Science.gov

Sample records for addition electrochemical studies

  1. Electrochemical corrosion studies

    NASA Technical Reports Server (NTRS)

    Knockemus, W. W.

    1986-01-01

    The objective was to gain familiarity with the Model 350 Corrosion Measurement Console, to determine if metal protection by grease coatings can be measured by the polarization-resistance method, and to compare corrosion rates of 4130 steel coated with various greases. Results show that grease protection of steel may be determined electrochemically. Studies were also conducted to determine the effectiveness of certain corrosion inhibitors on aluminum and steel.

  2. Metabolic studies of the Amaryllidaceous alkaloids galantamine and lycorine based on electrochemical simulation in addition to in vivo and in vitro models.

    PubMed

    Jahn, Sandra; Seiwert, Bettina; Kretzing, Sascha; Abraham, Getu; Regenthal, Ralf; Karst, Uwe

    2012-12-01

    Alkaloids from the plant family of Amaryllidaceae, such as galantamine (GAL) and lycorine (LYC), are known to exhibit numerous promising biological and pharmacological activities like antibacterial, antiviral or anti-inflammatory effects. Nonetheless, studies on the biotransformation pathway are rare for this substance class, unless approval for use as medication exists. While GAL has become a prescription drug used to alleviate and delay the symptoms of Alzheimer's disease, LYC exhibits potential antitumor properties. However, it has also been linked to toxic effects resulting in nausea and emesis. Whereas there are few publications available describing the metabolic pathway of GAL in animals and humans, the metabolism of LYC is unknown. Therefore, this study is concerned with the investigation of the oxidative metabolism of GAL and LYC, which was achieved by means of three different approaches: electrochemical (EC) simulation coupled on-line to liquid chromatography (LC) with electrospray mass spectrometric (ESI-MS) detection was applied in addition to in vivo experiments in beagle dog analyzing plasma (BP) and in vitro incubations with rat liver microsomes (RLM). This way, it should be investigated if electrochemistry can be used to predict the oxidative metabolism of alkaloids. For GAL, the EC model was capable of predicting most metabolites observed during microsomal and plasma studies, including N-demethylated, dehydrogenated and oxygenated products or a combination of these. LYC was found to be metabolized far less than GAL in the animal-based approaches, but several EC oxidation products were generated. Some principal metabolic routes could successfully be correlated for this alkaloid as well, comprising dehydrogenation, dehydration to ungeremine and oxygenation reactions. PMID:23176740

  3. Addition of nitrite enhances the electrochemical defluorination of 2-fluoroaniline.

    PubMed

    Feng, Huajun; Liang, Yuxiang; Guo, Kun; Long, Yuyang; Cong, Yanqing; Shen, Dongsheng

    2015-12-30

    This study introduces a novel approach that uses the interaction of pollutants with added nitrite to produce diazonium salts, which cause in situ self-assembly of the pollutants on carbon electrodes, to improve their 2-fluoroaniline (2-FA) defluorination and removal performance. The 2-FA degradation performance, electrode properties, electrochemical properties and degradation pathway were investigated. The reactor containing NO2(-) achieved a 2-FA removal efficiency of 90.1% and a defluorination efficiency of 38% within 48 h, 1.4 and 2.3 times higher than the corresponding results achieved without NO2(-), respectively. The residual NO2(-) was less than 0.5mg/L in the reactor containing added NO2(-), which would not cause serious secondary pollution. Scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS) results proved that the carbon anode surface was successfully modified with benzene polymer, and electrochemical tests confirmed that the electrochemical activity of the modified anode was enhanced significantly. The C-F bond was weakened by the effect of the positive charge of the benzenediazonium groups, and the high electrochemical activity of the carbon anode enhanced the electrochemical performance of the system to accelerate defluorination. Thus, the present electrical method involving nitrite nitrogen is very promising for the treatment of wastewater containing fluoroaniline compounds. PMID:26266896

  4. Kinetic and electrochemical studies of the oxidative addition of demanding organic halides to Pd(0): the efficiency of polyphosphane ligands in low palladium loading cross-couplings decrypted.

    PubMed

    Zinovyeva, Veronika A; Mom, Sophal; Fournier, Sophie; Devillers, Charles H; Cattey, Hélène; Doucet, Henri; Hierso, Jean-Cyrille; Lucas, Dominique

    2013-10-21

    Oxidative addition (OA) of organic halides to palladium(0) species is a fundamental reaction step which initiates the C-C bond formation catalytic processes typical of Pd(0)/Pd(II) chemistry. The use of structurally congested polyphosphane ligands in palladium-catalyzed C-C bond formation has generated very high turnover numbers (TONs) in topical reactions such as Heck, Suzuki, Sonogashira couplings, and direct sp(2)C-H functionalization. Herein, the OA of aryl bromides to Pd(0) complexes stabilized by ferrocenylpolyphosphane ligands L1 (tetraphosphane), L2 (triphosphane), and L3 (diphosphane) is considered. The investigation of kinetic constants for the addition of Ph-Br to Pd(0) intermediates (generated by electrochemical reduction of Pd(II) complexes coordinated by L1-L3) is reported. Thus, in the OA of halides to the Pd(0) complex coordinated by L1 the series of rate constants kapp is found (mol(-1) L s(-1)): kapp(Ph-Br) = 0.48 > kapp(ClCH2-Cl) = 0.25 ≫ kapp(p-MeC6H4-Br) = 0.08 ≈ kapp(o-MeC6H4-Br) = 0.07 ≫ kapp(Ph-Cl). Kinetic measurements clarify the influence that the presence of four, three, or two phosphorus atoms in the coordination sphere of Pd has on OA. The presence of supplementary phosphorus atoms in L1 and L2 unambiguously stabilizes Pd(0) species and thus slows down the OA of Ph-Br to Pd(0) of about 2 orders of magnitude compared to the diphosphane L3. The electrosynthesis of the complexes resulting from the OA of organic halides to [Pd(0)/L] is easily performed and show the concurrent OA to Pd(0) of the sp(3)C-Cl bond of dichloromethane solvent. The resulting unstable Pd/alkyl complex is characterized by NMR and single crystal X-ray structure. We additionally observed the perfect stereoselectivity of the OA reactions which is induced by the tetraphosphane ligand L1. Altogether, a clearer picture of the general effects of congested polydentate ligands on the OA of organic halides to Pd(0) is given. PMID:24107007

  5. Effect of additives on electrochemical performance of lithium nickel cobalt manganese oxide at high temperature

    NASA Astrophysics Data System (ADS)

    Kang, Kyoung Seok; Choi, Suneui; Song, JunHo; Woo, Sang-Gil; Jo, Yong Nam; Choi, Jungkyu; Yim, Taeeun; Yu, Ji-Sang; Kim, Young-Jun

    2014-05-01

    Lithium-nickel-cobalt-manganese oxide, Li[NixCoyMnz]O2 (NCM) is a low-cost cathode material with a high capacity and a moderately high rate capability, however, it still suffers from poor electrochemical performance. In this study, several types of additives are attempted to enhance the surface stability of high-Ni-content (Ni ≥ 60%) cathodes and the most effective additive turns out to be PS. The cycle performance in the presence of 2% PS is much improved at a high temperature of 60 °C: (1) 98.9% of its initial capacity is preserved, (2) the increase in thickness is only 17.9%, preventing undesired swellings, and (3) gases are not generated in large amounts with the internal pressure being 56.4 kPa. The FT-IR spectroscopy results suggest that the surface of the cathode in the presence of 2% PS is covered with a film of alkyl sulfone components (RSOSR and RSO2SR), which is possibly formed by the electrochemical oxidation of PS. The current results confirm that the electrochemical performance of Ni-rich cathodes can be improved via the appropriate use of additives. They also indicate that among the tested additive candidates in this study, PS is highly desirable for enhancing the electrochemical performance of Ni-rich cathodes.

  6. Carbon microstructures for electrochemical studies

    SciTech Connect

    Kostecki, Robert; Song, Xiang Yun; Kinoshita, Kim

    2001-06-22

    Thin layers of photoresist were spin coated onto silicon wafers, and then carbonized to form smooth carbon films by heating in nitrogen for 1 hour at temperatures between 600 to 1100 C. Well-defined carbon microstructures on Si wafers that are being considered for electrodes in a microbattery concept were obtained by additional processing steps involving patterning and lithography of the photoresist prior to carbonization. The status of the fabrication of carbon microelectrodes obtained by pyrolysis of photoresist, characterization of the carbons by surface-sensitive techniques and electrochemical analysis by cyclic voltammetry of the I{sup -}/I{sub 3}{sup -} redox reaction is described.

  7. Organic siliconate additive for alkaline zinc electrochemical cells

    SciTech Connect

    Dopp, R.B.

    1986-10-14

    This patent describes an alkaline electrochemical comprising an air cathode sub-assembly, with a means for supplying air to the cathode sub-assembly, a zinc anode an organic siliconate in contact with the anode, an electrolyte in contact with the zinc anode and a non-metallic separator between the cathode and the anode.

  8. Effects of addition of different carbon materials on the electrochemical performance of nickel hydroxide electrode

    NASA Astrophysics Data System (ADS)

    Sierczynska, Agnieszka; Lota, Katarzyna; Lota, Grzegorz

    Nickel hydroxide is used as an active material in positive electrodes of rechargeable alkaline batteries. The capacity of nickel-metal hydride (Ni-MH) batteries depends on the specific capacity of the positive electrode and utilization of the active material because of the Ni(OH) 2/NiOOH electrode capacity limitation. The practical capacity of the positive nickel electrode depends on the efficiency of the conductive network connecting the Ni(OH) 2 particle with the current collector. As β-Ni(OH) 2 is a kind of semiconductor, the additives are necessary to improve the conductivity between the active material and the current collector. In this study the effect of adding different carbon materials (flake graphite, multi-walled carbon nanotubes (MWNT)) on the electrochemical performance of pasted nickel-foam electrode was established. A method of production of MWNT special type of catalysts had an influence on the performance of the nickel electrodes. The electrochemical tests showed that the electrode with added MWNT (110-170 nm diameter) exhibited better electrochemical properties in the chargeability, specific discharge capacity, active material utilization, discharge voltage and cycling stability. The nickel electrodes with MWNT addition (110-170 nm diameter) have exhibited a specific capacity close to 280 mAh g -1 of Ni(OH) 2, and the degree of active material utilization was ∼96%.

  9. Electrochemical studies of corrosion inhibitors

    NASA Technical Reports Server (NTRS)

    Danford, M. D.

    1990-01-01

    The effect of single salts, as well as multicomponent mixtures, on corrosion inhibition was studied for type 1010 steel; for 5052, 1100, and 2219-T87 aluminum alloys; and for copper. Molybdate-containing inhibitors exhibit an immediate, positive effect for steel corrosion, but an incubation period may be required for aluminum before the effect of a given inhibitor can be determined. The absence of oxygen was found to provide a positive effect (smaller corrosion rate) for steel and copper, but a negative effect for aluminum. This is attributed to the two possible mechanisms by which aluminum can oxidize. Corrosion inhibition is generally similar for oxygen-rich and oxygen-free environments. The results show that the electrochemical method is an effective means of screening inhibitors for the corrosion of single metals, with caution to be exercised in the case of aluminum.

  10. Comparative study of the effect of pharmaceutical additives on the elimination of antibiotic activity during the treatment of oxacillin in water by the photo-Fenton, TiO2-photocatalysis and electrochemical processes.

    PubMed

    Serna-Galvis, Efraim A; Silva-Agredo, Javier; Giraldo, Ana L; Flórez-Acosta, Oscar A; Torres-Palma, Ricardo A

    2016-01-15

    Synthetic pharmaceutical effluents loaded with the β-lactam antibiotic oxacillin were treated using advanced oxidation processes (the photo-Fenton system and TiO2 photocatalysis) and chloride mediated electrochemical oxidation (with Ti/IrO2 anodes). Combinations of the antibiotic with excipients (mannitol or tartaric acid), an active ingredient (calcium carbonate, i.e. bicarbonate ions due to the pH) and a cleaning agent (sodium lauryl ether sulfate) were considered. Additionally, urban wastewater that had undergone biological treatment was doped with oxacillin and treated with the tested systems. The evolution of antimicrobial activity was monitored as a parameter of processes efficiency. Although the two advanced oxidation processes (AOPs) differ only in the way they produce OH, marked differences were observed between them. There were also differences between the AOPs and the electrochemical system. Interestingly, each additive had a different effect on each treatment. For water loaded with mannitol, electrochemical treatment was the most suitable option because the additive did not significantly affect the efficiency of the system. Due to the formation of a complex with Fe(3+), tartaric acid accelerated the elimination of antibiotic activity during the photo-Fenton process. For TiO2 photocatalysis, the presence of bicarbonate ions contributed to antibiotic activity elimination through the possible formation of carbonate and bicarbonate radicals. Sodium lauryl ether sulfate negatively affected all of the processes. However, due to the higher selectivity of HOCl compared with OH, electrochemical oxidation showed the least inhibited efficiency. For the urban wastewater doped with oxacillin, TiO2 photocatalysis was the most efficient process. These results will help select the most suitable technology for the treatment of water polluted with β-lactam antibiotics. PMID:26479916

  11. Study of electrochemically active carbon, Ga2O3 and Bi2O3 as negative additives for valve-regulated lead-acid batteries working under high-rate, partial-state-of-charge conditions

    NASA Astrophysics Data System (ADS)

    Zhao, Li; Chen, Baishuang; Wu, Jinzhu; Wang, Dianlong

    2014-02-01

    Electrochemically active carbon (EAC), Gallium (III) oxide (Ga2O3) and Bismuth (III) oxide (Bi2O3) are used as the negative additives of valve-regulated lead-acid (VRLA) batteries to prolong the cycle life of VRLA batteries under high-rate partial-state-of-charge (HRPSoC) conditions, and their effects on the cycle life of VRLA batteries are investigated. It is found that the addition of EAC in negative active material can restrain the sulfation of the negative plates and prolong the cycle performance of VRLA batteries under HRPSoC conditions. It is also observed that the addition of Ga2O3 or Bi2O3 in EAC can effectively increase the overpotential of hydrogen evolution on EAC electrodes, and decrease the evolution rate of hydrogen. An appropriate addition amount of Ga2O3 or Bi2O3 in the negative plates of VRLA batteries can decrease the cut-off charging voltage, increase the cut-off discharging voltage, and prolong the cycle life of VRLA batteries under HRPSoC conditions. The battery added with 0.5% EAC and 0.01% Ga2O3 in negative active material shows a lowest cut-off charging voltage and a highest cut-off discharging voltage under HRPSoC conditions, and its' cycle life reaches about 8100 cycles which is at least three times longer than that without Ga2O3.

  12. Influence of water addition on structural and electrochemical behaviour of liquid ammoniates: A study of LiClO 4·4NH 3 ammoniate/H 2O mixtures

    NASA Astrophysics Data System (ADS)

    Fahys, Bernard; Bernard, Claude; Robert, Guy; Herlem, Michel

    The ammoniates of lithium perchlorate (LiClO 4• xNH 3) can be used as liquid or solid electrolytes in lithium batteries. The compounds possess a very low ammonia pressure and a large electroactivity range at room temperature. The presence of water in the electrolyte is one of the main problems for the lithium anode. From calorimetric measurements on the water-ammoniate system and an X-ray powder diffraction study on crystalline compounds that appear on lithium dipped in the electrolyte, a maximum water content, x = 0.2, can be derived. Above this limit, the thermodynamic properties of the compounds change and the lithium reacts dramatically with the electrolyte. Electrochemical stability ranges behave, over all the water molar fractions studied, in accordance with structural features.

  13. Improving electrochemical properties of porous iron substituted lithium manganese phosphate in additive addition electrolyte

    NASA Astrophysics Data System (ADS)

    Kim, Jae-Kwang; Vijaya, Rani; Zhu, Likun; Kim, Youngsik

    2015-02-01

    Porous LiMn0.6Fe0.4PO4 (LMFP) is synthesized by a modified sol-gel process. Highly conductive LMFP due to uniform dispersion of carbon throughout LMFP particles are achieved by the addition of sucrose as an additional carbon source. The LMFP obtained has a high specific surface area with a uniform, porous, and web-like nano-sized carbon layer on the surface. The initial discharge capacity and energy density of the LMFP cathode is 152 mAh g-1 and 570 Wh kg-1, respectively, at 0.1C current rate. The combined effect of high porosity and high electrical conductivity lead to fast lithium ion diffusion and enhance initial capacity compared to materials prepared by the general sol-gel method. However, with conventional electrolyte (1M LiPF6 in EC/DMC) poor cycle performance is observed due to HF attack. To improve the cycle stability we add tris (trimethylsily) phosphite (TMSP) as an additive in the electrolyte which dramatically improves cycle stability and rate-capability.

  14. Influence of Lithium Additives in Small Molecule Light-Emitting Electrochemical Cells.

    PubMed

    Lin, Kuo-Yao; Bastatas, Lyndon D; Suhr, Kristin J; Moore, Matthew D; Holliday, Bradley J; Minary-Jolandan, Majid; Slinker, Jason D

    2016-07-01

    Light-emitting electrochemical cells (LEECs) utilizing small molecule emitters such as iridium complexes have great potential as low-cost emissive devices. In these devices, ions rearrange during operation to facilitate carrier injection, bringing about efficient operation from simple, single layer devices. Recent work has shown that the luminance, efficiency, and responsiveness of iridium-based LEECs are greatly enhanced by the inclusion of small amounts of lithium salts (≤0.5%/wt) into the active layer. However, the origin of this enhancement has yet to be demonstrated experimentally. Furthermore, although iridium-based devices have been the longstanding leader among small molecule LEECs, fundamental understanding of the ionic distribution in these devices under operation is lacking. Herein, we use scanning Kelvin probe microscopy to measure the in situ potential profiles and electric field distributions of planar iridium-based LEECs and clarify the role of ionic lithium additives. In pristine devices, it is found that ions do not pack densely at the cathode, and ionic redistribution is slow. Inclusion of small amounts of Li[PF6] greatly increases ionic space charge near the cathode that doubles the peak electric fields and enhances electronic injection relative to pristine devices. This study confirms and clarifies a number of longstanding hypotheses regarding iridium LEECs and recent postulates concerning optimization of their operation. PMID:27299981

  15. Fundamental Studies Connected with Electrochemical Energy Storage

    NASA Technical Reports Server (NTRS)

    Buck, E.; Sen, R.

    1974-01-01

    Papers are presented which deal with electrochemical research activities. Emphasis is placed on electrochemical energy storage devices. Topics discussed include: adsorption of dendrite inhibitors on zinc; proton discharge process; electron and protron transfer; quantum mechanical formulation of electron transfer rates; and theory of electrochemical kinetics in terms of two models of activation; thermal and electrostatic.

  16. Solid polymer electrolyte electrochemical storage cell containing a redox shuttle additive for overcharge protection

    SciTech Connect

    Richardson, Thomas J.; Ross, Philip N.

    1999-01-01

    A class of organic redox shuttle additives is described, preferably comprising nitrogen-containing aromatics compounds, which can be used in a high temperature (85.degree. C. or higher) electrochemical storage cell comprising a positive electrode, a negative electrode, and a solid polymer electrolyte to provide overcharge protection to the cell. The organic redox additives or shuttles are characterized by a high diffusion coefficient of at least 2.1.times.10.sup.-8 cm.sup.2 /second and a high onset potential of 2.5 volts or higher. Examples of such organic redox shuttle additives include an alkali metal salt of 1,2,4-triazole, an alkali metal salt of imidazole, 2,3,5,6-tetramethylpyrazine, 1,3,5-tricyanobenzene, and a dialkali metal salt of 3-4-dihydroxy-3-cyclobutene-1,2-dione.

  17. Solid polymer electrolyte electrochemical storage cell containing a redox shuttle additive for overcharge protection

    SciTech Connect

    Richardson, T.J.; Ross, P.N.

    1999-12-21

    A class of organic redox shuttle additives is described, preferably comprising nitrogen-containing aromatics compounds, which can be used in a high temperature (85 C or higher) electrochemical storage cell comprising a positive electrode, a negative electrode, and a solid polymer electrolyte to provide overcharge protection to the cell. The organic redox additives or shuttles are characterized by a high diffusion coefficient of at least 2.1 {times} 10{sup {minus}8}cm{sup 2}/second and a high onset potential of 2.5 volts or higher. Examples of such organic redox shuttle additives include an alkali metal salt of 1,2,4-triazole, an alkali metal salt of imidazole, 2,3,5,6-tetramethylpyrazine, 1,3,5-tricyanobenzene, and a dialkali metal salt of 3-4-dihydroxy-3-cyclobutene-1,2-dione.

  18. Surface and electrochemical studies in coal cleaning

    SciTech Connect

    Chander, S.; Aplan, F.F.; Briceno, A.; Esposito, M.C.; Pang, J.; Raleigh, C.E.

    1989-05-01

    This final technical report, summarizes the accomplishments of our investigation on surface and electrochemical studies in coal cleaning. A considerable effort was made to characterize coal pyrites in detail. The report is divided into three self-contained portions: flotation studies, characterization of pyrite from coal sources, and electrochemical characterization of pyrite. A variety of reagents were found to be effective for the depression of pyrite during coal flotation: lime, oxidizing agents, reducing agents, polysaccharides, xanthated polysaccharides and dye. Seven pyrite samples purified from coal sources and one ore source pyrite (for comparative purposes) have been characterized by chemical and mineralogical analyses, inherent floatability, apparent specific gravity, surface area, semiconductor type, optical anisotropy, dissolution and oxidation rate. Cyclic voltammetry, steady-state polarization and AC impedance spectroscopy have been used to characterize pyrites from ore and coal sources. These studies show that one reason for difference in the behavior of pyrites is the nature of surface films that form when pyrite oxidizes. 85 refs., 29 figs., 15 tabs.

  19. Enhanced Luminance of Electrochemical Cells with a Rationally Designed Ionic Iridium Complex and an Ionic Additive.

    PubMed

    Suhr, Kristin J; Bastatas, Lyndon D; Shen, Yulong; Mitchell, Lauren A; Holliday, Bradley J; Slinker, Jason D

    2016-04-13

    Light-emitting electrochemical cells (LEECs) offer the potential for high efficiency operation from an inexpensive device. However, long turn-on times and low luminance under steady-state operation are longstanding LEEC issues. Here, we present a single-layer LEEC with a custom-designed iridium(III) complex and a lithium salt additive for enhanced device performance. These devices display reduced response times, modest lifetimes, and peak luminances as high as 5500 cd/m(2), 80% higher than a comparable device from an unoptimized complex and 50% higher than the salt-free device. Improved device efficiency suggests that salt addition balances space charge effects at the interfaces. Extrapolation suggests favorable half-lives of 120 ± 10 h at 1000 cd/m(2) and 3800 ± 400 h at 100 cd/m(2). Overall, complex design and device engineering produce competitive LEECs from simple, single-layer architectures. PMID:27023074

  20. Electrochemical studies on lithium intercalatin materials in molten salts

    SciTech Connect

    Gauthier, M.; Vassort, G.; Belanger, A.; Adams, W.A.

    1982-05-01

    Using an electrochemical device for investigating powdered reagents, we studied various intercalation compounds in the LiCl-KCl electrolyte at about 430/degree/C and found TiS/sub 2/, TiSe/sub 2/, NbSe/sub 2/, and TaS/sub 2/ sufficiently stable to be studied under test conditions. The electrochemical techniques used include cyclic voltammetry and the study of discharge-voltage curves, simultaneously with coulometry. The tests showed that these compounds, all with lamellar structures, nonstoichiometrically intercalate one lithium ion per mol of the host structure and that intercalation is rapid as well as reversible, with the reactions taking place close to equilibrium conditions at utilizations of almost 100%. In addition, a cycling test on stoichiometric TiS/sub 2/ show that the performance of the electrode remains unaltered after more than 300 discharge-charge cycles. However, although the intercalation compounds investigated here have remarkable electrochemical properties, they do not represent attractive substitutes for the FeS electrode now used in molten-salt batteries. 20 refs.

  1. Addition polyimide end cap study

    NASA Technical Reports Server (NTRS)

    St.clair, T. L.

    1980-01-01

    The characterization of addition polyimides with various end caps for adhesive applications at 120-250 C environments is discussed. Oligometric polyimides were prepared from 3,3',4,4'-benzophenone tetracarboxylic dianhydride and 3,3'-methylenedianiline which were end-capped with functionally reactive moities which cause crosslinking when the oligomers are heated to 200-400 C. The syntheses of the oligomers are outlined. The thermolysis of the oligomers was studied by differential scanning calorimetry and the resulting polymers were characterized by differential thermal analysis and adhesive performance. The adhesive data include lap shear strengths on titanium 6-4 adherends both before and after aging for 1000 hours at 121 C and/or 232 C.

  2. Corrosion Study Using Electrochemical Impedance Spectroscopy

    NASA Technical Reports Server (NTRS)

    Farooq, Muhammad Umar

    2003-01-01

    Corrosion is a common phenomenon. It is the destructive result of chemical reaction between a metal or metal alloy and its environment. Stainless steel tubing is used at Kennedy Space Center for various supply lines which service the orbiter. The launch pads are also made of stainless steel. The environment at the launch site has very high chloride content due to the proximity to the Atlantic Ocean. Also, during a launch, the exhaust products in the solid rocket boosters include concentrated hydrogen chloride. The purpose of this project was to study various alloys by Electrochemical Impedance Spectroscopy in corrosive environments similar to the launch sites. This report includes data and analysis of the measurements for 304L, 254SMO and AL-6XN in primarily neutral 3.55% NaCl. One set of data for 304L in neutral 3.55%NaCl + 0.1N HCl is also included.

  3. Microfluidic systems for electrochemical and biological studies

    SciTech Connect

    Ackler, H., LLNL

    1998-05-01

    Microfluidic devices with microelectrodes have the potential to enable studies of phenomena at size scales where behavior may be dominated by different mechanisms than at macroscales. Through our work developing microfluidic devices for dielectrophoretic separation and sensing of cells and particles, we have fabricated devices from which general or more specialized research devices may be derived. Fluid channels from 80 {micro}m wide X 20 {micro}m deep to 1 mm wide to 200 {micro}m deep have been fabricated in glass, with lithographically patterned electrodes from 10 to 80 {micro}m wide on one or both sides on the channels and over topographies tens of microns in heights. the devices are designed to easily interface to electronic and fluidic interconnect packages that permit reuse of devices, rather than one-time use, crude glue-based methods. Such devices may be useful for many applications of interest to the electrochemical and biological community.

  4. Electrochemical study of aluminum corrosion in boiling high purity water

    NASA Technical Reports Server (NTRS)

    Draley, J. E.; Legault, R. A.

    1969-01-01

    Electrochemical study of aluminum corrosion in boiling high-purity water includes an equation relating current and electrochemical potential derived on the basis of a physical model of the corrosion process. The work involved an examination of the cathodic polarization behavior of 1100 aluminum during aqueous oxidation.

  5. Electrochemical corrosion studies in low conductivity propellants

    NASA Technical Reports Server (NTRS)

    Blue, G. D.; Moran, C. M.; Distefano, S.

    1986-01-01

    The Jet Propulsion Laboratory is investigating the possibility of developing advanced electrochemical techniques as accelerated compatibility tests for metal/propellant systems which overcome the problems associated with the low conductivity of the liquid propellants (e.g., hydrazines, nitrogen tetroxide). Both DC techniques and AC electrochemical impedance spectroscopy are being evaluated. Progress has been made in experiments involving stainless steel with hydrazine and nitrogen tetroxide propellants.

  6. Aluminium compound additives to reduce zinc corrosion in anodes of electrochemical cells

    SciTech Connect

    Jacus, R.J.

    1991-07-23

    This patent describes an electrochemical cell. It comprises an alkaline anode/electrolyte mixture, the anode/electrolyte mixture comprising zinc anode material containing less than 1% mercury by weight of zinc and a source of aluminum ions.

  7. Additional Electrochemical Treatment Effects on the Switching Characteristics of Anodic Porous Alumina Resistive Switching Memory

    NASA Astrophysics Data System (ADS)

    Otsuka, Shintaro; Takeda, Ryouta; Furuya, Saeko; Shimizu, Tomohiro; Shingubara, Shouso; Iwata, Nobuyuki; Watanabe, Tadataka; Takano, Yoshiki; Takase, Kouichi

    2012-06-01

    We have investigated the current-voltage characteristics of a resistive switching memory (ReRAM), especially the reproducibility of the switching voltage between an insulating state and a metallic state. The poor reproducibility hinders the practical use of this memory. According to a filament model, the variation of the switching voltage may be understood in terms of the random choice of filaments with different conductivities and lengths at each switching. A limitation of the number of conductive paths is expected to lead to the suppression of the variation of switching voltage. In this study, two strategies for the limitation have been proposed using an anodic porous alumina (APA). The first is the reduction of the number of conductive paths by restriction of the contact area between the top electrodes and the insulator. The second is the lowering of the resistivity of the insulator, which makes it possible to grow filaments with the same characteristics by electrochemical treatments using a pulse-electroplating technique.

  8. Effect of Zr, Nb and Ti addition on injection molded 316L stainless steel for bio-applications: Mechanical, electrochemical and biocompatibility properties.

    PubMed

    Gulsoy, H Ozkan; Pazarlioglu, Serdar; Gulsoy, Nagihan; Gundede, Busra; Mutlu, Ozal

    2015-11-01

    The research investigated the effect of Zr, Nb and Ti additions on mechanical, electrochemical properties and biocompatibility of injection molded 316L stainless steel. Addition of elemental powder is promoted to get high performance of sintered 316L stainless steels. The amount of additive powder plays a role in determining the sintered microstructure and all properties. In this study, 316L stainless steel powders used with the elemental Zr, Nb and Ti powders. A feedstock containing 62.5 wt% powders loading was molded at different injection molded temperature. The binders were completely removed from molded components by solvent and thermal debinding at different temperatures. The debinded samples were sintered at 1350°C for 60 min. Mechanical, electrochemical property and biocompatibility of the sintered samples were performed mechanical, electrochemical, SBF immersion tests and cell culture experiments. Results of study showed that sintered 316L and 316L with additives samples exhibited high corrosion properties and biocompatibility in a physiological environment. PMID:26275484

  9. Evaluation Of Electrochemical Machining Technology For Surface Improvements In Additive Manufactured Components

    SciTech Connect

    Dehoff, Ryan R.; List, III, Frederick Alyious; Carver, Keith

    2015-09-23

    ORNL Manufacturing Demonstration Facility worked with ECM Technologies LLC to investigate the use of precision electro-chemical machining technology to polish the surface of parts created by Arcam electron beam melting. The goals for phase one of this project have been met. The project goal was to determine whether electro-chemical machining is a viable method to improve the surface finish of Inconel 718 parts fabricated using the Arcam EBM method. The project partner (ECM) demonstrated viability for parts of both simple and complex geometry. During the course of the project, detailed process knowledge was generated. This project has resulted in the expansion of United States operations for ECM Technologies.

  10. Mapping Electrochemical Heterogeneity at Iron Oxide Surfaces: A Local Electrochemical Impedance Study.

    PubMed

    Lucas, Marie; Boily, Jean-François

    2015-12-22

    Alternating current scanning electrochemical microscopy (AC-SECM) was used for the first time to map key electrochemical attributes of oriented hematite (α-Fe2O3) single crystal surfaces at the micron-scale. Localized electrochemical impedance spectra (LEIS) of the (001) and (012) faces provided insight into the spatial variations of local double layer capacitance (C(dl)) and charge transfer resistance (R(ad)). These parameters were extracted by LEIS measurements in the 0.4-8000 Hz range to probe the impedance response generated by the redistribution of water molecules and charge carriers (ions) under an applied AC. These were attributed to local variations in the local conductivity of the sample surfaces. Comparison with global EIS measurements on the same samples uncovered highly comparable frequency-resolved processes, that were broken down into contributions from the bulk hematite, the interface as well as the microelectrode/tip assembly. This work paves the way for new studies aimed at mapping electrochemical processes at the mesoscale on this environmentally and technologically important material. PMID:26625255

  11. Metallic sulfide additives for positive electrode material within a secondary electrochemical cell

    DOEpatents

    Walsh, William J.; McPheeters, Charles C.; Yao, Neng-ping; Koura, Kobuyuki

    1976-01-01

    An improved active material for use within the positive electrode of a secondary electrochemical cell includes a mixture of iron disulfide and a sulfide of a polyvalent metal. Various metal sulfides, particularly sulfides of cobalt, nickel, copper, cerium and manganese, are added in minor weight proportion in respect to iron disulfide for improving the electrode performance and reducing current collector requirements.

  12. New Electrochemical Methods for Studying Nanoparticle Electrocatalysis and Neuronal Exocytosis

    NASA Astrophysics Data System (ADS)

    Cox, Jonathan T.

    This dissertation presents the construction and application of micro and nanoscale electrodes for electroanalytical analysis. The studies presented herein encompass two main areas: electrochemical catalysis, and studies of the dynamics of single cell exocytosis. The first portion of this dissertation engages the use of Pt nanoelectrodes to study the stability and electrocatalytic properties of materials. A single nanoparticle electrode (SNPE) was fabricated by immobilizing a single Au nanoparticle on a Pt disk nanoelectrode via an amine-terminated silane cross linker. In this manner we were able to effectively study the electrochemistry and electrocatalytic activity of single Au nanoparticles and found that the electrocatalytic activity is dependent on nanoparticle size. This study can further the understanding of the structure-function relationship in nanoparticle based electrocatalysis. Further work was conducted to probe the stability of Pt nanoelectrodes under conditions of potential cycling. Pt based catalysts are known to deteriorate under such conditions due to losses in electrochemical surface area and Pt dissolution. By using Pt disk nanoelectrodes we were able to study Pt dissolution via steady-state voltammetry. We observed an enhanced dissolution rate and higher charge density on nanoelectrodes than that previously found on macro scale electrodes. The goal of the second portion of this dissertation is to develop new analytical methods to study the dynamics of exocytosis from single cells. The secretion of neurotransmitters plays a key role in neuronal communication, and our studies highlight how bipolar electrochemistry can be employed to enhance detection of neurotransmitters from single cells. First, we developed a theory to quantitatively characterize the voltammetric behavior of bipolar carbon fiber microelectrodes and secondly applied those principles to single cell detection. We showed that by simply adding an additional redox mediator to the back

  13. Pyrite Passivation by Triethylenetetramine: An Electrochemical Study

    PubMed Central

    Liu, Yun; Dang, Zhi; Xu, Yin; Xu, Tianyuan

    2013-01-01

    The potential of triethylenetetramine (TETA) to inhibit the oxidation of pyrite in H2SO4 solution had been investigated by using the open-circuit potential (OCP), cyclic voltammetry (CV), potentiodynamic polarization, and electrochemical impedance (EIS), respectively. Experimental results indicate that TETA is an efficient coating agent in preventing the oxidation of pyrite and that the inhibition efficiency is more pronounced with the increase of TETA. The data from potentiodynamic polarization show that the inhibition efficiency (η%) increases from 42.08% to 80.98% with the concentration of TETA increasing from 1% to 5%. These results are consistent with the measurement of EIS (43.09% to 82.55%). The information obtained from potentiodynamic polarization also displays that the TETA is a kind of mixed type inhibitor. PMID:23431501

  14. Effect of CuO addition on electrochemical properties of AB 3-type alloy electrodes for nickel/metal hydride batteries

    NASA Astrophysics Data System (ADS)

    Li, Yuan; Han, Shumin; Zhu, Xilin; Ding, Huiling

    In order to improve overall electrochemical properties of AB 3-type hydrogen storage alloy electrodes, especially the cycling stability, CuO was added to the electrode. Electrochemical properties of the electrodes with and without additives were studied. Cyclic voltammetry and SEM results show that CuO is reduced to Cu during the charging process and the fine Cu particles deposit at surface of the alloy particles. The as-deposited Cu particles form a protective layer to increase electronic and heat conductivity of the electrodes and thus improve maximum discharge capacity, high rate dischargeability, cycling stability and dischargeability at high temperature of the electrodes. The maximum discharge capacity increases from 314 mAh g -1 (blank electrode) to 341 mAh g -1 (3.0 wt.% CuO) and the capacity retention rate at the 200th cycle increases from 71.6% to 77.2% (2.5 wt.% CuO).

  15. Novel electrochemical behavior of zinc anodes in zinc/air batteries in the presence of additives

    NASA Astrophysics Data System (ADS)

    Lee, Chang Woo; Sathiyanarayanan, K.; Eom, Seung Wook; Kim, Hyun Soo; Yun, Mun Soo

    In our continued efforts to find an electrically rechargeable zn/air secondary battery, we report the unique behavior of a zinc oxide anode in the presence of additives such as phosphoric acid, tartaric acid, succinic acid and citric acid. These additives were added to the electrolyte, which is an 8.5 M KOH solution containing 25 g of ZnO and 3000 ppm of polyethylene glycol in 1 l of water. In zn/air systems there are two main problems namely the hydrogen overpotential and dendrite formation during recharging. Investigations have studied in detail both of the problems in order to overcome them. The results obtained in presence of additives are compared with the behavior of the electrolyte 8.5 M KOH in the absence of additives. It has been concluded that the hydrogen overpotential is raised enormously while dendrite formation is reduced to some extent. Out of the four acids studied, the order of increase in hydrogen overpotential is: tartaric acid > succinic acid > phosphoric acid > citric acid. The prevention of dendrite formation follows the order: citric acid > succinic acid > tartaric acid > phosphoric acid.

  16. Electrochemical studies of a truncated laccase produced in Pichia pastoris

    SciTech Connect

    Gelo-Pujic, M.; Kim, H.H.; Butlin, N.G.; Palmore, G.T.R.

    1999-12-01

    The cDNA that encodes an isoform is laccase from Trametes versicolor (LCCI), as well as a truncated version (LCCIa), was subcloned and expressed by using the yeast Pichia pastoris as the heterologous host. The amino acid sequence of LCCIa is identical to that of LCCI except that the final 11 amino acids at the C terminus of LCCI are replaced with a single cysteine residue. This modification was introduced for the purpose of improving the kinetics of electron transfer between an electrode and the copper-containing active site of laccase. The two laccases (LCCI and LCCIa) are compared in terms of their relative activity with two substrates that have different redox potentials. Results from electrochemical studies on solutions containing LCCI and LCCIa indicate that the redox potential of the active site of LCCIa is shifted to more negative values (411 mV versus normal hydrogen electrode voltage) than that found in other fungal laccases. In addition, replacing the 11 codons at the C terminus of the laccase gene with a single cysteine codon influences the rate of heterogeneous electron transfer between and electrode and the copper-containing active site. These results demonstrate for the first time that the rate of electron transfer between an oxidoreductase and an electrode can be enhanced by changes to the primary structure of a protein via site-directed mutagenesis.

  17. Formation of Si nanowires by the electrochemical reduction of SiO2 with Ni or NiO additives.

    PubMed

    Fang, Sheng; Wang, Han; Yang, Juanyu; Yu, Bing; Lu, Shigang

    2016-08-15

    Various morphologies of silicon nanowires (SiNWs) were successfully prepared by the electrochemical reduction of silica mixed with different additives (Au, Ag, Fe, Co, Ni, and NiO, respectively). Straight SiNWs were extensively obtained by the electro-reduction of porous Ni/SiO2 blocks in molten CaCl2 at 900 °C. The SiNWs had a wide diameter distribution of 80 to 350 nm, and the Ni-Si droplets were found on the tips of the nanowires. The growth mechanism of SiNWs was investigated, which could reveal that the nano-sized Ni-Si droplets formed at the Ni/SiO2/CaCl2 three-phase interlines. Based on the mechanism proposed, NiO particles with sub-micrometer size were selected as the additive, and straight SiNWs with diameters of 60 to 150 nm were also prepared via the electrochemical process. PMID:27203479

  18. Electrochemical oxidation of cholesterol

    PubMed Central

    2015-01-01

    Summary Indirect cholesterol electrochemical oxidation in the presence of various mediators leads to electrophilic addition to the double bond, oxidation at the allylic position, oxidation of the hydroxy group, or functionalization of the side chain. Recent studies have proven that direct electrochemical oxidation of cholesterol is also possible and affords different products depending on the reaction conditions. PMID:25977713

  19. Multifunctional Electrochemical Platforms Based on the Michael Addition/Schiff Base Reaction of Polydopamine Modified Reduced Graphene Oxide: Construction and Application.

    PubMed

    Huang, Na; Zhang, Si; Yang, Liuqing; Liu, Meiling; Li, Haitao; Zhang, Youyu; Yao, Shouzhuo

    2015-08-19

    In this paper, a new strategy for the construction of multifunctional electrochemical detection platforms based on the Michael addition/Schiff base reaction of polydopamine modified reduced graphene oxide was first proposed. Inspired by the mussel adhesion proteins, 3,4-dihydroxyphenylalanine (DA) was selected as a reducing agent to simultaneously reduce graphene oxide and self-polymerize to obtain the polydopamine-reduced graphene oxide (PDA-rGO). The PDA-rGO was then functionalized with thiols and amines by the reaction of thiol/amino groups with quinine groups of PDA-rGO via the Michael addition/Schiff base reaction. Several typical compounds containing thiol and/or amino groups such as 1-[(4-amino)phenylethynyl] ferrocene (Fc-NH2), cysteine (cys), and glucose oxidase (GOx) were selected as the model molecules to anchor on the surface of PDA-rGO using the strategy for construction of multifunctional electrochemical platforms. The experiments revealed that the composite grafted with ferrocene derivative shows excellent catalysis activity toward many electroactive molecules and could be used for individual or simultaneous detection of dopamine hydrochloride (DA) and uric acid (UA), or hydroquinone (HQ) and catechol (CC), while, after grafting of cysteine on PDA-rGO, simultaneous discrimination detection of Pb(2+) and Cd(2+) was realized on the composite modified electrode. In addition, direct electron transfer of GOx can be observed when GOx-PDA-rGO was immobilized on glassy carbon electrode (GCE). When glucose was added into the system, the modified electrode showed excellent electric current response toward glucose. These results inferred that the proposed multifunctional electrochemical platforms could be simply, conveniently, and effectively regulated through changing the anchored recognition or reaction groups. This study would provide a versatile method to design more detection or biosensing platforms through a chemical reaction strategy in the future. PMID

  20. Electrochemical studies of corrosion inhibiting effect of polyaniline coatings

    SciTech Connect

    Wei, Yen; Wang, Jianguo; Jia, Xinru

    1995-12-01

    A series of electrochemical measurements, including corrosion potential (E{sub corr}), corrosion current (i{sub corr}), Tafel`s constants and polarization resistance (R{sub p}), have been made on polyaniline-coated cold rolled steel specimen under various conditions. Both the base and acid-doped forms of polyaniline were studied. The base form of polyaniline was found to offer good corrosion protection. This phenomenon may not originate merely from the barrier effect of the coatings, because the nonconjugated polymers such as polystyrene and epoxy did not show the same electrochemical behavior. The polyaniline base with zinc nitrate plus epoxy topcoat appeared to give better overall protection relative to other coating systems in this study.

  1. Electrochemical studies on nanometal oxide-activated carbon composite electrodes for aqueous supercapacitors

    NASA Astrophysics Data System (ADS)

    Ho, Mui Yen; Khiew, Poi Sim; Isa, Dino; Chiu, Wee Siong

    2014-11-01

    In present study, the electrochemical performance of eco-friendly and cost-effective titanium oxide (TiO2)-based and zinc oxide-based nanocomposite electrodes were studied in neutral aqueous Na2SO3 electrolyte, respectively. The electrochemical properties of these composite electrodes were studied using cyclic voltammetry (CV), galvanostatic charge-discharge (CD) and electrochemical impedance spectroscopy (EIS). The experimental results reveal that these two nanocomposite electrodes achieve the highest specific capacitance at fairly low oxide loading onto activated carbon (AC) electrodes, respectively. Considerable enhancement of the electrochemical properties of TiO2/AC and ZnO/AC nanocomposite electrodes is achieved via synergistic effects contributed from the nanostructured metal oxides and the high surface area mesoporous AC. Cations and anions from metal oxides and aqueous electrolyte such as Ti4+, Zn2+, Na+ and SO32- can occupy some pores within the high-surface-area AC electrodes, forming the electric double layer at the electrode-electrolyte interface. Additionally, both TiO2 and ZnO nanoparticles can provide favourable surface adsorption sites for SO32- anions which subsequently facilitate the faradaic processes for pseudocapacitive effect. These two systems provide the low cost material electrodes and the low environmental impact electrolyte which offer the increased charge storage without compromising charge storage kinetics.

  2. Electrochemical and DFT study of an anticancer and active anthelmintic drug at carbon nanostructured modified electrode.

    PubMed

    Ghalkhani, Masoumeh; Beheshtian, Javad; Salehi, Maryam

    2016-12-01

    The electrochemical response of mebendazole (Meb), an anticancer and effective anthelmintic drug, was investigated using two different carbon nanostructured modified glassy carbon electrodes (GCE). Although, compared to unmodified GCE, both prepared modified electrodes improved the voltammetric response of Meb, the carbon nanotubes (CNTs) modified GCE showed higher sensitivity and stability. Therefore, the CNTs-GCE was chosen as a promising candidate for the further studies. At first, the electrochemical behavior of Meb was studied by cyclic voltammetry and differential pulse and square wave voltammetry. A one step reversible, pH-dependent and adsorption-controlled process was revealed for electro-oxidation of Meb. A possible mechanism for the electrochemical oxidation of Meb was proposed. In addition, electronic structure, adsorption energy, band gap, type of interaction and stable configuration of Meb on the surface of functionalized carbon nanotubes were studied by using density functional theory (DFT). Obtained results revealed that Meb is weakly physisorbed on the CNTs and that the electronic properties of the CNTs are not significantly changed. Notably, CNTs could be considered as a suitable modifier for preparation of the modified electrode for Meb analysis. Then, the experimental parameters affecting the electrochemical response of Meb were optimized. Under optimal conditions, high sensitivity (b(Meb)=dIp,a(Meb)/d[Meb]=19.65μAμM(-1)), a low detection limit (LOD (Meb)=19nM) and a wide linear dynamic range (0.06-3μM) was resulted for the voltammetric quantification of Meb. PMID:27612835

  3. ELECTROCHEMICAL FINGERPRINT STUDIES OF SELECTED MEDICINAL PLANTS RICH IN FLAVONOIDS.

    PubMed

    Konieczyński, Paweł

    2015-01-01

    The combination of a size-exclusion column (SEC) with electrochemical (voltammetric) detection at a boron-doped diamond electrode (BDDE) was applied for studying the correlations between electroactive Cu and Fe species with phenolic groups of flavonoids. For comparison with electrochemical results, SEC-HPLC-DAD detection was used. The studied plant material comprised of: Betula verrucosa Ehrh., Equisetun arvense L., Polygonum aviculare L., Viola tricolor L., Crataegus oxyacantha L., Sambucus nigra L. and Helichrysum arenarium (L.) Moench. Based upon the results, high negative correlation was found for the chromatographic peak currents at 45 min with the sum of Cu and Fe for the aqueous extracts of Sambucus, Crataegus and Betula species, and for the peak currents at 65 min of the aqueous extracts of Sambucus, Crataegus, Helichrysum and Betula botanical species. This behavior confirms that it is mainly the flavonoids with easily oxidizable phenolic groups which are strongly influenced by the presence of Cu and Fe. Moreover, the electrochemical profiles obtained thanks to the use of HPLC hyphenated with voltammetric detection can be potentially applied for fingerprint studies of the plant materials used in medicine. PMID:26647621

  4. Carotenoid cation radicals: electrochemical, optical, and EPR study

    SciTech Connect

    Grant, J.L.; Kramer, V.J.; Ding, R.; Kispert, L.D.

    1988-03-30

    The general aim of this investigation is to determine whether carotenoid cation radicals can be produced, and stabilized, electrochemically. Hence, the authors have undertaken a detailed study of the electrooxidation of various carotenoids (..beta..-carotene (I), ..beta..-apo-8'-carotenal (II), and canthaxanthin (III) using the techniques of cyclic voltammetry, controlled-potential electrolysis (cpe) in conjunction with optical spectroscopy, and EPR spectroscopy coupled with in situ electrolysis. They report the successful generation of carotenoid cation radicals via electrochemical oxidation and, furthermore, the stabilization of these radicals for several minutes in CH/sub 2/Cl/sub 2/ and C/sub 2/H/sub 4/Cl/sub 2/ solvents.

  5. A study on the impact of lithium-ion cell relaxation on electrochemical impedance spectroscopy

    NASA Astrophysics Data System (ADS)

    Barai, Anup; Chouchelamane, Gael H.; Guo, Yue; McGordon, Andrew; Jennings, Paul

    2015-04-01

    Lithium-ion (Li-ion) batteries are of great interest to the automotive industry due to their higher power and energy density, higher cell voltage, longer cycle life and lower self-discharge compared to other battery chemistries. Electrochemical impedance spectroscopy is a powerful tool employed to investigate the fundamental electrochemical reactions within a Li-ion battery cell, which relates to state of charge, internal temperature and state of health. Its effectiveness has established it as a core method to study electrochemical behaviour of batteries in both off-line and on-line applications. In this work it is shown that in addition to state of charge, internal temperature and state of health, the time period between the removal of an electrical load and the impedance measurement affects the results. The study of five commercially available cells of varying capacities and electrode chemistries show that, regardless of cell type, maximum impedance change takes place within the first 4 h of the relaxation period. The root cause of this impedance change has been discussed from an electrochemical perspective.

  6. Exploratory studies on some electrochemical cell systems

    NASA Astrophysics Data System (ADS)

    Chaudhuri, Srikumar; Guha, D.

    Exploratory studies were conducted on cell systems with different metal anodes, and iodine and sulphur mixed with graphite powder in a polymer matrix as cathodes, using different electrolytes in non-aqueous and aqueous media as ionic charge carriers. The electrical conductance of the electrolyte solutions in aqueous and non-aqueous solvents, the open circuit voltage (OCV) and short circuit current (SCC) for the different cell systems were measured. To date, the non-aqueous solvents used in our studies were dimethylformamide, formamide, dioxan, and nitrobenzene, and the electrolytes used were potassium iodide, caustic potash, cetyltrimethylammonium bromide (CTAB), sodium lauryl sulphate (SLS) and calcium chloride. These electrolytes were used in both non-aqueous and aqueous media. In general, aqueous electrolyte solutions gave a better performance than non-aqueous electrolyte solutions. Of the aqueous electrolytes, the highest conductance was shown by potassium chloride solution in water (conductance=0.0334 mho). However, the best OCV and SCC were shown by aluminium as anode and iodine as cathode with a saturated solution of caustic potash in water. The OCV was 1.85 V and the SCC was 290 mA cm -2. The highest conductance among the non-aqueous systems was shown by caustic potash in formamide. (Conductance=0.013 mho.) The best OCV and SCC, however, were shown by a zinc anode and iodine cathode with saturated potassium chloride in formamide, having an OCV of 1.55 V and an SCC of 150 mA cm -2. Further studies are in progress to obtain detailed performance data and recharging characteristics of some of the more promising systems reported here.

  7. Electrochemical signature of mismatch in overhang DNA films: a scanning electrochemical microscopic study.

    PubMed

    Shamsi, Mohtashim Hassan; Kraatz, Heinz-Bernhard

    2013-06-21

    High throughput DNA basepair mismatch detection is an ultimate goal for earlier and point-of-care diagnostics. However, the size of a target sequence on single nucleotide mismatch detection will critically impact the design of sensors in future. To study the potential impact of target size, the probe and target strands of unequal size were hybridized in the absence and presence of single nucleotide mismatches along the sequence. After hybridization, the shorter target sequences form overhangs in the probe strand while longer target sequences form overhangs in the complementary strand. The resulting double stranded DNA hybrids were printed on gold surfaces and the electrochemical response of the films was studied by scanning electrochemical microscopy without signal amplification and label. The redox mediator, [Fe(CN)(6)](4-), experiences lower repulsion in the vicinity of mismatch containing ds-DNA films, which ultimately manifests into higher feedback current regardless of the size and hybridization position of the complementary strands. Kinetic rate constants monitored right above the ds-DNA films show k(0) = 4.5 ± 0.1 × 10(-5) cm s(-1) for the short sequence hybridized at the upper portion of the probe while k(0) = 4.1 ± 0.2 × 10(-5) cm s(-1) for longer complementary strands which has only top overhang. It suggests that hybridization position is important for mismatch detection in short complementary stands. However, in longer complementary strands, mismatches are easily detectable in the absence of bottom overhangs. PMID:23671908

  8. Electrochemical cell design for the impedance studies of chlorine evolution at DSA(®) anodes.

    PubMed

    Silva, J F; Dias, A C; Araújo, P; Brett, C M A; Mendes, A

    2016-08-01

    A new electrochemical cell design suitable for the electrochemical impedance spectroscopy (EIS) studies of chlorine evolution on Dimensionally Stable Anodes (DSA(®)) has been developed. Despite being considered a powerful tool, EIS has rarely been used to study the kinetics of chlorine evolution at DSA anodes. Cell designs in the open literature are unsuitable for the EIS analysis at high DSA anode current densities for chlorine evolution because they allow gas accumulation at the electrode surface. Using the new cell, the impedance spectra of the DSA anode during chlorine evolution at high sodium chloride concentration (5 mol dm(-3) NaCl) and high current densities (up to 140 mA cm(-2)) were recorded. Additionally, polarization curves and voltammograms were obtained showing little or no noise. EIS and polarization curves evidence the role of the adsorption step in the chlorine evolution reaction, compatible with the Volmer-Heyrovsky and Volmer-Tafel mechanisms. PMID:27587166

  9. Electrochemical study of thiols and disulfides using modified electrodes

    SciTech Connect

    Linders, C.R.; Patriarche, G.J.; Kauffman, J.M.

    1986-01-01

    The electrochemical oxidative behavior of cysteine and several disulfides, such as cysteine, lipoic acid and disulfiram, have been investigated using a carbon paste (EPC) and a modified carbon paste (EPCM) electrode. The study has permitted the differentiation of the oxidative behavior of the thiol and of the disulfides. Modification of the carbon paste, by incorporating cobalt(II) phthalocyanine, offers interesting properties due to the electrocatalytic capability of the electrode. Using these types of electrodes the different molecules have been quantitatively determined at concentrations as low as 2.10/sup -7/ M. 14 references, 2 figures, 1 table.

  10. In Operando GISAXS Studies of Mound Coarsening in Electrochemical Homoepitaxy

    NASA Astrophysics Data System (ADS)

    Ruge, Martin; Golks, Frederik; Zegenhagen, Jörg; Magnussen, Olaf M.; Stettner, Jochim

    2014-02-01

    Kinetic roughening during electrodeposition was studied by grazing incidence small angle x-ray scattering for the case of Au(001) homoepitaxial growth in Cl- containing electrolytes. The formation and coarsening of an isotropic mound distribution on unreconstructed Au(001) and of [110]-oriented anisotropic mounds on the "hex" reconstructed surface was observed. The lateral mound coarsening is described by a well-defined scaling law. On unreconstructed Au a transition in the coarsening exponent from ≈1/4 to ≈1/3 with increasing potential is found, which can be explained by the pronounced potential dependence of surface transport processes in an electrochemical environment.

  11. In operando GISAXS studies of mound coarsening in electrochemical homoepitaxy.

    PubMed

    Ruge, Martin; Golks, Frederik; Zegenhagen, Jörg; Magnussen, Olaf M; Stettner, Jochim

    2014-02-01

    Kinetic roughening during electrodeposition was studied by grazing incidence small angle x-ray scattering for the case of Au(001) homoepitaxial growth in Cl- containing electrolytes. The formation and coarsening of an isotropic mound distribution on unreconstructed Au(001) and of [110]-oriented anisotropic mounds on the "hex" reconstructed surface was observed. The lateral mound coarsening is described by a well-defined scaling law. On unreconstructed Au a transition in the coarsening exponent from ≈1/4 to ≈1/3 with increasing potential is found, which can be explained by the pronounced potential dependence of surface transport processes in an electrochemical environment. PMID:24580610

  12. Surface photovoltage studies of Si nanocrystallites prepared by electrochemical etching

    NASA Astrophysics Data System (ADS)

    Patel, B. K.; Rath, S.; Sahu, S. N.

    2006-06-01

    Nanocrystalline Si has been prepared by anodic etching of Si in an electrolyte consisting of ethanol and HF. The structure and surface morphology have been studied using transmission electron microscopy which reveal the cubic structure and porous morphology of Si nanocrystals (NCs). Electrochemical etching has resulted in surface oxidation of Si NCs as confirmed from X-ray photoelectron spectroscopic measurements. The average size of the Si NCs has been estimated from the line broadening analysis of the Raman scattering. Unique optical transitions associated with porous Si/SiO2 quantum well (QW) like structure has been investigated by surface photovoltage (SPV) measurements.

  13. Video STM Studies of Adsorbate Diffusion at Electrochemical Interfaces

    NASA Astrophysics Data System (ADS)

    Tansel, T.; Magnussen, O. M.

    2006-01-01

    Direct in situ studies of the surface diffusion of isolated adsorbates at an electrochemical interface by high-speed scanning tunneling microscopy (video STM) are presented for sulfide adsorbates on Cu(100) in HCl solution. As revealed by a quantitative statistical analysis, the adsorbate motion can be described by thermally activated hopping between neighboring adsorption sites with an activation energy that increases linearly with electrode potential by 0.50 eV per V. This can be explained by changes in the adsorbate dipole moment during the hopping process and contributions from coadsorbates.

  14. Electrochemical and optical studies of model photosynthetic systems

    SciTech Connect

    Not Available

    1992-01-15

    The objective of this research is to obtain a better understanding of the relationship between the structural organization of photosynthetic pigments and their spectroscopic and electrochemical properties. Defined model systems were studied first. These included the least ordered (solutions) through the most highly ordered (Langmuir-Blodgett (LB) monolayers and self-assembled monolayers) systems containing BChl, BPheo, and UQ. Molecules other than the photosynthetic pigments and quinones were also examined, including chromophores (i.e. surface active cyanine dyes and phtahlocyanines) an redox active compounds (methyl viologen (MV) and surfactant ferrocenes), in order to develop the techniques needed to study the photosynthetic components. Because the chlorophylls are photosensitive and labile, it was easier first to develop procedures using stable species. Three different techniques were used to characterize these model systems. These included electrochemical techniques for determining the standard oxidation and reduction potentials of the photosynthetic components as well as methods for determining the heterogeneous electron transfer rate constants for BChl and BPheo at metal electrodes (Pt and Au). Resonance Raman (RR) and surface enhanced resonance Raman (SERR) spectroscopy were used to determine the spectra of the photosynthetic pigments and model compounds. SERRS was also used to study several types of photosynthetic preparations.

  15. Additives

    NASA Technical Reports Server (NTRS)

    Smalheer, C. V.

    1973-01-01

    The chemistry of lubricant additives is discussed to show what the additives are chemically and what functions they perform in the lubrication of various kinds of equipment. Current theories regarding the mode of action of lubricant additives are presented. The additive groups discussed include the following: (1) detergents and dispersants, (2) corrosion inhibitors, (3) antioxidants, (4) viscosity index improvers, (5) pour point depressants, and (6) antifouling agents.

  16. Electrochemical and Dry Sand Impact Erosion Studies on Carbon Steel.

    PubMed

    Naz, M Y; Ismail, N I; Sulaiman, S A; Shukrullah, S

    2015-01-01

    This study investigated the dry and aqueous erosion of mild steel using electrochemical and dry sand impact techniques. In dry sand impact experiments, mild steel was eroded with 45 μm and 150 μm sand particles. Scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX) and micro-hardness techniques were used to elaborate the surface morphology of the eroded samples. The results revealed significant change in morphology of the eroded samples. In-depth analysis showed that although the metal erosion due to larger particles was significantly higher, the fines also notably damaged the metal surface. The surface damages were appreciably reduced with decrease in impact angle of the accelerated particles. The maximum damages were observed at an impact angle of 90°. The hardness of the samples treated with 45 μm and 150 μm sand remained in the range of 88.34 to 102.31 VHN and 87.7 to 97.55 VHN, respectively. In electrochemical experiments, a triple electrode probe was added into the metal treatment process. The linear polarization resistance (LPR) measurements were performed in slurries having 5% (by weight) of sand particles. LPR of the samples treated with 45 μm and 150 μm sand slurries was calculated about 949 Ω.cm(2) and 809 Ω.cm(2), respectively. PMID:26561231

  17. Electrochemical and Dry Sand Impact Erosion Studies on Carbon Steel

    PubMed Central

    Naz, M. Y.; Ismail, N. I.; Sulaiman, S. A.; Shukrullah, S.

    2015-01-01

    This study investigated the dry and aqueous erosion of mild steel using electrochemical and dry sand impact techniques. In dry sand impact experiments, mild steel was eroded with 45 μm and 150 μm sand particles. Scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX) and micro-hardness techniques were used to elaborate the surface morphology of the eroded samples. The results revealed significant change in morphology of the eroded samples. In-depth analysis showed that although the metal erosion due to larger particles was significantly higher, the fines also notably damaged the metal surface. The surface damages were appreciably reduced with decrease in impact angle of the accelerated particles. The maximum damages were observed at an impact angle of 90°. The hardness of the samples treated with 45 μm and 150 μm sand remained in the range of 88.34 to 102.31 VHN and 87.7 to 97.55 VHN, respectively. In electrochemical experiments, a triple electrode probe was added into the metal treatment process. The linear polarization resistance (LPR) measurements were performed in slurries having 5% (by weight) of sand particles. LPR of the samples treated with 45 μm and 150 μm sand slurries was calculated about 949 Ω.cm2 and 809 Ω.cm2, respectively. PMID:26561231

  18. Additional EIPC Study Analysis. Final Report

    SciTech Connect

    Hadley, Stanton W; Gotham, Douglas J.; Luciani, Ralph L.

    2014-12-01

    Between 2010 and 2012 the Eastern Interconnection Planning Collaborative (EIPC) conducted a major long-term resource and transmission study of the Eastern Interconnection (EI). With guidance from a Stakeholder Steering Committee (SSC) that included representatives from the Eastern Interconnection States Planning Council (EISPC) among others, the project was conducted in two phases. Phase 1 involved a long-term capacity expansion analysis that involved creation of eight major futures plus 72 sensitivities. Three scenarios were selected for more extensive transmission- focused evaluation in Phase 2. Five power flow analyses, nine production cost model runs (including six sensitivities), and three capital cost estimations were developed during this second phase. The results from Phase 1 and 2 provided a wealth of data that could be examined further to address energy-related questions. A list of 14 topics was developed for further analysis. This paper brings together the earlier interim reports of the first 13 topics plus one additional topic into a single final report.

  19. In vitro electrochemical corrosion and cell viability studies on nickel-free stainless steel orthopedic implants.

    PubMed

    Salahinejad, Erfan; Hadianfard, Mohammad Jafar; Macdonald, Digby Donald; Sharifi-Asl, Samin; Mozafari, Masoud; Walker, Kenneth J; Rad, Armin Tahmasbi; Madihally, Sundararajan V; Tayebi, Lobat

    2013-01-01

    The corrosion and cell viability behaviors of nanostructured, nickel-free stainless steel implants were studied and compared with AISI 316L. The electrochemical studies were conducted by potentiodynamic polarization and electrochemical impedance spectroscopic measurements in a simulated body fluid. Cytocompatibility was also evaluated by the adhesion behavior of adult human stem cells on the surface of the samples. According to the results, the electrochemical behavior is affected by a compromise among the specimen's structural characteristics, comprising composition, density, and grain size. The cell viability is interpreted by considering the results of the electrochemical impedance spectroscopic experiments. PMID:23630603

  20. In Vitro Electrochemical Corrosion and Cell Viability Studies on Nickel-Free Stainless Steel Orthopedic Implants

    PubMed Central

    Salahinejad, Erfan; Hadianfard, Mohammad Jafar; Macdonald, Digby Donald; Sharifi-Asl, Samin; Mozafari, Masoud; Walker, Kenneth J.; Rad, Armin Tahmasbi; Madihally, Sundararajan V.; Tayebi, Lobat

    2013-01-01

    The corrosion and cell viability behaviors of nanostructured, nickel-free stainless steel implants were studied and compared with AISI 316L. The electrochemical studies were conducted by potentiodynamic polarization and electrochemical impedance spectroscopic measurements in a simulated body fluid. Cytocompatibility was also evaluated by the adhesion behavior of adult human stem cells on the surface of the samples. According to the results, the electrochemical behavior is affected by a compromise among the specimen's structural characteristics, comprising composition, density, and grain size. The cell viability is interpreted by considering the results of the electrochemical impedance spectroscopic experiments. PMID:23630603

  1. Preliminary study of structural changes in Li2MnSiO4 cathode material during electrochemical reaction

    NASA Astrophysics Data System (ADS)

    Świętosławski, Michał; Molenda, Marcin; Gajewska, Marta

    2016-06-01

    In this paper, we present exsitu observations of a structure of particular Li2MnSiO4 grains at different states of charge (SOC). The goal of these studies is structural analysis of Li2MnSiO4 cathode material for Li-ion batteries at different stages of electrochemical reaction using transmission electron microscopy. Performed analysis suggests that amorphization process of Li2MnSiO4 is not directly connected with lithium ions deintercalation but with additional electrochemical reactions running in the working cell.

  2. DFT based study of transition metal nano-clusters for electrochemical NH3 production.

    PubMed

    Howalt, J G; Bligaard, T; Rossmeisl, J; Vegge, T

    2013-05-28

    Theoretical studies of the possibility of producing ammonia electrochemically at ambient temperature and pressure without direct N2 dissociation are presented. Density functional theory calculations were used in combination with the computational standard hydrogen electrode to calculate the free energy profile for the reduction of N2 admolecules and N adatoms on transition metal nanoclusters in contact with an acidic electrolyte. This work has established linear scaling relations for the dissociative reaction intermediates NH, NH2, and NH3. In addition, linear scaling relations for the associative reaction intermediates N2H, N2H2, and N2H3 have been determined. Furthermore, correlations between the adsorption energies of N, N2, and H have been established. These scaling relations and the free energy corrections are used to establish volcanoes describing the onset potential for electrochemical ammonia production and hence describe the potential determining steps for the electrochemical ammonia production. The competing hydrogen evolution reaction has also been analyzed for comparison. PMID:23598667

  3. Electrochemical oxidation stability of anions for modern battery electrolytes: a CBS and DFT study.

    PubMed

    Jónsson, Erlendur; Johansson, Patrik

    2015-02-01

    The electrochemical stability vs. oxidation is a crucial property of anions in order to be suitable as components in lithium-ion batteries. Here the applicability of a number of computational approaches and methods to assess this property, employing a wide selection of DFT functionals, has been studied using the CCSD(T)/CBS method as the reference. In all, the vertical anion oxidation potential, ΔEv, is a fair way to calculate the stability vs. oxidation, however, a functional of at least hybrid quality is recommended. In addition, the chemical hardness, η, is identified as a novel approach to calculate the stability vs. oxidation. PMID:25557392

  4. Specific Surface versus Electrochemically Active Area of the Carbon/Polypyrrole Capacitor: Correlation of Ion Dynamics Studied by an Electrochemical Quartz Crystal Microbalance with BET Surface.

    PubMed

    Mosch, Heike L K S; Akintola, Oluseun; Plass, Winfried; Höppener, Stephanie; Schubert, Ulrich S; Ignaszak, Anna

    2016-05-10

    Carbon/polypyrrole (PPy) composites are promising electrode materials for energy storage applications such as lightweight capacitors. Although these materials are composed of relatively inexpensive components, there is a gap of knowledge regarding the correlation between surface, porosity, ion exchange dynamics, and the interplay of the double layer capacitance and pseudocapacitance. In this work we evaluate the specific surface area analyzed by the BET method and the area accessible for ions using electrochemical quartz-crystal microbalance (EQCM) for SWCNT/PPy and carbon black Vulcan XC72-R/PPy composites. The study revealed that the polymer has significant influence on the pore size of the composites. Although the BET surface is low for the polypyrrole, the electrode mass change and thus the electrochemical area are large for the polymer-containing electrodes. This indicates that multiple redox active centers in the charged polymer chain are good ion scavengers. Also, for the composite electrodes, the effective charge storage occurs at the polypyrrole-carbon junctions, which are easy to design/multiply by a proper carbon-to-polymer weight ratio. The specific BET surface and electrochemically accessible surface area are both important parameters in calculation of the electrode capacitance. SWCNTs/PPy showed the highest capacitances normalized to the BET and electrochemical surface as compared to the polymer-carbon black. TEM imaging revealed very homogeneous distribution of the nanosized polymer particles onto the CNTs, which facilitates the synergistic effect of the double layer capacitance (CNTs) and pseudocapacitance (polymer). The trend in the electrode mass change in correlation with the capacitance suggest additional effects such as a solvent co-insertion into the polymer and the contribution of the charge associated with the redox activity of oxygen-containing functional groups on the carbon surface. PMID:27082127

  5. Electrochemical impedance study of the hematite/water interface.

    PubMed

    Shimizu, Kenichi; Lasia, Andrzej; Boily, Jean-François

    2012-05-22

    Reactions taking place on hematite (α-Fe(2)O(3)) surfaces in contact with aqueous solutions are of paramount importance to environmental and technological processes. The electrochemical properties of the hematite/water interface are central to these processes and can be probed by open circuit potentials and cyclic voltammetric measurements of semiconducting electrodes. In this study, electrochemical impedance spectroscopy (EIS) was used to extract resistive and capacitive attributes of this interface on millimeter-sized single-body hematite electrodes. This was carried out by developing equivalent circuit models for impedance data collected on a semiconducting hematite specimen equilibrated in solutions of 0.1 M NaCl and NH(4)Cl at various pH values. These efforts produced distinct sets of capacitance values for the diffuse and compact layers of the interface. Diffuse layer capacitances shift in the pH 3-11 range from 2.32 to 2.50 μF·cm(-2) in NaCl and from 1.43 to 1.99 μF·cm(-2) in NH(4)Cl. Furthermore, these values reach a minimum capacitance at pH 9, near a probable point of zero charge for an undefined hematite surface exposing a variety of (hydr)oxo functional groups. Compact layer capacitances pertain to the transfer of ions (charge carriers) from the diffuse layer to surface hydroxyls and are independent of pH in NaCl, with values of 32.57 ± 0.49 μF·cm(-2)·s(-φ). However, they decrease with pH in NH(4)Cl from 33.77 at pH 3.5 to 21.02 μF·cm(-2)·s(-φ) at pH 10.6 because of the interactions of ammonium species with surface (hydr)oxo groups. Values of φ (0.71-0.73 in NaCl and 0.56-0.67 in NH(4)Cl) denote the nonideal behavior of this capacitor, which is treated here as a constant phase element. Because electrode-based techniques are generally not applicable to the commonly insulating metal (oxyhydr)oxides found in the environment, this study presents opportunities for exploring mineral/water interface chemistry by EIS studies of single

  6. Structure Property Studies for Additively Manufactured Parts

    SciTech Connect

    Milenski, Helen M; Schmalzer, Andrew Michael; Kelly, Daniel

    2015-08-17

    Since the invention of modern Additive Manufacturing (AM) processes engineers and designers have worked hard to capitalize on the unique building capabilities that AM allows. By being able to customize the interior fill of parts it is now possible to design components with a controlled density and customized internal structure. The creation of new polymers and polymer composites allow for even greater control over the mechanical properties of AM parts. One of the key reasons to explore AM, is to bring about a new paradigm in part design, where materials can be strategically optimized in a way that conventional subtractive methods cannot achieve. The two processes investigated in my research were the Fused Deposition Modeling (FDM) process and the Direct Ink Write (DIW) process. The objectives of the research were to determine the impact of in-fill density and morphology on the mechanical properties of FDM parts, and to determine if DIW printed samples could be produced where the filament diameter was varied while the overall density remained constant.

  7. Laboratory studies of electrochemical treatment of industrial azo dye effluent.

    PubMed

    Vaghela, Sanjay S; Jethva, Ashok D; Mehta, Bhavesh B; Dave, Sunil P; Adimurthy, Subbarayappa; Ramachandraiah, Gadde

    2005-04-15

    Removal of color and reduction of chemical oxygen demand (COD) in an industrial azo dye effluent containing chiefly reactive dyes were investigated under single-pass conditions at a dimensionally stable anode (DSA) in a thin electrochemical flow reactor at different current densities, flow rates, and dilutions. With 50% diluted effluent, decolorization was achieved up to 85-99% at 10-40 mA/ cm2 at 5 mL/min flow rate and 50-88% at 30-40 mA/ cm2 at high (10-15 mL/min) flow rates. The COD reduction was maximum (81%) at 39.9 mA/cm2 or above when solution-electrode contact time (Ct) was as high as 21.7 s/cm2 and decreased as Ct declined at a given current density. Cyclic voltammetric studies suggesting an indirect oxidation of dye molecules over the anode surface were carried out at a glassy carbon electrode. The effect of pH on decolorization and COD reduction was determined. An electrochemical mechanism mediated by OCl- operating in the decolorization and COD reduction processes was suggested. The effluent was further treated with NaOCI. The oxidized products from the treated effluents were isolated and confirmed to be free from chlorine-substituted products by IR spectroscopy. From the apparent pseudo-first-order rate data, the second-order rate coefficients were evaluated to be 2.9 M(-1) s(-1) at 5 mL/ min, 76.2 M(-1) s(-1) at 10 mL/min, and 156.1 M(-1) s(-1) at 15 mL/ min for color removal, and 1.19 M(-1) s(-1) at 5 mL/min, 1.79 M(-1) s(-1) at 10 mL/min, and 3.57 M(-1) s(-1) at 15 mL/min for COD reduction. Field studies were also carried out with a pilot-scale cell at the source of effluent generation of different plants corresponding to the industry. Decolorization was achieved to about 94-99% with azo dye effluents at 0.7-1.0 L/min flow costing around Indian Rupees 0.02-0.04 per liter, and to about 54-75% in other related effluents at 0.3-1.0 L/min flow under single-pass conditions. PMID:15884385

  8. Electrochemical study of hydrogen permeation through tungsten near room temperature

    NASA Astrophysics Data System (ADS)

    Manhard, A.; Kapser, S.; Gao, L.

    2015-08-01

    We used an electrochemical double cell to study permeation of hydrogen through a 3.5 μm thick sputter-deposited tungsten layer on a 25 μm thick palladium support. The temperature dependence of the steady-state permeation current was studied in the range from 266 to 333 K for a constant charging potential on the entry side and zero hydrogen concentration on the exit side of the sample foil. We found that the data is best described by a sum of two Arrhenius terms. We postulate that the higher activation energy of 0.86 ± 0.07 eV corresponds to permeation through bulk grains and may approach the literature value of 1.43 ± 0.26 eV for even higher temperature. For the second, lower activation energy of 0.39 ± 0.03 eV, we currently consider fast diffusion along grain boundaries the most likely explanation.

  9. Electrochemical study of Aluminum-Fly Ash composites obtained by powder metallurgy

    SciTech Connect

    Marin, E.; Lekka, M.; Andreatta, F.; Fedrizzi, L.; Itskos, G.; Koukouzas, N.

    2012-07-15

    In this paper, two different ASTM C 618 Class C fly ashes (FA) were used for the production of aluminum metal matrix composites (MMCs) using powder metallurgy (PM) technology. Calcareous FAs were sampled from the electrostatic precipitators of two different lignite-fired power stations: from Megalopolis, Southern Greece (MFA) and from Kardia, Northen Greece (KFA), under maximum electricity load. FAs were milled in order to reduce the mean particle diameter and Aluminum-FA composites containing 10% and 20% of FA were then prepared and compacted. The green products were sintered for 2 h at 600 Degree-Sign C. Sintered Al-FA MMCs showed increased hardness and wear resistance suggesting their possible use in industrial applications for example in covers, casings, brake rotors or engine blocks. As most possible industrial applications of MMCs not only require wear resistance, but also corrosion resistance in different mild aggressive medias, this paper aims to study the electrochemical behavior of FA MMCs in order to evaluate their corrosion resistance. The morphology and chemical composition of the phases in the Aluminum-FA composite samples were investigated using Scanning Electron Microscopy (SEM) and Energy Dispersive X-ray Spectroscopy (EDXS). Moreover, topographic and Volta potential maps were acquired by Scanning Kelvin Probe Force Microscopy (SKP-FM). Volta potential maps provide information about the electrochemical behavior of the different phases in absence of electrolyte. The electrochemical behavior was investigated by Open Circuit Potential measurements and potentiodynamic polarization, while the corrosion mechanisms were studied by SEM observations after different times of immersion in a mild corrosive medium. In all cases it could be stated that the addition of the FA particles into the Al matrix might cause an increase of the hardness and mechanical properties of the pure aluminum but deteriorates the corrosion resistance. The degradation phenomena

  10. Electrochemical and microstructural study of oxide films formed electrochemically at microcrystalline Al-Fe-V-Si alloys.

    PubMed

    Thomas, S C; Birss, V I; Steele, D; Tessier, D

    1995-07-01

    A recent advance in metallurgical technology has been the application of rapid solidification techniques to Al alloy production. FVS0812 is the designation given to a microcrystalline Al-based alloy consisting of 8 wt% Fe, 1 wt% V and 2 wt% Si. It is a two-phase alloy, consisting of ca. 27 vol percent of approximately spherical Fe-V-Si-rich dispersoids in an essentially pure Al matrix. The high strength, low density properties of this advanced material, and other related alloys, have not yet been realized, however, due, in part, to the inability of the alloy to form a thick, adherent, abrasion-resistant outer surface oxide film, a feature readily achieved at conventional Al alloys by normal anodizing methods. The present research has involved an electro-chemical study of oxide film growth at the 812 alloy, with the specific goals being to seek an understanding of the origin of the oxide film growth problem and ultimately to propose alternative approaches to the formation of a thick, stable oxide film at this material. The techniques used in this research have included electrochemical methodologies such as cyclic voltammetry and electrochemical impedance spectroscopy. Crucial information has been obtained through transmission electron microscopy (TEM) of ultramicrotomed specimens. Experiments were carried out initially in neutral borate solutions to characterize the compact barrier oxide film formed in this environment and expected to be present beneath the porous oxide film formed in the normal sulfuric acid anodizing medium.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7549001

  11. Electrochemical properties of titanium nitride nerve stimulation electrodes: an in vitro and in vivo study.

    PubMed

    Meijs, Suzan; Fjorback, Morten; Jensen, Carina; Sørensen, Søren; Rechendorff, Kristian; Rijkhoff, Nico J M

    2015-01-01

    The in vivo electrochemical behavior of titanium nitride (TiN) nerve stimulation electrodes was compared to their in vitro behavior for a period of 90 days. Ten electrodes were implanted in two Göttingen minipigs. Four of these were used for electrical stimulation and electrochemical measurements. Five electrodes were kept in Ringer's solution at 37.5°C, of which four were used for electrical stimulation and electrochemical measurements. The voltage transients measured in vivo were 13 times greater than in vitro at implantation and they continued to increase with time. The electrochemical properties in vivo and the tissue resistance (Rtissue) followed a similar trend with time. There was no consistent significant difference between the electrochemical properties of the in vivo and in vitro electrodes after the implanted period. The differences between the in vivo and in vitro electrodes during the implanted period show that the evaluation of electrochemical performance of implantable stimulation electrodes cannot be substituted with in vitro measurements. After the implanted period, however, the performance of the in vivo and in vitro electrodes in saline was similar. In addition, the changes observed over time during the post-implantation period regarding the electrochemical properties of the in vivo electrodes and Rtissue were similar, which indicates that these changes are due to the foreign body response to implantation. PMID:26300717

  12. Electrochemical properties of titanium nitride nerve stimulation electrodes: an in vitro and in vivo study

    PubMed Central

    Meijs, Suzan; Fjorback, Morten; Jensen, Carina; Sørensen, Søren; Rechendorff, Kristian; Rijkhoff, Nico J. M.

    2015-01-01

    The in vivo electrochemical behavior of titanium nitride (TiN) nerve stimulation electrodes was compared to their in vitro behavior for a period of 90 days. Ten electrodes were implanted in two Göttingen minipigs. Four of these were used for electrical stimulation and electrochemical measurements. Five electrodes were kept in Ringer's solution at 37.5°C, of which four were used for electrical stimulation and electrochemical measurements. The voltage transients measured in vivo were 13 times greater than in vitro at implantation and they continued to increase with time. The electrochemical properties in vivo and the tissue resistance (Rtissue) followed a similar trend with time. There was no consistent significant difference between the electrochemical properties of the in vivo and in vitro electrodes after the implanted period. The differences between the in vivo and in vitro electrodes during the implanted period show that the evaluation of electrochemical performance of implantable stimulation electrodes cannot be substituted with in vitro measurements. After the implanted period, however, the performance of the in vivo and in vitro electrodes in saline was similar. In addition, the changes observed over time during the post-implantation period regarding the electrochemical properties of the in vivo electrodes and Rtissue were similar, which indicates that these changes are due to the foreign body response to implantation. PMID:26300717

  13. Electrochemical studies of iron meteorites: phosphorus redox chemistry on the early Earth

    NASA Astrophysics Data System (ADS)

    Bryant, David E.; Greenfield, David; Walshaw, Richard D.; Evans, Suzanne M.; Nimmo, Alexander E.; Smith, Caroline L.; Wang, Liming; Pasek, Matthew A.; Kee, Terence P.

    2009-01-01

    The mineral schreibersite, (Fe,Ni)3P, a ubiquitous component of iron meteorites, is known to undergo anoxic hydrolytic modification to afford a range of phosphorus oxyacids. H-phosphonic acid (H3PO3) is the principal hydrolytic product under hydrothermal conditions, as confirmed here by 31P-NMR spectroscopic studies on shavings of the Seymchan pallasite (Magadan, Russia, 1967), but in the presence of photochemical irradiation a more reduced derivative, H-phosphinic (H3PO2) acid, dominates. The significance of such lower oxidation state oxyacids of phosphorus to prebiotic chemistry upon the early Earth lies with the facts that such forms of phosphorus are considerably more soluble and chemically reactive than orthophosphate, the commonly found form of phosphorus on Earth, thus allowing nature a mechanism to circumvent the so-called Phosphate Problem. This paper describes the Galvanic corrosion of Fe3P, a hydrolytic modification pathway for schreibersite, leading again to H-phosphinic acid as the key P-containing product. We envisage this pathway to be highly significant within a meteoritic context as iron meteorites are polymetallic composites in which dissimilar metals, with different electrochemical potentials, are connected by an electrically conducting matrix. In the presence of a suitable electrolyte medium, i.e., salt water, galvanic corrosion can take place. In addition to model electrochemical studies, we also report the first application of the Kelvin technique to map surface potentials of a meteorite sample that allows the electrochemical differentiation of schreibersite inclusions within an Fe:Ni matrix. Such experiments, coupled with thermodynamic calculations, may allow us to better understand the chemical redox behaviour of meteoritic components with early Earth environments.

  14. Enhanced electrochemical performances of PANI using redox additive of K{sub 4}[Fe(CN){sub 6}] in aqueous electrolyte for symmetric supercapacitors

    SciTech Connect

    Shanmugavani, A.; Kaviselvi, S.; Sankar, K.Vijaya; Selvan, R.Kalai

    2015-02-15

    Highlights: • Effect of K{sub 4}[Fe(CN){sub 6}] in H{sub 2}SO{sub 4} studied on the electrochemical properties of PANI. • The polaron band – π* transition reveals the emeraldine salt (conductive) form. • CV curves exhibit quasi-reversible redox behavior. • Symmetric PANI SC shows 228 F g{sup −1} at 1 mA cm{sup −2} in K{sub 4}[Fe (CN){sub 6}] added 1 M H{sub 2}SO{sub 4}. • PANI-1 symmetric supercapacitor shows almost 100% of capacity retention. - Abstract: Polyaniline (PANI) particles were prepared by reflux assisted chemical oxidative polymerization method with the aid of ammonium per sulfate/ferric chloride as oxidants and HCl/H{sub 2}SO{sub 4} as the medium. Amorphous nature and the emeraldine state of PANI were revealed from X-ray diffraction and Fourier transform infrared analysis. Moreover, ultra violet–visible spectra attributes to the polaron band – π* transition of polyaniline. The scanning electron microscopic image shows that the particle size is in the range of 0.2–2 μm. The electrochemical performances of the material were investigated in 1 M H{sub 2}SO{sub 4} and 0.08 M K{sub 4}[Fe(CN){sub 6}] added 1 M H{sub 2}SO{sub 4} aqueous electrolytes. Cyclic voltammetry and galvanostatic charge–discharge studies were carried out to find its suitability as a supercapacitor electrode material. The charge discharge analysis of the fabricated symmetric supercapacitors revealed the fact that the electrolyte containing redox additive (0.08 M K{sub 4}[Fe(CN){sub 6}]) delivered an enhanced specific capacitance of 228 F g{sup −1} (∼912 F g{sup −1} for single electrode) than that of 1 M H{sub 2}SO{sub 4} (100 F g{sup −1}) at 1 mA cm{sup −2}. Further cycling stability is performed at 5 mA cm{sup −2} ensures the durability of the supercapacitor.

  15. Improved electrochemical performances of binder-free CoMoO4 nanoplate arrays@Ni foam electrode using redox additive electrolyte

    NASA Astrophysics Data System (ADS)

    Veerasubramani, Ganesh Kumar; Krishnamoorthy, Karthikeyan; Kim, Sang Jae

    2016-02-01

    Herein, we are successfully prepared cobalt molybdate (CoMoO4) grown on nickel foam as a binder free electrode by hydrothermal approach for supercapacitors and improved their electrochemical performances using potassium ferricyanide (K3Fe(CN)6) as redox additive. The formation of CoMoO4 on Ni foam with high crystallinity is confirmed using XRD, Raman, and XPS measurements. The nanoplate arrays (NPAs) of CoMoO4 are uniformly grown on Ni foam which is confirmed by FE-SEM analysis. The prepared binder-free CoMoO4 NPAs achieved maximum areal capacity of 227 μAh cm-2 with KOH electrolyte at 2.5 mA cm-2. This achieved areal capacity is further improved about three times using the addition of K3Fe(CN)6 as redox additive. The increased electrochemical performances of CoMoO4 NPAs on Ni foam electrode via redox additive are discussed in detail and the mechanism has been explored. Moreover, the assembled CoMoO4 NPAs on Ni foam//activated carbon asymmetric supercapacitor device with an extended operating voltage window of 1.5 V exhibits an excellent performances such as high energy density and cyclic stability. The overall performances of binder-free CoMoO4 NPAs on Ni foam with redox additives suggesting their potential use as positive electrode material for high performance supercapacitors.

  16. Physical and electrochemical study of cobalt oxide nano- and microparticles

    SciTech Connect

    Alburquenque, D.; Vargas, E.; Denardin, J.C.; Escrig, J.; Marco, J.F.; Gautier, J.L.

    2014-07-01

    Cobalt oxide nanocrystals of size 17–21 nm were synthesized by a simple reaction between cobalt acetate (II) and dodecylamine. On the other hand, micrometric Co{sub 3}O{sub 4} was prepared using the ceramic method. The structural examination of these materials was performed using powder X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and transmission electron microscopy (TEM and HRTEM). XRD studies showed that the oxides were pure, well-crystallized, spinel cubic phases with a-cell parameter of 0.8049 nm and 0.8069 nm for the nano and micro-oxide, respectively. The average particle size was 19 nm (nano-oxide) and 1250 μm (micro-oxide). Morphological studies carried out by SEM and TEM analyses have shown the presence of octahedral particles in both cases. Bulk and surface properties investigated by X-ray photoelectron spectroscopy (XPS), point zero charge (pzc), FTIR and cyclic voltammetry indicated that there were no significant differences in the composition on both materials. The magnetic behavior of the samples was determined using a vibrating sample magnetometer. The compounds showed paramagnetic character and no coercivity and remanence in all cases. Galvanostatic measurements of electrodes formed with nanocrystals showed better performance than those built with micrometric particles. - Highlights: • Spinel Co{sub 3}O{sub 4} nanoparticles and microparticles with same structure but with different cell parameters, particle size and surface area were synthesized. • Oxide nanoparticles showed better electrochemical behavior than micrometric ones due to area effect.

  17. Electrochemically adsorbed Pb on Ag (111) studied with grazing- incidence x-ray scattering

    SciTech Connect

    Kortright, J.B.; Ross, P.N.; Melroy, O.R.; Toney, M.F.; Borges, G.L.; Samant, M.G.

    1989-04-01

    Grazing-incidence x-ray scattering studies of the evolution of electrochemically deposited layers of lead on silver (111) as a function of applied electrochemical potential are presented. Measurements were made with the adsorbed layers in contact with solution in a specially designed sample cell. The observed lead structures are a function of the applied potential and range from an incommensurate monolayer, resulting from underpotential deposition, to randomly oriented polycrystalline bulk lead, resulting from lower deposition potentials. These early experiments demonstrate the ability of in situ x-ray diffraction measurements to determine structures associated with electrochemical deposition. 6 refs., 4 figs.

  18. Utilizing in Situ Electrochemical SHINERS for Oxygen Reduction Reaction Studies in Aprotic Electrolytes.

    PubMed

    Galloway, Thomas A; Hardwick, Laurence J

    2016-06-01

    Spectroscopic detection of reaction intermediates upon a variety of electrode surfaces is of major interest within physical chemistry. A notable technique in the study of the electrochemical interface has been surface-enhanced Raman spectroscopy (SERS). The drawback of SERS is that it is limited to roughened gold and silver substrates. Herein we report that shell-isolated nanoparticles for enhanced Raman spectroscopy (SHINERS) can overcome the limitations of SERS and has followed the oxygen reduction reaction (ORR), within a nonaqueous electrolyte, on glassy carbon, gold, palladium, and platinum disk electrodes. The work presented demonstrates SHINERS for spectroelectrochemical studies for applied and fundamental electrochemistry in aprotic electrolytes, especially for the understanding and development of future metal-oxygen battery applications. In particular, we highlight that with the addition of Li(+), both the electrode surface and solvent influence the ORR mechanism, which opens up the possibility of tailoring surfaces to produce desired reaction pathways. PMID:27195529

  19. Electrochemical studies of CNT/Si–SnSb nanoparticles for lithium ion batteries

    SciTech Connect

    Nithyadharseni, P.; Reddy, M.V.; Nalini, B.; Ravindran, T.R.; Pillai, B.C.; Kalpana, M.; Chowdari, B.V.R.

    2015-10-15

    Highlights: • Si added SnSb and CNT exhibits very low particle size of below 30 nm • A strong PL quenching due to the addition of Si to SnSb. • Electrochemical studies show CNT added SnSb shows good capacity retention. - Abstract: Nano-structured SnSb, SnSb–CNT, Si–SnSb and Si–SnSb–CNT alloys were synthesized from metal chlorides of Sn, Sb and Si via reductive co-precipitation technique using NaBH{sub 4} as reducing agent. The as prepared compounds were characterized by various techniques such as X-ray diffraction (XRD), scanning electron microscope (SEM), Raman, Fourier transform infra-red (FTIR) and photoluminescence (PL) spectroscopy. The electrochemical performances of the compounds were characterized by galvanostatic cycling (GC) and cyclic voltammetry (CV). The Si–SnSb–CNT compound shows a high reversible capacity of 1200 mAh g{sup −1}. However, the rapid capacity fading was observed during cycling. In contrast, SnSb–CNT compound showed a high reversible capacity of 568 mAh g{sup −1} at 30th cycles with good cycling stability. The improved reversible capacity and cyclic performance of the SnSb–CNT compound could be attributed to the nanosacle dimension of SnSb particles and the structural advantage of CNTs.

  20. Synthesis, spectroscopic, thermal and electrochemical studies on thiazolyl azo based disperse dyes bearing coumarin

    NASA Astrophysics Data System (ADS)

    Özkütük, Müjgan; İpek, Ezgi; Aydıner, Burcu; Mamaş, Serhat; Seferoğlu, Zeynel

    2016-03-01

    In this study, seven novel thiazolyl azo disperse dyes (6a-g) were synthesized and fully characterized by FT-IR, 1H NMR, 13C NMR, and mass spectral techniques. The electronic absorption spectra of the dyes in solvents of different polarities cover a λmax range of 404-512 nm. The absorption properties of the dyes changed drastically upon acidification. This was due to the protonation of the nitrogen in the thiazole ring, which in turn increased the donor-acceptor interplay of the π system in the dyes, and therefore increased the absorption properties of the prepared dyes. Thermal analysis showed that these dyes are thermal stable up to 269 °C. Additionally, the electrochemical behavior of the dyes (6a-g) were investigated using cyclic voltammetric and chronoamperometric techniques, in the presence of 0.10 M tetrabutylammonium tetrafluoroborate, in dimethylsulfoxide, at a glassy carbon electrode. The number of transferred electrons, and the diffusion coefficient were determined by electrochemical methods. The results showed that, for all the dyes, one oxidation peak and two reduction peaks were observed.

  1. Study on Microstructure and Electrochemical Corrosion Behavior of PEO Coatings Formed on Aluminum Alloy

    NASA Astrophysics Data System (ADS)

    Xiang, N.; Song, R. G.; Li, H.; Wang, C.; Mao, Q. Z.; Xiong, Y.

    2015-12-01

    Plasma electrolytic oxidation (PEO) treated 6063 aluminum alloy was applied in a silicate- and borate-based alkaline solution. The microstructure and electrochemical corrosion behavior were studied by scanning electron microscopy, electrochemical impedance spectroscopy (EIS), and potentiodynamic polarization techniques. The results showed that the silicate-based PEO coating was of a denser structure compared with that of borate-based PEO coating. In addition, the silicate-based PEO coating was composed of more phased (Al9Si) than borate-based PEO coating. The results of corrosion test indicated that the silicate-based PEO coating provided a superior protection to 6063 aluminum alloy substrate, while borate-based PEO coating with a porous structure showed an inferior conservancy against corrosive electrolyte. Furthermore, the EIS tests proved that both coatings were capable to resist the aggressive erosion in 0.5 M NaCl solution after 72 h of immersion. However, the borate-based PEO coating could not provide sufficient protection to the substrate after 72-h immersion in 1 M NaCl solution.

  2. Electrochemical and spectroscopic studies of fuel cell reactions

    NASA Astrophysics Data System (ADS)

    Shao, Minhua

    Fuel cells, especially proton exchange membrane fuel cells (PEMFCs) are expected soon to become a major source of clean energy. However, the sluggish kinetics of the fuel cell reactions, i.e., the fuel oxidation and oxygen reduction, hinders the wide-spread application of PEMFCs. These problems prompted our studies to focus on elucidating the nature of the reaction intermediates during the oxidation of fuels and the reduction of oxygen on electrocatalysts, and understanding the mechanisms of these reactions. The results from these studies will provide basic information for designing new electrocatalysts. In this dissertation, the oxidation reactions of ethanol and dimethyl ether (DME) on Pt were investigated by the surface enhanced infrared absorption spectroscopy with an attenuated total reflection configuration (ATR-SEIRAS). Various reaction intermediates were detected and their electrochemical behaviors were studied. We also benefited from advantages of the ATR-SEIRAS technique and observed superoxide anion (O2-) and hydrogen peroxide anion (H2-) as the intermediates in the oxygen reduction reaction (ORR) on Pt and Au electrodes for the first time. The other main goal of this study is design of new electrocatalysts for ORR with low cost and high activity. Two novel electrocatalysts were developed. One is Pt monolayer electrocatalysts consisting of a Pt monolayer formed by a red-ox replacement of the Cu monolayer by Pt atoms on non-noble metal-noble metal core-shell nanoparticles. In such catalyst, the total noble mass activity of the catalyst was 2--6 times larger that of commercial Pt catalyst. Another way of lowering the cost of catalysts and enhancing the ORR activity involves alloying less expensive noble metals with other non-noble elements. In this dissertation, the nano-structured Pd based alloy electrocatalysts have been explored. The results showed that their ORR activities surpass that of commercial Pt. The density functional theory (DFT) calculations

  3. An electrochemical cell for in operando studies of lithium/sodium batteries using a conventional x-ray powder diffractometer

    NASA Astrophysics Data System (ADS)

    Shen, Yanbin; Pedersen, Erik E.; Christensen, Mogens; Iversen, Bo B.

    2014-10-01

    An electrochemical cell has been designed for powder X-ray diffraction studies of lithium ion batteries (LIB) and sodium ion batteries (SIB) in operando with high time resolution using a conventional powder X-ray diffractometer. The cell allows for studies of both anode and cathode electrode materials in reflection mode. The cell design closely mimics that of standard battery testing coin cells and allows obtaining powder X-ray diffraction patterns under representative electrochemical conditions. In addition, the cell uses graphite as the X-ray window instead of beryllium, and it is easy to operate and maintain. Test examples on lithium insertion/extraction in two spinel-type LIB electrode materials (Li4Ti5O12 anode and LiMn2O4 cathode) are presented as well as first results on sodium extraction from a layered SIB cathode material (Na0.84Fe0.56Mn0.44O2).

  4. An electrochemical cell for in operando studies of lithium/sodium batteries using a conventional x-ray powder diffractometer.

    PubMed

    Shen, Yanbin; Pedersen, Erik E; Christensen, Mogens; Iversen, Bo B

    2014-10-01

    An electrochemical cell has been designed for powder X-ray diffraction studies of lithium ion batteries (LIB) and sodium ion batteries (SIB) in operando with high time resolution using a conventional powder X-ray diffractometer. The cell allows for studies of both anode and cathode electrode materials in reflection mode. The cell design closely mimics that of standard battery testing coin cells and allows obtaining powder X-ray diffraction patterns under representative electrochemical conditions. In addition, the cell uses graphite as the X-ray window instead of beryllium, and it is easy to operate and maintain. Test examples on lithium insertion/extraction in two spinel-type LIB electrode materials (Li4Ti5O12 anode and LiMn2O4 cathode) are presented as well as first results on sodium extraction from a layered SIB cathode material (Na0.84Fe0.56Mn0.44O2). PMID:25362421

  5. Comparative studies on single-layer reduced graphene oxide films obtained by electrochemical reduction and hydrazine vapor reduction

    PubMed Central

    2012-01-01

    The comparison between two kinds of single-layer reduced graphene oxide (rGO) sheets, obtained by reduction of graphene oxide (GO) with the electrochemical method and hydrazine vapor reduction, referred to as E-rGO and C-rGO, respectively, is systematically studied. Although there is no morphology difference between the E-rGO and C-rGO films adsorbed on solid substrates observed by AFM, the reduction process to obtain the E-rGO and C-rGO films is quite different. In the hydrazine vapor reduction, the nitrogen element is incorporated into the obtained C-rGO film, while no additional element is introduced to the E-rGO film during the electrochemical reduction. Moreover, Raman spectra show that the electrochemical method is more effective than the hydrazine vapor reduction method to reduce the GO films. In addition, E-rGO shows better electrocatalysis towards dopamine than does C-rGO. This study is helpful for researchers to understand these two different reduction methods and choose a suitable one to reduce GO based on their experimental requirements. PMID:22373422

  6. Water at an electrochemical interface - a simulation study

    SciTech Connect

    Willard, Adam; Reed, Stewart; Madden, Paul; Chandler, David

    2008-08-22

    The results of molecular dynamics simulations of the properties of water in an aqueous ionic solution close to an interface with a model metallic electrode are described. In the simulations the electrode behaves as an ideally polarizable hydrophilic metal, supporting image charge interactions with charged species, and it is maintained at a constant electrical potential with respect to the solution so that the model is a textbook representation of an electrochemical interface through which no current is passing. We show how water is strongly attracted to and ordered at the electrode surface. This ordering is different to the structure that might be imagined from continuum models of electrode interfaces. Further, this ordering significantly affects the probability of ions reaching the surface. We describe the concomitant motion and configurations of the water and ions as functions of the electrode potential, and we analyze the length scales over which ionic atmospheres fluctuate. The statistics of these fluctuations depend upon surface structure and ionic strength. The fluctuations are large, sufficiently so that the mean ionic atmosphere is a poor descriptor of the aqueous environment near a metal surface. The importance of this finding for a description of electrochemical reactions is examined by calculating, directly from the simulation, Marcus free energy profiles for transfer of charge between the electrode and a redox species in the solution and comparing the results with the predictions of continuum theories. Significant departures from the electrochemical textbook descriptions of the phenomenon are found and their physical origins are characterized from the atomistic perspective of the simulations.

  7. Spectroscopic and electrochemical study of CdTe nanocrystals capped with thiol mixtures

    NASA Astrophysics Data System (ADS)

    Matos, Charlene R. S.; Souza, Helio O., Jr.; Candido, Luan P. M.; Costa, Luiz P.; Santos, Francisco A.; Alencar, Marcio A. R. C.; Abegao, Luis M. G.; Rodrigues, Jose J., Jr.; Midori Sussuchi, Eliana; Gimenez, Iara F.

    2016-06-01

    Here we report the aqueous synthesis of CdTe nanocrystals capped with 3-mercaptopropionic acid (MPA) and the evaluation of the effect of mixing different thiols with MPA on the spectroscopic and electrochemical properties. Additional ligands were cysteine (CYS) and glutathione (GSH). CYS and GSH produce opposite effects on the photoluminescence quantum yield (QY) with a decrease and increase in QY in comparison to MPA, respectively. All samples exhibited monoexponential photoluminescence decays indicating the presence of high-quality nanocrystals. Electrochemical measurements evidenced the presence of several redox peaks and allowed the calculation of the electrochemical band gaps, which were in agreement with the values estimated from absorption spectra and reflected differences in nanocrystal size.

  8. Additional Treatments Offer Little Benefit for Pancreatic Cancer: Study

    MedlinePlus

    ... 158633.html Additional Treatments Offer Little Benefit for Pancreatic Cancer: Study Neither extra chemotherapy drug nor add-on ... 2016 (HealthDay News) -- Additional treatments for locally advanced pancreatic cancer don't appear to boost survival, a new ...

  9. Luminescent rhenium(I) tricarbonyl complexes with pyrazolylamidino ligands: photophysical, electrochemical, and computational studies.

    PubMed

    Gómez-Iglesias, Patricia; Guyon, Fabrice; Khatyr, Abderrahim; Ulrich, Gilles; Knorr, Michael; Martín-Alvarez, Jose Miguel; Miguel, Daniel; Villafañe, Fernando

    2015-10-28

    New pyrazolylamidino complexes fac-[ReCl(CO)3(NH[double bond, length as m-dash]C(Me)pz*-κ(2)N,N)] (pz*H = pyrazole, pzH; 3,5-dimethylpyrazole, dmpzH; indazole, indzH) and fac-[ReBr(CO)3(NH[double bond, length as m-dash]C(Ph)pz*-κ(2)N,N)] are synthesized via base-catalyzed coupling of the appropriate nitrile with pyrazole, or via metathesis by halide abstraction with AgBF4 from a bromido pyrazolylamidino complex and the subsequent addition of LiCl. In order to study both the influence of the substituents present at the pyrazolylamidino ligand, and that of the "sixth" ligand in the complex, photophysical, electrochemical, and computational studies have been carried out on this series and other complexes previously described by us, of the general formula fac-[ReL(CO)3(NH[double bond, length as m-dash]C(R')pz*-κ(2)N,N)](n+) (L = Cl, Br; R' = Me, Ph, n = 0; or L = NCMe, dmpzH, indzH, R' = Me, n = 1). All complexes exhibit phosphorescent decays from a prevalently (3)MLCT excited state with quantum yields (Φ) in the range between 0.007 and 0.039, and long lifetimes (τ∼ 8-1900 ns). The electrochemical study reveals irreversible reduction for all complexes. The oxidation of the neutral complexes was found to be irreversible due to halido-dissociation, whereas the cationic species display a reversible process implying the ReI/ReII couple. Density functional and time-dependent density functional theory (TD-DFT) calculations provide a reasonable trend for the values of emission energies in line with the experimental photophysical data, supporting the (3)MLCT based character of the emissions. PMID:26389827

  10. Corrosion protection of copper by polypyrrole film studied by electrochemical impedance spectroscopy and the electrochemical quartz microbalance

    NASA Astrophysics Data System (ADS)

    Lei, Yanhua; Ohtsuka, Toshiaki; Sheng, Nan

    2015-12-01

    Polypyrrole (PPy) films were synthesized on copper in solution of sodium di-hydrogen phosphate and phytate for corrosion protection. The protection properties of PPy films were comparatively investigated in NaCl solution. During two months immersion, the PPy film doped with phytate anions, working as a cationic perm-selective membrane, inhibited the dissolution of copper to 1% of bare copper. Differently, the PPy film doped with di-hydrogen phosphate anions, possessing anionic perm-selectivity, was gradually reduced, and inhibited the dissolution to 7.8% of bare copper. Degradation of the PPy films was studied by comparing the electrochemical impedance spectroscopy change at different immersion time and Raman spectra change after immersion.

  11. Scanning electrochemical microscopy. 36. A combined scanning electrochemical microscope-quartz crystal microbalance instrument for studying thin films.

    PubMed

    Cliffel, D E; Bard, A J

    1998-05-01

    The design of a combined scanning electrochemical microscope-quartz crystal microbalance (SECM-QCM) with separate potential control of the tip and substrate is described. Both lateral and vertical tip movements near the substrate affect the QCM resonant frequency because of perturbations of the longitudinal and shear waves of the quartz crystal (QC) acoustic wave sensor. The SECM-QCM was used to study etching of a thin Ag layer deposited on the QC contact by generating an etchant, iron(III) tris(bipyridine), at the tip near the surface. The SECM-QCM was also used to monitor film mass and surrounding electrolyte composition during potential cycling of a film of C(60) on an electrode. PMID:21651290

  12. Electrochemical Study of Hydrocarbon-Derived Electrolytes for Supercapacitors

    NASA Astrophysics Data System (ADS)

    Noorden, Zulkarnain A.; Matsumoto, Satoshi

    2013-10-01

    In this paper, we evaluate the essential electrochemical properties - capacitive and resistive behaviors - of hydrocarbon-derived electrolytes for supercapacitor application using cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The electrolytes were systematically prepared from three hydrocarbon-derived compounds, which have different molecular structures and functional groups, by treatment with high-concentration sulfuric acid (H2SO4) at room temperature. Two-electrode cells were assembled by sandwiching an electrolyte-containing glass wool separator with two active electrodes of activated carbon sheets. The dc electrical properties of the tested cells in terms of their capacitive behavior were investigated by CV, and in order to observe the frequency characteristics of the constructed cells, EIS was carried out. Compared with the tested cell with only high-concentration H2SO4 as the electrolyte, the cell with the derived electrolytes exhibit a capacitance as high as 135 F/g with an improved overall internal resistance of 2.5 Ω. Through the use of a simple preparation method and low-cost precursors, hydrocarbon-derived electrolytes could potentially find large-scale and higher-rating supercapacitor applications.

  13. Electrochemical and spectroscopic studies of carbon electrodes in lithium battery electrolyte systems

    NASA Astrophysics Data System (ADS)

    Chusid, O.; Ein Ely, E.; Aurbach, D.; Babai, M.; Carmeli, Y.

    1993-03-01

    In this work we studied several parameters that influence the intercalation of lithium ions into carbons (e.g. carbon type, binder and solution composition). The carbons investigated included carbon blacks (e.g. acetylene black, Ketjen black), graphite and carbon fibers. The solvents used in this study include methyl formate, propylene and ethylene carbonate, ethers (e.g. tetrahydrofuran) and their mixtures. The salts included LiClO 4, LiAsF 6 and LiBF 4. CO 2 was tested as an additive. The electrochemical behavior of the electrodes in solutions was followed by chronopotentiometry in galvanostatic charge/discharge cycling and their surface chemistry in solutions was investigated using surface sensitive Fourier-transform infrared spectroscopy (FT-IR) in transmittance, attenuated total reflectance and diffuse reflectance modes. It was found that the solvents and salts are reduced on the carbon electrodes at low potentials to form surface films. In general, their surface chemistry is quite similar to that of lithium or noble metal electrodes at low potential (in the same solutions). The electrochemical behavior of the carbon electrodes in terms of degree of intercalation and its reversibility is strongly affected by their surface chemistry. Reversible intercalation was obtained with graphite in methyl formate solutions containing CO 2. Some degree of reversible intercalation was also obtained with graphite in ethers. The presence of propylene carbonate in solution is detrimental for lithium intercalation in graphite. Reversible lithium-carbon intercalation was also obtained with acetylene black and carbonized polyacrylonitrile. The binder types have a strong impact on the electrode's performance. Preliminary guidelines for optimizing the performance of carbon electrodes as anodes in rechargeable lithium battery are discussed.

  14. A Study of Additional Costs of Second Language Instruction.

    ERIC Educational Resources Information Center

    McEwen, Nelly

    A study was conducted whose primary aim was to identify and explain additional costs incurred by Alberta, Canada school jurisdictions providing second language instruction in 1980. Additional costs were defined as those which would not have been incurred had the second language program not been in existence. Three types of additional costs were…

  15. In situ electrochemical studies of lithium-ion battery cathodes using atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Ramdon, Sanjay; Bhushan, Bharat; Nagpure, Shrikant C.

    2014-03-01

    Lithium-ion (Li-ion) batteries have been implemented for numerous applications, including plug-in hybrid electric vehicles (PHEV) and pure electric vehicles (EV). In an effort to prolong battery life, it is important to understand the mechanisms that cause reduced battery capacity with aging. Past studies have shown that morphological changes occur in aged cathodes. In situ electrochemical studies using atomic force microscopy allow for the direct observation of the morphology of the Li-ion battery cathode, at a nanometer scale resolution, during the cycling of an electrochemical cell. A simple electrochemical cell designed for in situ characterization is introduced. Charge/discharge curves and morphology data obtained during charging and discharging of cells are presented, and relevant mechanisms are discussed.

  16. An electrochemical study of a liquid crystal used in information displays

    NASA Technical Reports Server (NTRS)

    Oglesby, D. M.; Kern, J. B.; Robertson, J. B.

    1974-01-01

    The operational lifetime of liquid crystal displays were investigated. Electrochemical reaction at the electrodes of the display can cause failure after 2000 to 3000 hours of operation. Studies using cyclic voltametry of electrochemical reactions of N (p-methoxybenzilidene p-butylaniline (MBBA), a nematic liquid crystal were made. These studies indicate the presence of a reversible reduction of MBBA at the cathode, and that the reduction product undergoes a further reaction leading to products which are not reversibly oxidized. It is concluded that the degradation of the liquid crystal in displays can be reduced with a suitable frequency of alternating voltage.

  17. Electrochemical Studies on Silicate and Bicarbonate Ions for Corrosion Inhibitors

    NASA Astrophysics Data System (ADS)

    Mohorich, Michael E.; Lamb, Joshua; Chandra, Dhanesh; Daemen, Jaak; Rebak, Raul B.

    2010-10-01

    Several types of carbon and high-strength low-alloy (HSLA) steels are being considered for use in the underground reinforcement of the Yucca Mountain Nuclear Waste Repository. In this study, potentiodynamic polarization under reducing conditions was used to determine the corrosion rates (CRs) and passivity behavior of AISI 4340 steel using different combinations of sodium silicate (Na2SiO3) and sodium bicarbonate (NaHCO3), in both pure water (PW) and simulated seawater (SW, 3.5 pct NaCl). These experiments were carried out to examine the potential inhibiting properties of the silicate or bicarbonate ions on the surface of the steel. The addition of sodium silicate to solution reduced the observed CR at room temperature to 19 μm/y at 0.005 M concentration and 7 μm/y at 0.025 M concentration in PW. The addition of sodium bicarbonate increased the CR from 84 μm/y (C = 0.1 M) to 455 μm/y (C = 1 M). These same behaviors were also observed at higher temperatures.

  18. Electrochemical corrosion and modeling studies of types 7075 and 2219 aluminum alloys in a nitric acid + ferric sulfate deoxidizer solution

    NASA Astrophysics Data System (ADS)

    Savas, Terence P.

    The corrosion behavior of types 7075-T73 and 2219-T852 high strength aluminum alloys have been investigated in a HNO3 + Fe2(SO 4)3 solution. The materials are characterized in the time domain using the electrochemical noise resistance parameter (Rn) and in the frequency-domain using the spectral noise impedance parameter ( Rsn). The Rsn parameter is derived from an equivalent electrical circuit model that represents the corrosion test cell schematic used in the present study. These calculated parameters are correlated to each other, and to corresponding scanning electron microscopy (SEM) examinations of the corroded surfaces. In addition, energy dispersive spectroscopy (EDS) spectra are used in conjunction with SEM exams for particle mapping and identification. These constituent particles are characterized with respect to their size and composition and their effect on the localized corrosion mechanisms taking place. Pitting mechanisms are identified as 'circumferential' where the particles appeared noble with respect to the aluminum matrix and by 'selective dissolution' where they are anodic to the aluminum matrix. The electrochemical data are found to be in good agreement with the surface examinations. Specifically, the electrochemical parameters Rn and Rsn were consistent in predicting the corrosion resistance of 7075-T73 to be lower than for the 2219-T852 alloy. Other characteristic features used in understanding the corrosion mechanisms include the open circuit potential (OCP) and coupling-current time records.

  19. A Micro-Electrochemical Study of Friction Stir Welded Aluminum 6061-T6

    NASA Technical Reports Server (NTRS)

    Hintze, Paul E.; Calle, Luz M.

    2005-01-01

    The corrosion behavior of friction stir welded Aluminum alloy 606 1-T6 was studied using a micro-electrochemical cell. The micro-electrochemical cell has a measurement area of about 0.25 square mm which allows for measurement of corrosion properties at a very small scale. The corrosion and breakdown potentials were measured at many points inside and outside the weld along lines perpendicular to the weld. The breakdown potential is approximately equal inside and outside the weld; however, it is lower in the narrow border between the weld and base material. The results of electrochemical measurements were correlated to micro-structural analysis. The corrosion behavior of the friction stir welded samples was compared to tungsten inert gas (TIG) welded samples of the same material.

  20. Stress Corrosion Cracking Study of Aluminum Alloys Using Electrochemical Noise Analysis

    NASA Astrophysics Data System (ADS)

    Rathod, R. C.; Sapate, S. G.; Raman, R.; Rathod, W. S.

    2013-12-01

    Stress corrosion cracking studies of aluminum alloys AA2219, AA8090, and AA5456 in heat-treated and non heat-treated condition were carried out using electrochemical noise technique with various applied stresses. Electrochemical noise time series data (corrosion potential vs. time) was obtained for the stressed tensile specimens in 3.5% NaCl aqueous solution at room temperature (27 °C). The values of drop in corrosion potential, total corrosion potential, mean corrosion potential, and hydrogen overpotential were evaluated from corrosion potential versus time series data. The electrochemical noise time series data was further analyzed with rescaled range ( R/ S) analysis proposed by Hurst to obtain the Hurst exponent. According to the results, higher values of the Hurst exponents with increased applied stresses showed more susceptibility to stress corrosion cracking as confirmed in case of alloy AA 2219 and AA8090.

  1. Electrochemical studies on niobium triselenide cathode material for lithium rechargeable cells

    NASA Technical Reports Server (NTRS)

    Ratnakumar, B. V.; Ni, C. L.; Di Stefano, S.; Nagasubramanian, G.; Bankston, C. P.

    1989-01-01

    The electrochemical behavior of NbSe3 in the battery electrolyte 1.5M LiAsF6/2Me-THF is reported. A detailed study has been carried out using various ac and dc electrochemical techniques to establish the mechanism of intercalation of three equivalents of Li with NbSe3 as well as the rate governing processes in the reduction of NbSe3. An equivalent circuit has been formulated to represent the NbSe3-solution interface. The kinetic parameters for the reduction of NbSe3 were evaluated from the ac and dc measurements. The structural change in NbSe3 on lithiation during initial discharge which results in higher cell voltages and different electrochemical response as compared to virgin NbSe3 was identified to be a loss of crystallographic order.

  2. Comparative studies on electrochemical cycling behavior of two different silica-based ionogels

    NASA Astrophysics Data System (ADS)

    Wang, Shuang; Hsia, Ben; Alper, John P.; Carraro, Carlo; Wang, Zhe; Maboudian, Roya

    2016-01-01

    We report a comparative study of two silica-based ionogel electrolytes for electrochemical cycling applications. The ionogels considered represent two classes of gel networks, a covalently formed network generated by the polymerization of tetramethoxysilane catalyzed by formic acid, and a network formed by weak intermolecular forces obtained by mixing fumed silica nanopowder with ionic liquid. In both cases, 1-ethyl-3-methylimidazolium bis (trifluoromethylsulfonyl) imide is utilized as the ion conductor in the gel network. With increasing temperature it is shown that the electrochemical stability window is reduced, the conductivity of the electrolyte is increased, and the double layer capacitance is increased for both types of ionogels. Long-term stability of the two ionogels is excellent, with 90% capacitance retained after 10,000 repetitive CV cycles at 100 °C. Our results indicate that both of these ionogel electrolytes are promising for application in solid-state electrochemical systems at high temperature.

  3. Study on synthesis and electrochemical properties of hematite nanotubes for energy storage in supercapacitor

    SciTech Connect

    Nathan, D. Muthu Gnana Theresa; Sagayaraj, P.

    2015-06-24

    Hematite nanotubes (α-Fe{sub 2}O{sub 3} NTs) are synthesized via a cost-effective and environmental-friendly hydrothermal technique. Field emission scanning electron microscopy and X-ray powder diffraction analyses reveal the formation of α-Fe{sub 2}O{sub 3} NTs with high crystallinity and purity. Optical behavior of α-Fe{sub 2}O{sub 3} NTs is studied employing UV-visible spectroscopy. Electrochemical properties of the as-prepared electrode material are investigated by cyclic voltammetry, chronopotentiometry and electrochemical impedance spectroscopy in a three electrode cell. The synthesized α-Fe{sub 2}O{sub 3} NTs present enhanced pseudocapacitive performance with high specific capacity of 230 Fg{sup −1} at current density of 1 Ag{sup −1}. The prepared α-Fe{sub 2}O{sub 3} NTs can be utilized as a potential electrode material for electrochemical capacitor applications.

  4. The influence of nanopore dimensions on the electrochemical properties of nanopore arrays studied by impedance spectroscopy.

    PubMed

    Kant, Krishna; Priest, Craig; Shapter, Joe G; Losic, Dusan

    2014-01-01

    The understanding of the electrochemical properties of nanopores is the key factor for better understanding their performance and applications for nanopore-based sensing devices. In this study, the influence of pore dimensions of nanoporous alumina (NPA) membranes prepared by an anodization process and their electrochemical properties as a sensing platform using impedance spectroscopy was explored. NPA with four different pore diameters (25 nm, 45 nm and 65 nm) and lengths (5 μm to 20 μm) was used and their electrochemical properties were explored using different concentration of electrolyte solution (NaCl) ranging from 1 to 100 μM. Our results show that the impedance and resistance of nanopores are influenced by the concentration and ion species of electrolytes, while the capacitance is independent of them. It was found that nanopore diameters also have a significant influence on impedance due to changes in the thickness of the double layer inside the pores. PMID:25393785

  5. Electrochemical, interfacial, and surface studies of the conversion of carbon dioxide to liquid fuels on tin electrodes

    NASA Astrophysics Data System (ADS)

    Wu, Jingjie

    The electrochemical reduction of carbon dioxide (CO2) into liquid fuels especially coupling with the intermittent renewable electricity offers a promising means of storing electricity in chemical form, which reduces the dependence on fossil fuels and mitigates the negative impact of anthropogenic CO2 emissions on the planet. Although converting CO2 to fuels is not in itself a new concept, the field has not substantially advanced in the last 30 years primarily because of the challenge of discovery of structural electrocatalysts and the development of membrane architectures for efficient collection of reactants and separation of products. An efficient catalyst for the electrochemical conversion of CO2 to fuels must be capable of mediating a proton-coupled electron transfer reaction at low overpotentials, reducing CO2 in the presence of water, selectively converting CO 2 to desirable chemicals, and sustaining long-term operations (Chapter 1). My Ph.D. research was an investigation of the electroreduction of CO2 on tin-based electrodes and development of an electrochemical cell to convert CO2 to liquid fuels. The initial study focused on understanding the CO2 reduction reaction chemistry in the electrical double layer with an emphasis on the effects of electrostatic adsorption of cations, specific adsorption of anion and electrolyte concentration on the potential and proton concentration at outer Helmholtz plane at which reduction reaction occurs. The variation of potential and proton concentration at outer Helmholtz plane accounts for the difference in activity and selectivity towards CO2 reduction when using different electrolytes (Chapter 2). Central to the highly efficient CO2 reduction is an optimum microstructure of catalyst layer in the Sn gas diffusion electrode (GDE) consisting of 100 nm Sn nanoparticles to facilitate gas diffusion and charge transfer. This microstructure in terms of the proton conductor fraction and catalyst layer thickness was optimized to

  6. In situ anodization of aluminum surfaces studied by x-ray reflectivity and electrochemical impedance spectroscopy

    SciTech Connect

    Bertram, F. Evertsson, J.; Messing, M. E.; Mikkelsen, A.; Lundgren, E.; Zhang, F.; Pan, J.; Carlà, F.; Nilsson, J.-O.

    2014-07-21

    We present results from the anodization of an aluminum single crystal [Al(111)] and an aluminum alloy [Al 6060] studied by in situ x-ray reflectivity, in situ electrochemical impedance spectroscopy and ex situ scanning electron microscopy. For both samples, a linear increase of oxide film thickness with increasing anodization voltage was found. However, the slope is much higher in the single crystal case, and the break-up of the oxide film grown on the alloy occurs at a lower anodization potential than on the single crystal. The reasons for these observations are discussed as are the measured differences observed for x-ray reflectivity and electrochemical impedance spectroscopy.

  7. In situ anodization of aluminum surfaces studied by x-ray reflectivity and electrochemical impedance spectroscopy

    NASA Astrophysics Data System (ADS)

    Bertram, F.; Zhang, F.; Evertsson, J.; Carlà, F.; Pan, J.; Messing, M. E.; Mikkelsen, A.; Nilsson, J.-O.; Lundgren, E.

    2014-07-01

    We present results from the anodization of an aluminum single crystal [Al(111)] and an aluminum alloy [Al 6060] studied by in situ x-ray reflectivity, in situ electrochemical impedance spectroscopy and ex situ scanning electron microscopy. For both samples, a linear increase of oxide film thickness with increasing anodization voltage was found. However, the slope is much higher in the single crystal case, and the break-up of the oxide film grown on the alloy occurs at a lower anodization potential than on the single crystal. The reasons for these observations are discussed as are the measured differences observed for x-ray reflectivity and electrochemical impedance spectroscopy.

  8. Antileishmanial activity of quinazoline derivatives: synthesis, docking screens, molecular dynamic simulations and electrochemical studies.

    PubMed

    Mendoza-Martínez, Cesar; Galindo-Sevilla, Norma; Correa-Basurto, José; Ugalde-Saldivar, Victor Manuel; Rodríguez-Delgado, Rosa Georgina; Hernández-Pineda, Jessica; Padierna-Mota, Cecilia; Flores-Alamo, Marcos; Hernández-Luis, Francisco

    2015-03-01

    A series of quinazoline-2,4,6-triamine were synthesized and evaluated in vitro against Leishmania mexicana. Among them, N(6)-(ferrocenmethyl)quinazolin-2,4,6-triamine (H2) showed activity on promastigotes and intracellular amastigotes, as well as low cytotoxicity in mammalian cells. Docking and electrochemical studies showed the importance of both the ferrocene and the heterocyclic nucleus to the observed activity. H2 is readily oxidized electrochemically, indicating that the mechanism of action probably involves redox reactions. PMID:25576738

  9. Some recent studies with the solid-ionomer electrochemical capacitor

    NASA Technical Reports Server (NTRS)

    Sarangapani, S.; Forchione, J.; Griffith, A.; Laconti, A. B.; Baldwin, R.

    1991-01-01

    A high energy density, all solid ionomer electrochemical capacitor was developed, which is completely free of liquid electrolyte. The novel features of this device include a three dimensional metal oxide particulate ionomer composite electrode structure, and a unitized repeating cell element. The composite electrode structures are bonded to opposite sides of a thin sheet of a solid proton conducting ionomer membrane and form an integrally bonded membrane and electrode assembly (MEA). Individual MEAs can be stacked in series as bipolar elements to form a multiple cell device. The discharge characteristics and energy storage properties of these devices are described. Typical capacitance measured for a unit cell is 1 F/sq cm. Life testing of a multicell capacitor on an intermittent basis has shown, that over a 10,000 hour period, the capacitance and resistance of the cell has remained invariant. There has been no maintenance required on the device since it was fabricated. Other multicell units of shorter life duration have exhibited similar reliable performance characteristics.

  10. Some Recent Studies With the Solid-Ionomer Electrochemical Capacitor

    NASA Technical Reports Server (NTRS)

    Sarangapani, S.; Forchione, J.; Griffith, A.; LaConti, A.; Baldwin, R.

    1991-01-01

    Giner, Inc., has developed a high-energy-density, all-solid-ionomer electro-chemical capacitor, completely free of liquid electrolyte. The novel features of this device include: (1) a three-dimensional metal oxide-particulate-ionomer composite electrode structure and (2) a unitized repeating cell element. The composite electrode structures are bonded to opposite sides of a thin sheet of a solid proton-conducting ionomer membrane and form an integrally bonded membrane and electrode assembly (MEA). Individual MEAs can be stacked in series as bipolar elements to form a multiple cell device. The discharge characteristics and energy storage properties of these devices are described. Typical capacitance measured for a unit cell is 1 F/cm. Life testing of a multicell capacitor on an intermittent basis has shown that, over a 10,000-hour period, the capacitance and resistance of the cell has remained invariant. There has been no maintenance required on the device since it was fabricated. Other multicell units of shorter life duration have exhibited similar reliable performance characteristics. Recent work has focused on increasing the capacitance of the unitized structure and improving the low-temperature characteristics. The approaches and experimental results will be presented. Some possible advanced NASA applications for these unique all-solid-ionomer devices will be discussed.

  11. Comparative Study of Electrochemical Performance of SnO2 Anodes with Different Nanostructures for Lithium-Ion Batteries.

    PubMed

    Sun, Yan-Hui; Dong, Pei-Pei; Lang, Xu; Chen, Hong-Yu; Nan, Jun-Min

    2015-08-01

    Powders composed of SnO2 nanostructures including microporous nanospheres, mesoporous nanospheres and nanosheets were synthesized by the direct hydrothermal hydrolyzation of SnCl4, hydrothermal hydrolyzation of SnCl4 using glucose as a soft template and precipitation of SnCl2 ∙ 2H20 using oxalic acid as a precipitant, respectively. The electrochemical performance of the three samples used as the anode of a lithium ion battery was determined using galvanostatic discharge/charge tests and electrochemical impedance spectroscopy. Among of them, the anode composed of microporous SnO2 nanospheres demonstrated outstanding initial discharge and charge capacities of 2480 and 1510 mAh g-1, respectively, with a coulombic efficiency of 60.9% at a current density of 78 mA g-1 (0.1 C). In addition, high initial discharge and charge capacities of 1398 mAh g-1 and 950 mAh g-1, respectively, with a coulombic efficiency of 67.95% were obtained even at a high current density of 550 mA g-1 (0.7 C). Moreover, a reversible capacity of 500 mAh g-1 with a coulombic efficiency of 99.95% was attained even after 50 discharging/charging cycles at 550 mA g-1 (0.7 C). This superior electrochemical performance of the SnO2 anodes can be attributed to the large specific surface area (172.7 m2 g-1), small crystal size (approximately 15 nm) and the interstitial microporous pores (<2 nm) of the particles, which favored lithium-ion diffusion and insertion/desertion at the surface of SnO2 and decreased the polarization and the volume expansion of SnO2. Moreover, the resistance of the cell and Li+ diffusion coefficient were studied by electrochemical impedance spectroscopy. PMID:26369165

  12. Combined Photoemission Spectroscopy and Electrochemical Study of a Mixture of (Oxy)carbides as Potential Innovative Supports and Electrocatalysts.

    PubMed

    Calvillo, Laura; Valero-Vidal, Carlos; Agnoli, Stefano; Sezen, Hikmet; Rüdiger, Celine; Kunze-Liebhäuser, Julia; Granozzi, Gaetano

    2016-08-01

    Active and stable non-noble metal materials, able to substitute Pt as catalyst or to reduce the Pt amount, are vitally important for the extended commercialization of energy conversion technologies, such as fuel cells and electrolyzers. Here, we report a fundamental study of nonstoichiometric tungsten carbide (WxC) and its interaction with titanium oxycarbide (TiOxCy) under electrochemical working conditions. In particular, the electrochemical activity and stability of the WxC/TiOxCy system toward the ethanol electrooxidation reaction (EOR) and hydrogen evolution reaction (HER) are investigated. The chemical changes caused by the applied potential are established by combining photoemission spectroscopy and electrochemistry. WxC is not active toward the ethanol electrooxidation reaction at room temperature but it is highly stable under these conditions thanks to the formation of a passive thin film on the surface, consisting mainly of WO2 and W2O5, which prevents the full oxidation of WxC. In addition, WxC is able to adsorb ethanol, forming ethoxy groups on the surface, which constitutes the first step for the ethanol oxidation. The interaction between WxC and TiOxCy plays an important role in the electrochemical stability of WxC since specific orientations of the substrate are able to stabilize WxC and prevent its corrosion. The beneficial interaction with the substrate and the specific surface chemistry makes tungsten carbide a good electrocatalyst support or cocatalyst for direct ethanol fuel cells. However, WxC is active toward the HER and chemically stable under hydrogen reduction conditions, since no changes in the chemical composition or dissolution of the film are observed. This makes tungsten carbide a good candidate as electrocatalyst support or cocatalyst for the electrochemical production of hydrogen. PMID:27399154

  13. Electrochemical cell

    DOEpatents

    Redey, L.I.; Vissers, D.R.; Prakash, J.

    1996-07-16

    An electrochemical cell is described having a bimodal positive electrode, a negative electrode of an alkali metal, and a compatible electrolyte including an alkali metal salt molten at the cell operating temperature. The positive electrode has an electrochemically active layer of at least one transition metal chloride at least partially present as a charging product, and additives of bromide and/or iodide and sulfur in the positive electrode or the electrolyte. Electrode volumetric capacity is in excess of 400 Ah/cm{sup 3}; the cell can be 90% recharged in three hours and can operate at temperatures below 160 C. There is also disclosed a method of reducing the operating temperature and improving the overall volumetric capacity of an electrochemical cell and for producing a positive electrode having a BET area greater than 6{times}10{sup 4}cm{sup 2}/g of Ni. 6 figs.

  14. Electrochemical cell

    DOEpatents

    Redey, Laszlo I.; Vissers, Donald R.; Prakash, Jai

    1994-01-01

    An electrochemical cell having a bimodal positive electrode, a negative electrode of an alkali metal, and a compatible electrolyte including an alkali metal salt molten at the cell operating temperature. The positive electrode has an electrochemically active layer of at least one transition metal chloride at least partially present as a charging product, and additives of bromide and/or iodide and sulfur in the positive electrode or the electrolyte. Electrode volumetric capacity is in excess of 400 Ah/cm.sup.3 ; the cell can be 90% recharged in three hours and can operate at temperatures below 160.degree. C. There is also disclosed a method of reducing the operating temperature and improving the overall volumetric capacity of an electrochemical cell and for producing a positive electrode having a BET area greater than 6.times.10.sup.4 cm.sup.2 /g of Ni.

  15. Electrochemical cell

    DOEpatents

    Redey, Laszlo I.; Vissers, Donald R.; Prakash, Jai

    1996-01-01

    An electrochemical cell having a bimodal positive electrode, a negative electrode of an alkali metal, and a compatible electrolyte including an alkali metal salt molten at the cell operating temperature. The positive electrode has an electrochemically active layer of at least one transition metal chloride at least partially present as a charging product, and additives of bromide and/or iodide and sulfur in the positive electrode or the electrolyte. Electrode volumetric capacity is in excess of 400 Ah/cm.sup.3 ; the cell can be 90% recharged in three hours and can operate at temperatures below 160.degree. C. There is also disclosed a method of reducing the operating temperature and improving the overall volumetric capacity of an electrochemical cell and for producing a positive electrode having a BET area greater than 6.times.10.sup.4 cm.sup.2 /g of Ni.

  16. Electrochemical cell

    DOEpatents

    Redey, L.I.; Vissers, D.R.; Prakash, J.

    1994-02-01

    An electrochemical cell is described having a bimodal positive electrode, a negative electrode of an alkali metal, and a compatible electrolyte including an alkali metal salt molten at the cell operating temperature. The positive electrode has an electrochemically active layer of at least one transition metal chloride at least partially present as a charging product, and additives of bromide and/or iodide and sulfur in the positive electrode or the electrolyte. Electrode volumetric capacity is in excess of 400 Ah/cm[sup 3]; the cell can be 90% recharged in three hours and can operate at temperatures below 160 C. There is also disclosed a method of reducing the operating temperature and improving the overall volumetric capacity of an electrochemical cell and for producing a positive electrode having a BET area greater than 6[times]10[sup 4] cm[sup 2]/g of Ni. 8 figures.

  17. Electrochemical studies of Copper, Tantalum and Tantalum Nitride surfaces in aqueous solutions for applications in chemical-mechanical and electrochemical-mechanical planarization

    NASA Astrophysics Data System (ADS)

    Sulyma, Christopher Michael

    This report will investigate fundamental properties of materials involved in integrated circuit (IC) manufacturing. Individual materials (one at a time) are studied in different electrochemical environmental solutions to better understand the kinetics associated with the polishing process. Each system tries to simulate a real CMP environment in order to compare our findings with what is currently used in industry. To accomplish this, a variety of techniques are used. The voltage pulse modulation technique is useful for electrochemical processing of metal and alloy surfaces by utilizing faradaic reactions like electrodeposition and electrodissolution. A theoretical framework is presented in chapter 4 to facilitate quantitative analysis of experimental data (current transients) obtained in this approach. A typical application of this analysis is demonstrated for an experimental system involving electrochemical removal of copper surface layers, a relatively new process for abrasive-free electrochemical mechanical planarization of copper lines used in the fabrication of integrated circuits. Voltage pulse modulated electrodissolution of Cu in the absence of mechanical polishing is activated in an acidic solution of oxalic acid and hydrogen peroxide. The current generated by each applied voltage step shows a sharp spike, followed by a double-exponential decay, and eventually attains the rectangular shape of the potential pulses. For the second system in chapter 5, open-circuit potential measurements, cyclic voltammetry and Fourier transform impedance spectroscopy have been used to study pH dependent surface reactions of Cu and Ta rotating disc electrodes (RDEs) in aqueous solutions of succinic acid (SA, a complexing agent), hydrogen peroxide (an oxidizer), and ammonium dodecyl sulfate (ADS, a corrosion inhibitor for Cu). The surface chemistries of these systems are relevant for the development of a single-slurry approach to chemical mechanical planarization (CMP) of Cu

  18. Electrochemical performance studies of MnO{sub 2} nanoflowers recovered from spent battery

    SciTech Connect

    Ali, Gomaa A.M.; Tan, Ling Ling; Jose, Rajan; Yusoff, Mashitah M.; Chong, Kwok Feng

    2014-12-15

    Highlights: • MnO{sub 2} is recovered from spent zinc–carbon batteries as nanoflowers structure. • Recovered MnO{sub 2} nanoflowers show high specific capacitance. • Recovered MnO{sub 2} nanoflowers show stable electrochemical cycling up to 900 cycles. • Recovered MnO{sub 2} nanoflowers show low resistance in EIS data. - Abstract: The electrochemical performance of MnO{sub 2} nanoflowers recovered from spent household zinc–carbon battery is studied by cyclic voltammetry, galvanostatic charge/discharge cycling and electrochemical impedance spectroscopy. MnO{sub 2} nanoflowers are recovered from spent zinc–carbon battery by combination of solution leaching and electrowinning techniques. In an effort to utilize recovered MnO{sub 2} nanoflowers as energy storage supercapacitor, it is crucial to understand their structure and electrochemical performance. X-ray diffraction analysis confirms the recovery of MnO{sub 2} in birnessite phase, while electron microscopy analysis shows the MnO{sub 2} is recovered as 3D nanostructure with nanoflower morphology. The recovered MnO{sub 2} nanoflowers exhibit high specific capacitance (294 F g{sup −1} at 10 mV s{sup −1}; 208.5 F g{sup −1} at 0.1 A g{sup −1}) in 1 M Na{sub 2}SO{sub 4} electrolyte, with stable electrochemical cycling. Electrochemical data analysis reveal the great potential of MnO{sub 2} nanoflowers recovered from spent zinc–carbon battery in the development of high performance energy storage supercapacitor system.

  19. Single cells and intracellular processes studied by a plasmonic-based electrochemical impedance microscopy

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Foley, Kyle; Shan, Xiaonan; Wang, Shaopeng; Eaton, Seron; Nagaraj, Vinay J.; Wiktor, Peter; Patel, Urmez; Tao, Nongjian

    2011-03-01

    Electrochemical impedance spectroscopy is a crucial tool for the detection and study of various biological substances, from DNA and proteins to viruses and bacteria. It does not require any labelling species, and methods based on it have been developed to study cellular processes (such as cell spreading, adhesion, invasion, toxicology and mobility). However, data have so far lacked spatial information, which is essential for investigating heterogeneous processes and imaging high-throughput microarrays. Here, we report an electrochemical impedance microscope based on surface plasmon resonance that resolves local impedance with submicrometre spatial resolution. We have used an electrochemical impedance microscope to monitor the dynamics of cellular processes (apoptosis and electroporation of individual cells) with millisecond time resolution. The high spatial and temporal resolution makes it possible to study individual cells, but also resolve subcellular structures and processes without labels, and with excellent detection sensitivity (~2 pS). We also describe a model that simulates cellular and electrochemical impedance microscope images based on local dielectric constant and conductivity.

  20. Electrophoretic deposition of bioactive glass coating on 316L stainless steel and electrochemical behavior study

    NASA Astrophysics Data System (ADS)

    Mehdipour, Mehrad; Afshar, Abdollah; Mohebali, Milad

    2012-10-01

    In this research, submicron bioactive glass (BG) particles were synthesized by a sol-gel process and were then coated on a 316L stainless steel substrate using an electrophoretic deposition (EPD) technique. Stable suspension of bioactive glass powders in ethanol solvent was prepared by addition of triethanol amine (TEA), which increased zeta potential from 16.5 ± 1.6 to 20.3 ± 1.4 (mv). Thickness, structure and electrochemical behavior of the coating were characterized. SEM studies showed that increasing EPD voltage leads to a coating with more agglomerated particles, augmented porosity and micro cracks. The results of Fourier transformed infrared (FTIR) spectroscopy revealed the adsorption of TEA via methyl and amid groups on bioactive glass particles. Presence of bioactive glass coating reduced corrosion current density (icorr) and shifted corrosion potential (Ecorr) toward more noble values in artificial saliva at room temperature. Percent porosity of the coating measured by potentiodynamic polarization technique increased as EPD voltage was raised. The results of impedance spectroscopic studies demonstrated that the coating acts as a barrier layer in artificial saliva.

  1. Electrochemical & osteoblast adhesion study of engineered TiO2 nanotubular surfaces on titanium alloys.

    PubMed

    Rahman, Zia Ur; Haider, Waseem; Pompa, Luis; Deen, K M

    2016-01-01

    TiO2 nanotubes were grafted on the surface of cpTi, Ti6Al4V and Ti6Al4V-ELI with the aim to provide a new podium for human pre-osteoblast cell (MC3T3) adhesion and proliferation. The surface morphology and chemistry of these alloys were examined with scanning electron microscopy and energy dispersive x-ray spectroscopy. TiO2 nanotubes were further characterized by cyclic potentiodynamic polarization tests and electrochemical impedance spectroscopy. The vertically aligned nanotubes were subjected to pre-osteoblast cell proliferation in order to better understand cell-material interaction. The study demonstrated that these cells interact differently with nanotubes of different titanium alloys. The significant acceleration in the growth rate of pre-osteoblast cell adhesion and proliferation is also witnessed. Additionally, the cytotoxicity of the leached metal ions was evaluated by using a tetrazolium-based bio-assay, MTS. Each group of data was operated for p<0.05, concluded one way ANOVA to investigate the significance difference. PMID:26478299

  2. Studies on electrochemical sodium storage into hard carbons with binder-free monolithic electrodes

    NASA Astrophysics Data System (ADS)

    Hasegawa, George; Kanamori, Kazuyoshi; Kannari, Naokatsu; Ozaki, Jun-ichi; Nakanishi, Kazuki; Abe, Takeshi

    2016-06-01

    Hard carbons emerge as one of the most promising candidate for an anode of Na-ion batteries. This research focuses on the carbon monolith derived from resorcinol-formaldehyde (RF) gels as a model hard carbon electrode. A series of binder-free monolithic carbon electrodes heat-treated at varied temperatures allow the comparative investigation of the correlation between carbon nanotexture and electrochemical Na+-ion storage. The increase in carbonization temperature exerts a favorable influence on electrode performance, especially in the range between 1600 °C and 2500 °C. The comparison between Li+- and Na+-storage behaviors in the carbon electrodes discloses that the Na+-trapping in nanovoids is negligible when the carbonization temperature is higher than 1600 °C. On the other hand, the high-temperature sintering at 2500-3000 °C enlarges the resistance for Na+-insertion into interlayer spacing as well as Na+-filling into nanovoids. In addition, the study on the effect of pore size clearly demonstrates that not the BET surface area but the surface area related to meso- and macropores is a predominant factor for the initial irreversible capacity. The outcomes of this work are expected to become a benchmark for other hard carbon electrodes prepared from various precursors.

  3. A study of the effects of phosphates on copper corrosion in drinking water: Copper release, electrochemical, and surface analysis approach

    NASA Astrophysics Data System (ADS)

    Kang, Young C.

    The following work is the study to evaluate the impact of corrosion inhibitors on the copper metal in drinking water and to investigate the corrosion mechanism in the presence and absence of inhibitors. Electrochemical experiments were conducted to understand the effect of specific corrosion inhibitors in synthetic drinking water which was prepared with controlled specific water quality parameters. Water chemistry was studied by Inductively Coupled Plasma--Atomic Emission Spectroscopy (ICP--AES) to investigate the copper leaching rate with time. Surface morphology, crystallinity of corrosion products, copper oxidation status, and surface composition were characterized by various solid surface analysis methods, such as Scanning Electron Microscopy/Energy--Dispersive Spectrometry (SEM/EDS), Grazing-Incidence-angle X-ray Diffraction (GIXRD), X-ray Photoelectron Spectroscopy (XPS), and Time-of-Flight Secondary Ions Mass Spectrometry (ToF-SIMS). The purpose of the first set of experiments was to test various electrochemical techniques for copper corrosion for short term before studying a long term loop system. Surface analysis techniques were carried out to identify and study the corrosion products that form on the fresh copper metal surface when copper coupons were exposed to test solutions for 2 days of experiments time. The second phase of experiments was conducted with a copper pipe loop system in a synthetic tap water over an extended period of time, i.e., 4 months. Copper release and electrochemically measured corrosion activity profiles were monitored carefully with and without corrosion inhibitor, polyphosphate. A correlation between the copper released into the solution and the electrochemically measured corrosion activities was also attempted. To investigate corrosion products on the copper pipe samples, various surface analysis techniques were applied in this study. Especially, static mass spectra acquisition and element distribution mapping were carried out

  4. Sodium molybdate - an additive of choice for enhancing the performance of AC/AC electrochemical capacitors in a salt aqueous electrolyte.

    PubMed

    Abbas, Q; Ratajczak, P; Béguin, F

    2014-01-01

    Sodium molybdate (Na2MoO4) has been used as an additive to 1 mol L(-1) lithium sulfate electrolyte for electrochemical capacitors based on activated carbon (AC) electrodes, in order to reduce the corrosion of stainless steel current collectors. We demonstrate that the MoO4(2-) anions improve the overall capacitance owing to pseudofaradaic processes. In a two-electrode cell, capacitance values of 121 F g(-1) have been achieved up to 1.6 V using 1 mol L(-1) Li2SO4 + 0.1 mol L(-1) Na2MoO4, as compared to 103 F g(-1) when 1 mol L(-1) Li2SO4 is used. Further, by using a two-electrode setup equipped with a reference electrode, we could demonstrate that, at 1.6 V, the positive electrode potential reaches a value of 0.96 V vs. NHE in 1 mol L(-1) Li2SO4, crossing the thermodynamic potential limit of oxygen evolution (Eox = 0.846 V vs. NHE), and the pitting potential, Epit = 0.95 V vs. NHE. By contrast, in 1 mol L(-1) Li2SO4 + 0.1 mol L(-1) Na2MoO4, the pseudofaradaic contribution occurring at -0.05 V vs. NHE due to MoO4(2-) anions drives the positive electrode to reach only 0.798 V vs. NHE. Hence, the oxidation of the AC and corrosion of the stainless steel current collector at the positive electrode are unlikely in Li2SO4 + Na2MoO4 when the capacitor operates at 1.6 V. During potentiostatic floating of the capacitor at 1.6 V for 120 hours in Li2SO4 + Na2MoO4, the capacitance and resistance remain constant at 125 F g(-1) and ~1.0 Ω, respectively, while the resistance increases from 1.4 Ω to 3.1 Ω in Li2SO4. Overall, the addition of MoO4(2-) anions to Li2SO4 aqueous electrolyte allows the capacitance to be enhanced, corrosion of the positive stainless steel current collector to be inhibited and the AC/AC electrochemical capacitor to demonstrate stable performance up to 1.6 V. PMID:25427248

  5. Electrochemical storage cell containing a substituted anisole or di-anisole redox shuttle additive for overcharge protection and suitable for use in liquid organic and solid polymer electrolytes

    DOEpatents

    Kerr, John B.; Tian, Minmin

    2000-01-01

    A electrochemical cell is described comprising an anode, a cathode, a solid polymer electrolyte, and a redox shuttle additive to protect the cell against overcharging and a redox shuttle additive to protect the cell against overcharging selected from the group consisting of: (a) a substituted anisole having the general formula (in an uncharged state): ##STR1## where R.sub.1 is selected from the group consisting of H, OCH.sub.3, OCH.sub.2 CH.sub.3, and OCH.sub.2 phenyl, and R.sub.2 is selected from the group consisting of OCH.sub.3, OCH.sub.2 CH.sub.3, OCH.sub.2 phenyl, and O.sup.- Li.sup.+ ; and (b) a di-anisole compound having the general formula (in an uncharged state): ##STR2## where R is selected from the group consisting of -OCH.sub.3 and -CH.sub.3, m is either 1 or 0, n is either 1 or 0, and X is selected from the group consisting of -OCH.sub.3 (methoxy) or its lithium salt --O.sup.- Li.sup.+. The lithium salt of the di-anisole is the preferred form of the redox shuttle additive because the shuttle anion will then initially have a single negative charge, it loses two electrons when it is oxidized at the cathode, and then moves toward the anode as a single positively charged species where it is then reduced to a single negatively charged species by gaining back two electrons.

  6. Electrochemical storage cell containing a substituted anisole or di-anisole redox shuttle additive for overcharge protection and suitable for use in liquid organic and solid polymer electrolytes

    SciTech Connect

    Kerr, John B.; Tian, Minmin

    1998-12-01

    A electrochemical cell is described comprising an anode, a cathode, a solid polymer electrolyte; and a redox shuttle additive to protect the cell against overcharging and a redox shuttle additive to protect the cell against overcharging selected from the group consisting of: (a) a substituted anisole having the general formula shown in a figure (in an uncharged state): where R{sub 1} is selected from the group consisting of H, 0CH{sub 3}, OCH{sub 2}CH{sub 3}, and OCH{sub 2}phenyl, and R{sub 2} is selected from the group consisting of OCH{sub 3}, OCH{sub 2}CH{sub 3}, OCH{sub 2} phenyl, and O{sup {minus}}Li{sup +}; and (b) a di-anisole compound having the general formula shown in a second figure (in an uncharged state): where R is selected from the group consisting of -OCH{sup 3} and -CH{sub 3}, m is either 1 or 0, n is either 1 or 0, and X is selected from the group consisting of -OCH{sub 3} (methoxy) or its lithium salt -O{sup {minus}}Li{sup +}. The lithium salt of the di-anisole is the preferred form of the redox shuttle additive because the shuttle anion will then initially have a single negative charge, it loses two electrons when it is oxidized at the cathode, and then moves toward the anode as a single positively charged species where it is then reduced to a single negatively charged species by gaining back two electrons.

  7. [Surface science instrumentation for the study of important catalytic and electrochemical interfaces

    SciTech Connect

    Not Available

    1992-01-01

    The equipment combines several standard surface science probes (uv photoelectron spectra, thermal desorption, AES) with a state-of-the art x-ray photoelectron spectrometer and integrates with a dry box and a custom electrochemical cell. After the LEED chamber was remachined, the instrument has been performing satisfactorily. Various studies using the instrument were conducted in cooperation with other groups. Si surfaces were studied before and after use as a photoanode in a photoelectrochemical cell.

  8. [Surface science instrumentation for the study of important catalytic and electrochemical interfaces]. Annual technical report

    SciTech Connect

    Not Available

    1992-12-31

    The equipment combines several standard surface science probes (uv photoelectron spectra, thermal desorption, AES) with a state-of-the art x-ray photoelectron spectrometer and integrates with a dry box and a custom electrochemical cell. After the LEED chamber was remachined, the instrument has been performing satisfactorily. Various studies using the instrument were conducted in cooperation with other groups. Si surfaces were studied before and after use as a photoanode in a photoelectrochemical cell.

  9. Effect of acid scavengers on electrochemical performance of lithium-sulfur batteries: Functional additives for utilization of LiPF6

    NASA Astrophysics Data System (ADS)

    Yim, Taeeun; Kang, Kyoung Seok; Yu, Ji-Sang; Kim, Ki Jae; Park, Min-Sik; Woo, Sang-Gil; Jeong, Goojin; Jo, Yong Nam; Im, Keun Yung; Kim, Jae-Hun; Kim, Young-Jun

    2014-08-01

    We investigated a novel approach for utilizing LiPF6 as the lithium salt for Li-S batteries and verifying its chemical reactivity with the main solvent. It is found that the main obstacle for the adoption of LiPF6 is the undesired acid-catalyzed, cascade-type polymerization reaction between cyclic ether components in the solvent and LiPF6. Therefore, several kinds of acid scavengers are proposed to enhance the chemical stability between the main solvent and LiPF6. Simple storage tests indicate that polymerization occurred as acid residue is removed from the electrolyte. Consequently, the cell with a modified electrolyte shows excellent discharge capacity and moderate retention based on its improved chemical stability. These results indicate that assuring the chemical stability is the most important factor to utilizing LiPF6 as the main lithium salt for a Li-S cell. Additionally, it is believed that an understanding of the nature of chemical reactivity will be beneficial to constructing more efficient electrolyte systems owing to enhanced electrochemical performance of many kinds of energy storage systems including Li-S, Li-air, and metal-air batteries.

  10. Electrochemical cell

    DOEpatents

    Redey, Laszlo I.; Vissers, Donald R.; Prakash, Jai

    1994-01-01

    An electrochemical cell having an alkali metal negative electrode such as sodium and a positive electrode including Ni or transition metals, separated by a .beta." alumina electrolyte and NaAlCl.sub.4 or other compatible material. Various concentrations of a bromine, iodine and/or sulfur containing additive and pore formers are disclosed, which enhance cell capacity and power. The pore formers may be the ammonium salts of carbonic acid or a weak organic acid or oxamide or methylcellulose.

  11. C2-Symmetric ferrocenyl bisthiazoles: synthesis, photophysical, electrochemical and DFT studies.

    PubMed

    Maragani, Ramesh; Gautam, Prabhat; Mobin, Shaikh M; Misra, Rajneesh

    2016-03-21

    A series of donor-acceptor ferrocenyl substituted bisthiazoles 3-8 were designed and synthesized by the Pd-catalyzed Suzuki, Heck, and Sonogashira cross-coupling reactions. Their photophysical, electrochemical and computational studies reveal strong donor-acceptor interactions. The photonic and electrochemical studies show that the ferrocenyl bisthiazoles with vinyl linkage ferrocenyl-bisthiazole 4, show better electronic communication compared to rest of the ferrocenyl bisthiazoles. The time dependent density functional theory (TD-DFT) calculation at B3LYP on the ferrocenyl substituted bisthiazoles 3-5 was performed, in which the ferrocenyl-bisthiazole 4 shows strong donor-acceptor interactions compared to the Fc-bisthiazoles 3 and 5. The thermal stability of the ferrocenyl substituted bisthiazoles 3-8 is reported, in which Fc-bisthiazole 8 shows high thermal stability. The single crystal structures of ferrocenyl-bisthiazoles 3 and 5 are reported. PMID:26866584

  12. Studies on electrochemically constructed n- and p-type photoelectrodes for use in solar energy conversion

    NASA Astrophysics Data System (ADS)

    Kang, Donghyeon

    Among several pathways to harvest solar energy, solar water splitting is one of the most efficient methods to convert solar light to hydrogen, which is a clean and easy to store chemical that has the potential to be used as a fuel source. Solar water splitting can be achieved primarily by photoelectrochemical cells (PECs), which utilize semiconductors as photoelectrodes for the water splitting reaction. Photoelectrodes play the crucial role of generating hydrogen but, to date, very few photoelectrodes have been developed that can produce hydrogen in a stable and efficient manner. Thus, development and modification of efficient, stable photoelectrodes are highly desirable to improve performance of solar water splitting PECs. This dissertation demonstrates the development of semiconductors as photoelectrodes and their modifications to advance solar energy conversion performance by newly established electrochemical synthetic routes. To improve the photoelectrochemical performance of photoelectrodes, various strategies were introduced, such as, morphology control, extrinsic doping, and the integration of catalysts. After successfully demonstrating the electrochemical synthesis of photoelectrodes, photoelectrochemical and electrochemical properties of electrodeposited photoelectrodes in PECs are discussed. The chapters can be categorized into three major themes. The first theme is the preparation of Bi-based photoanodes for the water oxidation reaction. Chapter 2 presents a study of Mo-doping into the BiVO4 photoanode to enhance charge separation properties. After Mo-doping was achieved successfully, a FeOOH oxygen evoltuion catalyst was integrated into the Mo-doped BiVO 4 photoanode to increase the water oxidation performance. Chapter 3 introduces another electrochemical synthesis method to control the morphology of Bi-based oxide photoanode materials. The second theme of this dissertation is the preparation of photocathode materials for the water reduction reaction

  13. SPECTROSCOPIC STUDIES OF MATERIALS FOR ELECTROCHEMICAL ENERGY STORAGE

    SciTech Connect

    Greenbaum, Steven G.

    2014-03-01

    Several battery materials research projects were undertaken, suing NMR spectroscopy as a primary analytical tool. These include transport proerties of liquid and solid electrolytes and structural studies of Li ion electrodes.

  14. Electrochemical Techniques for the Study of Brain Chemistry.

    ERIC Educational Resources Information Center

    Schenk, James O.; And Others

    1983-01-01

    Using ascorbic acid enzyme assays in conjunction with chronoamperometric measurements, reliable values for the principal electroactive components in the rat caudate extracellular fluid were established. Techniques used in the study are discussed. (JN)

  15. The kinetics of the oxidation of pyrite by ferric ions and dissolved oxygen: An electrochemical study

    SciTech Connect

    Holmes, P.R.; Crundwell, F.K.

    2000-01-01

    The dissolution of pyrite is important in the geochemical cycling of iron and sulphur, in the formation of acid mine drainage, and in the extraction of metals by bacterial leaching. Many researchers have studied the kinetics of dissolution, and the rate of dissolution has often been found to be half-order in ferric ions or oxygen. Previous work has not adequately explained the kinetics of dissolution of pyrite. The dissolution of pyrite is an oxidation-reduction reaction. The kinetics of the oxidation and reduction half-reactions was studied independently using electrochemical techniques of voltammetry. The kinetics of the overall reaction was studied by the electrochemical technique of potentiometry, which consisted of measuring the mixed potential of a sample of corroding pyrite in solutions of different compositions. The kinetics of the half reactions are related to the kinetics of the overall dissolution reaction by the condition that there is no accumulation of charge. This principle is used to derive expressions for the mixed potential and the rate of dissolution, which successfully describe the mixed potential measurements and the kinetics of dissolution reported in the literature. It is shown that the observations of half-order kinetics and that the oxygen in the sulphate product arises from water are both a direct consequence of the electrochemical mechanism. Thus it is concluded that the electrochemical reaction steps occurring at the mineral-solution interface control the rate of dissolution. Raman spectroscopy was used to analyze reaction products formed on the pyrite surface. The results indicated that small amounts of polysulphides form on the surface of the pyrite. However, it was also found that the mixed (corrosion) potential does not change over a 14-day leaching period. This indicates that even though polysulphide material is present on the surface, it does not influence the rate of the reactions occurring at the surface. Measurement of the

  16. An electrochemical cell for in operando studies of lithium/sodium batteries using a conventional x-ray powder diffractometer

    SciTech Connect

    Shen, Yanbin; Pedersen, Erik E.; Christensen, Mogens; Iversen, Bo B.

    2014-10-15

    An electrochemical cell has been designed for powder X-ray diffraction studies of lithium ion batteries (LIB) and sodium ion batteries (SIB) in operando with high time resolution using a conventional powder X-ray diffractometer. The cell allows for studies of both anode and cathode electrode materials in reflection mode. The cell design closely mimics that of standard battery testing coin cells and allows obtaining powder X-ray diffraction patterns under representative electrochemical conditions. In addition, the cell uses graphite as the X-ray window instead of beryllium, and it is easy to operate and maintain. Test examples on lithium insertion/extraction in two spinel-type LIB electrode materials (Li{sub 4}Ti{sub 5}O{sub 12} anode and LiMn{sub 2}O{sub 4} cathode) are presented as well as first results on sodium extraction from a layered SIB cathode material (Na{sub 0.84}Fe{sub 0.56}Mn{sub 0.44}O{sub 2})

  17. Scanning electrochemical microscopy of genomic DNA microarrays--study of adsorption and subsequent interactions.

    PubMed

    Roberts, William S; Davis, Frank; Higson, Séamus P J

    2009-07-01

    The adsorption of genomic DNA and subsequent interactions between adsorbed and solvated DNA have been studied using scanning electrochemical microscopy (SECM). Microarrays of polyethylenimine (PEI) films could be deposited on screen-printed carbon substrates using the SECM. Single stranded herring DNA was electrostatically adsorbed at the surface of the polyethylenimine. The further adsorption of complementary single stranded DNA on the surface was observed to give rise to substantial decreases in interfacial impedance at the surface as measured by increases of tip current of the order of 1-2 nA (6%). Conversely adsorption of DNA from alternate species, i.e. salmon ssDNA on herring ssDNA, yielded much smaller changes in tip current of 0.2 nA. The significance of this work is that the approach opens up the possibility for direct label-free electrochemical interrogation of DNA microarrays as an alternative to other existing optical techniques. PMID:19562194

  18. Electrochemical impedance spectroscopy studies of lithium diffusion in doped manganese oxide

    SciTech Connect

    Johnson, B.J.; Doughty, D.H.; Voigt, J.A.; Boyle, T.J.

    1996-06-01

    Cathode performance is critical to lithium ion rechargeable battery performance; effects of doping lithium manganese oxide cathode materials on cathode performance are being investigated. In this paper, Li diffusion in Al-doped LiMn{sub 2}O{sub 4} was studied and found to be controlled by the quantity of Al dopant. Electrochemical cycling was conducted at 0.5mA/cm{sub 2}; electrochemical impedance spectra were taken at open circuit potential, with impedance being measured at 65 kHz-0.01 Hz. As the Al dopant level was increased, the Li diffusion rate decreased; this was attributed to the decreased lattice parameter of the doped oxide.

  19. Electrostatic Levitation for Studies of Additive Manufactured Materials

    NASA Technical Reports Server (NTRS)

    SanSoucie, Michael P.; Rogers, Jan R.; Tramel, Terri

    2014-01-01

    The electrostatic levitation (ESL) laboratory at NASA's Marshall Space Flight Center is a unique facility for investigators studying high temperature materials. The laboratory boasts two levitators in which samples can be levitated, heated, melted, undercooled, and resolidified. Electrostatic levitation minimizes gravitational effects and allows materials to be studied without contact with a container or instrumentation. The lab also has a high temperature emissivity measurement system, which provides normal spectral and normal total emissivity measurements at use temperature. The ESL lab has been instrumental in many pioneering materials investigations of thermophysical properties, e.g., creep measurements, solidification, triggered nucleation, and emissivity at high temperatures. Research in the ESL lab has already led to the development of advanced high temperature materials for aerospace applications, coatings for rocket nozzles, improved medical and industrial optics, metallic glasses, ablatives for reentry vehicles, and materials with memory. Modeling of additive manufacturing materials processing is necessary for the study of their resulting materials properties. In addition, the modeling of the selective laser melting processes and its materials property predictions are also underway. Unfortunately, there is very little data for the properties of these materials, especially of the materials in the liquid state. Some method to measure thermophysical properties of additive manufacturing materials is necessary. The ESL lab is ideal for these studies. The lab can provide surface tension and viscosity of molten materials, density measurements, emissivity measurements, and even creep strength measurements. The ESL lab can also determine melting temperature, surface temperatures, and phase transition temperatures of additive manufactured materials. This presentation will provide background on the ESL lab and its capabilities, provide an approach to using the ESL

  20. Electrochemical treatment of Procion Black 5B using cylindrical flow reactor--a pilot plant study.

    PubMed

    Raghu, S; Basha, C Ahmed

    2007-01-10

    The paper presents the results of an efficient electrochemical treatment of Procion Black 5B--a pilot plant study. Experiments were conducted at different current densities and selected electrolyte medium using Ti/RuO2 as anode, stainless-steel as cathode in a cylindrical flow reactor. By cyclic voltammetric analysis, the best condition for maximum redox reaction rate was found to be in NaCl medium. During the various stages of electrolysis, parameters such as COD, colour, FTIR, UV-vis spectra studies, energy consumption and mass transfer coefficient were computed and presented. The experimental results showed that the electrochemical oxidation process could effectively remove colour and the chemical oxygen demand (COD) from the synthetic dye effluent. The maximum COD reduction and colour removal efficiencies were 74.05% and 100%, respectively. Probable theory, reaction mechanism and modeling were proposed for the oxidation of dye effluent. The results obtained reveal the feasibilities of application of electrochemical treatment for the degradation of Procion Black 5B. PMID:17008006

  1. Electrochemical studies of hydrogen storage in amorphous Ni[sub 64]Zr[sub 36] alloy

    SciTech Connect

    Ciureanu, M.; Ryan, D.H.; Stroem-Olsen, J.O. ); Trudeau, M.L. )

    1993-03-01

    The capacity of amorphous Ni-Zr alloys to absorb large amounts of hydrogen has been investigated recently in connection with their possible use for hydrogen storage. This property also makes them possible candidates as anodes in metal hydride-nickel hydroxide rechargeable batteries. The characteristic features of the electrochemical behavior of the amorphous Ni[sub 64]Zr[sub 36] alloy in alkaline media have been investigated. Changes occurring in both the physical state and the composition of the surface layer during chemical etching and electrochemical activation were studied by scanning electron microscopy, Auger electron spectroscopy, x-ray diffraction, and cyclic voltammetry. The kinetics of the hydrogen evolution reaction (HER) on the alloy under investigation was studied in terms of the cathodic polarization curves. The Tafel plots contain two different ranges: (i) a low-overpotential range, in which the slope of the linear [eta] versus log i is characteristic for charge transfer controlled processes; (ii) a high-overvoltage range, in which a combined mechanism, charge transfer and hydrogen diffusion into the bulk, is operative. To get information about the parameters influencing the hydrogen charging and discharging processes, chronopotentiometric experiments were performed. The changes of anodic overvoltage with time during constant current discharge were used to determine the electrochemical parameters i[sub 0] and [beta], as well as the diffusion coefficients (D) of the H atoms in the bulk of the alloy.

  2. Real-time studies of battery electrochemical reactions inside a transmission electron microscope.

    SciTech Connect

    Leung, Kevin; Hudak, Nicholas S.; Liu, Yang; Liu, Xiaohua H.; Fan, Hongyou; Subramanian, Arunkumar; Shaw, Michael J.; Sullivan, John Patrick; Huang, Jian Yu

    2012-01-01

    We report the development of new experimental capabilities and ab initio modeling for real-time studies of Li-ion battery electrochemical reactions. We developed three capabilities for in-situ transmission electron microscopy (TEM) studies: a capability that uses a nanomanipulator inside the TEM to assemble electrochemical cells with ionic liquid or solid state electrolytes, a capability that uses on-chip assembly of battery components on to TEM-compatible multi-electrode arrays, and a capability that uses a TEM-compatible sealed electrochemical cell that we developed for performing in-situ TEM using volatile battery electrolytes. These capabilities were used to understand lithiation mechanisms in nanoscale battery materials, including SnO{sub 2}, Si, Ge, Al, ZnO, and MnO{sub 2}. The modeling approaches used ab initio molecular dynamics to understand early stages of ethylene carbonate reduction on lithiated-graphite and lithium surfaces and constrained density functional theory to understand ethylene carbonate reduction on passivated electrode surfaces.

  3. Electrochemical Studies of Redox Systems for Energy Storage

    NASA Technical Reports Server (NTRS)

    Wu, C. D.; Calvo, E. J.; Yeager, E.

    1983-01-01

    Particular attention was paid to the Cr(II)/Cr(III) redox couple in aqueous solutions in the presence of Cl(-) ions. The aim of this research has been to unravel the electrode kinetics of this redox couple and the effect of Cl(1) and electrode substrate. Gold and silver were studied as electrodes and the results show distinctive differences; this is probably due to the role Cl(-) ion may play as a mediator in the reaction and the difference in state of electrical charge on these two metals (difference in the potential of zero charge, pzc). The competition of hydrogen evolution with CrCl3 reduction on these surfaces was studied by means of the rotating ring disk electrode (RRDE). The ring downstream measures the flux of chromous ions from the disk and therefore separation of both Cr(III) and H2 generation can be achieved by analyzing ring and disk currents. The conditions for the quantitative detection of Cr(2+) at the ring electrode were established. Underpotential deposition of Pb on Ag and its effect on the electrokinetics of Cr(II)/Cr(III) reaction was studied.

  4. Electrochemical Studies of Nitrate-Induced Pitting in Carbon Steel

    SciTech Connect

    Zapp, P.E.

    1998-12-07

    The phenomenon of pitting in carbon steel exposed to alkaline solutions of nitrate and chloride was studied with the cyclic potentiodynamic polarization technique. Open-circuit and pitting potentials were measured on specimens of ASTM A537 carbon steel in pH 9.73 salt solutions at 40 degrees Celsius, with and without the inhibiting nitrite ion present. Nitrate is not so aggressive a pitting agent as is chloride. Both nitrate and chloride did induce passive breakdown and pitting in nitrite-free solutions, but the carbon steel retained passivity in solutions with 0.11-M nitrite even at a nitrate concentration of 2.2 M.

  5. ESR, electrochemical and reactivity studies of antitrypanosomal palladium thiosemicarbazone complexes

    NASA Astrophysics Data System (ADS)

    Otero, Lucía; Folch, Christian; Barriga, Germán; Rigol, Carolina; Opazo, Lucia; Vieites, Marisol; Gambino, Dinorah; Cerecetto, Hugo; Norambuena, Ester; Olea-Azar, Claudio

    2008-08-01

    Cyclic voltammetry (CV) and electron spin resonance (ESR) techniques were used in the investigation of novel palladium complexes with bioactive thiosemicarbazones derived from 5-nitrofurane or 5-nitrofurylacroleine. Sixteen palladium complexes grouped in two series of the formula [PdCl 2HL] or [PdL 2] were studied. ESR spectra of the free radicals obtained by electrolytic reduction were characterized and analyzed. The ESR spectra showed two different hyperfine patterns. The stoichiometry of the complexes does not seem to affect significantly the hyperfine constants however we observed great differences between 5-nitrofurane and 5-nitrofurylacroleine derivatives. The scavenger properties of this family of compounds were lower than Trolox.

  6. The electrochemical reactions of pure In with Li and Na: anomalous electrolyte decomposition, benefits of FEC additive, phase transitions and electrode performance

    SciTech Connect

    Hawks, Samantha A; Baggetto, Loic; Bridges, Craig A; Veith, Gabriel M

    2014-01-01

    Indium thin films are evaluated as an anode material for Li-ion and Na-ion batteries (theoretical capacities of 1012 mAh g-1 for Li and 467 mAh g-1 for Na). The native surface oxides are responsible for the anomalous electrolyte decomposition during the first cycle while oxidized In species are found to be responsible for the electrolyte decomposition during the subsequent cycles. The presence of 5wt% FEC electrolyte additive suppresses the occurrence of the anomalous electrolyte decomposition during the first cycle but is not sufficient to prevent the decomposition upon further cycling from 0 to 2 V. Prevention of the anomalous decomposition can be achieved by restricting the charge cut-off, for instance at 1.1 V, or by using larger amounts of FEC. The In films show moderately good capacity retention with storage capacities when cycled with Li (950 mAh g-1) but significantly less when cycled with Na (125 mAh g-1). XRD data reveal that several known Li-In phases (i.e LiIn, Li3In2, LiIn2 and Li13In3) form during the electrochemical reaction. In contrast, the reaction with Na is severely limited. The largest amount of inserted Na is evidenced for cells short-circuited 40 hrs at 65C, for which the XRD data show the coexistence of NaIn, In, and an unknown phase. During cycling, mechanical degradation due to repeated expansion/shrinkage, evidenced by SEM, coupled with SEI formation is the primary source of the capacity fade. Finally, we show that the In thin films exhibit very high rate capability for both Li (100 C) and Na (30 C).

  7. Chemometric study on the electrochemical incineration of nitrilotriacetic acid using platinum and boron-doped diamond anode.

    PubMed

    Zhang, Chunyong; He, Zhenzhu; Wu, Jingyu; Fu, Degang

    2015-07-01

    This study investigated the electrochemical incineration of nitrilotriacetic acid (NTA) at boron-doped diamond (BDD) and platinum (Pt) anodes. Trials were performed in the presence of sulfate electrolyte media under recirculation mode. The parameters that influence the degradation efficiency were investigated, including applied current density, flow rate, supporting electrolyte concentration and reaction time. To reduce the number of experiments, the system had been managed under chemometric technique named Doehlert matrix. As a consequence, the mineralization of NTA demonstrated similar behavior upon operating parameters on these two anodes. Further kinetic study indicated that the degradations followed pseudo-first-order reactions for both BDD and Pt anodes, and the reaction rate constant of the former was found to be higher than that of the latter. Such difference could be interpreted by results from fractal analysis. In addition, a reaction sequence for NTA mineralization considering all the detected intermediates was also proposed. PMID:25747300

  8. Electrochemical studies of calcium chloride-based molten salt systems

    SciTech Connect

    Blanchard, T.P. Jr.

    1992-12-01

    Conductance and EMF studies of CaCl{sub 2}-based melts were performed in the temperature range 790--990 C. Conductivity data collected using magnesia tubes and capillaries showed deviations from the data recommended by the National Bureau of Standards. These deviations are attributed to the slow dissolution of magnesia by the CaCl{sub 2}-CaO melt. Conductivity data for molten CaCl{sub 2} using a pyrolytic boron nitride capillary were in reasonable agreement with the recommended data; however, undissolved CaO in CaCl{sub 2} may have caused blockage of the pyrolytic boron nitride capillary, resulting in fluctuations in the measured resistance. The utility of the AgCl/Ag reference electrode in CaCl{sub 2}-AgCl and CaCl{sub 2}-CaO-AgCl melts, using asbestos diaphragms and Vycor glass as reference half-cell membranes, was also investigated. Nernstian behavior was observed using both types of reference half-cell membranes in CaCl{sub 2}-AgCl melts. The AgCl/Ag reference electrode also exhibited Nernstian behavior in CaCl{sub 2}-CaO-AgCl melts using a Vycor reference half-cell membrane and a magnesia crucible. The use of CaCl{sub 2} as a solvent is of interest since it is used in plutonium metal purification, as well as various other commercial applications. 97 refs., 33 figs., 13 tabs.

  9. Comparative electrochemical studies of a nanostructured vanadium oxide electrode material in aqueous electrolyte

    NASA Astrophysics Data System (ADS)

    Soghomonian, Victoria; Yuan, Qifan; Ren, Shaola; Zukowski, Julia

    Electrochemical energy storage plays an increasing role in energy solutions. We report on a new hydrothermally synthesized vanadium oxide nanostructured material and study its performance as electrode material for insertion of various ions from aqueous solutions. The as-synthesized product is in the form of nanosheets forming quasi-spherical 3-dimensional objects. Variable temperature resistivity measurements indicate a thermally activated behavior. Electrodes are constructed, and comparative electrochemical insertion reactions of Li, Na, K and NH4 cations, over different cycle numbers, investigated. Concomitantly, morphological and microstructural changes are characterized by scanning electron microscopy, providing physical input to the observed electrochemical behavior. Specific charge is calculated. For Li and K, the specific charge decreases as the cycle number increases, while the reverse is observed for Na and NH4 cations. The trends are correlated to the morphological changes observed. The specific charge in the case of ammonium reaches 180 mAh/g after 20 cycles and continues increasing, indicating that ammonium cations may be considered as viable charge carriers for electrical energy storage system, and moreover in an aqueous electrolyte. We acknowledge support from the National Science Foundation, Grant No. DMR-1206338.

  10. In situ Raman study of Electrochemically Intercalted Bisulfate Ions in Carbon Nanotube Bundles

    NASA Astrophysics Data System (ADS)

    Sumanasekera, G. U.; Allen, J. L.; Rao, A. M.; Fang, S. L.; Eklund, P. C.

    1998-03-01

    We have investigated the electrochemical intercalation of bisulfate ions in single-walled carbon nanotubes (SWNT) using in situ Raman spectroscopy. SWNTs pressed onto a Pt plate was used as the working electrode, a Pt wire and Ag/AgCl were used, respectively, as the counter electrode and reference electrode. Sulfuric acid (95%) was used as the electrolyte. Using Raman scattering we have observed an apparent rapid spontaneous reaction involving charge transfer between ionically bonded HSO_4^- anions and the nanotubes. This is evidenced by an instantaneous shift of the Raman-active tangential mode frequency from 1593 cm -1 to 1604 cm-1 (It was not possible to reverse this shift electrochemically to 1593 cm-1, even at the expense of large reverse bias). In forward bias, after this initial instantaneous reaction, the tangential mode frequency again upshifted from 1604 cm-1 to 1614 cm-1 linearly with external electrochemical charge Q. From the slope of ω(Q) we found in this regime, δω/δ f= 1220 cm-1 (f = holes/carbon). Upon further charging, a second regime with slope δω/δ f = 118 cm-1 was observed where the frequency upshifted from 1614 cm-1 to 1620 cm-1. The results are compared to similar studies in C_p^+HSO_4^-.xH_2SO4 graphite intercalation compounds.

  11. Electrochemical studies on niobium triselenide cathode material for lithium rechargeable cells

    SciTech Connect

    Ratnakumar, B.V.; Ni, C.L.; DiStefano, S.; Nagasubramanian, G.; Bankston, C.P.

    1989-01-01

    Niobium triselenide offers promise as a high energy density cathode material for ambient temperature lithium rechargeable cells. The electrochemical behavior of NbSe/sub 3/ in the battery electrolyte, i.e., 1.5m LiAsF/sub 6//2 Me-THF is reported here. A detailed study has been carried out using various ac and dc electrochemical techniques to establish the mechanism of intercalation of three equivalents of Li with NbSe/sub 3/ as well as the rate governing processes in the reduction of NbSe/sub 3/. Based on the experimental data, an equivalent circuit has been formulated to represent the NbSe/sub 3/-solution interface. The kinetic parameters for the reduction of NbSe/sub 3/ were evaluated from the ac and dc measurements. Finally, the structural change in NbSe/sub 3/ on lithiation during initial discharge which results in higher cell voltages and different electrochemical response as compared to virgin NbSe/sub 3/ was identified to be a loss of crystallographic order, i.e., amorphous by x-ray diffraction.

  12. Study of Electrochemical Reactions Using Nanospray Desorption Electrospray Ionization Mass Spectrometry

    SciTech Connect

    Liu, Pengyuan; Lanekoff, Ingela T.; Laskin, Julia; Dewald, Howard D.; Chen, Hao

    2012-07-03

    The combination of electrochemistry (EC) and mass spectrometry (MS) is a powerful analytical tool for studying mechanisms of redox reactions, identification of products and intermediates, and online derivatization/recognition of analytes. This work reports a new coupling interface for EC/MS by employing nanospray desorption electrospray ionization (nano-DESI), a recently developed ambient ionization method. We demonstrate online coupling of nano-DESI-MS with a traditional electrochemical flow cell, in which the electrolyzed solution emanating from the cell is ionized by nano-DESI for MS analysis. Furthermore, we show first coupling of nano-DESI-MS with an interdigitated array (IDA) electrode enabling chemical analysis of electrolyzed samples directly from electrode surfaces. Because of its inherent sensitivity, nano-DESI enables chemical analysis of small volumes and concentrations of sample solution. Specifically, good-quality signal of dopamine and its oxidized form, dopamine ortho-quinone, was obtained using 10 μL of 1 μM solution of dopamine on the IDA. Oxidation of dopamine, reduction of benzodiazepines, and electrochemical derivatization of thiol groups were used to demonstrate the performance of the technique. Our results show the potential of nano-DESI as a novel interface for electrochemical mass spectrometry research.

  13. Behavior of Dental/Implant Alloys in Commercial Mouthwash Solution Studied by Electrochemical Techniques

    NASA Astrophysics Data System (ADS)

    Mareci, Daniel; Strugaru, Sorin Iacob; Iacoban, Sorin; Bolat, Georgiana; Munteanu, Corneliu

    2013-03-01

    This study investigates the electrochemical behavior of the various dental materials: Paliag (Ag-Pd based), Wiron 99 (Ni-Cr based), Cp-Ti (commercial pure titanium), and experimental Ti12Mo5Ta alloy in commercial mouthwash solution with 500 ppm F- (Oral B®) and compares it with the behavior of the same dental materials in artificial saliva. Linear potentiodynamic polarization (LPP) and electrochemical impedance spectroscopy (EIS) are the electrochemical procedures of investigation. The passivation of all dental samples in artificial saliva and mouthwash solution occurred spontaneously at open circuit potential. The corrosion current density of all tested dental materials in mouthwash solution were low (1-2 μA/cm2). The results suggest a non-predominant fluoride effect on the passive layer formed on all samples at open circuit potential. No passivation could be established with Paliag alloy when polarized in mouthwash solution. The EIS results confirm that all dental sample exhibit passivity in mouthwash solution at open circuit potential (polarization resistance was around 5 × 105 Ω cm2). For Paliag alloy after LPP in mouthwash solution the protectiveness passive layer was no more present. The corrosion resistances of four dental materials in mouthwash solution are in the following order: Ti12Mo5Ta > Cp-Ti > Wiron 99 > Paliag.

  14. BIG FROG WILDERNESS STUDY AREA AND ADDITIONS, TENNESSEE AND GEORGIA.

    USGS Publications Warehouse

    Slack, John F.; Gazdik, Gertrude C.

    1984-01-01

    A mineral-resource survey was made of the Big Frog Wilderness Study Area and additions, Tennessee-Georgia. Geochemical sampling found traces of gold, zinc, copper, and arsenic in rocks, stream sediments, and panned concentrates, but not in sufficient quantities to indicate the presence of deposits of these metals. The results of the survey indicate that there is little promise for the occurrence of metallic mineral deposits within the study area. The only apparent resources are nonmetallic commodities including rock suitable for construction materials, and small amounts of sand and gravel; however, these commodities are found in abundance outside the study area. A potential may exist for oil and natural gas at great depths, but this cannot be evaluated by the present study.

  15. Recommended Protocol for Round Robin Studies in Additive Manufacturing

    PubMed Central

    Moylan, Shawn; Brown, Christopher U.; Slotwinski, John

    2016-01-01

    One way to improve confidence and encourage proliferation of additive manufacturing (AM) technologies and parts is by generating more high quality data describing the performance of AM processes and parts. Many in the AM community see round robin studies as a way to generate large data sets while distributing the cost among the participants, thereby reducing the cost to individual users. The National Institute of Standards and Technology (NIST) has conducted and participated in several of these AM round robin studies. While the results of these studies are interesting and informative, many of the lessons learned in conducting these studies concern the logistics and methods of the study and unique issues presented by AM. Existing standards for conducting interlaboratory studies of measurement methods, along with NIST’s experience, form the basis for recommended protocols for conducting AM round robin studies. The role of round robin studies in AM qualification, some of the limitations of round robin studies, and the potential benefit of less formal collaborative experiments where multiple factors, AM machine being only one, are varied simultaneously are also discussed. PMID:27274602

  16. Genotoxicity studies of the food additive ester gum.

    PubMed

    Mukherjee, A; Agarwal, K; Chakrabarti, J

    1992-07-01

    Ester gum (EG) is used in citrus oil-based beverage flavourings as a weighting or colouring agent. In the present study, concentrations of 50, 100 and 150 mg/kg body weight were administered orally to male Swiss albino mice, and sister chromatid exchange and chromosomal aberration were used as the cytogenetic endpoints to determine the genotoxic and clastogenic potential of the food additive. Although EG was weakly clastogenic and could induce a marginal increase in sister chromatid exchange frequencies, it was not a potential health hazard at the doses tested. PMID:1521837

  17. Making intelligent systems team players: Additional case studies

    NASA Technical Reports Server (NTRS)

    Malin, Jane T.; Schreckenghost, Debra L.; Rhoads, Ron W.

    1993-01-01

    Observations from a case study of intelligent systems are reported as part of a multi-year interdisciplinary effort to provide guidance and assistance for designers of intelligent systems and their user interfaces. A series of studies were conducted to investigate issues in designing intelligent fault management systems in aerospace applications for effective human-computer interaction. The results of the initial study are documented in two NASA technical memoranda: TM 104738 Making Intelligent Systems Team Players: Case Studies and Design Issues, Volumes 1 and 2; and TM 104751, Making Intelligent Systems Team Players: Overview for Designers. The objective of this additional study was to broaden the investigation of human-computer interaction design issues beyond the focus on monitoring and fault detection in the initial study. The results of this second study are documented which is intended as a supplement to the original design guidance documents. These results should be of interest to designers of intelligent systems for use in real-time operations, and to researchers in the areas of human-computer interaction and artificial intelligence.

  18. Study of triallyl phosphate as an electrolyte additive for high voltage lithium-ion cells

    NASA Astrophysics Data System (ADS)

    Xia, J.; Madec, L.; Ma, L.; Ellis, L. D.; Qiu, W.; Nelson, K. J.; Lu, Z.; Dahn, J. R.

    2015-11-01

    The role of triallyl phosphate as an electrolyte additive in Li(Ni0.42Mn0.42Co0.16)O2/graphite pouch cells was studied using ex-situ gas measurements, ultra high precision coulometry, automated storage experiments, electrochemical impedance spectroscopy, long-term cycling and X-ray photoelectron spectroscopy. Cells containing triallyl phosphate produced less gas during formation, cycling and storage than control cells. The use of triallyl phosphate led to higher coulombic efficiency and smaller charge endpoint capacity slippage during ultra high precision charger testing. Cells containing triallyl phosphate showed smaller potential drop during 500 h storage at 40 °C and 60 °C and the voltage drop decreased as the triallyl phosphate content in the electrolyte increased. However, large amounts of triallyl phosphate (>3% by weight in the electrolyte) led to large impedance after cycling and storage. Symmetric cell studies showed large amounts of triallyl phosphate (5% or more) led to significant impedance increase at both negative and positive electrodes. X-ray photoelectron spectroscopy studies suggested that the high impedance came from the polymerization of triallyl phosphate molecules which formed thick solid electrolyte interphase films at the surfaces of both negative and positive electrodes. An optimal amount of 2%-3% triallyl phosphate led to better capacity retention during long term cycling.

  19. {sup 7}Li NMR study of poly(p-phenylene) electrochemically doped with lithium

    SciTech Connect

    Shteinberg, V.G.; Shumm, B.A.; Zueva, A.F.

    1994-09-01

    Lithium ions in electrochemically doped poly(p-phenylene) (PPP) were studied by {sup 7}Li NMR. Two types of lithium cations exhibiting different mobility are found to exist. The fraction of more mobile cations increases with temperature but does not exceed 0.5. In the PPP{sup -}-Li{sup +} system, ion mobility is considerably lower than that found in the previously studied PPP{sup +}-AsF{sub 6}{sup -} (BF{sub 4}{sup -}) system, and up to 400 K no chemical reactions of polymer destruction occur.

  20. An electrochemical study of uranium behaviour in LiCl-KCl-CsCl eutectic melt

    NASA Astrophysics Data System (ADS)

    Maltsev, D. S.; Volkovich, V. A.; Vasin, B. D.; Vladykin, E. N.

    2015-12-01

    Electrochemical behaviour of uranium was studied in the low melting ternary LiCl-KCl-CsCl eutectic at 573-1073 K employing potentiometry, cyclic voltammetry and chronopotentiometry. Uranium electrode potentials were measured directly and U(III)/U(IV) red-ox potentials were determined from the results of cyclic voltammetry measurements. Formal standard electrode and red-ox potentials of uranium, and thermodynamic properties of uranium chlorides in the studied melt were calculated. Diffusion coefficients of U(III) and U(IV) ions were determined using cyclic voltammetry and chronopotentiometry.

  1. RAMSEYS DRAFT WILDERNESS STUDY AREA AND ADDITION, VIRGINIA.

    USGS Publications Warehouse

    Lesure, Frank G.; Mory, Peter C.

    1984-01-01

    Mineral-resource surveys of the Ramseys Draft Wilderness Study Area and adjoining roadless area addition in George Washington National Forest in the western valley and ridge province, Augusta and Highland Counties, Virginia, were done. The surveys outlined three small areas containing anomalous amounts of copper, lead, and zinc related to stratabound red-bed copper mineralization, but these occurrences are not large and are not considered as having mineral-resource potential. The area contains abundant sandstone suitable for construction materials and shale suitable for making brick, tile, and other low-grade ceramic products, but these commodities occur in abundance outside the wilderness study area. Structural conditions are probably favorable for the accumulation of natural gas, but exploratory drilling has not been done sufficiently near the area to evaluate the gas potential.

  2. Fe3O4NPs mediated nonenzymatic electrochemical immunosensor for the total protein of Nosema bombycis detection without addition of substrate.

    PubMed

    Xie, Hua; Zhang, Qiqi; Wang, Qin; Chai, Yaqin; Yuan, Yali; Yuan, Ruo

    2015-04-28

    In this work, we proposed a novel electrochemical immunosensor for sensitive detection of the total protein of Nosema bombycis based on Fe3O4 nanoparticles (Fe3O4NPs) as catalyst to electrocatalyze the reduction of methylene blue (MB) with the aid of Fe3O4NPs-DNA dendrimers for the signal amplification. PMID:25806964

  3. Electrochemical and spectroscopic studies of some less stable oxidation states of selected lanthanide and actinide elements

    SciTech Connect

    Hobart, D. E.

    1981-06-01

    Simultaneous observation of electrochemical and spectroscopic properties (spectroelectrochemistry) at optically transparent electrodes (OTE's) was used to study some less stable oxidation states of selected lanthanide and actinide elements. Cyclic voltammetry at microelectrodes was used in conjunction with spectroelectrochemistry for the study of redox couples. Additional analytical techniques were used. The formal reduction potential (E/sup 0/') values of the M(III)/M(II) redox couples in 1 M KCl at pH 6 were -0.34 +- 0.01 V for Eu, -1.18 +- 0.01 V for Yb, and -1.50 +- 0.01 V for Sm. Spectropotentiostatic determination of E/sup 0/' for the Eu(III)/Eu(II) redox couple yielded a value of -0.391 +- 0.005 V. Spectropotentiostatic measurement of the Ce(IV)/Ce(III) redox couple in concentrated carbonate solution gave E/sup 0/' equal to 0.051 +- 0.005 V, which is about 1.7 V less positive than the E/sup 0/' value in noncomplexing solution. This same difference in potential was observed for the E/sup 0/' values of the Pr(IV)/Pr(III) and Tb(IV)/Tb(III) redox couples in carbonate solution, and thus Pr(IV) and Tb(IV) were stabilized in this medium. The U(VI)/U(V)/U(IV) and U(IV)/U(III) redox couples were studied in 1 M KCl at OTE's. Spectropotentiostatic measurement of the Np(VI)/Np(V) redox couple in 1 M HClO/sub 4/ gave an E/sup 0/' value of 1.140 +- 0.005 V. An E/sup 0/' value of 0.46 +- 0.01 V for the Np(VII)/Np(VI) couple was found by voltammetry. Oxidation of Am(III) was studied in concentrated carbonate solution, and a reversible cyclic voltammogram for the Am(IV)/Am(III) couple yielded E/sup 0/' = 0.92 +- 0.01 V in this medium; this value was used to estimate the standard reduction potential (E/sup 0/) of the couple as 2.62 +- 0.01 V. Attempts to oxidize Cm(III) in concentrated carbonate solution were not successful which suggests that the predicted E/sup 0/ value for the Cm(IV)/Cm(III) redox couple may be in error.

  4. Electrochemical Studies of Carbon Steel Corrosion in Hanford Double-Shell Tank Waste

    SciTech Connect

    Duncan, James B.; Windisch, Charles F.; Divine, James R.

    2007-03-11

    This paper reports on the electrochemical scans for the supernatant of Hanford double shell tank 241-SY-102 and the electrochemical scans for the bottom saltcake layer for Hanford double shell tank 241-AZ-102. It further reports on the development of electrochemical test cells adapted to both sample volume and hot cell constraints.

  5. ELECTROCHEMICAL STUDIES OF CARBON STEEL CORROSION IN HANFORD DOUBLE SHELL TANK (DST) WASTE

    SciTech Connect

    DUNCAN, J.B.; WINDISCH, C.F.

    2006-10-13

    This paper reports on the electrochemical scans for the supernatant of Hanford double-shell tank (DST) 241-SY-102 and the electrochemical scans for the bottom saltcake layer for Hanford DST 241-AZ-102. It further reports on the development of electrochemical test cells adapted to both sample volume and hot cell constraints.

  6. Deterministic analysis of processes at corroding metal surfaces and the study of electrochemical noise in these systems

    SciTech Connect

    Latanision, R.M.

    1990-12-01

    Electrochemical corrosion is pervasive in virtually all engineering systems and in virtually all industrial circumstances. Although engineers now understand how to design systems to minimize corrosion in many instances, many fundamental questions remain poorly understood and, therefore, the development of corrosion control strategies is based more on empiricism than on a deep understanding of the processes by which metals corrode in electrolytes. Fluctuations in potential, or current, in electrochemical systems have been observed for many years. To date, all investigations of this phenomenon have utilized non-deterministic analyses. In this work it is proposed to study electrochemical noise from a deterministic viewpoint by comparison of experimental parameters, such as first and second order moments (non-deterministic), with computer simulation of corrosion at metal surfaces. In this way it is proposed to analyze the origins of these fluctuations and to elucidate the relationship between these fluctuations and kinetic parameters associated with metal dissolution and cathodic reduction reactions. This research program addresses in essence two areas of interest: (a) computer modeling of corrosion processes in order to study the electrochemical processes on an atomistic scale, and (b) experimental investigations of fluctuations in electrochemical systems and correlation of experimental results with computer modeling. In effect, the noise generated by mathematical modeling will be analyzed and compared to experimental noise in electrochemical systems. 1 fig.

  7. Microparticle electrodes and single particle microbatteries: electrochemical and in situ microRaman spectroscopic studies.

    PubMed

    Jebaraj, Adriel Jebin Jacob; Scherson, Daniel A

    2013-05-21

    Studies of the intrinsic electrochemical, structural, and electronic propertiesof microparticles of energy storage materials can provide much needed insight into the factors that control various aspects of the performance of technical electrodes for battery applications. This Account summarizes efforts made in our laboratories toward the development and implementation of methods for the in situ electrical, optical, and spectroscopic characterization of microparticles of a variety of such materials, including Ni hydroxide, Zn, carbon, and lithiated Mn and Co oxides. In the case of Ni hydroxide, the much darker appearance of NiOOH compared to the virtually translucent character of virgin Ni(OH)2 allowed for the spatial and temporal evolution of charge flow within spherical microparticles of Ni(OH)2 to be monitored in real time during the first scan toward positive potentials using computer-controlled video imaging. In situ Raman scattering measurements involving single microparticles of Zn harvested from a commercial Zn|MnO2 battery revealed that passive films formed in strongly alkaline solutions by stepping the potential from 1.55 V to either 0.7 or 0.8 V vs SCE displayed a largely enhanced feature at ca. 565 cm(-1) ascribed to a longitudinal optical phonon mode of ZnO, an effect associated with the presence of interstitial Zn and oxygen deficiencies in the lattice. In addition, significant amounts of crystalline ZnO could be detected only for passive films formed at the same two potentials after the electrodes had been roughened by a single passivation-reduction step. Quantitative correlations were found in the case of LiMn2O4 and KS-44 graphite between the Raman spectral properties and the state of charge. In the case of KS-44, a chemometrics analysis of the spectroscopic data in the potential region in which the transition between dilute phase 1 and phase 4 of lithiated graphite is known to occur made it possible to determine independently the fraction of each

  8. Electrochemical studies of capping agent adsorption provide insight into the formation of anisotropic gold nanocrystals.

    PubMed

    Danger, Brook R; Fan, Donna; Vivek, J P; Burgess, Ian J

    2012-12-21

    The ability of the 4-dimethylaminopyridine (DMAP) to stabilize and control the formation of anisotropic gold nanocrystals produced via the borohydride reduction of gold(III) salts is reported here. Electrochemical measurements of DMAP electrosorption on different low-index single crystal and polycrystalline electrodes is provided and shows a propensity for DMAP to preferentially adsorb on {100} facets. Measuring the electrochemical potential during nanocrystal formation shows that experimental conditions can easily be manipulated so that the growth of nanoseeds occurs at potentials that support preferential DMAP adsorption on {100} surfaces giving rise to highly anisotropic nanocrystals (nanorods, bipyramids, and nanopods). Nanopods with nearly 50 nm arm lengths are shown to form and produce a surface plasmon mode that extends well into the near IR (λ(max) ≈ 1350 nm). Evidence is provided of the slow, partial reduction of tetrachloroaurate to a DMAP stabilized Au(I) species. Shape control is achieved simply by varying the length of time, τ, that DMAP is allowed to partially reduce the Au(III) ions prior to the addition of the strong reducing agent, NaBH(4). Thus the role of DMAP in producing anisotropic particle shapes is shown to be multifunctional. A mechanism accounting for the dependence of particle shape on τ is provided. PMID:23186041

  9. Study of interactions between DNA and aflatoxin B1 using electrochemical and fluorescence methods.

    PubMed

    Banitaba, Mohammad Hossein; Davarani, Saied Saeed Hosseiny; Mehdinia, Ali

    2011-04-15

    In this study, a carbon paste electrode modified with N-butylpyridinium hexafluorophosphate (BPPF(6)) ionic liquid and DNA was introduced as an electrochemical biosensor to study the interaction between DNA and aflatoxin B1 molecules. For this purpose, variations in oxidation peak current of guanine in various concentrations of aflatoxin B1 were measured by using the differential pulse voltammetry (DPV) method. According to this study, the binding constant of DNA-aflatoxin B1 was found to be 3.5×10(6)M(-1). This modified electrode was also used for determination of low concentrations of aflatoxin B1 by using differential pulse voltammetry. A linear dynamic range from 8.00×10(-8) to 5.91×10(-7)M and a limit of detection of 2.00×10(-8)M resulted from DPV measurements. To confirm our results, a fluorescence study was also performed. It resulted in a binding constant of 2.8×10(6)M(-1), which is in good agreement with that obtained from electrochemical study. PMID:21238426

  10. Morphological, rheological and electrochemical studies ofpoly(ethylene oxide) electrolytes containing fumed silicananoparticles

    SciTech Connect

    Xie, Jiangbing; Kerr, John B.; Duan, Robert G.; Han, Yongbong

    2003-06-01

    In this paper, the rheology and crystallization of composite Poly(Ethylene Oxide) (PEO) electrolytes were studied by dynamic mechanical analysis, DSC and polarized light microscopy. The effects of fumed silica nanoparticles on the conductivities of the polymer electrolytes at temperatures above and below their melting point were measured and related to their rheology and crystallization behavior, respectively. The electrolyte/electrode interfacial properties and cycling performances of the composite polymer electrolytes in Li/Li cells are also discussed. The measured electrochemical properties were found to depend heavily on the operational environments and sample processing history.

  11. Electrochemical cell

    DOEpatents

    Kaun, T.D.

    An improved secondary electrochemical cell is disclosed having a negative electrode of lithium aluminum, a positive electrode of iron sulfide, a molten electrolyte of lithium chloride and potassium chloride, and the combination that the fully charged theoretical capacity of the negative electrode is in the range of 0.5 to 1.0 that of the positive electrode. The cell thus is negative electrode limiting during discharge cycling. Preferably, the negative electrode contains therein, in the approximate range of 1 to 10 volume % of the electrode, an additive from the materials of graphitized carbon, aluminum-iron alloy, and/or magnesium oxide.

  12. Electrochemical cell

    DOEpatents

    Redey, L.I.; Vissers, D.R.; Prakash, J.

    1994-08-23

    An electrochemical cell is described having an alkali metal negative electrode such as sodium and a positive electrode including Ni or transition metals, separated by a [beta] alumina electrolyte and NaAlCl[sub 4] or other compatible material. Various concentrations of a bromine, iodine and/or sulfur containing additive and pore formers are disclosed, which enhance cell capacity and power. The pore formers may be the ammonium salts of carbonic acid or a weak organic acid or oxamide or methylcellulose. 6 figs.

  13. Electrochemical cell

    DOEpatents

    Kaun, Thomas D.

    1984-01-01

    An improved secondary electrochemical cell is disclosed having a negative electrode of lithium aluminum, a positive electrode of iron sulfide, a molten electrolyte of lithium chloride and potassium chloride, and the combination that the fully charged theoretical capacity of the negative electrode is in the range of 0.5-1.0 that of the positive electrode. The cell thus is negative electrode limiting during discharge cycling. Preferably, the negative electrode contains therein, in the approximate range of 1-10 volume % of the electrode, an additive from the materials of graphitized carbon, aluminum-iron alloy, and/or magnesium oxide.

  14. Study of the electrochemical oxidation and reduction of C.I. Reactive Orange 4 in sodium sulphate alkaline solutions.

    PubMed

    del Río, A I; Molina, J; Bonastre, J; Cases, F

    2009-12-15

    Synthetic solutions of hydrolysed C.I. Reactive Orange 4, a monoazo textile dye commercially named Procion Orange MX-2R (PMX2R) and colour index number C.I. 18260, was exposed to electrochemical treatment under galvanostatic conditions and Na2SO4 as electrolyte. The influence of the electrochemical process as well as the applied current density was evaluated. Ti/SnO2-Sb-Pt and stainless steel electrodes were used as anode and cathode, respectively, and the intermediates generated on the cathode during electrochemical reduction were investigated. Aliquots of the solutions treated were analysed by UV-visible and FTIR-ATR spectroscopy confirming the presence of aromatic structures in solution when an electro-reduction was carried out. Electro-oxidation degraded both the azo group and aromatic structures. HPLC measures revealed that all processes followed pseudo-first order kinetics and decolourisation rates showed a considerable dependency on the applied current density. CV experiments and XPS analyses were carried out to study the behaviour of both PMX2R and intermediates and to analyse the state of the cathode after the electrochemical reduction, respectively. It was observed the presence of a main intermediate in solution after an electrochemical reduction whose chemical structure is similar to 2-amino-1,5-naphthalenedisulphonic acid. Moreover, the analysis of the cathode surface after electrochemical reduction reveals the presence of a coating layer with organic nature. PMID:19647934

  15. Experimental Study of Additives on Viscosity biodiesel at Low Temperature

    NASA Astrophysics Data System (ADS)

    Fajar, Berkah; Sukarno

    2015-09-01

    An experimental investigation was performed to find out the viscosity of additive and biodiesel fuel mixture in the temperature range from 283 K to 318 K. Solutions to reduce the viscosity of biodiesel is to add the biodiesel with some additive. The viscosity was measured using a Brookfield Rheometer DV-II. The additives were the generic additive (Diethyl Ether/DDE) and the commercial additive Viscoplex 10-330 CFI. Each biodiesel blends had a concentration of the mixture: 0.0; 0.25; 0.5; 0.75; 1.0; and 1.25% vol. Temperature of biodiesel was controlled from 40°C to 0°C. The viscosity of biodiesel and additive mixture at a constant temperature can be approximated by a polynomial equation and at a constant concentration by exponential equation. The optimum mixture is at 0.75% for diethyl ether and 0.5% for viscoplex.

  16. Electrochemical Studies of Ceramic Carbon Electrodes Prepared with Sulfonated Organosilane Precursors

    NASA Astrophysics Data System (ADS)

    Eastcott, Jennie

    State-of-the-art electrodes for proton exchange membrane fuel cells (PEMFCs) contain platinum catalyst and a Nafion proton-conducting binder. Optimal conditions for Nafion functionality are at 80°C and 100% relative humidity (RH). Ceramic carbon electrodes (CCEs), consisting of carbon particles supported by ceramic binder network, may be an alternative electrode structure which replaces Nafion with organosilane materials. CCEs are also attractive for their high surface area and durable nature. CCEs have been fabricated via an in-situ sol-gel polymerization process. Development of a novel electrode fabrication procedure included direct spray-deposition of CCEs onto a microporous/gas diffusion layer to facilitate adhesion and facile electrode preparation. CCEs were composed of commercial carbon-supported platinum catalyst and 3-trihydroxysilyl-1-propanesulfonic acid (TPS) or TPS and tetraethylorthosilicate (TEOS) to vary the level of sulfonation. CCEs were initially tested electrochemically in a half-cell set-up to evaluate electrode functionality. An optimal loading of 42-48 wt% silane was determined for CCEs with only TPS to provide the highest electrochemically active surface area (ECSA) of platinum and proton conductivity. BET surface areas were low due to restriction of pore sizes by the sulfonated side chain. Composite CCEs of TPS/TEOS had enhanced electrochemical performance and high BET surface areas (>400 m 2 g-1), indicating high porosity. Excellent electrochemical results were obtained for the CCE with a TPS:TEOS ratio of 4:96 (40 wt% total silane). The sulfonated TPS/TEOS CCE (SS-CCE) was further evaluated in a fuel cell. Electrochemical studies showcased higher accessibility of catalyst sites and good proton conductivity compared to Nafion-containing cathodes. At 80°C and 100% relative humidity (RH), CCEs performed similarly to Nafion electrodes at low current density but suffered from mass transport limitations due to flooding at high current density

  17. Optical and electrochemical studies of polyaniline/SnO{sub 2} fibrous nanocomposites

    SciTech Connect

    Manivel, P.; Ramakrishnan, S.; Kothurkar, Nikhil K.; Balamurugan, A.; Ponpandian, N.; Mangalaraj, D.; Viswanathan, C.

    2013-02-15

    Graphical abstract: Fiber with porous like structure of PANI/SnO{sub 2} nanocomposites were prepared by simplest in situ chemical polymerization method. The PL emission spectra revealed that the band from 404 and 436 nm which is related with oxygen vacancies. The excellent electrochemical properties of composite electrode show the specific capacitance of 173 F/g at a scan rate of 25 m V/s. Display Omitted Highlights: ► Self assembled PANI/SnO{sub 2} nanocomposites were synthesized by simple polymerization method. ► Electrochemical behavior of PANI/SnO{sub 2} nanocomposites electrode was analyzed by CV. ► Nanocomposites exhibit a higher specific capacitance of 173 F/g, compared with pure SnO{sub 2}. -- Abstract: Polyaniline (PANI)/tin oxide (SnO{sub 2}) fibrous nanocomposites were successfully prepared by an in situ chemical polymerization method with suitable conditions. The obtained composites were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy, photoluminescence (PL), electrical conductivity and cyclic voltammetry studies (CV). The XRD pattern of the as-prepared sample shows the presence of tetragonal SnO{sub 2} and the crystalline structure of SnO{sub 2} was not affected with the incorporation of PANI. The FTIR analysis confirms the uniform attachment of PANI on the surface of SnO{sub 2} nanostructures. SEM images show a fibrous agglomerated structure of PANI/SnO{sub 2}. The PL emission spectra revealed that the band from 404 and 436 nm which is related with oxygen vacancies. The electrochemical behavior of the PANI/SnO{sub 2} composite electrode was evaluated in a H{sub 2}SO{sub 4} solution using cyclic voltammetry. The composite electrode exhibited a specific capacitance of 173 F/g at a scan rate 25 mV/s. Thus the as-prepared PANI/SnO{sub 2} composite shows excellent electrochemical properties, suggesting that this composite is a promising material for supercapacitors.

  18. Additive Manufacturing in Production: A Study Case Applying Technical Requirements

    NASA Astrophysics Data System (ADS)

    Ituarte, Iñigo Flores; Coatanea, Eric; Salmi, Mika; Tuomi, Jukka; Partanen, Jouni

    Additive manufacturing (AM) is expanding the manufacturing capabilities. However, quality of AM produced parts is dependent on a number of machine, geometry and process parameters. The variability of these parameters affects the manufacturing drastically and therefore standardized processes and harmonized methodologies need to be developed to characterize the technology for end use applications and enable the technology for manufacturing. This research proposes a composite methodology integrating Taguchi Design of Experiments, multi-objective optimization and statistical process control, to optimize the manufacturing process and fulfil multiple requirements imposed to an arbitrary geometry. The proposed methodology aims to characterize AM technology depending upon manufacturing process variables as well as to perform a comparative assessment of three AM technologies (Selective Laser Sintering, Laser Stereolithography and Polyjet). Results indicate that only one machine, laser-based Stereolithography, was feasible to fulfil simultaneously macro and micro level geometrical requirements but mechanical properties were not at required level. Future research will study a single AM system at the time to characterize AM machine technical capabilities and stimulate pre-normative initiatives of the technology for end use applications.

  19. High-Resolution Electrochemical Scanning Tunneling Microscopy (EC-STM) Flow-Cell Studies.

    PubMed

    Lay, Marcus D; Sorenson, Thomas A; Stickney, John L

    2003-09-25

    Atomic-level studies involving an electrochemical scanning tunneling microscope (EC-STM) flow-cell are presented. Multiple electrochemical atomic layer epitaxy (EC-ALE) cycles of CdTe formation were observed. For a binary compound (i.e., CdTe), an EC-ALE cycle involves exposure of the substrate to a solution of the first precursor (CdSO4), followed by exposure to the second precursor (TeO2), while maintaining potential control. Interleaving blank rinses may also be used, but were omitted in the present studies. To allow the exchange of solutions, the EC-STM cell was modified to allow solution exchange via a single peristaltic pump. A selection valve was used to choose the solution to be introduced into the cell. There is evidence that the growth of the initial layer of CdTe on Au(111), the (√7 × √7)-CdTe monolayer, can be improved in homogeneity and morphology by repeatedly depositing and stripping the Cd atomic layer. Therefore, a new starting cycle, which should improve the quality of deposits formed via EC-ALE, has been developed. PMID:26317446

  20. Studies on the electrochemical reduction of oxygen catalyzed by reduced graphene sheets in neutral media

    NASA Astrophysics Data System (ADS)

    Wu, Jiajia; Wang, Yi; Zhang, Dun; Hou, Baorong

    Reduced graphene sheets (RGSs) were prepared via chemical reduction of graphite oxide and their morphology was characterized by atomic force microscopy. The electrochemical reduction of oxygen (O 2) with RGSs was studied by cyclic, rotating disk electrode, and rotating ring-disk electrode voltammetry using the RGSs-modified glassy carbon (RGSs/GC) electrode in 3.5% NaCl solution. The results show that O 2 reduction undergoes three steps at the RGSs/GC electrode: electrochemical reduction of O 2 to H 2O 2 mediated by quinone-like groups on the RGSs surface, a direct 2-electron reduction of O 2, and reduction of the H 2O 2 produced to H 2O. The modification of RGSs results in an obvious positive shift of the peak potential and a larger current density. The kinetics study shows that the number of electrons transferred for O 2 reduction can reach to 3.0 at potentials of the first reduction step, indicating RGSs can effectively catalyze the disproportionation of H 2O 2. Such catalytic activity of RGSs enables a 4-electron reduction of O 2 at a relatively low overpotential in neutral media. RGSs are a potential electrode material for microbial fuel cells.

  1. Electrochemical Study and Applications of Selective Electrodeposition of Silver on Quantum Dots.

    PubMed

    Martín-Yerga, Daniel; Rama, Estefanía Costa; Costa-García, Agustín

    2016-04-01

    In this work, selective electrodeposition of silver on quantum dots is described. The particular characteristics of the nanostructured silver thus obtained are studied by electrochemical and microscopic techniques. On one hand, quantum dots were found to catalyze the silver electrodeposition, and on the other hand, a strong adsorption between electrodeposited silver and quantum dots was observed, indicated by two silver stripping processes. Nucleation of silver nanoparticles followed different mechanisms depending on the surface (carbon or quantum dots). Voltammetric and confocal microscopy studies showed the great influence of electrodeposition time on surface coating, and high-resolution transmission electron microscopy (HRTEM) imaging confirmed the initial formation of Janus-like Ag@QD nanoparticles in this process. By use of moderate electrodeposition conditions such as 50 μM silver, -0.1 V, and 60 s, the silver was deposited only on quantum dots, allowing the generation of localized nanostructured electrode surfaces. This methodology can also be employed for sensing applications, showing a promising ultrasensitive electrochemical method for quantum dot detection. PMID:26910270

  2. Electrochemical studies of hydrogen chloride gas in several room temperature ionic liquids: mechanism and sensing.

    PubMed

    Murugappan, Krishnan; Silvester, Debbie S

    2016-01-28

    The electrochemical behaviour of highly toxic hydrogen chloride (HCl) gas has been investigated in six room temperature ionic liquids (RTILs) containing imidazolium/pyrrolidinium cations and range of anions on a Pt microelectrode using cyclic voltammetry (CV). HCl gas exists in a dissociated form of H(+) and [HCl2](-) in RTILs. A peak corresponding to the oxidation of [HCl2](-) was observed, resulting in the formation of Cl2 and H(+). These species were reversibly reduced to H2 and Cl(-), respectively, on the cathodic CV scan. The H(+) reduction peak is also present initially when scanned only in the cathodic direction. In the RTILs with a tetrafluoroborate or hexafluorophosphate anion, CVs indicated a reaction of the RTIL with the analyte/electrogenerated products, suggesting that these RTILs might not be suitable solvents for the detection of HCl gas. This was supported by NMR spectroscopy experiments, which showed that the hexafluorophosphate ionic liquid underwent structural changes after HCl gas electrochemical experiments. The analytical utility was then studied in 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([C2mim][NTf2]) by utilising both peaks (oxidation of [HCl2](-) and reduction of protons) and linear calibration graphs for current vs. concentration for the two processes were obtained. The reactive behaviour of some ionic liquids clearly shows that the choice of the ionic liquid is very important if employing RTILs as solvents for HCl gas detection. PMID:26697927

  3. In situ electrochemical digital holographic microscopy; a study of metal electrodeposition in deep eutectic solvents.

    PubMed

    Abbott, Andrew P; Azam, Muhammad; Ryder, Karl S; Saleem, Saima

    2013-07-16

    This study has shown for the first time that digital holographic microscopy (DHM) can be used as a new analytical tool in analysis of kinetic mechanism and growth during electrolytic deposition processes. Unlike many alternative established electrochemical microscopy methods such as probe microscopy, DHM is both the noninvasive and noncontact, the unique holographic imaging allows the observations and measurement to be made remotely. DHM also provides interferometric resolution (nanometer vertical scale) with a very short acquisition time. It is a surface metrology technique that enables the retrieval of information about a 3D structure from the phase contrast of a single hologram acquired using a conventional digital camera. Here DHM has been applied to investigate directly the electro-crystallization of a metal on a substrate in real time (in situ) from two deep eutectic solvent (DES) systems based on mixture of choline chloride and either urea or ethylene glycol. We show, using electrochemical DHM that the nucleation and growth of silver deposits in these systems are quite distinct and influenced strongly by the hydrogen bond donor of the DES. PMID:23751128

  4. Application of electrochemical impedance spectroscopy: A phase behavior study of babassu biodiesel-based microemulsions.

    PubMed

    Pereira, Thulio C; Conceição, Carlos A F; Khan, Alamgir; Fernandes, Raquel M T; Ferreira, Maira S; Marques, Edmar P; Marques, Aldaléa L B

    2016-11-01

    Microemulsions are thermodynamically stable systems of two immiscible liquids, one aqueous and the other of organic nature, with a surfactant and/or co-surfactant adsorbed in the interface between the two phases. Biodiesel-based microemulsions, consisting of alkyl esters of fatty acids, open a new means of analysis for the application of electroanalytical techniques, and is advantageous as it eliminates the required pre-treatment of a sample. In this work, the phase behaviours of biodiesel-based microemulsions were investigated through the electrochemical impedance spectroscopy (EIS) technique. We observed thatan increase in the amount of biodiesel in the microemulsion formulation increases the resistance to charge transfer at the interface. Also, the electrical conductivity measurements revealed that a decrease or increase in electrical properties depends on the amount of biodiesel. EIS studies of the biodiesel-based microemulsion samples showed the presence of two capacitive arcs: one high-frequency and the other low-frequency. Thus, the formulation of microemulsions plays an important role in estimating the electrical properties through the electrochemical impedance spectroscopy technique. PMID:27276278

  5. Electrochemical anomalies of protic ionic liquid - Water systems: A case study using ethylammonium nitrate - Water system

    NASA Astrophysics Data System (ADS)

    Abe, Hiroshi; Nakama, Kazuya; Hayashi, Ryotaro; Aono, Masami; Takekiyo, Takahiro; Yoshimura, Yukihiro; Saihara, Koji; Shimizu, Akio

    2016-08-01

    Electrochemical impedance spectroscopy was used to evaluate protic ionic liquid (pIL)-water mixtures in the temperature range of -35-25 °C. The pIL used in this study was ethylammonium nitrate (EAN). At room temperature, the resonant mode of conductivity was observed in the high frequency region. The anomalous conductivity disappeared once solidification occurred at low temperatures. The kinetic pH of the EAN-water system was investigated at a fixed temperature. Rhythmic pH oscillations in the EAN-H2O mixtures were induced at 70 < x < 90 mol% H2O. The electrochemical instabilities in a EAN-water mixture are caused in an intermediate state between pIL and bulk water. From the ab initio calculations, it was observed that the dipole moment of the EAN-water complex shows a discrete jump at around 85 mol% H2O. Water-mediated hydrogen bonding network drastically changes at the crossover concentration.

  6. Microwave synthesis of molybdenum doped LiFePO4/C and its electrochemical studies.

    PubMed

    Naik, Amol; P, Sajan C

    2016-05-10

    A Mo-doped LiFePO4 composite was prepared successfully from an iron carbonyl complex by adopting a facile and rapid microwave assisted solid state method. The evolution of gases from the iron precursor produces a highly porous product. The formation and substitution of Mo in LiFePO4 were confirmed by X-ray diffraction; surface analysis was carried out by scanning electron microscopy, field emission scanning electron microscopy, and transmission electron microscopy. The electrochemical properties of the substituted LiFePO4 were examined by cyclic voltammetry, electrochemical impedance spectroscopy and by recording charge-discharge cycles. It was observed that the as prepared composites consisted of a single phase orthorhombic olivine-type structure, where Mo(6+) was successfully introduced into the M2(Fe) sites. Incorporation of supervalent Mo(6+) introduced Li(+) ion vacancies in LiFePO4. The synthesized material facilitated lithium ion diffusion during charging/discharging due to the charge compensation effect and porosity. The battery performance studies showed that LiMo0.05Fe0.095PO4 exhibited a maximum capacity of 169.7 mA h g(-1) at 0.1 C current density, with admirable stability retention. Even at higher current densities, the retention of the specific capacity was exceptional. PMID:27071463

  7. AC Impedance Studies of Polymer Light-emitting Electrochemical Cells and Light-emitting Diodes

    NASA Astrophysics Data System (ADS)

    Li, Yongfang; Gao, Jun; Heeger, Alan J.; Yu, Gang; Cao, Yong

    1998-03-01

    The alternating current (ac) impedance of polymer light-emitting electrochemical cells (LECs) is studied and compared with that of polymer light-emitting diodes(LEDs) in the frequency range from 100 Hz to 5 M Hz. The device capacitance, resistance and interface characteristics are analyzed using the frequency dependence of the impedance and plots of the imaginary component of the impedance (Z") vs. the real part (Z'). At low bias voltages, polymer LEDs behave as pure capacitors whereas the polymer blend in the LEC exhibits an ionic conductivity contribution to the impedance. With dc bias higher than the energy gap of the semiconducting polymer (eV > Eg), the Z" vs. Z' plot of the LEC is a flattened semicircle, while that of LED is a semicircle with a small tail at low frequencies. In the LED, the capacitance is independent of voltages, the film resistance decreases as the bias voltage is increased in forward bias due to charge injection at higher voltages. In the LEC, the capacitance increases at voltages sufficient to induce electrochemical redox and doping near the electrodes. From this increase, the thickness of the i-layer of the p-i-n junction is estimated to approximately 0.8 of the film thickness (at the bias voltage of 3 V). Thus, in the LEC under operating conditions, the crossover region from p-type occupies most of the film thickness.

  8. Biological capacitance studies of anodes in microbial fuel cells using electrochemical impedance spectroscopy.

    PubMed

    Lu, Zhihao; Girguis, Peter; Liang, Peng; Shi, Haifeng; Huang, Guangtuan; Cai, Lankun; Zhang, Lehua

    2015-07-01

    It is known that cell potential increases while anode resistance decreases during the start-up of microbial fuel cells (MFCs). Biological capacitance, defined as the apparent capacitance attributed to biological activity including biofilm production, plays a role in this phenomenon. In this research, electrochemical impedance spectroscopy was employed to study anode capacitance and resistance during the start-up period of MFCs so that the role of biological capacitance was revealed in electricity generation by MFCs. It was observed that the anode capacitance ranged from 3.29 to 120 mF which increased by 16.8% to 18-20 times over 10-12 days. Notably, lowering the temperature and arresting biological activity via fixation by 4% para formaldehyde resulted in the decrease of biological capacitance by 16.9 and 62.6%, indicating a negative correlation between anode capacitance and anode resistance of MFCs. Thus, biological capacitance of anode should play an important role in power generation by MFCs. We suggest that MFCs are not only biological reactors and/or electrochemical cells, but also biological capacitors, extending the vision on mechanism exploration of electron transfer, reactor structure design and electrode materials development of MFCs. PMID:25656699

  9. Study and optimisation of manganese oxide-based electrodes for electrochemical supercapacitors

    NASA Astrophysics Data System (ADS)

    Staiti, P.; Lufrano, F.

    A manganese oxide material was synthesised by an easy precipitation method based on reduction of potassium permanganate(VII) with a manganese(II) salt. The material was treated at different temperatures to study the effect of thermal treatment on capacitive property. The best capacitive performance was obtained with the material treated at 200 °C. This material was used to prepare electrodes with different amounts of polymer binder, carbon black and graphite fibres to individuate the optimal composition that gave the best electrochemical performances. It was found that graphite fibres improve the electrochemical performance of electrodes. The highest specific capacitance (267 F g -1 MnO x) was obtained with an electrode containing 70% of MnO x, 15% of carbon black, 10% of graphite fibres and 5% of PVDF. This electrode, with CB/GF ratio of 1.5, showed a higher utilization of manganese oxide. The results reported in the present paper further confirmed that manganese oxide is a very interesting material for supercapacitor application.

  10. Surface Studies of HSLA Steel after Electrochemical Corrosion in Supercritical CO2-H2O Environment

    SciTech Connect

    Ziomek-Moroz, M. Holcomb, G. Tylczak, J Beck, J Fedkin, M. Lvov, S.

    2011-10-01

    In aqueous phase saturated with CO2, X-65 sample underwent general corrosion with formation of FeCO3. In supercritical CO2 containing water phase, two major regions are present on the sample surface after the EIS experiment. One region covered with corrosion products identified as FeCO3 and the other containing Fe, oxygen, and carbon-rich islands embedded in metal matrix identified as {alpha}-Fe. Precipitation of FeCO3 from Fe2+ and CO3 2- is responsible for formation of passive layer in oxygen-deficient, CO2 rich aqueous environment. Mechanisms of corrosion degradation occurring in supercritical CO2 as a function. Transport of supercritical CO{sub 2} is a critical element for carbon capture from fossil fuel power plants and underground sequestration. Although acceptable levels of water in supercritical CO{sub 2} (up to {approx} 5 x 10{sup -4}g/dm{sup 3}) have been established, their effects on the corrosion resistance of pipeline steels are not fully known. Moreover, the presence of SO{sub 2}, O{sub 2} impurities in addition to the water can make the fluid more corrosive and, therefore, more detrimental to service materials. Also, in this case, limited data are available on materials performance of carbon steels. to advance this knowledge, other service alloys are being investigated in the high pressure high temperature cell containing impure CO{sub 2} fluids using reliable non-destructive in-situ electrochemical methods. The electrochemical results are being augmented by a number of surface analyses of the corroded surfaces.

  11. Health studies indicate MTBE is safe gasoline additive

    SciTech Connect

    Anderson, E.V.

    1993-09-01

    Implementation of the oxygenated fuels program by EPA in 39 metropolitan areas, including Fairbanks and Anchorage, Alaska, in the winter of 1992, encountered some unexpected difficulties. Complaints of headaches, dizziness, nausea, and irritated eyes started in Fairbanks, jumped to Anchorage, and popped up in various locations in the lower 48 states. The suspected culprit behind these complaints was the main additive for oxygenation of gasoline is methyl tert-butyl ether (MTBE). A test program, hastily organized in response to these complaints, has indicated that MTBE is a safe gasoline additive. However, official certification of the safety of MTBE is still awaited.

  12. Direct Mapping of Ionic Transport in a Si Anode on the Nanoscale: Time Domain Electrochemical Strain Spectroscopy Study

    SciTech Connect

    Jesse, Stephen; Balke, Nina; Eliseev, Eugene; Tselev, Alexander; Dudney, Nancy J; Morozovska, Anna N; Kalinin, Sergei V

    2011-01-01

    Local Li-ion transport in amorphous silicon is studied on the nanometer scale using time domain electrochemical strain microscopy (ESM). A strong variability of ionic transport controlled by the anode surface morphology is observed. The observed relaxing and nonrelaxing response components are discussed in terms of local and global ionic transport mechanisms, thus establishing the signal formation mechanisms in ESM. This behavior is further correlated with local conductivity measurements. The implications of these studies for Si-anode batteries are discussed. The universal presence of concentrationstrain coupling suggests that ESM and associated time and voltage spectroscopies can be applied to a broad range of electrochemical systems ranging from batteries to fuel cells.

  13. An ultra-high vacuum electrochemical flow cell for in situ/operando soft X-ray spectroscopy study

    SciTech Connect

    Bora, Debajeet K. E-mail: jguo@lbl.gov; Glans, Per-Anders; Pepper, John; Liu, Yi-Sheng; Guo, J.-H. E-mail: jguo@lbl.gov; Du, Chun; Wang, Dunwei

    2014-04-15

    An in situ flow electrochemical cell has been designed and fabricated to allow better seal under UHV chamber thus to achieve a good signal to noise ratio in fluorescence yield detection of X-ray absorption spectra for spectroelectrochemical study. The cell also stabilizes the thin silicon nitride membrane window in an effective manner so that the liquid cell remains intact during X-ray absorption experiments. With the improved design of the liquid cell, electrochemical experiments such as cyclic voltammetry have been performed for 10 cycles with a good stability of sample window. Also an operando electrochemical experiment during photoelectrochemistry has been performed on n-type hematite electrode deposited on silicon nitride window. The experiment allows us to observe the formation of two extra electronic transitions before pre edge of O K-edge spectra.

  14. An ultra-high vacuum electrochemical flow cell for in situ/operando soft X-ray spectroscopy study.

    PubMed

    Bora, Debajeet K; Glans, Per-Anders; Pepper, John; Liu, Yi-Sheng; Du, Chun; Wang, Dunwei; Guo, J-H

    2014-04-01

    An in situ flow electrochemical cell has been designed and fabricated to allow better seal under UHV chamber thus to achieve a good signal to noise ratio in fluorescence yield detection of X-ray absorption spectra for spectroelectrochemical study. The cell also stabilizes the thin silicon nitride membrane window in an effective manner so that the liquid cell remains intact during X-ray absorption experiments. With the improved design of the liquid cell, electrochemical experiments such as cyclic voltammetry have been performed for 10 cycles with a good stability of sample window. Also an operando electrochemical experiment during photoelectrochemistry has been performed on n-type hematite electrode deposited on silicon nitride window. The experiment allows us to observe the formation of two extra electronic transitions before pre edge of O K-edge spectra. PMID:24784592

  15. An ultra-high vacuum electrochemical flow cell for in situ/operando soft X-ray spectroscopy study

    NASA Astrophysics Data System (ADS)

    Bora, Debajeet K.; Glans, Per-Anders; Pepper, John; Liu, Yi-Sheng; Du, Chun; Wang, Dunwei; Guo, J.-H.

    2014-04-01

    An in situ flow electrochemical cell has been designed and fabricated to allow better seal under UHV chamber thus to achieve a good signal to noise ratio in fluorescence yield detection of X-ray absorption spectra for spectroelectrochemical study. The cell also stabilizes the thin silicon nitride membrane window in an effective manner so that the liquid cell remains intact during X-ray absorption experiments. With the improved design of the liquid cell, electrochemical experiments such as cyclic voltammetry have been performed for 10 cycles with a good stability of sample window. Also an operando electrochemical experiment during photoelectrochemistry has been performed on n-type hematite electrode deposited on silicon nitride window. The experiment allows us to observe the formation of two extra electronic transitions before pre edge of O K-edge spectra.

  16. Study of the voltammetric behavior of jatrorrhizine and its sensitive determination at electrochemical pretreatment glassy carbon electrode.

    PubMed

    Ye, Zhuo; Li, Yinfeng; Wen, Jianguo; Li, Kunjing; Ye, Baoxian

    2014-08-01

    A simple, inexpensive and highly sensitive electrochemical method for the determination of jatrorrhizine was developed using an electrochemically pretreated glassy carbon electrode (EPGCE). The electrochemical behavior of jatrorrhizine was systematically investigated in detail and some kinetic parameters were calculated for the first time. A reasonable reaction mechanism of jatrorrhizine on the EPGCE was also discussed and proposed, which could be a reference for the pharmacological action of jatrorrhizine in clinical study. And the first electroanalytical method of jatrorrhizine was established with a wide linear range from 7.0×10(-8) to 2.0×10(-5)mol L(-1) and a low detection limit of 5.0×10(-8)mol L(-1). The proposed method was successfully applied in determination of jatrorrhizine in pharmaceutical sample, Tinospora capillipes Gagnep (a traditional Chinese medicine), with satisfactory results. PMID:24881532

  17. Further studies in the electrochemical/mechanical strength of printed microbatteries

    NASA Astrophysics Data System (ADS)

    Gaikwad, Abhinav; Steingart, Daniel

    2011-06-01

    Flexible electronics require flexible energy storage, and electrochemical batteries are currently the strongest option for such devices. We further our previous investigation, beginning to add quantitative analysis to the composite mechanical/electrochemical performance of printed electrodes. The presented work will explain the principles of microfluidic stress analysis and how it provides insight into the operating conditions of real microbatteries.

  18. Electrochemical stability and postmortem studies of Pt/SiC catalysts for polymer electrolyte membrane fuel cells.

    PubMed

    Stamatin, Serban N; Speder, Jozsef; Dhiman, Rajnish; Arenz, Matthias; Skou, Eivind M

    2015-03-25

    In the presented work, the electrochemical stability of platinized silicon carbide is studied. Postmortem transmission electron microscopy and X-ray photoelectron spectroscopy were used to document the change in the morphology and structure upon potential cycling of Pt/SiC catalysts. Two different potential cycle aging tests were used in order to accelerate the support corrosion, simulating start-up/shutdown and load cycling. On the basis of the results, we draw two main conclusions. First, platinized silicon carbide exhibits improved electrochemical stability over platinized active carbons. Second, silicon carbide undergoes at least mild oxidation if not even silicon leaching. PMID:25719513

  19. The Pt(111)/electrolyte interface under oxygen reduction reaction conditions: an electrochemical impedance spectroscopy study.

    PubMed

    Bondarenko, Alexander S; Stephens, Ifan E L; Hansen, Heine A; Pérez-Alonso, Francisco J; Tripkovic, Vladimir; Johansson, Tobias P; Rossmeisl, Jan; Nørskov, Jens K; Chorkendorff, Ib

    2011-03-01

    The Pt(111)/electrolyte interface has been characterized during the oxygen reduction reaction (ORR) in 0.1 M HClO(4) using electrochemical impedance spectroscopy. The surface was studied within the potential region where adsorption of OH* and O* species occur without significant place exchange between the adsorbate and Pt surface atoms (0.45-1.15 V vs RHE). An equivalent electric circuit is proposed to model the Pt(111)/electrolyte interface under ORR conditions within the selected potential window. This equivalent circuit reflects three processes with different time constants, which occur simultaneously during the ORR at Pt(111). Density functional theory (DFT) calculations were used to correlate and interpret the results of the measurements. The calculations indicate that the coadsorption of ClO(4)* and Cl* with OH* is unlikely. Our analysis suggests that the two-dimensional (2D) structures formed in O(2)-free solution are also formed under ORR conditions. PMID:21244087

  20. Electrochemical and spectroscopic studies of sulfur in aluminum chloride-N-(n-butyl)pyridinium chloride

    SciTech Connect

    Marassi, R.; Laher, T.M.; Mamantov, G.; Trimble, D.S.

    1985-07-01

    The behavior of sulfur in aluminum chloride-N-(n-butyl)pyridinium chloride (AlCl/sub 3/-BPC) was studied using Raman spectroscopy and electrochemical techniques. In basic (BPC-rich) melts, sulfur can be reduced to sulfide, probably in the form of an AlSCl-like species. No oxidation to positive oxidation states of sulfur is observed in basic melts. In acidic (AlCl/sub 3/-rich) melts, sulfur can be oxidized to S(I) and eventually to S(IV), which is only stabl in the melt for short periods of time. No reduction to sulfide-like species or formation of low oxidation states is observed in acidic melts.

  1. Case Studies in the Electrochemical Treatment of Wastewater Containing Organic Pollutants Using BDD

    NASA Astrophysics Data System (ADS)

    Polcaro, Anna Maria; Mascia, M.; Palmas, S.; Vacca, A.

    A critical review is presented in this chapter on the possible applications of boron-doped diamond (BDD) as anode material to perform oxidation of organic compounds in aqueous solution. The oxidation of model substances is studied as well as that of the main classes of pollutants, such as phenols, dyes, pesticides and drugs, surfactants, which make some problems of degradation with the traditional wastewater treatments. The presented results indicate that organic compounds refractory to other oxidation techniques are successfully oxidized at BDD, even if the reaction mechanism is differently dependent on the organic compound and the electrolyte composition. Economic considerations reveal that electrochemical oxidations at BDD are less expensive than other advanced oxidation processes, indicating that in the near future this technology can become a competitive treatment for the removal of refractory compounds from wastewater.

  2. Synthesis, characterization, and electrochemical studies of chemically synthesized NaFePO{sub 4}

    SciTech Connect

    Sun, Ann; Beck, Faith R; Haynes, Daniel; Poston, James A; Narayanana, S R; Kumta, Prashant N; Manivannan, A

    2012-12-01

    NaFePO{sub 4} is a naturally occurring mineral known as maricite. This compound has not been well characterized or examined for its potential use in battery applications. In the present study, NaFePO{sub 4} has been synthesized via the Pechini process with the resulting sample being characterized by X-ray diffraction (XRD) and thermogravimetric analysis (TGA). Electrochemical properties have been investigated for possible application as a cathode in sodium-ion batteries. Electrodes of these materials were tested in coin cells using LiPF{sub 6} as the electrolyte and lithium metal as the counter electrode. Constant current cycling, cyclic voltammetry, and in situ frequency response analyses were performed. The results obtained demonstrate constant capacity or progressive increase in capacity with the consistently low internal resistance exhibited over consecutive cycles indicating possible application as a lithium analog in Na-ion batteries.

  3. An electrochemical study of the corrosion behavior of primer coated 2219-T87 aluminum

    NASA Technical Reports Server (NTRS)

    Danford, M. D.; Higgins, R. H.

    1985-01-01

    The corrosion behavior for 2219-T87 aluminum coated with various primers, including those used for the external tank and solid rocket boosters of the Space Shuttle Transportation System, were investigated using electrochemical techniques. Corrosion potential time, polarization resistance time, electrical resistance time, and corrosion rate time measurements were all investigated. It was found that electrical resistance time and corrosion rate time measurement were most useful for studying the corrosion behavior of painted aluminum. Electrical resistance time determination give useful information concerning the porosity of paint films, while corrosion rate time curves give important information concerning overall corrosion rates and corrosion mechanisms. In general, the corrosion rate time curves all exhibited at least one peak during the 30 day test period, which was attributed, according to the proposed mechanisms, to the onset of the hydrogen evolution reaction and the beginning of destruction of the protective properties of the paint film.

  4. Cobalt (hydro)oxide electrodes under electrochemical conditions: a first principle study

    NASA Astrophysics Data System (ADS)

    Chen, Jia; Selloni, Annabella

    2013-03-01

    There is currently much interest in photoelectrochemical water splitting as a promising pathway towards sustainable energy production. A major issue of such photoelectrochemical devices is the limited efficiency of the anode, where the oxygen evolution reaction (OER) takes place. Cobalt (hydro)oxides, particularly Co3O4 and Co(OH)2, have emerged as promising candidates for use as OER anode materials. Interestingly, recent in-situ Raman spectroscopy studies have shown that Co3O4 electrodes undergo progressive oxidation and transform into oxyhydroxide, CoO(OH), under electrochemical working conditions. (Journal of the American Chemical Society 133, 5587 (2011))Using first principle electronic structure calculations, we provide insight into these findings by presenting results on the structural, thermodynamic, and electronic properties of cobalt oxide, hydroxide and oxydroxide CoO(OH), and on their relative stabilities when in contact with water under external voltage.

  5. Study of inclusion complex of β-cyclodextrin and diphenylamine: Photophysical and electrochemical behaviors

    NASA Astrophysics Data System (ADS)

    Srinivasan, K.; Kayalvizhi, K.; Sivakumar, K.; Stalin, T.

    2011-06-01

    The photophysical, electrochemical and photoprototropic behaviors of diphenylamine (DPA) in aqueous β-cyclodextrin (β-CD) solution have been investigated using absorption spectroscopy and cyclic voltammetric techniques. Absorption of the neutral and cationic form of DPA is enhanced due to the formation of a 1:1 complex with β-CD. The formation of this complex has been confirmed by Benesi-Hildebrand plot and docking studies by RasMol tool methods. The solid complex of β-CD with DPA is investigated by FT-IR, XRD and AFM methods. The thermodynamic parameters (Δ G, Δ H and Δ S) of inclusion process are also determined. The p Ka values of neutral-monocation equilibria have been determined with absorption (conjugate acid-base) titrations. A mechanism is proposed to explain the inclusion process.

  6. AC conductivity and electrochemical studies of PVA/PEG based polymer blend electrolyte films

    NASA Astrophysics Data System (ADS)

    Polu, Anji Reddy; Kumar, Ranveer; Dehariya, Harsha

    2012-06-01

    Polymer blend electrolyte films based on Polyvinyl alcohol(PVA)/Poly(ethylene glycol)(PEG) and magnesium nitrate (Mg(NO3)2) were prepared by solution casting technique. Conductivity in the temperature range 303-373 K and transference number measurements have been employed to investigate the charge transport in this polymer blend electrolyte system. The highest conductivity is found to be 9.63 × 10-5 S/cm at 30°C for sample with 30 weight percent of Mg(NO3)2 in PVA/PEG blend matrix. Transport number data shows that the charge transport in this polymer electrolyte system is predominantly due to ions. Using this electrolyte, an electrochemical cell with configuration Mg/(PVA+PEG+Mg(NO3)2)/(I2+C+electrolyte) was fabricated and its discharge characteristics profile has been studied.

  7. In situ electrochemical study of the interaction of cells with thermally treated titanium.

    PubMed

    Burgos-Asperilla, Laura; Fierro, Jose Luis Garcia; Gamero, Miriam; Escudero, Maria Lorenza; Alonso, Concepción; García-Alonso, Maria Cristina

    2015-01-01

    Micromotion and fretting wear between bone and Ti-based alloys in stem and dental implants breaks the passive film and exposes the metal to the action of the complex surrounding medium, generating substantial amounts of debris and continuous Ti ion release. In this work, oxidation treatments at low temperatures (277 °C, 5 h) have been used to promote the formation of wear-corrosion resistant titanium oxide on the Ti surface. The objective of this paper has been the study of the influence of live cells on the protectiveness of the oxide formed at these low temperatures. The interaction of cells with the modified surface has been studied by scanning electron microscopy, electrochemical impedance spectroscopy, polarization curves, and x-ray photoelectron spectroscopy (XPS). The chemical composition of the thermally treated Ti surface is mainly TiO2 as anatase-rich titanium dioxide with a low concentration of hydroxyl groups and a low mean nanoroughness that could promote good cell adhesion. The electrochemical results indicate that the cells alter the overall resistance of the thermally treated Ti surfaces by decreasing the oxide resistance with time. At the same time, the anodic current increases, which is associated with cathodic control, and is probably due to the difficulty of access of oxygen to the Ti substrate. XPS reveals the presence of proteins on the surface of the treated specimens in contact with the cells and a decrease in the Ti signal associated with the extracellular matrix on the surface and the reduction of the oxide thickness. PMID:25947388

  8. Study and characterization of porous copper oxide produced by electrochemical anodization for radiometric heat absorber

    PubMed Central

    2014-01-01

    The aim of this work is to optimize the different parameters for realization of an absorbing cavity to measure the incident absolute laser energy. Electrochemical oxidation is the background process that allowed the copper blackening. A study of the blackened surface quality was undertaken using atomic force microscopy (AFM) analysis and ultraviolet-visible-infrared spectrophotometry using a Shimadzu spectrophotometer. A two-dimensional and three-dimensional visualization by AFM of the formed oxide coating showed that the copper surfaces became porous after electrochemical etching with different roughness. This aspect is becoming more and more important with decreasing current density anodization. In a 2 mol L -1 of NaOH solution, at a temperature of 90°C, and using a 16 mA cm2 constant density current, the copper oxide formed has a reflectivity of around 3% in the spectral range between 300 and 1,800 nm. Using the ‘mirage effect’ technique, the obtained Cu2O diffusivity and thermal conductivity are respectively equal to (11.5 ± 0.5) 10 to 7 m2 s-1 and (370 ± 20) Wm-1 K-1. This allows us to consider that our Cu2O coating is a good thermal conductor. The results of the optical and thermal studies dictate the choice of the cavity design. The absorbing cavity is a hollow cylinder machined to its base at an angle of 30°. If the included angle of the plane is 30° and the interior surface gives specular reflection, an incoming ray parallel to the axis will undergo five reflections before exit. So the absorption of the surface becomes closely near 0.999999. PMID:25349555

  9. Study and characterization of porous copper oxide produced by electrochemical anodization for radiometric heat absorber.

    PubMed

    Ben Salem, Sonia; Achour, Zahra Ben; Thamri, Kamel; Touayar, Oualid

    2014-01-01

    The aim of this work is to optimize the different parameters for realization of an absorbing cavity to measure the incident absolute laser energy. Electrochemical oxidation is the background process that allowed the copper blackening. A study of the blackened surface quality was undertaken using atomic force microscopy (AFM) analysis and ultraviolet-visible-infrared spectrophotometry using a Shimadzu spectrophotometer. A two-dimensional and three-dimensional visualization by AFM of the formed oxide coating showed that the copper surfaces became porous after electrochemical etching with different roughness. This aspect is becoming more and more important with decreasing current density anodization. In a 2 mol L(-1) of NaOH solution, at a temperature of 90°C, and using a 16 mA cm(2) constant density current, the copper oxide formed has a reflectivity of around 3% in the spectral range between 300 and 1,800 nm. Using the 'mirage effect' technique, the obtained Cu2O diffusivity and thermal conductivity are respectively equal to (11.5 ± 0.5) 10 to 7 m(2) s(-1) and (370 ± 20) Wm(-1) K(-1). This allows us to consider that our Cu2O coating is a good thermal conductor. The results of the optical and thermal studies dictate the choice of the cavity design. The absorbing cavity is a hollow cylinder machined to its base at an angle of 30°. If the included angle of the plane is 30° and the interior surface gives specular reflection, an incoming ray parallel to the axis will undergo five reflections before exit. So the absorption of the surface becomes closely near 0.999999. PMID:25349555

  10. Study and characterization of porous copper oxide produced by electrochemical anodization for radiometric heat absorber

    NASA Astrophysics Data System (ADS)

    Ben Salem, Sonia; Achour, Zahra Ben; Thamri, Kamel; Touayar, Oualid

    2014-10-01

    The aim of this work is to optimize the different parameters for realization of an absorbing cavity to measure the incident absolute laser energy. Electrochemical oxidation is the background process that allowed the copper blackening. A study of the blackened surface quality was undertaken using atomic force microscopy (AFM) analysis and ultraviolet-visible-infrared spectrophotometry using a Shimadzu spectrophotometer. A two-dimensional and three-dimensional visualization by AFM of the formed oxide coating showed that the copper surfaces became porous after electrochemical etching with different roughness. This aspect is becoming more and more important with decreasing current density anodization. In a 2 mol L -1 of NaOH solution, at a temperature of 90°C, and using a 16 mA cm2 constant density current, the copper oxide formed has a reflectivity of around 3% in the spectral range between 300 and 1,800 nm. Using the `mirage effect' technique, the obtained Cu2O diffusivity and thermal conductivity are respectively equal to (11.5 ± 0.5) 10 to 7 m2 s-1 and (370 ± 20) Wm-1 K-1. This allows us to consider that our Cu2O coating is a good thermal conductor. The results of the optical and thermal studies dictate the choice of the cavity design. The absorbing cavity is a hollow cylinder machined to its base at an angle of 30°. If the included angle of the plane is 30° and the interior surface gives specular reflection, an incoming ray parallel to the axis will undergo five reflections before exit. So the absorption of the surface becomes closely near 0.999999.

  11. Nanogap-enabled study of electrode reactions by scanning electrochemical microscopy

    NASA Astrophysics Data System (ADS)

    Nioradze, Nikoloz

    The nanogap quasi-steady-state voltammetry, developed in my work, presents the way to monitor and study rapid electron transfer reactions on macroscopic substrates of scanning electrochemical microscopy (SECM). It combines the cyclic voltammetry and SECM and monitors substrate reaction as a tip current. The resulting plot of iT versus ES features the retraceable sigmoidal shape of a quasi-steady state voltammogram although a transient peak-shape voltammogram is obtained simultaneously at the macroscopic substrate. This simplifies measurement and analysis of a quasi-steady-state voltammogram and gives information about thermodynamic as well as kinetic parameters of the reaction taking place at the interface. No charging current at the amperometric tip, high and adjustable mass transport under the tip and high spatial resolution are all advantages of quasi-steady-state voltammetry. I also introduced generalized theory for nanoscale iT-ES voltammetry of substrate reactions with arbitrary reversibility and mechanism under comprehensive experimental conditions including any substrate potential and both SECM modes (feedback and substrate generation tip collection, SG/TC). I nanofabricated submicrometer size highly reliable Pt SECM tips and found the way of protection of these tiny electrodes from the damage caused either by electrostatic discharge or electrochemical etching. Subsequent application of quasi-steady-state voltammetry and reliable nanofabricated SECM probes enabled sensitive detection of adsorption of organic impurities from air and ultrapure water to the HOPG surface as evidenced by redox reaction of ferrocenylmethyl)trimethyl ammonium (FcTMA +). Study revealed that hydrophobic contaminant layer slows down the access of hydrophilic aqueous redox species to the underlying HOPG surface, thereby yielding a lower standard rate constant, k 0. Moreover, this barrier effects stronger to a more charged form (FcTMA2+) of a redox couple so that the electron

  12. The electrochemical performance improvement of LiMn2O4/Zn based on zinc foil as the current collector and thiourea as an electrolyte additive

    NASA Astrophysics Data System (ADS)

    Wu, Xianwen; Li, Yehua; Li, Chuanchang; He, Zhangxing; Xiang, Yanhong; Xiong, Lizhi; Chen, Doris; Yu, Yan; Sun, Kate; He, Zeqiang; Chen, Pu

    2015-12-01

    The polished commercial zinc foil as the current collector and thiourea (TU) as the electrolyte additive are studied systematically to improve the performance of LiMn2O4/Zn aqueous battery. The results show that the coulombic efficiency and the cycling performance are significantly improved by using the polished zinc foil as the anode current collector. Moreover, the TU addition increases the cycling performance of LiMn2O4/Zn battery and decreases the float charge current density of the battery at room as well as high temperature. X-ray diffraction (XRD) and scanning electron microscopy (SEM) tests confirm that there is nearly no effect of TU in the electrolyte on the crystal structure of LiMn2O4 electrode. However, the addition of TU has an indirect effect on the morphology. Cyclic voltammetry (CV) and deposition-dissolution measurement demonstrate that TU is stable on the cathode electrode and it is able to adsorb to the surface of the zinc anode current collector. As such, the deposition-dissolution efficiency and energy efficiency are improved, which also can be attributed to faster deposition-dissolution and smaller self-discharge process of zinc.

  13. Electrochemical Studies of Graphene-like materials Synthesized by the Thermolyzed Asphalt Reaction

    NASA Astrophysics Data System (ADS)

    Xie, Yuqun

    dehydration products and lacking of sulfur cross-linking in solid state. Chapter 5 established GUITAR as a suitable material for dimensionally stable anodes (DSAs) because of its remarkable anodic stability revealed by electrochemical characterization. Cyclic voltammetric evaluation of GUITAR with Ru(NH3)63+/2+ and Fe(CN)6 3-/4- redox couples suggests that GUITAR enables faster electron transfer than chemical vapor deposition (CVD) grown graphene and highly ordered pyrolytic graphite (HOPG), even though GUITAR shares a common morphological phenomenon with HOPG, namely an atomically flat basal plane. At a current density of 200 muAcm -2, the anodic limit of GUITAR is 2.7 V vs SHE in 1MH2SO 4, GUITAR as a new material for DSAs was reinforced by its performance on methylene blue degradation, the normalized methylene blue degradation rate constant obtained with GUITAR was 10 times higher than that of boron doped dimond anode. In chapter 6, GUITAR formed on the surface of silica nanosprings composites was employed as the electrode material for an ultracapacitor. A 2.35 nm thin graphene film on the silica nanosprings surface offered a straight electron path through the high surface area of the silica nanosprings. Additionally, the high porosity of the silica nanosprings backbone enables facile electrolyte access to the graphene surface, resulting in the maxmum surface area utilization of a graphene-like films coated silica nanosprings composite electrode. The specific capacitance of 337 F g-1 was obtained in a concentrated H2SO4 electrolyte with a scan rate of 0.01 Vs -1. Nearly perfect capacitive behavior was observed with symmetric static charge /discharge curves at various current rates. A low equivalent series resistance (0.4 O) was measured with graphenelike silica nanosprings composites configured as an ultracapacitor. Superior electrochemical performance of graphene-like silica nanosprings composites as the electrode of an ultracapacitor was achieved when compared to

  14. A novel porphyrin derivative and its metal complexes: Electrochemical, photoluminescence, thermal, DNA-binding and superoxide dismutase activity studies

    NASA Astrophysics Data System (ADS)

    Purtaş, Savaş; Köse, Muhammet; Tümer, Ferhan; Tümer, Mehmet; Gölcü, Ayşegül; Ceyhan, Gökhan

    2016-02-01

    In this study, a new porphyrin-Schiff base ligand (L) and its metal complexes (Cu(II), Fe(III), Mn(III), Pt(II) and Zn(II)) were synthesized. The starting material 4-ethyl-2,6-bis(hydroxymethyl)phenol (A) was synthesized from 4-ethylphenol and formaldehyde in the alkaline media. The compound (A) was then oxidized to the 4-ethyl-2,6-diformylphenol (B). The starting compounds (A) and (B) were obtained as single crystals. Structures of the compounds (A) and (B) were determined by the X-ray crytallography technique. The porphyrin ligand (L) and its metal complexes were characterized by the analytical and spectroscopic methods. Electronic, electrochemical and thermal properties of the synthesised compounds were investigated. Superoxide dismutase activities (SOD) of the porphyrin Schiff base complexes were investigated and results were discussed. Additionally, the DNA (fish sperm FSdsDNA) binding studies of the complexes were performed using UV-vis spectroscopy. Competitive studies with ethidium bromide (EB) show that the compounds interact efficiently with DNA through an intercalating way.

  15. Experimental Studies of Selected Aqueous Electrochemical Systems Relevant for Materials Processing in the Fabrications of Microelectronic Components and Direct Alcohol Fuel Cells

    NASA Astrophysics Data System (ADS)

    Shi, Xingzhao

    surface modifying agent for controlling galvanic corrosions of Al in the Ta-Al and Co-Al bimetallic combinations. The results elaborate the chemical and electrochemical mechanisms responsible for activating and suppressing the corrosion processes in these systems. Defect-control is a critical requirement for CMP of the ultrathin diffusion barriers considered for the new Cu-interconnects. The challenging task of developing advanced CMP slurries for such systems can be aided by electrochemical evaluations of model CMP schemes under tribological conditions. The present work uses this strategy to characterize an alkaline slurry formulation aimed at minimizing galvanic corrosion in the CMP systems involving Ru, Ta (barrier metals) and Cu (wiring metal). This slurry is based on percarbonate and guanidine additives, and the test metals are polycrystalline disc samples. A particular goal of this study is to explore the essential analytical aspects of evaluating CMP systems in the tribo-electrochemical approach. The CMP specific surface reactions are characterized by potentiodynamic polarization and open circuit voltage measurements, performed both in the presence and in the absence of polishing, and by employing abrasive free as well as abrasive (colloidal SiO 2) added solutions. The findings of these experiments are further checked by using impedance spectroscopy. The electrochemical mixed potential steps of the CMP promoting reactions are analyzed, and the removable surface species formed by these reactions are discussed. Electro-oxidation of hypophosphite plays an important role in the electro-less deposition of Ni used to fabricate surface engineered films, alloys, and coatings for a variety of applications. At the same time, the kinetic details of this oxidation reaction comprise an ideal framework for studying many general mechanistic aspects of electrocatalysis on transition metal substrates. The present study utilizes these specific attributes of hypophosphite oxidation

  16. Electrochemical deposition of poly(trans-[RuCl2(4-vinylpyridine)4]) and its reductive desorption: cyclic voltammetry and electrochemical quartz crystal microbalance studies.

    PubMed

    Bandeira, Merlin C E; Crayston, Joe A; Franco, César V; Glidle, Andrew

    2007-02-28

    The electropolymerization of trans-[RuCl(2)(vpy)(4)](vpy = 4-vinylpyridine) on Au or Pt electrodes was studied by cyclic voltammetry and the electrochemical quartz crystal microbalance (EQCM) technique. Cyclic voltammetry of the monomer in DMSO on Au shows reductions at -2.0 and -2.2 V. Potential cycling over the first wave leads to polymer formation; however, scanning over the second wave leads to desorption of the polymer. These observations were confirmed by EQCM measurements which also revealed a high polymerization efficiency. Electrolysis, EQCM and XPS measurements showed that desorption was associated with substitution of chloride ligands by DMSO when the polymer was in a highly reduced state. The film also showed reversible mass changes due to the oxidation and accompanying ingress of charge-balancing anions and solvent into the film. Measurements on the dried films revealed that large quantities of solvent are trapped in the film during the electropolymerization process. PMID:17301891

  17. Additional Treatments Offer Little Benefit for Pancreatic Cancer: Study

    MedlinePlus

    ... of gastroenterology-pancreatology at Beaujon Hospital, in Clichy, France. The study was funded by the pharmaceutical company ... D., department of gastroenterology-pancreatology, Beaujon Hospital, Clichy, France; Deborah Schrag, M.D., M.P.H., chief ...

  18. NMR relaxometry study of plaster mortar with polymer additives

    SciTech Connect

    Jumate, E.; Manea, D.; Moldovan, D.; Fechete, R.

    2013-11-13

    The cement mixed with water forms a plastic paste or slurry which stiffness in time and finally hardens into a resistant stone. The addition of sand aggregates, polymers (Walocel) and/or calcium carbonate will modify dramatically the final mortar mechanic and thermal properties. The hydration processes can be observed using the 1D NMR measurements of transverse T{sub 2} relaxation times distributions analysed by a Laplace inversion algorithm. These distributions were obtained for mortar pasta measured at 2 hours after preparation then at 3, 7 and 28 days after preparation. Multiple components are identified in the T{sub 2} distributions. These can be associated with the proton bounded chemical or physical to the mortar minerals characterized by a short T{sub 2} relaxation time and to water protons in pores with three different pore sizes as observed from SEM images. The evaporation process is faster in the first hours after preparation, while the mortar hydration (bonding of water molecules to mortar minerals) can be still observed after days or months from preparation. Finally, the mechanic resistance was correlated with the transverse T{sub 2} relaxation rates corresponding to the bound water.

  19. X-ray off-specular reflectivity studies of electrochemical pitting of Cu surfaces in sodium bicarbonate solution.

    SciTech Connect

    Feng, Y. P.; Sinha, S. K.; Melendres, C. A.; Lee, D. D.; Chemical Engineering; Exxon Research and Engineering Co.; Massachusetts Inst. of Tech.

    1996-01-01

    We have studied the electrochemically-induced pitting process on a Cu electrode in NaHCO{sub 3} solution using in-situ X-ray off-specular reflectivity measurements. The morphology and growth dynamics of the localized corrosion sites or pits were studied as the applied potential was varied from the cathodic region where the Cu surface is relatively free of oxide films to the anodic region where surface roughening occurs by general corrosion with concomitant formation of an oxide film. Quantitative analysis of the experimental results indicates that early pitting proceeds in favor of nucleation of pit clusters over individual pit growth. It was found that the lateral distribution of the pits is not random but exhibits a short-range order as evidenced by the appearance of a side peak in the transverse off-specular reflectivity. The position, height, and width of the peak was modeled to yield the average size, nearest-neighbor distance (within any one of the clusters), and over-all density of the pits averaged over the entire illuminated surface. In addition, measurements of the longitudinal off-specular reflectivity indicate a bimodal depth distribution for the pits, suggesting a 'film breaking' type of pitting mechanism.

  20. Synthesis, structures, electrochemical studies and antioxidant activities of cis-dioxomolybdenum(VI) complexes of the new bisthiocarbohydrazones

    NASA Astrophysics Data System (ADS)

    Kaya, Yeliz; Erçağ, Ayşe; Koca, Atıf

    2015-12-01

    Potentially pentadentate ONSNO donor new Schiff bases were prepared by the condensation of thiocarbodihydrazide with 3,5-dibromosalicylaldehyde (H3L1), 3-bromo-5-chlorosalicy-laldehyde (H3L2) and 3,5-dichlorosalicylaldehyde (H3L3). The reactions between bis (acetylacetonato) dioxomolybdenum(VI) and Schiff bases in the presence of donor solvents yielded neutral cis-dioxomolybdenum(VI) complexes with the general formula [MoO2HL(D)] (HL = tridentate ONS donor Schiff base ligand; HL1, HL2, HL3) and D = methanol, ethanol, dimethyl sulfoxide, dimethylformamide, pyridine). All the compounds were characterized by elemental analysis, UV, IR, 1H NMR spectroscopies. The thermal properties of the complexes were also investigated by thermogravimetry technique and the thermal behavior depending on the second ligand molecule was discussed. The synthesized compounds were screened for their antioxidant capacity by using the cupric reducing antioxidant capacity (CUPRAC) method. In addition, electrochemical behaviors of the complexes were studied using cyclic voltammetry and square wave voltammetry. Half wave potentials (E1/2) are significantly influenced with the central metal ions, but slightly influenced with the nature of substituents on thiocarbohydrazone ligands. In situ spectroelectrochemical studies were employed to determine the spectra of electrogenerated species of the complexes and to assign the redox processes. The fluorescence properties of the bisthiocarbohydrazone ligands and their dioxomolybdenum(VI) complexes in DMSO solutions were investigated.

  1. Electrochemical synthesis of nanostructured gold film for the study of carbohydrate–lectin interactions using localized surface plasmon resonance spectroscopy

    PubMed Central

    Bhattarai, Jay K.; Sharma, Abeera; Fujikawa, Kohki; Demchenko, Alexei V.; Stine, Keith J.

    2014-01-01

    Localized surface plasmon resonance (LSPR) spectroscopy is a label-free chemical and biological molecular sensing technique whose sensitivity depends upon development of nanostructured transducers. Herein, we report an electrodeposition method for fabricating nanostructured gold films (NGFs) that can be used as transducers in LSPR spectroscopy. The NGF was prepared by electrodepositing gold from potassium dicyanoaurate solution onto a flat gold surface using two sequential controlled potential steps. Imaging by scanning electron microscopy reveals a morphology consisting of randomly configured block-like nanostructures. The bulk refractive index sensitivity of the prepared NGF is 100 ± 2 nm RIU−1 and the initial peak in the reflectance spectrum is at 518 ± 1 nm under N2(g). The figure of merit is 1.7. In addition, we have studied the interaction between carbohydrate (mannose) and lectin (Concanavalin A) on the NGF surface using LSPR spectroscopy by measuring the interaction of 8-mercaptooctyl-α-D-mannopyranoside (αMan-C8-SH) with Concanavalin A by first immobilizing αMan-C8-SH in mixed SAMs with 3,6-dioxa-8-mercaptooctanol (TEG-SH) on the NGF surface. The interaction of Con A with the mixed SAMs is confirmed using electrochemical impedance spectroscopy. Finally, the NGF surface was regenerated to its original sensitivity by removing the SAM and the bound biomolecules. The results from these experiments contribute toward the development of inexpensive LSPR based sensors that could be useful for studying glycan–protein interactions and other bioanalytical purposes. PMID:25442712

  2. [Study on electrochemical mechanism of coronary stent used austenitic stainless steel in flowing artificial body fluid].

    PubMed

    Liang, Chenghao; Guo, Liang; Chen, Wan; Wang, Hua

    2005-08-01

    The electrochemical mechanism of austenitic stainless steel (SUS316L and SUS317L) coronary stents in flowing artificial body fluid has been investigated with electrochemical technologies. The results indicated that the flowing medium coursed the samples' pitting potential Eb shift negatively, increased the pitting corrosion sensitivity, accelerated its anodic dissolution, but had little effects on repassivated potential. The flowing environment had great effects on cathodic process. The oxygen reaction on the samples' surface became faster as the cathodic process was not controlled by oxygen diffusion but by mixed diffusion and electrochemical process. With the increase of velocity of solution, the pitting corrosion becomes liable to occur under this circumstance. PMID:16156260

  3. Charge Carrier Conduction Mechanism in PbS Quantum Dot Solar Cells: Electrochemical Impedance Spectroscopy Study.

    PubMed

    Wang, Haowei; Wang, Yishan; He, Bo; Li, Weile; Sulaman, Muhammad; Xu, Junfeng; Yang, Shengyi; Tang, Yi; Zou, Bingsuo

    2016-07-20

    With its properties of bandgap tunability, low cost, and substrate compatibility, colloidal quantum dots (CQDs) are becoming promising materials for optoelectronic applications. Additionally, solution-processed organic, inorganic, and hybrid ligand-exchange technologies have been widely used in PbS CQDs solar cells, and currently the maximum certified power conversion efficiency of 9.9% has been reported by passivation treatment of molecular iodine. Presently, there are still some challenges, and the basic physical mechanism of charge carriers in CQDs-based solar cells is not clear. Electrochemical impedance spectroscopy is a monitoring technology for current by changing the frequency of applied alternating current voltage, and it provides an insight into its electrical properties that cannot be measured by direct current testing facilities. In this work, we used EIS to analyze the recombination resistance, carrier lifetime, capacitance, and conductivity of two typical PbS CQD solar cells Au/PbS-TBAl/ZnO/ITO and Au/PbS-EDT/PbS-TBAl/ZnO/ITO, in this way, to better understand the charge carriers conduction mechanism behind in PbS CQD solar cells, and it provides a guide to design high-performance quantum-dots solar cells. PMID:27176547

  4. Coupling Electrochemistry with Fluorescence Confocal Microscopy To Investigate Electrochemical Reactivity: A Case Study with the Resazurin-Resorufin Fluorogenic Couple.

    PubMed

    Doneux, Thomas; Bouffier, Laurent; Goudeau, Bertrand; Arbault, Stéphane

    2016-06-21

    The redox couple resazurin-resorufin exhibits electrofluorochromic properties which are investigated herein by absorption and fluorescence spectroelectrochemistry and by electrochemically coupled-fluorescence confocal laser scanning microscopy (EC-CLSM). At pH 10, the highly fluorescent resorufin dye is generated at the electrode surface by the electrochemical reduction of the poorly fluorescent resazurin. Performing EC-CLSM at electrode surfaces allows to monitor spatially resolved electrochemical processes in situ and in real time. Using a small (315 μm diameter) cylindrical electrode, a steady-state diffusion layer builds up under potentiostatic conditions at -0.45 V vs Ag|AgCl. Mapping the fluorescence intensity in 3D by CLSM enables us to reconstruct the relative concentration profile of resorufin around the electrode. The comparison of the experimental diffusion-profile with theoretical predictions demonstrates that spontaneous convection has a direct influence on the actual thickness of the diffusion layer, which is smaller than the value predicted for a purely diffusional transport. This study shows that combining fluorescence CLSM with electrochemistry is a powerful tool to study electrochemical reactivity at a spatially resolved level. PMID:27247989

  5. The effect of the addition of colloidal iridium oxide into sol-gel obtained titanium and ruthenium oxide coatings on titanium on their electrochemical properties.

    PubMed

    Panić, Vladimir V; Dekanski, Aleksandar B; Mitrić, Miodrag; Milonjić, Slobodan K; Misković-Stanković, Vesna B; Nikolić, Branislav Z

    2010-07-21

    Electrochemical properties of sol-gel processed Ti(0.6)Ir(0.4)O(2) and Ti(0.6)Ru(0.3)Ir(0.1)O(2) coatings on titanium substrate were investigated using cyclic voltammetry, polarization measurements and electrochemical impedance spectroscopy and compared to the properties of Ti(0.6)Ru(0.4)O(2) coating. The role of iridium oxide in the improvement of the electrocatalytic, capacitive and stability properties of titanium anodes activated by a RuO(2)-TiO(2) coating is discussed. The oxide sols were prepared by forced hydrolysis of the metal chlorides. The characterization by dynamic light scattering and X-ray diffraction showed that polydisperse oxide sols were obtained with the particles tending to form agglomerates. The presence of IrO(2) causes a suppression of the X-ray diffraction peaks of TiO(2) and RuO(2) in the sol-gel prepared Ti(0.6)Ir(0.4)O(2) and Ti(0.6)Ru(0.3)Ir(0.1)O(2) coatings. The IrO(2)-containing coatings had an enhanced charge storage ability and activity for the oxygen evolution reaction (OER) in comparison to Ti(0.6)Ru(0.4)O(2) coating. The voltammogram of the Ti(0.6)Ir(0.4)O(2)/Ti electrode showed well-resolved peaks related to Ir redox transitions, which are responsible for the enhanced charge storage ability of IrO(2)-containing coatings. Redox transitions of Ir were also registered in the high-frequency domain of the ac impedance spectra of the coatings as a semicircle with characteristics insensitive to the electrolyte composition and to the electrode potential prior to OER. However, the semicircle characteristics were different for the two IrO(2)-containing coatings, as well as at potentials outside the OER in comparison to those at which the OER occurs. PMID:20544088

  6. Additional EIPC Study Analysis: Interim Report on High Priority Topics

    SciTech Connect

    Hadley, Stanton W

    2013-11-01

    Between 2010 and 2012 the Eastern Interconnection Planning Collaborative (EIPC) conducted a major long-term resource and transmission study of the Eastern Interconnection (EI). With guidance from a Stakeholder Steering Committee (SSC) that included representatives from the Eastern Interconnection States Planning Council (EISPC) among others, the project was conducted in two phases. Phase 1 involved a long-term capacity expansion analysis that involved creation of eight major futures plus 72 sensitivities. Three scenarios were selected for more extensive transmission- focused evaluation in Phase 2. Five power flow analyses, nine production cost model runs (including six sensitivities), and three capital cost estimations were developed during this second phase. The results from Phase 1 and 2 provided a wealth of data that could be examined further to address energy-related questions. A list of 13 topics was developed for further analysis; this paper discusses the first five.

  7. Exploratory cell research and fundamental processes study in solid state electrochemical cells

    SciTech Connect

    Smyrl, W.H.; Owens, B.B.; White, H.S. . Dept. of Chemical Engineering and Materials Science)

    1990-06-01

    Last year this program demonstrated that alternative to lithium had some merit on which to base new polymer electrolyte batteries and other electrochemical devices. We reported that Na, Zn, and Cu electrolytes have modest conductivities at 100{degree}C. Some preliminary cell cycling data were reported with V{sub 6}O{sub 13} insertion cathodes, and the successful cell cycling suggested that N{sup +}, Zn{sup +2} could be inserted and removed reversibly in the cathode material. Also, thin-film polymer cathodes were shown by impedance measurements to have three characteristic regions of behavior. Each region had different controlling processes with relaxation time constants that could be separated with careful manipulation of film thickness, morphology, and charging level. The present report gives results of the continuation of these studies. In particular, the sodium system was studied more intensively with conductivity measurements on sodium triflate in poly(ethyleneoxide)(PEO), and cell studies with V{sub 6}O{sub 13} and poly(pyrrole)(PPY) cathodes. The impedance work was concluded and several directions of new work in that area were identified. The insertion studies with single crystal V{sub 6}O{sub 13} were concluded on this program and transferred to NSF funding. 29 refs., 6 figs., 6 tabs.

  8. Morphology-controlled two-step synthesis and electrochemical studies on hierarchically structured LiCoPO4

    NASA Astrophysics Data System (ADS)

    Neef, Christoph; Meyer, Hans-Peter; Klingeler, Rüdiger

    2015-10-01

    Olivine structured LiCoPO4 was synthesized by a novel two-step process involving the hydrothermal synthesis of recently discovered metastable tetragonal LiCoPO4tetra and its transformation to the olivine-like phase. The transformation process does not change the size and shape of the particles so that they can be tailored by appropriate choice of the synthesis parameters and addition of organic compounds in the first production step. Our results demonstrate a clear effect of the particle shape on the electrochemical performance. The material shows discharge capacities up to 107 mAh/g for flower-like secondary particles synthesized under the mediation of citric acid. Electrochemical impedance spectroscopy reveals a strong surface reaction during the delithiation process which is key for the capacity fade of LiCoPO4 battery materials and a difference of three orders of magnitude in the diffusion coefficient of lithiated and delithiated species is observed.

  9. Electrochemical impedance spectroscopy investigations of a microelectrode behavior in a thin-layer cell: Experimental and theoretical studies.

    PubMed

    Gabrielli, C; Keddam, M; Portail, N; Rousseau, P; Takenouti, H; Vivier, V

    2006-10-19

    Electrochemical impedance spectroscopy experiments were performed on a microdisk electrode in a thin-layer cell using a scanning electrochemical microscope for controlling the cell geometry. Experimental data showed that when the thin-layer thickness diminished, an additional low-frequency response appeared. It was ascribed to the radial diffusion of the electroactive species and was strongly dependent on the thin-layer dimensions (both thickness and diameter). Moreover, the numerical simulation of the impedance diagrams by finite element method calculations confirmed this behavior. An equivalent circuit based on a Randles-type circuit was proposed. Thus, the diffusion was described by introducing two electrical elements: one for the spherical diffusion and the other for the radial contribution. A nonlinear Simplex algorithm was used, and this circuit was shown to fit the impedance diagrams with a good accuracy. PMID:17034233

  10. Electro-deposition of Cu studied with in situ electrochemical scanning transmission x-ray microscopy

    NASA Astrophysics Data System (ADS)

    Hitchcock, A. P.; Qin, Z.; Rosendahl, S. M.; Lee, V.; Reynolds, M.; Hosseinkhannazer, H.

    2016-01-01

    Soft X-ray scanning transmission X-ray microscopy (STXM) was used to investigate Cu deposition onto, and stripping from a Au surface. Cu 2p spectromicroscopy was used to analyze initial and final states (ex situ processing) and follow the processes in situ. The in situ experiments were carried out using a static electrochemical cell with an electrolyte layer thickness of ˜1 μm. A new apparatus for in situ electrochemical STXM is described.

  11. The effect of hyperglycemia on the pharmacokinetics of valproic acid studied by high-performance liquid chromatography with electrochemical detection.

    PubMed

    Kotani, Akira; Kotani, Tomoko; Ishii, Nana; Hakamata, Hideki; Kusu, Fumiyo

    2014-08-01

    The effects of hyperglycemia on the pharmacokinetics of valproic acid (VPA) were examined by time-concentration profiles of plasma VPA accompanied with blood glucose (BG) changing. In addition, time-concentration profiles of plasma free fatty acids (FFAs) were also obtained to examine the interaction between VPA and FFAs in vivo. For the experiments in vivo, normal rats, given multiple doses of maltose orally, and diabetic rats, which were made to maintain hyperglycemia, were used. Plasma VPA and FFA were determined by high-performance liquid chromatography with electrochemical detection (HPLC-ECD) systems based on the reduction of quinone for the selective determination of acids, respectively. BG was determined by pocket-size glucose meter. The maximum plasma concentrations (Cmax) of VPA in normal rats given multiple doses of maltose orally and in diabetic rats were remarkably decreased in comparison with those in the control rats. From the present study, it was shown that the metabolism of plasma VPA is accelerated under hyperglycemia. Moreover, we also found that VPA was preferentially metabolized in comparison with the plasma FFA in vivo. PMID:24814995

  12. Formation, characterization, and stability of methaneselenolate monolayers on Au(111): an electrochemical high-resolution photoemission spectroscopy and DFT study.

    PubMed

    Cometto, F P; Calderón, C A; Morán, M; Ruano, G; Ascolani, H; Zampieri, G; Paredes-Olivera, P; Patrito, E M

    2014-04-01

    We investigated the mechanism of formation and stability of self-assembled monolayers (SAMs) of methaneselenolate on Au(111) prepared by the immersion method in ethanolic solutions of dimethyl diselenide (DMDSe). The adsorbed species were characterized by electrochemical measurements and high-resolution photoelectron spectroscopy (HR-XPS). The importance of the headgroup on formation mechanism and the stability of the SAMs was addressed by comparatively studying methaneselenolate (MSe) and methanethiolate (MT) monolayers. Density Functional Theory (DFT) calculations were performed to identify the elementary reaction steps in the mechanisms of formation and decomposition of the monolayers. Reductive desorption and HR-XPS measurements indicated that a MSe monolayer is formed at short immersion times by the cleavage of the Se-Se bond of DMDSe. However, the monolayer decomposes at long immersion times at room temperature, as evidenced by the appearance of atomic Se on the surface. The decomposition is more pronounced for MSe than for MT monolayers. The MSe monolayer stability can be greatly improved by two modifications in the preparation method: immersion at low temperatures (-20 °C) and the addition of a reducing agent to the forming solution. PMID:24645647

  13. A study of the electrochemistry of nickel hydroxide electrodes with various additives

    NASA Astrophysics Data System (ADS)

    Zhu, Wen-Hua; Ke, Jia-Jun; Yu, Hong-Mei; Zhang, Deng-Jun

    Nickel composite electrodes (NCE) with various additives are prepared by a chemical impregnation method from nitrate solutions on sintered porous plaques. The electrochemical properties, such as utilization of active material, swelling and the discharge potential of the nickel oxide electrode (NOE) are determined mainly through the composition of the active material and the characteristics of nickel plaques. Most additives (Mg, Ca, Sr, Ba, Zn, Cd, Co, Li and Al hydroxide) exert effects on the discharge potential and swelling of the NOE. Chemical co-precipitation with the addition of calcium, zinc, magnesium and barium hydroxide increases the discharge potential by more than 20 mV, but that with zinc hydroxide results in an obvious decrease of active-material utilization and that with calcium and magnesium hydroxide produces a larger increase of electrode thickness. The effects of anion additives are also examined. Less than 1% mol of NiS in the active material increases the discharge potential. Cadmium, cobalt and zinc hydroxide are excellent additives for preventing swelling of the NCE. Slow voltammetry (0.2 mV s -1) in 6 M KOH is applied to characterize the oxygen-evolving potential of the NCE. The difference between the oxygen-evolution potential and the potential of the oxidation peak for the NCE with additives of calcium, lithium, barium and aluminium hydroxide is at least + 60 mV.

  14. Molecular dynamics (MD) study on the electrochemical properties of electrolytes in lithium-ion battery (LIB) applications

    NASA Astrophysics Data System (ADS)

    Salami, Negin

    While the high energy density and the power along with longer cycle life and less requirements of maintenance distinguish the rechargeable lithium-ion batteries (LIBs) from other energy storage devices, development of an electrolyte of LIBs with optimized properties still constitutes a challenge towards next-generation LIB systems with robust electrochemical performance. The electrolytes serve as the medium to provide ionic conduction path between the electrodes as their basic function. Conductivity of the solutions are mainly affected by their transport properties and the electrolyte electrode/separator interfacial phenomena. Although many contributions on thermodynamic properties of the electrolytes consist of alkyl carbonates mixed with salts have been previously studied, relatively little information is known regarding the correlation between interfacial properties of the electrolyte -electrode/separator with electrochemical properties of the cell. In this study, therefore, we present the impacts of salt concentration and temperature-dependent properties of LIBs on wetting behavior of various electrolytes, i.e., ethyl methyl carbonate (EMC), diethyl carbonate (DEC), and propylene carbonate (PC), in contact with the graphite anode and polyethylene (PE)/polypropylene (PP) separator using molecular dynamics (MD) computational technique. The results based on MD computations affirm the general consistent dependency of interfacial tension energies to polarity of the solvents in DEC, EMC, and PC electrolytes contained 1 M LiPF6 salt. The PC systems interestingly showed inverse trend due to the special stacking motifs of PC layers that may increase the interfacial electrostatic interactions. Temperature did not show significant effect on the interfacial energies of linear solvents whereas PC exhibited more tendency to interact with the graphite anode at T = 25 C compared to the similar solution at 0 C. Moreover, the electrolytes that incorporated same solvents had

  15. X-Ray Photoelectron Spectroscopy and Scanning Electrochemical Microscopy Studies of Branched Multiwalled Carbon Nanotube Paper Modified by Electrochemical Grafting and Click Chemistry

    NASA Astrophysics Data System (ADS)

    Coates, Megan; Nyokong, Tebello

    2013-06-01

    Modification of nanomaterials through electrochemical grafting is a useful approach to introduce linking groups on to the surface of these structures. This work shows the possibility of applying electrochemical grafting to branched multiwalled carbon nanotube paper with an electrical resistance of 0.1 ohm-cm, and subsequent reaction of the grafted 4-azidobenzenediazonium with ethynylferrocene through the Sharpless click chemistry reaction. A comparison is made between this paper electrode and adsorbed single-walled carbon nanotubes on a glassy carbon electrode, with electrochemistry, X-ray photoelectron spectroscopy and scanning electrochemical microscopy used for characterization.

  16. Potent 5-nitrofuran derivatives inhibitors of Trypanosoma cruzi growth: Electrochemical, spectroscopic and biological studies

    NASA Astrophysics Data System (ADS)

    Maria Aravena, C.; Claudio Olea, A.; Cerecetto, Hugo; González, Mercedes; Maya, Juan Diego; Rodríguez-Becerra, Jorge

    2011-07-01

    Cyclic voltammetry and electron spin resonance techniques were used in the investigation of several potential antiprotozoal containing thiosemicarbazone and carbamate nitrofurans. In the electrochemical behaviour, a self-protonation process involving the nitro group was observed. The reactivity of the nitro anion radical for these derivatives with glutathione, a biological relevant thiol, was also studied in means of cyclic voltammetry. These studies demonstrated that glutathione could react with radical species from 5-nitrofuryl system. Furthermore, from the voltammetric results, some parameters of biological significance as E71 (indicative of the biological nitro anion radical formation), and K (thermodynamic indicator the of oxygen redox cycling) have been calculated. We also evaluated the stability of the nitro anion radical in terms of the dimerization constant ( kd). The nitrofuran-free radicals from cyclic voltammetry were characterized by electron spin resonance. A clear dependence between both the thiosemicarbazone or carbamate substructure and the length of the linker, furyl- or furylpropenyl-spacer, and the delocalization of the unpaired electron was observed. Through of biological assays we obtained important parameters that account for the selective anti-trypanosomal activity of these derivatives. The trypomastigote viability study showed that all derivatives are as active as in the epimastigote form of the parasite in a doses dependent manner.

  17. Study of NiO cathode modified by ZnO additive for MCFC

    NASA Astrophysics Data System (ADS)

    Huang, Bo; Li, Fei; Yu, Qing-chun; Chen, Gang; Zhao, Bin-yuan; Hu, Ke-ao

    The preparation and subsequent oxidation of nickel cathodes modified by impregnation with zinc oxide (ZnO) were evaluated by surface and bulk analysis. The electrochemical behaviors of ZnO impregnated NiO cathodes was also evaluated in a molten 62 mol% Li 2CO 3 + 38 mol% K 2CO 3 eutectic at 650 °C by electrochemical impedance spectroscopy (EIS) as a function of ZnO content and immersion time. The ZnO impregnated nickel cathodes showed the similar porosity, pore size distribution and morphology to the reference nickel cathode. The stability tests of ZnO impregnated NiO cathodes showed that the ZnO additive could dramatically reduce the solubility of NiO in a eutectic carbonate mixture under the standard cathode gas condition. The impedance spectra for cathode materials show important variations during the 100 h of immersion. The incorporation of lithium in its structure and the low dissolution of nickel oxide and zinc oxide are responsible of these changes. After that, the structure reaches a stable state. The cathode material having 2 mol% of ZnO showed a very low dissolution and a good catalytic efficiency close to the NiO value. We thought that 2 mol% ZnO/NiO materials would be able to adapt as alternative cathode materials for MCFCs.

  18. Spectral, thermal, electrochemical and analytical studies on Cd(II) and Hg(II) thiosemicarbazone complexes

    NASA Astrophysics Data System (ADS)

    El-Asmy, A. A.; El-Gammal, O. A.; Saleh, H. S.

    2008-11-01

    The coordination characteristic of the investigated thiosemicarbazones towards hazard pollutants, Cd(II) and Hg(II), becomes the first goal. Their complexes have been studied by microanalysis, thermal, electrochemical and spectral (electronic, IR and MS) studies. The substitutent (salicylaldehyde, acetophenone, benzophenone, o-hydroxy- p-methoxybenzophenone or diacetylmonoxime) plays an important role in the complex formation. The coordination sites were the S for thiosemicarbazide (HTS); NN for benzophenone thiosemicarbazone (HBTS); NS for acetophenone thiosemicarbazone (HATS) and salicylaldehyde thiosemicarbazone (H 2STS); NNS or NSO for diacetylmonoxime thiosemicarbazone (H 2DMTS). The stability constants of Hg(II) complexes were higher than Cd(II). The kinetic and thermodynamic parameters for the different thermal decomposition steps in the complexes have been evaluated. The activation energy values of the first step ordered the complexes as: [Cd(H 2STS)Cl 2]H 2O > [Cd(H 2DAMTS)Cl 2] > [Cd(HBTS) 2Cl 2]2H 2O > [Cd(HATS) 2Cl 2]. The CV of [Cd(H 2STS)Cl 2]H 2O and [Hg(HBTS)Cl 2] were recorded. The use of H 2DMTS as a new reagent for the separation and determination of Cd(II) ions from water and some synthetic samples using flotation technique is aimed to be discussed.

  19. Long-term pressure and thermal cycling studies on lithium imide-lithium amide complex hydrides and vanadium-carbon hydrides, and electrochemical hydrogen permeation studies

    NASA Astrophysics Data System (ADS)

    Lamb, Joshua H.

    mixed with UHP hydrogen. In addition, commercial-grade industrial hydrogen was also used to simulate the hydrogen purchased from a commercial "Hydrogen gas" station. In the case of industrial hydrogen we found a ˜50% loss (˜2.6 wt% out of ˜5.6 wt% H2) after 1100 pressure cycles. Using the more oxygenated 100ppm O2-UHP H2 mixtures we found a capacity loss of ˜75% (1.4 wt% out of 5.6 wt%) after 560 pressure cycles. Ex-situ x-ray diffraction studies after cycling revealed formation of predominant new Li2O phase along with Li2NH-LiH phases. The addition of H2O, CH4, NH3, and CO showed varying degrees capacity loss. The alanate-imide binary mixed hydridese were also tested for resistance to impurity gases in hydrogen. These samples were obtained from DoE's Metal Hydride Center of Excellence (MHCoE) partner from University of Utah. Thermodynamic measurements were performed by pressure cycling with O2, and thermal aging with CO on the alanate-imide binary mixtures The initial desorption of the material showed ˜7 wt% hydrogen storage, and subsequent hydriding/dehydriding showed 3 wt.% capacity when using a maximum rehydriding pressure of ˜10 bar. The final portion of this work focuses on electrochemical hydrogen permeation experiments performed on steels for nuclear repository service at Yucca Mountain, Nevada. Hydrogen embrittlement and hydrogen induced cracking are common modes of failure when steel is exposed to hydrogen. In this, we studied the diffusion properties of hydrogen in both low and medium carbon steel using the electrochemical Devanathan-Stachurski method. The diffusivities and total hydrogen flux created by galvanostatic charging were measured in both standard 0.1 N NaOH electrolyte and in electrolyte simulating well water taken near Yucca Mountain. Potentiodynamic, potentiostatic permeation electrochemical tests, along with structural and elemental characterization was performed.

  20. Anion effects and the mechanism of Cu UPD on Pt(111): X-ray and electrochemical studies

    NASA Astrophysics Data System (ADS)

    Gómez, R.; Yee, H. S.; Bommarito, G. M.; Feliu, J. M.; Abrun˜a, H. D.

    1995-07-01

    We propose a mechanism for the underpotential deposition of Cu on Pt(111) in 0.1M H 2SO 4 in the presence and absence of halides. The mechanism is based on recent results from electrochemical and in situ surface EXAFS and X-ray standing wave (XSW) studies of Cu UPD on Pt on 0.1M H 2SO 4 and in the presence and absence of halides with emphasis on Cl -, Br - and I -. EXAFS data were obtained in the presence and absence of Cl - at a potential of +0.1 V corresponding to a coverage of approximately 0.75 ML. In the absence of chloride, the data were consistent with the presence of an incompletely discharged copper adlayer. The copper—copper bond distance was found to be 2.85Å. In the presence of chloride the X-ray data suggest the presence of a fully discharged copper layer and the Cu sbnd Cu bond distance, 2.59Å, approached the bulk copper value (2.56Å). In the presence of chloride, no oxygen is present as a backscatterer in the plane of the Cu sbnd Cu adlayer. However, oxygen (from either bisulfate or water) is present as a backscatterer in the absence of chloride giving rise to a copper—oxygen bond distance of 2.16Å. It appears that the chloride acts as a protective overlayer precluding oxygen (from either solvent or electrolyte) adsorption. Qualitatively similar results were obtained for Cu UPD on an iodine treated Pt surface. In addition, XSW data for this last system suggest the presence of electrochemically inactive (solvated) copper ions in the vicinity of but not in contact with the platinum surface which we describe as representing a "pre-adsorbed" state. From electrochemical studies at low (10 μM) copper concentrations, we find that the underpotential deposition of submonolayer amounts of copper induces an enhanced adsorption of chloride and bromide on Pt(111) that is reflected in exceedingly sharp voltammetric peaks that are transient in nature. The adsorbed anions are believed to be in contact with the platinum surface and in the vicinity of the

  1. Applications of advanced electrochemical techniques in the study of microbial fuel cells and corrosion protection by polymer coatings

    NASA Astrophysics Data System (ADS)

    Manohar, Aswin Karthik

    The results of a detailed evaluation of the properties of the anode and the cathode of a mediator-less microbial fuel cell (MFC) and the factors determining the power output of the MFC using different electrochemical techniques are presented in Chapter 1. In the MFC under investigation, the biocatalyst - Shewanella oneidensis MR-1 - oxidizes the fuel and transfers the electrons directly into the anode which consists of graphite felt. Oxygen is reduced at the cathode which consists of Pt-plated graphite felt. A proton exchange membrane separates the anode and the cathode compartments. The electrolyte was a PIPES buffer solution and lactate was used as the fuel. Separate tests were performed with the buffer solution containing lactate and with the buffer solution with lactate and MR-1 as anolytes. Electrochemical Impedance Spectroscopy (EIS) carried out at the open-circuit potential (OCP) has been used to determine the electrochemical properties of the anode and the cathode at different anolyte conditions. Cell voltage (V) -- current (I) curves were recorded using a potentiodynamic sweep between the open-circuit cell voltage and the short- circuit cell voltage. Power (P)-V curves were constructed from the recorded V-I data and the cell voltage, Vmax, at which the maximum power could be obtained, was determined. P- time (t) curves were obtained by applying Vmax or using a resistor between the anode and the cathode that would result in a similar cell voltage. Cyclic voltammograms (CV) were recorded for the anode for the different anolytes. Finally, anodic polarization curves were obtained for the anode with different anolytes and a cathodic polarization curve was recorded for the cathode. The internal resistance (Rint) of the MFC has been determined as a function of the cell voltage V using EIS for the MFC described above and a MFC in which stainless steel (SS) balls had been added to the anode compartment. The experimental values of Rint of the MFCs studied here are

  2. Electrochemical, spectroscopic, and mass spectrometric studies of the interaction of silver species with polyamidoamine dendrimers.

    PubMed

    Fan, Fu-Ren F; Mazzitelli, Carolyn L; Brodbelt, Jennifer S; Bard, Allen J

    2005-07-15

    Electrochemical, spectroscopic, and mass spectrometric (MS) methods were used to probe the interaction (complexation) of silver ions and zerovalent silver species with polyamidoamine generation 1 amine-terminated (PAMAMG1NH2) and generation 2 hydroxy-terminated (PAMAMG2OH) dendrimers (DDMs). Stability constants (Kq+) and stoichiometries (q) (i.e., the number of silver ions complexed per DDM molecule) were determined from the voltammetric data, that is, shifts in potential and changes in peak or limiting current with addition of DDM. When the mole ratio of DDM to Ag+ is > or = 1, Ag+ binds with PAMAMG2OH to form a dominant 1:1 complex with a value of 1.1 x 10(7) M(-1). Under similar conditions, Ag+ binds with PAMAMG1NH2, yielding a 1:1 complex with = 4 x 10(9) M(-1), which is consistent with the finding of the MS experiments. When the mole ratio is < 1, q > or = 2. The E0' of the Ag-PAMAMG1NH2(+/0) couple shifted to a more negative value than that of the Ag(+/0) couple. The negative shift in the halfwave potential also suggests that DDM binds more strongly with Ag+ than with zerovalent silver species. Spectroscopic results suggest that hydroxyl-terminated PAMAMG2OH favors the formation of small zerovalent silver clusters after reduction while amine-terminated PAMAMG1NH2 allows for simultaneous formation of both clusters and larger nanoparticles at similar conditions. Other quantities, such as diffusion coefficients of the complexes and molar absorptivity of the Ag+ DDMs, are also reported. PMID:16013854

  3. The mechanism of bacterial action in the leaching of pyrite by Thiobacillus ferrooxidans. An electrochemical study

    SciTech Connect

    Holmes, P.R.; Fowler, T.A.; Crundwell, F.K.

    1999-08-01

    In many of the experiments reported in the literature on the leaching of pyrite by Thiobacillus ferrooxidans, the concentrations of ferric and ferrous ions in the presence of bacteria differ significantly from experiments conducted in their absence. In addition, these concentrations change throughout the course of the experiment. This makes it difficult to determine whether the presence of bacteria increases the rate of leaching above that for chemical leaching at the same solution conditions. The authors have designed an experimental apparatus to overcome this problem. This apparatus controls the redox potential in one compartment of an electrolytic cell by manipulating the current to the cell. In this manner, the concentrations of ferrous and ferric ions are maintained at their initial values for the duration of the experiment. Two types of experiments are reported in this paper. In the first, pyrite electrodes were exposed to solutions of the same bulk conditions in the presence and absence of bacteria, and their mixed potentials were determined. In the second, particulate pyrite was leached with and without bacteria to determine the effect that bacteria have on the rate of leaching. The mixed potential of bacterially dissolved pyrite decreases as microcolonies and biofilms form on the surface of pyrite electrode over a 14 day period. On the other hand, the mixed potential of chemically dissolved pyrite is constant over the same period. The results of the leaching experiments show that Thiobacillus ferrooxidans enhances the rate of leaching above that found in the absence of bacteria at the same conditions in solution. An electrochemical model of pyrite dissolution is derived that describes the mixed potential and the kinetics of pyrite leaching. This analysis indicates that the decrease in mixed potential and the increase in the leaching rate in the presence of bacteria are due to an increase in the pH at the surface.

  4. Austenitic and duplex stainless steels in simulated physiological solution characterized by electrochemical and X-ray photoelectron spectroscopy studies.

    PubMed

    Kocijan, Aleksandra; Conradi, Marjetka; Schön, Peter M

    2012-04-01

    A study of oxide layers grown on 2205 duplex stainless steel (DSS) and AISI 316L austenitic stainless steel in simulated physiological solution is presented here in order to establish the possibility of replacement of AISI 316 L with 2205 DSS in biomedical applications. The results of the potentiodynamic measurements show that the extent of the passive range significantly increased for DSS 2205 compared to AISI 316L stainless steel. Cyclic voltammetry was used to investigate electrochemical processes taking place on the steel surfaces. Oxide layers formed by electrochemical oxidation at different oxidation potentials were studied by X-ray photoelectron spectroscopy, and their compositions were analyzed as a function of depth. The main constituents on both the investigated materials were Cr- and Fe-oxides. Atomic force microscopy topography studies revealed the higher corrosion resistance of the DSS 2205 compared to the AISI 316L under the chosen experimental conditions. PMID:22331841

  5. Studies of Aqueous and Non-Aqueous Electrochemical Interface for Applications in Microelectronic and Energy Storage Systems

    NASA Astrophysics Data System (ADS)

    Zheng, Jianping

    Various electrochemical techniques were utilized to study a wide range of electrochemical systems in this dissertation. Mainly they are grouped in three sections: 1) the conventional metal-aqueous systems for new applications in modern microelectronic devices, 2) unconventional ceramic-organic systems for applications in Li-ion batteries and 3) novel systems composed of ionic liquids and carbon series electrodes. The objects are to probe the electrochemical/chemical reactions and interfacial structures, which are the common features of the aforementioned systems. This dissertation mainly focuses on experimental aspects, however, some theories and new models used to elucidate the experiment data have also been developed and presented. Some new experimental techniques have been explored and their limitations and validity have also been discussed. Oxalic acid (OA)-based nonalkaline solutions with H2O 2 are found to support chemically mediated removal of Ta-oxide surface films on Ta. The associated surface reactions are critical for chemical mechanical planarization (CMP) of Ta barrier. In chapter 4, a Ta coupon electrode is used as a model system in abrasive-free solutions of OA and H2O 2, where the chemical component of CMP is selectively examined. In chapter 5, electrochemical impedance spectroscopy (EIS) is employed to study the competitive reactions of surface corrosion and passivating film formation on a Cu-rotating disc electrode (RDE) in pH-adjusted solutions of H2O2, acetic acid (HAc) and ammonium dodecyl sulfate (ADS). Micrometric LiMn2O4 particles are mechano-chemically modified by ball-milling to obtain a mixture of nano- and micro-scale particles. In chapter 6, this mixture is tested as a potential active cathode material for rapid-charge Li ion batteries, and also as a model system for studying the detailed kinetics of Li intercalation/de-intercalation in such electrodes. In chapter 7, cyclic voltammetry (CV) and EIS are compared as techniques for

  6. An electrochemical in situ study of freezing and thawing of ionic liquids in carbon nanopores.

    PubMed

    Weingarth, Daniel; Drumm, Robert; Foelske-Schmitz, Annette; Kötz, Rüdiger; Presser, Volker

    2014-10-21

    Room temperature ionic liquids (RTILs) are an emerging class of electrolytes enabling high cell voltages and, in return, high energy density of advanced supercapacitors. Yet, the low temperature behavior, including freezing and thawing, is little understood when ions are confined in the narrow space of nanopores. This study shows that RTILs may show a tremendously different thermal behavior when comparing bulk with nanoconfined properties as a result of the increased surface energy of carbon pore walls. In particular, a continuous increase in viscosity is accompanied by slowed-down charge-discharge kinetics as seen with in situ electrochemical characterization. Freezing reversibly collapses the energy storage ability and thawing fully restores the initial energy density of the material. For the first time, a different thermal behavior in positively and negatively polarized electrodes is demonstrated. This leads to different freezing and melting points in the two electrodes. Compared to bulk, RTILs in the confinement of electrically charged nanopores show a high affinity for supercooling; that is, the electrode may freeze during heating. PMID:25201074

  7. Synthesis, spectroscopic characterization and electrochemical studies of Girard's T chromone complexes

    NASA Astrophysics Data System (ADS)

    Al-Saeedi, Sameerah I.; Alaghaz, Abdel-Nasser M. A.; Ammar, Reda A.

    2016-05-01

    Complexes of cobalt(II), nickel(II), copper(II) and zinc(II) of general composition [M(L)2] have been. The elemental analyses, molar conductance, spectral, magnetic moment and thermal measurements studies of the compounds led to the conclusion that the ligand acts as a tridentate manner (OON). The molar conductance of the metal complexes in fresh solution of DMSO lies in the range of 8.10-10.18 Ω-1 cm2 mol-1 indicating their non-electrolytic behavior. On the basis of analytical and spectroscopic techniques, octahedral geometry of the complexes was proposed. The ligand field parameters were calculated for Co(II), Ni(II) and Cu(II) complexes and their values were found in the range reported for a octahedral structure. The data show that the complexes have composition of ML2 type. The activation of thermodynamic parameters are calculated using different equations. The octahedral geometry of the complexes is confirmed using DFT method from DMOL3 calculations and ligand field parameters. The cyclic voltammograms of the Cu(II)/Co(II)/Ni(II) complexes investigated in DMSO solution exhibit metal centered electroactivity in the potential range -1.5 to +1.5 V. The electrochemical data obtained for Cu(II) complexes explains the change of structural arrangement of the ligand around Cu(II) ions.

  8. Coupling of acoustic emission and electrochemical noise measurement techniques in slurry erosion-corrosion studies

    SciTech Connect

    Oltra, R.; Chapey, B.; Huet, F.; Renaud, L.

    1996-12-31

    This study deals with the measurement and the subsequent signal analysis of acoustic emission and current noise recorded during continuous slurry erosion of a metallic target in a corrosive environment. According to a phenomenologic model, the localized corrosion results from the repetitive damage caused by particle impacts. The fluctuations of the acoustic signal and of the electrochemical signal both can be modeled as a shot-noise-like process. The main purpose of this work is to compare two processing techniques for the fluctuating signals: time analysis (mean value) and spectral analysis (power spectral density [PSD] spectrum) to determine the more suitable signal treatment. Another purpose is also to quantify the balance between the mechanical wear and the corrosive damage of the abraded metallic target. It will be shown that the mean value of the RMS acoustic signal, A(t), and also the PSD of A(t), are related to the mechanical wear of the target and allow real-time measurement of the actual mechanical perturbation in terms of the mass of the ablated material.

  9. Metallic monoclinic phase in VO2 induced by electrochemical gating: In situ Raman study

    NASA Astrophysics Data System (ADS)

    Nath Gupta, Satyendra; Pal, Anand; Muthu, D. V. S.; Kumar, P. S. Anil; Sood, A. K.

    2016-07-01

    We report in situ Raman scattering studies of electrochemically top gated VO2 thin film to address metal-insulator transition (MIT) under gating. The room temperature monoclinic insulating phase goes to metallic state at a gate voltage of 2.6 V. However, the number of Raman modes do not change with electrolyte gating showing that the metallic phase is still monoclinic. The high-frequency Raman mode A g (7) near 616 cm‑1 ascribed to V-O vibration of bond length 2.06 Å in VO6 octahedra hardens with increasing gate voltage and the B g (3) mode near 654 cm‑1 softens. This shows that the distortion of the VO6 octahedra in the monoclinic phase decreases with gating. The time-dependent Raman data at fixed gate voltages of 1 V (for 50 minutes, showing enhancement of conductivity by a factor of 50) and 2 V (for 130 minutes, showing further increase in conductivity by a factor of 5) show similar changes in high-frequency Raman modes A g (7) and B g (3) as observed in gating. This slow change in conductance together with Raman frequency changes show that the governing mechanism for metalization is more likely due to the diffusion-controlled oxygen vacancy formation due to the applied electric field.

  10. [Study on the variation of algal activity during the electrochemical oxidation as inactivation method].

    PubMed

    Liang, Wen-Yan; Wang, Ke; Ruan, Ling-Ling; Sui, Li-Li

    2010-06-01

    The paper studied the variation of algal activity during the electrochemical inactivation and the influence factors by the use of TTC-dehydrogenase activity and neutral red staining assays. The treatment reactor was consisted of Ti/RuO2 rod as anode and stainless steel pipe as cathode. The results showed that algal inactivation rate was 45% in cell density after 30 min treatment at 8 mA/cm2. Whereas the decrease of TTC-dehydrogenase activity was 94% and neutral red staining percentage was 100%. The algae after treatment was unable to regrow and it revealed that the algal activity assays can reflect the inactivation effect more correctly than cell density. The electrolytes could influence the inactivation efficiency. The electrolytes of Na2SO4 and NaNO3 had similar effects on algal inactivation and Na2SO4 concentration had small influence on the treatment. However, when the electrolyte contained 0.1 mmol/L NaCl, the algal inactivation was improved obviously with the 87% for TTC-dehydrogenase activity decrease and 82% for neutral red staining ratio. The initial algal concentration also influenced the treatment efficiency. If cell density increased, the inactivation efficiency decreased significantly. All algal cells in samples with cell density of 4.4 x 10(7) cells/L were completely inactivated by the use of natural water as electrolyte within 1 minute. PMID:20698257

  11. Spectrophotometric and electrochemical study of neptunium ions in molten NaCl-CsCl eutectic

    NASA Astrophysics Data System (ADS)

    Uehara, Akihiro; Nagai, Takayuki; Fujii, Toshiyuki; Shirai, Osamu; Yamana, Hajimu

    2013-06-01

    The chemical oxidation states of NpO2+, Np4+ and Np3+ in NaCl-CsCl eutectic were controlled by using Cl2, O2, H2 and Ar gas mixtures, the redox behavior and electronic absorption properties of their Np ions were studied. The Np4+ was prepared from NpO2Cl by bubbling Cl2 gas into the melt in the presence of carbon rod. Np3+ was quantitatively prepared by bubbling H2-Ar gas mixture. The molar absorptivities of NpO2+, Np4+ and Np3+ were determined in molten NaCl-CsCl eutectic at 923 K and hypersensitive transitions of Np4+ and Np3+ ions were assigned. Since the polarizing ability of the cations in the NaCl-CsCl eutectic is lower than that in some other melts, it has been shown that the coordination symmetry of the Np-Cl complex is higher. In the electrochemical measurement of Np4+, the cathodic current for the reduction of Np4+ was found to be controlled by the diffusion of Np4+. The temperature dependence of the diffusion coefficient between 823 and 923 K was formulated to be lnD=-4304/T-6.172. The formal redox potential of the Np4+|Np3+ couple depended on the temperature, this dependence was formulated as ENp|Np∘'=-1.313+6.210×10-4T V (vs. Cl2|Cl-).

  12. In-situ electrochemical study of interaction of tribology and corrosion in artificial hip prosthesis simulators.

    PubMed

    Yan, Yu; Dowson, Duncan; Neville, Anne

    2013-02-01

    The second generation Metal-on-Metal (MoM) hip replacements have been considered as an alternative to commonly used Polyethylene-on-Metal (PoM) joint prostheses due to polyethylene wear debris induced osteolysis. However, the role of corrosion and the biofilm formed under tribological contact are still not fully understood. Enhanced metal ion concentrations have been reported widely from hair, blood and urine samples of patients who received metal hip replacements and in isolated cases when abnormally high levels have caused adverse local tissue reactions. An understanding of the origin of metal ions is really important in order to design alloys for reduced ion release. Reciprocating pin-on-plate wear tester is a standard instrument to assess the interaction of corrosion and wear. However, more realistic hip simulator can provide a better understanding of tribocorrosion process for hip implants. It is very important to instrument the conventional hip simulator to enable electrochemical measurements. In this study, simple reciprocating pin-on-plate wear tests and hip simulator tests were compared. It was found that metal ions originated from two sources: (a) a depassivation of the contacting surfaces due to tribology (rubbing) and (b) corrosion of nano-sized wear particles generated from the contacting surfaces. PMID:23182693

  13. Determination of sulfite in foods and beverages by ion exclusion chromatography with electrochemical detection: collaborative study.

    PubMed

    Kim, H J

    1990-01-01

    A liquid chromatographic (LC) method for determination of total sulfite in foods and beverages by alkali extraction followed by ion exclusion chromatographic separation and electrochemical detection (IEC-EC) was collaboratively studied by 9 laboratories. Blind duplicate samples of starch, diluted lemon juice, wine cooler, dehydrated seafood, and instant mashed potatoes were analyzed without spiking and with added sulfite at 2 levels. The initial sulfite levels varied from 0 to 384 ppm SO2, and the levels added varied from 10 to 400 ppm. The initial sulfite levels determined by the IEC-EC method and the Monier-Williams method were in good agreement. Recovery of added sulfite by the IEC-EC method was generally higher than that by the Monier-Williams method. Within-laboratory repeatability (RSDr) for the IEC-EC method varied from 4.4 to 26.0%, and overall reproducibility (RSDR) varied from 8.5 to 39.3%. The collaborators found the method to be fast, sensitive, and easy to use, which makes it a useful alternative to the Monier-Williams method. The method has been adopted official first action. PMID:2324032

  14. Stainless steel surface biofunctionalization with PMMA-bioglass coatings: compositional, electrochemical corrosion studies and microbiological assay.

    PubMed

    Floroian, L; Samoila, C; Badea, M; Munteanu, D; Ristoscu, C; Sima, F; Negut, I; Chifiriuc, M C; Mihailescu, I N

    2015-06-01

    A solution is proposed to surpass the inconvenience caused by the corrosion of stainless steel implants in human body fluids by protection with thin films of bioactive glasses or with composite polymer-bioactive glass nanostructures. Our option was to apply thin film deposition by matrix-assisted pulsed laser evaporation (MAPLE) which, to the difference to other laser or plasma techniques insures the protection of a more delicate material (a polymer in our case) against degradation or irreversible damage. The coatings composition, modification and corrosion resistance were investigated by FTIR and electrochemical techniques, under conditions which simulate their biological interaction with the human body. Mechanical testing demonstrates the adhesion, durability and resistance to fracture of the coatings. The coatings biocompatibility was assessed by in vitro studies and by flow cytometry. Our results support the unrestricted usage of coated stainless steel as a cheap alternative for human implants manufacture. They will be more accessible for lower prices in comparison with the majority present day fabrication of implants using Ti or Ti alloys. PMID:26085116

  15. Comparative study of label-free electrochemical immunoassay on various gold nanostructures

    NASA Astrophysics Data System (ADS)

    Rafique, S.; Gao, C.; Li, C. M.; Bhatti, A. S.

    2013-10-01

    Electrochemical methods such as amperometry and impedance spectroscopy provide the feasibility of label-free immunoassay. However, the performance of electrochemical interfaces varies with the shape of gold nanostructures. In the present work three types of gold nanostructures including pyramid, spherical, and rod-like nanostructures were electrochemically synthesized on the gold electrode and were further transformed into immunosensor by covalent binding of antibodies. As a model protein, a cancer biomarker, Carcinoembryonic Antigen (CEA) was detected using amperometric and impedimetric techniques on three nanostructured electrodes, which enabled to evaluate and compare the immunoassay's performance. It was found that all three immunosensors showed improved linear electrochemical response to the concentration of CEA compared to bare Au electrode. Among all the spherical gold nanostructure based immunosensors displayed superior performance. Under optimal condition, the immunosensors exhibited a limit of detection of 4.1 pg ml-1 over a concentration range of five orders of magnitude. This paper emphasizes that fine control over the geometry of nanostructures is essentially important for high-performance electrochemical immunoassay.

  16. Chemical and electrochemical study of fabrics coated with reduced graphene oxide

    NASA Astrophysics Data System (ADS)

    Molina, J.; Fernández, J.; del Río, A. I.; Bonastre, J.; Cases, F.

    2013-08-01

    Polyester fabrics coated with reduced graphene oxide (RGO) have been obtained and later characterized by means of chemical and electrochemical techniques. X-ray photoelectron spectroscopy showed a decrease of the oxygen content as well as an increase of the sp2 fraction after chemical reduction of graphene oxide (GO). The electrical conductivity was measured by electrochemical impedance spectroscopy (EIS) and showed a decrease of 5 orders of magnitude in the resistance (Ω) when GO was reduced to RGO. The phase angle also changed from 90° for PES-GO (capacitative behavior) to 0° for RGO coated fabrics (resistive behavior). In general an increase in the number of RGO layers produced an increase of the conductivity of the fabrics. EIS measurements in metal/sample/electrolyte configuration showed better electrocatalytic properties and faster diffusion rate for RGO specimens. Scanning electrochemical microscopy was employed to test the electroactivity of the different fabrics obtained. The sample coated with GO was not conductive since negative feedback was obtained. When GO was reduced to RGO the sample behaved like a conducting material since positive feedback was obtained. Approach curves indicated that the redox mediator had influence on the electrochemical response. The Fe(CN)63-/4- redox mediator produced a higher electrochemical response than Ru(NH3)63+/2+ one.

  17. Direct Mapping of Ionic Transport in a Si Anode on the Nanoscale: Time Domain Electrochemical Strain Spectroscopy Study

    SciTech Connect

    Jesse, Stephen; Balke, Nina; Eliseev, Eugene; Tselev, Alexander; Dudney, Nancy J.; Morozovska, Anna N.; Kalinin, Sergei V.

    2011-12-27

    Local Li-ion transport in amorphous silicon is studied on the nanometer scale using time domain electrochemical strain microscopy (ESM). A strong variability of ionic transport controlled by the anode surface morphology is observed. The observed relaxing and nonrelaxing response components are discussed in terms of local and global ionic transport mechanisms, thus establishing the signal formation mechanisms in ESM. This behavior is further correlated with local conductivity measurements. The implications of these studies for Si-anode batteries are discussed. The universal presence of concentration–strain coupling suggests that ESM and associated time and voltage spectroscopies can be applied to a broad range of electrochemical systems ranging from batteries to fuel cells.

  18. Direct mapping of ionic transport in Si-anode on the nanoscale: time domain electrochemical strain spectroscopy study

    SciTech Connect

    Jesse, Stephen; Balke, Nina; Eliseev, E. A.; Tselev, Alexander; Dudney, Nancy J; Morozovska, A. N.; Kalinin, Sergei V

    2011-01-01

    Local Li-ion transport in amorphous silicon is studied on the nanometer scale using time domain electrochemical strain microscopy (ESM). A strong variability of ionic transport controlled by the anode surface morphology is observed. The observed relaxing and nonrelaxing response components are discussed in terms of local and global ionic transport mechanisms, thus establishing the signal formation mechanisms in ESM. This behavior is further correlated with local conductivity measurements. The implications of these studies for Si-anode batteries are discussed. The universal presence of concentration-strain coupling suggests that ESM and associated time and voltage spectroscopies can be applied to a broad range of electrochemical systems ranging from batteries to fuel cells.

  19. Synthesis, characterization and properties of some divalent metal(II) complexes: Their electrochemical, catalytic, thermal and antimicrobial activity studies

    NASA Astrophysics Data System (ADS)

    Tümer, Mehmet; Ekinci, Duygu; Tümer, Ferhan; Bulut, Akif

    2007-07-01

    In this study, we synthesized the amine compound 2-(2-aminoethyliminomethyl)phenol (H 3A) as the starting material, and then we prepared the polydentate Schiff base ligands from the reactions of the amine compound (H 3A) with phtaldialdehyde (H 2L), 4-methyl-2,6-di-formlyphenol (H 3L 1) and 4- t-butyl-2,6-di-formylphenol (H 3L 2) in the ethanol solution. Moreover, the complexes Cd(II), Cu(II), Co(II), Ni(II), Zn(II) and Sn(II) of the ligands H 2L, H 3L 1 and H 3L 2 have been prepared. All compounds have been characterized by the analytical and spectroscopic methods. In addition, the magnetic susceptibility and molar conductance measurements have been made. The catalytic properties of the mono- and binuclear Co(II) and Cu(II) complexes have been studied on the 3,5-di- tert-butylcatechol (3,5-DTBC) and ascorbic acid (aa) as a substrate. The oxidative C-C coupling properties of the Co(II) and Cu(II) complexes have been investigated on the sterically hindered 2,6-di- tert-butylphenol (dtbp). The antimicrobial activity properties of the ligands and their mono- and binuclear complexes have been studied against the bacteria and fungi. The results have been compared to the antibacterial and fungi drugs. The TGA curves show that the decomposition takes place in three steps for all complexes. Electrochemical properties of the complexes Cu(II) and Ni(II) have been investigated for the first time in acetonitrile by cyclic voltammetry.

  20. Mechanistic Study for Facile Electrochemical Patterning of Surfaces with Metal Oxides.

    PubMed

    Jones, Evan C; Liu, Qihan; Suo, Zhigang; Nocera, Daniel G

    2016-05-24

    Reactive interface patterning promoted by lithographic electrochemistry serves as a method for generating submicrometer scale structures. We use a binary-potential step on a metallic overlayer on silicon to fabricate radial patterns of cobalt oxide on the nanoscale. The mechanism for pattern formation has heretofore been ill-defined. The binary potential step allows the electrochemical boundary conditions to be controlled such that initial conditions for a scaling analysis are afforded. With the use of the scaling analysis, a mechanism for producing the observed pattern geometry is correlated to the sequence of electrochemical steps involved in the formation of the submicrometer structures. The patterning method is facile and adds to electrochemical micromachining techniques employing a silicon substrate. PMID:27072117

  1. Study on the electrochemical extraction of rare earth elements from FLINAK

    SciTech Connect

    Long, Dewu; Huang, Wei; Jiang, Feng; Tian, Lifang; Li, Qingnuan

    2013-07-01

    Electrochemical behaviors of rare earth elements, such as NdF{sub 3}, GdF{sub 3}, SmF{sub 3}, YF{sub 3}, and EuF{sub 3}, were investigated in a LiF-NaF-KF (46.5-11.5-42.0 mol %, FLINAK, m. p. 454 Celsius degrees) solvent. The results indicated that it is possible to extract Nd, Gd and Y directly by electrochemical deposition since the reductions of those cations to metal are located in the electrochemical window of the FLINAK eutectic, while the reductions of Sm and Eu metal are out of the range of the medium. Subsequently electro-deposition of Nd was carried out with two kinds of cathodic materials, namely, an inert cathode, Pt, and a reactive electrode, Cu. The collected products were characterized by various techniques revealing that a Nd-rich product was obtained. (authors)

  2. Electrochemical Analysis of Neurotransmitters

    NASA Astrophysics Data System (ADS)

    Bucher, Elizabeth S.; Wightman, R. Mark

    2015-07-01

    Chemical signaling through the release of neurotransmitters into the extracellular space is the primary means of communication between neurons. More than four decades ago, Ralph Adams and his colleagues realized the utility of electrochemical methods for the study of easily oxidizable neurotransmitters, such as dopamine, norepinephrine, and serotonin and their metabolites. Today, electrochemical techniques are frequently coupled to microelectrodes to enable spatially resolved recordings of rapid neurotransmitter dynamics in a variety of biological preparations spanning from single cells to the intact brain of behaving animals. In this review, we provide a basic overview of the principles underlying constant-potential amperometry and fast-scan cyclic voltammetry, the most commonly employed electrochemical techniques, and the general application of these methods to the study of neurotransmission. We thereafter discuss several recent developments in sensor design and experimental methodology that are challenging the current limitations defining the application of electrochemical methods to neurotransmitter measurements.

  3. Electrochemical Analysis of Neurotransmitters

    PubMed Central

    Bucher, Elizabeth S.; Wightman, R. Mark

    2016-01-01

    Chemical signaling through the release of neurotransmitters into the extracellular space is the primary means of communication between neurons. More than four decades ago, Ralph Adams and his colleagues realized the utility of electrochemical methods for the study of easily oxidizable neurotransmitters, such as dopamine, norepinephrine, and serotonin and their metabolites. Today, electrochemical techniques are frequently coupled to microelectrodes to enable spatially resolved recordings of rapid neurotransmitter dynamics in a variety of biological preparations spanning from single cells to the intact brain of behaving animals. In this review, we provide a basic overview of the principles underlying constant-potential amperometry and fast-scan cyclic voltammetry, the most commonly employed electrochemical techniques, and the general application of these methods to the study of neurotransmission. We thereafter discuss several recent developments in sensor design and experimental methodology that are challenging the current limitations defining the application of electrochemical methods to neurotransmitter measurements. PMID:25939038

  4. Surface science and electrochemical studies of metal-modified carbides for fuel cells and hydrogen production

    NASA Astrophysics Data System (ADS)

    Kelly, Thomas Glenn

    Carbides of the early transition metals have emerged as low-cost catalysts that are active for a wide range of reactions. The surface chemistry of carbides can be altered by modifying the surface with small amounts of admetals. These metal-modified carbides can be effective replacements for Pt-based bimetallic systems, which suffer from the drawbacks of high cost and low thermal stability. In this dissertation, metal-modified carbides were studied for reactions with applications to renewable energy technologies. It is demonstrated that metal-modified carbides possess high activity for alcohol reforming and electrochemical hydrogen production. First, the surface chemistry of carbides towards alcohol decomposition is studied using density functional theory (DFT) and surface science experiments. The Vienna Ab initio Simulation Package (VASP) was used to calculate the binding energies of alcohols and decomposition intermediates on metal-modified carbides. The calculated binding energies were then correlated to reforming activity determined experimentally using temperature programmed desorption (TPD). In the case of methanol decomposition, it was found that tungsten monocarbide (WC) selectively cleaved the C-O bond to produce methane. Upon modifying the surface with a single layer of metal such as Ni, Pt, or Rh, the selectivity shifted towards scission of the C-H bonds while leaving the C-O bond intact, producing carbon monoxide (CO) and H2. High resolution energy loss spectroscopy (HREELS) was used to examine the bond breaking sequence as a function of temperature. From HREELS, it was shown that the surfaces followed an activity trend of Rh > Ni > Pt. The Au-modified WC surface possessed too low of a methanol binding energy, and molecular desorption of methanol was the most favorable pathway on this surface. Next, the ability of Rh-modified WC to break the C-C bond of C2 and C3 alcohols was demonstrated. HREELS showed that ethanol decomposed through an acetaldehyde

  5. Generation of hydrophilic, bamboo-shaped multiwalled carbon nanotubes by solid-state pyrolysis and its electrochemical studies.

    PubMed

    Shanmugam, Sangaraju; Gedanken, Aharon

    2006-02-01

    A simple, efficient, and novel method was developed for the direct preparation of hydrophilic, bamboo-shaped carbon nanotubes by the pyrolysis of ruthenium(III) acetylacetonate in a Swagelock cell is reported. The obtained product exhibits mostly bamboo-shaped, straight, periodic twisted, multiwalled carbon nanotubes possessing diameters of 50-80 nm and lengths of around 10 microm. The pyrolyzed product was characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), high resolution TEM (HRTEM), Fourier transform infrared (FT-IR), X-ray photoelectron spectroscopy (XPS), micro-Raman, and cyclic voltammetric techniques. HRTEM studies showed that the walls of bamboo-shaped carbon nanotubes consisted of oblique grapheme planes with respect to the tube axis. The interlayer spacing between two graphitic layers was found to be 0.342 nm. XPS measurements have suggested that as-prepared carbon nanotubes consist the surface functional groups on the surface of carbon nanotubes. The electrochemical properties of synthesized carbon nanotubes have been evaluated. Thermogravimetric analysis (TGA), IR, and cyclic voltammetric studies showed the presence of oxygen functionalities. Raman studies revealed the presence of disorder in the graphitic carbon and the presence of exposed edge plane defects in the generated carbon nanotubes for influencing the surface behavior and electrochemical properties. The electrochemical behavior of electrodes made of bamboo-shaped carbon nanotubes served for an oxygen reduction reaction. PMID:16471780

  6. Electrochemical synthesis of nanostructured gold film for the study of carbohydrate-lectin interactions using localized surface plasmon resonance spectroscopy.

    PubMed

    Bhattarai, Jay K; Sharma, Abeera; Fujikawa, Kohki; Demchenko, Alexei V; Stine, Keith J

    2015-03-20

    Localized surface plasmon resonance (LSPR) spectroscopy is a label-free chemical and biological molecular sensing technique whose sensitivity depends upon development of nanostructured transducers. Herein, we report an electrodeposition method for fabricating nanostructured gold films (NGFs) that can be used as transducers in LSPR spectroscopy. The NGF was prepared by electrodepositing gold from potassium dicyanoaurate solution onto a flat gold surface using two sequential controlled potential steps. Imaging by scanning electron microscopy reveals a morphology consisting of randomly configured block-like nanostructures. The bulk refractive index sensitivity of the prepared NGF is 100±2 nmRIU(-1) and the initial peak in the reflectance spectrum is at 518±1 nm under N2(g). The figure of merit is 1.7. In addition, we have studied the interaction between carbohydrate (mannose) and lectin (Concanavalin A) on the NGF surface using LSPR spectroscopy by measuring the interaction of 8-mercaptooctyl-α-d-mannopyranoside (αMan-C8-SH) with Concanavalin A by first immobilizing αMan-C8-SH in mixed SAMs with 3,6-dioxa-8-mercaptooctanol (TEG-SH) on the NGF surface. The interaction of Con A with the mixed SAMs is confirmed using electrochemical impedance spectroscopy. Finally, the NGF surface was regenerated to its original sensitivity by removing the SAM and the bound biomolecules. The results from these experiments contribute toward the development of inexpensive LSPR based sensors that could be useful for studying glycan-protein interactions and other bioanalytical purposes. PMID:25442712

  7. Ambient Pressure XPS Study of Mixed Conducting Perovskite-Type SOFC Cathode and Anode Materials under Well-Defined Electrochemical Polarization

    PubMed Central

    2015-01-01

    The oxygen exchange activity of mixed conducting oxide surfaces has been widely investigated, but a detailed understanding of the corresponding reaction mechanisms and the rate-limiting steps is largely still missing. Combined in situ investigation of electrochemically polarized model electrode surfaces under realistic temperature and pressure conditions by near-ambient pressure (NAP) XPS and impedance spectroscopy enables very surface-sensitive chemical analysis and may detect species that are involved in the rate-limiting step. In the present study, acceptor-doped perovskite-type La0.6Sr0.4CoO3-δ (LSC), La0.6Sr0.4FeO3-δ (LSF), and SrTi0.7Fe0.3O3-δ (STF) thin film model electrodes were investigated under well-defined electrochemical polarization as cathodes in oxidizing (O2) and as anodes in reducing (H2/H2O) atmospheres. In oxidizing atmosphere all materials exhibit additional surface species of strontium and oxygen. The polaron-type electronic conduction mechanism of LSF and STF and the metal-like mechanism of LSC are reflected by distinct differences in the valence band spectra. Switching between oxidizing and reducing atmosphere as well as electrochemical polarization cause reversible shifts in the measured binding energy. This can be correlated to a Fermi level shift due to variations in the chemical potential of oxygen. Changes of oxidation states were detected on Fe, which appears as FeIII in oxidizing atmosphere and as mixed FeII/III in H2/H2O. Cathodic polarization in reducing atmosphere leads to the reversible formation of a catalytically active Fe0 phase. PMID:26877827

  8. Experimental Studies of Selected Aqueous Electrochemical Systems Relevant for Materials Processing in the Fabrications of Microelectronic Components and Direct Alcohol Fuel Cells

    NASA Astrophysics Data System (ADS)

    Shi, Xingzhao

    surface modifying agent for controlling galvanic corrosions of Al in the Ta-Al and Co-Al bimetallic combinations. The results elaborate the chemical and electrochemical mechanisms responsible for activating and suppressing the corrosion processes in these systems. Defect-control is a critical requirement for CMP of the ultrathin diffusion barriers considered for the new Cu-interconnects. The challenging task of developing advanced CMP slurries for such systems can be aided by electrochemical evaluations of model CMP schemes under tribological conditions. The present work uses this strategy to characterize an alkaline slurry formulation aimed at minimizing galvanic corrosion in the CMP systems involving Ru, Ta (barrier metals) and Cu (wiring metal). This slurry is based on percarbonate and guanidine additives, and the test metals are polycrystalline disc samples. A particular goal of this study is to explore the essential analytical aspects of evaluating CMP systems in the tribo-electrochemical approach. The CMP specific surface reactions are characterized by potentiodynamic polarization and open circuit voltage measurements, performed both in the presence and in the absence of polishing, and by employing abrasive free as well as abrasive (colloidal SiO 2) added solutions. The findings of these experiments are further checked by using impedance spectroscopy. The electrochemical mixed potential steps of the CMP promoting reactions are analyzed, and the removable surface species formed by these reactions are discussed. Electro-oxidation of hypophosphite plays an important role in the electro-less deposition of Ni used to fabricate surface engineered films, alloys, and coatings for a variety of applications. At the same time, the kinetic details of this oxidation reaction comprise an ideal framework for studying many general mechanistic aspects of electrocatalysis on transition metal substrates. The present study utilizes these specific attributes of hypophosphite oxidation

  9. Combined optical and electrochemical methods for studying electrochemistry at the single molecule and single particle level: recent progress and perspectives.

    PubMed

    Hill, Caleb M; Clayton, Daniel A; Pan, Shanlin

    2013-12-28

    We present a review of recent efforts aimed at understanding interfacial charge transfer at the single molecule and single nanoparticle level using the combined methods of traditional electrochemistry and optical spectroscopy with high spatial, spectral, and temporal resolution. Elastic light scattering, surface enhanced Raman scattering (SERS), fluorescence, and electrogenerated chemiluminescence (ECL) techniques have been demonstrated to be powerful tools for the study of interfacial charge transfer events involving a single molecule or nanoparticle and for the characterization of nanostructured electrodes. It is shown that these optical methods enable the exploration of electrochemical events with improved temporal and spatial resolution which are usually obstructed by the ensemble averaging inherent in conventional electrochemical methods. In this report, the current status of the field is reviewed and challenges for future work are discussed. PMID:24196825

  10. ELECTROCHEMICAL CORROSION STUDIES FOR TANK 241-AN-107 CORE 309 SEGMENTS 21R1 & 21R2

    SciTech Connect

    DUNCAN JB

    2007-11-13

    Liquid waste in tank 241-AN-107 is below Technical Safety Requirements Administrative Control 5.16 (AC 5.16) limits. Electrochemical corrosion testing was performed on Core 309, Segments 21R1 and 21R2, to provide information on the conductivity and corrosive tendencies of the tank saltcake and interstitial liquid. This report describes data obtained under the execution of RPP-PLAN-29001, 'Electrochemical Corrosion Studies for Tank 241-AN-107 Core 309, Segments 21R1 and 21R2'. Analytical results are presented that show supernatant was within the limits while the interstitial liquid remained below the limits for the analytical cores. Applicable AC 5.16 chemistry control limits for AN-107 are presented.

  11. Study of the electrochemical properties of magnetite, maghemite and hematite nanoparticles for their applications in lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Chen, Linfeng; Wang, Gaojun; Xie, Jining; Rai, Pratyush; Lee, Jungmin; Mathur, Gyanesh N.; Varadan, Vijay K.

    2013-04-01

    Iron oxide nanoparticles, including magnetite, maghemite and hematite, are promising electrode active materials for lithium ion batteries due to their low cost, high capacity and environmental friendliness. Though the electrochemical properties of each kind of iron oxide nanoparticles have been intensively studied, systematic comparison of the three kinds of iron oxides is hardly reported. This paper reports the study and comparison of the electrochemical properties of magnetite, maghemite and hematite nanoparticles with the same shape and size. In this work, hematite and maghemite nanoparticles were obtained from commercial magnetite nanoparticles by thermal treatments at different conditions. Their crystalline structures were characterized by X-ray diffraction (XRD), their magnetic properties were measured by a vibration sample magnetometer (VSM), and their particle morphologies were analyzed by scanning electron microscopy (SEM). Composite electrodes were made from iron oxide nanoparticles with carbon black as the conducting material and PVDF as the binding material (iron oxide : carbon black : PVDF = 70 : 15 : 15). Prototype lithium ion batteries (CR2032 button cells) were assembled with iron oxide composite electrodes as cathodes, metal lithium as anodes, and Celgard 2400 porous membrane as separators. The impedance and discharge-charge behaviors were characterized by a Solartron electrochemical workstation and an Arbin battery tester, respectively. It was found that at the same shape and size, hematite nanoparticles has higher specific discharge and charge capacities than magnetite and maghemite nanoparticles.

  12. Theoretical and Experimental Study of the Primary Current Distribution in Parallel-Plate Electrochemical Reactors

    ERIC Educational Resources Information Center

    Vazquez Aranda, Armando I.; Henquin, Eduardo R.; Torres, Israel Rodriguez; Bisang, Jose M.

    2012-01-01

    A laboratory experiment is described to determine the primary current distribution in parallel-plate electrochemical reactors. The electrolyte is simulated by conductive paper and the electrodes are segmented to measure the current distribution. Experiments are reported with the electrolyte confined to the interelectrode gap, where the current…

  13. X-ray absorption and electrochemical studies of direct methanol fuel cell catalysts

    SciTech Connect

    Zurawski, D.J.; Aldykiewicz, A.J. Jr.; Baxter, S.F.; Krumpelt, M.

    1996-12-31

    In order for polymer electrolyte fuel cells to operate directly on methanol instead of hydrogen, a distinct advantage for portable applications, methanol oxidation must be catalyzed effectively in the acidic environment of the cell. Platinum-ruthenium and platinum-ruthenium oxide are generally considered to be the most active catalysts for this purpose. The presence of ruthenium significantly enhances the activity of platinum in these catalysts, for reasons not yet fully understood. We are using X-ray absorption spectroscopy (XAS) and electrochemical techniques to evaluate the mechanisms proposed to account for this enhancement in order to further improve the catalyst`s activity. We are considering three enhancement mechanisms. An intermediate in the oxidation of methanol on platinum is carbon monoxide and its oxidation is the rate-determining step in the overall oxidation mechanism. It has been proposed that ruthenium facilitates the removal of carbon monoxide from the platinum surface. First, it has been proposed that ruthenium decreases the strength of the platinum-carbon monoxide bond. Carbon monoxide bonds to the catalyst by interacting with the d-band of platinum, therefore a change in the d-band occupancy of platinum as a result of alloying may influence the bond strength of carbon monoxide. Another proposed enhancement mechanism involves lowering of the potential for the formation of the CO-oxidizing species. Finally, the binary catalysts may have a structure which is more conducive to the methanol dehydrogenation and carbon monoxide reactions. Based on these three proposed enhancement mechanisms, a goal of this study is to correlate catalyst electronic properties, structure, and oxidation state with the performance of proton-exchange membrane (Nafion) direct methanol fuel cells.

  14. Electrochemical study of lithiated transition metal oxide composite for single layer fuel cell

    NASA Astrophysics Data System (ADS)

    Hu, Huiqing; Lin, Qizhao; Muhammad, Afzal; Zhu, Bin

    2015-07-01

    This study analyzed the effect of various semiconductors of transition metal oxides in modified lithiated NiO on the electrochemical performance of a single layer fuel cell (SLFC). A typical ionic conductor Ce0.8Sm0.2O2-δ (SDC) and three types of semiconductors Li0.3Ni0.6Cu0.07Sr0.03O2-δ (LNCuS), Li0.3Ni0.6Mn0.07Sr0.03O2-δ (LNMnS) and Li0.3Ni0.6Co0.07Sr0.03O2-δ (LNCoS), were the fundamental components of the SLFCs. The components were characterized by using X-ray diffraction (XRD), a scanning electron microscope (SEM), and an energy-dispersive X-ray spectrometer (EDS). The stability of the synthesized materials was evaluated using thermal gravity analysis (TGA). The ohmic resistances at 500 °C were 0.36, 0.48 and 0.58 Ω cm2 for 6SDC-4LNMnS, 6SDC-4LNCoS and 6SDC-4LNCuS, respectively. Among the three SLFCs, the single cell with 6SDC-4LNMnS achieves the highest power density (422 mW cm-2) but the lowest temperature stability, while the single cell with 6SDC-4LNCuS achieved the lowest power density (331 mW cm-2) but the highest temperature stability during the operation temperature.

  15. Synthesis, crystal structure and electrochemical and DNA binding studies of oxygen bridged-copper(II) carboxylate

    NASA Astrophysics Data System (ADS)

    Iqbal, Muhammad; Ali, Saqib; Tahir, Muhammad Nawaz; Muhammad, Niaz; Shah, Naseer Ali; Sohail, Manzar; Pandarinathan, Vedapriya

    2015-08-01

    A new binuclear O-bridged Cu(II) complex with 4-chlorophenyl acetate and 2,2‧-bipyridine has been synthesized and characterized using FT-IR, powder and single crystal XRD and electrochemical solution studies. The results revealed that the two penta-coordinated Cu(II) centers are linked by two carboxylate ligands in end-on bonding fashion. The coordination geometry is slightly distorted square pyramidal (SP) with bridging oxygen atoms occupying the apical position and other ligands lying in the equatorial plane. The striking difference in Cu-O bond distance of the bridging oxygen atom in the complex may be responsible for the SP geometry of Cu(II) ion. The complex gave rise to metal centered irreversible electro-activity where one electron Cu(II)/Cu(III) oxidation process and a single step two electron Cu(II)/Cu(0) reduction process was observed. The redox processes were found predominantly adsorption controlled. The values of diffusion coefficient and heterogeneous rate constant for oxidation process were 6.98 × 10-7 cm2 s-1 and 4.60 × 10-5 cm s-1 while the corresponding values for reduction were 5.30 × 10-8 cm2 s-1 and 5.41 × 10-6 cm s-1, respectively. The formal potential and charge transfer coefficient were also calculated. The DNA-binding ability was explored through cyclic voltammetry and UV-Visible spectroscopy. Diminution in the value of Do for oxidation indicated the binding of the complex with DNA corresponding to Kb = 8.58 × 104 M-1. UV-Visible spectroscopy yielded ε = 49 L mol-1 cm-1 and Kb = 2.96 × 104 M-1. The data of both techniques support each other. The self-induced redox activation of the complex, as indicated by cyclic voltammetry heralds its potential applications in redox catalysis and anticancer activity.

  16. Study of the electrowinning of copper using a fluidized-bed electrochemical reactor

    SciTech Connect

    Felker, D.L.

    1982-12-01

    A study was done on the use of a fluidized bed electrochemical reactor for the recovery of copper from aqueous solutions. Electrolyte solutions containing 0 to 8 g/l copper, 0 to 8 g/l iron and 200 g/l sulfuric acid were used. Porous diaphragms were used to separate the cathode and anode regions. The current efficiency, energy consumption rate and volumetric reaction rate were calculated for the experimental conditions. When the catholyte and anolyte are circulated from a common reservoir and iron(II) is present in the electrolyte, the energy consumption rate exhibits a minimum value of about 1.5 kWh/lb a volumetric reaction rate (VRR) of about 100 lb Cu/m/sup 3/ h. When the anolyte and catholyte are separated, the energy consumption rate rises linearly with VRR, being about 1 kWh/lb Cu at 100 lb Cu/m/sup 3/ h (this is roughly 2x the VRR of a conventional electrowinning cell). The optimum bed width in the direction of current flow was about 2 cm. A mathematical model which takes into account the dissolution of copper by ferric ion and oxygen is shown to explain the changes in the current efficiency and the VRR with current density seen in most of the experiments. Results indicate that separation of the catholyte and anolyte is imperative. Experiments showed that this can be accomplished using a porous Vycor glass diaphragm, which also eliminated the problem with copper dendrites growing through the diaphragm.

  17. Structural and electrochemical study of positive electrode materials for rechargeable lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Jiang, Meng

    The research presented in this dissertation focuses on a combined study of the electrochemistry and the structure of positive electrode materials for Li ion batteries. Li ion batteries are one of the most advanced energy storage systems and have been the subject of numerous scientific studies in recent decades. They have been widely used for various mobile devices such as cell phones, laptop computers and power tools. They are also promising candidates as power sources for automotive applications. Although intensive research has been done to improve the performance of Li ion batteries, there are still many remaining challenges to overcome so that they can be used in a wider range of applications. In particular, cheaper and safer electrodes are required with much higher reversible capacity. The series of layered nickel manganese oxides [NixLi 1/3-2x/3Mn2/3- x/3]O2 (0 < x < 1/2) are promising alternatives for Li2CoO2, the commercial positive electrode materials in Li ion batteries, because of their lower cost and higher safety and abuse tolerance, when lithium is removed from their structure. Compounds with x<1/2, in which the total Li content is higher than transition metal content, are referred as "Li-excess" materials. The "Li2MnO3-like" region is always present in this type of materials, and the overcapacity is obtained in the first charge process, which is not reversible in the following cycles. A combined X-ray diffraction, solid state nuclear magnetic resonance and X-ray absorption spectroscopy study is performed to investigate the effect of synthetic methods on the structure, to probe the structural change of the materials during cycling and to understand the electrochemical reaction mechanism. The conversion compounds are also investigated because of their high capacities. Since the various compounds have different voltage windows, they can have potential applications as both cathodes and anodes. Solid state nuclear magnetic resonance is used to study the

  18. Electrochemical Techniques

    SciTech Connect

    Chen, Gang; Lin, Yuehe

    2008-07-20

    Sensitive and selective detection techniques are of crucial importance for capillary electrophoresis (CE), microfluidic chips, and other microfluidic systems. Electrochemical detectors have attracted considerable interest for microfluidic systems with features that include high sensitivity, inherent miniaturization of both the detection and control instrumentation, low cost and power demands, and high compatibility with microfabrication technology. The commonly used electrochemical detectors can be classified into three general modes: conductimetry, potentiometry, and amperometry.

  19. The effects of amine/nitro/hydroxyl groups on the benzene rings of redox additives on the electrochemical performance of carbon-based supercapacitors.

    PubMed

    Huang, Xuan; Wang, Qian; Chen, Xiang Ying; Zhang, Zhong Jie

    2016-04-21

    In this work, a series of porous carbon materials with hierarchical porosities have been synthesized via a template carbonization method, in which cheap CaCO3 serves as a template and glucose as a carbon precursor. During the carbonization process, CO2 produced by the decomposition of the CaCO3 template can act as an internal activating agent, significantly improving microporosity and mesoporosity. All the carbon materials obtained by regulating the ratio of glucose to CaCO3 exhibit the amorphous features with a low graphitization degree. Among them, the carbon-1 : 2 sample shows a high BET surface area of up to 818.5 m(2) g(-1) and a large total pore volume of 1.78 cm(3) g(-1) as well as a specific capacitance of 107.0 F g(-1) at 1 A g(-1). In addition, a series of hydroquinone (HQ), p-aminophenol (PAP) and p-nitrophenol (PNP) as novel redox additives that can produce pseudo-capacitances have been added into the KOH electrolyte for promoting the total capacitive performances via redox reactions at the electrode-electrolyte interface. As expected, a 2.5-fold increase in the galvanostatic capacitance of 240.0 F g(-1) in the HQ-0.5 electrolyte occurs, compared with the conventional KOH electrolyte. Similarly, the PAP-0.5 electrolyte and the PNP-0.5 electrolyte also show a high specific capacitance of 184.0 F g(-1) at 2 A g(-1) (156.6 F g(-1) at 3 A g(-1)) and 153.0 F g(-1) at 3 A g(-1), respectively. Additionally, the three kinds of electrolytes exhibit excellent cyclic stability. The remarkable improvement of supercapacitors is attributed to the quick reversible Faradaic reactions of amine and hydroxyl groups adhering to the phenyl rings, which largely accelerates electron migration and brings additional pseudocapacitive contribution for carbon-based supercapacitors. PMID:27030290

  20. Mechanistic studies of water electrolysis and hydrogen electro-oxidation on high temperature ceria-based solid oxide electrochemical cells.

    PubMed

    Zhang, Chunjuan; Yu, Yi; Grass, Michael E; Dejoie, Catherine; Ding, Wuchen; Gaskell, Karen; Jabeen, Naila; Hong, Young Pyo; Shavorskiy, Andrey; Bluhm, Hendrik; Li, Wei-Xue; Jackson, Gregory S; Hussain, Zahid; Liu, Zhi; Eichhorn, Bryan W

    2013-08-01

    Through the use of ambient pressure X-ray photoelectron spectroscopy (APXPS) and a single-sided solid oxide electrochemical cell (SOC), we have studied the mechanism of electrocatalytic splitting of water (H2O + 2e(-) → H2 + O(2-)) and electro-oxidation of hydrogen (H2 + O(2-) → H2O + 2e(-)) at ∼700 °C in 0.5 Torr of H2/H2O on ceria (CeO2-x) electrodes. The experiments reveal a transient build-up of surface intermediates (OH(-) and Ce(3+)) and show the separation of charge at the gas-solid interface exclusively in the electrochemically active region of the SOC. During water electrolysis on ceria, the increase in surface potentials of the adsorbed OH(-) and incorporated O(2-) differ by 0.25 eV in the active regions. For hydrogen electro-oxidation on ceria, the surface concentrations of OH(-) and O(2-) shift significantly from their equilibrium values. These data suggest that the same charge transfer step (H2O + Ce(3+) <-> Ce(4+) + OH(-) + H(•)) is rate limiting in both the forward (water electrolysis) and reverse (H2 electro-oxidation) reactions. This separation of potentials reflects an induced surface dipole layer on the ceria surface and represents the effective electrochemical double layer at a gas-solid interface. The in situ XPS data and DFT calculations show that the chemical origin of the OH(-)/O(2-) potential separation resides in the reduced polarization of the Ce-OH bond due to the increase of Ce(3+) on the electrode surface. These results provide a graphical illustration of the electrochemically driven surface charge transfer processes under relevant and nonultrahigh vacuum conditions. PMID:23822749

  1. Chemical and electrochemical oxidation of [Rh(β-diketonato)(CO)(P(OCH2)3CCH3)]: an experimental and DFT study.

    PubMed

    Erasmus, Johannes J C; Conradie, Jeanet

    2013-06-28

    An experimental and computational chemistry study of the reactivity of [Rh(β-diketonato)(CO)(P(OCH2)3CCH3)] complexes towards chemical and electrochemical oxidation shows that more electron withdrawing groups on the β-diketonato ligand reduce electron density on the rhodium atom to a larger extent than electron donating groups. This leads to a slower second-order oxidative addition rate, k1, and a higher electrochemical oxidation potential, E(pa)(Rh), linearly related by ln k1 = -11(1) E(pa)(Rh) - 2.3(5). The reactivity of these complexes can be predicted by their DFT calculated HOMO energies: E(HOMO) = -0.34(8)E(pa)(Rh) - 5.04(4) = 0.032(5) ln k1- 4.96(4). k1 of [Rh(β-diketonato)(CO)(P(OCH2)3CCH3)] complexes is slower than that of related [Rh(β-diketonato)(CO)(PPh3)] and [Rh(β-diketonato)(P(OPh)3)2] complexes due to the better π-acceptor ability of the CO-phosphite-rhodium combination than that of CO-PPh3-rhodium or di-phosphite-rhodium. PMID:23632432

  2. Comparative study of the structural and electrochemical properties of noble metal inclusions in a UO2 matrix

    NASA Astrophysics Data System (ADS)

    Stumpf, S.; Petersmann, T.; Seibert, A.; Gouder, T.; Huber, F.; Brendebach, B.; Denecke, M. A.

    2010-03-01

    The intention of the presented study is to elucidate the influence of noble metal inclusions (fission products) on the structure as well as on the electrochemical properties of spent nuclear fuel (SNF). To this aim, thin UO2 films doped with metal inclusions such as Pd, Mo and Au are prepared by sputter deposition. The films are characterized by spectroscopic (XPS, EXAFS, XRD) as well as by microscopic (AFM, SEM) methods. In a next step the electrochemical properties of these model systems are comparatively investigated by cyclo voltammetry (CV). The sputter technique in combination with the heating treatment of the films allows the formation of a crystalline UO2 matrix as it is found in SNF. The co-deposition with Au results in the dispersion of the pure metal in the oxide matrix. Pd as well as Mo are oxidized due to the deposition at RT. Heating the films involves a further oxidation of MoO2 to MoO3. By contrast Pd agglomerates and forms metallic -phases as it is found in SNF. Electrochemical investigations of the UO2-Pd samples indicate an inhibiting influence of Pd on the oxidative dissolution of UO2. When it comes to the formation of secondary phases under reducing conditions such influence is passivated. The precipitates finally dominate the overall redox behaviour of the model system.

  3. Ca(2+)-mediated anionic lipid-plasmid DNA lipoplexes. Electrochemical, structural, and biochemical studies.

    PubMed

    Barrán-Berdón, Ana L; Yélamos, Belén; Malfois, Marc; Aicart, Emilio; Junquera, Elena

    2014-10-01

    Several experimental methods, such as zeta potential, gel electrophoresis, small-angle X-ray scattering, gene transfection, fluorescence microscopy, flow cytometry, and cell viability/cytotoxicity assays, have been used to analyze the potential of anionic lipids (AL) as effective nontoxic and nonviral DNA vectors, assisted by divalent cations. The lipoplexes studied are those comprised of the green fluorescent protein-encoding plasmid DNA pEGFP-C3, an anionic lipid as 1,2-dioleoyl-sn-glycero-3-phospho-(1'-rac-glycerol) (DOPG) or 1,2-dioleoyl-sn-glycero-3-phospho-L-serine (DOPS), and a zwitterionic lipid, the 1,2-dioleoyl-sn -glycero-3-phosphatidylethanolamine (DOPE, not charged at physiological pH). The studies have been carried on at different liposome and lipoplex compositions and in the presence of a variety of [Ca2+]. Electrochemical experiments reveal that DOPG/DOPE and DOPS/DOPE anionic liposomes may compact more effectively pDNA at low molar fractions (with an excess of DOPE) and at AL/pDNA ratios ≈20. Calcium concentrations around 15-20 mM are needed to yield lipoplexes neutral or slightly positive. From a structural standpoint, DOPG/DOPE-Ca2+-pDNA lipoplexes are self-assembled into a HIIc phase (inverted cylindrical micelles in hexagonal ordering with plasmid supercoils inside the cylinders), while DOPS/DOPE-Ca2+-pDNA lipoplexes show two phases in coexistence: one classical HIIc phase which contains pDNA supercoils and one Lα phase without pDNA among the lamellae, i.e., a lamellar stack of lipidic bilayers held together by Ca2+ bridges. Transfection and cell viability studies were done with HEK293T and HeLa cells in the presence of serum. Lipoplexes herein studied show moderate-to-low transfection levels combined with moderate-to-high cell viability, comparable to those yield by Lipofectamine2000*, which is a cationic lipid (CL) standard formulation, but none of them improve the output of typical CL gen vectors, mostly if they are gemini or dendritic

  4. Electrochemical Analysis for Enhancing Interface Layer of Spinel Li4Ti5O12: p-Toluenesulfonyl Isocyanate as Electrolyte Additive.

    PubMed

    Wang, Ren-Heng; Li, Xin-Hai; Wang, Zhi-Xing; Guo, Hua-Jun; He, Zhen-Jiang

    2015-10-28

    An electrolyte additive, p-toluenesulfonyl isocyanate (PTSI), is evaluated in our work to overcome the poor cycling performance of spinel lithium titanate (Li4Ti5O12) lithium-ion batteries. We find that the cycling performance of a Li/Li4Ti5O12 cell with 0.5 wt % PTSI after 400 cycles is obviously improved. Remarkably, we also find that a solid electrolyte interface (SEI) film is formed about 1.2 V, which has higher potential to generate a stable SEI film than do carbonate solvents in the voltage range of 3.0-0 V. The stable SEI film derived from PTSI can effectively suppress the decomposition of electrolyte, HF generation, interfacial reaction, and LiF formation upon cycling. These observations are explained in terms of PTSI including SO3. The S═O groups can delocalize the nitrogen core, which acts as the weak base site to hinder the reactivity of PF5. Hence, HF generation and LiF formation are suppressed. PMID:26451678

  5. Electrochemical study of uranium cations in LiCl-KCl melt using a rotating disk electrode

    SciTech Connect

    Bae, Sang-Eun; Kim, Dae-Hyun; Kim, Jong-Yoon; Park, Tae-Hong; Cho, Young Hwan; Yeon, Jei-Won; Song, Kyuseok

    2013-07-01

    A rotating disk electrode (RDE) measurement technique was employed to investigate the electrochemical REDOX reactions of actinide (An) and lanthanide (Ln) ions in LiCl-KCl molten salt. By using RDE, it is possible to access more exact values of the diffusion coefficient, Tafel slope, and exchange current density. In this work, we constructed RDE setup and electrodes for RDE measurements in high temperature molten salt and measured the electrochemical parameters of the An and Ln ions. The RDE setup is composed of a Pine model MSRX rotator equipped with a rod type of W electrode. The active electrode area was confined to the planar part of the W rod by making meniscus at the LiCl-KCl melt surface.

  6. Electrochemical Study of Corrosion Behavior of Wrought Stellite Alloys in Sodium Chloride and Green Death Solutions

    NASA Astrophysics Data System (ADS)

    Zhang, X. Z.; Liu, R.; Chen, K. Y.; Yao, M. X.; Collier, R.

    2015-09-01

    Corrosion behavior of wrought Stellite 6B and Stellite 6K, which have similar chemical composition but contain different carbon content, in 3.5 wt.% NaCl solution and in Green Death solution is investigated using various electrochemical methods, including potentiodynamic polarization, cyclic polarization, and electrochemical impedance spectroscopy (EIS). The obtained potentiodynamic polarization curves, cyclic polarization curves, and EIS spectra for these alloys are in good agreement, showing that Stellite 6K with higher carbon content is easier corroded due to its larger volume fraction of carbides but the Cr2O3 film formed on this alloy is stronger and more stable than that on Stellite 6B. Further immersion tests on these alloys show that Stellite 6K has less resistance to pitting corrosion.

  7. SURFACE SEGREGATION STUDIES OF SOFC CATHODES: COMBINING SOFT X-RAYS AND ELECTROCHEMICAL IMPEDENCE SPECTROSCOPY

    SciTech Connect

    Miara, Lincoln J.; Piper, L.F.J.; Davis, Jacob N.; Saraf, Laxmikant V.; Kaspar, Tiffany C.; Basu, Soumendra; Smith, K. E.; Pal, Uday B.; Gopalan, Srikanth

    2010-12-01

    A system to grow heteroepitaxial thin-films of solid oxide fuel cell (SOFC) cathodes on single crystal substrates was developed. The cathode composition investigated was 20% strontium-doped lanthanum manganite (LSM) grown by pulsed laser deposition (PLD) on single crystal (111) yttria-stabilized zirconia (YSZ) substrates. By combining electrochemical impedance spectroscopy (EIS) with x-ray photoemission spectroscopy (XPS) and x-ray absorption spectroscopy XAS measurements, we conclude that electrically driven cation migration away from the two-phase gas-cathode interface results in improved electrochemical performance. Our results provide support to the premise that the removal of surface passivating phases containing Sr2+ and Mn2+, which readily form at elevated temperatures even in O2 atmospheric pressures, is responsible for the improved cathodic performance upon application of a bias.

  8. Inhibitive Performance of Benzotriazole for Steel Corrosion Studied by Electrochemical and AFM Characterization

    NASA Astrophysics Data System (ADS)

    Feng, Yuanchao; Cheng, Y. Frank

    2015-12-01

    In this work, the inhibiting effect of benzotriazole (BTA) on corrosion of X65 pipeline steel in bicarbonate solution was investigated by electrochemical measurements, including open-circuit potential, potentiodynamic polarization curves and electrochemical impedance spectroscopy, and atomic force microscopy characterization. It is found that BTA is effective to inhibit the steel corrosion, and the inhibiting efficiency is increased by the increasing inhibitor concentration. The BTA is an anodic inhibitor, which shifts the corrosion potential of the steel less negatively and decreases the anodic current density at individual potential. A layer of inhibitor film is formed on the steel surface to reduce the corrosion rate of the steel. The formed film is quite smooth, with a roughness at the nano-meter scale.

  9. Scanning electrochemical microscopy for study of aptamer-thrombin interfacial interactions on gold disk microelectrodes.

    PubMed

    Bai, Huei-Yu; del Campo, F Javier; Tsai, Yu-Chen

    2014-03-01

    A feasibility for the determination of thrombin on gold disk microelectrodes (GDMs) using scanning electrochemical microscopy (SECM) is reported. The assembly process step-by-step of thrombin aptasensor on GDMs is monitored by SECM. SECM analysis reveals the immobilization of thrombin aptamers on GDMs. The interaction between thrombin aptamers and thrombin on GDMs is imaged by SECM with feedback mode using ferrocenemethanol as an electrochemical mediator. The formation of thrombin/thrombin aptamer complex on GDMs results in a decrease in the tip peak current on spatial SECM images. This method is able to linearly and selectively detect thrombin over a linear range from 10(-12) to 10(-5)M with a detection limit of 6.07 fM. PMID:24407695

  10. Electrochemical quartz crystal microbalance study of redox active C60/Pd polymer films

    NASA Astrophysics Data System (ADS)

    Winkler, K.; Noworyta, K.; Kutner, W.; Balch, A. L.

    2000-11-01

    Properties of conductive C60/Pd polymer films were investigated by simultaneous cyclic voltammetry and piezoelectric microgravimetry at an electrochemical quartz crystal microbalance (EQCM). The films were deposited onto Au electrodes of the EQCM quartz vibrators by concomitant electroreduction of C60 and [PdII(CH3COO)2]3 from a 0.1 M tetra(n-alkyl)ammonium perchlorate [alkyl=ethyl (TEA+), butyl (TBA+) or hexyl (THxA+)], acetonitrile/toluene (1:4, v/v) solution. The composition of this solution significantly influenced the pattern of the film growth. The size of the counter cation is a major factor determining both the electrochemical properties of the C60/Pd films and their stability with respect to dissolution. The fraction of the film reversibly reduced depends mainly on size of the supporting electrolyte cation and increases in the order: THxA+

  11. Electrochemically induced reconstruction of the Au(001) surface: An x-ray scattering study

    SciTech Connect

    Ocko, B.M.; Wang, Jia

    1991-12-31

    In-situ x-ray specular reflectivity and glancing incident angle x-ray diffraction measurements have been performed in the Au(001) surface in two solutions under potential control in an electrochemical cell. In both the 0.01 M HCl0{sub 4} and 0.01 M KBr solutions a ``(5 {times} 20)`` reconstruction is formed at sufficient negative potentials. The reconstruction is similar to that obtained for the clean surface in vacuum.

  12. Electrochemically induced reconstruction of the Au(001) surface: An x-ray scattering study

    SciTech Connect

    Ocko, B.M.; Wang, Jia.

    1991-01-01

    In-situ x-ray specular reflectivity and glancing incident angle x-ray diffraction measurements have been performed in the Au(001) surface in two solutions under potential control in an electrochemical cell. In both the 0.01 M HCl0{sub 4} and 0.01 M KBr solutions a (5 {times} 20)'' reconstruction is formed at sufficient negative potentials. The reconstruction is similar to that obtained for the clean surface in vacuum.

  13. ELECTROCHEMICAL CORROSION STUDIES CORE 308 SEGMENTS 14R1 & 14R2 TANK 241-AY-102

    SciTech Connect

    DUNCAN JB; COOKE GA

    2003-10-30

    This document reports the results of electrochemical corrosion tests on AS1S Grade 60 carbon steel coupons exposed to tank 241-AY-102 sludge under conditions similar to those near the bottom of the tank. The tests were performed to evaluate the corrosive behavior of the waste in contact with sludge that does not meet the chemistry control limits of Administrative Control (AC) 5.15, Corrosion Mitigation Program.

  14. Electrochemical studies of the film formation on lithium in propylene carbonate solutions under open circuit conditions

    SciTech Connect

    Geronov, Y.; Schwager, F.; Muller, R.H.

    1981-04-01

    The nature of protective surface layers formed on lithium in propylene carbonate solutions of LiClO/sub 4/ and LiAsF/sub 6/ at open circuit has been investigated by electrochemical pulse measurements and other techniques. The results are consistent with the fast formation of a compact thin layer of Li/sub 2/O by reaction with residual water. This layer acts as a solid ionic conductor. Slow corrosion processes produce a thicker porous overlayer.

  15. Electrochemical study of nanometric Si on carbon for lithium ion secondary batteries

    NASA Astrophysics Data System (ADS)

    Doh, Chil-Hoon; Lee, Jung-Hoon; Lee, Duck-Jun; Kim, Ju-Seok; Jin, Bong-Soo; Moon, Seong-In; Hwang, Young-Ki; Park, Cheol-Wan

    2010-05-01

    The electrochemical and thermochemical properties of a silicon-graphite composite anode for lithium ion batteries were evaluated. The electrochemical properties were varied by the condition of pretreatment. The electrochemical pretreatment of constant current (C/10) and constant potential for 24 h showed specific discharge and charge capacities of 941 and 781 mA h g-1 to give a specific irreversible capacity of 161 mA h g-1 and a coulombic efficiency of 83%. The initial cycle as the next cycle of pretreatment showed a specific charge capacity (Li desertion) of 698 mA h g-1 and a coulombic efficiency of 95%. Coulombic efficiency at the fifth cycle was 97% to clear up almost all of the irreversible capacity. During the pretreatment cycle to the fourth cycle, the average specific charge capacity was 683 mA h g-1 and the cumulative irreversible capacity was 264 mA h g-1. Exothermic heat values based on the specific capacity of the discharged (Li insertion) electrode of silicon-graphite composite for the temperature range of 50-300 °C were 2.09 and 2.21 J mA-1h-1 for 0 and 2 h as time of pretreatment in the case of just disassembled wet electrodes and 1.43 and 1.01 J mA-1h-1 for 12 and 24 h as time of pretreatment in the case of dried electrodes, respectively.

  16. Electrochemical study of aqueous asymmetric FeWO4/MnO2 supercapacitor

    NASA Astrophysics Data System (ADS)

    Goubard-Bretesché, Nicolas; Crosnier, Olivier; Buvat, Gaëtan; Favier, Frédéric; Brousse, Thierry

    2016-09-01

    The concept of an asymmetric FeWO4/MnO2 electrochemical capacitor cycled in a neutral aqueous electrolyte is presented for the first time. Commercially available cryptomelane-type MnO2 and synthesized nanocrystalline FeWO4 were used as positive and negative electrode materials, respectively. Prior to assembling the cell, the electrodes have been individually tested in a 5 M LiNO3 electrolyte solution to define both the adequate balance of active material in the supercapacitor and the proper working voltage window. Then, the full asymmetric device has been cycled between 0 and 1.4 V for over 40,000 cycles and subjected to accelerated ageing tests under floating conditions at different voltages, without any significant change on its electrochemical behavior. This remarkable stability shows the interest of developing full oxide-based asymmetric supercapacitors operating in non-toxic aqueous electrolytes that could compete with commercial carbon-based electrochemical double-layer capacitors.

  17. Advances in the electrochemical regeneration of aluminum hydride

    NASA Astrophysics Data System (ADS)

    Martínez-Rodríguez, Michael J.; García-Díaz, Brenda L.; Teprovich, Joseph A.; Knight, Douglas A.; Zidan, Ragaiy

    2012-03-01

    In previous work, a reversible cycle that uses electrolysis and catalytic hydrogenation of spent Al(s) for the regeneration of alane (AlH3) was reported. In this study, the electrochemical synthesis of alane is improved. Advances in the electrochemical regeneration of alane have been achieved via the use of lithium aluminum hydride (LiAlH4) and lithium chloride (LiCl). Lithium chloride reacts in a cyclic process and functions as an electro-catalytic additive that enhances the electrochemical process by increasing the cell efficiency and the alane production. Electrochemical techniques are used to show that the increased rate of alane generation is due to the electro-catalytic effect of lithium chloride, rather than an electrolyte enhanced effect.

  18. In-Situ Electrochemical Transmission Electron Microscopy for Battery Research

    SciTech Connect

    Mehdi, Beata L; Gu, Meng; Parent, Lucas; Xu, WU; Nasybulin, Eduard; Chen, Xilin; Unocic, Raymond R; Xu, Pinghong; Welch, David; Abellan, Patricia; Zhang, Ji-Guang; Liu, Jun; Wang, Chongmin; Arslan, Ilke; Evans, James E; Browning, Nigel

    2014-01-01

    The recent development of in-situ liquid stages for (scanning) transmission electron microscopes now makes it possible for us to study the details of electrochemical processes under operando conditions. As electrochemical processes are complex, care must be taken to calibrate the system before any in-situ/operando observations. In addition, as the electron beam can cause effects that look similar to electrochemical processes at the electrolyte/electrode interface, an understanding of the role of the electron beam in modifying the operando observations must also be understood. In this paper we describe the design, assembly, and operation of an in-situ electrochemical cell, paying particular attention to the method for controlling and quantifying the experimental parameters. The use of this system is then demonstrated for the lithiation/delithiation of silicon nanowires.

  19. In Situ Electrochemical Transmission Electron Microscopy for Battery Research

    SciTech Connect

    Mehdi, Beata L.; Gu, Meng; Parent, Lucas R.; Xu, Wu; Nasybulin, Eduard N.; Chen, Xilin; Unocic, Raymond R.; Xu, Pinghong; Welch, David A.; Abellan, Patricia; Zhang, Jiguang; Liu, Jun; Wang, Chong M.; Arslan, Ilke; Evans, James E.; Browning, Nigel D.

    2014-04-01

    The recent development of in situ liquid stages for (scanning) transmission electron microscopes now makes it possible for us to study the details of electrochemical processes under operando conditions. As electrochemical processes are complex, care must be taken to calibrate the system before any in situ/operando observations. In addition, as the electron beam can cause effects that look similar to electrochemical processes at the electrolyte/electrode interface, an understanding of the role of the electron beam in modifying the operando observations must also be understood. In this paper we describe the design, assembly, and operation of an in situ electrochemical cell, paying particular attention to the method for controlling and quantifying the experimental parameters. The use of this system is then demonstrated for the lithiation/delithiation of silicon nanowires.

  20. In-situ electrochemical transmission electron microscopy for battery research.

    PubMed

    Mehdi, B Layla; Gu, Meng; Parent, Lucas R; Xu, Wu; Nasybulin, Eduard N; Chen, Xilin; Unocic, Raymond R; Xu, Pinghong; Welch, David A; Abellan, Patricia; Zhang, Ji-Guang; Liu, Jun; Wang, Chong-Min; Arslan, Ilke; Evans, James; Browning, Nigel D

    2014-04-01

    The recent development of in-situ liquid stages for (scanning) transmission electron microscopes now makes it possible for us to study the details of electrochemical processes under operando conditions. As electrochemical processes are complex, care must be taken to calibrate the system before any in-situ/operando observations. In addition, as the electron beam can cause effects that look similar to electrochemical processes at the electrolyte/electrode interface, an understanding of the role of the electron beam in modifying the operando observations must also be understood. In this paper we describe the design, assembly, and operation of an in-situ electrochemical cell, paying particular attention to the method for controlling and quantifying the experimental parameters. The use of this system is then demonstrated for the lithiation/delithiation of silicon nanowires. PMID:24755142

  1. Construction of copper halide-triiron selenide carbonyl complexes: synthetic, electrochemical, and theoretical studies.

    PubMed

    Shieh, Minghuey; Miu, Chia-Yeh; Lee, Chang-Ju; Chen, Wei-Cheng; Chu, Yen-Yi; Chen, Hui-Lung

    2008-12-01

    A new family of CuX-, Cu(2)X(2)-, and Cu(4)X(2)-incorporated mono- or di-SeFe(3)-based carbonyl clusters were constructed and structurally characterized. When the selenium-capped triiron carbonyl cluster [Et(4)N](2)[SeFe(3)(CO)(9)] was treated with 1-3 equiv of CuX in tetrahydrofuran (THF) at low or room temperatures, CuX-incorporated SeFe(3) complexes [Et(4)N](2)[SeFe(3)(CO)(9)CuX] (X = Cl, [Et(4)N](2)[1a]; Br, [Et(4)N](2)[1b]; I, [Et(4)N](2)[1c]), Cu(2)X(2)-incorporated SeFe(3) clusters [Et(4)N](2)[SeFe(3)(CO)(9)Cu(2)X(2)] (X = Cl, [Et(4)N](2)[2a]; Br, [Et(4)N](2)[2b]), and Cu(4)X(2)-linked di-SeFe(3) clusters [Et(4)N](2)[{SeFe(3)(CO)(9)}(2)Cu(4)X(2)] (X = Cl, [Et(4)N](2)[3a]; Br, [PPh(4)](2)[3b]) were obtained, respectively, in good yields. SeFe(3)CuX complexes 1a and 1b were found to undergo cluster expansion to form SeFe(3)Cu(2)X(2) complexes 2a and 2b, respectively, upon the addition of 1 equiv of CuX (X = Cl, Br). Furthermore, complexes 2a and 2b can expand further to form Cu(4)X(2)-linked di-SeFe(3) clusters 3a and 3b, upon treatment with 1 equiv of CuX (X = Cl, Br). [Et(4)N](4)[{SeFe(3)(CO)(9)(CuCl)(2)}(2)] ([Et(4)N](4)[4a]) was produced when the reaction of [Et(4)N](2)[SeFe(3)(CO)(9)] with 2 equiv of CuCl was conducted in THF at 40 degrees C. The Cu(2)Cl(2)-linked di-SeFe(3)CuCl cluster 4a is a dimerization product derived from complex 2a. Further, it is found that complex 4a can convert to the Cu(4)Cl(2)-linked di-SeFe(3) cluster 3a upon treatment with CuCl. The nature, formation, stepwise cluster expansion, and electrochemical properties of these CuX-, Cu(2)X(2)-, and Cu(4)X(2)-incorporated mono- or di-SeFe(3)-based clusters are elucidated in detail by molecular calculations at the B3LYP level of the density functional theory in terms of the effects of selenium, iron, copper halides, and the size of the metal skeleton. PMID:19228023

  2. Preparation of a manganese titanate nanosensor: Application in electrochemical studies of captopril in the presence of para-aminobenzoic acid.

    PubMed

    Ghoreishi, Sayed Mehdi; Karamali, Elham; Khoobi, Asma; Enhessari, Morteza

    2015-10-15

    This study reports the synthesis and characterization of a novel nanostructure-based electrode for electrochemical studies and determination of captopril (CP). At first manganese titanate nanoceramics were synthesized by the sol-gel method. The structural evaluations of the pure nanopowders were investigated by different techniques such as X-ray diffraction (XRD), transmission electron microscopy (TEM), and scanning electron microscopy (SEM). Then it was used to prepare a new nanostructured manganese titanate carbon paste electrode (MnTiO3/CPE). The characterization of the modified sensor was carried out by comprehensive techniques such as electrochemical impedance spectroscopy (EIS), SEM, and voltammetry. Subsequently, the modified electrode was used for CP catalytic oxidation in the presence of para-aminobenzoic acid (PABA) as a mediator. The results showed that PABA has high catalytic activity for CP oxidation. The electrochemical behavior of CP was studied by cyclic voltammetry (CV), linear sweep voltammetry (LSV), chronoamperometry (CHA), and differential pulse voltammetry (DPV) techniques. Under the optimized conditions, the catalytic oxidation peak current of CP showed two linear dynamic concentration ranges of 1.0 × 10(-8) to 1.0 × 10(-7) and 1.0 × 10(-7) to 1.0 × 10(-6), with a detection limit of 1.6 nM (signal/noise = 3), using the DPV technique. Finally, the proposed method was successfully applied for determination of CP in pharmaceutical and biological samples. PMID:26226644

  3. Electrochemical behaviour of iron in a third-generation ionic liquid: cyclic voltammetry and micromachining investigations.

    PubMed

    Moustafa, Essam M; Mann, Olivier; Fürbeth, Wolfram; Schuster, Rolf

    2009-12-01

    The electrochemical behaviour of Fe in 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([Emim](+)Ntf2(-)) and mixtures with Cl(-) is studied with the aim of investigating the applicability of ionic liquids (IL) for the electrochemical machining of iron. Whereas in pure IL iron could not be significantly dissolved, the addition of Cl(-) enables the active dissolution with anodic current densities up to several mA cm(-2). Although several anodic peaks appear in the cyclic voltammograms (CV), the distinct assignment of those electrochemical processes remain difficult. In particular no proof for the formation of FeCl(x) (2-x) complexes during Fe dissolution are deduced from the CV, although such complexes are shown to be stable in the employed electrolyte. In addition, we present electrochemical drilling experiments with short potential pulses, which demonstrate that electrochemical machining of Fe is, in principle, possible in IL based electrolytes, even though hampered by slow machining speed. PMID:19760696

  4. Electrochemical storage

    NASA Technical Reports Server (NTRS)

    Thaller, L. H.

    1984-01-01

    The source of the problem within the individual single cell which is related to the stochastic properties of cell populations and to the actual electrochemistry and chemistry taking place is described. The complications which arise in multicell batteries to show how different electrochemistries might alleviate or accentuate these problems is described. The concept of the electrochemical system is introduced to show how certain shortcomings of the single cell/battery string concept can be circumvented. Some of these electrochemical systems permit performance characteristics that are impossible by using conventional battery design philosophies. Projections for energy density and performance characteristics of the concepts are addressed.

  5. Electrochemical micromachining

    PubMed

    Schuster; Kirchner; Allongue; Ertl

    2000-07-01

    The application of ultrashort voltage pulses between a tool electrode and a workpiece in an electrochemical environment allows the three-dimensional machining of conducting materials with submicrometer precision. The principle is based on the finite time constant for double-layer charging, which varies linearly with the local separation between the electrodes. During nanosecond pulses, the electrochemical reactions are confined to electrode regions in close proximity. This technique was used for local etching of copper and silicon as well as for local copper deposition. PMID:10884233

  6. Study of wood plastic composite in the presence of nitrogen containing additives

    NASA Astrophysics Data System (ADS)

    Ali, K. M. Idriss; Khan, Mubarak A.; Husain, M. M.

    1994-10-01

    Effect of nitrogen-containing additives in the study of wood plastic composites of MMA with simul and mango wood of Bangladesh has been investigated. Nine different additives were used and the additives containing carboamide group induce the highest tensile strength to the composite.

  7. Electrochemical characteristics of nanostructured platinum electrodes--a cyclic voltammetry study.

    PubMed

    Daubinger, P; Kieninger, J; Unmüssig, T; Urban, G A

    2014-05-14

    Platinum surfaces play a decisive role in catalysis in sensors, fuel cells, solar cells and other applications like neuronal stimulation and recording. Technical advances in nanotechnology contributed tremendously to the progress in these fields. A fundamental understanding of the chemical and physical interactions between the nanostructured surfaces and electrolytes is essential, but was barely investigated up to now. In this article, we present a wet-chemical process for the deposition of nanostructures on polycrystalline platinum surfaces. The electrochemically active surface area was increased by a factor of over 1000 times with respect to the geometrical surface. The influence of the nanostructures was examined in different acidic, alkaline, and neutral electrolytes. Comparing cyclic voltammograms of nanostructured and planar polycrystalline platinum revealed new insights into the microenvironment at the electrode-electrolyte interface. The characteristic features of the cyclic voltammograms were altered in their shape and strongly shifted with respect to the applied potential. In neutral buffered and unbuffered electrolytes the water window was expanded from 1.4 V to more than 2 V. The shifts were interpreted as local pH-changes and exhausted buffer capacity in direct proximity of the electrode surface due to the strong release and binding of protons, respectively. These polarized electrodes induce significant changes in the electrochemical potential of the electrolyte due to the high roughness of their surface. The electrochemical phenomena and the observed voltage shifts are crucial for the understanding of the basic mechanism at nanostructured electrodes and mandatory for designing fuel cells, sensors and many other devices. PMID:24664444

  8. Mentha pulegium extract as a natural product for the inhibition of corrosion. Part I: electrochemical studies.

    PubMed

    Khadraoui, Abdelkader; Khelifa, Abdellah; Boutoumi, Hocine; Hammouti, Belkheir

    2014-01-01

    The inhibitory effect of Mentha pulegium extract (MPE) on steel corrosion in 1 M HCl solution was investigated using potentiodynamic polarisation and electrochemical impedance spectroscopy. The inhibition efficiency of MPE was found to increase with the concentration and reached 88% at 33% (v/v). Polarisation measurements show that the natural extract acted as a mixed inhibitor. The remarkable inhibition efficiency of MPE was discussed in terms of blocking of electrode surface by adsorption of inhibitor molecules through active centres. The adsorption of MPE was found to accord with the Temkin isotherm. PMID:24853625

  9. Experimental study on electrochemical hydrogen pump of SrZrO{sub 3}-based oxide

    SciTech Connect

    Tanaka, M.; Asakura, Y.; Uda, T.

    2008-07-15

    The electrochemical hydrogen pump properties of the SrZr{sub 0.8}In{sub 0.2}O{sub 3-{alpha}} proton conducting oxide were evaluated under various atmospheres, temperatures and the effect of oxygen gas in the cathode for the recovery of hydrogen isotopes. It was found that high temperature is not necessarily required and protonic conductivity of the proton conducting oxide rather than total conductivity should be observed to improve the performance of the hydrogen pump. Furthermore, the presence of oxygen in the cathode compartment plays an important role in the enhancement of the hydrogen pump performance. (authors)

  10. Structure and function of an inorganic-organic separator for electrochemical cells: Preliminary study

    NASA Technical Reports Server (NTRS)

    Bozek, J. M.

    1974-01-01

    The structure of a new separator material for electrochemical cells has been investigated. Investigation into details of the separator structure showed it to be multilayered and to consist mainly of a quasi-impervious organic skin, a porous region of mixed organic and inorganic material, and an area of nonuniformly treated substrate. The essential feature of the coating (slurry) is believed to be interconnected pores which allow ionic conductivity. The interconnected pores are believed to be formed by the interaction of the plasticizer and inorganic fibers. The major failure mode of silver zinc cells using such a separator (zinc nodules shorting adjacent plates) was investigated.

  11. Electrochemical construction

    DOEpatents

    Einstein, Harry; Grimes, Patrick G.

    1983-08-23

    An electrochemical cell construction features a novel co-extruded plastic electrode in an interleaved construction with a novel integral separator-spacer. Also featured is a leak and impact resistant construction for preventing the spill of corrosive materials in the event of rupture.

  12. Electrochemical Deburring

    NASA Technical Reports Server (NTRS)

    Burley, R. K.

    1983-01-01

    Electrochemical deburring removes burrs from assembled injector tubes. Since process uses liquid anodic dissolution in liquid electrolyte to proide deburring action, smoothes surfaces and edges in otherwise inaccessible areas. Tool consists of sleeve that contains metallic ring cathode. Sleeve is placed over tube, and electrolytic solution is forced to flow between tube and sleeve. The workpiece serves an anode.

  13. Electrochemical Engineering.

    ERIC Educational Resources Information Center

    Alkire, Richard C.

    1983-01-01

    Discusses engineering ramifications of electrochemistry, focusing on current/potential distribution, evaluation of trade-offs between influences of different phenomena, use of dimensionless numbers to assist in scale-over to new operating conditions, and economics. Also provides examples of electrochemical engineering education content related to…

  14. Electrochemical capacitor

    DOEpatents

    Anderson, Marc A.; Liu, Kuo -Chuan; Mohr, Charles M.

    1999-10-05

    An inexpensive porous metal oxide material having high surface area, good conductivity and high specific capacitance is advantageously used in an electrochemical capacitor. The materials are formed in a sol-gel process which affords control over the properties of the resultant metal oxide materials.

  15. Electrochemical device

    DOEpatents

    Grimes, Patrick G.; Einstein, Harry; Bellows, Richard J.

    1988-01-12

    A tunnel protected electrochemical device features channels fluidically communicating between manifold, tunnels and cells. The channels are designed to provide the most efficient use of auxiliary power. The channels have a greater hydraulic pressure drop and electrical resistance than the manifold. This will provide a design with the optimum auxiliary energy requirements.

  16. Electrochemical and optical studies of model photosynthetic systems. Final progress report, July 1, 1984--August 31, 1989

    SciTech Connect

    Not Available

    1992-01-15

    The objective of this research is to obtain a better understanding of the relationship between the structural organization of photosynthetic pigments and their spectroscopic and electrochemical properties. Defined model systems were studied first. These included the least ordered (solutions) through the most highly ordered (Langmuir-Blodgett (LB) monolayers and self-assembled monolayers) systems containing BChl, BPheo, and UQ. Molecules other than the photosynthetic pigments and quinones were also examined, including chromophores (i.e. surface active cyanine dyes and phtahlocyanines) an redox active compounds (methyl viologen (MV) and surfactant ferrocenes), in order to develop the techniques needed to study the photosynthetic components. Because the chlorophylls are photosensitive and labile, it was easier first to develop procedures using stable species. Three different techniques were used to characterize these model systems. These included electrochemical techniques for determining the standard oxidation and reduction potentials of the photosynthetic components as well as methods for determining the heterogeneous electron transfer rate constants for BChl and BPheo at metal electrodes (Pt and Au). Resonance Raman (RR) and surface enhanced resonance Raman (SERR) spectroscopy were used to determine the spectra of the photosynthetic pigments and model compounds. SERRS was also used to study several types of photosynthetic preparations.

  17. Electrochemical, Polarization, and Crevice Corrosion Testing of Nitinol 60, A Supplement to the ECLSS Sustaining Materials Compatibility Study

    NASA Technical Reports Server (NTRS)

    Lee, R. E.

    2016-01-01

    In earlier trials, electrochemical test results were presented for six noble metals evaluated in test solutions representative of waste liquids processed in the Environmental Control and Life Support System (ECLSS) aboard the International Space Station (ISS). Subsequently, a seventh metal, Nitinol 60, was added for evaluation and subjected to the same test routines, data analysis, and theoretical methodologies. The previous six test metals included three titanium grades, (commercially pure, 6Al-4V alloy and 6Al-4V low interstitial alloy), two nickel-chromium alloys (Inconel(RegisteredTrademark) 625 and Hastelloy(RegisteredTrademark) C276), and one high-tier stainless steel (Cronidur(RegisteredTrademark) 30). The three titanium alloys gave the best results of all the metals, indicating superior corrosive nobility and galvanic protection properties. For this current effort, the results have clearly shown that Nitinol 60 is almost as noble as titanium, being very corrosion-resistant and galvanically compatible with the other six metals electrochemically and during long-term exposure. is also quite noble as it is very corrosion resistant and galvanically compatible with the other six metals from both an electrochemical perspective and long-term crevice corrosion scenario. This was clearly demonstrated utilizing the same techniques for linear, Tafel and cyclic polarization, and galvanic coupling of the metal candidate as was done for the previous study. The high nobility and low corrosion susceptibility for Nitinol 60 appear to be intermediate to the nickel/chromium alloys and the titanium metals with indications that are more reflective of the titanium metals in terms of general corrosion and pitting behavior.

  18. Electrochemical sensor for sulfadimethoxine based on molecularly imprinted polypyrrole: study of imprinting parameters.

    PubMed

    Turco, Antonio; Corvaglia, Stefania; Mazzotta, Elisabetta

    2015-01-15

    The present work describes the development of a simple and cost-effective electrochemical sensor for sulfadimethoxine (SDM) based on molecularly imprinted overoxidized polypyrrole (PPy). An all electrochemical approach is used for sensor fabrication and application consisting in molecularly imprinted polymer (MIP) galvanostatic deposition on a gold electrode and its overoxidation under different experimental conditions and in SDM amperometric detection. Several parameters influencing the imprinting effect are critically discussed and evaluated. A key role of the electrolyte used in electropolymerization (tetrabuthylammonium perchlorate and lithium perchlorate) has emerged demonstrating its effect on sensing performances of imprinted PPy and, related to this, on its morphology, as highlighted by atomic force microscopy (AFM). The effect of different overoxidation conditions in removing template is evaluated by analyzing MIP films before and after the treatment by X-ray photoelectron spectroscopy (XPS) also evidencing the correlation between MIP chemical structure and its rebinding ability. MIP-template interaction is verified also by Fourier Transform Infrared (FT-IR) spectroscopy. Under the selected optimal conditions, MIP sensor shows a linear range from 0.15 to 3.7 mM SDM, a limit of detection of 70 μM, a highly reproducible response (RSD 4.2%) and a good selectivity in the presence of structurally related molecules. SDM was determined in milk samples spiked at two concentration levels: 0.2 mM and 0.4 mM obtaining a satisfactory recovery of (97±3)% and (96±8)%, respectively. PMID:25104433

  19. Study on the Effect of Electrochemical Dechlorination Reduction of Hexachlorobenzene Using Different Cathodes

    PubMed Central

    Wang, Yingru; Lu, Xiaohua

    2014-01-01

    Hexachlorobenzene (HCB) is a persistent organic pollutant and poses great threat on ecosystem and human health. In order to investigate the degradation law of HCB, a RuO2/Ti material was used as the anode, meanwhile, zinc, stainless steel, graphite, and RuO2/Ti were used as the cathode, respectively. The gas chromatography (GC) was used to analyze the electrochemical products of HCB on different cathodes. The results showed that the cathode materials significantly affected the dechlorination efficiency of HCB, and the degradation of HCB was reductive dechlorination which occurred only on the cathode. During the reductive process, chlorine atoms were replaced one by one on various intermediates such as pentachlorobenzene, tetrachlorobenzene, and trichlorobenzene occurred; the trichlorobenzene was obtained when zinc was used as cathode. The rapid dechlorination of HCB suggested that the electrochemical method using zinc or stainless steel as cathode could be used for remediation of polychlorinated aromatic compounds in the environment. The dechlorination approach of HCB by stainless steel cathode could be proposed. PMID:24995145

  20. Material Testing in Support of the ISS Electrochemical Disinfection Feasibility Study

    NASA Technical Reports Server (NTRS)

    Rodriquez, Branelle; Shindo, David; Modica, Cathy

    2012-01-01

    Microbial contamination and subsequent growth in spacecraft water systems are constant concerns for missions involving human crews. The current potable water disinfectant for the International Space Station (ISS) is iodine; however, with the end of the Space Shuttle program, there is a need to develop redundant biocide systems that do not require regular up ]mass dependencies. Throughout the course of a year, four different electrochemical systems were investigated as a possible biocide for potable water on the ISS. Research has indicated that there is a wide variability with regards to efficacy in both concentration and exposure time of these disinfectants, therefore baseline efficacy values were established. This paper describes a series of tests performed in order to establish optimal concentrations and exposure times for four disinfectants against single and mixed species planktonic and biofilm bacteria. Results of the testing determined whether these electrochemical disinfection systems are able to produce a sufficient amount of chemical in both concentration and volume to act as a biocide for potable water on ISS.

  1. Electrochemical and kinetic studies of ultrafast laser structured LiFePO4 electrodes

    NASA Astrophysics Data System (ADS)

    Mangang, M.; Gotcu-Freis, P.; Seifert, H. J.; Pfleging, W.

    2015-03-01

    Due to a growing demand of cost-efficient lithium-ion batteries with an increased energy and power density as well as an increased life-time, the focus is set on intercalation cathode materials like LiFePO4. It has a high practical capacity, is environmentally friendly and has low material costs. However, its low electrical conductivity and low ionic diffusivity are major drawbacks for its use in electrochemical storage devices or electric vehicles. By adding conductive agents, the electrical conductivity can be enhanced. By increasing the surface of the cathode material which is in direct contact with the liquid electrolyte the lithium-ion diffusion kinetics can be improved. A new approach to increase the surface of the active material without changing the active particle packing density or the weight proportion of carbon black is the laser-assisted generation of 3D surface structures in electrode materials. In this work, ultrafast laser radiation was used to create a defined surface structure in LiFePO4 electrodes. It was shown that by using ultrashort laser pulses instead of nanosecond laser pulses, the ablation efficiency could be significantly increased. Furthermore, melting and debris formation were reduced. To investigate the diffusion kinetics, electrochemical methods such as cyclic voltammetry and galvanostatic intermittent titration technique were applied. It could be shown that due to a laser generated 3D structure, the lithium-ion diffusion kinetic, the capacity retention and cell life-time can be significantly improved.

  2. Structural and electrochemical studies of alpha manganese dioxide ({alpha}-MnO{sub 2})

    SciTech Connect

    Johnson, C.S.; Dees, D.W.; Mansuetto, M.F.; Thackeray, M.M.; Vissers, D.R.; Argyriou, D.; Loong, C.-K.; Christensen, L.

    1996-08-01

    The structural and electrochemical properties of alpha-MnO[sub 2], prepared by acid digestion of Mn[sub 2]O[sub 3], and its lithiated derivatives xLi[sub 2] O . MnO[sub 2] (where x is greater than or equal to zero and less than or equal to 0.25) have been investigated as insertion compounds in the search for new and viable cathode materials for rechargeable 3-V batteries. The alpha-MnO[sub 2] product fabricated by this technique contains water within the large (2x2) channels of the structure; the water can be removed from the alpha-MnO[sub 2] framework without degradation of the structure, and then at least partially replaced by Li[sub 2]O. The lithia-doped alpha-MnO[sub 2] electrodes, described generically as xLi[sub 2]O . Mno[sub 2], stabilize the structure and provide higher capacities on cycling than the parent material. The structures of these alpha- MnO[sub 2]-type electrode materials are described. and electrochemical data are presented for both liquid electrolyte and polymer electrolyte Li/alpha-MnO[sub 2] and Li/xLi[sub 2]O . MnO[sub 2] cells.

  3. Electrochemical studies of corrosion of SIMFUEL: Simulated used UO{sub 2} fuel

    SciTech Connect

    Sunder, S.; Shoesmith, D.W.; Miller, N.H.

    1993-12-31

    The corrosion of SIMFUEL, simulated high-burnup CANDU (CANadian Deuterium Uranium) fuel, was investigated in 0.1 mol{center_dot}dm{sup -3} NaClO{sub 4} solution (pH {approximately} 9.5) as a function of dissolved oxygen concentration using electrochemical techniques and X-ray photoelectron spectroscopy (XPS). Electrodes were constructed of SIMFUEL pellets with compositions close to those of a natural UO{sub 2} fuel that has undergone burnup of 3 at% and 6 at%. The XPS analysis of freshly polished SIMFUEL pellets showed that the extent of uranium oxidation in SIMFUEL was equivalent to that in stoichiometric UO{sub 2}. The SIMFUEL electrodes showed higher conductivity and electrochemical reactivity than the pure UO{sub 2} electrodes. A comparison of the open circuit corrosion potentials of the SIMFUEL electrodes with that of a pure UO{sub 2} electrode in oxygenated solutions showed a much faster increase in the potential for the SIMFUEL electrodes at short times. This suggests that the initial stages of UO{sub 2} oxidation, i.e., UO{sub 2} {yields} UO{sub 2+x} {yields} UO{sub 2.33}, are facilitated by fission product impurities in the UO{sub 2} matrix. However, the {open_quotes}steady-state{close_quotes} oxidation of uranium in SIMFUEL by the dissolved O{sub 2} was similar to that observed in pure UO{sub 2} under similar conditions.

  4. Synthesis and electrochemical study of a hybrid structure based on PDMS-TEOS and titania nanotubes for biomedical applications.

    PubMed

    Castro, António G B; Bastos, Alexandre C; Galstyan, Vardan; Faglia, Guido; Sberveglieri, Giorgio; Miranda Salvado, Isabel M

    2014-09-12

    Metallic implants and devices are widely used in the orthopedic and orthodontic clinical areas. However, several problems regarding their adhesion with the living tissues and inflammatory responses due to the release of metallic ions to the medium have been reported. The modification of the metallic surfaces and the use of biocompatible protective coatings are two approaches to solve such issues. In this study, in order to improve the adhesion properties and to increase the corrosion resistance of metallic Ti substrates we have obtained a hybrid structure based on TiO₂ nanotubular arrays and PDMS-TEOS films. TiO₂ nanotubes have been prepared with two different diameters by means of electrochemical anodization. PDMS-TEOS films have been prepared by the sol-gel method. The morphological and the elemental analysis of the structures have been investigated by scanning electron microscopy and energy dispersive spectroscopy (EDS). Electrochemical impedance spectroscopy (EIS) and polarization curves have been performed during immersion of the samples in Kokubo's simulated body fluid (SBF) at 37 °C to study the effect of structure layers and tube diameter on the protective properties. The obtained results show that the modification of the surface structure of TiO₂ and the application of PDMS-TEOS film is a promising strategy for the development of implant materials. PMID:25141030

  5. Corrosion Behavior of Surface-Treated Implant Ti-6Al-4V by Electrochemical Polarization and Impedance Studies

    NASA Astrophysics Data System (ADS)

    Paul, Subir; Yadav, Kasturi

    2011-04-01

    Implant materials for orthopedic and heart surgical services demand a better corrosion resistance material than the presently used titanium alloys, where protective oxide layer breaks down on a prolonged stay in aqueous physiological human body, giving rise to localized corrosion of pitting, crevice, and fretting corrosion. A few surface treatments on Ti alloy, in the form of anodization, passivation, and thermal oxidation, followed by soaking in Hank solution have been found to be very effective in bringing down the corrosion rate as well as producing high corrosion resistance surface film as reflected from electrochemical polarization, cyclic polarization, and Electrochemical Impedance Spectroscopy (EIS) studies. The XRD study revealed the presence of various types of oxides along with anatase and rutile on the surface, giving rise to high corrosion resistance film. While surface treatment of passivation and thermal oxidation could reduce the corrosion rate by 1/5th, anodization in 0.3 M phosphoric acid at 16 V versus stainless steel cathode drastically brought down the corrosion rate by less than ten times. The mechanism of corrosion behavior and formation of different surface films is better understood from the determination of EIS parameters derived from the best-fit equivalent circuit.

  6. Decolorization and COD removal from real textile wastewater by chemical and electrochemical Fenton processes: a comparative study

    PubMed Central

    2013-01-01

    Background Due to the presence of non-biodegradable and toxic compounds, textile wastewater is difficult to treat by conventional methods. In the present study, Electrochemical Fenton (EF) and Chemical Fenton (CF) processes were studied and compared for the treatment of real textile wastewater. The effects of electrical current, ferrous ion, hydrogen peroxide concentration and reaction time on the removal efficiencies of COD and color were investigated. All the experiments were carried out at pH = 3. Results Both EF and CF processes were mostly efficient within hydrogen peroxide concentration of 1978 mg/L (H2O2: COD ~ 1.1). The highest COD and color removal efficiencies were 70.6% and 72.9% respectively which were obtained through the EF process in 350 mA electrical current, 1978 mg/L hydrogen peroxide and 60 minutes reaction time. Furthermore, the operational costs of EF and CF processes were 17.56 and 8.6 US$ per kilogram of the removed COD respectively. Conclusion It was concluded that the electrochemical Fenton process was more efficient than the chemical Fenton process in the degradation of textile wastewater. Likewise, Although EF process imposed higher operational costs than the CF; it dramatically decreased the reaction time to gain the highest degradation efficiency. PMID:24355087

  7. Synthesis and electrochemical study of a hybrid structure based on PDMS-TEOS and titania nanotubes for biomedical applications

    NASA Astrophysics Data System (ADS)

    Castro, António G. B.; Bastos, Alexandre C.; Galstyan, Vardan; Faglia, Guido; Sberveglieri, Giorgio; Salvado, Isabel M. Miranda

    2014-09-01

    Metallic implants and devices are widely used in the orthopedic and orthodontic clinical areas. However, several problems regarding their adhesion with the living tissues and inflammatory responses due to the release of metallic ions to the medium have been reported. The modification of the metallic surfaces and the use of biocompatible protective coatings are two approaches to solve such issues. In this study, in order to improve the adhesion properties and to increase the corrosion resistance of metallic Ti substrates we have obtained a hybrid structure based on TiO2 nanotubular arrays and PDMS-TEOS films. TiO2 nanotubes have been prepared with two different diameters by means of electrochemical anodization. PDMS-TEOS films have been prepared by the sol-gel method. The morphological and the elemental analysis of the structures have been investigated by scanning electron microscopy and energy dispersive spectroscopy (EDS). Electrochemical impedance spectroscopy (EIS) and polarization curves have been performed during immersion of the samples in Kokubo’s simulated body fluid (SBF) at 37 °C to study the effect of structure layers and tube diameter on the protective properties. The obtained results show that the modification of the surface structure of TiO2 and the application of PDMS-TEOS film is a promising strategy for the development of implant materials.

  8. Aging Studies of Sr-doped LaCrO3/YSZ/Pt Cells for an Electrochemical NOx Sensor

    SciTech Connect

    Song, S; Martin, L P; Glass, R S; Murray, E P; Visser, J H; Soltis, R E; Novak, R F; Kubinski, D J

    2005-10-05

    The stability and NO{sub x} sensing performance of electrochemical cells of the structure Sr-doped LaCrO{sub 3-{delta}} (LSC)/yttria-stabilized zirconia (YSZ)/Pt are being investigated for use in NO{sub x} aftertreatment systems in diesel vehicles. Among the requirements for NO{sub x} sensor materials in these systems are stability and long lifetime (up to ten years) in the exhaust environment. In this study, cell aging effects were explored following extended exposure to a test environment of 10% O{sub 2} at operating temperatures of 600-700 C. The data show that aging results in changes in particle morphology, chemical composition and interfacial structure, Impedance spectroscopy indicated an initial increase in the cell resistance during the early stages of aging, which is correlated to densification of the Pt electrode. Also, x-ray photoelectron spectroscopy indicated formation of SrZrO{sub 2} solid state reaction product in the LSC, a process which is of finite duration. Subsequently, the overall cell resistance decreases with aging time due, in part, to roughening of YSZ-LSC interface, which improves interface adherence and enhances charge transfer kinetics at the O{sub 2}/YSZ/LSC triple phase boundary. This study constitutes a first step in the development of a basic understanding of aging phenomena in solid state electrochemical systems with application not only to sensors, but also to fuel cells, membranes, and electrolyzers.

  9. Interactions at the mild steel acid solution interface in the presence of O-fumaryl-chitosan: Electrochemical and surface studies.

    PubMed

    Sangeetha, Y; Meenakshi, S; Sundaram, C Sairam

    2016-01-20

    The performance of synthesised O-fumaryl-chitosan (OFC) as corrosion inhibitor for mild steel in 1M HCl has been evaluated through various studies. The initial screening by weight loss method revealed the good inhibition efficiency by the inhibitor. Thermodynamic and kinetic parameters have been calculated and discussed. The mode of adsorption is physical in nature and it follows Langmuir adsorption isotherm. Electrochemical measurements supported the inhibition of mild steel by the fumaryl derivative of chitosan. Polarisation studies provided the information that the inhibition is of mixed type. The formation of inhibitor film is assured by surface morphological studies with Scanning electron microscopy (SEM) and Atomic force microscopy (AFM). The mechanism of inhibition is derived from the Fourier-transform infrared (FTIR) spectroscopy and zero charge potential measurement. The adsorbed film is characterised using FTIR and X-ray diffraction studies (XRD). PMID:26572326

  10. Electrochemical study of quinone redox cycling: A novel application of DNA-based biosensors for monitoring biochemical reactions.

    PubMed

    Ensafi, Ali A; Jamei, Hamid Reza; Heydari-Bafrooei, Esmaeil; Rezaei, B

    2016-10-01

    This paper presents the results of an experimental investigation of voltammetric and impedimetric DNA-based biosensors for monitoring biological and chemical redox cycling reactions involving free radical intermediates. The concept is based on associating the amounts of radicals generated with the electrochemical signals produced, using differential pulse voltammetry (DPV) and electrochemical impedance spectroscopy (EIS). For this purpose, a pencil graphite electrode (PGE) modified with multiwall carbon nanotubes and poly-diallydimethlammonium chloride decorated with double stranded fish sperm DNA was prepared to detect DNA damage induced by the radicals generated from a redox cycling quinone (i.e., menadione (MD; 2-methyl-1,4-naphthoquinone)). Menadione was employed as a model compound to study the redox cycling of quinones. A direct relationship was found between free radical production and DNA damage. The relationship between MD-induced DNA damage and free radical generation was investigated in an attempt to identify the possible mechanism(s) involved in the action of MD. Results showed that DPV and EIS were appropriate, simple and inexpensive techniques for the quantitative and qualitative comparisons of different reducing reagents. These techniques may be recommended for monitoring DNA damages and investigating the mechanisms involved in the production of redox cycling compounds. PMID:27179196

  11. The effect of As, Co, and Ni impurities on pyrite oxidation kinetics: An electrochemical study of synthetic pyrite

    NASA Astrophysics Data System (ADS)

    Lehner, Stephen; Savage, Kaye; Ciobanu, Madalina; Cliffel, David E.

    2007-05-01

    Synthetic pyrite crystals doped with As, Co, or Ni, undoped pyrite, and natural arsenian pyrite from Leadville, Colorado were investigated with electrochemical techniques and solid-state measurements of semiconducting properties to determine the effect of impurity content on pyrite's oxidation behavior. Potential step experiments, cyclic voltammetry, and AC voltammetry were performed in a standard three-electrode electrochemical cell setup. A pH 1.78 sulfuric acid solution containing 1 mM ferric iron, open to atmospheric oxygen, was chosen to approximate water affected by acid drainage. Van der Pauw/Hall effect measurements determined resistivity, carrier concentration and carrier mobility. The anodic dissolution of pyrite and the reduction of ferric iron half-reactions are taken as proxies for natural pyrite oxidation. Pyrite containing no impurities is least reactive. Pyrite with As is more reactive than pyrite with either Ni or Co despite lower dopant concentration. As, Co, and Ni impurities introduce bulk defect states at different energy levels within the band gap. Higher reactivity of impure pyrite suggests that introduced defect levels lead to higher density of occupied surface states at the solid-solution interface and increased metallic behavior. The current density generated from potential step experiments increased with increasing As concentration. The higher reactivity of As-doped pyrite may be related to p-type conductivity and corrosion by holes. The results of this study suggest that considering the impurity content of pyrite in mining waste may lead to more accurate risk assessment of acid producing potential.

  12. Potential amoebicidal activity of hydrazone derivatives: synthesis, characterization, electrochemical behavior, theoretical study and evaluation of the biological activity.

    PubMed

    Toledano-Magaña, Yanis; García-Ramos, Juan Carlos; Navarro-Olivarria, Marisol; Flores-Alamo, Marcos; Manzanera-Estrada, Mayra; Ortiz-Frade, Luis; Galindo-Murillo, Rodrigo; Ruiz-Azuara, Lena; Meléndrez-Luevano, Ruth Ma; Cabrera-Vivas, Blanca M

    2015-01-01

    Four new hydrazones were synthesized by the condensation of the selected hydrazine and the appropriate nitrobenzaldehyde. A complete characterization was done employing 1H- and 13C-NMR, electrochemical techniques and theoretical studies. After the characterization and electrochemical analysis of each compound, amoebicidal activity was tested in vitro against the HM1:IMSS strain of Entamoeba histolytica. The results showed the influence of the nitrobenzene group and the hydrazone linkage on the amoebicidal activity. meta-Nitro substituted compound 2 presents a promising amoebicidal activity with an IC50 = 0.84 μM, which represents a 7-fold increase in cell growth inhibition potency with respect to metronidazole (IC50 = 6.3 μM). Compounds 1, 3, and 4 show decreased amoebicidal activity, with IC50 values of 7, 75 and 23 µM, respectively, as a function of the nitro group position on the aromatic ring. The observed differences in the biological activity could be explained not only by the redox potential of the molecules, but also by their capacity to participate in the formation of intra- and intermolecular hydrogen bonds. Redox potentials as well as the amoebicidal activity can be described with parameters obtained from the DFT analysis. PMID:26035095

  13. ESR and electrochemical study of 5-nitroindazole derivatives with antiprotozoal activity

    NASA Astrophysics Data System (ADS)

    Olea-Azar, Claudio; Cerecetto, Hugo; Gerpe, Alejandra; González, Mercedes; Arán, Vicente J.; Rigol, Carolina; Opazo, Lucía

    2006-01-01

    The electrochemistry of 3-alkoxy- and 3-hydroxy-1-[ω-(dialkylamino)alkyl]-5-nitroindazole derivatives were characterized using cyclic voltammetry in DMSO. The nitro reduction process was studied and this was affected by the acid moieties present in these compounds. A nitro anion self-protonation process was observed. This phenomenon was studied by cyclic voltammetry in presence of increasing amount of NaOH. The reactivity of the nitro anion radical of these derivatives with glutathione was also studied by cyclic voltammetry. The oxidizing effect of glutathione is supported by the parallel decrease of the anodic peak current and increase of the cathodic peak in the cyclic voltammograms, corresponding to the wave of the nitro anion radical from uncharged species with the addition of glutathione. Nitro anion radicals obtained by electrolytic reduction of these derivatives were measured and analyzed in DMSO using electron spin resonance spectroscopy.

  14. Electrochemical studies on polymer electrolytes based on poly(vinylidene fluoride-co-hexafluoropropylene) membranes prepared by electrospinning and phase inversion-A comparative study

    SciTech Connect

    Raghavan, Prasanth; Zhao, Xiaohui; Manuel, James; Shin, Chorong; Heo, Min-Yeong; Ahn, Jou-Hyeon; Ryu, Ho-Suk; Ahn, Hyo-Jun; Noh, Jung-Pil; Cho, Gyu-Bong

    2010-03-15

    The synthesis, characterization and electrochemical properties of poly(vinylidene fluoride-co-hexafluoropropylene) {l_brace}P(VdF-co-HFP){r_brace} prepared by electrospinning and phase inversion methods are reported. The morphologies of the membranes were studied by field emission scanning electron microscope and atomic force microscope. Thermal properties of the membranes were evaluated by differential scanning calorimetry. The resultant porous membranes are good absorbents of liquid electrolytes and exhibit high electrolyte retention capacity. The polymer electrolytes were prepared by soaking the membranes in liquid electrolyte. The temperature dependent ionic conductivity and electrochemical properties were evaluated. Li/LiFePO{sub 4} cell with electrospun membrane delivers a discharge capacity of 145 mAh/g, which corresponds to 85% utilization of active material under the test conditions and shows lower capacity fade under continuous cycling.

  15. Probing the Interaction between Acotiamide Hydrochloride and Pepsin by Multispectral Methods, Electrochemical Measurements, and Docking Studies.

    PubMed

    He, Jiawei; Ma, Xianglin; Wang, Qing; Huang, Yanmei; Li, Hui

    2016-07-01

    The interaction between acotiamide hydrochloride and pepsin was systematically characterized by fluorescence and electrochemical approaches. Fluorescence lifetime measurements showed that acotiamide hydrochloride quenched the intrinsic fluorescence of pepsin with a new complex formation via static mode, which was reconfirmed by cyclic voltammetry results. Both of the binding number and binding constants were calculated from differential pulse voltammetry analysis and fluorescence spectroscopy. The values obtained from the above two methods displayed a relatively high degree of consistency. Thermodynamic parameters suggested that acotiamide hydrochloride interacted with pepsin spontaneously by hydrogen bonding and van der Waals interactions. These results were consistent with the results obtained from molecular docking analysis. As revealed by synchronous fluorescence, three-dimensional fluorescence, Fourier transform infrared spectrometry, and circular dichroism spectra, acotiamide hydrochloride could affect the microenvironment and slightly change the secondary structure of pepsin. Furthermore, acotiamide hydrochloride can inhibit pepsin activity in vitro, as explained by the molecular docking. PMID:27018070

  16. Theoretical and experimental study of a heat pipe in zero-G for electrochemical cell cooling

    NASA Astrophysics Data System (ADS)

    Alain, Alexandre; Ali, Suleiman; Luc, Firmin Jean

    1991-07-01

    A new thermal concept to be used with Li/SOCL2 batteries is presented. A thermal model of a grooved nickel heat pipe under uniform heat input is developed, and an experimental assembly is made to simulate the operating conditions in zero-G. It is shown how this new thermal concept can provide the following for the electrochemical cell: thermal cooling by heat pipe, mechanical reinforcement, and current collection. The thermal behavior of a Li/SOCL2 cell under high rate discharge using this concept is compared with that of a traditional concept (aluminum corset around the cell which is fixed to a coldplate). A thermal model is established that uses ESACAP software including about 100 nodes to represent the cell and the aluminum pipe or the heat pipe.

  17. Simultaneous electrochemical and electron paramagnetic resonance studies of carotenoids. Effect of electron donating and accepting substituents

    SciTech Connect

    Jeevarajan, A.S.; Khaled, M.; Kispert, L.D. )

    1994-08-11

    A series of substituted phenyl-7[prime]-apocarotenoids with varying electron donating and accepting substituents was examined by cyclic voltammogram (CV) and simultaneous electrochemical electron paramagnetic resonance (SEEPR). Carotenoids substituted with electron donating groups are more easily oxidized than those with electron accepting substituents. Comproportionation constants for the dication and the neutral species were measured by SEEPR techniques and by simulation of the CVs. The [Delta]H[sub pp] of the SEEPR spectrum of the cation radicals varies from 13.2 to 15.6 G, and the g factors are 2.0027 [+-] 0.0002. These EPR parameters suggest a polyene [pi]-cation radical structure. The CVs are calculated using DigiSim, a CV simulation program, and the proposed mechanism involves three electrode reactions and two homogeneous reactions. 24 refs., 3 figs., 2 tabs.

  18. Electrochemical treatment of Reactive Black 5 textile wastewater: optimization, kinetics, and disposal study.

    PubMed

    Bansal, Sachin; Kushwaha, Jai Prakash; Sangal, Vikas Kumar

    2013-12-01

    This research reports treatment of textile wastewater containing Reactive Black 5 (RB5) and other industrial constituents which are found in textile industry effluent, by the electrochemical treatment method using aluminum electrodes. Initial pH, current density (J), and electrolysis time (t) were selected as operational variables to observe the effects on chemical oxygen demand (COD) removal efficiency (Y1), dye removal efficiency (Y2), and specific energy consumed (Y3) (kWh/kg of COD removed). A response surface methodology (RSM) with full factorial central composite design (CCD) was used for designing and optimizing responses. To optimize the multiple responses, multi-response optimization with a desirability function were utilized for maximizing Y1 and Y2, and simultaneously minimizing Y3. To address issues of treated wastewater disposal, aluminum mass balance was performed. Electrocoagulation with subsequent adsorption, electro-floatation, and electro-oxidation were found to be the mechanism for removal of the pollutants. PMID:24597045

  19. Mössbauer study of electrochemically deposited amorphous iron-sulfide-oxide thin films

    NASA Astrophysics Data System (ADS)

    Ichimura, Masaya; Kajima, Takahiro; Kawai, Shoichi; Mibu, Ko

    2016-03-01

    Iron-sulfide-oxide thin films, which are promising candidates for solar cell materials, were deposited by electrochemical deposition. As-deposited and annealed films were characterized by Mössbauer spectroscopy, X-ray diffraction (XRD), and Raman scattering at room temperature. The as-deposited film is amorphous, and the oxygen content is about 1/4 of the sulfur content (S/Fe ≈ 1.5, O/Fe ≈ 0.4). The Mössbauer spectrum for the as-deposited film is a doublet with a broad line profile having hyperfine parameters similar to those of FeS2 pyrite or marcasite. This indicates that Fe atoms are in the Fe2+ low-spin state, as in FeS2.

  20. Spectral and electrochemical study of host-guest inclusion complex between 2,4-dinitrophenol and β-cyclodextrin

    NASA Astrophysics Data System (ADS)

    Srinivasan, K.; Stalin, T.; Sivakumar, K.

    The formation of host-guest inclusion complex of 2,4-dinitrophenol (2,4-DNP) with nano-hydrophobic cavity of β-cyclodextrin (β-CD) in solution phase was studied by UV-visible spectrophotometer and electrochemical method (cyclic voltammetry, CV). The prototropic behaviors of 2,4-DNP with and without β-CD and the ground state acidity constant (pKa) of host-guest inclusion complex (2,4-DNP-β-CD) were studied. The binding constant of inclusion complex at 303 K was calculated using Benesi-Hildebrand plot and thermodynamic parameter (ΔG) was also calculated. The solid inclusion complex formation between β-CD and 2,4-DNP was confirmed by 1H NMR, FT-IR, XRD and SEM analysis. A schematic representation of this inclusion process is proposed by molecular docking studies using PatchDock server.

  1. A Comprehensive Pitting Study of High Velocity Oxygen Fuel Inconel 625 Coating by Using Electrochemical Testing Techniques

    NASA Astrophysics Data System (ADS)

    Niaz, Akbar; Khan, Sajid Ullah

    2016-01-01

    In the present work, Inconel 625 was coated on a mild steel substrate using a high velocity oxygen fuel coating process. The pitting propensity of the coating was tested by using open circuit potential versus time, potentiodynamic polarization, electrochemical potentiokinetic reactivation, and scanning electrochemical microscopy. The pitting propensity of the coating was compared with bulk Inconel 625 alloy. The results confirmed that there were regions of different electrochemical activities on the coating which have caused pitting corrosion.

  2. Electrochemical Characterization Laboratory (Fact Sheet)

    SciTech Connect

    Not Available

    2011-10-01

    This fact sheet describes the purpose, lab specifications, applications scenarios, and information on how to partner with NREL's Electrochemical Characterization Laboratory at the Energy Systems Integration Facility. The research focus at the Electrochemical Characterization Laboratory at NREL's Energy Systems Integration Facility (ESIF) is evaluating the electrochemical properties of novel materials synthesized by various techniques and understanding and delineating the reaction mechanisms to provide practical solutions to PEMFCs commercialization issues of cost, performance and durability. It is also involved in the development of new tools and techniques for electrochemical characterization. The laboratory concentrates on the development and characterization of new materials for PEMFCs such as electrocatalysts, catalyst supports in terms of electrochemical activity, electrochemical surface area and corrosion/durability. The impact of impurities and/or contaminants on the catalyst activity is also under study. Experiments that can be performed include: (1) Determination and benchmarking of novel electrocatalyst activity; (2) Determination of electrochemical surface area; (3) Determination of electrocatalyst and support corrosion resistance and durability; (4) Synthesis and characterization of novel electrocatalyst; (5) Determination of fundamental electrochemical parameters; and (6) Estimation of electrocatalyst utilization.

  3. High-Speed Electrochemical Imaging.

    PubMed

    Momotenko, Dmitry; Byers, Joshua C; McKelvey, Kim; Kang, Minkyung; Unwin, Patrick R

    2015-09-22

    The design, development, and application of high-speed scanning electrochemical probe microscopy is reported. The approach allows the acquisition of a series of high-resolution images (typically 1000 pixels μm(-2)) at rates approaching 4 seconds per frame, while collecting up to 8000 image pixels per second, about 1000 times faster than typical imaging speeds used up to now. The focus is on scanning electrochemical cell microscopy (SECCM), but the principles and practicalities are applicable to many electrochemical imaging methods. The versatility of the high-speed scan concept is demonstrated at a variety of substrates, including imaging the electroactivity of a patterned self-assembled monolayer on gold, visualization of chemical reactions occurring at single wall carbon nanotubes, and probing nanoscale electrocatalysts for water splitting. These studies provide movies of spatial variations of electrochemical fluxes as a function of potential and a platform for the further development of high speed scanning with other electrochemical imaging techniques. PMID:26267455

  4. Electrochemical cell

    DOEpatents

    Redey, Laszlo I.; Myles, Kevin M.; Vissers, Donald R.; Prakash, Jai

    1996-01-01

    An electrochemical cell with a positive electrode having an electrochemically active layer of at least one transition metal chloride. A negative electrode of an alkali metal and a compatible electrolyte including an alkali metal salt molten at cell operating temperature is included in the cell. The electrolyte is present at least partially as a corrugated .beta." alumina tube surrounding the negative electrode interior to the positive electrode. The ratio of the volume of liquid electrolyte to the volume of the positive electrode is in the range of from about 0.1 to about 3. A plurality of stacked electrochemical cells is disclosed each having a positive electrode, a negative electrode of an alkali metal molten at cell operating temperature, and a compatible electrolyte. The electrolyte is at least partially present as a corrugated .beta." alumina sheet separating the negative electrode and interior to the positive electrodes. The alkali metal is retained in a porous electrically conductive ceramic, and seals for sealing the junctures of the electrolyte and the adjacent electrodes at the peripheries thereof.

  5. Electrochemical cell

    DOEpatents

    Redey, L.I.; Myles, K.M.; Vissers, D.R.; Prakash, J.

    1996-07-02

    An electrochemical cell is described with a positive electrode having an electrochemically active layer of at least one transition metal chloride. A negative electrode of an alkali metal and a compatible electrolyte including an alkali metal salt molten at cell operating temperature is included in the cell. The electrolyte is present at least partially as a corrugated {beta}{double_prime} alumina tube surrounding the negative electrode interior to the positive electrode. The ratio of the volume of liquid electrolyte to the volume of the positive electrode is in the range of from about 0.1 to about 3. A plurality of stacked electrochemical cells is disclosed each having a positive electrode, a negative electrode of an alkali metal molten at cell operating temperature, and a compatible electrolyte. The electrolyte is at least partially present as a corrugated {beta}{double_prime} alumina sheet separating the negative electrode and interior to the positive electrodes. The alkali metal is retained in a porous electrically conductive ceramic, and seals for sealing the junctures of the electrolyte and the adjacent electrodes at the peripheries thereof. 8 figs.

  6. Electrochemical cell

    DOEpatents

    Nagy, Zoltan; Yonco, Robert M.; You, Hoydoo; Melendres, Carlos A.

    1992-01-01

    An electrochemical cell has a layer-type or sandwich configuration with a Teflon center section that houses working, reference and counter electrodes and defines a relatively narrow electrolyte cavity. The center section is surrounded on both sides with thin Teflon membranes. The membranes are pressed in place by a pair of Teflon inner frames which are in turn supported by a pair of outer metal frames. The pair of inner and outer frames are provided with corresponding, appropriately shaped slits that are in plane generally transverse to the plane of the working electrode and permit X-ray beams to enter and exit the cell through the Teflon membranes that cover the slits so that the interface between the working electrode and the electrolyte within the cell may be analyzed by transmission geometry. In one embodiment, the center section consists of two parts, one on top of the other. Alternatively, the center section of the electrochemical cell may consist of two intersliding pieces or may be made of a single piece of Teflon sheet material. The electrolyte cavity is shaped so that the electrochemical cell can be rotated 90.degree. in either direction while maintaining the working and counter electrodes submerged in the electrolyte.

  7. Electrochemical cell

    DOEpatents

    Nagy, Z.; Yonco, R.M.; You, H.; Melendres, C.A.

    1992-08-25

    An electrochemical cell has a layer-type or sandwich configuration with a Teflon center section that houses working, reference and counter electrodes and defines a relatively narrow electrolyte cavity. The center section is surrounded on both sides with thin Teflon membranes. The membranes are pressed in place by a pair of Teflon inner frames which are in turn supported by a pair of outer metal frames. The pair of inner and outer frames are provided with corresponding, appropriately shaped slits that are in plane generally transverse to the plane of the working electrode and permit X-ray beams to enter and exit the cell through the Teflon membranes that cover the slits so that the interface between the working electrode and the electrolyte within the cell may be analyzed by transmission geometry. In one embodiment, the center section consists of two parts, one on top of the other. Alternatively, the center section of the electrochemical cell may consist of two intersliding pieces or may be made of a single piece of Teflon sheet material. The electrolyte cavity is shaped so that the electrochemical cell can be rotated 90[degree] in either direction while maintaining the working and counter electrodes submerged in the electrolyte. 5 figs.

  8. 7 CFR 1710.253 - Engineering and cost studies-addition of generation capacity.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 11 2013-01-01 2013-01-01 false Engineering and cost studies-addition of generation... TO ELECTRIC LOANS AND GUARANTEES Construction Work Plans and Related Studies § 1710.253 Engineering... engineering and cost studies as specified by RUS. The studies shall cover a period from the beginning of...

  9. 7 CFR 1710.253 - Engineering and cost studies-addition of generation capacity.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 11 2010-01-01 2010-01-01 false Engineering and cost studies-addition of generation... TO ELECTRIC LOANS AND GUARANTEES Construction Work Plans and Related Studies § 1710.253 Engineering... engineering and cost studies as specified by RUS. The studies shall cover a period from the beginning of...

  10. Studies of components for thermally regenerative electrochemical systems. Final report, 1 August 1985-31 December 1987

    SciTech Connect

    Osteryoung, R.A.

    1991-09-01

    Electrochemical studies on the reduction of AlCl 4- ion and the anodization of Al(O) in basic 1-methyl-3-ethylimidazolium chloride (ImCl) mixed with aluminum chloride (AlCl3) were carried out; a basic melt is one containing excess ImCl. It was not found possible to reduce the AlCl4 ion at temperatures as high as 250 deg C. The anodization of aluminum was found to be controlled by the diffusion of chloride ion to the electrode. The disposition of Li and Bi were studied at tungsten microelectrodes in LiCl-KCl eutectic molten salt at 450 deg C. Molten salts; ambient temperature chloroaluminates; lithium chloride - potassium chloride eutectic; electrochemistry.

  11. In-situ electrochemical study of corrosion of steel and aluminum/steel couples during cyclic corrosion test

    SciTech Connect

    Gao, G.

    1998-12-31

    Use of aluminum alloys for automotive applications is growing steadily. Galvanic corrosion is a major concern for those alloys. Because of the predominate use of steels in the automotive industry, the majority of accelerated test procedures commonly accepted by the industry are designed for cosmetic corrosion and perforation of steels. SAE 52334 and Ford Arizona Proving Ground (Ford APG) tests are two examples. Adopting those tests for galvanic corrosion of Al alloys without any fundamental understanding of the process may lead to misleading results. In this paper, electrochemical studies were conducted to examine the acceleration effects of several parameters on different types of corrosion. Galvanic corrosion of aluminum 6111 alloy and cold rolled steel (Al/ CRS) couples and general corrosion of cold rolled steel substrates were studied.

  12. Electrochemical noise measurements on carbon and stainless steels in high subcritical and supercritical aqueous environments

    SciTech Connect

    Macdonald, D.D.; Liu, C.; Manahan, M.P. Sr.

    1996-12-31

    The electrochemical noise induced in a pair of corroding carbon steel probes in simulated heat transport circuit fluids of a supercritical fossil-fueled power plant at temperatures up to 550 C and at pressures as high as 276 bar (4,000 psi) was measured as a function of oxygen concentration, flow rate, temperature, and pressure. Additionally, electrochemical noise measurement (ENM) was explored as a means of detecting and monitoring stress corrosion cracking in sensitized Type 304 SS in high-temperature water (up to 288 C). Experimental results from these studies indicate that the electrochemical noise induced from corrosion of steels in high-temperature aqueous systems can be measured in a reproducible manner. The magnitude of the electrochemical noise responds sensibly to changes in the chemical and physical properties of the fluid, and the pattern of the electrochemical noise contains information on the nature of the corrosion processes that occur, including general corrosion, pitting attack, and stress corrosion cracking.

  13. Unravelling the electrochemical double layer by direct probing of the solid/liquid interface.

    PubMed

    Favaro, Marco; Jeong, Beomgyun; Ross, Philip N; Yano, Junko; Hussain, Zahid; Liu, Zhi; Crumlin, Ethan J

    2016-01-01

    The electrochemical double layer plays a critical role in electrochemical processes. Whilst there have been many theoretical models predicting structural and electrical organization of the electrochemical double layer, the experimental verification of these models has been challenging due to the limitations of available experimental techniques. The induced potential drop in the electrolyte has never been directly observed and verified experimentally, to the best of our knowledge. In this study, we report the direct probing of the potential drop as well as the potential of zero charge by means of ambient pressure X-ray photoelectron spectroscopy performed under polarization conditions. By analyzing the spectra of the solvent (water) and a spectator neutral molecule with numerical simulations of the electric field, we discern the shape of the electrochemical double layer profile. In addition, we determine how the electrochemical double layer changes as a function of both the electrolyte concentration and applied potential. PMID:27576762

  14. Evaluation of the Technical-Economic Potential of Particle- Reinforced Aluminum Matrix Composites and Electrochemical Machining

    NASA Astrophysics Data System (ADS)

    Schubert, A.; Götze, U.; Hackert-Oschätzchen, M.; Lehnert, N.; Herold, F.; Meichsner, G.; Schmidt, A.

    2016-03-01

    Compared to conventional cutting, the processing of materials by electrochemical machining offers some technical advantages like high surface quality, no thermal or mechanical impact on the work piece and preservation of the microstructure of the work piece material. From the economic point of view, the possibility of process parallelization and the absence of any process-related tool wear are mentionable advantages of electrochemical machining. In this study, based on experimental results, it will be evaluated to what extent the electrochemical machining is technically and economically suitable for the finish-machining of particle- reinforced aluminum matrix composites (AMCs). Initial studies showed that electrochemical machining - in contrast to other machining processes - has the potential to fulfil demanding requirements regarding precision and surface quality of products or components especially when applied to AMCs. In addition, the investigations show that processing of AMCs by electrochemical machining requires less energy than the electrochemical machining of stainless steel. Therefore, an evaluation of electrochemically machined AMCs - compared to stainless steel - from a technical and an economic perspective will be presented in this paper. The results show the potential of electro-chemically machined AMCs and contribute to the enhancement of instruments for technical-economic evaluations as well as a comprehensive innovation control.

  15. Quinoxaline derivatives as corrosion inhibitors for mild steel in hydrochloric acid medium: Electrochemical and quantum chemical studies

    NASA Astrophysics Data System (ADS)

    Olasunkanmi, Lukman O.; Kabanda, Mwadham M.; Ebenso, Eno E.

    2016-02-01

    The corrosion inhibition potential of four quinoxaline derivatives namely, 1-[3-(4-methylphenyl)-5-(quinoxalin-6-yl)-4,5-dihydropyrazol-1-yl]butan-1-one (Me-4-PQPB), 1-(3-(4-methoxyphenyl)-5-(quinoxalin-6-yl)-4,5-dihydropyrazol-1-yl)butan-1-one (Mt-4-PQPB), 1-[3-(3-methoxyphenyl)-5-(quinoxalin-6-yl)-4,5-dihydropyrazol-1-yl]butan-1-one (Mt-3-PQPB) and 1-[3-(2H-1,3-benzodioxol-5-yl)-5-(quinoxalin-6-yl)-4,5-dihydropyrazol-1-yl]butan-1-one (Oxo-1,3-PQPB) was studied for mild steel corrosion in 1 M HCl solution using electrochemical, spectroscopic techniques and quantum chemical calculations. The results of both potentiodynamic polarization and electrochemical impedance spectroscopic studies revealed that the compounds are mixed-type inhibitors and the order of corrosion inhibition efficiency at 100 ppm is Me-4-PQPB>Mt-3-PQPB>Oxo-1,3-PQPB>Mt-4-PQPB. Fourier transform infrared (FTIR) and ultraviolet-visible (UV-vis) spectroscopic analyses confirmed the presence of chemical interactions between the inhibitors and mild steel surface. The adsorption of the inhibitor molecules on mild steel surface was found to be both physisorption and chemisorption but predominantly chemisorption. The experimental data obey Langmuir adsorption isotherm. Scanning electron microscopy studies revealed the formation of protective films of the inhibitors on mild steel surface. Quantum chemical parameters obtained from density functional theory (DFT) calculations support experimental results.

  16. A direct anatomical study of additional renal arteries in a Colombian mestizo population.

    PubMed

    Saldarriaga, B; Pérez, A F; Ballesteros, L E

    2008-05-01

    Traditional anatomy describes each kidney as receiving irrigation from a single renal artery. However, current literature reports great variability in renal blood supply, the number of renal arteries mentioned being the most frequently found variation. Such variation has great implications when surgery is indicated, such as in renal transplants, uroradiological procedures, renovascular hypertension, renal trauma and hydronephrosis. This article pretends to determine the frequency of additional renal arteries and their morphological expression in Colombian population in a cross-sectional study. A total of 196 of renal blocks were analysed from autopsies carried out in the Bucaramanga Institute of Forensic Medicine, Colombia; these renal blocks were processed by the injection- corrosion technique. The average age of the people being studied was 33.8 +/- 15.6 years; 85.4% of them were male and the rest female. An additional renal artery was found in 22.3% of the whole population and two additional ones were found in 2.6% of the same sample. The additional renal artery was most frequently found on the left side. The additional artery arose from the aorta's lateral aspect (52.4%); these additional arteries usually entered the renal parenchyma through the hilum. No difference was established according to gender. Nearly a third of the Colombian population presents one additional renal artery and about 3% of the same population presents two additional renal arteries. Most of them reached the kidney through its hilar region. PMID:18521812

  17. Electrochemical Study on the Inhibition Effect of Phenanthroline and Its Cobalt Complex as Corrosion Inhibitors for Mild Steel

    NASA Astrophysics Data System (ADS)

    Liu, Xia; Okafor, Peter C.; Jiang, Bin; Hu, Hongxiang; Zheng, Yugui

    2015-09-01

    The corrosion inhibition effect of phenanthroline (Phen) and its cobalt complex (CoPhen) on the corrosion of carbon steel in sulphuric acid solutions was studied using potentiodynamic polarization and electrochemical impedance spectroscopy techniques at 20, 30, and 40 °C. Scanning electron microscopy techniques were used to characterize the mild steel surface. The results indicate that the compounds inhibit the corrosion of mild steel in H2SO4 solutions through a predominant physical adsorption following the Langmuir adsorption isotherm. Polarization curves suggest that the complex and ligand are mixed-type inhibitors. The efficiency of the inhibitors is concentration- and temperature-dependent and follows the trend CoPhen > Phen.

  18. Study of caffeine as corrosion inhibitors of carbon steel in chloride solution containing hydrogen sulfide using electrochemical impedance spectroscopy (EIS)

    NASA Astrophysics Data System (ADS)

    Solehudin, Agus; Berman, Ega Taqwali; Nurdin, Isdiriayani

    2015-09-01

    The corrosion behaviour of steel surface in the absence and presence of caffeine in 3.5% NaCl solution containing dissolved H2S gas is studied using electrochemical impedance spectroscopy (EIS). The experimental results of carbon steel corrosion in 3.5% NaCl solution containing 500 mg/l H2S at different caffeine concentrations showed that corrosion rate of carbon steel decreases with increasing of caffeine concentrations from 0 to 0,1 mmol/l. Whereas, the corrosion rate increase with increasing of caffeine concentrations from 1 to 10 mmol/l. It is clear that no inhibition efficiency increases with increasing inhibitor concentration. The optimum value of inhibition efficiency was 90% at a caffeine concentration of 0.1 mmol/l. This suggests that caffeine's performance as a corrosion inhibitor is more effective at a concentration of 0.1 mmol/l.

  19. Development of a standard bench-scale cell for electrochemical studies on inert anodes. Inert Anode/Cathode Program

    SciTech Connect

    Windisch, C.F. Jr.; Boget, D.I.

    1986-07-01

    Objective of this work was to develop a standard bench-scale cell for performing short-term ac and dc polarization studies on inert anode candidate materials in molten cryolite. Two designs for electrochemical cells were developed and successfully evaluated in short-term experiments. Both cells consisted on the inert anode as a small cylindrical specimen partially sheathed in alumina, an Al/Al/sub 2/O/sub 3/ reference electrode, and a cryolite bath saturated in alumina. The difference between the two cells was in the design of the cathode. One cell used a bare solid metal cathode; the other used an aluminum pad similar to the Hall-Heroult configuration.

  20. Corrosion Inhibition of Mild Steel in 1.0 M HCl by Amino Compound: Electrochemical and DFT Studies

    NASA Astrophysics Data System (ADS)

    Musa, Ahmed Y.; Mohamad, Abu Bakar; Kadhum, Abdul Amir H.; Takriff, Mohd Sobri

    2012-05-01

    The purpose of this study was to examine the inhibitory effect of 4-amino-5-methyl-4H-1, 2, 4-triazole-3-thiol (AMTT) on the corrosion of mild steel in 1.0 M HCl solution using weight loss, electrochemical impedance spectroscopy (EIS), and potentiodynamic polarization. The results indicate that AMTT performed as a good mixed-type inhibitor for mild steel corrosion in a 1.0 M HCl solution, and the inhibition efficiencies increased and tend to saturate with inhibitor concentration. Potentiodynamic polarization results showed that AMTT is a mixed-type inhibitor. Adsorption of AMTT molecules is a spontaneous process, and its adsorption behavior obeys Langmuir's adsorption isotherm model. The reactivity of AMTT was analyzed through theoretical calculations based on density functional theory. Results showed that the reactive sites were located on the nitrogen and sulfur (N1, N2, and S) atoms.

  1. Corrosion Inhibition of Mild Steel in 1.0 M HCl by Amino Compound: Electrochemical and DFT Studies

    NASA Astrophysics Data System (ADS)

    Musa, Ahmed Y.; Mohamad, Abu Bakar; Kadhum, Abdul Amir H.; Takriff, Mohd Sobri

    2012-09-01

    The purpose of this study was to examine the inhibitory effect of 4-amino-5-methyl-4H-1, 2, 4-triazole-3-thiol (AMTT) on the corrosion of mild steel in 1.0 M HCl solution using weight loss, electrochemical impedance spectroscopy (EIS), and potentiodynamic polarization. The results indicate that AMTT performed as a good mixed-type inhibitor for mild steel corrosion in a 1.0 M HCl solution, and the inhibition efficiencies increased and tend to saturate with inhibitor concentration. Potentiodynamic polarization results showed that AMTT is a mixed-type inhibitor. Adsorption of AMTT molecules is a spontaneous process, and its adsorption behavior obeys Langmuir's adsorption isotherm model. The reactivity of AMTT was analyzed through theoretical calculations based on density functional theory. Results showed that the reactive sites were located on the nitrogen and sulfur (N1, N2, and S) atoms.

  2. The surface reactivity of a magnesium-aluminium alloy in acidic fluoride solutions studied by electrochemical techniques and XPS

    NASA Astrophysics Data System (ADS)

    Verdier, S.; van der Laak, N.; Delalande, S.; Metson, J.; Dalard, F.

    2004-08-01

    The behaviour of the 6% Al magnesium alloy AM60 in aqueous acid fluoride solutions was studied in situ by electrochemical techniques and the surface chemistry of the resulting film was examined by monochromatized XPS. The evolution of the corrosion potential and cyclic voltammograms showed that the aggressiveness of the solutions is mainly driven by their fluoride concentration, the pH having almost no detectable influence. The more concentrated and acidic fluoride solutions led to a higher degree of fluoride coverage of the surface. The surface film is composed of magnesium hydroxide and hydroxyfluoride Mg(OH) 2- xF x which approaches MgF 2 with increasing fluoride concentration in the film. The parameters governing the film evolution and their relation to surface reactions are discussed.

  3. Study of Halitosis-Substance Sensing at Low Concentration Using an Electrochemical Sensor Array Combined with a Preconcentrator

    NASA Astrophysics Data System (ADS)

    Sasaya, Yosuke; Nakamoto, Takamichi

    A method for quantitative detection and discrimination of volatile sulfur compounds (VSCs) using an electrochemical sensor array combined with a preconcentrator was proposed. Halitosis is due to VSCs produced by bacterial metabolism inside the oral cavity. An organoleptic test is typically performed by a dental clinician for the assessment of halitosis, although it is a subjective test. Thus, an objective evaluation of halitosis is required. In this study, it was possible to discriminate among the VSCs such as hydrogen sulfide (H2S), methyl mercaptan (CH3SH), and dimethyl sulfide ((CH3)2S) over the range of 200ppb to 1000ppb. Moreover, mixture of two VSC vapors (H2S and CH3SH) at various mixing ratios were measured. The results indicated that the sensor responses to mixed samples satisfied the linear superposition. The mixture compositions of VSCs were almost correctly obtained from the sensor responses using partial least squares (PLS) regression analysis.

  4. Establishment of equivalent circuits from electrochemical impedance spectroscopy study of corrosion inhibition of steel by pyrazine in sulphuric acidic solution

    NASA Astrophysics Data System (ADS)

    Kissi, M.; Bouklah, M.; Hammouti, B.; Benkaddour, M.

    2006-04-01

    This paper describes the use of the electrochemical impedance spectroscopy technique (EIS) in order to study the corrosion inhibition process of steel in 0.5 M H 2SO 4 solution at the open circuit potential (OCP). Diethyl pyrazine-2,3-dicarboxylate (Prz) as a non-ionic surfactant (NS) inhibitor has been examined. The Nyquist diagrams consisted of a capacitive semicircle at high frequencies followed by a well-defined inductive loop at low frequency values. The impedance measurements were interpreted according to suitable equivalent circuits. The results obtained showed that the Prz is a good inhibitor. The inhibition efficiency increases with an increase in the surfactant concentration to attain 80% at the 5 × 10 -3M. Prz is adsorbed on the steel surface according to a Langmuir isotherm adsorption model.

  5. From ultra-high vacuum to the electrochemical interface : x-ray scattering studies of model electrocatalysts.

    SciTech Connect

    Lucas, C. A.; Cormack, M.; Gallagher, M. E.; Brownrigg, A.; Thompson, P.; Fowler, B.; Grunder, Y.; Roy, J.; Stamenkovic, V.; Markovic, N. M.; Materials Science Division; Univ. of Liverpool; European Synchrotron Radiation Facility

    2008-08-01

    In-situ surface X-ray scattering (SXS) has become a powerful probe of the atomic structure at the metal-electrolyte interface. In this paper we describe an experiment in which a Pt(111) sample is prepared under ultra-high vacuum (UHV) conditions to have a p(2 x 2) oxygen layer adsorbed on the surface. The surface is then studied using SXS under UHV conditions before successive transfer to a bulk water environment and then to the electrochemical environment (0.1 M KOH solution) under an applied electrode potential. The Pt surface structure is examined in detail using crystal truncation rod (CTR) measurements under these different conditions. Finally, some suggestions for future experiments on alloy materials, using the same methodology, are proposed and discussed in relation to previous results.

  6. From ultra-high vacuum to the electrochemical interface: x-ray scattering studies of model electrocatalysts.

    PubMed

    Lucas, Christopher A; Cormack, Michael; Gallagher, Mark E; Brownrigg, Alexander; Thompson, Paul; Fowler, Ben; Gründer, Yvonne; Roy, Jerome; Stamenković, Vojislav; Marković, Nenad M

    2008-01-01

    In-situ surface X-ray scattering (SXS) has become a powerful probe of the atomic structure at the metal-electrolyte interface. In this paper we describe an experiment in which a Pt(111) sample is prepared under ultra-high vacuum (UHV) conditions to have a p(2 x 2) oxygen layer adsorbed on the surface. The surface is then studied using SXS under UHV conditions before successive transfer to a bulk water environment and then to the electrochemical environment (0.1 M KOH solution) under an applied electrode potential. The Pt surface structure is examined in detail using crystal truncation rod (CTR) measurements under these different conditions. Finally, some suggestions for future experiments on alloy materials, using the same methodology, are proposed and discussed in relation to previous results. PMID:19213309

  7. Density-functional theory study of interactions between water and carbon monoxide adsorbed on platinum under electrochemical conditions

    NASA Astrophysics Data System (ADS)

    Santana, Juan A.; Ishikawa, Yasuyuki

    2009-08-01

    In the study of CO poisoning of the platinum-based hydrogen anode in the polymer electrolyte fuel cell, a key issue that has eluded our understanding is the interactions of CO adsorbed on Pt surfaces and solvent H 2O. Our density-functional theory calculations reveal a new interpretation of the adsorbed state of CO and its interaction with water under electrochemical conditions, which rationalizes the observed quantitative relationship between infrared intensities for adsorbed bridging CO (bridge) and water exhibiting a high-frequency O-H stretch (ca. 3650 cm -1). The theoretical modeling indicates that the observed feature is due to a water molecule firmly hydrogen-bonded to CO (bridge).

  8. Structural Study of Electrochemically Obtained Li 2+ xTi 3O 7

    NASA Astrophysics Data System (ADS)

    Arroyo y de Dompablo, M. E.; Várez, A.; García-Alvarado, F.

    2000-08-01

    Li2Ti3O7, a ramsdellite-type compound, is able to reversibly insert approximately 2.3 lithium ions per formula down to 1 V versus lithium. Both electron and X-ray diffraction techniques show that the electrochemically inserted compounds Li2+xTi3O7, with x<2, maintain the ramsdellite structure, although some important microstructural differences are observed. For example the compound with x=0.55 exhibits an incommensurate modulation (q≈{1}/{3}c*). On the other hand, for Li2+xTi3O7 with x>2, a commensurable a×2b×c cell can be proposed. A close structural relationship between the intercalated compounds and host compound, together with the small changes in the basic ramsdellite cell parameters during the intercalation process, is likely at the origin of the good cycling behavior of a lithium cell using Li2Ti3O7 as the positive electrode.

  9. Material Testing in Support of the ISS Electrochemical Disinfection Feasibility Study

    NASA Technical Reports Server (NTRS)

    Clements, Anna; Shindo, David; Modica, Cathy

    2011-01-01

    The International Space Station Program recognizes the risk of microbial contamination in their potable and non-potable water sources. With the end of the Space Shuttle Program, the ability to send up shock-kits of biocides in the event of an outbreak becomes even more difficult. Currently, the US Segment water system relies primarily on iodine to mitigate contamination concerns. To date, several small cases of contamination have occurred which have been remediated. NASA, however, realizes that having a secondary method of combating a microbial outbreak is a prudent investment. NASA is looking into developing hardware that can generate biocides electrochemically, and potentially deploying that hardware. The specific biocides that the technology could generate include: hydrogen peroxide, oxone, hypochlorite and peracetic acid. In order to use these biocides on deployed water systems, the project must determine that all the materials in the potential application are compatible with the biocides at their anticipated administered concentrations. This paper will detail the materials test portion of the feasibility assessment including the plan for both metals and non-metals along with results to date.

  10. Using cavity microelectrodes for electrochemical noise studies of oxygen-evolving catalysts.

    PubMed

    Rincón, Rosalba A; Battistel, Alberto; Ventosa, Edgar; Chen, Xingxing; Nebel, Michaela; Schuhmann, Wolfgang

    2015-02-01

    Cavity microelectrodes were used as a binder-free platform to evaluate oxygen evolution reaction (OER) electrocatalysts with respect to gas bubble formation and departure. Electrochemical noise measurements were performed by using RuO2 as a benchmark catalyst and the perovskite La0.58 Sr0.4 Fe0.8 Co0.2 O3 as a non-noble metal OER catalyst with lower intrinsic conductivity. Changes in the current during the OER originate from variations in electrolyte resistance during the formation of the gas phase and partial coverage of the active area. Fluctuations observed in current and conductance transients were used to establish the contribution from the ohmic overpotential and to determine the characteristic frequency of oxygen evolution. The proposed quantitative determination of gas bubble growth and departure opens up the route for a rational interface design by considering gas bubble growth and departure as a main contributing factor to the overall electrocatalytic activity at high current densities. PMID:25556938

  11. Electrochemical corrosion studies of container materials in repository-relevant environments

    SciTech Connect

    Roy, A.K.; Henshall, G.A.; McCright, R.D.

    1995-12-12

    The Office of Civilian Radioactive Waste Management (OCRWM) of the United States Department of Energy (USDOE) is evaluating Yucca Mountain in southern Nevada to determine its suitability as a site for a mined geologic disposal system for the disposal of spent fuel and high-level nuclear waste. Framatome Cogema Fuels (FCF), as a part of the Management and Operating (M&O) team in support of the Yucca Mountain Site Characterization Project (YAD), is responsible for designing and developing the waste package for this potential repository. As part of this effort, Lawrence Livermore National Laboratory (LLNL), also a member of the M&O team is responsible for testing materials and developing models for the materials to be used in the waste package. Based on a literature review of the anticipated degradation modes that may occur under the repository-relevant environmental conditions, LLNL has identified a large number of engineering materials for the various components of the waste package. One step in evaluating the performance of these materials is to conduct preliminary tests under these repository-relevant environmental conditions. This report is aimed at presenting the results of scoping electrochemical cyclic potentiodynamic polarization (CPP) experiments using nine candidate waste package container materials in various environments.

  12. Electrochemical study of resistance to localized corrosion of stainless steels for biomaterial applications

    SciTech Connect

    Pan, J.; Karlen, C.; Ulfvin, C.

    2000-03-01

    Sandvik Bioline High-N and 316 LVM are two austenitic stainless steels especially developed for biomaterial applications. Their resistance to localized corrosion was investigated by electrochemical methods including cyclic potentiodynamic polarization and potentiostatic polarization measurements in a phosphate-buffered saline solution and in a simulated crevice solution, i.e., designed for crevice corrosion testing. Sandvik SAF 2507 (a high-performance super duplex stainless steel) was included in the tests as a reference material High-N, higher alloyed than 316 LVM, demonstrated excellent resistance to pitting initiation and a strong tendency to repassivation. High-N proved to have an equivalent or even higher resistance to localized corrosion than SAF 2507. The latter is known for its impressive corrosion properties, particularly in chloride containing environments. While 316 LVM may run the risk of crevice corrosion in implant applications, the risk seems negligible for High-N. In view of the fact that also the mechanical properties are superior to those of 316 LVM, High-N is a very attractive implant material.

  13. Study on the electrochemical properties of cubic ordered mesoporous carbon for supercapacitors

    NASA Astrophysics Data System (ADS)

    Lang, Jun-Wei; Yan, Xing-Bin; Yuan, Xiao-Yan; Yang, Jie; Xue, Qun-Ji

    Highly ordered, three-dimensional (3D) cubic mesoporous carbon CMK-8 is prepared by a facile nanocasting approach using cubic mesoporous silica KIT-6 as starting template. Afterwards, in order to increase the active sites of surface electrochemical reactions and promote the wettability in aqueous electrolyte, a chemical surface modification is carried out on the CMK-8 by nitric acid treatment. Two electrodes are prepared from the CMK-8 and the acid-modified CMK-8 (H-CMK-8) and used as the active materials for supercapacitors. The unique 3D mesoporous network combined with high specific surface area makes the nano-channel surfaces of the CMK-8 carbon favorable for charging the electric double-layer, resulting in that the CMK-8 and the H-CMK-8 electrodes both show well supercapacitive properties. Furthermore, the specific capacitance of the CMK-8 can be further improved by acid treatment, so that the H-CMK-8 exhibits the largest specific capacitance of 246 F g -1 at a current density of 0.625 A g -1 in 2 M KOH electrolyte. Also, the two carbon electrodes both exhibit good cycling stability and lifetime. Therefore, based on the above investigations, such CMK-8 carbon, especially H-CMK-8 carbon can be a potential candidate for supercapacitors.

  14. Simultaneous electrochemical and electron paramagnetic resonance studies of carotenoid cation radicals and dications

    SciTech Connect

    Khaled, M.; Hadjipetrou, A.; Kispert, L.D. ); Allendoerfer, R.D. )

    1991-03-21

    Comproportionation equilibrium constants have been determined from simultaneous electrochemical and EPR measurements for the carotenoid cation radicals (CAR{sup {sm bullet}+}) and dications (CAR {sup 2+}) of {beta}-carotene (1), {beta}-apo-8{prime}-carotenal (2), and canthaxanthin (3). K(1){sub com} = 2.4 {times} 10{sup {minus}2}, K{sub com}(2) = 1.8 {times} 10{sup {minus}2}, K{sub com}(3) = 2.1 {times} 10{sup 3}. These indicated that, upon oxidation of 3, 96% CAR{sup {sm bullet}+} would be formed while 99.7% CAR{sup 2+} would be formed for 1 and 2 if the oxidation potential was 100 mV anodic of the first observed voltammetric wave. This explains the reason for the strong EPR spectrum observed for 3 and the weak EPR spectra observed for 1 and 2. Rotating disk experiments confirm that oxidation of carotenoids occurs by an EE rather than by an ECE mechanism and are highly quasireversible systems. The second oxidation peak in the CV spectrum of 2 has been shown not to be due to a dication analogous to the CV of 3 but to a radical apparently from the oxidation of a decay product of the dication from 2.

  15. An electrochemical study of hydrogen uptake and elimination by bare and gold-plated waspaloy

    NASA Technical Reports Server (NTRS)

    Danford, M. D.; Deramus, G. E., Jr.; Lowery, J. R.

    1984-01-01

    Two electrochemical methods for the determination of hydrogen concentrations in metals are discussed and evaluated. The take-up of hydrogen at a pressure of 5000 psi by Waspaloy metal was determined experimentally at 24 C. It was found that the metal becomes saturated with hydrogen after an exposure time of about 1 hr. For samples charged with hydrogen at high pressure, most of the hydrogen is contained in the interstitial solid solution of the metal. For electrolytically charged samples, most of the hydrogen is contained as surface and subsurface hydrides. Hydrogen elimination rates were determined for these two cases, with the rate for electrolytically charged samples being greater by over a factor of two. Theoretical effects of high temperature and pressure on hydrogen take-up and elimination by bare and gold plated Waspaloy metal was considered. The breakthrough point for hydrogen at 5000 psi, determined experimentally, lies between a gold thickness of 0.0127 mm (0.0005 in.) and 0.0254 mm (0.001 in.) at 24 C. Electropolishing was found to greatly reduce the uptake of hydrogen at high pressure by Waspaloy metal at 24 C. Possible implications of the results obtained, as they apply to the turbine disk of the space shuttle main engine, are discussed.

  16. An experimental study of electrochemical polishing for micro-electro-discharge-machined stainless-steel stents.

    PubMed

    Lappin, Derry; Mohammadi, Abdolreza Rashidi; Takahata, Kenichi

    2012-02-01

    This paper reports electrochemical polishing (EP) of 316L stainless-steel structures patterned using micro-electro-discharge machining (μEDM) for application to stents including intelligent stents based on micro-electro-mechanical-systems technologies. For the process optimization, 10 μm deep cavities μEDMed on the planar material were polished in a phosphoric acid-based electrolyte with varying current densities and polishing times. The EP condition with a current density of 1.5 A/cm(2) for an EP time of 180 s exhibited the highest surface quality with an average roughness of 28 nm improved from~400 nm produced with high-energy μEDM. The EP of μEDMed surfaces was observed to produce almost constant smoothness regardless of the initial roughness determined by varying discharge energies. Energy-dispersive X-ray spectroscopy was performed on the μEDMed surfaces before and after EP. A custom rotational apparatus was used to polish tubular test samples including stent-like structures created using μEDM, demonstrating uniform removal of surface roughness and sharp edges from the structures. PMID:22183790

  17. Effects of Operating Conditions on Internal Resistances in Enzyme Fuel Cells Studied via Electrochemical Impedance Spectroscopy

    SciTech Connect

    Aaron, D; Borole, Abhijeet P; Yiacoumi, Sotira; Tsouris, Costas

    2012-01-01

    Enzyme fuel cells (EFCs) offer some advantages over traditional precious-metal-catalyzed fuel cells, such as polymer electrolyte membrane fuel cells (PEMFCs). However, EFCs exhibit far less power output than PEMFCs and have relatively short life spans before materials must be replaced. In this work, electrochemical impedance spectroscopy (EIS) is used to analyze the internal resistances throughout the EFC at a variety of operating conditions. EIS analysis is focused primarily on the resistances of the anode, solution/membrane, and cathode. Increased enzyme loading results in improved power output and reductions in internal resistance. Conditions are identified for which enzyme loading does not limit the EFC performance. EIS experiments are also reported for EFCs operated continuously for 2 days; power output declines sharply over time, while all internal resistances increase. Drying of the cathode and enzyme/mediator degradation are believed to have contributed to this behavior. Finally, experiments are performed at varying air-humidification temperatures. Little effect on internal resistances or power output is observed. However, it is anticipated that increased air humidification can improve longevity by delivering more water to the cathode. Improvements to the enzymatic cathode are needed for EFC development. These improvements need to focus on improving transport rather than increasing enzyme loading.

  18. Constraints on the oxidation state of the mantle: An electrochemical and sup 57 Fe Moessbauer study of mantle-derived ilmenites

    SciTech Connect

    Virgo, D.; Luth, R.W. ); Moats, M.A.; Ulmer, G.C. )

    1988-07-01

    Ilmenite samples from four kimberlite localities were studied using electrochemical, Moessbauer spectroscopic, and microprobe analytical techniques in order to infer the oxidation state of their source regions in the mantle. The values of Fe{sup 3+}/{Sigma}Fe calculated from analyses, using three different electron microanalytical instruments assuming ilmenite stoichiometry, are consistently higher than those derived from the Moessbauer data, by as much as 100%. Furthermore, the range in Fe{sup 3+}/{Sigma}Fe calculated using the analyses from different instruments and/or different correction schemes is nearly as large. Thus Fe{sup 3+}/{Sigma}Fe calculated from microprobe analyses should be taken with caution, even if the precision appears high. {sup 57}Fe Moessbauer spectroscopy on the electrochemical experiment run products demonstrates that Fe{sup 3+}/{Sigma}Fe is significantly lower than it is for the natural C-bearing ilmenites. In contrast, the ilmenite that lacked C did not change Fe{sup 3+}/{Sigma}Fe during the electrochemical experiment. Examination of the reduced samples with SEM established that the natural, single-phase ilmenites exsolved during the electrochemical experiment to form ilmenite{sub ss} + spinel{sub ss}. The initial, reduced trends in the electrochemical experiments for the C-bearing ilmenites are attributed to disequilibrium interactions between the decomposing sample and the evolved gas in the electrochemical cell and do not represent the quenched mantle memory nor the intrinsic f{sub O{sub 2}} of the sample prior to reduction. Furthermore, the oxidized f{sub O{sub 2}} trend is interpreted, for the carbon-bearing samples, are representing the f{sub O{sub 2}} of the ilmenite{sub ss} + spinel{sub ss} assemblage and not the intrinsic f{sub o{sub 2}} of the mantle-derived ilemnite{sub ss}.

  19. Additional short-term plutonium urinary excretion data from the 1945-1947 plutonium injection studies

    SciTech Connect

    Moss, W.D.; Gautier, M.A.

    1986-01-01

    The amount of plutonium excreted per day following intravenous injection was shown to be significantly higher than predicted by the Langham power function model. Each of the Los Alamos National Laboratory notebooks used to record the original analytical data was studied for details that could influence the findings. It was discovered there were additional urine excretion data for case HP-3. This report presents the additional data, as well as data on case HP-6. (ACR)

  20. A comprehensive study on atomic layer deposition of molybdenum sulfide for electrochemical hydrogen evolution

    NASA Astrophysics Data System (ADS)

    Kwon, Do Hyun; Jin, Zhenyu; Shin, Seokhee; Lee, Wook-Seong; Min, Yo-Sep

    2016-03-01

    Atomic layer deposition (ALD) has emerged as an efficient method to design and prepare catalysts with atomic precision. Here, we report a comprehensive study on ALD of molybdenum sulfide (MoSx) for an electrocatalytic hydrogen evolution reaction. By using molybdenum hexacarbonyl and dimethyldisulfide as the precursors of Mo and S, respectively, the MoSx catalysts are grown at 100 °C on porous carbon fiber papers (CFPs). The ALD process results in the growth of particle-like MoSx on the CFP due to the lack of adsorption sites, and its crystallographic structure is a mixture of amorphous and nano-crystalline phases. In order to unveil the intrinsic activity of the ALD-MoSx, the exchange current densities, Tafel slopes, and turnover frequencies of the catalysts grown under various ALD conditions have been investigated by considering the fractional surface coverage of MoSx on the CFP and catalytically-active surface area. In addition, the ALD-MoSx/CFP catalysts exhibit excellent catalytic stability due to the strong adhesion of MoSx on the CFP and the mixed phase.Atomic layer deposition (ALD) has emerged as an efficient method to design and prepare catalysts with atomic precision. Here, we report a comprehensive study on ALD of molybdenum sulfide (MoSx) for an electrocatalytic hydrogen evolution reaction. By using molybdenum hexacarbonyl and dimethyldisulfide as the precursors of Mo and S, respectively, the MoSx catalysts are grown at 100 °C on porous carbon fiber papers (CFPs). The ALD process results in the growth of particle-like MoSx on the CFP due to the lack of adsorption sites, and its crystallographic structure is a mixture of amorphous and nano-crystalline phases. In order to unveil the intrinsic activity of the ALD-MoSx, the exchange current densities, Tafel slopes, and turnover frequencies of the catalysts grown under various ALD conditions have been investigated by considering the fractional surface coverage of MoSx on the CFP and catalytically

  1. 7 CFR 1710.253 - Engineering and cost studies-addition of generation capacity.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 11 2014-01-01 2014-01-01 false Engineering and cost studies-addition of generation capacity. 1710.253 Section 1710.253 Agriculture Regulations of the Department of Agriculture (Continued... TO ELECTRIC LOANS AND GUARANTEES Construction Work Plans and Related Studies § 1710.253...

  2. Evaluating Drugs and Food Additives for Public Use: A Case Studies Approach.

    ERIC Educational Resources Information Center

    Merritt, Sheridan V.

    1980-01-01

    Described is a case study used in an introductory college biology course that provides a basis for generating debate on an issue concerning the regulation of controversial food additives and prescription drugs. The case study contained within this article deals with drug screening, specifically with information related to thalidomide. (CS)

  3. Electrochemical attosyringe

    PubMed Central

    Laforge, François O.; Carpino, James; Rotenberg, Susan A.; Mirkin, Michael V.

    2007-01-01

    The ability to manipulate ultrasmall volumes of liquids is essential in such diverse fields as cell biology, microfluidics, capillary chromatography, and nanolithography. In cell biology, it is often necessary to inject material of high molecular weight (e.g., DNA, proteins) into living cells because their membranes are impermeable to such molecules. All techniques currently used for microinjection are plagued by two common problems: the relatively large injector size and volume of injected fluid, and poor control of the amount of injected material. Here we demonstrate the possibility of electrochemical control of the fluid motion that allows one to sample and dispense attoliter-to-picoliter (10−18 to 10−12 liter) volumes of either aqueous or nonaqueous solutions. By changing the voltage applied across the liquid/liquid interface, one can produce a sufficient force to draw solution inside a nanopipette and then inject it into an immobilized biological cell. A high success rate was achieved in injections of fluorescent dyes into cultured human breast cells. The injection of femtoliter-range volumes can be monitored by video microscopy, and current/resistance-based approaches can be used to control injections from very small pipettes. Other potential applications of the electrochemical syringe include fluid dispensing in nanolithography and pumping in microfluidic systems. PMID:17620612

  4. Syntheses, molecular structures, electrochemical and spectroscopic studies of dirhodium complexes containing axial Rh-C bond

    SciTech Connect

    Wu, Z.

    1992-01-01

    The previously known Rh(II)Rh(III) complex (ap)[sub 4]Rh[sub 2]Cl (ap = 2-anilinopyridinate) was prepared by modified literature methods and used as synthetic intermediate. Three new Rh(II)Rh(III) dimers, (ap)[sub 4]Rh[sub 2]C[triple bond]CH, (ap)[sub 4]Rh[sub 2]CH=CH[sub 2] and (ap)[sub 4]Rh[sub 2]Ch[sub 3] were synthesized through nucleophilic substitution reaction of (ap)[sub 4]Rh[sub 2]Cl with a large excess of NaC[triple bond]CH, MgBrCH=CH[sub 2] or LiCH[sub 3], respectively. Two bis-dimers, (ap)[sub 4]Rh[sub 2] C[triple bond]CC[triple bond]CRh[sub 2] (ap)[sub 4] and (dpf)[sub 4] Rh[sub 2] CNC[sub 6] H[sub 4] NCRh[sub 2] (dpf)[sub 4], (dpf = N,N'-diphenylformamidinate) were also prepared by the reactions of (ap)[sub 4]Rh[sub 2]Cl and (CH[sub 3])[sub 3] SiC[triple bond]CC[triple bond]CSi(CH[sub 3])[sub 3] stepwise with BuLi as mediator, or the reaction of (dpf)[sub 4]Rh[sub 2] with CnC[sub 6]H[sub 4]NC at room temperature. All of these novel complexes were characterized by mass spectrometry, single crystal X-ray diffraction, electron spin resonance spectroscopy, UV-vis spectroscopy and electrochemical methods. The complexes which have C[triple bond]C or C[triple bond]NR functional groups were characterized by infrared spectroscopy or resonance Raman spectroscopy.

  5. A comprehensive study on atomic layer deposition of molybdenum sulfide for electrochemical hydrogen evolution.

    PubMed

    Kwon, Do Hyun; Jin, Zhenyu; Shin, Seokhee; Lee, Wook-Seong; Min, Yo-Sep

    2016-03-24

    Atomic layer deposition (ALD) has emerged as an efficient method to design and prepare catalysts with atomic precision. Here, we report a comprehensive study on ALD of molybdenum sulfide (MoSx) for an electrocatalytic hydrogen evolution reaction. By using molybdenum hexacarbonyl and dimethyldisulfide as the precursors of Mo and S, respectively, the MoSx catalysts are grown at 100 °C on porous carbon fiber papers (CFPs). The ALD process results in the growth of particle-like MoSx on the CFP due to the lack of adsorption sites, and its crystallographic structure is a mixture of amorphous and nano-crystalline phases. In order to unveil the intrinsic activity of the ALD-MoSx, the exchange current densities, Tafel slopes, and turnover frequencies of the catalysts grown under various ALD conditions have been investigated by considering the fractional surface coverage of MoSx on the CFP and catalytically-active surface area. In addition, the ALD-MoSx/CFP catalysts exhibit excellent catalytic stability due to the strong adhesion of MoSx on the CFP and the mixed phase. PMID:26973254

  6. Structural, electrochemical and spectroelectrochemical study on the geometric and electronic structures of [(corrolato)Au(III)](n) (n = 0, +1, -1) complexes.

    PubMed

    Sinha, Woormileela; Sommer, Michael G; van der Meer, Margarethe; Plebst, Sebastian; Sarkar, Biprajit; Kar, Sanjib

    2016-02-21

    Synthesis of two new Au(III) corrole complexes with unsymmetrically substituted corrole ligands is presented here. The newly synthesized Au-compounds have been characterized by various spectroscopic techniques. The structural characterization of a representative Au(III) corrole has also been possible. Electrochemical, UV-vis-NIR/EPR spectroelectrochemical and DFT studies have been used to decipher the electronic structures of various electro-generated species. These are the first UV-vis-NIR/EPR spectroelectrochemical investigations on Au(III) corroles. Assignment of redox states of electro-generated Au(III) corroles is supported by DFT analysis. In contrast to the metal centered reduction reported in Au(III) porphyrins, one electron reduction in Au(III) corroles has been assigned to corrole centered on the basis of experimental and theoretical studies. Thus, the Au(III) corroles (not the analogous Au(III) porphyrin derivatives!) bear a truly redox inactive Au(III) center. Additionally, these Au-corrole complexes display NIR electrochromism, the origin of which is all on corrole-centered processes. PMID:26750146

  7. Fitting additive hazards models for case-cohort studies: a multiple imputation approach.

    PubMed

    Jung, Jinhyouk; Harel, Ofer; Kang, Sangwook

    2016-07-30

    In this paper, we consider fitting semiparametric additive hazards models for case-cohort studies using a multiple imputation approach. In a case-cohort study, main exposure variables are measured only on some selected subjects, but other covariates are often available for the whole cohort. We consider this as a special case of a missing covariate by design. We propose to employ a popular incomplete data method, multiple imputation, for estimation of the regression parameters in additive hazards models. For imputation models, an imputation modeling procedure based on a rejection sampling is developed. A simple imputation modeling that can naturally be applied to a general missing-at-random situation is also considered and compared with the rejection sampling method via extensive simulation studies. In addition, a misspecification aspect in imputation modeling is investigated. The proposed procedures are illustrated using a cancer data example. Copyright © 2015 John Wiley & Sons, Ltd. PMID:26194861

  8. [TG-FTIR study on pyrolysis of wheat-straw with abundant CaO additives].

    PubMed

    Han, Long; Wang, Qin-Hui; Yang, Yu-Kun; Yu, Chun-Jiang; Fang, Meng-Xiang; Luo, Zhong-Yang

    2011-04-01

    Biomass pyrolysis in presence of abundant CaO additives is a fundamental process prior to CaO sorption enhanced gasification in biomass-based zero emission system. In the present study, thermogravimetric Fourier transform infrared (TG-FTIR) analysis was adopted to examine the effects of CaO additives on the mass loss process and volatiles evolution of wheat-straw pyrolysis. Observations from TG and FTIR analyses simultaneously demonstrated a two-stage process for CaO catalyzed wheat-straw pyrolysis, different from the single stage process for pure wheat-straw pyrolysis. CaO additives could not only absorb the released CO2 but also reduce the yields of tar species such as toluene, phenol, and formic acid in the first stage, resulting in decreased mass loss and maximum mass loss rate in this stage with an increase in CaO addition. The second stage was attributed to the CaCO3 decomposition and the mass loss and maximum mass loss rate increased with increasing amount of CaO additives. The results of the present study demonstrated the great potential of CaO additives to capture CO2 and reduce tars yields in biomass-based zero emission system. The gasification temperature in the system should be lowered down to avoid CaCO3 decomposition. PMID:21714234

  9. A Raman spectroscopic and electrochemical study of the photoinduced crystallization of triethylenediamine triiodide upon a silver electrode

    NASA Astrophysics Data System (ADS)

    Ozek, Toru; Irish, Donald E.

    1991-02-01

    When a silver electrode, electrochemically coated with AgI, is immersed in an electrolyte containing NaI and the diprotonated form of 1,4-diazabicyclo 2.2.2 octane (abbreviated DABCO-H22+), and is bathed in 514.5 nm radiation from an argon ion laser through the objective of the microscope attachment of the DILOR Omars-89 Raman spectrophotometer, crystals form from the focal point. These are attributed to DABCO-h22+ 213-. Both spectroscopic and electrochemical experiments are described and interrelated. A mechanism for this photoinduced electrochemical crystal growth is presented.

  10. Photoinduced interactions of supramolecular ruthenium(II) complexes with plasmid DNA: synthesis and spectroscopic, electrochemical, and DNA photocleavage studies.

    PubMed

    Swavey, Shawn; DeBeer, Madeleine; Li, Kaiyu

    2015-04-01

    Two new bridging ligands have been synthesized by combining substituted benzaldehydes with phenanthrolinopyrrole (php), resulting in new polyazine bridging ligands. The ligands have been characterized by (1)H NMR, mass spectroscopy, and elemental analysis. These new ligands display π-π* transitions above 500 nm with modest molar absorptivities. Upon excitation at the ligand-centered charge-transfer transition, weak emission with a maximum wavelength of 612 nm is observed. When coordinated to two ruthenium(II) bis(bipyridyl) groups, the new bimetallic complexes generated give an overall 4+ charge. The electronic transitions of the bimetallic ruthenium(II) complexes display traditional π-π* transitions at 287 nm and metal-to-ligand charge-transfer transitions at 452 nm with molar absorptivities greater than 30000 M(-1) cm(-1). Oxidation of the ruthenium(II) metal centers to ruthenium(III) occurs at potentials above 1.4 V versus the Ag/AgCl reference electrode. Spectroscopic and electrochemical measurements indicate that the ruthenium(II) moieties behave independently. Both complexes are water-soluble and show the ability to photonick plasmid DNA when irradiated with low-energy light above 550 nm. In addition, one of the complexes, [Ru(bpy)2php]2Van(4+), shows the ability to linearize plasmid DNA and gives evidence, by gel electrophoresis, of photoinduced binding to plasmid DNA. PMID:25798576

  11. Electrochemical Study of Hollow Carbon Nanospheres as High-Rate and Low Temperature Negative Electrodes for Lithium Ion Batteries

    NASA Astrophysics Data System (ADS)

    Cox, Jonathan David

    The continued advancements in portable electronics have demanded more advanced power sources. To date, lithium ion batteries have been the state-of-the-art for portable devices. One significant drawback of lithium ion batteries is the slow charging times and their performance at low temperatures. In this dissertation, we explore the electrochemical behavior of a new lithium ion, negative electrode active material, hollow carbon nanospheres (HCNS). HCNS are ˜50 nm in diameter hollow spheres with ˜5 - 10 nm graphic walls which have a nominal reversible capacity of ˜220 mAh/g. We assembled and cycled HCNS as a lithium ion anode material and compared it to graphite, currently used as the anode material in most commercial lithium ion batteries. The charging mechanism of HCNS is an intercalation of the lithium ions into the graphitic walls of the spheres, similar to graphite, determined by diffraction and electroanalytical techniques. However, the HCNS electrodes cycled at much higher charge and discharge rates than graphite. Additionally, we demonstrated HCNS cycling at low temperatures (-20 *C) in electrolytes not obtainable by graphite due to material exfoliation during cycling. Although, due to the large surface area of HCNS, the first cycle coulombic losses are very high. This work has resulted in an understanding of a potentially new lithium ion battery anode material with significantly better cycling attributes than the current anode material.

  12. Non-aqueous electrolytes for electrochemical cells

    DOEpatents

    Zhang, Zhengcheng; Dong, Jian; Amine, Khalil

    2016-06-14

    An electrolyte electrochemical device includes an anodic material and an electrolyte, the electrolyte including an organosilicon solvent, a salt, and a hybrid additiving having a first and a second compound, the hybrid additive configured to form a solid electrolyte interphase film on the anodic material upon application of a potential to the electrochemical device.

  13. SHEEP MOUNTAIN WILDERNESS STUDY AREA AND CUCAMONGA WILDERNESS AND ADDITIONS, CALIFORNIA.

    USGS Publications Warehouse

    Evans, James G.; Ridenour, James

    1984-01-01

    The Sheep Mountain Wilderness Study Area and Cucamonga Wilderness and additions encompass approximately 104 sq mi of the eastern San Gabriel Mountains, Los Angeles and San Bernardino Counties, California. A mineral survey indicates areas of probable and substantiated tungsten and gold resource potential for parts of the Sheep Mountain Wilderness Study Area and an area of probable tungsten and gold resource potential in the Cucamonga Wilderness and additions. The rugged topography, withdrawal of lands from mineral entry to protect watershed, and restricted entry of lands during periods of high fire danger have contributed to the continuing decline in mineral exploration. The geologic setting precludes the presence of energy resources.

  14. Influence of Polarization on Carbohydrate Hydration: A Comparative Study Using Additive and Polarizable Force Fields.

    PubMed

    Pandey, Poonam; Mallajosyula, Sairam S

    2016-07-14

    Carbohydrates are known to closely modulate their surrounding solvent structures and influence solvation dynamics. Spectroscopic investigations studying far-IR regions (below 1000 cm(-1)) have observed spectral shifts in the libration band (around 600 cm(-1)) of water in the presence of monosaccharides and polysaccharides. In this paper, we use molecular dynamics simulations to gain atomistic insight into carbohydrate-water interactions and to specifically highlight the differences between additive (nonpolarizable) and polarizable simulations. A total of six monosaccharide systems, α and β anomers of glucose, galactose, and mannose, were studied using additive and polarizable Chemistry at HARvard Macromolecular Mechanics (CHARMM) carbohydrate force fields. Solvents were modeled using three additive water models TIP3P, TIP4P, and TIP5P in additive simulations and polarizable water model SWM4 in polarizable simulations. The presence of carbohydrate has a significant effect on the microscopic water structure, with the effects being pronounced for proximal water molecules. Notably, disruption of the tetrahedral arrangement of proximal water molecules was observed due to the formation of strong carbohydrate-water hydrogen bonds in both additive and polarizable simulations. However, the inclusion of polarization resulted in significant water-bridge occupancies, improved ordered water structures (tetrahedral order parameter), and longer carbohydrate-water H-bond correlations as compared to those for additive simulations. Additionally, polarizable simulations also allowed the calculation of power spectra from the dipole-dipole autocorrelation function, which corresponds to the IR spectra. From the power spectra, we could identify spectral signatures differentiating the proximal and bulk water structures, which could not be captured from additive simulations. PMID:27266974

  15. Preparation, temperature dependent structural, molecular dynamics simulations studies and electrochemical properties of LiFePO{sub 4}

    SciTech Connect

    Rao, R. Prasada; Reddy, M.V.; Adams, S.; Chowdari, B.V.R.

    2015-06-15

    Highlights: • LiFePO{sub 4} compound was prepared by carbothermal reduction method. • In-situ XRD studies were carried out on LiFePO{sub 4} at various temperatures. • Dedicated imperial potentials used to explain the variation of lattice constants. • It exhibited reversible capacity of 140 (±5) mAh g{sup −1}, stable up to 400 cycles. - Abstract: LiFePO{sub 4} was prepared using carbothermal reduction method. In-situ temperature dependent structural studies were carried using X-ray diffraction. Molecular dynamics simulations were conducted for the LiFePO{sub 4} using empirical potentials developed using bond valence approach to investigate the structural variations. Electrochemical behaviour of LiFePO{sub 4} was evaluated using cyclic voltammetry and galvanostatic cycling studies at room temperature. Charge–discharge cycling studies showed a reversible capacities 140 (±5) mAh g{sup −1} at the end of 50th cycle and these capacity values were stable up to 400 cycles and almost nil capacity fade between 50 and 400 cycles, showing excellent capacity retention, low capacity fading. The cyclic voltammetry studies showed a main cathodic and anodic redox peaks at 3.34 and 3.5 V vs. Li, respectively.

  16. Electrochemical biofilm control: a review.

    PubMed

    Sultana, Sujala T; Babauta, Jerome T; Beyenal, Haluk

    2015-01-01

    One of the methods of controlling biofilms that has widely been discussed in the literature is to apply a potential or electrical current to a metal surface on which the biofilm is growing. Although electrochemical biofilm control has been studied for decades, the literature is often conflicting, as is detailed in this review. The goals of this review are: (1) to present the current status of knowledge regarding electrochemical biofilm control; (2) to establish a basis for a fundamental definition of electrochemical biofilm control and requirements for studying it; (3) to discuss current proposed mechanisms; and (4) to introduce future directions in the field. It is expected that the review will provide researchers with guidelines on comparing datasets across the literature and generating comparable datasets. The authors believe that, with the correct design, electrochemical biofilm control has great potential for industrial use. PMID:26592420

  17. Simultaneous Nanomechanical and Electrochemical Mapping: Combining Peak Force Tapping Atomic Force Microscopy with Scanning Electrochemical Microscopy.

    PubMed

    Knittel, Peter; Mizaikoff, Boris; Kranz, Christine

    2016-06-21

    Soft electronic devices play a crucial role in, e.g., neural implants as stimulating electrodes, transducers for biosensors, or selective drug-delivery. Because of their elasticity, they can easily adapt to their environment and prevent immunoreactions leading to an overall improved long-term performance. In addition, flexible electronic devices such as stretchable displays will be increasingly used in everyday life, e.g., for so-called electronic wearables. Atomic force microscopy (AFM) is a versatile tool to characterize these micro- and nanostructured devices in terms of their topography. Using advanced imaging techniques such as peak force tapping (PFT), nanomechanical properties including adhesion, deformation, and Young's modulus can be simultaneously mapped along with surface features. However, conventional AFM provides limited laterally resolved information on electrical or electrochemical properties such as the activity of an electrode array. In this study, we present the first combination of AFM with scanning electrochemical microscopy (SECM) in PFT mode, thereby offering spatially correlated electrochemical and nanomechanical information paired with high-resolution topographical data under force control (QNM-AFM-SECM). The versatility of this combined scanning probe approach is demonstrated by mapping topographical, electrochemical, and nanomechanical properties of gold microelectrodes and of gold electrodes patterned onto polydimethylsiloxane. PMID:27203837

  18. Electrochemical supercapacitors

    DOEpatents

    Rudge, Andrew J.; Ferraris, John P.; Gottesfeld, Shimshon

    1996-01-01

    A new class of electrochemical capacitors provides in its charged state a positive electrode including an active material of a p-doped material and a negative electrode including an active material of an n-doped conducting polymer, where the p-doped and n-doped materials are separated by an electrolyte. In a preferred embodiment, the positive and negative electrode active materials are selected from conducting polymers consisting of polythiophene, polymers having an aryl group attached in the 3-position, polymers having aryl and alkyl groups independently attached in the 3- and 4-positions, and polymers synthesized from bridged dimers having polythiophene as the backbone. A preferred electrolyte is a tetraalykyl ammonium salt, such as tetramethylammonium trifluoromethane sulphonate (TMATFMS), that provides small ions that are mobile through the active material, is soluble in acetonitrile, and can be used in a variety of capacitor configurations.

  19. Spectral characterization, electrochemical and anticancer studies on some metal(II) complexes containing tridentate quinoxaline Schiff base

    NASA Astrophysics Data System (ADS)

    Chellaian, Justin Dhanaraj; Johnson, Jijo

    2014-06-01

    Co(II), Ni(II), Cu(II) and Zn(II) complexes of a tridentate ONO donor Schiff base ligand derived from 3-(2-aminoethylamino)quinoxalin-2(1H)-one were synthesized. The ligand and its metal complexes were characterized using elemental analysis, molar conductance, IR, 1H NMR, mass, magnetic susceptibility, electronic spectra and ESR spectral studies. Electrochemical behavior of the synthesized compounds was studied using cyclic voltammetry. The grain size of the synthesized compounds was determined by powder XRD. The Schiff base and its complexes have been screened for their antimicrobial activities against the bacterial species E. coli, K. pneumoniae, P. aeruginosa and S. aureus; fungal species include, A. niger, and C. albicans by disc diffusion method. The results show that the complexes have higher activity than the free ligand. The interaction of the complexes with calf thymus DNA (CT DNA) has been investigated by electronic absorption method. Furthermore, the DNA cleavage activity of the complexes was studied using agarose gel electrophoresis. In vitro anticancer studies of the ligand and its complexes using MTT assay was also done.

  20. Generating Scenarios of Addition and Subtraction: A Study of Japanese University Students

    ERIC Educational Resources Information Center

    Kinda, Shigehiro

    2013-01-01

    Students are presented with problems involving three scenario types of addition and subtraction in elementary mathematics: one dynamic ("Change") and two static ("Combine, Compare"). Previous studies have indicated that the dynamic type is easier for school children, whereas the static types are more difficult and comprehended only gradually…

  1. 7 CFR 1710.253 - Engineering and cost studies-addition of generation capacity.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 11 2011-01-01 2011-01-01 false Engineering and cost studies-addition of generation capacity. 1710.253 Section 1710.253 Agriculture Regulations of the Department of Agriculture (Continued) RURAL UTILITIES SERVICE, DEPARTMENT OF AGRICULTURE GENERAL AND PRE-LOAN POLICIES AND PROCEDURES COMMON TO ELECTRIC LOANS AND...

  2. 7 CFR 1710.253 - Engineering and cost studies-addition of generation capacity.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 11 2012-01-01 2012-01-01 false Engineering and cost studies-addition of generation capacity. 1710.253 Section 1710.253 Agriculture Regulations of the Department of Agriculture (Continued) RURAL UTILITIES SERVICE, DEPARTMENT OF AGRICULTURE GENERAL AND PRE-LOAN POLICIES AND PROCEDURES COMMON TO ELECTRIC LOANS AND...

  3. Electrocatalytic Oxidation Properties of Ascorbic Acid at Poly(3, 4-ethylenedioxythiophene) Films Studied by Electrochemical-Surface Plasmon Resonance Spectroscopy

    NASA Astrophysics Data System (ADS)

    Baba, Akira; Sano, Yohsuke; Ohdaira, Yasuo; Shinbo, Kazunari; Kato, Keizo; Kaneko, Futao

    In this report, we demonstrate electrocatalytic oxidation properties of ascorbic acid at poly(3, 4-ethylenedioxythiophene) (PEDOT) thin films in view of their potential application for bio-sensing devices. PEDOT thin films were deposited on gold thin films by electropolymerization of EDOT monomer in acetonitrile solvent. In-situ electrochemical-surface plasmon resonance spectroscopy (EC-SPR) was used to detect both electrochemical and optical signals upon an injection of ascorbic acid.

  4. Experimental study of combustion of decane, dodecane and hexadecane with polymeric and nano-particle additives

    NASA Astrophysics Data System (ADS)

    Ghamari, Mohsen; Ratner, Albert

    2015-11-01

    Recent studies have shown that adding combustible nano-particles could have promising effects on increasing burning rate of liquid fuels. Combustible nano-particles could enhance the heat conduction and mixing within the droplet. Polymers have also higher burning rate than regular hydrocarbon fuels because of having the flame closer to the droplet surface. Therefore adding polymeric additive could have the potential to increase the burning rate. In this study, combustion of stationary fuel droplets of n-Decane, n-Dodecane and n-Hexadecane doped with different percentages of a long chain polymer and also a very fine nano carbon was examined and compared with the pure hydrocarbon behavior. In contrast with hydrocarbon droplets with no polymer addition, several zones of combustion including a slow and steady burning zone, a strong swelling zone and a final fast and fairly steady combustion zone were also detected. In addition, increasing polymer percentage resulted in a more extended swelling zone and shorter slow burning zone in addition to a shorter total burning time. Addition of nano-particles also resulted in an overall increased burning rate and shortened burning time which is due to enhanced heat conduction within the droplet.

  5. Scanning Electrochemical Microscopy

    NASA Astrophysics Data System (ADS)

    Amemiya, Shigeru; Bard, Allen J.; Fan, Fu-Ren F.; Mirkin, Michael V.; Unwin, Patrick R.

    2008-07-01

    This review describes work done in scanning electrochemical microscopy (SECM) since 2000 with an emphasis on new applications and important trends, such as nanometer-sized tips. SECM has been adapted to investigate charge transport across liquid/liquid interfaces and to probe charge transport in thin films and membranes. It has been used in biological systems like single cells to study ion transport in channels, as well as cellular and enzyme activity. It is also a powerful and useful tool for the evaluation of the electrocatalytic activities of different materials for useful reactions, such as oxygen reduction and hydrogen oxidation. SECM has also been used as an electrochemical tool for studies of the local properties and reactivity of a wide variety of materials, including metals, insulators, and semiconductors. Finally, SECM has been combined with several other nonelectrochemical techniques, such as atomic force microscopy, to enhance and complement the information available from SECM alone.

  6. Electron transfer study on graphene modified glassy carbon substrate via electrochemical reduction and the application for tris(2,2'-bipyridyl)ruthenium(II) electrochemiluminescence sensor fabrication.

    PubMed

    Xu, Yuanhong; Cao, Mengmei; Liu, Huihui; Zong, Xidan; Kong, Na; Zhang, Jizhen; Liu, Jingquan

    2015-07-01

    In this study, electron transfer behavior of the graphene nanosheets attachment on glassy carbon electrode (GCE) via direct electrochemical reduction of graphene oxide (GO) is investigated for the first time. The graphene modified electrode was achieved by simply dipping the GCE in GO suspension, followed by cyclic voltammetric scanning in the potential window from 0V to -1.5V. Tris(2,2'-bipyridyl)ruthenium(II) [Ru(bpy)3(2+)] was immobilized on the graphene modified electrode and used as the redox probe to evaluate the electron transfer behavior. The electron transfer rate constant (Ks) was calculated to be 61.9±5.8s(-1), which is much faster than that of tiled graphene modified GCE (7.1±0.6s(-1)). The enhanced electron transfer property observed with the GCE modified by reductively deposited graphene is probably due to its standing configuration, which is beneficial to the electron transfer comparing with the tiled one. Because the abundant oxygen-containing groups are mainly located at the edges of GO, which should be much easier for the reduction to start from, the reduced GO should tend to stand on the electrode surface as evidenced by scanning electron microscopy analysis. In addition, due to the favored electron transfer and standing configuration, the Ru(bpy)3(2+) electrochemiluminescence sensor fabricated with standing graphene modified GCE provided much higher and more stable efficiency than that fabricated with tiled graphene. PMID:25882401

  7. Impact of electrolyte composition on the reactivity of a redox active polymer studied through surface interrogation and ion-sensitive scanning electrochemical microscopy.

    PubMed

    Burgess, Mark; Hernández-Burgos, Kenneth; Cheng, Kevin J; Moore, Jeffrey S; Rodríguez-López, Joaquín

    2016-06-21

    Elucidating the impact of interactions between the electrolyte and electroactive species in redox active polymers is key to designing better-performing electrodes for electrochemical energy storage and conversion. Here, we present on the improvement of the electrochemical activity of poly(para-nitrostyrene) (PNS) in solution and as a film by exploiting the ionic interactions between reduced PNS and K(+), which showed increased reactivity when compared to tetrabutylammonium (TBA(+))- and Li(+)-containing electrolytes. While cyclic voltammetry enabled the study of the effects of cations on the electrochemical reversibility and the reduction potential of PNS, scanning electrochemical microscopy (SECM) provided new tools to probe the ionic and redox reactivity of this system. Using an ion-sensitive Hg SECM tip allowed to probe the ingress of ions into PNS redox active films, while surface interrogation SECM (SI-SECM) measured the specific kinetics of PNS and a solution phase mediator in the presence of the tested electrolytes. SI-SECM measurements illustrated that the interrogation kinetics of PNS in the presence of K(+) compared to TBA(+) and Li(+) are greatly enhanced under the same surface concentration of adsorbed radical anion, exhibiting up to a 40-fold change in redox kinetics. We foresee using this new application of SECM methods for elucidating optimal interactions that enhance polymer reactivity for applications in redox flow batteries. PMID:27064026

  8. Anatomically ordered tapping interferes more with one-digit addition than two-digit addition: a dual-task fMRI study.

    PubMed

    Soylu, Firat; Newman, Sharlene D

    2016-02-01

    Fingers are used as canonical representations for numbers across cultures. In previous imaging studies, it was shown that arithmetic processing activates neural resources that are known to participate in finger movements. Additionally, in one dual-task study, it was shown that anatomically ordered finger tapping disrupts addition and subtraction more than multiplication, possibly due to a long-lasting effect of early finger counting experiences on the neural correlates and organization of addition and subtraction processes. How arithmetic task difficulty and tapping complexity affect the concurrent performance is still unclear. If early finger counting experiences have bearing on the neural correlates of arithmetic in adults, then one would expect anatomically and non-anatomically ordered tapping to have different interference effects, given that finger counting is usually anatomically ordered. To unravel these issues, we studied how (1) arithmetic task difficulty and (2) the complexity of the finger tapping sequence (anatomical vs. non-anatomical ordering) affect concurrent performance and use of key neural circuits using a mixed block/event-related dual-task fMRI design with adult participants. The results suggest that complexity of the tapping sequence modulates interference on addition, and that one-digit addition (fact retrieval), compared to two-digit addition (calculation), is more affected from anatomically ordered tapping. The region-of-interest analysis showed higher left angular gyrus BOLD response for one-digit compared to two-digit addition, and in no-tapping conditions than dual tapping conditions. The results support a specific association between addition fact retrieval and anatomically ordered finger movements in adults, possibly due to finger counting strategies that deploy anatomically ordered finger movements early in the development. PMID:26410214

  9. Spectroscopic and electrochemical studies of the interaction between oleuropein, the major bio-phenol in olives, and salmon sperm DNA.

    PubMed

    Mohamadi, Maryam; Afzali, Daryoush; Esmaeili-Mahani, Saeed; Mostafavi, Ali; Torkzadeh-Mahani, Masoud

    2015-09-01

    Interaction of oleuropein, the major bio-phenol in olive leaf and fruit, with salmon sperm double-stranded DNA was investigated by employing electronic absorption titrations, fluorescence quenching spectroscopy, competitive fluorescence spectroscopy, thermal denaturation and voltammetric studies. Titration of oleuropein with the DNA caused a hypochromism accompanied with a red shift indicating an intercalative mode of interaction. Binding constant of 1.4×10(4) M(-1) was obtained for this interaction. From the curves of fluorescence titration of oleuropein with the DNA, binding constant and binding sites were calculated to be 8.61×10(3) M(-1) and 1.05, respectively. Competitive studies with ethidium bromide (a well-known DNA intercalator) showed that the bio-phenol could take the place of ethidium bromide in the DNA intercalation sites. The interaction of oleuropein with DNA was also studied electrochemically. In the presence of the DNA, the anodic and cathodic peak currents of oleuropein decreased accompanied with increases in peak-to-peak potential separation and formal potential, indicating the intercalation of oleuropein into the DNA double helix. Moreover, melting temperature of the DNA was found to increase in the presence of oleuropein, indicating the stabilization of the DNA double helix due to an intercalative interaction. PMID:25909900

  10. Synthesis, characterization, electrochemical and biological studies on some metal(II) Schiff base complexes containing quinoxaline moiety

    NASA Astrophysics Data System (ADS)

    Justin Dhanaraj, Chellaian; Johnson, Jijo

    2014-01-01

    Novel Co(II), Ni(II), Cu(II) and Zn(II) complexes of Schiff base derived from quinoxaline-2,3-(1,4H)-dione and 4-aminoantipyrine (QDAAP) were synthesized. The ligand and its complexes were characterized by elemental analyses, molar conductance, magnetic susceptibility measurements, FTIR, UV-Vis., mass and 1H NMR spectral studies. The X band ESR spectrum of the Cu(II) complex at 300 and 77 K were also recorded. Thermal studies of the ligand and its complexes show the presence of coordinated water in the Ni(II) and Zn(II) complexes. The coordination behavior of QDAAP is also discussed. All the complexes are mono nuclear and tetrahedral geometry was found for Co(II) complex. For the Ni(II) and Zn(II) complexes, octahedral geometry was assigned and for the Cu(II) complex, square planar geometry has been suggested. The grain size of the complexes was estimated using powder XRD. The surface morphology of the compounds was studied using SEM analysis. Electrochemical behavior of the synthesized complexes in DMF at room temperature was investigated by cyclic voltammetry. The in vitro biological screening of QDAAP and its metal complexes were tested against bacterial species Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa. The fungal species include Aspergillus niger, Aspergillus flavus and Candida albicans. The DNA cleavage activity of QDAAP and its complexes were also discussed.

  11. Spectroscopic and electrochemical studies of the interaction between oleuropein, the major bio-phenol in olives, and salmon sperm DNA

    NASA Astrophysics Data System (ADS)

    Mohamadi, Maryam; Afzali, Daryoush; Esmaeili-Mahani, Saeed; Mostafavi, Ali; Torkzadeh-Mahani, Masoud

    2015-09-01

    Interaction of oleuropein, the major bio-phenol in olive leaf and fruit, with salmon sperm double-stranded DNA was investigated by employing electronic absorption titrations, fluorescence quenching spectroscopy, competitive fluorescence spectroscopy, thermal denaturation and voltammetric studies. Titration of oleuropein with the DNA caused a hypochromism accompanied with a red shift indicating an intercalative mode of interaction. Binding constant of 1.4 × 104 M-1 was obtained for this interaction. From the curves of fluorescence titration of oleuropein with the DNA, binding constant and binding sites were calculated to be 8.61 × 103 M-1 and 1.05, respectively. Competitive studies with ethidium bromide (a well-known DNA intercalator) showed that the bio-phenol could take the place of ethidium bromide in the DNA intercalation sites. The interaction of oleuropein with DNA was also studied electrochemically. In the presence of the DNA, the anodic and cathodic peak currents of oleuropein decreased accompanied with increases in peak-to-peak potential separation and formal potential, indicating the intercalation of oleuropein into the DNA double helix. Moreover, melting temperature of the DNA was found to increase in the presence of oleuropein, indicating the stabilization of the DNA double helix due to an intercalative interaction.

  12. A synchrotron study of microstructure gradient in laser additively formed epitaxial Ni-based superalloy

    NASA Astrophysics Data System (ADS)

    Xue, Jiawei; Zhang, Anfeng; Li, Yao; Qian, Dan; Wan, Jingchun; Qi, Baolu; Tamura, Nobumichi; Song, Zhongxiao; Chen, Kai

    2015-10-01

    Laser additive forming is considered to be one of the promising techniques to repair single crystal Ni-based superalloy parts to extend their life and reduce the cost. Preservation of the single crystalline nature and prevention of thermal mechanical failure are two of the most essential issues for the application of this technique. Here we employ synchrotron X-ray microdiffraction to evaluate the quality in terms of crystal orientation and defect distribution of a Ni-based superalloy DZ125L directly formed by a laser additive process rooted from a single crystalline substrate of the same material. We show that a disorientation gradient caused by a high density of geometrically necessary dislocations and resultant subgrains exists in the interfacial region between the epitaxial and stray grains. This creates a potential relationship of stray grain formation and defect accumulation. The observation offers new directions on the study of performance control and reliability of the laser additive manufactured superalloys.

  13. Microstructural Study Of Zinc Hot Dip Galvanized Coatings with Titanium Additions In The Zinc Melt

    NASA Astrophysics Data System (ADS)

    Konidaris, S.; Pistofidis, N.; Vourlias, G.; Pavlidou, E.; Stergiou, A.; Stergioudis, G.; Polychroniadis, E. K.

    2007-04-01

    Zinc hot-dip galvanizing is a method for protecting iron and steel against corrosion. Galvanizing with pure Zn or Zn with additions like Ni, Al, Pb and Bi has been extensively studied, but there is a lack of scientific information about other additions. The present work examines the effect of a 0.5 wt% Ti addition in the Zn melt. The samples were exposed to accelerated corrosion in a salt spray chamber (SSC). The microstructure and chemical composition of the coatings were determined by Optical Microscopy, XRD and SEM associated with an EDS Analyzer. The results indicate that the coatings have a typical morphology, while Zn-Ti phases were also detected.

  14. A synchrotron study of microstructure gradient in laser additively formed epitaxial Ni-based superalloy

    PubMed Central

    Xue, Jiawei; Zhang, Anfeng; Li, Yao; Qian, Dan; Wan, Jingchun; Qi, Baolu; Tamura, Nobumichi; Song, Zhongxiao; Chen, Kai

    2015-01-01

    Laser additive forming is considered to be one of the promising techniques to repair single crystal Ni-based superalloy parts to extend their life and reduce the cost. Preservation of the single crystalline nature and prevention of thermal mechanical failure are two of the most essential issues for the application of this technique. Here we employ synchrotron X-ray microdiffraction to evaluate the quality in terms of crystal orientation and defect distribution of a Ni-based superalloy DZ125L directly formed by a laser additive process rooted from a single crystalline substrate of the same material. We show that a disorientation gradient caused by a high density of geometrically necessary dislocations and resultant subgrains exists in the interfacial region between the epitaxial and stray grains. This creates a potential relationship of stray grain formation and defect accumulation. The observation offers new directions on the study of performance control and reliability of the laser additive manufactured superalloys. PMID:26446425

  15. A synchrotron study of microstructure gradient in laser additively formed epitaxial Ni-based superalloy

    SciTech Connect

    Xue, Jiawei; Zhang, Anfeng; Li, Yao; Qian, Dan; Wan, Jingchun; Qi, Baolu; Tamura, Nobumichi; Song, Zhongxiao; Chen, Kai

    2015-10-08

    Laser additive forming is considered to be one of the promising techniques to repair single crystal Ni-based superalloy parts to extend their life and reduce the cost. Preservation of the single crystalline nature and prevention of thermal mechanical failure are two of the most essential issues for the application of this technique. Here we employ synchrotron X-ray microdiffraction to evaluate the quality in terms of crystal orientation and defect distribution of a Ni-based superalloy DZ125L directly formed by a laser additive process rooted from a single crystalline substrate of the same material. We show that a disorientation gradient caused by a high density of geometrically necessary dislocations and resultant subgrains exists in the interfacial region between the epitaxial and stray grains. This creates a potential relationship of stray grain formation and defect accumulation. In conclusion, the observation offers new directions on the study of performance control and reliability of the laser additive manufactured superalloys.

  16. Summary of Previous Chamber or Controlled Anthrax Studies and Recommendations for Possible Additional Studies

    SciTech Connect

    Piepel, Gregory F.; Amidan, Brett G.; Morrow, Jayne B.

    2010-12-29

    This report and an associated Excel file(a) summarizes the investigations and results of previous chamber and controlled studies(b) to characterize the performance of methods for collecting, storing and/or transporting, extracting, and analyzing samples from surfaces contaminated by Bacillus anthracis (BA) or related simulants. This report and the Excel are the joint work of the Pacific Northwest National Laboratory (PNNL) and the National Institute of Standards and Technology (NIST) for the Department of Homeland Security, Science and Technology Directorate. The report was originally released as PNNL-SA-69338, Rev. 0 in November 2009 with limited distribution, but was subsequently cleared for release with unlimited distribution in this Rev. 1. Only minor changes were made to Rev. 0 to yield Rev. 1. A more substantial update (including summarizing data from other studies and more condensed summary tables of data) is underway

  17. Studies of levels of biogenic amines in meat samples in relation to the content of additives.

    PubMed

    Jastrzębska, Aneta; Kowalska, Sylwia; Szłyk, Edward

    2016-01-01

    The impact of meat additives on the concentration of biogenic amines and the quality of meat was studied. Fresh white and red meat samples were fortified with the following food additives: citric and lactic acids, disodium diphosphate, sodium nitrite, sodium metabisulphite, potassium sorbate, sodium chloride, ascorbic acid, α-tocopherol, propyl 3,4,5-trihydroxybenzoate (propyl gallate) and butylated hydroxyanisole. The content of spermine, spermidine, putrescine, cadaverine, histamine, tyramine, tryptamine and 2-phenylethylamine was determined by capillary isotachophoretic methods in meat samples (fresh and fortified) during four days of storage at 4°C. The results were applied to estimate the impact of the tested additives on the formation of biogenic amines in white and red meat. For all tested meats, sodium nitrite, sodium chloride and disodium diphosphate showed the best inhibition. However, cadaverine and putrescine were characterised by the biggest changes in concentration during the storage time of all the additives. Based on the presented data for the content of biogenic amines in meat samples analysed as a function of storage time and additives, we suggest that cadaverine and putrescine have a significant impact on meat quality. PMID:26515667

  18. A high precision study of the electrolyte additives vinylene carbonate, vinyl ethylene carbonate and lithium bis(oxalate)borate in LiCoO2/graphite pouch cells

    NASA Astrophysics Data System (ADS)

    Wang, David Yaohui; Sinha, N. N.; Burns, J. C.; Petibon, R.; Dahn, J. R.

    2014-12-01

    The effects of three well-known electrolyte additives, used singly or in combination, on LiCoO2/graphite pouch cells has been investigated using the ultra high precision charger (UHPC) at Dalhousie University, electrochemical impedance spectroscopy (EIS) and long term cycling Vinylene carbonate (VC), vinyl ethylene carbonate (VEC), and lithium bis(oxalato) borate (LiBOB) were chosen for study. The results show that combinations of electrolyte additives that act synergistically can be more effective than a single electrolyte additive. However, simply using 2% VC yielded cells very competitive in coulombic efficiency (CE), charge endpoint capacity slippage and charge transfer resistance (Rct). For cells with 1% LiBOB and VC (1, 2, 4 or 6%), adding VC above 2% does not increase the CE, but increases the electrode charge transfer impedances. Rct for cells containing 1% LiBOB and VEC (0.5, 1 or 4%) decreased after long term cycling (1800 h), compared to that tested after the UHPC cycling (500 h) indicating that VEC might be useful for the design of power cells. However, the opposite behaviour (increasing Rct with cycle number) was observed for the control cells or cells containing LiBOB and/or VC.

  19. Study of the effects of potassium addition to supported iron catalysts in the Fischer-Tropsch reaction

    SciTech Connect

    Miller, D.G.; Moskovits, M.

    1988-10-20

    The Fischer-Tropsch activity of supported iron catalysts prepared via electrochemical techniques has been evaluated as a function of potassium addition. Catalyst pretreatment in 0.09, 0.18, and 0.27 M K/sub 2/CO/sub 3/ solutions generated potassium levels of 1.7, 2.8, and 3.9 wt %, respectively. Pretreatment in 0.18 M KOH provided a catalyst with 2.3 wt% potassium and facilitated comparison of the effects of the basicity of the pretreatment solution upon catalyst activity. A maximum in catalyst activity and CO conversion was noted upon increasing K content, followed by a sharp decline in activity at potassium levels in excess of the maximum. The hydrogenation ability of the catalyst decreased, and a shift to higher molecular weight products was observed, with increasing potassium content. The type of pretreatment solution had little effect on the catalyst activity or the product selectivity.

  20. Antitumor effects of electrochemical treatment

    PubMed Central

    González, Maraelys Morales; Zamora, Lisset Ortíz; Cabrales, Luis Enrique Bergues; Sierra González, Gustavo Victoriano; de Oliveira, Luciana Oliveira; Zanella, Rodrigo; Buzaid, Antonio Carlos; Parise, Orlando; Brito, Luciana Macedo; Teixeira, Cesar Augusto Antunes; Gomes, Marina das Neves; Moreno, Gleyce; Feo da Veiga, Venicio; Telló, Marcos; Holandino, Carla

    2013-01-01

    Electrochemical treatment is an alternative modality for tumor treatment based on the application of a low intensity direct electric current to the tumor tissue through two or more platinum electrodes placed within the tumor zone or in the surrounding areas. This treatment is noted for its great effectiveness, minimal invasiveness and local effect. Several studies have been conducted worldwide to evaluate the antitumoral effect of this therapy. In all these studies a variety of biochemical and physiological responses of tumors to the applied treatment have been obtained. By this reason, researchers have suggested various mechanisms to explain how direct electric current destroys tumor cells. Although, it is generally accepted this treatment induces electrolysis, electroosmosis and electroporation in tumoral tissues. However, action mechanism of this alternative modality on the tumor tissue is not well understood. Although the principle of Electrochemical treatment is simple, a standardized method is not yet available. The mechanism by which Electrochemical treatment affects tumor growth and survival may represent more complex process. The present work analyzes the latest and most important research done on the electrochemical treatment of tumors. We conclude with our point of view about the destruction mechanism features of this alternative therapy. Also, we suggest some mechanisms and strategies from the thermodynamic point of view for this therapy. In the area of Electrochemical treatment of cancer this tool has been exploited very little and much work remains to be done. Electrochemical treatment constitutes a good therapeutic option for patients that have failed the conventional oncology methods. PMID:23592904

  1. Evaluating additives and impurities in zinc electrowinning

    NASA Astrophysics Data System (ADS)

    Gonzalez-Dominguez, J. A.; Lew, R. W.

    1995-01-01

    The zinc electrowinning (EW) process is very sensitive to the presence of impurities. There is only one EW plant in the world that we know of that operates at moderate current efficiency and deposition times without using any additives. All the others must use them continuously. Additives allow zinc EW to occur at high current efficiencies while suppressing excessive acid mist formation. The study of the electrochemical effects of additives in zinc EW is not straightforward. This article presents a review of the experimental techniques currently used at Cominco Research: Cyclic voltammetry, Hull cells, laboratory and mini-cell electrowinning techniques are all described and their relationship to the industrial operation is discussed.

  2. Electrochemical and Morphological Study of Steel in 1 M HCl in the Presence of Task Specific Liquid

    NASA Astrophysics Data System (ADS)

    Tabatabaei, F. S.; Sarabi, A. A.; Kowsari, E.; Eivaz Mohammadloo, H.

    2015-09-01

    In the present study, corrosion inhibition influence of novel cationic surfactant (CS) with imidazole structure (1-methyl-3-octadecane imidazolium hydrogen sulfate) on low carbon steel in 1 M HCl was investigated by implementing weight loss, potentiodynamic polarization, and electrochemical impedance spectroscopy (EIS) techniques. Increasing the amount of surfactant adequately leads to an increment of the inhibition efficiency of novel CS. According to the obtained results from EIS measurements, inhibition efficiency was about 34% in the presence of 1 ppm surfactant, increasing to about 96.8% at the 25 ppm (near critical micelle concentration) surfactant concentration. Also the effects of temperature and the synergistic effect between surfactant and NaHSO4 salt were studied. The inhibition efficiency increased with the increase of NaHSO4 concentration and reached the maximum value near 0.1 M and experienced a plummet in the temperature range of 30-50 °C. Potentiodynamic polarization measurements revealed that the surfactant acts as mixed-type inhibitors. Results obtained from weight loss, polarization, and impedance measurements are in proper agreement and confirmed the fact that this surfactant is an excellent inhibitor for low carbon steel in 1 M HCl environment. The surface morphology of inhibited and uninhibited metal samples was investigated by atomic force microscope (AFM) and field emission scanning electron microscope (FE-SEM).

  3. Characterization of a 7Fe ferredoxin isolated from the marine denitrifier Pseudomonas nautica strain 617: spectroscopic and electrochemical studies.

    PubMed

    Macedo, A L; Besson, S; Moreno, C; Fauque, G; Moura, J J; Moura, I

    1996-12-13

    A 7Fe ferredoxin, isolated from the marine denitrifier Pseudomonas nautica strain 617, was characterized. The NH2-terminal sequence analysis, performed until residue number 56, shows a high similarity with the 7Fe ferredoxins isolated from Azotobacter vinelandii, Pseudomonas putida, and Pseudomonas stutzeri. EPR and NMR spectroscopies identify the presence of both [3Fe-4S] and [4Fe-4S] clusters, with cysteinyl coordination. The electrochemical studies on [Fe-S] clusters show that a fast diffusion-dominated electron transfer, promoted by Mg(II), takes place between the ferredoxin and the glassy carbon electrode. Square wave voltammetry studies gave access to the electrosynthesis of a 4Fe center formed within the [3Fe-4S] core. The [3Fe-4S] cluster exhibited two reduction potentials at -175 and -680 +/- 10 mV and the [4Fe-4S] cluster was characterized by an unusually low reduction potential of -715 +/- 10 mV, at pH 7.6 PMID:8954931

  4. Study of benzotriazole as corrosion inhibitors of carbon steel in chloride solution containing hydrogen sulfide using electrochemical impedance spectroscopy (EIS)

    SciTech Connect

    Solehudin, Agus; Nurdin, Isdiriayani

    2014-03-24

    Corrosion and inhibition studies on API 5LX65 carbon steel in chloride solution containing various concentrations of benzotriazole has been conducted at temperature of 70°C using Electrochemical Impedance Spectroscopy (EIS). Corroded carbon steel surface with and without inhibitor have been observed using X-ray Diffraction (XRD), Scanning Electron Microscope (SEM), and Energy Dispersive Spectroscopy (EDS). The objectives of this research are to study the performance of benzotriazole as corrosion inhibitors. The experimental results of carbon steel corrosion in 3.5% NaCl solution containing 500 mg/l H{sub 2}S at different BTAH concentrations showed that corrosion rate of carbon steel decreases with increasing of BTAH concentrations from 0 to 10 mmol/l. The inhibition efficiency of BTAH was found to be affected by its concentration. The optimum efficiency obtained of BTAH is 93% at concentration of 5 mmol/l. The result of XRD and EDS analysis reveal the iron sulfide (FeS) formation on corroded carbon steel surface without inhibitor. The EDS spectrum show the Nitrogen (N) bond on carbon steel surface inhibited by BTAH.

  5. Study by XPS of the chlorination of proteins aggregated onto tin dioxide during electrochemical production of hypochlorous acid

    NASA Astrophysics Data System (ADS)

    Debiemme-Chouvy, Catherine; Haskouri, Sanae; Cachet, Hubert

    2007-04-01

    In solution, hypochlorous acid (HOCl) reacts with organic matter and notably with protein side-chains. In this study, HOCl was produced by an electrochemical way, by oxidation of chloride ions at a transparent tin dioxide electrode in the presence of a protein, the bovine serum albumin (BSA). A thick irregular layer is formed at the electrode when HOCl is produced at the SnO 2 surface. Indeed, SEM analyses show that an important deposit is formed during the anodic polarization of SnO 2 in the presence of chloride ions and proteins. Actually, two phenomena take place on the one hand the chlorination of the proteins due to the reaction of HOCl with some protein side-chains and on the other hand the aggregation of proteins onto the SnO 2 surface. The present X-ray photoelectron spectroscopy study points out the cross-linking of BSA molecules via formation of inter molecular sulfonamide groups. It also shows that the BSA chlorination is due on the one hand to the formation of sulfonyl chloride groups (-SO 2Cl) and on the other hand to formation of chloramine groups ( lbond2 N-Cl). The Cl2p and S2p photo-peak intensities allowed us to quantify the chloramines. It is found that, one BSA entity immobilized onto the SnO 2 surface contains about 50 chloramine groups.

  6. Synthesis, spectroscopic characterization, electrochemical behaviour and thermal decomposition studies of some transition metal complexes with an azo derivative

    NASA Astrophysics Data System (ADS)

    Sujamol, M. S.; Athira, C. J.; Sindhu, Y.; Mohanan, K.

    2010-01-01

    Complexes of manganese(II), cobalt(II), nickel(II), copper(II) and zinc(II) with a novel heterocyclic azo derivative, formed by coupling diazotized 2-amino-3-carbethoxy-4,5-dimethylthiophene with acetylacetone were synthesized and characterized on the basis of elemental analyses, molar conductance, magnetic susceptibility measurements, UV-vis, IR, 1H NMR and EPR spectral data. Spectral studies revealed that the ligand existed in an internally hydrogen bonded azo-enol form rather than the keto-hydrazone form and coordinated to the metal ion in a tridentate fashion. Analytical data revealed that all the complexes exhibited 1:1 metal-ligand ratio. On the basis of electronic spectral data and magnetic susceptibility measurements, suitable geometry was proposed for each complex. The nickel(II) complex has undergone facile transesterification reaction when refluxed in methanol for a long period. The ligand and the copper(II) complex were subjected to X-ray diffraction study. The electrochemical behaviour of copper(II) complex was investigated by cyclic voltammetry. The thermal behaviour of the same complex was also examined by thermogravimetry.

  7. Synthesis, spectroscopic characterization, electrochemical behaviour and thermal decomposition studies of some transition metal complexes with an azo derivative.

    PubMed

    Sujamol, M S; Athira, C J; Sindhu, Y; Mohanan, K

    2010-01-01

    Complexes of manganese(II), cobalt(II), nickel(II), copper(II) and zinc(II) with a novel heterocyclic azo derivative, formed by coupling diazotized 2-amino-3-carbethoxy-4,5-dimethylthiophene with acetylacetone were synthesized and characterized on the basis of elemental analyses, molar conductance, magnetic susceptibility measurements, UV-vis, IR, (1)H NMR and EPR spectral data. Spectral studies revealed that the ligand existed in an internally hydrogen bonded azo-enol form rather than the keto-hydrazone form and coordinated to the metal ion in a tridentate fashion. Analytical data revealed that all the complexes exhibited 1:1 metal-ligand ratio. On the basis of electronic spectral data and magnetic susceptibility measurements, suitable geometry was proposed for each complex. The nickel(II) complex has undergone facile transesterification reaction when refluxed in methanol for a long period. The ligand and the copper(II) complex were subjected to X-ray diffraction study. The electrochemical behaviour of copper(II) complex was investigated by cyclic voltammetry. The thermal behaviour of the same complex was also examined by thermogravimetry. PMID:19910244

  8. Study of benzotriazole as corrosion inhibitors of carbon steel in chloride solution containing hydrogen sulfide using electrochemical impedance spectroscopy (EIS)

    NASA Astrophysics Data System (ADS)

    Solehudin, Agus; Nurdin, Isdiriayani

    2014-03-01

    Corrosion and inhibition studies on API 5LX65 carbon steel in chloride solution containing various concentrations of benzotriazole has been conducted at temperature of 70°C using Electrochemical Impedance Spectroscopy (EIS). Corroded carbon steel surface with and without inhibitor have been observed using X-ray Diffraction (XRD), Scanning Electron Microscope (SEM), and Energy Dispersive Spectroscopy (EDS). The objectives of this research are to study the performance of benzotriazole as corrosion inhibitors. The experimental results of carbon steel corrosion in 3.5% NaCl solution containing 500 mg/l H2S at different BTAH concentrations showed that corrosion rate of carbon steel decreases with increasing of BTAH concentrations from 0 to 10 mmol/l. The inhibition efficiency of BTAH was found to be affected by its concentration. The optimum efficiency obtained of BTAH is 93% at concentration of 5 mmol/l. The result of XRD and EDS analysis reveal the iron sulfide (FeS) formation on corroded carbon steel surface without inhibitor. The EDS spectrum show the Nitrogen (N) bond on carbon steel surface inhibited by BTAH.

  9. Monomeric mixed cadmium-2,2'-dipyridylamine complex derived from ferrocenecarboxylic acid: Structural, electrochemical and biological studies.

    PubMed

    Senthilkumar, Kabali; Gopalakrishnan, Mohan; Palanisami, Nallasamy

    2015-09-01

    A mixed Cd(II) complex {[Cd(FcCOO)2(dpyam)(H2O)][Cd(dpyam)2 (H2O)2]·(ClO4)2·CH3OH} (1) (where FcCOO=ferrocenecarboxylic acid and dpyam=2,2'-dipyridylamine), has been synthesized and characterized by FT-IR, (1)H &(13)C NMR, UV-Vis spectroscopy and elemental analysis. The molecular structure of compound 1 has been determined by the single crystal X-ray diffraction technique, which consists of mixed two different cadmium(II) complexes and two uncoordinated perchlorate ions. The crystal packing shows that the compound 1 self-assembled by intermolecular hydrogen bonding via pyridyl N-H⋯O and coordinated water O⋯H-O-H⋯O, to afford the molecule 2D supramolecular network. Compound 1 exhibits high-energy intraligand (π-π(∗)) fluorescence emission. In electrochemical studies of compound 1 shows negative potential compared with ferrocenecarboxylic acid due to formation of coordination complex with Cd ions. The antibacterial study against the distinct bacterial strains show compound 1 has significant activity. PMID:25879985

  10. Monomeric mixed cadmium-2,2‧-dipyridylamine complex derived from ferrocenecarboxylic acid: Structural, electrochemical and biological studies

    NASA Astrophysics Data System (ADS)

    Senthilkumar, Kabali; Gopalakrishnan, Mohan; Palanisami, Nallasamy

    2015-09-01

    A mixed Cd(II) complex {[Cd(FcCOO)2(dpyam)(H2O)][Cd(dpyam)2 (H2O)2]·(ClO4)2·CH3OH} (1) (where FcCOO = ferrocenecarboxylic acid and dpyam = 2,2‧-dipyridylamine), has been synthesized and characterized by FT-IR, 1H & 13C NMR, UV-Vis spectroscopy and elemental analysis. The molecular structure of compound 1 has been determined by the single crystal X-ray diffraction technique, which consists of mixed two different cadmium(II) complexes and two uncoordinated perchlorate ions. The crystal packing shows that the compound 1 self-assembled by intermolecular hydrogen bonding via pyridyl N-H⋯O and coordinated water O⋯H-O-H⋯O, to afford the molecule 2D supramolecular network. Compound 1 exhibits high-energy intraligand (π-π∗) fluorescence emission. In electrochemical studies of compound 1 shows negative potential compared with ferrocenecarboxylic acid due to formation of coordination complex with Cd ions. The antibacterial study against the distinct bacterial strains show compound 1 has significant activity.

  11. a Study on the Role of Sintering Additives for Fabrication of sic Ceramic

    NASA Astrophysics Data System (ADS)

    Yoon, Han Ki; Lee, Young Ju; Cho, Ho Jun; Kim, Tae Gyu

    Silicon carbide (SiC) materials have been extensively studied for high temperature components in advanced energy system and advanced gas turbine. The SiC ceramics have been fabricated by a NITE (Nano Infiltration Transient Eutectic Phase) Process, using Nano-SiC powder. The sintering additives used for forming liquid phase under sintering process, used the sintering additives ratios were an Al2O3-Y2O3 system or add SiO2 contents. A major R&D focus for the SiC ceramics is the production to obtain high purity SiC ceramics. In this study, we investigated roles of the sintering additives(Al2O3:Y2O3) to fabrication of the SiC ceramics. The effects of SiO2 contents and density properties of the SiC ceramics were also investigated. To investigate the effects of SiO2, Al2O3/Y2O3 composition were fixed and then SiO2 ratios were changed as several kinds, and to confirm the effects of sintering additives ratios (Al2O3:Y2O3) they were changed between 4:6 and 6:4 in x wt.%.

  12. Using epidemiology to regulate food additives: saccharin case-control studies.

    PubMed

    Cordle, F; Miller, S A

    1984-01-01

    The increasing use of nonnutritive sweeteners and the widely publicized 1969 ban on cyclamate led to additional investigations in rodents of the carcinogenic potential of saccharin. Preliminary results of a long-term feeding study indicated formation of bladder tumors in rodents, and collective experimental evidence has demonstrated that high doses of the synthetic sweetener saccharin can cause bladder cancer in rodents. Based on the results of that and other rodent studies indicating an increased risk of bladder cancer associated with saccharin, the Commissioner of the Food and Drug Administration announced the agency's intention to propose a ban on saccharin. This intention was made known in April 1977 under the Delaney Clause of the Food, Drug, and Cosmetic Act. The clause essentially states that no additive shall be deemed safe if it is found to induce cancer in man or animals, or if it is found, after tests appropriate for the evaluation of the safety of food additives, to induce cancer in man or animals. Also in 1977, a group of epidemiologists began to assess the available epidemiologic information to determine the potential human risk. This report describes the assessment of several human epidemiologic studies available then and the results of more recent epidemiologic studies. PMID:6431484

  13. Studies of electrochemical oxidation of Zircaloy nuclear reactor fuel cladding using time-of-flight-energy elastic recoil detection analysis

    NASA Astrophysics Data System (ADS)

    Whitlow, H. J.; Zhang, Y.; Wang, Y.; Winzell, T.; Simic, N.; Ahlberg, E.; Limbäck, M.; Wikmark, G.

    2000-03-01

    The trend towards increased fuel burn-up and higher operating temperatures in order to achieve more economic operation of nuclear power plants places demands on a better understanding of oxidative corrosion of Zircaloy (Zry) fuel rod cladding. As part of a programme to study these processes we have applied time-of-flight-energy elastic recoil detection (ToF-E ERD), electrochemical impedance measurements and scanning electron microscopy to quantitatively characterise thin-oxide films corresponding to the pre-transition oxidation regime. Oxide films of different nominal thickness in the 9-300 nm range were grown on a series of rolled Zr and Zry-2 plates by anodisation in dilute H 2SO 4 with applied voltages. The dielectric thickness of the oxide layer was determined from the electrochemical impedance measurements and the surface topography characterised by scanning electron microscopy. ToF-E ERD with a 60 MeV 127I 11+ ion beam was used to determine the oxygen content and chemical composition of the oxide layer. In the Zr samples, the oxygen content (O atom cm -2) that was determined by ERD was closely similar to the O content derived from impedance measurements from the dielectric film. The absolute agreement was well within the uncertainty associated with the stopping powers. Moreover, the measured composition of the thick oxide layers corresponded to ZrO 2 for the films thicker than 65 nm where the oxide layer was resolved in the ERD depth profile. Zry-2 samples exhibited a similar behaviour for small thickness ( ⩽130 nm) but had an enhanced O content at larger thicknesses that could be associated either with enhanced rough surface topography or porous oxide formation that was correlated with the presence of Second Phase Particles (SPP) in Zry-2. The concentration of SPP elements (Fe, Cr, Ni) in relation to Zr was the same in the outer 9×10 17 atom cm -2 of oxide as in the same thickness of metal. The results also revealed the presence of about 1 at.% 32S in the

  14. Study of asphalt/asphaltene precipitation during addition of solvents to West Sak crude

    SciTech Connect

    Jiang, J.C.; Patil, S.L.; Kamath, V.A. )

    1990-07-01

    In this study, experimental data on the amount of asphalt and asphaltene precipitation due to addition of solvents to West Sak crude were gathered. The first set of tests were conducted for two types of West Sak stock tank oils. Solvents used include: ethane, carbon dioxide, propane, n-butane, n-pentane, n-heptane, Prudhoe Bay natural gas (PBG) and natural gas liquids (NGL). Effect of solvent to oil dilution ratio on the amount of precipitation was studied. Alteration of crude oil composition due to asphalt precipitation was measured using gas-liquid chromatography. A second set of experiments were conducted to measure asphaltene precipitation due to addition of CO{sub 2} to live (recombined) West Sak crude.

  15. A Study of Aluminum Combustion in Solids, Powders, Foams, Additively-Manufactured Lattices, and Composites

    NASA Astrophysics Data System (ADS)

    Black, James; Trammell, Norman; Batteh, Jad; Curran, Nicholas; Rogers, John; Littrell, Donald

    2015-06-01

    This study examines the fireball characteristics, blast parameters, and combustion efficiency of explosively-shocked aluminum-based materials. The materials included structural and non-structural aluminum forms - such as solid cylinders, foams, additively-manufactured lattices, and powders - and some polytetrafluoroethylene-aluminum (PTFE-Al) composites. The materials were explosively dispersed in a small blast chamber, and the blast properties and products were measured with pressure transducers, thermocouples, slow and fast ultraviolet/visible spectrometers, and high-speed video.

  16. Combined electrochemical and X-ray tomography study of the high temperature evolution of Nickel - Yttria Stabilized Zirconia solid oxide fuel cell anodes

    NASA Astrophysics Data System (ADS)

    Kennouche, David; Chen-Wiegart, Yu-chen Karen; Riscoe, Casey; Wang, Jun; Barnett, Scott A.

    2016-03-01

    Accelerated ageing of Ni-Yttria Stabilized Zirconia (YSZ) anode functional layers (AFLs) in solid oxide fuel cells (SOFCs) is carried out at 1000-1200 °C, the resulting morphological changes are investigated using transmission X-ray microscopy (TXM), and properties are characterized using electrochemical impedance spectroscopy (EIS). Prior to ageing, the as prepared NiO-YSZ AFLs are reduced to Ni-YSZ and then aged at 1100 °C for 100 h in order to eliminate early-stage morphological changes. Measured particle size and three phase boundary (TPB) density changes with ageing time and temperature are fit reasonably well using a power-law coarsening model. This model is also used in conjunction with an electrochemical model to predict changes in the anode charge-transfer polarization resistance. The models are used to make predictions of the structural and electrochemical performance evolution of these Ni-YSZ anodes, for cells operated long-term at normal (700-850 °C) operating temperatures. Additional experiments to verify the model predictions are suggested.

  17. Electrolyte ion adsorption and charge blocking effect at the hematite/aqueous solution interface: an electrochemical impedance study using multivariate data analysis.

    PubMed

    Shimizu, K; Nyström, J; Geladi, P; Lindholm-Sethson, B; Boily, J-F

    2015-05-01

    A model-free multivariate analysis using singular value decomposition is employed to refine an equivalent electrical circuit model in order to probe the electrochemical properties of the hematite/water interface in dilute NaCl and NH4Cl solutions using electrochemical impedance spectroscopy. The result shows that the surface protonation is directly related to the mobility and trapping of charge carriers at the mineral surface. Moreover, the point of zero charge can be found at pH where the charge transfer resistance is the highest, in addition to the minimum double layer capacitance. The inner-sphere interaction of the NH4(+) ion with the surface is indicated by an increase of capacitance for charge carrier trapping from the protonated surface as well as lower double layer capacitance and open circuit potential. It is clear that the intrinsic electrochemical activity of hematite depends on the degree of surface (de)protonation and other inner-sphere adsorption, as these processes affect the charge carrier density in the surface state. This work also highlights an important synergistic effect of the two spectral analyses that enables EIS to be utilized in an in-depth investigation of mineral/water interfaces. PMID:25857599

  18. Spectra-temporal patterns underlying mental addition: an ERP and ERD/ERS study.

    PubMed

    Ku, Yixuan; Hong, Bo; Gao, Xiaorong; Gao, Shangkai

    2010-03-12

    Functional neuroimaging data have shown that mental calculation involves fronto-parietal areas that are composed of different subsystems shared with other cognitive functions such as working memory and language. Event-related potential (ERP) analysis has also indicated sequential information changes during the calculation process. However, little is known about the dynamic properties of oscillatory networks in this process. In the present study, we applied both ERP and event-related (de-)synchronization (ERS/ERD) analyses to EEG data recorded from normal human subjects performing tasks for sequential visual/auditory mental addition. Results in the study indicate that the late positive components (LPCs) can be decomposed into two separate parts. The earlier element LPC1 (around 360ms) reflects the computing attribute and is more prominent in calculation tasks. The later element LPC2 (around 590ms) indicates an effect of number size and appears larger only in a more complex 2-digit addition task. The theta ERS and alpha ERD show modality-independent frontal and parietal differential patterns between the mental addition and control groups, and discrepancies are noted in the beta ERD between the 2-digit and 1-digit mental addition groups. The 2-digit addition (both visual and auditory) results in similar beta ERD patterns to the auditory control, which may indicate a reliance on auditory-related resources in mental arithmetic, especially with increasing task difficulty. These results coincide with the theory of simple calculation relying on the visuospatial process and complex calculation depending on the phonological process. PMID:20105450

  19. Electrochemical study of Type 304 and 316L stainless steels in simulated body fluids and cell cultures.

    PubMed

    Tang, Yee-Chin; Katsuma, Shoji; Fujimoto, Shinji; Hiromoto, Sachiko

    2006-11-01

    The electrochemical corrosion behaviour of Type 304 and 316L stainless steels was studied in Hanks' solution, Eagle's minimum essential medium (MEM), serum containing medium (MEM with 10% of fetal bovine serum) without cells, and serum containing medium with cells over a 1-week period. Polarization resistance measurements indicated that the stainless steels were resistant to Hanks' and MEM solutions. Type 304 was more susceptible to pitting corrosion than Type 316L in Hanks' and MEM solutions. The uniform corrosion resistance of stainless steels, determined by R(p), was lower in culturing medium than in Hanks' and MEM. The low corrosion resistance was due to surface passive film with less protective to reveal high anodic dissolution rate. When cells were present, the initial corrosion resistance was low, but gradually increased after 3 days, consistent with the trend of cell coverage. The presence of cells was found to suppress the cathodic reaction, that is, oxygen reduction, and increase the uniform corrosion resistance as a consequence. On the other hand, both Type 304 and 316L stainless steels became more susceptible to pitting corrosion when they were covered with cells. PMID:16935040

  20. [Study of cytogenetic and cytotoxic effect of non-contact electrochemically-activated waters in the five organs of rats].

    PubMed

    Sycheva, L P; Mikhaĭlova, R I; Beliaeva, N N; Zhurkov, V S; Iurchenko, V V; Savostikova, O N; Alekseeva, A V; Kribtsova, E K; Kovalenko, M A; Akhal'tseva, L V; Sheremet'eva, S M; Iurtseva, N A; Murav'eva, L V; Kamenetskaia, D B

    2014-01-01

    For the first time the multiorgan karyological analysis of five organs of rats was applied for the study of the cytogenetic and cytotoxic action of the four types of non-contact electrochemically activated water in the 30-days in vivo experiment. The effects of investigated waters were not detected in bone marrow polychromatic erythrocytes. "Anolyte" (ORP = -362 mV) did not have a negative effect on rats. "Catholyte-5" (ORP = +22 mV) and "Catholyte-25" (ORP = -60 mV) induced cytogenetic abnormalities in the bladder and fore stomach. The same catholytes and "Catholyte-40" (ORP = -10 mV) changed the proliferation indices: increased the mitotic index in the fore stomach epithelium and reduced the frequency of binucleated cells in the fore stomach, bladder and lungs. The increase in the rate of cells with cytogenetic abnormalities on the background of the promotion of mitotic activity can be considered as a manifestation of the negative effect, typical for catolytes, but the effect of each out of them has its own features. PMID:25950046

  1. Alternating and direct current electrochemical studies of a wool wax-based corrosion preventive coating on aluminum alloy 2024

    SciTech Connect

    Su, P.C.; Devereux, O.F.

    1998-06-01

    The corrosion behavior of Al 2024-T3 treated with a wool wax (lanolin)-based corrosion preventive coating in aqueous 0.5 M sodium chloride was studied using electrochemical impedance spectroscopy (EIS) and direct current electrode polarization. DC measurements were modeled by three reactions: oxidation of aluminum, reduction of oxygen, and reduction of hydrogen. Alternating current behavior of untreated specimens was modeled using the Randles circuit, and that of inhibited specimens was modeled using parallel resistance-capacitance circuits representing the coating and the charge-transfer process. AC and DC estimates of the polarization resistance of coated specimens were 50 M{Omega}-cm{sup 2} and 32 M{Omega}-cm{sup 2}, respectively. AC and DC values for bare control specimens were of the order of 3 k{Omega}-cm{sup 2} and 15 k{Omega}-cm{sup 2}, respectively. The wool wax coating was found to be a very effective corrosion preventative for this alloy in the aqueous saline environment whether applied to freshly prepared surfaces or to corroded specimens removed from simulated service.

  2. Synthesis, density functional theory, molecular dynamics and electrochemical studies of 3-thiopheneacetic acid-capped gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Sosibo, Ndabenhle M.; Mdluli, Phumlane S.; Mashazi, Philani N.; Dyan, Busiswa; Revaprasadu, Neerish; Nyokong, Tebello; Tshikhudo, Robert T.; Skepu, Amanda; van der Lingen, Elma

    2011-12-01

    Gold nanoparticles capped with a bifunctional ligand, 3-thiopheneacetic acid (3-TAA) were synthesised by borohydride reduction at room temperature. The transmission electron microscopy (TEM) analysis showed that the particle aggregates and had semi-linear partial linkages that could be attributed to multi-modal binding of the ligand with various gold nanoparticles through the terminal thiolether (-S-) group and oxygen of the carboxylic (-COOH) group. This bimodal interaction led to limited stability of the resultant nanoparticles when tested using highly electrolytic media. To investigate further, density functional theory (DFT) quantum chemical and molecular dynamic calculations were conducted. The energetically favorable binding modes of the ligand to gold nanoparticle surfaces using the Gaussian program were studied. The DFT results showed kinetic stability of Au-3-TAA-Au interactions leading to inter-particle coupling or aggregation. Electrochemical analysis of the resultant nature of the capping agent revealed that 3-thiopheneacetic acid did not form a polymer during the preparation of Au-3-TAA. The cyclic voltammograms of Au-3-TAA nanoparticles coated glassy carbon electrode showed a typical gold character with the oxidation and reduction peaks at 1.4 V and 0.9 V, respectively.

  3. Synthesis of new oxamide-based ligand and its coordination behavior towards copper(II) ion: spectral and electrochemical studies.

    PubMed

    Krishnapriya, K R; Saravanakumar, D; Arunkumar, P; Kandaswamy, M

    2008-04-01

    A new ligand N,N'-bis{3-(2-formyl-4-methyl-phenol)-6-iminopropyl}oxamide (L) and its mono- and binuclear copper(II) complexes have been synthesized and characterized. The ligand shows absorption maxima at 249 and 360 with a weak transition at 455 nm. The ligand was found to be fluorescent and shows an emission maximum at 516 nm on excitation at 360 nm. The electronic spectra of the mono- and binuclear Cu(II) complexes exhibited a d-d transition in the region 520-560 nm characteristic of square planar geometry around Cu(II) ion. The ESR spectrum of the mononuclear complex showed four lines with nuclear hyperfine splitting. The binuclear complex showed a broad ESR spectrum with g=2.10 due to antiferromagnetic interaction between the two Cu(II) ions. The room-temperature magnetic moment values (micro(eff)) for the mono- and binuclear Cu(II) complexes are found to be 1.70 micro(B) and 1.45 micro(B), respectively. The electrochemical studies of the mononuclear Cu(II) complex showed a single irreversible one-electron wave at -0.70 V (E(pc)) and the binuclear Cu(II) complex showed two irreversible one-electron reduction waves at -0.75 V (E(pc)(1)) and -1.27 V (E(pc)(2)) in the cathodic region. PMID:17690008

  4. Synthesis of new oxamide-based ligand and its coordination behavior towards copper(II) ion: Spectral and electrochemical studies

    NASA Astrophysics Data System (ADS)

    Krishnapriya, K. R.; Saravanakumar, D.; Arunkumar, P.; Kandaswamy, M.

    2008-04-01

    A new ligand N, N'-bis{3-(2-formyl-4-methyl-phenol)-6-iminopropyl}oxamide ( L) and its mono- and binuclear copper(II) complexes have been synthesized and characterized. The ligand shows absorption maxima at 249 and 360 with a weak transition at 455 nm. The ligand was found to be fluorescent and shows an emission maximum at 516 nm on excitation at 360 nm. The electronic spectra of the mono- and binuclear Cu(II) complexes exhibited a d-d transition in the region 520-560 nm characteristic of square planar geometry around Cu(II) ion. The ESR spectrum of the mononuclear complex showed four lines with nuclear hyperfine splitting. The binuclear complex showed a broad ESR spectrum with g = 2.10 due to antiferromagnetic interaction between the two Cu(II) ions. The room-temperature magnetic moment values ( μeff) for the mono- and binuclear Cu(II) complexes are found to be 1.70 μB and 1.45 μB, respectively. The electrochemical studies of the mononuclear Cu(II) complex showed a single irreversible one-electron wave at -0.70 V ( Epc) and the binuclear Cu(II) complex showed two irreversible one-electron reduction waves at -0.75 V ( Epc1) and -1.27 V ( Epc2) in the cathodic region.

  5. RP-HPLC method with electrochemical detection for the determination of metoclopramide in serum and its use in pharmacokinetic studies.

    PubMed

    Lamparczyk, H; Chmielewska, A; Konieczna, L; Plenis, A; Zarzycki, P K

    2001-12-01

    A rapid and sensitive reversed-phase high performance liquid chromatographic method has been developed for the determination of metoclopramide in serum. The assay was performed after single extraction with ethyl ether using methyl parahydroxybenzoate as internal standard. Chromatographic separations were performed on C(18) stationary phase with a mobile phase composed of methanol-phosphate buffer pH 3 (30:70 v/v). Analytes were detected electrochemically. The quantification limit for metoclopramide in serum was 2 ng mL(-1). Linearity of the method was confirmed in the range of 5-120 ng mL(-1) (correlation coefficient 0.9998). Within-day relative standard deviations (RSDs) ranged from 0.3 to 5.5% and between-day RSDs from 0.8 to 6.0%. The analytical method was successfully applied for the determination of pharmacokinetic parameters after ingestion of 10 mg dose of metoclopramide. Studies were performed on 18 healthy volunteers of both sexes. PMID:11748686

  6. EC-STM study of the initial stages of the electrochemical Au(1 1 1)-Cd alloy formation

    NASA Astrophysics Data System (ADS)

    Schlaup, Christian; Horch, Sebastian

    2015-02-01

    We have studied the formation of an Au(1 1 1)-Cd alloy in a H2SO4 electrolyte by means of electrochemical STM (EC-STM). To this end, we first characterized the underpotential deposited (upd) Cd overlayers on Au(1 1 1) electrodes. We confirmed the existence of two upd phases on the reconstructed Au(1 1 1) surface, of which the first can be described with a (4 ×√{ 3}) unit cell and the second one with a (3 ×√{ 3}) unit cell in coexistence with a (2 ×√{ 3}) unit cell. At more negative potentials, an alloy with the Au(1 1 1) substrate is formed. In order to obtain a deeper insight into the alloying process, we had to avoid further Cd deposition at these potentials. This was achieved by exchanging the electrolyte after Cd deposition for a Cd-free solution under potential control. We found that the Au-Cd alloy exhibits an atomic structure with a close to square unit cell and locally interferes with the pattern of the Au(1 1 1) "herringbone" reconstruction. This Au-Cd alloy increases the overpotential for the hydrogen evolution reaction (HER) by about 130 mV.

  7. Donor atom electrochemical contribution to redox potentials of square pyramidal vanadyl complexes.

    PubMed

    Vlasiou, Manolis; Drouza, Chryssoula; Kabanos, Themistoklis A; Keramidas, Anastasios D

    2015-06-01

    A simple donor atom additivity relationship has been used to calculate the donor atom electrochemical contribution (DEC) of the Oac (acetylacetonate-enolic oxygen), OPh (phenolic oxygen), SPh (mercaptophenol sulfur), Nam (deprotonate amide nitrogen), Nim (imine nitrogen) and Npy (pyridine nitrogen) to the redox processes of the square pyramidal vanadyl complexes. The study focuses on the amidate vanadyl complexes because of (a) their biological interest and (b) the existence of data from plethora complexes studied in great details. The electrochemical contributions for the vanadyl oxidation and reduction processes increase following the same order, OPh~Oac(enolic)electrochemical potentials of square pyramidal vanadyl complexes with high accuracy. Octahedral complexes with the same equatorial environment show significant shift of the oxidation potentials to lower values. The DEC influence to the square pyramidal vanadyls' electrochemical potentials has been evaluated. PMID:25660671

  8. Frequency spectroscopy of irreversible electrochemical nucleation kinetics

    SciTech Connect

    Kumar, Amit; Chen, Chi; Arruda, Thomas M; Jesse, Stephen; Ciucci, Francesco; Kalinin, Sergei V

    2013-01-01

    An approach is developed for probing the thermodynamics and kinetics of the irreversible electrochemical reactions on solid surfaces based on frequency-voltage spectroscopy. For a model Li-ion conductor surface, the two regimes for bias-controlled behavior are demonstrated and ascribed to the difference in the critical nucleus size. The electrostatic and electrochemical phenomena at tip-surface junction are analyzed. These studies suggest an experimental pathway for exploring local electrochemical activity in solids.

  9. Mineral resources of the Buffalo Hump and Sand Dunes Addition Wilderness Study Areas, Sweetwater County, Wyoming

    SciTech Connect

    Gibbons, A.B.; Barbon, H.N.; Kulik, D.M. ); McDonnell, J.R. Jr. )

    1990-01-01

    The authors present a study to assess the potential for undiscovered mineral resources and appraise the identified resources of the Buffalo Hump and Sand Dunes Addition Wilderness Study Areas, southwestern Wyoming, There are no mines, prospects, or mineralized areas nor any producing oil or gas wells; however, there are occurrences of coal, claystone and shale, and sand. There is a moderate resource potential for oil shale and natural gas and a low resource potential for oil, for metals, including uranium, and for geothermal sources.

  10. Novel nanoarchitectures for electrochemical biosensing

    NASA Astrophysics Data System (ADS)

    Archibald, Michelle M.

    Sensitive, real-time detection of biomarkers is of critical importance for rapid and accurate diagnosis of disease for point-of-care (POC) technologies. Current methods, while sensitive, do not adequately allow for POC applications due to several limitations, including complex instrumentation, high reagent consumption, and cost. We have investigated two novel nanoarchitectures, the nanocoax and the nanodendrite, as electrochemical biosensors towards the POC detection of infectious disease biomarkers to overcome these limitations. The nanocoax architecture is composed of vertically-oriented, nanoscale coaxial electrodes, with coax cores and shields serving as integrated working and counter electrodes, respectively. The dendritic structure consists of metallic nanocrystals extending from the working electrode, increasing sensor surface area. Nanocoaxial- and nanodendritic-based electrochemical sensors were fabricated and developed for the detection of bacterial toxins using an electrochemical enzyme-linked immunosorbent assay (ELISA) and differential pulse voltammetry (DPV). Proof-of-concept was demonstrated for the detection of cholera toxin (CT). Both nanoarchitectures exhibited levels of sensitivity that are comparable to the standard optical ELISA used widely in clinical applications. In addition to matching the detection profile of the standard ELISA, these electrochemical nanosensors provide a simple electrochemical readout and a miniaturized platform with multiplexing capabilities toward POC implementation. Further development as suggested in this thesis may lead to increases in sensitivity, enhancing the attractiveness of the architectures for future POC devices.

  11. Additional Treatment Services in a Cocaine Treatment Study: Level of Services Obtained and Impact on Outcome

    PubMed Central

    Worley, Matthew; Gallop, Robert; Gibbons, Mary Beth Connolly; Ring-Kurtz, Sarah; Present, Julie; Weiss, Roger D.; Crits-Christoph, Paul

    2009-01-01

    The objective of this study was to examine the level of additional treatment services obtained by patients enrolled in the NIDA Cocaine Collaborative Study, a multi-center efficacy trial of four treatments for cocaine dependence, and to determine whether these services impact treatment outcome. Cocaine-dependent patients (N = 487) were recruited at five sites and randomly assigned to six months of one of four psychosocial treatments. Assessments were made at baseline, monthly during treatment, and at follow-ups at 9, 12, 15, and 18 months post-randomization. On average, patients received little or no additional treatment services during active treatment (first 6 months), but the rate of obtaining most services increased during the follow-up phase (month 7 to 18). In general, the treatment groups did not differ in the rates of obtaining non-protocol services. For all treatment groups, patients with greater psychiatric severity received more medical and psychiatric services during active treatment and follow-up. Use of treatment services was unrelated to drug use outcomes during active treatment. However, during the follow-up period, increased use of psychiatric medication, 12-step attendance, and 12-step participation was related to less drug use. The results suggest that during uncontrolled follow-up phases, additional non-protocol services may potentially confound the interpretation of treatment group comparisons in drug use outcomes. PMID:18463998

  12. Microfluidic electrochemical reactors

    DOEpatents

    Nuzzo, Ralph G.; Mitrovski, Svetlana M.

    2011-03-22

    A microfluidic electrochemical reactor includes an electrode and one or more microfluidic channels on the electrode, where the microfluidic channels are covered with a membrane containing a gas permeable polymer. The distance between the electrode and the membrane is less than 500 micrometers. The microfluidic electrochemical reactor can provide for increased reaction rates in electrochemical reactions using a gaseous reactant, as compared to conventional electrochemical cells. Microfluidic electrochemical reactors can be incorporated into devices for applications such as fuel cells, electrochemical analysis, microfluidic actuation, pH gradient formation.

  13. Electrochemical and electron paramagnetic resonance studies of a carotenoid cation radicals and dications: Effect of deuteration

    SciTech Connect

    Khaled, M.; Hadjipetrou, A.; Kispert, L. )

    1990-06-14

    The oxidation process involving the transfer of two electrons for {beta}-carotene is confirmed by bulk electrolysis in a CH{sub 2}Cl{sub 2} solvent and the observation of {Delta}E = 42 mV from cyclic voltammetric measurements. A similar process is also found to occur for {beta}-apo-8{prime}-carotenal and canthaxanthin. An additional cathodic peak between 0.2 0.5 relative to SCE is shown to be dependent on the initial formation of dications followed by the loss of H{sup +} as evidenced by a large isotope effect and most likely due to the reduction of a carotenoid cation. EPR evidence exists for the formation of radical cations by the reaction of diffusing carotenoid dictations with neutral carotenoids. The rate of formation is consistent with the differences in the diffusion coefficients of the carotenoids deduced by chronocoulometric measurements, being fastest for canthaxanthin.

  14. Nanoparticle shape evolution and proximity effects during tip-induced electrochemical processes

    DOE PAGESBeta

    Yang, Sangmo; Paranthaman, Mariappan Parans; Noh, Tae Won; Kalinin, Sergei V.; Strelcov, Evgheni

    2016-01-08

    The voltage spectroscopies in scanning probe microscopy (SPM) techniques are widely used to investigate the electrochemical processes in nanoscale volumes, which are important for current key applications, such as batteries, fuel cells, catalysts, and memristors. The spectroscopic measurements are commonly performed on a grid of multiple points to yield spatially resolved maps of reversible and irreversible electrochemical functionalities. Hence, the spacing between measurement points is an important parameter to be considered, especially for irreversible electrochemical processes. Here, we report nonlocal electrochemical dynamics in chains of Ag particles fabricated by the SPM tip on a silver ion solid electrolyte. When themore » grid spacing is small compared with the size of the formed Ag particles, anomalous chains of unequally sized particles with double periodicity evolve. This behavior is ascribed to a proximity effect during the tip-induced electrochemical process, specifically, size-dependent silver particle growth following the contact between the particles. In addition, fractal shape evolution of the formed Ag structures indicates that the growth-limiting process changes from Ag+/Ag redox reaction to Ag+-ion diffusion with the increase in the applied voltage and pulse duration. Our study shows that characteristic shapes of the electrochemical products are good indicators for determining the underlying growth-limiting process, and emergence of complex phenomena during spectroscopic mapping of electrochemical functionalities.« less

  15. Nanoparticle Shape Evolution and Proximity Effects During Tip-Induced Electrochemical Processes.

    PubMed

    Yang, Sang Mo; Paranthaman, Mariappan Parans; Noh, Tae Won; Kalinin, Sergei V; Strelcov, Evgheni

    2016-01-26

    Voltage spectroscopies in scanning probe microscopy (SPM) techniques are widely used to investigate the electrochemical processes in nanoscale volumes, which are important for current key applications, such as batteries, fuel cells, catalysts, and memristors. The spectroscopic measurements are commonly performed on a grid of multiple points to yield spatially resolved maps of reversible and irreversible electrochemical functionalities. Hence, the spacing between measurement points is an important parameter to be considered, especially for irreversible electrochemical processes. Here, we report nonlocal electrochemical dynamics in chains of Ag particles fabricated by the SPM tip on a silver ion solid electrolyte. When the grid spacing is small compared with the size of the formed Ag particles, anomalous chains of unequally sized particles with double periodicity evolve. This behavior is ascribed to a proximity effect during the tip-induced electrochemical process, specifically, size-dependent silver particle growth following the contact between the particles. In addition, fractal shape evolution of the formed Ag structures indicates that the growth-limiting process changes from Ag(+)/Ag redox reaction to Ag(+)-ion diffusion with the increase in the applied voltage and pulse duration. This study shows that characteristic shapes of the electrochemical products are good indicators for determining the underlying growth-limiting process, and emergence of complex phenomena during spectroscopic mapping of electrochemical functionalities. PMID:26743324

  16. Ruthenium(II) complexes containing N(4)-tolyl-2-acetylpyridine thiosemicarbazones and phosphine ligands: NMR and electrochemical studies of cis- trans isomerization

    NASA Astrophysics Data System (ADS)

    Graminha, Angelica E.; Batista, Alzir A.; Ellena, Javier; Castellano, Eduardo E.; Teixeira, Letícia R.; Mendes, Isolda C.; Beraldo, Heloisa

    2008-03-01

    [Ru(HL)(PPh 3) 2Cl]Cl complexes have been obtained in which HL = N(4)- ortho (complex 1), N(4)- meta (complex 2) and N(4)- para-tolyl 2-acetylpyridine thiosemicarbazone (complex 3). NMR and electrochemical studies indicate that both cis and trans isomers exist in solution, and that the cis isomers are converted into the trans isomers with time. Crystal structure determination of ( 1) reveals that the trans isomer is formed in the solid state.

  17. Electrochemical properties of the solvent SbCl/sub 3/-AlCl/sub 3/-N(1-butyl)pyridinium chloride and electrochemical and spectroelectrochemical studies of arene solutes

    SciTech Connect

    Chapman, D.M.; Mamantov, G.; Petrovic, C.; Smith, G.P.; Sorlie, M.

    1984-07-01

    Physical and electrochemical properties are reported for SbCl/sub 3/-AlCl/sub 3/-N-(1-butyl)pyridinium chloride (BPCl) mixtures that are liquid at ambient temperatures, and studies of the electrogeneration and open-circuit decay of some arene radical cations, both in this medium and in SbCl/sub 3/-KCl at elevated temperatures, are described. Specific conductivities, densities, and viscosities of the compositions (m/o (mole percent)) 60:19:21 (basic) and 60:21:19 (acidic) SbCl/sub 3/-AlCl/sub 3/-BPCl were measured over the temperature range 24/sup 0/-100/sup 0/C. For a potentiometric titration between the compositions 60:18:22 and 60:22:18 with SbCl/sub 3/ fixed at 60 m/o, the potential of the Sb(III)/Sb(0) couple increased by 0.43V at 27/sup 0/C. Electrochemical studies showed that perylene (Per), 9,10-dimethylanthracene (DMA), and 9,10diphenylanthracene (DPA) can be reversibly oxidized to their radical cations in a 60:19:21 melt, whereas the oxidation of anthracene (Ant) is irreversible. Spectroelectrochemical studies showed that Per radical cations were stable in this melt, those of DPA decayed very slowly, those of DMA decayed somewhat faster, and those of Ant were too transient to be observed optically. Similar degrees of stability were found for these radical cations in SbCl/sub 3/ containing 1 M KCl at elevated temperatures, and transient spectra of Ant radical cations were observed in this solvent.

  18. Advanced Proton Conducting Polymer Electrolytes for Electrochemical Capacitors

    NASA Astrophysics Data System (ADS)

    Gao, Han

    Research on solid electrochemical energy storage devices aims to provide high performance, low cost, and safe operation solutions for emerging applications from flexible consumer electronics to microelectronics. Polymer electrolytes, minimizing device sealing and liquid electrolyte leakage, are key enablers for these next-generation technologies. In this thesis, a novel proton-conducing polymer electrolyte system has been developed using heteropolyacids (HPAs) and polyvinyl alcohol for electrochemical capacitors. A thorough understanding of proton conduction mechanisms of HPAs together with the interactions among HPAs, additives, and polymer framework has been developed. Structure and chemical bonding of the electrolytes have been studied extensively to identify and elucidate key attributes affecting the electrolyte properties. Numerical models describing the proton conduction mechanism have been applied to differentiate those attributes. The performance optimization of the polymer electrolytes through additives, polymer structural modifications, and synthesis of alternative HPAs has achieved several important milestones, including: (a) high proton mobility and proton density; (b) good ion accessibility at electrode/electrolyte interface; (c) wide electrochemical stability window; and (d) good environmental stability. Specifically, high proton mobility has been addressed by cross-linking the polymer framework to improve the water storage capability at normal-to-high humidity conditions (e.g. 50-80% RH) as well as by incorporating nano-fillers to enhance the water retention at normal humidity levels (e.g. 30-60% RH). High proton density has been reached by utilizing additional proton donors (i.e. acidic plasticizers) and by developing different HPAs. Good ion accessibility has been achieved through addition of plasticizers. Electrochemical stability window of the electrolyte system has also been investigated and expanded by utilizing HPAs with different heteroatoms

  19. CdSeS/ZnS alloyed nanocrystal lifetime and blinking studies under electrochemical control.

    PubMed

    Qin, Wei; Shah, Raman A; Guyot-Sionnest, Philippe

    2012-01-24

    Alloyed CdSeS nanocrystals allow tuning between the CdSe and CdS band edges while remaining relatively small. The CdSeS cores also lead to a reduced electron confinement energy and a slower biexciton decay rate compared to CdSe cores of similar sizes. A ZnS shell synthesis procedure allows stable CdSeS/ZnS colloidal quantum dots (QDs) suitable for single dot imaging. These are compared to CdSe/ZnS of similar core size. The blinking off-exponents of the CdSeS/ZnS dots in air and on a glass substrate were slightly larger. Using electrochemistry with ensemble and single dot measurements, the trion lifetime of CdSeS/ZnS dot is resolved to be ~0.75 ns, while it is about 0.15 ns for CdSe/ZnS. In addition, the blinking behavior of single CdSeS/ZnS QDs is largely suppressed when in the trion state. PMID:22191620

  20. A synchrotron study of microstructure gradient in laser additively formed epitaxial Ni-based superalloy

    DOE PAGESBeta

    Xue, Jiawei; Zhang, Anfeng; Li, Yao; Qian, Dan; Wan, Jingchun; Qi, Baolu; Tamura, Nobumichi; Song, Zhongxiao; Chen, Kai

    2015-10-08

    Laser additive forming is considered to be one of the promising techniques to repair single crystal Ni-based superalloy parts to extend their life and reduce the cost. Preservation of the single crystalline nature and prevention of thermal mechanical failure are two of the most essential issues for the application of this technique. Here we employ synchrotron X-ray microdiffraction to evaluate the quality in terms of crystal orientation and defect distribution of a Ni-based superalloy DZ125L directly formed by a laser additive process rooted from a single crystalline substrate of the same material. We show that a disorientation gradient caused bymore » a high density of geometrically necessary dislocations and resultant subgrains exists in the interfacial region between the epitaxial and stray grains. This creates a potential relationship of stray grain formation and defect accumulation. In conclusion, the observation offers new directions on the study of performance control and reliability of the laser additive manufactured superalloys.« less

  1. Isomeric Selective Studies of the Dominant Addition Channel in OH Initiated Oxidation of Isoprene

    NASA Astrophysics Data System (ADS)

    Ghosh, B.; Bugarin, A.; Connell, B.; North, S. W.

    2009-12-01

    We report the first isomeric selective study of the dominant isomeric pathway in the OH initiated oxidation of isoprene in the presence of O2 and NO using the Laser Photolysis-Laser Induced Fluorescence (LP-LIF) technique. The photolysis of monodeuterated/non deuterated 2-iodo-2-methyl-but-3-en-1-ol results exclusively in the dominant OH-isoprene addition product, providing important insight into the oxidation mechanism. Based on kinetic analysis of OH cycling experiments we have determined the rate constant for O2 addition to the hydroxy alkyl radical to be (1.0±0.5) × 10^(-12) cm^(3) s^(-1) and we find a value of (8.05±2.3) × 10^(-12) cm^(3) s^(-1) for the overall reaction rate constant of the hydroxy peroxy radical with NO. We also report the first clear experimental evidence of the (E-) form of the δ-hydroxyalkoxy channel through isotopic labeling experiments and quantify its branching ratio to be 0.1±0.025. Since it corresponds to missing carbon balance in isoprene oxidation, we have been able to identify some of the missing carbon balance. Since our measured isomeric selective rate constants for the dominant outer channel in OH initiated isoprene chemistry are similar to the overall rate constants derived from non isomeric kinetics, we predict that the remaining outer addition channel will have similar reactivity. We have extended this study to the OH initiated oxidation of 1,3-butadiene. We have obtained isomeric selective rate constants on the dominant channel of the butadiene oxidation chemistry and measured the branching ratio for the δ-hydroxyalkoxy channel. These results on butadiene studies will be discussed.

  2. Immunotoxic effects of the color additive caramel color III: immune function studies in rats.

    PubMed

    Houben, G F; Penninks, A H; Seinen, W; Vos, J G; Van Loveren, H

    1993-01-01

    Administration of the color additive caramel color III (AC) may cause a reduction in total white blood cell counts in rats due to reduced lymphocyte counts. Beside lymphopenia, several other effects in rat have been described. The effects are caused by the imidazole derivative 2-acetyl-4(5)-(1,2,3,4-tetrahydroxybutyl)imidazole (THI) and occur in rats fed a diet low in vitamin B6. In the present paper, immune function studies on AC and THI with rats fed a diet low, but not deficient in vitamin B6 are presented and discussed. Rats were exposed to 0.4 or 4% AC or to 5.72 ppm THI in drinking water during and for 28 days prior to the start of immune function assays. Resistance to Trichinella spiralis was examined in an oral infection model and clearance of Listeria monocytogenes upon an intravenous infection was studied. In addition, natural cell-mediated cytotoxicity of splenic and nonadherent peritoneal cells and the antibody response to sheep red blood cells were studied. From the results it is concluded that exposure of rats to AC or THI influenced various immune function parameters. Thymus-dependent immunity was suppressed, while parameters of the nonspecific resistance were also affected, as shown by a decreased natural cell-mediated cytotoxicity in the spleen and an enhanced clearance of L. monocytogenes. PMID:8432426

  3. Improving wound care simulation with the addition of odor: a descriptive, quasi-experimental study.

    PubMed

    Roberson, Donna W; Neil, Janice A; Bryant, Elizabeth T

    2008-08-01

    Improving problem-solving skills and expertise in complex clinical care provision requires engaging students in the learning process--a challenging goal when clinical practicums and supervisors are limited. High-fidelity simulation has created many new opportunities for educating healthcare professionals. Because addressing malodorous wounds is a common problem that may be difficult to "teach," a descriptive, quasi-experimental simulation study was conducted. Following completion of a wound care simulation and Laerdal's Simulation Experience Evaluation Tool by 137 undergraduate nursing students, 50 control subjects were randomly selected and 49 volunteer students (experimental group) participated in a wound care simulation after one of three cheeses with a strong odor was added to simulate a malodorous wound. Compared to the control group, study group responses were significantly better (P <0.001) for eight of the 12 survey variables tested and indicated the addition of odor was beneficial in enhancing the perceived realism and value of the simulation. Students responded that the addition of odor in the simulation laboratory improved realism and they felt better prepared to handle malodorous wounds in a clinical setting. An unanticipated outcome was the enhanced feeling of involvement associated with paired care teams as opposed to working in larger groups. The results of this study indicate that wound care education outcomes improve when nursing students are able to practice using a multi-sensorial wound care simulation model. PMID:18716340

  4. Solubility, stability, and electrochemical studies of sulfur-sulfide solutions in organic solvents

    NASA Technical Reports Server (NTRS)

    Fielder, W. L.; Singer, J.

    1978-01-01

    A preliminary study of the sulfur electrode in organic solvents suggests that the system warrants further investigation for use in a low temperature (100 deg to 120 C) Na-S secondary battery. A qualitative screening was undertaken at 120 C to determine the solubilities and stabilities of Na2S and Na2S2 in representatives of many classes of organic solvents. From the screening and quantitative studies, two classes of solvents were selected for work; amides and cyclic polyalcohols. Voltammetric and Na-S cell charge discharge studies of sulfide solutions in organic solvents (e.g., N, N-dimethylformamide) at 120 C suggested that the reversibilities of the reactions on Pt or high density graphite were moderately poor. However, the sulfur electrode was indeed reducible (and oxidizable) through the range of elemental sulfur to Na2S. Reactions and mechanisms are proposed for the oxidation reduction processes occurring at the sulfur electrode.

  5. A Study of the Kinetics of the Electrochemical Deposition of Ce3+/Ce4+ Oxides

    NASA Astrophysics Data System (ADS)

    Valov, I.; Guergova, Desislava; Stoychev, D.

    The kinetics of cathodic electrodeposition of Ce3+ and/or Ce4+ oxides from alcoholic electrolytes on gold substrates has been studied. It was found that, depending on the oxygen content in the CeCl3-based electrolyte, Ce2O3 (in oxygen atmosphere) or CeO2 (in an inert atmosphere), respectively, were obtained. XPS studies clearly separated the two valence states of Ce ions in the oxide layers. The microstructure of the coatings was analyzed by atomic force microscopy (AFM).

  6. CO₂ and O₂ evolution at high voltage cathode materials of Li-ion batteries: a differential electrochemical mass spectrometry study.

    PubMed

    Wang, Hongsen; Rus, Eric; Sakuraba, Takahito; Kikuchi, Jun; Kiya, Yasuyuki; Abruña, Héctor D

    2014-07-01

    A three-electrode differential electrochemical mass spectrometry (DEMS) cell has been developed to study the oxidative decomposition of electrolytes at high voltage cathode materials of Li-ion batteries. In this DEMS cell, the working electrode used was the same as the cathode electrode in real Li-ion batteries, i.e., a lithium metal oxide deposited on a porous aluminum foil current collector. A charged LiCoO2 or LiMn2O4 was used as the reference electrode, because of their insensitivity to air, when compared to lithium. A lithium sheet was used as the counter electrode. This DEMS cell closely approaches real Li-ion battery conditions, and thus the results obtained can be readily correlated with reactions occurring in real Li-ion batteries. Using DEMS, the oxidative stability of three electrolytes (1 M LiPF6 in EC/DEC, EC/DMC, and PC) at three cathode materials including LiCoO2, LiMn2O4, and LiNi(0.5)Mn(1.5)O4 were studied. We found that 1 M LiPF6 + EC/DMC electrolyte is quite stable up to 5.0 V, when LiNi(0.5)Mn(1.5)O4 is used as the cathode material. The EC/DMC solvent mixture was found to be the most stable for the three cathode materials, while EC/DEC was the least stable. The oxidative decomposition of the EC/DEC mixture solvent could be readily observed under operating conditions in our cell even at potentials as low as 4.4 V in 1 M LiPF6 + EC/DEC electrolyte on a LiCoO2 cathode, as indicated by CO2 and O2 evolution. The features of this DEMS cell to unveil solvent and electrolyte decomposition pathways are also described. PMID:24845246

  7. ELECTROCHEMICAL PROPERTIES, MECHANICAL TESTING, AND GEL MORPHOLOGY STUDY OF PHOSPHORIC ACID-DOPED META-POLYBENZIMIDAZOLE MEMBRANES VIA CONVENTIONALLY IMBIBING AND THE SOL-GEL PROCESS

    SciTech Connect

    Perry, Kelly A; More, Karren Leslie; Benicewicz, Brian

    2009-01-01

    Proton exchange membrane (PEM) research has been directed at phosphoric acid (PA)-doped polybenzimidazole (PBI) membranes since the 1990s. PEM fuel cells based on PA-doped PBI membranes produced via a sol-gel transition process have achieved lifetimes >10,000hrs with low degradation rates. It has been suggested that the gel morphology of the PA-doped PBI membranes is responsible for their excellent electrochemical performance. Thus, a study has been underway to characterize the microstructure of PA-doped PBI membranes, and to correlate structure with performance. However, PA-doped PBI membranes present special challenges for microscopy analysis, as these membranes are extremely sensitive to the electron beam and high vacuum conditions. This paper will discuss and compare the mechanical, electrochemical, and cryo-SEM analyses of PA-doped meta-PBI membranes produced via conventional imbibing and the sol-gel process.

  8. Enhancing Electrochemical Water-Splitting Kinetics by Polarization-Driven Formation of Near-Surface Iron(0): An In Situ XPS Study on Perovskite-Type Electrodes**

    PubMed Central

    Opitz, Alexander K; Nenning, Andreas; Rameshan, Christoph; Rameshan, Raffael; Blume, Raoul; Hävecker, Michael; Knop-Gericke, Axel; Rupprechter, Günther; Fleig, Jürgen; Klötzer, Bernhard

    2015-01-01

    In the search for optimized cathode materials for high-temperature electrolysis, mixed conducting oxides are highly promising candidates. This study deals with fundamentally novel insights into the relation between surface chemistry and electrocatalytic activity of lanthanum ferrite based electrolysis cathodes. For this means, near-ambient-pressure X-ray photoelectron spectroscopy (NAP-XPS) and impedance spectroscopy experiments were performed simultaneously on electrochemically polarized La0.6Sr0.4FeO3−δ (LSF) thin film electrodes. Under cathodic polarization the formation of Fe0 on the LSF surface could be observed, which was accompanied by a strong improvement of the electrochemical water splitting activity of the electrodes. This correlation suggests a fundamentally different water splitting mechanism in presence of the metallic iron species and may open novel paths in the search for electrodes with increased water splitting activity. PMID:25557533

  9. Enhancing electrochemical water-splitting kinetics by polarization-driven formation of near-surface iron(0): an in situ XPS study on perovskite-type electrodes.

    PubMed

    Opitz, Alexander K; Nenning, Andreas; Rameshan, Christoph; Rameshan, Raffael; Blume, Raoul; Hävecker, Michael; Knop-Gericke, Axel; Rupprechter, Günther; Fleig, Jürgen; Klötzer, Bernhard

    2015-02-23

    In the search for optimized cathode materials for high-temperature electrolysis, mixed conducting oxides are highly promising candidates. This study deals with fundamentally novel insights into the relation between surface chemistry and electrocatalytic activity of lanthanum ferrite based electrolysis cathodes. For this means, near-ambient-pressure X-ray photoelectron spectroscopy (NAP-XPS) and impedance spectroscopy experiments were performed simultaneously on electrochemically polarized La0.6 Sr0.4 FeO3-δ (LSF) thin film electrodes. Under cathodic polarization the formation of Fe(0) on the LSF surface could be observed, which was accompanied by a strong improvement of the electrochemical water splitting activity of the electrodes. This correlation suggests a fundamentally different water splitting mechanism in presence of the metallic iron species and may open novel paths in the search for electrodes with increased water splitting activity. PMID:25557533

  10. Trianguleniums as Optical Probes for G‐Quadruplexes: A Photophysical, Electrochemical, and Computational Study

    PubMed Central

    Shivalingam, Arun; Vyšniauskas, Aurimas; Albrecht, Tim; White, Andrew J. P.

    2016-01-01

    Abstract Nucleic acids can adopt non‐duplex topologies, such as G‐quadruplexes in vitro. Yet it has been challenging to establish their existence and function in vivo due to a lack of suitable tools. Recently, we identified the triangulenium compound DAOTA‐M2 as a unique fluorescence probe for such studies. This probe's emission lifetime is highly dependent on the topology of the DNA it interacts with opening up the possibility of carrying out live‐cell imaging studies. Herein, we describe the origin of its fluorescence selectivity for G‐quadruplexes. Cyclic voltammetry predicts that the appended morpholino groups can act as intra‐ molecular photo‐induced electron transfer (PET) quenchers. Photophysical studies show that a delicate balance between this effect and inter‐molecular PET with nucleobases is key to the overall fluorescence enhancement observed upon nucleic acid binding. We utilised computational modelling to demonstrate a conformational dependence of intra‐molecular PET. Finally, we performed orthogonal studies with a triangulenium compound, in which the morpholino groups were removed, and demonstrated that this change inverts triangulenium fluorescence selectivity from G‐quadruplex to duplex DNA, thus highlighting the importance of fine tuning the molecular structure not only for target affinity, but also for fluorescence response. PMID:26880483

  11. PILOT SCALE REACTOR FOR ELECTROCHEMICAL DECHLORINATION OF MODEL CHLORINATED CONTAMINANTS

    EPA Science Inventory

    Electrochemical degradation (ECD) is a promising technology for in-situ remediation of diversely contaminated submarine matrices, by the application of low level DC electric fields. This study, prompted by successful bench-scale electrochemical dechlorination of Trichloroe...

  12. Electrochemical Reduction of Ag2VP2O8 Composite Electrodes Visualized via In situ Energy Dispersive X-ray Diffraction (EDXRD). Unexpected Conductive Additive Effects

    SciTech Connect

    Kirshenbaum, Kevin C.; Bock, David C.; Zhong, Zhong; Marschilok, Amy C.; Takeuchi, Kenneth J.; Takeuchi, Esther

    2015-07-29

    In our study, we characterize the deposition of silver metal nanoparticles formed during discharge of Li/Ag2VP2O8 cells with composite cathodes containing conductive carbon additive. Using in situ energy dispersive X-ray diffraction (EDXRD) of an intact battery, the location and distribution of silver metal nanoparticles generated upon reduction-displacement deposition within an Ag2VP2O8 cathode containing a pre-existing percolation network can be observed for the first time. Our study yielded unexpected results where higher rate initial discharge generated a more effective conductive matrix. This stands in contrast to cells with cathodes with no conductive additive where a low rate initial discharge proved more effective. Our results provide evidence that using conductive additives in conjunction with an in situ reduction-displacement deposition of silver metal provides a path toward the ultimate goal of complete electrical contact and full utilization of all electroactive particles.

  13. Mass spectrometric methods for monitoring redox processes in electrochemical cells

    PubMed Central

    Oberacher, Herbert; Pitterl, Florian; Erb, Robert; Plattner, Sabine

    2015-01-01

    Electrochemistry (EC) is a mature scientific discipline aimed to study the movement of electrons in an oxidation–reduction reaction. EC covers techniques that use a measurement of potential, charge, or current to determine the concentration or the chemical reactivity of analytes. The electrical signal is directly converted into chemical information. For in-depth characterization of complex electrochemical reactions involving the formation of diverse intermediates, products and byproducts, EC is usually combined with other analytical techniques, and particularly the hyphenation of EC with mass spectrometry (MS) has found broad applicability. The analysis of gases and volatile intermediates and products formed at electrode surfaces is enabled by differential electrochemical mass spectrometry (DEMS). In DEMS an electrochemical cell is sampled with a membrane interface for electron ionization (EI)-MS. The chemical space amenable to EC/MS (i.e., bioorganic molecules including proteins, peptides, nucleic acids, and drugs) was significantly increased by employing electrospray ionization (ESI)-MS. In the simplest setup, the EC of the ESI process is used to analytical advantage. A limitation of this approach is, however, its inability to precisely control the electrochemical potential at the emitter electrode. Thus, particularly for studying mechanistic aspects of electrochemical processes, the hyphenation of discrete electrochemical cells with ESI-MS was found to be more appropriate. The analytical power of EC/ESI-MS can further be increased by integrating liquid chromatography (LC) as an additional dimension of separation. Chromatographic separation was found to be particularly useful to reduce the complexity of the sample submitted either to the EC cell or to ESI-MS. Thus, both EC/LC/ESI-MS and LC/EC/ESI-MS are common. PMID:24338642

  14. Feasibility studies on electrochemical recovery of uranium from solid wastes contaminated with uranium using 1-butyl-3-methylimidazorium chloride as an electrolyte

    NASA Astrophysics Data System (ADS)

    Ohashi, Yusuke; Harada, Masayuki; Asanuma, Noriko; Ikeda, Yasuhisa

    2015-09-01

    In order to examine feasibility of the electrochemical deposition method for recovering uranium from the solid wastes contaminated with uranium using ionic liquid as electrolyte, we have studied the electrochemical behavior of each solution prepared by soaking the spent NaF adsorbents and the steel waste contaminated with uranium in BMICl (1-butyl-3-methyl- imidazolium chloride). The uranyl(VI) species in BMICl solutions were found to be reduced to U(V) irreversibly around -0.8 to -1.3 V vs. Ag/AgCl. The resulting U(V) species is followed by disproportionation to U(VI) and U(IV). Based on the electrochemical data, we have performed potential controlled electrolysis of each solution prepared by soaking the spent NaF adsorbents and steel wastes in BMICl at -1.5 V vs. Ag/AgCl. Black deposit was obtained, and their composition analyses suggest that the deposit is the mixtures of U(IV) and U(VI) compounds containing O, F, Cl, and N elements. From the present study, it is expected that the solid wastes contaminated with uranium can be decontaminated by treating them in BMICl and the dissolved uranium species are recovered electrolytically.

  15. Mechanism of Electrochemical Deposition and Coloration of Electrochromic V2O5 Nano Thin Films: an In Situ X-Ray Spectroscopy Study.

    PubMed

    Lu, Ying-Rui; Wu, Tzung-Zing; Chen, Chi-Liang; Wei, Da-Hau; Chen, Jeng-Lung; Chou, Wu-Ching; Dong, Chung-Li

    2015-12-01

    Electrochromic switching devices have elicited considerable attention because these thin films are among the most promising materials for energy-saving applications. The vanadium oxide system is simple and inexpensive because only a single-layer film of this material is sufficient for coloration. Vanadium dioxide thin films are fabricated by electrochemical deposition and cyclic voltammetry. Chronoamperometric analyses have indicated that the thin V2O5 film demonstrates faster intercalation and deintercalation of lithium ions than those of the thick V2O5 film, benefiting the coloration rate. Despite substantial research on the synthesis of vanadium oxides, the monitoring of electronic and atomic structures during growth and coloration of such material has not been thoroughly examined. In the present study, in situ X-ray absorption spectroscopy (XAS) is employed to determine the electronic and atomic structures of V2O5 thin films during electrochemical growth and then electrochromic coloration. In situ XAS results demonstrate the growth mechanism of the electrodeposited V2O5 thin film and suggest that its electrochromic performance strongly depends on the local atomic structure. This study improves our understanding of the electronic and atomic properties of the vanadium oxide system grown by electrochemical deposition and enhances the design of electrochromic materials for potential energy-saving applications. PMID:26437657

  16. Spectroscopic, thermal and electrochemical studies on some nickel(II) thiosemicarbazone complexes

    NASA Astrophysics Data System (ADS)

    El-Shazly, R. M.; Al-Hazmi, G. A. A.; Ghazy, S. E.; El-Shahawi, M. S.; El-Asmy, A. A.

    2005-01-01

    Several complexes of thiosemicarbazone derivatives with Ni(II) have been prepared. Structural investigation of the ligands and their complexes has been made based on elemental analysis, magnetic moment, spectral (UV-Vis, i.r., 1H NMR, ms), and thermal studies. The i.r. spectra suggest the bidentate mononegative and tridentate (neutral, mono-, and binegative) behavior of the ligands. Different stereochemistries were suggested for the isolated complexes. The thermogravimetry (TG) and derivative thermogravimetry (DTG) have been used to study the thermal decomposition and kinetic parameters of some ligands and complexes using the Coats-Redfern and Horowitz-Metzger equations. The redox properties and stability of the complexes toward oxidation waves explored by cyclic voltammetry are related to the electron withdrawing or releasing ability of the substituent of thiosemicarbazone moiety. The samples displayed Ni II/Ni I couples irreversible waves associated with Ni III/Ni II process.

  17. Studies in molten chloroaluminates: I. Multipass spectroelectrochemistry; II. Spectroscopic and electrochemical investigations of iridium carbonyls

    SciTech Connect

    Harward, B.L.

    1985-12-01

    The multipass technique is introduced as an optical enhancement method for thin-layer spectroelectrochemistry. In this approach, the light beam is redirected through an optically transparent electrode (OTE) several times by an external mirror assembly. This arrangement is achieved using a low power continuum source which allows simultaneous multiwavelength measurements. The gain in optical sensitivity is directly related to the number of passes through the cell and has a practical limit of three to five. Initial evaluation with an aqueous test system yielded results which agree well with theory. The enhancement is not dependent upon electrode reflectivity and, therefore, the method may be applied to studies in highly corrosive media. Studies of the oxidation of sulfur and the reduction of niobium pentachloride in molten chloroaluminates are presented to demonstrate the utility of ths technique for investigations in such media. 203 refs., 51 figs., 15 tabs.

  18. Application of an Electrochemical Quartz Crystal Microbalance to the study of electrocatalytic films

    SciTech Connect

    Gordon, J.S. Jr.

    1993-09-01

    The EQCM was used to study the deposition and composition of electrodeposited pure PbO{sub 2} and Bi-doped PbO{sub 2} active toward anodic oxygen-transfer reactions. Within the doped films, Bi is incorporated as Bi{sup +5} in the form of BiO{sub 2}A, where A is ClO{sub 4}{sup {minus}} or NO{sub 3}{sup {minus}}. For deposition of these 2 materials, changes in hydration between the Au oxide and the depositing film resulted in higher mass-to-charge ratios. XRD and XPS were used to study the films; the rutile structure of PbO{sub 2} is retained even with the Bi doping. The EQCM was also used to study the formation and dissolution of Au oxide and preoxide structures formed on the Au substrate electrodes in acidic media. The preoxide structures were AuOH and increased the surface mass. For the formation of stable Au films on quartz wafers, Ti interlayers between Au and quartz was found to be very effective.

  19. A water soluble additive to suppress respirable dust from concrete-cutting chainsaws: a case study.

    PubMed

    Summers, Michael P; Parmigiani, John P

    2015-01-01

    Respirable dust is of particular concern in the construction industry because it contains crystalline silica. Respirable forms of silica are a severe health threat because they heighten the risk of numerous respirable diseases. Concrete cutting, a common work practice in the construction industry, is a major contributor to dust generation. No studies have been found that focus on the dust suppression of concrete-cutting chainsaws, presumably because, during normal operation water is supplied continuously and copiously to the dust generation points. However, there is a desire to better understand dust creation at low water flow rates. In this case study, a water-soluble surfactant additive was used in the chainsaw's water supply. Cutting was performed on a free-standing concrete wall in a covered outdoor lab with a hand-held, gas-powered, concrete-cutting chainsaw. Air was sampled at the operator's lapel, and around the concrete wall to simulate nearby personnel. Two additive concentrations were tested (2.0% and 0.2%), across a range of fluid flow rates (0.38-3.8 Lpm [0.1-1.0 gpm] at 0.38 Lpm [0.1 gpm] increments). Results indicate that when a lower concentration of additive is used exposure levels increase. However, all exposure levels, once adjusted for 3 hours of continuous cutting in an 8-hour work shift, are below the Occupational Safety and Health Administration (OSHA) permissible exposure limit (PEL) of 5 mg/m(3). Estimates were made using trend lines to predict the fluid flow rates that would cause respirable dust exposure to exceed both the OSHA PEL and the American Conference of Governmental Industrial Hygienists (ACGIH®) threshold limit value (TLV). PMID:25714034

  20. ON-SITE APPLICABILITY OF HYDROGEN PEROXIDE PRODUCING MICROBIAL ELECTROCHEMICAL CELLS COUPLED WITH UV IN WASTEWATER DISINFECTION STUDY

    EPA Science Inventory

    There is an increased interest in the application of microbial electrochemical cell (MEC) for the recovery of value-added products such as hydrogen gas and hydrogen peroxide (H2O2) from wastewater. H2O2 has strong oxidation capability and produces hydroxyl radicals when coupled w...

  1. On-site applicability of hydrogen peroxide producing microbial electrochemical cells (MECs) coupled with UV in wastewater disinfection study

    EPA Science Inventory

    Background: There is an increased interest in the application of microbial electrochemical cell (MEC) for the recovery of value-added products such as hydrogen gas and hydrogen peroxide (H2O2) from wastewater. H2O2 has strong oxidation capability and produces hydroxyl radicals wh...

  2. Epitaxial LiCoO2 films as a model system for fundamental electrochemical studies of positive electrodes.

    PubMed

    Takeuchi, Saya; Tan, Haiyan; Bharathi, K Kamala; Stafford, Gery R; Shin, Jongmoon; Yasui, Shintaro; Takeuchi, Ichiro; Bendersky, Leonid A

    2015-04-22

    Epitaxial LiCoO2 (LCO) thin films of different orientations were fabricated by pulsed laser deposition (PLD) in order to model single-crystal behavior during electrochemical reaction. This paper demonstrates that deposition of conductive SrRuO3 between a SrTiO3 (STO) substrate and an LCO film allows (1) epitaxial growth of LCO with orientation determined by STO and (2) electrochemical measurements, such as cyclic voltammetry and impedance spectroscopy. Scanning transmission electron microscopy (S/TEM and SEM) has demonstrated an orientation relationship between LCO and STO of three orientations, (111), (110) and (100), and identified a LCO/electrolyte surface as consisting of two crystallographic facets of LCO, (001) and {104}. The difference in the orientation of LCO accounts for the difference in the exposed area of {104} planes to the electrolyte, where lithium ions have easy access to fast diffusion planes. The resistance for lithium ion transfer measured by electrochemical impedance spectroscopy had inverse correlation with exposed area of {104} plane measured by TEM. Chemical diffusivity of lithium ions in LCO was measured by fitting electrochemical impedance spectroscopy data to a modified Randles equivalent circuit and allowed us to determine its dependence on film orientation. PMID:25812439

  3. In situ electron spin resonance and Raman spectroscopic studies of the electrochemical process of conducting polypyrrole films

    SciTech Connect

    Zhong, C.J.; Tian, Z.Q.; Tian, Z.W. )

    1990-03-08

    The electrochemical redox properties of conducting polypyrrole (PPy) films coated on electrodes are investigated in aqueous solutions by use of the in situ techniques of electron spin resonance (ESR) and Raman spectroscopy. Comparisons between the experimental in situ ESR data and a theoretical kinetic prediction on the basis of the polaron-bipolaron model are presented.

  4. Stress-modified electrochemical reactivity of metallic surfaces: atomic force microscopy imaging studies of nickel and alloyed aluminum

    NASA Astrophysics Data System (ADS)

    Hahm, J.; Sibener, S. J.

    2000-07-01

    In this paper, we demonstrate that externally applied tensile and compressive stresses can systematically modify the electrochemical surface reactivity of pure and alloyed metals. Atomic force microscopy (AFM) is used to statistically characterize the extent and nature of interface change for nickel and aluminum alloy 2024-T3 subjected to electrochemical conditions under various levels of stress. Statistical analysis of AFM images reveals that the extent of electrochemical reactivity is significantly enhanced when subjecting the sample to tensile as opposed to compressive stress; this enhancement increases monotonically as the level of applied stress is systematically increased. Surface morphologies differ on the pure nickel and alloyed aluminum samples, with the nickel interfaces exhibiting facetted features which are aligned 120° from one another while the surface features on aluminum alloy 2024-T3 are circular pores. These results unambiguously indicate that the kinetics for electrochemical metallic processes, which nucleate at surface defects and grain boundaries, can be significantly modified by the presence of external stress fields.

  5. Adsorption of methyl orange and salicylic acid on a nano-transition metal composite: Kinetics, thermodynamic and electrochemical studies.

    PubMed

    Arshadi, M; Mousavinia, F; Amiri, M J; Faraji, A R

    2016-12-01

    In this work synthesis of Mn-nanoparticles (MnNPs) supported on the Schiff base modified nano-sized SiO2Al2O3 mixed-oxides (Si/Al) and its implementation as an adsorbent for the removal of organic pollutions such as methyl orange (MO) and salicylic acid (SA) was investigated. Si/Al were functionalized by grafting Schiff base ligand and in the next step, MnNPs were prepared over the modified nano sol-gel Si/Al. Structures and adsorption characteristics of the obtained organometallic-modified SiO2/Al2O3 mixed oxide were studied by several methods such as elemental analysis, diffuse reflectance UV-vis spectroscopy, FT-IR spectroscopy, nitrogen adsorption/desorption, scanning electron microscope (SEM), transmission electron microscope (TEM), energy dispersive X-ray (EDX), inductively coupled plasma (ICP-AES), Electron Paramagnetic Resonance (EPR), electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). EPR data of the immobilized manganese ions resulted that the transition state of active sites in the nano-adsorbent are in the form of Mn(II) ions at the surface. The adsorption properties of heterogeneous Mn(II) ions showed that this nano-adsorbent has very good potential to remove MO and SA ions from aqueous solution. The removal efficiency of the SAPAS@MnNPs towards MO reached out to 89.3 and 29.1% and for SA approached to 54.6 and 18.9% at 150 and 500mg/dm(3) initial organic pollution concentrations, respectively. To investigate the adsorption kinetic of Mn(II) ions onto the nano-sized support, pseudo first and pseudo second order kinetics, and the Freundlich, Langmuir and Langmuir-Freundlich isotherm models have also been applied to the equilibrium adsorption data. The contact time to obtain equilibrium for maximum adsorption capacity was 45min. The adsorption process was spontaneous and endothermic in nature and it was well explained with pseudo-second-order kinetic model. No remarkable loss of removal capacity even after 8th times regeneration

  6. Augmenting a Waste Glass Mixture Experiment Study with Additional Glass Components and Experimental Runs

    SciTech Connect

    Piepel, Gregory F. ); Cooley, Scott K. ); Peeler, David K.; Vienna, John D. ); Edwards, Tommy B.

    2002-01-01

    A glass composition variation study (CVS) for high-level waste (HLW) stored in Idaho is being statistically designed and performed in phases over several years. The purpose of the CVS is to investigate and model how HLW-glass properties depend on glass composition. The resulting glass property-composition models will be used to develop desirable glass formulations and for other purposes. Phases 1 and 2 of the CVS have been completed and are briefly described. This paper focuses on the CVS Phase 3 experimental design, which was chosen to augment the Phase 1 and 2 data with additional data points, as well as to account for additional glass components not studied in Phases 1 and/or 2. In total, 16 glass components were varied in the Phase 3 experimental design. The paper describes how these Phase 3 experimental design augmentation challenges were addressed using the previous data, preliminary property-composition models, and statistical mixture experiment and optimal experimental design methods and software.

  7. Role of sulfite additives in wine induced asthma: single dose and cumulative dose studies

    PubMed Central

    Vally, H; Thompson, P

    2001-01-01

    BACKGROUND—Wine appears to be a significant trigger for asthma. Although sulfite additives have been implicated as a major cause of wine induced asthma, direct evidence is limited. Two studies were undertaken to assess sulfite reactivity in wine sensitive asthmatics. The first study assessed sensitivity to sulfites in wine using a single dose sulfited wine challenge protocol followed by a double blind, placebo controlled challenge. In the second study a cumulative dose sulfited wine challenge protocol was employed to establish if wine sensitive asthmatics as a group have an increased sensitivity to sulfites.
METHODS—In study 1, 24 asthmatic patients with a strong history of wine induced asthma were screened. Subjects showing positive responses to single blind high sulfite (300 ppm) wine challenge were rechallenged on separate days in a double blind, placebo controlled fashion with wines of varying sulfite levels to characterise their responses to these drinks. In study 2, wine sensitive asthmatic patients (n=12) and control asthmatics (n=6) were challenged cumulatively with wine containing increasing concentrations of sulfite in order to characterise further their sensitivity to sulfites in wine.
RESULTS—Four of the 24 self-reporting wine sensitive asthmatic patients were found to respond to sulfite additives in wine when challenged in a single dose fashion (study 1). In the double blind dose-response study all four had a significant fall in forced expiratory volume in one second (FEV1) (>15% from baseline) following exposure to wine containing 300 ppm sulfite, but did not respond to wines containing 20, 75 or 150 ppm sulfite. Responses were maximal at 5 minutes (mean (SD) maximal decline in FEV1 28.7 (13)%) and took 15-60 minutes to return to baseline levels. In the cumulative dose-response study (study 2) no significant difference was observed in any of the lung function parameters measured (FEV1, peak expiratory flow (PEF), mid phase forced expiratory

  8. Characterization studies on the additives mixed L-arginine phosphate monohydrate (LAP) crystals

    NASA Astrophysics Data System (ADS)

    Haja Hameed, A. S.; Karthikeyan, C.; Ravi, G.; Rohani, S.

    2011-04-01

    L-arginine phosphate monohydrate (LAP), potassium thiocyanate (KSCN) mixed LAP (LAP:KSCN) and sodium sulfite (Na 2SO 3) mixed LAP (LAP:Na 2SO 3) single crystals were grown by slow cooling technique. The effect of microbial contamination and coloration on the growth solutions was studied. The crystalline powders of the grown crystals were examined by X-ray diffraction and the lattice parameters of the crystals were estimated. From the FTIR spectroscopic analysis, various functional group frequencies associated with the crystals were assigned. Vickers microhardness studies were done on {1 0 0} faces for pure and additives mixed LAP crystals. From the preliminary surface second harmonic generation (SHG) results, it was found that the SHG intensity at (1 0 0) face of LAP:KSCN crystal was much stronger than that of pure LAP.

  9. The guanidine and maleic acid (1:1) complex. The additional theoretical and experimental studies

    NASA Astrophysics Data System (ADS)

    Drozd, Marek; Dudzic, Damian

    2012-04-01

    On the basis of experimental literature data the theoretical studies for guanidinium and maleic acid complex with using DFT method are performed. In these studies the experimental X-ray data for two different forms of investigated crystal were used. During the geometry optimization process one equilibrium structure was found, only. According to this result the infrared spectrum for one theoretical molecule was calculated. On the basis of potential energy distribution (PED) analysis the clear-cut assignments of observed bands were performed. For the calculated molecule with energy minimum the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) were obtained and graphically illustrated. The energy difference (GAP) between HOMO and LUMO was analyzed. Additionally, the nonlinear properties of this molecule were calculated. The α and β (first and second order) hyperpolarizability values are obtained. On the basis of these results the title crystal was classified as new second order NLO generator.

  10. Electrochemical and spectroscopic study of interfacial interactions between chalcopyrite and typical flotation process reagents

    NASA Astrophysics Data System (ADS)

    Urbano, Gustavo; Lázaro, Isabel; Rodríguez, Israel; Reyes, Juan Luis; Larios, Roxana; Cruz, Roel

    2016-02-01

    Comparative voltammetry and differential double-layer capacitance studies were performed to evaluate interfacial interactions between chalcopyrite (CuFeS2) and n-isopropyl xanthate (X) in the presence of ammonium bisulfite/39wt% SO2 and caustic starch at different pH values. Raman spectroscopy, Fourier transform infrared (FTIR) spectroscopy, contact angle measurements, and microflotation tests were used to establish the type and extent of xanthate adsorption as well as the species involved under different mineral surface conditions in this study. The results demonstrate that the species that favor a greater hydrophobicity of chalcopyrite are primarily CuX and S0, whereas oxides and hydroxides of Cu and Fe as well as an excess of starch decrease the hydrophobicity. A conditioning of the mineral surface with ammonium bisulfite/39wt% SO2 at pH 6 promotes the activation of surface and enhances the xanthate adsorption. However, this effect is diminished at pH ≥ 8, when an excess of starch is added during the preconditioning step.

  11. Synthesis, characterization, electrochemical studies and DFT calculations of amino acids ternary complexes of copper (II) with isonitrosoacetophenone. Biological activities

    NASA Astrophysics Data System (ADS)

    Tidjani-Rahmouni, Nabila; Bensiradj, Nour el Houda; Djebbar, Safia; Benali-Baitich, Ouassini

    2014-10-01

    Three mixed complexes having formula [Cu(INAP)L(H2O)2] where INAP = deprotonated isonitrosoacetophenone and L = deprotonated amino acid such as histidine, phenylalanine and tryptophan have been synthesized. They have also been characterized using elemental analyses, molar conductance, UV-Vis, IR and ESR spectra. The value of molar conductance indicates them to be non-electrolytes. The spectral studies support the binding of the ligands with two N and two O donor sites to the copper (II) ion, giving an arrangement of N2O2 donor groups. Density Functional Theory (DFT) calculations were applied to evaluate the cis and trans coordination modes of the two water molecules. The trans form was shown to be energetically more stable than the cis one. The ESR data indicate that the covalent character of the metal-ligand bonding in the copper (II) complexes increases on going from histidine to phenylalanine to tryptophan. The electrochemical behavior of the copper (II) complexes was determined by cyclic voltammetry which shows that the chelate structure and electron donating effects of the ligands substituent are among the factors influencing the redox potentials of the complexes. The antimicrobial activities of the complexes were evaluated against several pathogenic microorganisms to assess their antimicrobial potentials. The copper complexes were found to be more active against Gram-positive than Gram-negative bacteria. Furthermore, the antioxidant efficiencies of the metal complexes were determined by 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity. The antioxidant activity of the complexes indicates their moderate scavenging activity against the radical DPPH.

  12. Scanning electrochemical microscopy: using the potentiometric mode of SECM to study the mixed potential arising from two independent redox processes.

    PubMed

    Serrapede, Mara; Denuault, Guy; Sosna, Maciej; Pesce, Giovanni Luca; Ball, Richard J

    2013-09-01

    This study demonstrates how the potentiometric mode of the scanning electrochemical microscope (SECM) can be used to sensitively probe and alter the mixed potential due to two independent redox processes provided that the transport of one of the species involved is controlled by diffusion. This is illustrated with the discharge of hydrogen from nanostructured Pd hydride films deposited on the SECM tip. In deareated buffered solutions the open circuit potential of the PdH in equilibrium between its β and α phases (OCP(β→α)) does not depend on the tip-substrate distance while in aerated conditions it is found to be controlled by hindered diffusion of oxygen. Chronopotentiometric and amperometric measurements at several tip-substrate distances reveal how the flux of oxygen toward the Pd hydride film determines its potential. Linear sweep voltammetry shows that the polarization resistance increases when the tip approaches an inert substrate. The SECM methodology also demonstrates how dissolved oxygen affects the rate of hydrogen extraction from the Pd lattice. Over a wide potential window, the highly reactive nanostructure promotes the reduction of oxygen which rapidly discharges hydrogen from the PdH. The flux of oxygen toward the tip can be adjusted via hindered diffusion. Approaching the substrate decreases the flux of oxygen, lengthens the hydrogen discharge, and shifts OCP(β→α) negatively. The results are consistent with a mixed potential due to the rate of oxygen reduction balancing that of the hydride oxidation. The methodology is generic and applicable to other mixed potential processes in corrosion or catalysis. PMID:23919805

  13. Photophysical and Electrochemical Studies of Multinuclear Complexes of Iron(II) with Acetate and Extended Conjugated N-Donor Ligands

    PubMed Central

    Mohd Said, Suhana; Roslan, Muhamad Faris; Azil, Afiq; Nordin, Abdul Rahman

    2015-01-01

    A dimeric iron(II) complex, trans-[Fe2(CH3COO)4(L1)2] (1), and a trinuclear iron(II) complex, [Fe3(CH3COO)4(H2O)4(L2)] (2), were studied as potential dye-sensitised solar cell materials. The structures of both complexes were deduced by a combination of instrumental analyses and molecular modelling. Variable-temperature magnetic susceptibility data suggested that 1 was made up of 56.8% high-spin (HS) and 43.2% low-spin (LS) Fe(II) atoms at 294 K and has a moderate antiferromagnetic interaction (J = −81.2 cm−1) between the two Fe(II) centres, while 2 was made up of 27.7% HS and 72.3% LS Fe(II) atoms at 300 K. The optical band gaps (Eo) for 1 were 1.9 eV (from absorption spectrum) and 2.2 eV (from fluorescence spectrum), electrochemical bandgap (Ee) was 0.83 eV, excited state lifetime (τ) was 0.67 ns, and formal redox potential (E′(FeIII/FeII)) was +0.63 V. The corresponding values for 2 were 3.5 eV (from absorption spectrum), 1.8 eV (from fluorescence spectrum), 0.69 eV, 2.8 ns, and +0.41 V. PMID:25879076

  14. Prazosin addition to fluvoxamine: A preclinical study and open clinical trial in OCD.

    PubMed

    Feenstra, Matthijs G P; Klompmakers, André; Figee, Martijn; Fluitman, Sjoerd; Vulink, Nienke; Westenberg, Herman G M; Denys, Damiaan

    2016-02-01

    The efficacy of selective serotonin reuptake inhibitors (SRIs) in psychiatric disorders may be "augmented" through the addition of atypical antipsychotic drugs. A synergistic increase in dopamine (DA) release in the prefrontal cortex has been suggested to underlie this augmentation effect, though the mechanism of action is not clear yet. We used in vivo microdialysis in rats to study DA release following the administration of combinations of fluvoxamine (10 mg/kg) and quetiapine (10 mg/kg) with various monoamine-related drugs. The results confirmed that the selective 5-HT1A antagonist WAY-100635 (0.05 mg/kg) partially blocked the fluvoxamine-quetiapine synergistic effect (maximum DA increase dropped from 325% to 214%). A novel finding is that the α1-adrenergic blocker prazosin (1 mg/kg), combined with fluvoxamine, partially mimicked the effect of augmentation (maximum DA increase 205%; area-under-the-curve 163%). As this suggested that prazosin augmentation might be tested in a clinical study, we performed an open clinical trial of prazosin 20 mg addition to SRI in therapy-resistant patients with obsessive-compulsive disorder applying for neurosurgery. A small, non-significant reduction in Yale Brown Obsessive Compulsive Scale (Y-BOCS) scores was observed in 10 patients and one patient was classified as a responder with a reduction in Y-BOCS scores of more than 25%. We suggest that future clinical studies augmenting SRIs with an α1-adrenergic blocker in less treatment resistant cases should be considered. The clinical trial "Prazosin in combination with a serotonin reuptake inhibitor for patients with Obsessive Compulsive disorder: an open label study" was registered at 24/05/2011 under trial number ISRCTN61562706: http://www.controlled-trials.com/ISRCTN61562706. PMID:26712326

  15. Performance improvements of alkaline batteries by studying the effects of different kinds of surfactant and different derivatives of benzene on the electrochemical properties of electrolytic zinc

    NASA Astrophysics Data System (ADS)

    Ghavami, Robab Khayat; Rafiei, Zahra

    Electrolytic zinc powders were prepared in 12 M KOH, 4 wt.% zinc oxide solutions in the presence of different kinds of surfactant and organic additives using the galvanostatic technique. Then the electrochemical behavior of zinc was investigated using the sweep voltametry technique. Zinc samples electrolyzed in the presence of cationic cetyl trimethyl ammonium bromide (Zn-CTAB), have maximum corrosion rate. Furthermore, scanning electron microscopy revealed the highest surface area. Zinc deposited with anionic surfactants, sodium dodecyl benzene sulfonate (SDBS) and sodium dodecyl sulfate (SDS), have high dendritic and secondary growth. More zinc ions electrolyzed on the cathode electrode in the presence of SDBS compared with SDS. We suppose the Benzene molecule in SDBS changes morphology, thus effects of the benzene molecule is investigated by utilizing several organic compounds during zinc electrodeposition. Naphthalene with 10 pi electrons at two fused rings decreases corrosion rate and needle growth of zinc deposited, compared to benzyl chloride which has 6 pi electrons. Enhanced delocalization of pi electrons by strongly activating group (-NH 2) in the aniline molecule increases the corrosion rate and dendrites compared with benzyl chloride, which has the weakly activating group (-CH 2Cl). The addition of chloro benzene with inactivating and electrodrawing group (-Cl) creates high surface area without any dendritic growth. The effects of electrolyte additives on the electrochemical capacity of AA-sized alkaline Zn-MnO 2 batteries are verified. The addition of Triton X-100 in anode gel resulted in maximum electrical capacity. Anionic (SDBS and SDS) additives gave higher electrical capacity than cationic (CTAB). Also, the reaction mechanism for zinc electrodeposition in alkaline electrolytes and its dependence upon the presence of organic additives are discussed in detail.

  16. Structure, electronic and electrochemical properties of Li-rich metal phosphate by first-principles study

    NASA Astrophysics Data System (ADS)

    Lin, Zhiping; Zhao, Yu-Jun; Zhao, Yanming; Xu, Jiantie

    2014-01-01

    We present a first-principles investigation for the structure, electronic properties, and average potentials of Li9M3(P2O7)3(PO4)2 (M = V, Fe, Cr) compounds. The calculated Wyckoff coordinates are in good agreement with experimental observations. All the studied compounds show semiconductor characteristics, with band gaps between 1.89 eV and 2.55 eV. It is found that the Li-ion extraction is in the order of Li1(2b), Li2(12g), and Li3(4d) based on the calculated formation enthalpies of Li vacancies. Consequently, the calculated average potentials versus the number of Li ions are in good agreement with experiment.

  17. Inclusion complex of Alizarin Red S with β-cyclodextrin: Synthesis, spectral, electrochemical and computational studies

    NASA Astrophysics Data System (ADS)

    Chin, Yuk Ping; Abdul Raof, Siti Farhana; Sinniah, Subathra; Lee, Vannajan Sanghiran; Mohamad, Sharifah; Abdul Manan, Ninie Suhana

    2015-03-01

    Inclusion complex formation of Alizarin Red S (ARS) with β-cyclodextrin was studied by UV-visible, Fourier transform infrared (FTIR), nuclear magnetic resonance (NMR), cyclic voltammetry (CV) and molecular modeling methods. FTIR and NMR results had justified that ARS was partly included into the β-CD cavity. The inclusion complex has 1:1 stoichiometry, where the apparent formation constant achieved was 4.137 × 103 L/mol using Benesi-Hildebrand equation. Cyclic voltammetry results shows the peak current decreased as the ARS molecule entered the hydrophobic cavity of β-CD. Molecular modeling results showed that the aromatic ring of the ARS entered into the secondary hydroxyl rim of the CD cavity was more thermodynamically favorable. The lowest stabilization energy, ΔE was -17.80 kcal/mol, and dipole-dipole interaction is was one of the driving forces for the inclusion complex formation.

  18. Impact of contacting study authors to obtain additional data for systematic reviews: diagnostic accuracy studies for hepatic fibrosis

    PubMed Central

    2014-01-01

    Background Seventeen of 172 included studies in a recent systematic review of blood tests for hepatic fibrosis or cirrhosis reported diagnostic accuracy results discordant from 2 × 2 tables, and 60 studies reported inadequate data to construct 2 × 2 tables. This study explores the yield of contacting authors of diagnostic accuracy studies and impact on the systematic review findings. Methods Sixty-six corresponding authors were sent letters requesting additional information or clarification of data from 77 studies. Data received from the authors were synthesized with data included in the previous review, and diagnostic accuracy sensitivities, specificities, and positive and likelihood ratios were recalculated. Results Of the 66 authors, 68% were successfully contacted and 42% provided additional data for 29 out of 77 studies (38%). All authors who provided data at all did so by the third emailed request (ten authors provided data after one request). Authors of more recent studies were more likely to be located and provide data compared to authors of older studies. The effects of requests for additional data on the conclusions regarding the utility of blood tests to identify patients with clinically significant fibrosis or cirrhosis were generally small for ten out of 12 tests. Additional data resulted in reclassification (using median likelihood ratio estimates) from less useful to moderately useful or vice versa for the remaining two blood tests and enabled the calculation of an estimate for a third blood test for which previously the data had been insufficient to do so. We did not identify a clear pattern for the directional impact of additional data on estimates of diagnostic accuracy. Conclusions We successfully contacted and received results from 42% of authors who provided data for 38% of included studies. Contacting authors of studies evaluating the diagnostic accuracy of serum biomarkers for hepatic fibrosis and cirrhosis in hepatitis C patients

  19. Fundamental studies on electrochemical production of dendrite-free aluminum and titanium-aluminum alloys

    NASA Astrophysics Data System (ADS)

    Pradhan, Debabrata

    A novel dendrite-free electrorefining of aluminum scrap was investigated by using AlCl3-1-Ethyl-3-methyl-imidazolium chloride (EMIC) ionic liquid electrolyte. Electrodeposition of aluminum were conducted on copper/aluminum cathodes at voltage of 1.5 V, temperatures (50-110°C), stirring rate (0-120 rpm), molar ratio (MR) of AlCl3:EMIC (1.25-2.0) and electrode surface modification (modified/unmodified). The study was focused to investigate the effect of process variables on deposit morphology, cathode current density and their role in production of dendrite-free aluminum. The deposits were characterized using scanning electron microscope (SEM), energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD). Modified electrodes and stirring rate (60 rpm) eliminate dendritic deposition by reducing cathode overpotential below critical overpotential (etacrt≈ -0.54 V) for dendrite formation. Pure aluminum (>99%) was deposited with current efficiency of 84-99%. Chronoamperometry study was conducted using AlCl3-EMIC and AlCl3-1-Butyl-3-methyl-imidazolium chloride (BMIC) (MR = 1.65:1) at 90°C to understand the mechanism of aluminum electrodeposition and find out diffusion parameter of electroactive species Al2C 7-. It was concluded that electrodeposition of aluminum is a diffusion controlled instantaneous nucleation process and diffusion coefficient of Al2C7- was found to be 5.2-6.9 x 10-11 m2/s and 2.2 x 10-11 m2/s for AlCl3-EMIC and AlCl3-BMIC, respectively. A novel production route of Ti-Al alloys was investigated using AlCl 3-BMIC-TiCl4 (MR = 2:1:0.019) and AlCl3-BMIC (MR = 2:1) electrolytes at constant voltages of 1.5-3.0 V and temperatures (70-125°C). Ti sheet was used as anode and cathode. Characterization of electrodeposited Ti-Al alloys was carried out using SEM, EDS, XRD and inductively coupled plasma-optical emission spectrometer (ICP-OES). Effect of voltage and temperature on cathode current density, current efficiency, composition and morphology of Ti

  20. A combined toxicity study of zinc oxide nanoparticles and vitamin C in food additives

    NASA Astrophysics Data System (ADS)

    Wang, Yanli; Yuan, Lulu; Yao, Chenjie; Ding, Lin; Li, Chenchen; Fang, Jie; Sui, Keke; Liu, Yuanfang; Wu, Minghong

    2014-11-01

    At present, safety evaluation standards for nanofood additives are made based on the toxic effects of a single additive. Since the size, surface properties and chemical nature influence the toxicity of nanomaterials, the toxicity may have dramatically changed when nanomaterials are used as food additives in a complex system. Herein, we investigated the combined toxicity of zinc oxide nanoparticles (ZnO NPs) and vitamin C (Vc, ascorbic acid). The results showed that Vc increased the cytotoxicity significantly compared with that of the ZnO only NPs. When the cells were exposed to ZnO NPs at a concentration less than 15 mg L-1, or to Vc at a concentration less than 300 mg L-1, there was no significant cytotoxicity, both in the case of gastric epithelial cell line (GES-1) and neural stem cells (NSCs). However, when 15 mg L-1 of ZnO NPs and 300 mg L-1 of Vc were introduced to cells together, the cell viability decreased sharply indicating significant cytotoxicity. Moreover, the significant increase in toxicity was also shown in the in vivo experiments. The dose of the ZnO NPs and Vc used in the in vivo study was calculated according to the state of food and nutrition enhancer standard. After repeated oral exposure to ZnO NPs plus Vc, the injury of the liver and kidneys in mice has been indicated by the change of these indices. These findings demonstrate that the synergistic toxicity presented in a complex system is essential for the toxicological evaluation and safety assessment of nanofood.At present, safety evaluation standards for nanofood additives are made based on the toxic effects of a single additive. Since the size, surface properties and chemical nature influence the toxicity of nanomaterials, the toxicity may have dramatically changed when nanomaterials are used as food additives in a complex system. Herein, we investigated the combined toxicity of zinc oxide nanoparticles (ZnO NPs) and vitamin C (Vc, ascorbic acid). The results showed that Vc increased the