nanoparticles: model development using computer simulation.

    PubMed

    Shao, Qing; Hall, Carol K

    2016-10-19

    The adsorption of proteins on nanoparticles results in the formation of the protein corona, the composition of which determines how nanoparticles influence their biological surroundings. We seek to better understand corona formation by developing models that describe protein adsorption on nanoparticles using computer simulation results as data. Using a coarse-grained protein model, discontinuous molecular dynamics simulations are conducted to investigate the adsorption of two small proteins (Trp-cage and WW domain) on a model nanoparticle of diameter 10.0 nm at protein concentrations ranging from 0.5 to 5 mM. The resulting adsorption isotherms are well described by the Langmuir, Freundlich, Temkin and Kiselev models, but not by the Elovich, Fowler-Guggenheim and Hill-de Boer models. We also try to develop a generalized model that can describe protein adsorption equilibrium on nanoparticles of different diameters in terms of dimensionless size parameters. The simulation results for three proteins (Trp-cage, WW domain, and GB3) on four nanoparticles (diameter  =  5.0, 10.0, 15.0, and 20.0 nm) illustrate both the promise and the challenge associated with developing generalized models of protein adsorption on nanoparticles. PMID:27546610

  13. Protein adsorption on nanoparticles: model development using computer simulation

    NASA Astrophysics Data System (ADS)

    Shao, Qing; Hall, Carol K.

    2016-10-01

    The adsorption of proteins on nanoparticles results in the formation of the protein corona, the composition of which determines how nanoparticles influence their biological surroundings. We seek to better understand corona formation by developing models that describe protein adsorption on nanoparticles using computer simulation results as data. Using a coarse-grained protein model, discontinuous molecular dynamics simulations are conducted to investigate the adsorption of two small proteins (Trp-cage and WW domain) on a model nanoparticle of diameter 10.0 nm at protein concentrations ranging from 0.5 to 5 mM. The resulting adsorption isotherms are well described by the Langmuir, Freundlich, Temkin and Kiselev models, but not by the Elovich, Fowler-Guggenheim and Hill-de Boer models. We also try to develop a generalized model that can describe protein adsorption equilibrium on nanoparticles of different diameters in terms of dimensionless size parameters. The simulation results for three proteins (Trp-cage, WW domain, and GB3) on four nanoparticles (diameter  =  5.0, 10.0, 15.0, and 20.0 nm) illustrate both the promise and the challenge associated with developing generalized models of protein adsorption on nanoparticles.

  14. GPSIM: A Personal Computer-Based GPS Simulator System

    NASA Astrophysics Data System (ADS)

    Ibrahim, D.

    Global Positioning Systems (GPS) are now in use in many applications, ranging from GIS to route guidance, automatic vehicle location (AVL), air, land, and marine navigation, and many other transportation and geographical based applications. In many applications, the GPS receiver is connected to some form of intelligent electronic system which receives the positional data from the GPS unit and then performs the required operation. When developing and testing GPS-based systems, one of the problems is that it is usually necessary to create GPS-compatible geographical data to simulate a GPS operation in real time. This paper provides the details of a Personal Computer (PC)-based GPS simulator system called GPSIM. The system receives user way-points and routes from Windows-based screen forms and then simulates a GPS operation in real time by generating most of the commonly used GPS sentences. The user-specified waypoints are divided into a number of small segments, each segment specifying a small distance in the direction of the original waypoint. The GPS sentence corresponding to the geographical coordinates of each segment is then sent out of the PC serial port. The system described is an invaluable testing tool for GPS-based system developers and also for people training to learn to use GPS-based products.

  15. Evaluating the GPSS simulation model for the Viking batch computer system. [General Purpose Simulation System

    NASA Technical Reports Server (NTRS)

    Lee, J.-J.

    1976-01-01

    In anticipation of extremely heavy loading requirements by the Viking mission during the post-landing periods, a GPSS model has been developed for the purpose of simulating these requirements on the Viking batch computer system. This paper presents the effort pursued in evaluating such a model and results thereby obtained. The evaluation effort consists of selecting the evaluation approach, collecting actual test run data, making comparisons and deriving conclusions.

  16. Large-scale three-dimensional geothermal reservoir simulation on small computer systems

    SciTech Connect

    Antunez, E.; Moridis, G.; Pruess, K.

    1995-05-01

    The performance of TOUGH2, Lawrence Berkeley Laboratory`s general purpose simulator for mass and heat flow and transport enhanced with the addition of a set of preconditioned conjugate gradient solvers, was tested on three PCs (486-33, 486-66, Pentium-90), a MacIntosh Quadra 800, and a workstation IBM RISC 6000. A two-phase, single porosity, 3-D geothermal reservoir model with 1,411 irregular grid blocks, with production from and injection into the reservoir was used as the test model. The code modifications to TOUGH2 and its setup in each machine environment are described. Computational work per time step and CPU time requirements are reported for each of the machines used. It is concluded that the current PCs provide the best price/performance platform for running large-scale geothermal field simulations that just a few years ago could only be executed on mainframe computers and high-end workstations.

  17. Structure, dynamics, and function of the monooxygenase P450 BM-3: insights from computer simulations studies

    NASA Astrophysics Data System (ADS)

    Roccatano, Danilo

    2015-07-01

    The monooxygenase P450 BM-3 is a NADPH-dependent fatty acid hydroxylase enzyme isolated from soil bacterium Bacillus megaterium. As a pivotal member of cytochrome P450 superfamily, it has been intensely studied for the comprehension of structure-dynamics-function relationships in this class of enzymes. In addition, due to its peculiar properties, it is also a promising enzyme for biochemical and biomedical applications. However, despite the efforts, the full understanding of the enzyme structure and dynamics is not yet achieved. Computational studies, particularly molecular dynamics (MD) simulations, have importantly contributed to this endeavor by providing new insights at an atomic level regarding the correlations between structure, dynamics, and function of the protein. This topical review summarizes computational studies based on MD simulations of the cytochrome P450 BM-3 and gives an outlook on future directions.

  18. Virtual MEG Helmet: Computer Simulation of an Approach to Neuromagnetic Field Sampling.

    PubMed

    Medvedovsky, Mordekhay; Nenonen, Jukka; Koptelova, Alexandra; Butorina, Anna; Paetau, Ritva; Mäkelä, Jyrki P; Ahonen, Antti; Simola, Juha; Gazit, Tomer; Taulu, Samu

    2016-03-01

    Head movements during an MEG recording are commonly considered an obstacle. In this computer simulation study, we introduce an approach, the virtual MEG helmet (VMH), which employs the head movements for data quality improvement. With a VMH, a denser MEG helmet is constructed by adding new sensors corresponding to different head positions. Based on the Shannon's theory of communication, we calculated the total information as a figure of merit for comparing the actual 306-sensor Elekta Neuromag helmet to several types of the VMH. As source models, we used simulated randomly distributed source current (RDSC), simulated auditory and somatosensory evoked fields. Using the RDSC model with the simulation of 360 recorded events, the total information (bits/sample) was 989 for the most informative single head position and up to 1272 for the VMH (addition of 28.6%). Using simulated AEFs, the additional contribution of a VMH was 12.6% and using simulated SEF only 1.1%. For the distributed and bilateral sources, a VMH can provide a more informative sampling of the neuromagnetic field during the same recording time than measuring the MEG from one head position. VMH can, in some situations, improve source localization of the neuromagnetic fields related to the normal and pathological brain activity. This should be investigated further employing real MEG recordings.

  19. Comparison of particle swarm optimization and simulated annealing for locating additional boreholes considering combined variance minimization

    NASA Astrophysics Data System (ADS)

    Soltani-Mohammadi, Saeed; Safa, Mohammad; Mokhtari, Hadi

    2016-10-01

    One of the most important stages in complementary exploration is optimal designing the additional drilling pattern or defining the optimum number and location of additional boreholes. Quite a lot research has been carried out in this regard in which for most of the proposed algorithms, kriging variance minimization as a criterion for uncertainty assessment is defined as objective function and the problem could be solved through optimization methods. Although kriging variance implementation is known to have many advantages in objective function definition, it is not sensitive to local variability. As a result, the only factors evaluated for locating the additional boreholes are initial data configuration and variogram model parameters and the effects of local variability are omitted. In this paper, with the goal of considering the local variability in boundaries uncertainty assessment, the application of combined variance is investigated to define the objective function. Thus in order to verify the applicability of the proposed objective function, it is used to locate the additional boreholes in Esfordi phosphate mine through the implementation of metaheuristic optimization methods such as simulated annealing and particle swarm optimization. Comparison of results from the proposed objective function and conventional methods indicates that the new changes imposed on the objective function has caused the algorithm output to be sensitive to the variations of grade, domain's boundaries and the thickness of mineralization domain. The comparison between the results of different optimization algorithms proved that for the presented case the application of particle swarm optimization is more appropriate than simulated annealing.

  20. Interpretive computer simulator for the NASA Standard Spacecraft Computer-2 (NSSC-2)

    NASA Technical Reports Server (NTRS)

    Smith, R. S.; Noland, M. S.

    1979-01-01

    An Interpretive Computer Simulator (ICS) for the NASA Standard Spacecraft Computer-II (NSSC-II) was developed as a code verification and testing tool for the Annular Suspension and Pointing System (ASPS) project. The simulator is written in the higher level language PASCAL and implented on the CDC CYBER series computer system. It is supported by a metal assembler, a linkage loader for the NSSC-II, and a utility library to meet the application requirements. The architectural design of the NSSC-II is that of an IBM System/360 (S/360) and supports all but four instructions of the S/360 standard instruction set. The structural design of the ICS is described with emphasis on the design differences between it and the NSSC-II hardware. The program flow is diagrammed, with the function of each procedure being defined; the instruction implementation is discussed in broad terms; and the instruction timings used in the ICS are listed. An example of the steps required to process an assembly level language program on the ICS is included. The example illustrates the control cards necessary to assemble, load, and execute assembly language code; the sample program to to be executed; the executable load module produced by the loader; and the resulting output produced by the ICS.