Science.gov

Sample records for addition gene expression

  1. Prevalence of gene expression additivity in genetically stable wheat allohexaploids.

    PubMed

    Chelaifa, Houda; Chagué, Véronique; Chalabi, Smahane; Mestiri, Imen; Arnaud, Dominique; Deffains, Denise; Lu, Yunhai; Belcram, Harry; Huteau, Virginie; Chiquet, Julien; Coriton, Olivier; Just, Jérémy; Jahier, Joseph; Chalhoub, Boulos

    2013-02-01

    The reprogramming of gene expression appears as the major trend in synthetic and natural allopolyploids where expression of an important proportion of genes was shown to deviate from that of the parents or the average of the parents. In this study, we analyzed gene expression changes in previously reported, highly stable synthetic wheat allohexaploids that combine the D genome of Aegilops tauschii and the AB genome extracted from the natural hexaploid wheat Triticum aestivum. A comprehensive genome-wide analysis of transcriptional changes using the Affymetrix GeneChip Wheat Genome Array was conducted. Prevalence of gene expression additivity was observed where expression does not deviate from the average of the parents for 99.3% of 34,820 expressed transcripts. Moreover, nearly similar expression was observed (for 99.5% of genes) when comparing these synthetic and natural wheat allohexaploids. Such near-complete additivity has never been reported for other allopolyploids and, more interestingly, for other synthetic wheat allohexaploids that differ from the ones studied here by having the natural tetraploid Triticum turgidum as the AB genome progenitor. Our study gave insights into the dynamics of additive gene expression in the highly stable wheat allohexaploids. PMID:23278496

  2. Flavonoid genes in petunia: addition of a limited number of gene copies may lead to a suppression of gene expression.

    PubMed Central

    van der Krol, A R; Mur, L A; Beld, M; Mol, J N; Stuitje, A R

    1990-01-01

    To evaluate the effect of increased expression of genes involved in flower pigmentation, additional dihydroflavonol-4-reductase (DFR) or chalcone synthase (CHS) genes were transferred to petunia. In most transformants, the increased expression had no measurable effect on floral pigmentation. Surprisingly, however, in up to 25% of the transformants, a reduced floral pigmentation, accompanied by a dramatic reduction of DFR or CHS gene expression, respectively, was observed. This phenomenon was obtained with both chimeric gene constructs and intact CHS genomic clones. The reduction in gene expression was independent of the promoter driving transcription of the transgene and involved both the endogenous gene and the homologous transgene. The gene-specific collapse in expression was obtained even after introduction of only a single gene copy. The similarity between the sense transformants and regulatory CHS mutants suggests that this mechanism of gene silencing may operate in naturally occurring regulatory circuits. PMID:2152117

  3. Genome-wide meta-analysis of maize heterosis reveals the potential role of additive gene expression at pericentromeric loci

    PubMed Central

    2014-01-01

    Background The identification of QTL involved in heterosis formation is one approach to unravel the not yet fully understood genetic basis of heterosis - the improved agronomic performance of hybrid F1 plants compared to their inbred parents. The identification of candidate genes underlying a QTL is important both for developing markers and determining the molecular genetic basis of a trait, but remains difficult owing to the large number of genes often contained within individual QTL. To address this problem in heterosis analysis, we applied a meta-analysis strategy for grain yield (GY) of Zea mays L. as example, incorporating QTL-, hybrid field-, and parental gene expression data. Results For the identification of genes underlying known heterotic QTL, we made use of tight associations between gene expression pattern and the trait of interest, identified by correlation analyses. Using this approach genes strongly associated with heterosis for GY were discovered to be clustered in pericentromeric regions of the complex maize genome. This suggests that expression differences of sequences in recombination-suppressed regions are important in the establishment of heterosis for GY in F1 hybrids and also in the conservation of heterosis for GY across genotypes. Importantly functional analysis of heterosis-associated genes from these genomic regions revealed over-representation of a number of functional classes, identifying key processes contributing to heterosis for GY. Based on the finding that the majority of the analyzed heterosis-associated genes were addtitively expressed, we propose a model referring to the influence of cis-regulatory variation on heterosis for GY by the compensation of fixed detrimental expression levels in parents. Conclusions The study highlights the utility of a meta-analysis approach that integrates phenotypic and multi-level molecular data to unravel complex traits in plants. It provides prospects for the identification of genes relevant for

  4. Gene expression suggests conserved aspects of Hox gene regulation in arthropods and provides additional support for monophyletic Myriapoda.

    PubMed

    Janssen, Ralf; Budd, Graham E

    2010-01-01

    Antisense transcripts of Ultrabithorax (aUbx) in the millipede Glomeris and the centipede Lithobius are expressed in patterns complementary to that of the Ubx sense transcripts. A similar complementary expression pattern has been described for non-coding RNAs (ncRNAs) of the bithoraxoid (bxd) locus in Drosophila, in which the transcription of bxd ncRNAs represses Ubx via transcriptional interference. We discuss our findings in the context of possibly conserved mechanisms of Ubx regulation in myriapods and the fly.Bicistronic transcription of Ubx and Antennapedia (Antp) has been reported previously for a myriapod and a number of crustaceans. In this paper, we show that Ubx/Antp bicistronic transcripts also occur in Glomeris and an onychophoran, suggesting further conserved mechanisms of Hox gene regulation in arthropods.Myriapod monophyly is supported by the expression of aUbx in all investigated myriapods, whereas in other arthropod classes, including the Onychophora, aUbx is not expressed. Of the two splice variants of Ubx/Antp only one could be isolated from myriapods, representing a possible further synapomorphy of the Myriapoda. PMID:20849647

  5. Identification of Gene Expression Signatures in the Chicken Intestinal Intraepithelial Lymphocytes in Response to Herb Additive Supplementations.

    PubMed

    Won, Kyeong-Hye; Song, Ki-Duk; Park, Jong-Eun; Kim, Duk-Kyung; Na, Chong-Sam

    2016-10-01

    Anethole and garlic have an immune modulatory effects on avian coccidiosis, and these effects are correlated with gene expression changes in intestinal epithelial lymphocytes (IELs). In this study, we integrated gene expression datasets from two independent experiments and investigated gene expression profile changes by anethole and garlic respectively, and identified gene expression signatures, which are common targets of these herbs as they might be used for the evaluation of the effect of plant herbs on immunity toward avian coccidiosis. We identified 4,382 and 371 genes, which were differentially expressed in IELs of chickens supplemented with garlic and anethole respectively. The gene ontology (GO) term of differentially expressed genes (DEGs) from garlic treatment resulted in the biological processes (BPs) related to proteolysis, e.g., "modification-dependent protein catabolic process", "proteolysis involved in cellular protein catabolic process", "cellular protein catabolic process", "protein catabolic process", and "ubiquitin-dependent protein catabolic process". In GO analysis, one BP term, "Proteolysis", was obtained. Among DEGs, 300 genes were differentially regulated in response to both garlic and anethole, and 234 and 59 genes were either up- or down-regulated in supplementation with both herbs. Pathway analysis resulted in enrichment of the pathways related to digestion such as "Starch and sucrose metabolism" and "Insulin signaling pathway". Taken together, the results obtained in the present study could contribute to the effective development of evaluation system of plant herbs based on molecular signatures related with their immunological functions in chicken IELs. PMID:26954117

  6. Molecular cloning and expression of an additional epidermal growth factor receptor-related gene.

    PubMed Central

    Plowman, G D; Whitney, G S; Neubauer, M G; Green, J M; McDonald, V L; Todaro, G J; Shoyab, M

    1990-01-01

    Epidermal growth factor (EGF), transforming growth factor alpha (TGF-alpha), and amphiregulin are structurally and functionally related growth regulatory proteins. These secreted polypeptides all bind to the 170-kDa cell-surface EGF receptor, activating its intrinsic kinase activity. However, amphiregulin exhibits different activities than EGF and TGF-alpha in a number of biological assays. Amphiregulin only partially competes with EGF for binding EGF receptor, and amphiregulin does not induce anchorage-independent growth of normal rat kidney cells (NRK) in the presence of TGF-beta. Amphiregulin also appears to abrogate the stimulatory effect of TGF-alpha on the growth of several aggressive epithelial carcinomas that overexpress EGF receptor. These findings suggest that amphiregulin may interact with a separate receptor in certain cell types. Here we report the cloning of another member of the human EGF receptor (HER) family of receptor tyrosine kinases, which we have named "HER3/ERRB3." The cDNA was isolated from a human carcinoma cell line, and its 6-kilobase transcript was identified in various human tissues. We have generated peptide-specific antisera that recognizes the 160-kDa HER3 protein when transiently expressed in COS cells. These reagents will allow us to determine whether HER3 binds amphiregulin or other growth regulatory proteins and what role HER3 protein plays in the regulation of cell growth. Images PMID:2164210

  7. Microarray Analysis of Gene Expression in Saccharomyces cerevisiae kap108Δ Mutants upon Addition of Oxidative Stress

    PubMed Central

    Belanger, Kenneth D.; Larson, Nathaniel; Kahn, Jonathan; Tkachev, Dmitry; Ay, Ahmet

    2016-01-01

    Protein transport between the nucleus and cytoplasm of eukaryotic cells is tightly regulated, providing a mechanism for controlling intracellular localization of proteins, and regulating gene expression. In this study, we have investigated the importance of nucleocytoplasmic transport mediated by the karyopherin Kap108 in regulating cellular responses to oxidative stress in Saccharomyces cerevisiae. We carried out microarray analyses on wild-type and kap108 mutant cells grown under normal conditions, shortly after introduction of oxidative stress, after 1 hr of oxidative stress, and 1 hr after oxidative stress was removed. We observe more than 500 genes that undergo a 40% or greater change in differential expression between wild-type and kap108Δ cells under at least one of these conditions. Genes undergoing changes in expression can be categorized in two general groups: 1) those that are differentially expressed between wild-type and kap108Δ cells, no matter the oxidative stress conditions; and 2) those that have patterns of response dependent upon both the absence of Kap108, and introduction or removal of oxidative stress. Gene ontology analysis reveals that, among the genes whose expression is reduced in the absence of Kap108 are those involved in stress response and intracellular transport, while those overexpressed are largely involved in mating and pheromone response. We also identified 25 clusters of genes that undergo similar patterns of change in gene expression when oxidative stresses are added and subsequently removed, including genes involved in stress response, oxidation–reduction processing, iron homeostasis, ascospore wall assembly, transmembrane transport, and cell fusion during mating. These data suggest that Kap108 is important for regulating expression of genes involved in a variety of specific cell functions. PMID:26888869

  8. Modular cis-regulatory organization of developmentally expressed genes: two genes transcribed territorially in the sea urchin embryo, and additional examples.

    PubMed Central

    Kirchhamer, C V; Yuh, C H; Davidson, E H

    1996-01-01

    The cis-regulatory systems that control developmental expression of two sea urchin genes have been subjected to detailed functional analysis. Both systems are modular in organization: specific, separable fragments of the cis-regulatory DNA each containing multiple transcription factor target sites execute particular regulatory subfunctions when associated with reporter genes and introduced into the embryo. The studies summarized here were carried out on the CyIIIa gene, expressed in the embryonic aboral ectoderm and on the Endo16 gene, expressed in the embryonic vegetal plate, archenteron, and then midgut. The regulatory systems of both genes include modules that control particular aspects of temporal and spatial expression, and in both the territorial boundaries of expression depend on a combination of negative and positive functions. In both genes different regulatory modules control early and late embryonic expression. Modular cis-regulatory organization is widespread in developmentally regulated genes, and we present a tabular summary that includes many examples from mouse and Drosophila. We regard cis-regulatory modules as units of developmental transcription control, and also of evolution, in the assembly of transcription control systems. Images Fig. 2 PMID:8790328

  9. Yeast-containing feed additive alters gene expression profiles associated with innate immunity in whole blood of a rodent model.

    PubMed

    Branson, Jennifer A; McLean, Derek J; Forsberg, Neil E; Bobe, Gerd

    2016-05-01

    Feeding a yeast-containing additive (YCA; OmniGen-AF) improves immune responses in ruminant livestock and reduces subsequent production losses. The objective was to identify molecular pathways by which dietary YCA may modify immune responses using a rodent model. Thirty-seven healthy, unchallenged CD rats received a diet containing 0 (control; n = 5, only 28 d), 0.5% (n = 15) or 1% (n = 17) YCA for 7 (n = 4/group), 14 (n = 3 or 4/group), 21 (n = 3 or 4/group) or 28 (n = 5/group) d. At the end of the feeding periods, whole blood was collected and the isolated RNA was analyzed for the expression of 84 genes involved in innate and cell-mediated adaptive immune responses. Three bacterial pattern recognition receptors TLR1 (0.5%: + 2.01; 1%: + 2.38), TLR6 (0.5%: + 2.11; 1%: + 2.34) and NOD2 (0.5%: + 2.32; 1%: + 2.23), two APC surface receptors CD1D1 (0.5%: + 1.75; 1%: + 2.33) and CD80 (0.5%: +2.45; 1%: +3.00), and the cell signaling molecule MAPK8 (0.5%: +1.87; 1%: +2.35) were significantly up-regulated by YCA at both inclusion rates. In conclusion, feeding YCA may potentially increase recognition and responses to bacterial pathogens and T-cell activation and differentiation and thereby maintain health and prevent production losses. PMID:27033362

  10. Phytate addition to soil induces changes in the abundance and expression of Bacillus β-propeller phytase genes in the rhizosphere.

    PubMed

    Jorquera, Milko A; Saavedra, Nicolás; Maruyama, Fumito; Richardson, Alan E; Crowley, David E; del C Catrilaf, Rosa; Henriquez, Evelyn J; de la Luz Mora, María

    2013-02-01

    Phytate-mineralizing rhizobacteria (PMR) perform an essential function for the mineralization of organic phosphorus but little is known about their ecology in soils and rhizosphere. In this study, PCR-based methods were developed for detection and quantification of the Bacillus β-propeller phytase (BPP) gene. Experiments were conducted to monitor the presence and persistence of a phytate-mineralizing strain, Bacillus sp. MQH19, after inoculation of soil microcosms and within the rhizosphere. The occurrence of the BPP gene in natural pasture soils from Chilean Andisols was also examined. The results showed that the Bacillus BPP gene was readily detected in sterile and nonsterile microcosms, and that the quantitative PCR (qPCR) methods could be used to monitor changes in the abundance of the BPP gene over time. Our results also show that the addition of phytate to nonsterile soils induced the expression of the BPP gene in the rhizosphere of ryegrass and the BPP gene was detected in all pasture soils sampled. This study shows that phytate addition soils induced changes in the abundance and expression of Bacillus BPP to genes in the rhizosphere and demonstrates that Bacillus BPP gene is cosmopolitan in pasture soils from Chilean Andisols. PMID:22928980

  11. Gene expression networks.

    PubMed

    Thomas, Reuben; Portier, Christopher J

    2013-01-01

    With the advent of microarrays and next-generation biotechnologies, the use of gene expression data has become ubiquitous in biological research. One potential drawback of these data is that they are very rich in features or genes though cost considerations allow for the use of only relatively small sample sizes. A useful way of getting at biologically meaningful interpretations of the environmental or toxicological condition of interest would be to make inferences at the level of a priori defined biochemical pathways or networks of interacting genes or proteins that are known to perform certain biological functions. This chapter describes approaches taken in the literature to make such inferences at the biochemical pathway level. In addition this chapter describes approaches to create hypotheses on genes playing important roles in response to a treatment, using organism level gene coexpression or protein-protein interaction networks. Also, approaches to reverse engineer gene networks or methods that seek to identify novel interactions between genes are described. Given the relatively small sample numbers typically available, these reverse engineering approaches are generally useful in inferring interactions only among a relatively small or an order 10 number of genes. Finally, given the vast amounts of publicly available gene expression data from different sources, this chapter summarizes the important sources of these data and characteristics of these sources or databases. In line with the overall aims of this book of providing practical knowledge to a researcher interested in analyzing gene expression data from a network perspective, the chapter provides convenient publicly accessible tools for performing analyses described, and in addition describe three motivating examples taken from the published literature that illustrate some of the relevant analyses. PMID:23086841

  12. The Wnt and Delta-Notch signalling pathways interact to direct pair-rule gene expression via caudal during segment addition in the spider Parasteatoda tepidariorum.

    PubMed

    Schönauer, Anna; Paese, Christian L B; Hilbrant, Maarten; Leite, Daniel J; Schwager, Evelyn E; Feitosa, Natália Martins; Eibner, Cornelius; Damen, Wim G M; McGregor, Alistair P

    2016-07-01

    In short-germ arthropods, posterior segments are added sequentially from a segment addition zone (SAZ) during embryogenesis. Studies in spiders such as Parasteatoda tepidariorum have provided insights into the gene regulatory network (GRN) underlying segment addition, and revealed that Wnt8 is required for dynamic Delta (Dl) expression associated with the formation of new segments. However, it remains unclear how these pathways interact during SAZ formation and segment addition. Here, we show that Delta-Notch signalling is required for Wnt8 expression in posterior SAZ cells, but represses the expression of this Wnt gene in anterior SAZ cells. We also found that these two signalling pathways are required for the expression of the spider orthologues of even-skipped (eve) and runt-1 (run-1), at least in part via caudal (cad). Moreover, it appears that dynamic expression of eve in this spider does not require a feedback loop with run-1, as is found in the pair-rule circuit of the beetle Tribolium Taken together, our results suggest that the development of posterior segments in Parasteatoda is directed by dynamic interactions between Wnt8 and Delta-Notch signalling that are read out by cad, which is necessary but probably not sufficient to regulate the expression of eve and run-1 Our study therefore provides new insights towards better understanding the evolution and developmental regulation of segmentation in other arthropods, including insects. PMID:27287802

  13. Evolution of gene expression after gene amplification.

    PubMed

    Garcia, Nelson; Zhang, Wei; Wu, Yongrui; Messing, Joachim

    2015-05-01

    We took a rather unique approach to investigate the conservation of gene expression of prolamin storage protein genes across two different subfamilies of the Poaceae. We took advantage of oat plants carrying single maize chromosomes in different cultivars, called oat-maize addition (OMA) lines, which permitted us to determine whether regulation of gene expression was conserved between the two species. We found that γ-zeins are expressed in OMA7.06, which carries maize chromosome 7 even in the absence of the trans-acting maize prolamin-box-binding factor (PBF), which regulates their expression. This is likely because oat PBF can substitute for the function of maize PBF as shown in our transient expression data, using a γ-zein promoter fused to green fluorescent protein (GFP). Despite this conservation, the younger, recently amplified prolamin genes in maize, absent in oat, are not expressed in the corresponding OMAs. However, maize can express the oldest prolamin gene, the wheat high-molecular weight glutenin Dx5 gene, even when maize Pbf is knocked down (through PbfRNAi), and/or another maize transcription factor, Opaque-2 (O2) is knocked out (in maize o2 mutant). Therefore, older genes are conserved in their regulation, whereas younger ones diverged during evolution and eventually acquired a new repertoire of suitable transcriptional activators. PMID:25912045

  14. Evolution of Gene Expression after Gene Amplification

    PubMed Central

    Garcia, Nelson; Zhang, Wei; Wu, Yongrui; Messing, Joachim

    2015-01-01

    We took a rather unique approach to investigate the conservation of gene expression of prolamin storage protein genes across two different subfamilies of the Poaceae. We took advantage of oat plants carrying single maize chromosomes in different cultivars, called oat–maize addition (OMA) lines, which permitted us to determine whether regulation of gene expression was conserved between the two species. We found that γ-zeins are expressed in OMA7.06, which carries maize chromosome 7 even in the absence of the trans-acting maize prolamin-box-binding factor (PBF), which regulates their expression. This is likely because oat PBF can substitute for the function of maize PBF as shown in our transient expression data, using a γ-zein promoter fused to green fluorescent protein (GFP). Despite this conservation, the younger, recently amplified prolamin genes in maize, absent in oat, are not expressed in the corresponding OMAs. However, maize can express the oldest prolamin gene, the wheat high-molecular weight glutenin Dx5 gene, even when maize Pbf is knocked down (through PbfRNAi), and/or another maize transcription factor, Opaque-2 (O2) is knocked out (in maize o2 mutant). Therefore, older genes are conserved in their regulation, whereas younger ones diverged during evolution and eventually acquired a new repertoire of suitable transcriptional activators. PMID:25912045

  15. Aberrant Gene Expression in Humans

    PubMed Central

    Yang, Ence; Ji, Guoli; Brinkmeyer-Langford, Candice L.; Cai, James J.

    2015-01-01

    Gene expression as an intermediate molecular phenotype has been a focus of research interest. In particular, studies of expression quantitative trait loci (eQTL) have offered promise for understanding gene regulation through the discovery of genetic variants that explain variation in gene expression levels. Existing eQTL methods are designed for assessing the effects of common variants, but not rare variants. Here, we address the problem by establishing a novel analytical framework for evaluating the effects of rare or private variants on gene expression. Our method starts from the identification of outlier individuals that show markedly different gene expression from the majority of a population, and then reveals the contributions of private SNPs to the aberrant gene expression in these outliers. Using population-scale mRNA sequencing data, we identify outlier individuals using a multivariate approach. We find that outlier individuals are more readily detected with respect to gene sets that include genes involved in cellular regulation and signal transduction, and less likely to be detected with respect to the gene sets with genes involved in metabolic pathways and other fundamental molecular functions. Analysis of polymorphic data suggests that private SNPs of outlier individuals are enriched in the enhancer and promoter regions of corresponding aberrantly-expressed genes, suggesting a specific regulatory role of private SNPs, while the commonly-occurring regulatory genetic variants (i.e., eQTL SNPs) show little evidence of involvement. Additional data suggest that non-genetic factors may also underlie aberrant gene expression. Taken together, our findings advance a novel viewpoint relevant to situations wherein common eQTLs fail to predict gene expression when heritable, rare inter-individual variation exists. The analytical framework we describe, taking into consideration the reality of differential phenotypic robustness, may be valuable for investigating

  16. Fatty Acid Profiles and Stearoyl-CoA Desaturase Gene Expression in Longissimus dorsi Muscle of Growing Lambs Influenced by Addition of Tea Saponins and Soybean Oil

    PubMed Central

    Mao, H. L.; Wang, J. K.; Lin, J.; Liu, J. X.

    2012-01-01

    This study was conducted to determine the effects of dietary addition of tea saponins (TS) and soybean oil (SO) on fatty acid profile and gene expression of stearoyl-CoA desaturase (SCD) in longissimus dorsi (LD) muscle of growing lambs. Thirty-two Huzhou lambs were assigned to four dietary treatments in a 2×2 factorial arrangement with main effects of TS (0 or 3 g/d) and SO (0 or 30 g/kg of diet DM). The diet without additives was considered as NTNS (no TS or SO). After a feeding trial for 60 d, four lambs of each treatment were slaughtered to collect the samples of LD muscle. Percentage of trans-11 vaccenic acid was enhanced (p<0.05) in muscle of lambs fed TS and SO. The proportion of total conjugated linoleic acid (CLA) was increased (p<0.05) by SO, but decreased (p<0.05) by TS in LD muscle. The percentage of total saturated fatty acids in muscle was decreased (p<0.05) by addition of TS and SO, while addition of SO increased (p<0.05) the percentage of total polyunsaturated fatty acids. The ratio of cis-9, trans-11 CLA to tran-11 vaccenic acid was decreased (p<0.05) by TS, but increased (p<0.05) by SO. The same effects were observed in SCD mRNA expression. From these results it is indicated that including TS and SO in the diet of growing lambs affect the fatty acid profiles of LD muscle and that the proportion of cis-9, trans-11 CLA in the muscle influenced by TS and SO may be related to the SCD gene expression. PMID:25049609

  17. STAT4 Associates with SLE Through Two Independent Effects that Correlate with Gene Expression and Act Additively with IRF5 to Increase Risk

    PubMed Central

    Abelson, Anna-Karin; Delgado-Vega, Angélica M.; Kozyrev, Sergey V.; Sánchez, Elena; Velázquez-Cruz, Rafael; Eriksson, Niclas; Wojcik, Jerome; Reddy, Prasad Linga; Lima, Guadalupe; D’Alfonso, Sandra; Migliaresi, Sergio; Baca, Vicente; Orozco, Lorena; Witte, Torsten; Ortego-Centeno, Norberto; Abderrahim, Hadi; Pons-Estel, Bernardo A.; Gutiérrez, Carmen; Suárez, Ana; González-Escribano, Maria Francisca; Martin, Javier; Alarcón-Riquelme, Marta E.

    2013-01-01

    Objectives To confirm and define the genetic association of STAT4 and systemic lupus erythematosus, investigate the possibility of correlations with differential splicing and/or expression levels, and genetic interaction with IRF5. Methods 30 tag SNPs were genotyped in an independent set of Spanish cases and controls. SNPs surviving correction for multiple tests were genotyped in 5 new sets of cases and controls for replication. STAT4 cDNA was analyzed by 5’-RACE PCR and sequencing. Expression levels were measured by quantitative PCR. Results In the fine-mapping, four SNPs were significant after correction for multiple testing, with rs3821236 and rs3024866 as the strongest signals, followed by the previously associated rs7574865, and by rs1467199. Association was replicated in all cohorts. After conditional regression analyses, two major independent signals represented by SNPs rs3821236 and rs7574865, remained significant across the sets. These SNPs belong to separate haplotype blocks. High levels of STAT4 expression correlated with SNPs rs3821236, rs3024866 (both in the same haplotype block) and rs7574865 but not with other SNPs. We also detected transcription of alternative tissue-specific exons 1, indicating presence of tissue-specific promoters of potential importance in the expression of STAT4. No interaction with associated SNPs of IRF5 was observed using regression analysis. Conclusions These data confirm STAT4 as a susceptibility gene for SLE and suggest the presence of at least two functional variants affecting levels of STAT4. Our results also indicate that both genes STAT4 and IRF5 act additively to increase risk for SLE. PMID:19019891

  18. Simvastatin and Dipentyl Phthalate Lower Ex Vivo Testicular Testosterone Production and Exhibit Additive Effects on Testicular Testosterone and Gene Expression Via Distinct Mechanistic Pathways in the Fetal Rat

    PubMed Central

    Beverly, Brandiese E. J.; Lambright, Christy S.; Furr, Johnathan R.; Sampson, Hunter; Wilson, Vickie S.; McIntyre, Barry S.; Foster, Paul M. D.; Travlos, Gregory; Gray, L. Earl

    2014-01-01

    Sex differentiation of the male reproductive tract in mammals is driven, in part, by fetal androgen production. In utero, some phthalate esters (PEs) alter fetal Leydig cell differentiation, reducing the expression of several genes associated with steroid synthesis/transport, and consequently, lowering fetal androgen and Insl3 hormone levels. Simvastatin (SMV) is a cholesterol-lowering drug that directly inhibits HMG-CoA reductase. SMV may also disrupt steroid biosynthesis, but through a different mode of action (MOA) than the PEs. As cholesterol is a precursor of steroid hormone biosynthesis, we hypothesized that in utero exposure to SMV during the critical period of sex differentiation would lower fetal testicular testosterone (T) production without affecting genes involved in cholesterol and androgen synthesis and transport. Secondly, we hypothesized that a mixture of SMV and a PE, which may have different MOAs, would reduce testosterone levels in an additive manner. Pregnant Sprague Dawley rats were dosed orally with SMV, dipentyl phthalate (DPeP), or SMV plus DPeP from gestational days 14-18, and fetuses were evaluated on GD18. On GD18, SMV lowered fetal T production and serum triglycerides, low density lipoprotein, high density lipoprotein, and total cholesterol levels, and downregulated two genes in the fetal testis that were different from those altered by PEs. When SMV and DPeP were administered as a mixture, fetal T production was significantly reduced in an additive manner, thus demonstrating that a mixture of chemicals can induce additive effects on fetal T production even though they display different MOAs. PMID:25055962

  19. GENE EXPRESSION NETWORKS

    EPA Science Inventory

    "Gene expression network" is the term used to describe the interplay, simple or complex, between two or more gene products in performing a specific cellular function. Although the delineation of such networks is complicated by the existence of multiple and subtle types of intera...

  20. Gene expression technology

    SciTech Connect

    Goeddel, D.V. )

    1990-01-01

    The articles in this volume were assemble to enable the reader to design effective strategies for the expression of cloned genes and cDNAs. More than a compilation of papers describing the multitude of techniques now available for expressing cloned genes, this volume provides a manual that should prove useful for solving the majority of expression problems one likely to encounter. The four major expression systems commonly available to most investigators are stressed: Escherichia coli, Bacillus subtilis, yeast, and mammalian cells. Each of these system has its advantages and disadvantages, details of which are found in Chapter 1 and the strategic overviews for the four major sections of the volume. The papers in each of these sections provide many suggestions on how to proceed if initial expression levels are not sufficient.

  1. Simvastatin and Dipentyl Phthalate Lower Ex vivo Testicular Testosterone Production and Exhibit Additive Effects on Testicular Testosterone and Gene Expression Via Distinct Mechanistic Pathways in the Fetal Rat

    EPA Science Inventory

    Sex differentiation of the male reproductive tract in mammals is driven, in part, by fetal androgen production. In utero, some phthalate esters (PEs) alter fetal Leydig cell differentiation, reducing the expression of several genes associated with steroid synthesis/transport, and...

  2. Simvastatin and t-butylhydroquinone suppress KLF1 and BCL11A gene expression and additively increase fetal hemoglobin in primary human erythroid cells

    PubMed Central

    Macari, Elizabeth R.; Schaeffer, Emily K.; West, Rachel J.

    2013-01-01

    Although increased fetal hemoglobin (HbF) levels have proven benefit for people with β-hemoglobinopathies, all current HbF-inducing agents have limitations. We previously reported that drugs that activate the NRF2 antioxidant response signaling pathway increase HbF in primary human erythroid cells. In an attempt to increase HbF levels achieved with NRF2 activators, in the present study, we investigated potential complementary activity between these agents and HMG-CoA reductase inhibitors (statins) based on their ability to induce KLF2 protein levels. Experiments in K562 cells showed that simvastatin increased KLF2 mRNA and protein and KLF2 binding to HS2 of the β-globin locus control region and enhanced γ-globin mRNA production by the NRF2 activator Tert-butylhydroquinone (tBHQ). When tested in differentiating primary human erythroid cells, simvastatin induced HbF alone and additively with tBHQ, but it did not increase KLF2 mRNA or locus control region binding above levels seen with normal differentiation. Investigating alternative mechanisms of action, we found that both simvastatin and tBHQ suppress β-globin mRNA and KLF1 and BCL11A mRNA and protein, similar to what is seen in people with an HPFH phenotype because of KLF1 haploinsufficiency. These findings identify statins as a potential class of HbF-inducing agents and suggest a novel mechanism of action based on pharmacologic suppression of KLF1 and BCL11A gene expression. PMID:23223429

  3. Additive effects of eukaryotic co‑expression plasmid carrying GRIM‑19 and LKB1 genes on breast cancer in vitro and in vivo.

    PubMed

    Zhang, Wei; Shao, Ying; Du, Ye; Geng, Wei; Jiang, Tong; Liu, Haipeng; Zhang, Duo

    2015-11-01

    Gene associated with retinoid‑interferon‑induced mortality 19 (GRIM‑19) and the liver kinase B1 (LKB1) gene, two types of tumor suppressor gene, have been demonstrated to have important roles in breast carcinogenesis. The present study developed a dual expression plasmid that co‑expressed GRIM‑19 and LKB1, and evaluated the combined effects of the two genes against breast cancer in vitro and in vivo. Transfection with a plasmid for the simultaneous expression of GRIM‑19 and LKB1 (pGRIM19‑LKB1) into MCF‑7 breast cancer cells significantly inhibited the proliferation, colony formation, migration and invasion compared with the effects of transfection with either pGRIM‑19 or pLKB1 alone. Furthermore, transfection with pGRIM19‑LKB1 induced enhanced levels of apoptosis and cell cycle arrest at G0/G1 stage in MCF7 cells compared to the effects of pGRIM‑19 or pLKB1 alone. An in vivo experiment using an MCF‑7 xenograft tumor model demonstrated that intravenous injection of pGRIM19‑LKB1 had an enhanced effect on tumor growth inhibition compared to that of pGRIM‑19 or pLKB1 alone. In conclusion the findings of the present study suggested that transfection with eukaryotic plasmid for the simultaneous expression of GRIM‑19 and LKB1 more effectively suppressed the growth of breast cancer in vitro and in vivo, and may therefore have therapeutic potential for the treatment of human breast cancer. PMID:26458553

  4. Gene expression during memory formation.

    PubMed

    Igaz, Lionel Muller; Bekinschtein, Pedro; Vianna, Monica M R; Izquierdo, Ivan; Medina, Jorge H

    2004-01-01

    For several decades, neuroscientists have provided many clues that point out the involvement of de novo gene expression during the formation of long-lasting forms of memory. However, information regarding the transcriptional response networks involved in memory formation has been scarce and fragmented. With the advent of genome-based technologies, combined with more classical approaches (i.e., pharmacology and biochemistry), it is now feasible to address those relevant questions--which gene products are modulated, and when that processes are necessary for the proper storage of memories--with unprecedented resolution and scale. Using one-trial inhibitory (passive) avoidance training of rats, one of the most studied tasks so far, we found two time windows of sensitivity to transcriptional and translational inhibitors infused into the hippocampus: around the time of training and 3-6 h after training. Remarkably, these periods perfectly overlap with the involvement of hippocampal cAMP/PKA (protein kinase A) signaling pathways in memory consolidation. Given the complexity of transcriptional responses in the brain, particularly those related to processing of behavioral information, it was clearly necessary to address this issue with a multi-variable, parallel-oriented approach. We used cDNA arrays to screen for candidate inhibitory avoidance learning-related genes and analyze the dynamic pattern of gene expression that emerges during memory consolidation. These include genes involved in intracellular kinase networks, synaptic function, DNA-binding and chromatin modification, transcriptional activation and repression, translation, membrane receptors, and oncogenes, among others. Our findings suggest that differential and orchestrated hippocampal gene expression is necessary in both early and late periods of long-term memory consolidation. Additionally, this kind of studies may lead to the identification and characterization of genes that are relevant for the pathogenesis

  5. Gene Express Inc.

    PubMed

    Saccomanno, Colette F

    2006-07-01

    Gene Express, Inc. is a technology-licensing company and provider of Standardized Reverse Transcription Polymerase Chain Reaction (StaRT-PCR) services. Designed by and for clinical researchers involved in pharmaceutical, biomarker and molecular diagnostic product development, StaRT-PCR is a unique quantitative and standardized multigene expression measurement platform. StaRT-PCR meets all of the performance characteristics defined by the US FDA as required to support regulatory submissions [101,102] , and by the Clinical Laboratory Improvement Act of 1988 (CLIA) as necessary to support diagnostic testing [1] . A standardized mixture of internal standards (SMIS), manufactured in bulk, provides integrated quality control wherein each native template target gene is measured relative to a competitive template internal standard. Bulk production enables the compilation of a comprehensive standardized database from across multiple experiments, across collaborating laboratories and across the entire clinical development lifecycle of a given compound or diagnostic product. For the first time, all these data are able to be directly compared. Access to such a database can dramatically shorten the time from investigational new drug (IND) to new drug application (NDA), or save time and money by hastening a substantiated 'no-go' decision. High-throughput StaRT-PCR is conducted at the company's automated Standardized Expression Measurement (SEM) Center. Currently optimized for detection on a microcapillary electrophoretic platform, StaRT-PCR products also may be analyzed on microarray, high-performance liquid chromatography (HPLC), or matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) platforms. SEM Center services deliver standardized genomic data--data that will accelerate the application of pharmacogenomic technology to new drug and diagnostic test development and facilitate personalized medicine. PMID:16886903

  6. Xenbase: gene expression and improved integration.

    PubMed

    Bowes, Jeff B; Snyder, Kevin A; Segerdell, Erik; Jarabek, Chris J; Azam, Kenan; Zorn, Aaron M; Vize, Peter D

    2010-01-01

    Xenbase (www.xenbase.org), the model organism database for Xenopus laevis and X. (Silurana) tropicalis, is the principal centralized resource of genomic, development data and community information for Xenopus research. Recent improvements include the addition of the literature and interaction tabs to gene catalog pages. New content has been added including a section on gene expression patterns that incorporates image data from the literature, large scale screens and community submissions. Gene expression data are integrated into the gene catalog via an expression tab and is also searchable by multiple criteria using an expression search interface. The gene catalog has grown to contain over 15,000 genes. Collaboration with the European Xenopus Research Center (EXRC) has resulted in a stock center section with data on frog lines supplied by the EXRC. Numerous improvements have also been made to search and navigation. Xenbase is also the source of the Xenopus Anatomical Ontology and the clearinghouse for Xenopus gene nomenclature. PMID:19884130

  7. Effects of Addition of Linseed and Marine Algae to the Diet on Adipose Tissue Development, Fatty Acid Profile, Lipogenic Gene Expression, and Meat Quality in Lambs.

    PubMed

    Urrutia, Olaia; Mendizabal, José Antonio; Insausti, Kizkitza; Soret, Beatriz; Purroy, Antonio; Arana, Ana

    2016-01-01

    This study examined the effect of linseed and algae on growth and carcass parameters, adipocyte cellularity, fatty acid profile and meat quality and gene expression in subcutaneous and intramuscular adipose tissues (AT) in lambs. After weaning, 33 lambs were fed three diets up to 26.7 ± 0.3 kg: Control diet (barley and soybean); L diet (barley, soybean and 10% linseed) and L-A diet (barley, soybean, 5% linseed and 3.89% algae). Lambs fed L-A diet showed lower average daily gain and greater slaughter age compared to Control and L (P < 0.001). Carcass traits were not affected by L and L-A diets, but a trend towards greater adipocyte diameter was observed in L and L-A in the subcutaneous AT (P = 0.057). Adding either linseed or linseed and algae increased α-linolenic acid and eicosapentaenoic acid contents in both AT (P < 0.001); however, docosahexaenoic acid was increased by L-A (P < 0.001). The n-6/n-3 ratio decreased in L and L-A (P < 0.001). Algae had adverse effects on meat quality, with greater lipid oxidation and reduced ratings for odor and flavor. The expression of lipogenic genes was downregulated in the subcutaneous AT (P < 0.05): acetyl-CoA carboxylase 1 (ACACA) in L and L-A and lipoprotein lipase (LPL) and stearoyl-CoA desaturase (SCD) in L-A. Fatty acid desaturase 1 (FADS1), fatty acid desaturase 2 (FADS2) and fatty acid elongase 5 (ELOVL5) were unaffected. In the subcutaneous AT, supplementing either L or L-A increased peroxisome proliferator-activated receptor gamma (PPARG) and CAAT-enhancer binding protein alpha (CEBPA) (P < 0.05), although it had no effect on sterol regulatory element-binding factor 1 (SREBF1). In the intramuscular AT, expression of ACACA, SCD, FADS1 and FADS2 decreased in L and L-A (P < 0.001) and LPL in L (P < 0.01), but PPARG, CEBPA and SREBF1 were unaffected. PMID:27253325

  8. Effects of Addition of Linseed and Marine Algae to the Diet on Adipose Tissue Development, Fatty Acid Profile, Lipogenic Gene Expression, and Meat Quality in Lambs

    PubMed Central

    Urrutia, Olaia; Mendizabal, José Antonio; Insausti, Kizkitza; Soret, Beatriz; Purroy, Antonio; Arana, Ana

    2016-01-01

    This study examined the effect of linseed and algae on growth and carcass parameters, adipocyte cellularity, fatty acid profile and meat quality and gene expression in subcutaneous and intramuscular adipose tissues (AT) in lambs. After weaning, 33 lambs were fed three diets up to 26.7 ± 0.3 kg: Control diet (barley and soybean); L diet (barley, soybean and 10% linseed) and L-A diet (barley, soybean, 5% linseed and 3.89% algae). Lambs fed L-A diet showed lower average daily gain and greater slaughter age compared to Control and L (P < 0.001). Carcass traits were not affected by L and L-A diets, but a trend towards greater adipocyte diameter was observed in L and L-A in the subcutaneous AT (P = 0.057). Adding either linseed or linseed and algae increased α-linolenic acid and eicosapentaenoic acid contents in both AT (P < 0.001); however, docosahexaenoic acid was increased by L-A (P < 0.001). The n-6/n-3 ratio decreased in L and L-A (P < 0.001). Algae had adverse effects on meat quality, with greater lipid oxidation and reduced ratings for odor and flavor. The expression of lipogenic genes was downregulated in the subcutaneous AT (P < 0.05): acetyl-CoA carboxylase 1 (ACACA) in L and L-A and lipoprotein lipase (LPL) and stearoyl-CoA desaturase (SCD) in L-A. Fatty acid desaturase 1 (FADS1), fatty acid desaturase 2 (FADS2) and fatty acid elongase 5 (ELOVL5) were unaffected. In the subcutaneous AT, supplementing either L or L-A increased peroxisome proliferator-activated receptor gamma (PPARG) and CAAT-enhancer binding protein alpha (CEBPA) (P < 0.05), although it had no effect on sterol regulatory element-binding factor 1 (SREBF1). In the intramuscular AT, expression of ACACA, SCD, FADS1 and FADS2 decreased in L and L-A (P < 0.001) and LPL in L (P < 0.01), but PPARG, CEBPA and SREBF1 were unaffected. PMID:27253325

  9. Serial analysis of gene expression.

    PubMed

    Velculescu, V E; Zhang, L; Vogelstein, B; Kinzler, K W

    1995-10-20

    The characteristics of an organism are determined by the genes expressed within it. A method was developed, called serial analysis of gene expression (SAGE), that allows the quantitative and simultaneous analysis of a large number of transcripts. To demonstrate this strategy, short diagnostic sequence tags were isolated from pancreas, concatenated, and cloned. Manual sequencing of 1000 tags revealed a gene expression pattern characteristic of pancreatic function. New pancreatic transcripts corresponding to novel tags were identified. SAGE should provide a broadly applicable means for the quantitative cataloging and comparison of expressed genes in a variety of normal, developmental, and disease states. PMID:7570003

  10. Seasonal Effects on Gene Expression

    PubMed Central

    Goldinger, Anita; Shakhbazov, Konstantin; Henders, Anjali K.; McRae, Allan F.; Montgomery, Grant W.; Powell, Joseph E.

    2015-01-01

    Many health conditions, ranging from psychiatric disorders to cardiovascular disease, display notable seasonal variation in severity and onset. In order to understand the molecular processes underlying this phenomenon, we have examined seasonal variation in the transcriptome of 606 healthy individuals. We show that 74 transcripts associated with a 12-month seasonal cycle were enriched for processes involved in DNA repair and binding. An additional 94 transcripts demonstrated significant seasonal variability that was largely influenced by blood cell count levels. These transcripts were enriched for immune function, protein production, and specific cellular markers for lymphocytes. Accordingly, cell counts for erythrocytes, platelets, neutrophils, monocytes, and CD19 cells demonstrated significant association with a 12-month seasonal cycle. These results demonstrate that seasonal variation is an important environmental regulator of gene expression and blood cell composition. Notable changes in leukocyte counts and genes involved in immune function indicate that immune cell physiology varies throughout the year in healthy individuals. PMID:26023781

  11. Method of controlling gene expression

    DOEpatents

    Peters, Norman K.; Frost, John W.; Long, Sharon R.

    1991-12-03

    A method of controlling expression of a DNA segment under the control of a nod gene promoter which comprises administering to a host containing a nod gene promoter an amount sufficient to control expression of the DNA segment of a compound of the formula: ##STR1## in which each R is independently H or OH, is described.

  12. Non-additive hepatic gene expression elicited by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and 2,2',4,4',5,5'-hexachlorobiphenyl (PCB153) co-treatment in C57BL/6 mice

    SciTech Connect

    Kopec, Anna K.; D'Souza, Michelle L.; Mets, Bryan D.; Burgoon, Lyle D.; Reese, Sarah E.; Archer, Kellie J.; Potter, Dave; Tashiro, Colleen; Sharratt, Bonnie; Harkema, Jack R.; Zacharewski, Timothy R.

    2011-10-15

    Interactions between environmental contaminants can lead to non-additive effects that may affect the toxicity and risk assessment of a mixture. Comprehensive time course and dose-response studies with 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), non-dioxin-like 2,2',4,4',5,5'-hexachlorobiphenyl (PCB153) and their mixture were performed in immature, ovariectomized C57BL/6 mice. Mice were gavaged once with 30 {mu}g/kg TCDD, 300 mg/kg PCB153, a mixture of 30 {mu}g/kg TCDD with 300 mg/kg PCB153 (MIX) or sesame oil vehicle for 4,12, 24,72 or 168 h. In the 24 h dose-response study, animals were gavaged with TCDD (0.3,1, 3, 6, 10, 15, 30, 45 {mu}g/kg), PCB153 (3,10, 30, 60, 100, 150, 300, 450 mg/kg), MIX (0.3 + 3, 1 + 10, 3 + 30, 6 + 60, 10 + 100, 15 + 150, 30 + 300, 45 {mu}g/kg TCDD + 450 mg/kg PCB153, respectively) or vehicle. All three treatments significantly increased relative liver weights (RLW), with MIX eliciting significantly greater increases compared to TCDD and PCB153 alone. Histologically, MIX induced hepatocellular hypertrophy, vacuolization, inflammation, hyperplasia and necrosis, a combination of TCDD and PCB153 responses. Complementary lipid analyses identified significant increases in hepatic triglycerides in MIX and TCDD samples, while PCB153 had no effect on lipids. Hepatic PCB153 levels were also significantly increased with TCDD co-treatment. Microarray analysis identified 167 TCDD, 185 PCB153 and 388 MIX unique differentially expressed genes. Statistical modeling of quantitative real-time PCR analysis of Pla2g12a, Serpinb6a, Nqo1, Srxn1, and Dysf verified non-additive expression following MIX treatment compared to TCDD and PCB153 alone. In summary, TCDD and PCB153 co-treatment elicited specific non-additive gene expression effects that are consistent with RLW increases, histopathology, and hepatic lipid accumulation. - Graphical abstract: Display Omitted Highlights: > MIX (TCDD:PCB153 at 1:10,000 ratio) exposure leads to non-additive gene expression

  13. Aplysia californica neurons express microinjected neuropeptide genes.

    PubMed Central

    DesGroseillers, L; Cowan, D; Miles, M; Sweet, A; Scheller, R H

    1987-01-01

    Neuropeptide genes are expressed in specific subsets of large polyploid neurons in Aplysia californica. We have defined the transcription initiation sites of three of these neuropeptide genes (the R14, L11, and ELH genes) and determined the nucleotide sequence of the promoter regions. The genes contain the usual eucaryotic promoter signals as well as other structures of potential regulatory importance, including inverted and direct repeats. The L11 and ELH genes, which are otherwise unrelated, have homology in the promoter regions, while the R14 promoter was distinct. When cloned plasmids were microinjected into Aplysia neurons in organ culture, transitions between supercoiled, relaxed circular, and linear DNAs occurred along with ligation into high-molecular-weight species. About 20% of the microinjected neurons expressed the genes. The promoter region of the R14 gene functioned in expression of the microinjected DNA in all cells studied. When both additional 5' and 3' sequences were included, the gene was specifically expressed only in R14, suggesting that the specificity of expression is generated by a multicomponent repression system. Finally, the R14 peptide could be expressed in L11, demonstrating that it is possible to alter the transmitter phenotype of these neurons by introduction of cloned genes. Images PMID:3670293

  14. Gene Expression in Oligodendroglial Tumors

    PubMed Central

    Shaw, Elisabeth J.; Haylock, Brian; Husband, David; du Plessis, Daniel; Sibson, D. Ross; Warnke, Peter C.; Walker, Carol

    2010-01-01

    Background: Oligodendroglial tumors with 1p/19q loss are more likely to be chemosensitive and have longer survival than those with intact 1p/19q, but not all respond to chemotherapy, warranting investigation of the biological basis of chemosensitivity. Methods: Gene expression profiling was performed using amplified antisense RNA from 28 oligodendroglial tumors treated with chemotherapy (26 serial stereotactic biopsy, 2 resection). Expression of differentially expressed genes was validated by real-time PCR. Results: Unsupervised hierarchical clustering showed clustering of multiple samples from the same case in 14/17 cases and identified subgroups associated with tumor grade and 1p/19q status. 176 genes were differentially expressed, 164 being associated with 1p/19q loss (86% not on 1p or 19q). 94 genes differed between responders and non-responders to chemotherapy; 12 were not associated with 1p/19q loss. Significant differential expression was confirmed in 11/13 selected genes. Novel genes associated with response to therapy included SSBP2, GFRA1, FAP and RASD1. IQGAP1, INA, TGIF1, NR2F2 and MYCBP were differentially expressed in oligodendroglial tumors with 1p/19q loss. Conclusion: Gene expression profiling using serial stereotactic biopsies indicated greater homogeneity within tumors than between tumors. Genes associated with 1p/19q status or response were identified warranting further elucidation of their role in oligodendroglial tumors. PMID:20966545

  15. A comparative gene expression database for invertebrates

    PubMed Central

    2011-01-01

    Background As whole genome and transcriptome sequencing gets cheaper and faster, a great number of 'exotic' animal models are emerging, rapidly adding valuable data to the ever-expanding Evo-Devo field. All these new organisms serve as a fantastic resource for the research community, but the sheer amount of data, some published, some not, makes detailed comparison of gene expression patterns very difficult to summarize - a problem sometimes even noticeable within a single lab. The need to merge existing data with new information in an organized manner that is publicly available to the research community is now more necessary than ever. Description In order to offer a homogenous way of storing and handling gene expression patterns from a variety of organisms, we have developed the first web-based comparative gene expression database for invertebrates that allows species-specific as well as cross-species gene expression comparisons. The database can be queried by gene name, developmental stage and/or expression domains. Conclusions This database provides a unique tool for the Evo-Devo research community that allows the retrieval, analysis and comparison of gene expression patterns within or among species. In addition, this database enables a quick identification of putative syn-expression groups that can be used to initiate, among other things, gene regulatory network (GRN) projects. PMID:21861937

  16. Refining Breast Cancer Risk Stratification: Additional Genes, Additional Information.

    PubMed

    Kurian, Allison W; Antoniou, Antonis C; Domchek, Susan M

    2016-01-01

    Recent advances in genomic technology have enabled far more rapid, less expensive sequencing of multiple genes than was possible only a few years ago. Advances in bioinformatics also facilitate the interpretation of large amounts of genomic data. New strategies for cancer genetic risk assessment include multiplex sequencing panels of 5 to more than 100 genes (in which rare mutations are often associated with at least two times the average risk of developing breast cancer) and panels of common single-nucleotide polymorphisms (SNPs), combinations of which are generally associated with more modest cancer risks (more than twofold). Although these new multiple-gene panel tests are used in oncology practice, questions remain about the clinical validity and the clinical utility of their results. To translate this increasingly complex genetic information for clinical use, cancer risk prediction tools are under development that consider the joint effects of all susceptibility genes, together with other established breast cancer risk factors. Risk-adapted screening and prevention protocols are underway, with ongoing refinement as genetic knowledge grows. Priority areas for future research include the clinical validity and clinical utility of emerging genetic tests; the accuracy of developing cancer risk prediction models; and the long-term outcomes of risk-adapted screening and prevention protocols, in terms of patients' experiences and survival. PMID:27249685

  17. Nuclear Neighborhoods and Gene Expression

    PubMed Central

    Zhao, Rui; Bodnar, Megan S.; Spector, David L.

    2009-01-01

    Summary The eukaryotic nucleus is a highly compartmentalized and dynamic environment. Chromosome territories are arranged non-randomly within the nucleus and numerous studies have indicated that a gene’s position in the nucleus can impact its transcriptional activity. Here, we focus on recent advances in our understanding of the influence of specific nuclear neighborhoods on gene expression or repression. Nuclear neighborhoods associated with transcriptional repression include the inner nuclear membrane/nuclear lamina and peri-nucleolar chromatin, whereas neighborhoods surrounding the nuclear pore complex, PML nuclear bodies, and nuclear speckles seem to be transcriptionally permissive. While nuclear position appears to play an important role in gene expression, it is likely to be only one piece of a flexible puzzle that incorporates numerous parameters. We are still at a very early, yet exciting stage in our journey toward deciphering the mechanism(s) that govern the permissiveness of gene expression/repression within different nuclear neighborhoods. PMID:19339170

  18. Differential Gene Expression in Glaucoma

    PubMed Central

    Jakobs, Tatjana C.

    2014-01-01

    In glaucoma, regardless of its etiology, retinal ganglion cells degenerate and eventually die. Although age and elevated intraocular pressure (IOP) are the main risk factors, there are still many mysteries in the pathogenesis of glaucoma. The advent of genome-wide microarray expression screening together with the availability of animal models of the disease has allowed analysis of differential gene expression in all parts of the eye in glaucoma. This review will outline the findings of recent genome-wide expression studies and discuss their commonalities and differences. A common finding was the differential regulation of genes involved in inflammation and immunity, including the complement system and the cytokines transforming growth factor β (TGFβ) and tumor necrosis factor α (TNFα). Other genes of interest have roles in the extracellular matrix, cell–matrix interactions and adhesion, the cell cycle, and the endothelin system. PMID:24985133

  19. Transgenic Arabidopsis Gene Expression System

    NASA Technical Reports Server (NTRS)

    Ferl, Robert; Paul, Anna-Lisa

    2009-01-01

    The Transgenic Arabidopsis Gene Expression System (TAGES) investigation is one in a pair of investigations that use the Advanced Biological Research System (ABRS) facility. TAGES uses Arabidopsis thaliana, thale cress, with sensor promoter-reporter gene constructs that render the plants as biomonitors (an organism used to determine the quality of the surrounding environment) of their environment using real-time nondestructive Green Fluorescent Protein (GFP) imagery and traditional postflight analyses.

  20. Redox signaling: globalization of gene expression

    PubMed Central

    Oh, Jeong-Il; Kaplan, Samuel

    2000-01-01

    Here we show that the extent of electron flow through the cbb3 oxidase of Rhodobacter sphaeroides is inversely related to the expression levels of those photosynthesis genes that are under control of the PrrBA two-component activation system: the greater the electron flow, the stronger the inhibitory signal generated by the cbb3 oxidase to repress photosynthesis gene expression. Using site-directed mutagenesis, we show that intramolecular electron transfer within the cbb3 oxidase is involved in signal generation and transduction and this signal does not directly involve the intervention of molecular oxygen. In addition to the cbb3 oxidase, the redox state of the quinone pool controls the transcription rate of the puc operon via the AppA–PpsR antirepressor–repressor system. Together, these interacting regulatory circuits are depicted in a model that permits us to understand the regulation by oxygen and light of photosynthesis gene expression in R.sphaeroides. PMID:10944106

  1. Neighboring Genes Show Correlated Evolution in Gene Expression

    PubMed Central

    Ghanbarian, Avazeh T.; Hurst, Laurence D.

    2015-01-01

    When considering the evolution of a gene’s expression profile, we commonly assume that this is unaffected by its genomic neighborhood. This is, however, in contrast to what we know about the lack of autonomy between neighboring genes in gene expression profiles in extant taxa. Indeed, in all eukaryotic genomes genes of similar expression-profile tend to cluster, reflecting chromatin level dynamics. Does it follow that if a gene increases expression in a particular lineage then the genomic neighbors will also increase in their expression or is gene expression evolution autonomous? To address this here we consider evolution of human gene expression since the human-chimp common ancestor, allowing for both variation in estimation of current expression level and error in Bayesian estimation of the ancestral state. We find that in all tissues and both sexes, the change in gene expression of a focal gene on average predicts the change in gene expression of neighbors. The effect is highly pronounced in the immediate vicinity (<100 kb) but extends much further. Sex-specific expression change is also genomically clustered. As genes increasing their expression in humans tend to avoid nuclear lamina domains and be enriched for the gene activator 5-hydroxymethylcytosine, we conclude that, most probably owing to chromatin level control of gene expression, a change in gene expression of one gene likely affects the expression evolution of neighbors, what we term expression piggybacking, an analog of hitchhiking. PMID:25743543

  2. Inferring differentiation pathways from gene expression

    PubMed Central

    Costa, Ivan G.; Roepcke, Stefan; Hafemeister, Christoph; Schliep, Alexander

    2008-01-01

    Motivation: The regulation of proliferation and differentiation of embryonic and adult stem cells into mature cells is central to developmental biology. Gene expression measured in distinguishable developmental stages helps to elucidate underlying molecular processes. In previous work we showed that functional gene modules, which act distinctly in the course of development, can be represented by a mixture of trees. In general, the similarities in the gene expression programs of cell populations reflect the similarities in the differentiation path. Results: We propose a novel model for gene expression profiles and an unsupervised learning method to estimate developmental similarity and infer differentiation pathways. We assess the performance of our model on simulated data and compare it with favorable results to related methods. We also infer differentiation pathways and predict functional modules in gene expression data of lymphoid development. Conclusions: We demonstrate for the first time how, in principal, the incorporation of structural knowledge about the dependence structure helps to reveal differentiation pathways and potentially relevant functional gene modules from microarray datasets. Our method applies in any area of developmental biology where it is possible to obtain cells of distinguishable differentiation stages. Availability: The implementation of our method (GPL license), data and additional results are available at http://algorithmics.molgen.mpg.de/Supplements/InfDif/ Contact: filho@molgen.mpg.de, schliep@molgen.mpg.de Supplementary information: Supplementary data is available at Bioinformatics online. PMID:18586709

  3. Frequent N addition and clonal relatedness among immunoglobulin lambda light chains expressed in rheumatoid arthritis synovia and PBL, and the influence of V lambda gene segment utilization on CDR3 length.

    PubMed Central

    Bridges, S. L.

    1998-01-01

    BACKGROUND: In rheumatoid arthritis (RA), B-lineage cells in the synovial membrane secrete large amounts of immunoglobulin that contribute to tissue destruction. The CDR3 of an immunoglobulin light chain is formed by rearrangements of VL and JL gene segments. Addition of non-germline-encoded (N) nucleotides at V(D)J joins by the enzyme terminal deoxynucleotidyl transferase (TdT) enhances antibody diversity. TdT was previously thought to be active in B cells only during heavy chain rearrangement, but we and others reported unexpectedly high levels of N addition in kappa light chains. We also found clonally related kappa chains bearing unusually long CDR3 intervals in RA synovium, suggesting oligoclonal expansion of a set of atypical B lymphocytes. In this study, we analyzed lambda light chain expression to determine if N addition occurs throughout immunoglobulin gene rearrangement and to compare CDR3 lengths of lambda and kappa light chains in RA patients and normal individuals. MATERIALS AND METHODS: Reverse transcription-polymerase chain reaction (RT-PCR) amplification of V lambda III transcripts was performed on RA synovia and peripheral blood lymphocytes (PBL) and normal PBL for which kappa repertoires were previously analyzed. Representative lambda + PCR products were cloned and sequenced. RESULTS: Analysis of 161 cDNA clones revealed that N addition occurs in lambda light chains of RA patients and normal controls. The lambda light chain repertoires in RA were enriched for long CDR3 intervals. In both RA and controls, CDR3 lengths were strongly influenced by which V lambda gene segment was present in the rearrangement. Five sets of clonally related sequences were found in RA synovia and PBL; one set was found in normal PBL. CONCLUSIONS: In humans, unlike mice, N addition enhances antibody diversity at all stages of immunoglobulin assembly, and the structural diversity of lambda CDR3 intervals is greater than that of kappa light chains. Clonally related V lambda

  4. Gene expression variation and expression quantitative trait mapping of human chromosome 21 genes.

    PubMed

    Deutsch, Samuel; Lyle, Robert; Dermitzakis, Emmanouil T; Attar, Homa; Subrahmanyan, Lakshman; Gehrig, Corinne; Parand, Leila; Gagnebin, Maryline; Rougemont, Jacques; Jongeneel, C Victor; Antonarakis, Stylianos E

    2005-12-01

    Inter-individual differences in gene expression are likely to account for an important fraction of phenotypic differences, including susceptibility to common disorders. Recent studies have shown extensive variation in gene expression levels in humans and other organisms, and that a fraction of this variation is under genetic control. We investigated the patterns of gene expression variation in a 25 Mb region of human chromosome 21, which has been associated with many Down syndrome (DS) phenotypes. Taqman real-time PCR was used to measure expression variation of 41 genes in lymphoblastoid cells of 40 unrelated individuals. For 25 genes found to be differentially expressed, additional analysis was performed in 10 CEPH families to determine heritabilities and map loci harboring regulatory variation. Seventy-six percent of the differentially expressed genes had significant heritabilities, and genomewide linkage analysis led to the identification of significant eQTLs for nine genes. Most eQTLs were in trans, with the best result (P=7.46 x 10(-8)) obtained for TMEM1 on chromosome 12q24.33. A cis-eQTL identified for CCT8 was validated by performing an association study in 60 individuals from the HapMap project. SNP rs965951 located within CCT8 was found to be significantly associated with its expression levels (P=2.5 x 10(-5)) confirming cis-regulatory variation. The results of our study provide a representative view of expression variation of chromosome 21 genes, identify loci involved in their regulation and suggest that genes, for which expression differences are significantly larger than 1.5-fold in control samples, are unlikely to be involved in DS-phenotypes present in all affected individuals. PMID:16251198

  5. Gene expression profile of pulpitis.

    PubMed

    Galicia, J C; Henson, B R; Parker, J S; Khan, A A

    2016-06-01

    The cost, prevalence and pain associated with endodontic disease necessitate an understanding of the fundamental molecular aspects of its pathogenesis. This study was aimed to identify the genetic contributors to pulpal pain and inflammation. Inflamed pulps were collected from patients diagnosed with irreversible pulpitis (n=20). Normal pulps from teeth extracted for various reasons served as controls (n=20). Pain level was assessed using a visual analog scale (VAS). Genome-wide microarray analysis was performed using Affymetrix GeneTitan Multichannel Instrument. The difference in gene expression levels were determined by the significance analysis of microarray program using a false discovery rate (q-value) of 5%. Genes involved in immune response, cytokine-cytokine receptor interaction and signaling, integrin cell surface interactions, and others were expressed at relatively higher levels in the pulpitis group. Moreover, several genes known to modulate pain and inflammation showed differential expression in asymptomatic and mild pain patients (⩾30 mm on VAS) compared with those with moderate to severe pain. This exploratory study provides a molecular basis for the clinical diagnosis of pulpitis. With an enhanced understanding of pulpal inflammation, future studies on treatment and management of pulpitis and on pain associated with it can have a biological reference to bridge treatment strategies with pulpal biology. PMID:27052691

  6. Systems Biophysics of Gene Expression

    PubMed Central

    Vilar, Jose M.G.; Saiz, Leonor

    2013-01-01

    Gene expression is a process central to any form of life. It involves multiple temporal and functional scales that extend from specific protein-DNA interactions to the coordinated regulation of multiple genes in response to intracellular and extracellular changes. This diversity in scales poses fundamental challenges to the use of traditional approaches to fully understand even the simplest gene expression systems. Recent advances in computational systems biophysics have provided promising avenues to reliably integrate the molecular detail of biophysical process into the system behavior. Here, we review recent advances in the description of gene regulation as a system of biophysical processes that extend from specific protein-DNA interactions to the combinatorial assembly of nucleoprotein complexes. There is now basic mechanistic understanding on how promoters controlled by multiple, local and distal, DNA binding sites for transcription factors can actively control transcriptional noise, cell-to-cell variability, and other properties of gene regulation, including precision and flexibility of the transcriptional responses. PMID:23790365

  7. Control of Renin Gene Expression

    PubMed Central

    Glenn, Sean T.; Jones, Craig A.; Gross, Kenneth W.; Pan, Li

    2015-01-01

    Renin, as part of the renin-angiotensin system, plays a critical role in the regulation of blood pressure, electrolyte homeostasis, mammalian renal development and progression of fibrotic/hypertrophic diseases. Renin gene transcription is subject to complex developmental and tissue-specific regulation. Initial studies using the mouse As4.1 cell line, which has many characteristics of the renin-expressing juxtaglomerular cells of the kidney, have identified a proximal promoter region (−197 to −50 bp) and an enhancer (−2866 to −2625 bp) upstream of the Ren-1c gene, which are critical for renin gene expression. The proximal promoter region contains several transcription factor-binding sites including a binding site for the products of the developmental control genes Hox. The enhancer consists of at least 11 transcription factor-binding sites and is responsive to various signal transduction pathways including cAMP, retinoic acid, endothelin-1, and cytokines, all of which are known to alter renin mRNA levels. Furthermore, in vivo models have validated several of these key components found within the proximal promoter region and the enhancer as well as other key sites necessary for renin gene transcription. PMID:22576577

  8. Determining Physical Mechanisms of Gene Expression Regulation from Single Cell Gene Expression Data.

    PubMed

    Ezer, Daphne; Moignard, Victoria; Göttgens, Berthold; Adryan, Boris

    2016-08-01

    Many genes are expressed in bursts, which can contribute to cell-to-cell heterogeneity. It is now possible to measure this heterogeneity with high throughput single cell gene expression assays (single cell qPCR and RNA-seq). These experimental approaches generate gene expression distributions which can be used to estimate the kinetic parameters of gene expression bursting, namely the rate that genes turn on, the rate that genes turn off, and the rate of transcription. We construct a complete pipeline for the analysis of single cell qPCR data that uses the mathematics behind bursty expression to develop more accurate and robust algorithms for analyzing the origin of heterogeneity in experimental samples, specifically an algorithm for clustering cells by their bursting behavior (Simulated Annealing for Bursty Expression Clustering, SABEC) and a statistical tool for comparing the kinetic parameters of bursty expression across populations of cells (Estimation of Parameter changes in Kinetics, EPiK). We applied these methods to hematopoiesis, including a new single cell dataset in which transcription factors (TFs) involved in the earliest branchpoint of blood differentiation were individually up- and down-regulated. We could identify two unique sub-populations within a seemingly homogenous group of hematopoietic stem cells. In addition, we could predict regulatory mechanisms controlling the expression levels of eighteen key hematopoietic transcription factors throughout differentiation. Detailed information about gene regulatory mechanisms can therefore be obtained simply from high throughput single cell gene expression data, which should be widely applicable given the rapid expansion of single cell genomics. PMID:27551778

  9. Determining Physical Mechanisms of Gene Expression Regulation from Single Cell Gene Expression Data

    PubMed Central

    Moignard, Victoria; Göttgens, Berthold; Adryan, Boris

    2016-01-01

    Many genes are expressed in bursts, which can contribute to cell-to-cell heterogeneity. It is now possible to measure this heterogeneity with high throughput single cell gene expression assays (single cell qPCR and RNA-seq). These experimental approaches generate gene expression distributions which can be used to estimate the kinetic parameters of gene expression bursting, namely the rate that genes turn on, the rate that genes turn off, and the rate of transcription. We construct a complete pipeline for the analysis of single cell qPCR data that uses the mathematics behind bursty expression to develop more accurate and robust algorithms for analyzing the origin of heterogeneity in experimental samples, specifically an algorithm for clustering cells by their bursting behavior (Simulated Annealing for Bursty Expression Clustering, SABEC) and a statistical tool for comparing the kinetic parameters of bursty expression across populations of cells (Estimation of Parameter changes in Kinetics, EPiK). We applied these methods to hematopoiesis, including a new single cell dataset in which transcription factors (TFs) involved in the earliest branchpoint of blood differentiation were individually up- and down-regulated. We could identify two unique sub-populations within a seemingly homogenous group of hematopoietic stem cells. In addition, we could predict regulatory mechanisms controlling the expression levels of eighteen key hematopoietic transcription factors throughout differentiation. Detailed information about gene regulatory mechanisms can therefore be obtained simply from high throughput single cell gene expression data, which should be widely applicable given the rapid expansion of single cell genomics. PMID:27551778

  10. Integrating heterogeneous gene expression data for gene regulatory network modelling.

    PubMed

    Sîrbu, Alina; Ruskin, Heather J; Crane, Martin

    2012-06-01

    Gene regulatory networks (GRNs) are complex biological systems that have a large impact on protein levels, so that discovering network interactions is a major objective of systems biology. Quantitative GRN models have been inferred, to date, from time series measurements of gene expression, but at small scale, and with limited application to real data. Time series experiments are typically short (number of time points of the order of ten), whereas regulatory networks can be very large (containing hundreds of genes). This creates an under-determination problem, which negatively influences the results of any inferential algorithm. Presented here is an integrative approach to model inference, which has not been previously discussed to the authors' knowledge. Multiple heterogeneous expression time series are used to infer the same model, and results are shown to be more robust to noise and parameter perturbation. Additionally, a wavelet analysis shows that these models display limited noise over-fitting within the individual datasets. PMID:21948152

  11. Gene expression throughout a vertebrate's embryogenesis

    PubMed Central

    2011-01-01

    Background Describing the patterns of gene expression during embryonic development has broadened our understanding of the processes and patterns that define morphogenesis. Yet gene expression patterns have not been described throughout vertebrate embryogenesis. This study presents statistical analyses of gene expression during all 40 developmental stages in the teleost Fundulus heteroclitus using four biological replicates per stage. Results Patterns of gene expression for 7,000 genes appear to be important as they recapitulate developmental timing. Among the 45% of genes with significant expression differences between pairs of temporally adjacent stages, significant differences in gene expression vary from as few as five to more than 660. Five adjacent stages have disproportionately more significant changes in gene expression (> 200 genes) relative to other stages: four to eight and eight to sixteen cell stages, onset of circulation, pre and post-hatch, and during complete yolk absorption. The fewest differences among adjacent stages occur during gastrulation. Yet, at stage 16, (pre-mid-gastrulation) the largest number of genes has peak expression. This stage has an over representation of genes in oxidative respiration and protein expression (ribosomes, translational genes and proteases). Unexpectedly, among all ribosomal genes, both strong positive and negative correlations occur. Similar correlated patterns of expression occur among all significant genes. Conclusions These data provide statistical support for the temporal dynamics of developmental gene expression during all stages of vertebrate development. PMID:21356103

  12. Gene Expression Studies in Mosquitoes

    PubMed Central

    Chen, Xlao-Guang; Mathur, Geetika; James, Anthony A.

    2009-01-01

    Research on gene expression in mosquitoes is motivated by both basic and applied interests. Studies of genes involved in hematophagy, reproduction, olfaction, and immune responses reveal an exquisite confluence of biological adaptations that result in these highly-successful life forms. The requirement of female mosquitoes for a bloodmeal for propagation has been exploited by a wide diversity of viral, protozoan and metazoan pathogens as part of their life cycles. Identifying genes involved in host-seeking, blood feeding and digestion, reproduction, insecticide resistance and susceptibility/refractoriness to pathogen development is expected to provide the bases for the development of novel methods to control mosquito-borne diseases. Advances in mosquito transgenesis technologies, the availability of whole genome sequence information, mass sequencing and analyses of transcriptomes and RNAi techniques will assist development of these tools as well as deepen the understanding of the underlying genetic components for biological phenomena characteristic of these insect species. PMID:19161831

  13. The Gene Expression Omnibus database

    PubMed Central

    Clough, Emily; Barrett, Tanya

    2016-01-01

    The Gene Expression Omnibus (GEO) database is an international public repository that archives and freely distributes high-throughput gene expression and other functional genomics data sets. Created in 2000 as a worldwide resource for gene expression studies, GEO has evolved with rapidly changing technologies and now accepts high-throughput data for many other data applications, including those that examine genome methylation, chromatin structure, and genome–protein interactions. GEO supports community-derived reporting standards that specify provision of several critical study elements including raw data, processed data, and descriptive metadata. The database not only provides access to data for tens of thousands of studies, but also offers various Web-based tools and strategies that enable users to locate data relevant to their specific interests, as well as to visualize and analyze the data. This chapter includes detailed descriptions of methods to query and download GEO data and use the analysis and visualization tools. The GEO homepage is at http://www.ncbi.nlm.nih.gov/geo/. PMID:27008011

  14. The Gene Expression Omnibus Database.

    PubMed

    Clough, Emily; Barrett, Tanya

    2016-01-01

    The Gene Expression Omnibus (GEO) database is an international public repository that archives and freely distributes high-throughput gene expression and other functional genomics data sets. Created in 2000 as a worldwide resource for gene expression studies, GEO has evolved with rapidly changing technologies and now accepts high-throughput data for many other data applications, including those that examine genome methylation, chromatin structure, and genome-protein interactions. GEO supports community-derived reporting standards that specify provision of several critical study elements including raw data, processed data, and descriptive metadata. The database not only provides access to data for tens of thousands of studies, but also offers various Web-based tools and strategies that enable users to locate data relevant to their specific interests, as well as to visualize and analyze the data. This chapter includes detailed descriptions of methods to query and download GEO data and use the analysis and visualization tools. The GEO homepage is at http://www.ncbi.nlm.nih.gov/geo/. PMID:27008011

  15. Correspondence between Resting-State Activity and Brain Gene Expression.

    PubMed

    Wang, Guang-Zhong; Belgard, T Grant; Mao, Deng; Chen, Leslie; Berto, Stefano; Preuss, Todd M; Lu, Hanzhang; Geschwind, Daniel H; Konopka, Genevieve

    2015-11-18

    The relationship between functional brain activity and gene expression has not been fully explored in the human brain. Here, we identify significant correlations between gene expression in the brain and functional activity by comparing fractional amplitude of low-frequency fluctuations (fALFF) from two independent human fMRI resting-state datasets to regional cortical gene expression from a newly generated RNA-seq dataset and two additional gene expression datasets to obtain robust and reproducible correlations. We find significantly more genes correlated with fALFF than expected by chance and identify specific genes correlated with the imaging signals in multiple expression datasets in the default mode network. Together, these data support a population-level relationship between regional steady-state brain gene expression and resting-state brain activity. PMID:26590343

  16. Classification of genes based on gene expression analysis

    NASA Astrophysics Data System (ADS)

    Angelova, M.; Myers, C.; Faith, J.

    2008-05-01

    Systems biology and bioinformatics are now major fields for productive research. DNA microarrays and other array technologies and genome sequencing have advanced to the point that it is now possible to monitor gene expression on a genomic scale. Gene expression analysis is discussed and some important clustering techniques are considered. The patterns identified in the data suggest similarities in the gene behavior, which provides useful information for the gene functionalities. We discuss measures for investigating the homogeneity of gene expression data in order to optimize the clustering process. We contribute to the knowledge of functional roles and regulation of E. coli genes by proposing a classification of these genes based on consistently correlated genes in expression data and similarities of gene expression patterns. A new visualization tool for targeted projection pursuit and dimensionality reduction of gene expression data is demonstrated.

  17. Classification of genes based on gene expression analysis

    SciTech Connect

    Angelova, M. Myers, C. Faith, J.

    2008-05-15

    Systems biology and bioinformatics are now major fields for productive research. DNA microarrays and other array technologies and genome sequencing have advanced to the point that it is now possible to monitor gene expression on a genomic scale. Gene expression analysis is discussed and some important clustering techniques are considered. The patterns identified in the data suggest similarities in the gene behavior, which provides useful information for the gene functionalities. We discuss measures for investigating the homogeneity of gene expression data in order to optimize the clustering process. We contribute to the knowledge of functional roles and regulation of E. coli genes by proposing a classification of these genes based on consistently correlated genes in expression data and similarities of gene expression patterns. A new visualization tool for targeted projection pursuit and dimensionality reduction of gene expression data is demonstrated.

  18. Reduced expression of Autographa californica nucleopolyhedrovirus ORF34, an essential gene, enhances heterologous gene expression

    SciTech Connect

    Salem, Tamer Z.; Zhang, Fengrui; Thiem, Suzanne M.

    2013-01-20

    Autographa californica multiple nucleopolyhedrovirus ORF34 is part of a transcriptional unit that includes ORF32, encoding a viral fibroblast growth factor (FGF) and ORF33. We identified ORF34 as a candidate for deletion to improve protein expression in the baculovirus expression system based on enhanced reporter gene expression in an RNAi screen of virus genes. However, ORF34 was shown to be an essential gene. To explore ORF34 function, deletion (KO34) and rescue bacmids were constructed and characterized. Infection did not spread from primary KO34 transfected cells and supernatants from KO34 transfected cells could not infect fresh Sf21 cells whereas the supernatant from the rescue bacmids transfection could recover the infection. In addition, budded viruses were not observed in KO34 transfected cells by electron microscopy, nor were viral proteins detected from the transfection supernatants by western blots. These demonstrate that ORF34 is an essential gene with a possible role in infectious virus production.

  19. Expression of mouse metallothionein genes in tobacco

    SciTech Connect

    Maiti, I.B.; Yeargan, R.; Wagner, G.J.; Hunt, A.G. )

    1990-05-01

    We have expressed a mouse metallothionein (NT) gene in tobacco under control of the cauliflower mosaic virus (CaMV) 35S promoter and a pea ribulose-1,5-bisphosphate carboxylase small subunit (rbcS) gene promoter. Seedlings in which MT gene expression is driven by the 35S promoter are resistant to toxic levels of cadmium. Mature plants carrying the 35S-MT gene accumulate less Cd in their leaves when exposed to low levels of Cd in laboratory growth conditions. Plants with the rbcS-MT construction express this gene in a light-regulated and tissue-specific manner, as expected. Moreover, the MT levels in leaves in these plants are about 20% of those seen in 35S-MT plants. These plants are currently being tested for Cd resistance. In addition, a small field evaluation of 35S-MT lines for Cd levels is being evaluated. These experiments will address the possibility of using MTs to alter Cd levels in crop species.

  20. Coordination of plastid and nuclear gene expression.

    PubMed Central

    Gray, John C; Sullivan, James A; Wang, Jun-Hui; Jerome, Cheryl A; MacLean, Daniel

    2003-01-01

    The coordinated expression of genes distributed between the nuclear and plastid genomes is essential for the assembly of functional chloroplasts. Although the nucleus has a pre-eminent role in controlling chloroplast biogenesis, there is considerable evidence that the expression of nuclear genes encoding photosynthesis-related proteins is regulated by signals from plastids. Perturbation of several plastid-located processes, by inhibitors or in mutants, leads to decreased transcription of a set of nuclear photosynthesis-related genes. Characterization of arabidopsis gun (genomes uncoupled) mutants, which express nuclear genes in the presence of norflurazon or lincomycin, has provided evidence for two separate signalling pathways, one involving tetrapyrrole biosynthesis intermediates and the other requiring plastid protein synthesis. In addition, perturbation of photosynthetic electron transfer produces at least two different redox signals, as part of the acclimation to altered light conditions. The recognition of multiple plastid signals requires a reconsideration of the mechanisms of regulation of transcription of nuclear genes encoding photosynthesis-related proteins. PMID:12594922

  1. An approach for clustering gene expression data with error information

    PubMed Central

    Tjaden, Brian

    2006-01-01

    Background Clustering of gene expression patterns is a well-studied technique for elucidating trends across large numbers of transcripts and for identifying likely co-regulated genes. Even the best clustering methods, however, are unlikely to provide meaningful results if too much of the data is unreliable. With the maturation of microarray technology, a wealth of research on statistical analysis of gene expression data has encouraged researchers to consider error and uncertainty in their microarray experiments, so that experiments are being performed increasingly with repeat spots per gene per chip and with repeat experiments. One of the challenges is to incorporate the measurement error information into downstream analyses of gene expression data, such as traditional clustering techniques. Results In this study, a clustering approach is presented which incorporates both gene expression values and error information about the expression measurements. Using repeat expression measurements, the error of each gene expression measurement in each experiment condition is estimated, and this measurement error information is incorporated directly into the clustering algorithm. The algorithm, CORE (Clustering Of Repeat Expression data), is presented and its performance is validated using statistical measures. By using error information about gene expression measurements, the clustering approach is less sensitive to noise in the underlying data and it is able to achieve more accurate clusterings. Results are described for both synthetic expression data as well as real gene expression data from Escherichia coli and Saccharomyces cerevisiae. Conclusion The additional information provided by replicate gene expression measurements is a valuable asset in effective clustering. Gene expression profiles with high errors, as determined from repeat measurements, may be unreliable and may associate with different clusters, whereas gene expression profiles with low errors can be

  2. Transgenic control of perforin gene expression

    SciTech Connect

    Lichtenheld, M.G.; Podack, E.R.; Levy, R.B.

    1995-03-01

    Perforin is a pore-forming effector molecule of CTL and NK cells. To characterize perforin gene expression and its transcriptional control mechanisms in vivo, expression of a cell surface tag, i.e., human CD4, was driven by 5.1 kb of the murin perforin 5{prime} flanking and promoter region in transgenic mice. Six out of seven transgenic lines expressed the perforin-tag hybrid gene at low to intermediate levels, depending on the integration site. Transgene expression occurred in all cells that physiologically are able to express perforin. At the whole organ level, significant amounts of transgenic mRNA and endogenous perforin mRNA were co-expressed in the lymphoid organs, as well as in the lung, the ileum, the oviduct/uterus, and the bone marrow. At the single cell level, the perforin tag was present on NK cells and on CD8{sup +}, as well as on CD4{sup +} cells. Also targeted were Thy-1.2{sup +} {gamma}{delta} T cells, but not Thy-1.2{sup -} {gamma}{delta} T cells, B cells, nor monocytes. During thymic T cell development, transgene expression occurred in double negative (CD4{sup -}CD8{sup -}) thymocytes and was detected at all subsequent stages, but exceeded the expression levels of the endogenous gene in the thymus. In conclusion, the analyzed perforin 5{prime} flanking and promoter region contains important cis-acting sequences that restrict perforin expression to T cells and NK cells, and therefore provides a unique tool for manipulating T cell and/or Nk cell-mediated immune responses in transgenic mice. On the other hand, the normal control of perforin gene expression involves at least one additional negative control mechanism that was not mediated by the transgenic promoter and upstream region. This control restricts perforin gene expression in thymically developing T cells and in most resting peripheral T cells, but can be released upon T cell activation. 43 refs., 7 figs., 1 tab.

  3. Identification of four soybean reference genes for gene expression normalization

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Gene expression analysis requires the use of reference genes stably expressed independently of specific tissues or environmental conditions. Housekeeping genes (e.g., actin, tubulin, ribosomal, polyubiquitin and elongation factor 1-alpha) are commonly used as reference genes with the assumption tha...

  4. Mitochondrial RNA granules: Compartmentalizing mitochondrial gene expression.

    PubMed

    Jourdain, Alexis A; Boehm, Erik; Maundrell, Kinsey; Martinou, Jean-Claude

    2016-03-14

    In mitochondria, DNA replication, gene expression, and RNA degradation machineries coexist within a common nondelimited space, raising the question of how functional compartmentalization of gene expression is achieved. Here, we discuss the recently characterized "mitochondrial RNA granules," mitochondrial subdomains with an emerging role in the regulation of gene expression. PMID:26953349

  5. Does inbreeding affect gene expression in birds?

    PubMed Central

    Hansson, Bengt; Naurin, Sara; Hasselquist, Dennis

    2014-01-01

    Inbreeding increases homozygosity, exposes genome-wide recessive deleterious alleles and often reduces fitness. The physiological and reproductive consequences of inbreeding may be manifested already during gene regulation, but the degree to which inbreeding influences gene expression is unknown in most organisms, including in birds. To evaluate the pattern of inbreeding-affected gene expression over the genome and in relation to sex, we performed a transcriptome-wide gene expression (10 695 genes) study of brain tissue of 10-day-old inbred and outbred, male and female zebra finches. We found significantly lower gene expression in females compared with males at Z-linked genes, confirming that dosage compensation is incomplete in female birds. However, inbreeding did not affect gene expression at autosomal or sex-linked genes, neither in males nor in females. Analyses of single genes again found a clear sex-biased expression at Z-linked genes, whereas only a single gene was significantly affected by inbreeding. The weak effect of inbreeding on gene expression in zebra finches contrasts to the situation, for example, in Drosophila where inbreeding has been found to influence gene expression more generally and at stress-related genes in particular. PMID:25232028

  6. Heterelogous Expression of Plant Genes

    PubMed Central

    Yesilirmak, Filiz; Sayers, Zehra

    2009-01-01

    Heterologous expression allows the production of plant proteins in an organism which is simpler than the natural source. This technology is widely used for large-scale purification of plant proteins from microorganisms for biochemical and biophysical analyses. Additionally expression in well-defined model organisms provides insights into the functions of proteins in complex pathways. The present review gives an overview of recombinant plant protein production methods using bacteria, yeast, insect cells, and Xenopus laevis oocytes and discusses the advantages of each system for functional studies and protein characterization. PMID:19672459

  7. MRI of Transgene Expression: Correlation to Therapeutic Gene Expression

    PubMed Central

    Ichikawa, Tomotsugu; Högemanny, Dagmar; Saeki, Yoshinaga; Tyminski, Edyta; Terada, Kinya; Weissleder, Ralph; Chiocca, E Antonio; Basilion, James P

    2002-01-01

    Abstract Magnetic resonance imaging (MRI) can provide highresolution 3D maps of structural and functional information, yet its use of mapping in vivo gene expression has only recently been explored. A potential application for this technology is to noninvasively image transgene expression. The current study explores the latter using a nonregulatable internalizing engineered transferrin receptor (ETR) whose expression can be probed for with a superparamagnetic Tf-CLIO probe. Using an HSV-based amplicon vector system for transgene delivery, we demonstrate that: 1) ETR is a sensitive MR marker gene; 2) several transgenes can be efficiently expressed from a single amplicon; 3) expression of each transgene results in functional gene product; and 4) ETR gene expression correlates with expression of therapeutic genes when the latter are contained within the same amplicon. These data, taken together, suggest that MRI of ETR expression can serve as a surrogate for measuring therapeutic transgene expression. PMID:12407446

  8. Gene expression in rat brain.

    PubMed

    Milner, R J; Sutcliffe, J G

    1983-08-25

    191 randomly selected cDNA clones prepared from rat brain cytoplasmic poly (A)+ RNA were screened by Northern blot hybridization to rat brain, liver and kidney RNA to determine the tissue distribution, abundance and size of the corresponding brain mRNA. 18% hybridized to mRNAs each present equally in the three tissues, 26% to mRNAs differentially expressed in the tissues, and 30% to mRNAs present only in the brain. An additional 26% of the clones failed to detect mRNA in the three tissues at an abundance level of about 0.01%, but did contain rat cDNA as demonstrated by Southern blotting; this class probably represents rare mRNAs expressed in only some brain cells. Therefore, most mRNA expressed in brain is either specific to brain or otherwise displays regulation. Rarer mRNA species tend to be larger than the more abundant species, and tend to be brain specific; the rarest, specific mRNAs average 5000 nucleotides in length. Ten percent of the clones hybridize to multiple mRNAs, some of which are expressed from small multigenic families. From these data we estimate that there are probably at most 30,000 distinct mRNA species expressed in the rat brain, the majority of which are uniquely expressed in the brain. PMID:6193485

  9. Regulation of methane genes and genome expression

    SciTech Connect

    John N. Reeve

    2009-09-09

    , designated TFE, that had sequences in common with the eukaryotic general transcription factor TFIIE, stimulated archaeal transcription initiation and that the archaeal TATA-box binding protein (TBP) remained attached to the promoter region whereas the transcription factor TFB dissociated from the template DNA following initiation. DNA sequences that directed the localized assembly of archaeal histones into archaeal nucleosomes were identified, and we established that transcription by an archaeal RNA polymerase was slowed but not blocked by archaeal nucleosomes. We developed a new protocol to purify archaeal RNA polymerases and with this enzyme and additional improvements to the in vitro transcription system, we established the template requirements for archaeal transcription termination, investigated the activities of proteins predicted to be methane gene regulators, and established how TrpY, a novel archaeal regulator of expression of the tryptophan biosynthetic operon functions in M. thermautotrophicus. This also resulted in the discovery that almost all M. thermautotrophicus mutants isolated as spontaneously resistant to 5-methyl tryptophan (5MTR) had mutations in trpY and were therefore 5MTR through de-repressed trp operon expression. This established a very simple, practical procedure to determine and quantify the DNA sequence changes that result from exposure of this Archaeon to any experimental mutagenesis protocol. Following the discovery that the Thermococcus kodakaraensis was amenable to genetic manipulation, we established this technology at OSU and subsequently added plasmid expression, a reporter system and additional genetic selections to the T. kodakaraensis genetic toolbox. We established that transcription and translation are coupled in this Archaeon, and by combining in vitro transcription and in vivo genetics, we documented that both TFB1 and TFB2 support transcription initiation in T. kodakaraensis. We quantified the roles of ribosome binding sequences

  10. Direct Introduction of Genes into Rats and Expression of the Genes

    NASA Astrophysics Data System (ADS)

    Benvenisty, Nissim; Reshef, Lea

    1986-12-01

    A method of introducing actively expressed genes into intact mammals is described. DNA precipitated with calcium phosphate has been injected intraperitoneally into newborn rats. The injected genes have been taken up and expressed by the animal tissues. To examine the generality of the method we have injected newborn rats with the chloramphenicol acetyltransferase prokaryotic gene fused with various viral and cellular gene promoters and the gene for hepatitis B surface antigen, and we observed appearance of chloramphenicol acetyltransferase activity and hepatitis B surface antigen in liver and spleen. In addition, administration of genes coding for hormones (insulin or growth hormone) resulted in their expression.

  11. Gene expression profiling in sinonasal adenocarcinoma

    PubMed Central

    2009-01-01

    Background Sinonasal adenocarcinomas are uncommon tumors which develop in the ethmoid sinus after exposure to wood dust. Although the etiology of these tumors is well defined, very little is known about their molecular basis and no diagnostic tool exists for their early detection in high-risk workers. Methods To identify genes involved in this disease, we performed gene expression profiling using cancer-dedicated microarrays, on nine matched samples of sinonasal adenocarcinomas and non-tumor sinusal tissue. Microarray results were validated by quantitative RT-PCR and immunohistochemistry on two additional sets of tumors. Results Among the genes with significant differential expression we selected LGALS4, ACS5, CLU, SRI and CCT5 for further exploration. The overexpression of LGALS4, ACS5, SRI, CCT5 and the downregulation of CLU were confirmed by quantitative RT-PCR. Immunohistochemistry was performed for LGALS4 (Galectin 4), ACS5 (Acyl-CoA synthetase) and CLU (Clusterin) proteins: LGALS4 was highly up-regulated, particularly in the most differentiated tumors, while CLU was lost in all tumors. The expression of ACS5, was more heterogeneous and no correlation was observed with the tumor type. Conclusion Within our microarray study in sinonasal adenocarcinoma we identified two proteins, LGALS4 and CLU, that were significantly differentially expressed in tumors compared to normal tissue. A further evaluation on a new set of tissues, including precancerous stages and low grade tumors, is necessary to evaluate the possibility of using them as diagnostic markers. PMID:19903339

  12. Modulation of R-gene expression across environments.

    PubMed

    MacQueen, Alice; Bergelson, Joy

    2016-03-01

    Some environments are more conducive to pathogen growth than others, and, as a consequence, plants might be expected to invest more in resistance when pathogen growth is favored. Resistance (R-) genes in Arabidopsis thaliana have unusually extensive variation in basal expression when comparing the same R-gene among accessions collected from different environments. R-gene expression variation was characterized to explore whether R-gene expression is up-regulated in environments favoring pathogen proliferation and down-regulated when risks of infection are low; down-regulation would follow if costs of R-gene expression negatively impact plant fitness in the absence of disease. Quantitative reverse transcription-PCR was used to quantify the expression of 13 R-gene loci in plants grown in eight environmental conditions for each of 12 A. thaliana accessions, and large effects of the environment on R-gene expression were found. Surprisingly, almost every change in the environment--be it a change in biotic or abiotic conditions--led to an increase in R-gene expression, a response that was distinct from the average transcriptome response and from that of other stress response genes. These changes in expression are functional in that environmental change prior to infection affected levels of specific disease resistance to isolates of Pseudomonas syringae. In addition, there are strong latitudinal clines in basal R-gene expression and clines in R-gene expression plasticity correlated with drought and high temperatures. These results suggest that variation in R-gene expression across environments may be shaped by natural selection to reduce fitness costs of R-gene expression in permissive or predictable environments. PMID:26983577

  13. Modulation of R-gene expression across environments

    PubMed Central

    MacQueen, Alice; Bergelson, Joy

    2016-01-01

    Some environments are more conducive to pathogen growth than others, and, as a consequence, plants might be expected to invest more in resistance when pathogen growth is favored. Resistance (R-) genes in Arabidopsis thaliana have unusually extensive variation in basal expression when comparing the same R-gene among accessions collected from different environments. R-gene expression variation was characterized to explore whether R-gene expression is up-regulated in environments favoring pathogen proliferation and down-regulated when risks of infection are low; down-regulation would follow if costs of R-gene expression negatively impact plant fitness in the absence of disease. Quantitative reverse transcription–PCR was used to quantify the expression of 13 R-gene loci in plants grown in eight environmental conditions for each of 12 A. thaliana accessions, and large effects of the environment on R-gene expression were found. Surprisingly, almost every change in the environment—be it a change in biotic or abiotic conditions—led to an increase in R-gene expression, a response that was distinct from the average transcriptome response and from that of other stress response genes. These changes in expression are functional in that environmental change prior to infection affected levels of specific disease resistance to isolates of Pseudomonas syringae. In addition, there are strong latitudinal clines in basal R-gene expression and clines in R-gene expression plasticity correlated with drought and high temperatures. These results suggest that variation in R-gene expression across environments may be shaped by natural selection to reduce fitness costs of R-gene expression in permissive or predictable environments. PMID:26983577

  14. Deoxynivalenol Impairs Hepatic and Intestinal Gene Expression of Selected Oxidative Stress, Tight Junction and Inflammation Proteins in Broiler Chickens, but Addition of an Adsorbing Agent Shifts the Effects to the Distal Parts of the Small Intestine

    PubMed Central

    Osselaere, Ann; Santos, Regiane; Hautekiet, Veerle; De Backer, Patrick; Chiers, Koen; Ducatelle, Richard; Croubels, Siska

    2013-01-01

    Broiler chickens are rather resistant to deoxynivalenol and thus, clinical signs are rarely seen. However, effects of subclinical concentrations of deoxynivalenol on both the intestine and the liver are less frequently studied at the molecular level. During our study, we investigated the effects of three weeks of feeding deoxynivalenol on the gut wall morphology, intestinal barrier function and inflammation in broiler chickens. In addition, oxidative stress was evaluated in both the liver and intestine. Besides, the effect of a clay-based mycotoxin adsorbing agent on these different aspects was also studied. Our results show that feeding deoxynivalenol affects the gut wall morphology both in duodenum and jejenum of broiler chickens. A qRT-PCR analysis revealed that deoxynivalenol acts in a very specific way on the intestinal barrier, since only an up-regulation in mRNA expression of claudin 5 in jejunum was observed, while no effects were seen on claudin 1, zona occludens 1 and 2. Addition of an adsorbing agent resulted in an up-regulation of all the investigated genes coding for the intestinal barrier in the ileum. Up-regulation of Toll-like receptor 4 and two markers of oxidative stress (heme-oxigenase or HMOX and xanthine oxidoreductase or XOR) were mainly seen in the jejunum and to a lesser extent in the ileum in response to deoxynivalenol, while in combination with an adsorbing agent main effect was seen in the ileum. These results suggest that an adsorbing agent may lead to higher concentrations of deoxynivalenol in the more distal parts of the small intestine. In the liver, XOR was up-regulated due to DON exposure. HMOX and HIF-1α (hypoxia-inducible factor 1α) were down-regulated due to feeding DON but also due to feeding the adsorbing agent alone or in combination with DON. PMID:23922676

  15. Benzoic Acid-Inducible Gene Expression in Mycobacteria

    PubMed Central

    Dragset, Marte S.; Barczak, Amy K.; Kannan, Nisha; Mærk, Mali; Flo, Trude H.; Valla, Svein; Rubin, Eric J.; Steigedal, Magnus

    2015-01-01

    Conditional expression is a powerful tool to investigate the role of bacterial genes. Here, we adapt the Pseudomonas putida-derived positively regulated XylS/Pm expression system to control inducible gene expression in Mycobacterium smegmatis and Mycobacterium tuberculosis, the causative agent of human tuberculosis. By making simple changes to a Gram-negative broad-host-range XylS/Pm-regulated gene expression vector, we prove that it is possible to adapt this well-studied expression system to non-Gram-negative species. With the benzoic acid-derived inducer m-toluate, we achieve a robust, time- and dose-dependent reversible induction of Pm-mediated expression in mycobacteria, with low background expression levels. XylS/Pm is thus an important addition to existing mycobacterial expression tools, especially when low basal expression is of particular importance. PMID:26348349

  16. Gene Expression: Sizing it all up

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Genomic architecture appears to be a largely unexplored component of gene expression. Although surely not the end of the story, we are learning that when it comes to gene expression, size is important. We have been surprised to find that certain patterns of expression, tissue-specific versus constit...

  17. The +37 kb Cebpa Enhancer Is Critical for Cebpa Myeloid Gene Expression and Contains Functional Sites that Bind SCL, GATA2, C/EBPα, PU.1, and Additional Ets Factors

    PubMed Central

    Cooper, Stacy; Guo, Hong; Friedman, Alan D.

    2015-01-01

    The murine Cebpa gene contains an evolutionarily conserved 453 bp enhancer located at +37 kb that, together with its promoter, directs expression to myeloid progenitors and to long-term hematopoietic stem cells in transgenic mice. In human acute myeloid leukemia cases, the enhancer lacks point mutations but binds the RUNX1-ETO oncoprotein. The enhancer contains the H3K4me1 and H3K27Ac histone modifications, denoting an active enhancer, at progressively increasing levels as long-term hematopoietic stem cells transition to granulocyte-monocyte progenitors. We previously identified four enhancer sites that bind RUNX1 and demonstrated that their integrity is required for maximal enhancer activity in 32Dcl3 myeloid cells. The +37 kb Cebpa enhancer also contains C/EBP, Ets factor, Myb, GATA, and E-box consensus sites conserved in the human +42 kb CEBPA enhancer. Mutation of the two C/EBP, seven Ets, one Myb, two GATA, or two E-box sites reduces activity of an enhancer-promoter reporter in 32Dcl3 cells. In 293T gel shift assays, exogenous C/EBPα binds both C/EBP sites, c-Myb binds the Myb site, PU.1 binds the second Ets site, PU.1, Fli-1, ERG, and Ets1 bind the sixth Ets site, GATA2 binds both GATA sites, and SCL binds the second E-box. Endogenous hematopoietic RUNX1, PU.1, Fli-1, ERG, C/EBPα, GATA2, and SCL were previously shown to bind the enhancer, and we find that endogenous PU.1 binds the second Ets site in 32Dcl3 cells. Using CRISPR/Cas9, we developed 32Dcl3 lines in which the wild-type enhancer alleles are replaced with a variant mutant in the seven Ets sites. These lines have 20-fold reduced Cebpa mRNA when cultured in IL-3 or G-CSF, demonstrating a critical requirement for enhancer integrity for optimal Cebpa expression. In addition, these results indicate that the +37 kb Cebpa enhancer is the focus of multiple regulatory transcriptional pathways that impact its expression during normal hematopoiesis and potentially during myeloid transformation. PMID:25938608

  18. MEPD: medaka expression pattern database, genes and more

    PubMed Central

    Alonso-Barba, Juan I.; Rahman, Raza-Ur; Wittbrodt, Joachim; Mateo, Juan L.

    2016-01-01

    The Medaka Expression Pattern Database (MEPD; http://mepd.cos.uni-heidelberg.de/) is designed as a repository of medaka expression data for the scientific community. In this update we present two main improvements. First, we have changed the previous clone-centric view for in situ data to a gene-centric view. This is possible because now we have linked all the data present in MEPD to the medaka gene annotation in ENSEMBL. In addition, we have also connected the medaka genes in MEPD to their corresponding orthologous gene in zebrafish, again using the ENSEMBL database. Based on this, we provide a link to the Zebrafish Model Organism Database (ZFIN) to allow researches to compare expression data between these two fish model organisms. As a second major improvement, we have modified the design of the database to enable it to host regulatory elements, promoters or enhancers, expression patterns in addition to gene expression. The combination of gene expression, by traditional in situ, and regulatory element expression, typically by fluorescence reporter gene, within the same platform assures consistency in terms of annotation. In our opinion, this will allow researchers to uncover new insights between the expression domain of genes and their regulatory landscape. PMID:26450962

  19. Gene Expression Profiling in the Hibernating Primate, Cheirogaleus Medius.

    PubMed

    Faherty, Sheena L; Villanueva-Cañas, José Luis; Klopfer, Peter H; Albà, M Mar; Yoder, Anne D

    2016-01-01

    Hibernation is a complex physiological response that some mammalian species employ to evade energetic demands. Previous work in mammalian hibernators suggests that hibernation is activated not by a set of genes unique to hibernators, but by differential expression of genes that are present in all mammals. This question of universal genetic mechanisms requires further investigation and can only be tested through additional investigations of phylogenetically dispersed species. To explore this question, we use RNA-Seq to investigate gene expression dynamics as they relate to the varying physiological states experienced throughout the year in a group of primate hibernators-Madagascar's dwarf lemurs (genus Cheirogaleus). In a novel experimental approach, we use longitudinal sampling of biological tissues as a method for capturing gene expression profiles from the same individuals throughout their annual hibernation cycle. We identify 90 candidate genes that have variable expression patterns when comparing two active states (Active 1 and Active 2) with a torpor state. These include genes that are involved in metabolic pathways, feeding behavior, and circadian rhythms, as might be expected to correlate with seasonal physiological state changes. The identified genes appear to be critical for maintaining the health of an animal that undergoes prolonged periods of metabolic depression concurrent with the hibernation phenotype. By focusing on these differentially expressed genes in dwarf lemurs, we compare gene expression patterns in previously studied mammalian hibernators. Additionally, by employing evolutionary rate analysis, we find that hibernation-related genes do not evolve under positive selection in hibernating species relative to nonhibernators. PMID:27412611

  20. Gene expression profiling of inflammatory bladder disorders.

    PubMed

    Saban, Marcia R; Nguyen, Ngoc-Bich; Hurst, Robert E; Saban, Ricardo

    2003-03-01

    Inflammation underlies all major bladder pathologies including malignancy and represents a defense reaction to injury caused by physical damage, chemical substances, micro-organisms or other agents. During acute inflammation, activation of specific molecular pathways leads to an increased expression of selected genes whose products attack the insult, but ultimately should protect the tissue from the noxious stimulus. However, once the stimulus ceases, gene-expression should return to basal levels to avoid tissue damage, fibrosis, loss of function, and chronic inflammation. If this down-regulation does not occur, tissue fibrosis occurs as a serious complication of chronic inflammation. Although sensory nerve and most cells products are known to be key parts of the inflammatory puzzle, other key molecules are constantly being described that have a role in bladder inflammation. Therefore, as the database describing the repertoire of inflammatory mediators implicated in bladder inflammation increases, the central mechanisms by which injury can induce inflammation, cell damage, and repair often becomes less rather than more clear. To make sense of the vast knowledge of the genes involved in the inflammatory response may require analysis of the patterns of change and the elucidation of gene networks far more than definition of additional members of inflammatory cascades. This review discuss the appropriate use of microarray technology, which promises to solve both of these problems as well as identifying key molecules and mechanisms involved in the transition between acute and chronic inflammation. PMID:12647997

  1. Global Gene Expression in Staphylococcus aureus Biofilms

    PubMed Central

    Beenken, Karen E.; Dunman, Paul M.; McAleese, Fionnuala; Macapagal, Daphne; Murphy, Ellen; Projan, Steven J.; Blevins, Jon S.; Smeltzer, Mark S.

    2004-01-01

    We previously demonstrated that mutation of the staphylococcal accessory regulator (sarA) in a clinical isolate of Staphylococcus aureus (UAMS-1) results in an impaired capacity to form a biofilm in vitro (K. E. Beenken, J. S. Blevins, and M. S. Smeltzer, Infect. Immun. 71:4206-4211, 2003). In this report, we used a murine model of catheter-based biofilm formation to demonstrate that a UAMS-1 sarA mutant also has a reduced capacity to form a biofilm in vivo. Surprisingly, mutation of the UAMS-1 ica locus had little impact on biofilm formation in vitro or in vivo. In an effort to identify additional loci that might be relevant to biofilm formation and/or the adaptive response required for persistence of S. aureus within a biofilm, we isolated total cellular RNA from UAMS-1 harvested from a biofilm grown in a flow cell and compared the transcriptional profile of this RNA to RNA isolated from both exponential- and stationary-phase planktonic cultures. Comparisons were done using a custom-made Affymetrix GeneChip representing the genomic complement of six strains of S. aureus (COL, N315, Mu50, NCTC 8325, EMRSA-16 [strain 252], and MSSA-476). The results confirm that the sessile lifestyle associated with persistence within a biofilm is distinct by comparison to the lifestyles of both the exponential and postexponential phases of planktonic culture. Indeed, we identified 48 genes in which expression was induced at least twofold in biofilms over expression under both planktonic conditions. Similarly, we identified 84 genes in which expression was repressed by a factor of at least 2 compared to expression under both planktonic conditions. A primary theme that emerged from the analysis of these genes is that persistence within a biofilm requires an adaptive response that limits the deleterious effects of the reduced pH associated with anaerobic growth conditions. PMID:15231800

  2. Control of RANKL Gene Expression

    PubMed Central

    O'Brien, Charles A.

    2009-01-01

    Osteoclasts are highly specialized cells capable of degrading mineralized tissue and form at different regions of bone to meet different physiological needs, such as mobilization of calcium, modeling of bone structure, and remodeling of bone matrix. Osteoclast production is elevated in a number of pathological conditions, many of which lead to loss of bone mass. Whether normal or pathological, osteoclastogenesis strictly depends upon support from accessory cells which supply cytokines required for osteoclast differentiation. Only one of these cytokines, receptor activator of NFκB ligand (RANKL), is absolutely essential for osteoclast formation throughout life and is thus expressed by all cell types that support osteoclast differentiation. The central role of RANKL in bone resorption is highlighted by the fact that it is the basis for a new therapy to inhibit bone loss. This review will discuss mechanisms that control RANKL gene expression in different osteoclast-support cells and how the study of such mechanisms may lead to a better understanding of the cellular interactions that drive normal and pathological bone resorption. PMID:19716455

  3. Methods for monitoring multiple gene expression

    DOEpatents

    Berka, Randy; Bachkirova, Elena; Rey, Michael

    2008-06-01

    The present invention relates to methods for monitoring differential expression of a plurality of genes in a first filamentous fungal cell relative to expression of the same genes in one or more second filamentous fungal cells using microarrays containing Trichoderma reesei ESTs or SSH clones, or a combination thereof. The present invention also relates to computer readable media and substrates containing such array features for monitoring expression of a plurality of genes in filamentous fungal cells.

  4. Methods for monitoring multiple gene expression

    DOEpatents

    Berka, Randy; Bachkirova, Elena; Rey, Michael

    2012-05-01

    The present invention relates to methods for monitoring differential expression of a plurality of genes in a first filamentous fungal cell relative to expression of the same genes in one or more second filamentous fungal cells using microarrays containing Trichoderma reesei ESTs or SSH clones, or a combination thereof. The present invention also relates to computer readable media and substrates containing such array features for monitoring expression of a plurality of genes in filamentous fungal cells.

  5. Methods for monitoring multiple gene expression

    DOEpatents

    Berka, Randy; Bachkirova, Elena; Rey, Michael

    2013-10-01

    The present invention relates to methods for monitoring differential expression of a plurality of genes in a first filamentous fungal cell relative to expression of the same genes in one or more second filamentous fungal cells using microarrays containing Trichoderma reesei ESTs or SSH clones, or a combination thereof. The present invention also relates to computer readable media and substrates containing such array features for monitoring expression of a plurality of genes in filamentous fungal cells.

  6. Congruence of tissue expression profiles from Gene Expression Atlas, SAGEmap and TissueInfo databases

    PubMed Central

    Huminiecki, Lukasz; Lloyd, Andrew T; Wolfe, Kenneth H

    2003-01-01

    Background Extracting biological knowledge from large amounts of gene expression information deposited in public databases is a major challenge of the postgenomic era. Additional insights may be derived by data integration and cross-platform comparisons of expression profiles. However, database meta-analysis is complicated by differences in experimental technologies, data post-processing, database formats, and inconsistent gene and sample annotation. Results We have analysed expression profiles from three public databases: Gene Expression Atlas, SAGEmap and TissueInfo. These are repositories of oligonucleotide microarray, Serial Analysis of Gene Expression and Expressed Sequence Tag human gene expression data respectively. We devised a method, Preferential Expression Measure, to identify genes that are significantly over- or under-expressed in any given tissue. We examined intra- and inter-database consistency of Preferential Expression Measures. There was good correlation between replicate experiments of oligonucleotide microarray data, but there was less coherence in expression profiles as measured by Serial Analysis of Gene Expression and Expressed Sequence Tag counts. We investigated inter-database correlations for six tissue categories, for which data were present in the three databases. Significant positive correlations were found for brain, prostate and vascular endothelium but not for ovary, kidney, and pancreas. Conclusion We show that data from Gene Expression Atlas, SAGEmap and TissueInfo can be integrated using the UniGene gene index, and that expression profiles correlate relatively well when large numbers of tags are available or when tissue cellular composition is simple. Finally, in the case of brain, we demonstrate that when PEM values show good correlation, predictions of tissue-specific expression based on integrated data are very accurate. PMID:12885301

  7. Fundamental principles of energy consumption for gene expression.

    PubMed

    Huang, Lifang; Yuan, Zhanjiang; Yu, Jianshe; Zhou, Tianshou

    2015-12-01

    How energy is consumed in gene expression is largely unknown mainly due to complexity of non-equilibrium mechanisms affecting expression levels. Here, by analyzing a representative gene model that considers complexity of gene expression, we show that negative feedback increases energy consumption but positive feedback has an opposite effect; promoter leakage always reduces energy consumption; generating more bursts needs to consume more energy; and the speed of promoter switching is at the cost of energy consumption. We also find that the relationship between energy consumption and expression noise is multi-mode, depending on both the type of feedback and the speed of promoter switching. Altogether, these results constitute fundamental principles of energy consumption for gene expression, which lay a foundation for designing biologically reasonable gene modules. In addition, we discuss possible biological implications of these principles by combining experimental facts. PMID:26723140

  8. Gene expression in major depressive disorder.

    PubMed

    Jansen, R; Penninx, B W J H; Madar, V; Xia, K; Milaneschi, Y; Hottenga, J J; Hammerschlag, A R; Beekman, A; van der Wee, N; Smit, J H; Brooks, A I; Tischfield, J; Posthuma, D; Schoevers, R; van Grootheest, G; Willemsen, G; de Geus, E J; Boomsma, D I; Wright, F A; Zou, F; Sun, W; Sullivan, P F

    2016-03-01

    The search for genetic variants underlying major depressive disorder (MDD) has not yet provided firm leads to its underlying molecular biology. A complementary approach is to study gene expression in relation to MDD. We measured gene expression in peripheral blood from 1848 subjects from The Netherlands Study of Depression and Anxiety. Subjects were divided into current MDD (N=882), remitted MDD (N=635) and control (N=331) groups. MDD status and gene expression were measured again 2 years later in 414 subjects. The strongest gene expression differences were between the current MDD and control groups (129 genes at false-discovery rate, FDR<0.1). Gene expression differences across MDD status were largely unrelated to antidepressant use, inflammatory status and blood cell counts. Genes associated with MDD were enriched for interleukin-6 (IL-6)-signaling and natural killer (NK) cell pathways. We identified 13 gene expression clusters with specific clusters enriched for genes involved in NK cell activation (downregulated in current MDD, FDR=5.8 × 10(-5)) and IL-6 pathways (upregulated in current MDD, FDR=3.2 × 10(-3)). Longitudinal analyses largely confirmed results observed in the cross-sectional data. Comparisons of gene expression results to the Psychiatric Genomics Consortium (PGC) MDD genome-wide association study results revealed overlap with DVL3. In conclusion, multiple gene expression associations with MDD were identified and suggest a measurable impact of current MDD state on gene expression. Identified genes and gene clusters are enriched with immune pathways previously associated with the etiology of MDD, in line with the immune suppression and immune activation hypothesis of MDD. PMID:26008736

  9. Analysis of Gene Expression Patterns Using Biclustering.

    PubMed

    Roy, Swarup; Bhattacharyya, Dhruba K; Kalita, Jugal K

    2016-01-01

    Mining microarray data to unearth interesting expression profile patterns for discovery of in silico biological knowledge is an emerging area of research in computational biology. A group of functionally related genes may have similar expression patterns under a set of conditions or at some time points. Biclustering is an important data mining tool that has been successfully used to analyze gene expression data for biologically significant cluster discovery. The purpose of this chapter is to introduce interesting patterns that may be observed in expression data and discuss the role of biclustering techniques in detecting interesting functional gene groups with similar expression patterns. PMID:26350227

  10. Gene Expression Profiling of Gastric Cancer

    PubMed Central

    Marimuthu, Arivusudar; Jacob, Harrys K.C.; Jakharia, Aniruddha; Subbannayya, Yashwanth; Keerthikumar, Shivakumar; Kashyap, Manoj Kumar; Goel, Renu; Balakrishnan, Lavanya; Dwivedi, Sutopa; Pathare, Swapnali; Dikshit, Jyoti Bajpai; Maharudraiah, Jagadeesha; Singh, Sujay; Sameer Kumar, Ghantasala S; Vijayakumar, M.; Veerendra Kumar, Kariyanakatte Veeraiah; Premalatha, Chennagiri Shrinivasamurthy; Tata, Pramila; Hariharan, Ramesh; Roa, Juan Carlos; Prasad, T.S.K; Chaerkady, Raghothama; Kumar, Rekha Vijay; Pandey, Akhilesh

    2015-01-01

    Gastric cancer is the second leading cause of cancer death worldwide, both in men and women. A genomewide gene expression analysis was carried out to identify differentially expressed genes in gastric adenocarcinoma tissues as compared to adjacent normal tissues. We used Agilent’s whole human genome oligonucleotide microarray platform representing ~41,000 genes to carry out gene expression analysis. Two-color microarray analysis was employed to directly compare the expression of genes between tumor and normal tissues. Through this approach, we identified several previously known candidate genes along with a number of novel candidate genes in gastric cancer. Testican-1 (SPOCK1) was one of the novel molecules that was 10-fold upregulated in tumors. Using tissue microarrays, we validated the expression of testican-1 by immunohistochemical staining. It was overexpressed in 56% (160/282) of the cases tested. Pathway analysis led to the identification of several networks in which SPOCK1 was among the topmost networks of interacting genes. By gene enrichment analysis, we identified several genes involved in cell adhesion and cell proliferation to be significantly upregulated while those corresponding to metabolic pathways were significantly downregulated. The differentially expressed genes identified in this study are candidate biomarkers for gastric adenoacarcinoma. PMID:27030788

  11. HOXB homeobox gene expression in cervical carcinoma.

    PubMed

    López, R; Garrido, E; Piña, P; Hidalgo, A; Lazos, M; Ochoa, R; Salcedo, M

    2006-01-01

    The homeobox (HOX) genes are a family of transcription factors that bind to specific DNA sequences in target genes regulating gene expression. Thirty-nine HOX genes have been mapped in four conserved clusters: A, B, C, and D; they act as master genes regulating the identity of body segments along the anteroposterior axis of the embryo. The role played by HOX genes in adult cell differentiation is unclear to date, but growing evidence suggests that they may play an important role in the development of cancer. To study the role played by HOX genes in cervical cancer, in the present work, we analyzed the expression of HOXB genes and the localization of their transcripts in human cervical tissues. Reverse transcription-polymerase chain reaction analysis and nonradioactive RNA in situ hybridization were used to detect HOXB expression in 11 normal cervical tissues and 17 cervical carcinomas. It was determined that HOXB1, B3, B5, B6, B7, B8, and B9 genes are expressed in normal adult cervical epithelium and squamous cervical carcinomas. Interestingly, HOXB2, HOXB4, and HOXB13 gene expression was found only in tumor tissues. Our findings suggest that the new expression of HOXB2, HOXB4, and B13 genes is involved in cervical cancer. PMID:16445654

  12. Gene expression profiling in developing human hippocampus.

    PubMed

    Zhang, Yan; Mei, Pinchao; Lou, Rong; Zhang, Michael Q; Wu, Guanyun; Qiang, Boqin; Zhang, Zhengguo; Shen, Yan

    2002-10-15

    The gene expression profile of developing human hippocampus is of particular interest and importance to neurobiologists devoted to development of the human brain and related diseases. To gain further molecular insight into the developmental and functional characteristics, we analyzed the expression profile of active genes in developing human hippocampus. Expressed sequence tags (ESTs) were selected by sequencing randomly selected clones from an original 3'-directed cDNA library of 150-day human fetal hippocampus, and a digital expression profile of 946 known genes that could be divided into 16 categories was generated. We also used for comparison 14 other expression profiles of related human neural cells/tissues, including human adult hippocampus. To yield more confidence regarding differential expression, a method was applied to attach normalized expression data to genes with a low false-positive rate (<0.05). Finally, hierarchical cluster analysis was used to exhibit related gene expression patterns. Our results are in accordance with anatomical and physiological observations made during the developmental process of the human hippocampus. Furthermore, some novel findings appeared to be unique to our results. The abundant expression of genes for cell surface components and disease-related genes drew our attention. Twenty-four genes are significantly different from adult, and 13 genes might be developing hippocampus-specific candidate genes, including wnt2b and some Alzheimer's disease-related genes. Our results could provide useful information on the ontogeny, development, and function of cells in the human hippocampus at the molecular level and underscore the utility of large-scale, parallel gene expression analyses in the study of complex biological phenomena. PMID:12271469

  13. Comprehensive serial analysis of gene expression of the cervical transcriptome

    PubMed Central

    Shadeo, Ashleen; Chari, Raj; Vatcher, Greg; Campbell, Jennifer; Lonergan, Kim M; Matisic, Jasenka; van Niekerk, Dirk; Ehlen, Thomas; Miller, Dianne; Follen, Michele; Lam, Wan L; MacAulay, Calum

    2007-01-01

    Background More than half of the approximately 500,000 women diagnosed with cervical cancer worldwide each year will die from this disease. Investigation of genes expressed in precancer lesions compared to those expressed in normal cervical epithelium will yield insight into the early stages of disease. As such, establishing a baseline from which to compare to, is critical in elucidating the abnormal biology of disease. In this study we examine the normal cervical tissue transcriptome and investigate the similarities and differences in relation to CIN III by Long-SAGE (L-SAGE). Results We have sequenced 691,390 tags from four L-SAGE libraries increasing the existing gene expression data on cervical tissue by 20 fold. One-hundred and eighteen unique tags were highly expressed in normal cervical tissue and 107 of them mapped to unique genes, most belong to the ribosomal, calcium-binding and keratinizing gene families. We assessed these genes for aberrant expression in CIN III and five genes showed altered expression. In addition, we have identified twelve unique HPV 16 SAGE tags in the CIN III libraries absent in the normal libraries. Conclusion Establishing a baseline of gene expression in normal cervical tissue is key for identifying changes in cancer. We demonstrate the utility of this baseline data by identifying genes with aberrant expression in CIN III when compared to normal tissue. PMID:17543121

  14. Widespread ectopic expression of olfactory receptor genes

    PubMed Central

    Feldmesser, Ester; Olender, Tsviya; Khen, Miriam; Yanai, Itai; Ophir, Ron; Lancet, Doron

    2006-01-01

    Background Olfactory receptors (ORs) are the largest gene family in the human genome. Although they are expected to be expressed specifically in olfactory tissues, some ectopic expression has been reported, with special emphasis on sperm and testis. The present study systematically explores the expression patterns of OR genes in a large number of tissues and assesses the potential functional implication of such ectopic expression. Results We analyzed the expression of hundreds of human and mouse OR transcripts, via EST and microarray data, in several dozens of human and mouse tissues. Different tissues had specific, relatively small OR gene subsets which had particularly high expression levels. In testis, average expression was not particularly high, and very few highly expressed genes were found, none corresponding to ORs previously implicated in sperm chemotaxis. Higher expression levels were more common for genes with a non-OR genomic neighbor. Importantly, no correlation in expression levels was detected for human-mouse orthologous pairs. Also, no significant difference in expression levels was seen between intact and pseudogenized ORs, except for the pseudogenes of subfamily 7E which has undergone a human-specific expansion. Conclusion The OR superfamily as a whole, show widespread, locus-dependent and heterogeneous expression, in agreement with a neutral or near neutral evolutionary model for transcription control. These results cannot reject the possibility that small OR subsets might play functional roles in different tissues, however considerable care should be exerted when offering a functional interpretation for ectopic OR expression based only on transcription information. PMID:16716209

  15. Aberrant expression of homeobox gene SIX1 in Hodgkin lymphoma

    PubMed Central

    Nagel, Stefan; Meyer, Corinna; Kaufmann, Maren; Drexler, Hans G.; MacLeod, Roderick A.F.

    2015-01-01

    In Hodgkin lymphoma (HL) we recently identified deregulated expression of homeobox genes MSX1 and OTX2 which are physiologically involved in development of the embryonal neural plate border region. Here, we examined in HL homeobox gene SIX1 an additional regulator of this embryonal region mediating differentiation of placodal precursors. SIX1 was aberrantly activated in 12 % of HL patient samples in silico, indicating a pathological role in a subset of this B-cell malignancy. In addition, SIX1 expression was detected in HL cell lines which were used as models to reveal upstream factors and target genes of this basic developmental regulator. We detected increased copy numbers of the SIX1 locus at chromosome 14q23 correlating with enhanced expression while chromosomal translocations were absent. Moreover, comparative expression profiling data and pertinent gene modulation experiments indicated that the WNT-signalling pathway and transcription factor MEF2C regulate SIX1 expression. Genes encoding the transcription factors GATA2, GATA3, MSX1 and SPIB – all basic lymphoid regulators - were identified as targets of SIX1 in HL. In addition, cofactors EYA1 and TLE4, respectively, contrastingly mediated activation and suppression of SIX1 target gene expression. Thus, the protein domain interfaces may represent therapeutic targets in SIX1-positive HL subsets. Collectively, our data reveal a gene regulatory network with SIX1 centrally deregulating lymphoid differentiation and support concordance of lymphopoiesis/lymphomagenesis and developmental processes in the neural plate border region. PMID:26473286

  16. Gene Expression Patterns in Ovarian Carcinomas

    PubMed Central

    Schaner, Marci E.; Ross, Douglas T.; Ciaravino, Giuseppe; Sørlie, Therese; Troyanskaya, Olga; Diehn, Maximilian; Wang, Yan C.; Duran, George E.; Sikic, Thomas L.; Caldeira, Sandra; Skomedal, Hanne; Tu, I-Ping; Hernandez-Boussard, Tina; Johnson, Steven W.; O'Dwyer, Peter J.; Fero, Michael J.; Kristensen, Gunnar B.; Børresen-Dale, Anne-Lise; Hastie, Trevor; Tibshirani, Robert; van de Rijn, Matt; Teng, Nelson N.; Longacre, Teri A.; Botstein, David; Brown, Patrick O.; Sikic, Branimir I.

    2003-01-01

    We used DNA microarrays to characterize the global gene expression patterns in surface epithelial cancers of the ovary. We identified groups of genes that distinguished the clear cell subtype from other ovarian carcinomas, grade I and II from grade III serous papillary carcinomas, and ovarian from breast carcinomas. Six clear cell carcinomas were distinguished from 36 other ovarian carcinomas (predominantly serous papillary) based on their gene expression patterns. The differences may yield insights into the worse prognosis and therapeutic resistance associated with clear cell carcinomas. A comparison of the gene expression patterns in the ovarian cancers to published data of gene expression in breast cancers revealed a large number of differentially expressed genes. We identified a group of 62 genes that correctly classified all 125 breast and ovarian cancer specimens. Among the best discriminators more highly expressed in the ovarian carcinomas were PAX8 (paired box gene 8), mesothelin, and ephrin-B1 (EFNB1). Although estrogen receptor was expressed in both the ovarian and breast cancers, genes that are coregulated with the estrogen receptor in breast cancers, including GATA-3, LIV-1, and X-box binding protein 1, did not show a similar pattern of coexpression in the ovarian cancers. PMID:12960427

  17. Gene Expression Studies in Lygus lineolaris

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Genes are expressed in insect cells, as in all living organisms, by transcription of DNA into RNA followed by translation of RNA into proteins. The intricate patterns of differential gene expression in time and space directly influence the development and function of every aspect of the organism. Wh...

  18. Arabidopsis gene expression patterns during spaceflight

    NASA Astrophysics Data System (ADS)

    Paul, A.-L.; Ferl, R. J.

    The exposure of Arabidopsis thaliana (Arabidopsis) plants to spaceflight environments resulted in the differential expression of hundreds of genes. A 5 day mission on orbiter Columbia in 1999 (STS-93) carried transgenic Arabidopsis plants engineered with a transgene composed of the alcohol dehydrogenase (Adh) gene promoter linked to the β -Glucuronidase (GUS) reporter gene. The plants were used to evaluate the effects of spaceflight on two fronts. First, expression patterns visualized with the Adh/GUS transgene were used to address specifically the possibility that spaceflight induces a hypoxic stress response, and to assess whether any spaceflight response was similar to control terrestrial hypoxia-induced gene expression patterns. (Paul et al., Plant Physiol. 2001, 126:613). Second, genome-wide patterns of native gene expression were evaluated utilizing the Affymetrix ATH1 GeneChip? array of 8,000 Arabidopsis genes. As a control for the veracity of the array analyses, a selection of genes identified with the arrays was further characterized with quantitative Real-Time RT PCR (ABI - TaqmanTM). Comparison of the patterns of expression for arrays of hybridized with RNA isolated from plants exposed to spaceflight compared to the control arrays revealed hundreds of genes that were differentially expressed in response to spaceflight, yet most genes that are hallmarks of hypoxic stress were unaffected. These results will be discussed in light of current models for plant responses to the spaceflight environment, and with regard to potential future flight opportunities.

  19. Identification of reference genes in human myelomonocytic cells for gene expression studies in altered gravity.

    PubMed

    Thiel, Cora S; Hauschild, Swantje; Tauber, Svantje; Paulsen, Katrin; Raig, Christiane; Raem, Arnold; Biskup, Josefine; Gutewort, Annett; Hürlimann, Eva; Unverdorben, Felix; Buttron, Isabell; Lauber, Beatrice; Philpot, Claudia; Lier, Hartwin; Engelmann, Frank; Layer, Liliana E; Ullrich, Oliver

    2015-01-01

    Gene expression studies are indispensable for investigation and elucidation of molecular mechanisms. For the process of normalization, reference genes ("housekeeping genes") are essential to verify gene expression analysis. Thus, it is assumed that these reference genes demonstrate similar expression levels over all experimental conditions. However, common recommendations about reference genes were established during 1 g conditions and therefore their applicability in studies with altered gravity has not been demonstrated yet. The microarray technology is frequently used to generate expression profiles under defined conditions and to determine the relative difference in expression levels between two or more different states. In our study, we searched for potential reference genes with stable expression during different gravitational conditions (microgravity, normogravity, and hypergravity) which are additionally not altered in different hardware systems. We were able to identify eight genes (ALB, B4GALT6, GAPDH, HMBS, YWHAZ, ABCA5, ABCA9, and ABCC1) which demonstrated no altered gene expression levels in all tested conditions and therefore represent good candidates for the standardization of gene expression studies in altered gravity. PMID:25654098

  20. Regulation of Airway Mucin Gene Expression

    PubMed Central

    Thai, Philip; Loukoianov, Artem; Wachi, Shinichiro; Wu, Reen

    2015-01-01

    Mucins are important components that exert a variety of functions in cell-cell interaction, epidermal growth factor receptor signaling, and airways protection. In the conducting airways of the lungs, mucins are the major contributor to the viscoelastic property of mucous secretion, which is the major barrier to trapping inhaled microbial organism, particulates, and oxidative pollutants. The homeostasis of mucin production is an important feature in conducting airways for the maintenance of mucociliary function. Aberrant mucin secretion and accumulation in airway lumen are clinical hallmarks associated with various lung diseases, such as asthma, chronic obstructive pulmonary disease, cystic fibrosis, emphysema, and lung cancer. Among 20 known mucin genes identified, 11 of them have been verified at either the mRNA and/or protein level in airways. The regulation of mucin genes is complicated, as are the mediators and signaling pathways. This review summarizes the current view on the mediators, the signaling pathways, and the transcriptional units that are involved in the regulation of airway mucin gene expression. In addition, we also point out essential features of epigenetic mechanisms for the regulation of these genes. PMID:17961085

  1. Gearbox gene expression and growth rate.

    PubMed

    Aldea, M; Garrido, T; Tormo, A

    1993-07-01

    Regulation of gene expression in prokaryotic cells usually takes place at the level of transcription initiation. Different forms of RNA polymerase recognizing specific promoters are engaged in the control of many prokaryotic regulons. This also seems to be the case for some Escherichia coli genes that are induced at low growth rates and by nutrient starvation. Their gene products are synthesized at levels inversely proportional to growth rate, and this mode of regulation has been termed gearbox gene expression. This kind of growth-rate modulation is exerted by specific transcriptional initiation signals, the gearbox promoters, and some of them depend on a putative new σ factor (RpoS). Gearbox promoters drive expression of morphogenetic and cell division genes at constant levels per cell and cycle to meet the demands of cell division and septum formation. A mechanism is proposed that could sense the growth rate of the cell to alter gene expression by the action of specific σ factors. PMID:24420108

  2. Quality measures for gene expression biclusters.

    PubMed

    Pontes, Beatriz; Girldez, Ral; Aguilar-Ruiz, Jess S

    2015-01-01

    An noticeable number of biclustering approaches have been proposed proposed for the study of gene expression data, especially for discovering functionally related gene sets under different subsets of experimental conditions. In this context, recognizing groups of co-expressed or co-regulated genes, that is, genes which follow a similar expression pattern, is one of the main objectives. Due to the problem complexity, heuristic searches are usually used instead of exhaustive algorithms. Furthermore, most of biclustering approaches use a measure or cost function that determines the quality of biclusters. Having a suitable quality metric for bicluster is a critical aspect, not only for guiding the search, but also for establishing a comparison criteria among the results obtained by different biclustering techniques. In this paper, we analyse a large number of existing approaches to quality measures for gene expression biclusters, as well as we present a comparative study of them based on their capability to recognize different expression patterns in biclusters. PMID:25763839

  3. Quality Measures for Gene Expression Biclusters

    PubMed Central

    Pontes, Beatriz; Girldez, Ral; Aguilar-Ruiz, Jess S.

    2015-01-01

    An noticeable number of biclustering approaches have been proposed proposed for the study of gene expression data, especially for discovering functionally related gene sets under different subsets of experimental conditions. In this context, recognizing groups of co-expressed or co-regulated genes, that is, genes which follow a similar expression pattern, is one of the main objectives. Due to the problem complexity, heuristic searches are usually used instead of exhaustive algorithms. Furthermore, most of biclustering approaches use a measure or cost function that determines the quality of biclusters. Having a suitable quality metric for bicluster is a critical aspect, not only for guiding the search, but also for establishing a comparison criteria among the results obtained by different biclustering techniques. In this paper, we analyse a large number of existing approaches to quality measures for gene expression biclusters, as well as we present a comparative study of them based on their capability to recognize different expression patterns in biclusters. PMID:25763839

  4. Reference gene selection for gene expression studies in lily using quantitative real-time PCR.

    PubMed

    Zhang, M F; Liu, Q; Jia, G X

    2016-01-01

    Quantitative real-time polymerase chain reaction (qRT-PCR) is an important technology used to analyze gene-expression levels. Reference genes, which are assumed to be expressed consistently across various developmental stages and in different tissues, were selected for expression level analysis. Using digital gene expression technology, we selected nine reference genes (18S, EF, CYCOL, SAND, GAPDH, ACTIN, BHLH, TIP, and Clathrin) as candidate reference genes for further study. Using three different analysis methods (GeNorm, NormFinder, and BestKeeper), a total of 144 lily (Lilium x formolongi "Raizan 3") samples were analyzed. The samples were collected from four different tissues under various developmental stages. In addition, leaves treated with different plant hormones were collected and analyzed. The data showed that the stability of the nine reference genes differed among samples, but TIP, EF, Clathrin, and BHLH could be identified as the most stable genes overall. In addition, the relative expression level of LfFT in different lily tissues with the competence to flower was also analyzed to verify the selected reference genes. This study constitutes an important source for selecting reference genes when analyzing the expression patterns of flowering time and floral development regulation genes in lily cultivars. PMID:27173307

  5. Gene expression profiling in adipose tissue from growing broiler chickens

    PubMed Central

    Hausman, Gary J; Barb, C Rick; Fairchild, Brian D; Gamble, John; Lee-Rutherford, Laura

    2014-01-01

    In this study, total RNA was collected from abdominal adipose tissue samples obtained from ten broiler chickens at 3, 4, 5, and 6 weeks of age and prepared for gene microarray analysis with Affymetrix GeneChip Chicken Genome Arrays (Affymetrix) and quantitative real-time PCR analysis. Studies of global gene expression in chicken adipose tissue were initiated since such studies in many animal species show that adipose tissue expresses and secretes many factors that can influence growth and physiology. Microarray results indicated 333 differentially expressed adipose tissue genes between 3 and 6 wk, 265 differentially expressed genes between 4 and 6 wk and 42 differentially expressed genes between 3 and 4 wk. Enrichment scores of Gene Ontology Biological Process categories indicated strong age upregulation of genes involved in the immune system response. In addition to microarray analysis, quantitative real-time PCR analysis was used to confirm the influence of age on the expression of adipose tissue CC chemokine ligands (CCL), toll-like receptor (TLR)-2, lipopolysaccharide-induced TNF factor (LITAF), chemokine (C-C motif) receptor 8 (CCR8), and several other genes. Between 3 and 6 wk of age CCL5, CCL1, and CCR8 expression increased (P = 0.0001) with age. Furthermore, TLR2, CCL19, and LITAF expression increased between 4 and 6 wk of age (P = 0.001). This is the first demonstration of age related changes in CCL, LITAF, and TLR2 gene expression in chicken adipose tissue. Future studies are needed to elucidate the role of these adipose tissue genes in growth and the immune system. PMID:26317054

  6. Gene Expression Profile Analysis of Type 2 Diabetic Mouse Liver

    PubMed Central

    Zhang, Fang; Xu, Xiang; Zhang, Yi; Zhou, Ben; He, Zhishui; Zhai, Qiwei

    2013-01-01

    Liver plays a key role in glucose metabolism and homeostasis, and impaired hepatic glucose metabolism contributes to the development of type 2 diabetes. However, the precise gene expression profile of diabetic liver and its association with diabetes and related diseases are yet to be further elucidated. In this study, we detected the gene expression profile by high-throughput sequencing in 9-week-old normal and type 2 diabetic db/db mouse liver. Totally 12132 genes were detected, and 2627 genes were significantly changed in diabetic mouse liver. Biological process analysis showed that the upregulated genes in diabetic mouse liver were mainly enriched in metabolic processes. Surprisingly, the downregulated genes in diabetic mouse liver were mainly enriched in immune-related processes, although all the altered genes were still mainly enriched in metabolic processes. Similarly, KEGG pathway analysis showed that metabolic pathways were the major pathways altered in diabetic mouse liver, and downregulated genes were enriched in immune and cancer pathways. Analysis of the key enzyme genes in fatty acid and glucose metabolism showed that some key enzyme genes were significantly increased and none of the detected key enzyme genes were decreased. In addition, FunDo analysis showed that liver cancer and hepatitis were most likely to be associated with diabetes. Taken together, this study provides the digital gene expression profile of diabetic mouse liver, and demonstrates the main diabetes-associated hepatic biological processes, pathways, key enzyme genes in fatty acid and glucose metabolism and potential hepatic diseases. PMID:23469233

  7. Application of community phylogenetic approaches to understand gene expression: differential exploration of venom gene space in predatory marine gastropods

    PubMed Central

    2014-01-01

    Background Predatory marine gastropods of the genus Conus exhibit substantial variation in venom composition both within and among species. Apart from mechanisms associated with extensive turnover of gene families and rapid evolution of genes that encode venom components (‘conotoxins’), the evolution of distinct conotoxin expression patterns is an additional source of variation that may drive interspecific differences in the utilization of species’ ‘venom gene space’. To determine the evolution of expression patterns of venom genes of Conus species, we evaluated the expression of A-superfamily conotoxin genes of a set of closely related Conus species by comparing recovered transcripts of A-superfamily genes that were previously identified from the genomes of these species. We modified community phylogenetics approaches to incorporate phylogenetic history and disparity of genes and their expression profiles to determine patterns of venom gene space utilization. Results Less than half of the A-superfamily gene repertoire of these species is expressed, and only a few orthologous genes are coexpressed among species. Species exhibit substantially distinct expression strategies, with some expressing sets of closely related loci (‘under-dispersed’ expression of available genes) while others express sets of more disparate genes (‘over-dispersed’ expression). In addition, expressed genes show higher dN/dS values than either unexpressed or ancestral genes; this implies that expression exposes genes to selection and facilitates rapid evolution of these genes. Few recent lineage-specific gene duplicates are expressed simultaneously, suggesting that expression divergence among redundant gene copies may be established shortly after gene duplication. Conclusions Our study demonstrates that venom gene space is explored differentially by Conus species, a process that effectively permits the independent and rapid evolution of venoms in these species. PMID:24903151

  8. Methodological Limitations in Determining Astrocytic Gene Expression

    PubMed Central

    Peng, Liang; Guo, Chuang; Wang, Tao; Li, Baoman; Gu, Li; Wang, Zhanyou

    2013-01-01

    Traditionally, astrocytic mRNA and protein expression are studied by in situ hybridization (ISH) and immunohistochemically. This led to the concept that astrocytes lack aralar, a component of the malate-aspartate-shuttle. At least similar aralar mRNA and protein expression in astrocytes and neurons isolated by fluorescence-assisted cell sorting (FACS) reversed this opinion. Demonstration of expression of other astrocytic genes may also be erroneous. Literature data based on morphological methods were therefore compared with mRNA expression in cells obtained by recently developed methods for determination of cell-specific gene expression. All Na,K-ATPase-α subunits were demonstrated by immunohistochemistry (IHC), but there are problems with the cotransporter NKCC1. Glutamate and GABA transporter gene expression was well determined immunohistochemically. The same applies to expression of many genes of glucose metabolism, whereas a single study based on findings in bacterial artificial chromosome (BAC) transgenic animals showed very low astrocytic expression of hexokinase. Gene expression of the equilibrative nucleoside transporters ENT1 and ENT2 was recognized by ISH, but ENT3 was not. The same applies to the concentrative transporters CNT2 and CNT3. All were clearly expressed in FACS-isolated cells, followed by biochemical analysis. ENT3 was enriched in astrocytes. Expression of many nucleoside transporter genes were shown by microarray analysis, whereas other important genes were not. Results in cultured astrocytes resembled those obtained by FACS. These findings call for reappraisal of cellular nucleoside transporter expression. FACS cell yield is small. Further development of cell separation methods to render methods more easily available and less animal and cost consuming and parallel studies of astrocytic mRNA and protein expression by ISH/IHC and other methods are necessary, but new methods also need to be thoroughly checked. PMID:24324456

  9. Gene Expression Noise, Fitness Landscapes, and Evolution

    NASA Astrophysics Data System (ADS)

    Charlebois, Daniel

    The stochastic (or noisy) process of gene expression can have fitness consequences for living organisms. For example, gene expression noise facilitates the development of drug resistance by increasing the time scale at which beneficial phenotypic states can be maintained. The present work investigates the relationship between gene expression noise and the fitness landscape. By incorporating the costs and benefits of gene expression, we track how the fluctuation magnitude and timescale of expression noise evolve in simulations of cell populations under stress. We find that properties of expression noise evolve to maximize fitness on the fitness landscape, and that low levels of expression noise emerge when the fitness benefits of gene expression exceed the fitness costs (and that high levels of noise emerge when the costs of expression exceed the benefits). The findings from our theoretical/computational work offer new hypotheses on the development of drug resistance, some of which are now being investigated in evolution experiments in our laboratory using well-characterized synthetic gene regulatory networks in budding yeast. Nserc Postdoctoral Fellowship (Grant No. PDF-453977-2014).

  10. Identification of Reference Genes in Human Myelomonocytic Cells for Gene Expression Studies in Altered Gravity

    PubMed Central

    Thiel, Cora S.; Hauschild, Swantje; Tauber, Svantje; Paulsen, Katrin; Raig, Christiane; Raem, Arnold; Biskup, Josefine; Gutewort, Annett; Hürlimann, Eva; Philpot, Claudia; Lier, Hartwin; Engelmann, Frank; Layer, Liliana E.

    2015-01-01

    Gene expression studies are indispensable for investigation and elucidation of molecular mechanisms. For the process of normalization, reference genes (“housekeeping genes”) are essential to verify gene expression analysis. Thus, it is assumed that these reference genes demonstrate similar expression levels over all experimental conditions. However, common recommendations about reference genes were established during 1 g conditions and therefore their applicability in studies with altered gravity has not been demonstrated yet. The microarray technology is frequently used to generate expression profiles under defined conditions and to determine the relative difference in expression levels between two or more different states. In our study, we searched for potential reference genes with stable expression during different gravitational conditions (microgravity, normogravity, and hypergravity) which are additionally not altered in different hardware systems. We were able to identify eight genes (ALB, B4GALT6, GAPDH, HMBS, YWHAZ, ABCA5, ABCA9, and ABCC1) which demonstrated no altered gene expression levels in all tested conditions and therefore represent good candidates for the standardization of gene expression studies in altered gravity. PMID:25654098

  11. Chamber Specific Gene Expression Landscape of the Zebrafish Heart

    PubMed Central

    Singh, Angom Ramcharan; Sivadas, Ambily; Sabharwal, Ankit; Vellarikal, Shamsudheen Karuthedath; Jayarajan, Rijith; Verma, Ankit; Kapoor, Shruti; Joshi, Adita; Scaria, Vinod; Sivasubbu, Sridhar

    2016-01-01

    The organization of structure and function of cardiac chambers in vertebrates is defined by chamber-specific distinct gene expression. This peculiarity and uniqueness of the genetic signatures demonstrates functional resolution attributed to the different chambers of the heart. Altered expression of the cardiac chamber genes can lead to individual chamber related dysfunctions and disease patho-physiologies. Information on transcriptional repertoire of cardiac compartments is important to understand the spectrum of chamber specific anomalies. We have carried out a genome wide transcriptome profiling study of the three cardiac chambers in the zebrafish heart using RNA sequencing. We have captured the gene expression patterns of 13,396 protein coding genes in the three cardiac chambers—atrium, ventricle and bulbus arteriosus. Of these, 7,260 known protein coding genes are highly expressed (≥10 FPKM) in the zebrafish heart. Thus, this study represents nearly an all-inclusive information on the zebrafish cardiac transcriptome. In this study, a total of 96 differentially expressed genes across the three cardiac chambers in zebrafish were identified. The atrium, ventricle and bulbus arteriosus displayed 20, 32 and 44 uniquely expressing genes respectively. We validated the expression of predicted chamber-restricted genes using independent semi-quantitative and qualitative experimental techniques. In addition, we identified 23 putative novel protein coding genes that are specifically restricted to the ventricle and not in the atrium or bulbus arteriosus. In our knowledge, these 23 novel genes have either not been investigated in detail or are sparsely studied. The transcriptome identified in this study includes 68 differentially expressing zebrafish cardiac chamber genes that have a human ortholog. We also carried out spatiotemporal gene expression profiling of the 96 differentially expressed genes throughout the three cardiac chambers in 11 developmental stages and 6

  12. Cloning and expression pattern of akirin2 gene in broiler.

    PubMed

    Man, Chaolai; Chang, Yang; Mu, Weitao; Zhao, Dongxue

    2014-12-01

    Akirin2 is an important nuclear factor which plays functions in innate immune response, myogenesis, muscle development, and carcinogenesis. In this study, akirin2 genes were cloned from 4-day-old Sanhuang and AA(+) broiler, and its expression patterns were analyzed by RT-PCR. The results showed that there were four SNPs in the 5'-terminal region of akirin2 coding sequences. Expression profile analysis showed that the akirin2 transcripts were constitutively expressed in 15 tissues tested, and similar expression patterns were found between the two breeds of broilers. In addition, one of the interesting findings was that the akirin2 gene is highly expressed in blood and lowly expressed in heart, respectively. These data can serve as a foundation for further studying functions of akirin2 gene. PMID:25098451

  13. Regulation of gene expression by hypoxia.

    PubMed

    Millhorn, D E; Czyzyk-Krzeska, M; Bayliss, D A; Lawson, E E

    1993-12-01

    The present study was undertaken to determine if gene expression for tyrosine hydroxylase (TH), the rate limiting enzyme in the biosynthesis of catecholamines, is regulated in the carotid body, sympathetic ganglia and adrenal medulla by hypoxia. We found that a reduction in oxygen tension from 21% to 10% caused a substantial increase (200% at 1 hour and 500% at 6 hours exposure) in the concentration of TH mRNA in carotid body type I cells but not in either the sympathetic ganglia or adrenal gland. In addition, we found that hypercapnia, another natural stimulus of carotid body activity, failed to enhance TH mRNA in type I cells. Removal of the sensory and sympathetic innervation of the carotid body failed to prevent the induction of TH mRNA by hypoxia in type I cells. Our results show that TH gene expression is regulated by hypoxia in the carotid body but not in other peripheral catecholamine synthesizing tissue and that the regulatory mechanism is intrinsic to type I cells. PMID:7909954

  14. Differential placental gene expression in severe preeclampsia.

    PubMed

    Sitras, V; Paulssen, R H; Grønaas, H; Leirvik, J; Hanssen, T A; Vårtun, A; Acharya, G

    2009-05-01

    We investigated the global placental gene expression profile in severe preeclampsia. Twenty-one women were randomly selected from 50 participants with uncomplicated pregnancies to match 21 patients with severe preeclampsia. A 30K Human Genome Survey Microarray v.2.0 (Applied Biosystems) was used to evaluate the gene expression profile. After RNA isolation, five preeclamptic placentas were excluded due to poor RNA quality. The series composed of 37 hybridizations in a one-channel detection system of chemiluminescence emitted by the microarrays. An empirical Bayes analysis was applied to find differentially expressed genes. In preeclamptic placentas 213 genes were significantly (fold-change>or=2 and pexpressed genes were associated with Alzheimer disease, angiogenesis, Notch-, TGFbeta- and VEGF-signalling pathways. Sixteen genes best discriminated preeclamptic from normal placentas. Comparison between early- (<34 weeks) and late-onset preeclampsia showed 168 differentially expressed genes with oxidative stress, inflammation, and endothelin signalling pathways mainly involved in early-onset disease. Validation of the microarray results was performed by RT-PCR, quantitative urine hCG measurement and placental histopathologic examination. In summary, placental gene expression is altered in preeclampsia and we provide a comprehensive list of the differentially expressed genes. Placental gene expression is different between early- and late-onset preeclampsia, suggesting differences in pathophysiology. PMID:19249095

  15. Regulated Expression of Adenoviral Vectors-Based Gene Therapies

    PubMed Central

    Curtin, James F.; Candolfi, Marianela; Puntel, Mariana; Xiong, Weidong; Muhammad, A. K. M.; Kroeger, Kurt; Mondkar, Sonali; Liu, Chunyan; Bondale, Niyati; Lowenstein, Pedro R.; Castro, Maria G.

    2008-01-01

    Summary Regulatable promoter systems allow gene expression to be tightly controlled in vivo. This is highly desirable for the development of safe, efficacious adenoviral vectors that can be used to treat human diseases in the clinic. Ideally, regulatable cassettes should have minimal gene expression in the “OFF” state, and expression should quickly reach therapeutic levels in the “ON” state. In addition, the components of regulatable cassettes should be non-toxic at physiological concentrations and should not be immunogenic, especially when treating chronic illness that requires long-lasting gene expression. In this chapter, we will describe in detail protocols to develop and validate first generation (Ad) and high-capacity adenoviral (HC-Ad) vectors that express therapeutic genes under the control of the TetON regulatable system. Our laboratory has successfully used these protocols to regulate the expression of marker genes, immune stimulatory genes, and toxins for cancer gene therapeutics, i.e., glioma that is a deadly form of brain cancer. We have shown that this third generation TetON regulatable system, incorporating a doxycycline (DOX)-sensitive rtTA2S-M2 inducer and tTSKid silencer, is non-toxic, relatively non-immunogenic, and can tightly regulate reporter transgene expression downstream of a TRE promoter from adenoviral vectors in vitro and also in vivo. PMID:18470649

  16. Nucleosome repositioning underlies dynamic gene expression.

    PubMed

    Nocetti, Nicolas; Whitehouse, Iestyn

    2016-03-15

    Nucleosome repositioning at gene promoters is a fundamental aspect of the regulation of gene expression. However, the extent to which nucleosome repositioning is used within eukaryotic genomes is poorly understood. Here we report a comprehensive analysis of nucleosome positions as budding yeast transit through an ultradian cycle in which expression of >50% of all genes is highly synchronized. We present evidence of extensive nucleosome repositioning at thousands of gene promoters as genes are activated and repressed. During activation, nucleosomes are relocated to allow sites of general transcription factor binding and transcription initiation to become accessible. The extent of nucleosome shifting is closely related to the dynamic range of gene transcription and generally related to DNA sequence properties and use of the coactivators TFIID or SAGA. However, dynamic gene expression is not limited to SAGA-regulated promoters and is an inherent feature of most genes. While nucleosome repositioning occurs pervasively, we found that a class of genes required for growth experience acute nucleosome shifting as cells enter the cell cycle. Significantly, our data identify that the ATP-dependent chromatin-remodeling enzyme Snf2 plays a fundamental role in nucleosome repositioning and the expression of growth genes. We also reveal that nucleosome organization changes extensively in concert with phases of the cell cycle, with large, regularly spaced nucleosome arrays being established in mitosis. Collectively, our data and analysis provide a framework for understanding nucleosome dynamics in relation to fundamental DNA-dependent transactions. PMID:26966245

  17. Transcriptional regulation of secretin gene expression.

    PubMed

    Nishitani, J; Rindi, G; Lopez, M J; Upchurch, B H; Leiter, A B

    1995-01-01

    Expression of the gene encoding the hormone secretin is restricted to a specific enteroendocrine cell type and to beta-cells in developing pancreatic islets. To characterize regulatory elements in the secretin gene responsible for its expression in secretin-producing cells, we used a series of reporter genes for transient expression assays in transfection studies carried out in secretin-producing islet cell lines. Analysis of the transcriptional activity of deletion mutants identified a positive cis regulatory domain between 174 and 53 base pairs upstream from the transcriptional initiation site which was required for secretin gene expression in secretin-producing HIT insulinoma cells. Within this enhancer were sequences resembling two binding sites for the transcription factor Sp1, as well as a consensus sequence for binding to helix-loop-helix proteins. Analysis of these three elements by site-directed mutagenesis suggests that each is important for full transcriptional activity. The role of proximal enhancer sequences in directing secretin gene expression to appropriate tissues is further supported by studies in transgenic mice revealing that 1.6 kilobases of the secretin gene 5' flanking sequence were sufficient to direct the expression of either human growth hormone or simian virus 40 large T-antigen reporter genes to all major secretin-producing tissues. PMID:8774991

  18. Sexual differences of imprinted genes' expression levels.

    PubMed

    Faisal, Mohammad; Kim, Hana; Kim, Joomyeong

    2014-01-01

    In mammals, genomic imprinting has evolved as a dosage-controlling mechanism for a subset of genes that play critical roles in their unusual reproduction scheme involving viviparity and placentation. As such, many imprinted genes are highly expressed in sex-specific reproductive organs. In the current study, we sought to test whether imprinted genes are differentially expressed between the two sexes. According to the results, the expression levels of the following genes differ between the two sexes of mice: Peg3, Zim1, Igf2, H19 and Zac1. The expression levels of these imprinted genes are usually greater in males than in females. This bias is most obvious in the developing brains of 14.5-dpc embryos, but also detected in the brains of postnatal-stage mice. However, this sexual bias is not obvious in 10.5-dpc embryos, a developmental stage before the sexual differentiation. Thus, the sexual bias observed in the imprinted genes is most likely attributable by gonadal hormones rather than by sex chromosome complement. Overall, the results indicate that several imprinted genes are sexually different in terms of their expression levels, and further suggest that the transcriptional regulation of these imprinted genes may be influenced by unknown mechanisms associated with sexual differentiation. PMID:24125951

  19. High expression hampers horizontal gene transfer.

    PubMed

    Park, Chungoo; Zhang, Jianzhi

    2012-01-01

    Horizontal gene transfer (HGT), the movement of genetic material from one species to another, is a common phenomenon in prokaryotic evolution. Although the rate of HGT is known to vary among genes, our understanding of the cause of this variation, currently summarized by two rules, is far from complete. The first rule states that informational genes, which are involved in DNA replication, transcription, and translation, have lower transferabilities than operational genes. The second rule asserts that protein interactivity negatively impacts gene transferability. Here, we hypothesize that high expression hampers HGT, because the fitness cost of an HGT to the recipient, arising from the 1) energy expenditure in transcription and translation, 2) cytotoxic protein misfolding, 3) reduction in cellular translational efficiency, 4) detrimental protein misinteraction, and 5) disturbance of the optimal protein concentration or cell physiology, increases with the expression level of the transferred gene. To test this hypothesis, we examined laboratory and natural HGTs to Escherichia coli. We observed lower transferabilities of more highly expressed genes, even after controlling the confounding factors from the two established rules and the genic GC content. Furthermore, expression level predicts gene transferability better than all other factors examined. We also confirmed the significant negative impact of gene expression on the rate of HGTs to 127 of 133 genomes of eubacteria and archaebacteria. Together, these findings establish the gene expression level as a major determinant of horizontal gene transferability. They also suggest that most successful HGTs are initially slightly deleterious, fixed because of their negligibly low costs rather than high benefits to the recipient. PMID:22436996

  20. Gene expression in periodontal tissues following treatment

    PubMed Central

    Beikler, Thomas; Peters, Ulrike; Prior, Karola; Eisenacher, Martin; Flemmig, Thomas F

    2008-01-01

    Background In periodontitis, treatment aimed at controlling the periodontal biofilm infection results in a resolution of the clinical and histological signs of inflammation. Although the cell types found in periodontal tissues following treatment have been well described, information on gene expression is limited to few candidate genes. Therefore, the aim of the study was to determine the expression profiles of immune and inflammatory genes in periodontal tissues from sites with severe chronic periodontitis following periodontal therapy in order to identify genes involved in tissue homeostasis. Gingival biopsies from 12 patients with severe chronic periodontitis were taken six to eight weeks following non-surgical periodontal therapy, and from 11 healthy controls. As internal standard, RNA of an immortalized human keratinocyte line (HaCaT) was used. Total RNA was subjected to gene expression profiling using a commercially available microarray system focusing on inflammation-related genes. Post-hoc confirmation of selected genes was done by Realtime-PCR. Results Out of the 136 genes analyzed, the 5% most strongly expressed genes compared to healthy controls were Interleukin-12A (IL-12A), Versican (CSPG-2), Matrixmetalloproteinase-1 (MMP-1), Down syndrome critical region protein-1 (DSCR-1), Macrophage inflammatory protein-2β (Cxcl-3), Inhibitor of apoptosis protein-1 (BIRC-1), Cluster of differentiation antigen 38 (CD38), Regulator of G-protein signalling-1 (RGS-1), and Finkel-Biskis-Jinkins murine osteosarcoma virus oncogene (C-FOS); the 5% least strongly expressed genes were Receptor-interacting Serine/Threonine Kinase-2 (RIP-2), Complement component 3 (C3), Prostaglandin-endoperoxide synthase-2 (COX-2), Interleukin-8 (IL-8), Endothelin-1 (EDN-1), Plasminogen activator inhibitor type-2 (PAI-2), Matrix-metalloproteinase-14 (MMP-14), and Interferon regulating factor-7 (IRF-7). Conclusion Gene expression profiles found in periodontal tissues following therapy

  1. Segment-specific regulation of epididymal gene expression.

    PubMed

    Sipilä, Petra; Björkgren, Ida

    2016-09-01

    The epididymis is necessary for post-testicular sperm maturation. During their epididymal transit, spermatozoa gain ability for progressive movement and fertilization. The epididymis is composed of several segments that have distinct gene expression profiles that enable the establishment of the changing luminal environment required for sperm maturation. The epididymal gene expression is regulated by endocrine, lumicrine, and paracrine factors in a segment-specific manner. Thus, in addition to its importance for male fertility, the epididymis is a valuable model tissue for studying the regulation of gene expression. This review concentrates on recent advances in understanding the androgen, small RNA, and epigenetically mediated regulation of segment-specific gene expression in the epididymis. PMID:27222594

  2. DAWN: a framework to identify autism genes and subnetworks using gene expression and genetics

    PubMed Central

    2014-01-01

    Background De novo loss-of-function (dnLoF) mutations are found twofold more often in autism spectrum disorder (ASD) probands than their unaffected siblings. Multiple independent dnLoF mutations in the same gene implicate the gene in risk and hence provide a systematic, albeit arduous, path forward for ASD genetics. It is likely that using additional non-genetic data will enhance the ability to identify ASD genes. Methods To accelerate the search for ASD genes, we developed a novel algorithm, DAWN, to model two kinds of data: rare variations from exome sequencing and gene co-expression in the mid-fetal prefrontal and motor-somatosensory neocortex, a critical nexus for risk. The algorithm casts the ensemble data as a hidden Markov random field in which the graph structure is determined by gene co-expression and it combines these interrelationships with node-specific observations, namely gene identity, expression, genetic data and the estimated effect on risk. Results Using currently available genetic data and a specific developmental time period for gene co-expression, DAWN identified 127 genes that plausibly affect risk, and a set of likely ASD subnetworks. Validation experiments making use of published targeted resequencing results demonstrate its efficacy in reliably predicting ASD genes. DAWN also successfully predicts known ASD genes, not included in the genetic data used to create the model. Conclusions Validation studies demonstrate that DAWN is effective in predicting ASD genes and subnetworks by leveraging genetic and gene expression data. The findings reported here implicate neurite extension and neuronal arborization as risks for ASD. Using DAWN on emerging ASD sequence data and gene expression data from other brain regions and tissues would likely identify novel ASD genes. DAWN can also be used for other complex disorders to identify genes and subnetworks in those disorders. PMID:24602502

  3. Gene expression homeostasis and chromosome architecture

    PubMed Central

    Seshasayee, Aswin Sai Narain

    2014-01-01

    In rapidly growing populations of bacterial cells, including those of the model organism Escherichia coli, genes essential for growth - such as those involved in protein synthesis - are expressed at high levels; this is in contrast to many horizontally-acquired genes, which are maintained at low transcriptional levels.1 This balance in gene expression states between 2 distinct classes of genes is established by a galaxy of transcriptional regulators, including the so-called nucleoid associated proteins (NAP) that contribute to shaping the chromosome.2 Besides these active players in gene regulation, it is not too far-fetched to anticipate that genome organization in terms of how genes are arranged on the chromosome,3 which is the result of long-drawn transactions among genome rearrangement processes and selection, and the manner in which it is structured inside the cell, plays a role in establishing this balance. A recent study from our group has contributed to the literature investigating the interplay between global transcriptional regulators and genome organization in establishing gene expression homeostasis.4 In particular, we address a triangle of functional interactions among genome organization, gene expression homeostasis and horizontal gene transfer. PMID:25997086

  4. Candidate reference genes for gene expression studies in water lily.

    PubMed

    Luo, Huolin; Chen, Sumei; Wan, Hongjian; Chen, Fadi; Gu, Chunsun; Liu, Zhaolei

    2010-09-01

    The selection of an appropriate reference gene(s) is a prerequisite for the proper interpretation of quantitative Real-Time polymerase chain reaction data. We report the evaluation of eight candidate reference genes across various tissues and treatments in the water lily by the two software packages geNorm and NormFinder. Across all samples, clathrin adaptor complexes medium subunit (AP47) and actin 11 (ACT11) emerged as the most suitable reference genes. Across different tissues, ACT11 and elongation factor 1-alpha (EF1alpha) exhibited a stable expression pattern. ACT11 and AP47 also stably expressed in roots subjected to various treatments, but in the leaves of the same plants the most stably expressed genes were ubiquitin-conjugating enzyme 16 (UBC16) and ACT11. PMID:20452325

  5. Gene expression analysis of aberrant signaling pathways in meningiomas

    PubMed Central

    TORRES-MARTÍN, MIGUEL; MARTINEZ-GLEZ, VICTOR; PEÑA-GRANERO, CAROLINA; ISLA, ALBERTO; LASSALETTA, LUIS; DE CAMPOS, JOSE M.; PINTO, GIOVANNY R.; BURBANO, ROMMEL R.; MELÉNDEZ, BÁRBARA; CASTRESANA, JAVIER S.; REY, JUAN A.

    2013-01-01

    Examining aberrant pathway alterations is one method for understanding the abnormal signals that are involved in tumorigenesis and tumor progression. In the present study, expression arrays were performed on tumor-related genes in meningiomas. The GE Array Q Series HS-006 was used to determine the expression levels of 96 genes that corresponded to six primary biological regulatory pathways in a series of 42 meningiomas, including 32 grade I, four recurrent grade I and six grade II tumors, in addition to three normal tissue controls. Results showed that 25 genes that were primarily associated with apoptosis and angiogenesis functions were downregulated and 13 genes frequently involving DNA damage repair functions were upregulated. In addition to the inactivation of the neurofibromin gene, NF2, which is considered to be an early step in tumorigenesis, variations of other biological regulatory pathways may play a significant role in the development of meningioma. PMID:23946817

  6. Gene expression analysis of aberrant signaling pathways in meningiomas.

    PubMed

    Torres-Martín, Miguel; Martinez-Glez, Victor; Peña-Granero, Carolina; Isla, Alberto; Lassaletta, Luis; DE Campos, Jose M; Pinto, Giovanny R; Burbano, Rommel R; Meléndez, Bárbara; Castresana, Javier S; Rey, Juan A

    2013-07-01

    Examining aberrant pathway alterations is one method for understanding the abnormal signals that are involved in tumorigenesis and tumor progression. In the present study, expression arrays were performed on tumor-related genes in meningiomas. The GE Array Q Series HS-006 was used to determine the expression levels of 96 genes that corresponded to six primary biological regulatory pathways in a series of 42 meningiomas, including 32 grade I, four recurrent grade I and six grade II tumors, in addition to three normal tissue controls. Results showed that 25 genes that were primarily associated with apoptosis and angiogenesis functions were downregulated and 13 genes frequently involving DNA damage repair functions were upregulated. In addition to the inactivation of the neurofibromin gene, NF2, which is considered to be an early step in tumorigenesis, variations of other biological regulatory pathways may play a significant role in the development of meningioma. PMID:23946817

  7. Dynamic modeling of gene expression data

    NASA Technical Reports Server (NTRS)

    Holter, N. S.; Maritan, A.; Cieplak, M.; Fedoroff, N. V.; Banavar, J. R.

    2001-01-01

    We describe the time evolution of gene expression levels by using a time translational matrix to predict future expression levels of genes based on their expression levels at some initial time. We deduce the time translational matrix for previously published DNA microarray gene expression data sets by modeling them within a linear framework by using the characteristic modes obtained by singular value decomposition. The resulting time translation matrix provides a measure of the relationships among the modes and governs their time evolution. We show that a truncated matrix linking just a few modes is a good approximation of the full time translation matrix. This finding suggests that the number of essential connections among the genes is small.

  8. Dynamic modeling of gene expression data

    PubMed Central

    Holter, Neal S.; Maritan, Amos; Cieplak, Marek; Fedoroff, Nina V.; Banavar, Jayanth R.

    2001-01-01

    We describe the time evolution of gene expression levels by using a time translational matrix to predict future expression levels of genes based on their expression levels at some initial time. We deduce the time translational matrix for previously published DNA microarray gene expression data sets by modeling them within a linear framework by using the characteristic modes obtained by singular value decomposition. The resulting time translation matrix provides a measure of the relationships among the modes and governs their time evolution. We show that a truncated matrix linking just a few modes is a good approximation of the full time translation matrix. This finding suggests that the number of essential connections among the genes is small. PMID:11172013

  9. Nucleosomal promoter variation generates gene expression noise

    PubMed Central

    Brown, Christopher R.; Boeger, Hinrich

    2014-01-01

    Gene product molecule numbers fluctuate over time and between cells, confounding deterministic expectations. The molecular origins of this noise of gene expression remain unknown. Recent EM analysis of single PHO5 gene molecules of yeast indicated that promoter molecules stochastically assume alternative nucleosome configurations at steady state, including the fully nucleosomal and nucleosome-free configuration. Given that distinct configurations are unequally conducive to transcription, the nucleosomal variation of promoter molecules may constitute a source of gene expression noise. This notion, however, implies an untested conjecture, namely that the nucleosomal variation arises de novo or intrinsically (i.e., that it cannot be explained as the result of the promoter’s deterministic response to variation in its molecular surroundings). Here, we show—by microscopically analyzing the nucleosome configurations of two juxtaposed physically linked PHO5 promoter copies—that the configurational variation, indeed, is intrinsically stochastic and thus, a cause of gene expression noise rather than its effect. PMID:25468975

  10. Caffeine exposure alters cardiac gene expression in embryonic cardiomyocytes

    PubMed Central

    Fang, Xiefan; Mei, Wenbin; Barbazuk, William B.; Rivkees, Scott A.

    2014-01-01

    Previous studies demonstrated that in utero caffeine treatment at embryonic day (E) 8.5 alters DNA methylation patterns, gene expression, and cardiac function in adult mice. To provide insight into the mechanisms, we examined cardiac gene and microRNA (miRNA) expression in cardiomyocytes shortly after exposure to physiologically relevant doses of caffeine. In HL-1 and primary embryonic cardiomyocytes, caffeine treatment for 48 h significantly altered the expression of cardiac structural genes (Myh6, Myh7, Myh7b, Tnni3), hormonal genes (Anp and BnP), cardiac transcription factors (Gata4, Mef2c, Mef2d, Nfatc1), and microRNAs (miRNAs; miR208a, miR208b, miR499). In addition, expressions of these genes were significantly altered in embryonic hearts exposed to in utero caffeine. For in utero experiments, pregnant CD-1 dams were treated with 20–60 mg/kg of caffeine, which resulted in maternal circulation levels of 37.3–65.3 μM 2 h after treatment. RNA sequencing was performed on embryonic ventricles treated with vehicle or 20 mg/kg of caffeine daily from E6.5-9.5. Differential expression (DE) analysis revealed that 124 genes and 849 transcripts were significantly altered, and differential exon usage (DEU) analysis identified 597 exons that were changed in response to prenatal caffeine exposure. Among the DE genes identified by RNA sequencing were several cardiac structural genes and genes that control DNA methylation and histone modification. Pathway analysis revealed that pathways related to cardiovascular development and diseases were significantly affected by caffeine. In addition, global cardiac DNA methylation was reduced in caffeine-treated cardiomyocytes. Collectively, these data demonstrate that caffeine exposure alters gene expression and DNA methylation in embryonic cardiomyocytes. PMID:25354728

  11. Gene Expression Profiling in the Hibernating Primate, Cheirogaleus Medius

    PubMed Central

    Faherty, Sheena L.; Villanueva-Cañas, José Luis; Klopfer, Peter H.; Albà, M. Mar; Yoder, Anne D.

    2016-01-01

    Hibernation is a complex physiological response that some mammalian species employ to evade energetic demands. Previous work in mammalian hibernators suggests that hibernation is activated not by a set of genes unique to hibernators, but by differential expression of genes that are present in all mammals. This question of universal genetic mechanisms requires further investigation and can only be tested through additional investigations of phylogenetically dispersed species. To explore this question, we use RNA-Seq to investigate gene expression dynamics as they relate to the varying physiological states experienced throughout the year in a group of primate hibernators—Madagascar’s dwarf lemurs (genus Cheirogaleus). In a novel experimental approach, we use longitudinal sampling of biological tissues as a method for capturing gene expression profiles from the same individuals throughout their annual hibernation cycle. We identify 90 candidate genes that have variable expression patterns when comparing two active states (Active 1 and Active 2) with a torpor state. These include genes that are involved in metabolic pathways, feeding behavior, and circadian rhythms, as might be expected to correlate with seasonal physiological state changes. The identified genes appear to be critical for maintaining the health of an animal that undergoes prolonged periods of metabolic depression concurrent with the hibernation phenotype. By focusing on these differentially expressed genes in dwarf lemurs, we compare gene expression patterns in previously studied mammalian hibernators. Additionally, by employing evolutionary rate analysis, we find that hibernation-related genes do not evolve under positive selection in hibernating species relative to nonhibernators. PMID:27412611

  12. Tgif1 represses apolipoprotein gene expression in liver

    PubMed Central

    Melhuish, Tiffany A.; Chung, David D.; Bjerke, Glen A.; Wotton, David

    2010-01-01

    Tgif1 (TG-interacting factor) represses gene expression by interaction with general corepressors, and can be recruited to target genes by transforming growth factor beta (TGFβ) activated Smads, or by the retinoid X receptor (RXR). Here we show that Tgif1 interacts with the LXRα nuclear receptor and can repress transcription from a synthetic reporter activated by LXRα. In cultured cells reducing endogenous Tgif1 levels resulted in increased expression of LXRα target genes. To test the in vivo role of Tgif1, we analyzed LXRα dependent gene expression in mice lacking Tgif1. In the livers of Tgif1 null mice, we observed significant derepression of the apolipoprotein genes, Apoa4 and Apoc2, suggesting that Tgif1 is an important in vivo regulator of apolipoprotein gene expression. In contrast, we observed relatively minimal effects on expression of other LXR target genes. This work suggests that Tgif1 can regulate nuclear receptor complexes, in addition to those containing retinoic acid receptors, but also indicates that there is some specificity to which NR target genes are repressed by Tgif1. PMID:20506222

  13. Amino acid regulation of gene expression.

    PubMed Central

    Fafournoux, P; Bruhat, A; Jousse, C

    2000-01-01

    The impact of nutrients on gene expression in mammals has become an important area of research. Nevertheless, the current understanding of the amino acid-dependent control of gene expression is limited. Because amino acids have multiple and important functions, their homoeostasis has to be finely maintained. However, amino-acidaemia can be affected by certain nutritional conditions or various forms of stress. It follows that mammals have to adjust several of their physiological functions involved in the adaptation to amino acid availability by regulating the expression of numerous genes. The aim of the present review is to examine the role of amino acids in regulating mammalian gene expression and protein turnover. It has been reported that some genes involved in the control of growth or amino acid metabolism are regulated by amino acid availability. For instance, limitation of several amino acids greatly increases the expression of the genes encoding insulin-like growth factor binding protein-1, CHOP (C/EBP homologous protein, where C/EBP is CCAAT/enhancer binding protein) and asparagine synthetase. Elevated mRNA levels result from both an increase in the rate of transcription and an increase in mRNA stability. Several observations suggest that the amino acid regulation of gene expression observed in mammalian cells and the general control process described in yeast share common features. Moreover, amino acid response elements have been characterized in the promoters of the CHOP and asparagine synthetase genes. Taken together, the results discussed in the present review demonstrate that amino acids, by themselves, can, in concert with hormones, play an important role in the control of gene expression. PMID:10998343

  14. Efficient ectopic gene expression targeting chick mesoderm.

    PubMed

    Oberg, Kerby C; Pira, Charmaine U; Revelli, Jean-Pierre; Ratz, Beate; Aguilar-Cordova, Estuardo; Eichele, Gregor

    2002-07-01

    The chick model has been instrumental in illuminating genes that regulate early vertebrate development and pattern formation. Targeted ectopic gene expression is critical to dissect further the complicated gene interactions that are involved. In an effort to develop a consistent method to ectopically introduce and focally express genes in chick mesoderm, we evaluated and optimized several gene delivery methods, including implantation of 293 cells laden with viral vectors, direct adenoviral injection, and electroporation (EP). We targeted the mesoderm of chick wing buds between stages 19 and 21 (Hamburger and Hamilton stages) and used beta-galactosidase and green fluorescent protein (GFP) to document gene transfer. Expression constructs using the cytomegalovirus (CMV) promoter, the beta-actin promoter, and vectors with an internal ribosomal entry sequence linked to GFP (IRES-GFP) were also compared. After gene transfer, we monitored expression for up to 3 days. The functionality of ectopic expression was demonstrated with constructs containing the coding sequences for Shh, a secreted signaling protein, or Hoxb-8, a transcription factor, both of which can induce digit duplication when ectopically expressed in anterior limb mesoderm. We identified several factors that enhance mesodermal gene transfer. First, the use of a vector with the beta-actin promoter coupled to the 69% fragment of the bovine papilloma virus yielded superior mesodermal expression both by markers and functional results when compared with several CMV-driven vectors. Second, we found the use of mineral oil to be an important adjuvant for EP and direct viral injection to localize and contain vector within the mesoderm at the injection site. Lastly, although ectopic expression could be achieved with all three methods, we favored EP confined to the mesoderm with insulated microelectrodes (confined microelectroporation- CMEP), because vector construction is rapid, the method is efficient, and results

  15. Optimal Reference Genes for Gene Expression Normalization in Trichomonas vaginalis

    PubMed Central

    dos Santos, Odelta; de Vargas Rigo, Graziela; Frasson, Amanda Piccoli; Macedo, Alexandre José; Tasca, Tiana

    2015-01-01

    Trichomonas vaginalis is the etiologic agent of trichomonosis, the most common non-viral sexually transmitted disease worldwide. This infection is associated with several health consequences, including cervical and prostate cancers and HIV acquisition. Gene expression analysis has been facilitated because of available genome sequences and large-scale transcriptomes in T. vaginalis, particularly using quantitative real-time polymerase chain reaction (qRT-PCR), one of the most used methods for molecular studies. Reference genes for normalization are crucial to ensure the accuracy of this method. However, to the best of our knowledge, a systematic validation of reference genes has not been performed for T. vaginalis. In this study, the transcripts of nine candidate reference genes were quantified using qRT-PCR under different cultivation conditions, and the stability of these genes was compared using the geNorm and NormFinder algorithms. The most stable reference genes were α-tubulin, actin and DNATopII, and, conversely, the widely used T. vaginalis reference genes GAPDH and β-tubulin were less stable. The PFOR gene was used to validate the reliability of the use of these candidate reference genes. As expected, the PFOR gene was upregulated when the trophozoites were cultivated with ferrous ammonium sulfate when the DNATopII, α-tubulin and actin genes were used as normalizing gene. By contrast, the PFOR gene was downregulated when the GAPDH gene was used as an internal control, leading to misinterpretation of the data. These results provide an important starting point for reference gene selection and gene expression analysis with qRT-PCR studies of T. vaginalis. PMID:26393928

  16. Optimal Reference Genes for Gene Expression Normalization in Trichomonas vaginalis.

    PubMed

    dos Santos, Odelta; de Vargas Rigo, Graziela; Frasson, Amanda Piccoli; Macedo, Alexandre José; Tasca, Tiana

    2015-01-01

    Trichomonas vaginalis is the etiologic agent of trichomonosis, the most common non-viral sexually transmitted disease worldwide. This infection is associated with several health consequences, including cervical and prostate cancers and HIV acquisition. Gene expression analysis has been facilitated because of available genome sequences and large-scale transcriptomes in T. vaginalis, particularly using quantitative real-time polymerase chain reaction (qRT-PCR), one of the most used methods for molecular studies. Reference genes for normalization are crucial to ensure the accuracy of this method. However, to the best of our knowledge, a systematic validation of reference genes has not been performed for T. vaginalis. In this study, the transcripts of nine candidate reference genes were quantified using qRT-PCR under different cultivation conditions, and the stability of these genes was compared using the geNorm and NormFinder algorithms. The most stable reference genes were α-tubulin, actin and DNATopII, and, conversely, the widely used T. vaginalis reference genes GAPDH and β-tubulin were less stable. The PFOR gene was used to validate the reliability of the use of these candidate reference genes. As expected, the PFOR gene was upregulated when the trophozoites were cultivated with ferrous ammonium sulfate when the DNATopII, α-tubulin and actin genes were used as normalizing gene. By contrast, the PFOR gene was downregulated when the GAPDH gene was used as an internal control, leading to misinterpretation of the data. These results provide an important starting point for reference gene selection and gene expression analysis with qRT-PCR studies of T. vaginalis. PMID:26393928

  17. Homeobox genes expressed during echinoderm arm regeneration.

    PubMed

    Ben Khadra, Yousra; Said, Khaled; Thorndyke, Michael; Martinez, Pedro

    2014-04-01

    Regeneration in echinoderms has proved to be more amenable to study in the laboratory than the more classical vertebrate models, since the smaller genome size and the absence of multiple orthologs for different genes in echinoderms simplify the analysis of gene function during regeneration. In order to understand the role of homeobox-containing genes during arm regeneration in echinoderms, we isolated the complement of genes belonging to the Hox class that are expressed during this process in two major echinoderm groups: asteroids (Echinaster sepositus and Asterias rubens) and ophiuroids (Amphiura filiformis), both of which show an extraordinary capacity for regeneration. By exploiting the sequence conservation of the homeobox, putative orthologs of several Hox genes belonging to the anterior, medial, and posterior groups were isolated. We also report the isolation of a few Hox-like genes expressed in the same systems. PMID:24309817

  18. Heterosis and differential gene expression in hybrids and parents in Bombyx mori by digital gene expression profiling

    PubMed Central

    Wang, Hua; Fang, Yan; Wang, Lipeng; Zhu, Wenjuan; Ji, Haipeng; Wang, Haiying; Xu, Shiqing; Sima, Yanghu

    2015-01-01

    Heterosis is a concern to all breeders, but the mechanism of heterosis remains unknown. In F1 organisms, genetic material is inherited from the two parents and theoretically, heterosis might be caused by differences in gene expression or modification. Differential gene expression was analyzed in hybrids and parents in Bombyx mori. The results showed that there were significant changes in gene expression in the fat body involving biological regulation, cellular and metabolic processes. Consistent trends in expression patterns covering different hybrid combinations were seen in 74 genes. Moreover, these differential gene expression patterns included overdominance, dominance, and additive effects. By correlating these patterns with economic traits, a potential relationship was found. Differential gene expression was seen in different cross combinations and in different sexes. In addition, a regulatory mechanism involving metabolism and ErbB signaling pathways was also found, suggesting that such a network might also be related to heterosis in Bombyx mori. Together, our data provide a comprehensive overview and useful resource for transcriptional analysis of heterosis of Bombyx mori. PMID:25736158

  19. Expression of multiple gamma-glutamyltransferase genes in man.

    PubMed Central

    Courtay, C; Heisterkamp, N; Siest, G; Groffen, J

    1994-01-01

    In clinical and pharmacological laboratories, the assay for gamma-glutamyltransferase (GGT) activity is an important diagnostic test, but one with high biological variability. Although the human genome contains multiple GGT genomic sequences, the diagnostic tests generally assume that only a single GGT gene is active. In the current study, segments encompassing parts of seven different potential human GGT genes have been molecularly cloned. Based on sequence determination of exons within these distinct genomic clones, oligonucleotide primers were designed which would prime and PCR-amplify putative mRNA of all seven potential GGT genes, if expressed. Gene-specific oligonucleotide probes were then utilized to assay the transcriptional status of the seven possible GGT genes in a wide variety of human RNAs. Our results show that a single GGT gene exhibits ubiquitous expression in all RNAs tested, including those from fetal and adult liver. A surprisingly large number of four additional GGT genes is expressed in man. Interestingly, these novel GGT genes are expressed in a tissue-restricted manner, which suggests that their corresponding gene products exhibit distinct functions in these specific tissues. Images Figure 3 Figure 4 PMID:7906515

  20. Reading Genomes and Controlling Gene Expression

    NASA Astrophysics Data System (ADS)

    Libchaber, Albert

    2000-03-01

    Molecular recognition of DNA sequences is achieved by DNA hybridization of complementary sequences. We present various scenarios for optimization, leading to microarrays and global measurement. Gene expression can be controlled using gene constructs immobilized on a template with micron scale temperature heaters. We will discuss and present results on protein microarrays.

  1. Polyunsaturated fatty acids and gene expression

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Purpose of review. This review focuses on the effect(s) of n-3 polyunsaturated fatty acids (PUFA) on gene transcription as determined from data generated using cDNA microarrays. Introduced within the past decade, this methodology allows detection of the expression of thousands of genes simultaneo...

  2. Monoallelic Expression of Multiple Genes in the CNS

    PubMed Central

    Wang, Jinhui; Valo, Zuzana; Smith, David; Singer-Sam, Judith

    2007-01-01

    The inheritance pattern of a number of major genetic disorders suggests the possible involvement of genes that are expressed from one allele and silent on the other, but such genes are difficult to detect. Since DNA methylation in regulatory regions is often a mark of gene silencing, we modified existing microarray-based assays to detect both methylated and unmethylated DNA sequences in the same sample, a variation we term the MAUD assay. We probed a 65 Mb region of mouse Chr 7 for gene-associated sequences that show two distinct DNA methylation patterns in the mouse CNS. Selected genes were then tested for allele-specific expression in clonal neural stem cell lines derived from reciprocal F1 (C57BL/6×JF1) hybrid mice. In addition, using a separate approach, we directly analyzed allele-specific expression of a group of genes interspersed within clusters of OlfR genes, since the latter are subject to allelic exclusion. Altogether, of the 500 known genes in the chromosomal region surveyed, five show monoallelic expression, four identified by the MAUD assay (Agc1, p (pink-eyed dilution), P4ha3 and Thrsp), and one by its proximity to OlfR genes (Trim12). Thrsp (thyroid hormone responsive SPOT14 homolog) is expressed in hippocampus, but the human protein homolog, S14, has also been implicated in aggressive breast cancer. Monoallelic expression of the five genes is not coordinated at a chromosome-wide level, but rather regulated at individual loci. Taken together, our results suggest that at least 1% of previously untested genes are subject to allelic exclusion, and demonstrate a dual approach to expedite their identification. PMID:18074017

  3. Monoallelic expression of multiple genes in the CNS.

    PubMed

    Wang, Jinhui; Valo, Zuzana; Smith, David; Singer-Sam, Judith

    2007-01-01

    The inheritance pattern of a number of major genetic disorders suggests the possible involvement of genes that are expressed from one allele and silent on the other, but such genes are difficult to detect. Since DNA methylation in regulatory regions is often a mark of gene silencing, we modified existing microarray-based assays to detect both methylated and unmethylated DNA sequences in the same sample, a variation we term the MAUD assay. We probed a 65 Mb region of mouse Chr 7 for gene-associated sequences that show two distinct DNA methylation patterns in the mouse CNS. Selected genes were then tested for allele-specific expression in clonal neural stem cell lines derived from reciprocal F(1) (C57BL/6xJF1) hybrid mice. In addition, using a separate approach, we directly analyzed allele-specific expression of a group of genes interspersed within clusters of OlfR genes, since the latter are subject to allelic exclusion. Altogether, of the 500 known genes in the chromosomal region surveyed, five show monoallelic expression, four identified by the MAUD assay (Agc1, p (pink-eyed dilution), P4ha3 and Thrsp), and one by its proximity to OlfR genes (Trim12). Thrsp (thyroid hormone responsive SPOT14 homolog) is expressed in hippocampus, but the human protein homolog, S14, has also been implicated in aggressive breast cancer. Monoallelic expression of the five genes is not coordinated at a chromosome-wide level, but rather regulated at individual loci. Taken together, our results suggest that at least 1% of previously untested genes are subject to allelic exclusion, and demonstrate a dual approach to expedite their identification. PMID:18074017

  4. Reliable Reference Genes for Normalization of Gene Expression in Cucumber Grown under Different Nitrogen Nutrition

    PubMed Central

    Warzybok, Anna; Migocka, Magdalena

    2013-01-01

    In plants, nitrogen is the most important nutritional factor limiting the yield of cultivated crops. Since nitrogen is essential for synthesis of nucleotides, amino acids and proteins, studies on gene expression in plants cultivated under different nitrogen availability require particularly careful selection of suitable reference genes which are not affected by nitrogen limitation. Therefore, the objective of this study was to select the most reliable reference genes for qPCR analysis of target cucumber genes under varying nitrogen source and availability. Among twelve candidate cucumber genes used in this study, five are highly homologous to the commonly used internal controls, whereas seven novel candidates were previously identified through the query of the cucumber genome. The expression of putative reference genes and the target CsNRT1.1 gene was analyzed in roots, stems and leaves of cucumbers grown under nitrogen deprivation, varying nitrate availability or different sources of nitrogen (glutamate, glutamine or NH3). The stability of candidate genes expression significantly varied depending on the tissue type and nitrogen supply. However, in most of the outputs genes encoding CACS, TIP41, F-box protein and EFα proved to be the most suitable for normalization of CsNRT1.1 expression. In addition, our results suggest the inclusion of 3 or 4 references to obtain highly reliable results of target genes expression in all cucumber organs under nitrogen-related stress. PMID:24058446

  5. Control of gene expression in trypanosomes.

    PubMed Central

    Vanhamme, L; Pays, E

    1995-01-01

    Trypanosomes are protozoan agents of major parasitic diseases such as Chagas' disease in South America and sleeping sickness of humans and nagana disease of cattle in Africa. They are transmitted to mammalian hosts by specific insect vectors. Their life cycle consists of a succession of differentiation and growth phases requiring regulated gene expression to adapt to the changing extracellular environment. Typical of such stage-specific expression is that of the major surface antigens of Trypanosoma brucei, procyclin in the procyclic (insect) form and the variant surface glycoprotein (VSG) in the bloodstream (mammalian) form. In trypanosomes, the regulation of gene expression is effected mainly at posttranscriptional levels, since primary transcription of most of the genes occurs in long polycistronic units and is constitutive. The transcripts are processed by transsplicing and polyadenylation under the influence of intergenic polypyrimidine tracts. These events show some developmental regulation. Untranslated sequences of the mRNAs seem to play a prominent role in the stage-specific control of individual gene expression, through a modulation of mRNA abundance. The VSG and procyclin transcription units exhibit particular features that are probably related to the need for a high level of expression. The promoters and RNA polymerase driving the expression of these units resemble those of the ribosomal genes. Their mutually exclusive expression is ensured by controls operating at several levels, including RNA elongation. Antigenic variation in the bloodstream is achieved through DNA rearrangements or alternative activation of the telomeric VSG gene expression sites. Recent discoveries, such as the existence of a novel nucleotide in telomeric DNA and the generation of point mutations in VSG genes, have shed new light on the mechanisms and consequences of antigenic variation. PMID:7603410

  6. Gene expression changes during retinal development and rod specification

    PubMed Central

    Carrigan, Matthew; Hokamp, Karsten; Farrar, G. Jane

    2015-01-01

    Purpose Retinitis pigmentosa (RP) typically results from individual mutations in any one of >70 genes that cause rod photoreceptor cells to degenerate prematurely, eventually resulting in blindness. Gene therapies targeting individual RP genes have shown efficacy at clinical trial; however, these therapies require the surviving photoreceptor cells to be viable and functional, and may be economically feasible for only the more commonly mutated genes. An alternative potential treatment strategy, particularly for late stage disease, may involve stem cell transplants into the photoreceptor layer of the retina. Rod progenitors from postnatal mouse retinas can be transplanted and can form photoreceptors in recipient adult retinas; optimal numbers of transplantable cells are obtained from postnatal day 3–5 (P3–5) retinas. These cells can also be expanded in culture; however, this results in the loss of photoreceptor potential. Gene expression differences between postnatal retinas, cultured retinal progenitor cells (RPCs), and rod photoreceptor precursors were investigated to identify gene expression patterns involved in the specification of rod photoreceptors. Methods Microarrays were used to investigate differences in gene expression between cultured RPCs that have lost photoreceptor potential, P1 retinas, and fresh P5 retinas that contain significant numbers of transplantable photoreceptors. Additionally, fluorescence-activated cell sorting (FACS) sorted Rho-eGFP-expressing rod photoreceptor precursors were compared with Rho-eGFP-negative cells from the same P5 retinas. Differential expression was confirmed with quantitative polymerase chain reaction (q-PCR). Results Analysis of the microarray data sets, including the use of t-distributed stochastic neighbor embedding (t-SNE) to identify expression pattern neighbors of key photoreceptor specific genes, resulted in the identification of 636 genes differentially regulated during rod specification. Forty-four of these

  7. Application of multidisciplinary analysis to gene expression.

    SciTech Connect

    Wang, Xuefel; Kang, Huining; Fields, Chris; Cowie, Jim R.; Davidson, George S.; Haaland, David Michael; Sibirtsev, Valeriy; Mosquera-Caro, Monica P.; Xu, Yuexian; Martin, Shawn Bryan; Helman, Paul; Andries, Erik; Ar, Kerem; Potter, Jeffrey; Willman, Cheryl L.; Murphy, Maurice H.

    2004-01-01

    Molecular analysis of cancer, at the genomic level, could lead to individualized patient diagnostics and treatments. The developments to follow will signal a significant paradigm shift in the clinical management of human cancer. Despite our initial hopes, however, it seems that simple analysis of microarray data cannot elucidate clinically significant gene functions and mechanisms. Extracting biological information from microarray data requires a complicated path involving multidisciplinary teams of biomedical researchers, computer scientists, mathematicians, statisticians, and computational linguists. The integration of the diverse outputs of each team is the limiting factor in the progress to discover candidate genes and pathways associated with the molecular biology of cancer. Specifically, one must deal with sets of significant genes identified by each method and extract whatever useful information may be found by comparing these different gene lists. Here we present our experience with such comparisons, and share methods developed in the analysis of an infant leukemia cohort studied on Affymetrix HG-U95A arrays. In particular, spatial gene clustering, hyper-dimensional projections, and computational linguistics were used to compare different gene lists. In spatial gene clustering, different gene lists are grouped together and visualized on a three-dimensional expression map, where genes with similar expressions are co-located. In another approach, projections from gene expression space onto a sphere clarify how groups of genes can jointly have more predictive power than groups of individually selected genes. Finally, online literature is automatically rearranged to present information about genes common to multiple groups, or to contrast the differences between the lists. The combination of these methods has improved our understanding of infant leukemia. While the complicated reality of the biology dashed our initial, optimistic hopes for simple answers from

  8. Phytochrome-regulated Gene Expression

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Identification of all genes involved in the phytochrome (phy)-mediated responses of plants to their light environment is an important goal in providing an overall understanding of light-regulated growth and development. This article highlights and integrates the central findings of two recent compre...

  9. Identification of Tuberculosis Susceptibility Genes with Human Macrophage Gene Expression Profiles

    PubMed Central

    Chau, Tran Thi Hong; Thorsson, Vesteinn; Simmons, Cameron P.; Quyen, Nguyen Than Ha; Thwaites, Guy E.; Thi Ngoc Lan, Nguyen; Hibberd, Martin; Teo, Yik Y.; Seielstad, Mark; Aderem, Alan; Farrar, Jeremy J.; Hawn, Thomas R.

    2008-01-01

    Although host genetics influences susceptibility to tuberculosis (TB), few genes determining disease outcome have been identified. We hypothesized that macrophages from individuals with different clinical manifestations of Mycobacterium tuberculosis (Mtb) infection would have distinct gene expression profiles and that polymorphisms in these genes may also be associated with susceptibility to TB. We measured gene expression levels of >38,500 genes from ex vivo Mtb-stimulated macrophages in 12 subjects with 3 clinical phenotypes: latent, pulmonary, and meningeal TB (n = 4 per group). After identifying differentially expressed genes, we confirmed these results in 34 additional subjects by real-time PCR. We also used a case-control study design to examine whether polymorphisms in differentially regulated genes were associated with susceptibility to these different clinical forms of TB. We compared gene expression profiles in Mtb-stimulated and unstimulated macrophages and identified 1,608 and 199 genes that were differentially expressed by >2- and >5-fold, respectively. In an independent sample set of 34 individuals and a subset of highly regulated genes, 90% of the microarray results were confirmed by RT-PCR, including expression levels of CCL1, which distinguished the 3 clinical groups. Furthermore, 6 single nucleotide polymorphisms (SNPs) in CCL1 were found to be associated with TB in a case-control genetic association study with 273 TB cases and 188 controls. To our knowledge, this is the first identification of CCL1 as a gene involved in host susceptibility to TB and the first study to combine microarray and DNA polymorphism studies to identify genes associated with TB susceptibility. These results suggest that genome-wide studies can provide an unbiased method to identify critical macrophage response genes that are associated with different clinical outcomes and that variation in innate immune response genes regulate susceptibility to TB. PMID:19057661

  10. Regulation of immunoglobulin gene rearrangement and expression.

    PubMed

    Taussig, M J; Sims, M J; Krawinkel, U

    1989-05-01

    The molecular genetic events leading to Ig expression and their control formed the topic of a recent EMBO workshop. This report by Michael Taussig, Martin Sims and Ulrich Krawinkel discusses contributions dealing with genes expressed in early pre-B cells, the mechanism of rearrangement, aberrant rearrangements seen in B cells of SCID mice, the feedback control of rearrangement as studied in transgenic mice, the control of Ig expression at the transcriptional and post-transcriptional levels, and class switching. PMID:2787158

  11. Introduction to the Gene Expression Analysis.

    PubMed

    Segundo-Val, Ignacio San; Sanz-Lozano, Catalina S

    2016-01-01

    In 1941, Beadle and Tatum published experiments that would explain the basis of the central dogma of molecular biology, whereby the DNA through an intermediate molecule, called RNA, results proteins that perform the functions in cells. Currently, biomedical research attempts to explain the mechanisms by which develops a particular disease, for this reason, gene expression studies have proven to be a great resource. Strictly, the term "gene expression" comprises from the gene activation until the mature protein is located in its corresponding compartment to perform its function and contribute to the expression of the phenotype of cell.The expression studies are directed to detect and quantify messenger RNA (mRNA) levels of a specific gene. The development of the RNA-based gene expression studies began with the Northern Blot by Alwine et al. in 1977. In 1969, Gall and Pardue and John et al. independently developed the in situ hybridization, but this technique was not employed to detect mRNA until 1986 by Coghlan. Today, many of the techniques for quantification of RNA are deprecated because other new techniques provide more information. Currently the most widely used techniques are qPCR, expression microarrays, and RNAseq for the transcriptome analysis. In this chapter, these techniques will be reviewed. PMID:27300529

  12. EXPECTATIONS, VALIDITY, AND REALITY IN GENE EXPRESSION PROFILING

    PubMed Central

    Kim, Kyoungmi; Zakharkin, Stanislav O.; Allison, David B

    2010-01-01

    Objective: To provide a critical overview of gene expression profiling methodology and discuss areas of future development. Results: Gene expression profiling has been used extensively in biological research and has resulted in significant advances in the understanding of the molecular mechanisms of complex disorders, including cancer, heart disease, and metabolic disorders. However, translating this technology into genomic medicine for use in diagnosis and prognosis faces many challenges. In addition, gene expression profile analysis is frequently controversial, because its conclusions often lack reproducibility and claims of effective dissemination into translational medicine have, in some cases, been remarkably unjustified. In the last decade, a large number of methodological and technical solutions have been offered to overcome the challenges. Study Design and Setting: We consider the strengths, limitations, and appropriate applications of gene expression profiling techniques, with particular reference to the clinical relevance. Conclusion: Some studies have demonstrated the ability and clinical utility of gene expression profiling for use as diagnostic, prognostic, and predictive molecular markers. The challenges of gene expression profiling lie with the standardization of analytic approaches and the evaluation of the clinical merit in broader heterogeneous populations by prospective clinical trials. PMID:20579843

  13. Gene expression in the brain during reovirus encephalitis

    PubMed Central

    Tyler, Kenneth L; Leser, J Smith; Phang, Tzu L; Clarke, Penny

    2010-01-01

    Viral encephalitis remains a significant cause of morbidity and mortality throughout the world. We performed microarray analysis to identify genes and pathways that are differentially regulated during reovirus encephalitis and that may provide novel therapeutic targets for virus-induced diseases of the central nervous system (CNS). An increase in the expression of 130 cellular genes was found in the brains of reovirus-infected mice at early times post infection, compared to mock-infected controls. The up-regulation of these genes was consistent with activation of innate immune responses, particularly interferon signaling. At later times post infection, when significant CNS injury is present and mice exhibit signs of severe neurologic disease, many more (1374) genes were up-regulated, indicating that increased gene expression correlates with disease pathology. Virus-induced gene expression at late times post infection was again consistent with the activation of innate immune responses. However, additional significant pathways included those associated with cytokine signaling and apoptosis, both of which can contribute to CNS injury. This is the first report comparing virus-induced cellular gene and pathway regulation at early and late times following virus infection of the brain. The shift of virus-induced gene expression from innate immune responses at early times post infection to cytokine signaling and apoptosis at later times suggests a potential therapeutic strategy that preserves early protective responses whilst inhibiting later responses that contribute to pathogenesis. PMID:20158406

  14. Noise minimization in eukaryotic gene expression

    SciTech Connect

    Fraser, Hunter B.; Hirsh, Aaron E.; Giaever, Guri; Kumm, Jochen; Eisen, Michael B.

    2004-01-15

    All organisms have elaborate mechanisms to control rates of protein production. However, protein production is also subject to stochastic fluctuations, or noise. Several recent studies in Saccharomyces cerevisiae and Escherichia coli have investigated the relationship between transcription and translation rates and stochastic fluctuations in protein levels, or more generally, how such randomness is a function of intrinsic and extrinsic factors. However, the fundamental question of whether stochasticity in protein expression is generally biologically relevant has not been addressed, and it remains unknown whether random noise in the protein production rate of most genes significantly affects the fitness of any organism. We propose that organisms should be particularly sensitive to variation in the protein levels of two classes of genes: genes whose deletion is lethal to the organism and genes that encode subunits of multiprotein complexes. Using an experimentally verified model of stochastic gene expression in S. cerevisiae, we estimate the noise in protein production for nearly every yeast gene, and confirm our prediction that the production of essential and complex-forming proteins involves lower levels of noise than does the production of most other genes. Our results support the hypothesis that noise in gene expression is a biologically important variable, is generally detrimental to organismal fitness, and is subject to natural selection.

  15. GXD: a community resource of mouse Gene Expression Data.

    PubMed

    Smith, Constance M; Finger, Jacqueline H; Hayamizu, Terry F; McCright, Ingeborg J; Xu, Jingxia; Eppig, Janan T; Kadin, James A; Richardson, Joel E; Ringwald, Martin

    2015-08-01

    The Gene Expression Database (GXD) is an extensive, easily searchable, and freely available database of mouse gene expression information (www.informatics.jax.org/expression.shtml). GXD was developed to foster progress toward understanding the molecular basis of human development and disease. GXD contains information about when and where genes are expressed in different tissues in the mouse, especially during the embryonic period. GXD collects different types of expression data from wild-type and mutant mice, including RNA in situ hybridization, immunohistochemistry, RT-PCR, and northern and western blot results. The GXD curators read the scientific literature and enter the expression data from those papers into the database. GXD also acquires expression data directly from researchers, including groups doing large-scale expression studies. GXD currently contains nearly 1.5 million expression results for over 13,900 genes. In addition, it has over 265,000 images of expression data, allowing users to retrieve the primary data and interpret it themselves. By being an integral part of the larger Mouse Genome Informatics (MGI) resource, GXD's expression data are combined with other genetic, functional, phenotypic, and disease-oriented data. This allows GXD to provide tools for researchers to evaluate expression data in the larger context, search by a wide variety of biologically and biomedically relevant parameters, and discover new data connections to help in the design of new experiments. Thus, GXD can provide researchers with critical insights into the functions of genes and the molecular mechanisms of development, differentiation, and disease. PMID:25939429

  16. Antagonistic control of a dual-input mammalian gene switch by food additives

    PubMed Central

    Xie, Mingqi; Ye, Haifeng; Hamri, Ghislaine Charpin-El; Fussenegger, Martin

    2014-01-01

    Synthetic biology has significantly advanced the design of mammalian trigger-inducible transgene-control devices that are able to programme complex cellular behaviour. Fruit-based benzoate derivatives licensed as food additives, such as flavours (e.g. vanillate) and preservatives (e.g. benzoate), are a particularly attractive class of trigger compounds for orthogonal mammalian transgene control devices because of their innocuousness, physiological compatibility and simple oral administration. Capitalizing on the genetic componentry of the soil bacterium Comamonas testosteroni, which has evolved to catabolize a variety of aromatic compounds, we have designed different mammalian gene expression systems that could be induced and repressed by the food additives benzoate and vanillate. When implanting designer cells engineered for gene switch-driven expression of the human placental secreted alkaline phosphatase (SEAP) into mice, blood SEAP levels of treated animals directly correlated with a benzoate-enriched drinking programme. Additionally, the benzoate-/vanillate-responsive device was compatible with other transgene control systems and could be assembled into higher-order control networks providing expression dynamics reminiscent of a lap-timing stopwatch. Designer gene switches using licensed food additives as trigger compounds to achieve antagonistic dual-input expression profiles and provide novel control topologies and regulation dynamics may advance future gene- and cell-based therapies. PMID:25030908

  17. Establishment of a system for conditional gene expression using an inducible tRNA suppressor gene.

    PubMed Central

    Dingermann, T; Werner, H; Schütz, A; Zündorf, I; Nerke, K; Knecht, D; Marschalek, R

    1992-01-01

    We investigated the use of the prokaryotic tetracycline operator-repressor system as a regulatory device to control the expression of Dictyostelium discoideum tRNA genes. The tetO1 operator fragment was inserted at three different positions in front of a tRNA(Glu) (Am) suppressor gene from D. discoideum, and the tetracycline repressor gene was expressed under the control of a constitutive actin 6 promoter. The effectiveness of this approach was determined by monitoring the expression of a beta-galactosidase gene engineered to contain a stop codon that could be suppressed by the tRNA. When these constructs were introduced into Dictyostelium cells, the repressor bound to the operator in front of the tRNA gene and prevented expression of the suppressor tRNA. Addition of tetracycline (30 micrograms/ml) to the growth medium prevented repressor binding, allowed expression of the suppressor tRNA, and resulted in beta-galactosidase synthesis. The operator-repressor complex interfered with tRNA gene transcription when the operator was inserted immediately upstream (position +1 or -7) of the mature tRNA coding region. Expression of a tRNA gene carrying the operator at position -46 did not respond to repressor binding. This system could be used to control the synthesis of any protein, provided the gene contained a translational stop signal. Images PMID:1508201

  18. Changes in skeletal muscle gene expression following clenbuterol administration

    PubMed Central

    Spurlock, Diane M; McDaneld, Tara G; McIntyre, Lauren M

    2006-01-01

    Background Beta-adrenergic receptor agonists (BA) induce skeletal muscle hypertrophy, yet specific mechanisms that lead to this effect are not well understood. The objective of this research was to identify novel genes and physiological pathways that potentially facilitate BA induced skeletal muscle growth. The Affymetrix platform was utilized to identify gene expression changes in mouse skeletal muscle 24 hours and 10 days after administration of the BA clenbuterol. Results Administration of clenbuterol stimulated anabolic activity, as indicated by decreased blood urea nitrogen (BUN; P < 0.01) and increased body weight gain (P < 0.05) 24 hours or 10 days, respectively, after initiation of clenbuterol treatment. A total of 22,605 probesets were evaluated with 52 probesets defined as differentially expressed based on a false discovery rate of 10%. Differential mRNA abundance of four of these genes was validated in an independent experiment by quantitative PCR. Functional characterization of differentially expressed genes revealed several categories that participate in biological processes important to skeletal muscle growth, including regulators of transcription and translation, mediators of cell-signalling pathways, and genes involved in polyamine metabolism. Conclusion Global evaluation of gene expression after administration of clenbuterol identified changes in gene expression and overrepresented functional categories of genes that may regulate BA-induced muscle hypertrophy. Changes in mRNA abundance of multiple genes associated with myogenic differentiation may indicate an important effect of BA on proliferation, differentiation, and/or recruitment of satellite cells into muscle fibers to promote muscle hypertrophy. Increased mRNA abundance of genes involved in the initiation of translation suggests that increased levels of protein synthesis often associated with BA administration may result from a general up-regulation of translational initiators. Additionally

  19. A Hybrid Approach of Gene Sets and Single Genes for the Prediction of Survival Risks with Gene Expression Data

    PubMed Central

    Seok, Junhee; Davis, Ronald W.; Xiao, Wenzhong

    2015-01-01

    Accumulated biological knowledge is often encoded as gene sets, collections of genes associated with similar biological functions or pathways. The use of gene sets in the analyses of high-throughput gene expression data has been intensively studied and applied in clinical research. However, the main interest remains in finding modules of biological knowledge, or corresponding gene sets, significantly associated with disease conditions. Risk prediction from censored survival times using gene sets hasn’t been well studied. In this work, we propose a hybrid method that uses both single gene and gene set information together to predict patient survival risks from gene expression profiles. In the proposed method, gene sets provide context-level information that is poorly reflected by single genes. Complementarily, single genes help to supplement incomplete information of gene sets due to our imperfect biomedical knowledge. Through the tests over multiple data sets of cancer and trauma injury, the proposed method showed robust and improved performance compared with the conventional approaches with only single genes or gene sets solely. Additionally, we examined the prediction result in the trauma injury data, and showed that the modules of biological knowledge used in the prediction by the proposed method were highly interpretable in biology. A wide range of survival prediction problems in clinical genomics is expected to benefit from the use of biological knowledge. PMID:25933378

  20. Ortho2ExpressMatrix—a web server that interprets cross-species gene expression data by gene family information

    PubMed Central

    2011-01-01

    Background The study of gene families is pivotal for the understanding of gene evolution across different organisms and such phylogenetic background is often used to infer biochemical functions of genes. Modern high-throughput experiments offer the possibility to analyze the entire transcriptome of an organism; however, it is often difficult to deduct functional information from that data. Results To improve functional interpretation of gene expression we introduce Ortho2ExpressMatrix, a novel tool that integrates complex gene family information, computed from sequence similarity, with comparative gene expression profiles of two pre-selected biological objects: gene families are displayed with two-dimensional matrices. Parameters of the tool are object type (two organisms, two individuals, two tissues, etc.), type of computational gene family inference, experimental meta-data, microarray platform, gene annotation level and genome build. Family information in Ortho2ExpressMatrix bases on computationally different protein family approaches such as EnsemblCompara, InParanoid, SYSTERS and Ensembl Family. Currently, respective all-against-all associations are available for five species: human, mouse, worm, fruit fly and yeast. Additionally, microRNA expression can be examined with respect to miRBase or TargetScan families. The visualization, which is typical for Ortho2ExpressMatrix, is performed as matrix view that displays functional traits of genes (differential expression) as well as sequence similarity of protein family members (BLAST e-values) in colour codes. Such translations are intended to facilitate the user's perception of the research object. Conclusions Ortho2ExpressMatrix integrates gene family information with genome-wide expression data in order to enhance functional interpretation of high-throughput analyses on diseases, environmental factors, or genetic modification or compound treatment experiments. The tool explores differential gene expression in

  1. Blue Light Modulates Murine Microglial Gene Expression in the Absence of Optogenetic Protein Expression

    PubMed Central

    Cheng, Kevin P.; Kiernan, Elizabeth A.; Eliceiri, Kevin W.; Williams, Justin C.; Watters, Jyoti J.

    2016-01-01

    Neural optogenetic applications over the past decade have steadily increased; however the effects of commonly used blue light paradigms on surrounding, non-optogenetic protein-expressing CNS cells are rarely considered, despite their simultaneous exposure. Here we report that blue light (450 nm) repetitively delivered in both long-duration boluses and rapid optogenetic bursts gene-specifically altered basal expression of inflammatory and neurotrophic genes in immortalized and primary murine wild type microglial cultures. In addition, blue light reduced pro-inflammatory gene expression in microglia activated with lipopolysaccharide. These results demonstrate previously unreported, off-target effects of blue light in cells not expressing optogenetic constructs. The unexpected gene modulatory effects of blue light on wild type CNS resident immune cells have novel and important implications for the neuro-optogenetic field. Further studies are needed to elucidate the molecular mechanisms and potential therapeutic utility of blue light modulation of the wild type CNS. PMID:26883795

  2. Toll-Like Receptor Gene Expression during Trichinella spiralis Infection

    PubMed Central

    Kim, Sin; Park, Mi Kyung; Yu, Hak Sun

    2015-01-01

    In Trichinella spiralis infection, type 2 helper T (Th2) cell-related and regulatory T (Treg) cell-related immune responses are the most important immune events. In order to clarify which Toll-like receptors (TLRs) are closely associated with these responses, we analyzed the expression of mouse TLR genes in the small intestine and muscle tissue during T. spiralis infection. In addition, the expression of several chemokine- and cytokine-encoding genes, which are related to Th2 and Treg cell mediated immune responses, were analyzed in mouse embryonic fibroblasts (MEFs) isolated from myeloid differentiation factor 88 (MyD88)/TIR-associated proteins (TIRAP) and Toll receptor-associated activator of interferons (TRIF) adapter protein deficient and wild type (WT) mice. The results showed significantly increased TLR4 and TLR9 gene expression in the small intestine after 2 weeks of T. spiralis infection. In the muscle, TLR1, TLR2, TLR5, and TLR9 gene expression significantly increased after 4 weeks of infection. Only the expression of the TLR4 and TLR9 genes was significantly elevated in WT MEF cells after treatment with excretory-secretory (ES) proteins. Gene expression for Th2 chemokine genes were highly enhanced by ES proteins in WT MEF cells, while this elevation was slightly reduced in MyD88/TIRAP-/- MEF cells, and quite substantially decreased in TRIF-/- MEF cells. In contrast, IL-10 and TGF-β expression levels were not elevated in MyD88/TIRAP-/- MEF cells. In conclusion, we suggest that TLR4 and TLR9 might be closely linked to Th2 cell and Treg cell mediated immune responses, although additional data are needed to convincingly prove this observation. PMID:26323841

  3. Toll-Like Receptor Gene Expression during Trichinella spiralis Infection.

    PubMed

    Kim, Sin; Park, Mi Kyung; Yu, Hak Sun

    2015-08-01

    In Trichinella spiralis infection, type 2 helper T (Th2) cell-related and regulatory T (Treg) cell-related immune responses are the most important immune events. In order to clarify which Toll-like receptors (TLRs) are closely associated with these responses, we analyzed the expression of mouse TLR genes in the small intestine and muscle tissue during T. spiralis infection. In addition, the expression of several chemokine- and cytokine-encoding genes, which are related to Th2 and Treg cell mediated immune responses, were analyzed in mouse embryonic fibroblasts (MEFs) isolated from myeloid differentiation factor 88 (MyD88)/TIR-associated proteins (TIRAP) and Toll receptor-associated activator of interferons (TRIF) adapter protein deficient and wild type (WT) mice. The results showed significantly increased TLR4 and TLR9 gene expression in the small intestine after 2 weeks of T. spiralis infection. In the muscle, TLR1, TLR2, TLR5, and TLR9 gene expression significantly increased after 4 weeks of infection. Only the expression of the TLR4 and TLR9 genes was significantly elevated in WT MEF cells after treatment with excretory-secretory (ES) proteins. Gene expression for Th2 chemokine genes were highly enhanced by ES proteins in WT MEF cells, while this elevation was slightly reduced in MyD88/TIRAP(-/-) MEF cells, and quite substantially decreased in TRIF(-/-) MEF cells. In contrast, IL-10 and TGF-β expression levels were not elevated in MyD88/TIRAP(-/-) MEF cells. In conclusion, we suggest that TLR4 and TLR9 might be closely linked to Th2 cell and Treg cell mediated immune responses, although additional data are needed to convincingly prove this observation. PMID:26323841

  4. Aminoglycoside uptake increased by tet gene expression.

    PubMed Central

    Merlin, T L; Davis, G E; Anderson, W L; Moyzis, R K; Griffith, J K

    1989-01-01

    The expression of extrachromosomal tet genes not only confers tetracycline resistance but also increases the susceptibilities of gram-negative bacteria to commonly used aminoglycoside antibiotics. We investigated the possibility that tet expression increases aminoglycoside susceptibility by increasing bacterial uptake of aminoglycoside. Studies of [3H]gentamicin uptake in paired sets of Escherichia coli HB101 and Salmonella typhimurium LT2 expressing and not expressing tet showed that tet expression accelerates energy-dependent [3H]gentamicin uptake. Increased [3H]gentamicin uptake was accompanied by decreased bacterial protein synthesis and bacterial growth. Increased aminoglycoside uptake occurred whether tet expression was constitutive or induced, whether the tet gene was class B or C, and whether the tet gene was plasmid borne or integrated into the bacterial chromosome. tet expression produced no measurable change in membrane potential, suggesting that tet expression increases aminoglycoside uptake either by increasing the availability of specific carriers or by lowering the minimum membrane potential that is necessary for uptake. PMID:2684011

  5. Gene expression following acute morphine administration.

    PubMed

    Loguinov, A V; Anderson, L M; Crosby, G J; Yukhananov, R Y

    2001-08-28

    The long-term response to neurotropic drugs depends on drug-induced neuroplasticity and underlying changes in gene expression. However, alterations in neuronal gene expression can be observed even following single injection. To investigate the extent of these changes, gene expression in the medial striatum and lumbar part of the spinal cord was monitored by cDNA microarray following single injection of morphine. Using robust and resistant linear regression (MM-estimator) with simultaneous prediction confidence intervals, we detected differentially expressed genes. By combining the results with cluster analysis, we have found that a single morphine injection alters expression of two major groups of genes, for proteins involved in mitochondrial respiration and for cytoskeleton-related proteins. RNAs for these proteins were mostly downregulated both in the medial striatum and in lumbar part of the spinal cord. These transitory changes were prevented by coadministration of the opioid antagonist naloxone. Data indicate that microarray analysis by itself is useful in describing the effect of well-known substances on the nervous system and provides sufficient information to propose a potentially novel pathway mediating its activity. PMID:11526201

  6. Human AZU-1 gene, variants thereof and expressed gene products

    DOEpatents

    Chen, Huei-Mei; Bissell, Mina

    2004-06-22

    A human AZU-1 gene, mutants, variants and fragments thereof. Protein products encoded by the AZU-1 gene and homologs encoded by the variants of AZU-1 gene acting as tumor suppressors or markers of malignancy progression and tumorigenicity reversion. Identification, isolation and characterization of AZU-1 and AZU-2 genes localized to a tumor suppressive locus at chromosome 10q26, highly expressed in nonmalignant and premalignant cells derived from a human breast tumor progression model. A recombinant full length protein sequences encoded by the AZU-1 gene and nucleotide sequences of AZU-1 and AZU-2 genes and variant and fragments thereof. Monoclonal or polyclonal antibodies specific to AZU-1, AZU-2 encoded protein and to AZU-1, or AZU-2 encoded protein homologs.

  7. Validation of endogenous control reference genes for normalizing gene expression studies in endometrial carcinoma.

    PubMed

    Ayakannu, Thangesweran; Taylor, Anthony H; Willets, Jonathon M; Brown, Laurence; Lambert, David G; McDonald, John; Davies, Quentin; Moss, Esther L; Konje, Justin C

    2015-09-01

    Real-time quantitative RT-PCR (qRT-PCR) is a powerful technique used for the relative quantification of target genes, using reference (housekeeping) genes for normalization to ensure the generation of accurate and robust data. A systematic examination of the suitability of endogenous reference genes for gene expression studies in endometrial cancer tissues is absent. The aims of this study were therefore to identify and evaluate from the thirty-two possible reference genes from a TaqMan(®) array panel their suitability as an internal control gene. The mathematical software packages geNorm qBasePLUS identified Pumilio homolog 1 (Drosophila) (PUM1), ubiquitin C (UBC), phosphoglycerate kinase (PGK1), mitochondrial ribosomal protein L19 (MRPL19) and peptidylpropyl isomerase A (cyclophilin A) (PPIA) as the best reference gene combination, whilst NormFinder identified MRPL19 as the best single reference gene, with importin 8 (IPO8) and PPIA being the best combination of two reference genes. BestKeeper ranked MRPL19 as the most stably expressed gene. In addition, the study was validated by examining the relative expression of a test gene, which encodes the cannabinoid receptor 1 (CB1). A significant difference in CB1 mRNA expression between malignant and normal endometrium using MRPL19, PPIA, and IP08 in combination was observed. The use of MRPL19, IPO8 and PPIA was identified as the best reference gene combination for the normalization of gene expression levels in endometrial carcinoma. This study demonstrates that the arbitrary selection of endogenous control reference genes for normalization in qRT-PCR studies of endometrial carcinoma, without validation, risks the production of inaccurate data and should therefore be discouraged. PMID:26124453

  8. Alternative-splicing-mediated gene expression

    NASA Astrophysics Data System (ADS)

    Wang, Qianliang; Zhou, Tianshou

    2014-01-01

    Alternative splicing (AS) is a fundamental process during gene expression and has been found to be ubiquitous in eukaryotes. However, how AS impacts gene expression levels both quantitatively and qualitatively remains to be fully explored. Here, we analyze two common models of gene expression, each incorporating a simple splice mechanism that a pre-mRNA is spliced into two mature mRNA isoforms in a probabilistic manner. In the constitutive expression case, we show that the steady-state molecular numbers of two mature mRNA isoforms follow mutually independent Poisson distributions. In the bursting expression case, we demonstrate that the tail decay of the steady-state distribution for both mature mRNA isoforms that in general are not mutually independent can be characterized by the product of mean burst size and splicing probability. In both cases, we find that AS can efficiently modulate both the variability (measured by variance) and the noise level of the total mature mRNA, and in particular, the latter is always lower than the noise level of the pre-mRNA, implying that AS always reduces the noise. These results altogether reveal that AS is a mechanism of efficiently controlling the gene expression noise.

  9. Differential expression and interaction of host factors augment HIV-1 gene expression in neonatal mononuclear cells

    SciTech Connect

    Sundaravaradan, Vasudha; Mehta, Roshni; Harris, David T.; Zack, Jerome A.; Ahmad, Nafees

    2010-04-25

    We have previously shown a higher level of HIV-1 replication and gene expression in neonatal (cord) blood mononuclear cells (CBMC) compared with adult blood cells (PBMC), which could be due to differential expression of host factors. We performed the gene expression profile of CBMC and PBMC and found that 8013 genes were expressed at higher levels in CBMC than PBMC and 8028 genes in PBMC than CBMC, including 1181 and 1414 genes upregulated after HIV-1 infection in CBMC and PBMC, respectively. Several transcription factors (NF-kappaB, E2F, HAT-1, TFIIE, Cdk9, Cyclin T1), signal transducers (STAT3, STAT5A) and cytokines (IL-1beta, IL-6, IL-10) were upregulated in CBMC than PBMC, which are known to influence HIV-1 replication. In addition, a repressor of HIV-1 transcription, YY1, was down regulated in CBMC than PBMC and several matrix metalloproteinase (MMP-7, -12, -14) were significantly upregulated in HIV-1 infected CBMC than PBMC. Furthermore, we show that CBMC nuclear extracts interacted with a higher extent to HIV-1 LTR cis-acting sequences, including NF-kappaB, NFAT, AP1 and NF-IL6 compared with PBMC nuclear extracts and retroviral based short hairpin RNA (shRNA) for STAT3 and IL-6 down regulated their own and HIV-1 gene expression, signifying that these factors influenced differential HIV-1 gene expression in CBMC than PBMC.

  10. GEM-TREND: a web tool for gene expression data mining toward relevant network discovery

    PubMed Central

    Feng, Chunlai; Araki, Michihiro; Kunimoto, Ryo; Tamon, Akiko; Makiguchi, Hiroki; Niijima, Satoshi; Tsujimoto, Gozoh; Okuno, Yasushi

    2009-01-01

    Background DNA microarray technology provides us with a first step toward the goal of uncovering gene functions on a genomic scale. In recent years, vast amounts of gene expression data have been collected, much of which are available in public databases, such as the Gene Expression Omnibus (GEO). To date, most researchers have been manually retrieving data from databases through web browsers using accession numbers (IDs) or keywords, but gene-expression patterns are not considered when retrieving such data. The Connectivity Map was recently introduced to compare gene expression data by introducing gene-expression signatures (represented by a set of genes with up- or down-regulated labels according to their biological states) and is available as a web tool for detecting similar gene-expression signatures from a limited data set (approximately 7,000 expression profiles representing 1,309 compounds). In order to support researchers to utilize the public gene expression data more effectively, we developed a web tool for finding similar gene expression data and generating its co-expression networks from a publicly available database. Results GEM-TREND, a web tool for searching gene expression data, allows users to search data from GEO using gene-expression signatures or gene expression ratio data as a query and retrieve gene expression data by comparing gene-expression pattern between the query and GEO gene expression data. The comparison methods are based on the nonparametric, rank-based pattern matching approach of Lamb et al. (Science 2006) with the additional calculation of statistical significance. The web tool was tested using gene expression ratio data randomly extracted from the GEO and with in-house microarray data, respectively. The results validated the ability of GEM-TREND to retrieve gene expression entries biologically related to a query from GEO. For further analysis, a network visualization interface is also provided, whereby genes and gene annotations

  11. Hypergravity-induced changes in gene expression in Arabidopsis hypocotyls

    NASA Astrophysics Data System (ADS)

    Yoshioka, R.; Soga, K.; Wakabayashi, K.; Takeba, G.; Hoson, T.

    2003-05-01

    Under hypergravity conditions, the cell wall of stem organs becomes mechanically rigid and elongation growth is suppressed, which can be recognized as the mechanism for plants to resist gravitational force. The changes in gene expression by hypergravity treatment were analyzed in Arabidopsis hypocotyls by the differential display method, for identifying genes involved in hypergravity-induced growth suppression. Sixty-two cDNA clones were expressed differentially between the control and 300 g conditions: the expression levels of 39 clones increased, whereas those of 23 clones decreased under hypergravity conditions. Sequence analysis and database searching revealed that 12 clones, 9 up-regulated and 3 down-regulated, have homology to known proteins. The expression of these genes was further analyzed using RT-PCR. Finally, six genes were confirmed to be up-regulated by hypergravity. One of such genes encoded 3-hydroxy-3-methylglutaryl-Coenzyme A reductase (HMGR), which catalyzes a reaction producing mevalonic acid, a key precursor ofterpenoids such as membrane sterols and several types of hormones. The expression of HMGR gene increased within several hours after hypergravity treatment. Also, compactin, an inhibitor of HMGR, prevented hypergravity-induced growth suppression, suggesting that HMGR is involved in suppression of Arabidopsis hypocotyl growth by hypergravity. In addition, hypergravity increased the expression levels of genes encoding CCR1 and ERD15, which were shown to take part in the signaling pathway of environmental stimuli such as temperature and water, and those of the α-tubulin gene. These genes may be involved in a series of cellular events leading to growth suppression of stem organs under hypergravity conditions.

  12. Low-Rank Regularization for Learning Gene Expression Programs

    PubMed Central

    Ye, Guibo; Tang, Mengfan; Cai, Jian-Feng; Nie, Qing; Xie, Xiaohui

    2013-01-01

    Learning gene expression programs directly from a set of observations is challenging due to the complexity of gene regulation, high noise of experimental measurements, and insufficient number of experimental measurements. Imposing additional constraints with strong and biologically motivated regularizations is critical in developing reliable and effective algorithms for inferring gene expression programs. Here we propose a new form of regulation that constrains the number of independent connectivity patterns between regulators and targets, motivated by the modular design of gene regulatory programs and the belief that the total number of independent regulatory modules should be small. We formulate a multi-target linear regression framework to incorporate this type of regulation, in which the number of independent connectivity patterns is expressed as the rank of the connectivity matrix between regulators and targets. We then generalize the linear framework to nonlinear cases, and prove that the generalized low-rank regularization model is still convex. Efficient algorithms are derived to solve both the linear and nonlinear low-rank regularized problems. Finally, we test the algorithms on three gene expression datasets, and show that the low-rank regularization improves the accuracy of gene expression prediction in these three datasets. PMID:24358148

  13. Gene expression analysis of flax seed development

    PubMed Central

    2011-01-01

    Background Flax, Linum usitatissimum L., is an important crop whose seed oil and stem fiber have multiple industrial applications. Flax seeds are also well-known for their nutritional attributes, viz., omega-3 fatty acids in the oil and lignans and mucilage from the seed coat. In spite of the importance of this crop, there are few molecular resources that can be utilized toward improving seed traits. Here, we describe flax embryo and seed development and generation of comprehensive genomic resources for the flax seed. Results We describe a large-scale generation and analysis of expressed sequences in various tissues. Collectively, the 13 libraries we have used provide a broad representation of genes active in developing embryos (globular, heart, torpedo, cotyledon and mature stages) seed coats (globular and torpedo stages) and endosperm (pooled globular to torpedo stages) and genes expressed in flowers, etiolated seedlings, leaves, and stem tissue. A total of 261,272 expressed sequence tags (EST) (GenBank accessions LIBEST_026995 to LIBEST_027011) were generated. These EST libraries included transcription factor genes that are typically expressed at low levels, indicating that the depth is adequate for in silico expression analysis. Assembly of the ESTs resulted in 30,640 unigenes and 82% of these could be identified on the basis of homology to known and hypothetical genes from other plants. When compared with fully sequenced plant genomes, the flax unigenes resembled poplar and castor bean more than grape, sorghum, rice or Arabidopsis. Nearly one-fifth of these (5,152) had no homologs in sequences reported for any organism, suggesting that this category represents genes that are likely unique to flax. Digital analyses revealed gene expression dynamics for the biosynthesis of a number of important seed constituents during seed development. Conclusions We have developed a foundational database of expressed sequences and collection of plasmid clones that comprise

  14. Geometry of the Gene Expression Space of Individual Cells

    PubMed Central

    Korem, Yael; Szekely, Pablo; Hart, Yuval; Sheftel, Hila; Hausser, Jean; Mayo, Avi; Rothenberg, Michael E.; Kalisky, Tomer; Alon, Uri

    2015-01-01

    There is a revolution in the ability to analyze gene expression of single cells in a tissue. To understand this data we must comprehend how cells are distributed in a high-dimensional gene expression space. One open question is whether cell types form discrete clusters or whether gene expression forms a continuum of states. If such a continuum exists, what is its geometry? Recent theory on evolutionary trade-offs suggests that cells that need to perform multiple tasks are arranged in a polygon or polyhedron (line, triangle, tetrahedron and so on, generally called polytopes) in gene expression space, whose vertices are the expression profiles optimal for each task. Here, we analyze single-cell data from human and mouse tissues profiled using a variety of single-cell technologies. We fit the data to shapes with different numbers of vertices, compute their statistical significance, and infer their tasks. We find cases in which single cells fill out a continuum of expression states within a polyhedron. This occurs in intestinal progenitor cells, which fill out a tetrahedron in gene expression space. The four vertices of this tetrahedron are each enriched with genes for a specific task related to stemness and early differentiation. A polyhedral continuum of states is also found in spleen dendritic cells, known to perform multiple immune tasks: cells fill out a tetrahedron whose vertices correspond to key tasks related to maturation, pathogen sensing and communication with lymphocytes. A mixture of continuum-like distributions and discrete clusters is found in other cell types, including bone marrow and differentiated intestinal crypt cells. This approach can be used to understand the geometry and biological tasks of a wide range of single-cell datasets. The present results suggest that the concept of cell type may be expanded. In addition to discreet clusters in gene-expression space, we suggest a new possibility: a continuum of states within a polyhedron, in which the

  15. Geometry of the Gene Expression Space of Individual Cells.

    PubMed

    Korem, Yael; Szekely, Pablo; Hart, Yuval; Sheftel, Hila; Hausser, Jean; Mayo, Avi; Rothenberg, Michael E; Kalisky, Tomer; Alon, Uri

    2015-07-01

    There is a revolution in the ability to analyze gene expression of single cells in a tissue. To understand this data we must comprehend how cells are distributed in a high-dimensional gene expression space. One open question is whether cell types form discrete clusters or whether gene expression forms a continuum of states. If such a continuum exists, what is its geometry? Recent theory on evolutionary trade-offs suggests that cells that need to perform multiple tasks are arranged in a polygon or polyhedron (line, triangle, tetrahedron and so on, generally called polytopes) in gene expression space, whose vertices are the expression profiles optimal for each task. Here, we analyze single-cell data from human and mouse tissues profiled using a variety of single-cell technologies. We fit the data to shapes with different numbers of vertices, compute their statistical significance, and infer their tasks. We find cases in which single cells fill out a continuum of expression states within a polyhedron. This occurs in intestinal progenitor cells, which fill out a tetrahedron in gene expression space. The four vertices of this tetrahedron are each enriched with genes for a specific task related to stemness and early differentiation. A polyhedral continuum of states is also found in spleen dendritic cells, known to perform multiple immune tasks: cells fill out a tetrahedron whose vertices correspond to key tasks related to maturation, pathogen sensing and communication with lymphocytes. A mixture of continuum-like distributions and discrete clusters is found in other cell types, including bone marrow and differentiated intestinal crypt cells. This approach can be used to understand the geometry and biological tasks of a wide range of single-cell datasets. The present results suggest that the concept of cell type may be expanded. In addition to discreet clusters in gene-expression space, we suggest a new possibility: a continuum of states within a polyhedron, in which the

  16. Norepinephrine transport-mediated gene expression in noradrenergic neurogenesis

    PubMed Central

    Hu, Yao Fei; Caron, Marc G; Sieber-Blum, Maya

    2009-01-01

    only in neural crest cells, but also in the adult superior cervical ganglion and locus ceruleus. In addition to known genes we have identified novel differentially expressed genes and thus provide a valuable database for future studies. Conclusion Loss of NET function during embryonic development in the mouse deregulates signaling pathways that are critically involved in neural crest formation and noradrenergic cell differentiation. The data further suggest deregulation of signaling pathways in the development and/or function of the NET-deficient peripheral, central and enteric nervous systems. PMID:19356247

  17. In vitro maturation alters gene expression in bovine oocytes.

    PubMed

    Adona, Paulo R; Leal, Cláudia L V; Biase, Fernando H; De Bem, Tiago H; Mesquita, Lígia G; Meirelles, Flávio V; Ferraz, André L; Furlan, Luiz R; Monzani, Paulo S; Guemra, Samuel

    2016-08-01

    Gene expression profiling of in vivo- and in vitro-matured bovine oocytes can identify transcripts related to the developmental potential of oocytes. Nonetheless, the effects of in vitro culturing oocytes are yet to be fully understood. We tested the effects of in vitro maturation on the transcript profile of oocytes collected from Bos taurus indicus cows. We quantified the expression of 1488 genes in in vivo- and in vitro-matured oocytes. Of these, 51 genes were up-regulated, whereas 56 were down-regulated (≥2-fold) in in vivo-matured oocytes in comparison with in vitro-matured oocytes. Quantitative real-time polymerase chain reaction (PCR) of nine genes confirmed the microarray results of differential expression between in vivo- and in vitro-matured oocytes (EZR, EPN1, PSEN2, FST, IGFBP3, RBBP4, STAT3, FDPS and IRS1). We interrogated the results for enrichment of Gene Ontology categories and overlap with protein-protein interactions. The results revealed that the genes altered by in vitro maturation are mostly related to the regulation of oocyte metabolism. Additionally, analysis of protein-protein interactions uncovered two regulatory networks affected by the in vitro culture system. We propose that the differentially expressed genes are candidates for biomarkers of oocyte competence. In vitro oocyte maturation can affect the abundance of specific transcripts and are likely to deplete the developmental competence. PMID:26885679

  18. Selective gene expression by rat gastric corpus epithelium

    PubMed Central

    Goebel, M.; Stengel, A.; Sachs, G.

    2011-01-01

    The gastrointestinal (GI) tract is divided into several segments that have distinct functional properties, largely absorptive. The gastric corpus is the only segment thought of as largely secretory. Microarray hybridization of the gastric corpus mucosal epithelial cells was used to compare gene expression with other segments of the columnar GI tract followed by statistical data subtraction to identify genes selectively expressed by the rat gastric corpus mucosa. This provides a means of identifying less obvious specific functions of the corpus in addition to its secretion-related genes. For example, important properties found by this GI tract comparative transcriptome reflect the energy demand of acid secretion, a role in lipid metabolism, the large variety of resident neuroendocrine cells, responses to damaging agents and transcription factors defining differentiation of its epithelium. In terms of overlap of gastric corpus genes with the rest of the GI tract, the distal small bowel appears to express many of the gastric corpus genes in contrast to proximal small and large bowel. This differential map of gene expression by the gastric corpus epithelium will allow a more detailed description of major properties of the gastric corpus and may lead to the discovery of gastric corpus cell differentiation genes and those mis-regulated in gastric carcinomas. PMID:21177383

  19. Regulation of toxin gene expression in Clostridium perfringens.

    PubMed

    Ohtani, Kaori; Shimizu, Tohru

    2015-05-01

    The Gram-positive, anaerobic, spore-forming, rod-shaped Clostridium perfringens is widely distributed in nature, especially in soil and the gastrointestinal tract of humans and animals. C. perfringens causes clostridial myonecrosis (or gas gangrene), enteritis and enterotoxemia in humans and livestock by producing numerous extracellular toxins and enzymes. The toxin gene expression is regulated by a two-component regulatory system and regulatory RNA VirR/VirS-VR-RNA cascade. The VirR/VirS system was originally found in a type A strain, but a recent report showed that it is also important for the toxin gene regulation in other types of strains. Two types of cell-cell signaling, i.e., agr-system and AI-2 signaling, are also important for the regulation of toxin genes. Several regulatory systems independent from the VirR/VirS system, including virX, the orphan histidine kinase ReeS and orphan response regulator RevR, are also involved in the regulation of toxin genes. In addition, the expression of toxin genes is upregulated after contact with Caco-2 cells. C. perfringens has a complex regulatory network for toxin gene expression and thus the coordination of toxin gene expression is important for the process of infection. PMID:25303832

  20. Prospective on the potential of imaging gene expression

    SciTech Connect

    Taylor, Scott E; Budinger, Thomas F.

    2000-06-01

    The feasibility of the non-invasive imaging of gene expression is explored. Calculations of the possibility of the direct imaging of specific messenger RNA with radiolabeled antisense are discussed. In addition, possible mechanism for the amplification of the biological signal to enhance image detection are discussed.

  1. Evolution of Primate Gene Expression: Drift and Corrective Sweeps?

    PubMed Central

    Chaix, R.; Somel, M.; Kreil, D. P.; Khaitovich, P.; Lunter, G. A.

    2008-01-01

    Changes in gene expression play an important role in species' evolution. Earlier studies uncovered evidence that the effect of mutations on expression levels within the primate order is skewed, with many small downregulations balanced by fewer but larger upregulations. In addition, brain-expressed genes appeared to show an increased rate of evolution on the branch leading to human. However, the lack of a mathematical model adequately describing the evolution of gene expression precluded the rigorous establishment of these observations. Here, we develop mathematical tools that allow us to revisit these earlier observations in a model-testing and inference framework. We introduce a model for skewed gene-expression evolution within a phylogenetic tree and use a separate model to account for biological or experimental outliers. A Bayesian Markov chain Monte Carlo inference procedure allows us to infer the phylogeny and other evolutionary parameters, while quantifying the confidence in these inferences. Our results support previous observations; in particular, we find strong evidence for a sustained positive skew in the distribution of gene-expression changes in primate evolution. We propose a “corrective sweep” scenario to explain this phenomenon. PMID:18791252

  2. Identification of highly synchronized subnetworks from gene expression data

    PubMed Central

    2013-01-01

    Background There has been a growing interest in identifying context-specific active protein-protein interaction (PPI) subnetworks through integration of PPI and time course gene expression data. However the interaction dynamics during the biological process under study has not been sufficiently considered previously. Methods Here we propose a topology-phase locking (TopoPL) based scoring metric for identifying active PPI subnetworks from time series expression data. First the temporal coordination in gene expression changes is evaluated through phase locking analysis; The results are subsequently integrated with PPI to define an activity score for each PPI subnetwork, based on individual member expression, as well topological characteristics of the PPI network and of the expression temporal coordination network; Lastly, the subnetworks with the top scores in the whole PPI network are identified through simulated annealing search. Results Application of TopoPL to simulated data and to the yeast cell cycle data showed that it can more sensitively identify biologically meaningful subnetworks than the method that only utilizes the static PPI topology, or the additive scoring method. Using TopoPL we identified a core subnetwork with 49 genes important to yeast cell cycle. Interestingly, this core contains a protein complex known to be related to arrangement of ribosome subunits that exhibit extremely high gene expression synchronization. Conclusions Inclusion of interaction dynamics is important to the identification of relevant gene networks. PMID:23901792

  3. Firefly luciferase gene: structure and expression in mammalian cells.

    PubMed Central

    de Wet, J R; Wood, K V; DeLuca, M; Helinski, D R; Subramani, S

    1987-01-01

    The nucleotide sequence of the luciferase gene from the firefly Photinus pyralis was determined from the analysis of cDNA and genomic clones. The gene contains six introns, all less than 60 bases in length. The 5' end of the luciferase mRNA was determined by both S1 nuclease analysis and primer extension. Although the luciferase cDNA clone lacked the six N-terminal codons of the open reading frame, we were able to reconstruct the equivalent of a full-length cDNA using the genomic clone as a source of the missing 5' sequence. The full-length, intronless luciferase gene was inserted into mammalian expression vectors and introduced into monkey (CV-1) cells in which enzymatically active firefly luciferase was transiently expressed. In addition, cell lines stably expressing firefly luciferase were isolated. Deleting a portion of the 5'-untranslated region of the luciferase gene removed an upstream initiation (AUG) codon and resulted in a twofold increase in the level of luciferase expression. The ability of the full-length luciferase gene to activate cryptic or enhancerless promoters was also greatly reduced or eliminated by this 5' deletion. Assaying the expression of luciferase provides a rapid and inexpensive method for monitoring promoter activity. Depending on the instrumentation employed to detect luciferase activity, we estimate this assay to be from 30- to 1,000-fold more sensitive than assaying chloramphenicol acetyltransferase expression. Images PMID:3821727

  4. The Medicago truncatula gene expression atlas web server

    PubMed Central

    2009-01-01

    Background Legumes (Leguminosae or Fabaceae) play a major role in agriculture. Transcriptomics studies in the model legume species, Medicago truncatula, are instrumental in helping to formulate hypotheses about the role of legume genes. With the rapid growth of publically available Affymetrix GeneChip Medicago Genome Array GeneChip data from a great range of tissues, cell types, growth conditions, and stress treatments, the legume research community desires an effective bioinformatics system to aid efforts to interpret the Medicago genome through functional genomics. We developed the Medicago truncatula Gene Expression Atlas (MtGEA) web server for this purpose. Description The Medicago truncatula Gene Expression Atlas (MtGEA) web server is a centralized platform for analyzing the Medicago transcriptome. Currently, the web server hosts gene expression data from 156 Affymetrix GeneChip® Medicago genome arrays in 64 different experiments, covering a broad range of developmental and environmental conditions. The server enables flexible, multifaceted analyses of transcript data and provides a range of additional information about genes, including different types of annotation and links to the genome sequence, which help users formulate hypotheses about gene function. Transcript data can be accessed using Affymetrix probe identification number, DNA sequence, gene name, functional description in natural language, GO and KEGG annotation terms, and InterPro domain number. Transcripts can also be discovered through co-expression or differential expression analysis. Flexible tools to select a subset of experiments and to visualize and compare expression profiles of multiple genes have been implemented. Data can be downloaded, in part or full, in a tabular form compatible with common analytical and visualization software. The web server will be updated on a regular basis to incorporate new gene expression data and genome annotation, and is accessible at: http://bioinfo.noble.org/gene

  5. Gene expression profiles in irradiated cancer cells

    NASA Astrophysics Data System (ADS)

    Minafra, L.; Bravatà, V.; Russo, G.; Ripamonti, M.; Gilardi, M. C.

    2013-07-01

    Knowledge of the molecular and genetic mechanisms underlying cellular response to radiation may provide new avenues to develop innovative predictive tests of radiosensitivity of tumours and normal tissues and to improve individual therapy. Nowadays very few studies describe molecular changes induced by hadrontherapy treatments, therefore this field has to be explored and clarified. High-throughput methodologies, such as DNA microarray, allow us to analyse mRNA expression of thousands of genes simultaneously in order to discover new genes and pathways as targets of response to hadrontherapy. Our aim is to elucidate the molecular networks involved in the sensitivity/resistance of cancer cell lines subjected to hadrontherapy treatments with a genomewide approach by using cDNA microarray technology to identify gene expression profiles and candidate genes responsible of differential cellular responses.

  6. Gene expression profiles in irradiated cancer cells

    SciTech Connect

    Minafra, L.; Bravatà, V.; Russo, G.; Ripamonti, M.; Gilardi, M. C.

    2013-07-26

    Knowledge of the molecular and genetic mechanisms underlying cellular response to radiation may provide new avenues to develop innovative predictive tests of radiosensitivity of tumours and normal tissues and to improve individual therapy. Nowadays very few studies describe molecular changes induced by hadrontherapy treatments, therefore this field has to be explored and clarified. High-throughput methodologies, such as DNA microarray, allow us to analyse mRNA expression of thousands of genes simultaneously in order to discover new genes and pathways as targets of response to hadrontherapy. Our aim is to elucidate the molecular networks involved in the sensitivity/resistance of cancer cell lines subjected to hadrontherapy treatments with a genomewide approach by using cDNA microarray technology to identify gene expression profiles and candidate genes responsible of differential cellular responses.

  7. The mouse Gene Expression Database (GXD): 2014 update.

    PubMed

    Smith, Constance M; Finger, Jacqueline H; Hayamizu, Terry F; McCright, Ingeborg J; Xu, Jingxia; Berghout, Joanne; Campbell, Jeff; Corbani, Lori E; Forthofer, Kim L; Frost, Pete J; Miers, Dave; Shaw, David R; Stone, Kevin R; Eppig, Janan T; Kadin, James A; Richardson, Joel E; Ringwald, Martin

    2014-01-01

    The Gene Expression Database (GXD; http://www.informatics.jax.org/expression.shtml) is an extensive and well-curated community resource of mouse developmental expression information. GXD collects different types of expression data from studies of wild-type and mutant mice, covering all developmental stages and including data from RNA in situ hybridization, immunohistochemistry, RT-PCR, northern blot and western blot experiments. The data are acquired from the scientific literature and from researchers, including groups doing large-scale expression studies. Integration with the other data in Mouse Genome Informatics (MGI) and interconnections with other databases places GXD's gene expression information in the larger biological and biomedical context. Since the last report, the utility of GXD has been greatly enhanced by the addition of new data and by the implementation of more powerful and versatile search and display features. Web interface enhancements include the capability to search for expression data for genes associated with specific phenotypes and/or human diseases; new, more interactive data summaries; easy downloading of data; direct searches of expression images via associated metadata; and new displays that combine image data and their associated annotations. At present, GXD includes >1.4 million expression results and 250,000 images that are accessible to our search tools. PMID:24163257

  8. The mouse Gene Expression Database (GXD): 2014 update

    PubMed Central

    Smith, Constance M.; Finger, Jacqueline H.; Hayamizu, Terry F.; McCright, Ingeborg J.; Xu, Jingxia; Berghout, Joanne; Campbell, Jeff; Corbani, Lori E.; Forthofer, Kim L.; Frost, Pete J.; Miers, Dave; Shaw, David R.; Stone, Kevin R.; Eppig, Janan T.; Kadin, James A.; Richardson, Joel E.; Ringwald, Martin

    2014-01-01

    The Gene Expression Database (GXD; http://www.informatics.jax.org/expression.shtml) is an extensive and well-curated community resource of mouse developmental expression information. GXD collects different types of expression data from studies of wild-type and mutant mice, covering all developmental stages and including data from RNA in situ hybridization, immunohistochemistry, RT-PCR, northern blot and western blot experiments. The data are acquired from the scientific literature and from researchers, including groups doing large-scale expression studies. Integration with the other data in Mouse Genome Informatics (MGI) and interconnections with other databases places GXD’s gene expression information in the larger biological and biomedical context. Since the last report, the utility of GXD has been greatly enhanced by the addition of new data and by the implementation of more powerful and versatile search and display features. Web interface enhancements include the capability to search for expression data for genes associated with specific phenotypes and/or human diseases; new, more interactive data summaries; easy downloading of data; direct searches of expression images via associated metadata; and new displays that combine image data and their associated annotations. At present, GXD includes >1.4 million expression results and 250 000 images that are accessible to our search tools. PMID:24163257

  9. Gene Expression Measurement Module (GEMM) - a fully automated, miniaturized instrument for measuring gene expression in space

    NASA Astrophysics Data System (ADS)

    Karouia, Fathi; Ricco, Antonio; Pohorille, Andrew; Peyvan, Kianoosh

    2012-07-01

    The capability to measure gene expression on board spacecrafts opens the doors to a large number of experiments on the influence of space environment on biological systems that will profoundly impact our ability to conduct safe and effective space travel, and might also shed light on terrestrial physiology or biological function and human disease and aging processes. Measurements of gene expression will help us to understand adaptation of terrestrial life to conditions beyond the planet of origin, identify deleterious effects of the space environment on a wide range of organisms from microbes to humans, develop effective countermeasures against these effects, determine metabolic basis of microbial pathogenicity and drug resistance, test our ability to sustain and grow in space organisms that can be used for life support and in situ resource utilization during long-duration space exploration, and monitor both the spacecraft environment and crew health. These and other applications hold significant potential for discoveries in space biology, biotechnology and medicine. Accordingly, supported by funding from the NASA Astrobiology Science and Technology Instrument Development Program, we are developing a fully automated, miniaturized, integrated fluidic system for small spacecraft capable of in-situ measuring microbial expression of thousands of genes from multiple samples. The instrument will be capable of (1) lysing bacterial cell walls, (2) extracting and purifying RNA released from cells, (3) hybridizing it on a microarray and (4) providing electrochemical readout, all in a microfluidics cartridge. The prototype under development is suitable for deployment on nanosatellite platforms developed by the NASA Small Spacecraft Office. The first target application is to cultivate and measure gene expression of the photosynthetic bacterium Synechococcus elongatus, i.e. a cyanobacterium known to exhibit remarkable metabolic diversity and resilience to adverse conditions

  10. Facilitated diffusion buffers noise in gene expression

    PubMed Central

    Schoech, Armin P.; Zabet, Nicolae Radu

    2014-01-01

    Transcription factors perform facilitated diffusion (3D diffusion in the cytosol and 1D diffusion on the DNA) when binding to their target sites to regulate gene expression. Here, we investigated the influence of this binding mechanism on the noise in gene expression. Our results showed that, for biologically relevant parameters, the binding process can be represented by a two-state Markov model and that the accelerated target finding due to facilitated diffusion leads to a reduction in both the mRNA and the protein noise. PMID:25314467

  11. Clustering of High Throughput Gene Expression Data

    PubMed Central

    Pirim, Harun; Ekşioğlu, Burak; Perkins, Andy; Yüceer, Çetin

    2012-01-01

    High throughput biological data need to be processed, analyzed, and interpreted to address problems in life sciences. Bioinformatics, computational biology, and systems biology deal with biological problems using computational methods. Clustering is one of the methods used to gain insight into biological processes, particularly at the genomics level. Clearly, clustering can be used in many areas of biological data analysis. However, this paper presents a review of the current clustering algorithms designed especially for analyzing gene expression data. It is also intended to introduce one of the main problems in bioinformatics - clustering gene expression data - to the operations research community. PMID:23144527

  12. Visualizing Gene Expression In Situ

    SciTech Connect

    Burlage, R.S.

    1998-11-02

    Visualizing bacterial cells and describing their responses to the environment are difficult tasks. Their small size is the chief reason for the difficulty, which means that we must often use many millions of cells in a sample in order to determine what the average response of the bacteria is. However, an average response can sometimes mask important events in bacterial physiology, which means that our understanding of these organisms will suffer. We have used a variety of instruments to visualize bacterial cells, all of which tell us something different about the sample. We use a fluorescence activated cell sorter to sort cells based on the fluorescence provided by bioreporter genes, and these can be used to select for particular genetic mutations. Cells can be visualized by epifluorescent microscopy, and sensitive photodetectors can be added that allow us to find a single bacterial cell that is fluorescent or bioluminescent. We have also used standard photomultipliers to examine cell aggregates as field bioreporter microorganisms. Examples of each of these instruments show how our understanding of bacterial physiology has changed with the technology.

  13. Differential expression pattern of UBX family genes in Caenorhabditis elegans

    SciTech Connect

    Yamauchi, Seiji; Sasagawa, Yohei; Ogura, Teru . E-mail: ogura@gpo.kumamoto-u.ac.jp; Yamanaka, Kunitoshi . E-mail: yamanaka@gpo.kumamoto-u.ac.jp

    2007-06-29

    UBX (ubiquitin regulatory X)-containing proteins belong to an evolutionary conserved protein family and determine the specificity of p97/VCP/Cdc48p function by binding as its adaptors. Caenorhabditis elegans was found to possess six UBX-containing proteins, named UBXN-1 to -6. However, no general or specific function of them has been revealed. During the course of understanding not only their function but also specified function of p97, we investigated spatial and temporal expression patterns of six ubxn genes in this study. Transcript analyses showed that the expression pattern of each ubxn gene was different throughout worm's development and may show potential developmental dynamics in their function, especially ubxn-5 was expressed specifically in the spermatogenic germline, suggesting a crucial role in spermatogenesis. In addition, as ubxn-4 expression was induced by ER stress, it would function as an ERAD factor in C. elegans. In vivo expression analysis by using GFP translational fusion constructs revealed that six ubxn genes show distinct expression patterns. These results altogether demonstrate that the expression of all six ubxn genes of C. elegans is differently regulated.

  14. Macrophage Expression of Inflammatory Genes in Response to EMCV Infection

    PubMed Central

    Shaheen, Zachary R.; Corbett, John A.

    2015-01-01

    The expression and production of type 1 interferon is the classic cellular response to virus infection. In addition to this antiviral response, virus infection also stimulates the production of proinflammatory mediators. In this review, the pathways controlling the induction of inflammatory genes and the roles that these inflammatory mediators contribute to host defense against viral pathogens will be discussed. Specific focus will be on the role of the chemokine receptor CCR5, as a signaling receptor controlling the activation of pathways leading to virus-induced inflammatory gene expression. PMID:26295266

  15. Requirement of gene VII in cis for the expression of downstream genes on the major transcript of figwort mosaic virus.

    PubMed

    Gowda, S; Scholthof, H B; Wu, F C; Shepherd, R J

    1991-12-01

    The six major conserved genes of figwort mosaic virus (FMV), a caulimovirus, appear in tandem array on an RNA transcript that spans the entire viral genome. Gene VI, the only cistron that appears as a separate subgenomic RNA, has been reported to transactivate the expression of downstream genes of the full-length transcript. This transcript has a long 5'-leader of about 600 nucleotides followed by a small nonconserved region (gene VII), a smaller intergenic region (57 nucleotides), and the major conserved genes in a closely spaced array. In our present experiments we have constructed expression units containing the promoter for the full-length transcript followed by the 5' leader region, gene VII, and a reporter gene. These have been tested for expression with and without gene VI as a separate plasmid by electroporation into plant protoplasts. A series of these expression units containing truncated versions of the 5' leader region placed upstream of a reporter gene (CAT) showed that gene VI transactivation occurred only when gene VII sequences were present in cis between the leader region and the reporter gene. In addition, a more complete version of the FMV genome containing the reporter gene further downstream (in viral gene IV) showed CAT expression only when gene VII sequences were present in an upstream position. A similar construct failed to express CAT activity when gene VII was absent. PMID:1962457

  16. Sequence and gene expression evolution of paralogous genes in willows.

    PubMed

    Harikrishnan, Srilakshmy L; Pucholt, Pascal; Berlin, Sofia

    2015-01-01

    Whole genome duplications (WGD) have had strong impacts on species diversification by triggering evolutionary novelties, however, relatively little is known about the balance between gene loss and forces involved in the retention of duplicated genes originating from a WGD. We analyzed putative Salicoid duplicates in willows, originating from the Salicoid WGD, which took place more than 45 Mya. Contigs were constructed by de novo assembly of RNA-seq data derived from leaves and roots from two genotypes. Among the 48,508 contigs, 3,778 pairs were, based on fourfold synonymous third-codon transversion rates and syntenic positions, predicted to be Salicoid duplicates. Both copies were in most cases expressed in both tissues and 74% were significantly differentially expressed. Mean Ka/Ks was 0.23, suggesting that the Salicoid duplicates are evolving by purifying selection. Gene Ontology enrichment analyses showed that functions related to DNA- and nucleic acid binding were over-represented among the non-differentially expressed Salicoid duplicates, while functions related to biosynthesis and metabolism were over-represented among the differentially expressed Salicoid duplicates. We propose that the differentially expressed Salicoid duplicates are regulatory neo- and/or subfunctionalized, while the non-differentially expressed are dose sensitive, hence, functionally conserved. Multiple evolutionary processes, thus drive the retention of Salicoid duplicates in willows. PMID:26689951

  17. Sequence and gene expression evolution of paralogous genes in willows

    PubMed Central

    Harikrishnan, Srilakshmy L.; Pucholt, Pascal; Berlin, Sofia

    2015-01-01

    Whole genome duplications (WGD) have had strong impacts on species diversification by triggering evolutionary novelties, however, relatively little is known about the balance between gene loss and forces involved in the retention of duplicated genes originating from a WGD. We analyzed putative Salicoid duplicates in willows, originating from the Salicoid WGD, which took place more than 45 Mya. Contigs were constructed by de novo assembly of RNA-seq data derived from leaves and roots from two genotypes. Among the 48,508 contigs, 3,778 pairs were, based on fourfold synonymous third-codon transversion rates and syntenic positions, predicted to be Salicoid duplicates. Both copies were in most cases expressed in both tissues and 74% were significantly differentially expressed. Mean Ka/Ks was 0.23, suggesting that the Salicoid duplicates are evolving by purifying selection. Gene Ontology enrichment analyses showed that functions related to DNA- and nucleic acid binding were over-represented among the non-differentially expressed Salicoid duplicates, while functions related to biosynthesis and metabolism were over-represented among the differentially expressed Salicoid duplicates. We propose that the differentially expressed Salicoid duplicates are regulatory neo- and/or subfunctionalized, while the non-differentially expressed are dose sensitive, hence, functionally conserved. Multiple evolutionary processes, thus drive the retention of Salicoid duplicates in willows. PMID:26689951

  18. Selection and validation of reference genes for transcript normalization in gene expression studies in Catharanthus roseus.

    PubMed

    Pollier, Jacob; Vanden Bossche, Robin; Rischer, Heiko; Goossens, Alain

    2014-10-01

    Quantitative Real-Time PCR (qPCR), a sensitive and commonly used technique for gene expression analysis, requires stably expressed reference genes for normalization of gene expression. Up to now, only one reference gene for qPCR analysis, corresponding to 40S Ribosomal protein S9 (RPS9), was available for the medicinal plant Catharanthus roseus, the only source of the commercial anticancer drugs vinblastine and vincristine. Here, we screened for additional reference genes for this plant species by mining C. roseus RNA-Seq data for orthologs of 22 genes known to be stably expressed in Arabidopsis thaliana and qualified as superior reference genes for this model plant species. Based on this, eight candidate C. roseus reference genes were identified and, together with RPS9, evaluated by performing qPCR on a series of different C. roseus explants and tissue cultures. NormFinder, geNorm and BestKeeper analyses of the resulting qPCR data revealed that the orthologs of At2g28390 (SAND family protein, SAND), At2g32170 (N2227-like family protein, N2227) and At4g26410 (Expressed protein, EXP) had the highest expression stability across the different C. roseus samples and are superior as reference genes as compared to the traditionally used RPS9. Analysis of publicly available C. roseus RNA-Seq data confirmed the expression stability of SAND and N2227, underscoring their value as reference genes for C. roseus qPCR analysis. PMID:25058454

  19. Functional clustering of time series gene expression data by Granger causality

    PubMed Central

    2012-01-01

    Background A common approach for time series gene expression data analysis includes the clustering of genes with similar expression patterns throughout time. Clustered gene expression profiles point to the joint contribution of groups of genes to a particular cellular process. However, since genes belong to intricate networks, other features, besides comparable expression patterns, should provide additional information for the identification of functionally similar genes. Results In this study we perform gene clustering through the identification of Granger causality between and within sets of time series gene expression data. Granger causality is based on the idea that the cause of an event cannot come after its consequence. Conclusions This kind of analysis can be used as a complementary approach for functional clustering, wherein genes would be clustered not solely based on their expression similarity but on their topological proximity built according to the intensity of Granger causality among them. PMID:23107425

  20. Gene expression endophenotypes: a novel approach for gene discovery in Alzheimer's disease.

    PubMed

    Ertekin-Taner, Nilüfer

    2011-01-01

    Uncovering the underlying genetic component of any disease is key to the understanding of its pathophysiology and may open new avenues for development of therapeutic strategies and biomarkers. In the past several years, there has been an explosion of genome-wide association studies (GWAS) resulting in the discovery of novel candidate genes conferring risk for complex diseases, including neurodegenerative diseases. Despite this success, there still remains a substantial genetic component for many complex traits and conditions that is unexplained by the GWAS findings. Additionally, in many cases, the mechanism of action of the newly discovered disease risk variants is not inherently obvious. Furthermore, a genetic region with multiple genes may be identified via GWAS, making it difficult to discern the true disease risk gene. Several alternative approaches are proposed to overcome these potential shortcomings of GWAS, including the use of quantitative, biologically relevant phenotypes. Gene expression levels represent an important class of endophenotypes. Genetic linkage and association studies that utilize gene expression levels as endophenotypes determined that the expression levels of many genes are under genetic influence. This led to the postulate that there may exist many genetic variants that confer disease risk via modifying gene expression levels. Results from the handful of genetic studies which assess gene expression level endophenotypes in conjunction with disease risk suggest that this combined phenotype approach may both increase the power for gene discovery and lead to an enhanced understanding of their mode of action. This review summarizes the evidence in support of gene expression levels as promising endophenotypes in the discovery and characterization of novel candidate genes for complex diseases, which may also represent a novel approach in the genetic studies of Alzheimer's and other neurodegenerative diseases. PMID:21569597

  1. Gene expression profiling analysis of ovarian cancer

    PubMed Central

    YIN, JI-GANG; LIU, XIAN-YING; WANG, BIN; WANG, DAN-YANG; WEI, MAN; FANG, HUA; XIANG, MEI

    2016-01-01

    As a gynecological oncology, ovarian cancer has high incidence and mortality. To study the mechanisms of ovarian cancer, the present study analyzed the GSE37582 microarray. GSE37582 was downloaded from Gene Expression Omnibus and included data from 74 ovarian cancer cases and 47 healthy controls. The differentially-expressed genes (DEGs) were screened using linear models for microarray data package in R and were further screened for functional annotation. Next, Gene Ontology and pathway enrichment analysis of the DEGs was conducted. The interaction associations of the proteins encoded by the DEGs were searched using the Search Tool for the Retrieval of Interacting Genes, and the protein-protein interaction (PPI) network was visualized by Cytoscape. Moreover, module analysis of the PPI network was performed using the BioNet analysis tool in R. A total of 284 DEGs were screened, consisting of 145 upregulated genes and 139 downregulated genes. In particular, downregulated FBJ murine osteosarcoma viral oncogene homolog (FOS) was an oncogene, while downregulated cyclin-dependent kinase inhibitor 1A (CDKN1A) was a tumor suppressor gene and upregulated cluster of differentiation 44 (CD44) was classed as an ‘other’ gene. The enriched functions included collagen catabolic process, stress-activated mitogen-activated protein kinases cascade and insulin receptor signaling pathway. Meanwhile, FOS (degree, 15), CD44 (degree, 9), B-cell CLL/lymphoma 2 (BCL2; degree, 7), CDKN1A (degree, 7) and matrix metallopeptidase 3 (MMP3; degree, 6) had higher connectivity degrees in the PPI network for the DEGs. These genes may be involved in ovarian cancer by interacting with other genes in the module of the PPI network (e.g., BCL2-FOS, BCL2-CDKN1A, FOS-CDKN1A, FOS-CD44, MMP3-MMP7 and MMP7-CD44). Overall, BCL2, FOS, CDKN1A, CD44, MMP3 and MMP7 may be correlated with ovarian cancer. PMID:27347159

  2. Conditional Gene Expression in Mycobacterium abscessus

    PubMed Central

    Cortes, Mélanie; Singh, Anil Kumar; Gaillard, Jean-Louis; Nassif, Xavier; Herrmann, Jean-Louis

    2011-01-01

    Mycobacterium abscessus is an emerging human pathogen responsible for lung infections, skin and soft-tissue infections and disseminated infections in immunocompromised patients. It may exist either as a smooth (S) or rough (R) morphotype, the latter being associated with increased pathogenicity in various models. Genetic tools for homologous recombination and conditional gene expression are desperately needed to allow the study of M. abscessus virulence. However, descriptions of knock-out (KO) mutants in M. abscessus are rare, with only one KO mutant from an S strain described so far. Moreover, of the three major tools developed for homologous recombination in mycobacteria, only the one based on expression of phage recombinases is working. Several conditional gene expression tools have recently been engineered for Mycobacterium tuberculosis and Mycobacterium smegmatis, but none have been tested yet in M. abscessus. Based on previous experience with genetic tools allowing homologous recombination and their failure in M. abscessus, we evaluated the potential interest of a conditional gene expression approach using a system derived from the two repressors system, TetR/PipOFF. After several steps necessary to adapt TetR/PipOFF for M. abscessus, we have shown the efficiency of this system for conditional expression of an essential mycobacterial gene, fadD32. Inhibition of fadD32 was demonstrated for both the S and R isotypes, with marginally better efficiency for the R isotype. Conditional gene expression using the dedicated TetR/PipOFF system vectors developed here is effective in S and R M. abscessus, and may constitute an interesting approach for future genetic studies in this pathogen. PMID:22195042

  3. Gene expression profile class prediction using linear Bayesian classifiers.

    PubMed

    Asyali, Musa H

    2007-12-01

    Due to recent advances in DNA microarray technology, using gene expression profiles, diagnostic category of tissue samples can be predicted with high accuracy. In this study, we discuss shortcomings of some existing gene expression profile classification methods and propose a new approach based on linear Bayesian classifiers. In our approach, we first construct gene-level linear classifiers to identify genes that provide high class-prediction accuracies, i.e., low error rates. After this screening phase, starting with the gene that offers the lowest error rate, we construct a multi-dimensional linear classifier by incorporating next best-performing genes, until the prediction error becomes minimum or 0, if possible. When we compared classification performance of our approach against prediction analysis of microarrays (PAM) and support vector machines (SVM) based approaches, we found that our method outperforms PAM and produces comparable results with SVM. In addition, we observed that the gene selection scheme of PAM could be misleading. Albeit SVM achieves relatively higher prediction performance, it has two major disadvantages: Complexity and lack of insight about important genes. Our intuitive approach offers competing performance and also an efficient means for finding important genes. PMID:17517385

  4. EMAGE mouse embryo spatial gene expression database: 2014 update.

    PubMed

    Richardson, Lorna; Venkataraman, Shanmugasundaram; Stevenson, Peter; Yang, Yiya; Moss, Julie; Graham, Liz; Burton, Nicholas; Hill, Bill; Rao, Jianguo; Baldock, Richard A; Armit, Chris

    2014-01-01

    EMAGE (http://www.emouseatlas.org/emage/) is a freely available database of in situ gene expression patterns that allows users to perform online queries of mouse developmental gene expression. EMAGE is unique in providing both text-based descriptions of gene expression plus spatial maps of gene expression patterns. This mapping allows spatial queries to be accomplished alongside more traditional text-based queries. Here, we describe our recent progress in spatial mapping and data integration. EMAGE has developed a method of spatially mapping 3D embryo images captured using optical projection tomography, and through the use of an IIP3D viewer allows users to view arbitrary sections of raw and mapped 3D image data in the context of a web browser. EMAGE now includes enhancer data, and we have spatially mapped images from a comprehensive screen of transgenic reporter mice that detail the expression of mouse non-coding genomic DNA fragments with enhancer activity. We have integrated the eMouseAtlas anatomical atlas and the EMAGE database so that a user of the atlas can query the EMAGE database easily. In addition, we have extended the atlas framework to enable EMAGE to spatially cross-index EMBRYS whole mount in situ hybridization data. We additionally report on recent developments to the EMAGE web interface, including new query and analysis capabilities. PMID:24265223

  5. Methods and compositions for regulating gene expression in plant cells

    NASA Technical Reports Server (NTRS)

    Beachy, Roger N. (Inventor); Luis, Maria Isabel Ordiz (Inventor); Dai, Shunhong (Inventor)

    2010-01-01

    Novel chimeric plant promoter sequences are provided, together with plant gene expression cassettes comprising such sequences. In certain preferred embodiments, the chimeric plant promoters comprise the BoxII cis element and/or derivatives thereof. In addition, novel transcription factors are provided, together with nucleic acid sequences encoding such transcription factors and plant gene expression cassettes comprising such nucleic acid sequences. In certain preferred embodiments, the novel transcription factors comprise the acidic domain, or fragments thereof, of the RF2a transcription factor. Methods for using the chimeric plant promoter sequences and novel transcription factors in regulating the expression of at least one gene of interest are provided, together with transgenic plants comprising such chimeric plant promoter sequences and novel transcription factors.

  6. Hypoxia-mediated regulation of gene expression in mammalian cells

    PubMed Central

    Shih, Shu-Ching; Claffey, Kevin P.

    1998-01-01

    The molecular mechanism underlying oxygen sensing in mammalian cells has been extensively investigated in the areas of glucose transport, glycolysis, erythropoiesis, angiogenesis and catecholamine metabolism. Expression of functionally operative representative proteins in these specific areas, such as the glucose transporter 1, glycolytic enzymes, erythropoietin, vascular endothelial growth factor and tyrosine hydroxylase are all induced by hypoxia. Recent studies demonstrated that both transcriptional activation and post-transcriptional mechanisms are important to the hypoxia-mediated regulation of gene expression. In this article, the cis-acting elements and trans-acting factors involved in the transcriptional activation of gene expression will be reviewed. In addition, the mechanisms of post-transcriptional mRNA stabilization will also be addressed. We will discuss whether these two processes of regulation of hypoxia-responsive genes are mechanistically linked and co-operative in nature. PMID:10319016

  7. Bitumen fume-induced gene expression profile in rat lung

    SciTech Connect

    Gate, Laurent . E-mail: laurent.gate@inrs.fr; Langlais, Cristina; Micillino, Jean-Claude; Nunge, Herve; Bottin, Marie-Claire; Wrobel, Richard; Binet, Stephane

    2006-08-15

    Exposure to bitumen fumes during paving and roofing activities may represent an occupational health risk. To date, most of the studies performed on the biological effect of asphalt fumes have been done with regard to their content in carcinogenic polycyclic aromatic hydrocarbons (PAH). In order to gain an additional insight into the mechanisms of action of bitumen fumes, we studied their pulmonary effects in rodents following inhalation using the microarray technology. Fisher 344 rats were exposed for 5 days, 6 h/day to bitumen fumes generated at road paving temperature (170 {sup o}C) using a nose-only exposition device. With the intention of studying the early transcriptional events induced by asphalt fumes, lung tissues were collected immediately following exposure and gene expression profiles in control and exposed rats were determined by using oligonucleotide microarrays. Data analysis revealed that genes involved in lung inflammatory response as well as genes associated with PAH metabolization and detoxification were highly expressed in bitumen-exposed animals. In addition, the expression of genes related to elastase activity and its inhibition which are associated with emphysema was also modulated. More interestingly genes coding for monoamine oxidases A and B involved in the metabolism of neurotransmitters and xenobiotics were downregulated in exposed rats. Altogether, these data give additional information concerning the bitumen fumes biological effects and would allow to better review the health effects of occupational asphalt fumes exposure.

  8. Xylella fastidiosa gene expression analysis by DNA microarrays

    PubMed Central

    2009-01-01

    Xylella fastidiosa genome sequencing has generated valuable data by identifying genes acting either on metabolic pathways or in associated pathogenicity and virulence. Based on available information on these genes, new strategies for studying their expression patterns, such as microarray technology, were employed. A total of 2,600 primer pairs were synthesized and then used to generate fragments using the PCR technique. The arrays were hybridized against cDNAs labeled during reverse transcription reactions and which were obtained from bacteria grown under two different conditions (liquid XDM2 and liquid BCYE). All data were statistically analyzed to verify which genes were differentially expressed. In addition to exploring conditions for X. fastidiosa genome-wide transcriptome analysis, the present work observed the differential expression of several classes of genes (energy, protein, amino acid and nucleotide metabolism, transport, degradation of substances, toxins and hypothetical proteins, among others). The understanding of expressed genes in these two different media will be useful in comprehending the metabolic characteristics of X. fastidiosa, and in evaluating how important certain genes are for the functioning and survival of these bacteria in plants. PMID:21637690

  9. Catabolic gene expression is monitored by bioluminescence in bioreactor studies

    SciTech Connect

    Burlage, R.S.; Kuo, D.; Palumbo, A.V.

    1993-03-01

    In order to study the expression of specific catabolic genes under defined conditions, and to determine whether certain conditions tend to increase or decrease metal catabolic activities, a bioreporter gene can be introduced into the microorganism. Activity from such bioreporter gene would indicate successful bioremediation. Our laboratory has produced several bioreporter strains using the bioluminescent lux genes of Vibrio fischeri. A bioreporter producing visible light when genetic expression is induced. The bioluminescent system include sensitivity of detection, analysis of response in real- time, and on-line capability. We constructed a bioreporter strain aimed at following the degradation of toluene and related compounds in order to study expression of the catabolic genes with various substrates and under optimized bioreactor conditions. We have been able to detect the induction of a specific operon in response to the addition of oxylene, as a gratuitous inducer of the catabolic genes. A strong bioluminescent signal in these studies. We have varied the medium of an induced bioreactor culture of RB1401, and our data suggest that conditions for optimal expression of the catabolic operon might not be identical with optimal growth conditions.

  10. Catabolic gene expression is monitored by bioluminescence in bioreactor studies

    SciTech Connect

    Burlage, R.S.; Kuo, D.; Palumbo, A.V.

    1993-01-01

    In order to study the expression of specific catabolic genes under defined conditions, and to determine whether certain conditions tend to increase or decrease metal catabolic activities, a bioreporter gene can be introduced into the microorganism. Activity from such bioreporter gene would indicate successful bioremediation. Our laboratory has produced several bioreporter strains using the bioluminescent lux genes of Vibrio fischeri. A bioreporter producing visible light when genetic expression is induced. The bioluminescent system include sensitivity of detection, analysis of response in real- time, and on-line capability. We constructed a bioreporter strain aimed at following the degradation of toluene and related compounds in order to study expression of the catabolic genes with various substrates and under optimized bioreactor conditions. We have been able to detect the induction of a specific operon in response to the addition of oxylene, as a gratuitous inducer of the catabolic genes. A strong bioluminescent signal in these studies. We have varied the medium of an induced bioreactor culture of RB1401, and our data suggest that conditions for optimal expression of the catabolic operon might not be identical with optimal growth conditions.

  11. Annotation of gene function in citrus using gene expression information and co-expression networks

    PubMed Central

    2014-01-01

    Background The genus Citrus encompasses major cultivated plants such as sweet orange, mandarin, lemon and grapefruit, among the world’s most economically important fruit crops. With increasing volumes of transcriptomics data available for these species, Gene Co-expression Network (GCN) analysis is a viable option for predicting gene function at a genome-wide scale. GCN analysis is based on a “guilt-by-association” principle whereby genes encoding proteins involved in similar and/or related biological processes may exhibit similar expression patterns across diverse sets of experimental conditions. While bioinformatics resources such as GCN analysis are widely available for efficient gene function prediction in model plant species including Arabidopsis, soybean and rice, in citrus these tools are not yet developed. Results We have constructed a comprehensive GCN for citrus inferred from 297 publicly available Affymetrix Genechip Citrus Genome microarray datasets, providing gene co-expression relationships at a genome-wide scale (33,000 transcripts). The comprehensive citrus GCN consists of a global GCN (condition-independent) and four condition-dependent GCNs that survey the sweet orange species only, all citrus fruit tissues, all citrus leaf tissues, or stress-exposed plants. All of these GCNs are clustered using genome-wide, gene-centric (guide) and graph clustering algorithms for flexibility of gene function prediction. For each putative cluster, gene ontology (GO) enrichment and gene expression specificity analyses were performed to enhance gene function, expression and regulation pattern prediction. The guide-gene approach was used to infer novel roles of genes involved in disease susceptibility and vitamin C metabolism, and graph-clustering approaches were used to investigate isoprenoid/phenylpropanoid metabolism in citrus peel, and citric acid catabolism via the GABA shunt in citrus fruit. Conclusions Integration of citrus gene co-expression networks

  12. Multiple Stochastic Point Processes in Gene Expression

    NASA Astrophysics Data System (ADS)

    Murugan, Rajamanickam

    2008-04-01

    We generalize the idea of multiple-stochasticity in chemical reaction systems to gene expression. Using Chemical Langevin Equation approach we investigate how this multiple-stochasticity can influence the overall molecular number fluctuations. We show that the main sources of this multiple-stochasticity in gene expression could be the randomness in transcription and translation initiation times which in turn originates from the underlying bio-macromolecular recognition processes such as the site-specific DNA-protein interactions and therefore can be internally regulated by the supra-molecular structural factors such as the condensation/super-coiling of DNA. Our theory predicts that (1) in case of gene expression system, the variances ( φ) introduced by the randomness in transcription and translation initiation-times approximately scales with the degree of condensation ( s) of DNA or mRNA as φ ∝ s -6. From the theoretical analysis of the Fano factor as well as coefficient of variation associated with the protein number fluctuations we predict that (2) unlike the singly-stochastic case where the Fano factor has been shown to be a monotonous function of translation rate, in case of multiple-stochastic gene expression the Fano factor is a turn over function with a definite minimum. This in turn suggests that the multiple-stochastic processes can also be well tuned to behave like a singly-stochastic point processes by adjusting the rate parameters.

  13. Population-level control of gene expression

    NASA Astrophysics Data System (ADS)

    Nevozhay, Dmitry; Adams, Rhys; van Itallie, Elizabeth; Bennett, Matthew; Balazsi, Gabor

    2011-03-01

    Gene expression is the process that translates genetic information into proteins, that determine the way cells live, function and even die. It was demonstrated that cells with identical genomes exposed to the same environment can differ in their protein composition and therefore phenotypes. Protein levels can vary between cells due to the stochastic nature of intracellular biochemical events, indicating that the genotype-phenotype connection is not deterministic at the cellular level. We asked whether genomes could encode isogenic cell populations more reliably than single cells. To address this question, we built two gene circuits to control three cell population-level characteristics: gene expression mean, coefficient of variation and non-genetic memory of previous expression states. Indeed, we found that these population-level characteristics were more predictable than the gene expression of single cells in a well-controlled environment. This research was supported by the NIH Director's New Innovator Award 1DP2 OD006481-01 and Welch Foundation Grant C-1729.

  14. Current Gene Expression Studies in Esophageal Carcinoma

    PubMed Central

    Guo, Wei; Jiang, Yao-Guang

    2009-01-01

    Esophageal carcinoma is one of the deadliest cancers with highly aggressive potency, ranking as the sixth most common cancer among males and ninth most common cancer among females globally. Due to metastasis and invasion of surrounding tissues in early stage, the 5-year overall survival rate (14%) of esophageal cancer remains poor, even in comparison with the dismal survival rates (4%) from the 1970s. Numerous genes and proteins with abnormal expression and function involve in the pathogenesis of esophageal cancer, but the concrete process remains unclear. Microarray technique has been applied to investigating esophageal cancer. Many gene expression studies have been undertaken to look at the specific patterns of gene transcript levels in esophageal cancer. Human tissues and cell lines were used in these geneprofiling studies and a very valuable and interesting set of data has resulted from various microarray experiments. These expression studies have provided increased understanding of the complex pathological mechanisms involved in esophageal cancer. The eventual goal of microarray is to discover new markers for therapy and to customize therapy based on an individual tumor genetic composition. This review summarized the current state of gene expression profile studies in esophageal cancer. PMID:20514215

  15. Gene expression analysis of the embryonic subplate

    PubMed Central

    Oeschger, Franziska M.; Wang, Wei-Zhi; Lee, Sheena; García-Moreno, Fernando; Goffinet, André M.; Arbones, Mariona; Rakic, Sonia; Molnár, Zoltán

    2015-01-01

    The subplate layer of the cerebral cortex is comprised of a heterogeneous population of cells and contains some of the earliest-generated neurons. In the embryonic brain, subplate cells contribute to the guidance and areal targeting of thalamocortical axons. At later stages, they are involved in the maturation and plasticity of the cortical circuitry and the establishment of functional modules. We aimed to further characterize the embryonic murine subplate population by establishing a gene expression profile at embryonic day 15.5 using laser capture microdissection and microarrays. The microarray identified over 300 transcripts with higher expression in the subplate compared to the cortical plate at this stage. Using quantitative RT-PCR, in situ hybridization and immunohistochemistry, we have confirmed specific expression in the E15.5 subplate for 13 selected genes which have not been previously associated with this compartment (Abca8a, Cdh10, Cdh18, Csmd3, Gabra5, Kcnt2, Ogfrl1, Pls3, Rcan2, Sv2b, Slc8a2, Unc5c and Zdhhc2). In the reeler mutant, the expression of the majority of these genes (9 out of 13) was shifted in accordance with the altered position of subplate. These genes belong to several functional groups and likely contribute to the maturation and electrophysiological properties of subplate cells and to axonal growth and guidance. PMID:21862448

  16. The Low Noise Limit in Gene Expression

    PubMed Central

    Dar, Roy D.; Razooky, Brandon S.; Weinberger, Leor S.; Cox, Chris D.; Simpson, Michael L.

    2015-01-01

    Protein noise measurements are increasingly used to elucidate biophysical parameters. Unfortunately noise analyses are often at odds with directly measured parameters. Here we show that these inconsistencies arise from two problematic analytical choices: (i) the assumption that protein translation rate is invariant for different proteins of different abundances, which has inadvertently led to (ii) the assumption that a large constitutive extrinsic noise sets the low noise limit in gene expression. While growing evidence suggests that transcriptional bursting may set the low noise limit, variability in translational bursting has been largely ignored. We show that genome-wide systematic variation in translational efficiency can–and in the case of E. coli does–control the low noise limit in gene expression. Therefore constitutive extrinsic noise is small and only plays a role in the absence of a systematic variation in translational efficiency. These results show the existence of two distinct expression noise patterns: (1) a global noise floor uniformly imposed on all genes by expression bursting; and (2) high noise distributed to only a select group of genes. PMID:26488303

  17. Trigger finger, tendinosis, and intratendinous gene expression.

    PubMed

    Lundin, A-C; Aspenberg, P; Eliasson, P

    2014-04-01

    The pathogenesis of trigger finger has generally been ascribed to primary changes in the first annular ligament. In contrast, we recently found histological changes in the tendons, similar to the findings in Achilles tendinosis or tendinopathy. We therefore hypothesized that trigger finger tendons would show differences in gene expression in comparison to normal tendons in a pattern similar to what is published for Achilles tendinosis. We performed quantitative real-time polymerase chain reaction on biopsies from finger flexor tendons, 13 trigger fingers and 13 apparently healthy control tendons, to assess the expression of 10 genes which have been described to be differently expressed in tendinosis (collagen type 1a1, collagen 3a1, MMP-2, MMP-3, ADAMTS-5, TIMP-3, aggrecan, biglycan, decorin, and versican). In trigger finger tendons, collagen types 1a1 and 3a1, aggrecan and biglycan were all up-regulated, and MMP-3and TIMP-3 were down-regulated. These changes were statistically significant and have been previously described for Achilles tendinosis. The remaining four genes were not significantly altered. The changes in gene expression support the hypothesis that trigger finger is a form of tendinosis. Because trigger finger is a common condition, often treated surgically, it could provide opportunities for clinical research on tendinosis. PMID:22882155

  18. Gene expression analysis of the embryonic subplate.

    PubMed

    Oeschger, Franziska M; Wang, Wei-Zhi; Lee, Sheena; García-Moreno, Fernando; Goffinet, André M; Arbonés, Maria L; Rakic, Sonja; Molnár, Zoltán

    2012-06-01

    The subplate layer of the cerebral cortex is comprised of a heterogeneous population of cells and contains some of the earliest-generated neurons. In the embryonic brain, subplate cells contribute to the guidance and areal targeting of thalamocortical axons. At later developmental stages, they are predominantly involved in the maturation and plasticity of the cortical circuitry and the establishment of functional modules. We aimed to further characterize the embryonic murine subplate population by establishing a gene expression profile at embryonic day (E) 15.5 using laser capture microdissection and microarrays. The microarray identified over 300 transcripts with higher expression in the subplate compared with the cortical plate at this stage. Using quantitative reverse transcription-polymerase chain reaction, in situ hybridization (ISH), and immunohistochemistry (IHC), we have confirmed specific expression in the E15.5 subplate for 13 selected genes, which have not been previously associated with this compartment (Abca8a, Cdh10, Cdh18, Csmd3, Gabra5, Kcnt2, Ogfrl1, Pls3, Rcan2, Sv2b, Slc8a2, Unc5c, and Zdhhc2). In the reeler mutant, the expression of the majority of these genes (9 of 13) was shifted in accordance with the altered position of subplate. These genes belong to several functional groups and likely contribute to synapse formation and axonal growth and guidance in subplate cells. PMID:21862448

  19. The low noise limit in gene expression

    SciTech Connect

    Dar, Roy D.; Weinberger, Leor S.; Cox, Chris D.; Simpson, Michael L.; Razooky, Brandon S.

    2015-10-21

    Protein noise measurements are increasingly used to elucidate biophysical parameters. Unfortunately noise analyses are often at odds with directly measured parameters. Here we show that these inconsistencies arise from two problematic analytical choices: (i) the assumption that protein translation rate is invariant for different proteins of different abundances, which has inadvertently led to (ii) the assumption that a large constitutive extrinsic noise sets the low noise limit in gene expression. While growing evidence suggests that transcriptional bursting may set the low noise limit, variability in translational bursting has been largely ignored. We show that genome-wide systematic variation in translational efficiency can-and in the case of E. coli does-control the low noise limit in gene expression. Therefore constitutive extrinsic noise is small and only plays a role in the absence of a systematic variation in translational efficiency. Lastly, these results show the existence of two distinct expression noise patterns: (1) a global noise floor uniformly imposed on all genes by expression bursting; and (2) high noise distributed to only a select group of genes.

  20. The low noise limit in gene expression

    DOE PAGESBeta

    Dar, Roy D.; Weinberger, Leor S.; Cox, Chris D.; Simpson, Michael L.; Razooky, Brandon S.

    2015-10-21

    Protein noise measurements are increasingly used to elucidate biophysical parameters. Unfortunately noise analyses are often at odds with directly measured parameters. Here we show that these inconsistencies arise from two problematic analytical choices: (i) the assumption that protein translation rate is invariant for different proteins of different abundances, which has inadvertently led to (ii) the assumption that a large constitutive extrinsic noise sets the low noise limit in gene expression. While growing evidence suggests that transcriptional bursting may set the low noise limit, variability in translational bursting has been largely ignored. We show that genome-wide systematic variation in translational efficiencymore » can-and in the case of E. coli does-control the low noise limit in gene expression. Therefore constitutive extrinsic noise is small and only plays a role in the absence of a systematic variation in translational efficiency. Lastly, these results show the existence of two distinct expression noise patterns: (1) a global noise floor uniformly imposed on all genes by expression bursting; and (2) high noise distributed to only a select group of genes.« less

  1. Digital gene expression signatures for maize development

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Genome-wide expression signatures detect specific perturbations in developmental programs and contribute to functional resolution of key regulatory networks. In maize (Zea mays) inflorescences, mutations in the RAMOSA (RA) genes affect determinacy of axillary meristems and thus alter branching patt...

  2. Gene expression during normal and FSHD myogenesis

    PubMed Central

    2011-01-01

    Background Facioscapulohumeral muscular dystrophy (FSHD) is a dominant disease linked to contraction of an array of tandem 3.3-kb repeats (D4Z4) at 4q35. Within each repeat unit is a gene, DUX4, that can encode a protein containing two homeodomains. A DUX4 transcript derived from the last repeat unit in a contracted array is associated with pathogenesis but it is unclear how. Methods Using exon-based microarrays, the expression profiles of myogenic precursor cells were determined. Both undifferentiated myoblasts and myoblasts differentiated to myotubes derived from FSHD patients and controls were studied after immunocytochemical verification of the quality of the cultures. To further our understanding of FSHD and normal myogenesis, the expression profiles obtained were compared to those of 19 non-muscle cell types analyzed by identical methods. Results Many of the ~17,000 examined genes were differentially expressed (> 2-fold, p < 0.01) in control myoblasts or myotubes vs. non-muscle cells (2185 and 3006, respectively) or in FSHD vs. control myoblasts or myotubes (295 and 797, respectively). Surprisingly, despite the morphologically normal differentiation of FSHD myoblasts to myotubes, most of the disease-related dysregulation was seen as dampening of normal myogenesis-specific expression changes, including in genes for muscle structure, mitochondrial function, stress responses, and signal transduction. Other classes of genes, including those encoding extracellular matrix or pro-inflammatory proteins, were upregulated in FSHD myogenic cells independent of an inverse myogenesis association. Importantly, the disease-linked DUX4 RNA isoform was detected by RT-PCR in FSHD myoblast and myotube preparations only at extremely low levels. Unique insights into myogenesis-specific gene expression were also obtained. For example, all four Argonaute genes involved in RNA-silencing were significantly upregulated during normal (but not FSHD) myogenesis relative to non

  3. Differential expression of myrosinase gene families.

    PubMed Central

    Lenman, M; Falk, A; Rödin, J; Höglund, A S; Ek, B; Rask, L

    1993-01-01

    In mature seeds of Brassica napus three major and three minor myrosinase isoenzymes were identified earlier. These myrosinases are known to be encoded by at least two different families of myrosinase genes, denoted MA and MB. In the work described in this paper the presence of different myrosinase isoenzymes in embryos, seedlings, and vegetative mature tissues of B. napus was studied and related to the expression of myrosinase MA and MB genes in the same tissues to facilitate future functional studies of these enzymes. In developing seeds, myrosinases of 75, 73, 70, 68, 66, and 65 kD were present. During seedling development there was a turnover of the myrosinase pool such that in 5-d-old seedlings the 75-, 70-, 66-, and 65-kD myrosinases were present, with the 70- and 75-kD myrosinases predominating. In 21-d-old seedlings the same myrosinases were present, but the 66- and 65-kD myrosinase species were most abundant. At flowering the mature organs of the plant contained only a 72-kD myrosinase. MA genes were expressed only in developing seeds, whereas MB genes were most highly expressed in seeds, seedling cotyledons, young leaves, and to a lesser extent other organs of the mature plant. During embryogenesis of B. napus, myrosinase MA and MB gene transcripts started to accumulate approximately 20 d after pollination and reached their highest level approximately 15 d later. MB transcripts accumulated to about 3 times the amount of MA transcripts. In situ hybridization analysis of B. napus embryos showed that MA transcripts were present predominatly in myrosin cells in the axis, whereas MB genes were expressed in myrosin cells of the entire embryo. The embryo axiz contained 75-, 70-, and 65-kD myrosinases, whereas the cotyledons contained mainly 70- and 65-kD myrosinases. Amino acid sequencing revealed the 75-kD myrosinase to be encoded by the MA gene family. The high degree of cell and tissue specificity of the expression of myrosinase genes suggests that studies of

  4. Fluid Mechanics, Arterial Disease, and Gene Expression

    NASA Astrophysics Data System (ADS)

    Tarbell, John M.; Shi, Zhong-Dong; Dunn, Jessilyn; Jo, Hanjoong

    2014-01-01

    This review places modern research developments in vascular mechanobiology in the context of hemodynamic phenomena in the cardiovascular system and the discrete localization of vascular disease. The modern origins of this field are traced, beginning in the 1960s when associations between flow characteristics, particularly blood flow-induced wall shear stress, and the localization of atherosclerotic plaques were uncovered, and continuing to fluid shear stress effects on the vascular lining endothelial cells (ECs), including their effects on EC morphology, biochemical production, and gene expression. The earliest single-gene studies and genome-wide analyses are considered. The final section moves from the ECs lining the vessel wall to the smooth muscle cells and fibroblasts within the wall that are fluid mechanically activated by interstitial flow that imposes shear stresses on their surfaces comparable with those of flowing blood on EC surfaces. Interstitial flow stimulates biochemical production and gene expression, much like blood flow on ECs.

  5. Control mechanisms of plastid gene expression

    SciTech Connect

    Gruissem, W.; Tonkyn, J.C.

    1993-12-31

    Plastid DNAs of higher plants contain approximately 150 genes that encode RNAs and proteins for genetic and photosynthetic functions of the organelle. Results published in the last few years illustrate that the spatial and temporal expression of these plastid genes is regulated, in part, at the transcriptional level, but that developmentally controlled changes in mRNA stability, translational activity, and protein phosphorylation also have an important role in the control of plastid functions. This comprehensive review summarizes and discusses the mechanisms by which regulation of gene expression is exerted at the transcriptional and post-transcriptional levels. It provides an overview of our current knowledge, but also emphasizes areas that are controversial and in which information on regulatory mechanisms is still incomplete. 455 refs., 3 figs., 3 tabs.

  6. Fluid Mechanics, Arterial Disease, and Gene Expression

    PubMed Central

    Tarbell, John M.; Shi, Zhong-Dong; Dunn, Jessilyn; Jo, Hanjoong

    2014-01-01

    This review places modern research developments in vascular mechanobiology in the context of hemodynamic phenomena in the cardiovascular system and the discrete localization of vascular disease. The modern origins of this field are traced, beginning in the 1960s when associations between flow characteristics, particularly blood flow–induced wall shear stress, and the localization of atherosclerotic plaques were uncovered, and continuing to fluid shear stress effects on the vascular lining endothelial) cells (ECs), including their effects on EC morphology, biochemical production, and gene expression. The earliest single-gene studies and genome-wide analyses are considered. The final section moves from the ECs lining the vessel wall to the smooth muscle cells and fibroblasts within the wall that are fluid me chanically activated by interstitial flow that imposes shear stresses on their surfaces comparable with those of flowing blood on EC surfaces. Interstitial flow stimulates biochemical production and gene expression, much like blood flow on ECs. PMID:25360054

  7. Methods to improve cardiac gene therapy expression.

    PubMed

    Scimia, Maria Cecilia; Sydnes, Kate E; Zuppo, Daniel A; Koch, Walter J

    2014-11-01

    Gene therapy strategies are becoming a valuable approach for the treatment of heart failure. Some trials are ongoing and others are being organized. Vascular access in clinical experimentation is still the chosen modality of delivery, but many other approaches are in research and development. A successful gene therapy strategy involves not only the choice of the right vector and gene, but also the correct delivery strategy that allows for transduction of the highest percentage of cardiomyocytes, limited spilling of virus into other organs and the possibility to correlate the amount of injected virus to the rate of the expression within the cardiac tissue. The authors will first concentrate on clarifying what the barriers are that the virus has to overcome in order to reach the nuclei of the target organs and methodologies that have been tested to improve the range of expression. PMID:25340284

  8. Pancreatic beta cells express a diverse set of homeobox genes.

    PubMed Central

    Rudnick, A; Ling, T Y; Odagiri, H; Rutter, W J; German, M S

    1994-01-01

    Homeobox genes, which are found in all eukaryotic organisms, encode transcriptional regulators involved in cell-type differentiation and development. Several homeobox genes encoding homeodomain proteins that bind and activate the insulin gene promoter have been described. In an attempt to identify additional beta-cell homeodomain proteins, we designed primers based on the sequences of beta-cell homeobox genes cdx3 and lmx1 and the Drosophila homeodomain protein Antennapedia and used these primers to amplify inserts by PCR from an insulinoma cDNA library. The resulting amplification products include sequences encoding 10 distinct homeodomain proteins; 3 of these proteins have not been described previously. In addition, an insert was obtained encoding a splice variant of engrailed-2, a homeodomain protein previously identified in the central nervous system. Northern analysis revealed a distinct pattern of expression for each homeobox gene. Interestingly, the PCR-derived clones do not represent a complete sampling of the beta-cell library because no inserts encoding cdx3 or lmx1 protein were obtained. Beta cells probably express additional homeobox genes. The abundance and diversity of homeodomain proteins found in beta cells illustrate the remarkable complexity and redundancy of the machinery controlling beta-cell development and differentiation. Images PMID:7991607

  9. From gene expressions to genetic networks

    NASA Astrophysics Data System (ADS)

    Cieplak, Marek

    2009-03-01

    A method based on the principle of entropy maximization is used to identify the gene interaction network with the highest probability of giving rise to experimentally observed transcript profiles [1]. In its simplest form, the method yields the pairwise gene interaction network, but it can also be extended to deduce higher order correlations. Analysis of microarray data from genes in Saccharomyces cerevisiae chemostat cultures exhibiting energy metabollic oscillations identifies a gene interaction network that reflects the intracellular communication pathways. These pathways adjust cellular metabolic activity and cell division to the limiting nutrient conditions that trigger metabolic oscillations. The success of the present approach in extracting meaningful genetic connections suggests that the maximum entropy principle is a useful concept for understanding living systems, as it is for other complex, nonequilibrium systems. The time-dependent behavior of the genetic network is found to involve only a few fundamental modes [2,3]. [4pt] REFERENCES:[0pt] [1] T. R. Lezon, J. R. Banavar, M. Cieplak, A. Maritan, and N. Fedoroff, Using the principle of entropy maximization to infer genetic interaction networks from gene expression patterns, Proc. Natl. Acad. Sci. (USA) 103, 19033-19038 (2006) [0pt] [2] N. S. Holter, M. Mitra, A. Maritan, M. Cieplak, J. R. Banavar, and N. V. Fedoroff, Fundamental patterns underlying gene expression profiles: simplicity from complexity, Proc. Natl. Acad. Sci. USA 97, 8409-8414 (2000) [0pt] [3] N. S. Holter, A. Maritan, M. Cieplak, N. V. Fedoroff, and J. R. Banavar, Dynamic modeling of gene expression data, Proc. Natl. Acad. Sci. USA 98, 1693-1698 (2001)

  10. Topological features in cancer gene expression data.

    PubMed

    Lockwood, S; Krishnamoorthy, B

    2015-01-01

    We present a new method for exploring cancer gene expression data based on tools from algebraic topology. Our method selects a small relevant subset from tens of thousands of genes while simultaneously identifying nontrivial higher order topological features, i.e., holes, in the data. We first circumvent the problem of high dimensionality by dualizing the data, i.e., by studying genes as points in the sample space. Then we select a small subset of the genes as landmarks to construct topological structures that capture persistent, i.e., topologically significant, features of the data set in its first homology group. Furthermore, we demonstrate that many members of these loops have been implicated for cancer biogenesis in scientific literature. We illustrate our method on five different data sets belonging to brain, breast, leukemia, and ovarian cancers. PMID:25592573

  11. Probing cell-free gene expression noise in femtoliter volumes

    SciTech Connect

    Karig, David K; Jung, Seung-Yong; Srijanto, Bernadeta R; Collier, Pat; Simpson, Michael L

    2013-01-01

    Cell-free systems offer a simplified and flexible context that enables important biological reactions while removing complicating factors such as fitness, division, and mutation that are associated with living cells. However, cell-free expression in unconfined spaces is missing important elements of expression in living cells. In particular, the small volume of living cells can give rise to significant stochastic effects, which are negligible in bulk cell-free reactions. Here, we confine cell-free gene expression reactions to cell relevant 20 fL volumes (between the volumes of E. coli and S. cerevisiae), in polydimethylsiloxane (PDMS) containers. We demonstrate that expression efficiency varies widely at this volume, and we analyze gene expression noise. Noise analysis reveals signatures of translational bursting while noise dynamics suggest that overall cell-free expression is limited by a diminishing translation rate. In addition to offering a unique approach to understanding noise in gene circuits, our work contributes to a deeper understanding of the biophysical properties of cell-free expression systems, thus aiding efforts to harness cell-free systems for synthetic biology applications.

  12. Coevolution of gene expression among interacting proteins

    SciTech Connect

    Fraser, Hunter B.; Hirsh, Aaron E.; Wall, Dennis P.; Eisen,Michael B.

    2004-03-01

    Physically interacting proteins or parts of proteins are expected to evolve in a coordinated manner that preserves proper interactions. Such coevolution at the amino acid-sequence level is well documented and has been used to predict interacting proteins, domains, and amino acids. Interacting proteins are also often precisely coexpressed with one another, presumably to maintain proper stoichiometry among interacting components. Here, we show that the expression levels of physically interacting proteins coevolve. We estimate average expression levels of genes from four closely related fungi of the genus Saccharomyces using the codon adaptation index and show that expression levels of interacting proteins exhibit coordinated changes in these different species. We find that this coevolution of expression is a more powerful predictor of physical interaction than is coevolution of amino acid sequence. These results demonstrate previously uncharacterized coevolution of gene expression, adding a different dimension to the study of the coevolution of interacting proteins and underscoring the importance of maintaining coexpression of interacting proteins over evolutionary time. Our results also suggest that expression coevolution can be used for computational prediction of protein protein interactions.

  13. [Modifications of gene expression by tumor promoters].

    PubMed

    Zhang, C; Zhao, Q; Guo, S; Zhao, M; Cheng, S

    1995-02-01

    The modifications of gene expression by tumor promoters were analyzed in vitro and in vivo. The results of slot blot hybridizations showed that tumor promoter TPA induced c-fos and c-myc expressions in mouse fibroblast cell line BALB/3T3 and rat liver, decreased the levels of Rb RNA in BALB/3T3 cell line and of alpha 1-I3 RNA in rat liver. It was also demonstrated that tumor promoter phenobarbital influenced c-fos and c-myc expressions and decreased alpha 1I3 mRNA level in rat liver during a long term experiment. Phenobarbital was found to have no effect on c-fos and c-myc expressions in rat liver during a short experiment. Tumor promoters induced the expressions of c-fos and c-myc which were positively-related to cancer formation and inhibited the expressions of Rb and alpha 1-I3 which were negatively-related to cancer formation. This implied that tumor promotion played an important role in cancer development and tumor promoters exerted their effects selectively according to the attributes of different genes. PMID:7540119

  14. Estrogen-Dependent Gene Expression in the Mouse Ovary

    PubMed Central

    Liew, Seng H.; Sarraj, Mai A.; Drummond, Ann E.; Findlay, Jock K.

    2011-01-01

    Estrogen (E) plays a pivotal role in regulating the female reproductive system, particularly the ovary. However, the number and type of ovarian genes influenced by estrogen remain to be fully elucidated. In this study, we have utilized wild-type (WT) and aromatase knockout (ArKO; estrogen free) mouse ovaries as an in vivo model to profile estrogen dependent genes. RNA from each individual ovary (n = 3) was analyzed by a microarray-based screen using Illumina Sentrix Mouse WG-6 BeadChip (45,281 transcripts). Comparative analysis (GeneSpring) showed differential expression profiles of 450 genes influenced by E, with 291 genes up-regulated and 159 down-regulated by 2-fold or greater in the ArKO ovary compared to WT. Genes previously reported to be E regulated in ArKO ovaries were confirmed, in addition to novel genes not previously reported to be expressed or regulated by E in the ovary. Of genes involved in 5 diverse functional processes (hormonal processes, reproduction, sex differentiation and determination, apoptosis and cellular processes) 78 had estrogen-responsive elements (ERE). These analyses define the transcriptome regulated by E in the mouse ovary. Further analysis and investigation will increase our knowledge pertaining to how E influences follicular development and other ovarian functions. PMID:21347412

  15. Genetics of gene expression responses to temperature stress in a sea urchin gene network.

    PubMed

    Runcie, Daniel E; Garfield, David A; Babbitt, Courtney C; Wygoda, Jennifer A; Mukherjee, Sayan; Wray, Gregory A

    2012-09-01

    Stress responses play an important role in shaping species distributions and robustness to climate change. We investigated how stress responses alter the contribution of additive genetic variation to gene expression during development of the purple sea urchin, Strongylocentrotus purpuratus, under increased temperatures that model realistic climate change scenarios. We first measured gene expression responses in the embryos by RNA-seq to characterize molecular signatures of mild, chronic temperature stress in an unbiased manner. We found that an increase from 12 to 18 °C caused widespread alterations in gene expression including in genes involved in protein folding, RNA processing and development. To understand the quantitative genetic architecture of this response, we then focused on a well-characterized gene network involved in endomesoderm and ectoderm specification. Using a breeding design with wild-caught individuals, we measured genetic and gene-environment interaction effects on 72 genes within this network. We found genetic or maternal effects in 33 of these genes and that the genetic effects were correlated in the network. Fourteen network genes also responded to higher temperatures, but we found no significant genotype-environment interactions in any of the genes. This absence may be owing to an effective buffering of the temperature perturbations within the network. In support of this hypothesis, perturbations to regulatory genes did not affect the expression of the genes that they regulate. Together, these results provide novel insights into the relationship between environmental change and developmental evolution and suggest that climate change may not expose large amounts of cryptic genetic variation to selection in this species. PMID:22856327

  16. Gene expression regulation in roots under drought.

    PubMed

    Janiak, Agnieszka; Kwaśniewski, Mirosław; Szarejko, Iwona

    2016-02-01

    Stress signalling and regulatory networks controlling expression of target genes are the basis of plant response to drought. Roots are the first organs exposed to water deficiency in the soil and are the place of drought sensing. Signalling cascades transfer chemical signals toward the shoot and initiate molecular responses that lead to the biochemical and morphological changes that allow plants to be protected against water loss and to tolerate stress conditions. Here, we present an overview of signalling network and gene expression regulation pathways that are actively induced in roots under drought stress. In particular, the role of several transcription factor (TF) families, including DREB, AP2/ERF, NAC, bZIP, MYC, CAMTA, Alfin-like and Q-type ZFP, in the regulation of root response to drought are highlighted. The information provided includes available data on mutual interactions between these TFs together with their regulation by plant hormones and other signalling molecules. The most significant downstream target genes and molecular processes that are controlled by the regulatory factors are given. These data are also coupled with information about the influence of the described regulatory networks on root traits and root development which may translate to enhanced drought tolerance. This is the first literature survey demonstrating the gene expression regulatory machinery that is induced by drought stress, presented from the perspective of roots. PMID:26663562

  17. Salt induced gene expression in Prosopis farcta

    SciTech Connect

    Heimer, I.M.; Golan, A.; Lips, H.

    1987-04-01

    The authors hypothesize that in facultative halophytes, the genes which impart salt tolerance are expressed when the plants are exposed to salt. As a first step towards possible identification of these genes, they examined salt induced changes of gene expression in the facultative halophyte Prosopis farcta at the protein level, by SDS-PAGE. Exposure to salt of aseptically grown, two-week old seedlings, was carried out in one of two ways: (1) a one step transfer of seedlings from medium without salt to that with the indicated concentrations followed by 5 hr or 24 hr incubation periods. During the last 2 hrs of each incubation period the seedlings were pulse-labelled with /sup 35/S Sulfate or L-Methionine; (2) a gradual increase of the salt concentration at 50 mM increments at 2-4 day intervals. Two days after reaching the desired salt concentration, the seedlings were pulse-labelled for 2 hrs with /sup 35/S sulfate or L-methionine. Protein from roots were extracted and analyzed. Polypeptides were visualized by staining with coomassie blue or by fluorography. Qualitative as well as quantitative changes of gene expression as induced by salt could be observed. Their significance regarding salt tolerance will be discussed.

  18. Arabidopsis PAI gene arrangements, cytosine methylation and expression.

    PubMed Central

    Melquist, S; Luff, B; Bender, J

    1999-01-01

    Previous analysis of the PAI tryptophan biosynthetic gene family in Arabidopsis thaliana revealed that the Wassilewskija (WS) ecotype has four PAI genes at three unlinked sites: a tail-to-tail inverted repeat at one locus (PAI1-PAI4) plus singlet genes at two other loci (PAI2 and PAI3). The four WS PAI genes are densely cytosine methylated over their regions of DNA identity. In contrast, the Columbia (Col) ecotype has three singlet PAI genes at the analogous loci (PAI1, PAI2, and PAI3) and no cytosine methylation. To understand the mechanism of PAI gene duplication at the polymorphic PAI1 locus, and to investigate the relationship between PAI gene arrangement and PAI gene methylation, we analyzed 39 additional ecotypes of Arabidopsis. Six ecotypes had PAI arrangements similar to WS, with an inverted repeat and dense PAI methylation. All other ecotypes had PAI arrangements similar to Col, with no PAI methylation. The novel PAI-methylated ecotypes provide insights into the mechanisms underlying PAI gene duplication and methylation, as well as the relationship between methylation and gene expression. PMID:10471722

  19. Arabidopsis PAI gene arrangements, cytosine methylation and expression.

    PubMed

    Melquist, S; Luff, B; Bender, J

    1999-09-01

    Previous analysis of the PAI tryptophan biosynthetic gene family in Arabidopsis thaliana revealed that the Wassilewskija (WS) ecotype has four PAI genes at three unlinked sites: a tail-to-tail inverted repeat at one locus (PAI1-PAI4) plus singlet genes at two other loci (PAI2 and PAI3). The four WS PAI genes are densely cytosine methylated over their regions of DNA identity. In contrast, the Columbia (Col) ecotype has three singlet PAI genes at the analogous loci (PAI1, PAI2, and PAI3) and no cytosine methylation. To understand the mechanism of PAI gene duplication at the polymorphic PAI1 locus, and to investigate the relationship between PAI gene arrangement and PAI gene methylation, we analyzed 39 additional ecotypes of Arabidopsis. Six ecotypes had PAI arrangements similar to WS, with an inverted repeat and dense PAI methylation. All other ecotypes had PAI arrangements similar to Col, with no PAI methylation. The novel PAI-methylated ecotypes provide insights into the mechanisms underlying PAI gene duplication and methylation, as well as the relationship between methylation and gene expression. PMID:10471722

  20. Expression of bacterial genes in plant cells.

    PubMed Central

    Fraley, R T; Rogers, S G; Horsch, R B; Sanders, P R; Flick, J S; Adams, S P; Bittner, M L; Brand, L A; Fink, C L; Fry, J S; Galluppi, G R; Goldberg, S B; Hoffmann, N L; Woo, S C

    1983-01-01

    Chimeric bacterial genes conferring resistance to aminoglycoside antibiotics have been inserted into the Agrobacterium tumefaciens tumor-inducing (Ti) plasmid and introduced into plant cells by in vitro transformation techniques. The chimeric genes contain the nopaline synthase 5' and 3' regulatory regions joined to the genes for neomycin phosphotransferase type I or type II. The chimeric genes were cloned into an intermediate vector, pMON120, and inserted into pTiB6S3 by recombination and then introduced into petunia and tobacco cells by cocultivating A. tumefaciens cells with protoplast-derived cells. Southern hybridization was used to confirm the presence of the chimeric genes in the transformed plant tissues. Expression of the chimeric genes was determined by the ability of the transformed cells to proliferate on medium containing normally inhibitory levels of kanamycin (50 micrograms/ml) or other aminoglycoside antibiotics. Plant cells transformed by wild-type pTiB6S3 or derivatives carrying the bacterial neomycin phosphotransferase genes with their own promoters failed to grow under these conditions. The significance of these results for plant genetic engineering is discussed. Images PMID:6308651

  1. Consensus gene regulatory networks: combining multiple microarray gene expression datasets

    NASA Astrophysics Data System (ADS)

    Peeling, Emma; Tucker, Allan

    2007-09-01

    In this paper we present a method for modelling gene regulatory networks by forming a consensus Bayesian network model from multiple microarray gene expression datasets. Our method is based on combining Bayesian network graph topologies and does not require any special pre-processing of the datasets, such as re-normalisation. We evaluate our method on a synthetic regulatory network and part of the yeast heat-shock response regulatory network using publicly available yeast microarray datasets. Results are promising; the consensus networks formed provide a broader view of the potential underlying network, obtaining an increased true positive rate over networks constructed from a single data source.

  2. Gene expression profiling analysis of lung adenocarcinoma

    PubMed Central

    Xu, H.; Ma, J.; Wu, J.; Chen, L.; Sun, F.; Qu, C.; Zheng, D.; Xu, S.

    2016-01-01

    The present study screened potential genes related to lung adenocarcinoma, with the aim of further understanding disease pathogenesis. The GSE2514 dataset including 20 lung adenocarcinoma and 19 adjacent normal tissue samples from 10 patients with lung adenocarcinoma aged 45-73 years was downloaded from Gene Expression Omnibus. Differentially expressed genes (DEGs) between the two groups were screened using the t-test. Potential gene functions were predicted using functional and pathway enrichment analysis, and protein-protein interaction (PPI) networks obtained from the STRING database were constructed with Cytoscape. Module analysis of PPI networks was performed through MCODE in Cytoscape. In total, 535 upregulated and 465 downregulated DEGs were identified. These included ATP5D, UQCRC2, UQCR11 and genes encoding nicotinamide adenine dinucleotide (NADH), which are mainly associated with mitochondrial ATP synthesis coupled electron transport, and which were enriched in the oxidative phosphorylation pathway. Other DEGs were associated with DNA replication (PRIM1, MCM3, and RNASEH2A), cell surface receptor-linked signal transduction and the enzyme-linked receptor protein signaling pathway (MAPK1, STAT3, RAF1, and JAK1), and regulation of the cytoskeleton and phosphatidylinositol signaling system (PIP5K1B, PIP5K1C, and PIP4K2B). Our findings suggest that DEGs encoding subunits of NADH, PRIM1, MCM3, MAPK1, STAT3, RAF1, and JAK1 might be associated with the development of lung adenocarcinoma. PMID:26840709

  3. Gene expression analysis of collembola in cadmium containing soil.

    PubMed

    Nota, Benjamin; Timmermans, Martijn J T N; Franken, Oscar; Montagne-Wajer, Kora; Mariën, Janine; De Boer, Muriel E; De Boer, Tjalf E; Ylstra, Bauke; Van Straalen, Nico M; Roelofs, Dick

    2008-11-01

    Increasing concern about pollution of our environment calls for advanced and rapid methods to estimate ecological toxicity. The use of gene expression microarrays in environmental studies can potentially meet this challenge. We present a novel method to examine soil toxicity. We exposed the collembolan Folsomia candida to soil containing an ecologically relevant cadmium concentration, and found a cumulative total of 1586 differentially expressed transcripts across three exposure durations, including transcripts involved in stress response, detoxification, and hypoxia. Additional enrichment analysis of gene ontology (GO) terms revealed that antibiotic biosynthesis is important at all time points examined. Interestingly, genes involved in the "penicillin and cephalosporin biosynthesis pathway" have never been identified in animals before, but are expressed in F. candida's tissue. The synthesis of antibiotics can possibly be a response to increased cadmium-induced susceptibility to invading pathogens, which might be caused by repression of genes involved in the immune-system (C-type lectins and Toll receptor). This study presents a first global view on the environmental stress response of an arthropod species exposed to contaminated soil, and provides a mechanistic basis for the development of a gene expression soil quality test. PMID:19031917

  4. Inferring gene targets of drugs and chemical compounds from gene expression profiles

    PubMed Central

    Noh, Heeju; Gunawan, Rudiyanto

    2016-01-01

    Motivation: Finding genes which are directly perturbed or targeted by drugs is of great interest and importance in drug discovery. Several network filtering methods have been created to predict the gene targets of drugs from gene expression data based on an ordinary differential equation model of the gene regulatory network (GRN). A critical step in these methods involves inferring the GRN from the expression data, which is a very challenging problem on its own. In addition, existing network filtering methods require computationally intensive parameter tuning or expression data from experiments with known genetic perturbations or both. Results: We developed a method called DeltaNet for the identification of drug targets from gene expression data. Here, the gene target predictions were directly inferred from the data without a separate step of GRN inference. DeltaNet formulation led to solving an underdetermined linear regression problem, for which we employed least angle regression (DeltaNet-LAR) or LASSO regularization (DeltaNet-LASSO). The predictions using DeltaNet for expression data of Escherichia coli, yeast, fruit fly and human were significantly more accurate than those using network filtering methods, namely mode of action by network identification (MNI) and sparse simultaneous equation model (SSEM). Furthermore, DeltaNet using LAR did not require any parameter tuning and could provide computational speed-up over existing methods. Conclusion: DeltaNet is a robust and numerically efficient tool for identifying gene perturbations from gene expression data. Importantly, the method requires little to no expert supervision, while providing accurate gene target predictions. Availability and implementation: DeltaNet is available on http://www.cabsel.ethz.ch/tools/DeltaNet. Contact: rudi.gunawan@chem.ethz.ch Supplementary information: Supplementary data are available at Bioinformatics online. PMID:27153589

  5. Gene Expression Profiling in Dermatitis Herpetiformis Skin Lesions

    PubMed Central

    Dolcino, M.; Cozzani, E.; Riva, S.; Parodi, A.; Tinazzi, E.; Lunardi, C.; Puccetti, A.

    2012-01-01

    Dermatitis herpetiformis (DH) is an autoimmune blistering skin disease associated with gluten-sensitive enteropathy (CD). In order to investigate the pathogenesis of skin lesions at molecular level, we analysed the gene expression profiles in skin biopsies from 6 CD patients with DH and 6 healthy controls using Affymetrix HG-U133A 2.0 arrays. 486 genes were differentially expressed in DH skin compared to normal skin: 225 were upregulated and 261 were downregulated. Consistently with the autoimmune origin of DH, functional classification of the differentially expressed genes (DEGs) indicates a B- and T-cell immune response (LAG3, TRAF5, DPP4, and NT5E). In addition, gene modulation provides evidence for a local inflammatory response (IL8, PTGFR, FSTL1, IFI16, BDKRD2, and NAMPT) with concomitant leukocyte recruitment (CCL5, ENPP2), endothelial cell activation, and neutrophil extravasation (SELL, SELE). DEGs also indicate overproduction of matrix proteases (MMP9, ADAM9, and ADAM19) and proteolytic enzymes (CTSG, ELA2, CPA3, TPSB2, and CMA1) that may contribute to epidermal splitting and blister formation. Finally, we observed modulation of genes involved in cell growth inhibition (CGREF1, PA2G4, and PPP2R1B), increased apoptosis (FAS, TNFSF10, and BASP1), and reduced adhesion at the dermal epidermal junction (PLEC1, ITGB4, and LAMA5). In conclusion, our results identify genes that are involved in the pathogenesis of DH skin lesions. PMID:22991566

  6. Ezrin Inhibition Up-regulates Stress Response Gene Expression.

    PubMed

    Çelik, Haydar; Bulut, Gülay; Han, Jenny; Graham, Garrett T; Minas, Tsion Z; Conn, Erin J; Hong, Sung-Hyeok; Pauly, Gary T; Hayran, Mutlu; Li, Xin; Özdemirli, Metin; Ayhan, Ayşe; Rudek, Michelle A; Toretsky, Jeffrey A; Üren, Aykut

    2016-06-17

    Ezrin is a member of the ERM (ezrin/radixin/moesin) family of proteins that links cortical cytoskeleton to the plasma membrane. High expression of ezrin correlates with poor prognosis and metastasis in osteosarcoma. In this study, to uncover specific cellular responses evoked by ezrin inhibition that can be used as a specific pharmacodynamic marker(s), we profiled global gene expression in osteosarcoma cells after treatment with small molecule ezrin inhibitors, NSC305787 and NSC668394. We identified and validated several up-regulated integrated stress response genes including PTGS2, ATF3, DDIT3, DDIT4, TRIB3, and ATF4 as novel ezrin-regulated transcripts. Analysis of transcriptional response in skin and peripheral blood mononuclear cells from NSC305787-treated mice compared with a control group revealed that, among those genes, the stress gene DDIT4/REDD1 may be used as a surrogate pharmacodynamic marker of ezrin inhibitor compound activity. In addition, we validated the anti-metastatic effects of NSC305787 in reducing the incidence of lung metastasis in a genetically engineered mouse model of osteosarcoma and evaluated the pharmacokinetics of NSC305787 and NSC668394 in mice. In conclusion, our findings suggest that cytoplasmic ezrin, previously considered a dormant and inactive protein, has important functions in regulating gene expression that may result in down-regulation of stress response genes. PMID:27137931

  7. Gene expression profiling in dermatitis herpetiformis skin lesions.

    PubMed

    Dolcino, M; Cozzani, E; Riva, S; Parodi, A; Tinazzi, E; Lunardi, C; Puccetti, A

    2012-01-01

    Dermatitis herpetiformis (DH) is an autoimmune blistering skin disease associated with gluten-sensitive enteropathy (CD). In order to investigate the pathogenesis of skin lesions at molecular level, we analysed the gene expression profiles in skin biopsies from 6 CD patients with DH and 6 healthy controls using Affymetrix HG-U133A 2.0 arrays. 486 genes were differentially expressed in DH skin compared to normal skin: 225 were upregulated and 261 were downregulated. Consistently with the autoimmune origin of DH, functional classification of the differentially expressed genes (DEGs) indicates a B- and T-cell immune response (LAG3, TRAF5, DPP4, and NT5E). In addition, gene modulation provides evidence for a local inflammatory response (IL8, PTGFR, FSTL1, IFI16, BDKRD2, and NAMPT) with concomitant leukocyte recruitment (CCL5, ENPP2), endothelial cell activation, and neutrophil extravasation (SELL, SELE). DEGs also indicate overproduction of matrix proteases (MMP9, ADAM9, and ADAM19) and proteolytic enzymes (CTSG, ELA2, CPA3, TPSB2, and CMA1) that may contribute to epidermal splitting and blister formation. Finally, we observed modulation of genes involved in cell growth inhibition (CGREF1, PA2G4, and PPP2R1B), increased apoptosis (FAS, TNFSF10, and BASP1), and reduced adhesion at the dermal epidermal junction (PLEC1, ITGB4, and LAMA5). In conclusion, our results identify genes that are involved in the pathogenesis of DH skin lesions. PMID:22991566

  8. Gene expression in Pseudomonas aeruginosa swarming motility

    PubMed Central

    2010-01-01

    Background The bacterium Pseudomonas aeruginosa is capable of three types of motilities: swimming, twitching and swarming. The latter is characterized by a fast and coordinated group movement over a semi-solid surface resulting from intercellular interactions and morphological differentiation. A striking feature of swarming motility is the complex fractal-like patterns displayed by migrating bacteria while they move away from their inoculation point. This type of group behaviour is still poorly understood and its characterization provides important information on bacterial structured communities such as biofilms. Using GeneChip® Affymetrix microarrays, we obtained the transcriptomic profiles of both bacterial populations located at the tip of migrating tendrils and swarm center of swarming colonies and compared these profiles to that of a bacterial control population grown on the same media but solidified to not allow swarming motility. Results Microarray raw data were corrected for background noise with the RMA algorithm and quantile normalized. Differentially expressed genes between the three conditions were selected using a threshold of 1.5 log2-fold, which gave a total of 378 selected genes (6.3% of the predicted open reading frames of strain PA14). Major shifts in gene expression patterns are observed in each growth conditions, highlighting the presence of distinct bacterial subpopulations within a swarming colony (tendril tips vs. swarm center). Unexpectedly, microarrays expression data reveal that a minority of genes are up-regulated in tendril tip populations. Among them, we found energy metabolism, ribosomal protein and transport of small molecules related genes. On the other hand, many well-known virulence factors genes were globally repressed in tendril tip cells. Swarm center cells are distinct and appear to be under oxidative and copper stress responses. Conclusions Results reported in this study show that, as opposed to swarm center cells, tendril

  9. Emerging Use of Gene Expression Microarrays in Plant Physiology

    DOE PAGESBeta

    Wullschleger, Stan D.; Difazio, Stephen P.

    2003-01-01

    Microarrays have become an important technology for the global analysis of gene expression in humans, animals, plants, and microbes. Implemented in the context of a well-designed experiment, cDNA and oligonucleotide arrays can provide highthroughput, simultaneous analysis of transcript abundance for hundreds, if not thousands, of genes. However, despite widespread acceptance, the use of microarrays as a tool to better understand processes of interest to the plant physiologist is still being explored. To help illustrate current uses of microarrays in the plant sciences, several case studies that we believe demonstrate the emerging application of gene expression arrays in plant physiology weremore » selected from among the many posters and presentations at the 2003 Plant and Animal Genome XI Conference. Based on this survey, microarrays are being used to assess gene expression in plants exposed to the experimental manipulation of air temperature, soil water content and aluminium concentration in the root zone. Analysis often includes characterizing transcript profiles for multiple post-treatment sampling periods and categorizing genes with common patterns of response using hierarchical clustering techniques. In addition, microarrays are also providing insights into developmental changes in gene expression associated with fibre and root elongation in cotton and maize, respectively. Technical and analytical limitations of microarrays are discussed and projects attempting to advance areas of microarray design and data analysis are highlighted. Finally, although much work remains, we conclude that microarrays are a valuable tool for the plant physiologist interested in the characterization and identification of individual genes and gene families with potential application in the fields of agriculture, horticulture and forestry.« less

  10. A novel circadianly expressed Drosophila melanogaster gene dependent on the period gene for its rhythmic expression.

    PubMed Central

    Van Gelder, R N; Krasnow, M A

    1996-01-01

    The Drosophila melanogaster period (per) gene is required for expression of endogenous circadian rhythms of locomotion and eclosion. per mRNA is expressed with a circadian rhythm that is dependent on Per protein; this feedback loop has been proposed to be essential to the central circadian pacemaker. This model would suggest the Per protein also controls the circadian expression of other genetic loci to generate circadian behavior and physiology. In this paper we describe Dreg-5, a gene whose mRNA is expressed in fly heads with a circadian rhythm nearly identical to that of the per gene. Dreg-5 mRNA continues to cycle in phase with that of per mRNA in conditions of total darkness and also when the daily feeding time is altered. Like per mRNA, Dreg-5 mRNA is not expressed rhythmically in per null mutant flies. Dreg-5 encodes a novel 298 residue protein and Dreg-5 protein isoforms also oscillate in abundance with a circadian rhythm. The phase of Dreg-5 protein oscillation, however, is different from that of Per protein expression, suggesting that Dreg-5 and per have common translational but different post-translational control mechanisms. These results demonstrate that the per gene is capable of modulating the rhythmic expression of other genes; this activity may form the basis of the output of circadian rhythmicity in Drosophila. Images PMID:8612586

  11. Screening Reliable Reference Genes for RT-qPCR Analysis of Gene Expression in Moringa oleifera

    PubMed Central

    Deng, Li-Ting; Wu, Yu-Ling; Li, Jun-Cheng; OuYang, Kun-Xi; Ding, Mei-Mei; Zhang, Jun-Jie; Li, Shu-Qi; Lin, Meng-Fei; Chen, Han-Bin; Hu, Xin-Sheng; Chen, Xiao-Yang

    2016-01-01

    Moringa oleifera is a promising plant species for oil and forage, but its genetic improvement is limited. Our current breeding program in this species focuses on exploiting the functional genes associated with important agronomical traits. Here, we screened reliable reference genes for accurately quantifying the expression of target genes using the technique of real-time quantitative polymerase chain reaction (RT-qPCR) in M. oleifera. Eighteen candidate reference genes were selected from a transcriptome database, and their expression stabilities were examined in 90 samples collected from the pods in different developmental stages, various tissues, and the roots and leaves under different conditions (low or high temperature, sodium chloride (NaCl)- or polyethyleneglycol (PEG)- simulated water stress). Analyses with geNorm, NormFinder and BestKeeper algorithms revealed that the reliable reference genes differed across sample designs and that ribosomal protein L1 (RPL1) and acyl carrier protein 2 (ACP2) were the most suitable reference genes in all tested samples. The experiment results demonstrated the significance of using the properly validated reference genes and suggested the use of more than one reference gene to achieve reliable expression profiles. In addition, we applied three isotypes of the superoxide dismutase (SOD) gene that are associated with plant adaptation to abiotic stress to confirm the efficacy of the validated reference genes under NaCl and PEG water stresses. Our results provide a valuable reference for future studies on identifying important functional genes from their transcriptional expressions via RT-qPCR technique in M. oleifera. PMID:27541138

  12. Screening Reliable Reference Genes for RT-qPCR Analysis of Gene Expression in Moringa oleifera.

    PubMed

    Deng, Li-Ting; Wu, Yu-Ling; Li, Jun-Cheng; OuYang, Kun-Xi; Ding, Mei-Mei; Zhang, Jun-Jie; Li, Shu-Qi; Lin, Meng-Fei; Chen, Han-Bin; Hu, Xin-Sheng; Chen, Xiao-Yang

    2016-01-01

    Moringa oleifera is a promising plant species for oil and forage, but its genetic improvement is limited. Our current breeding program in this species focuses on exploiting the functional genes associated with important agronomical traits. Here, we screened reliable reference genes for accurately quantifying the expression of target genes using the technique of real-time quantitative polymerase chain reaction (RT-qPCR) in M. oleifera. Eighteen candidate reference genes were selected from a transcriptome database, and their expression stabilities were examined in 90 samples collected from the pods in different developmental stages, various tissues, and the roots and leaves under different conditions (low or high temperature, sodium chloride (NaCl)- or polyethyleneglycol (PEG)- simulated water stress). Analyses with geNorm, NormFinder and BestKeeper algorithms revealed that the reliable reference genes differed across sample designs and that ribosomal protein L1 (RPL1) and acyl carrier protein 2 (ACP2) were the most suitable reference genes in all tested samples. The experiment results demonstrated the significance of using the properly validated reference genes and suggested the use of more than one reference gene to achieve reliable expression profiles. In addition, we applied three isotypes of the superoxide dismutase (SOD) gene that are associated with plant adaptation to abiotic stress to confirm the efficacy of the validated reference genes under NaCl and PEG water stresses. Our results provide a valuable reference for future studies on identifying important functional genes from their transcriptional expressions via RT-qPCR technique in M. oleifera. PMID:27541138

  13. Identifying Driver Genes in Cancer by Triangulating Gene Expression, Gene Location, and Survival Data

    PubMed Central

    Rouam, Sigrid; Miller, Lance D; Karuturi, R Krishna Murthy

    2014-01-01

    Driver genes are directly responsible for oncogenesis and identifying them is essential in order to fully understand the mechanisms of cancer. However, it is difficult to delineate them from the larger pool of genes that are deregulated in cancer (ie, passenger genes). In order to address this problem, we developed an approach called TRIAngulating Gene Expression (TRIAGE through clinico-genomic intersects). Here, we present a refinement of this approach incorporating a new scoring methodology to identify putative driver genes that are deregulated in cancer. TRIAGE triangulates – or integrates – three levels of information: gene expression, gene location, and patient survival. First, TRIAGE identifies regions of deregulated expression (ie, expression footprints) by deriving a newly established measure called the Local Singular Value Decomposition (LSVD) score for each locus. Driver genes are then distinguished from passenger genes using dual survival analyses. Incorporating measurements of gene expression and weighting them according to the LSVD weight of each tumor, these analyses are performed using the genes located in significant expression footprints. Here, we first use simulated data to characterize the newly established LSVD score. We then present the results of our application of this refined version of TRIAGE to gene expression data from five cancer types. This refined version of TRIAGE not only allowed us to identify known prominent driver genes, such as MMP1, IL8, and COL1A2, but it also led us to identify several novel ones. These results illustrate that TRIAGE complements existing tools, allows for the identification of genes that drive cancer and could perhaps elucidate potential future targets of novel anticancer therapeutics. PMID:25949096

  14. Molecular imaging of in vivo gene expression

    PubMed Central

    Harney, Allison S.; Meade, Thomas J.

    2015-01-01

    Background Advances in imaging technologies have taken a prominent role in experimental and translational research and provide essential information on how changes in gene expression are related to downstream developmental and disease states. Discussion Magnetic resonance imaging contrast agents and optical probes developed to enhance signal intensity in the presence of a specific enzyme, genetic marker, second messenger or metabolite can prove a facile method of advancing the understanding of molecular events in disease progression. Conclusion The ability to detect changes in gene expression at the early stages of disease will lead to a greater understanding of disease progression, the use of early therapeutic intervention to increase patient survival, and tailored therapies to the detected genetic alterations in individual patients. PMID:21426178

  15. DNA supercoiling and bacterial gene expression.

    PubMed

    Dorman, Charles J

    2006-01-01

    DNA in bacterial cells is maintained in a negatively supercoiled state. This contributes to the organization of the bacterial nucleoid and also influences the global gene expression pattern in the cell through modulatory effects on transcription. Supercoiling arises as a result of changes to the linking number of the relaxed double-stranded DNA molecule and is set and reset by the action of DNA topoisomerases. This process is subject to a multitude of influences that are usually summarized as environmental stress. Responsiveness of linking number change to stress offers the promise of a mechanism for the wholesale adjustment of the transcription programme of the cell as the bacterium experiences different environments. Recent data from DNA microarray experiments support this proposition. The emerging picture is one of DNA supercoiling acting at or near the apex of a regulatory hierarchy where it collaborates with nucleoid-associated proteins and transcription factors to determine the gene expression profile of the cell. PMID:17338437

  16. Structure, expression and functions of MTA genes.

    PubMed

    Kumar, Rakesh; Wang, Rui-An

    2016-05-15

    Metastatic associated proteins (MTA) are integrators of upstream regulatory signals with the ability to act as master coregulators for modifying gene transcriptional activity. The MTA family includes three genes and multiple alternatively spliced variants. The MTA proteins neither have their own enzymatic activity nor have been shown to directly interact with DNA. However, MTA proteins interact with a variety of chromatin remodeling factors and complexes with enzymatic activities for modulating the plasticity of nucleosomes, leading to the repression or derepression of target genes or other extra-nuclear and nucleosome remodeling and histone deacetylase (NuRD)-complex independent activities. The functions of MTA family members are driven by the steady state levels and subcellular localization of MTA proteins, the dynamic nature of modifying signals and enzymes, the structural features and post-translational modification of protein domains, interactions with binding proteins, and the nature of the engaged and resulting features of nucleosomes in the proximity of target genes. In general, MTA1 and MTA2 are the most upregulated genes in human cancer and correlate well with aggressive phenotypes, therapeutic resistance, poor prognosis and ultimately, unfavorable survival of cancer patients. Here we will discuss the structure, expression and functions of the MTA family of genes in the context of cancer cells. PMID:26869315

  17. Methods for detecting additional genes underlying Alzheimer disease

    SciTech Connect

    Locke, P.A.; Haines, J.L.; Ter-Minassian, M.

    1994-09-01

    Alzheimer`s disease (AD) is a complex inherited disorder with proven genetic heterogeneity. To date, genes on chromosome 21 (APP) and 14 (not yet identified) are associated with early-onset familial AD, while the APOE gene on chromosome 19 is associated with both late onset familial and sporadic AD and early onset sporadic AD. Although these genes likely account for the majority of AD, many familial cases cannot be traced to any of these genes. From a set of 127 late-onset multiplex families screened for APOE, 43 (34%) families have at least one affected individual with no APOE-4 allele, suggesting an alternative genetic etiology. Simulation studies indicated that additional loci could be identified through a genomic screen with a 10 cM sieve on a subset of 21 well documented, non-APOE-4 families. Given the uncertainties in the mode of inheritance, reliance on a single analytical method could result in a missed linkage. Therefore, we have developed a strategy of using multiple overlapping yet complementary methods to detect linkage. These include sib-pair analysis and affected-pedigree-member analysis, neither of which makes assumptions about mode of inheritance, and lod score analysis (using two predefined genetic models). In order for a marker to qualify for follow-up, it must fit at least two of three criteria. These are nominal P values of 0.05 or less for the non-parametric methods, and/or a lod score greater than 1.0. Adjacent markers each fulfilling a single criterion also warrant follow-up. To date, we have screened 61 markers on chromosomes 1, 2, 3, 18, 19, 21, and 22. One marker, D2S163, generated a lod score of 1.06 ({theta} = 0.15) and an APMT statistic of 3.68 (P < 0.001). This region is currently being investigated in more detail. Updated results of this region plus additional screening data will be presented.

  18. Imaging gene expression in single living cells

    PubMed Central

    Shav-Tal, Yaron; Singer, Robert H.; Darzacq, Xavier

    2016-01-01

    Technical advances in the field of live-cell imaging have introduced the cell biologist to a new, dynamic, subcellular world. The static world of molecules in fixed cells has now been extended to the time dimension. This allows the visualization and quantification of gene expression and intracellular trafficking events of the studied molecules and the associated enzymatic processes in individual cells, in real time. PMID:15459666

  19. Additive Expression of Consolidated Memory through Drosophila Mushroom Body Subsets

    PubMed Central

    Chang, Ching-Ching; Chiang, Meng-Hsuan; Shih, Hsiang-Wen; Tsai, Ya-Lun; Chiang, Ann-Shyn; Fu, Tsai-Feng; Wu, Chia-Lin

    2016-01-01

    Associative olfactory memory in Drosophila has two components called labile anesthesia-sensitive memory and consolidated anesthesia-resistant memory (ARM). Mushroom body (MB) is a brain region critical for the olfactory memory and comprised of 2000 neurons that can be classified into αβ, α′β′, and γ neurons. Previously we demonstrated that two parallel pathways mediated ARM consolidation: the serotonergic dorsal paired medial (DPM)–αβ neurons and the octopaminergic anterior paired lateral (APL)–α′β′ neurons. This finding prompted us to ask how this composite ARM is retrieved. Here, we showed that blocking the output of αβ neurons and that of α′β′ neurons each impaired ARM retrieval, and blocking both simultaneously had an additive effect. Knockdown of radish and octβ2R in αβ and α′β′ neurons, respectively, impaired ARM. A combinatorial assay of radish mutant background rsh1 and neurotransmission blockade confirmed that ARM retrieved from α′β′ neuron output is independent of radish. We identified MBON-β2β′2a and MBON-β′2mp as the MB output neurons downstream of αβ and α′β′ neurons, respectively, whose glutamatergic transmissions also additively contribute to ARM retrieval. Finally, we showed that α′β′ neurons could be functionally subdivided into α′β′m neurons required for ARM retrieval, and α′β′ap neurons required for ARM consolidation. Our work demonstrated that two parallel neural pathways mediating ARM consolidation in Drosophila MB additively contribute to ARM expression during retrieval. PMID:27195782

  20. Additive Expression of Consolidated Memory through Drosophila Mushroom Body Subsets.

    PubMed

    Yang, Chu-Huai; Shih, Meng-Fu Maxwell; Chang, Ching-Ching; Chiang, Meng-Hsuan; Shih, Hsiang-Wen; Tsai, Ya-Lun; Chiang, Ann-Shyn; Fu, Tsai-Feng; Wu, Chia-Lin

    2016-05-01

    Associative olfactory memory in Drosophila has two components called labile anesthesia-sensitive memory and consolidated anesthesia-resistant memory (ARM). Mushroom body (MB) is a brain region critical for the olfactory memory and comprised of 2000 neurons that can be classified into αβ, α'β', and γ neurons. Previously we demonstrated that two parallel pathways mediated ARM consolidation: the serotonergic dorsal paired medial (DPM)-αβ neurons and the octopaminergic anterior paired lateral (APL)-α'β' neurons. This finding prompted us to ask how this composite ARM is retrieved. Here, we showed that blocking the output of αβ neurons and that of α'β' neurons each impaired ARM retrieval, and blocking both simultaneously had an additive effect. Knockdown of radish and octβ2R in αβ and α'β' neurons, respectively, impaired ARM. A combinatorial assay of radish mutant background rsh1 and neurotransmission blockade confirmed that ARM retrieved from α'β' neuron output is independent of radish. We identified MBON-β2β'2a and MBON-β'2mp as the MB output neurons downstream of αβ and α'β' neurons, respectively, whose glutamatergic transmissions also additively contribute to ARM retrieval. Finally, we showed that α'β' neurons could be functionally subdivided into α'β'm neurons required for ARM retrieval, and α'β'ap neurons required for ARM consolidation. Our work demonstrated that two parallel neural pathways mediating ARM consolidation in Drosophila MB additively contribute to ARM expression during retrieval. PMID:27195782

  1. The systemic control of circadian gene expression.

    PubMed

    Gerber, A; Saini, C; Curie, T; Emmenegger, Y; Rando, G; Gosselin, P; Gotic, I; Gos, P; Franken, P; Schibler, U

    2015-09-01

    The mammalian circadian timing system consists of a central pacemaker in the brain's suprachiasmatic nucleus (SCN) and subsidiary oscillators in nearly all body cells. The SCN clock, which is adjusted to geophysical time by the photoperiod, synchronizes peripheral clocks through a wide variety of systemic cues. The latter include signals depending on feeding cycles, glucocorticoid hormones, rhythmic blood-borne signals eliciting daily changes in actin dynamics and serum response factor (SRF) activity, and sensors of body temperature rhythms, such as heat shock transcription factors and the cold-inducible RNA-binding protein CIRP. To study these systemic signalling pathways, we designed and engineered a novel, highly photosensitive apparatus, dubbed RT-Biolumicorder. This device enables us to record circadian luciferase reporter gene expression in the liver and other organs of freely moving mice over months in real time. Owing to the multitude of systemic signalling pathway involved in the phase resetting of peripheral clocks the disruption of any particular one has only minor effects on the steady state phase of circadian gene expression in organs such as the liver. Nonetheless, the implication of specific pathways in the synchronization of clock gene expression can readily be assessed by monitoring the phase-shifting kinetics using the RT-Biolumicorder. PMID:26332965

  2. Nuclear structure, gene expression and development.

    PubMed

    Brown, K

    1999-01-01

    This article considers the extent to which features of nuclear structure are involved in the regulation of genome function. The recent renaissance in imaging technology has inspired a new determination to assign specific functions to nuclear domains or structures, many of which have been described as "factories" to express the idea that they coordinate nuclear processes in an efficient way. Visual data have been combined with genetic and biochemical information to support the idea that nuclear organization has functional significance. Particular DNA sequences or chromatin structures may nucleate domains that are permissive or restrictive of transcription, to which active or inactive loci could be recruited. Associations within the nucleus, as well as many nuclear structures, are transient and change dynamically during cell cycle progression and development. Despite this complexity, elucidation of the possible structural basis of epigenetic phenomena, such as the inheritance of a "cellular memory" of gene expression status, is an important goal for cell biology. Topics for discussion include the regulatory effect of chromatin structure on gene expression, putative "nuclear addresses" for genes and proteins, the functional significance of nuclear bodies, and the role of the nuclear matrix in nuclear compartmentalization. PMID:10651237

  3. Carbon Nanomaterials Alter Global Gene Expression Profiles.

    PubMed

    Woodman, Sara; Short, John C W; McDermott, Hyoeun; Linan, Alexander; Bartlett, Katelyn; Gadila, Shiva Kumar Goud; Schmelzle, Katie; Wanekaya, Adam; Kim, Kyoungtae

    2016-05-01

    Carbon nanomaterials (CNMs), which include carbon nanotubes (CNTs) and their derivatives, have diverse technological and biomedical applications. The potential toxicity of CNMs to cells and tissues has become an important emerging question in nanotechnology. To assess the toxicity of CNTs and fullerenol C60(OH)24, we in the present work used the budding yeast Saccharomyces cerevisiae, one of the simplest eukaryotic organisms that share fundamental aspects of eukaryotic cell biology. We found that treatment with CNMs, regardless of their physical shape, negatively affected the growth rates, end-point cell densities and doubling times of CNM-exposed yeast cells when compared to unexposed cells. To investigate potential mechanisms behind the CNMs-induced growth defects, we performed RNA-Seq dependent transcriptional analysis and constructed global gene expression profiles of fullerenol C60(OH)24- and CNT-treated cells. When compared to non-treated control cells, CNM-treated cells displayed differential expression of genes whose functions are implicated in membrane transporters and stress response, although differentially expressed genes were not consistent between CNT- and fullerenol C60(OH)24-treated groups, leading to our conclusion that CNMs could serve as environmental toxic factors to eukaryotic cells. PMID:27483901

  4. Transition Metals in Control of Gene Expression

    NASA Astrophysics Data System (ADS)

    O'Halloran, Thomas V.

    1993-08-01

    Metalloproteins play structural and catalytic roles in gene expression. The metalloregulatory proteins are a subclass that exerts metal-responsive control of genes involved in respiration, metabolism, and metal-specific homeostasis or stress-response systems, such as iron uptake and storage, copper efflux, and mercury detoxification. Two allosteric mechanisms for control of gene expression were first discovered in metalloregulatory systems: an iron-responsive translational control mechanism for ferritin production and a mercury-responsive DNA-distortion mechanism for transcriptional control of detoxification genes. These otherwise unrelated mechanisms give rise to a rapid physiological response when metal ion concentrations exceed a dangerous threshold. Molecular recognition in these allosteric metal ion receptors is achieved through atypical coordination geometries, cluster formation, or complexes with prosthetic groups, such as sulfide and heme. Thus, many of the inorganic assemblies that otherwise buttress the structure of biopolymers or catalyze substrate transformation in active sites of enzymes have also been adapted to serve sensor functions in the metalloregulatory proteins. Mechanistic studies of these metal-sensor protein interactions are providing new insights into fundamental aspects of inorganic chemistry, molecular biology, and cellular physiology.

  5. Gene expression profiling reveals differentially expressed genes in ovarian cancer of the hen: support for oviductal origin?

    PubMed

    Treviño, Lindsey S; Giles, James R; Wang, Wei; Urick, Mary Ellen; Johnson, Patricia Ann

    2010-08-01

    Ovarian cancer has a high mortality rate due, in part, to the lack of early detection and incomplete understanding of the origin of the disease. The hen is the only spontaneous model of ovarian cancer and can therefore aid in the identification and testing of early detection strategies and therapeutics. Our aim was to combine the use of the hen animal model and microarray technology to identify differentially expressed genes in ovarian tissue from normal hens compared with hens with ovarian cancer. We found that the transcripts up-regulated in chicken ovarian tumors were enriched for oviduct-related genes. Quantitative real-time PCR and immunohistochemistry confirmed expression of oviduct-related genes in normal oviduct and in ovaries from hens with early- and late-stage ovarian tumors, but not in normal ovarian surface epithelium. In addition, one of the oviduct-related genes identified in our analysis, paired box 2 has been implicated in human ovarian cancer and may serve as a marker of the disease. Furthermore, estrogen receptor 1 mRNA is over-expressed in early-stage tumors, suggesting that expression of the oviduct-related genes may be regulated by estrogen. We have also identified oviduct-related genes that encode secreted proteins that could represent putative serum biomarkers. The expression of oviduct-related genes in early-stage tumors is similar to what is seen in human ovarian cancer, with tumors resembling normal Müllerian epithelium. These data suggest that chicken ovarian tumors may arise from alternative sites, including the oviduct. PMID:21761365

  6. Gene-expression signatures of Atlantic salmon's plastic life cycle

    USGS Publications Warehouse

    Aubin-Horth, N.; Letcher, B.H.; Hofmann, H.A.

    2009-01-01

    How genomic expression differs as a function of life history variation is largely unknown. Atlantic salmon exhibits extreme alternative life histories. We defined the gene-expression signatures of wild-caught salmon at two different life stages by comparing the brain expression profiles of mature sneaker males and immature males, and early migrants and late migrants. In addition to life-stage-specific signatures, we discovered a surprisingly large gene set that was differentially regulated-at similar magnitudes, yet in opposite direction-in both life history transitions. We suggest that this co-variation is not a consequence of many independent cellular and molecular switches in the same direction but rather represents the molecular equivalent of a physiological shift orchestrated by one or very few master regulators. ?? 2009 Elsevier Inc. All rights reserved.

  7. Gene function analysis in osteosarcoma based on microarray gene expression profiling

    PubMed Central

    Zhao, Liang; Zhang, Jinghua; Tan, Hongyu; Wang, Weidong; Liu, Yilin; Song, Ruipeng; Wang, Limin

    2015-01-01

    Osteosa rcoma is an aggressive malignant neoplasm that exhibits osteoblastic differentiation and produces malignant osteoid. The aim of this study was to find feature genes associated with osteosarcoma and correlative gene functions which can distinguish cancer tissues from non-tumor tissues. Gene expression profile GSE14359 was downloaded from Gene Expression Omnibus (GEO) database, including 10 osteosarcoma samples and 2 normal samples. The differentially expressed genes (DEGs) between osteosarcoma and normal specimens were identified using limma package of R. DAVID was applied to mine osteosarcoma associated genes and analyze the GO enrichment on gene functions and KEGG pathways. Then, corresponding protein-protein interaction (PPI) network of DEGs was constructed based on the data collected from STRING datasets. Principal component of top10 DEGs and PPI network of top 20 DEGs were further analyzed. Finally, transcription factors were predicted by uploading the two groups of DEGs to TfactS database. A total of 437 genes, including 114 up-regulated genes and 323 down-regulated genes, were filtered as DEGs, of which 46 were associated with osteosarcoma by Disease Module. GO and KEGG pathway enrichment analysis showed that genes mainly affected the process of immune response and the development of skeletal and vascular system. The PPI network analysis elucidated that hemoglobin and histocompatibility proteins and enzymes, which were associated with immune response, were closely associated with osteosarcoma. Transcription factors MYC and SP1 were predicted to be significantly related to osteosarcoma. The discovery of gene functions and transcription factors has the potential to use in clinic for diagnosis of osteosarcoma in future. In addition, it will pave the way to studying mechanism and effective therapies for osteosarcoma. PMID:26379830

  8. Transcriptional analysis of human survivin gene expression.

    PubMed Central

    Li, F; Altieri, D C

    1999-01-01

    The preservation of tissue and organ homoeostasis depends on the regulated expression of genes controlling apoptosis (programmed cell death). In this study, we have investigated the basal transcriptional requirements of the survivin gene, an IAP (inhibitor of apoptosis) prominently up-regulated in cancer. Analysis of the 5' flanking region of the human survivin gene revealed the presence of a TATA-less promoter containing a canonical CpG island of approximately 250 nt, three cell cycle dependent elements, one cell cycle homology region and numerous Sp1 sites. PCR-based analysis of human genomic DNA, digested with methylation-sensitive and -insensitive restriction enzymes, indicated that the CpG island was unmethylated in both normal and neoplastic tissues. Primer extension and S1 nuclease mapping of the human survivin gene identified two main transcription start sites at position -72 and within -57/-61 from the initiating ATG. Transfection of cervical carcinoma HeLa cells with truncated or nested survivin promoter-luciferase constructs revealed the presence of both enhancer and repressor sequences and identified a minimal promoter region within the proximal -230 nt of the human survivin gene. Unbiased mutagenesis analysis of the human survivin promoter revealed that targeting the Sp1 sequences at position -171 and -151 abolished basal transcriptional activity by approximately 63-82%. Electrophoretic mobility-shift assay with DNA oligonucleotides confirmed formation of a DNA-protein complex between the survivin Sp1 sequences and HeLa cell extracts in a reaction abolished by mutagenesis of the survivin Sp1 sites. These findings identify the basal transcriptional requirements of survivin gene expression. PMID:10567210

  9. Microarray analysis of hepatic gene expression identifies new genes involved in steatotic liver

    PubMed Central

    Guillén, Natalia; Navarro, María A.; Arnal, Carmen; Noone, Enda; Arbonés-Mainar, José M.; Acín, Sergio; Surra, Joaquín C.; Muniesa, Pedro; Roche, Helen M.; Osada, Jesús

    2009-01-01

    Trans-10, cis-12-conjugated linoleic acid (CLA)-enriched diets promote fatty liver in mice, while cis-9, trans-11-CLA ameliorates this effect, suggesting regulation of multiple genes. To test this hypothesis, apoE-deficient mice were fed a Western-type diet enriched with linoleic acid isomers, and their hepatic gene expression was analyzed with DNA microarrays. To provide an initial screening of candidate genes, only 12 with remarkably modified expression between both CLA isomers were considered and confirmed by quantitative RT-PCR. Additionally mRNA expression of 15 genes involved in lipid metabolism was also studied. Ten genes (Fsp27, Aqp4, Cd36, Ly6d, Scd1, Hsd3b5, Syt1, Cyp7b1, and Tff3) showed significant associations among their expressions and the degree of hepatic steatosis. Their involvement was also analyzed in other models of steatosis. In hyperhomocysteinemic mice lacking Cbs gene, only Fsp27, Cd36, Scd1, Syt1, and Hsd3b5 hepatic expressions were associated with steatosis. In apoE-deficient mice consuming olive-enriched diet displaying reduction of the fatty liver, only Fsp27 and Syt1 expressions were found associated. Using this strategy, we have shown that expression of these genes is highly associated with hepatic steatosis in a genetic disease such as Cbs deficiency and in two common situations such as Western diets containing CLA isomers or a Mediterranean-type diet. Conclusion: The results highlight new processes involved in lipid handling in liver and will help to understand the complex human pathology providing new proteins and new strategies to cope with hepatic steatosis. PMID:19258494

  10. Screening of differentially expressed genes in pathological scar tissues using expression microarray.

    PubMed

    Huang, L P; Mao, Z; Zhang, L; Liu, X X; Huang, C; Jia, Z S

    2015-01-01

    Pathological scar tissues and normal skin tissues were differentiated by screening for differentially expressed genes in pathologic scar tissues via gene expression microarray. The differentially expressed gene data was analyzed by gene ontology and pathway analyses. There were 5001 up- or down-regulated genes in 2-fold differentially expressed genes, 956 up- or down-regulated genes in 5-fold differentially expressed genes, and 114 up- or down-regulated genes in 20-fold differentially expressed genes. Therefore, significant differences were observed in the gene expression in pathological scar tissues and normal foreskin tissues. The development of pathological scar tissues has been correlated to changes in multiple genes and pathways, which are believed to form a dynamic network connection. PMID:26400303

  11. The transcriptional regulation of regucalcin gene expression.

    PubMed

    Yamaguchi, Masayoshi

    2011-01-01

    Regucalcin, which is discovered as a calcium-binding protein in 1978, has been shown to play a multifunctional role in many tissues and cell types; regucalcin has been proposed to play a pivotal role in keeping cell homeostasis and function for cell response. Regucalcin and its gene are identified in over 15 species consisting of regucalcin family. Comparison of the nucleotide sequences of regucalcin from vertebrate species is highly conserved in their coding region with throughout evolution. The regucalcin gene is localized on the chromosome X in rat and human. The organization of rat regucalcin gene consists of seven exons and six introns and several consensus regulatory elements exist upstream of the 5'-flanking region. AP-1, NF1-A1, RGPR-p117, β-catenin, and other factors have been found to be a transcription factor in the enhancement of regucalcin gene promoter activity. The transcription activity of regucalcin gene is enhanced through intracellular signaling factors that are mediated through the phosphorylation and dephosphorylation of nuclear protein in vitro. Regucalcin mRNA and its protein are markedly expressed in the liver and kidney cortex of rats. The expression of regucalcin mRNA in the liver and kidney cortex has been shown to stimulate by hormonal factors (including calcium, calcitonin, parathyroid hormone, insulin, estrogen, and dexamethasone) in vivo. Regucalcin mRNA expression is enhanced in the regenerating liver after partial hepatectomy of rats in vivo. The expression of regucalcin mRNA in the liver and kidney with pathophysiological state has been shown to suppress, suggesting an involvement of regucalcin in disease. Liver regucalcin expression is down-regulated in tumor cells, suggesting a suppressive role in the development of carcinogenesis. Liver regucalcin is markedly released into the serum of rats with chemically induced liver injury in vivo. Serum regucalcin has a potential sensitivity as a specific biochemical marker of chronic

  12. Chloroplast-like transfer RNA genes expressed in wheat mitochondria.

    PubMed Central

    Joyce, P B; Gray, M W

    1989-01-01

    In the course of a systematic survey of wheat mitochondrial tRNA genes, we have sequenced chloroplast-like serine (trnS-GGA), phenylalanine (trnF-GAA) and cysteine (trnC-GCA) tRNA genes and their flanking regions. These genes are remnants of 'promiscuous' chloroplast DNA that has been incorporated into wheat mtDNA in the course of its evolution. Each gene differs by one or a few nucleotides from the authentic chloroplast homolog previously characterized in wheat or other plants, and each could potentially encode a functional tRNA whose secondary structure shows no deviations from the generalized model. To determine whether these chloroplast-like tRNA genes are actually expressed, wheat mitochondrial tRNAs were resolved by a series of polyacrylamide gel electrophoreses, after being specifically end-labeled in vitro by 3'-CCA addition mediated by wheat tRNA nucleotidyltransferase. Subsequent direct RNA sequence analysis identified prominent tRNA species corresponding to the mitochondrial and not the chloroplast trnS, trnF and trnC genes. This analysis also revealed chloroplast-like elongator methionine, asparagine and tryptophan tRNAs. Our results suggest that at least some chloroplast-like tRNA genes in wheat mtDNA are transcribed, with transcripts undergoing processing, post-transcriptional modification and 3'-CCA addition, to produce mature tRNAs that may participate in mitochondrial protein synthesis. Images PMID:2762145

  13. Screening for genes and subnetworks associated with pancreatic cancer based on the gene expression profile.

    PubMed

    Long, Jin; Liu, Zhe; Wu, Xingda; Xu, Yuanhong; Ge, Chunlin

    2016-05-01

    The present study aimed to screen for potential genes and subnetworks associated with pancreatic cancer (PC) using the gene expression profile. The expression profile GSE 16515 was downloaded from the Gene Expression Omnibus database, which included 36 PC tissue samples and 16 normal samples. Limma package in R language was used to screen differentially expressed genes (DEGs), which were grouped as up‑ and downregulated genes. Then, PFSNet was applied to perform subnetwork analysis for all the DEGs. Moreover, Gene Ontology (GO) and REACTOME pathway enrichment analysis of up‑ and downregulated genes was performed, followed by protein‑protein interaction (PPI) network construction using Search Tool for the Retrieval of Interacting Genes Search Tool for the Retrieval of Interacting Genes. In total, 1,989 DEGs including 1,461 up‑ and 528 downregulated genes were screened out. Subnetworks including pancreatic cancer in PC tissue samples and intercellular adhesion in normal samples were identified, respectively. A total of 8 significant REACTOME pathways for upregulated DEGs, such as hemostasis and cell cycle, mitotic were identified. Moreover, 4 significant REACTOME pathways for downregulated DEGs, including regulation of β‑cell development and transmembrane transport of small molecules were screened out. Additionally, DEGs with high connectivity degrees, such as CCNA2 (cyclin A2) and PBK (PDZ binding kinase), of the module in the protein‑protein interaction network were mainly enriched with cell‑division cycle. CCNA2 and PBK of the module and their relative pathway cell‑division cycle, and two subnetworks (pancreatic cancer and intercellular adhesion subnetworks) may be pivotal for further understanding of the molecular mechanism of PC. PMID:27035224

  14. Screening for genes and subnetworks associated with pancreatic cancer based on the gene expression profile

    PubMed Central

    LONG, JIN; LIU, ZHE; WU, XINGDA; XU, YUANHONG; GE, CHUNLIN

    2016-01-01

    The present study aimed to screen for potential genes and subnetworks associated with pancreatic cancer (PC) using the gene expression profile. The expression profile GSE 16515 was downloaded from the Gene Expression Omnibus database, which included 36 PC tissue samples and 16 normal samples. Limma package in R language was used to screen differentially expressed genes (DEGs), which were grouped as up- and downregulated genes. Then, PFSNet was applied to perform subnetwork analysis for all the DEGs. Moreover, Gene Ontology (GO) and REACTOME pathway enrichment analysis of up- and downregulated genes was performed, followed by protein-protein interaction (PPI) network construction using Search Tool for the Retrieval of Interacting Genes Search Tool for the Retrieval of Interacting Genes. In total, 1,989 DEGs including 1,461 up- and 528 downregulated genes were screened out. Subnetworks including pancreatic cancer in PC tissue samples and intercellular adhesion in normal samples were identified, respectively. A total of 8 significant REACTOME pathways for upregulated DEGs, such as hemostasis and cell cycle, mitotic were identified. Moreover, 4 significant REACTOME pathways for downregulated DEGs, including regulation of β-cell development and transmembrane transport of small molecules were screened out. Additionally, DEGs with high connectivity degrees, such as CCNA2 (cyclin A2) and PBK (PDZ binding kinase), of the module in the protein-protein interaction network were mainly enriched with cell-division cycle. CCNA2 and PBK of the module and their relative pathway cell-division cycle, and two subnetworks (pancreatic cancer and intercellular adhesion subnetworks) may be pivotal for further understanding of the molecular mechanism of PC. PMID:27035224

  15. Regulation of collagen I gene expression by ras.

    PubMed Central

    Slack, J L; Parker, M I; Robinson, V R; Bornstein, P

    1992-01-01

    Although transformation of rodent fibroblasts can lead to dramatic changes in expression of extracellular matrix genes, the molecular basis and physiological significance of these changes remain poorly understood. In this study, we have investigated the mechanism(s) by which ras affects expression of the genes encoding type I collagen. Levels of both alpha 1(I) and alpha 2(I) collagen mRNAs were markedly reduced in Rat 1 fibroblasts overexpressing either the N-rasLys-61 or the Ha-rasVal-12 oncogene. In fibroblasts conditionally transformed with N-rasLys-61, alpha 1(I) transcript levels began to decline within 8 h of ras induction and reached 1 to 5% of control levels after 96 h. In contrast, overexpression of normal ras p21 had no effect on alpha 1(I) or alpha 2(I) mRNA levels. Nuclear run-on experiments demonstrated that the transcription rates of both the alpha 1(I) and alpha 2(I) genes were significantly reduced in ras-transformed cells compared with those in parental cells. In addition, the alpha 1(I) transcript was less stable in transformed cells. Chimeric plasmids containing up to 3.6 kb of alpha 1(I) 5'-flanking DNA and up to 2.3 kb of the 3'-flanking region were expressed at equivalent levels in both normal and ras-transformed fibroblasts. However, a cosmid clone containing the entire mouse alpha 1(I) gene, including 3.7 kb of 5'- and 4 kb of 3'-flanking DNA, was expressed at reduced levels in fibroblasts overexpressing oncogenic ras. We conclude that oncogenic ras regulates the type I collagen genes at both transcriptional and posttranscriptional levels and that this effect, at least for the alpha 1(I) gene, may be mediated by sequences located either within the body of the gene itself or in the distal 3'-flanking region. Images PMID:1406656

  16. Gravity-Induced Gene Expression in Plants.

    NASA Astrophysics Data System (ADS)

    Sederoff, Heike; Heber, Steffen; Howard, Brian; Myburg-Nichols, Henrietta; Hammond, Rebecca; Salinas-Mondragon, Raul; Brown, Christopher S.

    Plants sense changes in their orientation towards the vector of gravity and respond with directional growth. Several metabolites in the signal transduction cascade have been identified. However, very little is known about the interaction between these sensing and signal transduction events and even less is known about their role in the differential growth response. Gravity induced changes in transcript abundance have been identified in Arabidopsis whole seedlings and root apices (Moseyko et al. 2002; Kimbrough et al. 2004). Gravity induced transcript abundance changes can be observed within less than 1 min after stimulation (Salinas-Mondragon et al. 2005). Gene expression however requires not only transcription but also translation of the mRNA. Translation can only occur when mRNA is associated with ribosomes, even though not all mRNA associated with ribosomes is actively translated. To approximate translational capacity we quantified whole genome transcript abundances in corn stem pulvini during the first hour after gravity stimulation in total and poly-ribosomal fractions. As in Arabidopsis root apices, transcript abundances of several clusters of genes responded to gravity stimulation. The vast majority of these transcripts were also found to associate with polyribosomes in the same temporal and quantitative pattern. These genes are transcriptionally regulated by gravity stimulation, but do not exhibit translational regulation. However, a small group of genes showed increased transcriptional regulation after gravity stimulation, but no association with polysomes. These transcripts likely are translationally repressed. The mechanism of translational repression for these transcripts is unknown. Based on the hypothesis that the genes essential for gravitropic responses should be expressed in most or all species, we compared the temporal gravity induced expression pattern of all orthologs identified between maize and Arabidopsis. A small group of genes showed high

  17. A high throughput screening for rarely transcribed differentially expressed genes.

    PubMed Central

    von Stein, O D; Thies, W G; Hofmann, M

    1997-01-01

    A novel method combining elements of suppression subtractive hybridization with high throughput differential screening permits the efficient and rapid cloning of rarely transcribed differentially expressed genes. The experimental strategy virtually excludes the possibility of isolating false positive clones. The potential of the method is demonstrated by the isolation of 625 differentially expressed cDNAs from the metastatic adenocarcinoma cell line Bsp73-ASML when subtracted from its non-metastatic counterpart Bsp73-1AS. Northern analysis of 72 randomly selected clones demonstrated that 68 were differentially expressed with respect to Bsp73-ASML, indicating a true positive rate of 94%. Additionally, a large proportion of these clones represented rare transcripts as determined by the exposure time required to detect a signal. Sequence data indicated that of the 625 clones obtained, 92 clones scored perfect or near perfect matches with already known genes. Two hundred and eighty one clones scored between 60 and 95% homology to known human and mouse genes, whereas 252 clones scored no match with any sequences in the public databases. The method we describe is ideally suited whenever subtle changes in gene expression profiles need to be determined. PMID:9185570

  18. Osmotic Pressure Can Regulate Matrix Gene Expression in Bacillus subtilis

    PubMed Central

    Rubinstein, Shmuel M.; Kolodkin-Gal, Ilana; Mcloon, Anna; Chai, Liraz; Kolter, Roberto; Losick, Richard; Weitz, David A

    2012-01-01

    Many bacteria organize themselves into structurally complex communities known as biofilms in which the cells are held together by an extracellular matrix. In general, the amount of extracellular matrix is related to the robustness of the biofilm. Yet, the specific signals that regulate the synthesis of matrix remain poorly understood. Here we show that the matrix itself can be a cue that regulates the expression of the genes involved in matrix synthesis in Bacillus subtilis. The presence of the exopolysaccharide component of the matrix causes an increase in osmotic pressure that leads to an inhibition of matrix gene expression. We further show that non-specific changes in osmotic pressure also inhibit matrix gene expression and do so by activating the histidine kinase KinD. KinD, in turn, directs the phosphorylation of the master regulatory protein Spo0A, which at high levels represses matrix gene expression. Sensing a physical cue such as osmotic pressure, in addition to chemical cues, could be a strategy to non-specifically coordinate the behavior of cells in communities composed of many different species. PMID:22882172

  19. Carbohydrate Availability Regulates Virulence Gene Expression in Streptococcus suis

    PubMed Central

    Ferrando, M. Laura; van Baarlen, Peter; Orrù, Germano; Piga, Rosaria; Bongers, Roger S.; Wels, Michiel; De Greeff, Astrid; Smith, Hilde E.; Wells, Jerry M.

    2014-01-01

    Streptococcus suis is a major bacterial pathogen of young pigs causing worldwide economic problems for the pig industry. S. suis is also an emerging pathogen of humans. Colonization of porcine oropharynx by S. suis is considered to be a high risk factor for invasive disease. In the oropharyngeal cavity, where glucose is rapidly absorbed but dietary α-glucans persist, there is a profound effect of carbohydrate availability on the expression of virulence genes. Nineteen predicted or confirmed S. suis virulence genes that promote adhesion to and invasion of epithelial cells were expressed at higher levels when S. suis was supplied with the α-glucan starch/pullulan compared to glucose as the single carbon source. Additionally the production of suilysin, a toxin that damages epithelial cells, was increased more than ten-fold when glucose levels were low and S. suis was growing on pullulan. Based on biochemical, bioinformatics and in vitro and in vivo gene expression studies, we developed a biological model that postulates the effect of carbon catabolite repression on expression of virulence genes in the mucosa, organs and blood. This research increases our understanding of S. suis virulence mechanisms and has important implications for the design of future control strategies including the development of anti-infective strategies by modulating animal feed composition. PMID:24642967

  20. Light regulation of gene expression in higher plants

    SciTech Connect

    Tobin, E.M.; Silverthorne, J.

    1985-01-01

    In this review areas of currently active research are considered which have demonstrated that a plant's response to light involves changes in the expression of specific genes at the level of RNA. The regulation of gene expression by phytochrome and the UV-sensitive photoreceptor have been studied most extensively at the molecular level, and this review particularly focuses on such studies in higher plants. Some of the observations made on the differences in gene expression between light-grown and dark-grown plants are also included, although the photoreceptor(s) responsible for the differences may not have been ascertained. In some of these cases, phytochrome involvement has been or may be demonstrated in later studies, while in others the observed differences may be a result of the action of other photoreceptors or of multiple light-affected processes. One such process is the development of chloroplasts, a major developmental step triggered by light in angiosperms. In addition, many of the genes whose expression is changed by light and which have been studied at a molecular level encode chloroplast proteins. 156 references.

  1. Carbohydrate availability regulates virulence gene expression in Streptococcus suis.

    PubMed

    Ferrando, M Laura; van Baarlen, Peter; Orrù, Germano; Piga, Rosaria; Bongers, Roger S; Wels, Michiel; De Greeff, Astrid; Smith, Hilde E; Wells, Jerry M

    2014-01-01

    Streptococcus suis is a major bacterial pathogen of young pigs causing worldwide economic problems for the pig industry. S. suis is also an emerging pathogen of humans. Colonization of porcine oropharynx by S. suis is considered to be a high risk factor for invasive disease. In the oropharyngeal cavity, where glucose is rapidly absorbed but dietary α-glucans persist, there is a profound effect of carbohydrate availability on the expression of virulence genes. Nineteen predicted or confirmed S. suis virulence genes that promote adhesion to and invasion of epithelial cells were expressed at higher levels when S. suis was supplied with the α-glucan starch/pullulan compared to glucose as the single carbon source. Additionally the production of suilysin, a toxin that damages epithelial cells, was increased more than ten-fold when glucose levels were low and S. suis was growing on pullulan. Based on biochemical, bioinformatics and in vitro and in vivo gene expression studies, we developed a biological model that postulates the effect of carbon catabolite repression on expression of virulence genes in the mucosa, organs and blood. This research increases our understanding of S. suis virulence mechanisms and has important implications for the design of future control strategies including the development of anti-infective strategies by modulating animal feed composition. PMID:24642967

  2. Recent patents on biclustering algorithms for gene expression data analysis.

    PubMed

    Liew, Alan Wee-Chung; Law, Ngai-Fong; Yan, Hong

    2011-08-01

    In DNA microarray experiments, discovering groups of genes that share similar transcriptional characteristics is instrumental in functional annotation, tissue classification and motif identification. However, in many situations a subset of genes only exhibits a consistent pattern over a subset of conditions. Although used extensively in gene expression data analysis, conventional clustering algorithms that consider the entire row or column in an expression matrix can therefore fail to detect useful patterns in the data. Recently, biclustering has been proposed as a powerful computational tool to detect subsets of genes that exhibit consistent pattern over subsets of conditions. In this article, we review several recent patents in bicluster analysis, and in particular, highlight a recent patent from our group about a novel geometric-based biclustering method that handles the class of bicluster patterns with linear coherent variation across the row and/or column dimension. This class of bicluster patterns is of particular importance since it subsumes all constant, additive, and multiplicative bicluster patterns normally used in gene expression data analysis. PMID:21529337

  3. Drosha Regulates Gene Expression Independently of RNA Cleavage Function

    PubMed Central

    Gromak, Natalia; Dienstbier, Martin; Macias, Sara; Plass, Mireya; Eyras, Eduardo; Cáceres, Javier F.; Proudfoot, Nicholas J.

    2013-01-01

    Summary Drosha is the main RNase III-like enzyme involved in the process of microRNA (miRNA) biogenesis in the nucleus. Using whole-genome ChIP-on-chip analysis, we demonstrate that, in addition to miRNA sequences, Drosha specifically binds promoter-proximal regions of many human genes in a transcription-dependent manner. This binding is not associated with miRNA production or RNA cleavage. Drosha knockdown in HeLa cells downregulated nascent gene transcription, resulting in a reduction of polyadenylated mRNA produced from these gene regions. Furthermore, we show that this function of Drosha is dependent on its N-terminal protein-interaction domain, which associates with the RNA-binding protein CBP80 and RNA Polymerase II. Consequently, we uncover a previously unsuspected RNA cleavage-independent function of Drosha in the regulation of human gene expression. PMID:24360955

  4. A gene expression signature for insulin resistance.

    PubMed

    Konstantopoulos, Nicky; Foletta, Victoria C; Segal, David H; Shields, Katherine A; Sanigorski, Andrew; Windmill, Kelly; Swinton, Courtney; Connor, Tim; Wanyonyi, Stephen; Dyer, Thomas D; Fahey, Richard P; Watt, Rose A; Curran, Joanne E; Molero, Juan-Carlos; Krippner, Guy; Collier, Greg R; James, David E; Blangero, John; Jowett, Jeremy B; Walder, Ken R

    2011-02-11

    Insulin resistance is a heterogeneous disorder caused by a range of genetic and environmental factors, and we hypothesize that its etiology varies considerably between individuals. This heterogeneity provides significant challenges to the development of effective therapeutic regimes for long-term management of type 2 diabetes. We describe a novel strategy, using large-scale gene expression profiling, to develop a gene expression signature (GES) that reflects the overall state of insulin resistance in cells and patients. The GES was developed from 3T3-L1 adipocytes that were made "insulin resistant" by treatment with tumor necrosis factor-α (TNF-α) and then reversed with aspirin and troglitazone ("resensitized"). The GES consisted of five genes whose expression levels best discriminated between the insulin-resistant and insulin-resensitized states. We then used this GES to screen a compound library for agents that affected the GES genes in 3T3-L1 adipocytes in a way that most closely resembled the changes seen when insulin resistance was successfully reversed with aspirin and troglitazone. This screen identified both known and new insulin-sensitizing compounds including nonsteroidal anti-inflammatory agents, β-adrenergic antagonists, β-lactams, and sodium channel blockers. We tested the biological relevance of this GES in participants in the San Antonio Family Heart Study (n = 1,240) and showed that patients with the lowest GES scores were more insulin resistant (according to HOMA_IR and fasting plasma insulin levels; P < 0.001). These findings show that GES technology can be used for both the discovery of insulin-sensitizing compounds and the characterization of patients into subtypes of insulin resistance according to GES scores, opening the possibility of developing a personalized medicine approach to type 2 diabetes. PMID:21081660

  5. Detection and preliminary screening of the human gene expression profile for Hirschsprung's disease

    PubMed Central

    WANG, XIN; WANG, SHIQI; JIN, XIANQING; WANG, NING; LUO, YUANYUAN; TENG, YINPING

    2016-01-01

    The present study investigated a genome microarray of colorectal lesions (spasm segments) in children with Hirschsprung's disease (HSCR), and analyzed the results. In addition, the present study screened for differentially expressed genes in children with HSCR. Microarray technology was used to examine the human gene expression profiles of the colorectal lesions (spasm segments) of six children with HSCR, and three normal colon tissue samples. The data were analyzed be determining P-values of significance and absolute fold changes. Preliminary screening was performed to identify genes exhibiting significant differential expression in children with HSCR, and these target genes were analyzed in subsequent verification and analytical investigations. Of >20,000 detected human genes, the preliminary screenings demonstrated that 3,850 genes were differentially expressed and upregulated, with P<0.05 and >2-fold absolute changes in expression. In addition, 645 differentially expressed genes with P<0.05 and >2-fold absolute changes were downregulated. Of the upregulated genes, 118 were involved in classic signaling pathways, compared with 11 of the downregulated genes (P<0.001; absolute fold change >2-fold). HSCR etiology is complex and often involves multiple gene changes. Microarray technology can produce large quantities of gene expression data simultaneously, and analyzing this data using various techniques may provide a fast and efficient method for identifying novel gene targets and for investigating the mechanisms underlying HSCR pathogenesis. PMID:26648025

  6. Nature and regulation of pistil-expressed genes in tomato.

    PubMed

    Milligan, S B; Gasser, C S

    1995-07-01

    The specialized reproductive functions of angiosperm pistils are dependent in part upon the regulated activation of numerous genes expressed predominantly in this organ system. To better understand the nature of these pistil-predominant gene products we have analyzed seven cDNA clones isolated from tomato pistils through differential hybridization screening. Six of the seven cDNAs represent sequences previously undescribed in tomato, each having a unique pistil- and/or floral-predominant expression pattern. The putative protein products encoded by six of the cDNAs have been identified by their similarity to sequences in the database of previously sequenced genes, with a seventh sequence having no significant similarity with any previously reported sequence. Three of the putative proteins appear to be targeted to the endomembrane system and include an endo-beta-1,4-glucanase which is expressed exclusively in pistils at early stages of development, and proteins similar in sequence to gamma-thionin and miraculin which are expressed in immature pistils and stamens, and in either sepals or petals, respectively. Two other clones, similar in sequence to each other, were expressed primarily in immature pistils and stamens and encode distinct proteins with similarity to leucine aminopeptidases. An additional clone, which encodes a protein similar in sequence to the enzyme hyoscyamine 6-beta-hydroxylase and to other members of the family of Fe2+/ascorbate-dependent oxidases, was expressed at high levels in pistils, stamens and sepals, and at detectable levels in some vegetative organs. Together, these observations provide new insight into the nature and possible functional roles of genes expressed during reproductive development. PMID:7647301

  7. (68)Ga-DOTATOC PET and gene expression profile in patients with neuroendocrine carcinomas: strong correlation between PET tracer uptake and gene expression of somatostatin receptor subtype 2.

    PubMed

    Olsen, Ingrid H; Langer, Seppo W; Federspiel, Birgitte H; Oxbøl, Jytte; Loft, Annika; Berthelsen, Anne Kiil; Mortensen, Jann; Oturai, Peter; Knigge, Ulrich; Kjær, Andreas

    2016-01-01

    Somatostatin receptor expression on both protein and gene expression level was compared with in vivo (68)Ga-DOTATOC PET/CT in patients with neuroendocrine carcinomas (NEC). Twenty-one patients with verified NEC who underwent a (68)Ga-DOTATOC PET/CT between November 2012 and May 2014, were retrospectively included. By real-time polymerase chain reaction, we quantitatively determined the gene expression of several genes and compared with (68)Ga-DOTATOC PET uptake. By immunohistochemistry we qualitatively studied the expression of assorted proteins in NEC. The median age at diagnosis was 68 years (range 41-84) years. All patients had WHO performance status 0-1. Median Ki67 index was 50% (range 20-100%). Gene expression of somatostatin receptor subtype (SSTR) 2 and Ki67 were both positively correlated to the (68)Ga-DOTATOC uptake (r=0.89; p<0.0001 and r=0.5; p=0.021, respectively). Furthermore, SSTR2 and SSTR5 gene expression were strongly and positively correlated (r=0.57; p=0.006). This study as the first verifies a positive and close correlation of (68)Ga-DOTATOC uptake and gene expression of SSTR2 in NEC. SSTR2 gene expression has a stronger correlation to (68)Ga-DOTATOC uptake than SSTR5. In addition, the results indicate that the gene expression levels of SSTR2 and SSTR5 at large follow one another. PMID:27069766

  8. 68Ga-DOTATOC PET and gene expression profile in patients with neuroendocrine carcinomas: strong correlation between PET tracer uptake and gene expression of somatostatin receptor subtype 2

    PubMed Central

    Olsen, Ingrid H; Langer, Seppo W; Federspiel, Birgitte H; Oxbøl, Jytte; Loft, Annika; Berthelsen, Anne Kiil; Mortensen, Jann; Oturai, Peter; Knigge, Ulrich; Kjær, Andreas

    2016-01-01

    Somatostatin receptor expression on both protein and gene expression level was compared with in vivo 68Ga-DOTATOC PET/CT in patients with neuroendocrine carcinomas (NEC). Twenty-one patients with verified NEC who underwent a 68Ga-DOTATOC PET/CT between November 2012 and May 2014, were retrospectively included. By real-time polymerase chain reaction, we quantitatively determined the gene expression of several genes and compared with 68Ga-DOTATOC PET uptake. By immunohistochemistry we qualitatively studied the expression of assorted proteins in NEC. The median age at diagnosis was 68 years (range 41-84) years. All patients had WHO performance status 0-1. Median Ki67 index was 50% (range 20-100%). Gene expression of somatostatin receptor subtype (SSTR) 2 and Ki67 were both positively correlated to the 68Ga-DOTATOC uptake (r=0.89; p<0.0001 and r=0.5; p=0.021, respectively). Furthermore, SSTR2 and SSTR5 gene expression were strongly and positively correlated (r=0.57; p=0.006). This study as the first verifies a positive and close correlation of 68Ga-DOTATOC uptake and gene expression of SSTR2 in NEC. SSTR2 gene expression has a stronger correlation to 68Ga-DOTATOC uptake than SSTR5. In addition, the results indicate that the gene expression levels of SSTR2 and SSTR5 at large follow one another. PMID:27069766

  9. Gene expression patterns during intramuscular fat development in cattle.

    PubMed

    Wang, Y H; Bower, N I; Reverter, A; Tan, S H; De Jager, N; Wang, R; McWilliam, S M; Cafe, L M; Greenwood, P L; Lehnert, S A

    2009-01-01

    provides clear evidence of early molecular changes associated with marbling and also identifies specific time frames when intramuscular fat development in cattle muscle can be detected by using gene expression. This information could be used by animal scientists to design optimal nutrition for high marbling potential. In addition, the genes found to be highly expressed during development of marbling could be used to develop genetic markers or biomarkers to assist with beef production strategies. PMID:18820161

  10. The mouse Gene Expression Database (GXD): 2007 update

    PubMed Central

    Smith, Constance M.; Finger, Jacqueline H.; Hayamizu, Terry F.; McCright, Ingeborg J.; Eppig, Janan T.; Kadin, James A.; Richardson, Joel E.; Ringwald, Martin

    2007-01-01

    The Gene Expression Database (GXD) provides the scientific community with an extensive and easily searchable database of gene expression information about the mouse. Its primary emphasis is on developmental studies. By integrating different types of expression data, GXD aims to provide comprehensive information about expression patterns of transcripts and proteins in wild-type and mutant mice. Integration with the other Mouse Genome Informatics (MGI) databases places the gene expression information in the context of genetic, sequence, functional and phenotypic information, enabling valuable insights into the molecular biology that underlies developmental and disease processes. In recent years the utility of GXD has been greatly enhanced by a large increase in data content, obtained from the literature and provided by researchers doing large-scale in situ and cDNA screens. In addition, we have continued to refine our query and display features to make it easier for users to interrogate the data. GXD is available through the MGI web site at or directly at . PMID:17130151

  11. Enhancer Runaway and the Evolution of Diploid Gene Expression

    PubMed Central

    Fyon, Frédéric; Cailleau, Aurélie; Lenormand, Thomas

    2015-01-01

    Evidence is mounting that the evolution of gene expression plays a major role in adaptation and speciation. Understanding the evolution of gene regulatory regions is indeed an essential step in linking genotypes and phenotypes and in understanding the molecular mechanisms underlying evolutionary change. The common view is that expression traits (protein folding, expression timing, tissue localization and concentration) are under natural selection at the individual level. Here, we use a theoretical approach to show that, in addition, in diploid organisms, enhancer strength (i.e., the ability of enhancers to activate transcription) may increase in a runaway process due to competition for expression between homologous enhancer alleles. These alleles may be viewed as self-promoting genetic elements, as they spread without conferring a benefit at the individual level. They gain a selective advantage by getting associated to better genetic backgrounds: deleterious mutations are more efficiently purged when linked to stronger enhancers. This process, which has been entirely overlooked so far, may help understand the observed overrepresentation of cis-acting regulatory changes in between-species phenotypic differences, and sheds a new light on investigating the contribution of gene expression evolution to adaptation. PMID:26561855

  12. Gene expression profiling for genetic merit in dairy cattle

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Gene expression patterns have been shown to be a heritable trait in dairy cattle. Thus, the pattern of gene expression in many selected tissues may serve as a biomarker for genetic stature or physiological condition. Our laboratory has conducted a 5-year study on the use of gene expression pattern...

  13. Covariance Structure Models for Gene Expression Microarray Data

    ERIC Educational Resources Information Center

    Xie, Jun; Bentler, Peter M.

    2003-01-01

    Covariance structure models are applied to gene expression data using a factor model, a path model, and their combination. The factor model is based on a few factors that capture most of the expression information. A common factor of a group of genes may represent a common protein factor for the transcript of the co-expressed genes, and hence, it…

  14. Scleral gene expression during recovery from myopia compared with expression during myopia development in tree shrew

    PubMed Central

    Guo, Lin; Frost, Michael R.; Siegwart, John T.

    2014-01-01

    Purpose During postnatal refractive development, the sclera receives retinally generated signals that regulate its biochemical properties. Hyperopic refractive error causes the retina to produce “GO” signals that, through the direct emmetropization pathway, cause scleral remodeling that increases the axial elongation rate of the eye, reducing the hyperopia. Myopia causes the retina to generate “STOP” signals that produce scleral remodeling, slowing the axial elongation rate and reducing the myopia. Our aim was to compare the pattern of gene expression produced in the sclera by the STOP signals with the GO gene expression signature we described previously. Methods The GO gene expression signature was produced by monocular –5 diopter (D) lens wear for 2 days (ML-2) or 4 days (ML-4); an additional “STAY” condition was examined after eyes had fully compensated for a –5 D lens after 11 days of lens wear (ML-11). After 11 days of −5 D lens wear had produced full refractive compensation, gene expression in the STOP condition was examined during recovery (without the lens) for 2 days (REC-2) or 4 days (REC-4). The untreated contralateral eyes served as a control in all groups. Two age-matched normal groups provided a comparison with the treated groups. Quantitative real-time PCR was used to measure mRNA levels for 55 candidate genes. Results The STAY group compensated fully for the lens (treated eye versus control eye, –5.1±0.2 D). Wearing the lens, the hyperopic signal for elongation had dissipated (–0.3±0.3 D). In the STOP groups, the refraction in the recovering eyes became less myopic relative to the control eyes (REC-2, +1.3±0.3 D; REC-4, +2.6±0.4 D). In the STAY group, three genes showed significant downregulation. However, many genes that were significantly altered in GO showed smaller, nonsignificant, expression differences in the same direction in STAY, suggesting the gene expression signature in STAY is a greatly weakened form of the GO

  15. Gene Expression Omnibus: NCBI gene expression and hybridization array data repository.

    PubMed

    Edgar, Ron; Domrachev, Michael; Lash, Alex E

    2002-01-01

    The Gene Expression Omnibus (GEO) project was initiated in response to the growing demand for a public repository for high-throughput gene expression data. GEO provides a flexible and open design that facilitates submission, storage and retrieval of heterogeneous data sets from high-throughput gene expression and genomic hybridization experiments. GEO is not intended to replace in house gene expression databases that benefit from coherent data sets, and which are constructed to facilitate a particular analytic method, but rather complement these by acting as a tertiary, central data distribution hub. The three central data entities of GEO are platforms, samples and series, and were designed with gene expression and genomic hybridization experiments in mind. A platform is, essentially, a list of probes that define what set of molecules may be detected. A sample describes the set of molecules that are being probed and references a single platform used to generate its molecular abundance data. A series organizes samples into the meaningful data sets which make up an experiment. The GEO repository is publicly accessible through the World Wide Web at http://www.ncbi.nlm.nih.gov/geo. PMID:11752295

  16. Gene Expression in the Star Mutation of Petunia x Hybrida

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Differences in structural gene expression are responsible for a wide range of responses from human cancer to patterned flowers. Gene silencing is one of the ways in which gene expression is controlled. We have developed a model system to study anthocyanin gene silencing using a mutation in Petunia ...

  17. Nuclear AXIN2 represses MYC gene expression

    SciTech Connect

    Rennoll, Sherri A.; Konsavage, Wesley M.; Yochum, Gregory S.

    2014-01-03

    Highlights: •AXIN2 localizes to cytoplasmic and nuclear compartments in colorectal cancer cells. •Nuclear AXIN2 represses the activity of Wnt-responsive luciferase reporters. •β-Catenin bridges AXIN2 to TCF transcription factors. •AXIN2 binds the MYC promoter and represses MYC gene expression. -- Abstract: The β-catenin transcriptional coactivator is the key mediator of the canonical Wnt signaling pathway. In the absence of Wnt, β-catenin associates with a cytosolic and multi-protein destruction complex where it is phosphorylated and targeted for proteasomal degradation. In the presence of Wnt, the destruction complex is inactivated and β-catenin translocates into the nucleus. In the nucleus, β-catenin binds T-cell factor (TCF) transcription factors to activate expression of c-MYC (MYC) and Axis inhibition protein 2 (AXIN2). AXIN2 is a member of the destruction complex and, thus, serves in a negative feedback loop to control Wnt/β-catenin signaling. AXIN2 is also present in the nucleus, but its function within this compartment is unknown. Here, we demonstrate that AXIN2 localizes to the nuclei of epithelial cells within normal and colonic tumor tissues as well as colorectal cancer cell lines. In the nucleus, AXIN2 represses expression of Wnt/β-catenin-responsive luciferase reporters and forms a complex with β-catenin and TCF. We demonstrate that AXIN2 co-occupies β-catenin/TCF complexes at the MYC promoter region. When constitutively localized to the nucleus, AXIN2 alters the chromatin structure at the MYC promoter and directly represses MYC gene expression. These findings suggest that nuclear AXIN2 functions as a rheostat to control MYC expression in response to Wnt/β-catenin signaling.

  18. Investigation of factors affecting RNA-seq gene expression calls

    PubMed Central

    Harati, Sahar; Phan, John H.; Wang, May D.

    2016-01-01

    RNA-seq enables quantification of the human transcriptome. Estimation of gene expression is a fundamental issue in the analysis of RNA-seq data. However, there is an inherent ambiguity in distinguishing between genes with very low expression and experimental or transcriptional noise. We conducted an exploratory investigation of some factors that may affect gene expression calls. We observed that the distribution of reads that map to exonic, intronic, and intergenic regions are distinct. These distributions may provide useful insights into the behavior of gene expression noise. Moreover, we observed that these distributions are qualitatively similar between two sequence mapping algorithms. Finally, we examined the relationship between gene length and gene expression calls, and observed that they are correlated. This preliminary investigation is important for RNA-seq gene expression analysis because it may lead to more effective algorithms for distinguishing between true gene expression and experimental or transcriptional noise. PMID:25571173

  19. Microarray analysis of relative gene expression stability for selection of internal reference genes in the rhesus macaque brain

    PubMed Central

    2010-01-01

    Background Normalization of gene expression data refers to the comparison of expression values using reference standards that are consistent across all conditions of an experiment. In PCR studies, genes designated as "housekeeping genes" have been used as internal reference genes under the assumption that their expression is stable and independent of experimental conditions. However, verification of this assumption is rarely performed. Here we assess the use of gene microarray analysis to facilitate selection of internal reference sequences with higher expression stability across experimental conditions than can be expected using traditional selection methods. We recently demonstrated that relative gene expression from qRT-PCR data normalized using GAPDH, ALG9 and RPL13A expression values mirrored relative expression using quantile normalization in Robust Multichip Analysis (RMA) on the Affymetrix® GeneChip® rhesus Macaque Genome Array. Having shown that qRT-PCR and Affymetrix® GeneChip® data from the same hormone replacement therapy (HRT) study yielded concordant results, we used quantile-normalized gene microarray data to identify the most stably expressed among probe sets for prospective internal reference genes across three brain regions from the HRT study and an additional study of normally menstruating rhesus macaques (cycle study). Gene selection was limited to 575 previously published human "housekeeping" genes. Twelve animals were used per study, and three brain regions were analyzed from each animal. Gene expression stabilities were determined using geNorm, NormFinder and BestKeeper software packages. Results Sequences co-annotated for ribosomal protein S27a (RPS27A), and ubiquitin were among the most stably expressed under all conditions and selection criteria used for both studies. Higher annotation quality on the human GeneChip® facilitated more targeted analysis than could be accomplished using the rhesus GeneChip®. In the cycle study, multiple

  20. Molecular mechanisms of curcumin action: gene expression.

    PubMed

    Shishodia, Shishir

    2013-01-01

    Curcumin derived from the tropical plant Curcuma longa has a long history of use as a dietary agent, food preservative, and in traditional Asian medicine. It has been used for centuries to treat biliary disorders, anorexia, cough, diabetic wounds, hepatic disorders, rheumatism, and sinusitis. The preventive and therapeutic properties of curcumin are associated with its antioxidant, anti-inflammatory, and anticancer properties. Extensive research over several decades has attempted to identify the molecular mechanisms of curcumin action. Curcumin modulates numerous molecular targets by altering their gene expression, signaling pathways, or through direct interaction. Curcumin regulates the expression of inflammatory cytokines (e.g., TNF, IL-1), growth factors (e.g., VEGF, EGF, FGF), growth factor receptors (e.g., EGFR, HER-2, AR), enzymes (e.g., COX-2, LOX, MMP9, MAPK, mTOR, Akt), adhesion molecules (e.g., ELAM-1, ICAM-1, VCAM-1), apoptosis related proteins (e.g., Bcl-2, caspases, DR, Fas), and cell cycle proteins (e.g., cyclin D1). Curcumin modulates the activity of several transcription factors (e.g., NF-κB, AP-1, STAT) and their signaling pathways. Based on its ability to affect multiple targets, curcumin has the potential for the prevention and treatment of various diseases including cancers, arthritis, allergies, atherosclerosis, aging, neurodegenerative disease, hepatic disorders, obesity, diabetes, psoriasis, and autoimmune diseases. This review summarizes the molecular mechanisms of modulation of gene expression by curcumin. PMID:22996381

  1. Using PCR to Target Misconceptions about Gene Expression

    PubMed Central

    Wright, Leslie K.; Newman, Dina L.

    2013-01-01

    We present a PCR-based laboratory exercise that can be used with first- or second-year biology students to help overcome common misconceptions about gene expression. Biology students typically do not have a clear understanding of the difference between genes (DNA) and gene expression (mRNA/protein) and often believe that genes exist in an organism or cell only when they are expressed. This laboratory exercise allows students to carry out a PCR-based experiment designed to challenge their misunderstanding of the difference between genes and gene expression. Students first transform E. coli with an inducible GFP gene containing plasmid and observe induced and un-induced colonies. The following exercise creates cognitive dissonance when actual PCR results contradict their initial (incorrect) predictions of the presence of the GFP gene in transformed cells. Field testing of this laboratory exercise resulted in learning gains on both knowledge and application questions on concepts related to genes and gene expression. PMID:23858358

  2. Interlaboratory evaluation of rat hepatic gene expression changes induced by methapyrilene.

    PubMed Central

    Waring, Jeffrey F; Ulrich, Roger G; Flint, Nick; Morfitt, David; Kalkuhl, Arno; Staedtler, Frank; Lawton, Michael; Beekman, Johanna M; Suter, Laura

    2004-01-01

    Several studies using microarrays have shown that changes in gene expression provide information about the mechanism of toxicity induced by xenobiotic agents. Nevertheless, the issue of whether gene expression profiles are reproducible across different laboratories remains to be determined. To address this question, several members of the Hepatotoxicity Working Group of the International Life Sciences Institute Health and Environmental Sciences Institute evaluated the liver gene expression profiles of rats treated with methapyrilene (MP). Animals were treated at one facility, and RNA was distributed to five different sites for gene expression analysis. A preliminary evaluation of the number of modulated genes uncovered striking differences between the five different sites. However, additional data analysis demonstrated that these differences had an effect on the absolute gene expression results but not on the outcome of the study. For all users, unsupervised algorithms showed that gene expression allows the distinction of the high dose of MP from controls and low dose. In addition, the use of a supervised analysis method (support vector machines) made it possible to correctly classify samples. In conclusion, the results show that, despite some variability, robust gene expression changes were consistent between sites. In addition, key expression changes related to the mechanism of MP-induced hepatotoxicity were identified. These results provide critical information regarding the consistency of microarray results across different laboratories and shed light on the strengths and limitations of expression profiling in drug safety analysis. PMID:15033593

  3. Noise-plasticity correlations of gene expression in the multicellular organism Arabidopsis thaliana.

    PubMed

    Hirao, Koudai; Nagano, Atsushi J; Awazu, Akinori

    2015-12-21

    Gene expression levels exhibit stochastic variations among genetically identical organisms under the same environmental conditions (called gene expression "noise" or phenotype "fluctuation"). In yeast and Escherichia coli, positive correlations have been found between such gene expression noise and "plasticity" with environmental variations. To determine the universality of such correlations in both unicellular and multicellular organisms, we focused on the relationships between gene expression "noise" and "plasticity" in Arabidopsis thaliana, a multicellular model organism. In recent studies on yeast and E. coli, only some gene groups with specific properties of promoter architecture, average expression levels, and functions exhibited strong noise-plasticity correlations. However, we found strong noise-plasticity correlations for most gene groups in Arabidopsis; additionally, promoter architecture, functional essentiality of genes, and circadian rhythm appeared to have only a weak influence on the correlation strength. The differences in the characteristics of noise-plasticity correlations may result from three-dimensional chromosomal structures and/or circadian rhythm. PMID:26431771

  4. Changes in differential gene expression during a fatal stroke.

    PubMed

    Stone, Shelley F; Armstrong, Christopher; van Eeden, Pauline E; Arendts, Glenn; Hankey, Graeme J; Brown, Simon G A; Fatovich, Daniel M

    2016-01-01

    We present a young woman (with an identical twin sister) who arrived at the Emergency Department (ED) within 1 hour of her initial stroke symptoms. Previous microarray studies have demonstrated differential expression of multiple genes between stroke patients and healthy controls. However, for many of these studies there is a significant delay between the initial symptoms and collection of blood samples, potentially leaving the important early activators/regulators of the inflammatory response unrecognised. Blood samples were collected from the patient for an analysis of differential gene expression over time during the evolution of a fatal stroke. The time points for blood collection were ED arrival (T0) and 1, 3 and 24 hours post ED arrival (T1, T3 and T24). This was compared to her identical twin and an additional two age and sex-matched healthy controls. When compared to the controls, the patient had 12 mRNA that were significantly upregulated at T0, and no downregulated mRNA (with a cut off fold change value ±1.5). Of the 12 upregulated mRNA at T0, granzyme B demonstrated the most marked upregulation on arrival, with expression steadily declining over time, whereas S100 calcium-binding protein A12 (S100A12) gene expression increased from T0 to T24, remaining >two-fold above that in the healthy controls at T24. Other genes, such as matrix metalloproteinase 9, high mobility group box 2 and interleukin-18 receptor I were not upregulated at T0, but they demonstrated clear upregulation from T1–T3, with gene expression declining by T24. A greater understanding of the underlying immunopathological mechanisms that are involved during the evolution of ischaemic stroke may help to distinguish between patients with stroke and stroke mimics. PMID:27088144

  5. Reptile freeze tolerance: metabolism and gene expression.

    PubMed

    Storey, Kenneth B

    2006-02-01

    Terrestrially hibernating reptiles that live in seasonally cold climates need effective strategies of cold hardiness to survive the winter. Use of thermally buffered hibernacula is very important but when exposure to temperatures below 0 degrees C cannot be avoided, either freeze avoidance (supercooling) or freeze tolerance strategies can be employed, sometimes by the same species depending on environmental conditions. Several reptile species display ecologically relevant freeze tolerance, surviving for extended times with 50% or more of their total body water frozen. The use of colligative cryoprotectants by reptiles is poorly developed but metabolic and enzymatic adaptations providing anoxia tolerance and antioxidant defense are important aids to freezing survival. New studies using DNA array screening are examining the role of freeze-responsive gene expression. Three categories of freeze responsive genes have been identified from recent screenings of liver and heart from freeze-exposed (5h post-nucleation at -2.5 degrees C) hatchling painted turtles, Chrysemys picta marginata. These genes encode (a) proteins involved in iron binding, (b) enzymes of antioxidant defense, and (c) serine protease inhibitors. The same genes were up-regulated by anoxia exposure (4 h of N2 gas exposure at 5 degrees C) of the hatchlings which suggests that these defenses for freeze tolerance are aimed at counteracting the injurious effects of the ischemia imposed by plasma freezing. PMID:16321368

  6. Retrotransposons as regulators of gene expression.

    PubMed

    Elbarbary, Reyad A; Lucas, Bronwyn A; Maquat, Lynne E

    2016-02-12

    Transposable elements (TEs) are both a boon and a bane to eukaryotic organisms, depending on where they integrate into the genome and how their sequences function once integrated. We focus on two types of TEs: long interspersed elements (LINEs) and short interspersed elements (SINEs). LINEs and SINEs are retrotransposons; that is, they transpose via an RNA intermediate. We discuss how LINEs and SINEs have expanded in eukaryotic genomes and contribute to genome evolution. An emerging body of evidence indicates that LINEs and SINEs function to regulate gene expression by affecting chromatin structure, gene transcription, pre-mRNA processing, or aspects of mRNA metabolism. We also describe how adenosine-to-inosine editing influences SINE function and how ongoing retrotransposition is countered by the body's defense mechanisms. PMID:26912865

  7. Regulation of interferon-gamma gene expression.

    PubMed

    Young, H A

    1996-08-01

    Interferon-gamma (IFN-gamma), also known as type II interferon, is an important immunoregulatory gene that has multiple effects on the development, maturation, and function of the immune system. IFN-gamma mRNA and protein are expressed predominantly by T cells and large granular lymphocytes. The IFN-gamma mRNA is induced/inhibited in these cell types by a wide variety of extracellular signals, thus implicating a number of diverse, yet convergent signal transduction pathways in its transcriptional control. In this review, I describe how DNA methylation and specific DNA binding proteins may regulate transcription of the IFN-gamma gene in response to extracellular signals. PMID:8877725

  8. Pathway network inference from gene expression data

    PubMed Central

    2014-01-01

    Background The development of high-throughput omics technologies enabled genome-wide measurements of the activity of cellular elements and provides the analytical resources for the progress of the Systems Biology discipline. Analysis and interpretation of gene expression data has evolved from the gene to the pathway and interaction level, i.e. from the detection of differentially expressed genes, to the establishment of gene interaction networks and the identification of enriched functional categories. Still, the understanding of biological systems requires a further level of analysis that addresses the characterization of the interaction between functional modules. Results We present a novel computational methodology to study the functional interconnections among the molecular elements of a biological system. The PANA approach uses high-throughput genomics measurements and a functional annotation scheme to extract an activity profile from each functional block -or pathway- followed by machine-learning methods to infer the relationships between these functional profiles. The result is a global, interconnected network of pathways that represents the functional cross-talk within the molecular system. We have applied this approach to describe the functional transcriptional connections during the yeast cell cycle and to identify pathways that change their connectivity in a disease condition using an Alzheimer example. Conclusions PANA is a useful tool to deepen in our understanding of the functional interdependences that operate within complex biological systems. We show the approach is algorithmically consistent and the inferred network is well supported by the available functional data. The method allows the dissection of the molecular basis of the functional connections and we describe the different regulatory mechanisms that explain the network's topology obtained for the yeast cell cycle data. PMID:25032889

  9. Transcriptome assembly, gene annotation and tissue gene expression atlas of the rainbow trout.

    PubMed

    Salem, Mohamed; Paneru, Bam; Al-Tobasei, Rafet; Abdouni, Fatima; Thorgaard, Gary H; Rexroad, Caird E; Yao, Jianbo

    2015-01-01

    Efforts to obtain a comprehensive genome sequence for rainbow trout are ongoing and will be complemented by transcriptome information that will enhance genome assembly and annotation. Previously, transcriptome reference sequences were reported using data from different sources. Although the previous work added a great wealth of sequences, a complete and well-annotated transcriptome is still needed. In addition, gene expression in different tissues was not completely addressed in the previous studies. In this study, non-normalized cDNA libraries were sequenced from 13 different tissues of a single doubled haploid rainbow trout from the same source used for the rainbow trout genome sequence. A total of ~1.167 billion paired-end reads were de novo assembled using the Trinity RNA-Seq assembler yielding 474,524 contigs > 500 base-pairs. Of them, 287,593 had homologies to the NCBI non-redundant protein database. The longest contig of each cluster was selected as a reference, yielding 44,990 representative contigs. A total of 4,146 contigs (9.2%), including 710 full-length sequences, did not match any mRNA sequences in the current rainbow trout genome reference. Mapping reads to the reference genome identified an additional 11,843 transcripts not annotated in the genome. A digital gene expression atlas revealed 7,678 housekeeping and 4,021 tissue-specific genes. Expression of about 16,000-32,000 genes (35-71% of the identified genes) accounted for basic and specialized functions of each tissue. White muscle and stomach had the least complex transcriptomes, with high percentages of their total mRNA contributed by a small number of genes. Brain, testis and intestine, in contrast, had complex transcriptomes, with a large numbers of genes involved in their expression patterns. This study provides comprehensive de novo transcriptome information that is suitable for functional and comparative genomics studies in rainbow trout, including annotation of the genome. PMID:25793877

  10. Regulation of Gene Expression Patterns in Mosquito Reproduction.

    PubMed

    Roy, Sourav; Saha, Tusar T; Johnson, Lisa; Zhao, Bo; Ha, Jisu; White, Kevin P; Girke, Thomas; Zou, Zhen; Raikhel, Alexander S

    2015-08-01

    In multicellular organisms, development, growth and reproduction require coordinated expression of numerous functional and regulatory genes. Insects, in addition to being the most speciose animal group with enormous biological and economical significance, represent outstanding model organisms for studying regulation of synchronized gene expression due to their rapid development and reproduction. Disease-transmitting female mosquitoes have adapted uniquely for ingestion and utilization of the huge blood meal required for swift reproductive events to complete egg development within a 72-h period. We investigated the network of regulatory factors mediating sequential gene expression in the fat body, a multifunctional organ analogous to the vertebrate liver and adipose tissue, of the female Aedes aegypti mosquito. Transcriptomic and bioinformatics analyses revealed that ~7500 transcripts are differentially expressed in four sequential waves during the 72-h reproductive period. A combination of RNA-interference gene-silencing and in-vitro organ culture identified the major regulators for each of these waves. Amino acids (AAs) regulate the first wave of gene activation between 3 h and 12 h post-blood meal (PBM). During the second wave, between 12 h and 36 h, most genes are highly upregulated by a synergistic action of AAs, 20-hydroxyecdysone (20E) and the Ecdysone-Receptor (EcR). Between 36 h and 48 h, the third wave of gene activation-regulated mainly by HR3-occurs. Juvenile Hormone (JH) and its receptor Methoprene-Tolerant (Met) are major regulators for the final wave between 48 h and 72 h. Each of these key regulators also has repressive effects on one or more gene sets. Our study provides a better understanding of the complexity of the regulatory mechanisms related to temporal coordination of gene expression during reproduction. We have detected the novel function of 20E/EcR responsible for transcriptional repression. This study also reveals the previously

  11. Clustering gene expression data using graph separators.

    PubMed

    Kaba, Bangaly; Pinet, Nicolas; Lelandais, Gaëlle; Sigayret, Alain; Berry, Anne

    2007-01-01

    Recent work has used graphs to modelize expression data from microarray experiments, in view of partitioning the genes into clusters. In this paper, we introduce the use of a decomposition by clique separators. Our aim is to improve the classical clustering methods in two ways: first we want to allow an overlap between clusters, as this seems biologically sound, and second we want to be guided by the structure of the graph to define the number of clusters. We test this approach with a well-known yeast database (Saccharomyces cerevisiae). Our results are good, as the expression profiles of the clusters we find are very coherent. Moreover, we are able to organize into another graph the clusters we find, and order them in a fashion which turns out to respect the chronological order defined by the the sporulation process. PMID:18391236

  12. A novel approach for a foreign gene expression by Newcastle disease virus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Newcastle disease virus (NDV) has been developed as vectors using reverse genetics technology to express foreign genes for vaccine, anticancer and gene therapy purposes. The foreign genes are usually inserted into the intergenic region of the NDV genome as an additional transcription unit. Based on ...

  13. The food additive vanillic acid controls transgene expression in mammalian cells and mice

    PubMed Central

    Gitzinger, Marc; Kemmer, Christian; Fluri, David A.; Daoud El-Baba, Marie; Weber, Wilfried; Fussenegger, Martin

    2012-01-01

    Trigger-inducible transcription-control devices that reversibly fine-tune transgene expression in response to molecular cues have significantly advanced the rational reprogramming of mammalian cells. When designed for use in future gene- and cell-based therapies the trigger molecules have to be carefully chosen in order to provide maximum specificity, minimal side-effects and optimal pharmacokinetics in a mammalian organism. Capitalizing on control components that enable Caulobacter crescentus to metabolize vanillic acid originating from lignin degradation that occurs in its oligotrophic freshwater habitat, we have designed synthetic devices that specifically adjust transgene expression in mammalian cells when exposed to vanillic acid. Even in mice transgene expression was robust, precise and tunable in response to vanillic acid. As a licensed food additive that is regularly consumed by humans via flavoured convenience food and specific fresh vegetable and fruits, vanillic acid can be considered as a safe trigger molecule that could be used for diet-controlled transgene expression in future gene- and cell-based therapies. PMID:22187155

  14. Regulators of gene expression in Enteric Neural Crest Cells are putative Hirschsprung disease genes.

    PubMed

    Schriemer, Duco; Sribudiani, Yunia; IJpma, Arne; Natarajan, Dipa; MacKenzie, Katherine C; Metzger, Marco; Binder, Ellen; Burns, Alan J; Thapar, Nikhil; Hofstra, Robert M W; Eggen, Bart J L

    2016-08-01

    The enteric nervous system (ENS) is required for peristalsis of the gut and is derived from Enteric Neural Crest Cells (ENCCs). During ENS development, the RET receptor tyrosine kinase plays a critical role in the proliferation and survival of ENCCs, their migration along the developing gut, and differentiation into enteric neurons. Mutations in RET and its ligand GDNF cause Hirschsprung disease (HSCR), a complex genetic disorder in which ENCCs fail to colonize variable lengths of the distal bowel. To identify key regulators of ENCCs and the pathways underlying RET signaling, gene expression profiles of untreated and GDNF-treated ENCCs from E14.5 mouse embryos were generated. ENCCs express genes that are involved in both early and late neuronal development, whereas GDNF treatment induced neuronal maturation. Predicted regulators of gene expression in ENCCs include the known HSCR genes Ret and Sox10, as well as Bdnf, App and Mapk10. The regulatory overlap and functional interactions between these genes were used to construct a regulatory network that is underlying ENS development and connects to known HSCR genes. In addition, the adenosine receptor A2a (Adora2a) and neuropeptide Y receptor Y2 (Npy2r) were identified as possible regulators of terminal neuronal differentiation in GDNF-treated ENCCs. The human orthologue of Npy2r maps to the HSCR susceptibility locus 4q31.3-q32.3, suggesting a role for NPY2R both in ENS development and in HSCR. PMID:27266404

  15. Polymorphic core promoter GA-repeats alter gene expression of the early embryonic developmental genes.

    PubMed

    Valipour, E; Kowsari, A; Bayat, H; Banan, M; Kazeminasab, S; Mohammadparast, S; Ohadi, M

    2013-12-01

    Protein complexes that bind to 'GAGA' DNA elements are necessary to replace nucleosomes to create a local chromatin environment that facilitates a variety of site-specific regulatory responses. Three to four elements are required for the disruption of a preassembled nucleosome. We have previously identified human protein-coding gene core promoters that are composed of exceptionally long GA-repeats. The functional implication of those GA-repeats is beginning to emerge in the core promoter of the human SOX5 gene, which is involved in multiple developmental processes. In the current study, we analyze the functional implication of GA-repeats in the core promoter of two additional genes, MECOM and GABRA3, whose expression is largely limited to embryogenesis. We report a significant difference in gene expression as a result of different alleles across those core promoters in the HEK-293 cell line. Across-species homology check for the GABRA3 GA-repeats revealed that those repeats are evolutionary conserved in mouse and primates (p<1 × 10(-8)). The MECOM core promoter GA-repeats are also conserved in numerous species, of which human has the longest repeat and complexity. We propose a novel role for GA-repeat core promoters to regulate gene expression in the genes involved in development and evolution. PMID:24055488

  16. Nuclear AXIN2 represses MYC gene expression.

    PubMed

    Rennoll, Sherri A; Konsavage, Wesley M; Yochum, Gregory S

    2014-01-01

    The β-catenin transcriptional coactivator is the key mediator of the canonical Wnt signaling pathway. In the absence of Wnt, β-catenin associates with a cytosolic and multi-protein destruction complex where it is phosphorylated and targeted for proteasomal degradation. In the presence of Wnt, the destruction complex is inactivated and β-catenin translocates into the nucleus. In the nucleus, β-catenin binds T-cell factor (TCF) transcription factors to activate expression of c-MYC (MYC) and Axis inhibition protein 2 (AXIN2). AXIN2 is a member of the destruction complex and, thus, serves in a negative feedback loop to control Wnt/β-catenin signaling. AXIN2 is also present in the nucleus, but its function within this compartment is unknown. Here, we demonstrate that AXIN2 localizes to the nuclei of epithelial cells within normal and colonic tumor tissues as well as colorectal cancer cell lines. In the nucleus, AXIN2 represses expression of Wnt/β-catenin-responsive luciferase reporters and forms a complex with β-catenin and TCF. We demonstrate that AXIN2 co-occupies β-catenin/TCF complexes at the MYC promoter region. When constitutively localized to the nucleus, AXIN2 alters the chromatin structure at the MYC promoter and directly represses MYC gene expression. These findings suggest that nuclear AXIN2 functions as a rheostat to control MYC expression in response to Wnt/β-catenin signaling. PMID:24299953

  17. Sex-Biased Gene Expression during Head Development in a Sexually Dimorphic Stalk-Eyed Fly

    PubMed Central

    Wilkinson, Gerald S.; Johns, Philip M.; Metheny, Jackie D.; Baker, Richard H.

    2013-01-01

    Stalk-eyed flies (family Diopsidae) are a model system for studying sexual selection due to the elongated and sexually dimorphic eye-stalks found in many species. These flies are of additional interest because their X chromosome is derived largely from an autosomal arm in other flies. To identify candidate genes required for development of dimorphic eyestalks and investigate how sex-biased expression arose on the novel X, we compared gene expression between males and females using oligonucleotide microarrays and RNA from developing eyestalk tissue or adult heads in the dimorphic diopsid, Teleopsis dalmanni. Microarray analysis revealed sex-biased expression for 26% of 3,748 genes expressed in eye-antennal imaginal discs and concordant sex-biased expression for 86 genes in adult heads. Overall, 415 female-biased and 482 male-biased genes were associated with dimorphic eyestalk development but not differential expression in the adult head. Functional analysis revealed that male-biased genes are disproportionately associated with growth and mitochondrial function while female-biased genes are associated with cell differentiation and patterning or are novel transcripts. With regard to chromosomal effects, dosage compensation occurs by elevated expression of X-linked genes in males. Genes with female-biased expression were more common on the X and less common on autosomes than expected, while male-biased genes exhibited no chromosomal pattern. Rates of protein evolution were lower for female-biased genes but higher for genes that moved on or off the novel X chromosome. These findings cannot be due to meiotic sex chromosome inactivation or by constraints associated with dosage compensation. Instead, they could be consistent with sexual conflict in which female-biased genes on the novel X act primarily to reduce eyespan in females while other genes increase eyespan in both sexes. Additional information on sex-biased gene expression in other tissues and related sexually

  18. Serial analysis of gene expression in a microglial cell line.

    PubMed

    Inoue, H; Sawada, M; Ryo, A; Tanahashi, H; Wakatsuki, T; Hada, A; Kondoh, N; Nakagaki, K; Takahashi, K; Suzumura, A; Yamamoto, M; Tabira, T

    1999-12-01

    We used the serial analysis of gene expression (SAGE) method to systematically analyze transcripts present in a microglial cell line. Over 10,000 SAGE tags were sequenced, and shown to represent 6,013 unique transcripts. Among the diverse transcripts that had not been previously detected in microglia were those for cytokines such as endothelial monocyte-activating polypeptide I (EMAP I), and for cell surface antigens, including adhesion molecules such as CD9, CD53, CD107a, CD147, CD162 and mast cell high affinity IgE receptor. In addition, we detected transcripts that were characteristic of hematopoietic cells or mesodermal structures, such as E3 protein, A1, EN-7, B94, and ufo. Furthermore, the profile contained a transcript, Hn1, that is important in hematopoietic cells and neurological development (Tang et al. Mamm Genome 8:695-696, 1997), suggesting the probable neural differentiation of microglia from the hematopoietic system in development. Messenger RNA expression of these genes was confirmed by RT-PCR in primary cultures of microglia. Significantly, this is the first systematic profiling of the genes expressed in a microglial cell line. The identification and further characterization of the genes described here should provide potential new targets for the study of microglial biology. PMID:10559785

  19. Regulation of Cellulase and Hemicellulase Gene Expression in Fungi

    PubMed Central

    Amore, Antonella; Giacobbe, Simona; Faraco, Vincenza

    2013-01-01

    Research on regulation of cellulases and hemicellulases gene expression may be very useful for increasing the production of these enzymes in their native producers. Mechanisms of gene regulation of cellulase and hemicellulase expression in filamentous fungi have been studied, mainly in Aspergillus and Trichoderma. The production of these extracellular enzymes is an energy-consuming process, so the enzymes are produced only under conditions in which the fungus needs to use plant polymers as an energy and carbon source. Moreover, production of many of these enzymes is coordinately regulated, and induced in the presence of the substrate polymers. In addition to induction by mono- and oligo-saccharides, genes encoding hydrolytic enzymes involved in plant cell wall deconstruction in filamentous fungi can be repressed during growth in the presence of easily metabolizable carbon sources, such as glucose. Carbon catabolite repression is an important mechanism to repress the production of plant cell wall degrading enzymes during growth on preferred carbon sources. This manuscript reviews the recent advancements in elucidation of molecular mechanisms responsible for regulation of expression of cellulase and hemicellulase genes in fungi. PMID:24294104

  20. Changes in gene expression associated with FTO overexpression in mice.

    PubMed

    Merkestein, Myrte; McTaggart, James S; Lee, Sheena; Kramer, Holger B; McMurray, Fiona; Lafond, Mathilde; Boutens, Lily; Cox, Roger; Ashcroft, Frances M

    2014-01-01

    Single nucleotide polymorphisms in the first intron of the fat-mass-and-obesity-related gene FTO are associated with increased body weight and adiposity. Increased expression of FTO is likely underlying this obesity phenotype, as mice with two additional copies of Fto (FTO-4 mice) exhibit increased adiposity and are hyperphagic. FTO is a demethylase of single stranded DNA and RNA, and one of its targets is the m6A modification in RNA, which might play a role in the regulation of gene expression. In this study, we aimed to examine the changes in gene expression that occur in FTO-4 mice in order to gain more insight into the underlying mechanisms by which FTO influences body weight and adiposity. Our results indicate an upregulation of anabolic pathways and a downregulation of catabolic pathways in FTO-4 mice. Interestingly, although genes involved in methylation were differentially regulated in skeletal muscle of FTO-4 mice, no effect of FTO overexpression on m6A methylation of total mRNA was detected. PMID:24842286

  1. Glycerophosphorylcholine regulates Haemophilus influenzae glpQ gene expression.

    PubMed

    Alrousan, Enas; Fan, Xin

    2015-05-01

    An important virulence strategy adopted by Haemophilus influenzae to establish a niche on the mucosal surface of the host is the phosphorylcholine (ChoP) decoration of its lipopolysaccharides, which promotes adherence to the host cells. Haemophilus influenzae is able to use glycerophosphorylcholine (GPC) from host for ChoP synthesis. Utilization of GPC requires glpQ, which encodes a glycerophosphodiester phosphodiesterase enzyme. In this study, we investigate the transcriptional regulation of glpQ gene using real-time PCR and transcriptional fusion of H. influenzae glpQ promoter to the Escherichia coli lacZ reporter gene. The glpQ promoter activities were examined under environmental conditions including changes in temperature, oxygen, high salt and minimal growth medium. Our data showed that under room temperature and anaerobic conditions, the glpQ gene expression levels were significantly higher than under other growth conditions. In addition, the glpQ gene expression levels were upregulated in the presence of GPC. These results suggest that H. influenzae may upregulate glpQ expression in response to different environments it encounters during infection, from the airway surfaces (room temperature) to deep tissues (anaerobic). Upregulation of glpQ by GPC may allow efficient use of abundant GPC from mammalian cells by H. influenzae as a source of nutrient and for ChoP decoration of lipopolysaccharide that facilitates bacterial adhesion to host cells and growth during infection. PMID:25837816

  2. Changes in Gene Expression Associated with FTO Overexpression in Mice

    PubMed Central

    Kramer, Holger B.; McMurray, Fiona; Lafond, Mathilde; Boutens, Lily; Cox, Roger; Ashcroft, Frances M.

    2014-01-01

    Single nucleotide polymorphisms in the first intron of the fat-mass-and-obesity-related gene FTO are associated with increased body weight and adiposity. Increased expression of FTO is likely underlying this obesity phenotype, as mice with two additional copies of Fto (FTO-4 mice) exhibit increased adiposity and are hyperphagic. FTO is a demethylase of single stranded DNA and RNA, and one of its targets is the m6A modification in RNA, which might play a role in the regulation of gene expression. In this study, we aimed to examine the changes in gene expression that occur in FTO-4 mice in order to gain more insight into the underlying mechanisms by which FTO influences body weight and adiposity. Our results indicate an upregulation of anabolic pathways and a downregulation of catabolic pathways in FTO-4 mice. Interestingly, although genes involved in methylation were differentially regulated in skeletal muscle of FTO-4 mice, no effect of FTO overexpression on m6A methylation of total mRNA was detected. PMID:24842286

  3. Gene expression of lactobacilli in murine forestomach biofilms

    PubMed Central

    Schwab, Clarissa; Tveit, Alexander Tøsdal; Schleper, Christa; Urich, Tim

    2014-01-01

    Lactobacilli populate the gastro-intestinal tract of vertebrates, and are used in food fermentations and as probiotics. Lactobacilli are also major constituents of stable biofilms in the forestomach of rodents. In order to investigate the lifestyle of these biofilm lactobacilli in C57BL/6 mice, we applied metatranscriptomics to analyse gene expression (assessed by mRNA) and community composition (assessed by rRNA). Lactobacillales were the major biofilm inhabitants (62–82% of rRNA reads), followed by Clostridiales (8–31% of rRNA reads). To identify mRNA transcripts specific for the forestomach, we compared forestomach and hindgut metatranscriptomes. Gene expression of the biofilm microbiota was characterized by high abundance of transcripts related to glucose and maltose utilization, peptide degradation, and amino acid transport, indicating their major catabolic and anabolic pathways. The microbiota transcribed genes encoding pathways enhancing oxidative stress (glutathione synthesis) and acid tolerance. Various pathways, including metabolite formation (urea degradation, arginine pathway, γ-aminobutyrate) and cell wall modification (DltA, cyclopropane-fatty-acyl-phospholipid synthase), contributed to acid tolerance, as judged from the transcript profile. In addition, the biofilm microbiota expressed numerous genes encoding extracellular proteins involved in adhesion and/or biofilm formation (e.g. MucBP, glycosyl hydrolase families 68 and 70). This study shed light on the lifestyle and specific adaptations of lactobacilli in the murine forestomach that might also be relevant for lactobacilli biofilms in other vertebrates, including humans. PMID:24702817

  4. Differential gene expression in anatomical compartments of the human eye

    PubMed Central

    Diehn, Jennifer J; Diehn, Maximilian; Marmor, Michael F; Brown, Patrick O

    2005-01-01

    Background The human eye is composed of multiple compartments, diverse in form, function, and embryologic origin, that work in concert to provide us with our sense of sight. We set out to systematically characterize the global gene expression patterns that specify the distinctive characteristics of the various eye compartments. Results We used DNA microarrays representing approximately 30,000 human genes to analyze gene expression in the cornea, lens, iris, ciliary body, retina, and optic nerve. The distinctive patterns of expression in each compartment could be interpreted in relation to the physiology and cellular composition of each tissue. Notably, the sets of genes selectively expressed in the retina and in the lens were particularly large and diverse. Genes with roles in immune defense, particularly complement components, were expressed at especially high levels in the anterior segment tissues. We also found consistent differences between the gene expression patterns of the macula and peripheral retina, paralleling the differences in cell layer densities between these regions. Based on the hypothesis that genes responsible for diseases that affect a particular eye compartment are likely to be selectively expressed in that compartment, we compared our gene expression signatures with genetic mapping studies to identify candidate genes for diseases affecting the cornea, lens, and retina. Conclusion Through genome-scale gene expression profiling, we were able to discover distinct gene expression 'signatures' for each eye compartment and identified candidate disease genes that can serve as a reference database for investigating the physiology and pathophysiology of the eye. PMID:16168081

  5. Methodological aspects of the genetic dissection of gene expression

    SciTech Connect

    Carlborg, O; DeKoning, D; Manly, Kenneth; Chesler, Elissa J; Williams, Robert; Haley, C

    2004-01-01

    Motivation: Dissection of the genetics underlying gene expression utilizes techniques from microarray analyses as well as quantitative trait loci (QTL) mapping. Available QTL mapping methods are not tailored for the highly automated analyses required to deal with the thousands of gene transcripts encountered in the mapping of QTL affecting gene expression (sometimes referred to as eQTL). This report focuses on the adaptation of QTL mapping methodology to perform automated mapping of QTL affecting gene expression. Results: The analyses of expression data on>12 000 gene transcripts in BXD recombinant inbred mice found, on average, 629 QTL exceeding the genome-wide 5% threshold. Using additional information on trait repeatabilities and QTL location, 168 of these were classified as high confidence QTL. Current sample sizes of genetical genomics studies make it possible to detect a reasonable number of QTL using simple genetic models, but considerably larger studies are needed to evaluate more complex genetic models. After extensive analyses of real data and additional simulated data (altogether >300 000 genome scans) we make the following recommendations for detection of QTL for gene expression: (1) For populations with an unbalanced number of replicates on each genotype, weighted least squares should be preferred above ordinary least squares. Weights can be based on the repeatability of the trait and the number of replicates. (2) A genome scan based on multiple marker information but analysing only at marker locations is a good approximation to a full interval mapping procedure. (3) Significance testing should be based on empirical genome-wide significance thresholds that are derived for each trait separately. (4) The significant QTL can be separated into high and low confidence QTL using a false discovery rate that incorporates prior information such as transcript repeatabilities and co-localization of gene- ranscripts and QTL. (5) Including observations on the

  6. Differentially Expressed Genes in EEC and LMS Syndromes

    PubMed Central

    Yin, Wei; Song, Yaling; Du, Yangge; Bian, Zhuan

    2015-01-01

    Objectives Ectrodactyly ectodermal dysplasia cleft lip/palate (EEC) syndrome and limb-mammary syndrome (LMS) share a similar phenotype and the same pathogenic gene, which complicates the ability to distinguish between these diagnoses. The current study aims to identify a potential and practical clinical biomarker to distinguish EEC from LMS. Methods Two EEC pedigrees and one LMS pedigree that have been previously reported were reanalyzed. After confirmation of the causative mutations for these new patients, whole-genome expression microarray analysis was performed to assess the molecular genetic changes in these families. Results Five new patients with classic symptoms were reported, and these individuals exhibited the same mutation as their relatives (c.812 G>C; c.611G>A; and c.680G>A). According to the whole genome expression results, the EEC patients exhibited different gene expression characteristics compared with the LMS patients. More than 5,000 genes were differentially expressed (changes >2 or <0.5-fold) among the EEC patients, LMS patients and healthy individuals. The top three altered pathways have been implicated in apoptosis, the hematopoietic cell lineage and the Toll-like receptor signaling pathway. Conclusion Our results provide additional clinical and molecular information regarding EEC and LMS and suggest that peripheral blood cytokines may represent a promising clinical biomarker for the diagnosis of these syndromes. PMID:26075610

  7. Orientia tsutsugamushi Stimulates an Original Gene Expression Program in Monocytes: Relationship with Gene Expression in Patients with Scrub Typhus

    PubMed Central

    Waywa, Duangdao; El Filali, Adil; Ghigo, Eric; Thongnoppakhun, Wanna; Raoult, Didier; Suputtamongkol, Yupin; Capo, Christian; Limwongse, Chanin; Mege, Jean-Louis

    2011-01-01

    Orientia tsutsugamushi is the causal agent of scrub typhus, a public health problem in the Asia-Pacific region and a life-threatening disease. O. tsutsugamushi is an obligate intracellular bacterium that mainly infects endothelial cells. We demonstrated here that O. tsutsugamushi also replicated in monocytes isolated from healthy donors. In addition, O. tsutsugamushi altered the expression of more than 4,500 genes, as demonstrated by microarray analysis. The expression of type I interferon, interferon-stimulated genes and genes associated with the M1 polarization of macrophages was significantly upregulated. O. tsutsugamushi also induced the expression of apoptosis-related genes and promoted cell death in a small percentage of monocytes. Live organisms were indispensable to the type I interferon response and apoptosis and enhanced the expression of M1-associated cytokines. These data were related to the transcriptional changes detected in mononuclear cells isolated from patients with scrub typhus. Here, the microarray analyses revealed the upregulation of 613 genes, which included interferon-related genes, and some features of M1 polarization were observed in these patients, similar to what was observed in O. tsutsugamushi-stimulated monocytes in vitro. This is the first report demonstrating that monocytes are clearly polarized in vitro and ex vivo following exposure to O. tsutsugamushi. These results would improve our understanding of the pathogenesis of scrub typhus, during which interferon-mediated activation of monocytes and their subsequent polarization into an M1 phenotype appear critical. This study may give us a clue of new tools for the diagnosis of patients with scrub typhus. PMID:21610853

  8. Endometriosis Gene Expression Heterogeneity and Biosignature: A Phylogenetic Analysis

    PubMed Central

    Abu-Asab, Mones; Zhang, Ming; Amini, Dennis; Abu-Asab, Nihad; Amri, Hakima

    2011-01-01

    Endometriosis is a multifactorial disease with poorly understood etiology, and reflecting an evolutionary nature where genetic alterations accumulate throughout pathogenesis. Our objective was to characterize the heterogeneous pathological process using parsimony phylogenetics. Gene expression microarray data of ovarian endometriosis obtained from NCBI database were polarized and coded into derived (abnormal) and ancestral (normal) states. Such alterations are referred to as synapomorphies in a phylogenetic sense (or biomarkers). Subsequent gene linkage was modeled by Genomatix BiblioSphere Pathway software. A list of clonally shared derived (abnormal) expressions revealed the pattern of heterogeneity among specimens. In addition, it has identified disruptions within the major regulatory pathways including those involved in cell proliferation, steroidogenesis, angiogenesis, cytoskeletal organization and integrity, and tumorigenesis, as well as cell adhesion and migration. Furthermore, the analysis supported the potential central involvement of ESR2 in the initiation of endometriosis. The pathogenesis mapping showed that eutopic and ectopic lesions have different molecular biosignatures. PMID:22203846

  9. Ribozymes, riboswitches and beyond: regulation of gene expression without proteins

    PubMed Central

    Serganov, Alexander; Patel, Dinshaw J.

    2015-01-01

    Although various functions of RNA are carried out in conjunction with proteins, some catalytic RNAs, or ribozymes, which contribute to a range of cellular processes, require little or no assistance from proteins. Furthermore, the discovery of metabolite-sensing riboswitches and other types of RNA sensors has revealed RNA-based mechanisms that cells use to regulate gene expression in response to internal and external changes. Structural studies have shown how these RNAs can carry out a range of functions. In addition, the contribution of ribozymes and riboswitches to gene expression is being revealed as far more widespread than was previously appreciated. These findings have implications for understanding how cellular functions might have evolved from RNA-based origins. PMID:17846637

  10. Cloning, expression and characterisation of a promising mosquitocidal gene.

    PubMed

    Zhang, Lingling; Huang, Enjiong; Gelbic, Ivan; Guan, Chunyu; Guan, Yi; Guan, Xiong

    2009-10-01

    A new mosquitocidal gene, cyt1Aa6, was isolated and cloned from the novel Bacillus thuringiensis strain LLP29, previously isolated from the phylloplane of Magnolia denudata. Nucleotide sequence analysis of cyt1Aa6 indicated that the open reading frame consisted of 750 base pairs, encoding 249 amino acid sequences with a calculated molecular weight of 27.3681 kDa and a PI value of 4.77. An homological comparison revealed that the cyt1Aa6 amino acid sequence was 99% identical with those of known Cyt1Aa proteins. In addition, the cyt1Aa6 gene was successfully expressed in Escherichia coli BL21. Bioassays on Aedes albopictus showed that Bt LLP29 and the expressed BL21 were both toxic to 3rd-instar mosquito larvae. The isolation of cyt1Aa6 provides new opportunities for selecting new strains and to obtain novel B. thuringiensis products based on its toxins. PMID:20112806

  11. ImmuCo: a database of gene co-expression in immune cells.

    PubMed

    Wang, Pingzhang; Qi, Huiying; Song, Shibin; Li, Shuang; Huang, Ningyu; Han, Wenling; Ma, Dalong

    2015-01-01

    Current gene co-expression databases and correlation networks do not support cell-specific analysis. Gene co-expression and expression correlation are subtly different phenomena, although both are likely to be functionally significant. Here, we report a new database, ImmuCo (http://immuco.bjmu.edu.cn), which is a cell-specific database that contains information about gene co-expression in immune cells, identifying co-expression and correlation between any two genes. The strength of co-expression of queried genes is indicated by signal values and detection calls, whereas expression correlation and strength are reflected by Pearson correlation coefficients. A scatter plot of the signal values is provided to directly illustrate the extent of co-expression and correlation. In addition, the database allows the analysis of cell-specific gene expression profile across multiple experimental conditions and can generate a list of genes that are highly correlated with the queried genes. Currently, the database covers 18 human cell groups and 10 mouse cell groups, including 20,283 human genes and 20,963 mouse genes. More than 8.6 × 10(8) and 7.4 × 10(8) probe set combinations are provided for querying each human and mouse cell group, respectively. Sample applications support the distinctive advantages of the database. PMID:25326331

  12. Iron-dependent gene expression in Actinomyces oris

    PubMed Central

    Mulé, Matthew P.; Giacalone, David; Lawlor, Kayla; Golden, Alexa; Cook, Caroline; Lott, Thomas; Aksten, Elizabeth; O'Toole, George A.; Bergeron, Lori J.

    2015-01-01

    Background Actinomyces oris is a Gram-positive bacterium that has been associated with healthy and diseased sites in the human oral cavity. Most pathogenic bacteria require iron to survive, and in order to acquire iron in the relatively iron-scarce oral cavity A. oris has been shown to produce iron-binding molecules known as siderophores. The genes encoding these siderophores and transporters are thought to be regulated by the amount of iron in the growth medium and by the metal-dependent repressor, AmdR, which we showed previously binds to the promoter of proposed iron-regulated genes. Objective The purpose of this study was to characterize siderophore and associated iron transport systems in A. oris. Design We examined gene expression of the putative iron transport genes fetA and sidD in response to low- and high-iron environments. One of these genes, sidD, encoding a putative Fe ABC transporter protein, was insertionally inactivated and was examined for causing growth defects. To gain a further understanding of the role of iron metabolism in oral diseases, clinical isolates of Actinomyces spp. were examined for the presence of the gene encoding AmdR, a proposed global regulator of iron-dependent gene expression in A. oris. Results When A. oris was grown under iron-limiting conditions, the genes encoding iron/siderophore transporters fetA and sidD showed increased expression. One of these genes (sidD) was mutated, and the sidD::Km strain exhibited a 50% reduction in growth in late log and stationary phase cells in media that contained iron. This growth defect was restored when the sidD gene was provided in a complemented strain. We were able to isolate the AmdR-encoding gene in seven clinical isolates of Actinomyces. When these protein sequences were aligned to the laboratory strain, there was a high degree of sequence similarity. Conclusions The growth of the sidD::Km mutant in iron-replete medium mirrored the growth of the wild-type strain grown in iron

  13. Gut microbiota, host gene expression, and aging.

    PubMed

    Patrignani, Paola; Tacconelli, Stefania; Bruno, Annalisa

    2014-01-01

    Novel concepts of disease susceptibility and development suggest an important role of gastrointestinal microbiota and microbial pathogens. They can contribute to physiological systems and disease processes, even outside of the gastrointestinal tract. There is increasing evidence that genetics of the host influence and interact with gut microbiota. Moreover, aging-associated oxidative stress may cause morphologic alterations of bacterial cells, thus influencing the aggressive potential and virulence markers of an anaerobic bacterium and finally the type of interaction with the host. At the same time, microbiota may influence host gene expression and it is becoming apparent that it may occur through the regulation of microRNAs. They are short single-stranded noncoding RNAs that regulate posttranscriptional gene expression by affecting mRNA stability and/or translational repression of their target mRNAs. The introduction of -omics approaches (such as metagenomics, metaproteomics, and metatranscriptomics) in microbiota research will certainly advance our knowledge of this area. This will lead to greatly deepen our understanding of the molecular targets in the homeostatic interaction between the gut microbiota and the host and, thereby, promises to reveal new ways to treat diseases and maintain health. PMID:25291121

  14. Carotenoid composition and carotenogenic gene expression during Ipomoea petal development

    PubMed Central

    Yamamizo, Chihiro; Kishimoto, Sanae; Ohmiya, Akemi

    2010-01-01

    Japanese morning glory (Ipomoea nil) is a representative plant lacking a yellow-flowered cultivar, although a few wild Ipomoea species contain carotenoids in their petals such as Ipomoea sp. (yellow petals) and I. obscura (pale-yellow petals). In the present study, carotenoid composition and the expression patterns of carotenogenic genes during petal development were compared among I. nil, I. obscura, and Ipomoea sp. to identify the factors regulating carotenoid accumulation in Ipomoea plant petals. In the early stage, the carotenoid composition in petals of all the Ipomoea plants tested was the same as in the leaves mainly showing lutein, violaxanthin, and β-carotene (chloroplast-type carotenoids). However, in fully opened flowers, chloroplast-type carotenoids were entirely absent in I. nil, whereas they were present in trace amounts in the free form in I. obscura. At the late stage of petal development in Ipomoea sp., the majority of carotenoids were β-cryptoxanthin, zeaxanthin, and β-carotene (chromoplast-type carotenoids). In addition, most of them were present in the esterified form. Carotenogenic gene expression was notably lower in I. nil than in Ipomoea sp. In particular, β-ring hydroxylase (CHYB) was considerably suppressed in petals of both I. nil and I. obscura. The CHYB expression was found to be significantly high in the petals of Ipomoea sp. during the synthesis of chromoplast-type carotenoids. The expression levels of carotenoid cleavage genes (CCD1 and CCD4) were not correlated with the amount of carotenoids in petals. These results suggest that both I. obscura and I. nil lack the ability to synthesize chromoplast-type carotenoids because of the transcriptional down-regulation of carotenogenic genes. CHYB, an enzyme that catalyses the addition of a hydroxyl residue required for esterification, was found to be a key enzyme for the accumulation of chromoplast-type carotenoids in petals. PMID:19933319

  15. Identification of genes associated with renal cell carcinoma using gene expression profiling analysis

    PubMed Central

    YAO, TING; WANG, QINFU; ZHANG, WENYONG; BIAN, AIHONG; ZHANG, JINPING

    2016-01-01

    Renal cell carcinoma (RCC) is the most common type of kidney cancer in adults and accounts for ~80% of all kidney cancer cases. However, the pathogenesis of RCC has not yet been fully elucidated. To interpret the pathogenesis of RCC at the molecular level, gene expression data and bio-informatics methods were used to identify RCC associated genes. Gene expression data was downloaded from Gene Expression Omnibus (GEO) database and identified differentially coexpressed genes (DCGs) and dysfunctional pathways in RCC patients compared with controls. In addition, a regulatory network was constructed using the known regulatory data between transcription factors (TFs) and target genes in the University of California Santa Cruz (UCSC) Genome Browser (http://genome.ucsc.edu) and the regulatory impact factor of each TF was calculated. A total of 258,0427 pairs of DCGs were identified. The regulatory network contained 1,525 pairs of regulatory associations between 126 TFs and 1,259 target genes and these genes were mainly enriched in cancer pathways, ErbB and MAPK. In the regulatory network, the 10 most strongly associated TFs were FOXC1, GATA3, ESR1, FOXL1, PATZ1, MYB, STAT5A, EGR2, EGR3 and PELP1. GATA3, ERG and MYB serve important roles in RCC while FOXC1, ESR1, FOXL1, PATZ1, STAT5A and PELP1 may be potential genes associated with RCC. In conclusion, the present study constructed a regulatory network and screened out several TFs that may be used as molecular biomarkers of RCC. However, future studies are needed to confirm the findings of the present study. PMID:27347102

  16. Neutrophil gene expression in rheumatoid arthritis.

    PubMed

    Cross, Andrew; Bakstad, Denise; Allen, John C; Thomas, Luke; Moots, Robert J; Edwards, Steven W

    2005-10-01

    There is now a growing awareness that infiltrating neutrophils play an important role in the molecular pathology of rheumatoid arthritis. In part, this arises from the fact that neutrophils have potent cytotoxic activity, but additionally from the fact that inflammatory neutrophils can generate a number of cytokines and chemokines that can have a direct influence on the progress of an inflammatory episode. Furthermore, the molecular properties of inflammatory neutrophils are quite different from those normally found in the circulation. For example, inflammatory neutrophils, but not blood neutrophils, can express cell surface receptors (such as MHC Class II molecules and FcgammaRI) that dramatically alter the way in which these cells can interact with ligands to modulate immune function. Cytokine/chemokine expression and surface expression of these novel cell surface receptors is dependent upon the neutrophil responding to local environmental factors to selectively up-regulate the expression of key cellular components via signalling pathways coupled to transcriptional activation. However, major changes in the expression levels of some proteins are also regulated by post-translational modifications that alter rates of proteolysis, and hence changes in the steady-state levels of these molecules. PMID:16112850

  17. Deletion and Gene Expression Analyses Define the Paxilline Biosynthetic Gene Cluster in Penicillium paxilli

    PubMed Central

    Scott, Barry; Young, Carolyn A.; Saikia, Sanjay; McMillan, Lisa K.; Monahan, Brendon J.; Koulman, Albert; Astin, Jonathan; Eaton, Carla J.; Bryant, Andrea; Wrenn, Ruth E.; Finch, Sarah C.; Tapper, Brian A.; Parker, Emily J.; Jameson, Geoffrey B.

    2013-01-01

    The indole-diterpene paxilline is an abundant secondary metabolite synthesized by Penicillium paxilli. In total, 21 genes have been identified at the PAX locus of which six have been previously confirmed to have a functional role in paxilline biosynthesis. A combination of bioinformatics, gene expression and targeted gene replacement analyses were used to define the boundaries of the PAX gene cluster. Targeted gene replacement identified seven genes, paxG, paxA, paxM, paxB, paxC, paxP and paxQ that were all required for paxilline production, with one additional gene, paxD, required for regular prenylation of the indole ring post paxilline synthesis. The two putative transcription factors, PP104 and PP105, were not co-regulated with the pax genes and based on targeted gene replacement, including the double knockout, did not have a role in paxilline production. The relationship of indole dimethylallyl transferases involved in prenylation of indole-diterpenes such as paxilline or lolitrem B, can be found as two disparate clades, not supported by prenylation type (e.g., regular or reverse). This paper provides insight into the P. paxilli indole-diterpene locus and reviews the recent advances identified in paxilline biosynthesis. PMID:23949005

  18. Atlas of gene expression in the developing kidney at microanatomic resolution.

    PubMed

    Brunskill, Eric W; Aronow, Bruce J; Georgas, Kylie; Rumballe, Bree; Valerius, M Todd; Aronow, Jeremy; Kaimal, Vivek; Jegga, Anil G; Yu, Jing; Grimmond, Sean; McMahon, Andrew P; Patterson, Larry T; Little, Melissa H; Potter, S Steven

    2008-11-01

    Kidney development is based on differential cell-type-specific expression of a vast number of genes. While multiple critical genes and pathways have been elucidated, a genome-wide analysis of gene expression within individual cellular and anatomic structures is lacking. Accomplishing this could provide significant new insights into fundamental developmental mechanisms such as mesenchymal-epithelial transition, inductive signaling, branching morphogenesis, and segmentation. We describe here a comprehensive gene expression atlas of the developing mouse kidney based on the isolation of each major compartment by either laser capture microdissection or fluorescence-activated cell sorting, followed by microarray profiling. The resulting data agree with known expression patterns and additional in situ hybridizations. This kidney atlas allows a comprehensive analysis of the progression of gene expression states during nephrogenesis, as well as discovery of potential growth factor-receptor interactions. In addition, the results provide deeper insight into the genetic regulatory mechanisms of kidney development. PMID:19000842

  19. Bioluminescent reporters for catabolic gene expression and pollutant bioavailability

    SciTech Connect

    Heitzer, A.; DiGrazia, P.M.; Sayler, G.S. . Center for Environmental Biotechnology); Burlage, R.S. )

    1991-01-01

    The application of visualized catabolic nah-gene expression using a luxCDABE gene fusion provides a valuable method to measure quantitatively and specifically naphthalene and salicylate bioavailability. It has been demonstrated that the physiological state of the test culture together with the intrinsic regulation mechanisms of the naphthalene degradation pathway as well as the physiological aspects of the lux gene fusion have to be taken into account. The method presented provides a high potential for in situ bioprocess monitoring. In addition, the results obtained with immobilized cells provide a basis for the development of biosensors for environmental applications in specific pollutant monitoring in waste streams and soil slurry systems but, as a general method, also for more conventional biotechnological process control. 8 refs., 2 figs., 1 tab.

  20. Coactivators in PPAR-Regulated Gene Expression

    PubMed Central

    Viswakarma, Navin; Jia, Yuzhi; Bai, Liang; Vluggens, Aurore; Borensztajn, Jayme; Xu, Jianming; Reddy, Janardan K.

    2010-01-01

    Peroxisome proliferator-activated receptor (PPAR)α, β (also known as δ), and γ function as sensors for fatty acids and fatty acid derivatives and control important metabolic pathways involved in the maintenance of energy balance. PPARs also regulate other diverse biological processes such as development, differentiation, inflammation, and neoplasia. In the nucleus, PPARs exist as heterodimers with retinoid X receptor-α bound to DNA with corepressor molecules. Upon ligand activation, PPARs undergo conformational changes that facilitate the dissociation of corepressor molecules and invoke a spatiotemporally orchestrated recruitment of transcription cofactors including coactivators and coactivator-associated proteins. While a given nuclear receptor regulates the expression of a prescribed set of target genes, coactivators are likely to influence the functioning of many regulators and thus affect the transcription of many genes. Evidence suggests that some of the coactivators such as PPAR-binding protein (PBP/PPARBP), thyroid hormone receptor-associated protein 220 (TRAP220), and mediator complex subunit 1 (MED1) may exert a broader influence on the functions of several nuclear receptors and their target genes. Investigations into the role of coactivators in the function of PPARs should strengthen our understanding of the complexities of metabolic diseases associated with energy metabolism. PMID:20814439

  1. Posttranscriptional Control of Gene Expression in Yeast

    PubMed Central

    McCarthy, John E. G.

    1998-01-01

    Studies of the budding yeast Saccharomyces cerevisiae have greatly advanced our understanding of the posttranscriptional steps of eukaryotic gene expression. Given the wide range of experimental tools applicable to S. cerevisiae and the recent determination of its complete genomic sequence, many of the key challenges of the posttranscriptional control field can be tackled particularly effectively by using this organism. This article reviews the current knowledge of the cellular components and mechanisms related to translation and mRNA decay, with the emphasis on the molecular basis for rate control and gene regulation. Recent progress in characterizing translation factors and their protein-protein and RNA-protein interactions has been rapid. Against the background of a growing body of structural information, the review discusses the thermodynamic and kinetic principles that govern the translation process. As in prokaryotic systems, translational initiation is a key point of control. Modulation of the activities of translational initiation factors imposes global regulation in the cell, while structural features of particular 5′ untranslated regions, such as upstream open reading frames and effector binding sites, allow for gene-specific regulation. Recent data have revealed many new details of the molecular mechanisms involved while providing insight into the functional overlaps and molecular networking that are apparently a key feature of evolving cellular systems. An overall picture of the mechanisms governing mRNA decay has only very recently begun to develop. The latest work has revealed new information about the mRNA decay pathways, the components of the mRNA degradation machinery, and the way in which these might relate to the translation apparatus. Overall, major challenges still to be addressed include the task of relating principles of posttranscriptional control to cellular compartmentalization and polysome structure and the role of molecular channelling

  2. A comparative analysis of biclustering algorithms for gene expression data.

    PubMed

    Eren, Kemal; Deveci, Mehmet; Küçüktunç, Onur; Çatalyürek, Ümit V

    2013-05-01

    The need to analyze high-dimension biological data is driving the development of new data mining methods. Biclustering algorithms have been successfully applied to gene expression data to discover local patterns, in which a subset of genes exhibit similar expression levels over a subset of conditions. However, it is not clear which algorithms are best suited for this task. Many algorithms have been published in the past decade, most of which have been compared only to a small number of algorithms. Surveys and comparisons exist in the literature, but because of the large number and variety of biclustering algorithms, they are quickly outdated. In this article we partially address this problem of evaluating the strengths and weaknesses of existing biclustering methods. We used the BiBench package to compare 12 algorithms, many of which were recently published or have not been extensively studied. The algorithms were tested on a suite of synthetic data sets to measure their performance on data with varying conditions, such as different bicluster models, varying noise, varying numbers of biclusters and overlapping biclusters. The algorithms were also tested on eight large gene expression data sets obtained from the Gene Expression Omnibus. Gene Ontology enrichment analysis was performed on the resulting biclusters, and the best enrichment terms are reported. Our analyses show that the biclustering method and its parameters should be selected based on the desired model, whether that model allows overlapping biclusters, and its robustness to noise. In addition, we observe that the biclustering algorithms capable of finding more than one model are more successful at capturing biologically relevant clusters. PMID:22772837

  3. Distinct Requirements for Somatic and Germline Expression of a Generally Expressed Caernorhabditis Elegans Gene

    PubMed Central

    Kelly, W. G.; Xu, S.; Montgomery, M. K.; Fire, A.

    1997-01-01

    In screening for embryonic-lethal mutations in Caenorhabditis elegans, we defined an essential gene (let-858) that encodes a nuclear protein rich in acidic and basic residues. We have named this product nucampholin. Closely homologous sequences in yeast, plants, and mammals demonstrate strong evolutionary conservation in eukaryotes. Nucampholin resides in all nuclei of C. elegans and is essential in early development and in differentiating tissue. Antisense-mediated depletion of LET-858 activity in early embryos causes a lethal phenotype similar to characterized treatments blocking embryonic gene expression. Using transgene-rescue, we demonstrated the additional requirement for let-858 in the larval germline. The broad requirements allowed investigation of soma-germline differences in gene expression. When introduced into standard transgene arrays, let-858 (like many other C. elegans genes) functions well in soma but poorly in germline. We observed incremental silencing of simple let-858 arrays in the first few generations following transformation and hypothesized that silencing might reflect recognition of arrays as repetitive or heterochromatin-like. To give the transgene a more physiological context, we included an excess of random genomic fragments with the injected DNA. The resulting transgenes show robust expression in both germline and soma. Our results suggest the possibility of concerted mechanisms for silencing unwanted germline expression of repetitive sequences. PMID:9136012

  4. A Gene Co-Expression Network in Whole Blood of Schizophrenia Patients Is Independent of Antipsychotic-Use and Enriched for Brain-Expressed Genes

    PubMed Central

    de Jong, Simone; Boks, Marco P. M.; Fuller, Tova F.; Strengman, Eric; Janson, Esther; de Kovel, Carolien G. F.; Ori, Anil P. S.; Vi, Nancy; Mulder, Flip; Blom, Jan Dirk; Glenthøj, Birte; Schubart, Chris D.; Cahn, Wiepke; Kahn, René S.; Horvath, Steve; Ophoff, Roel A.

    2012-01-01

    Despite large-scale genome-wide association studies (GWAS), the underlying genes for schizophrenia are largely unknown. Additional approaches are therefore required to identify the genetic background of this disorder. Here we report findings from a large gene expression study in peripheral blood of schizophrenia patients and controls. We applied a systems biology approach to genome-wide expression data from whole blood of 92 medicated and 29 antipsychotic-free schizophrenia patients and 118 healthy controls. We show that gene expression profiling in whole blood can identify twelve large gene co-expression modules associated with schizophrenia. Several of these disease related modules are likely to reflect expression changes due to antipsychotic medication. However, two of the disease modules could be replicated in an independent second data set involving antipsychotic-free patients and controls. One of these robustly defined disease modules is significantly enriched with brain-expressed genes and with genetic variants that were implicated in a GWAS study, which could imply a causal role in schizophrenia etiology. The most highly connected intramodular hub gene in this module (ABCF1), is located in, and regulated by the major histocompatibility (MHC) complex, which is intriguing in light of the fact that common allelic variants from the MHC region have been implicated in schizophrenia. This suggests that the MHC increases schizophrenia susceptibility via altered gene expression of regulatory genes in this network. PMID:22761806

  5. Social regulation of gene expression in human leukocytes

    PubMed Central

    Cole, Steve W; Hawkley, Louise C; Arevalo, Jesusa M; Sung, Caroline Y; Rose, Robert M; Cacioppo, John T

    2007-01-01

    Background Social environmental influences on human health are well established in the epidemiology literature, but their functional genomic mechanisms are unclear. The present study analyzed genome-wide transcriptional activity in people who chronically experienced high versus low levels of subjective social isolation (loneliness) to assess alterations in the activity of transcription control pathways that might contribute to increased adverse health outcomes in social isolates. Results DNA microarray analysis identified 209 genes that were differentially expressed in circulating leukocytes from 14 high- versus low-lonely individuals, including up-regulation of genes involved in immune activation, transcription control, and cell proliferation, and down-regulation of genes supporting mature B lymphocyte function and type I interferon response. Promoter-based bioinformatic analyses showed under-expression of genes bearing anti-inflammatory glucocorticoid response elements (GREs; p = 0.032) and over-expression of genes bearing response elements for pro-inflammatory NF-κB/Rel transcription factors (p = 0.011). This reciprocal shift in pro- and anti-inflammatory signaling was not attributable to differences in circulating cortisol levels, or to other demographic, psychological, or medical characteristics. Additional transcription control pathways showing differential activity in bioinformatic analyses included the CREB/ATF, JAK/STAT, IRF1, C/EBP, Oct, and GATA pathways. Conclusion These data provide the first indication that human genome-wide transcriptional activity is altered in association with a social epidemiological risk factor. Impaired transcription of glucocorticoid response genes and increased activity of pro-inflammatory transcription control pathways provide a functional genomic explanation for elevated risk of inflammatory disease in individuals who experience chronically high levels of subjective social isolation. PMID:17854483

  6. Microbiota diversity and gene expression dynamics in human oral biofilms

    PubMed Central

    2014-01-01

    Background Micro-organisms inhabiting teeth surfaces grow on biofilms where a specific and complex succession of bacteria has been described by co-aggregation tests and DNA-based studies. Although the composition of oral biofilms is well established, the active portion of the bacterial community and the patterns of gene expression in vivo have not been studied. Results Using RNA-sequencing technologies, we present the first metatranscriptomic study of human dental plaque, performed by two different approaches: (1) A short-reads, high-coverage approach by Illumina sequencing to characterize the gene activity repertoire of the microbial community during biofilm development; (2) A long-reads, lower-coverage approach by pyrosequencing to determine the taxonomic identity of the active microbiome before and after a meal ingestion. The high-coverage approach allowed us to analyze over 398 million reads, revealing that microbial communities are individual-specific and no bacterial species was detected as key player at any time during biofilm formation. We could identify some gene expression patterns characteristic for early and mature oral biofilms. The transcriptomic profile of several adhesion genes was confirmed through qPCR by measuring expression of fimbriae-associated genes. In addition to the specific set of gene functions overexpressed in early and mature oral biofilms, as detected through the short-reads dataset, the long-reads approach detected specific changes when comparing the metatranscriptome of the same individual before and after a meal, which can narrow down the list of organisms responsible for acid production and therefore potentially involved in dental caries. Conclusions The bacteria changing activity during biofilm formation and after meal ingestion were person-specific. Interestingly, some individuals showed extreme homeostasis with virtually no changes in the active bacterial population after food ingestion, suggesting the presence of a microbial

  7. Limitations of allotopic expression of mitochondrial genes in mammalian cells.

    PubMed Central

    Oca-Cossio, Jose; Kenyon, Lesley; Hao, Huiling; Moraes, Carlos T

    2003-01-01

    The possibility of expressing mitochondrial DNA-coded genes in the nuclear-cytoplasmic compartment provides an attractive system for genetic treatment of mitochondrial disorders associated with mitochondrial DNA mutations. In theory, by recoding mitochondrial genes to adapt them to the universal genetic code and by adding a DNA sequence coding for a mitochondrial-targeting sequence, one could achieve correct localization of the gene product. Such transfer has occurred in nature, and certain species of algae and plants express a number of polypeptides that are commonly coded by mtDNA in the nuclear-cytoplasmic compartment. In the present study, allotopic expression of three different mtDNA-coded polypeptides (ATPase8, apocytochrome b, and ND4) into COS-7 and HeLa cells was analyzed. Among these, only ATPase8 was correctly expressed and localized to mitochondria. The full-length, as well as truncated forms, of apocytochrome b and ND4 decorated the periphery of mitochondria, but also aggregated in fiber-like structures containing tubulin and in some cases also vimentin. The addition of a hydrophilic tail (EGFP) to the C terminus of these polypeptides did not change their localization. Overexpression of molecular chaperones also did not have a significant effect in preventing aggregations. Allotopic expression of apocytochrome b and ND4 induced a loss of mitochondrial membrane potential in transfected cells, which can lead to cell death. Our observations suggest that only a subset of mitochondrial genes can be replaced allotopically. Analyses of the hydrophobic patterns of different polypeptides suggest that hydrophobicity of the N-terminal segment is the main determinant for the importability of peptides into mammalian mitochondria. PMID:14573482

  8. Screening of Key Genes in Severe Burn Injury at Different Stages via Analyzing Gene Expression Data.

    PubMed

    Li, Zhihong; Wang, Qihong; Yu, Haifeng; Zou, Kun; Xi, Yong; Mi, Wenxin; Ma, Yindong

    2016-01-01

    Microarray analysis was performed to investigate the changes in gene expression profiles after severe burn injury at the early and middle stages, further discovering therapeutic targets for severe burn injury. Microarray data (GSE19743) were downloaded from Gene Expression Omnibus. First, differentially expressed genes (DEGs) at different stages were screened using limma package. Gene Ontology (GO) functional annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis of DEGs were then performed using DAVID. Protein-protein interaction (PPI) networks were also constructed using String database. Additionally, transcription factor binding site was detected using the Whole-Genome rVISTA. Compared with the healthy controls, 160 DEGs were identified in patients with early-stage burn injury and 261 DEGs were obtained in patients with middle-stage burn injury. Only 10 genes showed differential expression between the early and middle stages. KEGG functional analysis indicated that DEGs detected at the early stage were mainly enriched in the immune response, kinase activity, and signaling pathways and DEGs detected at the middle stage were involved in the immune response, protein and fat metabolism, and programmed cell death pathways. Three PPI networks were constructed and hub proteins with high degrees of connection were screened, such as lactotransferrin, interleukin 8, and perforin-1. Additionally, many transcription factor binding sites that may be involved in the regulation of these DEGs were also detected. A number of DEGs were identified in patients with early- and middle-stage burn injury, which helps to deepen the understanding about the molecular mechanism underlying severe burn injury. PMID:25412053

  9. An Introductory Bioinformatics Exercise to Reinforce Gene Structure and Expression and Analyze the Relationship between Gene and Protein Sequences

    ERIC Educational Resources Information Center

    Almeida, Craig A.; Tardiff, Daniel F.; De Luca, Jane P.

    2004-01-01

    We have developed an introductory bioinformatics exercise for sophomore biology and biochemistry students that reinforces the understanding of the structure of a gene and the principles and events involved in its expression. In addition, the activity illustrates the severe effect mutations in a gene sequence can have on the protein product.…

  10. GEE: An Informatics Tool for Gene Expression Data Explore

    PubMed Central

    Lee, Soo Youn; Park, Chan Hee; Yoon, Jun Hee; Yun, Sunmin

    2016-01-01

    Objectives Major public high-throughput functional genomic data repositories, including the Gene Expression Omnibus (GEO) and ArrayExpress have rapidly expanded. As a result, a large number of diverse high-throughput functional genomic data retrieval systems have been developed. However, high-throughput functional genomic data retrieval remains challenging. Methods We developed Gene Expression data Explore (GEE), the first powerful, flexible web and mobile search application for searching whole-genome epigenetic data and microarray data in public databases, such as GEO and ArrayExpress. Results GEE provides an elaborate, convenient interface of query generation competences not available via various high-throughput functional genomic data retrieval systems, including GEO, ArrayExpress, and Atlas. In particular, GEE provides a suitable query generator using eVOC, the Experimental Factor Ontology (EFO), which is well represented with a variety of high-throughput functional genomic data experimental conditions. In addition, GEE provides an experimental design query constructor (EDQC), which provides elaborate retrieval filter conditions when the user designs real experiments. Conclusions The web version of GEE is available at http://www.snubi.org/software/gee, and its app version is available from the Apple App Store. PMID:27200217

  11. Gene expression profiling analysis of osteosarcoma cell lines

    PubMed Central

    SUN, LU; LI, JIE; YAN, BING

    2015-01-01

    Osteosarcoma (OS) is the most common type of primary bone malignancy and has a poor prognosis. To investigate the mechanisms of osteosarcoma, the present analyzed the GSE28424 microarray. GSE28424 was downloaded from the Gene Expression Omnibus, and included a collective of 19 OS cell lines and four normal bone cell lines, which were used as controls. Subsequently, the differentially expressed genes (DEGs) were screened using the Limma package in Bioconductor. Gene Ontology (GO) and pathway enrichment analysis of the DEGs was performed using the Database for Annotation, Visualization and Integrated Discovery, interactions between the proteins encoded by the DEGs were identified using STRING, and the protein-protein interaction (PPI) network was visualized using Cytoscape. In addition, modular analysis of the PPI network was performed using the Clique Percolation Method (CPM) in CFinder. A total of 1,170 DEGs were screened, including 530 upreguated and 640 downregulated genes. The enriched functions included organelle fission, immune response and response to wounding. In addition, RPL8 was observed to be involved with the ribosomal pathway in module A of the PPI network of the DEGs. PLCG1, SYK and PLCG2 were also involved in the B-cell receptor signaling pathway in module B and the Fc-epsilon RI signaling pathway in module C. In addition, AURKA (degree=39), MAD2L1 (degree=38), CDCA8 (degree=38), BUB1 (degree=37) and MELK (degree=37) exhibited higher degrees of connectivity in module F. The results of the present study suggested that the RPL8, PLCG1, PLCG2, SYK, MAD2L1, AURKA, CDCA8, BUB1 and MELK genes may be involved in OS. PMID:26096802

  12. Gene expression profiling analysis of osteosarcoma cell lines.

    PubMed

    Sun, Lu; Li, Jie; Yan, Bing

    2015-09-01

    Osteosarcoma (OS) is the most common type of primary bone malignancy and has a poor prognosis. To investigate the mechanisms of osteosarcoma, the present analyzed the GSE28424 microarray. GSE28424 was downloaded from the Gene Expression Omnibus, and included a collective of 19 OS cell lines and four normal bone cell lines, which were used as controls. Subsequently, the differentially expressed genes (DEGs) were screened using the Limma package in Bioconductor. Gene Ontology (GO) and pathway enrichment analysis of the DEGs was performed using the Database for Annotation, Visualization and Integrated Discovery, interactions between the proteins encoded by the DEGs were identified using STRING, and the protein‑protein interaction (PPI) network was visualized using Cytoscape. In addition, modular analysis of the PPI network was performed using the Clique Percolation Method (CPM) in CFinder. A total of 1,170 DEGs were screened, including 530 upreguated and 640 downregulated genes. The enriched functions included organelle fission, immune response and response to wounding. In addition, RPL8 was observed to be involved with the ribosomal pathway in module A of the PPI network of the DEGs. PLCG1, SYK and PLCG2 were also involved in the B‑cell receptor signaling pathway in module B and the Fc‑epsilon RI signaling pathway in module C. In addition, AURKA (degree=39), MAD2L1 (degree=38), CDCA8 (degree=38), BUB1 (degree=37) and MELK (degree=37) exhibited higher degrees of connectivity in module F. The results of the present study suggested that the RPL8, PLCG1, PLCG2, SYK, MAD2L1, AURKA, CDCA8, BUB1 and MELK genes may be involved in OS. PMID:26096802

  13. Sequence Determinants of Circadian Gene Expression Phase in Cyanobacteria

    PubMed Central

    Vijayan, Vikram

    2013-01-01

    The cyanobacterium Synechococcus elongatus PCC 7942 exhibits global biphasic circadian oscillations in gene expression under constant-light conditions. Class I genes are maximally expressed in the subjective dusk, whereas class II genes are maximally expressed in the subjective dawn. Here, we identify sequence features that encode the phase of circadian gene expression. We find that, for multiple genes, an ∼70-nucleotide promoter fragment is sufficient to specify class I or II phase. We demonstrate that the gene expression phase can be changed by random mutagenesis and that a single-nucleotide substitution is sufficient to change the phase. Our study provides insight into how the gene expression phase is encoded in the cyanobacterial genome. PMID:23204469

  14. Exogenous isoprene modulates gene expression in unstressed Arabidopsis thaliana plants.

    PubMed

    Harvey, Christopher M; Sharkey, Thomas D

    2016-06-01

    Isoprene is a well-studied volatile hemiterpene that protects plants from abiotic stress through mechanisms that are not fully understood. The antioxidant and membrane stabilizing potential of isoprene are the two most commonly invoked mechanisms. However, isoprene also affects phenylpropanoid metabolism, suggesting an additional role as a signalling molecule. In this study, microarray-based gene expression profiling reveals transcriptional reprogramming of Arabidopsis thaliana plants fumigated for 24 h with a physiologically relevant concentration of isoprene. Functional enrichment analysis of fumigated plants revealed enhanced heat- and light-stress-responsive processes in response to isoprene. Isoprene induced a network enriched in ERF and WRKY transcription factors, which may play a role in stress tolerance. The isoprene-induced up-regulation of phenylpropanoid biosynthetic genes was specifically confirmed using quantitative reverse transcription polymerase chain reaction. These results support a role for isoprene as a signalling molecule, in addition to its possible roles as an antioxidant and membrane thermoprotectant. PMID:26477606

  15. Modeling gene expression using chromatin features in various cellular contexts

    PubMed Central

    2012-01-01

    Background Previous work has demonstrated that chromatin feature levels correlate with gene expression. The ENCODE project enables us to further explore this relationship using an unprecedented volume of data. Expression levels from more than 100,000 promoters were measured using a variety of high-throughput techniques applied to RNA extracted by different protocols from different cellular compartments of several human cell lines. ENCODE also generated the genome-wide mapping of eleven histone marks, one histone variant, and DNase I hypersensitivity sites in seven cell lines. Results We built a novel quantitative model to study the relationship between chromatin features and expression levels. Our study not only confirms that the general relationships found in previous studies hold across various cell lines, but also makes new suggestions about the relationship between chromatin features and gene expression levels. We found that expression status and expression levels can be predicted by different groups of chromatin features, both with high accuracy. We also found that expression levels measured by CAGE are better predicted than by RNA-PET or RNA-Seq, and different categories of chromatin features are the most predictive of expression for different RNA measurement methods. Additionally, PolyA+ RNA is overall more predictable than PolyA- RNA among different cell compartments, and PolyA+ cytosolic RNA measured with RNA-Seq is more predictable than PolyA+ nuclear RNA, while the opposite is true for PolyA- RNA. Conclusions Our study provides new insights into transcriptional regulation by analyzing chromatin features in different cellular contexts. PMID:22950368

  16. Systematic determination of patterns of gene expression during Drosophila embryogenesis

    PubMed Central

    Tomancak, Pavel; Beaton, Amy; Weiszmann, Richard; Kwan, Elaine; Shu, ShengQiang; Lewis, Suzanna E; Richards, Stephen; Ashburner, Michael; Hartenstein, Volker; Celniker, Susan E; Rubin, Gerald M

    2002-01-01

    Background Cell-fate specification and tissue differentiation during development are largely achieved by the regulation of gene transcription. Results As a first step to creating a comprehensive atlas of gene-expression patterns during Drosophila embryogenesis, we examined 2,179 genes by in situ hybridization to fixed Drosophila embryos. Of the genes assayed, 63.7% displayed dynamic expression patterns that were documented with 25,690 digital photomicrographs of individual embryos. The photomicrographs were annotated using controlled vocabularies for anatomical structures that are organized into a developmental hierarchy. We also generated a detailed time course of gene expression during embryogenesis using microarrays to provide an independent corroboration of the in situ hybridization results. All image, annotation and microarray data are stored in publicly available database. We found that the RNA transcripts of about 1% of genes show clear subcellular localization. Nearly all the annotated expression patterns are distinct. We present an approach for organizing the data by hierarchical clustering of annotation terms that allows us to group tissues that express similar sets of genes as well as genes displaying similar expression patterns. Conclusions Analyzing gene-expression patterns by in situ hybridization to whole-mount embryos provides an extremely rich dataset that can be used to identify genes involved in developmental processes that have been missed by traditional genetic analysis. Systematic analysis of rigorously annotated patterns of gene expression will complement and extend the types of analyses carried out using expression microarrays. PMID:12537577

  17. Gene Expression patterns in cryogenically stored Arabidopsis thaliana shoot tips

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The genes expressed in response to cryostress in plant shoot tips are not known. In this project we compared the gene expression patterns in untreated, cryoprotectant-treated, and recovering shoot tips using differential display methods. This project identified two genes that appeared to be differ...

  18. Gene expression changes in venous segment of overflow arteriovenous fistula.

    PubMed

    Hashimoto, Yasuhiro; Okamoto, Akiko; Saitoh, Hisao; Hatakeyama, Shingo; Yoneyama, Takahiro; Koie, Takuya; Ohyama, Chikara

    2013-01-01

    Aim. The objective of this study was to characterize coordinated molecular changes in the structure and composition of the walls of venous segments of arteriovenous (AV) fistulas evoked by overflow. Methods. Venous tissue samples were collected from 6 hemodialysis patients with AV fistulas exposed to overflow and from the normal cephalic veins of 4 other hemodialysis patients. Total RNA was extracted from the venous tissue samples, and gene expression between the 2 groups was compared using Whole Human Genome DNA microarray 44 K. Microarray data were analyzed by GeneSpring GX software and Ingenuity Pathway Analysis. Results. The cDNA microarray analysis identified 397 upregulated genes and 456 downregulated genes. Gene ontology analysis with GeneSpring GX software revealed that biological developmental processes and glycosaminoglycan binding were the most upregulated. In addition, most upregulation occurred extracellularly. In the pathway analysis, the TGF beta signaling pathway, cytokines and inflammatory response pathway, hypertrophy model, and the myometrial relaxation and contraction pathway were significantly upregulated compared with the control cephalic vein. Conclusion. Combining microarray results and pathway information available via the Internet provided biological insight into the structure and composition of the venous wall of overflow AV fistulas. PMID:23710358

  19. dBRWD3 Regulates Tissue Overgrowth and Ectopic Gene Expression Caused by Polycomb Group Mutations.

    PubMed

    Shih, Hsueh-Tzu; Chen, Wei-Yu; Liu, Kwei-Yan; Shih, Zong-Siou; Chen, Yi-Jyun; Hsieh, Paul-Chen; Kuo, Kuan-Lin; Huang, Kuo-How; Hsu, Pang-Hung; Liu, Ya-Wen; Chan, Shih-Peng; Lee, Hsiu-Hsiang; Tsai, Yu-Chen; Wu, June-Tai

    2016-09-01

    To maintain a particular cell fate, a unique set of genes should be expressed while another set is repressed. One way to repress gene expression is through Polycomb group (PcG) proteins that compact chromatin into a silent configuration. In addition to cell fate maintenance, PcG proteins also maintain normal cell physiology, for example cell cycle. In the absence of PcG, ectopic activation of the PcG-repressed genes leads to developmental defects and malignant tumors. Little is known about the molecular nature of ectopic gene expression; especially what differentiates expression of a given gene in the orthotopic tissue (orthotopic expression) and the ectopic expression of the same gene due to PcG mutations. Here we present that ectopic gene expression in PcG mutant cells specifically requires dBRWD3, a negative regulator of HIRA/Yemanuclein (YEM)-mediated histone variant H3.3 deposition. dBRWD3 mutations suppress both the ectopic gene expression and aberrant tissue overgrowth in PcG mutants through a YEM-dependent mechanism. Our findings identified dBRWD3 as a critical regulator that is uniquely required for ectopic gene expression and aberrant tissue overgrowth caused by PcG mutations. PMID:27588417

  20. Molecular transformation, gene cloning, and gene expression systems for filamentous fungi

    USGS Publications Warehouse

    Gold, Scott E.; Duick, John W.; Redman, Regina S.; Rodriguez, Rusty J.

    2001-01-01

    This chapter discusses the molecular transformation, gene cloning, and gene expression systems for filamentous fungi. Molecular transformation involves the movement of discrete amounts of DNA into cells, the expression of genes on the transported DNA, and the sustainable replication of the transforming DNA. The ability to transform fungi is dependent on the stable replication and expression of genes located on the transforming DNA. Three phenomena observed in bacteria, that is, competence, plasmids, and restriction enzymes to facilitate cloning, were responsible for the development of molecular transformation in fungi. Initial transformation success with filamentous fungi, involving the complementation of auxotrophic mutants by exposure to sheared genomic DNA or RNA from wt isolates, occurred with low transformation efficiencies. In addition, it was difficult to retrieve complementing DNA fragments and isolate genes of interest. This prompted the development of transformation vectors and methods to increase efficiencies. The physiological studies performed with fungi indicated that the cell wall could be removed to generate protoplasts. It was evident that protoplasts could be transformed with significantly greater efficiencies than walled cells.

  1. Post transcriptional regulation of chloroplast gene expression by nuclear encoded gene products

    SciTech Connect

    Kuchka, M.R.

    1992-01-01

    The following is a review of research accomplished in the first two years of funding for the above mentioned project. The work performed is a molecular characterization of nuclear mutants of Chlamydomonas reinhardtii which are deficient in different stages in the post-transcriptional expression of a single chloroplast encoded polypeptide, the D2 protein of Photosystem II. Our long-term goals are to understand the molecular mechanisms by which nuclear gene products affect the expression of chloroplast genes. Specifically, we which to understand how specific nuclear gene products affect the turnover rate of the D2 encoding mRNA (psbD), how other nuclear encoded factors work to promote the translation of psbD mRNA and/or stabilize the D2 protein, and what the role of the D2 protein itself is in Photosystem II assembly and in the control of expression of other chloroplast genes. This progress report will be organized into four major sections concerning (I) The characterization of nuclear mutants affected in D2 translation/turnover, (II) The study of trans-acting factors which associate with the 5{prime} end of the psbD mRNA, (III) In vitro mutagenesis of the psbD gene, and (IV) Additional studies.

  2. Gene expression profiling in male genital lichen sclerosus.

    PubMed

    Edmonds, Emma; Barton, Geraint; Buisson, Sandrine; Francis, Nick; Gotch, Frances; Game, Laurence; Haddad, Munther; Dinneen, Michael; Bunker, Chris

    2011-10-01

    Male genital lichen sclerosus (MGLSc) has a bimodal distribution in boys and men. It is associated with squamous cell carcinoma (SCC). The pathogenesis of MGLSc is unknown. HPV and autoimmune mechanisms have been mooted. Anti extracellular matrix protein (ECM)1 antibodies have been identified in women with GLSc. The gene expression pattern of LSc is unknown. Using DNA microarrays we studied differences in gene expression in healthy and diseased prepuces obtained at circumcision in adult males with MGLSc (n = 4), paediatric LSc (n = 2) and normal healthy paediatric foreskin (n = 4). In adult samples 51 genes with significantly increased expression and 87 genes with significantly reduced expression were identified; paediatric samples revealed 190 genes with significantly increased expression and 148 genes with significantly reduced expression. Concordance of expression profiles between adult and paediatric samples indicates the same disease process. Functional analysis revealed increased expression in the adult and child MGSLc samples in the immune response/cellular defence gene ontology (GO) category and reduced expression in other categories including genes related to squamous cancer. No specific HPV, autoimmune or squamous carcinogenesis-associated gene expression patterns were found. ECM1 and CABLES1 expression were significantly reduced in paediatric and adult samples respectively. PMID:21718371

  3. Genome-Wide Gene Expression in relation to Age in Large Laboratory Cohorts of Drosophila melanogaster

    PubMed Central

    Carlson, Kimberly A.; Gardner, Kylee; Pashaj, Anjeza; Carlson, Darby J.; Yu, Fang; Eudy, James D.; Zhang, Chi; Harshman, Lawrence G.

    2015-01-01

    Aging is a complex process characterized by a steady decline in an organism's ability to perform life-sustaining tasks. In the present study, two cages of approximately 12,000 mated Drosophila melanogaster females were used as a source of RNA from individuals sampled frequently as a function of age. A linear model for microarray data method was used for the microarray analysis to adjust for the box effect; it identified 1,581 candidate aging genes. Cluster analyses using a self-organizing map algorithm on the 1,581 significant genes identified gene expression patterns across different ages. Genes involved in immune system function and regulation, chorion assembly and function, and metabolism were all significantly differentially expressed as a function of age. The temporal pattern of data indicated that gene expression related to aging is affected relatively early in life span. In addition, the temporal variance in gene expression in immune function genes was compared to a random set of genes. There was an increase in the variance of gene expression within each cohort, which was not observed in the set of random genes. This observation is compatible with the hypothesis that D. melanogaster immune function genes lose control of gene expression as flies age. PMID:26090231

  4. Global analysis of patterns of gene expression during Drosophila embryogenesis

    PubMed Central

    Tomancak, Pavel; Berman, Benjamin P; Beaton, Amy; Weiszmann, Richard; Kwan, Elaine; Hartenstein, Volker; Celniker, Susan E; Rubin, Gerald M

    2007-01-01

    Background Cell and tissue specific gene expression is a defining feature of embryonic development in multi-cellular organisms. However, the range of gene expression patterns, the extent of the correlation of expression with function, and the classes of genes whose spatial expression are tightly regulated have been unclear due to the lack of an unbiased, genome-wide survey of gene expression patterns. Results We determined and documented embryonic expression patterns for 6,003 (44%) of the 13,659 protein-coding genes identified in the Drosophila melanogaster genome with over 70,000 images and controlled vocabulary annotations. Individual expression patterns are extraordinarily diverse, but by supplementing qualitative in situ hybridization data with quantitative microarray time-course data using a hybrid clustering strategy, we identify groups of genes with similar expression. Of 4,496 genes with detectable expression in the embryo, 2,549 (57%) fall into 10 clusters representing broad expression patterns. The remaining 1,947 (43%) genes fall into 29 clusters representing restricted expression, 20% patterned as early as blastoderm, with the majority restricted to differentiated cell types, such as epithelia, nervous system, or muscle. We investigate the relationship between expression clusters and known molecular and cellular-physiological functions. Conclusion Nearly 60% of the genes with detectable expression exhibit broad patterns reflecting quantitative rather than qualitative differences between tissues. The other 40% show tissue-restricted expression; the expression patterns of over 1,500 of these genes are documented here for the first time. Within each of these categories, we identified clusters of genes associated with particular cellular and developmental functions. PMID:17645804

  5. Gene co-expression network analysis in Rhodobacter capsulatus and application to comparative expression analysis of Rhodobacter sphaeroides

    SciTech Connect

    Pena-Castillo, Lourdes; Mercer, Ryan; Gurinovich, Anastasia; Callister, Stephen J.; Wright, Aaron T.; Westbye, Alexander; Beatty, J. T.; Lang, Andrew S.

    2014-08-28

    The genus Rhodobacter contains purple nonsulfur bacteria found mostly in freshwater environments. Representative strains of two Rhodobacter species, R. capsulatus and R. sphaeroides, have had their genomes fully sequenced and both have been the subject of transcriptional profiling studies. Gene co-expression networks can be used to identify modules of genes with similar expression profiles. Functional analysis of gene modules can then associate co-expressed genes with biological pathways, and network statistics can determine the degree of module preservation in related networks. In this paper, we constructed an R. capsulatus gene co-expression network, performed functional analysis of identified gene modules, and investigated preservation of these modules in R. capsulatus proteomics data and in R. sphaeroides transcriptomics data. Results: The analysis identified 40 gene co-expression modules in R. capsulatus. Investigation of the module gene contents and expression profiles revealed patterns that were validated based on previous studies supporting the biological relevance of these modules. We identified two R. capsulatus gene modules preserved in the protein abundance data. We also identified several gene modules preserved between both Rhodobacter species, which indicate that these cellular processes are conserved between the species and are candidates for functional information transfer between species. Many gene modules were non-preserved, providing insight into processes that differentiate the two species. In addition, using Local Network Similarity (LNS), a recently proposed metric for expression divergence, we assessed the expression conservation of between-species pairs of orthologs, and within-species gene-protein expression profiles. Conclusions: Our analyses provide new sources of information for functional annotation in R. capsulatus because uncharacterized genes in modules are now connected with groups of genes that constitute a joint functional

  6. Monoallelic expression of the human FOXP2 speech gene.

    PubMed

    Adegbola, Abidemi A; Cox, Gerald F; Bradshaw, Elizabeth M; Hafler, David A; Gimelbrant, Alexander; Chess, Andrew

    2015-06-01

    The recent descriptions of widespread random monoallelic expression (RMAE) of genes distributed throughout the autosomal genome indicate that there are more genes subject to RMAE on autosomes than the number of genes on the X chromosome where X-inactivation dictates RMAE of X-linked genes. Several of the autosomal genes that undergo RMAE have independently been implicated in human Mendelian disorders. Thus, parsing the relationship between allele-specific expression of these genes and disease is of interest. Mutations in the human forkhead box P2 gene, FOXP2, cause developmental verbal dyspraxia with profound speech and language deficits. Here, we show that the human FOXP2 gene undergoes RMAE. Studying an individual with developmental verbal dyspraxia, we identify a deletion 3 Mb away from the FOXP2 gene, which impacts FOXP2 gene expression in cis. Together these data suggest the intriguing possibility that RMAE impacts the haploinsufficiency phenotypes observed for FOXP2 mutations. PMID:25422445

  7. Temporal and spatial control of gene expression in horticultural crops.

    PubMed

    Dutt, Manjul; Dhekney, Sadanand A; Soriano, Leonardo; Kandel, Raju; Grosser, Jude W

    2014-01-01

    Biotechnology provides plant breeders an additional tool to improve various traits desired by growers and consumers of horticultural crops. It also provides genetic solutions to major problems affecting horticultural crops and can be a means for rapid improvement of a cultivar. With the availability of a number of horticultural genome sequences, it has become relatively easier to utilize these resources to identify DNA sequences for both basic and applied research. Promoters play a key role in plant gene expression and the regulation of gene expression. In recent years, rapid progress has been made on the isolation and evaluation of plant-derived promoters and their use in horticultural crops, as more and more species become amenable to genetic transformation. Our understanding of the tools and techniques of horticultural plant biotechnology has now evolved from a discovery phase to an implementation phase. The availability of a large number of promoters derived from horticultural plants opens up the field for utilization of native sequences and improving crops using precision breeding. In this review, we look at the temporal and spatial control of gene expression in horticultural crops and the usage of a variety of promoters either isolated from horticultural crops or used in horticultural crop improvement. PMID:26504550

  8. Temporal and spatial control of gene expression in horticultural crops

    PubMed Central

    Dutt, Manjul; Dhekney, Sadanand A; Soriano, Leonardo; Kandel, Raju; Grosser, Jude W

    2014-01-01

    Biotechnology provides plant breeders an additional tool to improve various traits desired by growers and consumers of horticultural crops. It also provides genetic solutions to major problems affecting horticultural crops and can be a means for rapid improvement of a cultivar. With the availability of a number of horticultural genome sequences, it has become relatively easier to utilize these resources to identify DNA sequences for both basic and applied research. Promoters play a key role in plant gene expression and the regulation of gene expression. In recent years, rapid progress has been made on the isolation and evaluation of plant-derived promoters and their use in horticultural crops, as more and more species become amenable to genetic transformation. Our understanding of the tools and techniques of horticultural plant biotechnology has now evolved from a discovery phase to an implementation phase. The availability of a large number of promoters derived from horticultural plants opens up the field for utilization of native sequences and improving crops using precision breeding. In this review, we look at the temporal and spatial control of gene expression in horticultural crops and the usage of a variety of promoters either isolated from horticultural crops or used in horticultural crop improvement. PMID:26504550

  9. Mechanism of expression of the rat HCNP precursor protein gene.

    PubMed

    Tohdoh, N; Tojo, S; Kimura, M; Ishii, T; Ojika, K

    1997-04-01

    The hippocampal cholinergic neurostimulating peptide (HCNP), isolated from hippocampal tissue of 10- to 12-day-old rats, enhances the in vitro synthesis of acetylcholine in medial septal tissue explants. The HCNP precursor is a 21 kDa protein that binds hydrophobic ligands and Mg-ATP, and is associated with the opioid-binding protein. We employed an HCNP-precursor cDNA as probe to clone the genomic DNA, used for mapping of the exon-intron structure of the gene. We also determined the nucleotide structure of the promoter region of the rat HCNP precursor protein gene. By using S1 mapping and CAT as a reporter, we found multiple promoters that were aligned in the 5' untranslated region. In addition, the presence of several putative enhancer binding sequences were tested by electrophoresis mobility shift assays. Northern blot analysis revealed that the gene is expressed in a variety of rat tissues and various subregions of the brain. These results suggest that HCNP-precursor gene expression is regulated by a general transactivation factor such as SP1, and that the specific presence of the bioactive HCNP in certain tissues results from post-translational events such as proteolytic processing of the precursor protein, which takes place predominantly in the hippocampus of young rats. PMID:9105667

  10. Molecular characterization and expression analysis of the duck viperin gene.

    PubMed

    Zhong, Zifu; Ji, Yanhong; Fu, Yuguang; Liu, Bin; Zhu, Qiyun

    2015-10-01

    Viperin is well known as one of the interferon-stimulated genes involved in innate immunity. Recent studies showed that this gene is mainly responsible for antiviral response to a large variety of viral infections. In this study, we successfully cloned and characterized the complete coding sequence of duck viperin gene. The duck viperin gene encodes 363 amino acids (aa) and is highly similar to viperins from other species. Moreover, secondary and 3D structures were predicted, and these structures showed two main domains, one signal peptide, and one radical S-adenosyl methionine (SAM) domain. Additionally, the duck viperin expression was analyzed in vitro and in vivo, and analysis results indicated that the duck viperin can be strongly up-regulated by poly(I:C) and Newcastle disease virus in primary duck embryo fibroblast cells. Results also demonstrated that Newcastle disease virus significantly induced duck viperin expression in the spleen, kidneys, liver, brain, and blood. Our findings will contribute to future studies on the detailed functions and potential underlying mechanisms of this novel protein in innate immunity. PMID:26049096

  11. Expression of Olfactory Signaling Genes in the Eye

    PubMed Central

    Velmeshev, Dmitry; Faghihi, Mohammad; Shestopalov, Valery I.; Slepak, Vladlen Z.

    2014-01-01

    Purpose To advance our understanding how the outer eye interacts with its environment, we asked which cellular receptors are expressed in the cornea, focusing on G protein-coupled receptors. Methods Total RNA from the mouse cornea was subjected to next-generation sequencing using the Illumina platform. The data was analyzed with TopHat and CuffLinks software packages. Expression of a representative group of genes detected by RNA-seq was further analyzed by RT-PCR and in situ hybridization using RNAscope technology and fluorescent microscopy. Results We generated more than 46 million pair-end reads from mouse corneal RNA. Bioinformatics analysis revealed that the mouse corneal transcriptome reconstructed from these reads represents over 10,000 gene transcripts. We identified 194 GPCR transcripts, of which 96 were putative olfactory receptors. RT-PCR analysis confirmed the presence of several olfactory receptors and related genes, including olfactory marker protein and the G protein associated with olfaction, Gαolf. In situ hybridization showed that mRNA for olfactory marker protein, Gαolf and possibly some olfactory receptors were found in the corneal epithelial cells. In addition to the corneal epithelium, Gαolf was present in the ganglionic and inner nuclear layers of the retina. One of the olfactory receptors, Olfr558, was present primarily in vessels of the eye co-stained with antibodies against alpha-smooth muscle actin, indicating expression in arterioles. Conclusions Several species of mRNA encoding putative olfactory receptors and related genes are expressed in the mouse cornea and other parts of the eye indicating they may play a role in sensing chemicals in the ocular environment. PMID:24789354

  12. Plant enolase: gene structure, expression, and evolution.

    PubMed Central

    Van der Straeten, D; Rodrigues-Pousada, R A; Goodman, H M; Van Montagu, M

    1991-01-01

    Enolase genes were cloned from tomato and Arabidopsis. Comparison of their primary structures with other enolases revealed a remarkable degree of conservation, except for the presence of an insertion of 5 amino acids unique to plant enolases. Expression of the enolase genes was studied under various conditions. Under normal growth conditions, steady-state messenger and enzyme activity levels were significantly higher in roots than in green tissue. Large inductions of mRNA, accompanied by a moderate increase in enzyme activity, were obtained by an artificial ripening treatment in tomato fruits. However, there was little effect of anaerobiosis on the abundance of enolase messenger. In heat shock conditions, no induction of enolase mRNA was observed. We also present evidence that, at least in Arabidopsis, the hypothesis that there exists a complete set of glycolytic enzymes in the chloroplast is not valid, and we propose instead the occurrence of a substrate shuttle in Arabidopsis chloroplasts for termination of the glycolytic cycle. PMID:1841726

  13. Preferential DNA repair in expressed genes.

    PubMed Central

    Hanawalt, P C

    1987-01-01

    Potentially deleterious alterations to DNA occur nonrandomly within the mammalian genome. These alterations include the adducts produced by many chemical carcinogens, but not the UV-induced cyclobutane pyrimidine dimer, which may be an exception. Recent studies in our laboratory have shown that the excision repair of pyrimidine dimers and certain other lesions is nonrandom in the mammalian genome, exhibiting a distinct preference for actively transcribed DNA sequences. An important consequence of this fact is that mutagenesis and carcinogenesis may be determined in part by the activities of the relevant genes. Repair may also be processive, and a model is proposed in which excision repair is coupled to transcription at the nuclear matrix. Similar but freely diffusing repair complexes may account for the lower overall repair efficiencies in the silent domains of the genome. Risk assessment in relation to chemical carcinogenesis requires assays that determine effective levels of DNA damage for producing malignancy. The existence of nonrandom repair in the genome casts into doubt the reliability of overall indicators of DNA binding and lesion repair for such determinations. Furthermore, some apparent differences between the intragenomic repair heterogeneity in rodent cells and that in human cells mandate a reevaluation of rodent test systems for human risk assessment. Tissue-specific and cell-specific differences in the coordinate regulation of gene expression and DNA repair may account for corresponding differences in the carcinogenic response. Images FIGURE 1. FIGURE 1. PMID:3447906

  14. Circadian Cycles of Gene Expression in the Coral, Acropora millepora

    PubMed Central

    Brady, Aisling K.; Snyder, Kevin A.; Vize, Peter D.

    2011-01-01

    Background Circadian rhythms regulate many physiological, behavioral and reproductive processes. These rhythms are often controlled by light, and daily cycles of solar illumination entrain many clock regulated processes. In scleractinian corals a number of different processes and behaviors are associated with specific periods of solar illumination or non-illumination—for example, skeletal deposition, feeding and both brooding and broadcast spawning. Methodology/Principal Findings We have undertaken an analysis of diurnal expression of the whole transcriptome and more focused studies on a number of candidate circadian genes in the coral Acropora millepora using deep RNA sequencing and quantitative PCR. Many examples of diurnal cycles of RNA abundance were identified, some of which are light responsive and damped quickly under constant darkness, for example, cryptochrome 1 and timeless, but others that continue to cycle in a robust manner when kept in constant darkness, for example, clock, cryptochrome 2, cycle and eyes absent, indicating that their transcription is regulated by an endogenous clock entrained to the light-dark cycle. Many other biological processes that varied between day and night were also identified by a clustering analysis of gene ontology annotations. Conclusions/Significance Corals exhibit diurnal patterns of gene expression that may participate in the regulation of circadian biological processes. Rhythmic cycles of gene expression occur under constant darkness in both populations of coral larvae that lack zooxanthellae and in individual adult tissue containing zooxanthellae, indicating that transcription is under the control of a biological clock. In addition to genes potentially involved in regulating circadian processes, many other pathways were found to display diel cycles of transcription. PMID:21949855

  15. Molecular cloning, characterization, and expression of pannexin genes in chicken.

    PubMed

    Kwon, Tae-Jun; Kim, Dong-Bin; Bae, Jae Woong; Sagong, Borum; Choi, Soo-Young; Cho, Hyun-Ju; Kim, Un-Kyung; Lee, Kyu-Yup

    2014-09-01

    Pannexins (Panx) are a family of proteins that share sequences with the invertebrate gap junction proteins, innexins, and have a similar structure to that of the vertebrate gap junction proteins, connexins. To date, the Panx family consists of 3 members, but their genetic sequences have only been completely determined in a few vertebrate species. Moreover, expression of the Panx family has been reported in several rodent tissues: Panx1 is ubiquitously expressed in mammals, whereas Panx2 and Panx3 expressions are more restricted. Although members of the Panx family have been detected in mammals, their genetic sequences in avian species have not yet been fully elucidated. Here, we obtained the full-length mRNA sequences of chicken PANX genes and evaluated the homology of the amino acids from these sequences with those of other species. Furthermore, PANX gene expression in several chicken tissues was investigated based on mRNA levels. PANX1 was detected in the brain, cochlea, chondrocytes, eye, lung, skin, and intestine, and PANX2 was expressed in the brain, eye, and intestine. PANX3 was observed in the cochlea, chondrocytes, and bone. In addition, expression of PANX3 was higher than PANX1 in the cochlea. Immunofluorescent staining revealed PANX1 in hair cells, as well as the supporting cells, ganglion neurons, and the tegmentum vasculosum in chickens, whereas PANX3 was only detected in the bone surrounding the cochlea. Overall, the results of this study provide the first identification and characterization of the sequence and expression of the PANX family in an avian species, and fundamental data for confirmation of Panx function. PMID:25002553

  16. Evolving expression patterns of the homeotic gene Scr in insects.

    PubMed

    Passalacqua, Karla D; Hrycaj, Steven; Mahfooz, Najmus; Popadic, Aleksandar

    2010-01-01

    While the mRNA expression patterns of homeotic genes have been examined in numerous arthropod species, data on their protein accumulation is extremely limited. To address this gap, we analyzed the protein expression pattern of the hox gene Sex combs reduced (Scr) in six hemimetabolous insects from four divergent orders (Thysanura, Orthoptera, Dictyoptera and Hemiptera). Our comparative analysis reveals that the original domain of SCR expression was likely confined to the head and then subsequently moved into the prothorax (T1) in winged insect lineages. The data also show a trend toward the posteriorization of the anterior boundary of SCR expression in the head, which starts in the mandibles (Thysanura) and then gradually shifts to the maxillary (Orthoptera) and labial segments (Dictyoptera and Hemiptera), respectively. In Thermobia (firebrat) and Oncopeltus (milkweed bug) we also identify instances where SCR protein is not detected in regions where mRNA is expressed. This finding suggests the presence of a post-transcriptional regulatory mechanism of Scr in these species. Finally, we show that SCR expression in insect T1 legs is highly variable and exhibits divergent patterning even among related species. In addition, signal in the prothoracic legs of more basal insect lineages cannot be associated with any T1 specific features, indicating that the acquisition of SCR in this region preceded any apparent gain of function. Overall, our results show that Scr expression has diverged considerably among hemimetabolous lineages and establish a framework for subsequent analyses to determine its role in the evolution of the insect head and prothorax. PMID:20336613

  17. Serial analysis of gene expression (SAGE): unraveling the bioinformatics tools.

    PubMed

    Tuteja, Renu; Tuteja, Narendra

    2004-08-01

    Serial analysis of gene expression (SAGE) is a powerful technique that can be used for global analysis of gene expression. Its chief advantage over other methods is that it does not require prior knowledge of the genes of interest and provides qualitative and quantitative data of potentially every transcribed sequence in a particular cell or tissue type. This is a technique of expression profiling, which permits simultaneous, comparative and quantitative analysis of gene-specific, 9- to 13-basepair sequences. These short sequences, called SAGE tags, are linked together for efficient sequencing. The sequencing data are then analyzed to identify each gene expressed in the cell and the levels at which each gene is expressed. The main benefit of SAGE includes the digital output and the identification of novel genes. In this review, we present an outline of the method, various bioinformatics methods for data analysis and general applications of this important technology. PMID:15273993

  18. Annotation of human chromosome 21 for relevance to Down syndrome: gene structure and expression analysis.

    PubMed

    Gardiner, Katheleen; Slavov, Dobromir; Bechtel, Lawrence; Davisson, Muriel

    2002-06-01

    Down syndrome is caused by an extra copy of human chromosome 21 and the resultant dosage-related overexpression of genes contained within it. To efficiently direct experiments to determine specific gene-phenotype correlations, it is necessary to identify all genes within 21q and assess their functional associations and expression patterns. Analysis of the complete finished sequence of 21q resulted in annotated 225 genes and gene models, most of which were incomplete and/or had little or no experimental verification. Here we correct or complete the genomic structures of 16 genes, 4 of which were not reported in the annotation of the complete sequence. Our data include the identification of six genes encoding short or ambiguous open reading frames; the identification of three cases in which alternative splicing produces two structurally unrelated protein sequences; and the identification of six genes encoding proteins with functional motifs, two genes with unusually low similarity to their orthologous mouse proteins, and four genes with significant conservation in Drosophila melanogaster. We further demonstrate that an additional nine gene models represent bona fide transcripts and develop expression patterns for these genes plus nine additional novel chromosome 21 genes and four paralogous genes mapping elsewhere in the human genome. These data have implications for generating complete transcript maps of chromosome 21 and for the entire human genome, and for defining expression abnormalities in Down syndrome and mouse models. PMID:12036298

  19. Stochastic models of gene expression and post-transcriptional regulation

    NASA Astrophysics Data System (ADS)

    Pendar, Hodjat; Kulkarni, Rahul; Jia, Tao

    2011-10-01

    The intrinsic stochasticity of gene expression can give rise to phenotypic heterogeneity in a population of genetically identical cells. Correspondingly, there is considerable interest in understanding how different molecular mechanisms impact the 'noise' in gene expression. Of particular interest are post-transcriptional regulatory mechanisms involving genes called small RNAs, which control important processes such as development and cancer. We propose and analyze general stochastic models of gene expression and derive exact analytical expressions quantifying the noise in protein distributions [1]. Focusing on specific regulatory mechanisms, we analyze a general model for post-transcriptional regulation of stochastic gene expression [2]. The results obtained provide new insights into the role of post-transcriptional regulation in controlling the noise in gene expression. [4pt] [1] T. Jia and R. V. Kulkarni, Phys. Rev. Lett.,106, 058102 (2011) [0pt] [2] T. Jia and R. V. Kulkarni, Phys. Rev. Lett., 105, 018101 (2010)

  20. Quantitative imaging of gene expression in Drosophila embryos.

    PubMed

    Surkova, Svetlana; Myasnikova, Ekaterina; Kozlov, Konstantin N; Pisarev, Andrei; Reinitz, John; Samsonova, Maria

    2013-06-01

    Quantitative measurements derived using sophisticated microscopy techniques are essential for understanding the basic principles that control the behavior of biological systems. Here we describe a data pipeline developed to extract quantitative data on segmentation gene expression from confocal images of gene expression patterns in Drosophila. The pipeline consists of image segmentation, background removal, temporal characterization of an embryo, data registration, and data averaging. This pipeline has been successfully applied to obtain quantitative gene expression data at cellular resolution in space and at 6.5-min resolution in time. It has also enabled the construction of a spatiotemporal atlas of segmentation gene expression. We describe the software used to construct a workflow for extracting quantitative data on segmentation gene expression and the BREReA package, which implements the methods for background removal and registration of segmentation gene expression patterns. PMID:23734022

  1. Gene expression variability in clonal populations: Causes and consequences.

    PubMed

    Roberfroid, Stefanie; Vanderleyden, Jos; Steenackers, Hans

    2016-11-01

    During the last decade it has been shown that among cell variation in gene expression plays an important role within clonal populations. Here, we provide an overview of the different mechanisms contributing to gene expression variability in clonal populations. These are ranging from inherent variations in the biochemical process of gene expression itself, such as intrinsic noise, extrinsic noise and bistability to individual responses to variations in the local micro-environment, a phenomenon called phenotypic plasticity. Also genotypic variations caused by clonal evolution and phase variation can contribute to gene expression variability. Consequently, gene expression studies need to take these fluctuations in expression into account. However, frequently used techniques for expression quantification, such as microarrays, RNA sequencing, quantitative PCR and gene reporter fusions classically determine the population average of gene expression. Here, we discuss how these techniques can be adapted towards single cell analysis by integration with single cell isolation, RNA amplification and microscopy. Alternatively more qualitative selection-based techniques, such as mutant screenings, in vivo expression technology (IVET) and recombination-based IVET (RIVET) can be applied for detection of genes expressed only within a subpopulation. Finally, differential fluorescence induction (DFI), a protocol specially designed for single cell expression is discussed. PMID:26731119

  2. A model for gene deregulation detection using expression data.

    PubMed

    Picchetti, Thomas; Chiquet, Julien; Elati, Mohamed; Neuvial, Pierre; Nicolle, Rémy; Birmelé, Etienne

    2015-01-01

    In tumoral cells, gene regulation mechanisms are severely altered. Genes that do not react normally to their regulators' activity can provide explanations for the tumoral behavior, and be characteristic of cancer subtypes. We thus propose a statistical methodology to identify the misregulated genes given a reference network and gene expression data. PMID:26679516

  3. Gene Expression Levels Are Correlated with Synonymous Codon Usage, Amino Acid Composition, and Gene Architecture in the Red Flour Beetle, Tribolium castaneum

    PubMed Central

    Williford, Anna; Demuth, Jeffery P.

    2012-01-01

    Gene expression levels correlate with multiple aspects of gene sequence and gene structure in phylogenetically diverse taxa, suggesting an important role of gene expression levels in the evolution of protein-coding genes. Here we present results of a genome-wide study of the influence of gene expression on synonymous codon usage, amino acid composition, and gene structure in the red flour beetle, Tribolium castaneum. Consistent with the action of translational selection, we find that synonymous codon usage bias increases with gene expression. However, the correspondence between tRNA gene copy number and optimal codons is weak. At the amino acid level, translational selection is suggested by the positive correlation between tRNA gene numbers and amino acid usage, which is stronger for highly expressed genes. In addition, there is a clear trend for increased use of metabolically cheaper, less complex amino acids as gene expression increases. tRNA gene numbers also correlate negatively with amino acid size/complexity (S/C) score indicating the coupling between translational selection and selection to minimize the use of large/complex amino acids. Interestingly, the analysis of 10 additional genomes suggests that the correlation between tRNA gene numbers and amino acid S/C score is widespread and might be explained by selection against negative consequences of protein misfolding. At the level of gene structure, three major trends are detected: 1) complete coding region length increases across low and intermediate expression levels but decreases in highly expressed genes; 2) the average intron size shows the opposite trend, first decreasing with expression, followed by a slight increase in highly expressed genes; and 3) intron density remains nearly constant across all expression levels. These changes in gene architecture are only in partial agreement with selection favoring reduced cost of biosynthesis. PMID:22826459

  4. Laser capture microdissection for gene expression analysis.

    PubMed

    Bidarimath, Mallikarjun; Edwards, Andrew K; Tayade, Chandrakant

    2015-01-01

    Laser capture microdissection (LCM) is an excellent and perhaps the only platform to isolate homogeneous cell populations from specific microscopic regions of heterogeneous tissue section, under direct microscopic visualization. The basic operations of the LCM system are based on (a) microscopic visualization of phenotypically identified cells of interest, (b) selective adherence of cells to a melting thermolabile film/membrane using a low-energy infrared laser (IR system) or photovolatization of cells within a selected region (UV system), (c) capturing or catapulting of structurally intact cells from a stained tissue section. RNA/DNA or protein can be extracted from the cell or tissue fragments for downstream applications to quantitatively study gene expression. This method can be applied to many downstream analyses including but not limited to quantitative real-time polymerase chain reaction (PCR), microarray, DNA genotyping, RNA transcript profiling, generation of cDNA library, mass spectrometry analysis, and proteomic discovery.The application of LCM is described here to specifically and reliably obtain a homogeneous cell population in order to extract RNA to study microRNA expression by quantitative real-time PCR. PMID:25308266

  5. Xwnt8 directly initiates expression of labial Hox genes.

    PubMed

    In der Rieden, Paul M J; Vilaspasa, Ferran Lloret; Durston, Antony J

    2010-01-01

    Hox transcription factors play an essential role in patterning the anteroposterior axis during embryogenesis and exhibit a complex array of spatial and temporal patterns of expression. Their earliest onset of expression in vertebrates is during gastrulation in a temporally collinear sequence in the presomitic/ventrolateral mesoderm, and it is not clear which upstream signal transduction events initiate this expression. Using Xenopus, we present evidence that Xwnt8 is necessary for initiation of this collinear sequence by activating Hox-1 expression in three Hox clusters: hoxd, hoxa, and hoxb. All three labial genes appear to be direct targets of canonical Wnt signaling through Tcf/Lef. In addition, Xwnt8 loss- and gain-of-function leads to indirect regulation of other Hox genes: Hoxb4, Hoxd4, Hoxa7, Hoxc6, and Hoxc8. These findings shed new light on the early role of Wnt8 as well as of a proposed WNT gradient in patterning the Xenopus central nervous system (Kiecker and Niehrs [2001] Development 128:4189-4201). PMID:19623617

  6. Validation of Reference Genes for Expression Studies during Craniofacial Development in Arctic Charr

    PubMed Central

    Ahi, Ehsan Pashay; Guðbrandsson, Jóhannes; Kapralova, Kalina H.; Franzdóttir, Sigríður R.; Snorrason, Sigurður S.; Maier, Valerie H.; Jónsson, Zophonías O.

    2013-01-01

    Arctic charr (Salvelinus alpinus) is a highly polymorphic species and in Lake Thingvallavatn, Iceland, four phenotypic morphs have evolved. These differences in morphology, especially in craniofacial structures are already apparent during embryonic development, indicating that genes important in the formation of the craniofacial features are expressed differentially between the morphs. In order to generate tools to examine these expression differences in Arctic charr, the aim of the present study was to identify reference genes for quantitative real-time PCR (qPCR). The specific aim was to select reference genes which are able to detect very small expression differences among different morphs. We selected twelve candidate reference genes from the literature, identified corresponding charr sequences using data derived from transcriptome sequencing (RNA-seq) and examined their expression using qPCR. Many of the candidate reference genes were found to be stably expressed, yet their quality-rank as reference genes varied considerably depending on the type of analysis used. In addition to commonly used software for reference gene validation, we used classical statistics to evaluate expression profiles avoiding a bias for reference genes with similar expression patterns (co-regulation). Based on these analyses we chose three reference genes, ACTB, UB2L3 and IF5A1 for further evaluation. Their consistency was assessed in an expression study of three known craniofacially expressed genes, sparc (or osteonectin), matrix metalloprotease 2 (mmp2) and sox9 (sex-determining region Y box 9 protein) using qPCR in embryo heads derived from four charr groups at three developmental time points. The three reference genes were found to be very suitable for studying expression differences between the morphotypes, enabling robust detection of small relative expression changes during charr development. Further, the results showed that sparc and mmp2 are differentially expressed in embryos

  7. Non-additive hepatic gene expression elicited by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and 2,2′,4,4′,5,5′-hexachlorobiphenyl (PCB153) co-treatment in C57BL/6 mice

    PubMed Central

    Kopec, Anna K.; Souza, Michelle L. D.; Mets, Bryan D.; Burgoon, Lyle D.; Reese, Sarah E.; Archer, Kellie J.; Potter, Dave; Tashiro, Colleen; Sharratt, Bonnie; Harkema, Jack R.; Zacharewski, Timothy R.

    2014-01-01

    Interactions between environmental contaminants can lead to non-additive effects that may affect the toxicity and risk assessment of a mixture. Comprehensive time course and dose-response studies with 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), non-dioxin-like 2,2′,4,4′,5,5′-hexachlorobiphenyl (PCB153) and their mixture were performed in immature, ovariectomized C57BL/6 mice. Mice were gavaged once with 30 μg/kg TCDD, 300 mg/kg PCB153, a mixture of 30 μg/kg TCDD with 300 mg/kg PCB153 (MIX) or sesame oil vehicle for 4,12, 24,72 or 168 h. In the 24 h dose-response study, animals were gavaged with TCDD (0.3,1, 3, 6, 10, 15, 30, 45 μg/kg), PCB153 (3,10, 30, 60, 100, 150, 300, 450 mg/kg), MIX (0.3+3, 1+10, 3+30, 6+60, 10+100, 15+150, 30+300, 45 μg/kg TCDD+450 mg/kg PCB153, respectively) or vehicle. All three treatments significantly increased relative liver weights (RLW), with MIX eliciting significantly greater increases compared to TCDD and PCB153 alone. Histologically, MIX induced hepatocellular hypertrophy, vacuolization, inflammation, hyperplasia and necrosis, a combination of TCDD and PCB153 responses. Complementary lipid analyses identified significant increases in hepatic triglycerides in MIX and TCDD samples, while PCB153 had no effect on lipids. Hepatic PCB153 levels were also significantly increased with TCDD co-treatment. Microarray analysis identified 167 TCDD, 185 PCB153 and 388 MIX unique differentially expressed genes. Statistical modeling of quantitative real-time PCR analysis of Pla2g12a, Serpinb6a, Nqo1, Srxn1, and Dysf verified non-additive expression following MIX treatment compared to TCDD and PCB153 alone. In summary, TCDD and PCB153 co-treatment elicited specific non-additive gene expression effects that are consistent with RLW increases, histopathology, and hepatic lipid accumulation. PMID:21851831

  8. Restricting expression prolongs expression of foreign genes introduced into animals by retroviruses.

    PubMed

    Pinto, V B; Prasad, S; Yewdell, J; Bennink, J; Hughes, S H

    2000-11-01

    If foreign genes are ubiquitously expressed in mice using a viral vector, expression is abrogated by CD8(+) cells in 2 to 4 weeks. However, if the expression of the genes is confined to skeletal muscle cells, the CD8(+) T-cell response is much weaker and expression is maintained for more than 6 weeks. These data show that restricting the expression of foreign genes to skeletal muscle cells and presumably to other cells that are inefficient at antigen presentation can prolong the expression of a foreign gene product. PMID:11024149

  9. ARMADA: Using motif activity dynamics to infer gene regulatory networks from gene expression data.

    PubMed

    Pemberton-Ross, Peter J; Pachkov, Mikhail; van Nimwegen, Erik

    2015-09-01

    Analysis of gene expression data remains one of the most promising avenues toward reconstructing genome-wide gene regulatory networks. However, the large dimensionality of the problem prohibits the fitting of explicit dynamical models of gene regulatory networks, whereas machine learning methods for dimensionality reduction such as clustering or principal component analysis typically fail to provide mechanistic interpretations of the reduced descriptions. To address this, we recently developed a general methodology called motif activity response analysis (MARA) that, by modeling gene expression patterns in terms of the activities of concrete regulators, accomplishes dramatic dimensionality reduction while retaining mechanistic biological interpretations of its predictions (Balwierz, 2014). Here we extend MARA by presenting ARMADA, which models the activity dynamics of regulators across a time course, and infers the causal interactions between the regulators that drive the dynamics of their activities across time. We have implemented ARMADA as part of our ISMARA webserver, ismara.unibas.ch, allowing any researcher to automatically apply it to any gene expression time course. To illustrate the method, we apply ARMADA to a time course of human umbilical vein endothelial cells treated with TNF. Remarkably, ARMADA is able to reproduce the complex observed motif activity dynamics using a relatively small set of interactions between the key regulators in this system. In addition, we show that ARMADA successfully infers many of the key regulatory interactions known to drive this inflammatory response and discuss several novel interactions that ARMADA predicts. In combination with ISMARA, ARMADA provides a powerful approach to generating plausible hypotheses for the key interactions between regulators that control gene expression in any system for which time course measurements are available. PMID:26164700

  10. Gene Expression Profiling in Pachyonychia Congenita Skin

    PubMed Central

    Cao, Yu-An; Hickerson, Robyn P.; Seegmiller, Brandon L.; Grapov, Dmitry; Gross, Maren M.; Bessette, Marc R.; Phinney, Brett S.; Flores, Manuel A.; Speaker, Tycho J.; Vermeulen, Annaleen; Bravo, Albert A.; Bruckner, Anna L.; Milstone, Leonard M.; Schwartz, Mary E.; Rice, Robert H.; Kaspar, Roger L.

    2015-01-01

    Background Pachyonychia congenita (PC) is a skin disorder resulting from mutations in keratin (K) proteins including K6a, K6b, K16, and K17. One of the major symptoms is painful plantar keratoderma. The pathogenic sequelae resulting from the keratin mutations remain unclear. Objective To better understand PC pathogenesis. Methods RNA profiling was performed on biopsies taken from PC-involved and uninvolved plantar skin of seven genotyped PC patients (two K6a, one K6b, three K16, and one K17) as well as from control volunteers. Protein profiling was generated from tape-stripping samples. Results A comparison of PC-involved skin biopsies to adjacent uninvolved plantar skin identified 112 differentially-expressed mRNAs common to patient groups harboring K6 (i.e., both K6a and K6b) and K16 mutations. Among these mRNAs, 25 encode structural proteins including keratins, small proline-rich and late cornified envelope proteins, 20 are related to metabolism and 16 encode proteases, peptidases, and their inhibitors including kallikrein-related peptidases (KLKs), and serine protease inhibitors (SERPINs). mRNAs were also identified to be differentially expressed only in K6 (81) or K16 (141) patient samples. Furthermore, 13 mRNAs were identified that may be involved in pain including nociception and neuropathy. Protein profiling, comparing three K6a plantar tape-stripping samples to non-PC controls, showed changes in the PC corneocytes similar, but not identical, to the mRNA analysis. Conclusion Many differentially-expressed genes identified in PC-involved skin encode components critical for skin barrier homeostasis including keratinocyte proliferation, differentiation, cornification, and desquamation. The profiling data provide a foundation for unraveling the pathogenesis of PC and identifying targets for developing effective PC therapeutics. PMID:25656049

  11. Gene Expression Patterns Associated With Histopathology in Toxic Liver Fibrosis.

    PubMed

    Ippolito, Danielle L; AbdulHameed, Mohamed Diwan M; Tawa, Gregory J; Baer, Christine E; Permenter, Matthew G; McDyre, Bonna C; Dennis, William E; Boyle, Molly H; Hobbs, Cheryl A; Streicker, Michael A; Snowden, Bobbi S; Lewis, John A; Wallqvist, Anders; Stallings, Jonathan D

    2016-01-01

    Toxic industrial chemicals induce liver injury, which is difficult to diagnose without invasive procedures. Identifying indicators of end organ injury can complement exposure-based assays and improve predictive power. A multiplexed approach was used to experimentally evaluate a panel of 67 genes predicted to be associated with the fibrosis pathology by computationally mining DrugMatrix, a publicly available repository of gene microarray data. Five-day oral gavage studies in male Sprague Dawley rats dosed with varying concentrations of 3 fibrogenic compounds (allyl alcohol, carbon tetrachloride, and 4,4'-methylenedianiline) and 2 nonfibrogenic compounds (bromobenzene and dexamethasone) were conducted. Fibrosis was definitively diagnosed by histopathology. The 67-plex gene panel accurately diagnosed fibrosis in both microarray and multiplexed-gene expression assays. Necrosis and inflammatory infiltration were comorbid with fibrosis. ANOVA with contrasts identified that 51 of the 67 predicted genes were significantly associated with the fibrosis phenotype, with 24 of these specific to fibrosis alone. The protein product of the gene most strongly correlated with the fibrosis phenotype PCOLCE (Procollagen C-Endopeptidase Enhancer) was dose-dependently elevated in plasma from animals administered fibrogenic chemicals (P < .05). Semiquantitative global mass spectrometry analysis of the plasma identified an additional 5 protein products of the gene panel which increased after fibrogenic toxicant administration: fibronectin, ceruloplasmin, vitronectin, insulin-like growth factor binding protein, and α2-macroglobulin. These results support the data mining approach for identifying gene and/or protein panels for assessing liver injury and may suggest bridging biomarkers for molecular mediators linked to histopathology. PMID:26396155

  12. Gene Expression Patterns in Bone Following Mechanical Loading

    PubMed Central

    Mantila Roosa, Sara M; Liu, Yunlong; Turner, Charles H

    2011-01-01

    The advent of high-throughput measurements of gene expression and bioinformatics analysis methods offers new ways to study gene expression patterns. The primary goal of this study was to determine the time sequence for gene expression in a bone subjected to mechanical loading during key periods of the bone-formation process, including expression of matrix-related genes, the appearance of active osteoblasts, and bone desensitization. A standard model for bone loading was employed in which the right forelimb was loaded axially for 3 minutes per day, whereas the left forearm served as a nonloaded contralateral control. We evaluated loading-induced gene expression over a time course of 4 hours to 32 days after the first loading session. Six distinct time-dependent patterns of gene expression were identified over the time course and were categorized into three primary clusters: genes upregulated early in the time course, genes upregulated during matrix formation, and genes downregulated during matrix formation. Genes then were grouped based on function and/or signaling pathways. Many gene groups known to be important in loading-induced bone formation were identified within the clusters, including AP-1-related genes in the early-response cluster, matrix-related genes in the upregulated gene clusters, and Wnt/β-catenin signaling pathway inhibitors in the downregulated gene clusters. Several novel gene groups were identified as well, including chemokine-related genes, which were upregulated early but downregulated later in the time course; solute carrier genes, which were both upregulated and downregulated; and muscle-related genes, which were primarily downregulated. © 2011 American Society for Bone and Mineral Research. PMID:20658561

  13. Selection of Reference Genes for Expression Studies of Xenobiotic Adaptation in Tetranychus urticae

    PubMed Central

    Morales, Mariany Ashanty; Mendoza, Bianca Marie; Lavine, Laura Corley; Lavine, Mark Daniel; Walsh, Douglas Bruce; Zhu, Fang

    2016-01-01

    Quantitative real-time PCR (qRT-PCR) is an extensively used, high-throughput method to analyze transcriptional expression of genes of interest. An appropriate normalization strategy with reliable reference genes is required for calculating gene expression across diverse experimental conditions. In this study, we aim to identify the most stable reference genes for expression studies of xenobiotic adaptation in Tetranychus urticae, an extremely polyphagous herbivore causing significant yield reduction of agriculture. We chose eight commonly used housekeeping genes as candidates. The qRT-PCR expression data for these genes were evaluated from seven populations: a susceptible and three acaricide resistant populations feeding on lima beans, and three other susceptible populations which had been shifted host from lima beans to three other plant species. The stability of the candidate reference genes was then assessed using four different algorithms (comparative ΔCt method, geNorm, NormFinder, and BestKeeper). Additionally, we used an online web-based tool (RefFinder) to assign an overall final rank for each candidate gene. Our study found that CycA and Rp49 are best for investigating gene expression in acaricide susceptible and resistant populations. GAPDH, Rp49, and Rpl18 are best for host plant shift studies. And GAPDH and Rp49 were the most stable reference genes when investigating gene expression under changes in both experimental conditions. These results will facilitate research in revealing molecular mechanisms underlying the xenobiotic adaptation of this notorious agricultural pest. PMID:27570487

  14. Selection of Reference Genes for Expression Studies of Xenobiotic Adaptation in Tetranychus urticae.

    PubMed

    Morales, Mariany Ashanty; Mendoza, Bianca Marie; Lavine, Laura Corley; Lavine, Mark Daniel; Walsh, Douglas Bruce; Zhu, Fang

    2016-01-01

    Quantitative real-time PCR (qRT-PCR) is an extensively used, high-throughput method to analyze transcriptional expression of genes of interest. An appropriate normalization strategy with reliable reference genes is required for calculating gene expression across diverse experimental conditions. In this study, we aim to identify the most stable reference genes for expression studies of xenobiotic adaptation in Tetranychus urticae, an extremely polyphagous herbivore causing significant yield reduction of agriculture. We chose eight commonly used housekeeping genes as candidates. The qRT-PCR expression data for these genes were evaluated from seven populations: a susceptible and three acaricide resistant populations feeding on lima beans, and three other susceptible populations which had been shifted host from lima beans to three other plant species. The stability of the candidate reference genes was then assessed using four different algorithms (comparative ΔCt method, geNorm, NormFinder, and BestKeeper). Additionally, we used an online web-based tool (RefFinder) to assign an overall final rank for each candidate gene. Our study found that CycA and Rp49 are best for investigating gene expression in acaricide susceptible and resistant populations. GAPDH, Rp49, and Rpl18 are best for host plant shift studies. And GAPDH and Rp49 were the most stable reference genes when investigating gene expression under changes in both experimental conditions. These results will facilitate research in revealing molecular mechanisms underlying the xenobiotic adaptation of this notorious agricultural pest. PMID:27570487

  15. Endothelin-1 stimulates resistin gene expression.

    PubMed

    Tang, Ya-Chu; Liu, Chi-Wei; Chang, Hsin-Huei; Juan, Chi-Chang; Kuo, Yow-Chii; Kao, Chung-Cheng; Huang, Yao-Ming; Kao, Yung-Hsi

    2014-03-01

    Resistin and endothelin (ET)-1 have been reported to inhibit adipogenesis and regulate adipocyte insulin resistance, respectively. Although both hormones interact with each other, the exact signaling pathway of ET-1 to act on resistin gene expression is still unknown. Using 3T3-L1 adipocytes, we investigated the signaling pathways involved in ET-1-stimulated resistin gene expression. The up-regulation of resistin mRNA expression by ET-1 depends on concentration and timing. The concentration of ET-1 that increased resistin mRNA levels by 100%-250% was approximately 100 nM for a range of 0.25-12 hours of treatment. Treatment with actinomycin D blocked ET-1-increased resistin mRNA levels, suggesting that the effect of ET-1 requires new mRNA synthesis. Treatment with an inhibitor of the ET type-A receptor, such as N-[1-Formyl-N-[N-[(hexahydro-1H-azepin-1-yl)carbonyl]-L-leucyl]-D-tryptophyl]-D-tryptophan (BQ610), but not with the ET type-B receptor antagonist N-[(cis-2,6-Dimethyl-1-piperidinyl)carbonyl]-4-methyl-L-leucyl-1-(methoxycarbonyl)-D-tryptophyl-D-norleucine (BQ788), blocked ET-1, increased the levels of resistin mRNA, and phosphorylated levels of downstream signaling molecules, such as ERK1/2, c-Jun N-terminal kinases (JNKs), protein kinase B (AKT), and signal transducer and activator of transcription 3 (STAT3). Moreover, pretreatment of specific inhibitors of either ERK1/2 (1,4-diamino-2,3-dicyano-1,4-bis[2-aminophenylthio]butadiene [U0126] and 2-(2-amino-3-methoxyphenyl)-4H-1-benzopyran-4-one [PD98059], two inhibitors of MEK1), JNKs (SP600125), phosphatidylinositol 3-kinase/AKT (LY294002 and Wortmannin), or Janus kinase 2 (JAK2)/STAT3 ((E)-2-Cyano-3-(3,4-dihydrophenyl)-N-(phenylmethyl)-2-propenamide, AG490) prevented ET-1-increased levels of resistin mRNA and reduced the ET-1-stimulated phosphorylation of ERK1/2, JNKs, AKT, and STAT3, respectively. However, the p38 kinase antagonist 4-[5-(4-Fluorophenyl)-2-[4-(methylsulfonyl)phenyl]-1H-imidazol-4-yl

  16. Association of tissue lineage and gene expression: conservatively and differentially expressed genes define common and special functions of tissues

    PubMed Central

    2010-01-01

    Background Embryogenesis is the process by which the embryo is formed, develops, and establishes developmental hierarchies of tissues. The recent advance in microarray technology made it possible to investigate the tissue specific patterns of gene expression and their relationship with tissue lineages. This study is focused on how tissue specific functions, tissue lineage, and cell differentiation are correlated, which is essential to understand embryonic development and organism complexity. Results We performed individual gene and gene set based analysis on multiple tissue expression data, in association with the classic topology of mammalian fate maps of embryogenesis. For each sub-group of tissues on the fate map, conservatively, differentially and correlatively expressed genes or gene sets were identified. Tissue distance was found to correlate with gene expression divergence. Tissues of the ectoderm or mesoderm origins from the same segments on the fate map shared more similar expression pattern than those from different origins. Conservatively expressed genes or gene sets define common functions in a tissue group and are related to tissue specific diseases, which is supported by results from Gene Ontology and KEGG pathway analysis. Gene expression divergence is larger in certain human tissues than in the mouse homologous tissues. Conclusion The results from tissue lineage and gene expression analysis indicate that common function features of neighbor tissue groups were defined by the conservatively expressed genes and were related to tissue specific diseases, and differentially expressed genes contribute to the functional divergence of tissues. The difference of gene expression divergence in human and mouse homologous tissues reflected the organism complexity, i.e. distinct neural development levels and different body sizes. PMID:21172044

  17. The rpoN gene product of Pseudomonas aeruginosa is required for expression of diverse genes, including the flagellin gene.

    PubMed Central

    Totten, P A; Lara, J C; Lory, S

    1990-01-01

    The product of the rpoN gene is an alternative sigma factor of RNA polymerase which is required for transcription of a number of genes in members of the family Enterobacteriaceae, including those that specify enzymes of nitrogen assimilation, amino acid uptake, and degradation of a variety of organic molecules. We have previously shown that transcription of the pilin gene of Pseudomonas aeruginosa also requires RpoN (K. S. Ishimoto and S. Lory, Proc. Natl. Acad. Sci. USA 86:1954-1957, 1989) and have undertaken a more extensive survey of genes under RpoN control. Strains of P. aeruginosa that carry an insertionally inactivated rpoN gene were constructed and shown to be nonmotile because of the inability of these mutants to synthesize flagellin. The mutation in rpoN had no effect on expression of extracellular polypeptides, outer membrane proteins, and the alginate capsule. However, the rpoN mutants were glutamine auxotrophs and were defective in glutamine synthetase, indicating defects in nitrogen assimilation. In addition, the P. aeruginosa rpoN mutants were defective in urease activity. These findings indicate that the sigma factor encoded by the rpoN gene is used by P. aeruginosa for transcription of a diverse set of genes that specify biosynthetic enzymes, degradative enzymes, and surface components. These rpoN-controlled genes include pili and flagella which are required for full virulence of the organism. Images FIG. 1 FIG. 2 PMID:2152909

  18. Variations in the progranulin gene affect global gene expression in frontotemporal lobar degeneration.

    PubMed

    Chen-Plotkin, Alice S; Geser, Felix; Plotkin, Joshua B; Clark, Chris M; Kwong, Linda K; Yuan, Wuxing; Grossman, Murray; Van Deerlin, Vivianna M; Trojanowski, John Q; Lee, Virginia M-Y

    2008-05-15

    Frontotemporal lobar degeneration is a fatal neurodegenerative disease that results in progressive decline in behavior, executive function and sometimes language. Disease mechanisms remain poorly understood. Recently, however, the DNA- and RNA-binding protein TDP-43 has been identified as the major protein present in the hallmark inclusion bodies of frontotemporal lobar degeneration with ubiquitinated inclusions (FTLD-U), suggesting a role for transcriptional dysregulation in FTLD-U pathophysiology. Using the Affymetrix U133A microarray platform, we profiled global gene expression in both histopathologically affected and unaffected areas of human FTLD-U brains. We then characterized differential gene expression with biological pathway analyses, cluster and principal component analyses, and subgroup analyses based on brain region and progranulin (GRN) gene status. Comparing 17 FTLD-U brains to 11 controls, we identified 414 upregulated and 210 downregulated genes in frontal cortex (P-value < 0.001). Moreover, cluster and principal component analyses revealed that samples with mutations or possibly pathogenic variations in the GRN gene (GRN+, 7/17) had an expression signature that was distinct from both normal controls and FTLD-U samples lacking GRN gene variations (GRN-, 10/17). Within the subgroup of GRN+ FTLD-U, we found >1300 dysregulated genes in frontal cortex (P-value < 0.001), many participating in pathways uniquely dysregulated in the GRN+ cases. Our findings demonstrate a distinct molecular phenotype for GRN+ FTLD-U, not readily apparent on clinical or histopathological examination, suggesting distinct pathophysiological mechanisms for GRN+ and GRN- subtypes of FTLD-U. In addition, these data from a large number of human brains provide a valuable resource for future testing of disease hypotheses. PMID:18223198

  19. Analysis of HOX gene expression patterns in human breast cancer.

    PubMed

    Hur, Ho; Lee, Ji-Yeon; Yun, Hyo Jung; Park, Byeong Woo; Kim, Myoung Hee

    2014-01-01

    HOX genes are highly conserved transcription factors that determine the identity of cells and tissues along the anterior-posterior body axis in developing embryos. Aberrations in HOX gene expression have been shown in various tumors. However, the correlation of HOX gene expression patterns with tumorigenesis and cancer progression has not been fully characterized. Here, to analyze putative candidate HOX genes involved in breast cancer tumorigenesis and progression, the expression patterns of 39 HOX genes were analyzed using breast cancer cell lines and patient-derived breast tissues. In vitro analysis revealed that HOXA and HOXB gene expression occurred in a subtype-specific manner in breast cancer cell lines, whereas most HOXC genes were strongly expressed in most cell lines. Among the 39 HOX genes analyzed, 25 were chosen for further analysis in malignant and non-malignant tissues. Fourteen genes, encoding HOXA6, A13, B2, B4, B5, B6, B7, B8, B9, C5, C9, C13, D1, and D8, out of 25 showed statistically significant differential expression patterns between non-malignant and malignant breast tissues and are putative candidates associated with the development and malignant progression of breast cancer. Our data provide a valuable resource for furthering our understanding of HOX gene expression in breast cancer and the possible involvement of HOX genes in tumor progression. PMID:23820980

  20. Global gene expression profiles in developing soybean seeds.

    PubMed

    Asakura, Tomiko; Tamura, Tomoko; Terauchi, Kaede; Narikawa, Tomoyo; Yagasaki, Kazuhiro; Ishimaru, Yoshiro; Abe, Keiko

    2012-03-01

    The gene expression profiles in soybean (Glycine max L.) seeds at 4 stages of development, namely, pod, 2-mm bean, 5-mm bean, and full-size bean, were examined by DNA microarray analysis. The total genes of each sample were classified into 4 clusters based on stage of development. Gene expression was strictly controlled by seed size, which coincides with the development stage. First, stage specific gene expression was examined. Many transcription factors were expressed in pod, 2-mm bean and 5-mm bean. In contrast, storage proteins were mainly expressed in full-size bean. Next, we extracted the genes that are differentially expressed genes (DEGs) that were extracted using the Rank products method of the Bioconductor software package. These DEGs were sorted into 8 groups using the hclust function according to gene expression patterns. Three of the groups across which the expression levels progressively increased included 100 genes, while 3 groups across which the levels decreased contained 47 genes. Storage proteins, seed-maturation proteins, some protease inhibitors, and the allergen Gly m Bd 28K were classified into the former groups. Lipoxygenase (LOX) family members were present in both the groups, indicating the multi-functionality with different expression patterns. PMID:22245912

  1. Hypothalamic gene expression underlying pre-hibernation satiety.

    PubMed

    Schwartz, C; Hampton, M; Andrews, M T

    2015-03-01

    Prior to hibernation, 13-lined ground squirrels (Ictidomys tridecemlineatus) enter a hypophagic period where food consumption drops by an average of 55% in 3 weeks. This occurs naturally, while the ground squirrels are in constant environmental conditions and have free access to food. Importantly, this transition occurs before exposure to hibernation conditions (5°C and constant darkness), so the ground squirrels are still maintaining a moderate level of activity. In this study, we used the Illumina HiSeq 2000 system to sequence the hypothalamic transcriptomes of ground squirrels before and after the autumn feeding transition to examine the genes underlying this extreme change in feeding behavior. The hypothalamus was chosen because it is known to play a role in the control and regulation of food intake and satiety. Overall, our analysis identified 143 genes that are significantly differentially expressed between the two groups. Specifically, we found five genes associated with feeding behavior and obesity (VGF, TRH, LEPR, ADIPOR2, IRS2) that are all upregulated during the hypophagic period, after the feeding transition has occurred. We also found that serum leptin significantly increases in the hypophagic group. Several of the genes associated with the natural autumnal feeding decline in 13-lined ground squirrels show parallels to signaling pathways known to be disrupted in human metabolic diseases, like obesity and diabetes. In addition, many other genes were identified that could be important for the control of food consumption in other animals, including humans. PMID:25640202

  2. In vivo imaging of clock gene expression in multiple tissues of freely moving mice.

    PubMed

    Hamada, Toshiyuki; Sutherland, Kenneth; Ishikawa, Masayori; Miyamoto, Naoki; Honma, Sato; Shirato, Hiroki; Honma, Ken-Ichi

    2016-01-01

    Clock genes are expressed throughout the body, although how they oscillate in unrestrained animals is not known. Here, we show an in vivo imaging technique that enables long-term simultaneous imaging of multiple tissues. We use dual-focal 3D tracking and signal-intensity calibration to follow gene expression in a target area. We measure circadian rhythms of clock genes in the olfactory bulb, right and left ears and cortices, and the skin. In addition, the kinetic relationship between gene expression and physiological responses to experimental cues is monitored. Under stable conditions gene expression is in phase in all tissues. In response to a long-duration light pulse, the olfactory bulb shifts faster than other tissues. In Cry1(-/-) Cry2(-/-) arrhythmic mice circadian oscillation is absent in all tissues. Thus, our system successfully tracks circadian rhythms in clock genes in multiple tissues in unrestrained mice. PMID:27285820

  3. Effect of low-expression gene filtering on detection of differentially expressed genes in RNA-seq data

    PubMed Central

    Sha, Ying; Phan, John H.; Wang, May D.

    2016-01-01

    We compare methods for filtering RNA-seq lowexpression genes and investigate the effect of filtering on detection of differentially expressed genes (DEGs). Although RNA-seq technology has improved the dynamic range of gene expression quantification, low-expression genes may be indistinguishable from sampling noise. The presence of noisy, low-expression genes can decrease the sensitivity of detecting DEGs. Thus, identification and filtering of these low-expression genes may improve DEG detection sensitivity. Using the SEQC benchmark dataset, we investigate the effect of different filtering methods on DEG detection sensitivity. Moreover, we investigate the effect of RNA-seq pipelines on optimal filtering thresholds. Results indicate that the filtering threshold that maximizes the total number of DEGs closely corresponds to the threshold that maximizes DEG detection sensitivity. Transcriptome reference annotation, expression quantification method, and DEG detection method are statistically significant RNA-seq pipeline factors that affect the optimal filtering threshold. PMID:26737772

  4. Functional Annotation of Cotesia congregata Bracovirus: Identification of Viral Genes Expressed in Parasitized Host Immune Tissues

    PubMed Central

    Thézé, Julien; Cambier, Sébastien; Poulain, Julie; Da Silva, Corinne; Bézier, Annie; Musset, Karine; Moreau, Sébastien J. M.; Drezen, Jean-Michel

    2014-01-01

    -scale analysis of BV gene expression in two immune tissues of Manduca sexta caterpillars parasitized by Cotesia congregata wasps. Genes for which expression could be detected corresponded to genes localized in particular regions of the viral genome globally producing higher numbers of circles. Our study thus brings an original global vision of viral gene expression and paves the way to the determination of the regulatory mechanisms enabling the expression of BV genes in targeted organisms, such as major insect pests. In addition, we identify sequence features suggesting that most BV virulence genes were acquired from insect genomes. PMID:24872581

  5. Gene Expression Browser: large-scale and cross-experiment microarray data integration, management, search & visualization

    PubMed Central

    2010-01-01

    Background In the last decade, a large amount of microarray gene expression data has been accumulated in public repositories. Integrating and analyzing high-throughput gene expression data have become key activities for exploring gene functions, gene networks and biological pathways. Effectively utilizing these invaluable microarray data remains challenging due to a lack of powerful tools to integrate large-scale gene-expression information across diverse experiments and to search and visualize a large number of gene-expression data points. Results Gene Expression Browser is a microarray data integration, management and processing system with web-based search and visualization functions. An innovative method has been developed to define a treatment over a control for every microarray experiment to standardize and make microarray data from different experiments homogeneous. In the browser, data are pre-processed offline and the resulting data points are visualized online with a 2-layer dynamic web display. Users can view all treatments over control that affect the expression of a selected gene via Gene View, and view all genes that change in a selected treatment over control via treatment over control View. Users can also check the changes of expression profiles of a set of either the treatments over control or genes via Slide View. In addition, the relationships between genes and treatments over control are computed according to gene expression ratio and are shown as co-responsive genes and co-regulation treatments over control. Conclusion Gene Expression Browser is composed of a set of software tools, including a data extraction tool, a microarray data-management system, a data-annotation tool, a microarray data-processing pipeline, and a data search & visualization tool. The browser is deployed as a free public web service (http://www.ExpressionBrowser.com) that integrates 301 ATH1 gene microarray experiments from public data repositories (viz. the Gene

  6. Prioritizing orphan proteins for further study using phylogenomics and gene expression profiles in Streptomyces coelicolor

    PubMed Central

    2011-01-01

    Background Streptomyces coelicolor, a model organism of antibiotic producing bacteria, has one of the largest genomes of the bacterial kingdom, including 7825 predicted protein coding genes. A large number of these genes, nearly 34%, are functionally orphan (hypothetical proteins with unknown function). However, in gene expression time course data, many of these functionally orphan genes show interesting expression patterns. Results In this paper, we analyzed all functionally orphan genes of Streptomyces coelicolor and identified a list of "high priority" orphans by combining gene expression analysis and additional phylogenetic information (i.e. the level of evolutionary conservation of each protein). Conclusions The prioritized orphan genes are promising candidates to be examined experimentally in the lab for further characterization of their function. PMID:21899768

  7. Soluble epoxide hydrolase: Gene structure, expression and deletion

    PubMed Central

    Harris, Todd R.; Hammock, Bruce D.

    2013-01-01

    Mammalian soluble epoxide hydrolase (sEH) converts epoxides to their corresponding diols through the addition of a water molecule. sEH readily hydrolyzes lipid signaling molecules, including the epoxyeicosatrienoic acids (EETs), epoxidized lipids produced from arachidonic acid by the action of cytochrome p450s. Through its metabolism of the EETs and other lipid mediators, sEH contributes to the regulation of vascular tone, nociception, angiogenesis and the inflammatory response. Because of its central physiological role in disease states such as cardiac hypertrophy, diabetes, hypertension, and pain sEH is being investigated as a therapeutic target. This review begins with a brief introduction to sEH protein structure and function. sEH evolution and gene structure are then discussed before human small nucleotide polymorphisms and mammalian gene expression are described in the context of several disease models. The review ends with an overview of studies that have employed the sEH knockout mouse model. PMID:23701967

  8. Cloning and Heterologous Expression of the Grecocycline Biosynthetic Gene Cluster.

    PubMed

    Bilyk, Oksana; Sekurova, Olga N; Zotchev, Sergey B; Luzhetskyy, Andriy

    2016-01-01

    Transformation-associated recombination (TAR) in yeast is a rapid and inexpensive method for cloning and assembly of large DNA fragments, which relies on natural homologous recombination. Two vectors, based on p15a and F-factor replicons that can be maintained in yeast, E. coli and streptomycetes have been constructed. These vectors have been successfully employed for assembly of the grecocycline biosynthetic gene cluster from Streptomyces sp. Acta 1362. Fragments of the cluster were obtained by PCR and transformed together with the "capture" vector into the yeast cells, yielding a construct carrying the entire gene cluster. The obtained construct was heterologously expressed in S. albus J1074, yielding several grecocycline congeners. Grecocyclines have unique structural moieties such as a dissacharide side chain, an additional amino sugar at the C-5 position and a thiol group. Enzymes from this pathway may be used for the derivatization of known active angucyclines in order to improve their desired biological properties. PMID:27410036

  9. Cloning and Heterologous Expression of the Grecocycline Biosynthetic Gene Cluster

    PubMed Central

    Bilyk, Oksana; Sekurova, Olga N.; Zotchev, Sergey B.; Luzhetskyy, Andriy

    2016-01-01

    Transformation-associated recombination (TAR) in yeast is a rapid and inexpensive method for cloning and assembly of large DNA fragments, which relies on natural homologous recombination. Two vectors, based on p15a and F-factor replicons that can be maintained in yeast, E. coli and streptomycetes have been constructed. These vectors have been successfully employed for assembly of the grecocycline biosynthetic gene cluster from Streptomyces sp. Acta 1362. Fragments of the cluster were obtained by PCR and transformed together with the “capture” vector into the yeast cells, yielding a construct carrying the entire gene cluster. The obtained construct was heterologously expressed in S. albus J1074, yielding several grecocycline congeners. Grecocyclines have unique structural moieties such as a dissacharide side chain, an additional amino sugar at the C-5 position and a thiol group. Enzymes from this pathway may be used for the derivatization of known active angucyclines in order to improve their desired biological properties. PMID:27410036

  10. Gene expression profiling in Daphnia magna, part II: validation of a copper specific gene expression signature with effluent from two copper mines in California.

    PubMed

    Poynton, Helen C; Zuzow, Rick; Loguinov, Alexandre V; Perkins, Edward J; Vulpe, Chris D

    2008-08-15

    Genomic technologies show great potential for classifying disease states and toxicological impacts from exposure to chemicals into functional categories. In environmental monitoring, the ability to classify field samples and predict the pollutants present in these samples could contribute to monitoring efforts and the diagnosis of contaminated sites. Using gene expression analysis, we challenged our custom Daphnia magna cDNA microarray to determine the presence of a specific metal toxicant in blinded field samples collected from two copper mines in California. We compared the gene expression profiles from our field samples to previously established expression profiles for Cu, Cd, and Zn. The expression profiles from the Cu-containing field samples clustered with the laboratory-exposed Cu-specific gene expression profiles and included genes previously identified as copper biomarkers, verifying that gene expression analysis can predict environmental exposure to a specific pollutant. In addition, our study revealed that upstream field samples containing undetectable levels of Cu caused the differential expression of only a few genes, lending support for the concept of a no observed transcriptional effect level (NOTEL). If confirmed by further studies, the NOTEL may play an important role in discriminating polluted and nonpolluted sites in future monitoring efforts. PMID:18767696

  11. Genes, environment and gene expression in colon tissue: a pathway approach to determining functionality

    PubMed Central

    Slattery, Martha L; Pellatt, Daniel F; Wolff, Roger K; Lundgreen, Abbie

    2016-01-01

    Genetic and environmental factors have been shown to work together to alter cancer risk. In this study we evaluate previously identified gene and lifestyle interactions in a candidate pathway that were associated with colon cancer risk to see if these interactions altered gene expression. We analyzed non-tumor RNA-seq data from 144 colon cancer patients who had genotype, recent cigarette smoking, diet, body mass index (BMI), and recent aspirin/non-steroidal anti-inflammatory use data. Using a false discovery rate of 0.1, we evaluated differential gene expression between high and low levels of lifestyle exposure and genotypes using DESeq2. Thirteen pathway genes and 17 SNPs within those genes were associated with altered expression of other genes in the pathway. BMI, NSAIDs use and dietary components of the oxidative balance score (OBS) also were associated with altered gene expression. SNPs previously identified as interacting with these lifestyle factors, altered expression of pathway genes. NSAIDs interacted with 10 genes (15 SNPs) within those genes to alter expression of 28 pathway genes; recent cigarette smoking interacted with seven genes (nine SNPs) to alter expression of 27 genes. BMI interacted with FLT1, KDR, SEPN1, TERT, TXNRD2, and VEGFA to alter expression of eight genes. Three genes (five SNPs) interacted with OBS to alter expression of 12 genes. These data provide support for previously identified lifestyle and gene interactions associated with colon cancer in that they altered expression of key pathway genes. The need to consider lifestyle factors in conjunction with genetic factors is illustrated. PMID:27186328

  12. Social Regulation of Gene Expression in Threespine Sticklebacks

    PubMed Central

    Greenwood, Anna K.; Peichel, Catherine L.

    2015-01-01

    Identifying genes that are differentially expressed in response to social interactions is informative for understanding the molecular basis of social behavior. To address this question, we described changes in gene expression as a result of differences in the extent of social interactions. We housed threespine stickleback (Gasterosteus aculeatus) females in either group conditions or individually for one week, then measured levels of gene expression in three brain regions using RNA-sequencing. We found that numerous genes in the hindbrain/cerebellum had altered expression in response to group or individual housing. However, relatively few genes were differentially expressed in either the diencephalon or telencephalon. The list of genes upregulated in fish from social groups included many genes related to neural development and cell adhesion as well as genes with functions in sensory signaling, stress, and social and reproductive behavior. The list of genes expressed at higher levels in individually-housed fish included several genes previously identified as regulated by social interactions in other animals. The identified genes are interesting targets for future research on the molecular mechanisms of normal social interactions. PMID:26367311

  13. Genome-wide analysis of spatiotemporal gene expression patterns during early embryogenesis in rice.

    PubMed

    Itoh, Jun-Ichi; Sato, Yutaka; Sato, Yutaka; Hibara, Ken-Ichiro; Shimizu-Sato, Sae; Kobayashi, Hiromi; Takehisa, Hinako; Sanguinet, Karen A; Namiki, Nobukazu; Nagamura, Yoshiaki

    2016-04-01

    Embryogenesis in rice is different from that of most dicotolydonous plants in that it shows a non-stereotypic cell division pattern, formation of dorsal-ventral polarity, and endogenous initiation of the radicle. To reveal the transcriptional features associated with developmental events during rice early embryogenesis, we used microarray analysis coupled with laser microdissection to obtain both spatial and temporal transcription profiles. Our results allowed us to determine spatial expression foci for each expressed gene in the globular embryo, which revealed the importance of phytohormone-related genes and a suite of transcription factors to early embryogenesis. Our analysis showed the polarized expression of a small number of genes along the apical-basal and dorsal-ventral axes in the globular embryo, which tended to fluctuate in later developmental stages. We also analyzed gene expression patterns in the early globular embryo and how this relates to expression in embryonic organs at later stages. We confirmed the accuracy of the expression patterns found by microarray analysis of embryo subdomains usingin situhybridization. Our study identified homologous genes fromArabidopsis thalianawith known functions in embryogenesis in addition to unique and uncharacterized genes that show polarized expression patterns during embryogenesis. The results of this study are presented in a database to provide a framework for spatiotemporal gene expression during rice embryogenesis, to serve as a resource for future functional analysis of genes, and as a basis for comparative studies of plant embryogenesis. PMID:26903508

  14. Multispecies Analysis of Expression Pattern Diversification in the Recently Expanded Insect Ly6 Gene Family

    PubMed Central

    Tanaka, Kohtaro; Hazbun, Alexis; Hijazi, Assia; Vreede, Barbara; Sucena, Élio

    2015-01-01

    Gene families often consist of members with diverse expression domains reflecting their functions in a wide variety of tissues. However, how the expression of individual members, and thus their tissue-specific functions, diversified during the course of gene family expansion is not well understood. In this study, we approached this question through the analysis of the duplication history and transcriptional evolution of a rapidly expanding subfamily of insect Ly6 genes. We analyzed different insect genomes and identified seven Ly6 genes that have originated from a single ancestor through sequential duplication within the higher Diptera. We then determined how the original embryonic expression pattern of the founding gene diversified by characterizing its tissue-specific expression in the beetle Tribolium castaneum, the butterfly Bicyclus anynana, and the mosquito Anopheles stephensi and those of its duplicates in three higher dipteran species, representing various stages of the duplication history (Megaselia abdita, Ceratitis capitata, and Drosophila melanogaster). Our results revealed that frequent neofunctionalization episodes contributed to the increased expression breadth of this subfamily and that these events occurred after duplication and speciation events at comparable frequencies. In addition, at each duplication node, we consistently found asymmetric expression divergence. One paralog inherited most of the tissue-specificities of the founder gene, whereas the other paralog evolved drastically reduced expression domains. Our approach attests to the power of combining a well-established duplication history with a comprehensive coverage of representative species in acquiring unequivocal information about the dynamics of gene expression evolution in gene families. PMID:25743545

  15. Comprehensive profiling of EBV gene expression in nasopharyngeal carcinoma through paired-end transcriptome sequencing.

    PubMed

    Hu, Lijuan; Lin, Zhirui; Wu, Yanheng; Dong, Juqin; Zhao, Bo; Cheng, Yanbing; Huang, Peiyu; Xu, Lihua; Xia, Tianliang; Xiong, Dan; Wang, Hongbo; Li, Manzhi; Guo, Ling; Kieff, Elliott; Zeng, Yixin; Zhong, Qian; Zeng, Musheng

    2016-03-01

    The latent expression pattern of Epstein-Barr Virus (EBV) genes in nasopharyngeal carcinoma (NPC) has been extensively investigated, and the expression of several lytic genes in NPC has been reported. However, comprehensive information through EBV transcriptome analysis in NPC is limited. We performed paired-end RNA-seq to systematically and comprehensively characterize the expression of EBV genes in NPC tissue and C666-1 NPC cell line, which consistently carries EBV. In addition to the transcripts restricted to type II latency infection, the type III latency EBNA3s genes and a substantial number of lytic genes, such as BZLF1, BRLF1, and BMRF1, were detected through RNA-seq and were further verified in C666-1 cells and NPC tissue through realtime PCR.We also performed clustering analysis to classify NPC patient groups in terms of EBV gene expression, which presented two subtypes of NPC samples. Results revealed interesting patterns of EBV gene expression in NPC patients. This clustering was correlated with many signaling pathways, such as those related to heterotrimeric G-protein signaling, inflammation mediated by chemokine and cytokine signaling, ribosomes, protein metabolism, influenza infection, and ECM-receptor interaction. Our combined findings suggested that the expression of EBV genes in NPC is restricted not only to type II latency genes but also to type III latency and lytic genes. This study provided further insights into the potential role of EBV in the development of NPC. PMID:26969667

  16. Gene-Expression Novelty in Allopolyploid Cotton: A Proteomic Perspective

    PubMed Central

    Hu, Guanjing; Koh, Jin; Yoo, Mi-Jeong; Chen, Sixue; Wendel, Jonathan F.

    2015-01-01

    Allopolyploidization is accompanied by changes in gene expression that are thought to contribute to phenotypic diversification. Here we describe global changes in the single-celled cotton fiber proteome of two natural allopolyploid species (Gossypium hirsutum and G. barbadense) and living models of their diploid parents using two different proteomic approaches. In total, 1323 two-dimensional gel electrophoresis spots and 1652 identified proteins by isobaric tags for relative and absolute quantitation were quantitatively profiled during fiber elongation. Between allopolyploids and their diploid A- and D-genome progenitors, amounts of differential expression ranged from 4.4 to 12.8%. Over 80% of the allopolyploid proteome was additively expressed with respect to progenitor diploids. Interestingly, the fiber proteome of G. hirsutum resembles the parental A-genome more closely, where long, spinable fiber first evolved, than does the fiber proteome of G. barbadense. More protein expression patterns were A-dominant than D-dominant in G. hirsutum, but in G. barbadense, the direction of expression-level dominance switched from the D-genome to the A-genome during fiber development. Comparison of developmental changes between the two allopolyploid species revealed a high level of proteomic differentiation despite their shared ancestry, relatively recent evolutionary divergence, and similar gross morphology. These results suggest that the two allopolyploid species have achieved superficially similar modern fiber phenotypes through different evolutionary routes at the proteome level. We also detected homeolog-specific expression for 1001 proteins and present a novel approach to infer the relationship between homeolog-specific and duplicate expression patterns. Our study provides a proteomic perspective on understanding evolutionary consequences of allopolyploidization, showing how protein expression has been altered by polyploidization and subsequently has diversified among

  17. Automated, Miniaturized Instrument for Measuring Gene Expression in Space

    NASA Technical Reports Server (NTRS)

    Pohorille, A.; Peyvan, K.; Danley, D.; Ricco, A. J.

    2010-01-01

    To facilitate astrobiological studies on the survival and adaptation of microorganisms and mixed microbial cultures to space environment, we have been developing a fully automated, miniaturized system for measuring their gene expression on small spacecraft. This low-cost, multi-purpose instrument represents a major scientific and technological advancement in our ability to study the impact of the space environment on biological systems by providing data on cellular metabolism and regulation orders of magnitude richer than what is currently available. The system supports growth of the organism, lyse it to release the expressed RNA, label the RNA, read the expression levels of a large number of genes by microarray analysis of labeled RNA and transmit the measurements to Earth. To measure gene expression we use microarray technology developed by CombiMatrix, which is based on electrochemical reactions on arrays of electrodes on a semiconductor substrate. Since the electrical integrity of the microarray remains intact after probe synthesis, the circuitry can be employed to sense nucleic acid binding at each electrode. CombiMatrix arrays can be sectored to allow multiple samples per chip. In addition, a single array can be used for several assays. The array has been integrated into an automated microfluidic cartridge that uses flexible reagent blisters and pinch pumping to move liquid reagents between chambers. The proposed instrument will help to understand adaptation of terrestrial life to conditions beyond the planet of origin, identify deleterious effects of the space environment, develop effective countermeasures against these effects, and test our ability to sustain and grow in space organisms that can be used for life support and in situ resource utilization during long-duration space exploration. The instrument is suitable for small satellite platforms, which provide frequent, low cost access to space. It can be also used on any other platform in space

  18. Whole gene family expression and drought stress regulation of aquaporins.

    PubMed

    Alexandersson, Erik; Fraysse, Laure; Sjövall-Larsen, Sara; Gustavsson, Sofia; Fellert, Maria; Karlsson, Maria; Johanson, Urban; Kjellbom, Per

    2005-10-01

    Since many aquaporins (AQPs) act as water channels, they are thought to play an important role in plant water relations. It is therefore of interest to study the expression patterns of AQP isoforms in order to further elucidate their involvement in plant water transport. We have monitored the expression patterns of all 35 Arabidopsis AQPs in leaves, roots and flowers by cDNA microarrays, specially designed for AQPs, and by quantitative real-time reverse transcriptase PCR (Q-RT-PCR). This showed that many AQPs are pre-dominantly expressed in either root or flower organs, whereas no AQP isoform seem to be leaf specific. Looking at the AQP subfamilies, most plasma membrane intrinsic proteins (PIPs) and some tonoplast intrinsic proteins (TIPs) have a high level of expression, while NOD26-like proteins (NIPs) are present at a much lower level. In addition, we show that PIP transcripts are generally down-regulated upon gradual drought stress in leaves, with the exception of AtPIP1;4 and AtPIP2;5, which are up-regulated. AtPIP2;6 and AtSIP1;1 are constitutively expressed and not significantly affected by the drought stress. The transcriptional down-regulation of PIP genes upon drought stress could also be observed on the protein level. PMID:16235111

  19. Mitochondrial gene expression, antioxidant responses, and histopathology after cadmium exposure.

    PubMed

    Al Kaddissi, Simone; Legeay, Alexia; Elia, Antonia Concetta; Gonzalez, Patrice; Floriani, Magali; Cavalie, Isabelle; Massabuau, Jean-Charles; Gilbin, Rodolphe; Simon, Olivier

    2014-08-01

    The present study investigates cadmium effects on the transcription of mitochondrial genes of Procambarus clarkii after acute (0.05, 0.5, and 5 mg Cd/L; 4-10 days) and chronic exposures (10 μg Cd/L; 30-60 days). Transcriptional responses of cox1, atp6, and 12S using quantitative real-time RT-PCR were assessed in gills and hepatopancreas. Additionally, the expression levels of genes involved in detoxification and/or oxidative stress responses [mt, sod(Mn)] and enzymatic activities of antioxidants (SOD, CAT, GPX, and GST) were analyzed. The histopathological effects in hepatopancreas of crayfish were evaluated by light microscopy. Relationships between endpoints at different levels of biological organization and Cd bioaccumulation were also examined. Cd induced high levels of bioaccumulation, which was followed by mitochondrial dysfunction and histological alterations in both experiments. Moreover, perturbations in the defence mechanisms against oxidative stress tended to increase with time. Results also showed that molecular responses can vary depending on the intensity and duration of the chemical stress applied to the organisms and that the study of mt gene expression levels seemed to be the best tool to assess Cd intoxication. PMID:23065898

  20. Hydrophobin gene expression affects hyphal wall composition in Schizophyllum commune.

    PubMed

    van Wetter, M A; Wösten, H A; Sietsma, J H; Wessels, J G

    2000-11-01

    Disruption of the SC3 hydrophobin gene of Schizophyllum commune (DeltaSC3 strain) affected the composition of the cell wall. Compared to a wild-type strain the amount of mucilage (i.e., water-soluble (1-3)beta-glucan with single glucose residues attached by (1-6)beta-linkages) increased considerably, while the amount of alkali-resistant glucan (linked to chitin) decreased. Reintroduction of the SC3 gene or other hydrophobins genes expressed behind the SC3 promotor restored wild-type cell wall composition. However, addition of purified SC3 protein to the medium or growing the DeltaSC3 strain in spent medium of the wild-type strain had no effect. In young cultures of wild-type strains of S.commune, not yet expressing SC3, the amount of mucilage was also relatively high. These data show that hydrophobins not only function at hydrophilic/hydrophobic interfaces, as shown previously, but also affect wall composition. PMID:11170739

  1. Effects of Stress and MDMA on Hippocampal Gene Expression

    PubMed Central

    Weber, Georg F.; Johnson, Bethann N.; Yamamoto, Bryan K.; Gudelsky, Gary A.

    2014-01-01

    MDMA (3,4-methylenedioxymethamphetamine) is a substituted amphetamine and popular drug of abuse. Its mood-enhancing short-term effects may prompt its consumption under stress. Clinical studies indicate that MDMA treatment may mitigate the symptoms of stress disorders such as posttraumatic stress syndrome (PTSD). On the other hand, repeated administration of MDMA results in persistent deficits in markers of serotonergic (5-HT) nerve terminals that have been viewed as indicative of 5-HT neurotoxicity. Exposure to chronic stress has been shown to augment MDMA-induced 5-HT neurotoxicity. Here, we examine the transcriptional responses in the hippocampus to MDMA treatment of control rats and rats exposed to chronic stress. MDMA altered the expression of genes that regulate unfolded protein binding, protein folding, calmodulin-dependent protein kinase activity, and neuropeptide signaling. In stressed rats, the gene expression profile in response to MDMA was altered to affect sensory processing and responses to tissue damage in nerve sheaths. Subsequent treatment with MDMA also markedly altered the genetic responses to stress such that the stress-induced downregulation of genes related to the circadian rhythm was reversed. The data support the view that MDMA-induced transcriptional responses accompany the persistent effects of this drug on neuronal structure/function. In addition, MDMA treatment alters the stress-induced transcriptional signature. PMID:24511526

  2. Replication-Competent Influenza A Viruses Expressing Reporter Genes

    PubMed Central

    Breen, Michael; Nogales, Aitor; Baker, Steven F.; Martínez-Sobrido, Luis

    2016-01-01

    Influenza A viruses (IAV) cause annual seasonal human respiratory disease epidemics. In addition, IAV have been implicated in occasional pandemics with inordinate health and economic consequences. Studying IAV, in vitro or in vivo, requires the use of laborious secondary methodologies to identify virus-infected cells. To circumvent this requirement, replication-competent IAV expressing an easily traceable reporter protein can be used. Here we discuss the development and applications of recombinant replication-competent IAV harboring diverse fluorescent or bioluminescent reporter genes in different locations of the viral genome. These viruses have been employed for in vitro and in vivo studies, such as the screening of neutralizing antibodies or antiviral compounds, the identification of host factors involved in viral replication, cell tropism, the development of vaccines, or the assessment of viral infection dynamics. In summary, reporter-expressing, replicating-competent IAV represent a powerful tool for the study of IAV both in vitro and in vivo. PMID:27347991

  3. Spatial reconstruction of single-cell gene expression

    PubMed Central

    Satija, Rahul; Farrell, Jeffrey A.; Gennert, David; Schier, Alexander F.; Regev, Aviv

    2015-01-01

    Spatial localization is a key determinant of cellular fate and behavior, but spatial RNA assays traditionally rely on staining for a limited number of RNA species. In contrast, single-cell RNA-seq allows for deep profiling of cellular gene expression, but established methods separate cells from their native spatial context. Here we present Seurat, a computational strategy to infer cellular localization by integrating single-cell RNA-seq data with in situ RNA patterns. We applied Seurat to spatially map 851 single cells from dissociated zebrafish (Danio rerio) embryos, inferring a transcriptome-wide map of spatial patterning. We confirmed Seurat’s accuracy using several experimental approaches, and used it to identify a set of archetypal expression patterns and spatial markers. Additionally, Seurat correctly localizes rare subpopulations, accurately mapping both spatially restricted and scattered groups. Seurat will be applicable to mapping cellular localization within complex patterned tissues in diverse systems. PMID:25867923

  4. Replication-Competent Influenza A Viruses Expressing Reporter Genes.

    PubMed

    Breen, Michael; Nogales, Aitor; Baker, Steven F; Martínez-Sobrido, Luis

    2016-01-01

    Influenza A viruses (IAV) cause annual seasonal human respiratory disease epidemics. In addition, IAV have been implicated in occasional pandemics with inordinate health and economic consequences. Studying IAV, in vitro or in vivo, requires the use of laborious secondary methodologies to identify virus-infected cells. To circumvent this requirement, replication-competent IAV expressing an easily traceable reporter protein can be used. Here we discuss the development and applications of recombinant replication-competent IAV harboring diverse fluorescent or bioluminescent reporter genes in different locations of the viral genome. These viruses have been employed for in vitro and in vivo studies, such as the screening of neutralizing antibodies or antiviral compounds, the identification of host factors involved in viral replication, cell tropism, the development of vaccines, or the assessment of viral infection dynamics. In summary, reporter-expressing, replicating-competent IAV represent a powerful tool for the study of IAV both in vitro and in vivo. PMID:27347991

  5. Polysaccharide-degrading thermophiles generated by heterologous gene expression in Geobacillus kaustophilus HTA426.

    PubMed

    Suzuki, Hirokazu; Yoshida, Ken-ichi; Ohshima, Toshihisa

    2013-09-01

    Thermophiles have important advantages over mesophiles as host organisms for high-temperature bioprocesses, functional production of thermostable enzymes, and efficient expression of enzymatic activities in vivo. To capitalize on these advantages of thermophiles, we describe here a new inducible gene expression system in the thermophile Geobacillus kaustophilus HTA426. Six promoter regions in the HTA426 genome were identified and analyzed for expression profiles using β-galactosidase reporter assay. This analysis identified a promoter region upstream of a putative amylose-metabolizing gene cluster that directed high-level expression of the reporter gene. The expression was >280-fold that without a promoter and was further enhanced 12-fold by maltose addition. In association with a multicopy plasmid, this promoter region was used to express heterologous genes. Several genes, including a gene whose product was insoluble when expressed in Escherichia coli, were successfully expressed as soluble proteins, with yields of 0.16 to 59 mg/liter, and conferred new functions to G. kaustophilus strains. Remarkably, cellulase and α-amylase genes conferred the ability to degrade cellulose paper and insoluble starch at high temperatures, respectively, generating thermophiles with the potential to degrade plant biomass. Our results demonstrate that this novel expression system expands the potential applications of G. kaustophilus. PMID:23793634

  6. Polysaccharide-Degrading Thermophiles Generated by Heterologous Gene Expression in Geobacillus kaustophilus HTA426

    PubMed Central

    Yoshida, Ken-ichi; Ohshima, Toshihisa

    2013-01-01

    Thermophiles have important advantages over mesophiles as host organisms for high-temperature bioprocesses, functional production of thermostable enzymes, and efficient expression of enzymatic activities in vivo. To capitalize on these advantages of thermophiles, we describe here a new inducible gene expression system in the thermophile Geobacillus kaustophilus HTA426. Six promoter regions in the HTA426 genome were identified and analyzed for expression profiles using β-galactosidase reporter assay. This analysis identified a promoter region upstream of a putative amylose-metabolizing gene cluster that directed high-level expression of the reporter gene. The expression was >280-fold that without a promoter and was further enhanced 12-fold by maltose addition. In association with a multicopy plasmid, this promoter region was used to express heterologous genes. Several genes, including a gene whose product was insoluble when expressed in Escherichia coli, were successfully expressed as soluble proteins, with yields of 0.16 to 59 mg/liter, and conferred new functions to G. kaustophilus strains. Remarkably, cellulase and α-amylase genes conferred the ability to degrade cellulose paper and insoluble starch at high temperatures, respectively, generating thermophiles with the potential to degrade plant biomass. Our results demonstrate that this novel expression system expands the potential applications of G. kaustophilus. PMID:23793634

  7. Analysis of spatial-temporal gene expression patterns reveals dynamics and regionalization in developing mouse brain

    PubMed Central

    Chou, Shen-Ju; Wang, Chindi; Sintupisut, Nardnisa; Niou, Zhen-Xian; Lin, Chih-Hsu; Li, Ker-Chau; Yeang, Chen-Hsiang

    2016-01-01

    Allen Brain Atlas (ABA) provides a valuable resource of spatial/temporal gene expressions in mammalian brains. Despite rich information extracted from this database, current analyses suffer from several limitations. First, most studies are either gene-centric or region-centric, thus are inadequate to capture the superposition of multiple spatial-temporal patterns. Second, standard tools of expression analysis such as matrix factorization can capture those patterns but do not explicitly incorporate spatial dependency. To overcome those limitations, we proposed a computational method to detect recurrent patterns in the spatial-temporal gene expression data of developing mouse brains. We demonstrated that regional distinction in brain development could be revealed by localized gene expression patterns. The patterns expressed in the forebrain, medullary and pontomedullary, and basal ganglia are enriched with genes involved in forebrain development, locomotory behavior, and dopamine metabolism respectively. In addition, the timing of global gene expression patterns reflects the general trends of molecular events in mouse brain development. Furthermore, we validated functional implications of the inferred patterns by showing genes sharing similar spatial-temporal expression patterns with Lhx2 exhibited differential expression in the embryonic forebrains of Lhx2 mutant mice. These analysis outcomes confirm the utility of recurrent expression patterns in studying brain development. PMID:26786896

  8. Unstable Expression of Commonly Used Reference Genes in Rat Pancreatic Islets Early after Isolation Affects Results of Gene Expression Studies

    PubMed Central

    Kosinová, Lucie; Cahová, Monika; Fábryová, Eva; Týcová, Irena; Koblas, Tomáš; Leontovyč, Ivan; Saudek, František; Kříž, Jan

    2016-01-01

    The use of RT-qPCR provides a powerful tool for gene expression studies; however, the proper interpretation of the obtained data is crucially dependent on accurate normalization based on stable reference genes. Recently, strong evidence has been shown indicating that the expression of many commonly used reference genes may vary significantly due to diverse experimental conditions. The isolation of pancreatic islets is a complicated procedure which creates severe mechanical and metabolic stress leading possibly to cellular damage and alteration of gene expression. Despite of this, freshly isolated islets frequently serve as a control in various gene expression and intervention studies. The aim of our study was to determine expression of 16 candidate reference genes and one gene of interest (F3) in isolated rat pancreatic islets during short-term cultivation in order to find a suitable endogenous control for gene expression studies. We compared the expression stability of the most commonly used reference genes and evaluated the reliability of relative and absolute quantification using RT-qPCR during 0–120 hrs after isolation. In freshly isolated islets, the expression of all tested genes was markedly depressed and it increased several times throughout the first 48 hrs of cultivation. We observed significant variability among samples at 0 and 24 hrs but substantial stabilization from 48 hrs onwards. During the first 48 hrs, relative quantification failed to reflect the real changes in respective mRNA concentrations while in the interval 48–120 hrs, the relative expression generally paralleled the results determined by absolute quantification. Thus, our data call into question the suitability of relative quantification for gene expression analysis in pancreatic islets during the first 48 hrs of cultivation, as the results may be significantly affected by unstable expression of reference genes. However, this method could provide reliable information from 48 hrs

  9. Gene expression profiles of bladder cancers: evidence for a striking effect of in vitro cell models on gene patterns

    PubMed Central

    Dangles, V; Lazar, V; Validire, P; Richon, S; Wertheimer, M; Laville, V; Janneau, J-L; Barrois, M; Bovin, C; Poynard, T; Vallancien, G; Bellet, D

    2002-01-01

    In order to assess the effect of in vitro models on the expression of key genes known to be implicated in the development or progression of cancer, we quantified by real-time quantitative PCR the expression of 28 key genes in three bladder cancer tissue specimens and in their derived cell lines, studied either as one-dimensional single cell suspensions, two-dimensional monolayers or three-dimensional spheroids. Global analysis of gene expression profiles showed that in vitro models had a dramatic impact upon gene expression. Remarkably, quantitative differences in gene expression of 2–63-fold were observed in 24 out of 28 genes among the cell models. In addition, we observed that the in vitro model which most closely mimicked in vivo mRNA phenotype varied with both the gene and the patient. These results provide evidence that mRNA expression databases based on cancer cell lines, which are studied to provide a rationale for selection of therapy on the basis of molecular characteristics of a patient's tumour, must be carefully interpreted. British Journal of Cancer (2002) 86, 1283–1289. DOI: 10.1038/sj/bjc/6600239 www.bjcancer.com © 2002 Cancer Research UK PMID:11953886

  10. Comprehensive identification and expression analysis of Hsp90s gene family in Solanum lycopersicum.

    PubMed

    Zai, W S; Miao, L X; Xiong, Z L; Zhang, H L; Ma, Y R; Li, Y L; Chen, Y B; Ye, S G

    2015-01-01

    Heat shock protein 90 (Hsp90) is a protein produced by plants in response to adverse environmental stresses. In this study, we identified and analyzed Hsp90 gene family members using a bioinformatic method based on genomic data from tomato (Solanum lycopersicum L.). The results illustrated that tomato contains at least 7 Hsp90 genes distributed on 6 chromosomes; protein lengths ranged from 267-794 amino acids. Intron numbers ranged from 2-19 in the genes. The phylogenetic tree revealed that Hsp90 genes in tomato (Solanum lycopersicum L.), rice (Oryza sativa L.), and Arabidopsis (Arabidopsis thaliana L.) could be divided into 5 groups, which included 3 pairs of orthologous genes and 4 pairs of paralogous genes. Expression analysis of RNA-sequence data showed that the Hsp90-1 gene was specifically expressed in mature fruits, while Hsp90-5 and Hsp90-6 showed opposite expression patterns in various tissues of cultivated and wild tomatoes. The expression levels of the Hsp90-1, Hsp90-2, and Hsp90- 3 genes in various tissues of cultivated tomatoes were high, while both the expression levels of genes Hsp90-3 and Hsp90-4 were low. Additionally, quantitative real-time polymerase chain reaction showed that these genes were involved in the responses to yellow leaf curl virus in tomato plant leaves. Our results provide a foundation for identifying the function of the Hsp90 gene in tomato. PMID:26214462

  11. Validation of reference genes for gene expression studies in Aphis glycines (Hemiptera: Aphididae).

    PubMed

    Bansal, Raman; Mamidala, Praveen; Mian, M A Rouf; Mittapalli, Omprakash; Michel, Andy P

    2012-08-01

    Quantitative real-time polymerase chain reaction (qRT-PCR) is a common and robust tool for accurate quantification of mRNA transcripts. To normalize results, a housekeeping gene ([HKG], reference gene or endogenous control gene) is mandatory. Soybean aphid, Aphis glycines Matsumura (Hemiptera: Aphididae), is a significant soybean, Glycine max (L.) Merr., pest, yet gene expression and functional genomics studies are hindered by a lack of stable HKGs. We evaluated seven potential HKGs (SDFS, succinate dehydrogenase flavoprotein subunit; EF1a, elongation factor-la; HEL, helicase; GAPDH, glyceraldehyde-3 phosphate dehydrogenase; RPS9, ribosomal protein S9; TBP, TATA-box binding protein; and UBQ, ubiquitin-conjugating protein) to determine the most efficient HKGs that have stable expression among tissues, developmental stages, and aphids fed on susceptible and host plant-resistant soybean. HKG stability was determined using GeNorm and NormFinder. Results from three different experimental conditions revealed high stability of TBP compared with the other HKGs profiled across the samples assayed. RPS9 showed stable expression among aphids on susceptible and resistant plants, whereas EF1a showed stable expression in tissues and developmental stages. Therefore, we recommend the TBP as a suitable HKG for efficient normalization among treatments, tissues, and developmental stages of A. glycines. In addition, RPS9 may be used for host-plant resistance experiments and EF1a could be considered for testing differential expression across tissues or developmental stages. These results will enable a more accurate and reliable normalization of qRT-PCR data in A. glycines. PMID:22928326

  12. Peroxidase gene expression during tomato fruit ripening

    SciTech Connect

    Biggs, M.S.; Flurkey, W.H.; Handa, A.K.

    1987-04-01

    Auxin oxidation has been reported to play a critical role in the initiation of pear fruit ripening and a tomato fruit peroxidase (POD) has been shown to have IAA-oxidase activity. However, little is known about changes in the expression of POD mRNA in tomato fruit development. They are investigating the expression of POD mRNA during tomato fruit maturation. Fruit pericarp tissues from six stages of fruit development and ripening (immature green, mature green, breaker, turning, ripe, and red ripe fruits) were used to extract poly (A)/sup +/ RNAs. These RNAs were translated in vitro in a rabbit reticulocyte lysate system using L-/sup 35/S-methionine. The /sup 35/S-labeled products were immunoprecipitated with POD antibodies to determine the relative proportions of POD mRNA. High levels of POD mRNA were present in immature green and mature green pericarp, but declined greatly by the turning stage of fruit ripening. In addition, the distribution of POD mRNA on free vs bound polyribosomes will be presented, as well as the presence or absence of POD mRNA in other tomato tissues.

  13. Cardiac gene expression data and in silico analysis provide novel insights into human and mouse taste receptor gene regulation.

    PubMed

    Foster, Simon R; Porrello, Enzo R; Stefani, Maurizio; Smith, Nicola J; Molenaar, Peter; dos Remedios, Cristobal G; Thomas, Walter G; Ramialison, Mirana

    2015-10-01

    G protein-coupled receptors are the principal mediators of the sweet, umami, bitter, and fat taste qualities in mammals. Intriguingly, the taste receptors are also expressed outside of the oral cavity, including in the gut, airways, brain, and heart, where they have additional functions and contribute to disease. However, there is little known about the mechanisms governing the transcriptional regulation of taste receptor genes. Following our recent delineation of taste receptors in the heart, we investigated the genomic loci encoding for taste receptors to gain insight into the regulatory mechanisms that drive their expression in the heart. Gene expression analyses of healthy and diseased human and mouse hearts showed coordinated expression for a subset of chromosomally clustered taste receptors. This chromosomal clustering mirrored the cardiac expression profile, suggesting that a common gene regulatory block may control the taste receptor locus. We identified unique domains with strong regulatory potential in the vicinity of taste receptor genes. We also performed de novo motif enrichment in the proximal promoter regions and found several overrepresented DNA motifs in cardiac taste receptor gene promoters corresponding to ubiquitous and cardiac-specific transcription factor binding sites. Thus, combining cardiac gene expression data with bioinformatic analyses, this study has provided insights into the noncoding regulatory landscape for taste GPCRs. These findings also have broader relevance for the study of taste GPCRs outside of the classical gustatory system, where understanding the mechanisms controlling the expression of these receptors may have implications for future therapeutic development. PMID:25986534

  14. Gene expression profiling of replicative and induced senescence.

    PubMed

    Purcell, Maggie; Kruger, Adele; Tainsky, Michael A

    2014-01-01

    Cellular senescence is a cell cycle arrest accompanied by high expression of cyclin dependent kinase inhibitors which counteract overactive growth signals, which serves as a tumor suppressive mechanism. Senescence can be a result of telomere shortening (natural or replicative senescence) or DNA damage resulting from exogenous stressors (induced senescence). Here, we performed gene expression profiling through RNA-seq of replicative senescence, adriamycin-induced senescence, H2O2-induced senescence, and 5-aza-2-deoxycytidine-induced senescence in order to profile the pathways controlling various types of senescence. Overall, the pathways common to all 4 types of senescence were related to inflammation and the innate immune system. It was also evident that 5-aza-induced senescence mirrors natural replicative senescence due to telomere shortening. We also examined the prevalence of senescence-associated secretory phenotype (SASP) factors in the RNA-seq data, showing that it is a common characteristic of all 4 types of senescence. In addition, we could discriminate changes in gene expression due to quiescence during cellular senescence from those that were specific to senescence. PMID:25483067

  15. Aging: a portrait from gene expression profile in blood cells.

    PubMed

    Calabria, Elisa; Mazza, Emilia Maria Cristina; Dyar, Kenneth Allen; Pogliaghi, Silvia; Bruseghini, Paolo; Morandi, Carlo; Salvagno, Gian Luca; Gelati, Matteo; Guidi, Gian Cesare; Bicciato, Silvio; Schiaffino, Stefano; Schena, Federico; Capelli, Carlo

    2016-08-01

    The availability of reliable biomarkers of aging is important not only to monitor the effect of interventions and predict the timing of pathologies associated with aging but also to understand the mechanisms and devise appropriate countermeasures. Blood cells provide an easily available tissue and gene expression profiles from whole blood samples appear to mirror disease states and some aspects of the aging process itself. We report here a microarray analysis of whole blood samples from two cohorts of healthy