Science.gov

Sample records for addition horizontal drilling

  1. Horizontal drilling developments

    SciTech Connect

    Gust, D.

    1997-05-01

    The advantages of horizontal drilling are discussed. Use of horizontal drilling has climbed in the past half decade as technology and familiarity offset higher costs with higher production rates and greater recoveries from new and existing wells. In essence, all types of horizontal wells expose a larger section of the reservoir to the wellbore with a resulting increase in flow rates. (A horizontal well may also be drilled to provide coning control or to intersect vertical fractures.) Thus, drilling horizontally, both onshore and offshore, reduces the number of wells necessary to develop a field.

  2. Horizontal drilling installs dutch waterline

    SciTech Connect

    Not Available

    1986-08-01

    A 32-in. potable water line system, installed by Van Eijk Leidingen B.V. in Holland, was laid through an intensively cultivated vegetable gardening area, and designed to furnish additional irrigation water. Using a horizontally drilled 42-in. hole under the Maasdijk, though a difficult job, reduced the length by more than 3 miles.

  3. Portable Horizontal-Drilling And Positioning Device

    NASA Technical Reports Server (NTRS)

    Smigocki, Edmund; Johnson, Clarence

    1988-01-01

    Portable horizontal-drilling and positioning device, constructed mainly of off-the-shelf components, accurately drills horizontal small holes in irregularly shaped objects. Holes precisely placed and drilled in objects that cannot be moved to shop area. New device provides three axes of movement while maintaining horizontal drilling.

  4. How to drill horizontal sections faster

    SciTech Connect

    Chaffin, M. )

    1991-12-01

    This paper reports that fewer trips, reduced slide time and lower drag during sliding have resulted from the application of downhole-adjustable stabilizers to horizontal drilling. Faster drilling times mean lower measurement while drilling (MWD) cost, and less wear on downhole equipment, motors and bits. These advantages combined with reduced drilling shocks have increased drilling rates and efficiency. Applying existing technology in new situations is an important way of reducing the cost of finding, exploring for and developing reserves. Engineers are responsible for using current technology to its fullest and developing new technology to reduce drilling expenses. Horizontal drilling was used in its early stages to develop the Austin chalk formation in Pearsall oil field more effectively. As procedures were generated to drill horizontal wells, Oryx drilling engineers began to develop new technology and investigate ways for existing technology to be used or altered to fit horizontal drilling programs. The new technology of downhole-adjustable stabilizers has been used successfully to further improve horizontal drilling efficiency.

  5. Horizontal drilling in shallow, geologically complex reservoirs

    SciTech Connect

    Venable, S.D.

    1992-05-01

    Hillin-Simon Oil Company, in connection with the U.S. Department of Energy proposes to drill a horizontal well in the Niobrara formation, Yuma County, Colorado. The objective of this project is to test the concept that multiple hydraulic fracturing from a directionally-drilled horizontal well, using the medium radius build rate method, can increase gas production sufficiently to justify economic viability over conventional stimulated vertical wells. The test well is located in a favorable area of established production to avoid exploration risks.

  6. Elf cites 5 advantages of horizontal drilling

    SciTech Connect

    Not Available

    1984-06-01

    ELF Aquitaine used horizontal drilling during a pilot test program to bring commercial production from its Rospo Mare oil discovery in the Adriatic, which would have been a costly disappointment if drilled by a conventional vertical well bore. Rospo Mare is a large reservoir containing a top column of highly viscous crude underlain by a water column. The company felt that a well bore that penetrated the reservoir vertically would bring early flooding of the oil column and yield only water. By penetrating the reservoir with a horizontal well drilled high in the oil column, the well successfully produced on numerous tests from Oct. 1982 until the end of the test program in 1983. Production was termed excellent, with productivity during tests reportedly reaching ca 15 times the rate produced from nearby vertical wells. However, ELF said the results usually average ca 5 times the usual rate of vertical wells.

  7. Additive for drilling fluids

    SciTech Connect

    Cates, A.E.

    1983-09-13

    A water-based gas or oil well drilling fluid is disclosed comprising an aqueous clay dispersion containing as a thinner and water loss control agent, the essentially water-soluble product obtained by heating together quebracho, lignite, gilsonite and sulfonating, methylating and causticizing agents.

  8. Dynamics of Pipeline Pulling Process By Horizontal Directional Drilling

    NASA Astrophysics Data System (ADS)

    Toropov, V. S.; Tamer, O. S.; Toropov, S. Yu; Nikiforov, N. A.

    2016-10-01

    For using in horizontal directional drilling, the authors developed a model of a cyclical pipeline pulling process, enabling to perform calculations of resistance forces of pipeline movement considering the well profile geometry, mass characteristics of drill pipes, pulled pipeline and mud, as well as the velocity parameters of pullback. Analytical dependences were derived to determine absolute values and time changes in pipeline pullback force considering the well geometry, physical properties of interacting elements of the pullback process. In addition, analytical dependences were obtained for certain power consumptions of a drilling rig during pipeline pulling considering the pullback process model

  9. Horizontal drilling in shallow, geologically complex reservoirs

    SciTech Connect

    Venable, S.D.

    1992-01-01

    The objective of this project is to test the concept that multiple hydraulic fracturing from a directionally-drilled horizontal well, using the medium radius build rate method, can increase gas production sufficiently to justify economic viability over conventional stimulated vertical wells. The test well is located in Yuma County, Colorado, in a favorable area of established production to avoid exploration risks. This report presents: background information; project description which covers location selection/geologic considerations; and preliminary work plan. (AT)

  10. Horizontal drilling in shallow, geologically complex reservoirs

    SciTech Connect

    Venable, S.D.

    1992-10-01

    The objective of this project is to test the concept that multiple hydraulic fracturing from a directionally-drilled horizontal well, using the medium radius build rate method, can increase gas production sufficiently to justify economic viability over conventional stimulated vertical wells. The test well is located in Yuma County, Colorado, in a favorable area of established production to avoid exploration risks. This report presents: background information; project description which covers location selection/geologic considerations; and preliminary work plan. (AT)

  11. Wayne field: A horizontal drilling case study

    SciTech Connect

    Jennings, J.B.; Johnson, R.P.

    1996-06-01

    Beginning in the spring of 1994, studies of Wayne field located on the northeastern flank of the Williston Basin were initiated to determine the feasibility of using horizontal drilling to increase recoverable reserves in the field. The Wayne subinterval is one of several shoaling-upwards cycles within the Mission Canyon Formation of the Mississippian Madison Group. The reservoir pay averages 24% porosity, 100 millidarcys permeability, and 50% water saturation. Vertical wells, since field discovery in 1957, typically IP for 70 bopd and 20% water with a rapid decline within a few months to 10 bopd and 90% water. This type of well performance is characteristic of severe water coning for which horizontal development can help to minimize. In late 1994 and early 1995 the Ballantyne Hedges No.7H and GeoResources O. Fossum No.H1 were drilled. The wells recorded IP`s of 280 bopd/5 bwpd and 390 bopd/80 bwpd respectively. After six months of production both wells stabilized at approximately 110 bopd with a 35% water cut. Projections indicate that each horizontal well will recover 250,000 bbls of oil as compared to 115,000 bbls for an average vertical well and will do so in half the time. These early results provide a significant improvement over the vertical production and would seem to be reducing water coning. Three more horizontal wells are planned for the fourth quarter of 1995.

  12. Water based drilling mud additive

    SciTech Connect

    McCrary, J.L.

    1983-12-13

    A water based fluid additive useful in drilling mud used during drilling of an oil or gas well is disclosed, produced by reacting water at temperatures between 210/sup 0/-280/sup 0/ F. with a mixture comprising in percent by weight: gilsonite 25-30%, tannin 7-15%, lignite 25-35%, sulfonating compound 15-25%, water soluble base compound 5-15%, methylene-yielding compound 1-5%, and then removing substantially all of the remaining water to produce a dried product.

  13. Geologic aspects of horizontal drilling in self-sourcing reservoirs

    SciTech Connect

    Illich, H.A. )

    1991-03-01

    Horizontal drilling techniques provide a way to exploit hydrocarbon reserves that are either noneconomic or only marginally economic using vertical drilling techniques. A significant fraction of these reserves is contained in reservoirs that are self-sourcing or in reservoirs that are closely associated with their resources. Most formations drilled as horizontal targets are self-sourcing. The Austin Chalk, Niobrara, Mesaverde, and Bakken are examples of horizontally drilled, self-sourcing reservoir systems. In formations like the Bakken or Austin Chalk, the close relationship between reservoir and source makes risks associated with migration and accumulation less important. Reservoirs of this kind can contain oil or gas and often have little or no associated water. They can be matrix-dominated reservoirs, dual-porosity reservoirs (Mesaverde), or fractured reservoirs (Austin Chalk, Bakken, and Niobrara). Fractured, self-sourcing reservoirs also can possess matrix characteristics that contribute increased recovery efficiency. Most reservoirs drilled horizontally possess matrix characteristics that contribute increased recovery efficiency. Most reservoirs drilled horizontally possess highly heterogeneous reservoir systems. Characterization of the style of reservoir heterogeneity in self-sourcing systems is important if the favorable properties of horizontally oriented bore holes are to be realized. Production data and rock mechanics considerations are important in horizontal drilling ventures. Examples of the use of these data for the purpose of defining reservoir characteristics are discussed. Knowledge of lateral changes in reservoir properties is essential if we are to recover known reserves efficiently.

  14. Horizontal directional drilling: a green and sustainable technology for site remediation.

    PubMed

    Lubrecht, Michael D

    2012-03-06

    Sustainability has become an important factor in the selection of remedies to clean up contaminated sites. Horizontal directional drilling (HDD) is a relatively new drilling technology that has been successfully adapted to site remediation. In addition to the benefits that HDD provides for the logistics of site cleanup, it also delivers sustainability advantages, compared to alternative construction methods.

  15. Environmental Measurement-While-Drilling System and Horizontal Directional Drilling Technology Demonstration, Hanford Site

    SciTech Connect

    Williams, C.V.; Lockwood, G.J.; Normann, R.A.; Myers, D.A.; Gardner, M.G.; Williamson, T.; Huffman, J.

    1999-06-01

    The Environmental Measurement-While-Drilling (EMWD) system and Horizontal Directional Drilling (HDD) were successfully demonstrated at the Mock Tank Leak Simulation Site and the Drilling Technology Test Site, Hanford, Washington. The use of directional drilling offers an alternative to vertical drilling site characterization. Directional drilling can develop a borehole under a structure, such as a waste tank, from an angled entry and leveling off to horizontal at the desired depth. The EMWD system represents an innovative blend of new and existing technology that provides the capability of producing real-time environmental and drill bit data during drilling operations. The technology demonstration consisted of the development of one borehole under a mock waste tank at a depth of {approximately} {minus}8 m ({minus}27 ft.), following a predetermined drill path, tracking the drill path to within a radius of {approximately}1.5 m (5 ft.), and monitoring for zones of radiological activity using the EMWD system. The purpose of the second borehole was to demonstrate the capability of drilling to a depth of {approximately} {minus}21 m ({minus}70 ft.), the depth needed to obtain access under the Hanford waste tanks, and continue drilling horizontally. This report presents information on the HDD and EMWD technologies, demonstration design, results of the demonstrations, and lessons learned.

  16. Sulfonated gilsonite drilling mud additive

    SciTech Connect

    Mccrary, J.L.

    1983-05-31

    A sulfonated gilsonite used in a drilling mud for drilling a well wherein the sulfonated gilsonite is prepared by reacting at a temperature between 210/sup 0/-280/sup 0/ F with a mixture of water, gilsonite having a softening point of at least 300/sup 0/ F, lignite, sulfonating compound and water soluble based compound for a period of time to sulfonate the gilsonite.

  17. Rotary Steerable Horizontal Directional Drilling: Red River Formation

    NASA Astrophysics Data System (ADS)

    Cherukupally, A.; Bergevin, M.; Jones, J.

    2011-12-01

    Sperry-Sun Drilling, a Halliburton company provides engineering solutions and sets new records for Horizontal and Vertical Displacement Drilling (HVDD). Halliburton Sperry Drilling, Casper, WY, allowed one student to participate in 12-week experiential learning program this summer as HVDD engineer. HVDD is the science of drilling non-vertical wells and can be differentiated into three main groups; Oilfield Directional Drilling (ODD), Utility Installation Directional Drilling (UIDD) and in-seam directional Drilling. Sperry-Sun prior experience with rotary drilling established a number of principles for the configuration of Bottom Hole Assembly (BHA) that would be prone to drilling crooked hole [1]. Combining Measurement While Drilling survey tools (MWD tools) and BHA designs made HVDD possible. Geologists use the MWD survey data to determine the well placement in the stratigraphic sequence. Through the analysis of this data, an apparent dip of the formation can be calculated, and the bit is directed to stay in the target zone of production. Geological modeling assists in directing the well by creating a map of the target zone surface, an Isopach map. The Isopach map provides contour intervals and changes in formation dip. When the inclination of the formation changes the geologist informs the directional drillers to adjust the drill bits. HVDD provides Halliburton the opportunity to reach more production intervals in a given formation sequence [1]. The Down hole motors powered by fluid flow through the drill string create horsepower and rotation of the bit which enables the use of a bend element in the BHA to create the tilt necessary to deviate the wellbore from vertical displacement drilling path. The rotation of Down hole motors is influenced by temperature and aromatics found in water, oil and diesel based mud. The development of HVDD Rotary Steerable tools hold promise to have almost a complete automated process for drilling highly deviated production well

  18. Crosswell Imaging Technology & Advanced DSR Navigation for Horizontal Directional Drilling

    SciTech Connect

    Larry Stolarczyk

    2008-08-08

    The objective of Phase II is to develop and demonstrate real-time measurement-while-drilling (MWD) for guidance and navigation of drill strings during horizontal drilling operations applicable to both short and long holes. The end product of Phase II is a functional drill-string assembly outfitted with a commercial version of Drill String Radar (DSR). Project Objectives Develop and demonstrate a dual-phase methodology of in-seam drilling, imaging, and structure confirmation. This methodology, illustrated in Figure 1, includes: (1) Using RIM to image between drill holes for seam thickness estimates and in-seam structures detection. Completed, February 2005; and (2) Using DSR for real-time MWD guidance and navigation of drillstrings during horizontal drilling operations. Completed, November 2008. As of November 2008, the Phase II portion of Contract DE-FC26-04NT42085 is about 99% complete, including milestones and tasks original outlined as Phase II work. The one percent deficiency results from MSHA-related approvals which have yet to be granted (at the time of reporting). These approvals are pending and are do not negatively impact the scope of work or project objectives.

  19. Coiled tubing buckling implication in drilling and completing horizontal wells

    SciTech Connect

    Wu, J.; Juvkam-Wold, H.C.

    1995-03-01

    This paper discusses coiled tubing buckling and load transmission when drilling and completing horizontal wells. Comprehensive analyses and new equations are presented to predict buckling of coiled tubing, slack-off weight transmission, actual bit weight or packer load, and maximum horizontal length. Coiled tubing lock-up and yield due to buckling are also discussed. These equations can also be used for other coiled tubing operations, such as coiled tubing workover, coiled tubing well stimulation, and even for conventional joint-connected drill strings. Calculations based on the equations presented are also compared with the previous literature.

  20. Evaluation of target reservoirs for horizontal drilling: Lower Glen Rose Formation, South Texas

    SciTech Connect

    Muncey, G.; Drimal, C.E. Jr.

    1993-12-31

    The primary objective of this project is to test the hypothesis that a horizontally drilled borehole can increase gas production sufficiently from the Lower Glen Rose Formation to provide an economic advantage over conventional vertical drilling. Additional objectives are to conduct detailed investigations of reservoir properties and completion methods. This paper presents preliminary results of a project, co-funded by PrimeEnergy and the United States Department of Energy (DOE), to assess the economic viability of horizontal drilling in the Lower Glen Rose Formation of Maverick County, Texas. This project is part of an ongoing DOE investigation of directional drilling in the development of tight gas resources within the United States. This paper builds on data presented in Muncey (1992) with data from two vertical tests of the Lower Glen Rose Formation, both drilled in 1993, and the analysis of approximately 20 line-miles of high-resolution seismic data recorded in 1992 and 1993.

  1. A 25,000 foot horizontal drilling system technology

    SciTech Connect

    Wilson, J.V.; Dickinson, W.; Dickinson, W.; May, S.; Anderson, R.R.

    1996-09-01

    A Horizontal Drilling System (HDS) has been developed for the US Navy by Petrolphysics, Inc. and refined by Western Instrument, Inc. The HDS approach combines three key features to overcome drillstring buckling in long horizontal penetrations: (a) by maintenance of the drillstring tension (b) a steerable water-jet drillhead and (c) a constantly rotating drillstring. With water jet drilling, the drillstring can be maintained in tension and the high compressive load requires for normal mechanical drill bits is eliminated. For the very long 7,600 m trajectories, it was necessary to develop a drillhead that could be steered while drilling. The Steerable Drillhead (SDH) can be pre-programmed or commanded via wireline in real time. It steers by valving on the various water jets as they pass through the direction in which the drillstring needs to move and valves them off as they pass the opposite direction. That process results in an off-round hole for the SDH to follow. The constant rotation of the HDS drillstring reduces the coefficient of friction: once the horizontal pipe is rotating, only a small force is required to move it forward at normal drilling rates. The final key technology for HDS is a high-torque, flush inside/outside joint for the drill string. The improved joint design, even within the limited wall thickness, allows drilling torque to limit the total length at about the same time as buckling. The civilian applications of the HDS could include long-distance river crossings, on-shore to offshore oil drilling, extension of existing drainage of offshore oil fields, environmental remediation applications and other programs. A major value of the HDS is the prospect of requiring fewer high cost platforms to drain large offshore oil accumulations.

  2. Horizontal drilling in the Austin Chalk: Stratigraphic factors

    SciTech Connect

    Durham, C.O. Jr. ); Bobigian, R.A. )

    1990-05-01

    Horizontal drilling has renewed interest in the Austin chalk in south-central Texas. Large fields on opposite sides of the San Marcos arch Giddings to the northeast and Pearsall to the southwest were active with vertical drilling 10 years ago. Giddings' 4,500 Austin wells produced 209 million BO and 934 bcfg of gas through 1988; Pearsall's 1,440 wells produced 57 million BO and 35 bcfg of gas. Most vertical wells were completed, 20% were economic successes, 40% were marginal, 40% were uneconomic due to uneven areal distribution of near-vertical fractures and small faults, which provide reservoirs in otherwise tight chalk. Horizontal drilling, led by Amoco in Giddings and Oryx in Pearsall, enhances the chances of encountering the fractures by drilling perpendicular to the fracture trend. Horizontal drilling requires preselection of the stratigraphic horizon to be penetrated. One must understand the variable Austin stratigraphy to choose the zone with the most brittle character and best matrix porosity, both reduced by increased clay content. Chalk 130 ft thick on the San Marcos arch thickens to 600 to 800 ft in central Giddings field where middle marl separates lower and upper chalk Northeastward only lower chalk is preserved beneath a post-Austin submarine channel. The Austin thickens to 300-500 ft in Pearsall field where middle member ash beds separate lower and upper chalk inhibiting vertical reservoir communication. Locally, on the Pearsall arch, ash is missing, lower chalk thickens, and upper chalk thins.

  3. Demonstration of a utility industry horizontal drilling system: Horizontal well AMH-5 installation report

    SciTech Connect

    Not Available

    1992-12-31

    The Department of Energy`s Office of Technology Development initiated an integrated demonstration of innovative technologies and systems for cleanup of VOCs in soils and groundwater at the Savannah River Site (SRS) in 1989. The overall goal of the program is demonstration of multiple technologies and systems in the fields of drilling, characterization, monitoring, and remediation at a single test bed. Innovative technologies are compared to one another and to baseline technologies in terms of technical performance and cost effectiveness. Transfer of successfully demonstrated technologies and systems to DOE environmental restoration organizations, to other government agencies, and to industry is a critical part of the program. Directional drilling has been shown to be a successful technique for enhancing access to the subsurface, thus improving remediation systems, especially remediation systems which perform in situ. Demonstration of an innovative directional drilling system at the Integrated Demonstration Site at the SRS, was initiated in June of 1992. The directional drilling system was designed to install an in situ remediation system. The drilling system is an experimental compaction/dry drilling technique developed by Charles Machine Works (Ditch Witch{reg_sign}) of Perry, Oklahoma. A horizontal well was installed in the M Area of the SRS below and parallel to an abandoned tile process sewer line. The installation of the horizontal well was a two-part process. Part one consisted of drilling the borehole, and part two was the horizontal well completion.

  4. Horizontal underbalanced drilling of gas wells with coiled tubing

    SciTech Connect

    Cox, R.J.; Li, J.; Lupick, G.S.

    1999-03-01

    Coiled tubing drilling technology is gaining popularity and momentum as a significant and reliable method of drilling horizontal underbalanced wells. It is quickly moving into new frontiers. To this point, most efforts in the Western Canadian Basin have been focused towards sweet oil reservoirs in the 900--1300 m true vertical depth (TVD) range, however there is an ever-increasing interest in deeper and gas-producing formations. Significant design challenges on both conventional and coiled tubing drilling operations are imposed when attempting to drill these formations underbalanced. Coiled tubing is an ideal technology for underbalanced drilling due to its absence of drillstring connections resulting in continuous underbalanced capabilities. This also makes it suitable for sour well drilling and live well intervention without the risk of surface releases of reservoir gas. Through the use of pressure deployment procedures it is possible to complete the drilling operation without need to kill the well, thereby maintaining underbalanced conditions right through to the production phase. The use of coiled tubing also provides a means for continuous wireline communication with downhole steering, logging and pressure recording devices.

  5. Rock characterization in reservoirs targeted for horizontal drilling

    SciTech Connect

    Skopec, R.A. )

    1993-12-01

    Achieving the maximum economic benefit from horizontal drilling requires thorough understanding of reservoir characteristics. The direct measurement of rock properties from oriented core is critical in horizontal-wellbore design. This paper outlines the measures and testing necessary to evaluate naturally fractured reservoirs effectively with field and laboratory technologies. Rock mechanical properties, fracture strike, and principal in-situ stress magnitudes and directions should be known before a horizontal wellbore is drilled. These data can then be used to maximize the intersection of natural fractures and to minimize the potential of borehole failure. In exploration wells, a vertical pilot hole must first be drilled. The zone of interest is cored, field tests are performed, laboratory testing is completed, and the reservoir is evaluated. With this information available, decisions can be made to optimize the borehole azimuth and well placement. The authors have used this approach to formation evaluation in several reservoirs where rock characterization is essential in the exploration and drilling program. 72 refs., 10 figs.

  6. Italian river crossing; Horizontal drilling meets pipeline project criteria

    SciTech Connect

    Not Available

    1988-06-01

    The River Piave flows out of the Italian Alps, crossing the Veneto farmlands on its way to the Adriatic Sea. It is an important commerce-carrying waterway. SNAM, the Italian state gas pipeline company, wanted to install a 22-in. pipeline across the Piave just north of Venice. The method chosen for crossing the river had to meet several important criteria. InArc had used its river crossing method on seven previous SNAM projects and recommended the Piave crossing should be drilled. This paper describes the use of this horizontal drilling method for this application.

  7. Horizontal Directional Drilling-Length Detection Technology While Drilling Based on Bi-Electro-Magnetic Sensing.

    PubMed

    Wang, Yudan; Wen, Guojun; Chen, Han

    2017-04-27

    The drilling length is an important parameter in the process of horizontal directional drilling (HDD) exploration and recovery, but there has been a lack of accurate, automatically obtained statistics regarding this parameter. Herein, a technique for real-time HDD length detection and a management system based on the electromagnetic detection method with a microprocessor and two magnetoresistive sensors employing the software LabVIEW are proposed. The basic principle is to detect the change in the magnetic-field strength near a current coil while the drill stem and drill-stem joint successively pass through the current coil forward or backward. The detection system consists of a hardware subsystem and a software subsystem. The hardware subsystem employs a single-chip microprocessor as the main controller. A current coil is installed in front of the clamping unit, and two magneto resistive sensors are installed on the sides of the coil symmetrically and perpendicular to the direction of movement of the drill pipe. Their responses are used to judge whether the drill-stem joint is passing through the clamping unit; then, the order of their responses is used to judge the movement direction. The software subsystem is composed of a visual software running on the host computer and a software running in the slave microprocessor. The host-computer software processes, displays, and saves the drilling-length data, whereas the slave microprocessor software operates the hardware system. A combined test demonstrated the feasibility of the entire drilling-length detection system.

  8. Horizontal Directional Drilling-Length Detection Technology While Drilling Based on Bi-Electro-Magnetic Sensing

    PubMed Central

    Wang, Yudan; Wen, Guojun; Chen, Han

    2017-01-01

    The drilling length is an important parameter in the process of horizontal directional drilling (HDD) exploration and recovery, but there has been a lack of accurate, automatically obtained statistics regarding this parameter. Herein, a technique for real-time HDD length detection and a management system based on the electromagnetic detection method with a microprocessor and two magnetoresistive sensors employing the software LabVIEW are proposed. The basic principle is to detect the change in the magnetic-field strength near a current coil while the drill stem and drill-stem joint successively pass through the current coil forward or backward. The detection system consists of a hardware subsystem and a software subsystem. The hardware subsystem employs a single-chip microprocessor as the main controller. A current coil is installed in front of the clamping unit, and two magneto resistive sensors are installed on the sides of the coil symmetrically and perpendicular to the direction of movement of the drill pipe. Their responses are used to judge whether the drill-stem joint is passing through the clamping unit; then, the order of their responses is used to judge the movement direction. The software subsystem is composed of a visual software running on the host computer and a software running in the slave microprocessor. The host-computer software processes, displays, and saves the drilling-length data, whereas the slave microprocessor software operates the hardware system. A combined test demonstrated the feasibility of the entire drilling-length detection system. PMID:28448445

  9. Economic feasibility of drilling horizontal wells in a shallow high permeability coalbed methane reservoir

    NASA Astrophysics Data System (ADS)

    Doghor, Kesiena Gavin

    Coalbed methane (CBM) reservoirs have emerged as an important source of natural gas production. However, the choice of drilling configuration employed differs from basin to basin. The Powder River Basin coal seams shallow nature is believed to favor the current vertical well configuration. Horizontal well drilling in CBM reservoirs has been studied in deep and thick coal seams like the Appalachian and Cherokee Basins in USA, but little work has been done in shallow CBM reservoirs like those of the Powder River Basin. The objective of this thesis is to use a reservoir simulator and economic analysis to study the economic feasibility of drilling horizontal wells in shallow CBM reservoirs such as the CX field Monarch Coal seam of the Powder River Basin. A dual porosity reservoir model was built and historical production was matched. The resulting simulator was used to run different configurations of vertical and horizontal wells. Economic analysis was then performed on the simulated productions to determine the optimal drilling strategy. Additional cases of different permeability values and thicknesses were also considered. The results show that horizontal wells would not be economical when compared to vertical wells in shallow coal seams. The results of this work were based on current natural gas prices and drilling and operational cost.

  10. Horizontal well drilled into deep, hot Austin chalk

    SciTech Connect

    Pearce, D.; Johnson, M.; Godfrey, B.

    1995-04-03

    Bent-housing steerable downhole motors helped maintain course for a deep, hot, horizontal well in the Austin chalk. The Navasota Unit No. 1 was planned as a B zone, single downdip lateral, Austin chalk horizontal well with a maximum departure from vertical of 3,767 ft and a planned total depth (TD) of 17,342 ft measured depth (MD)/14,172 ft TVD. The Austin chalk was found significantly deeper in this well than planned, which resulted in an actual TD of 17,899 ft MD/14,993 ft TVD, the deepest (TVD) horizontal well in the Austin chalk to date. The well was spudded on August 6, 1994, and took 52 days to reach TD. The static bottom hole temperature was almost 350 F. The paper describes the well plan, drilling results, and the lateral section.

  11. Geophysical investigations in deep horizontal holes drilled ahead of tunnelling

    USGS Publications Warehouse

    Carroll, R.D.; Cunningham, M.J.

    1980-01-01

    Deep horizontal drill holes have been used since 1967 by the Defense Nuclear Agency as a primary exploration tool for siting nuclear events in tunnels at the Nevada Test Site. The U.S. Geological Survey had developed geophysical logging techniques for obtaining resistivity and velocity in these holes, and to date 33 horizontal drill holes in excess of 300 m in depth have been successfully logged. The deepest hole was drilled to a horizontal depth of 1125 m. The purposes of the logging measurements are to define clay zones, because of the unstable ground conditions such zones can present to tunnelling, and to define zones of partially saturated rock, because of the attenuating effects such zones have on the shock wave generated by the nuclear detonation. Excessive attenuation is undesirable because the shock wave is used as a tunnel closure mechanism to contain debris and other undesirable explosion products. Measurements are made by pumping resistivity, sonic and geophone probes down the drill string and out of the bit into the open hole. Clay zones are defined by the electrical resistivity technique based on empirical data relating the magnitude of the resistivity measurement to qualitative clay content. Rock exhibiting resistivity of less than 20 ??-m is considered potentially unstable, and resistivities less than 10 ??-m indicate appreciable amounts of clay are present in the rock. Partially saturated rock zones are defined by the measurement of the rock sound speed. Zones in the rock which exhibit velocities less than 2450 m/sec are considered of potential concern. ?? 1980.

  12. Integrated services help drill horizontal well ahead of schedule

    SciTech Connect

    Rizk, G. ); Clough, M. )

    1994-03-14

    Integrated services and incentive contracts helped deliver an onshore horizontal gas well ahead of schedule. Elf Petroland BV's Harlingen 8 well in Holland was drilled and completed in 26 days, instead of the 33 days planned. Incentive bonuses were awarded, and the gas well began production early. Elf Petroland used one supplier to coordinate service operations and make rig site operations more efficient. The streamlined organization on site improved communication and simplified administration and logistics. Rig site problems were addressed quickly, and solutions implemented effectively because of the integrated-services structure. The paper discusses the organizational plan and how it was carried out.

  13. Extended Horizontal Jet Drilling for EGS applications in Petrothermal Environments

    NASA Astrophysics Data System (ADS)

    Hahn, Simon; Duda, Mandy; Stoeckhert, Ferdinand; Wittig, Volker; Bracke, Rolf

    2017-04-01

    Extended Horizontal Jet Drilling for EGS applications in Petrothermal Environments S. Hahn, M. Duda, F. Stoeckhert, V. Wittig, R. Bracke International Geothermal Centre Bochum High pressure water jet drilling technologies are widely used in the drilling industry. Especially in geothermal and hard rock applications, horizontal (radial) jet drilling is, however, confronted with several limitations like lateral length, hole size and steerability. In order to serve as a serious alternative to conventional stimulation techniques these high pressure jetting techniques are experimentally investigated to gain fundamental knowledge about the fluid-structure interaction, to enhance the rock failing process and to identify the governing drilling parameters. The experimental program is divided into three levels. In a first step jetting experiments are performed under free surface conditions while logging fluid pressures, flow speeds and extracted rock volume. All process parameters are quantified with a self-developed jet-ability index and compared to the rock properties (density, porosity, permeability, etc.). In a second step experiments will be performed under pressure-controlled conditions. A test bench is currently under construction offering the possibility to assign an in-situ stress field to the specimen while penetrating the rock sample with a high pressure water jet or a radial jet drilling device. The experimental results from levels 1 and 2 allow to identify the governing rock failure mechanisms and to correlate them with physical rock properties and limited reservoir conditions. Results of the initial tests do show a clear dependency of achievable penetration depth on the interaction of jetting and rock parameters and an individual threshold of the nozzle outlet velocity can be noticed in order to successfully penetrate different formation types. At level 3 jetting experiments will be performed at simulated reservoir conditions corresponding to 5.000 m depth (e

  14. Site selection, drilling, and completion of two horizontal wells in the Devonian Shales of West Virginia

    SciTech Connect

    Overbey, W.K. Jr.; Carden, R.S.; Locke, C.D.; Salamy, S.P.; Reeves, T.K.; Johnson, H.R.

    1992-03-01

    This report presents a summary of the geologic site selection studies, planning, drilling, completing, stimulating, and testing of two horizontal wells drilled in the Devonian Shales of the Appalachian Basin in West Virginia. Each horizontal well was designed and managed by BDM as the prime contractor to the Department of Energy. The first well was drilled with industry partner Cabot Oil and Gas Corporation in Putnam County, West Virginia. The second well was drilled with Consolidated Natural Gas Company in Calhoun County, West Virginia. This report summarizes four reports prepared by BDM which detail the site selection rationale and the drilling and completion operations of each well. Each horizontal well is currently producing commercial quantities of hydrocarbons. The successful application of horizontal well technology represent continued development of the technology for application to tight and unconventional natural gas resources of the United States. Continued technology development is expected to ultimately result in commercial horizontal well drilling activity by industry in the Appalachian Basin.

  15. Petroleum engineering: Horizontal drilling. (Latest citations from the Georef database). NewSearch

    SciTech Connect

    Not Available

    1994-11-01

    The bibliography contains citations concerning horizontal drilling technology for oil well production. Articles discuss techniques and problems associated with geologic formations such as chalk deposits, fractured rock systems, clastic rocks, sandstones, and karst areas. Citations address applications of horizontal drilling to petroleum exploration, extension of existing fields, enhanced oil recovery, targeted zone drilling, and geologically restrained petroleum reservoirs. (Contains a minimum of 123 citations and includes a subject term index and title list.)

  16. The drilling of a horizontal well in a mature oil field

    SciTech Connect

    Rougeot, J.E.; Lauterbach, K.A.

    1991-01-01

    This report documents the drilling of a medium radius horizontal well in the Bartlesville Sand of the Flatrock Field, Osage County, Oklahoma by Rougeot Oil and Gas Corporation (Rougeot) of Sperry, Oklahoma. The report includes the rationale for selecting the particular site, the details of drilling the well, the production response, conclusions reached, and recommendations made for the future drilling of horizontal wells. 11 figs., 2 tabs.

  17. Operators, service companies improve horizontal drilling accuracy offshore

    SciTech Connect

    Lyle, D.

    1996-04-01

    Continuing efforts to get more and better measurement and logging equipment closer to the bit improve accuracy in offshore drilling. Using current technology, both in measurement while drilling and logging while drilling, a target can consistently be hit within five vertical feet.

  18. Technology assessment of vertical and horizontal air drilling potential in the United States. Final report

    SciTech Connect

    Carden, R.S.

    1993-08-18

    The objective of the research was to assess the potential for vertical, directional and horizontal air drilling in the United States and to evaluate the current technology used in air drilling. To accomplish the task, the continental United States was divided into drilling regions and provinces. The map in Appendix A shows the divisions. Air drilling data were accumulated for as many provinces as possible. The data were used to define the potential problems associated with air drilling, to determine the limitations of air drilling and to analyze the relative economics of drilling with air versus drilling mud. While gathering the drilling data, operators, drilling contractors, air drilling contractors, and service companies were contacted. Their opinion as to the advantages and limitations of air drilling were discussed. Each was specifically asked if they thought air drilling could be expanded within the continental United States and where that expansion could take place. The well data were collected and placed in a data base. Over 165 records were collected. Once in the data base, the information was analyzed to determine the economics of air drilling and to determine the limiting factors associated with air drilling.

  19. Horizontal drilling results are mixed in Green River Basin Almond attempts

    SciTech Connect

    1995-08-01

    Amoco Corp. and Texaco Exploration & Production Inc. have drilled horizontal Almond wells, but with differing degrees of success. The Almond is a tight, fractured gas formation with a history of production problems. Production and cost of well completion are described.

  20. New flame-cutting technique of vertical suspended pipe makes horizontal drilling tools

    SciTech Connect

    Not Available

    1986-08-01

    New methods of pipe cutting are being used to manufacture flexible drill collars for horizontal drilling. The flexible collars start as 20-ft lengths of 3.25 in. OD mild steel pipe with a wall thickness of 0.75 in. Every 11 in. along the length of the pipe, a baseball stitch pattern (also called light bulb pattern) is cut into the pipe, producing flexibility by degrees. The first cut allows the pipe to bend slightly at the gap. Each new cut adds about 2/sup 0/ flexibility. The resulting drill collar performs radical changes in well direction. These collars can turn 90/sup 0/ in a 30-ft radius for deflection to horizontal. This drilling method is used for drilling lateral wells or drainholes. The collars are manufactured for Parliament Properties' new venture, Sidewinder Tool Co., Tulsa, by H and M Pipe Beveling Machine Co. Inc., Tulsa.

  1. A self propelled drilling system for hard-rock, horizontal and coiled tube drilling

    SciTech Connect

    Biglin, D.; Wassell, M.

    1997-12-31

    Several advancements are needed to improve the efficiency and reliability of both hard rock drilling and extended reach drilling. This paper will present a Self Propelled Drilling System (SPDS) which can grip the borehole wall in order to provide a stable platform for the application of weight on bit (WOB) and resisting the reactive torque created by the downhole drilling motor, bit and formation interaction. The system will also dampen the damaging effects of drill string vibration. This tool employs two hydraulically activated anchors (front and rear) to grip the borehole wall, and a two-way thrust mandrel to apply both the drilling force to the bit, and a retraction force to pull the drill string into the hole. Forward drilling motion will commence by sequencing the anchor pistons and thrust mandrel to allow the tool to walk in a stepping motion. The SPDS has a microprocessor to control valve timing, sensing and communication functions. An optional Measurement While Drilling (MWD) interface can provide two-way communication of critical operating parameters such as hydraulic pressure and piston location. This information can then be telemetered to the surface, or used downhole to autonomously control system parameters such as anchor and thrust force or damping characteristics.

  2. Site selection, drilling, and completion of two horizontal wells in the Devonian Shales of West Virginia. Final report

    SciTech Connect

    Overbey, W.K. Jr.; Carden, R.S.; Locke, C.D.; Salamy, S.P.; Reeves, T.K.; Johnson, H.R.

    1992-03-01

    This report presents a summary of the geologic site selection studies, planning, drilling, completing, stimulating, and testing of two horizontal wells drilled in the Devonian Shales of the Appalachian Basin in West Virginia. Each horizontal well was designed and managed by BDM as the prime contractor to the Department of Energy. The first well was drilled with industry partner Cabot Oil and Gas Corporation in Putnam County, West Virginia. The second well was drilled with Consolidated Natural Gas Company in Calhoun County, West Virginia. This report summarizes four reports prepared by BDM which detail the site selection rationale and the drilling and completion operations of each well. Each horizontal well is currently producing commercial quantities of hydrocarbons. The successful application of horizontal well technology represent continued development of the technology for application to tight and unconventional natural gas resources of the United States. Continued technology development is expected to ultimately result in commercial horizontal well drilling activity by industry in the Appalachian Basin.

  3. Productivity improvement by frontier horizontal drilling in Italy

    SciTech Connect

    Schenato, A.

    1995-12-31

    Italian domestic activity on horizontal wells has been specially addressed to carbonate reservoir and specifically targeted to re-entry in existing wells. The speech will focus on the specific experience matured in frontier applications in Italy, from 1989 with the short radius drain holes in Sicily, throughout world record deep water short radius in the southern part of Adriatic sea and depth world record medium radius in a HP/HT reservoir in the Po Valley. Production results will be reported as well as the achieved technological aspects.

  4. Applicability of petroleum horizontal drilling technology to hazardous waste site characterization and remediation

    SciTech Connect

    Goranson, C.

    1992-09-01

    Horizontal wells have the potential to become an important tool for use in characterization, remediation and monitoring operations at hazardous waste disposal, chemical manufacturing, refining and other sites where subsurface pollution may develop from operations or spills. Subsurface pollution of groundwater aquifers can occur at these sites by leakage of surface disposal ponds, surface storage tanks, underground storage tanks (UST), subsurface pipelines or leakage from surface operations. Characterization and remediation of aquifers at or near these sites requires drilling operations that are typically shallow, less than 500-feet in depth. Due to the shallow nature of polluted aquifers, waste site subsurface geologic formations frequently consist of unconsolidated materials. Fractured, jointed and/or layered high compressive strength formations or compacted caliche type formations can also be encountered. Some formations are unsaturated and have pore spaces that are only partially filled with water. Completely saturated underpressured aquifers may be encountered in areas where the static ground water levels are well below the ground surface. Each of these subsurface conditions can complicate the drilling and completion of wells needed for monitoring, characterization and remediation activities. This report describes some of the equipment that is available from petroleum drilling operations that has direct application to groundwater characterization and remediation activities. A brief discussion of petroleum directional and horizontal well drilling methodologies is given to allow the reader to gain an understanding of the equipment needed to drill and complete horizontal wells. Equipment used in river crossing drilling technology is also discussed. The final portion of this report is a description of the drilling equipment available and how it can be applied to groundwater characterization and remediation activities.

  5. A parametric study on the benefits of drilling horizontal and multilateral wells in coalbed methane reservoirs

    SciTech Connect

    Maricic, N.; Mohaghegh, S.D.; Artun, E.

    2008-12-15

    Recent years have witnessed a renewed interest in development of coalbed methane (CBM) reservoirs. Optimizing CBM production is of interest to many operators. Drilling horizontal and multilateral wells is gaining Popularity in many different coalbed reservoirs, with varying results. This study concentrates on variations of horizontal and multilateral-well configurations and their potential benefits. In this study, horizontal and several multilateral drilling patterns for CBM reservoirs are studied. The reservoir parameters that have been studied include gas content, permeability, and desorption characteristics. Net present value (NPV) has been used as the yard stick for comparing different drilling configurations. Configurations that have been investigated are single-, dual-, tri-, and quad-lateral wells along with fishbone (also known as pinnate) wells. In these configurations, the total length of horizontal wells and the spacing between laterals (SBL) have been studied. It was determined that in the cases that have been studied in this paper (all other circumstances being equal), quadlateral wells are the optimum well configuration.

  6. Horizontal slim-hole drilling with coiled tubing; An operator's experience

    SciTech Connect

    Ramos, A.B. Jr.; Faahel, R.A.; Chaffin, M.G.; Pulis, K.H. )

    1992-10-01

    What is believed to be the first horizontal well drilled with directionally controlled coiled tubing recently was completed in the Austin Chalk formation. an existing well was sidetracked out of 4 1/2-in. casing with a conventional whipstock. an average build rate of 15[degrees]/100 ft was achieved in the curve, and a 1,458-ft vertical section was drilled with 2-in. coiled tubing, downhole mud motors, wireline steering tools, a mechanical downhole orienting tool, and 3 7/8-in. bits. This paper discusses the orienting and directional tools and techniques developed during this operation. It also describes improvements made for the second well.

  7. Successful drilling of the first horizontal well in a mature field

    SciTech Connect

    Marruffo, I.; Achong, C.

    1996-08-01

    This paper discusses how the decision to drill the first horizontal well of a reservoir was taken, based on Production acceleration and the incremental economy of cash flow. The reservoir is located in the Guafita-Norto Field in Western Venezuela, contiguous to the La Yuca-Cano Limon Fields in Colombia. Guafita-Norte has 183 million stb of remaining oil reserves with 26 production wells on electrical submergible pumps. The STOIP of this under saturated reservoir (bubble point pressure is 36 psi) is 160 million stb with an initial GOR of 10 stf/stb, having a permeability between 1.5-12 darcies with a strong water drive, water coning and sanding problems due to fines migration. During 1995, it was decided to drill the first horizontal well in the reservoir based on a 3-D numerical simulation with radial flow (for water coning) and local grid refinement (for horizontal wells) coupled to an economic analysis. The simulation predetermines an initial production rate for a horizontal well 2.5 times greater than for a vertical one, and the incremental cash flow for the horizontal well is 4.5 MM$ larger for the vertical one in four (4) years, with a ROR of 200%. The horizontal well was drilled with oil-based mud to avoid hole collapse, and it was completed open hole with a single screen pack. The well is currently producing between 2000 and 3500 stb/d, clean, on natural flow. This study has clearly shown that the ultimate and decisive parameter to be weighed before undertaking this type of project, is the economic analysis, which must be performed as extensively as the technical analysis.

  8. Method and apparatus for drilling horizontal holes in geological structures from a vertical bore

    DOEpatents

    Summers, David A.; Barker, Clark R.; Keith, H. Dean

    1982-01-01

    This invention is directed to a method and apparatus for drilling horizontal holes in geological strata from a vertical position. The geological structures intended to be penetrated in this fashion are coal seams, as for in situ gasification or methane drainage, or in oil-bearing strata for increasing the flow rate from a pre-existing well. Other possible uses for this device might be for use in the leaching of uranium ore from underground deposits or for introducing horizontal channels for water and steam injections.

  9. Livestock poisoning from oil field drilling fluids, muds and additives.

    PubMed

    Edwards, W C; Gregory, D G

    1991-10-01

    The use and potential toxicity of various components of oil well drilling fluids, muds and additives are presented. Many components are extremely caustic resulting in rumenitis. Solvent and petroleum hydrocarbon components may cause aspiration pneumonia and rumen dysfunction. Some additives cause methemoglobinemia. The most frequently encountered heavy metals are lead, chromium, arsenic, lithium and copper. Considerations for investigating livestock poisoning cases and several typical cases are reviewed.

  10. Livestock poisoning from oil field drilling fluids, muds and additives

    SciTech Connect

    Edwards, W.C.; Gregory, D.G. )

    1991-10-01

    The use and potential toxicity of various components of oil well drilling fluids, muds and additives are presented. Many components are extremely caustic resulting in rumenitis. Solvent and petroleum hydrocarbon components may cause aspiration pneumonia and rumen dysfunction. Some additives cause methemoglobinemia. The most frequently encountered heavy metals are lead, chromium, arsenic, lithium and copper. Considerations for investigating livestock poisoning cases and several typical cases are reviewed.

  11. APPLICATION OF WATER-JET HORIZONTAL DRILLING TECHNOLOGY TO DRILL AND ACIDIZE HORIZONTAL DRAIN HOLES, TEDBIT (SAN ANDRES) FIELD, GAINES COUNTY, TEXAS

    SciTech Connect

    Michael W. Rose

    2005-09-22

    The San Andres Formation is one of the major hydrocarbon-producing units in the Permian Basin, with multiple reservoirs contained within the dolomitized subtidal portions of upward shoaling carbonate shelf cycles. The test well is located in Tedbit (San Andres) Field in northeastern Gaines County, Texas, in an area of scattered San Andres production associated with local structural highs. Selected on the basis of geological and historical data, the Oil and Gas Properties Wood No. 1 well is considered to be typical of a large number of San Andres stripper wells in the Permian Basin. Thus, successful completion of horizontal drain holes in this well would demonstrate a widely applicable enhanced recovery technology. Water-jet horizontal drilling is an emerging technology with the potential to provide significant economic benefits in marginal wells. Forecast benefits include lower recompletion costs and improved hydrocarbon recoveries. The technology utilizes water under high pressure, conveyed through small-diameter coiled tubing, to jet horizontal drain holes into producing formations. Testing of this technology was conducted with inconclusive results. Paraffin sludge and mechanical problems were encountered in the wellbore, initially preventing the water-jet tool from reaching the kick-off point. After correcting these problems and attempting to cut a casing window with the water-jet milling assembly, lateral jetting was attempted without success.

  12. Paleokarst and fracture overprints in Mid-Continent carbonates in evaluation of horizontal drilling potential

    SciTech Connect

    Fritz, R.D.; Shelton, J.W. ); Esteban, M. ); Wilson, J.L.

    1991-03-01

    The Mid-Continent region, especially in Oklahoma and Arkansas, contains thick Paleozoic carbonate sections that are dolomitic and karstic in character. These sections commonly exhibit strong structural overprints, including intense fracturing, due primarily to Pennsylvanian orogenies. Because of their rather wide association with source rocks, these carbonates are thought to represent good potential targets for horizontal drilling. The Cambro-Ordovician Arbuckle Group, the Ordovician Viola Group, the Siluro-Devonian Hunton Group, and the Mississippian Limestone all contain zones that are locally productive. These stratigraphic units are either uniformly tight or they are heterogeneous with complex porosity profiles. In karst terranes both types commonly occur together; both require fracturing to increase porosity and permeability. Both youthful and mature stages of paleokarst are observed in the Arbuckle Group; the best porosity is developed in the youthful stage. These stages can develop microporous, planar porous, or macroporous types of reservoir geometry. All of these may be heterogeneous in nature, requiring fractures to interconnect porous intervals. Horizontal drilling is yet to be proved as a reliable method for increasing production efficiency in Mid-Continent carbonates. An evaluation of diagenetic history, especially karst processes, along with local and regional structural settings, may provide a key for improved understanding of the horizontal drilling potential in these carbonates.

  13. Improved efficiency and cost savings: Horizontal drilling, South Florence Field, Vermilion Parish, Louisiana

    SciTech Connect

    Spencer, J.A.; Gillham, T.H.; Kutch, A.T.

    1995-10-01

    Significant cost savings and improved recovery efficiency was demonstrated by the successful completion of a horizontal well in the South Louisiana middle Miocene trend of Vermilion Parish. This completion also represents the first gravel-packed horizontal well completion in the Gulf Coast. The Amoco No. 104 Watkins well was drilled in South Florence Field to a total depth of 6878 feet MD (5686 feet TVD) as a horizontal well to minimize coning. The well was completed in November, 1994 from an open hole completion over a 600 feet horizontal section (6278-6878 feet MD). The well tested as high as 1079 BOPD, 769 MCFG, and 27 BW. The completed well cost of $1.1MM represents $600M savings over the cost of two vertical wells that would have been necessary to effectively drain the reservoir. The horizontal target interval was the upper 8 feet of a 148 foot sand with a 30 foot hydrocarbon column. A well was drilled before the No. 104 to serve as both a pilot hole and to test deeper objectives. The No. 104 was then drilled and encountered the top of the objective reservoir within 150 feet of the pilot hole. The trap is an upthrown fault closure on a down-to-the-east fault associated with the South Florence graben system, the result of deep-seated salt movement. Structural control is provided by numerous wells and a 3-D seismic data set. An oil-water contact defines the downdip limit of this 63 acre reservoir. The completed reservoir, the {open_quotes}5400 foot Sand-lower lobe{close_quotes} is a very fine-grained, silty deltaic sand with sidewall core porosities of 28.9-32.3% and permeabilities of 1100-1050 md.

  14. A Comprehensive Prediction Model of Hydraulic Extended-Reach Limit Considering the Allowable Range of Drilling Fluid Flow Rate in Horizontal Drilling.

    PubMed

    Li, Xin; Gao, Deli; Chen, Xuyue

    2017-06-08

    Hydraulic extended-reach limit (HERL) model of horizontal extended-reach well (ERW) can predict the maximum measured depth (MMD) of the horizontal ERW. The HERL refers to the well's MMD when drilling fluid cannot be normally circulated by drilling pump. Previous model analyzed the following two constraint conditions, drilling pump rated pressure and rated power. However, effects of the allowable range of drilling fluid flow rate (Q min  ≤ Q ≤ Q max ) were not considered. In this study, three cases of HERL model are proposed according to the relationship between allowable range of drilling fluid flow rate and rated flow rate of drilling pump (Q r ). A horizontal ERW is analyzed to predict its HERL, especially its horizontal-section limit (L h ). Results show that when Q min  ≤ Q r  ≤ Q max (Case I), L h depends both on horizontal-section limit based on rated pump pressure (L h1 ) and horizontal-section limit based on rated pump power (L h2 ); when Q min  < Q max  < Q r (Case II), L h is exclusively controlled by L h1 ; while L h is only determined by L h2 when Q r  < Q min  < Q max (Case III). Furthermore, L h1 first increases and then decreases with the increase in drilling fluid flow rate, while L h2 keeps decreasing as the drilling fluid flow rate increases. The comprehensive model provides a more accurate prediction on HERL.

  15. Underbalanced coiled-tubing-drilled horizontal well in the North Sea

    SciTech Connect

    Wodka, P.; Tirsgaard, H.; Damgaard, A.P.; Adamsen, C.J.

    1996-05-01

    Maersk Olie and Gas A/S (Maersk Oil) has drilled a 3,309-ft-long near-horizontal drainhole with coiled tubing to a total measured depth (MD) of 11,000 ft in the Danish sector of the North Sea. The well was completed in may 1994 as a 3{1/2}-in. openhole producer in the Gorm field chalk reservoir. Part of the well was drilled at underbalanced conditions, and oil production rates of up to 1,100 STB/D were reached during drilling. Conventional well-test equipment was used for handling returns. A nearby process facilities platform supplied lift gas and received the produced hydrocarbons during the drilling phase. Worth noting are the penetration of several chert layers, the fairly long reach, and the application of geosteering. Indications were that the well productivity was significantly improved compared with that of a conventionally drilled well, but problems were experienced with borehole stability in a fractured region.

  16. Real-time positioning technology in horizontal directional drilling based on magnetic gradient tensor measurement

    NASA Astrophysics Data System (ADS)

    Deng, Guoqing; Yao, Aiguo

    2017-04-01

    Horizontal directional drilling (HDD) technology has been widely used in Civil Engineering. The dynamic position of the drill bit during construction is one of significant facts determining the accuracy of the trajectory of HDD. A new method now has been proposed to detecting the position of drill bit by measuring the magnetic gradient tensor of the ground solenoid magnetic beacon. Compared with traditional HDD positioning technologies, this new model is much easier to apply with lower request for construction sites and higher positioning efficiency. A direct current (DC) solenoid as a magnetic dipole is placed on ground near the drill bit, and related sensors array which contains four Micro-electromechanical Systems (MEMS ) tri-axial magnetometers, one MEMS tri-axial accelerometer and one MEMS tri-axial gyroscope is set up for measuring the magnetic gradient tensor of the magnetic dipole. The related HDD positioning model has been established and simulation experiments have been carried out to verify the feasibility and reliability of the proposed method. The experiments show that this method has good positioning accuracy in horizontal and vertical direction, and totally avoid the impact of the environmental magnetic field. It can be found that the posture of the magnetic beacon will impact the remote positioning precision within valid positioning range, and the positioning accuracy is higher with longer baseline for limited space in drilling tools. The results prove that the relative error can be limited in 2% by adjusting position of the magnetic beacon, the layers of the enameled coil, the sensitive of magnetometers and the baseline distance. Conclusion can be made that this new method can be applied in HDD positioning with better effect and wider application range than traditional method.

  17. Geomechanics of horizontally-drilled, stress-sensitive, naturally-fractured reservoirs

    SciTech Connect

    Holcomb, D.J.; Brown, S.R.; Lorenz, J.C.; Olsson, W.A.; Teufel, L.W.; Warpinski, N.R.

    1994-09-01

    Horizontal drilling is a viable approach for accessing hydrocarbons in many types of naturally-fractured reservoirs. Cost-effective improvements in the technology to drill, complete, and produce horizontal wells in difficult geologic environments require a better understanding of the mechanical and fluid-flow behavior of these reservoirs with changes ineffective stress during their development and production history. In particular, improved understanding is needed for predicting borehole stability and reservoir response during pore pressure drawdown. To address these problems, a cooperative project between Oryx Energy Company and Sandia National Laboratories was undertaken to study the effects of rock properties, in situ stress, and changes in effective stress on the deformation and permeability of stress sensitive, naturally-fractured reservoirs. A low value for the proelastic parameter was found, implying that the reservoir should have a low sensitivity to declining pore pressure. A surprisingly diverse suite of fractures was identified from core. From the coring-induced fractures, it was plausible to conclude that the maximum principal stress was in the horizontal plane. Measurements on permeability of naturally fractured rock in a newly-developed experimental arrangement showed that slip on fractures is much more effective inchangingpcrtncability than is normal stress. The intermediate principal stress was found to have a strong effect, on the strength and ductility of the chalk, implying the need for a more sophisticated calculation of borehole stability.

  18. Demonstration of Eastman Christensen horizontal drilling system -- Integrated Demonstration Site, Savannah River Site

    SciTech Connect

    Not Available

    1992-12-01

    An innovative horizontal drilling system was used to install two horizontal wells as part of an integrated demonstration project at the Savannah River Site (SRS), Aiken, South Carolina. The SRS is located in south-central South Carolina in the upper Coastal Plain physiographic province. The demonstration site is located near the A/M Area, and is currently known as the Integated Demonstration Site. The Department of Energy`s Office of Technology Development initiated an integrated demonstration of innovative technologies for cleanup of volatile organic compounds (VOCS) in soils and groundwater at the SRS in 1989. The overall goal of the program is to demonstrate, at a single location, multiple technologies in the fields of drilling, characterization, monitoring, and remediation. Innovative technologies are compared to one another and to baseline technologies in terms of technical performance and cost effectiveness. Transfer of successfully demonstrated technologies and systems to DOE environmental restoration organizations, to other government agencies, and to industry is a critical part of the program.

  19. Demonstration of Eastman Christensen horizontal drilling system -- Integrated Demonstration Site, Savannah River Site

    SciTech Connect

    Not Available

    1992-12-01

    An innovative horizontal drilling system was used to install two horizontal wells as part of an integrated demonstration project at the Savannah River Site (SRS), Aiken, South Carolina. The SRS is located in south-central South Carolina in the upper Coastal Plain physiographic province. The demonstration site is located near the A/M Area, and is currently known as the Integated Demonstration Site. The Department of Energy's Office of Technology Development initiated an integrated demonstration of innovative technologies for cleanup of volatile organic compounds (VOCS) in soils and groundwater at the SRS in 1989. The overall goal of the program is to demonstrate, at a single location, multiple technologies in the fields of drilling, characterization, monitoring, and remediation. Innovative technologies are compared to one another and to baseline technologies in terms of technical performance and cost effectiveness. Transfer of successfully demonstrated technologies and systems to DOE environmental restoration organizations, to other government agencies, and to industry is a critical part of the program.

  20. Fuzzy Number Addition with the Application of Horizontal Membership Functions

    PubMed Central

    Piegat, Andrzej; Pluciński, Marcin

    2015-01-01

    The paper presents addition of fuzzy numbers realised with the application of the multidimensional RDM arithmetic and horizontal membership functions (MFs). Fuzzy arithmetic (FA) is a very difficult task because operations should be performed here on multidimensional information granules. Instead, a lot of FA methods use α-cuts in connection with 1-dimensional classical interval arithmetic that operates not on multidimensional granules but on 1-dimensional intervals. Such approach causes difficulties in calculations and is a reason for arithmetical paradoxes. The multidimensional approach allows for removing drawbacks and weaknesses of FA. It is possible thanks to the application of horizontal membership functions which considerably facilitate calculations because now uncertain values can be inserted directly into equations without using the extension principle. The paper shows how the addition operation can be realised on independent fuzzy numbers and on partly or fully dependent fuzzy numbers with taking into account the order relation and how to solve equations, which can be a difficult task for 1-dimensional FAs. PMID:26199953

  1. Heterogeneous Shallow-Shelf Carbonate Buildups in the Paradox Basin, Utah and Colorado: Targets for Increased Oil Production and Reserves Using Horizontal Drilling Techniques

    SciTech Connect

    Chidsey, Thomas C. Jr.; Eby, David E.; Wray, Laura L.

    2001-04-19

    The primary objective of this project was to enhance domestic petroleum production by demonstration and transfer of horizontal drilling technology in the Paradox basin, Utah, Colorado, Arizona, and New Mexico. If this project can demonstrate technical and economic feasibility, then the technique can be applied to approximately 100 additional small fields in the Paradox basin alone, and result in increased recovery of 25 to 50 million barrels (40-80 million m3) of oil. This project was designed to characterize several shallow-shelf carbonate reservoirs in the Pennsylvania (Desmoinesian) Paradox Formation, choose the best candidate(s) for a pilot demonstration project to drill horizontally from existing vertical wells, monitor well performances, and report associated validation activities.

  2. Heterogeneous Shallow-Shelf Carbonate Buildups in the Paradox Basin, Utah and Colorado: Targets for Increased Oil Production and Reserves Using Horizontal Drilling Techniques

    SciTech Connect

    Chidsey, Jr., Thomas C.; Eby, David E.; Wray, Laural L.

    2001-11-26

    The project's primary objective was to enhance domestic petroleum production by demonstration and transfer of horizontal drilling technology in the Paradox Basin, Utah, Colorado, Arizona, and New Mexico. If this project can demonstrate technical and economic feasibility, then the technique can be applied to approximately 100 additional small fields in the Paradox Basin alone, and result in increased recovery of 25 to 50 million barrels (4-8 million m3) of oil. This project was designed to characterize several shallow-shelf carbonate reservoirs in the Pennsylvanian (Desmoinesian) Paradox Formation, choose the best candidate(s) for a pilot demonstration project to drill horizontally from existing vertical wells, monitor well performance(s), and report associated validation activities.

  3. Drill Cuttings-based Methodology to Optimize Multi-stage Hydraulic Fracturing in Horizontal Wells and Unconventional Gas Reservoirs

    NASA Astrophysics Data System (ADS)

    Ortega Mercado, Camilo Ernesto

    Horizontal drilling and hydraulic fracturing techniques have become almost mandatory technologies for economic exploitation of unconventional gas reservoirs. Key to commercial success is minimizing the risk while drilling and hydraulic fracturing these wells. Data collection is expensive and as a result this is one of the first casualties during budget cuts. As a result complete data sets in horizontal wells are nearly always scarce. In order to minimize the data scarcity problem, the research addressed throughout this thesis concentrates on using drill cuttings, an inexpensive direct source of information, for developing: 1) A new methodology for multi-stage hydraulic fracturing optimization of horizontal wells without any significant increases in operational costs. 2) A new method for petrophysical evaluation in those wells with limited amount of log information. The methods are explained using drill cuttings from the Nikanassin Group collected in the Deep Basin of the Western Canada Sedimentary Basin (WCSB). Drill cuttings are the main source of information for the proposed methodology in Item 1, which involves the creation of three 'log tracks' containing the following parameters for improving design of hydraulic fracturing jobs: (a) Brittleness Index, (b) Measured Permeability and (c) An Indicator of Natural Fractures. The brittleness index is primarily a function of Poisson's ratio and Young Modulus, parameters that are obtained from drill cuttings and sonic logs formulations. Permeability is measured on drill cuttings in the laboratory. The indication of natural fractures is obtained from direct observations on drill cuttings under the microscope. Drill cuttings are also the main source of information for the new petrophysical evaluation method mentioned above in Item 2 when well logs are not available. This is important particularly in horizontal wells where the amount of log data is almost non-existent in the vast majority of the wells. By combining data

  4. Replacing and Additive Horizontal Gene Transfer in Streptococcus

    PubMed Central

    Choi, Sang Chul; Rasmussen, Matthew D.; Hubisz, Melissa J.; Gronau, Ilan; Stanhope, Michael J.; Siepel, Adam

    2012-01-01

    The prominent role of Horizontal Gene Transfer (HGT) in the evolution of bacteria is now well documented, but few studies have differentiated between evolutionary events that predominantly cause genes in one lineage to be replaced by homologs from another lineage (“replacing HGT”) and events that result in the addition of substantial new genomic material (“additive HGT”). Here in, we make use of the distinct phylogenetic signatures of replacing and additive HGTs in a genome-wide study of the important human pathogen Streptococcus pyogenes (SPY) and its close relatives S. dysgalactiae subspecies equisimilis (SDE) and S. dysgalactiae subspecies dysgalactiae (SDD). Using recently developed statistical models and computational methods, we find evidence for abundant gene flow of both kinds within each of the SPY and SDE clades and of reduced levels of exchange between SPY and SDD. In addition, our analysis strongly supports a pronounced asymmetry in SPY–SDE gene flow, favoring the SPY-to-SDE direction. This finding is of particular interest in light of the recent increase in virulence of pathogenic SDE. We find much stronger evidence for SPY–SDE gene flow among replacing than among additive transfers, suggesting a primary influence from homologous recombination between co-occurring SPY and SDE cells in human hosts. Putative virulence genes are correlated with transfer events, but this correlation is found to be driven by additive, not replacing, HGTs. The genes affected by additive HGTs are enriched for functions having to do with transposition, recombination, and DNA integration, consistent with previous findings, whereas replacing HGTs seen to influence a more diverse set of genes. Additive transfers are also found to be associated with evidence of positive selection. These findings shed new light on the manner in which HGT has shaped pathogenic bacterial genomes. PMID:22617954

  5. Geological aspects of drilling horizontal wells in steam flood reservoirs, west side, southern San Joaquin Valley, California

    SciTech Connect

    Crough, D.D.; Holman, M.L.; Sande, J.J. )

    1994-04-01

    Shell Western E P Inc. has drilled 11 horizontal wells in four mature steam floods in the Coalinga, South Belridge, and Midway-Sunset fields. Two medium radius wells are producing from the Pliocene Etchegoin Formation in Coalinga. One medium radius well is producing from the Pleistocene Tulare Formation in South Belridge field. Three short radius and five medium radius wells are producing from the upper Miocene, Sub-Hoyt and Potter sands in Midway-Sunset field. Horizontal wells at the base of these reservoirs and/or structurally downdip near the oil-water contact are ideally suited to take advantage of the gravity drainage production mechanism. Reservoir studies and production experience have shown these horizontal wells should increase reserves, improve recovery efficiency, improve the oil-steam ratio, and improve project profitability. Geological considerations of targeting the wells vary between fields because of the different depositional environments and resulting reservoir characteristics. The thin sands and semicontinuous shales in the Tulare Formation and the Etchegoin Formation require strict structural control on the top and base of the target sand. In the Sub-Hoyt and Potter sands, irregularities of the oil-water contact and sand and shale discontinuities must be understood. Logging and measurement while drilling provide geosteering capability in medium radius wells. Teamwork between all engineering disciplines and drilling and producing operations has been critical to horizontal well success.

  6. Performance and Economic Modeling of Horizontally Drilled Ground-Source Heat Pumps in Select California Climates

    NASA Astrophysics Data System (ADS)

    Wiryadinata, Steven

    Service life modeling was performed to gage the viability of unitary 3.5 kWt, ground-source terminal heat pumps (GTHP) employing horizontal directionally drilled geothermal heat exchangers (GHX) over air-source terminal heat pumps (PTHP) in hotels and motels and residential apartment building sectors in California's coastal and inland climates. Results suggest the GTHP can reduce hourly peak demand for the utility by 7%-25% compared to PTHP, depending on the climate and building type. The annual energy savings, which range from -1% to 5%, are highly dependent on the GTHP pump energy use relative to the energy savings attributed to the difference in ground and air temperatures (DeltaT). In mild climates with small ?T, the pump energy use may overcome any advantage to utilizing a GHX. The majority of total levelized cost savings - ranging from 0.18/ft2 to 0.3/ft 2 - are due to reduced maintenance and lifetime capital cost normally associated with geothermal heat pump systems. Without these reductions (not validated for the GTHP system studied), the GTHP technology does not appear to offer significant advantages over PTHP in the climate zones studied here. The GTHP levelized cost was most sensitive to variations in installed cost and in some cases, energy use (influenced by climate zone choice), which together highlights the importance of climate selection for installation, and the need for larger market penetration of ground-source systems in order to bring down installed costs as the technology matures.

  7. Use of Cutting-Edge Horizontal and Underbalanced Drilling Technologies and Subsurface Seismic Techniques to Explore, Drill and Produce Reservoired Oil and Gas from the Fractured Monterey Below 10,000 ft in the Santa Maria Basin of California

    SciTech Connect

    George Witter; Robert Knoll; William Rehm; Thomas Williams

    2006-06-30

    drilled and lined through the problematic shale member without major stability problems. The top of the targeted Monterey was thought to be seen at the expected TVD of 10,000 ft where the 7-in. liner was set at a 60{sup o} hole angle. Significant oil and gas shows suggested the fractured interval anticipated at the heel location had been penetrated. A total of 2572 ft of 6{Delta}-in. near-horizontal interval was placed in the shale section, extending planned well length by approximately 470 ft. Very little hydrocarbon in-flow was observed from fractures along the productive interval. This may be a result of the well trajectory falling underneath the Monterey fractured zone. Hydrocarbon observations, cuttings analysis and gamma-ray response indicated additional fractured intervals were accessed along the last {+-}900 ft of well length. The well was completed with a 2 and 7/8-in. tubing string set in a production packer in preparation for flow and swab tests to be conducted later by a service rig. The planned well time was estimated as 39 days and overall cost as $2.4 million. The actual results are 66 days at a total cost of $3.4 million. Well productivity responses during subsequent flow and swabbing tests were negative. The well failed to inflow and only minor amounts (a few barrels) of light oil were recovered. The lack of production may suggest that actual sustainable reservoir pressure is far less than anticipated. Temblor attempted in July, 2006, to re-enter and clean out the well and run an Array Induction log (primarily for resistivity and correlation purposes), and an FMI log (for fracture detection). Application of surfactant in the length of the horizontal hole, and acid over the fracture zone at 10,236 was also planned. This attempt was not successful in that the clean out tools became stuck and had to be abandoned.

  8. Use of Cutting-Edge Horizontal and Underbalanced Drilling Technologies and Subsurface Seismic Techniques to Explore, Drill and Produce Reservoired Oil and Gas from the Fractured Monterey Below 10,000 ft in the Santa Maria Basin of California

    SciTech Connect

    George Witter; Robert Knoll; William Rehm; Thomas Williams

    2005-09-29

    drilled and lined through the problematic shale member without major stability problems. The top of the targeted Monterey was thought to be seen at the expected TVD of 10,000 ft where the 7-in. liner was set at a 60{sup o} hole angle. Significant oil and gas shows suggested the fractured interval anticipated at the heel location had been penetrated. A total of 2572 ft of 6 1/8-in. near-horizontal interval was placed in the shale section, extending planned well length by approximately 470 ft. Very little hydrocarbon in-flow was observed from fractures along the productive interval. This may be a result of the well trajectory falling underneath the Monterey fractured zone. Hydrocarbon observations, cuttings analysis and gamma-ray response indicated additional fractured intervals were accessed along the last {+-}900 ft of well length. The well was completed with a 2 7/8-in. tubing string set in a production packer in preparation for flow and swab tests to be conducted later by a service rig. The planned well time was estimated as 39 days and overall cost as $2.4 million. The actual results are 66 days at a total cost of $3.4 million. Well productivity responses during subsequent flow and swabbing tests were negative. The well failed to inflow and only minor amounts (a few barrels) of light oil were recovered. The lack of production may suggest that actual sustainable reservoir pressure is far less than anticipated. Temblor is currently planning to re-enter and clean out the well and run an Array Induction log (primarily for resistivity and correlation purposes), and an FMI log (for fracture detection). Depending on the results of these logs, an acidizing or re-drill program will be planned.

  9. Thermally stable drilling fluid additive comprised of a copolymer of catechol-based monomer

    SciTech Connect

    Patel, A.D.

    1986-06-17

    A water soluble polymer is described having thermal stability and exhibiting utility as an aqueous drilling fluid additive comprising: (a) a major portion of a catechol based monomer; (b) a minor portion of a dicarboxylic acid monomer.

  10. Tribological tests of wear-resistant coatings used in the production of drill bits of horizontal and inclined drilling

    NASA Astrophysics Data System (ADS)

    Maslov, A. L.; Markova, I. Yu; Zakharova, E. S.; Polushin, N. I.; Laptev, A. I.

    2017-05-01

    It is known that modern drilling bit body undergoes significant abrasive wear in the contact area with the solid and the retracted cuttings. For protection of the body rationally use wear-resistant coating, which is welded directly to the body of bit. Before mass use of the developed coverings they need to be investigated by various methods that it was possible to characterize coatings and on the basis of the obtained data to perform optimization of both composition of coatings and technology. Such methods include microstructural studies tribological tests, crack resistance and others. This work is devoted to the tribological tests of imported brand of coatings WokaDur NiA and and domestic brand of coating HR-6750 (both brands manufactured by Ltd “Oerlikon Metco Rus”), used to protect the bit body from abrasive wear.

  11. Horizontal directional drilling guidelines for installing polyethylene gas distribution pipes. Topical report, November 1994-March 1997

    SciTech Connect

    Popelar, C.H.; Kuhlman, C.J.; Grant, T.S.; Chell, G.G.

    1997-02-01

    Directional drilling is a no-dig trenchless technology that is being used increasingly by gas utilities and their contractors to install polyethylene (PE) gas pipes. The process typically involves two major steps: (1) drilling a pilot hole from the entrance pit the exit pit that defines the installation profile, and (2) pulling in the pipeline from the exit pit to the entrance pit as the bore is enlarged through a back-reaming process. This document was developed from interviews with gas utilities that use in-house drilling crews, pipelines contractors, and construction companies that perform drilling operations. Analyses were also performed to develop guidelines ion issues such as maximum pull length, for a given size pipe. The guidelines represent recommended best practices, which, if followed, should benefit gas utilities in at least three ways by enabling them to develop: (1) company-specific internal standards for in-house drilling crews, (2) specifications for contracting for services, and (3) training and quality control procedures for in-house drilling crews and outside contractors.

  12. USE OF CUTTING-EDGE HORIZONTAL AND UNDERBALANCED DRILLING TECHNOLOGIES AND SUBSURFACE SEISMIC TECHNIQUES TO EXPLORE, DRILL AND PRODUCE RESERVOIRED OIL AND GAS FROM THE FRACTURED MONTEREY BELOW 10,000 FT IN THE SANTA MARIA BASIN OF CALIFORNIA

    SciTech Connect

    George Witter; Robert Knoll; William Rehm; Thomas Williams

    2005-02-01

    curved sections were drilled and lined through the problematic shale member without major stability problems. The top of the targeted Monterey was thought to be seen at the expected TVD of 10,000 ft where the 7-in. liner was set at a 60{sup o} hole angle. Significant oil and gas shows suggested the fractured interval anticipated at the heel location had been penetrated. A total of 2572 ft of 6.-in. near-horizontal interval was placed in the shale section, extending planned well length by approximately 470 ft. Very little hydrocarbon in-flow was observed from fractures along the productive interval. This may be a result of the well trajectory falling underneath the Monterey fractured zone. Hydrocarbon observations, cuttings analysis and gamma-ray response indicated additional fractured intervals were accessed along the last {+-}900 ft of well length. The well was completed with a 2 7/8-in. tubing string set in a production packer in preparation for flow and swab tests to be conducted later by a service rig. The planned well time was estimated as 39 days and overall cost as $2.4 million. The actual results are 66 days at a total cost of $3.4 million. Well productivity responses during subsequent flow and swabbing tests were negative. The well failed to inflow and only minor amounts (a few barrels) of light oil were recovered. The lack of production may suggest that actual sustainable reservoir pressure is far less than anticipated. Temblor is currently investigating the costs and operational viability of re-entering the well and conducting an FMI (fracture detection) log and/or an acid stimulation. No final decision or detailed plans have been made regarding these potential interventions at this time.

  13. Feasibility of Optimizing and Reserves from a Mature and Geological Complex Multiple Turbidite Offshore California Reservoir Through the Drilling and Completion of a Trilateral Horizontal Well.

    SciTech Connect

    1997-08-25

    The main objective of this project is to devise an effective redevelopment strategy to combat producibility problems related to the Repetto turbidite sequences of the Carpinteria Field. The lack of adequate reservoir characterization, high-water cut production, and scaling problems have in the past contributed to the field`s low productivity. To improve productivity and enhance recoverable reserves, the following specific goals are proposed: (1) Develop an integrated database of all existing data from work done by the former ownership group. (2) Expand reservoir drainage and reduce sand problems through horizontal well drilling and completion. (3) Operate and validate reservoirs` conceptual model by incorporating new data from the proposed trilateral well. (4) Transfer methodologies employed in geologic modeling and drilling multilateral wells to other operators with similar reservoirs. Since the last progress report (January - March, 1997) additional work has been completed in the area of well log interpretation and geological modeling. During this period an extensive effort was made to refine our 3-D geological model both in the area of a refined attribute model and an enhanced structural model. Also, efforts to refine our drilling plans for budget period 11 were completed during this reporting period.

  14. Preparation and study of polystyrene/organic montmorillonite nanocomposite as lubricant additive of drilling fluid

    NASA Astrophysics Data System (ADS)

    Yu, Chengcheng; Ke, Yangchuan

    2017-08-01

    In this article, polystyrene/organic montmorillonite (PS/OMMT) nanocomposite was prepared via in-situ emulsion polymerization of styrene in the presence of organic montmorillonite. The certain amount of PS/OMMT nanocomposite and silicone oil mixtures provided novel nanocomposite lubricant additives of drilling fluid. Their experiment evaluations showed that the nanocomposite lubricant drilling fluid had the temperature resistance to increase up to 200°C, high lubricant with base drilling fluid compatibility, and stable rheological property. At 1.0 wt.% nanocomposite lubricant load in the base drilling fluid, the lubrication coefficient reduction rate reached 85.0%, the foaming rate was so low to 0.53%˜1.56%, and the filtration loss was decreased. This provided multifunctional practical nanocomposite lubricants and working fluids.

  15. Towards the design of new and improved drilling fluid additives using molecular dynamics simulations.

    PubMed

    Anderson, Richard L; Greenwel, H Christopher; Suter, James L; Jarvis, Rebecca M; Coveney, Peter V

    2010-03-01

    During exploration for oil and gas, a technical drilling fluid is used to lubricate the drill bit, maintain hydrostatic pressure, transmit sensor readings, remove rock cuttings and inhibit swelling of unstable clay based reactive shale formations. Increasing environmental awareness and resulting legislation has led to the search for new, improved biodegradable drilling fluid components. In the case of additives for clay swelling inhibition, an understanding of how existing effective additives interact with clays must be gained to allow the design of improved molecules. Owing to the disordered nature and nanoscopic dimension of the interlayer pores of clay minerals, computer simulations have become an increasingly useful tool for studying clay-swelling inhibitor interactions. In this work we briefly review the history of the development of technical drilling fluids, the environmental impact of drilling fluids and the use of computer simulations to study the interactions between clay minerals and swelling inhibitors. We report on results from some recent large-scale molecular dynamics simulation studies on low molecular weight water-soluble macromolecular inhibitor molecules. The structure and interactions of poly(propylene oxide)-diamine, poly(ethylene glycol) and poly(ethylene oxide)-diacrylate inhibitor molecules with montmorillonite clay are studied.

  16. Heterogeneous Shallow-Shelf Carbonate Buildups in the Paradox Basin, Utah and Colorado: Targets for Increased Oil Production and Reserves Using Horizontal Drilling Techniques

    SciTech Connect

    Wray, Laura L.; Eby, David E.; Chidsey, Jr., Thomas C.

    2002-07-24

    This report covers research activities for the second half of the second project year (October 6, 2001, through April 5, 2002). This work includes description and analysis of cores, correlation of geophysical well logs, reservoir mapping, petrographic description of thin sections, cross plotting of permeability and porosity data, and development of horizontal drilling strategies for the Little Ute and Sleeping Ute fields in Montezuma County, Colorado. Geological characterization on a local scale focused on reservoir heterogeneity, quality, and lateral continuity, as well as possible compartmentalization, within these fields. This study utilizes representative core, geophysical logs, and thin sections to characterize and grade each field's potential for drilling horizontal laterals from existing development wells.

  17. Planning additional drilling campaign using two-space genetic algorithm: A game theoretical approach

    NASA Astrophysics Data System (ADS)

    Kumral, Mustafa; Ozer, Umit

    2013-03-01

    Grade and tonnage are the most important technical uncertainties in mining ventures because of the use of estimations/simulations, which are mostly generated from drill data. Open pit mines are planned and designed on the basis of the blocks representing the entire orebody. Each block has different estimation/simulation variance reflecting uncertainty to some extent. The estimation/simulation realizations are submitted to mine production scheduling process. However, the use of a block model with varying estimation/simulation variances will lead to serious risk in the scheduling. In the medium of multiple simulations, the dispersion variances of blocks can be thought to regard technical uncertainties. However, the dispersion variance cannot handle uncertainty associated with varying estimation/simulation variances of blocks. This paper proposes an approach that generates the configuration of the best additional drilling campaign to generate more homogenous estimation/simulation variances of blocks. In other words, the objective is to find the best drilling configuration in such a way as to minimize grade uncertainty under budget constraint. Uncertainty measure of the optimization process in this paper is interpolation variance, which considers data locations and grades. The problem is expressed as a minmax problem, which focuses on finding the best worst-case performance i.e., minimizing interpolation variance of the block generating maximum interpolation variance. Since the optimization model requires computing the interpolation variances of blocks being simulated/estimated in each iteration, the problem cannot be solved by standard optimization tools. This motivates to use two-space genetic algorithm (GA) approach to solve the problem. The technique has two spaces: feasible drill hole configuration with minimization of interpolation variance and drill hole simulations with maximization of interpolation variance. Two-space interacts to find a minmax solution

  18. Selection of area and specific site for drilling a horizontal well in Calhoun County, West Virginia

    SciTech Connect

    Reeves, T.K.; Overbey, W.K. Jr.; Salamy, S.P.; Locke, C.D.

    1992-03-01

    This report discusses the data collection and analysis procedures used to establish criteria for geologic and engineering studies conducted by BDM to select a general area for more detailed study and a specific site for the drilling of a cooperative well with an industry partner, the Consolidated Natural Gas Development Company (CNGD). The results of detailed geologic studies are presented for two areas in Calhoun County, West Virginia, and one area along the Logan-Boone County line in West Virginia. The effects of Appalachian Basin tectonics and the Rome Trough Rift system were identified on seismic lines made available by (CNGD). These helped to identify and define the trapping mechanisms which had been effective in each area. Engineering analyses of past production histories provided data to support selection of target areas and then to select a specific site that met the project requirements for production, reservoir pressure, and risk. A final site was selected in Lee District at the southwestern margin of the Sand Ridge gas field based on the combination of a geologic trapping mechanism and reservoir pressures which were projected as 580 psi with a stress ratio of 0.53.

  19. Low-impact sampling under an active solid low-level radioactive waste disposal unit using horizontal drilling technology

    SciTech Connect

    Puglisi, C.V.; Vold, E.L.

    1995-12-01

    The purpose of this project was to determine the performance of the solid low-level radioactive waste (LLRW) disposal units located on a mesa top at TA-54, Area G, Los Alamos National Laboratory (LANL), Los Alamos, NM, and to provide in-situ (vadose zone) site characterization information to Area G`s Performance Assessment. The vadose zone beneath an active disposal unit (DU 37), was accessed by utilizing low-impact, air-rotary horizontal drilling technology. Core samples were pulled, via wire-line core method, in 3 horizontal holes fanning out below DU 37 at approximately 5 foot intervals depending on recovery percentage. Samples were surveyed and prepared in-field following Environmental Restoration (ER) guidelines. Samples were transferred from the field to the CST-9 Radvan for initial radiological screening. Following screening, samples were delivered to CST-3 analytical lab for analyses including moisture content, 23 inorganics, 60 volatile organic compounds (VOC`s), 68 semivolatile organic compounds (SVOC`s), tritium, lead 210, radium 226 & 228, cesium 137, isotopic plutonium, americium 241, strontium 90, isotopic uranium, and isotopic thorium. Other analyses included matric potential, alpha spectroscopy, gamma spectroscopy, and gross alpha/beta. The overall results of the analysis identified only tritium as having migrated from the DU. Am-241, Eu-152, and Pu-238 were possibly identified above background but the results are not definitive. Of all organics analysed for, only ethyl acetate was tentatively identified slightly above background. All inorganics were found to be well below regulatory limits. Based on the results of the above mentioned analyses, it was determined that Area G`s disposal units are performing well and no significant liquid phase migration of contaminants has occurred.

  20. The replacement of alkyl-phenol ethoxylates to improve the environment acceptability of drilling fluid additives

    SciTech Connect

    Getliff, J.M.; James, S.G.

    1996-12-31

    Alkyl-phenol ethoxylates (APEO) are a class of surfactants which have been used widely in the drilling fluid industry. The popularity of these surfactants is based on their cost effectiveness, availability and the range of hydrophilic-lipophilic balance values obtainable. Studies have shown that APEOs exhibit oestrogenic effects, and can cause sterility in some male aquatic species. This may have subsequent human consequences and such problems have lead to a banning of their use in some countries and agreements to phase out their use e.g. PARCOM recommendation 92/8. The use of APEOs as additives in detergents, lubricants and stuck-pipe release agents for drilling fluid applications is discussed. The effectiveness of products formulated with APEOs are directly compared with alternative products which are non-persistent and less damaging to aquatic species. Lubricity measurements using standard and in-house designed equipment and washing tests to compare the efficiency of surfactants are explained and product performance results presented. The results show that alternatives to products containing APEOs are available and that in some cases they show a better technical performance. In addition to the improved environmental acceptability of the base chemicals, the better performance enables lower concentrations to be used, hence reducing the environmental impact even further.

  1. Field Demonstration of Horizontal Infill Drilling Using Cost-effective Integrated Reservoir Modeling--Mississippian Carbonates, Central Kansas

    SciTech Connect

    Saibal Bhattacharya

    2005-08-31

    constraints afflicting mature Mississippian fields. A publicly accessible databank of representative petrophysical properties and relationships was developed to overcome the paucity of such data that is critical to modeling the storage and flow in these reservoirs. Studies in 3 Mississippian fields demonstrated that traditional reservoir models built by integrating log, core, DST, and production data from existing wells on 40-acre spacings are unable to delineate karst-induced compartments, thus making 3D-seismic data critical to characterize these fields. Special attribute analyses on 3D data were shown to delineate reservoir compartments and predict those with pay porosities. Further testing of these techniques is required to validate their applicability in other Mississippian reservoirs. This study shows that detailed reservoir characterization and simulation on geomodels developed by integrating wireline log, core, petrophysical, production and pressure, and 3D-seismic data enables better evaluation of a candidate field for horizontal infill applications. In addition to reservoir compartmentalization, two factors were found to control the economic viability of a horizontal infill well in a mature Mississippian field: (a) adequate reservoir pressure support, and (b) an average well spacing greater than 40-acres.

  2. Reservoir characterization of potential targets for horizontal drilling in the Tertiary Green River and Wasatch Formations, Bluebell Field, Uintah County, Utah

    SciTech Connect

    Tripp, C.N.

    1995-06-01

    The productive interval at Bluebell Field consists of thousands of feet of highly fractured, interbedded clastic and carbonate rocks, which were deposited within a fluvial-dominated, lacustrine-deltaic environment. Typically, operators perforate and acidize hundreds of feet of section in each well. By concentrating on a few select zones, completions can be more effective, and production can be increased. Because of extensive fracturing, and low porosity and permeability within these reservoirs, horizontal drilling technology is an excellent option for improving recoverable resources in these zones. A detailed study within the Roosevelt Unit at Bluebell Field was performed to aid in reservoir characterization of the lower Green River and Wasatch Formations. Through the use of well drilling and completion histories, stratigraphic cross-sections, and subsurface mapping, zones with horizontal drilling potential have been identified in the lower Green River Formation at depths of approximately 9,000 to 10,000 feet, and in the deeper, overpressured Wasatch Formation at depths exceeding 13,000 feet.

  3. Comparison of revegetation of a gas pipeline right-of-way in two forested wetland crossings involving conventional methods of pipeline installation and horizontal drilling, Nassau County, Florida

    SciTech Connect

    Van Dyke, G.D.; Shem, L.M.; Zimmerman, R.E.

    1993-10-01

    One year after pipeline installation, vegetation in the right-of-way (ROW) was inventoried at two stream floodplain crossings in Nassau County, Florida. Both sites were forested wetlands composed of Acer rubrum, Fraxinus caroliniana, Liquidamber styraciflua, Nyssa ogecho, Quercus laurifolia, and Taxodium distichum, together with other wetland trees. Pipeline installation across the Brandy Branch floodplain was by conventional ditching and backfill methods. Installation across the Deep Creek floodplain was by horizontal drilling after clearcutting the ROW. The latter method left tree stumps, understory vegetation, and soil layers intact, except for disruptions caused by logging. According to the inventory, vegetation at the drilled site was more diverse (nearly twice as many species occurring in the ROW as at the trenched site) and more robust (no unvegetated exposed soil compared to 15% at the trenched site). Differences between the ROW vegetation at the two sites can be attributed to both site differences and installation technologies used.

  4. Feasability of Optimizing Recovery and Reserves from a Mature and Geological Complex Multiple Turbidite Offshore California Reservoir Through the Drilling and Completion of a Trilateral Horizontal Well

    SciTech Connect

    Coombs, Steven F

    1996-10-29

    The main objective of this project is to devise an effective redevelopment strategy to combat producibility problems related to the Repetto turbidite sequences of the Carpinteria Field. The lack of adequate reservoir characterization, high-water cut production, and scaling problems have in the past contributed to the field's low productivity. To improve productivity and enhance recoverable reserves, the following specific goals are proposed: ° Develop an integrated database of all existing data from work done by the former ownership group. ° Expand reservoir drainage and reduce sand problems through horizontal well drilling and completion. ° Operate and validate reservoirs conceptual model by incorporating new data from the proposed trilateral well. ° Transfer methodologies employed in geologic modeling and drilling multilateral wells to other operators with similar reservoirs.

  5. Feasibility of Optimizing and Reserves from a Mature and Geological Complex Multiple Turbidite Offshore California Reservoir Through the Drilling and Completion of a Trilateral Horizontal Well.

    SciTech Connect

    1997-06-01

    The main objective of this project is to devise an effective re- development strategy to combat producibility problems related to the Repetto turbidite sequences of the Carpinteria Field. The lack of adequate reservoir characterization, high-water cut production, and scaling problems have in the past contributed to the field`s low productivity. To improve productivity and enhance recoverable reserves, the following specific goals were proposed: (1) Develop an integrated database of all existing data from work done by the former ownership group. (2) Expand reservoir drainage and reduce sand problems through horizontal well drilling and completion. (3) Operate and validate reservoir`s conceptual model by incorporating new data from the proposed trilateral well. (4) Transfer methodologies employed in geologic modeling and drilling multilateral wells to other operators with similar reservoirs. Pacific Operators Offshore, Inc. with the cooperation of its team members; the University of Southern California; Schlumberger; Baker Oil Tools; Halliburton Energy Services and Coombs and Associates undertook a comprehensive study to reexamine the reservoir conditions leading to the cent field conditions and to devise methodologies to mitigate the producibility problems. A computer based data retrieval system was developed to convert hard copy documents containing production, well completion and well log data into easily accessible on-line format. To ascertain the geological framework of the reservoir, a thorough geological modeling and subsurface mapping of the Carpinteria field was developed. The model is now used to examine the continuity of the sands, characteristics of the sub-zones, nature of water influx and transition intervals in individual major sands. The geological model was then supplemented with a reservoir engineering study of spatial distribution of voidage in individual layers using the production statistics and pressure surveys. Efforts are continuing in

  6. HETEROGENEOUS SHALLOW-SHELF CARBONATE BUILDUPS IN THE PARADOX BASIN, UTAH AND COLORADO: TARGETS FOR INCREASED OIL PRODUCTION AND RESERVES USING HORIZONTAL DRILLING TECHNIQUES

    SciTech Connect

    Thomas C. Chidsey, Jr.

    2002-12-01

    The Paradox Basin of Utah, Colorado, Arizona, and New Mexico contains nearly 100 small oil fields producing from carbonate buildups within the Pennsylvanian (Desmoinesian) Paradox Formation. These fields typically have one to 10 wells with primary production ranging from 700,000 to 2,000,000 barrels (111,300-318,000 m{sup 3}) of oil per field and a 15 to 20 percent recovery rate. At least 200 million barrels (31.8 million m{sup 3}) of oil will not be recovered from these small fields because of inefficient recovery practices and undrained heterogeneous reservoirs. Several fields in southeastern Utah and southwestern Colorado are being evaluated as candidates for horizontal drilling and enhanced oil recovery from existing, vertical, field wells based upon geological characterization and reservoir modeling case studies. Geological characterization on a local scale is focused on reservoir heterogeneity, quality, and lateral continuity, as well as possible reservoir compartmentalization, within these fields. This study utilizes representative cores, geophysical logs, and thin sections to characterize and grade each field's potential for drilling horizontal laterals from existing development wells. The results of these studies can be applied to similar fields elsewhere in the Paradox Basin and the Rocky Mountain region, the Michigan and Illinois Basins, and the Midcontinent region. This report covers research activities for the first half of the third project year (April 6 through October 5, 2002). This work included capillary pressure/mercury injection analysis, scanning electron microscopy, and pore casting on selected samples from Cherokee and Bug fields, Utah. The diagenetic fabrics and porosity types found at these fields are indicators of reservoir flow capacity, storage capacity, and potential for enhanced oil recovery via horizontal drilling. The reservoir quality of Cherokee and Bug fields has been affected by multiple generations of dissolution, anhydrite

  7. The study of microstructure of wear-resistant coatings applied for protection from abrasive wear of horizontal and tilt drilling drill bits

    NASA Astrophysics Data System (ADS)

    Markova, I. Yu; Zakharova, E. S.; Maslov, A. L.; Polushin, N. I.; Laptev, A. I.; SOvchinnikova, M.

    2017-05-01

    Drill bits of the cutting type over the period of their existence have undergone significant changes - from the use of carbide cutters to diamond composite PDC elements, in which the diamond layer is applied to a hardmetal substrate. Using such elements, it was possible to significantly increase the service life of the drill bits, however, during work, there is a significant abrasive deterioration of the bit body, which does not fully realize the advantages of PDC elements. Therefore, to protect the body from wear use special wear-resistant coatings. This work is devoted to research of microstructural coatings, namely coatings brands WokaDur NiA, HR-6750, HR-6750 with sublayer Rock Dur 47 on various steel substrates which applied by the gas-thermal spraying in Ltd “Oerlikon Metko Rus”. They were examined with the use of scanning electron microscopy, X-ray phase analysis and a Vickers micro-hardness tester. It was established that the microhardness of the coating matrix is 590-660 HV, and the microhardness of tungsten carbide particles reinforcing the coating, is 2145-2455 HV.

  8. Trends in hydraulic fracturing distributions and treatment fluids, additives, proppants, and water volumes applied to wells drilled in the United States from 1947 through 2010: data analysis and comparison to the literature

    USGS Publications Warehouse

    Gallegos, Tanya J.; Varela, Brian A.

    2015-01-01

    Hydraulic fracturing is presently the primary stimulation technique for oil and gas production in low-permeability, unconventional reservoirs. Comprehensive, published, and publicly available information regarding the extent, location, and character of hydraulic fracturing in the United States is scarce. This national spatial and temporal analysis of data on nearly 1 million hydraulically fractured wells and 1.8 million fracturing treatment records from 1947 through 2010 (aggregated in Data Series 868) is used to identify hydraulic fracturing trends in drilling methods and use of proppants, treatment fluids, additives, and water in the United States. These trends are compared to the literature in an effort to establish a common understanding of the differences in drilling methods, treatment fluids, and chemical additives and of how the newer technology has affected the water use volumes and areal distribution of hydraulic fracturing. Historically, Texas has had the highest number of records of hydraulic fracturing treatments and associated wells in the United States documented in the datasets described herein. Water-intensive horizontal/directional drilling has also increased from 6 percent of new hydraulically fractured wells drilled in the United States in 2000 to 42 percent of new wells drilled in 2010. Increases in horizontal drilling also coincided with the emergence of water-based “slick water” fracturing fluids. As such, the most current hydraulic fracturing materials and methods are notably different from those used in previous decades and have contributed to the development of previously inaccessible unconventional oil and gas production target areas, namely in shale and tight-sand reservoirs. Publicly available derivative datasets and locations developed from these analyses are described.

  9. Soy Protein Isolate As Fluid Loss Additive in Bentonite-Water-Based Drilling Fluids.

    PubMed

    Li, Mei-Chun; Wu, Qinglin; Song, Kunlin; Lee, Sunyoung; Jin, Chunde; Ren, Suxia; Lei, Tingzhou

    2015-11-11

    Wellbore instability and formation collapse caused by lost circulation are vital issues during well excavation in the oil industry. This study reports the novel utilization of soy protein isolate (SPI) as fluid loss additive in bentonite-water based drilling fluids (BT-WDFs) and describes how its particle size and concentration influence on the filtration property of SPI/BT-WDFs. It was found that high pressure homogenization (HPH)-treated SPI had superior filtration property over that of native SPI due to the improved ability for the plugging pore throat. HPH treatment also caused a significant change in the surface characteristic of SPI, leading to a considerable surface interaction with BT in aqueous solution. The concentration of SPI had a significant impact on the dispersion state of SPI/BT mixtures in aquesous solution. At low SPI concentrations, strong aggregations were created, resulting in the formation of thick, loose, high-porosity and high-permeability filter cakes and high fluid loss. At high SPI concentrations, intercatlated/exfoliated structures were generated, resulting in the formation of thin, compact, low-porosity and low-permeability filter cakes and low fluid loss. The SPI/BT-WDFs exhibited superior filtration property than pure BT-WDFs at the same solid concentraion, demonstrating the potential utilization of SPI as an effective, renewable, and biodegradable fluid loss reducer in well excavation applications.

  10. Proper planning improves flow drilling

    SciTech Connect

    Collins, G.J. )

    1994-10-01

    Underbalanced operations reduce formation damage, especially in horizontal wells where zones are exposed to mud for longer time periods. Benefits, risks, well control concerns, equipment and issues associated with these operations are addressed in this paper. Flow drilling raises many concerns, but little has been published on horizontal well control and flow drilling operations. This article covers planning considerations for flow drilling, but does not address horizontal ''overbalanced'' drilling because considerations and equipment are the same as in vertical overbalanced drilling and many references address that subject. The difference in well control between vertical and horizontal overbalanced drilling is fluid influx behavior and how that behavior affects kill operations.

  11. HETEROGENEOUS SHALLOW-SHELF CARBONATE BUILDUPS IN THE PARADOX BASIN, UTAH AND COLORADO: TARGETS FOR INCREASED OIL PRODUCTION AND RESERVES USING HORIZONTAL DRILLING TECHNIQUES

    SciTech Connect

    David E. Eby; Thomas C. Chidsey, Jr.; Kevin McClure; Craig D. Morgan

    2003-07-01

    The Paradox Basin of Utah, Colorado, Arizona, and New Mexico contains nearly 100 small oil fields producing from carbonate buildups within the Pennsylvanian (Desmoinesian) Paradox Formation. These fields typically have one to 10 wells with primary production ranging from 700,000 to 2,000,000 barrels (111,300-318,000 m{sup 3}) of oil per field and a 15 to 20 percent recovery rate. At least 200 million barrels (31.8 million m{sup 3}) of oil will not be recovered from these small fields because of inefficient recovery practices and undrained heterogeneous reservoirs. Several fields in southeastern Utah and southwestern Colorado are being evaluated as candidates for horizontal drilling and enhanced oil recovery from existing vertical wells based upon geological characterization and reservoir modeling case studies. Geological characterization on a local scale is focused on reservoir heterogeneity, quality, and lateral continuity, as well as possible reservoir compartmentalization, within these fields. This study utilizes representative cores, geophysical logs, and thin sections to characterize and grade each field's potential for drilling horizontal laterals from existing development wells. The results of these studies can be applied to similar fields elsewhere in the Paradox Basin and the Rocky Mountain region, the Michigan and Illinois Basins, and the Midcontinent region. This report covers research activities for the second half of the third project year (October 6, 2002, through April 5, 2003). The primary work included describing and mapping regional facies of the upper Ismay and lower Desert Creek zones of the Paradox Formation in the Blanding sub-basin, Utah. Regional cross sections show the development of ''clean carbonate'' packages that contain all of the productive reservoir facies. These clean carbonates abruptly change laterally into thick anhydrite packages that filled several small intra-shelf basins in the upper Ismay zone. Examination of upper Ismay

  12. Heterogeneous Shallow-Shelf Carbonate Buildups in the Paradox Basin, Utah and Colorado: Targets for Increased Oil Production and Reserves Using Horizontal Drilling Techniques

    SciTech Connect

    Thomas C. Chidsey; Kevin McClure; Craig D. Morgan

    2003-10-05

    The Paradox Basin of Utah, Colorado, Arizona, and New Mexico contains nearly 100 small oil fields producing from carbonate buildups within the Pennsylvanian (Desmoinesian) Paradox Formation. These fields typically have one to 10 wells with primary production ranging from 700,000 to 2,000,000 barrels (111,300-318,000 m{sup 3}) of oil per field and a 15 to 20 percent recovery rate. At least 200 million barrels (31.8 million m{sup 3}) of oil will not be recovered from these small fields because of inefficient recovery practices and undrained heterogeneous reservoirs. Several fields in southeastern Utah and southwestern Colorado are being evaluated as candidates for horizontal drilling and enhanced oil recovery from existing vertical wells based upon geological characterization and reservoir modeling case studies. Geological characterization on a local scale is focused on reservoir heterogeneity, quality, and lateral continuity, as well as possible reservoir compartmentalization, within these fields. This study utilizes representative cores, geophysical logs, and thin sections to characterize and grade each field's potential for drilling horizontal laterals from existing development wells. The results of these studies can be applied to similar fields elsewhere in the Paradox Basin and the Rocky Mountain region, the Michigan and Illinois Basins, and the Midcontinent region. This report covers research activities for the first half of the fourth project year (April 6 through October 5, 2003). The work included (1) analysis of well-test data and oil production from Cherokee and Bug fields, San Juan County, Utah, and (2) diagenetic evaluation of stable isotopes from the upper Ismay and lower Desert Creek zones of the Paradox Formation in the Blanding sub-basin, Utah. Production ''sweet spots'' and potential horizontal drilling candidates were identified for Cherokee and Bug fields. In Cherokee field, the most productive wells are located in the thickest part of the mound

  13. IMPACTS OF DRILLING ADDITIVES ON DATA OBTAINED FROM HYDROGEOLOGIC CHARACTERIZATION WELLS AT LOS ALAMOS NATIONAL LABORATORY

    EPA Science Inventory

    Personnel at the EPA Ground Water and Ecosystems Restoration Division (GWERD) were requested by EPA Region 6 to evaluate the impacts of well drilling practices at the Los Alamos National Laboratory (LANL). The focus of this review involved analysis of the impacts of bentonite- a...

  14. IMPACTS OF DRILLING ADDITIVES ON DATA OBTAINED FROM HYDROGEOLOGIC CHARACTERIZATION WELLS AT LOS ALAMOS NATIONAL LABORATORY

    EPA Science Inventory

    Personnel at the EPA Ground Water and Ecosystems Restoration Division (GWERD) were requested by EPA Region 6 to evaluate the impacts of well drilling practices at the Los Alamos National Laboratory (LANL). The focus of this review involved analysis of the impacts of bentonite- a...

  15. BM platform, B Field, Offshore Northwest Java: A case history of multi-disciplinary integration including 3D seismic, reservoir simulation and horizontal drilling

    SciTech Connect

    Cooke, D.; Aziz, A.; Baldauff, J.; Diswarin, N.

    1996-12-31

    This case history describes how a multidisciplinary team used a 3D survey and reservoir simulation to review and revise the development plans for the BM platform, located in the B Field, Offshore Northwest Java, Indonesia. The case history starts with the collection of necessary parophysical, geologic and production data. These data are input to a reservoir simulation which shows there should be no problems with the new platform. However, this initial simulation has known problems with contradicting input structure maps and fluid contacts. Hopefully, these problems can be addressed with a new 3D seismic survey - if the seismic data can be acquired, processed, interpreted and input to the simulation before drilling starts at the BM platform. The seismic acquisition could not be done with the traditional towed seismic streamer cables - instead stationary ocean bottom cables with dual geophone-hydrophone sensors were used. Processing of the seismic data was done in a way that allowed interpretation of the critical area even before acquisition of the entire survey was finished. The new 3D structure maps changed the MDT`s opinion of what reservoir and what areas contained the bulk of the oil reserves. Unfortunately, the new maps were not available until after the jacket was set but before the wells drilled. The NMT updated the simulation with the new 3D data, which led to changes in development well bottom hole locations and an ambitious horizontal well.

  16. Commentary on "T.G. Ritto, M.R. Escalante, Rubens Sampaio, M.B. Rosales, Drill-string horizontal dynamics with uncertainty on the frictional force, Journal of Sound and Vibration 332 (2013) 145-153"

    NASA Astrophysics Data System (ADS)

    Ritto, T. G.; Sampaio, Rubens; Rosales, M. B.

    2016-12-01

    The goal of this article is to clarify some points of the formulation presented in the "T.G. Ritto, M.R. Escalante, Rubens Sampaio, M.B. Rosales, Drill-string horizontal dynamics with uncertainty on the frictional force, Journal of Sound and Vibration 332 (2013) 145-153".

  17. Horizontal drilling in the Bakken Formation - The hunt for an elephant that never left the source system

    SciTech Connect

    Price, L. ); Le Fever, J. )

    1991-06-01

    New organic-geochemical studies show that bitumen extracted from the upper and lower shale members of the Mississippian Madison Group oils, and that the Bakken shales have contributed only a minor percentage of the conventionally produced oil in the Williston basin. Instead, organic-rich madison marls are an adequate source for the Madison oils. Also, few pathways exist for vertical migration of Bakken-generated oil to shallower Madison reservoirs. Vertical wells in older Bakken oil pools are perforated in one or all of the three units adjacent to the two Bakken shales but are not necessarily perforated in the Bakken shales. Rock-Eval analyses of 6- to 12-in. spaced core samples show that where Bakken shales are thermally mature, the three adjacent organic-poor units contain 10-20 times the hydrocarbons (HCs) they could have generated. Thus, Bakken-generated HCs appear to have moved into the three adjacent units, probably via fractures created by volume expansion of organic matter during HC generation in the Bakken shales. Bakken well histories reveal that unsuccessful Bakken wells appear due to questionable techniques during these operations and not a lack of fractures. If a large in-place resource base exists in the Bakken source system, its commercial recovery will depend on new exploration, drilling, completion, and production technologies and on how much of the generated oil is in fractures rather than dispersed throughout the rocks.

  18. Feasibility of Optimizing Recovery and Reserves from a Mature and Geological Complex Multiple Turbidite Offshore Calif. Reservoir through the Drilling and Completion of a Trilateral Horizontal Well, Class III

    SciTech Connect

    Pacific Operators Offshore, Inc.

    2001-04-04

    The intent of this project was to increase production and extend the economic life of this mature field through the application of advanced reservoir characterization and drilling technology, demonstrating the efficacy of these technologies to other small operators of aging fields. Two study periods were proposed; the first to include data assimilation and reservoir characterization and the second to drill the demonstration well. The initial study period showed that a single tri-lateral well would not be economically efficient in redevelopment of Carpinteria's multiple deep water turbidite sand reservoirs, and the study was amended to include the drilling of a series of horizontal redrills from existing surplus well bores on Pacific Operators' Platform Hogan.

  19. Assessment of horizontal laminar air flow instrument table for additional ultraclean space during surgery.

    PubMed

    Nilsson, K-G; Lundholm, R; Friberg, S

    2010-11-01

    The area in a vertical ultraclean laminar air flow (LAF) theatre is usually too small to accommodate all the equipment needed for major surgery. We investigated the addition of an instrument table supplied with fixed ultraclean LAF and placed alongside the existing main LAF unit, to determine its physical and bacteriological effect on the main unit. In phase 1, with two investigators but without a patient, smoke tests showed no intrusion of air from the table into the main unit and particle counts did not show any adverse effect on the main LAF unit. In phase 2, during patients undergoing two total knee replacements, the LAF table and a table without LAF were placed alongside the main LAF unit. The tables were subjected to the activity of an extra operating room (OR) nurse working from inside the main LAF vigorously simulating handling of instruments. During this activity, the >5μm particle counts were 275/m(3) at the instrument table with LAF and 8550/m(3) at the table without LAF (P<0.0001). Also, without the OR nurse activity, the particle counts, just inside the main unit and adjacent to the LAF table, were significantly reduced (P<0.03-0.003). Sedimentation plates on the LAF table and in the main unit registered 22 and 25cfu/m(2)/h respectively compared with 45cfu/m(2)/h at the instrument table without LAF. In conclusion, the results from the smoke tests, particle counts and bacteriological evaluation showed that the additional instrument table supplied with LAF is efficient and can be safely used as an extension additional to a main OR LAF unit.

  20. Drilling update

    NASA Astrophysics Data System (ADS)

    Richman, Barbara T.

    At its March 31 meeting the governing board of the Joint Oceanographic Institutions, Inc. (JOI), designated Texas A&M University to direct scientific operations for the new phase of scientific ocean drilling. William Merrell, associate dean of geosciences at Texas A&M, is leading an interim planning team in implementing the recommendations of the National Science Foundation's (NSF) Ad Hoc Advisory Group on Crustal Studies (Eos, February 22, 1983, p. 73). The ad hoc group, chaired by Charles Drake, recommended that scientific ocean drilling be pursued not with the Glomar Challenger or the Glomar Explorer, but with one of the roughly half-dozen commercial drilling ships that have become available with the slackening of the commercial drilling market.Foremost of the tasks facing the interim planning team is to write a request for proposals (RFP) for a drill ship and to define performance criteria for a commercial drilling platform. The RFP is expected to be issued by Texas A&M in 6-8 weeks, according to Philip Rabinowitz, acting project director and a professor in the university's oceanography department. Once those tasks are completed and a successful bidder is found, a formal proposal will be made to NSF through JOI. The proposal will be subject to the usual NSF peer review process. If the proposal is approved, Rabinowitz said that Texas A&M would expect actual drilling to begin in October 1984. In addition to Merrell and Rabinowitz, the interim planning team also includes acting chief scientist Stefan Gartner.

  1. Simulation of uphill/downhill running on a level treadmill using additional horizontal force.

    PubMed

    Gimenez, Philippe; Arnal, Pierrick J; Samozino, Pierre; Millet, Guillaume Y; Morin, Jean-Benoit

    2014-07-18

    Tilting treadmills allow a convenient study of biomechanics during uphill/downhill running, but they are not commonly available and there is even fewer tilting force-measuring treadmill. The aim of the present study was to compare uphill/downhill running on a treadmill (inclination of ± 8%) with running on a level treadmill using additional backward or forward pulling forces to simulate the effect of gravity. This comparison specifically focused on the energy cost of running, stride frequency (SF), electromyographic activity (EMG), leg and foot angles at foot strike, and ground impact shock. The main results are that SF, impact shock, and leg and foot angle parameters determined were very similar and significantly correlated between the two methods, the intercept and slope of the linear regression not differing significantly from zero and unity, respectively. The correlation of oxygen uptake (V̇O2) data between both methods was not significant during uphill running (r=0.42; P>0.05). V̇O2 data were correlated during downhill running (r=0.74; P<0.01) but there was a significant difference between the methods (bias=-2.51 ± 1.94 ml min(-1) kg(-1)). Linear regressions for EMG of vastus lateralis, biceps femoris, gastrocnemius lateralis, soleus and tibialis anterior were not different from the identity line but the systematic bias was elevated for this parameter. In conclusion, this method seems appropriate for the study of SF, leg and foot angle, impact shock parameters but is less applicable for physiological variables (EMG and energy cost) during uphill/downhill running when using a tilting force-measuring treadmill is not possible.

  2. Graphene oxide as a high-performance fluid-loss-control additive in water-based drilling fluids.

    PubMed

    Kosynkin, Dmitry V; Ceriotti, Gabriel; Wilson, Kurt C; Lomeda, Jay R; Scorsone, Jason T; Patel, Arvind D; Friedheim, James E; Tour, James M

    2012-01-01

    Graphene oxide (GO) performs well as a filtration additive in water-based drilling fluids at concentrations as low as 0.2 % (w/w) by carbon content. Standard American Petroleum Institute (API) filtration tests were conducted on pH-adjusted, aqueous dispersions of GO and xanthan gum. It was found that a combination of large-flake GO and powdered GO in a 3:1 ratio performed best in the API tests, allowing an average fluid loss of 6.1 mL over 30 min and leaving a filter cake ~20 μm thick. In comparison, a standard suspension (~12 g/L) of clays and polymers used in the oil industry gave an average fluid loss of 7.2 mL and a filter cake ~280 μm thick. Scanning electron microscopy imaging revealed the extreme pliability of well-exfoliated GO, as the pressure due to filtration crumpled single GO sheets, forcing them to slide through pores with diameters much smaller than the flake's flattened size. GO solutions also exhibited greater shear thinning and higher temperature stability compared to clay-based fluid-loss additives, demonstrating potential for high-temperature well applications.

  3. Directionally drilled crossing constructed under river levee

    SciTech Connect

    Skonberg, E.R.; Berry, C.W.

    1996-06-01

    Shell Pipe Line Corp. recently commenced construction of its 20-inch Delta Loop Pipeline Project in south Louisiana. This line will transport crude oil from Main Pass No. 69 to the existing Shell pump station at Nairn in Plaquemines Parish. NBH, Inc. of New Orleans is prime contractor for this project which involves offshore pipe lay, shallow water marsh lay and a 4,100-foot horizontal directional crossing of the Mississippi River at Nairn which was undertaken by Land and Marine, Inc. of Houston. For past directionally drilled crossings, the New Orleans district of the US Army Corps of Engineers has only allowed drilling operations inside its Mississippi River flood protection levees. No drilling has been undertaken beneath the levees out of concern that the drilling operations could in some way damage their structural integrity. Unfortunately, at this particular location, the drill profile could not be designed placing drilling equipment inside the levee and achieve sufficient burial depth for the installed pipeline. If not allowed to bore beneath the levee, significant additional costs would have been incurred in routing the pipeline to a more suitable location. This paper reviews the design of this drilling operation showing the locations and construction of relief wells and piezometers used to monitor the directional drilling.

  4. Feasibility of optimizing recovery and reserves from a mature and geological complex multiple turbidite offshore California reservoir through the drilling and completion of a trilateral horizontal well. Annual report, September 1, 1995--December 31, 1996

    SciTech Connect

    Coombs, S.; Edwards, E.; Fleckenstein, W.; Ershaghi, I.; Sobbi, F.; Coombs, S.

    1998-07-01

    The main objective of this project is to devise an effective re-development strategy to combat producibility problems related to the Repetto turbidite sequences of the Carpinteria Field. The lack of adequate reservoir characterization, high-water cut production, and scaling problems have in the past contributed to the field`s low productivity. To improve productivity and enhance recoverable reserves, the following specific goals were proposed: develop an integrated database of all existing data from work done by the former ownership group; expand reservoir drainage and reduce sand problems through horizontal well drilling and completion; operate and validate reservoir`s conceptual model by incorporating new data from the proposed trilateral well; and transfer methodologies employed in geologic modeling and drilling multilateral wells to other operators with similar reservoirs. A computer based data retrieval system was developed to convert hard copy documents containing production, well completion and well log data into easily accessible on-line format. To ascertain the geological framework of the reservoir, a thorough geological modeling and subsurface mapping of the Carpinteria field was developed. The model is now used to examine the continuity of the sands, characteristics of the sub-zones, nature of water influx and transition intervals in individual major sands. The geological model was then supplemented with a reservoir engineering study of spatial distribution of voidage in individual layers using the production statistics and pressure surveys. Efforts are continuing in selection of optimal location for drilling and completion of probing wells to obtain new data about reservoir pressure, in-situ saturation and merits of drilling a series of horizontal wells.

  5. Drill, Baby, Drill

    ERIC Educational Resources Information Center

    Kerkhoff, Todd

    2009-01-01

    School fire drills are quickly becoming insignificant and inconvenient to school administrators. When the time for the monthly fire drill rolls around, it is often performed with a "let's get this over with" attitude. Although all schools conduct fire drills, seldom do they effectively train students and staff members how to respond in a real…

  6. Drill, Baby, Drill

    ERIC Educational Resources Information Center

    Kerkhoff, Todd

    2009-01-01

    School fire drills are quickly becoming insignificant and inconvenient to school administrators. When the time for the monthly fire drill rolls around, it is often performed with a "let's get this over with" attitude. Although all schools conduct fire drills, seldom do they effectively train students and staff members how to respond in a real…

  7. Short radius drilling system improves directional control

    SciTech Connect

    Leazer, C.

    1995-08-01

    Horizontal drilling capabilities and applications have been dramatically increased with development of Becfield Drilling Services` Short Radius Horizontal Drilling System utilizing the Articulated Downhole Drilling Motor (ADM). The system gives precise directional control, predictability , and reliability not previously available in short-radius operations. Because of the unique, patented design of the ADM, the short-radius system can be rotated during lateral drilling operations. This is a significant development in short-radius horizontal drilling technology. This paper reviews the design and operation of this equipment.

  8. Pathways of nitrobenzene degradation in horizontal subsurface flow constructed wetlands: Effect of intermittent aeration and glucose addition.

    PubMed

    Kirui, Wesley K; Wu, Shubiao; Kizito, Simon; Carvalho, Pedro N; Dong, Renjie

    2016-01-15

    Intermittent aeration and addition of glucose were applied to horizontal subsurface flow constructed wetlands in order to investigate the effect on pathways of nitrobenzene (NB) degradation and interactions with microbial nitrogen and sulphur transformations. The experiment was carried out in three phases A, B and C consisting of different NB loading and glucose dosing. For each phase, the effect of aeration was assessed by intermittently aerating one wetland and leaving one unaerated. Regardless of whether or not the wetland was aerated, at an influent NB concentration of 140 mg/L, both wetlands significantly reduced NB to less than 2 mg/L, a reduction efficiency of 98%. However, once the influent NB concentration was increased to 280 mg/L, the aerated wetland had a higher removal performance 82% compared to that of the unaerated wetland 71%. Addition of glucose further intensified the NB removal to 95% in the aerated wetlands and 92% in the unaerated. Aeration of wetlands enhanced NB degradation, but also resulted in higher NB volatilization of 6 mg m(-2) d(-1). The detected high concentration of sulphide 20-60 mg/L in the unaerated wetland gave a strong indication that NB may act as an electron donor to sulphate-reducing bacteria, but this should be further investigated. Aeration positively improved NB removal in constructed wetlands, but resulted in higher NB volatilization. Glucose addition induced co-metabolism to enhance NB degradation.

  9. The Synergism Between Heat and Mass Transfer Additive and Advanced Surfaces in Aqueous LiBr Horizontal Tube Absorbers

    SciTech Connect

    Miller, W.A.

    1999-03-24

    Experiments were conducted in a laboratory to investigate the absorption of water vapor into a falling-film of aqueous lithium bromide (LiBr). A mini-absorber test stand was used to test smooth tubes and a variety of advanced tube surfaces placed horizontally in a single-row bundle. The bundle had six copper tubes; each tube had an outside diameter of 15.9-mm and a length of 0.32-m. A unique feature of the stand is its ability to operate continuously and support testing of LiBr brine at mass fractions {ge} 0.62. The test stand can also support testing to study the effect of the failing film mass flow rate, the coolant mass flow rate, the coolant temperature, the absorber pressure and the tube spacing. Manufacturers of absorption chillers add small quantities of a heat and mass transfer additive to improve the performance of the absorbers. The additive causes surface stirring which enhances the transport of absorbate into the bulk of the film. Absorption may also be enhanced with advanced tube surfaces that mechanically induce secondary flows in the falling film without increasing the thickness of the film. Several tube geometry's were identified and tested with the intent of mixing the film and renewing the interface with fresh solution from the tube wall. Testing was completed on a smooth tube and several different externally enhanced tube surfaces. Experiments were conducted over the operating conditions of 6.5 mm Hg absorber pressure, coolant temperatures ranging from 20 to 35 C and LiBr mass fractions ranging from 0.60 through 0.62. Initially the effect of tube spacing was investigated for the smooth tube surface, tested with no heat and mass transfer additive. Test results showed the absorber load and the mass absorbed increased as the tube spacing increased because of the improved wetting of the tube bundle. However, tube spacing was not a critical factor if heat and mass transfer additive was active in the mini-absorber. The additive dramatically affected

  10. Novel drilling technology and reduction in drilling costs

    SciTech Connect

    Enger, T.; Torvund, T.; Mikkelsen, J.

    1995-12-31

    Historically offshore drilling costs represent a large part of Norsk Hydro`s E and P investments. Thus a reduction in drilling costs is a major issue. Consequently an aggressive approach to drilling has taken place focusing upon: (1) Reduction in conventional drilling costs, both in exploration and production drilling. An ambitious program to reduce drilling costs by 50% has been introduced. The main improvement potentials include rapid drilling, improved contracts and more selective data gathering. (2) Drilling of long reach wells up to approximately 9 km to reduce the number of subsea wells and fixed platforms, and thus improving the total field economy. Norsk Hydro has also been aggressive in pursuing drilling techniques which could improve the total oil recovery. Horizontal drilling has made possible the development of the giant Troll oil field, even though the oil leg is only 0--26 m thick. Oil reserves in the order of up to 650 mill bbl will be recovered solely due to introduction of horizontal wells. Recently, offshore tests of techniques such as coiled tubing drilling and conventional slim hole drilling have been carried out. The aim is to qualify a concept which could enable them to use a light vessel for exploration drilling, and not the large semi submersible rigs presently used. Potential future savings could be substantial.

  11. 1997 Drilling and production yearbook

    SciTech Connect

    Perdue, J.M.

    1997-03-01

    The sixth annual Drilling and Production Yearbook is presented. Data is compiled on drill bit productivity on single run footage, cumulative footage, penetration rate, and hours of service. World records for offshore developments, horizontal wells, coiled tubing applications, stimulation, casing strings, production, seismic shoots, and innovative completions are listed in separate sections. Records set in previous years that remain unbroken are also included.

  12. Development and testing of underbalanced drilling products. Topical report, September 1994--September 1995

    SciTech Connect

    Medley, G.H., Jr; Maurer, W.C.; Liu, G.; Garkasi, A.Y.

    1995-09-01

    Underbalanced drilling is experiencing growth at a rate that rivals that of horizontal drilling in the mid-1980s. Problems remain, however, for applying underbalanced drilling in a wider range of geological settings and drilling environments. This report addresses the development and testing of two products designed to advance the application of underbalanced drilling techniques. A user-friendly foam fluid hydraulics model (FOAM) was developed for a PC Windows environment. The program predicts pressure and flow characteristics of foam fluids used in underbalanced drilling operations. FOAM is based on the best available mathematical models, and was validated through comparison to existing models, laboratory test well measurements, and field data. This model does not handle air or mist drilling where the foam quality is above 0.97. An incompressible drilling fluid was developed that utilizes lightweight solid additives (hollow glass spheres) to reduce the density of the mud to less than that of water. This fluid is designed for underbalanced drilling situations where compressible lightweight fluids are inadequate. In addition to development of these new products, an analysis was performed to determine the market potential of lightweight fluids, and a forecast of underbalanced drilling in the USA over the next decade was developed. This analysis indicated that up to 12,000 wells per year (i.e., 30 percent of all wells) will be drilled underbalanced in the USA within the next ten years.

  13. An innovative drilling system

    SciTech Connect

    Nees, J.; Dickinson, E.; Dickinson, W.; Dykstra, H.

    1991-05-01

    The principal project objectives were the following: To demonstrate the capability of the Ultrashort Radius Radial System to drill and complete multiple horizontal radials in a heavy oil formation which had a production history of thermal operations. To study the effects that horizontal radials have on steam placement at specific elevations and on reducing gravity override. To demonstrate that horizontal radials could be utilized for cyclic production, i.e. for purposes of oil production as well as for steam injection. Each of these objectives was successfully achieved in the project. Early production results indicate that radials positively influenced cyclic performance. This report documents those results. 15 refs., 29 figs., 1 tab.

  14. Advanced Reservoir Characterization and Development through High-Resolution 3C3D Seismic and Horizontal Drilling: Eva South Marrow Sand Unit, Texas County, Oklahoma

    SciTech Connect

    Wheeler,David M.; Miller, William A.; Wilson, Travis C.

    2002-03-11

    The Eva South Morrow Sand Unit is located in western Texas County, Oklahoma. The field produces from an upper Morrow sandstone, termed the Eva sandstone, deposited in a transgressive valley-fill sequence. The field is defined as a combination structural stratigraphic trap; the reservoir lies in a convex up -dip bend in the valley and is truncated on the west side by the Teepee Creek fault. Although the field has been a successful waterflood since 1993, reservoir heterogeneity and compartmentalization has impeded overall sweep efficiency. A 4.25 square mile high-resolution, three component three-dimensional (3C3D) seismic survey was acquired in order to improve reservoir characterization and pinpoint the optimal location of a new horizontal producing well, the ESU 13-H.

  15. Drill Presses.

    ERIC Educational Resources Information Center

    Engelbrecht, Nancy; And Others

    These instructional materials provide an orientation to the drill press for use at the postsecondary level. The first of seven sections lists seven types of drill presses. The second section identifies 14 drill press parts. The third section lists 21 rules for safe use of drilling machines. The fourth section identifies the six procedures for…

  16. Drilling and completion specifications for CA series multilevel piezometers

    SciTech Connect

    Clawson, T.S.

    1986-08-01

    CX Series multilevel piezometer boreholes will provide information on hydraulic heads in the Rosalia, Sentinel Gap, Ginkgo, Rocky Coulee, Cohassett, Birkett, and Umtanum flow tops. The borehole sites will be located adjacent to the reference repository location. In addition, information from the boreholes will provide input data used to determine horizontal and vertical flow rates, and identify possible geologic structures. This specification includes details for drilling, piezometer design, hydrologic testing, and hydrochemical sampling of the boreholes. It includes drilling requirements, design, and installation procedures for the series piezometer nests, intervals selected for head monitoring and schedules for drilling and piezometer installation. Specific drilling and piezometer installation specifications for boreholes DC-24CX and DC-25CX are also included. 27 refs., 5 figs., 3 tabs.

  17. Horizontal Devonian shale well, Columbia Natural Resources, Inc.`s, Pocohontas Development Corp. Well 21747, Martin County, Kentucky. Final report

    SciTech Connect

    Koziar, G.; Ahmad, M.M.; Friend, L.L.; Friend, M.L.; Rothman, E.M.; Stollar, R.L.

    1991-05-01

    Columbia Gas and the United States Department of Energy (DOE) have successfully completed field work on a horizontally drilled Devonian shale well located in Martin County, Kentucky. The objective of this cofunded project is to assess the effectiveness and economic feasibility of applying horizontal drilling and hydraulically fracturing stimulation techniques to enhance the extraction of natural gas from the Devonian shale. The well is comprised of three segments: a conventional vertical section, an angle build section and a horizontal section. The well reached a measured depth (MD) of 6263 feet, 3810 feet true vertical depth (TVD), with a horizontal displacement of 2812 feet achieved in the desired direction of N10{degrees}W. Both air and foam were used as drilling fluids. The vertical, lateral and tangent sections were drilled using conventional rotary drilling methods. Downhole motors were used to build angle. A total combined final open flow of 3.1 MMcfd was measured from all zones. Total well expenditures are approximately $1,460,000. Of this amount, $700,000 is directly related to the research and learning curve experience aspects. It is projected that the same horizontal well could be drilled with existing technology for $700,000. If advanced can be made in MWD systems for air drilling environments, wells of this type could be drilled routinely for $500,000. It appears that application of horizontal drilling will result in at least acceleration of gas production and possibly the addition of recoverable reserves from the Devonian shale. Production data, necessary to validate this statement, are also required to determine the economics. As we gain experience and technology advances, cost reductions will occur; this will result in economic improvement.

  18. Horizontal Devonian shale well, Columbia Natural Resources, Inc. 's, Pocohontas Development Corp. Well 21747, Martin County, Kentucky

    SciTech Connect

    Koziar, G.; Ahmad, M.M.; Friend, L.L.; Friend, M.L.; Rothman, E.M.; Stollar, R.L. )

    1991-05-01

    Columbia Gas and the United States Department of Energy (DOE) have successfully completed field work on a horizontally drilled Devonian shale well located in Martin County, Kentucky. The objective of this cofunded project is to assess the effectiveness and economic feasibility of applying horizontal drilling and hydraulically fracturing stimulation techniques to enhance the extraction of natural gas from the Devonian shale. The well is comprised of three segments: a conventional vertical section, an angle build section and a horizontal section. The well reached a measured depth (MD) of 6263 feet, 3810 feet true vertical depth (TVD), with a horizontal displacement of 2812 feet achieved in the desired direction of N10{degrees}W. Both air and foam were used as drilling fluids. The vertical, lateral and tangent sections were drilled using conventional rotary drilling methods. Downhole motors were used to build angle. A total combined final open flow of 3.1 MMcfd was measured from all zones. Total well expenditures are approximately $1,460,000. Of this amount, $700,000 is directly related to the research and learning curve experience aspects. It is projected that the same horizontal well could be drilled with existing technology for $700,000. If advanced can be made in MWD systems for air drilling environments, wells of this type could be drilled routinely for $500,000. It appears that application of horizontal drilling will result in at least acceleration of gas production and possibly the addition of recoverable reserves from the Devonian shale. Production data, necessary to validate this statement, are also required to determine the economics. As we gain experience and technology advances, cost reductions will occur; this will result in economic improvement.

  19. Drilling fluid

    SciTech Connect

    Russell, J.A.; Patel, B.B.

    1987-11-03

    A drilling fluid additive mixture is described consisting essentially of a sulfoalkylated tannin in admixture with a non-sulfoalkylated alkali-solubilized lignite wherein the weight ratio of the sulfoalkylated tannin to the non-sulfoalkylated lignite is in the range from about 2:1 to about 1:1. The sulfoalkylated tannin has been sulfoalkylated with at least one -(C(R-)/sub 2/-SO/sub 3/M side chain, wherein each R is selected from the group consisting of hydrogen and alkyl radicals containing from 1 to about 5 carbon atoms, and M is selected from the group consisting of ammonium and the alkali metals.

  20. Measurement-while-drilling (MWD) development for air drilling

    SciTech Connect

    Harrison, W.H.; Rubin, L.A.

    1992-05-01

    The objective of this program is to tool-harden and make commercially available an existing wireless MWD tool to reliably operate in an air, air-mist, or air-foam environment during Appalachian Basin oil and gas directional drilling operations in conjunction with downhole motors and/or (other) bottom-hole assemblies. The application of this technology is required for drilling high angle (holes) and horizontal well drilling in low- pressure, water sensitive, tight gas formations that require air, air-mist, and foam drilling fluids. The basic approach to accomplishing this objective was to modify GEC`s existing electromagnetic (e-m) {open_quotes}Cableless{close_quotes} MWD tool to improve its reliability in air drilling by increasing its tolerance to higher vibration and shock levels (hardening). Another important aim of the program is to provide for continuing availability of the resultant tool for use on DOE-sponsored, and other, air-drilling programs.

  1. Measurement-while-drilling (MWD) development for air drilling

    SciTech Connect

    Rubin, L.A.; Harrison, W.H.

    1992-06-01

    The objective of this program is to tool-harden and make commercially available an existing wireless MWD tool to reliably operate in an air, air-mist, or air-foam environment during Appalachian Basin oil and gas directional drilling operations in conjunction with downhole motors and/or (other) bottom-hole assemblies. The application of this technology is required for drilling high angle (holes) and horizontal well drilling in low-pressure, water sensitive, tight gas formations that require air, air-mist, and foam drilling fluids. The basic approach to accomplishing this objective was to modify GEC`s existing electromagnetic (e-m) ``CABLELESS``{trademark} MWD tool to improve its reliability in air drilling by increasing its tolerance to higher vibration and shock levels (hardening). Another important aim of the program is to provide for continuing availability of the resultant tool for use on DOE-sponsored, and other, air-drilling programs.

  2. Measurement-while-drilling (MWD) development for air drilling

    SciTech Connect

    Rubin, L.A.; Harrison, W.H.

    1992-01-01

    The objective of this program is to tool-harden and make commercially available an existing wireless MWD tool to reliably operate in an air, air-mist, or air-foam environment during Appalachian Basin oil and gas directional drilling operations in conjunction with downhole motors and/or (other) bottom-hole assemblies. The application of this technology is required for drilling high angle (holes) and horizontal well drilling in low-pressure, water sensitive, tight gas formations that require air, air-mist, and foam drilling fluids. The basic approach to accomplishing this objective was to modify GEC's existing electromagnetic (e-m) CABLELESS''{trademark} MWD tool to improve its reliability in air drilling by increasing its tolerance to higher vibration and shock levels (hardening). Another important aim of the program is to provide for continuing availability of the resultant tool for use on DOE-sponsored, and other, air-drilling programs.

  3. Horizontal compressive stress regime on the northern Cascadia margin inferred from borehole breakouts

    NASA Astrophysics Data System (ADS)

    Riedel, M.; Malinverno, A.; Wang, K.; Goldberg, D.; Guerin, G.

    2016-09-01

    During Integrated Ocean Drilling Program Expedition 311 five boreholes were drilled across the accretionary prism of the northern Cascadia subduction zone. Logging-while-drilling borehole images are utilized to determine breakout orientations to define maximum horizontal compressive stress orientations. Additionally, wireline logging data at two of these sites and from Site 889 of Ocean Drilling Program Leg 146 are used to define breakouts from differences in the aperture of caliper arms. At most sites, the maximum horizontal compressive stress SHmax is margin-normal, consistent with plate convergence. Deviations from this trend reflect local structural perturbations. Our results do not constrain stress magnitudes. If the margin-normal compressional stress is greater than the vertical stress, the margin-normal SHmax direction we observe may reflect current locking of a velocity-weakening shallow megathrust and thus potential for trench-breaching, tsunamigenic rupture in a future megathrust earthquake.

  4. Microhole Drilling Tractor Technology Development

    SciTech Connect

    Western Well Tool

    2007-07-09

    In an effort to increase the U.S. energy reserves and lower costs for finding and retrieving oil, the USDOE created a solicitation to encourage industry to focus on means to operate in small diameter well-Microhole. Partially in response to this solicitation and because Western Well Tool's (WWT) corporate objective to develop small diameter coiled tubing drilling tractor, WWT responded to and was awarded a contract to design, prototype, shop test, and field demonstrate a Microhole Drilling Tractor (MDT). The benefit to the oil industry and the US consumer from the project is that with the MDT's ability to facilitate Coiled Tubing drilled wells to be 1000-3000 feet longer horizontally, US brown fields can be more efficiently exploited resulting in fewer wells, less environmental impact, greater and faster oil recovery, and lower drilling costs. Shortly after award of the contract, WWT was approached by a major oil company that strongly indicated that the specified size of a tractor of 3.0 inches diameter was inappropriate and that immediate applications for a 3.38-inch diameter tractor would substantially increase the usefulness of the tool to the oil industry. Based on this along with an understanding with the oil company to use the tractor in multiple field applications, WWT applied for and was granted a no-cost change-of-scope contract amendment to design, manufacture, assemble, shop test and field demonstrate a prototype a 3.38 inch diameter MDT. Utilizing existing WWT tractor technology and conforming to an industry developed specification for the tool, the Microhole Drilling Tractor was designed. Specific features of the MDT that increase it usefulness are: (1) Operation on differential pressure of the drilling fluid, (2) On-Off Capability, (3) Patented unique gripping elements (4) High strength and flexibility, (5) Compatibility to existing Coiled Tubing drilling equipment and operations. The ability to power the MDT with drilling fluid results in a highly

  5. Drill report

    SciTech Connect

    Not Available

    1984-12-01

    North Slope drilling activity is described. As of November 14, 1984, four rigs were actively drilling in the Kuparuk River field with another two doing workovers. Only one rig was drilling in the Prudhoe Bay field, with another doing workovers and one on standby.

  6. 30 CFR 250.406 - What additional safety measures must I take when I conduct drilling operations on a platform that...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... when I conduct drilling operations on a platform that has producing wells or has other hydrocarbon flow... when I conduct drilling operations on a platform that has producing wells or has other hydrocarbon flow... producing wells or that has other hydrocarbon flow: (a) You must install an emergency shutdown station near...

  7. 30 CFR 250.406 - What additional safety measures must I take when I conduct drilling operations on a platform that...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... when I conduct drilling operations on a platform that has producing wells or has other hydrocarbon flow... when I conduct drilling operations on a platform that has producing wells or has other hydrocarbon flow... producing wells or that has other hydrocarbon flow: (a) You must install an emergency shutdown station near...

  8. 30 CFR 250.406 - What additional safety measures must I take when I conduct drilling operations on a platform that...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... when I conduct drilling operations on a platform that has producing wells or has other hydrocarbon flow... hydrocarbon flow? You must take the following safety measures when you conduct drilling operations on a platform with producing wells or that has other hydrocarbon flow: (a) You must install an emergency...

  9. 30 CFR 250.406 - What additional safety measures must I take when I conduct drilling operations on a platform that...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... when I conduct drilling operations on a platform that has producing wells or has other hydrocarbon flow... when I conduct drilling operations on a platform that has producing wells or has other hydrocarbon flow... producing wells or that has other hydrocarbon flow: (a) You must install an emergency shutdown station near...

  10. Productivity and injectivity of horizontal wells. Quarterly report, July 1, 1994--September 30, 1994

    SciTech Connect

    Fayers, F.J.

    1995-01-01

    This quarterly report is entirely devoted to presenting samples of the results of the data analyses for horizontal drilling studies. In addition, a data compilation of Excel worksheets containing data on two-phase flow measurements at the Marathon Oil Company is discussed. Complete data analyses will be presented in the next annual report.

  11. Industry survey for horizontal wells. Final report

    SciTech Connect

    Wilson, D.D.; Kaback, D.S.; Denhan, M.E.; Watkins, D.

    1993-07-01

    An international survey of horizontal environmental wells was performed during May and June of 1993. The purpose of the survey was to provide the environmental industry with an inventory of horizontal environmental wells and information pertaining to the extent of the use of horizontal environmental wells, the variety of horizontal environmental well applications, the types of geologic and hydrogeologic conditions within which horizontal environmental wells have been installed, and the companies that perform horizontal environmental well installations. Other information, such as the cost of horizontal environmental well installations and the results of tests performed on the wells, is not complete but is provided as general information with the caveat that the information should not be used to compare drilling companies. The result of the survey is a catalogue of horizontal environmental wells that are categorized by the objective or use of the wells, the vertical depth of the wells, and the drilling company contracted to install the wells.

  12. Stacked rig refurbished for ultradeep gas drilling

    SciTech Connect

    Noevig, T.; Gutsche, W. )

    1995-01-09

    A heavy drilling rig, cold stacked for several years, recently underwent numerous structural, equipment, and computer upgrades for drilling ultradeep (8,000 m) gas wells in Germany. The technical improvements on the rig included supplementary installations and modifications to safety, quality, engineering, noise abatement, and environmental protection systems. With a maximal hook load of 700 tons, the drilling rig is one of the heaviest of its kind in Europe. The rig has a drilling depth range of 7,000--8,000 m, and the top drive system enables horizontal drilling. The paper describes the rig site, mast, top drive, substructure, draw works, power station, mud system, instrumentation, and other equipment.

  13. Process for establishing a clear horizontal borehole in a subterranean formation

    SciTech Connect

    Richards, W.L.; Henderson, R.L.; Aul, G.N.; Pauley, B.W.

    1987-09-08

    This patent describes a process for establishing a clear, generally horizontal borehole path in a subterranean formation having sloughing or caving characteristics. The process comprises the steps of: drilling a generally horizontal borehole into a subterranean formation having sloughing or caving characteristics using a drill bit and drill pipe; lubricating the drill bit and drill pipe with a mud capable of forming a cake on the borehole walls; withdrawing the drill bit and drill pipe and replacing the drill bit with a casing shoe. The cake maintains the borehole wall integrity while the drill pipe is removed from the borehole; inserting the casing shoe and drill pipe into the borehole; simultaneously inserting a liner into the generally horizontal borehole inside of the drill pipe; and removing the drill pipe and casing shoe while holding the liner within the borehole, the casing shoe passing on the outside of the liner as it is removed, the liner providing a clean path through the borehole.

  14. 46 CFR 199.250 - Drills.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Drills. 199.250 Section 199.250 Shipping COAST GUARD... CERTAIN INSPECTED VESSELS Additional Requirements for Passenger Vessels § 199.250 Drills. (a) An abandon-ship drill and a fire drill, as described in § 199.180, must be conducted on each passenger vessel at...

  15. 46 CFR 199.250 - Drills.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false Drills. 199.250 Section 199.250 Shipping COAST GUARD... CERTAIN INSPECTED VESSELS Additional Requirements for Passenger Vessels § 199.250 Drills. (a) An abandon-ship drill and a fire drill, as described in § 199.180, must be conducted on each passenger vessel at...

  16. 46 CFR 199.250 - Drills.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Drills. 199.250 Section 199.250 Shipping COAST GUARD... CERTAIN INSPECTED VESSELS Additional Requirements for Passenger Vessels § 199.250 Drills. (a) An abandon-ship drill and a fire drill, as described in § 199.180, must be conducted on each passenger vessel at...

  17. 46 CFR 199.250 - Drills.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Drills. 199.250 Section 199.250 Shipping COAST GUARD... CERTAIN INSPECTED VESSELS Additional Requirements for Passenger Vessels § 199.250 Drills. (a) An abandon-ship drill and a fire drill, as described in § 199.180, must be conducted on each passenger vessel at...

  18. 46 CFR 199.250 - Drills.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Drills. 199.250 Section 199.250 Shipping COAST GUARD... CERTAIN INSPECTED VESSELS Additional Requirements for Passenger Vessels § 199.250 Drills. (a) An abandon-ship drill and a fire drill, as described in § 199.180, must be conducted on each passenger vessel...

  19. Data regarding hydraulic fracturing distributions and treatment fluids, additives, proppants, and water volumes applied to wells drilled in the United States from 1947 through 2010

    USGS Publications Warehouse

    Gallegos, Tanya J.; Varela, Brian A.

    2015-01-01

    Comprehensive, published, and publicly available data regarding the extent, location, and character of hydraulic fracturing in the United States are scarce. The objective of this data series is to publish data related to hydraulic fracturing in the public domain. The spreadsheets released with this data series contain derivative datasets aggregated temporally and spatially from the commercial and proprietary IHS database of U.S. oil and gas production and well data (IHS Energy, 2011). These datasets, served in 21 spreadsheets in Microsoft Excel (.xlsx) format, outline the geographical distributions of hydraulic fracturing treatments and associated wells (including well drill-hole directions) as well as water volumes, proppants, treatment fluids, and additives used in hydraulic fracturing treatments in the United States from 1947 through 2010. This report also describes the data—extraction/aggregation processing steps, field names and descriptions, field types and sources. An associated scientific investigation report (Gallegos and Varela, 2014) provides a detailed analysis of the data presented in this data series and comparisons of the data and trends to the literature.

  20. Lockdown Drills

    ERIC Educational Resources Information Center

    North Dakota Department of Public Instruction, 2011

    2011-01-01

    As a result of House Bill 1215, introduced and passed during the 2011 North Dakota legislative session, every school building in North Dakota must conduct a lockdown drill. While no timeframe, tracking or penalty was identified in the state law, the North Dakota Department of Public Instruction (DPI) advocates annual drills, at a minimum, which…

  1. Disaster Drill.

    ERIC Educational Resources Information Center

    Jones, Rebecca

    1998-01-01

    Bus disaster drills have been held all over country for years. A drill in Blairsville, Pennsylvania, taught officials important lessons: (1) keep roster of students and stops in designated area on bus, and ensure emergency workers know where location; (2) send at least three school officials to accident scene; (3) provide school officials with…

  2. Status Report A Review of Slimhole Drilling

    SciTech Connect

    Zhu, Tao; Carroll, Herbert B.

    1994-09-01

    This 1994 report reviews the various applications of slimhole technology including for exploration in remote areas, low-cost development wells, reentering existing wells, and horizontal and multilateral drilling. Advantages of slimholes to regular holes are presented. Limitations and disadvantages of slimholes are also discussed. In 1994, slimhole drilling was still an ongoing development technology. (DJE 2005)

  3. Additives

    NASA Technical Reports Server (NTRS)

    Smalheer, C. V.

    1973-01-01

    The chemistry of lubricant additives is discussed to show what the additives are chemically and what functions they perform in the lubrication of various kinds of equipment. Current theories regarding the mode of action of lubricant additives are presented. The additive groups discussed include the following: (1) detergents and dispersants, (2) corrosion inhibitors, (3) antioxidants, (4) viscosity index improvers, (5) pour point depressants, and (6) antifouling agents.

  4. Additives

    NASA Technical Reports Server (NTRS)

    Smalheer, C. V.

    1973-01-01

    The chemistry of lubricant additives is discussed to show what the additives are chemically and what functions they perform in the lubrication of various kinds of equipment. Current theories regarding the mode of action of lubricant additives are presented. The additive groups discussed include the following: (1) detergents and dispersants, (2) corrosion inhibitors, (3) antioxidants, (4) viscosity index improvers, (5) pour point depressants, and (6) antifouling agents.

  5. Drilling reorganizes

    NASA Astrophysics Data System (ADS)

    Richman, Barbara T.

    As the first in a proposed series of steps that would move scientific ocean drilling from its own niche within the National Science Foundation's (NSF) Directorate for Astronomical, Atmospheric, Earth, and Ocean Sciences (AAEO) into the agency's Division of Ocean Sciences, Grant Gross, division director, has been appointed acting director of the Office of Scientific Ocean Drilling (OSOD). Gross will retain the directorship of the division, which also is part of AAEO. Allen M. Shinn, Jr., OSOD director for nearly 2 years, has been reassigned effective July 10 to a position in NSF's Office of Planning and Resource Management.The move aims to tie drilling operations more closely to the science with which it is associated, Gross said. This first step is an organizational response to the current leaning toward using a commercial drilling vessel as the drilling platform, he said. Before the market for such commercial drill ships opened (Eos, February 22, 1983, p . 73), other ship options for scientific ocean drilling included refurbishing the aging Glomar Challenger or renovating, at great expense, the Glomar Explorer. A possible next step in the reorganization is to make OSOD the third section within the Ocean Sciences Division. Currently, the division is divided into the Oceanographic Facilities and Support Section and the Ocean Sciences Research Section.

  6. 1999 drilling and production yearbook

    SciTech Connect

    Perdue, J.M.

    1999-03-01

    This is the eighth official list of world record achievements in the oil and gas industry. Tables are presented on drill bit data with bit style, manufacturer, footage, rate of penetration, location, year, field, and operator. The paper includes descriptions of records set in the following categories: casing and conductors; completions; coiled tubing; horizontal wells; offshore records; seismic records; and miscellaneous records.

  7. Friction Reduction for Microhole CT Drilling

    SciTech Connect

    Ken Newman; Patrick Kelleher; Edward Smalley

    2007-03-31

    The objective of this 24 month project focused on improving microhole coiled tubing drilling bottom hole assembly (BHA) reliability and performance, while reducing the drilling cost and complexity associated with inclined/horizontal well sections. This was to be accomplished by eliminating the need for a downhole drilling tractor or other downhole coiled tubing (CT) friction mitigation techniques when drilling long (>2,000 ft.) of inclined/horizontal wellbore. The technical solution to be developed and evaluated in this project was based on vibrating the coiled tubing at surface to reduce the friction along the length of the downhole CT drillstring. The Phase 1 objective of this project centered on determining the optimum surface-applied vibration system design for downhole CT friction mitigation. Design of the system would be based on numerical modeling and laboratory testing of the CT friction mitigation achieved with various types of surface-applied vibration. A numerical model was developed to predict how far downhole the surface-applied vibration would travel. A vibration test fixture, simulating microhole CT drilling in a horizontal wellbore, was constructed and used to refine and validate the numerical model. Numerous tests, with varying surface-applied vibration parameters were evaluated in the vibration test fixture. The data indicated that as long as the axial force on the CT was less than the helical buckling load, axial vibration of the CT was effective at mitigating friction. However, surface-applied vibration only provided a small amount of friction mitigation as the helical buckling load on the CT was reached or exceeded. Since it would be impractical to assume that routine field operations be conducted at less than the helical buckling load of the CT, it was determined that this technical approach did not warrant the additional cost and maintenance issues that would be associated with the surface vibration equipment. As such, the project was

  8. Drilling bit

    SciTech Connect

    Allam, F. M.

    1985-07-09

    A drilling bit comprising a drill body formed from a base portion and a crown portion having a plurality of cutting elements; the base and crown portions are interengaged by a connection portion. An external opening in the crown portion communicates with a core-receiving section in the connecting portion. A core milling assembly, comprising a pair of rotatable, frustum-shaped rotary members, is supported in the connecting section. Each rotary member carries a plurality of cutting elements. During drilling, a core is received in the core-receiving section, where it is milled by the rotation of the rotary members.

  9. Recovery of bypassed oil in the Dundee formation using horizontal drains

    SciTech Connect

    Wood, J.R.

    1996-04-30

    The principal objective of this project is to demonstrate the feasibility and economic success of producing oil from abandoned or nearly abandoned fields in the Dundee Formation of Central Michigan using horizontal drilling technology. A site for a horizontal well was selected in Crystal Field, a nearly-abandoned Dundee oil field in Michigan. This field had produced over 8 million barrels of oil, mostly in the 1930`s and 1940`s. At the height of development, Crystal Field produced from 193 wells, but by 1995, only seven producing wells remained, each producing less than 10 bbls/day. A horizontal well was drilled as a field demonstration pilot, funded through this DOE project, and was immensely successful. Core and logs from the Dundee interval were recovered from a vertical borehole at the same surface location. The horizontal well was brought on production at a rate of 100 bbls/day and is probably capable of producing at a higher rate. `The addition of several horizontal wells, similar to the demonstration well, will likely add another 2 million bbls (or more) to the cumulative production of the field over the next few years. The presence of untapped oil in this Dundee field was dramatically demonstrated and the favorable economics were made clearly evident. Additional project work comprises characterization of 30 Dundee fields in Michigan to aid in determining appropriate candidates for development through horizontal drilling. Further quantification of reservoir parameters such as importance of fracturing, fracture density, and irregularity of the dolomitized surface at the top of the reservoir will help in designing the optimal strategy for horizontal drilling. Technical progress is presented for the following tasks: project management; reservoir characterization; data measurement and analysis; database management; geochemical and basin modeling; and technology transfer.

  10. The effect of positive-lens addition and base-in prism on accommodation accuracy and near horizontal phoria in Chinese myopic children.

    PubMed

    Cheng, Desmond; Schmid, Katrina L; Woo, George C

    2008-05-01

    The effect of positive-lens addition (0, +0.75, +1.50, +2.25, +3.00 D each eye) and base-in prism power (0, 1.5, 3 Delta each eye) on both near focusing errors and latent horizontal deviations was evaluated in 29 Chinese myopic children (age: 10.3 +/- 1.9 years, refractive error: -2.73 +/- 1.31 D). Accommodation response and phoria were measured by the Shin-Nippon auto-refractor (right eye) and Howell-Dwyer near phoria card at 33 cm with each of the 15 lens/prism combinations in random order. The initial accommodative error was -0.96 +/- 0.67 D (lag) and near phoria was -0.8 +/- 5.0 Delta (exophoria). The positive-lens addition decreased the accommodative lag but increased the exophoria as the power increased (e.g. up to -9.1 +/- 4.1 Delta with +3 D). A 6-Delta base-in prism totally controlled the exophoria induced by a +1.50 D addition (-0.3 +/- 4.3 Delta), but the accommodative lag was still considerable (-0.69 +/- 0.54 D). In the graphical analysis of the data, a lens addition of +2.25 D combined with a 6-Delta base-in prism minimized both the lag and lens-induced exophoria to -0.33 D and -2.4 Delta respectively (regression analysis). This lens and prism combination decreased the lens-induced exophoria by 4.5 Delta compared with that measured with +2.25 D alone (-2.4 Delta vs -6.9 Delta). The results suggest that incorporating near base-in prism when prescribing bifocal lenses for young progressing myopes with exophoria could reduce the positive lens-induced oculomotor imbalance.

  11. Advanced Mud System for Microhole Coiled Tubing Drilling

    SciTech Connect

    Kenneth Oglesby

    2008-12-01

    An advanced mud system was designed and key components were built that augment a coiled tubing drilling (CTD) rig that is designed specifically to drill microholes (less than 4-inch diameter) with advanced drilling techniques. The mud system was tailored to the hydraulics of the hole geometries and rig characteristics required for microholes and is capable of mixing and circulating mud and removing solids while being self contained and having zero discharge capability. Key components of this system are two modified triplex mud pumps (High Pressure Slurry Pumps) for advanced Abrasive Slurry Jetting (ASJ) and a modified Gas-Liquid-Solid (GLS) Separator for well control, flow return and initial processing. The system developed also includes an additional component of an advanced version of ASJ which allows cutting through most all materials encountered in oil and gas wells including steel, cement, and all rock types. It includes new fluids and new ASJ nozzles. The jetting mechanism does not require rotation of the bottom hole assembly or drill string, which is essential for use with Coiled Tubing (CT). It also has low reactive forces acting on the CT and generates cuttings small enough to be easily cleaned from the well bore, which is important in horizontal drilling. These cutting and mud processing components and capabilities compliment the concepts put forth by DOE for microhole coiled tubing drilling (MHTCTD) and should help insure the reality of drilling small diameter holes quickly and inexpensively with a minimal environmental footprint and that is efficient, compact and portable. Other components (site liners, sump and transfer pumps, stacked shakers, filter membranes, etc.. ) of the overall mud system were identified as readily available in industry and will not be purchased until we are ready to drill a specific well.

  12. Making new drilling technology work for you

    SciTech Connect

    McNally, R.

    1988-01-01

    With the possible exception of today's plastic hard hats, the scene on the average drilling rig floor has changed little from what it was 25 years ago. By contrast, modern automobile plants, steel mills, and even print shops are almost unrecognizable from 1963's viewpoint. The oil companies that survive to prosper in the future will be the ones operating with the greatest efficiency and the lowest cost. That's why reducing the cost of drilling operations has become a major objective during the downturn. And the good news is that most advances in drilling technology are made during downturns, not during boom times. The last few years have seen, for example, significant breakthroughs in synthetic diamond bits, measurement while drilling, horizontal drilling, inertial navigation, top-drive drilling, high-pressure jet nozzles, and other advanced tools and techniques designed to aid in drilling wells more efficiently and effectively. This article discusses these advances.

  13. Production drilling

    SciTech Connect

    Not Available

    1993-03-01

    This paper is actually a composite of two papers dealing with automation and computerized control of underground mining equipment. The paper primarily discusses drills, haulage equipment, and tunneling machines. It compares performance and cost benefits of conventional equipment to the new automated methods. The company involved are iron ore mining companies in Scandinavia. The papers also discusses the different equipment using air power, water power, hydraulic power, and computer power. The different drill rigs are compared for performance and cost.

  14. Contamination Control for Scientific Drilling Operations.

    PubMed

    Kallmeyer, J

    2017-01-01

    Drilling is an integral part of subsurface exploration. Because almost all drilling operations require the use of a drill fluid, contamination by infiltration of drill fluid into the recovered core material cannot be avoided. Because it is impossible to maintain sterile conditions during drilling the drill fluid will contain surface microbes and other contaminants. As contamination cannot be avoided, it has to be tracked to identify those parts of the drill core that were not infiltrated by the drill fluid. This is done by the addition of tracer compounds. A great variety of tracers is available, and the choice depends on many factors. This review will first explain the basic principles of drilling before presenting the most common tracers and discussing their strengths and weaknesses. The final part of this review presents a number of key questions that have to be addressed in order to find the right tracer for a particular drilling operation.

  15. Borehole drilling fluid and method

    SciTech Connect

    Carriere, D.B.; Lauzon, R.V.

    1981-11-17

    An improved drilling fluid and method for drilling a borehole, the drilling fluid comprising an aqueous dispersion of an emulsion polymerized latex comprised of an interpolymer of an olefinically unsaturated carboxylic acid monomer and at least one other, non-carboxylated polymerizable monomer, the latex being of a type which undergoes rapid increase in viscosity upon the addition of a sufficient amount of a basic material.

  16. Borehole drilling fluid and method

    SciTech Connect

    Carriere, D. B.; Lauzon, R. V.

    1984-12-04

    An improved drilling fluid and method for drilling a borehole, the drilling fluid comprising an aqueous dispersion of an emulsion polymerized latex comprised of an interpolymer of an olefinically unsaturated carboxylic acid monomer and at least one other, non-carboxylated polymerizable monomer, the latex being of a type which undergoes rapid increase in viscosity upon the addition of a sufficient amount of a basic material.

  17. 30 CFR 250.406 - What additional safety measures must I take when I conduct drilling operations on a platform that...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... when I conduct drilling operations on a platform that has producing wells or has other hydrocarbon flow... operations on a platform that has producing wells or has other hydrocarbon flow? You must take the following... hydrocarbon flow: (a) You must install an emergency shutdown station near the driller's console; (b) You must...

  18. Recovery of bypassed oil in the Dundee Formation using horizontal drains. Quarterly report, July 1, 1996--September 30, 1996

    SciTech Connect

    Wood, J.R.

    1996-10-31

    The principal objective of this project is to demonstrate the feasibility and economic success of producing oil from abandoned or nearly abandoned fields in the Dundee Formation of Central Michigan using horizontal drilling technology. A site for a horizontal well was selected in Crystal Field, a nearly-abandoned Dundee oil field in Michigan. This field had produced over 8 million barrels of oil, mostly in the 1930`s and 1940`s. At the height of development, Crystal Field produced from 193 wells, but by 1995, only seven producing wells remained, each producing less than 10 bbls/day. A horizontal well was drilled as a field demonstration pilot, funded through this DOE project, and was immensely successful. Core and logs from the Dundee interval were recovered from a vertical borehole at the same surface location. The horizontal well was brought on production at a rate of 100 bbls/day and is probably capable of producing at a higher rate. The addition of several horizontal wells, similar to the demonstration well, will likely add another 2 million bbls (or more) to the cumulative production of the field over the next few years. The presence of untapped oil in this Dundee field was dramatically demonstrated and the favorable economics were made clearly evident. If other abandoned Dundee fields are re-developed in a similar manner, the additional oil produced could exceed 80 Trillion barrels. Horizontal drilling will likely revolutionize the development of old carbonate fields such as those in the Dundee of Michigan.

  19. Horizontal technology helps spark Louisiana`s Austin chalk trend

    SciTech Connect

    Koen, A.D.

    1996-04-29

    A handful of companies paced by some of the most active operators in the US are pressing the limits of horizontal technology to ramp up Cretaceous Austin chalk exploration and development (E and D) across Louisiana. Companies find applications in Louisiana for lessons learned drilling horizontal wells to produce chalk intervals in Texas in Giddings, Pearsall, and Brookeland fields. Continuing advances in horizontal well technology are helping operators deal with deeper, hotter reservoirs in more complex geological settings that typify the chalk in Louisiana. Better horizontal drilling, completion, formation evaluation, and stimulation techniques have enabled operators to produce oil and gas from formations previously thought to be uneconomical. Most of the improved capabilities stem from better horizontal tools. Horizontal drilling breakthroughs include dual powered mud motors and retrievable whipstocks, key links in the ability to drill wells with more than one horizontal lateral. Better geosteering tools have enabled operators to maintain horizontal wellbores in desired intervals by signaling bit positions downhole while drilling. This paper reviews the technology and provides a historical perspective on the various drilling programs which have been completed in this trend. It also makes predictions on future drilling successes.

  20. Synthetic drilling muds: Environmental gain deserves regulatory recognition

    SciTech Connect

    Burke, C.J.; Veil, J.A.

    1995-06-01

    Efficient drilling technology is essential to meet the needs of the oil industry. Both the challenges of new oil provinces, especially in offshore waters, and the demands for efficient environmental protection have driven the development of new technology. Drilling mud is a key factor influencing drilling technology use in modern drilling operations. New oil industry developments involve directional and horizontal drilling as well as drilling in frontier areas at greater and greater depths. Such capabilities and conditions demand careful attention to the selection and engineering of efficient mud systems.

  1. The Handbook of Wrestling Drills.

    ERIC Educational Resources Information Center

    Gianakaris, George; Damico, Frank

    Amateur wrestling has had a tremendous growth in the past 10 to 15 years. The authors of this manual accumulated wrestling drills from hundreds of contacts with outstanding wrestlers and coaches throughout the country, in addition to their personal input. The manual can be used as a guide for teaching fundamental and advanced wrestling drills.…

  2. Drill report

    SciTech Connect

    Not Available

    1983-11-01

    The U.S. Fish and Wildlife Service has approved an industry proposal to conduct reflection seismic studies for oil and gas on the Arctic National Wildlife Refuge coastal plain. The plan submitted by Geophysical Services Inc. (GSI) was approved, subject to modifications aimed at safeguarding the environment. A listing of current drilling activities in Alaska is provided.

  3. Drilling fluid thinner

    SciTech Connect

    Patel, B.

    1989-06-27

    A drilling fluid additive is described comprising a mixture of: (a) a sulfoalkylated tannin and (b) chromium acetate selected from the group consisting of chromium (III) acetate and chromium (II) acetate, wherein the chromium acetate is present in a weight ratio of the chromium acetate to the sulfoalkylated tannin in the range of from about 1:20 to about 1:1.

  4. Optimizing rotary drill performance

    SciTech Connect

    Schivley, G.P. Jr.

    1995-12-31

    Data is presented showing Penetration Rate (PR) versus Force-on-the-Bit (FB) and Bit Angular Speed (N). Using this data, it is shown how FB and N each uniquely contribute to the PR for any particular drilling situation. This data represents many mining situations; including coal, copper, gold, iron ore and limestone quarrying. The important relationship between Penetration per Revolution (P/R) and the height of the cutting elements of the bit (CH) is discussed. Drill performance is then reviewed, considering the effect of FB and N on bit life. All this leads to recommendations for the operating values of FB and N for drilling situations where the rock is not highly abrasive and bit replacements are because of catastrophic failure of the bit cone bearings. The contribution of compressed air to the drilling process is discussed. It is suggested that if the air issuing from the bit jets is supersonic that may enhance the sweeping of the hole bottom. Also, it is shown that not just uphole air velocity is enough to provide adequate transport of the rock cuttings up the annulus of a drilled hole. In addition, air volume flow rate must be considered to assure there is adequate particle spacing so the mechanism of aerodynamic drag can effectively lift the cuttings up and out of the hole annulus.

  5. Horizontal core acquisition and orientation for formation evaluation

    SciTech Connect

    Skopec, R.A. ); Mann, M.M. ); Grier, S.P. )

    1992-03-01

    The increase in horizontal drilling activity has produced a need for improved coring technology. The development of a reliable horizontal (medium-radius) coring and orientation system has greatly improved the acquisition of information necessary for formation evaluation and reservoir engineering. This paper describes newly developed hardware and methods for obtaining horizontal core sections.

  6. Ocean drilling surveys planned

    NASA Astrophysics Data System (ADS)

    As a continuation of the International Phase of Ocean Drilling (IPOD), the Glomar Challenger is slated to drill in the Pacific and North Atlantic oceans during 1982-83. In preparation for the drilling, the Joint Oceanographic Institutions (JOI), Inc. will manage the site survey program during 1981-82. These site surveys will be focused to support four programs: a hydrogeology study on the equatorial East Pacific Rise flank; a study of Mesozoic sediments in the western Pacific; a study in sedimentation of the equatorial Pacific basin; and a study of the geochemistry of the North Atlantic ocean crust.JOI has issued a request for proposals for the United States site survey program. Proposal deadline is March 5. For additional information, contact JOI, Inc., 2600 Virginia Avenue, N.W., Suite 512, Washington, D.C. 20037.

  7. Ultrasonic rotary-hammer drill

    NASA Technical Reports Server (NTRS)

    Bar-Cohen, Yoseph (Inventor); Badescu, Mircea (Inventor); Sherrit, Stewart (Inventor); Bao, Xiaoqi (Inventor); Kassab, Steve (Inventor)

    2010-01-01

    A mechanism for drilling or coring by a combination of sonic hammering and rotation. The drill includes a hammering section with a set of preload weights mounted atop a hammering actuator and an axial passage through the hammering section. In addition, a rotary section includes a motor coupled to a drive shaft that traverses the axial passage through the hammering section. A drill bit is coupled to the drive shaft for drilling by a combination of sonic hammering and rotation. The drill bit includes a fluted shaft leading to a distal crown cutter with teeth. The bit penetrates sampled media by repeated hammering action. In addition, the bit is rotated. As it rotates the fluted bit carries powdered cuttings helically upward along the side of the bit to the surface.

  8. The addition of stripes (a version of the 'horizontal-vertical illusion') increases foot clearance when crossing low-height obstacles.

    PubMed

    Foster, Richard J; Buckley, John G; Whitaker, David; Elliott, David B

    2016-07-01

    Trips over obstacles are one of the main causes of falling in older adults, with vision playing an important role in successful obstacle negotiation. We determined whether a horizontal-vertical illusion, superimposed onto low-height obstacles to create a perceived increase in obstacle height, increased foot clearances during obstacle negotiation thus reducing the likelihood of tripping. Eleven adults (mean ± 1 SD: age 27.3 ± 5.1 years) negotiated obstacles of varying heights (3, 5, 7 cm) with four different appearance conditions; two were obstacles with a horizontal-vertical illusion (vertical stripes of different thickness) superimposed on the front, one was a plain obstacle and the fourth a plain obstacle with a horizontal black line painted on the top edge. Foot clearance parameters were compared across conditions. Both illusions led to a significant increase in foot clearance when crossing the obstacle, compared to the plain condition, irrespective of obstacle height. Superimposing a horizontal-vertical illusion onto low-height obstacles can increase foot clearance, and its use on the floor section of a double-glazing door frame for example may reduce the incidence of tripping in the home. Practitioner Summary: Low-height obstacles such as the floor section of a double-glazing door frame are potential tripping hazards. In a gait lab-based study we found that a horizontal-vertical illusion superimposed onto low-height obstacles led to significantly higher foot clearances; indicating their potential as a useful safety measure.

  9. Underbalanced drilling solves difficult drilling problems and enhances production

    SciTech Connect

    Cuthbertson, R.L.; Vozniak, J.

    1997-02-01

    An alternate approach to drilling, completing and working over new and existing wells has dramatically improved the efficiency of these operations. This method is called underbalanced drilling (UBD). Improvements in both the equipment and technique during the past 5 years have made this process economical and necessary to solve many difficult drilling problems. Additionally, by reducing drilling or workover damage, dramatic improvements in oil and gas production rates and ultimate reserves are realized, resulting in extra profits for today`s operators. This article will detail the advantages of UBD and give specific examples of its applications, A series of related articles will follow, including: new UBD equipment, land and off-shore case histories, coiled tubing drilling, underbalanced workovers, software technology and subsea applications to examine the reality and future of this technology.

  10. The Oman Drilling Project

    NASA Astrophysics Data System (ADS)

    Matter, J.; Kelemen, P. B.; Teagle, D. A. H.

    2014-12-01

    With seed funds from the Sloan Foundation, the International Continental Drilling Program (ICDP) approved a proposal by 39 international proponents for scientific drilling in the Oman ophiolite. Via observations on core, geophysical logging, fluid sampling, hydrological measurements, and microbiological sampling in a series of boreholes, we will address long-standing, unresolved questions regarding melt and solid transport in the mantle beneath oceanic spreading ridges, igneous accretion of oceanic crust, mass transfer between the oceans and the crust via hydrothermal alteration, and recycling of volatile components in subduction zones. We will undertake frontier exploration of subsurface weathering processes in mantle peridotite, including natural mechanisms of carbon dioxide uptake from surface waters and the atmosphere, and the nature of the subsurface biosphere. Societally relevant aspects include involvement and training of university students, including numerous students from Sultan Qaboos University in Oman. Studies of natural mineral carbonation will contribute to design of engineered systems for geological carbon dioxide capture and storage. Studies of alteration will contribute to fundamental understanding of the mechanisms of reaction-driven cracking, which could enhance geothermal power generation and extraction of unconventional hydrocarbon resources. We hope to begin drilling in late 2015. Meanwhile, we are seeking an additional $2M to match the combined Sloan and ICDP funding from national and international funding agencies. Matching funds are needed for operational costs of drilling, geophysical logging, downhole fluid sampling, and core description. Information on becoming part of the named investigator pool is in Appendix 14 (page 70) of the ICDP proposal, available at https://www.ldeo.columbia.edu/gpg/projects/icdp-workshop-oman-drilling-project. This formal process should begin at about the time of the 2014 Fall AGU Meeting. Meanwhile, potential

  11. Western USA groundwater drilling

    NASA Astrophysics Data System (ADS)

    Jasechko, S.; Perrone, D.

    2016-12-01

    Groundwater in the western US supplies 40% of the water used for irrigated agriculture, and provides drinking water to individuals living in rural regions distal to perennial rivers. Unfortunately, current groundwater use is not sustainable in a number of key food producing regions. While substantial attention has been devoted to mapping groundwater depletion rates across the western US, the response of groundwater users via well drilling to changing land uses, water demands, pump and drilling technologies, pollution vulnerabilities, and economic conditions remains unknown. Here we analyze millions of recorded groundwater drilling events in the western US that span years 1850 to 2015. We show that groundwater wells are being drilled deeper in some, but not all, regions where groundwater levels are declining. Groundwater wells are generally deeper in arid and mountainous regions characterized by deep water tables (e.g., unconfined alluvial and fractured bedrock aquifers), and in regions that have productive aquifers with high water quality deep under the ground (e.g., confined sedimentary aquifers). Further, we relate water quality and groundwater drilling depths in 40 major aquifer systems across the western US. We show that there is substantial room for improvement to the existing 2-D continental-scale assessments of domestic well water vulnerability to pollution if one considers the depth that the domestic well is screened in addition to pollutant loading, surficial geology, and vertical groundwater flow rates. These new continental-scale maps can be used to (i) better assess economic, water quality, and water balance limitations to groundwater usage, (ii) steer domestic well drilling into productive strata bearing clean and protected groundwater resources, and (iii) assess groundwater management schemes across the western US.

  12. Casing pull tests for directionally drilled environmental wells

    SciTech Connect

    Staller, G.E.; Wemple, R.P.; Layne, R.R.

    1994-11-01

    A series of tests to evaluate several types of environmental well casings have been conducted by Sandia National Laboratories (SNL) and it`s industrial partner, The Charles Machine Works, Inc. (CMW). A test bed was constructed at the CMW test range to model a typical shallow, horizontal, directionally drilled wellbore. Four different types of casings were pulled through this test bed. The loads required to pull the casings through the test bed and the condition of the casing material were documented during the pulling operations. An additional test was conducted to make a comparison of test bed vs actual wellbore casing pull loads. A directionally drilled well was emplaced by CMW to closely match the test bed. An instrumented casing was installed in the well and the pull loads recorded. The completed tests are reviewed and the results reported.

  13. Geothermal well drilling manual at Cerro Prieto

    SciTech Connect

    Fernandez P., A.; Flores S., M.

    1982-08-10

    The objective of the drilling manual is to solve all problems directly related to drilling during the construction of a well. In this case, the topics dealt which are drilling fluids and hydraulics to be applied in the field to improve drilling progress, eliminate risks and achieve good well-completion. There are other topics that are applicable such as drill bits and the drilling string, which are closely linked to drilling progress. On this occasion drilling fluid and hydraulics programs are presented, in addition to a computing program for a Casio FX-502P calculator to be applied in the field to optimize hydraulics and in the analysis of hydraulics for development and exploration wells at their different intervals.

  14. In-situ bioremediation of groundwater using a horizontal injection well in clay soil, Madisonville, TN

    SciTech Connect

    Miller, M.B.; Clark, D.A.; Handler, M.; Zhing-Ming Huang

    1996-09-01

    Tennessee`s first horizontal groundwater remediation well was installed at Madisonville located in the eastern Valley and Ridge Province. The open-ended well, drilled through clay soil, is constructed of 280 feet HDPE pipe, 2 inches in diameter, with a screen length of 100 feet at 18 feet below ground surface. The purpose of the well is to remediate gasoline contaminated groundwater that resulted from a leaking underground storage tank (UST) system. The groundwater benzene and TPH plumes covered an area of one-half acre and extended beneath a rural grocery store. Remediation is achieved by injecting aerated water, nutrients and microbes to reduce contaminant levels to drinking water standards. MODFLOW was utilized to computer-model the development of the groundwater mound that would result from injection. It was calculated that one horizontal injection well would equal the efficiency of 80 vertical injection wells. Benzene and TPH masses have been reduced by 92% and 95% respectively. BIOTRANS calculated the bio-decay rate to determine remediation time. This system will reduce project life and eliminate additional costs associated with: operations and maintenance (versus vertical pump and treat), water disposal, emissions controls, well installations, and site disturbance. A {open_quotes}Minimum Economic Plume Size{close_quotes}, the minimum plume volume required to support a horizontal system has been developed. Although costs per foot are greater for horizontal drilling than vertical drilling, project costs savings are realized later in the project.

  15. Designer drilling increases recovery

    SciTech Connect

    Eck-Olsen, J.; Drevdal, K.E.

    1995-04-01

    Implementation of a new designer-well profile has resulted in increased recovery and production rates. The geologically complex Gullfaks field, located in the Norwegian sector of the North Sea, required a new type of well profile to increase total recovery and production rates from Gullfaks A, B and C platforms. Advances in steerable technology and directional drilling performance enabled a 3-D horizontal, extended-reach well profile, now designated as a designer well, to penetrate multiple targets. This article presents the concept, implementation and conclusions drawn from designer well application. Gullfaks field, in Norwegian North Sea Block 34/10, is the first license ever run by a fully Norwegian joint venture corporation. The license group consists of Statoil (operator), Norsk Hydro and Saga Petroleum. The field currently produces more than 535,000 bopd from three main Jurassic reservoirs.

  16. WRITING ORAL DRILLS.

    ERIC Educational Resources Information Center

    NEY, JAMES W.

    ALL ORAL LANGUAGE DRILLS MAY BE SEPARATED INTO TWO TYPES--(1) MIM-MEM OR MIMICRY MEMORIZATION DRILLS OR (2) PATTERN PRACTICE DRILLS. THESE TWO LARGER CATEGORIES CAN BE SUB-DIVIDED INTO A NUMBER OF OTHER TYPES, SUCH AS TRANSFORMATION AND SUBSTITUTION DRILLS. THE USE OF ANY PARTICULAR TYPE DEPENDS ON THE PURPOSE TO WHICH THE DRILL IS PUT. IN ANY…

  17. Drill string enclosure

    DOEpatents

    Jorgensen, Douglas K.; Kuhns, Douglass J.; Wiersholm, Otto; Miller, Timothy A.

    1993-01-01

    The drill string enclosure consists of six component parts, including; a top bracket, an upper acrylic cylinder, an acrylic drill casing guide, a lower acrylic cylinder, a bottom bracket, and three flexible ducts. The upper acrylic cylinder is optional based upon the drill string length. The drill string enclosure allows for an efficient drill and sight operation at a hazardous waste site.

  18. Drill string enclosure

    DOEpatents

    Jorgensen, D.K.; Kuhns, D.J.; Wiersholm, O.; Miller, T.A.

    1993-03-02

    The drill string enclosure consists of six component parts, including; a top bracket, an upper acrylic cylinder, an acrylic drill casing guide, a lower acrylic cylinder, a bottom bracket, and three flexible ducts. The upper acrylic cylinder is optional based upon the drill string length. The drill string enclosure allows for an efficient drill and sight operation at a hazardous waste site.

  19. Measuring the vertical permeability of horizontally- stratified sedimentary rocks

    SciTech Connect

    Novakowski, K.S.; Lapcevic, P.A. ); Reichart, T.M. )

    1993-03-01

    The vertical permeability of horizontally stratified rocks is usually assumed to be significantly less than the permeability of horizontal structural features such as bedding plane partings and sheeting structure. Consequently it is also assumed that this type of media provides suitable vertical barriers to the migration of both aqueous and non-aqueous phase groundwater contaminants. To investigate this assumption, a site adjacent to an inactive dolostone quarry was instrumented using nine boreholes drilled to a depth of approximately 25 m in a 30 x 30 m area. The area is immediately underlain by flat-lying thick-bedded dolostones of Middle-Silurian age. Six of the boreholes were drilled at angle of 45[degree] to intersect two vertical fracture sets oriented at 020[degree] and 110[degree] which were identified by mapping the fractures in the quarry. Detailed hydraulic tests (constant-head method) were conducted in each of the boreholes using a packer spacing of 0.5 m to determine the hydraulic properties of the individual horizontal and vertical fractures and fracture zones. In addition, four pumping tests were conducted in which a fracture zone in one of the vertical boreholes was shut-in and pumped and the hydraulic response was monitored in the observation boreholes using pressure transducer installed in 15 intervals isolated with multiple-packer strings. The results of the constant-head tests show that although the groundwater flow system in the dolostone is dominated by 3--4 horizontal fracture zones, the average permeability of the vertical fractures is only one order of magnitude less than the average permeability of the horizontal fractures. However, this aspect of the flow system is not detected using pumping tests, the results of which suggest that the average permeability is 3--4 orders of magnitude less in the vertical direction.

  20. Horizontal sidetrack taps reservoir sweet spots''

    SciTech Connect

    Wible, J.R. )

    1994-02-21

    Cutting a window at 85[degree] deviation allowed a sidetrack to pass through the high-resistivity sections in a Gulf of Mexico reservoir. Results from logging-while-drilling (LWD) tools indicated the original horizontal bore dropped too low in the reservoir, possibly leading to a low productivity well. The subsequent sidetrack successfully delivered the desired well bore, and the increased productivity justified the efforts in cutting a window in the horizontal section.

  1. Recovery of bypassed oil in the Dundee Formation using horizontal drains. Quarterly report, October 1 - December 31, 1996

    SciTech Connect

    Wood, J.R.

    1997-01-01

    The principal objective of this project is to demonstrate the feasibility and economic success of producing oil from abandoned or nearly abandoned fields in the Dundee Formation of Central Michigan using horizontal drilling technology. A site for a horizontal well was selected in Crystal Field, a nearly-abandoned Dundee oil field in Michigan. This field had produced over 8 million barrels of oil, mostly in the 1930`s and 1940`s. At the height of development, Crystal Field produced from 193 wells, but by 1995, only seven producing wells remained, each producing less than 10 bbls/day. A horizontal well was drilled as a field demonstration pilot, funded through this DOE project, and was successful. It has produced over 37,000 bbls of oil as of December 31, 1996 at sustained rate of {approximately}100 bbls/day. At a nominal wellhead price of $20/bbl, this well has made about $750,000 and is still going strong. Two additional horizontal wells have just been completed and are on test. Core and logs from the Dundee interval were recovered from a vertical borehole at the same surface location. The horizontal well was brought on production at a rate of 100 bbls/day and is probably capable of producing at a higher rate. The addition of several horizontal wells, similar to the demonstration well, will likely add another 2 million bbls (or more) to the cumulative production of the field over the next few years. The presence of untapped oil in this Dundee field was dramatically demonstrated and the favorable economics were made clearly evident. If other abandoned Dundee fields are re-developed in a similar manner, the additional oil produced could exceed 80 million barrels. Horizontal drilling will likely revolutionize the development of old carbonate fields such as those in the Dundee of Michigan.

  2. Chuck for delicate drills

    NASA Technical Reports Server (NTRS)

    Copeland, C. S.

    1972-01-01

    Development of oil film technique to couple power between drive spindle and drill chuck for delicate drilling operations is discussed. Oil film permits application of sufficient pressure, but stops rotating when drill jams. Illustration of equipment is provided.

  3. The Danish Deep Drill Progress Report: February-March 1979.

    DTIC Science & Technology

    1980-01-01

    A down-hole computer is stationed below the battery pack. The computer monitors and controls various functions down-hole and sends information to...incorporates several unique features. The chip collector sucks up the chips in much the same way a syringe sucks up fluids. A down-hole computer ... monitors certain drilling parameters, and can control the drilling operation if desired. A hinged tower assembly can bring the drill to a horizontal position

  4. Drilling equipment to shrink

    SciTech Connect

    Silverman, S.

    2000-01-01

    Drilling systems under development will take significant costs out of the well construction process. From small coiled tubing (CT) drilling rigs for North Sea wells to microrigs for exploration wells in ultra-deepwater, development projects under way will radically cut the cost of exploratory holes. The paper describes an inexpensive offshore system, reeled systems drilling vessel, subsea drilling rig, cheap exploration drilling, laser drilling project, and high-pressure water jets.

  5. Drill user's manual. [drilling machine automation

    NASA Technical Reports Server (NTRS)

    Pitts, E. A.

    1976-01-01

    Instructions are given for using the DRILL computer program which converts data contained in an Interactive Computer Graphics System (IGDS) design file to production of a paper tape for driving a numerically controlled drilling machine.

  6. Mars Science Laboratory Drill

    NASA Technical Reports Server (NTRS)

    Okon, Avi B.; Brown, Kyle M.; McGrath, Paul L.; Klein, Kerry J.; Cady, Ian W.; Lin, Justin Y.; Ramirez, Frank E.; Haberland, Matt

    2012-01-01

    This drill (see Figure 1) is the primary sample acquisition element of the Mars Science Laboratory (MSL) that collects powdered samples from various types of rock (from clays to massive basalts) at depths up to 50 mm below the surface. A rotary-percussive sample acquisition device was developed with an emphasis on toughness and robustness to handle the harsh environment on Mars. It is the first rover-based sample acquisition device to be flight-qualified (see Figure 2). This drill features an autonomous tool change-out on a mobile robot, and novel voice-coil-based percussion. The drill comprises seven subelements. Starting at the end of the drill, there is a bit assembly that cuts the rock and collects the sample. Supporting the bit is a subassembly comprising a chuck mechanism to engage and release the new and worn bits, respectively, and a spindle mechanism to rotate the bit. Just aft of that is a percussion mechanism, which generates hammer blows to break the rock and create the dynamic environment used to flow the powdered sample. These components are mounted to a translation mechanism, which provides linear motion and senses weight-on-bit with a force sensor. There is a passive-contact sensor/stabilizer mechanism that secures the drill fs position on the rock surface, and flex harness management hardware to provide the power and signals to the translating components. The drill housing serves as the primary structure of the turret, to which the additional tools and instruments are attached. The drill bit assembly (DBA) is a passive device that is rotated and hammered in order to cut rock (i.e. science targets) and collect the cuttings (powder) in a sample chamber until ready for transfer to the CHIMRA (Collection and Handling for Interior Martian Rock Analysis). The DBA consists of a 5/8-in. (.1.6- cm) commercial hammer drill bit whose shank has been turned down and machined with deep flutes designed for aggressive cutting removal. Surrounding the shank of the

  7. Drilling side holes from a borehole

    NASA Technical Reports Server (NTRS)

    Collins, E. R., Jr.

    1980-01-01

    Machine takes long horizontal stratum samples from confines of 21 cm bore hole. Stacked interlocking half cylindrical shells mate to form rigid thrust tube. Drive shaft and core storage device is flexible and retractable. Entire machine fits in 10 meter length of steel tube. Machine could drill drainage or ventilation holes in coal mines, or provide important information for geological, oil, and geothermal surveys.

  8. Comparing cost and performance of horizontal wells

    SciTech Connect

    Pocovi, A.S.; Gustavino, L.L. ); Pozzo, A.; Musmarra, J.A. )

    1991-02-01

    Argentina's state oil company, YPF, was forced through technical and economic constraints to undertake a four-well pilot horizontal drilling program in its Neuquen fields. This article discusses techniques used, the results and costs, and compares them to costs incurred by the area's original vertical wells.

  9. Optimizing drilling performance using a selected drilling fluid

    SciTech Connect

    Judzis, Arnis; Black, Alan D; Green, Sidney J; Robertson, Homer A; Bland, Ronald G; Curry, David Alexander; Ledgerwood, III, Leroy W.

    2011-04-19

    To improve drilling performance, a drilling fluid is selected based on one or more criteria and to have at least one target characteristic. Drilling equipment is used to drill a wellbore, and the selected drilling fluid is provided into the wellbore during drilling with the drilling equipment. The at least one target characteristic of the drilling fluid includes an ability of the drilling fluid to penetrate into formation cuttings during drilling to weaken the formation cuttings.

  10. Development of small diameter pilot hole directional drilling for trenchless utility installation

    NASA Astrophysics Data System (ADS)

    Saruev, A. L.; Saruev, L. A.; Vasenin, S. S.

    2016-09-01

    The paper overviews trenchless utility installation techniques and prospects of further development of horizontal directional drilling technology to drill small diameter pilot holes. The improved design is suggested for the thread connection of drill pipes and hydraulic system to generate power pulses.

  11. Use of neural networks for the prediction of frictional drag and transmission of axial load in horizontal wellbores

    NASA Astrophysics Data System (ADS)

    Sadiq, Tanvir; Gharbi, Ridha B.; Juvkam-Wold, Hans C.

    2003-02-01

    The use of mud motors and other tools to accomplish forward motion of the bit in extended reach and horizontal wells allows avoiding large amounts of torque caused by rotation of the whole drill string. The forward motion of the drill string, however, is resisted by excessive amount of friction. In the presence of large compressive axial loads, the drill pipe or coiled tubing tends to buckle into a helix in horizontal boreholes. This causes additional frictional drag resisting the transmission of axial load (resulting from surface slack-off force) to the bit. As the magnitude of the frictional drag increases, a buckled pipe may become locked-up making it almost impossible to drill further. In case of packers, the frictional drag may inhibit the transmission of set-up load to the packer. A prior knowledge of the magnitude of frictional drag for a given axial load and radial clearance can help avoid lock-up conditions and costly failure of the tubular.In this study a neural network model, for the prediction of frictional drag and axial load transmission in horizontal wellbores, is presented. Several neural network architectures were designed and tested to obtain the most accurate prediction. After cross-validation of the Back Propagation Neural Network (BPNN) algorithm, a two-hidden layer model was chosen for simultaneous prediction of frictional drag and axial load transmission. A comparison of results obtained from BPNN and General Regression Neural Network (GRNN) algorithms is also presented.

  12. Hole cleaning imperative in coiled tubing drilling operations

    SciTech Connect

    Rameswar, R.M.; Mudda, K.

    1995-09-01

    Annular flow modeling in coiled tubing applications is essential for optimizing mud rheology and keeping the hole clean. Cuttings transport in coiled tubing drilling must be optimized, particularly the modeling of hole cleaning capabilities. The effects of two different muds in contrasting geometries on hold cleaning efficiency are considered, with the simulation performed using Petrocalc 14. Coiled tubing is widely used to drill new vertical and horizontal wells, and in re-entry operations. Horizontal well problems are subsequently modeled, where annular eccentricities can range anywhere from concentric to highly offset, given the highly buckled or helically deflected states of many drill coils.

  13. Fractured zones draw horizontal technology to Marietta basin

    SciTech Connect

    Whitmire, M.G. )

    1992-03-30

    This paper reports that vertically fractured, low permeability reservoirs have long frustrated the efforts of oil and gas operators. Oil men, risk takers by nature, cannot resist the challenge to try to beat the average, subeconomic well and get the better wells. The advent of horizontal drilling technology gave new life to these hopes, and a number of drilling minibooms developed in a diverse, widespread variety of vertically fractured U.S. reservoirs. Results to date have been mixed. A few wells have been successful, but many have not. The Marietta basin of southern Oklahoma may be the location of the next successful horizontal drilling play targeting the highly fractured Ordovician Viola formation.

  14. Optically Aligned Drill Press

    NASA Technical Reports Server (NTRS)

    Adderholdt, Bruce M.

    1994-01-01

    Precise drill press equipped with rotary-indexing microscope. Microscope and drill exchange places when turret rotated. Microscope axis first aligned over future hole, then rotated out of way so drill axis assumes its precise position. New procedure takes less time to locate drilling positions and produces more accurate results. Apparatus adapted to such other machine tools as milling and measuring machines.

  15. Optically Aligned Drill Press

    NASA Technical Reports Server (NTRS)

    Adderholdt, Bruce M.

    1994-01-01

    Precise drill press equipped with rotary-indexing microscope. Microscope and drill exchange places when turret rotated. Microscope axis first aligned over future hole, then rotated out of way so drill axis assumes its precise position. New procedure takes less time to locate drilling positions and produces more accurate results. Apparatus adapted to such other machine tools as milling and measuring machines.

  16. Rotary blasthole drilling update

    SciTech Connect

    Fiscor, S.

    2008-02-15

    Blasthole drilling rigs are the unsung heroes of open-pit mining. Recently manufacturers have announced new tools. Original equipment manufactures (OEMs) are making safer and more efficient drills. Technology and GPS navigation systems are increasing drilling accuracy. The article describes features of new pieces of equipment: Sandvik's DR460 rotary blasthole drill, P & H's C-Series drills and Atlas Copco's Pit Viper PV275 multiphase rotary blasthole drill rig. DrillNav Plus is a blasthole navigation system developed by Leica Geosystems. 5 photos.

  17. Improved oil recovery using horizontal wells at Elk Hills, California

    SciTech Connect

    Gangle, F.J.; Schultz, K.L.; McJannet, G.S.; Ezekwe, N.

    1995-03-01

    Eight horizontal wells have been drilled and completed in a steeply dipping Stevens sand reservoir in the Elk Hills field, Kern County, California. The subject reservoir, called the Stevens 26R, is a turbidite channel sand deposit one mile wide, three miles long, and one mile deep. Formation beds have a gross thickness up to 1,500 feet and dips as high as 60 degrees on the flanks. The original oil column of 1,810 feet has been pulled down to 200 feet by continual production since 1976. The reservoir management operating strategy has been full pressure maintenance by crestal gas injection since 1976. The steep dip of the formation makes gravity drainage the dominant drive mechanism. Additionally, improved recovery is coming from cycling dry gas through the large secondary gas cap region. The prudent placement of the horizontal wells above the oil/water contact promises to improve oil recovery and extend the operating life of the reservoir. Field results are given to compare the performance of the horizontal wells with the conventional wells. The horizontal wells produce at higher rates, lower draw downs, and lower gas/oil ratio which will extend the life of the project and result in higher recovery.

  18. Better practices and synthetic fluid improve drilling rates

    SciTech Connect

    White, W. ); McLean, A.; Park, S. )

    1995-02-20

    Improved drilling practices, combined with the use of olefin-based synthetic drilling fluids, have dramatically reduced drilling time and costs in a difficult drilling area in the Gulf of Mexico. In the South Pass area, Marathon Oil Co. and other operators have had wells with long drilling times and high costs. In addition to the two wells with record penetration rates, routine drilling rates have also increased from the use of synthetic mud and careful drilling practices. Through application of these improved drilling practices, 2,000--3,000 ft/day can be drilled routinely. Marathon achieves this goal by applying the experience gained on previous wells, properly training and involving the crews, and using innovative drilling systems. Improved drilling practices and systems are just one part of successful, efficient drilling. Rig site personnel are major contributors to safely and successfully drilling at high penetration rates for extended periods. The on site personnel must act as a team and have the confidence and proper mental attitude about what is going on downhole. The paper describes the drilling history in the South Pass area, the synthetic drilling fluid used, cuttings handling, hole cleaning, drilling practices, bottom hole assemblies, and lost circulation.

  19. Advanced Drilling through Diagnostics-White-Drilling

    SciTech Connect

    FINGER,JOHN T.; GLOWKA,DAVID ANTHONY; LIVESAY,BILLY JOE; MANSURE,ARTHUR J.; PRAIRIE,MICHAEL R.

    1999-10-07

    A high-speed data link that would provide dramatically faster communication from downhole instruments to the surface and back again has the potential to revolutionize deep drilling for geothermal resources through Diagnostics-While-Drilling (DWD). Many aspects of the drilling process would significantly improve if downhole and surface data were acquired and processed in real-time at the surface, and used to guide the drilling operation. Such a closed-loop, driller-in-the-loop DWD system, would complete the loop between information and control, and greatly improve the performance of drilling systems. The main focus of this program is to demonstrate the value of real-time data for improving drilling. While high-rate transfer of down-hole data to the surface has been accomplished before, insufficient emphasis has been placed on utilization of the data to tune the drilling process to demonstrate the true merit of the concept. Consequently, there has been a lack of incentive on the part of industry to develop a simple, low-cost, effective high-speed data link. Demonstration of the benefits of DWD based on a high-speed data link will convince the drilling industry and stimulate the flow of private resources into the development of an economical high-speed data link for geothermal drilling applications. Such a downhole communication system would then make possible the development of surface data acquisition and expert systems that would greatly enhance drilling operations. Further, it would foster the development of downhole equipment that could be controlled from the surface to improve hole trajectory and drilling performance. Real-time data that would benefit drilling performance include: bit accelerations for use in controlling bit bounce and improving rock penetration rates and bit life; downhole fluid pressures for use in the management of drilling hydraulics and improved diagnosis of lost circulation and gas kicks; hole trajectory for use in reducing directional

  20. Horizontal wells up odds for profit in Giddings Austin chalk

    SciTech Connect

    Maloy, W.T. )

    1992-02-17

    This paper reports on horizontal drilling in the Giddings field Austin chalk which has significantly improved average well recoveries and more than offset increased drilling costs. Although not the panacea originally promoted, horizontal drilling, in Giddings field, offers economic profits to the average investor. Economic analysis indicates that the typical investor is making money by earning returns in excess of market values. Field-wide development will, therefore, remain active unless oil prices or average well recoveries fall below $12/bbl or 112,000 bbl of oil equivalent (BOE), respectively. The application of technological innovation in the Giddings field may culminate in the drilling of over 2,000 horizontal Austin chalk wells, and has conceivably increased recoverable reserves by 400 million BOE.

  1. Tool Wear in Friction Drilling

    SciTech Connect

    Miller, Scott F; Blau, Peter Julian; Shih, Albert J.

    2007-01-01

    This study investigated the wear of carbide tools used in friction drilling, a nontraditional hole-making process. In friction drilling, a rotating conical tool uses the heat generated by friction to soften and penetrate a thin workpiece and create a bushing without generating chips. The wear of a hard tungsten carbide tool used for friction drilling a low carbon steel workpiece has been investigated. Tool wear characteristics were studied by measuring its weight change, detecting changes in its shape with a coordinate measuring machine, and making observations of wear damage using scanning electron microscopy. Energy dispersive spectroscopy was applied to analyze the change in chemical composition of the tool surface due to drilling. In addition, the thrust force and torque during drilling and the hole size were measured periodically to monitor the effects of tool wear. Results indicate that the carbide tool is durable, showing minimal tool wear after drilling 11000 holes, but observations also indicate progressively severe abrasive grooving on the tool tip.

  2. Interactions between torque and helical buckling in drilling

    SciTech Connect

    He, X.; Halsey, G.W.; Kyllingstad, A.

    1995-12-31

    The effects of torque on helical buckling are a concern in coiled tubing drilling. These effects are also important in conventional drilling of long horizontal wells. This paper presents theoretical models for the effects of torque on helical buckling, normal contact force, and pitch of helix in the curved well bore. The effects of helical buckling and the post-buckling contact forces on torque and drag in a drilling operation are also modelled. The models are used for realistic simulations for both conventional drilling and coiled tubing applications.

  3. Energy week `96: Conference papers. Book 3: Drilling and production economics

    SciTech Connect

    1996-09-01

    The papers of Section 1, Drilling Technology, relate to advanced materials for downhole tools, underbalanced drilling, horizontal drilling technology/new trajectory control device, horizontal drilling HP/HT well control, advances in drill bits, slim-hole drill bits and tubulars, novel/scientific drilling, and coiled tubing/slim-hole drilling/short radius. The topics of Section 2, Ocean Engineering, include marine pollution and diving equipment. Section 3, Petroleum Production Technology, relate to what`s new in regulations and standards in petroleum production. Papers in Section 4, Offshore and Arctic Operations, cover offshore platforms, floating production systems, offshore pipelines, offshore construction and installation, offshore facilities, and environmental and safety issues. Most papers have been processed separately for inclusion on the data base.

  4. Horizontal well success spurs more Devonian work in Michigan

    SciTech Connect

    Wood, J.R.; Allan, J.R.; Huntoon, J.E.; Pennington, W.D.; Harrison, W.B. III; Taylor, E.; Tester, C.J.

    1996-10-28

    The principal objective of this DOE-sponsored project was to drill a horizontal demonstration well in order to test the viability of using horizontal wells to recover bypassed oil from the Dundee reservoir in Crystal field. In addition, a modern log suite through the entire Dundee formation and a conventional core through the productive interval, the oil/water contact, and the upper part of the water leg were to be obtained. During the early years of Dundee development in central Michigan, it was common practice to drill only a short distance below the cap limestone into the top of the Dundee porosity zone before completing a well in order to prevent lost circulation and blowouts in vuggy and fractured dolomites and to avoid penetration of the oil/water contact and minimize water coning. As a result, the characteristics of the Dundee reservoir in central Michigan are poorly known and the decision to attempt an improved recovery program in Crystal field had to be based on field volumetrics, individual well productivities, and well development/abandonment histories. The new core and log data from the demonstration well will provide an important anchor point for regional Dundee reservoir characterization studies.

  5. Recovery of bypassed oil in the Dundee formation using horizontal drains. Quarterly progress report, October 1, 1995--December 31, 1995

    SciTech Connect

    Wood, J.R.

    1996-01-29

    The principal objective of this project is to demonstrate the feasibility and economic success of producing oil from abandoned or nearly abandoned fields in the Dundee Formation of Central Michigan using horizontal drilling technology. A site for a horizontal well was selected in Crystal Field, a nearly-abandoned Dundee oil field in Michigan. This field had produced over 8 million barrels of oil, mostly in the 1930`s and 1940`s. At the height of development, Crystal Field produced from 193 wells, but by 1995, only seven producing wells remained, each producing less than 10 bbls/day. A horizontal well was drilled as a field demonstration pilot, funded through this DOE project, and was immensely successful. Core and logs from the Dundee interval were recovered from a vertical borehole at the same surface location. The horizontal well was brought on production at a rate of 100 bbls/day and is probably capable of producing at a higher rate. The addition of several horizontal wells, similar to the demonstration well, will likely add another 2 million bbls (or more) to the cumulative production of the field over the next few years. The presence of untapped oil in this Dundee field was dramatically demonstrated and the favorable economics were made clearly evident. If other abandoned Dundee fields are re-developed in a similar manner, the additional oil produced domestically will probably be about 80 to 100 million bbls.

  6. Comparative analysis of core drilling and rotary drilling in volcanic terrane

    SciTech Connect

    Flynn, T.; Trexler, D.T.; Wallace, R.H. Jr.

    1987-04-01

    Initially, the goal of this report is to compare and contrast penetration rates of rotary-mud drilling and core drilling in young volcanic terranes. It is widely recognized that areas containing an abundance of recent volcanic rocks are excellent targets for geothermal resources. Exploration programs depend heavily upon reliable subsurface information, because surface geophysical methods may be ineffective, inconclusive, or both. Past exploration drilling programs have mainly relied upon rotary-mud rigs for virtually all drilling activity. Core-drilling became popular several years ago, because it could deal effectively with two major problems encountered in young volcanic terranes: very hard, abrasive rock and extreme difficulty in controlling loss of circulation. In addition to overcoming these difficulties, core-drilling produced subsurface samples (core) that defined lithostratigraphy, structure and fractures far better than drill-chips. It seemed that the only negative aspect of core drilling was cost. The cost-per-foot may be two to three times higher than an ''initial quote'' for rotary drilling. In addition, penetration rates for comparable rock-types are often much lower for coring operations. This report also seeks to identify the extent of wireline core drilling (core-drilling using wireline retrieval) as a geothermal exploration tool. 25 refs., 21 figs., 13 tabs.

  7. Coiled tubing drilling: Real time MWD with dedicated powers to the BHA

    SciTech Connect

    Leismer, D.; Williams, B.; Pursell, J.

    1996-12-31

    This paper describes and analyzes the development and ongoing field trials of a Real Time MWD Coiled Tubing Drilling System. The new system holds great promise for advancing the state of coiled tubing drilling for certain applications. The system is designed for through-tubing, short radius re-entry and drilling highly deviated wells as horizontal laterals to a geologic target with minimum wellbore tortuosity. Currently, 4-1/2-in production tubing is the smallest re-entry candidate. Real time MWD and Bottom Hole Assembly (BHA) control is achieved by the use of a combination hydraulic and electric umbilical internal to the coiled tubing (CT), allowing continuous data collection and selective surface control of the BHA components. This communication line allows orientation in 10{degree} increments (or less) while drilling, applies weight-on-bit and operates a reusable circulating valve. In addition, the umbilical provides real-time monitoring of weight-on-bit, circulating pressures of the drilling fluid internal and external to the BHA, dedicated hydraulic system bottom hole pressure, downhole temperature and survey data from logging equipment.

  8. Drill wear monitoring in cortical bone drilling.

    PubMed

    Staroveski, Tomislav; Brezak, Danko; Udiljak, Toma

    2015-06-01

    Medical drills are subject to intensive wear due to mechanical factors which occur during the bone drilling process, and potential thermal and chemical factors related to the sterilisation process. Intensive wear increases friction between the drill and the surrounding bone tissue, resulting in higher drilling temperatures and cutting forces. Therefore, the goal of this experimental research was to develop a drill wear classification model based on multi-sensor approach and artificial neural network algorithm. A required set of tool wear features were extracted from the following three types of signals: cutting forces, servomotor drive currents and acoustic emission. Their capacity to classify precisely one of three predefined drill wear levels has been established using a pattern recognition type of the Radial Basis Function Neural Network algorithm. Experiments were performed on a custom-made test bed system using fresh bovine bones and standard medical drills. Results have shown high classification success rate, together with the model robustness and insensitivity to variations of bone mechanical properties. Features extracted from acoustic emission and servomotor drive signals achieved the highest precision in drill wear level classification (92.8%), thus indicating their potential in the design of a new type of medical drilling machine with process monitoring capabilities. Copyright © 2015 IPEM. Published by Elsevier Ltd. All rights reserved.

  9. Portable drilling mud system

    SciTech Connect

    Etter, R. W.; Briggs, J. M.

    1984-10-02

    A portable well drilling mud storage and recirculation unit includes a mud storage tank mounted on an over-the-road semi-trailer having an engine driven circulating pump mounted onboard and adapted to withdraw mud from the tank for circulation to the well and for recirculation through a set of mud agitating nozzles disposed in the bottom of the tank. A mud degassing vessel, a solids separator unit and an additive blending unit are all mounted above the tank. The degassing vessel is supported by hydraulic cylinder actuators for movement between a retracted transport position and a vertically elevated working position.

  10. Issues and Concerns in Robotic Drilling

    NASA Technical Reports Server (NTRS)

    Glass, Brian

    2003-01-01

    Exploration of the Martian subsurface will be essential in the search for life and water, given the desiccated and highly oxidized conditions on the surface. Discovery of these, at least in non-fossil form, is unlikely without drilling or other physical access to the subsurface. Hence subsurface access will be critical for both future in-situ science and Mars sample return. Drilling applications present many new challenges for diagnosis and control technology. Traditionally, diagnosis has concentrated on determining the internal state of a system, and detecting failures of system components. In the case of drilling applications, an additional challenge is to diagnose the interactions between the drill and its environment. This is necessary because particular observations of the drilling operation may be consistent with a number of possible problems, including faults in the equipment, but also changes in the material being drilled (for example, from rock to ice). The diagnosis of a particular observation may also depend on knowledge of geological formations previously encountered during drilling, and different remedial actions may be required for each diagnosis. Current 2009 Mars mission scenarios call for no more than 33 sols to be spent drilling. Yet they also call for a baseline of two 2m-deep holes in each of three target areas, for a total of six drilling operations. Using current levels of automation, it is estimated that 15-16 sols would be required to drill each hole. As a result of this, either the drilling part of the mission plan will need to be severely downscoped to no more than two holes total, or on-board automation and robotics must be increased in order to reduce the number of sols required per hole by removing ground control from the drilling control loop. This lecture will discuss salient issues and concerns of robotic drilling automation compares with other applications, and implementation constraints.

  11. Issues and Concerns in Robotic Drilling

    NASA Technical Reports Server (NTRS)

    Glass, Brian

    2003-01-01

    Exploration of the Martian subsurface will be essential in the search for life and water, given the desiccated and highly oxidized conditions on the surface. Discovery of these, at least in non-fossil form, is unlikely without drilling or other physical access to the subsurface. Hence subsurface access will be critical for both future in-situ science and Mars sample return. Drilling applications present many new challenges for diagnosis and control technology. Traditionally, diagnosis has concentrated on determining the internal state of a system, and detecting failures of system components. In the case of drilling applications, an additional challenge is to diagnose the interactions between the drill and its environment. This is necessary because particular observations of the drilling operation may be consistent with a number of possible problems, including faults in the equipment, but also changes in the material being drilled (for example, from rock to ice). The diagnosis of a particular observation may also depend on knowledge of geological formations previously encountered during drilling, and different remedial actions may be required for each diagnosis. Current 2009 Mars mission scenarios call for no more than 33 sols to be spent drilling. Yet they also call for a baseline of two 2m-deep holes in each of three target areas, for a total of six drilling operations. Using current levels of automation, it is estimated that 15-16 sols would be required to drill each hole. As a result of this, either the drilling part of the mission plan will need to be severely downscoped to no more than two holes total, or on-board automation and robotics must be increased in order to reduce the number of sols required per hole by removing ground control from the drilling control loop. This lecture will discuss salient issues and concerns of robotic drilling automation compares with other applications, and implementation constraints.

  12. Columbia Gas preserves wetlands with directional drilling

    SciTech Connect

    Luginbuhl, K.K.; Gartman, D.K.

    1995-10-01

    This paper reviews the use of directional drilling to install a 12 inch natural gas pipeline near Avon, Ohio. As a result of increased demand, the utility decided that it would need additional lines for pressure control with the only feasible route being through a forested and scrub/shrub wetland. This paper reviews the permitting requirements along with the directional drilling design and operation. Unfortunately during drilling, bentonite drilling fluids came to the surface requiring remedial action procedures. The paper then provides a detailed clean up strategy and makes recommendations on how to prevent such a break through in the future.

  13. Further advances in coiled-tubing drilling

    SciTech Connect

    Eide, E.; Brinkhorst, J.; Voelker, H.; Burge, P.; Ewen, R.L.

    1994-12-31

    The use of coiled tubing to drill horizontal re-entry wells has received considerable interest in the industry over the last two years. The benefit of being able to drill at balance, safely and in a controlled manner, using nitrogen to reduce down hole pressure while drilling highly depleted reservoirs, provides an advantage over conventional techniques, particularly in reducing impairment to the formation. The paper describes such a horizontal re-entry drilled in the shallow depleted water flooded reservoir Barenburg in Northern Germany. The entire program was executed with no intervention from a conventional rig or workover hoist. A special structure to be positioned over the well to support the coiled tubing injector head and to provide a work platform had to be constructed for this type of operation. A dedicated mast for lifting of pipe and down hole tools was placed on the substructure. The development of a surface controlled orienting tool and an adjustable motor provided excellent directional capabilities on a 2 3/8 in. coiled tubing. This program represents a significant extension of the capabilities of drilling with coiled tubing.

  14. Reservoir visualization for geosteering of horizontal wells

    SciTech Connect

    Bryant, I.D.; Baygun, B.; Frass, M.; Casco, R.

    1996-08-01

    Horizontal infill wells in the Lower Lagunillas reservoir of Bloque IV, Lake Maracaibo are being drilled in thin, oil-bearing zones that have been bypassed by gas. Steering the horizontal sections of these wells requires high resolution reservoir models that can be updated during drilling. An example from well VLD-1152 serves to illustrate how these models are generated and used. Resistivity images collected by wireline and logging-while-drilling (LWD) tools in the pilot well formed the basis of prejob, high resolution modeling of the formation properties. 3-D seismic data and data from an offset vertical seismic profile collected in the pilot well provided the structural model. During drilling information from cuttings and LWD tools was used to continuously update these models. After the well had been drilled, analysis of LWD resistivity images provided a detailed model of the relationship between the well trajectory and the dip of the formation. This information is used to improve interpretation of the LWD logs to provide a petrophysical evaluation of the well.

  15. Robotic Planetary Drill Tests

    NASA Technical Reports Server (NTRS)

    Glass, Brian J.; Thompson, S.; Paulsen, G.

    2010-01-01

    Several proposed or planned planetary science missions to Mars and other Solar System bodies over the next decade require subsurface access by drilling. This paper discusses the problems of remote robotic drilling, an automation and control architecture based loosely on observed human behaviors in drilling on Earth, and an overview of robotic drilling field test results using this architecture since 2005. Both rotary-drag and rotary-percussive drills are targeted. A hybrid diagnostic approach incorporates heuristics, model-based reasoning and vibration monitoring with neural nets. Ongoing work leads to flight-ready drilling software.

  16. Introduction to drilling technology

    NASA Astrophysics Data System (ADS)

    Mellor, Malcom

    1989-12-01

    Terrestrial drilling technology is reviewed. The general requirements for a drilling system are given and conventional drilling techniques (rotary drag-bit, rotary roller-bit, percussive, rotary percussive) are described. Unconventional techniques for penetrating solids are outlined, including thermal drilling (spalling or melting), projectile penetration, high pressure liquid jets, explosive jets, erosion by projectile streams, and chemical penetration. Special attention is given to drilling in ice and frozen soils, performance data are given, including values for penetration rate and specific energy consumption. The principles, theory and equipment relating to each drilling technique are indicated by means of diagrams.

  17. Ultrasonic drilling apparatus

    DOEpatents

    Duran, Edward L.; Lundin, Ralph L.

    1989-01-01

    Apparatus attachable to an ultrasonic drilling machine for drilling deep holes in very hard materials, such as boron carbide, is provided. The apparatus utilizes a hollow spindle attached to the output horn of the ultrasonic drilling machine. The spindle has a hollow drill bit attached at the opposite end. A housing surrounds the spindle, forming a cavity for holding slurry. In operation, slurry is provided into the housing, and into the spindle through inlets while the spindle is rotating and ultrasonically reciprocating. Slurry flows through the spindle and through the hollow drill bit to cleanse the cutting edge of the bit during a drilling operation.

  18. Ultrasonic drilling apparatus

    DOEpatents

    Duran, E.L.; Lundin, R.L.

    1988-06-20

    Apparatus attachable to an ultrasonic drilling machine for drilling deep holes in very hard materials, such as boron carbide, is provided. The apparatus utilizes a hollow spindle attached to the output horn of the ultrasonic drilling machine. The spindle has a hollow drill bit attached at the opposite end. A housing surrounds the spindle, forming a cavity for holding slurry. In operation, slurry is provided into the housing, and into the spindle through inlets while the spindle is rotating and ultrasonically reciprocating. Slurry flows through the spindle and through the hollow drill bit to cleanse the cutting edge of the bit during a drilling operation. 3 figs.

  19. DEVELOPMENT AND TESTING OF UNDERBALANCED DRILLING PRODUCTS. Final Report, Oct 1995 - July 2001

    SciTech Connect

    William C. Maurer; William J. McDonald; Thomas E. Williams; John H. Cohen

    2001-07-01

    Underbalanced drilling is experiencing growth at a rate that rivals that of horizontal drilling in the mid-1980s and coiled-tubing drilling in the 1990s. Problems remain, however, for applying underbalanced drilling in a wider range of geological settings and drilling environments. This report addresses developments under this DOE project to develop products aimed at overcoming these problems. During Phase I of the DOE project, market analyses showed that up to 12,000 wells per year (i.e., 30% of all wells) will be drilled underbalanced in the U.S.A. within the next ten years. A user-friendly foam fluid hydraulics model (FOAM) was developed for a PC Windows environment during Phase I. FOAM predicts circulating pressures and flow characteristics of foam fluids used in underbalanced drilling operations. FOAM is based on the best available mathematical models, and was validated through comparison to existing models, laboratory test data and field data. This model does not handle two-phase flow or air and mist drilling where the foam quality is above 0.97. This FOAM model was greatly expanded during Phase II including adding an improved foam rheological model and a ''matching'' feature that allows the model to be field calibrated. During Phase I, a lightweight drilling fluid was developed that uses hollow glass spheres (HGS) to reduce the density of the mud to less than that of water. HGS fluids have several advantages over aerated fluids, including they are incompressible, they reduce corrosion and vibration problems, they allow the use of mud-pulse MWD tools, and they eliminate high compressor and nitrogen costs. Phase II tests showed that HGS significantly reduce formation damage with water-based drilling and completion fluids and thereby potentially can increase oil and gas production in wells drilled with water-based fluids. Extensive rheological testing was conducted with HGS drilling and completion fluids during Phase II. These tests showed that the HGS fluids

  20. Newest mobile drilling rig

    SciTech Connect

    Not Available

    1981-01-01

    The weighing half of what a standard jackknife rig with the same drilling capacities weights this rig cuts transportation costs while reducing transportation time. Also, rig-up and rig-down time is shortened half-a-day each way because of the light structure and the ability to hydraulically raise and lower the substructure and mast. It is powered by three Caterpillar 3412 diesel engines - 600 hp each at 1,800 rpm - delivering 1,500 hp to the drawworks through single-stage torque converters. Chain-type drawworks, set on the trailer flatbed next to the diesel engines instead of on the rig floor, consist of a 25-in. diam by 50-in.-long drum barrel, 50-in. diam by 12-in.-wide brakes, and 1/one quarter/-in. line, capable of a 75,000-lb single line pull. The mast - a 127-ft API-rated, vertical freestanding, telescoping type - is extended and telescoped in the horizontal position before being hydraulically raised. Gross nominal capacity of the mast is 1 million lb, with a rotary load of 715,000 lb and a setback load of 400,000 lb.

  1. Proper bit design improves penetration rate in abrasive horizontal wells

    SciTech Connect

    Gentges, R.J. )

    1993-08-09

    Overall drilling penetration rates nearly tripled, and drill bit life nearly doubled compared to conventional bits when specially designed natural diamond and polycrystalline diamond compact (PDC) bits were used during a seven-well horizontal drilling program. The improvement in drilling performance from better-designed bits lowered drilling costs at ANR Pipeline Co.'s Reed City gas storage field in Michigan. Laboratory tests with scaled down bits used on abrasive cores helped determine the optimum design for drilling the gas storage wells. The laboratory test results and actual field data were used to develop a matrix-body natural diamond bit, which was later modified to become a matrix-body, blade-type polycrystalline diamond compact bit. This bit had excellent penetration rates and abrasion resistance. The paper describes the background to the project, bit selection, natural diamond bits, field results, new bit designs, and field results from the new design.

  2. Deep Sea Drilling Project

    ERIC Educational Resources Information Center

    Kaneps, Ansis

    1977-01-01

    Discusses the goals of the ocean drilling under the International Phase of Ocean Drilling, which include sampling of the ocean crust at great depths and sampling of the sedimentary sequence of active and passive continental margins. (MLH)

  3. Investigating Curiosity Drill Area

    NASA Image and Video Library

    2013-02-09

    NASA Mars rover Curiosity used its Mast Camera Mastcam to take the images combined into this mosaic of the drill area, called John Klein, where the rover ultimately performed its first sample drilling.

  4. Deep Sea Drilling Project

    ERIC Educational Resources Information Center

    Kaneps, Ansis

    1977-01-01

    Discusses the goals of the ocean drilling under the International Phase of Ocean Drilling, which include sampling of the ocean crust at great depths and sampling of the sedimentary sequence of active and passive continental margins. (MLH)

  5. Hydromechanical drilling device

    DOEpatents

    Summers, David A.

    1978-01-01

    A hydromechanical drilling tool which combines a high pressure water jet drill with a conventional roller cone type of drilling bit. The high pressure jet serves as a tap drill for cutting a relatively small diameter hole in advance of the conventional bit. Auxiliary laterally projecting jets also serve to partially cut rock and to remove debris from in front of the bit teeth thereby reducing significantly the thrust loading for driving the bit.

  6. 75 FR 10501 - Drill Pipe and Drill Collars from China

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-08

    ... COMMISSION Drill Pipe and Drill Collars from China Determinations On the basis of the record \\1\\ developed in... injury by reason of imports from China of drill pipe and drill collars, provided for in subheadings 7304... Commission and Commerce by VAM Drilling USA Inc., Houston, TX; Rotary Drilling Tools, Beasley, TX;...

  7. 75 FR 54912 - Drill Pipe and Drill Collars From China

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-09

    ... COMMISSION Drill Pipe and Drill Collars From China AGENCY: United States International Trade Commission... retarded, by reason of subsidized and less-than-fair-value imports from China of drill pipe and drill... defined the subject merchandise as steel drill pipe, and steel drill collars, whether or not conforming...

  8. High Temperature 300°C Directional Drilling System

    SciTech Connect

    Chatterjee, Kamalesh; Aaron, Dick; Macpherson, John

    2015-07-31

    Many countries around the world, including the USA, have untapped geothermal energy potential. Enhanced Geothermal Systems (EGS) technology is needed to economically utilize this resource. Temperatures in some EGS reservoirs can exceed 300°C. To effectively utilize EGS resources, an array of injector and production wells must be accurately placed in the formation fracture network. This requires a high temperature directional drilling system. Most commercial services for directional drilling systems are rated for 175°C while geothermal wells require operation at much higher temperatures. Two U.S. Department of Energy (DOE) Geothermal Technologies Program (GTP) projects have been initiated to develop a 300°C capable directional drilling system, the first developing a drill bit, directional motor, and drilling fluid, and the second adding navigation and telemetry systems. This report is for the first project, “High Temperature 300°C Directional Drilling System, including drill bit, directional motor and drilling fluid, for enhanced geothermal systems,” award number DE-EE0002782. The drilling system consists of a drill bit, a directional motor, and drilling fluid. The DOE deliverables are three prototype drilling systems. We have developed three drilling motors; we have developed four roller-cone and five Kymera® bits; and finally, we have developed a 300°C stable drilling fluid, along with a lubricant additive for the metal-to-metal motor. Metal-to-metal directional motors require coatings to the rotor and stator for wear and corrosion resistance, and this coating research has been a significant part of the project. The drill bits performed well in the drill bit simulator test, and the complete drilling system has been tested drilling granite at Baker Hughes’ Experimental Test Facility in Oklahoma. The metal-to-metal motor was additionally subjected to a flow loop test in Baker Hughes’ Celle Technology Center in Germany, where it ran for more than 100

  9. Drilling technique for crystals

    NASA Technical Reports Server (NTRS)

    Hunter, T.; Miyagawa, I.

    1977-01-01

    Hole-drilling technique uses special crystal driller in which drill bit rotates at fixed position at speed of 30 rpm while crystal slowly advances toward drill. Technique has been successfully applied to crystal of Rochell salt, Triglycine sulfate, and N-acetyglycine. Technique limits heat buildup and reduces strain on crystal.

  10. HydroPulse Drilling

    SciTech Connect

    J.J. Kolle

    2004-04-01

    Tempress HydroPulse{trademark} tool increases overbalanced drilling rates by generating intense suction pulses at the drill bit. This report describes the operation of the tool; results of pressure drilling tests, wear tests and downhole drilling tests; and the business case for field applications. The HydroPulse{trademark} tool is designed to operate on weighted drilling mud at conventional flow rates and pressures. Pressure drilling tests confirm that the HydroPulse{trademark} tool provides 33% to 200% increased rate of penetration. Field tests demonstrated conventional rotary and mud motor drilling operations. The tool has been operated continuous for 50 hours on weighted mud in a wear test stand. This level of reliability is the threshold for commercial application. A seismic-while-drilling version of the tool was also developed and tested. This tool was used to demonstrate reverse vertical seismic profiling while drilling an inclined test well with a PDC bit. The primary applications for the HydroPulse{trademark} tool are deep onshore and offshore drilling where rate of penetration drives costs. The application of the seismic tool is vertical seismic profiling-while-drilling and look-ahead seismic imaging while drilling.

  11. Drilling at Advanced Levels

    ERIC Educational Resources Information Center

    Case, Doug

    1977-01-01

    Instances where drilling is useful for advanced language are discussed. Several types of drills are recommended, with the philosophy that advanced level drills should have a lighter style and be regarded as a useful, occasional means of practicing individual new items. (CHK)

  12. Newberry exploratory slimhole: Drilling and testing

    SciTech Connect

    Finger, J.T.; Jacobson, R.D.; Hickox, C.E.

    1997-11-01

    During July--November, 1995, Sandia National Laboratories, in cooperation with CE Exploration, drilled a 5,360 feet exploratory slimhole (3.895 inch diameter) in the Newberry Known Geothermal Resource Area (KGRA) near Bend, Oregon. This well was part of Sandia`s program to evaluate slimholes as a geothermal exploration tool. During and after drilling the authors performed numerous temperature logs, and at the completion of drilling attempted to perform injection tests. In addition to these measurements, the well`s data set includes: over 4,000 feet of continuous core (with detailed log); daily drilling reports from Sandia and from drilling contractor personnel; daily drilling fluid record; and comparative data from other wells drilled in the Newberry KGRA. This report contains: (1) a narrative account of the drilling and testing, (2) a description of equipment used, (3) a brief geologic description of the formation drilled, (4) a summary and preliminary interpretation of the data, and (5) recommendations for future work.

  13. Vale exploratory slimhole: Drilling and testing

    SciTech Connect

    Finger, J.T.; Jacobson, R.D.; Hickox, C.E.

    1996-06-01

    During April-May, 1995, Sandia National Laboratories, in cooperation with Trans-Pacific Geothermal Corporation, drilled a 5825{prime} exploratory slimhole (3.85 in. diameter) in the Vale Known Geothermal Resource Area (KGRA) near Vale, Oregon. This well was part of Sandia`s program to evaluate slimholes as a geothermal exploration tool. During drilling we performed several temperature logs, and after drilling was complete we performed injection tests, bailing from a zone isolated by a packer, and repeated temperature logs. In addition to these measurements, the well`s data set includes: 2714{prime} of continuous core (with detailed log); daily drilling reports from Sandia and from drilling contractor personnel; daily drilling fluid records; numerous temperature logs; pressure shut-in data from injection tests; and comparative data from other wells drilled in the Vale KGRA. This report contains: (1) a narrative account of the drilling and testing, (2) a description of equipment used, (3) a brief geologic description of the formation drilled, (4) a summary and preliminary interpretation of the data, and (5) recommendations for future work.

  14. New approaches to subglacial bedrock drilling technology

    NASA Astrophysics Data System (ADS)

    Talalay, Pavel; Sun, Youhong; Zhao, Yue; Xue, Jun; Chen, Chen; Markov, Alexey; Xu, Huiwen; Gong, Wenbin; Han, Wei; Zheng, Zhichuan; Cao, Pinlu; Wang, Rusheng; Zhang, Nan; Yu, Dahui; Fan, Xiaopeng; Hu, Zhengyi; Yang, Cheng; Han, Lili; Sysoev, Mikhail

    2013-04-01

    Drilling to bedrock of ice sheets and glaciers offers unique opportunities to research processes acting at the bed for paleo-climatic and paleo-environmental recording, basal sliding studies, subglacial geology and tectonics investigations, prospecting and exploration for minerals covered by ice. Retrieving bedrock samples under ice sheets and glaciers is a very difficult task. Drilling operations are complicated by extremely low temperature at the surface of, and within glaciers, and by glacier flow, the absence of roads and infrastructures, storms, winds, snowfalls, etc. In order to penetrate through the ice sheet or glacier up to the depth of at least 1000 m and to pierce the bedrock to the depth of several meters from ice - bedrock boundary the development activity already has been started in Polar Research Center at Jilin University, China. All drilling equipment (two 50-kW diesel generators, winch, control desk, fluid dumping station, etc.) is installed inside a movable sledge-mounted warm-keeping and wind-protecting drilling shelter that has dimensions of 8.8 ×2.8 × 3.0 m. Mast has two positions: horizontal for transportation and vertical working position (mast height is 12 m). Drilling shelter can be transported to the chosen site with crawler-tractor, aircraft or helicopter. In case of carriage by air the whole drilling shelter was designed to be disassembled into pieces "small" enough to ship by aircraft. Weight and sizes of each component has been minimized to lower the cost of transportation and to meet weight restrictions for transportation. Total weight of drilling equipment (without drilling fluid) is near 15 tons. Expected time of assembling and preparing for drilling is 2 weeks. If drilling shelter is transported with crawler-tractor (for example, in Antarctic traverses) all equipment is ready to start drilling immediately upon arrival to the site. To drill through ice and bedrock a new, modified version of the cable-suspended electromechanical

  15. Surface control bent sub for directional drilling of petroleum wells

    DOEpatents

    Russell, Larry R.

    1986-01-01

    Directional drilling apparatus for incorporation in a drill string, wherein a lower apparatus section is angularly deviated from vertical by cam action and wherein rotational displacement of the angularly deviated apparatus section is overcome by additional cam action, the apparatus being operated by successive increases and decreases of internal drill string pressure.

  16. Effects of implant drilling parameters for pilot and twist drills on temperature rise in bone analog and alveolar bones.

    PubMed

    Chen, Yung-Chuan; Hsiao, Chih-Kun; Ciou, Ji-Sih; Tsai, Yi-Jung; Tu, Yuan-Kun

    2016-11-01

    This study concerns the effects of different drilling parameters of pilot drills and twist drills on the temperature rise of alveolar bones during dental implant procedures. The drilling parameters studied here include the feed rate and rotation speed of the drill. The bone temperature distribution was analyzed through experiments and numerical simulations of the drilling process. In this study, a three dimensional (3D) elasto-plastic dynamic finite element model (DFEM) was proposed to investigate the effects of drilling parameters on the bone temperature rise. In addition, the FE model is validated with drilling experiments on artificial human bones and porcine alveolar bones. The results indicate that 3D DFEM can effectively simulate the bone temperature rise during the drilling process. During the drilling process with pilot drills or twist drills, the maximum bone temperature occurred in the region of the cancellous bones close to the cortical bones. The feed rate was one of the important factors affecting the time when the maximum bone temperature occurred. Our results also demonstrate that the elevation of bone temperature was reduced as the feed rate increased and the drill speed decreased, which also effectively reduced the risk region of osteonecrosis. These findings can serve as a reference for dentists in choosing drilling parameters for dental implant surgeries.

  17. Operations Recognition at Drill-Rigs

    NASA Astrophysics Data System (ADS)

    Esmael, B.; Fruhwirth, R.; Arnaout, A.; Thonhauser, G.

    2012-04-01

    those principal states dedicated neural network classifier were trained using the sensor data as input. As network architecture the completely connected perceptron was applied in combination with parallel learning. Automatic network growing was used to match the model complexity to the complexity of the particular classification problem and thus to prevent from over fitting. In addition forward selection method was used to identify the sensor data necessary to recognise the particular states. The approach was evaluated using real-time/real-world data and the results show that the proposed approach has the ability to classify drilling operations highly accurate. The performances of the classifiers were evaluated by cross-validation, the average correct classification rate was above 99%, for both, the training and the testing data sets.

  18. Managing drilling operations

    SciTech Connect

    Fraser, K.; Peden, J.; Kenworth, A.

    1991-01-01

    Oil and gas well drilling operations requires the management of a great variety of operations, equipment, people, finances, legal aspects and safety procedures. A thorough understanding of the drilling process and the technologies involved is required to complete a project successfully, on time and within budget. This book presents guidance on the whole sequence of this process from field evaluation and well planning to drilling and optimization for both on- and off-shore projects. There are step-by-step guidelines and checklist which the practitioner can use directly, or with their own modifications. The author has refined these guidelines from his nineteen years of experience managing drilling operations around the world. Graduates in petroleum engineering and economic geology, as well as drilling engineers and drilling operations managers will welcome this handbook for its comprehensive and clear treatment of all the management issue and technologies required for a safe, efficient and economic drilling operation.

  19. Drill System Development for the Lunar Subsurface Exploration

    NASA Astrophysics Data System (ADS)

    Zacny, Kris; Davis, Kiel; Paulsen, Gale; Roberts, Dustyn; Wilson, Jack; Hernandez, Wilson

    Reaching the cold traps at the lunar poles and directly sensing the subsurface regolith is a primary goal of lunar exploration, especially as a means of prospecting for future In Situ Resource Utilization efforts. As part of the development of a lunar drill capable of reaching a depth of two meters or more, Honeybee Robotics has built a laboratory drill system with a total linear stroke of 1 meter, capability to produce as much as 45 N-m of torque at a rotational speed of 200 rpm, and a capability of delivering maximum downforce of 1000 N. Since this is a test-bed, the motors were purposely chosen to be relative large to provide ample power to the drill system (the Apollo drill was a 500 Watt drill, i.e. not small in current standards). In addition, the drill is capable of using three different drilling modes: rotary, rotary percussive and percussive. The frequency of percussive impact can be varied if needed while rotational speed can be held constant. An integral part of this test bed is a vacuum chamber that is currently being constructed. The drill test-bed is used for analyzing various drilling modes and testing different drill bit and auger systems under low pressure conditions and in lunar regolith simulant. The results of the tests are used to develop final lunar drill design as well as efficient drilling protocols. The drill was also designed to accommodate a downhole neutron spectrometer for measuring the amount of hydrated material in the area surrounding the borehole, as well as downhole temperature sensors, accelerometers, and electrical properties tester. The presentation will include history of lunar drilling, challenges of drilling on the Moon, a description of the drill and chamber as well as preliminary drilling test results conducted in the ice-bound lunar regolith simulant with a variety of drill bits and augers systems.

  20. Recovery of bypassed oil in the Dundee Formation using horizontal drains. Annual report, March 1996--March 1997

    SciTech Connect

    1998-04-01

    This Class II field project has demonstrated that economic quantities of hydrocarbons can be produced from abandoned or nearly abandoned fields in the Dundee Formation of Central Michigan using horizontal drilling technology. The site selected for the demonstration horizontal well was Crystal Field, a nearly abandoned Dundee oil field in Montcalm County, Michigan. This field had produced over 8 million barrels of oil, mostly in the 1930`s and 1940`s. At the height of development, Crystal Field produced from 193 wells, but by 1995, only seven producing wells remained, each producing less than 10 bbls/day. A horizontal well, the TOW 1-3, drilled as a field demonstration pilot was successful, producing at rate of 100 bbls of oil per day with a zero water cut. Although the well is capable of producing at a of 500+ bbls/day, the production rate is being kept low deliberately to try to prevent premature water coning. Cumulative production exceeded 50,000 bbls of oil by the end of April, 1997 and lead to the permitting and licensing of several dozen Dundee wells by project end. Twelve of these permits were for continued development of Crystal Field. Two long horizontal wells were drilled successfully in Crystal after the TOW 1-3, but were disappointing economically. Core and logs from the Dundee interval were recovered from a vertical borehole at the same surface location. The addition of several horizontal wells will likely add another 2 million bbls (or more) to the cumulative production of the field over the next few years. If other abandoned Dundee fields are re-developed in a similar manner, the additional oil produced could exceed 80 million barrels.

  1. A study of horizontal-wellbore failure

    SciTech Connect

    Hsiao, C. )

    1988-11-01

    A theoretical model of horizontal-wellbore failure has been developed based on maximum-normal-stress theory (for tensile fracturing) and Drucker-Prager failure theory (for compressive failure) under openhole conditions. This model may be used to help determine the permissible borehole operating-pressure range, providing a convenient scheme for selecting borehole pressure to minimize the risk of borehole failure during drilling and production.

  2. Accuracy of a direct drill-guiding system with minimal tolerance of surgical instruments used for implant surgery: a prospective clinical study.

    PubMed

    Lee, Du-Hyeong; An, Seo-Young; Hong, Min-Ho; Jeon, Kyoung-Bae; Lee, Kyu-Bok

    2016-06-01

    A recently introduced direct drill-guiding implant surgery system features minimal tolerance of surgical instruments in the metal sleeve by using shank-modified drills and a sleeve-incorporated stereolithographic guide template. The purpose of this study was to evaluate the accuracy of this new guided surgery system in partially edentulous patients using geometric analyses. For the study, 21 implants were placed in 11 consecutive patients using the direct drill-guiding implant surgery system. The stereolithographic surgical guide was fabricated using cone-beam computed tomography, digital scanning, computer-aided design and computer-assisted manufacturing, and additive manufacturing processes. After surgery, the positional and angular deviations between planned and placed implants were measured at the abutment level using implant-planning software. The Kruskal-Wallis test and Mann-Whitney U test were used to compare the deviations (α=.05). The mean horizontal deviations were 0.593 mm (SD 0.238) mesiodistally and 0.691 mm (SD 0.344) buccolingually. The mean vertical deviation was 0.925 mm (SD 0.376) occlusogingivally. The vertical deviation was significantly larger than the horizontal deviation (P=.018). The mean angular deviation was 2.024 degrees (SD 0.942) mesiodistally and 2.390 degrees (SD 1.142) buccolingually. The direct drill-guiding implant surgery system demonstrates high accuracy in placing implants. Use of the drill shank as the guiding component is an effective way for reducing tolerance.

  3. Can a surgeon drill accurately at a specified angle?

    PubMed Central

    Brioschi, Valentina; Cook, Jodie; Arthurs, Gareth I

    2016-01-01

    Objectives To investigate whether a surgeon can drill accurately a specified angle and whether surgeon experience, task repetition, drill bit size and perceived difficulty influence drilling angle accuracy. Methods The sample population consisted of final-year students (n=25), non-specialist veterinarians (n=22) and board-certified orthopaedic surgeons (n=8). Each participant drilled a hole twice in a horizontal oak plank at 30°, 45°, 60°, 80°, 85° and 90° angles with either a 2.5  or a 3.5 mm drill bit. Participants then rated the perceived difficulty to drill each angle. The true angle of each hole was measured using a digital goniometer. Results Greater drilling accuracy was achieved at angles closer to 90°. An error of ≤±4° was achieved by 84.5 per cent of participants drilling a 90° angle compared with approximately 20 per cent of participants drilling a 30–45° angle. There was no effect of surgeon experience, task repetition or drill bit size on the mean error for intended versus achieved angle. Increased perception of difficulty was associated with the more acute angles and decreased accuracy, but not experience level. Clinical significance This study shows that surgeon ability to drill accurately (within ±4° error) is limited, particularly at angles ≤60°. In situations where drill angle is critical, use of computer-assisted navigation or custom-made drill guides may be preferable. PMID:27547423

  4. Cortical bone drilling: An experimental and numerical study.

    PubMed

    Alam, Khurshid; Bahadur, Issam M; Ahmed, Naseer

    2014-12-16

    Bone drilling is a common surgical procedure in orthopedics, dental and neurosurgeries. In conventional bone drilling process, the surgeon exerts a considerable amount of pressure to penetrate the drill into the bone tissue. Controlled penetration of drill in the bone is necessary for safe and efficient drilling. Development of a validated Finite Element (FE) model of cortical bone drilling. Drilling experiments were conducted on bovine cortical bone. The FE model of the bone drilling was based on mechanical properties obtained from literature data and additionally conducted microindentation tests on the cortical bone. The magnitude of stress in bone was found to decrease exponentially away from the lips of the drill in simulations. Feed rate was found to be the main influential factor affecting the force and torque in the numerical simulations and experiments. The drilling thrust force and torque were found to be unaffected by the drilling speed in numerical simulations. Simulated forces and torques were compared with experimental results for similar drilling conditions and were found in good agreement.CONCLUSIONS: FE schemes may be successfully applied to model complex kinematics of bone drilling process.

  5. Test drilling in basalts, Lalamilo area, South Kohala District, Hawaii

    USGS Publications Warehouse

    Teasdale, Warren E.

    1980-01-01

    Test drilling has determined that a downhole-percussion airhammer can be used effectively to drill basalts in Hawaii. When used in conjunction with a foam-type drilling fluid, the hammer-bit penetration rate was rapid. Continuous drill cuttings from the materials penetrated were obtained throughout the borehole except from extremely fractured or weathered basalt zones where circulation was lost or limited. Cementing of these zones as soon as encountered reduced problems of stuck tools, washouts, and loss of drill-cuttings. Supplies and logistics on the Hawaiian Islands, always a major concern, require that all anticipated drilling supplies, spare rig and tool parts, drilling muds and additives, foam, and miscellaneous hardware be on hand before starting to drill. If not, the resulting rig downtime is costly in both time and money. (USGS)

  6. Lateral drilling and completion technologies for shallow-shelf carbonates of the Red River and Ratcliffe Formations, Williston Basin. Topical report, July 1997

    SciTech Connect

    Carrell, L.A.; George, R.D.; Gibbons, D.

    1998-07-01

    Luff Exploration Company (LEC) focused on involvement in technologies being developed utilizing horizontal drilling concepts to enhance oil-well productivity starting in 1992. Initial efforts were directed toward high-pressure lateral jetting techniques to be applied in existing vertical wells. After involvement in several failed field attempts with jetting technologies, emphasis shifted to application of emerging technologies for drilling short-radius lateral in existing wellbores and medium-radius technologies in new wells. These lateral drilling technologies were applied in the Mississippi Ratcliffe and Ordovician Red River formations at depths of 2,590 to 2,890 m in Richland County, MT; Bowman County, ND; and Harding County, SD. In theory, all of the horizontal drilling techniques explored in this project have merit for application fitting specific criteria. From a realistic point of view, the only relatively trouble-free, adequately-proven technology employed was the medium-radius steered motor/MWD technology. The slim-tool steered motor/MWD re-entry technology has been used extensively but appears to still be significantly in developmental stages. This technology will probably always be more troublesome than the technology used to drill new wells because the smaller diameter required for the tools contributes to both design and operational complexities. Although limited mechanical success has been achieved with some of the lateral jetting technologies and the Amoco tools, their predictability and reliability is unproven. Additionally, they appear to be limited to shallow depths and certain rock types. The Amoco technology probably has the most potential to be successfully developed for routinely reliable, field applications. A comparison of the various horizontal drilling technologies investigated is presented.

  7. Results from Testing of Two Rotary Percussive Drilling Systems

    NASA Technical Reports Server (NTRS)

    Kriechbaum, Kristopher; Brown, Kyle; Cady, Ian; von der Heydt, Max; Klein, Kerry; Kulczycki, Eric; Okon, Avi

    2010-01-01

    The developmental test program for the MSL (Mars Science Laboratory) rotary percussive drill examined the e ect of various drill input parameters on the drill pene- tration rate. Some of the input parameters tested were drill angle with respect to gravity and percussive impact energy. The suite of rocks tested ranged from a high strength basalt to soft Kaolinite clay. We developed a hole start routine to reduce high sideloads from bit walk. The ongoing development test program for the IMSAH (Integrated Mars Sample Acquisition and Handling) rotary percussive corer uses many of the same rocks as the MSL suite. An additional performance parameter is core integrity. The MSL development test drill and the IMSAH test drill use similar hardware to provide rotation and percussion. However, the MSL test drill uses external stabilizers, while the IMSAH test drill does not have external stabilization. In addition the IMSAH drill is a core drill, while the MSL drill uses a solid powdering bit. Results from the testing of these two related drilling systems is examined.

  8. 76 FR 11812 - Drill Pipe and Drill Collars From China

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-03

    ... COMMISSION Drill Pipe and Drill Collars From China Determinations On the basis of the record \\1\\ developed in... of imports of drill pipe and drill collars from China, provided for in subheadings 7304.22, 7304.23... receipt of a petition filed with the Commission and Commerce by VAM Drilling USA Inc., Houston, TX;...

  9. 78 FR 59972 - Drill Pipe and Drill Collars from China

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-30

    ... COMMISSION Drill Pipe and Drill Collars from China AGENCY: United States International Trade Commission... phase investigation of the antidumping and countervailing duty orders on drill pipe and drill collars... remanding certain aspects of the Commission's affirmative threat determination in Drill Pipe and...

  10. Method of deep drilling

    SciTech Connect

    Colgate, S. A.

    1984-11-20

    Deep drilling is facilitated by the following steps practiced separately or in any combination: Periodically and sequentially fracturing zones adjacent the bottom of the bore hole with a thixotropic fastsetting fluid that is accepted into the fracture to overstress the zone, such fracturing and injection being periodic as a function of the progression of the drill. Casing the bore hole with ductile, pre-annealed casing sections, each of which is run down through the previously set casing and swaged in situ to a diameter large enough to allow the next section to run down through it. Drilling the bore hole using a drill string of a low density alloy and a high density drilling mud so that the drill string is partially floated.

  11. Method of deep drilling

    DOEpatents

    Colgate, Stirling A.

    1984-01-01

    Deep drilling is facilitated by the following steps practiced separately or in any combination: (1) Periodically and sequentially fracturing zones adjacent the bottom of the bore hole with a thixotropic fastsetting fluid that is accepted into the fracture to overstress the zone, such fracturing and injection being periodic as a function of the progression of the drill. (2) Casing the bore hole with ductile, pre-annealed casing sections, each of which is run down through the previously set casing and swaged in situ to a diameter large enough to allow the next section to run down through it. (3) Drilling the bore hole using a drill string of a low density alloy and a high density drilling mud so that the drill string is partially floated.

  12. Mars Science Laboratory Drill

    NASA Technical Reports Server (NTRS)

    Okon, Avi B.

    2010-01-01

    The Drill for the Mars Science Laboratory mission is a rotary-percussive sample acquisition device with an emphasis on toughness and robustness to handle the harsh environment on Mars. The unique challenges associated with autonomous drilling from a mobile robot are addressed. A highly compressed development schedule dictated a modular design architecture that satisfies the functional and load requirements while allowing independent development and testing of the Drill subassemblies. The Drill consists of four actuated mechanisms: a spindle that rotates the bit, a chuck that releases and engages bits, a novel voice-coil-based percussion mechanism that hammers the bit, and a linear translation mechanism. The Drill has three passive mechanisms: a replaceable bit assembly that acquires and collects sample, a contact sensor / stabilizer mechanism, and, lastly a flex harness service loop. This paper describes the various mechanisms that makeup the Drill and discusses the solutions to their unique design and development challenges.

  13. Horizontal exploitation of the Upper Cretaceous Austin Chalk of south Texas

    SciTech Connect

    Borkowski, R.; Hand, L.; Dickerson, D.; Bird, S. )

    1990-05-01

    Horizontal drilling in the fractured Austin Chalk of south Texas has proven to be a viable technology for exploiting reserve opportunities in mature trends as well as in frontier areas. To date, the results of an interdisciplinary approach to the regional analysis of structure and stress regimes combined with studies of the depositional characteristics of the Austin Chalk and Eagleford Shale have been a success. Productive characteristics of the Austin Chalk indicate the influence of regional fractures on the preferential flow direction and partitioning in the Pearsall field area of the trend. Well bore orientation and inclination are designed such that multiple fracture swarms at several stratigraphic horizons are intersected with a single horizontal well bore. As a result of the greater frequency of fracture contacts with the well bore, there is a significant increase in the ultimate recovery of hydrocarbons in place. Conventional vertical drilling techniques are frequently ineffective at encountering these laterally partitioned fracture sets, resulting in lower volumes of recoverable hydrocarbons. Additionally, horizontal well bores may increase ultimate recovery of hydrocarbons by lowering the pressure gradient to the well bore and maximizing the reservoir energy.

  14. Canadian operator succeeds in slant-hole drilling project

    SciTech Connect

    Lowen, B.M.; Gradeen, G.D.

    1982-08-01

    In 1981, Ocelot successfully developed the Bantry gas field in southeastern Alberta with a unique slant-hole drilling technique in areas where surface topography made conventional drilling impossible. Ocelot initiated the project to develop the shallow (1050-1460 ft) Milk River and Medicine Hat gas reserves under the Tilley B manmade lake. Cheaper than offshore drilling, the slant-hole technique provided a means of reaching the reserves from the shore. Spudding the well at a 45/sup 0/ angle doubled the horizontal displacement achieved by conventional directional drilling to the depth required. A conventional single-stand, hydraulic rig - converted to drill slant holes - incorporated several new features that saved time in handling the pipe and in moving the rig between sites.

  15. Technical and economical feasibility of coiled tubing drilling

    SciTech Connect

    Gary, S.C.; Doremus, D.M.

    1995-12-31

    The technique for evaluating coiled tubing (CT) drilling prospects is described. The technical and economic factors involved are discussed using a flowchart to guide the operator in the decision making process. In the technical analysis, the parameters limiting the feasibility of using CT for a given drilling project are reviewed. These parameters include CT tension, helical buckling which limits the weight on bit (WOB) and the horizontal reach, CT collapse pressure when drilling underbalanced, CT fatigue, and the usual hydraulic parameters such as annular velocity and pumping pressure. In today`s business environment, some projects, while technically feasible, may not be economically feasible. In the economic analysis, the competitiveness of each CT drilling application versus conventional solutions is evaluated, and factors such as project duration and equipment use are reviewed. The equipment normally required for a CT drilling job and the costs associated with mobilizing this equipment are discussed.

  16. Directional location of buried objects using three-component magnetic borehole data demonstrated for the case of a drill string

    NASA Astrophysics Data System (ADS)

    Ehmann, S.; Virgil, C.; Hördt, A.; Leven, M.

    2016-06-01

    One of the main applications of magnetic field measurements in boreholes is the detection of unexploded ordnance or buried utility structures like pipes or tiebacks. Even though the advantage of fully oriented magnetic vector measurements have long been recognized and could significantly reduce costs and risks, the tools used for those purposes typically measure only the total magnetic field, the vertical and horizontal components or gradients thereof. The Göttingen Bohrloch Magnetometer uses three fibre optic gyros to record its orientation and thus enables us to compute high-quality three-component magnetic vector data regardless of borehole orientation. The measurements described in this paper were run in the scientific borehole Cuxhaven Lüdingworth 1/1A, which was drilled as a part of the `Coastal Aquifer Test field' project to study the dynamics of the saltwater/freshwater interface. As the drill string got stuck during drilling of the first borehole, a second hole was drilled in the immediate vicinity. The drill string lies at a depth between 80 and 114 m at a distance of only 2.5 m southeast of the borehole used for the measurements, making it an ideal target to demonstrate the benefits of vector magnetic surveys. Although the theories to calculate magnetic fields of objects with different shapes is well established and do not need to be tested, they almost exclusively include approximations of the geometry. It is not obvious whether these approximations are suited to describe real data, or whether additional effects or refinements have to be considered. We use both a simplified monopole model and a cylinder model to fit the data and are able to determine the position of the drill string within a statistical error of approximately 10 cm. Additionally, we show that the location of the drill string could not have been determined by measurements of the total field or its horizontal and vertical component alone and that those methods would require the drilling

  17. Horizontal Drilling System (HDS) Field Test Report - FY 91

    DTIC Science & Technology

    1993-10-01

    pipe section, just aft of the adapter. The hardfacing provided wear resistance at this critical area. Although measurable wear was never obtained on...any of the pipe, hardfacing appears to be capable of protecting the pipe from wear as intended. Hardness values were greater than KHN 970. Reference 14

  18. Drilling cost-cutting

    SciTech Connect

    Capuano, L.E. Jr.

    1996-12-31

    This presentation by Louis E. Capuano, Jr., President, ThermaSource, Inc., discusses cost-cutting in the drilling phase of geothermal energy exploration and production. All aspects of a geothermal project including the drilling must be streamlined to make it viable and commercial. If production could be maximized from each well, there would be a reduction in drilling costs. This could be achieved in several ways, including big hole and multi-hole completion, directional drilling, better knowledge of the resource and where to penetrate, etc.

  19. [Mist irrigation system at drilling in spinal surgery].

    PubMed

    Yasuhara, Takao; Miyoshi, Yasuyuki; Date, Isao

    2010-12-01

    The "mist irrigation system" (MIS) is a new and effective method at drilling in spinal surgery. In this report, MIS is introduced with subsequent demonstration that visibility at drilling is better with MIS because of the reduction of smoke, blood and irrigation water. Additionally using a 5 mm-thick acryl plate, the time for perforation by drilling and temperature after drilling with MIS, drip-irrigation (DI) or no irrigation, were measured respectivily. Using the acryl plate significantly reduced drilling time and high temperature after perforation in the group without irrigation were recognized, compared to cases in the groups with MIS or DI. The results might indicate that the high temperature of the drill might melt the acryl plate immediately. As a conclusion, MIS might help surgeons to drill in the deep and narrow operative field. Additionally it might help to reduce the risks of heat injury to neuronal tissue by cooling efficiently.

  20. ESP's placed in horizontal lateral increase production

    SciTech Connect

    Gallup, A.; Wilson, B.L. ); Marshall, R. )

    1990-06-18

    By design, the electric submersible pump (ESP) is an effective method of lifting fluids from horizontal wells. But this ESP application does have unique installation and operating parameters that need to be considered. ESP's have been used for many years in directional wells. This application provides an experience base for understanding deflection limits on the unit. To avoid damaging the ESP, special equipment may be required in some horizontal installations. This paper discusses how several ESP's have been designed specifically for medium-radius wells. In these applications, the deeper pump setting provides for a significant increase in production rate. In general, to realize the full benefit of a horizontal installation, the ESP should be considered when planning, drilling, and completing the well.

  1. Curiosity Drill After Drilling at Telegraph Peak

    NASA Image and Video Library

    2015-03-06

    This view from the Mast Camera (Mastcam) on NASA's Curiosity Mars rover shows the rover's drill just after finishing a drilling operation at a target rock called "Telegraph Peak" on Feb. 24, 2015, the 908th Martian day, or sol, of the rover's work on Mars. Three sols later, a fault-protection action by the rover halted a process of transferring sample powder that was collected during this drilling. The image is in raw color, as recorded directly by the camera, and has not been white-balanced. The fault-protection event, triggered by an irregularity in electrical current, led to engineering tests in subsequent days to diagnose the underlying cause. http://photojournal.jpl.nasa.gov/catalog/PIA19145

  2. Successful high angle drilling in the Statfjord Field

    SciTech Connect

    Wilson, R.C.; Willis, D.N.

    1986-01-01

    The original drilling design criteria for Statfjord field development set an upper limit on wellbore inclination of 60/sup 0/. This figure was derived by considering the special drilling problems found on Statfjord and technological limitations. By developing engineering operational procedures and introducing new technology, wells can be drilled routinely at sail angles between 60/sup 0/ - 70/sup 0/. This paper, therefore, elaborates upon the special drilling problems encountered in the area and describes engineering and operational solutions which were developed to extend the maximum reach of wells. In addition, it describes the evolution of drilling on Statfjord and documents the impact of advances.

  3. Lunar deep drill apparatus

    NASA Technical Reports Server (NTRS)

    Harvey, Jill (Editor)

    1989-01-01

    A self contained, mobile drilling and coring system was designed to operate on the Lunar surface and be controlled remotely from earth. The system uses SKITTER (Spatial Kinematic Inertial Translatory Tripod Extremity Robot) as its foundation and produces Lunar core samples two meters long and fifty millimeters in diameter. The drill bit used for this is composed of 30 per carat diamonds in a sintered tungsten carbide matrix. To drill up to 50 m depths, the bit assembly will be attached to a drill string made from 2 m rods which will be carried in racks on SKITTER. Rotary power for drilling will be supplied by a Curvo-Synchronous motor. SKITTER is to support this system through a hexagonal shaped structure which will contain the drill motor and the power supply. A micro-coring drill will be used to remove a preliminary sample 5 mm in diameter and 20 mm long from the side of the core. This whole system is to be controlled from earth. This is carried out by a continuously monitoring PLC onboard the drill rig. A touch screen control console allows the operator on earth to monitor the progress of the operation and intervene if necessary.

  4. Reverse laser drilling

    NASA Technical Reports Server (NTRS)

    Anthony, Thomas R. (Inventor)

    1984-01-01

    This invention provides a method for laser drilling small diameter, closely-spaced, and accurately located holes in a body of material which is transparent or substantially transparent to the laser radiation employed whereby the holes are drilled through the thickness of the body from the surface opposite to that on which the laser beam impinges to the surface of laser beam impingement.

  5. Ultrasonic Drilling and Coring

    NASA Technical Reports Server (NTRS)

    Bar-Cohen, Yoseph

    1998-01-01

    A novel drilling and coring device, driven by a combination, of sonic and ultrasonic vibration, was developed. The device is applicable to soft and hard objects using low axial load and potentially operational under extreme conditions. The device has numerous potential planetary applications. Significant potential for commercialization in construction, demining, drilling and medical technologies.

  6. Drilling Square Holes.

    ERIC Educational Resources Information Center

    Smith, Scott G.

    1993-01-01

    A Reuleaux triangle is constructed by drawing an arc connecting each pair of vertices of an equilateral triangle with radius equal to the side of the triangle. Investigates the application of drilling a square hole using a drill bit in the shape of a Reuleaux triangle. (MDH)

  7. Drill-motor holding fixture

    NASA Technical Reports Server (NTRS)

    Chartier, E. N.; Culp, L. N.

    1980-01-01

    Guide improves accuracy and reduces likelihood of bit breakage in drilling large work pieces. Drill motor is mounted on pipe that slides on furniture clamp. Drill is driven into work piece by turning furniture-clamp handle.

  8. Drill-motor holding fixture

    NASA Technical Reports Server (NTRS)

    Chartier, E. N.; Culp, L. N.

    1980-01-01

    Guide improves accuracy and reduces likelihood of bit breakage in drilling large work pieces. Drill motor is mounted on pipe that slides on furniture clamp. Drill is driven into work piece by turning furniture-clamp handle.

  9. Disposal of drilling fluids

    SciTech Connect

    Bryson, W.R.

    1983-06-01

    Prior to 1974 the disposal of drilling fluids was not considered to be much of an environmental problem. In the past, disposal of drilling fluids was accomplished in various ways such as spreading on oil field lease roads to stabilize the road surface and control dust, spreading in the base of depressions of sandy land areas to increase water retention, and leaving the fluid in the reserve pit to be covered on closure of the pit. In recent years, some states have become concerned over the indescriminate dumping of drilling fluids into pits or unauthorized locations and have developed specific regulations to alleviate the perceived deterioration of environmental and groundwater quality from uncontrolled disposal practices. The disposal of drilling fluids in Kansas is discussed along with a newer method or treatment in drilling fluid disposal.

  10. Advanced drilling systems study.

    SciTech Connect

    Pierce, Kenneth G.; Livesay, Billy Joe; Finger, John Travis

    1996-05-01

    This report documents the results of a study of advanced drilling concepts conducted jointly for the Natural Gas Technology Branch and the Geothermal Division of the U.S. Department of Energy. A number of alternative rock cutting concepts and drilling systems are examined. The systems cover the range from current technology, through ongoing efforts in drilling research, to highly speculative concepts. Cutting mechanisms that induce stress mechanically, hydraulically, and thermally are included. All functions necessary to drill and case a well are considered. Capital and operating costs are estimated and performance requirements, based on comparisons of the costs for alternative systems to conventional drilling technology, are developed. A number of problems common to several alternatives and to current technology are identified and discussed.

  11. Distributed downhole drilling network

    DOEpatents

    Hall, David R.; Hall, Jr., H. Tracy; Fox, Joe; Pixton, David S.

    2006-11-21

    A high-speed downhole network providing real-time data from downhole components of a drilling strings includes a bottom-hole node interfacing to a bottom-hole assembly located proximate the bottom end of a drill string. A top-hole node is connected proximate the top end of the drill string. One or several intermediate nodes are located along the drill string between the bottom-hole node and the top-hole node. The intermediate nodes are configured to receive and transmit data packets transmitted between the bottom-hole node and the top-hole node. A communications link, integrated into the drill string, is used to operably connect the bottom-hole node, the intermediate nodes, and the top-hole node. In selected embodiments, a personal or other computer may be connected to the top-hole node, to analyze data received from the intermediate and bottom-hole nodes.

  12. Drill drive mechanism

    DOEpatents

    Dressel, Michael O.

    1979-01-01

    A drill drive mechanism is especially adapted to provide both rotational drive and axial feed for a drill of substantial diameter such as may be used for drilling holes for roof bolts in mine shafts. The drill shaft is made with a helical pattern of scroll-like projections on its surface for removal of cuttings. The drill drive mechanism includes a plurality of sprockets carrying two chains of drive links which are arranged to interlock around the drill shaft with each drive link having depressions which mate with the scroll-like projections. As the chain links move upwardly or downwardly the surfaces of the depressions in the links mate with the scroll projections to move the shaft axially. Tangs on the drive links mate with notch surfaces between scroll projections to provide a means for rotating the shaft. Projections on the drive links mate together at the center to hold the drive links tightly around the drill shaft. The entire chain drive mechanism is rotated around the drill shaft axis by means of a hydraulic motor and gear drive to cause rotation of the drill shaft. This gear drive also connects with a differential gearset which is interconnected with a second gear. A second motor is connected to the spider shaft of the differential gearset to produce differential movement (speeds) at the output gears of the differential gearset. This differential in speed is utilized to drive said second gear at a speed different from the speed of said gear drive, this speed differential being utilized to drive said sprockets for axial movement of said drill shaft.

  13. Steamboat Hills exploratory slimhole: Drilling and testing

    SciTech Connect

    Finger, J.T.; Jacobson, F.D.; Hickox, C.E.; Eaton, R.R.

    1994-10-01

    During July-September, 1993, Sandia National Laboratories, in cooperation with Far West Capital, drilled a 4000 feet exploratory slimhole (3.9 inch diameter) in the Steamboat Hills geothermal field near Reno, Nevada. This well was part of Sandia`s program to evaluate slimholes as a geothermal exploration tool. During and after drilling the authors performed four series of production and injection tests while taking downhole (pressure-temperature-spinner) and surface (wellhead pressure and temperature, flow rate) data. In addition to these measurements, the well`s data set includes: continuous core (with detailed log); borehole televiewer images of the wellbore`s upper 500 feet; daily drilling reports from Sandia and from drilling contractor personnel; daily drilling fluid record; numerous temperature logs; and comparative data from production and injection wells in the same field. This report contains: (1) a narrative account of the drilling and testing, (2) a description of equipment used, (3) a brief geologic description of the formation drilled, (4) a summary and preliminary interpretation of the data, and (5) recommendations for future work.

  14. Canadian system extends Arctic drilling season

    SciTech Connect

    Park, D.A.

    1984-06-18

    Faced with the possibility of insufficient drilling equipment to meet accelerated exploration programs in the Canadian Beaufort Sea, Gulf Canada Resources Inc. of Calgary, Alta., undertook in 1981 to build a major new drilling system that would be capable of operating in Arctic water depths ranging from 50 to 180 ft. The company decided to design the system to extend the drilling season beyond that achieved with modified conventional drillships. The new system is operated by BeauDril Ltd., the Arctic offshore drilling subsidiary of Gulf Canada Resources. It consists of a mobile, bottomfounded, shallow-water drilling unit named Molikpaq; a conically shaped, deeper-water unit called Kulluk; two ice-breakers and two icebreaking supply vessels (all Ice Class IV); a large operations base at Tuktoyaktuk; and a floating marine base. With the exception of Molikpaq (delivered mid-April this year), the system became operational in the summer of 1983. In addition to discussing engineering and construction challenges resulting from the extension of the drilling season to mid-December, this article describes the mobilization of Kulluk and her supporting fleet to the Beaufort Sea, highlighting vessel positioning, and drilling operations at the first well locations.

  15. Qualifying drillstring components for deep drilling

    SciTech Connect

    Hill, T.H.; Money, R.C.; Palmer, C.R.

    1984-04-01

    Deep, hard or directional drilling imposes extraordinary stresses on drill string components. Because of the additional economic risks of deep drilling, the use of drill string components should be based upon their compliance with API or user acceptance standards. Inspection procedures which provide the highest probability of finding and eliminating unacceptable components should also be employed. Often, too much reliance is placed on a ''report'' or ''certification'' that the drill string components have been ''inspected''. The operator assumes that because the material has been inspected, it is suitable for the intended service. This report addresses three areas in which the above approach leads to trouble: Widespread, established practices have resulted in many applicable API guidelines being unintentionally ignored by users and inspection companies. API standards for used drill pipe do not address some items which should concern operators engaged in deep or critical drilling. Inspection companies frequently do not follow simple quality control steps that can markedly improve the results of their work. Examples of shortcomings in present industry practices are given. Corrective actions which have been implemented by several companies in the last 12-18 months are also given. A hand held calculator program which will aid in evaluating the wear limits on rotary shouldered connections is provided in the appendix to this paper.

  16. A Ship for Scientific Drilling.

    ERIC Educational Resources Information Center

    Peterson, M. N. A.; MacTernan, F. C.

    1982-01-01

    Traces the history and development of the Deep Sea Drilling Project, focusing on the Glomar Challenger, drilling improvements, and international significance. Includes photographs, illustrations, and tables. (DC)

  17. A Ship for Scientific Drilling.

    ERIC Educational Resources Information Center

    Peterson, M. N. A.; MacTernan, F. C.

    1982-01-01

    Traces the history and development of the Deep Sea Drilling Project, focusing on the Glomar Challenger, drilling improvements, and international significance. Includes photographs, illustrations, and tables. (DC)

  18. Horizontal natural gas storage caverns and methods for producing same

    DOEpatents

    Russo, Anthony

    1995-01-01

    The invention provides caverns and methods for producing caverns in bedded salt deposits for the storage of materials that are not solvents for salt. The contemplated salt deposits are of the bedded, non-domed variety, more particularly salt found in layered formations that are sufficiently thick to enable the production of commercially usefully sized caverns completely encompassed by walls of salt of the formation. In a preferred method, a first bore hole is drilled into the salt formation and a cavity for receiving insolubles is leached from the salt formation. Thereafter, at a predetermined distance away from the first bore hole, a second bore hole is drilled towards the salt formation. As this drill approaches the salt, the drill assumes a slant approach and enters the salt and drills through it in a horizontal direction until it intersects the cavity for receiving insolubles. This produces a substantially horizontal conduit from which solvent is controlledly supplied to the surrounding salt formation, leaching the salt and producing a concentrated brine which is removed through the first bore hole. Insolubles are collected in the cavity for receiving insolubles. By controlledly supplying solvent, a horizontal cavern is produced with two bore holes extending therefrom.

  19. Logging with coiled tubing less effective than with drill pipe

    SciTech Connect

    Van Den Bosch, R. )

    1994-01-31

    Coiled tubing offered neither economic nor operational advantages over drill pipe for conveying logging tools in open hole shallow horizontal wells in Germany. In the past 2 years, Mobil Erdgas-Erdoel GMbH (MEEG) participated in completing eight shallow horizontal wells. These were medium-to-short radius wells at measured depths of between 850 and 2,000 m. The average horizontal section was 350 m. The logging tools were conveyed by coiled tubing or drill pipe. MEEG attempted to log five wells with coiled tubing-conveyed tools, four with 1 1/2-in. tubing. Total depth was reached reliably in only one well, the shallowest and with the shortest horizontal section. Simulation programs were unreliable for calculating the downhole forces of the coil/tool combination or predicting possible helical lockups. In wells with drill pipe-conveyed logs, the tool combination could always be pushed to total depth, and the operations were generally faster and cost less than logging with coiled tubing. Also, drill pipe allowed longer and heavier tool strings. For reliable operations, coiled tubing needs to be more rigid, rig-up/rig-down times need to be improved, and the simulation programs must be more reliable for predicting downhole lock-up.

  20. Thermal spallation drilling. Final report

    SciTech Connect

    Miska, S.; Williams, R.E.; Potter, R.M.

    1992-04-30

    Work that was performed on a previous contract with the Los Alamos National Laboratory and subsequent work at NM Tech indicated that an intermittent heating and cooling cycle, produced by heating with the conventional blast from a small jet engine and then cooled with a stream of water, would prove to be successful in spalling additional rocks. New Mexico Tech has attempted to further the use of spallation drilling to suit applications for mining and oil and gas drilling by showing that the use of a heating and cooling system would successfully penetrate otherwise unspallable rocks. This process, while showing some success in previous experimentation, has proved to work only spasmodically. The rocks tested had zones that were not spallable or were so slowly spallable that non-uniform holes were produced. Because of these irregularities, further field experimentation is not now profitable.

  1. Horizontal wells improve recovery at the Elk Hills Petroleum Reserve

    SciTech Connect

    Rintoul, B.

    1995-11-01

    In 1988 the US Department of Energy and Bechtel implemented a program to slow production declines in the Elk Hills 26R pool sand of the Naval Petroleum Reserve No. 1. It was also hoped horizontal wells would increase the production rate, decrease gas production and extend economic life of the reservoir. The Stevens sand pool targeted for the project is a high-quality, sand-rich turbidite channel system encapsulated within Miocene Monterey siliceous shales, mudstones and associated sediments. The pool is about 3-miles long by 3/4-mile wide. The paper describes the specifications and drilling of the first four out of the 14 horizontal wells drilled at this facility. Horizontal drilling technology has completely altered the future of the 26R pool. In 1980 estimated ultimate recovery (EUR) from the sand was 211 million bbl. With the latest horizontal well drilling campaign, the pool is expected to pass that estimate in 1997 when oil production is forecasted to be at least 13,000 b/d. EUR form the 26R sand now is more than 250 million bbl, and even that estimate is being revised upward.

  2. Measurement Space Drill Support

    DTIC Science & Technology

    2015-08-30

    TRAC-M-TR-15-026 30 AUG 2015 Measurement Space Drill Support TRADOC Analysis Center 700 Dyer Road Monterey, California 93943-0692 This study cost the...Space Drill Support LTC Michael D. Teter MAJ Adam Haupt TRADOC Analysis Center 700 Dyer Road Monterey, California 93943-0692 DISTRIBUTION STATEMENT...include area code) Standard Form 298 (Re . 8-98)v Prescribed by ANSI Std. Z39.18 08-30-2015 Technical Report AUG 14 - MAY 15 Measurement Space Drill

  3. Rapid and Quiet Drill

    NASA Technical Reports Server (NTRS)

    Sherrit, Stewart; Badescu, Mircea; Bar-Cohen, Yoseph; Chang, Zensheu; Bao, Xiaoqi

    2007-01-01

    This describes aspects of the rapid and quiet drill (RAQD), which is a prototype apparatus for drilling concrete or bricks. The design and basic principle of operation of the RAQD overlap, in several respects, with those of ultrasonic/ sonic drilling and coring apparatuses described in a number of previous NASA Tech Briefs articles. The main difference is that whereas the actuation scheme of the prior apparatuses is partly ultrasonic and partly sonic, the actuation scheme of the RAQD is purely ultrasonic. Hence, even though the RAQD generates considerable sound, it is characterized as quiet because most or all of the sound is above the frequency range of human hearing.

  4. Modified drill permits one-step drilling operation

    NASA Technical Reports Server (NTRS)

    Libertone, C.

    1966-01-01

    Drill with modified cutting faces permits one-step drilling operation without chatter upon contact and premature wear. The modification of the drill, which has the same diameter as that of the desired hole, consists of a groove across the bottom of each of the cutting faces of the drill flutes.

  5. Method of positioning tubing within a horizontal well

    SciTech Connect

    Young, C.E.

    1992-06-02

    This patent describes a method of variably and selectively positioning coil tubing in a horizontally drilled well having a generally vertical section, a curve section and a generally horizontal section. It comprises securing a generally hollow tubing guide shoe to one end of a tubing string; inserting the tubing guide shoe and a portion of the tubing string through the generally vertical section and the curve section and into a portion of the generally horizontal section; and inserting coil tubing through the tubing string.

  6. Recovery Efficiency Test Project: Phase 1, Activity report. Volume 1: Site selection, drill plan preparation, drilling, logging, and coring operations

    SciTech Connect

    Overbey, W.K. Jr.; Carden, R.S.; Kirr, J.N.

    1987-04-01

    The recovery Efficiency Test well project addressed a number of technical issues. The primary objective was to determine the increased efficiency gas recovery of a long horizontal wellbore over that of a vertical wellbore and, more specifically, what improvements can be expected from inducing multiple hydraulic fractures from such a wellbore. BDM corporation located, planned, and drilled a long radius turn horizontal well in the Devonian shale Lower Huron section in Wayne County, West Virginia, demonstrating that state-of-the-art technology is capable of drilling such wells. BDM successfully tested drilling, coring, and logging in a horizontal well using air as the circulating medium; conducted reservoir modeling studies to protect flow rates and reserves in advance of drilling operations; observed two phase flow conditions in the wellbore not observed previously; cored a fracture zone which produced gas; observed that fractures in the core and the wellbore were not systematically spaced (varied from 5 to 68 feet in different parts of the wellbore); observed that highest gas show rates reported by the mud logger corresponded to zone with lowest fracture spacing (five feet) or high fracture frequency. Four and one-half inch casting was successfully installed in the borehole and was equipped to isolate the horizontal section into eight (8) zones for future testing and stimulation operations. 6 refs., 48 figs., 10 tabs.

  7. A new scientific drilling infrastructure in Sweden

    NASA Astrophysics Data System (ADS)

    Rosberg, J.-E.; Lorenz, H.

    2012-04-01

    A new scientific drilling infrastructure is currently under commissioning at Lund University in southern Sweden and is intended primarily for Swedish scientific drilling projects. However, it will be available to the scientific community and even industry when not occupied. The drill rig, a crawler mounted Atlas Copco CT20, was funded by the Swedish Research Council (VR) after an application by the Swedish scientific drilling community under the lead of Prof. Leif Bjelm, Lund University. As a national resource it is, together with support of the Swedish Deep Drilling Program (SDDP) and the Swedish membership in ICDP, part of VR's commitment to scientific drilling. The Atlas Copco CT20 is a top modern, versatile diamond wireline core-drilling rig which can handle P, H and N sizes. It can operate on very small drill sites (500-800 m2) and, thus, leaves a minimal environmental footprint. The crawler makes the rig ideal for operations in remote locations. A total of only 3-4 truckloads is necessary for mobilization of the basic drilling equipment. Main technical specifications are: Depth capacity coring, based on vertical water filled hole: P-size to around 1050 m, hole size 123 mm and core size 85 mm. H-size to around 1600 m, hole size 96 mm and core size 63 mm. N-size to around 2500 m, hole size 76 mm and core size 48 mm. Weight: Complete rig including crawler, wet - 23500 kg Dimensions in (length, width, height) transport position: 11560 x 2500 x 3750 mm. Available in-hole equipment: Complete core retrieval system for PQ, HQ and NQ-sizes, including PHD, HRQ (V-Wall) and NRQ (V-Wall) drill rods covering the maximum drilling depth for each size (see rig depth capacity above). Both dual and triple tube for HQ and NQ-sizes. Casing advancers (PW, HW, NW and BW). Casing PWT, HWT, NW and BW. Bits and reamers. Additional equipment: Mud cleaning and mixing system. MWD-system (Measurements While Drilling). Cementing equipment. Fishing tools (Bowen Spear). Blow Out Preventer

  8. Ocean drilling ship chosen

    NASA Astrophysics Data System (ADS)

    Richman, Barbara T.

    The Sedco/BP 471, owned jointly by Sedco, Inc., of Dallas, Tex., and British Petroleum, has been selected as the drill ship for the Ocean Drilling Program (ODP). The contract, with a specified initial term of 4 years with 10 1-year options after that, is expected to be signed by mid March by Texas A&M University, the ODP science operator, and Sedco, Inc. Texas A&M will develop the design for scientific and laboratory spaces aboard the Sedco/BP 471 and will oversee the ship conversion. Testing and shakedown of the ship is scheduled for the coming autumn; the first scientific cruise is scheduled for next January.One year ago, the commercial drilling market sagged, opening up the option for leasing a commercial drill ship (Eos, February 22, 1983, p. 73). Previously, the ship of choice had been the Glomar Explorer; rehabilitating the former CIA salvage ship would have been extremely expensive, however.

  9. Drilling Productivity Report

    EIA Publications

    2017-01-01

    Energy Information Administration’s (EIA) new Drilling Productivity Report (DPR) takes a fresh look at oil and natural gas production, starting with an assessment of how and where drilling for hydrocarbons is taking place. The DPR uses recent data on the total number of drilling rigs in operation along with estimates of drilling productivity and estimated changes in production from existing oil and natural gas wells to provide estimated changes in oil and natural gas production for six key fields. EIA's approach does not distinguish between oil-directed rigs and gas-directed rigs because once a well is completed it may produce both oil and gas; more than half of the wells produce both.

  10. Sub-Ocean Drilling

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The National Science Foundation (NSF) initialized a new phase of exploration last year, a 10 year effort jointly funded by NSF and several major oil companies, known as the Ocean Margin Drilling Program (OMDP). The OMDP requires a ship with capabilities beyond existing drill ships; it must drill in 13,000 feet of water to a depth 20,000 feet below the ocean floor. To meet requirements, NSF is considering the conversion of the government-owned mining ship Glomar Explorer to a deep ocean drilling and coring vessel. Feasibility study performed by Donhaiser Marine, Inc. analyzed the ship's characteristics for suitability and evaluated conversion requirement. DMI utilized COSMIC's Ship Motion and Sea Load Computer program to perform analysis which could not be accomplished by other means. If approved for conversion, Glomar Explorer is expected to begin operations as a drillship in 1984.

  11. Deep-Sea Drilling.

    ERIC Educational Resources Information Center

    White, Stan M.

    1979-01-01

    Drilling during 1978 focused on three major geologic problems: the nature and origin of the oceanic crust, the nature and geologic history of the active continental margins, and the oceanic paleoenvironment. (Author/BB)

  12. Drilling into Mars

    NASA Image and Video Library

    2013-02-20

    This frame from an animation of NASA Curiosity rover shows the complicated suite of operations involved in conducting the rover first rock sample drilling on Mars and transferring the sample to the rover scoop for inspection.

  13. Subsurface drill string

    DOEpatents

    Casper, William L.; Clark, Don T.; Grover, Blair K.; Mathewson, Rodney O.; Seymour, Craig A.

    2008-10-07

    A drill string comprises a first drill string member having a male end; and a second drill string member having a female end configured to be joined to the male end of the first drill string member, the male end having a threaded portion including generally square threads, the male end having a non-threaded extension portion coaxial with the threaded portion, and the male end further having a bearing surface, the female end having a female threaded portion having corresponding female threads, the female end having a non-threaded extension portion coaxial with the female threaded portion, and the female end having a bearing surface. Installation methods, including methods of installing instrumented probes are also provided.

  14. Drill pipe protector development

    SciTech Connect

    Thomerson, C.; Kenne, R.; Wemple, R.P.

    1996-03-01

    The Geothermal Drilling Organization (GDO), formed in the early 1980s by the geothermal industry and the U.S. Department of Energy (DOE) Geothermal Division, sponsors specific development projects to advance the technologies used in geothermal exploration, drilling, and production phases. Individual GDO member companies can choose to participate in specific projects that are most beneficial to their industry segment. Sandia National Laboratories is the technical interface and contracting office for the DOE in these projects. Typical projects sponsored in the past have included a high temperature borehole televiewer, drill bits, muds/polymers, rotary head seals, and this project for drill pipe protectors. This report documents the development work of Regal International for high temperature geothermal pipe protectors.

  15. Drilling fluid filter

    DOEpatents

    Hall, David R.; Fox, Joe; Garner, Kory

    2007-01-23

    A drilling fluid filter for placement within a bore wall of a tubular drill string component comprises a perforated receptacle with an open end and a closed end. A hanger for engagement with the bore wall is mounted at the open end of the perforated receptacle. A mandrel is adjacent and attached to the open end of the perforated receptacle. A linkage connects the mandrel to the hanger. The linkage may be selected from the group consisting of struts, articulated struts and cams. The mandrel operates on the hanger through the linkage to engage and disengage the drilling fluid filter from the tubular drill string component. The mandrel may have a stationary portion comprising a first attachment to the open end of the perforated receptacle and a telescoping adjustable portion comprising a second attachment to the linkage. The mandrel may also comprise a top-hole interface for top-hole equipment.

  16. Deep-Sea Drilling.

    ERIC Educational Resources Information Center

    White, Stan M.

    1979-01-01

    Drilling during 1978 focused on three major geologic problems: the nature and origin of the oceanic crust, the nature and geologic history of the active continental margins, and the oceanic paleoenvironment. (Author/BB)

  17. Drilling fluid disposal

    SciTech Connect

    Nesbitt, L.E.; Sander, J.A.

    1981-01-01

    This paper attempts to review the effect of the regulatory process on the selection and handling of drilling fluids for proper disposal. It is shown that a maze of regulations and regulatory agencies coupled with uncertainty in interpretation of environmental data and an evolving system of disposal engineering will require industry action to monitor the area and derive a solid engineering basis for disposal of spent drilling fluid. 16 refs.

  18. Directional drilling pipelay

    SciTech Connect

    Langner, C.G.

    1987-10-20

    A method is described for laying a pipeline beneath a seabottom subject to ice gouging, comprising: forming a borehole with drilling means; gripping the inside of the borehole with at least one tractor; applying thrust from at least one tractor to propel the drilling means forward until a deep arcuate borehole is formed beneath the seabottom sufficiently deep to avoid ice gouging and inserting a pipeline into the borehole.

  19. In Congress: Drilling resolution

    NASA Astrophysics Data System (ADS)

    The following is the text of the resolution on continental scientific drilling passed by the Senate and the House of Representatives and signed into law by President Reagan on October 12.“…That to express the sense of the Congress that the Continental Scientific Drilling Program is an important national scientific endeavor, benefiting the commerce of the Nation, which should be vigorously pursued by government and the private sector.

  20. Update on slimhole drilling

    SciTech Connect

    Finger, J.T.

    1996-01-01

    Sandia National Laboratories manages the US Department of Energy program for slimhole drilling. The principal objective of this program is to expand proven geothermal reserves through increased exploration made possible by lower-cost slimhole drilling. For this to be a valid exploration method, however, it is necessary to demonstrate that slimholes yield enough data to evaluate a geothermal reservoir, and that is the focus of Sandia`s current research.

  1. Micro borehole drilling platform

    SciTech Connect

    1996-10-01

    This study by CTES, L.C. meets two main objectives. First, evaluate the feasibility of using coiled tubing (CT) to drill 1.0 inches-2.5 inches diameter directional holes in hard rocks. Second, develop a conceptual design for a micro borehole drilling platform (MBDP) meeting specific size, weight, and performance requirements. The Statement of Work (SOW) in Appendix A contains detailed specifications for the feasibility study and conceptual design.

  2. Modeling pellet impact drilling process

    NASA Astrophysics Data System (ADS)

    Kovalyov, A. V.; Ryabchikov, S. Ya; Isaev, Ye D.; Ulyanova, O. S.

    2016-03-01

    The paper describes pellet impact drilling which could be used to increase the drilling speed and the rate of penetration when drilling hard rocks. Pellet impact drilling implies rock destruction by metal pellets with high kinetic energy in the immediate vicinity of the earth formation encountered. The pellets are circulated in the bottom hole by a high velocity fluid jet, which is the principle component of the ejector pellet impact drill bit. The experiments conducted has allowed modeling the process of pellet impact drilling, which creates the scientific and methodological basis for engineering design of drilling operations under different geo-technical conditions.

  3. MACHINERY RESONANCE AND DRILLING

    SciTech Connect

    Leishear, R.; Fowley, M.

    2010-01-23

    New developments in vibration analysis better explain machinery resonance, through an example of drill bit chattering during machining of rusted steel. The vibration of an operating drill motor was measured, the natural frequency of an attached spring was measured, and the two frequencies were compared to show that the system was resonant. For resonance to occur, one of the natural frequencies of a structural component must be excited by a cyclic force of the same frequency. In this case, the frequency of drill bit chattering due to motor rotation equaled the spring frequency (cycles per second), and the system was unstable. A soft rust coating on the steel to be drilled permitted chattering to start at the drill bit tip, and the bit oscillated on and off of the surface, which increased the wear rate of the drill bit. This resonant condition is typically referred to as a motor critical speed. The analysis presented here quantifies the vibration associated with this particular critical speed problem, using novel techniques to describe resonance.

  4. Application of short-radius horizontal boreholes in the naturally fractured Yates field

    SciTech Connect

    Gilman, J.R.; Rothkopf, B.W. ); Bowzer, J.L. )

    1995-02-01

    This paper discusses the performance and simulation of short-radius horizontal boreholes being used in the Marathon-operated Yates field Unit in west Texas to minimize drawdown and therefore to reduce gas and water coning in a thin oil column. Yates is a very prolific field with extensive fracturing and high-quality reservoir rock. Superimposed on a high-density orthogonal fracture network are widely spaced regional joints with a strong directional tendency. Major questions are how these directional joints affect the horizontal-well performance and whether wells should be drilled parallel or perpendicular to the joints. Dual-permeability reservoir simulation studies were performed to study optimum orientation of the borehole with respect to the natural fracture network. Additionally, optimum well-completion elevation was studied. Forty-six vertical wells have been recompleted as short-radius horizontal boreholes since 1986. The large productivity increase of the horizontal boreholes compared with the previous vertical completions indicates that the wells are intersecting the regional joints.

  5. Innovations aid frontier offshore drilling

    SciTech Connect

    Hewlett, C.

    1986-04-14

    In the past 3 years, new water-depth records have been established for the drilling of exploration wells and for the installation of subsea completion systems. In addition, development of equipment for drilling and completing wells in harsh environments has been accelerating. Three significant systems, manufactured and installed during this time, have enabled the industry to expand its capabilities and extend its frontiers. The three developments, with the points that will be discussed, are: A riser system used in world-record water depth off the U.S. East Coast (major system components, computer analysis of flanged riser coupling, and modifications based on field input); A caisson drilling system installed off the East Coast of Canada designed for iceberg scouring conditions (design philosophy, unique design); Further riser system developments for deep-water and severe environmental conditions (design of riser tensioning ring that eliminates goosenecks and does not require removal of drape hoses when running/retrieving riser). Primary among the conclusions drawn from these and other developments is the solid technological base being developed for use in further extending industry hardware capabilities.

  6. While drilling system and method

    DOEpatents

    Mayes, James C.; Araya, Mario A.; Thorp, Richard Edward

    2007-02-20

    A while drilling system and method for determining downhole parameters is provided. The system includes a retrievable while drilling tool positionable in a downhole drilling tool, a sensor chassis and at least one sensor. The while drilling tool is positionable in the downhole drilling tool and has a first communication coupler at an end thereof. The sensor chassis is supported in the drilling tool. The sensor chassis has a second communication coupler at an end thereof for operative connection with the first communication coupler. The sensor is positioned in the chassis and is adapted to measure internal and/or external parameters of the drilling tool. The sensor is operatively connected to the while drilling tool via the communication coupler for communication therebetween. The sensor may be positioned in the while drilling tool and retrievable with the drilling tool. Preferably, the system is operable in high temperature and high pressure conditions.

  7. HYDRATE CORE DRILLING TESTS

    SciTech Connect

    John H. Cohen; Thomas E. Williams; Ali G. Kadaster; Bill V. Liddell

    2002-11-01

    The ''Methane Hydrate Production from Alaskan Permafrost'' project is a three-year endeavor being conducted by Maurer Technology Inc. (MTI), Noble, and Anadarko Petroleum, in partnership with the U.S. DOE National Energy Technology Laboratory (NETL). The project's goal is to build on previous and ongoing R&D in the area of onshore hydrate deposition. The project team plans to design and implement a program to safely and economically drill, core and produce gas from arctic hydrates. The current work scope includes drilling and coring one well on Anadarko leases in FY 2003 during the winter drilling season. A specially built on-site core analysis laboratory will be used to determine some of the physical characteristics of the hydrates and surrounding rock. Prior to going to the field, the project team designed and conducted a controlled series of coring tests for simulating coring of hydrate formations. A variety of equipment and procedures were tested and modified to develop a practical solution for this special application. This Topical Report summarizes these coring tests. A special facility was designed and installed at MTI's Drilling Research Center (DRC) in Houston and used to conduct coring tests. Equipment and procedures were tested by cutting cores from frozen mixtures of sand and water supported by casing and designed to simulate hydrate formations. Tests were conducted with chilled drilling fluids. Tests showed that frozen core can be washed out and reduced in size by the action of the drilling fluid. Washing of the core by the drilling fluid caused a reduction in core diameter, making core recovery very difficult (if not impossible). One successful solution was to drill the last 6 inches of core dry (without fluid circulation). These tests demonstrated that it will be difficult to capture core when drilling in permafrost or hydrates without implementing certain safeguards. Among the coring tests was a simulated hydrate formation comprised of coarse, large

  8. Horizontal oil well applications and oil recovery assessment. Volume 1: Success of horizontal well technology, Final report

    SciTech Connect

    Deskins, W.G.; McDonald, W.J.; Knoll, R.G.; Springer, S.J.

    1995-03-01

    Horizontal technology has been applied in over 110 formations in the USA. Volume I of this study addresses the overall success of horizontal technology, especially in less-publicized formations, i.e., other than the Austin Chalk, Bakken, and Niobrara. Operators in the USA. and Canada were surveyed on a formation-by-formation basis by means of a questionnaire. Response data were received describing horizontal well projects in 58 formations in the USA. and 88 in Canada. Operators responses were analyzed for trends in technical and economic success based on lithology (clastics and carbonates) and resource type (light oil, heavy oil, and gas). The potential impact of horizontal technology on reserves was also estimated. A forecast of horizontal drilling activity over the next decade was developed.

  9. Rotary and Rotary-Percussive Drilling of Lunar Simulant

    NASA Astrophysics Data System (ADS)

    Paulsen, G.; Zacny, K.; Maksymuk, M.; Wilson, J.; Santoro, C.; Chu, P.; Davis, K.; Roberts, D.; Kumar, N.; Kusack, A.

    2008-12-01

    Honeybee Robotics has been developing a rotary and a rotary-preliminary drill system for planetary exploration. This is a test drill with a power rating of 1000 Watt, whose purpose it to test various drill bits and augers in rotary and rotary percussive operation. It is not optimized for power or mass but rather to acquire qualitative drilling data such as penetration rate, power, and torque, temperature, Weight on Bit, vibration energy and others. In addition, the design of the drill allows it to acquire drill bit temperatures and use pneumatic system (instead of augers) for removing of rock cuttings. The drill is designed to have a 1 meter stroke. In addition to the drill system, we have been developing a matching split vacuum chamber, which is 3ft wide, 3ft deep and 11 feet tall. The chamber consists of two smaller chambers (84 inches tall and 48 inches tall) assembled on top of each other. This allows for additional flexibility if only a smaller chamber is required for some testing. The chamber will be able to maintain pressure of below 1 torr. Maintaining sample temperature will be achieved by closed loop cooling system down to -40C or by using liquid nitrogen that allows a temperature of 77K. The test samples can be varied raging from solid rocks, to loose soils to icy soils and pure ice. The sample holder could also be integrated with temperatures for acquiring of thermal data during drilling process.

  10. The rock melting approach to drilling

    SciTech Connect

    Cort, G.E.; Goff, S.J.; Rowley, J.C.; Neudecker, J.W. Jr.; Dreesen, D.S.; Winchester, W.

    1993-09-01

    During the early and mid-1970`s the Los Alamos National Laboratory demonstrated practical applications of drilling and coring using an electrically-heated graphite, tungsten, or molybdenum penetrator that melts a hole as it is slowly pushed through the rock or soil. The molten material consolidates into a rugged glass lining that prevents hole collapse; minimizes the potential for cross-flow, lost circulation, or the release of hazardous materials without casing operations; and produces no cuttings in porous or low density (<1.7 g/cc) formations. Because there are no drilling fluids required, the rock melting approach reduces waste handling, treatment and disposal. Drilling by rock melting has been demonstrated to depths up to 30 m in caliche, clay, alluvium, cobbles, sand, basalt, granite, and other materials. Penetrating large cobbles without debris removal was achieved by thermal stress fracturing and lateral extrusion of portions of the rock melt into the resulting cracks. Both horizontal and vertical holes in a variety of diameters were drilled in these materials using modular, self-contained field units that operate in remote areas. Because the penetrator does not need to rotate, steering by several simple approaches is considered quite feasible. Melting is ideal for obtaining core samples in alluvium and other poorly consolidated soils since the formed-in-place glass liner stabilizes the hole, encapsulates volatile or hazardous material, and recovers an undisturbed core. Because of the relatively low thermal conductivity of rock and soil materials, the heat-affected zone beyond the melt layer is very small, <1 inch thick. Los Alamos has begun to update the technology and this paper will report on the current status of applications and designs for improved drills.

  11. The single steel drilling caisson: A new arctic drilling system

    SciTech Connect

    Hippman, A.; Kelly, W.; Merritt, C.

    1983-10-01

    Dome's experience with a new mobile drilling unit - the Single Steel Drilling Caisson (SSDC) - is described. The SSDC was designed to enable offshore drilling operations in the Beaufort Sea to continue beyond the short open-water season during which drillships are capable of working. The operator's requirements for storage facilities and rig equipment are discussed with reference to the SSDC, which proved to be well suited to offshore arctic operations. The drilling and testing of the first well are described to illustrate the successful operation of this innovative drilling unit. Problems associated with Beaufort Sea operations are discussed with specific reference to ice management and drilling problems.

  12. 30 CFR 56.7009 - Drill helpers.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Drill helpers. 56.7009 Section 56.7009 Mineral... HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Drilling § 56.7009 Drill helpers. If a drill helper assists the drill operator during movement of a drill...

  13. 30 CFR 56.7009 - Drill helpers.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Drill helpers. 56.7009 Section 56.7009 Mineral... HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Drilling § 56.7009 Drill helpers. If a drill helper assists the drill operator during movement of a drill...

  14. 30 CFR 56.7009 - Drill helpers.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Drill helpers. 56.7009 Section 56.7009 Mineral... HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Drilling § 56.7009 Drill helpers. If a drill helper assists the drill operator during movement of a drill...

  15. 30 CFR 56.7009 - Drill helpers.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Drill helpers. 56.7009 Section 56.7009 Mineral... HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Drilling § 56.7009 Drill helpers. If a drill helper assists the drill operator during movement of a drill...

  16. 30 CFR 56.7009 - Drill helpers.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Drill helpers. 56.7009 Section 56.7009 Mineral... HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Drilling § 56.7009 Drill helpers. If a drill helper assists the drill operator during movement of a drill...

  17. Compact drilling and sample system

    NASA Technical Reports Server (NTRS)

    Gillis-Smith, Greg R.; Petercsak, Doug

    1998-01-01

    The Compact Drilling and Sample System (CDSS) was developed to drill into terrestrial, cometary, and asteroid material in a cryogenic, vacuum environment in order to acquire subsurface samples. Although drills were used by the Apollo astronauts some 20 years ago, this drill is a fraction of the mass and power and operates completely autonomously, able to drill, acquire, transport, dock, and release sample containers in science instruments. The CDSS has incorporated into its control system the ability to gather science data about the material being drilled by measuring drilling rate per force applied and torque. This drill will be able to optimize rotation and thrust in order to achieve the highest drilling rate possible in any given sample. The drill can be commanded to drill at a specified force, so that force imparted on the rover or lander is limited. This paper will discuss the cryo dc brush motors, carbide gears, cryogenic lubrication, quick-release interchangeable sampling drill bits, percussion drilling and the control system developed to achieve autonomous, cryogenic, vacuum, lightweight drilling.

  18. Prediction of magnitude of minimum horizontal stress from extended leak-off test conducted by the riser vessel CHIKYU

    NASA Astrophysics Data System (ADS)

    Lin, W.; Masago, H.; Yamamoto, K.; Kawamura, Y.; Saito, S.; Kinoshita, M.

    2007-12-01

    By means of introduction of the drilling vessel 'CHIKYU', riser drilling operations using mud fluid will be carried out in NanTroSEIZE Stage 2 for the first time as an oceanic scientific-drilling. For determining drilling operation parameter such as a mud density, a downhole experiment, leak-off test (LOT) or extended leak-off test (XLOT), is going to be implemented next to casing and cementing at each casing shoe during the drilling process. Data of the downhole experiment aimed for operation can also be used for an important scientific application to obtain in-situ stress information which is necessary for various cases of scientific drillings such as seismogenic zone drillings etc. In order to examine feasibility of the application of the LOT or XLOT data, we analyzed an example of XLOT conducted by the riser vessel CHIKYU during its Shimokita shakedown cruise, 2006; and then estimated magnitude of minimum principal stress in horizontal plane, Shmin. Moreover, we will propose the test procedures to possibly improve the quality of stress result from the applications of LOT or XLOT. The XLOT of Shimokita cruise was conducted under following conditions; 1180 m water depth, 525 mbsf (meter below seafloor) depth, 1030 kg/m3 fluid density (seawater) and 80 litter/min injection flow-rate. Estimated magnitude of the Shmin is equal to 18.3 MPa based on the assumption that fracture closure pressure balances with the minimum principal stress perpendicular to the fracture plane. For comparison, the vertical stress magnitude at the depth was estimated from density profile of core samples retrieved from the same borehole; and was equal to 20 MPa approximately. These two values can be considered to be not disagreement. Therefore, we can say that the XLOT data is valuable and practical for estimating the magnitude of minimum horizontal stress. From the viewpoint of determining stress magnitude, the XLOT is more essential rather than the LOT because it might be hardly to obtain

  19. Sidetracking technology for coiled tubing drilling

    SciTech Connect

    Leising, L.J.; Hearn, D.D.; Rike, E.A.

    1995-12-31

    Coiled tubing (CT) drilling is a rapidly growing new technology that has been used for shallow new wells and reentry applications. A new market has evolved as being a major application for CT drilling. This market is through-tubing drilling. The lower cost of mobilization of a coiled tubing unit (CTU) to an offshore platform or Arctic wellsite vs. a rotary rig provides additional economic incentive. In addition, the ease of drilling 4-3/4-in. and smaller boreholes with CT is an advantage in a region which does not have an established practice of slimhole drilling. The remaining key enabling technology for viable through-tubing drilling is the ability to sidetrack in casing below the tubing tail. The three technologies (cement sidetracking, whipstock in cement, and through-tubing whipstock) that have been developed for sidetracking are described in this paper. A mathematical model of forces, penetration rates, and torques for window milling with the cement sidetracking technique is presented. Window milling has been a {open_quotes}seat of the pants{close_quotes} operation in the past, to the authors` knowledge, this is the first published work on the mechanics of window milling. The analysis has shed much light on the interaction between motor bending stiffness, motor bend angle, and allowable advance rates for {open_quotes}time drilling.{close_quotes} The results from several yard tests are presented, and indicate some of the problems associated with sidetracking. The photographs of the sectioned hole/window illustrate the ledges caused downhole from {open_quotes}minor{close_quotes} bottomhole assembly (BHA) changes. The cement sidetrack technique has been successfully applied many times in the field, and the results of one of these field applications is presented.

  20. Field experience pins down uses for air drilling fluids

    SciTech Connect

    Lorenz, H.

    1980-05-12

    In undeveloped hydrocarbon provinces where background well data are not available, the savings gained by using air as the drilling fluid could offset the risks of drilling into formations unsuitable for air drilling. Drilling with air, mist, or foam is most beneficial in hard formations where high water flows are unlikely and water for the drilling fluid is scarce and expensive. Air-based fluids increase the bit penetration rate while lowering the water requirements and chemical-additive costs. Mist and foam can handle considerable formation water, whereas stiff or stable foams have high solids-carrying capabilities. Case histories from various parts of the world illustrate the advantages and shortcomings of air-based drilling fluids.

  1. Using an admittance algorithm for bone drilling procedures.

    PubMed

    Accini, Fernando; Díaz, Iñaki; Gil, Jorge Juan

    2016-01-01

    Bone drilling is a common procedure in many types of surgeries, including orthopedic, neurological and otologic surgeries. Several technologies and control algorithms have been developed to help the surgeon automatically stop the drill before it goes through the boundary of the tissue being drilled. However, most of them rely on thrust force and cutting torque to detect bone layer transitions which has many drawbacks that affect the reliability of the process. This paper describes in detail a bone-drilling algorithm based only on the position control of the drill bit that overcomes such problems and presents additional advantages. The implication of each component of the algorithm in the drilling procedure is analyzed and the efficacy of the algorithm is experimentally validated with two types of bones.

  2. New jack up designed for safe, efficient drilling

    SciTech Connect

    Not Available

    1993-05-10

    A recently built jack up has incorporated the latest automated drilling technology for safe operation in the harsh North Sea environment. Santa Fe drilling Co.'s Magellan jack up rig, delivered in August 1992, was designed to improve drilling operations and operate with zero discharge while keeping the rig workers removed from much of the ordinary dangerous rig operations. The rig underwent sea trials in early 1992 and demonstrated a 310-ft water depth rating for the central North Sea. The rig has complete onboard control of all fluids for a minimum impact on the marine environment. It is designed to maximize collection, retention, treatment, and monitoring of all effluent streams. No environmentally unacceptable solids or fluids are discharged, even during adverse drilling and weather conditions. Additionally, the rig engines are designed to minimize air pollution through use of a lean fuel injection system. The paper describes the exploration drilling; production drilling; automation and safety; and the handling of blowout preventers.

  3. ROPEC - ROtary PErcussive Coring Drill for Mars Sample Return

    NASA Technical Reports Server (NTRS)

    Chu, Philip; Spring, Justin; Zacny, Kris

    2014-01-01

    The ROtary Percussive Coring Drill is a light weight, flight-like, five-actuator drilling system prototype designed to acquire core material from rock targets for the purposes of Mars Sample Return. In addition to producing rock cores for sample caching, the ROPEC drill can be integrated with a number of end effectors to perform functions such as rock surface abrasion, dust and debris removal, powder and regolith acquisition, and viewing of potential cores prior to caching. The ROPEC drill and its suite of end effectors have been demonstrated with a five degree of freedom Robotic Arm mounted to a mobility system with a prototype sample cache and bit storage station.

  4. Mars Drilling Status

    NASA Technical Reports Server (NTRS)

    Mandell, Humboldt, C., Jr.

    2002-01-01

    This slide presentation reviews the current status of work to explore Mars beneath the surface of planet. One of the objective of this work is to enable further exploration of Mars by humans. One of the requirements for this is to find water on Mars. The presences of water is critical for Human Exploration and a permanent presence on Mars. If water is present beneath the surface it is the best chance of finding life on Mars. The presentation includes a timeline showing the robotic missions, those that have already been on Mars, and planned missions, an explanation of why do we want to drill on Mars, and some of the challenges, Also include are reviews of a missions that would drill 200 and 4,000 to 6,000 meters into the Martian bedrock, and a overview description of the drill. There is a view of some places where we have hopes of finding water.

  5. Drilling technology/GDO

    SciTech Connect

    Kelsey, J.R.

    1985-01-01

    The Geothermal Technology Division of the US Department of Energy is sponsoring two programs related to drilling technology. The first is aimed at development of technology that will lead to reduced costs of drilling, completion, and logging of geothermal wells. This program has the official title ''Hard Rock Penetration Mechanics.'' The second program is intended to share with private industry the cost of development of technology that will result in solutions to the near term geothermal well problems. This program is referred to as the ''Geothermal Drilling Organization''. The Hard Rock Penetration Mechanics Program was funded at $2.65M in FY85 and the GDO was funded at $1.0M in FY85. This paper details the past year's activities and accomplishments and projects the plans for FY86 for these two programs.

  6. Indian Ocean proposed drilling

    NASA Astrophysics Data System (ADS)

    Curray, Joseph R.

    1984-04-01

    Tentative plans for the Ocean Drilling Project (ODP) are for the drilling vessel SEDCO/BP 471 (Eos, March 13, 1984, p. 97) to work in the Indian Ocean during all or parts of 1987 and 1988. The Indian Ocean Advisory Panel of ODP solicits letters of intent or proposals for possible scientific ocean drilling during that period. All areas within the Indian Ocean and any important problems, including tectonics, nature of the lithosphere, paleoceanography, and sedimentary processes will be considered.Please send proposals, with appropriate charts and copies of pertinent data, in triplicate to the Office of Joint Oceanographic Institutions Deep Earth Sampling (JOIDES Office, Rosenstiel School of Marine and Atmospheric Science, University of Miami, 4600 Rickenbacker Causeway, Miami, FL 33149) and, if possible, also send one copy to the chairman or to any other members of the panel. Proposals and letters received before September 1 will be reviewed at the panel meeting scheduled for the first week of September.

  7. 13. RADIAL DRILL, ENGINE LATHE, DRILL PRESS, AND GRINDER (L ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. RADIAL DRILL, ENGINE LATHE, DRILL PRESS, AND GRINDER (L TO R)-LOOKING SOUTHEAST. - W. A. Young & Sons Foundry & Machine Shop, On Water Street along Monongahela River, Rices Landing, Greene County, PA

  8. Drill pipe corrosion control using an inert drilling fluid

    SciTech Connect

    Caskey, B.C.; Copass, K.S.

    1981-01-01

    The results of a geothermal drill pipe corrosion field test are presented. When a low-density drilling fluid was required for drilling a geothermal well because of an underpressured, fractured formation, two drilling fluids were alternately used to compare drill pipe corrosion rates. The first fluid was an air-water mist with corrosion control chemicals. The other fluid was a nitrogen-water mist without added chemicals. The test was conducted during November 1980 at the Baca Location in northern New Mexico. Data from corrosion rings, corrosion probes, fluid samples and flow line instrumentation are plotted for the ten day test period. It is shown that the inert drilling fluid, nitrogen, reduced corrosion rates by more than an order of magnitude. Test setup and procedures are also discussed. Development of an onsite inert gas generator could reduce the cost of drilling geothermal wells by extending drill pipe life and reducing corrosion control chemical costs.

  9. Underbalanced drilling: Issues of producing oil and gas while drilling

    SciTech Connect

    Tangedahl, M.J.; Axford, A.

    1997-07-01

    Advances in engineering and technology have developed new blowout preventers, specialized surface fluids control equipment and well control techniques for under balanced drilling. The new technology makes under balanced drilling faster, safer and less expensive. These devices and techniques reduce the risk of blowouts, when drilling with air, gas or gas cut drilling fluids while producing the zone of interest. Improved penetration rates, increased bit life, drilling cost reduction and the prevention of formation damage are benefits of drilling under balanced and specially designed BOP stacks and well control products are necessary to ensure success. The following outlines the content of this paper: History and Development of Rotating Well Control for Under Balanced Drilling; Rotating BOP and Under Balanced Drilling BOP Stack, including Land Based Operations and Offshore Operations; Design and Technical Review; Safety; Operating Considerations; Field History, An Operator`s Perspective; and Advantages.

  10. Accuracy of linear drilling in temporal bone using drill press system for minimally invasive cochlear implantation

    PubMed Central

    Balachandran, Ramya; Labadie, Robert F.

    2015-01-01

    Purpose A minimally invasive approach for cochlear implantation involves drilling a narrow linear path through the temporal bone from the skull surface directly to the cochlea for insertion of the electrode array without the need for an invasive mastoidectomy. Potential drill positioning errors must be accounted for to predict the effectiveness and safety of the procedure. The drilling accuracy of a system used for this procedure was evaluated in bone surrogate material under a range of clinically relevant parameters. Additional experiments were performed to isolate the error at various points along the path to better understand why deflections occur. Methods An experimental setup to precisely position the drill press over a target was used. Custom bone surrogate test blocks were manufactured to resemble the mastoid region of the temporal bone. The drilling error was measured by creating divots in plastic sheets before and after drilling and using a microscope to localize the divots. Results The drilling error was within the tolerance needed to avoid vital structures and ensure accurate placement of the electrode; however, some parameter sets yielded errors that may impact the effectiveness of the procedure when combined with other error sources. The error increases when the lateral stage of the path terminates in an air cell and when the guide bushings are positioned further from the skull surface. At contact points due to air cells along the trajectory, higher errors were found for impact angles of 45° and higher as well as longer cantilevered drill lengths. Conclusion The results of these experiments can be used to define more accurate and safe drill trajectories for this minimally invasive surgical procedure. PMID:26183149

  11. Accuracy of linear drilling in temporal bone using drill press system for minimally invasive cochlear implantation.

    PubMed

    Dillon, Neal P; Balachandran, Ramya; Labadie, Robert F

    2016-03-01

    A minimally invasive approach for cochlear implantation involves drilling a narrow linear path through the temporal bone from the skull surface directly to the cochlea for insertion of the electrode array without the need for an invasive mastoidectomy. Potential drill positioning errors must be accounted for to predict the effectiveness and safety of the procedure. The drilling accuracy of a system used for this procedure was evaluated in bone surrogate material under a range of clinically relevant parameters. Additional experiments were performed to isolate the error at various points along the path to better understand why deflections occur. An experimental setup to precisely position the drill press over a target was used. Custom bone surrogate test blocks were manufactured to resemble the mastoid region of the temporal bone. The drilling error was measured by creating divots in plastic sheets before and after drilling and using a microscope to localize the divots. The drilling error was within the tolerance needed to avoid vital structures and ensure accurate placement of the electrode; however, some parameter sets yielded errors that may impact the effectiveness of the procedure when combined with other error sources. The error increases when the lateral stage of the path terminates in an air cell and when the guide bushings are positioned further from the skull surface. At contact points due to air cells along the trajectory, higher errors were found for impact angles of [Formula: see text] and higher as well as longer cantilevered drill lengths. The results of these experiments can be used to define more accurate and safe drill trajectories for this minimally invasive surgical procedure.

  12. Equipment for the emplacement of heat-producing waste in long horizontal boreholes. [Horizontal vs vertical emplacement

    SciTech Connect

    Young, K.D.; Scully, L.W.; Fisk, A.; deBakker, P.; Friant, J.; Anderson, A.

    1983-01-01

    Emplacement of heat-producing waste in long horizontal holes may offer several technical and economic advantages over shallow vertical hole emplacement. Less of the host rock suffers damage as a result of drift construction; the heat from the waste can be isolated from the access drifts for long periods of time; and the amount of rock which must be excavated is much less than in traditional disposal scenarios. One of the major reasons that has been used to reject the long hole concept in the past and adhere to the shallow vertical hole concept is the equipment required to drill the holes and to emplace and retrieve the waste. Such equipment does not currently exist. It clearly is more difficult to drill a 600 to 1000 foot horizontal hole, possibly 3 to 4 feet in diameter, and place a canister of waste at the end of it than to drill a 30 foot vertical hole and lower the waste to the bottom. A liner, for emplacement hole stabilization, appears to be feasible by adapting existing technology for concrete slip forming or jacking in a steel liner. The conceptual design of the equipment to drill long horizontal holes, emplace waste and retrieve waste will be discussed. Various options in concept will be presented as well as their advantages and disadvantages. The operating scenario of the selected concept will be described as well as solutions to potential problems encountered.

  13. Plans for ocean drilling

    NASA Astrophysics Data System (ADS)

    Katzoff, Judith A.

    The international ocean drilling community plans to meet in July 1987 to decide on some of the scientific goals of the Ocean Drilling Program (ODP) for the next 5 years. An all-day Union session is being held at the AGU Spring Meeting in Baltimore, Md., “to organize and energize the U.S. marine science community” in preparation for that meeting, according to session chairman Garrett Brass, of the Rosenstiel School of Marine and Atmospheric Science at the University of Miami (Miami, Fla.).

  14. Drilling mud proposal

    SciTech Connect

    Steed, W.

    1981-12-01

    A discussion of the disposal of drilling fluids from Texas oil fields was presented. The most common is the transport of the drilling mud to approved landfills. This requires that the waste be fresh waste base mud only, contained in the pit, and be maintained oil free. Other approved methods of disposal include treatment with discharge of effluent to surface streams, land application on farm land (with owner's permission), and subsurface disposal. Some common illegal disposal methods included dumping on roadsides or private property (without owner's permission).

  15. 31. VIEW OF DRILL HALL FROM NORTH END OF DRILL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    31. VIEW OF DRILL HALL FROM NORTH END OF DRILL FLOOR FACING SOUTH. SHOWS EAST AND WEST BALCONIES, VEHICLE ENTRANCE AT THE SOUTHWEST CORNER OF THE DRILL FLOOR, THE CONCESSION STAND IN THE SOUTHEAST CORNER OF THE DRILL FLOOR AND THE FOUR WINDOWS IN THE SOUTH TRUSS SPACE. NOTE CRACKS IN THE UPPER RIGHT CORNER (WEST) OF THE SOUTH WALL. - Yakima National Guard Armory, 202 South Third Street, Yakima, Yakima County, WA

  16. 1997 Mid-to-large directional drilling rig census

    SciTech Connect

    1997-10-01

    Pipeline and Gas Journal`s 1997 census of mid-to-large horizontal directional drilling contractors demonstrates the continued growth and popularity of this technology. For the purpose of this census, the authors have used the general industry definition of a mid-sized rig--over 50,000 pounds and less than 100,000 pounds of pullback force. Large rigs are those defined as having over 100,000 pounds of pullback force. Data are presented on the company name, address, phone and FAX numbers, specifications of drilling rigs, and operational area of the company. Approximately 47 companies are listed.

  17. DEVELOPMENT OF NEW DRILLING FLUIDS

    SciTech Connect

    David B. Burnett

    2003-08-01

    The goal of the project has been to develop new types of drill-in fluids (DIFs) and completion fluids (CFs) for use in natural gas reservoirs. Phase 1 of the project was a 24-month study to develop the concept of advanced type of fluids usable in well completions. Phase 1 tested this concept and created a kinetic mathematical model to accurately track the fluid's behavior under downhole conditions. Phase 2 includes tests of the new materials and practices. Work includes the preparation of new materials and the deployment of the new fluids and new practices to the field. The project addresses the special problem of formation damage issues related to the use of CFs and DIFs in open hole horizontal well completions. The concept of a ''removable filtercake'' has, as its basis, a mechanism to initiate or trigger the removal process. Our approach to developing such a mechanism is to identify the components of the filtercake and measure the change in the characteristics of these components when certain cleanup (filtercake removal) techniques are employed.

  18. Conquering Alaska's arctic drilling problems - 2. Drilling procedures

    SciTech Connect

    Moore, S.D.

    1981-06-01

    A discussion is presented of ARCO's solutions to the drilling problems an oil company faces in developing an arctic oil and gas field. Outlined are the following topics: surface casing hole; direcitonal drilling; Fondu cement; intermediate casing; downsqueeze procedure; and, drilling to TD.

  19. Demonstration of river crossing technology for installation of environmental horizontal wells: AMH-6 and AMH-7 installation report

    SciTech Connect

    Moore, D. B.

    1993-07-01

    The Department of Energy`s (DOE) Office of Technology Development initiated an integrated demonstration of innovative technologies and systems for cleanup of volatile organic compounds (VOCs) in soils and groundwater. This drilling project is part of the directional drilling task for the integrated technology demonstration at the Savannah River Site (SRS). One of the objectives of the drilling task is the demonstration of multiple drilling technologies. The technologies can then be compared and evaluated in terms of technical performance and cost effectiveness. Petroleum horizontal well technology and utility industry horizontal well technology have been previously demonstrated at the SRS. The petroleum industry directional drilling technology was demonstrated by Eastman Christensen Environmental Corporation (ECEC). ECEC directionally drilled and installed four horizontal wells in the M Area. Charles Machine Works, working with Sandia National Laboratory, demonstrated a utility industry directional drilling technology by installing one horizontal well in the M Area. The demonstration that is the subject of this report involved river crossing horizontal well technology for the installation of two M-Area Settling Basin soil gas extraction wells.

  20. Intelligent Detection of Drill Wear

    NASA Astrophysics Data System (ADS)

    Liu, T. I.; Chen, W. Y.; Anatharaman, K. S.

    1998-11-01

    Backpropagation neural networks (BPNs) were used for on-line detection of drill wear. The neural network consisted of three layers: input, hidden, and output. The input vector comprised drill size, feed rate, spindle speed, and eight features obtained by processing the thrust and torque signals. The output was the drill wear state which either usable or failure. Drilling experiments with various drill sizes, feed rates and spindle speeds were carried out. The learning process was performed effectively by utilising backpropagation with smoothing and an activation function slope. The on-line detection of drill wear states using BPNs achieved 100% reliability even when the drill size, feed rate and spindle speed were changed. In other words, the developed on-line drill wear detection systems have very high robustness and hence can be used in very complex production environments, such as flexible manufacturing systems.

  1. Stroke Drills for Swimming Instructors.

    ERIC Educational Resources Information Center

    Cahill, Peter J.

    1982-01-01

    Stroke drills to be used by swimming instructors to teach four competitive swim strokes are described. The drills include: one arm swims; (2) alternative kicks; (3) fist swims; and (4) catch-up strokes. (JN)

  2. Reaching Water: Planetary Deep Drilling

    NASA Astrophysics Data System (ADS)

    Glass, B.; Bergman, D.; Davis, R.; Hoftun, C.; Lee, P.; Johansen, B.

    2017-02-01

    Deeper drilling to 100m depths is easy on Earth, but an extreme challenge on other solar system bodies. Deeper planetary subsurface access into ocean worlds or to the Mars cryosphere is possible with new drilling concepts.

  3. Stroke Drills for Swimming Instructors.

    ERIC Educational Resources Information Center

    Cahill, Peter J.

    1982-01-01

    Stroke drills to be used by swimming instructors to teach four competitive swim strokes are described. The drills include: one arm swims; (2) alternative kicks; (3) fist swims; and (4) catch-up strokes. (JN)

  4. Combination drilling and skiving tool

    DOEpatents

    Stone, William J.

    1989-01-01

    A combination drilling and skiving tool including a longitudinally extending hollow skiving sleeve slidably and concentrically mounted on a right-handed twist drill. Dogs or pawls provided on the internal periphery of the skiving sleeve engage with the helical grooves of the drill. During a clockwise rotation of the tool, the drill moves downwardly and the sleeve translates upwardly, so that the drill performs a drilling operation on a workpiece. On the other hand, the drill moves upwardly and the sleeve translates downwardly, when the tool is rotated in a counter-clockwise direction, and the sleeve performs a skiving operation. The drilling and skiving operations are separate, independent and exclusive of each other.

  5. Proposed Drill Sites

    DOE Data Explorer

    Lane, Michael

    2013-06-28

    Proposed drill sites for intermediate depth temperature gradient holes and/or deep resource confirmation wells. Temperature gradient contours based on shallow TG program and faults interpreted from seismic reflection survey are shown, as are two faults interpreted by seismic contractor Optim but not by Oski Energy, LLC.

  6. Emergency Simulation Drill

    NASA Image and Video Library

    2013-12-04

    ISS038-E-011708 (4 Dec. 2013) --- In the International Space Station?s Zvezda Service Module, Russian cosmonaut Sergey Ryazanskiy, Expedition 38 flight engineer, reads a procedures checklist during an emergency simulation drill with participation from flight controllers on the ground. During the exercise, the crew practiced emergency communication and procedures in response to a predetermined scenario such as pressure leak.

  7. New generation drill rigs

    SciTech Connect

    Not Available

    1980-06-01

    Six new drilling rigs, all designed for use under arctic conditions, are described briefly as to use, proposed location, construction company, and state of completion. Better ideas for all phases of arctic operations have been incorporated into design of these rigs. Some of the rigs are adaptable for Beaufort Sea offshore operations. (BLM)

  8. Red sea drillings.

    PubMed

    Ross, D A; Whitmarsh, R B; Ali, S A; Boudreaux, J E; Coleman, R; Fleisher, R L; Girdler, R; Manheim, F; Matter, A; Nigrini, C; Stoffers, P; Supko, P R

    1973-01-26

    Recent drilling in the Red Sea has shown that much of the basin is underlain by evaporites of a similar age to that of evaporites found in the Mediterranean Sea. These evaporites and their structural positions indicate that other brine areas are present-and, indeed, several others have been discovered.

  9. Drill Press Work Sample.

    ERIC Educational Resources Information Center

    Shawsheen Valley Regional Vocational-Technical High School, Billerica, MA.

    This manual contains a work sample intended to assess a handicapped student's interest in and to screen interested students into a training program in basic machine shop I. (The course is based on the entry level of the drill press operator.) Section 1 describes the assessment, correlates the work performed and worker traits required for…

  10. Ocean Drilling Simulation Activity.

    ERIC Educational Resources Information Center

    Telese, James A.; Jordan, Kathy

    The Ocean Drilling Project brings together scientists and governments from 20 countries to explore the earth's structure and history as it is revealed beneath the oceans' basins. Scientific expeditions examine rock and sediment cores obtained from the ocean floor to learn about the earth's basic processes. The series of activities in this…

  11. Well completion report on installation of horizontal wells for in-situ remediation tests

    SciTech Connect

    Kaback, D.S.; Looney, B.B.; Corey, J.C.; Wright, L.M.

    1989-08-01

    A project to drill and install two horizontal vapor extraction/air-injection wells at the Savannah River Site (SRS), Aiken, South Carolina, was performed in September and October of 1988. This study was performed to test the feasibility of horizontal drilling technologies in unconsolidated sediments and to evaluate the effectiveness of in-situ air stripping of volatile organics from the ground water and unsaturated soils. A tremendous amount of knowledge was obtained during the drilling and installation of the two test wells. Factors of importance to be considered during design of another horizontal well drilling program follow. (1) Trips in and out of the borehole should be minimized to maintain hole stability. No reaming to enlarge the hole should be attempted. (2) Drilling fluid performance should be maximized by utilizing a low solids, low weight, moderate viscosity, high lubricity fluid. Interruption of drilling fluid circulation should be minimized. (3) Well materials should possess adequate flexibility to negotiate the curve. A flexible guide should be attached to the front of the well screen to guide the screen downhole. (4) Sands containing a minor amount of clay are recommended for completion targets, as better drilling control in the laterals was obtained in these sections.

  12. Pros and cons of hydraulic drilling

    SciTech Connect

    Not Available

    1984-06-01

    The advantages and disadvantages of using hydraulic drilling are discussed. The low maintenance, energy efficiency, drilling speeds, and operating costs are the main advantages of the hydraulic drills. The economics and maintenance of air drills are also compared.

  13. Modified Cobalt Drills With Oil Passages

    NASA Technical Reports Server (NTRS)

    Hutchison, E.; Richardson, D.

    1986-01-01

    Oil forced through drill shanks to lubricate cutting edges. Drill bits cooled and lubricated by oil forced through drill shanks and out holes adjacent to bits. This cooling technique increases drillbit life and allows increased drill feed rates.

  14. Modified Cobalt Drills With Oil Passages

    NASA Technical Reports Server (NTRS)

    Hutchison, E.; Richardson, D.

    1986-01-01

    Oil forced through drill shanks to lubricate cutting edges. Drill bits cooled and lubricated by oil forced through drill shanks and out holes adjacent to bits. This cooling technique increases drillbit life and allows increased drill feed rates.

  15. Horizontal Cross Bracing Detail, Vertical Cross Bracing Detail, Horizontal Cross ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Horizontal Cross Bracing Detail, Vertical Cross Bracing Detail, Horizontal Cross Bracing Detail, Vertical Cross Bracing-End Detail - Cumberland Covered Bridge, Spanning Mississinewa River, Matthews, Grant County, IN

  16. Drilling Precise Orifices and Slots

    NASA Technical Reports Server (NTRS)

    Richards, C. W.; Seidler, J. E.

    1983-01-01

    Reaction control thrustor injector requires precisely machined orifices and slots. Tooling setup consists of rotary table, numerical control system and torque sensitive drill press. Components used to drill oxidizer orifices. Electric discharge machine drills fuel-feed orifices. Device automates production of identical parts so several are completed in less time than previously.

  17. Drilling head method and apparatus

    SciTech Connect

    Johnston, V. R.

    1985-07-30

    A rotary drilling head wherein rotary friction between the rotary spindle assembly and the spindle housing is limited by improvements in bearing and seal lubrication and by seal structure such that the gripping action of a resiliently flexible packer on a drill string provides a rotary drive connection sufficient to impart rotation to the spindle assembly through rotation of the drill string.

  18. Hunt energy sets Texas drilling record

    SciTech Connect

    Pierce, D.; Rogers, W.

    1983-01-01

    Describes how, in addition to being the fourth deepest ever drilled, a Texas well became the deepest successful completion ever achieved, with production casing run to 29,668 ft. Topics include prespud planning and well completion. Completion work involving perforating, displacing, and running tubing was accomplished with a drilling rig. Christmas tree and 15,000-psi wellhead were built to Class 3 critical service specifications and witnessed with third-party inspection. Tubing tree and choke will be protected by a special high-temperature inhibitor program which will inject inhibitor down the annulus and recapture it on the surface.

  19. Reaching 1 m deep on Mars: the Icebreaker drill.

    PubMed

    Zacny, K; Paulsen, G; McKay, C P; Glass, B; Davé, A; Davila, A F; Marinova, M; Mellerowicz, B; Heldmann, J; Stoker, C; Cabrol, N; Hedlund, M; Craft, J

    2013-12-01

    The future exploration of Mars will require access to the subsurface, along with acquisition of samples for scientific analysis and ground-truthing of water ice and mineral reserves for in situ resource utilization. The Icebreaker drill is an integral part of the Icebreaker mission concept to search for life in ice-rich regions on Mars. Since the mission targets Mars Special Regions as defined by the Committee on Space Research (COSPAR), the drill has to meet the appropriate cleanliness standards as requested by NASA's Planetary Protection Office. In addition, the Icebreaker mission carries life-detection instruments; and in turn, the drill and sample delivery system have to meet stringent contamination requirements to prevent false positives. This paper reports on the development and testing of the Icebreaker drill, a 1 m class rotary-percussive drill and triple redundant sample delivery system. The drill acquires subsurface samples in short, approximately 10 cm bites, which makes the sampling system robust and prevents thawing and phase changes in the target materials. Autonomous drilling, sample acquisition, and sample transfer have been successfully demonstrated in Mars analog environments in the Arctic and the Antarctic Dry Valleys, as well as in a Mars environmental chamber. In all environments, the drill has been shown to perform at the "1-1-100-100" level; that is, it drilled to 1 m depth in approximately 1 hour with less than 100 N weight on bit and approximately 100 W of power. The drilled substrate varied and included pure ice, ice-rich regolith with and without rocks and with and without 2% perchlorate, and whole rocks. The drill is currently at a Technology Readiness Level (TRL) of 5. The next-generation Icebreaker drill weighs 10 kg, which is representative of the flightlike model at TRL 5/6.

  20. The Foinaven field: Facing the new frontier drilling challenges

    SciTech Connect

    Jackson, G.; Jenkins, M.; Cameron, C.; Reed, H.

    1996-02-01

    The opening up of the West of Shetland province presents a new range of challenges and opportunities from those encountered in nearby North Sea oil fields. Drilling and operational problems have to be faced in an even harsher and more remote environment -- the nearest landfall is the Shetland Islands, 100 miles to the east, but seas are from the Atlantic with a significantly larger and longer swell. The results can be seen in the progress that has been made in the 21 months of well construction activities, from exploration drilling to the laying of subsea hardware production systems. Nineteen exploration wells have been drilled; three Foinaven development wells have been completed with Christmas trees on and tested; nine further conductors have been set on the Foinaven drill sites, with intermediate casings run and installed in three of those; and two appraisal wells have been successfully completed with extended well tests. But in this period of intense activity several lessons can be learned for the oil industry worldwide. This paper reviews the engineering problems and materials selection associated with this development. It includes information on bit selection, hole stability, drilling challenges, drilling fluids, tool reliability, coring equipment, horizontal methods, and well testing and completion.

  1. How ARCO drills high-angle wells offshore Indonesia

    SciTech Connect

    Tjondrodiputro, B.; Eddyarso, H.; Jones, K. )

    1993-03-01

    Atlantic Richfield Indonesia, Inc. (ARII) drilled and completed 28 high-angle wells since early 1986 in Bima, Papa and FF fields in the Offshore North West Java Sea (ONWJ) contract area. Early wells were drilled with conventional rotary bottomhole assemblies (BHAs); introduction of a steerable tool and MWD subsequently increased efficiency and reduced drilling costs. Both lignosulfonate and dispersed pac polymer muds have been used with good success. Cost to drill a high-angle well has been only marginally more than that of a 45[degree] directional well. Elimination of open hole logging and use of preperforated liners have reduced drilling costs by 10%. Production performance for wells has been higher than for vertical or low-angle wells. High-angle wells in Bima have outperformed offset vertical wells and are classified as a success. However, horizontal wells in Papa, which has a strong bottom-water drive, have not shown any improved recovery over conventional wells. The new well in FF field is still being evaluated. In this first of a two-part report, high-angle drilling operations including well planning, BHA selection, casing and mud programs, hole cleaning and logging are described. Specific wells in the Bima area are discussed as examples.

  2. Amoco`s test facility develops new drilling technology

    SciTech Connect

    Behr, S.; Oster, J.; Warren, T.

    1995-10-01

    Amoco Exploration and Production`s Catoosa Test Facility (CTF), located in Catoosa, Oklahoma, 20 mi northeast of Tulsa, drills more than a dozen holes a year to average depths greater than 1,300 ft in highly representative sedimentary rocks using a large converted-snubbing type rig and a small directional drilling unit. Amoco uses the facility for proving its own R and D drilling and completion concepts and addressing specific problems from its many international operating units. Another 15-20% of the rig time is leased to service companies for commercial tool development. This article describes how: CTF was conceived and developed starting in 1985; The primary ``big rig`` is operated and what its capabilities are; Drilling data is collected and handled; and The unique pre-drilled hole system is used to minimize rig moves. Also discussed briefly is the smaller workover type rig used for short-radius horizontal drilling tests and what goals the operators see for present and future CTF operations.

  3. Evaluation of an air drilling cuttings containment system

    SciTech Connect

    Westmoreland, J.

    1994-04-01

    Drilling at hazardous waste sites for environmental remediation or monitoring requires containment of all drilling fluids and cuttings to protect personnel and the environment. At many sites, air drilling techniques have advantages over other drilling methods, requiring effective filtering and containment of the return air/cuttings stream. A study of. current containment methods indicated improvements could be made in the filtering of radionuclides and volatile organic compounds, and in equipment like alarms, instrumentation or pressure safety features. Sandia National Laboratories, Dept. 61 11 Environmental Drilling Projects Group, initiated this work to address these concerns. A look at the industry showed that asbestos abatement equipment could be adapted for containment and filtration of air drilling returns. An industry manufacturer was selected to build a prototype machine. The machine was leased and put through a six-month testing and evaluation period at Sandia National Laboratories. Various materials were vacuumed and filtered with the machine during this time. In addition, it was used in an actual air drive drilling operation. Results of these tests indicate that the vacuum/filter unit will meet or exceed our drilling requirements. This vacuum/filter unit could be employed at a hazardous waste site or any site where drilling operations require cuttings and air containment.

  4. Numerical and experimental analyses of drills used in osteosynthesis.

    PubMed

    Basiaga, Marcin; Paszenda, Zbigniew; Szewczenko, Janusz; Kaczmarek, Marcin

    2011-01-01

    This paper presents the results of numerical analysis and experimental studies of the process of bone drilling using drills applied in osteosynthesis procedures. In the studies, two surgical drills with a diameter d = 4.5 mm and varying in drill point geometry 2κ were used. Thermal analysis based on FEM allowed determining the distribution of temperatures generated in the bone as a function of rotational speed of the drill. The results indicate that both drill point geometry and rotational speed of the drill have influence on temperatures generated in bone tissue. Additionally, the range was determined for possible values of rotational speed, which does not initiate the process of thermal necrosis of bone. The experimental studies of the process of drilling in a femur model showed the impact of drill point geometry on the values describing the cutting process. It was concluded that the highest values of torques and axial forces during cutting occur in the tools with angle 2κ₂ = 120°.

  5. Mixer for drill cuttings and drilling mud on a drilling location

    SciTech Connect

    van der Laan, J. G. J.; Entrop, W.

    1985-05-14

    A device for mixing of liquids and particulate solids, such as for instance a drilling liquid and drill cuttings on a drilling location. This drilling location can be a deep well drilled for gas and/or oil by means of a drilling tower on-or off-shore. The invention provides an elongated, rectangular open mixing tank on which a series of replacable agitating units having their axes in one vertical plane is mounted. The agitating devices each comprise a unit having a rotatably driven head carrying two support arms of unequal length which each support a mixing screw projecting into the mixture of liquids and particulate solids. This arrangement provides a thorough mixture of the drilling liquid, having a high viscosity and high specific gravity, with the drill cuttings frequently comprising heavy clay and/or rock particles.

  6. A new method for overhead drilling.

    PubMed

    Rempel, David; Star, Demetra; Barr, Alan; Gibbons, Billy; Janowitz, Ira

    2009-12-01

    In the construction sector, overhead drilling into concrete or metal ceilings is a strenuous task associated with shoulder, neck and back musculoskeletal disorders due to the large applied forces and awkward arm postures. Two intervention devices, an inverted drill press and a foot lever design, were developed then compared to the usual method by construction workers performing their normal overhead drilling activities (n = 14). While the intervention devices were rated as less fatiguing than the usual method, their ratings on usability measures were worse than the usual method. The study demonstrates that the intervention devices can reduce fatigue; however, additional modifications are necessary in order to improve usability and productivity. Devices designed to improve workplace safety may need to undergo several rounds of field testing and modification prior to implementation.

  7. Accuracy of a direct drill-guiding system with minimal tolerance of surgical instruments used for implant surgery: a prospective clinical study

    PubMed Central

    2016-01-01

    PURPOSE A recently introduced direct drill-guiding implant surgery system features minimal tolerance of surgical instruments in the metal sleeve by using shank-modified drills and a sleeve-incorporated stereolithographic guide template. The purpose of this study was to evaluate the accuracy of this new guided surgery system in partially edentulous patients using geometric analyses. MATERIALS AND METHODS For the study, 21 implants were placed in 11 consecutive patients using the direct drill-guiding implant surgery system. The stereolithographic surgical guide was fabricated using cone-beam computed tomography, digital scanning, computer-aided design and computer-assisted manufacturing, and additive manufacturing processes. After surgery, the positional and angular deviations between planned and placed implants were measured at the abutment level using implant-planning software. The Kruskal-Wallis test and Mann-Whitney U test were used to compare the deviations (α=.05). RESULTS The mean horizontal deviations were 0.593 mm (SD 0.238) mesiodistally and 0.691 mm (SD 0.344) buccolingually. The mean vertical deviation was 0.925 mm (SD 0.376) occlusogingivally. The vertical deviation was significantly larger than the horizontal deviation (P=.018). The mean angular deviation was 2.024 degrees (SD 0.942) mesiodistally and 2.390 degrees (SD 1.142) buccolingually. CONCLUSION The direct drill-guiding implant surgery system demonstrates high accuracy in placing implants. Use of the drill shank as the guiding component is an effective way for reducing tolerance. PMID:27350855

  8. Recovery of bypassed oil in the Dundee Formation using horizontal drains, Quarterly technical report, 1/1/97--3/31/97

    SciTech Connect

    1997-03-30

    interval were recovered from a vertical borehole at the same surface location. The addition of several horizontal wells will likely add another 2 million bbls (or more) to the cumulative production of the field over the next few years. If other abandoned Dundee fields are re-developed in a similar manner, the additional oil produced could exceed 80 million barrels. Additional project work involved the characterization of 28 other Dundee fields in Michigan to aid in determining appropriate additional candidates for development through horizontal drilling. Further quantification of reservoir parameters such as importance of fracturing, fracture density, and irregularity of the dolomitized surface at the top of the reservoir will help in designing the optimal strategy for horizontal drilling. The project was a cooperative venture involving the US Department of Energy, Michigan Technological University (MTU), Western Michigan University (WMU), and Terra Energy (now Cronus Development Co.) in Traverse City, MI.

  9. 30 CFR 57.7009 - Drill helpers.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Drill helpers. 57.7009 Section 57.7009 Mineral... HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Drilling-Surface Only § 57.7009 Drill helpers. If a drill helper assists the drill operator during movement...

  10. 30 CFR 57.7009 - Drill helpers.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Drill helpers. 57.7009 Section 57.7009 Mineral... HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Drilling-Surface Only § 57.7009 Drill helpers. If a drill helper assists the drill operator during movement...

  11. 30 CFR 57.7009 - Drill helpers.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Drill helpers. 57.7009 Section 57.7009 Mineral... HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Drilling-Surface Only § 57.7009 Drill helpers. If a drill helper assists the drill operator during movement...

  12. 30 CFR 57.7009 - Drill helpers.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Drill helpers. 57.7009 Section 57.7009 Mineral... HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Drilling-Surface Only § 57.7009 Drill helpers. If a drill helper assists the drill operator during movement...

  13. 30 CFR 57.7009 - Drill helpers.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Drill helpers. 57.7009 Section 57.7009 Mineral... HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Drilling-Surface Only § 57.7009 Drill helpers. If a drill helper assists the drill operator during movement...

  14. Drilling subsurface wellbores with cutting structures

    DOEpatents

    Mansure, Arthur James; Guimerans, Rosalvina Ramona

    2010-11-30

    A system for forming a wellbore includes a drill tubular. A drill bit is coupled to the drill tubular. One or more cutting structures are coupled to the drill tubular above the drill bit. The cutting structures remove at least a portion of formation that extends into the wellbore formed by the drill bit.

  15. Effectiveness of Computerized Drill and Practice Games in Teaching Basic Math Facts.

    ERIC Educational Resources Information Center

    Christensen, Carol A.; Gerber, Michael M.

    1990-01-01

    Thirty elementary-level learning-disabled and 30 nondisabled students were trained on addition using either a drill-and-practice task within an arcade gamelike context or a straightforward drill. The straightforward drill was more effective than the game format for learning-disabled students. (Author/JDD)

  16. Congress asks for drilling plans

    NASA Astrophysics Data System (ADS)

    Andrews, Robert S.

    The Interagency Coordinating Group on Continental Scientific Drilling develops policy to guide long-term drilling plans for the Department of Energy, National Science Foundation, and U.S. Geological Survey. ICG has already cooperated on several drilling projects, such as those at Salton Sea, Long Valley, and Cajon Pass in California, and Valles caldera in New Mexico.Congress will soon pass the Continental Scientific Drilling and Exploration Act, S. 52 and H.R. 2737. The bill requires ICG to prepare a report that outlines a national program of scientific drilling.

  17. Drilling techniques for osteochondritis dissecans.

    PubMed

    Heyworth, Benton E; Edmonds, Eric W; Murnaghan, M Lucas; Kocher, Mininder S

    2014-04-01

    Although the advanced stages of osteochondritis dissecans remain challenging to treat, most early-stage lesions in skeletally immature patients, if managed appropriately, can be stimulated to heal. For stable lesions that do not demonstrate adequate healing with nonoperative measures, such as activity modification, weight-bearing protection, or bracing, drilling of the subchondral bone has emerged as the gold standard of management. Several techniques of drilling exist, including transarticular drilling, retroarticular drilling, and notch drilling. Although each technique has been shown to be effective in small retrospective studies, higher-powered prospective comparative studies are needed to better elucidate their relative advantages and disadvantages.

  18. Cost effectiveness of sonic drilling

    SciTech Connect

    Masten, D.; Booth, S.R.

    1996-03-01

    Sonic drilling (combination of mechanical vibrations and rotary power) is an innovative environmental technology being developed in cooperation with DOE`s Arid-Site Volatile Organic Compounds Integrated Demonstration at Hanford and the Mixed Waste Landfill Integrated Demonstration at Sandia. This report studies the cost effectiveness of sonic drilling compared with cable-tool and mud rotary drilling. Benefit of sonic drilling is its ability to drill in all types of formations without introducing a circulating medium, thus producing little secondary waste at hazardous sites. Progress has been made in addressing the early problems of failures and downtime.

  19. Biological treatment of drilling waste

    SciTech Connect

    Perie, F.H.; Seris, J.L.; Martignon, A.P.

    1995-12-01

    Off shore operators are now faced with more stringent forthcoming regulations regarding waste discharge. Several aspects are to be taken into account when considering waste disposal in the sea; among them, the total amount of COD and the toxicity. While, in many regards, the problem caused by the processing fluids toxicity has been addressed, the elimination of residual COD from the waste is yet to be solved. Biodegradation of drilling waste is one of the major routes taken by third party contracters to address the reduction of COD in sea-discharged cuttings. This report describes a technique specifically developed to enhance drilling waste biodegradation under selected conditions. The suggested treatment involved biological catalysts used in conjunction with or prior to the biodegradation. We demonstrated that the considered environment-compatible substitute for oil-based mud could be more efficiently biodegraded if an enzymatic pretreatment was carried out prior to or during the actual biodegradation. The biodegradation rate, expressed as CO{sub 2} envolvement, was significantly higher in lipase-treated cultures. In addition, we demonstrated that this treatment was applicable to substrates in emulsion, suspension, or adsorbed on solid.

  20. Wintertime Air Quality Impacts from Oil and Natural Gas Drilling Operations in the Bakken Formation Region

    NASA Astrophysics Data System (ADS)

    Evanoski-Cole, Ashley; Sive, Barkley; Zhou, Yong; Prenni, Anthony; Schurman, Misha; Day, Derek; Sullivan, Amy; Li, Yi; Hand, Jenny; Gebhart, Kristi; Schichtel, Bret; Collett, Jeffrey

    2016-04-01

    Oil and natural gas extraction has dramatically increased in the last decade in the United States due to the increased use of unconventional drilling techniques which include horizontal drilling and hydraulic fracturing. The impact of these drilling activities on local and regional air quality in oil and gas basins across the country are still relatively unknown, especially in recently developed basins such as the Bakken shale formation. This study is the first to conduct a comprehensive characterization of the regional air quality in the Bakken region. The Bakken shale formation, part of the Williston basin, is located in North Dakota and Montana in the United States and Saskatchewan and Manitoba in Canada. Oil and gas drilling operations can impact air quality in a variety of ways, including the generation of atmospheric particulate matter (PM), hazardous air pollutants, ozone, and greenhouse gas emissions. During the winter especially, PM formation can be enhanced and meteorological conditions can favor increased concentrations of PM and other pollutants. In this study, ground-based measurements throughout the Bakken region in North Dakota and Montana were collected over two consecutive winters to gain regional trends of air quality impacts from the oil and gas drilling activities. Additionally, one field site had a comprehensive suite of instrumentation operating at high time resolution to gain detailed characterization of the atmospheric composition. Measurements included organic carbon and black carbon concentrations in PM, the characterization of inorganic PM, inorganic gases, volatile organic compounds (VOCs), precipitation and meteorology. These elevated PM episodes were further investigated using the local meteorological conditions and regional transport patterns. Episodes of elevated concentrations of nitrogen oxides and sulfur dioxide were also detected. The VOC concentrations were analyzed and specific VOCs that are known oil and gas tracers were used

  1. New tools/techniques upgrade drilling and production practices

    SciTech Connect

    1995-06-01

    In the continual search for new ways to drill and produce wells more efficiently and/or at lower cost, new technologies such as coiled tubing and horizontal drilling have found broad applications. And industry keeps expanding those applications with new tools. Described here are specific examples of innovations for the two disciplines noted above and four other practical applications of new ideas for drilling, downhole equipment and production handling, including: (1) a new-generation safety valve, (2) a computerized system for well testing, (3) use of turboexpanders in the Dutch North Sea for gas processing, (4) offshore workovers with a converted jackup, (5) a jet pump for coiled tubing, and (6) application of a new openhole whipstock.

  2. Extended-length power sections improve PDM drilling

    SciTech Connect

    Moles, H.

    1995-12-01

    Since being introduced in the 1960s, downhole positive displacement motors (PDMs) have evolved steadily from early applications. Initially considered only for high-speed, medium-torque, initial directional kickoffs; and short, corrective directional operations, these tools were not expected to operate for more than a few hours at a time. Progressive improvements have led to tools that are capable of extended runs in a variety of configurations. Current generation PDMs have a broad range of applications and include fully steerable systems for directional or horizontal drilling, and instrumented motors incorporating formation evaluation measurement-while-drilling (FEMWD) systems for geological steering and reservoir navigation. Design improvements also expanded PDM applications to include hole sections traditionally drilled with conventional rotary-driven bottomhole assemblies (BHAs). This paper reviews these new motor designs and provides case histories of their performance.

  3. Mounted drilling apparatus

    SciTech Connect

    Manten, H.

    1982-07-20

    The drilling apparatus includes a mount in the form of a cylindrical member defining an elongated passageway and being provided with two opposite guiding rails each being formed with an elongated recessed channel communicating with the passageway; a rotary drive for holding a drill rod has a non-rotating casing provided with guiding elements movable in the recesses of the guiding rails; a feeding mechanism for advancing the rotary drive includes either tooth racks arranged in the recesses of the guiding rails and driving pinions mounted on the casing of the rotary drive or cylinder and piston units located in the recesses of the guide rails and cooperating with feed cables or chains. The mount is supported on a mobile undercarriage which is provided with two pairs of vertically adjustable supporting legs.

  4. Drilling head assembly

    SciTech Connect

    De Wayne Wagoner, E.; Owen, E.D.

    1984-01-03

    An improved rotary drilling head assembly comprising a main housing having an axial bore therethrough; a stripper assembly disposed within the housing axial bore; and a stripper support assembly rotatingly supporting the stripper assembly. The stripper support assembly is removably attachable to the main housing and comprises an inner skirt member which is configured to extend about and to be supported on an exterior support surface of the main housing; an outer bearing housing configured to extend about and to be bearingly interconnected to the inner skirt member; a stripper clamp assembly clamping the stripper assembly to the outer bearing housing; and a clamping assembly removably attaching the inner skirt member to the exterior support surface such that the entire stripper support assembly of the drilling head assembly is removable from the housing as a unitary assembly by disengaging the clamping assembly.

  5. High Temperature Piezoelectric Drill

    NASA Technical Reports Server (NTRS)

    Bao, Xiaoqi; Bar-Cohen, Yoseph; Sherrit, Stewart; Badescu, Mircea; Shrout, Tom

    2012-01-01

    Venus is one of the planets in the solar systems that are considered for potential future exploration missions. It has extreme environment where the average temperature is 460 deg C and its ambient pressure is about 90 atm. Since the existing actuation technology cannot maintain functionality under the harsh conditions of Venus, it is a challenge to perform sampling and other tasks that require the use of moving parts. Specifically, the currently available electromagnetic actuators are limited in their ability to produce sufficiently high stroke, torque, or force. In contrast, advances in developing electro-mechanical materials (such as piezoelectric and electrostrictive) have enabled potential actuation capabilities that can be used to support such missions. Taking advantage of these materials, we developed a piezoelectric actuated drill that operates at the temperature range up to 500 deg C and the mechanism is based on the Ultrasonic/Sonic Drill/Corer (USDC) configuration. The detailed results of our study are presented in this paper

  6. High Temperature Piezoelectric Drill

    NASA Technical Reports Server (NTRS)

    Bao, Xiaoqi; Bar-Cohen, Yoseph; Sherrit, Stewart; Badescu, Mircea; Shrout, Tom

    2012-01-01

    Venus is one of the planets in the solar systems that are considered for potential future exploration missions. It has extreme environment where the average temperature is 460 deg C and its ambient pressure is about 90 atm. Since the existing actuation technology cannot maintain functionality under the harsh conditions of Venus, it is a challenge to perform sampling and other tasks that require the use of moving parts. Specifically, the currently available electromagnetic actuators are limited in their ability to produce sufficiently high stroke, torque, or force. In contrast, advances in developing electro-mechanical materials (such as piezoelectric and electrostrictive) have enabled potential actuation capabilities that can be used to support such missions. Taking advantage of these materials, we developed a piezoelectric actuated drill that operates at the temperature range up to 500 deg C and the mechanism is based on the Ultrasonic/Sonic Drill/Corer (USDC) configuration. The detailed results of our study are presented in this paper

  7. Noise characteristics of short drilled and deep drilled braced monuments in the PBO continuous GPS network

    NASA Astrophysics Data System (ADS)

    Borsa, A. A.; Meertens, C.; Jackson, M.

    2008-12-01

    The EarthScope Plate Boundary Observatory (PBO) GPS network consists of 1,100 continuously operating stations, 880 of which were built between 2003 and 2008 to a standard set of specifications. With a few exceptions, all built stations incorporate a Trimble NetRS receiver (firmware v.1.1) and a Trimble TRM29659.00 choke ring antenna, so differences in station performance due to GPS equipment should be negligible. Station monuments are split almost exclusively between slightly modified versions of the Wyatt- Agnew deep drilled braced and the SCIGN short drilled braced types, both of which are considered to be the state-of-the-art in stable GPS monumentation. Deep drilled braced monuments are designed to anchor the GPS antenna to a depth of more than 3 m in order to isolate the antenna from expansion/contraction of the near subsurface from temperature or moisture variability, but installation costs are substantially higher than for shallow monuments. Determining the gain in stability due to deeper anchoring would benefit design decisions for future networks. We test the assumption that deep drilled braced monuments offer superior stability over short drilled braced by examining the noise characteristics of a large subset of the PBO GPS network. We apply analytical techniques widely used to study GPS noise, examining the amplitudes of seasonal and sub-seasonal cycles and various stochastic noise processes in detrended vertical and horizontal time series. Seasonal forcing of the near subsurface is correlated with seasonal variations in site-specific effects such as multipath and regional effects such as groundwater recharge, complicating the analysis. Restricting the analysis to these two monument types allows us to isolate shallow subsurface effects to the greatest extent possible, not only to assess the relative performance of deep versus shallow monumentation, but also to weigh the absolute magnitude of shallow effects against that of other noise sources.

  8. Drilling fluid disposal

    SciTech Connect

    Nesbitt, L.E.; Sanders, J.A.

    1981-12-01

    A maze of U.S. regulations and regulatory agencies coupled with uncertainty in interpretation of environmental data and an evolving system of disposal engineering will require industry action to monitor the area and derive a solid engineering basis for disposal of spent drilling fluid. A set of disposal methods with approximate costs is presented to serve as an initial guide for disposal. 16 refs.

  9. Emergency Simulation Drill

    NASA Image and Video Library

    2013-12-04

    ISS038-E-011718 (4 Dec. 2013) --- The Expedition 38 crew members participate in an emergency simulation drill with participation from flight controllers on the ground. During the exercise, the crew practiced emergency communication and procedures in response to a predetermined scenario such as pressure leak. Pictured in the International Space Station?s Destiny laboratory are Russian cosmonaut Oleg Kotov (center), commander; NASA astronaut Michael Hopkins (left), Japan Aerospace Exploration Agency astronaut Koichi Wakata, flight engineers.

  10. Emergency Simulation Drill

    NASA Image and Video Library

    2013-12-04

    ISS038-E-011710 (4 Dec. 2013) --- In the International Space Station’s Destiny laboratory, NASA astronaut Michael Hopkins (foreground) and Japan Aerospace Exploration Agency astronaut Koichi Wakata, both Expedition 38 flight engineers, participate in an emergency simulation drill with participation from flight controllers on the ground. During the exercise, the crew practiced emergency communication and procedures in response to a predetermined scenario such as pressure leak.

  11. Plunging when drilling: effect of using blunt drill bits.

    PubMed

    Alajmo, Giuseppe; Schlegel, Urs; Gueorguiev, Boyko; Matthys, Romano; Gautier, Emanuel

    2012-08-01

    Plunging when drilling can be a detrimental factor in patient care. There is, although, a general lack of information regarding the surgeon's performance in this skill. The aim of this study was to determine the effect that using sharp or blunt instruments had on the drill bit's soft tissue penetration, using a simulator. Surgeons taking part in an International Trauma Course were invited to participate. Two groups were defined: experienced and inexperienced surgeons. Twelve holes were drilled in the following order: 3 holes with a sharp drill bit in normal bone (SNB), 3 holes with a sharp drill bit in osteoporotic bone (SOB), 3 holes with a blunt drill bit in normal bone, and 3 holes with a blunt drill bit in osteoporotic bone. Mean values and Student t tests were used for statistical analysis. Thirty-seven surgeons participated, 20 experienced and 17 inexperienced surgeons. Mean plunging depths for SNB, SOB, blunt drill bit in normal bone, and blunt drill bit in osteoporotic bone were, respectively, 5.1, 5.4, 21.1, and 13.9 mm for experienced surgeons and 7.6, 7.7, 22, and 15.9 mm for inexperienced surgeons. Drilling with SNB and with SOB was statistically different, with inexperienced surgeons plunging 2.5 mm (P = 0.31) and 2.6 mm (P = 0.042) deeper, respectively. There was a difference (P < 0.001) between sharp and blunt drill bits in all drilling conditions for both the groups. Our study showed a significant difference in plunging depth when sharp or bunt drill bit was being used. Surgeons, regardless of their experience level, penetrate over 20 mm in normal bone and over 10 mm in osteoporotic bone.

  12. High Temperature Piezoelectric Drill

    NASA Technical Reports Server (NTRS)

    Bao, Xiaoqi; Scott, James; Boudreau, Kate; Bar-Cohen, Yoseph; Sherrit, Stewart; Badescu, Mircea; Shrout, Tom; Zhang, Shujun

    2009-01-01

    The current NASA Decadal mission planning effort has identified Venus as a significant scientific target for a surface in-situ sampling/analyzing mission. The Venus environment represents several extremes including high temperature (460 deg C), high pressure (9 MPa), and potentially corrosive (condensed sulfuric acid droplets that adhere to surfaces during entry) environments. This technology challenge requires new rock sampling tools for these extreme conditions. Piezoelectric materials can potentially operate over a wide temperature range. Single crystals, like LiNbO3, have a Curie temperature that is higher than 1000 deg C and the piezoelectric ceramics Bismuth Titanate higher than 600 deg C. A study of the feasibility of producing piezoelectric drills that can operate in the temperature range up to 500 deg C was conducted. The study includes the high temperature properties investigations of engineering materials and piezoelectric ceramics with different formulas and doping. The drilling performances of a prototype Ultrasonic/Sonic Drill/Corer (USDC) using high temperate piezoelectric ceramics and single crystal were tested at temperature up to 500 deg C. The detailed results of our study and a discussion of the future work on performance improvements are presented in this paper.

  13. High Temperature Piezoelectric Drill

    NASA Technical Reports Server (NTRS)

    Bao, Xiaoqi; Scott, James; Boudreau, Kate; Bar-Cohen, Yoseph; Sherrit, Stewart; Badescu, Mircea; Shrout, Tom; Zhang, Shujun

    2009-01-01

    The current NASA Decadal mission planning effort has identified Venus as a significant scientific target for a surface in-situ sampling/analyzing mission. The Venus environment represents several extremes including high temperature (460 deg C), high pressure (9 MPa), and potentially corrosive (condensed sulfuric acid droplets that adhere to surfaces during entry) environments. This technology challenge requires new rock sampling tools for these extreme conditions. Piezoelectric materials can potentially operate over a wide temperature range. Single crystals, like LiNbO3, have a Curie temperature that is higher than 1000 deg C and the piezoelectric ceramics Bismuth Titanate higher than 600 deg C. A study of the feasibility of producing piezoelectric drills that can operate in the temperature range up to 500 deg C was conducted. The study includes the high temperature properties investigations of engineering materials and piezoelectric ceramics with different formulas and doping. The drilling performances of a prototype Ultrasonic/Sonic Drill/Corer (USDC) using high temperate piezoelectric ceramics and single crystal were tested at temperature up to 500 deg C. The detailed results of our study and a discussion of the future work on performance improvements are presented in this paper.

  14. IMPROVED MISCIBLE NITROGEN FLOOD PERFORMANCE UTILIZING ADVANCED RESERVOIR CHARACTERIZATION AND HORIZONTAL LATERALS IN A CLASS I RESERVOIR-EAST BINGER (MARCHAND) UNIT

    SciTech Connect

    Joe Sinner

    2004-02-24

    Implementation of the work program of Budget Period 2 of the East Binger Unit (''EBU'') DOE Project is progressing and nearing completion. Two of three planned horizontal wells have been drilled and completed. The third horizontal well will be replaced by two vertical wells, both of which will be drilled in early 2004. Based on costs and performances of all new wells, it is believed that, in the setting of the East Binger Unit, the benefits of horizontal wells do not justify the additional cost. In addition to the drilling of new wells, the project also includes conversions of producing wells to injection service. Four wells have now been converted, and injection in the pilot area has doubled. A fifth planned conversion has been removed from the project. Overall response to the various projects continues to be very favorable. Gas injection into the pilot area has increased from 4.0 MMscf/d prior to development to 8.0 MMscf/d in November, while gas production has decreased from 4.1 MMscf/d to 3.0 MMscf/d. The nitrogen content of produced gas has dropped from 58% to 45%. This has reduced the nitrogen recycle within the pilot area from 60% to under 20%. Meanwhile, pilot area oil production has increased, from 300 bpd prior to development to over 425 bpd in November 2003. This is down from 600 bopd in September because EBU 63-2H has begun to level off and other wells were temporarily down. This incremental rate will increase with the addition of the two vertical wells.

  15. Horizontal Advanced Tensiometer

    SciTech Connect

    Hubbell, Joel M.; Sisson, James B.

    2004-06-22

    An horizontal advanced tensiometer is described that allows the monitoring of the water pressure of soil positions, particularly beneath objects or materials that inhibit the use of previous monitoring wells. The tensiometer includes a porous cup, a pressure transducer (with an attached gasket device), an adaptive chamber, at least one outer guide tube which allows access to the desired horizontal position, a transducer wire, a data logger and preferably an inner guide tube and a specialized joint which provides pressure on the inner guide tube to maintain the seal between the gasket of the transducer and the adaptive chamber.

  16. Horizontal Advanced Tensiometer

    DOEpatents

    Hubbell, Joel M.; Sisson, James B.

    2004-06-22

    An horizontal advanced tensiometer is described that allows the monitoring of the water pressure of soil positions, particularly beneath objects or materials that inhibit the use of previous monitoring wells. The tensiometer includes a porous cup, a pressure transducer (with an attached gasket device), an adaptive chamber, at least one outer guide tube which allows access to the desired horizontal position, a transducer wire, a data logger and preferably an inner guide tube and a specialized joint which provides pressure on the inner guide tube to maintain the seal between the gasket of the transducer and the adaptive chamber.

  17. Horizontal wellbore stability and sand production in weakly consolidated sandstones

    SciTech Connect

    Kooijman, A.P.; Kenter, C.J.; Zheng, Z.

    1996-12-31

    Long-term stability of horizontal wellbore completions with uncemented liners in weakly consolidated to unconsolidated sandstone formations (e.g. Gulf of Mexico, Nigeria) remains an area of concern. This paper presents the results of dedicated polyaxial cell laboratory experiments addressing this issue. In addition, the influence of rock failure in the near-wellbore region on well productivity was studied. Large blocks of a weak artificial sandstone were prepared. A hole was drilled in these blocks, and production conditions at various values of in-situ stress, drawdown and watercut, both in the absence and presence of a liner, were simulated. During testing, the hole was kept at a horizontal position in order to realistically simulate the influence of gravity forces on the movement of sand debris. The process of hole failure and restabilization was continuously monitored by an endoscope coupled to a video camera. The experimental results show that in the presence of a slotted liner, and in the absence of watercut, rock failure leads to a gradual annulus fill-up with loose sand, eventually resulting in a stable configuration in which only a small fraction of the far-field stresses is transferred to the liner. These results are further supported by elasto-plastic calculations. Rock failure around the liner is shown to have only a minor effect on productivity. This result implies that rock failure around uncemented liner completions will generally not be noticed at the wellhead. The introduction of a small (<5%) watercut resulted in massive sand production and subsequent liner collapse. This can be explained by the fact that watercut destroys capillary cohesion, thereby destabilising sand arches over the slots.

  18. Gulf Canada moves ahead with unique drilling system

    SciTech Connect

    Moore, S.D.

    1982-12-01

    Describes a system developed for Gulf's Beaufort Sea exploration program, which consists of a mobile arctic caisson (MAC), conical drilling unit (CDU), 2 icebreakers, and 2 supply boats, all designed for heavy ice conditions. The MAC will operate in water depths between 60 and 110 ft, while the CDU is destined for deeper waters. The CDU, a circular barge with a special ice-deflecting hull, has a main hull angle sloping at 31 degrees to deflect ice downward. The MAC will replace conventional artificial islands. The 2 icebreakers' primary function is to manage the ice surrounding the drilling units, protecting the drilling system and providing an escort to new well sites. In addition to moving bulk materials and equipment from the northern supply base to the drilling units, the vessels will help in anchoring or setting the drilling units.

  19. Slimhole Drilling, Logging, and Completion Technology - An Update

    SciTech Connect

    FINGER,JOHN T.; JACOBSON,RONALD D.

    1999-10-07

    Using slim holes (diameter < 15 cm) for geothermal exploration and small-scale power production can produce significant cost savings compared to conventional rotary-drilling methods. In addition, data obtained from slim holes can be used to lower the risks and costs associated with the drilling and completion of large-diameter geothermal wells. As a prime contractor to the U.S. Department of Energy (DOE), Sandia National Laboratories has worked with industry since 1992 to develop and promote drilling, testing, and logging technology for slim holes. This paper describes the current status of work done both in-house and contracted to industry. It focuses on drilling technology, case histories of slimhole drilling projects, data collection and rig instrumentation, and high-temperature logging tools.

  20. Drill bit assembly for releasably retaining a drill bit cutter

    DOEpatents

    Glowka, David A.; Raymond, David W.

    2002-01-01

    A drill bit assembly is provided for releasably retaining a polycrystalline diamond compact drill bit cutter. Two adjacent cavities formed in a drill bit body house, respectively, the disc-shaped drill bit cutter and a wedge-shaped cutter lock element with a removable fastener. The cutter lock element engages one flat surface of the cutter to retain the cutter in its cavity. The drill bit assembly thus enables the cutter to be locked against axial and/or rotational movement while still providing for easy removal of a worn or damaged cutter. The ability to adjust and replace cutters in the field reduces the effect of wear, helps maintains performance and improves drilling efficiency.

  1. Drill Pipe Corrosion Control Using an Inert Drilling Fluid

    SciTech Connect

    Caskey, B. C.; Copass, K. S.

    1981-01-01

    The results of a geothermal drill pipe corrosion field test are presented. When a low-density drilling fluid was required for drilling a geothermal well because of an underpressured, fractured formation, two drilling fluids were alternately used to compare drill pipe corrosion rates. The first fluid was an air-water mist with corrosion control chemicals. The other fluid was a nitrogen-water mist without added chemicals. The test was conducted during November 1980 at the Baca location in northern New Mexico. Data from corrosion rings, corrosion probes, fluid samples and flow line instrumentation are plotted for the ten day test period. it is shown that the inert drilling fluid, nitrogen, reduced corrosion rates by more than an order of magnitude. Test setup and procedures are also discussed.

  2. Experience with stratapax drill bits

    SciTech Connect

    Thant, M.

    1984-02-01

    Polycrystalline Diamond Comocct (PDC) bits have been extensively used in oil field drilling for sometime. Major performance gains have been reported for use of these bits in oil based drilling fluids, operating on mud motors. This paper describes the experience in Sarawak and Sabah Shell Operations with PDC bits in water based drilling fluids and with rotary drilling. It represents the results of over 80 individual PDC bit runs incorporating over 30,000' of 8 1/2'' hole drilled with 4 types of PDC bits from 3 manufacturers, and over 14,000' of 12 1/4'' hole with 8 bit types from 4 manufacturers. The paper discusses the PDC bit runs made, the performance in relation to conventional tri-cone bits, the effects of conventional hydraulics on PDC bit performance and the design of the PDC bits in terms of cutter density and placement, number of nozzles and their placement, and construction methods. The outlook for future designs of PDC bit with respect to use in water base drilling fluids and on rotary drilling is presented. The experience presented can be applied to drilling operations in a wide variety of areas to optimise usage of PDC bits in water based drilling fluids and on rotary drilling. As a result of extensive testing within Sarawak and Sabah Shell operations, the use of 8 1/2'' PDC bits in water based drilling fluids on rotary drilling can now be considered a proven application when drilling both clastics and carbonates. Only modest success has been achieved in 12 1/4'' hole where tricone bit performance (Cost/ft) in generally softer clastic formations has proven more difficult to match with PDC bits.

  3. The effect of low-speed drilling without irrigation on heat generation: an experimental study.

    PubMed

    Oh, Ji-Hyeon; Fang, Yiqin; Jeong, Seung-Mi; Choi, Byung-Ho

    2016-02-01

    In this study we evaluated heat generation during the low-speed drilling procedure without irrigation. Ten artificial bone blocks that were similar to human D1 bone were used in this study. The baseline temperature was 37.0℃. We drilled into 5 artificial bone blocks 60 times at the speed of 50 rpm without irrigation. As a control group, we drilled into an additional 5 artificial bone blocks 60 times at the speed of 1,500 rpm with irrigation. The temperature changes during diameter 2 mm drilling were measured using thermocouples. The mean maximum temperatures during drilling were 40.9℃ in the test group and 39.7℃ in the control group. Even though a statistically significant difference existed between the two groups, the low-speed drilling did not produce overheating. These findings suggest that low-speed drilling without irrigation may not lead to overheating during drilling.

  4. Analyses of operational times and technical aspects of the Salton Sea scientific drilling project: (Final report)

    SciTech Connect

    Not Available

    1986-12-01

    The Deep Salton Sea Scientific Drilling Program (DSSSDP) was conducted in Imperial County of California at the Southeastern edge of the Salton Sea. Emphasis was on the acquisition of scientific data for the evaluation of the geological environment encountered during the drilling of the well. The scientific data acquisition activities consisted of coring, running of numerous downhole logs and tools in support of defining the geologic environment and conducting two full scale flow tests primarily to obtain pristine fluid samples. In addition, drill cuttings, gases and drilling fluid chemistry measurements were obtained from the drilling fluid returns concurrent with drilling and coring operations. The well was drilled to 10,564 feet. This report describes the field portions of the project and presents an analysis of the time spent on the various activities associated with the normal drilling operations, scientific data gathering operations and the three major downhole problem activities - lost circulation, directional control and fishing.

  5. Cleanup/stimulation of a horizontal wellbore using propellants

    SciTech Connect

    Rougeot, J.E.; Lauterbach, K.A.

    1993-01-01

    This report documents the stimulation/cleanup of a horizontal well bore (Wilson 25) using propellants. The Wilson 25 is a Bartlesville Sand well located in the Flatrock Field, Osage County, Oklahoma. The Wilson 25 was drilled to determine if horizontal drilling could be used as a means to economically recover primary oil that had been left in place in a mostly abandoned oil field because of the adverse effects of water coning. Pump testing of the Wilson 25 horizontal well bore before cleanup or stimulation produced 6 barrels of oil and .84 barrels of water per day. The high percentage of daily oil production to total daily fluid production indicated that the horizontal well bore had accessed potentially economical oil reserves if the fluid production rate could be increased by performing a cleanup/stimulation treatment. Propellants were selected as an inexpensive means to stimulate and cleanup the near well bore area in a uniform manner. The ignition of a propellant creates a large volume of gas which penetrates the formation, creating numerous short cracks through which hydrocarbons can travel into the well bore. More conventional stimulation/cleanup techniques were either significantly more expensive, less likely to treat uniformly, or could not be confined to the near well bore area. Three different propellant torpedo designs were tested with a total of 304' of horizontal well bore being shot and producible. The initial test shot caused 400' of the horizontal well bore to become plugged off, and subsequently it could not be production tested. The second and third test shots were production tested, with the oil production being increased 458% and 349%, respectively, on a per foot basis. The Wilson 25 results indicate that a propellant shot treatment is an economically viable means to cleanup/stimulate a horizontal well bore.

  6. Sandia's Geothermal Advanced Drill Rig Instrumentation Assists Critical Oil and Gas Drilling Operation

    SciTech Connect

    Staller, George E.; Whitlow, Gary

    1999-04-27

    about 30 days. Several other Sandia instruments being developed for geothermal drilling are also being evaluated during this operation, Successful performance of these instruments on this important drilling job will reinforce our efforts to commercialize this technology for the geothermal and oil and gas drilling industries. Sandia's Rolling Float Meter was developed through the Lost Circulation Technology Program sponsored by the U. S. Department of Energy, Office of Geothermal Technologies. It monitors drilling fluid returns to rapidly detect loss of circulation during geothermal drilling. Lost circulation is particularly prevalent in geothermal wells, and can add as much as 10% to the total cost of drilling the well. Consequently, rapid detection and treatment of lost circulation is necessary for cost- effective geothermal drilling. Sandia has been evaluating and demonstrating the capabilities of the RFM to the geothermal industry for several years. In addition to lost circulation, the RFM is also useful for accurately detecting well kicks. Contacts have been made with mud logging companies that are involved with both geothermal and oil and gas drilling operations.

  7. Method for detecting drilling events from measuremt while drilling sensors

    SciTech Connect

    Bible, M.; Lesage, M., Falconer, I.

    1989-10-31

    This patent describes a method for determining subsurface conditions encountered by a drill bit while drilling a borehole. It comprises: during the drilling process, determining rate of penetration and generation a signal indicative thereof; during the drilling process, determining downhole torque and generating a signal indicative thereof; in response to signals indicative of rate of penetration and downhole torque, generating an indication of the occurrence of a subsurface condition selected from the group comprising high formation porosity, a damaged bit bearing and the development of an undergauge bit.

  8. Apparatus in a drill string

    DOEpatents

    Hall, David R.; Dahlgren, Scott; Hall, Jr., Tracy H.; Fox, Joe; Pixton, David S.

    2007-07-17

    An apparatus in a drill string comprises an internally upset drill pipe. The drill pipe comprises a first end, a second end, and an elongate tube intermediate the first and second ends. The elongate tube and the ends comprising a continuous an inside surface with a plurality of diameters. A conformable spirally welded metal tube is disposed within the drill pipe intermediate the ends thereof and terminating adjacent to the ends of the drill pipe. The conformable metal tube substantially conforms to the continuous inside surface of the metal tube. The metal tube may comprise a non-uniform section which is expanded to conform to the inside surface of the drill pipe. The non-uniform section may comprise protrusions selected from the group consisting of convolutions, corrugations, flutes, and dimples. The non-uniform section extends generally longitudinally along the length of the tube.

  9. Drilling and general petroleum engineering

    SciTech Connect

    Not Available

    1994-01-01

    Forty-nine papers are included in the Drilling and General Petroleum Engineering Volume of the SPE Annual Conference and Exhibition proceedings. The conference was held in New Orleans, Louisiana, September 25-28, 1994. The papers cover such topics as: extended reach well drilling, development of marginal satellite fields, slim hole drilling, pressure loss predictions, models for cuttings transport, ester-based drilling fluid systems, borehole stability, cementing, operations, bit failures, roller core bits, well tracking techniques, nitrogen drilling systems, plug failures, drill bit and drillstring dynamics, slim hole vibrations, reserve estimates, enhanced recovery methods, waste disposal, and engineering salary trends. A separate abstract and indexing was prepared for each paper for inclusion in the Energy Science and Technology Database.

  10. Design, implementation, and completion of a horizontal tight gas wellbore - case study: Green River Basin, Wyoming

    SciTech Connect

    Billingsley, R.L.; Evans, L.W.; Anderson, T.M.

    1995-06-01

    In September, 1993 Amoco Production Company began drilling the Champlin 254B No. 2H, a horizontal well test located near the Wamsutter Arch, southwestem Wyoming. The Champlin 254B No. 2H was designed to confirm a fractured reservoir concept and to test the economic viability of a horizontal wellbore in the Almond fm.. The wellbore was designed to determine real-time, the fracture direction and the optimum horizontal leg direction within the confines of the drilling permit. A deviated pilot hole was drilled to optimize our ability to cross vertical natural fractures. MWD gamma-ray, oriented core, a vertical seismic profile, Formation Microimager, and a robust suite of electric logs were obtained to gain information on the presence and orientation of fractures before kickoff for the horizontal leg. Electromagnetic goniometry was used onsite to orient fractures in core. Log and core data were consistent and a wellbore trajectory of due South was chosen. A two thousand foot horizontal wellbore was drilled, 1700 feet of which is in the upper Almond formation productive zone. MWD gamma-ray, three 30` cores, Formation Microscanner logs, and a density-neutron log were obtained in the horizontal hole. This wellbore was completed open-hole with a stabilized gas rate of 1 mmcfd. In May, 1994 a portion of the original wellbore collapsed and a replacement horizontal leg was drilled. Oil-based mud and rotary BOP`s were utilized to minimize damage and invasion to the reservoir. Reservoir pressures encountered in the redrill indicate that depletion along the original wellbore had begun. The redrill was completed open-hole with a pre-perforated (every third joint) 5 1/2 inches liner and also stabilized at a rate of 1 mmcfd.

  11. Drill string gas data

    SciTech Connect

    Siciliano, E.R.

    1998-05-12

    Data and supporting documentation were compiled and analyzed for 26 cases of gas grab samples taken during waste-tank core sampling activities between September 1, 1995 and December 31, 1997. These cases were tested against specific criteria to reduce uncertainties associated with in-tank sampling location and conditions. Of the 26 possible cases, 16 qualified as drill-string grab samples most likely to represent recently released waste gases. The data from these 16 ``confirmed`` cases were adjusted to remove non-waste gas contributions from core-sampling activities (argon or nitrogen purge), the atmospheric background, and laboratory sampler preparation (helium). The procedure for subtracting atmospheric, laboratory, and argon purge gases was unambiguous. No reliable method for determining the exact amount of nitrogen purge gas was established. Thus, the final set of ``Adjusted`` drill string gas data for the 6 nitrogen-purged cases had a greater degree of uncertainty than the final results for the 10 argon-purged cases. Including the appropriate amounts of uncertainty, this final set of data was added to the set of high-quality results from the Retained Gas Sampler (RGS), and good agreement was found for the N{sub 2}, H{sub 2}, and N{sub 2}O mole fractions sampled from common tanks. These results indicate that under favorable sampling conditions, Drill-String (DS) grab samples can provide reasonably accurate information about the dominant species of released gas. One conclusion from this set of total gas data is that the distribution of the H{sub 2} mole fractions is bimodal in shape, with an upper bound of 78%.

  12. Portable rapid and quiet drill

    NASA Technical Reports Server (NTRS)

    Bar-Cohen, Yoseph (Inventor); Badescu, Mireca (Inventor); Bao, Xiaoqi (Inventor); Chang, Zenshea (Inventor); Sherrit, Stewart (Inventor)

    2010-01-01

    A hand-held drilling device, and method for drilling using the device, has a housing, a transducer within the housing, with the transducer effectively operating at ultrasonic frequencies, a rotating motor component within the housing and rigid cutting end-effector rotationally connected to the rotating motor component and vibrationally connected to the transducer. The hand-held drilling device of the present invention operates at a noise level of from about 50 decibels or less.

  13. The thermal spallation drilling process

    SciTech Connect

    Williams, R.E.

    1986-01-01

    Holes can be produced in very hard rock more easily and less expensively by thermal spallation than by conventional means. This drilling process has been used for producing blast holes in the taconite iron mines and for quarrying granite. It is potentially valuable for drilling holes in very hard rock for the exploitation of geothermal energy and the storage of various commodities. However, investigation and development of the thermal spallation drilling process is proceeding slowly.

  14. Equipment for drilling miniature holes

    SciTech Connect

    Gillespie, L K

    1981-04-01

    Miniature holes are produced on 16 different types of mechanical drilling equipment. Each equipment type has significant advantages for a specific type of part. The basic capabilities vary greatly between equipment types. Some produce very precise holes and others produce very high volumes of commercial tolerance holes. At the present time machines are available for mechanicaly drilling up to 100,000 miniature holes per hour. Lasers currently are drilling as many as 15,000,000 ultra-miniature holes per hour.

  15. Emergency Simulation Drill

    NASA Image and Video Library

    2013-12-04

    ISS038-E-011716 (4 Dec. 2013) --- The Expedition 38 crew members participate in an emergency simulation drill with participation from flight controllers on the ground. During the exercise, the crew practiced emergency communication and procedures in response to a predetermined scenario such as pressure leak. Pictured in the International Space Station?s Destiny laboratory are Russian cosmonaut Oleg Kotov (left), commander; NASA astronaut Michael Hopkins (bottom), Japan Aerospace Exploration Agency astronaut Koichi Wakata (center) and Russian cosmonaut Sergey Ryazanskiy, all flight engineers.

  16. Lunar drill and test apparatus

    NASA Technical Reports Server (NTRS)

    Norrington, David W.; Ardoin, Didier C.; Alexander, Stephen G.; Rowland, Philip N.; Vastakis, Frank N.; Linsey, Steven L.

    1988-01-01

    The design of an experimental lunar drill and a facility to test the drill under simulated lunar conditions is described. The drill utilizes a polycrystalline diamond compact drag bit and an auger to mechanically remove cuttings from the hole. The drill will be tested in a vacuum chamber and powered through a vacuum seal by a drive mechanism located above the chamber. A general description of the design is provided followed by a detailed description and analysis of each component. Recommendations for the further development of the design are included.

  17. Transducer for downhole drilling components

    DOEpatents

    Hall, David R; Fox, Joe R

    2006-05-30

    A robust transmission element for transmitting information between downhole tools, such as sections of drill pipe, in the presence of hostile environmental conditions, such as heat, dirt, rocks, mud, fluids, lubricants, and the like. The transmission element maintains reliable connectivity between transmission elements, thereby providing an uninterrupted flow of information between drill string components. A transmission element is mounted within a recess proximate a mating surface of a downhole drilling component, such as a section of drill pipe. The transmission element may include an annular housing forming a trough, an electrical conductor disposed within the trough, and an MCEI material disposed between the annular housing and the electrical conductor.

  18. IMPROVED MISCIBLE NITROGEN FLOOD PERFORMANCE UTILIZING ADVANCED RESERVOIR CHARACTERIZATION AND HORIZONTAL LATERALS IN A CLASS I RESERVOIR--EAST BINGER (MARCHAND) UNIT

    SciTech Connect

    Joe Sinner

    2004-06-03

    Implementation of the work program of Budget Period 2 of the East Binger Unit (''EBU'') DOE Project is complete. Two additional vertical infill wells were drilled, completed, and brought on production during the reporting period. These were the last two of five wells to be drilled in the pilot area. Additional drilling is planned for Budget Period 3. Overall response to the various projects continues to be very favorable. Nitrogen injection into the pilot area had doubled prior to unrelated nitrogen supply problems, while gas production and nitrogen content of produced gas have both decreased. Nitrogen recycle within the pilot area has dropped from 60% to 20%. Meanwhile, pilot area oil production has increased from 300 bpd prior to development to an average of 435 bpd for January through March 2004. March production was the highest at 542 bpd due to the addition of the two new vertical wells. Production performances of the new wells continue to support the current opinion that horizontal wells do not provide sufficient additional production over vertical wells to justify their incremental cost.

  19. Field Testing of Environmentally Friendly Drilling System

    SciTech Connect

    David Burnett

    2009-05-31

    The Environmentally Friendly Drilling (EFD) program addresses new low-impact technology that reduces the footprint of drilling activities, integrates light weight drilling rigs with reduced emission engine packages, addresses on-site waste management, optimizes the systems to fit the needs of a specific development sites and provides stewardship of the environment. In addition, the program includes industry, the public, environmental organizations, and elected officials in a collaboration that addresses concerns on development of unconventional natural gas resources in environmentally sensitive areas. The EFD program provides the fundamentals to result in greater access, reasonable regulatory controls, lower development cost and reduction of the environmental footprint associated with operations for unconventional natural gas. Industry Sponsors have supported the program with significant financial and technical support. This final report compendium is organized into segments corresponding directly with the DOE approved scope of work for the term 2005-2009 (10 Sections). Each specific project is defined by (a) its goals, (b) its deliverable, and (c) its future direction. A web site has been established that contains all of these detailed engineering reports produced with their efforts. The goals of the project are to (1) identify critical enabling technologies for a prototype low-impact drilling system, (2) test the prototype systems in field laboratories, and (3) demonstrate the advanced technology to show how these practices would benefit the environment.

  20. Reporting from the Iceland Deep Drilling Project

    NASA Astrophysics Data System (ADS)

    Urban, Karl

    2017-04-01

    Geoscience-related topics are in many cases difficult to communicate to the public: Often they include dead soil which not easily tells lively stories. And it is hard to sell those topics to editors of public media. In addition the topics might also be politically supercharged if they are resource-related with a visible environmental impact. Therefore any researcher involved might be overcautious while talking to journalists. With a grant from the EGU Science Journalist Fellowship I travelled to Iceland in autumn 2016 to report about the Iceland Deep Drilling Project (IDDP). The project which started just weeks prior to my arrival aimed to drill the deepest borehole in a volcanically active region. During earlier trials the borehole collapsed or the drill string unintentionally hit magma. If successful the IDDP promises a much higher level of geothermal energy harvested. The IDDP was therefore ideally suited to be sold to public media outlets since Iceland's volcanic legacy easily tells a lively story. But the drilling's potential environmental impact makes it a political topic in Iceland - even though geothermal energy has a positive public perception. Therefore the IDDP included some pitfalls I observed several times before while reporting about geoscience research. Those could be circumvented if researchers and journalists knew better about their expectations before any interview takes place.

  1. 30 CFR 57.7004 - Drill mast.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Drill mast. 57.7004 Section 57.7004 Mineral... HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Drilling-Surface Only § 57.7004 Drill mast. Persons shall not be on a mast while the drill-bit is in...

  2. 30 CFR 57.7004 - Drill mast.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Drill mast. 57.7004 Section 57.7004 Mineral... HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Drilling-Surface Only § 57.7004 Drill mast. Persons shall not be on a mast while the drill-bit is in...

  3. 30 CFR 56.7004 - Drill mast.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Drill mast. 56.7004 Section 56.7004 Mineral... HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Drilling § 56.7004 Drill mast. Persons shall not be on a mast while the drill-bit is in operation unless...

  4. 30 CFR 250.1605 - Drilling requirements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 2 2012-07-01 2012-07-01 false Drilling requirements. 250.1605 Section 250... Drilling requirements. (a) Sulphur leases. Lessees of OCS sulphur leases shall conduct drilling operations... part, as appropriate. (b) Fitness of drilling unit. (1) Drilling units shall be capable of withstanding...

  5. 30 CFR 56.7004 - Drill mast.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Drill mast. 56.7004 Section 56.7004 Mineral... HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Drilling § 56.7004 Drill mast. Persons shall not be on a mast while the drill-bit is in operation unless...

  6. 30 CFR 57.7052 - Drilling positions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Drilling positions. 57.7052 Section 57.7052... SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Drilling-Surface and Underground § 57.7052 Drilling positions. Persons shall not drill...

  7. 30 CFR 56.7052 - Drilling positions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Drilling positions. 56.7052 Section 56.7052... SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Drilling § 56.7052 Drilling positions. Persons shall not drill from— (a) Positions which hinder...

  8. 30 CFR 56.7004 - Drill mast.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Drill mast. 56.7004 Section 56.7004 Mineral... HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Drilling § 56.7004 Drill mast. Persons shall not be on a mast while the drill-bit is in operation unless...

  9. 30 CFR 33.34 - Drilling test.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Drilling test. 33.34 Section 33.34 Mineral... MINING PRODUCTS DUST COLLECTORS FOR USE IN CONNECTION WITH ROCK DRILLING IN COAL MINES Test Requirements § 33.34 Drilling test. (a) A drilling test shall consist of drilling a set of 10 test holes, without...

  10. 30 CFR 57.7004 - Drill mast.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Drill mast. 57.7004 Section 57.7004 Mineral... HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Drilling-Surface Only § 57.7004 Drill mast. Persons shall not be on a mast while the drill-bit is in...

  11. 30 CFR 57.7052 - Drilling positions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Drilling positions. 57.7052 Section 57.7052... SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Drilling-Surface and Underground § 57.7052 Drilling positions. Persons shall not drill...

  12. 30 CFR 56.7052 - Drilling positions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Drilling positions. 56.7052 Section 56.7052... SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Drilling § 56.7052 Drilling positions. Persons shall not drill from— (a) Positions which hinder...

  13. 30 CFR 33.34 - Drilling test.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Drilling test. 33.34 Section 33.34 Mineral... MINING PRODUCTS DUST COLLECTORS FOR USE IN CONNECTION WITH ROCK DRILLING IN COAL MINES Test Requirements § 33.34 Drilling test. (a) A drilling test shall consist of drilling a set of 10 test holes, without...

  14. 30 CFR 250.1605 - Drilling requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 2 2014-07-01 2014-07-01 false Drilling requirements. 250.1605 Section 250... Drilling requirements. (a) Sulphur leases. Lessees of OCS sulphur leases shall conduct drilling operations... part, as appropriate. (b) Fitness of drilling unit. (1) Drilling units shall be capable of withstanding...

  15. 30 CFR 250.1605 - Drilling requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 2 2013-07-01 2013-07-01 false Drilling requirements. 250.1605 Section 250... Drilling requirements. (a) Sulphur leases. Lessees of OCS sulphur leases shall conduct drilling operations... part, as appropriate. (b) Fitness of drilling unit. (1) Drilling units shall be capable of withstanding...

  16. 30 CFR 56.7052 - Drilling positions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Drilling positions. 56.7052 Section 56.7052... SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Drilling § 56.7052 Drilling positions. Persons shall not drill from— (a) Positions which hinder...

  17. 30 CFR 56.7052 - Drilling positions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Drilling positions. 56.7052 Section 56.7052... SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Drilling § 56.7052 Drilling positions. Persons shall not drill from— (a) Positions which hinder...

  18. 30 CFR 56.7052 - Drilling positions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Drilling positions. 56.7052 Section 56.7052... SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Drilling § 56.7052 Drilling positions. Persons shall not drill from— (a) Positions which hinder...

  19. 30 CFR 56.7004 - Drill mast.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Drill mast. 56.7004 Section 56.7004 Mineral... HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Drilling § 56.7004 Drill mast. Persons shall not be on a mast while the drill-bit is in operation unless...

  20. 30 CFR 56.7004 - Drill mast.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Drill mast. 56.7004 Section 56.7004 Mineral... HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Drilling § 56.7004 Drill mast. Persons shall not be on a mast while the drill-bit is in operation unless...

  1. 30 CFR 57.7004 - Drill mast.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Drill mast. 57.7004 Section 57.7004 Mineral... HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Drilling-Surface Only § 57.7004 Drill mast. Persons shall not be on a mast while the drill-bit is in...

  2. 30 CFR 57.7004 - Drill mast.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Drill mast. 57.7004 Section 57.7004 Mineral... HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Drilling-Surface Only § 57.7004 Drill mast. Persons shall not be on a mast while the drill-bit is in...

  3. 30 CFR 57.7052 - Drilling positions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Drilling positions. 57.7052 Section 57.7052... SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Drilling-Surface and Underground § 57.7052 Drilling positions. Persons shall not drill...

  4. 30 CFR 33.34 - Drilling test.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Drilling test. 33.34 Section 33.34 Mineral... MINING PRODUCTS DUST COLLECTORS FOR USE IN CONNECTION WITH ROCK DRILLING IN COAL MINES Test Requirements § 33.34 Drilling test. (a) A drilling test shall consist of drilling a set of 10 test holes, without...

  5. 30 CFR 57.7052 - Drilling positions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Drilling positions. 57.7052 Section 57.7052... SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Drilling-Surface and Underground § 57.7052 Drilling positions. Persons shall not drill...

  6. 30 CFR 33.34 - Drilling test.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Drilling test. 33.34 Section 33.34 Mineral... MINING PRODUCTS DUST COLLECTORS FOR USE IN CONNECTION WITH ROCK DRILLING IN COAL MINES Test Requirements § 33.34 Drilling test. (a) A drilling test shall consist of drilling a set of 10 test holes, without...

  7. 30 CFR 57.7052 - Drilling positions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Drilling positions. 57.7052 Section 57.7052... SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Drilling-Surface and Underground § 57.7052 Drilling positions. Persons shall not drill...

  8. 30 CFR 33.34 - Drilling test.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Drilling test. 33.34 Section 33.34 Mineral... MINING PRODUCTS DUST COLLECTORS FOR USE IN CONNECTION WITH ROCK DRILLING IN COAL MINES Test Requirements § 33.34 Drilling test. (a) A drilling test shall consist of drilling a set of 10 test holes,...

  9. Ultrasonic/Sonic Rotary-Hammer Drills

    NASA Technical Reports Server (NTRS)

    Badescu, Mircea; Sherrit, Stewart; Bar-Cohen, Yoseph; Bao, Xiaoqi; Kassab, Steve

    2010-01-01

    Ultrasonic/sonic rotary-hammer drill (USRoHD) is a recent addition to the collection of apparatuses based on ultrasonic/sonic drill corer (USDC). As described below, the USRoHD has several features, not present in a basic USDC, that increase efficiency and provide some redundancy against partial failure. USDCs and related apparatuses were conceived for boring into, and/or acquiring samples of, rock or other hard, brittle materials of geological interest. They have been described in numerous previous NASA Tech Briefs articles. To recapitulate: A USDC can be characterized as a lightweight, lowpower, piezoelectrically driven jackhammer in which ultrasonic and sonic vibrations are generated and coupled to a tool bit. A basic USDC includes a piezoelectric stack, an ultrasonic transducer horn connected to the stack, a free mass ( free in the sense that it can bounce axially a short distance between hard stops on the horn and the bit), and a tool bit. The piezoelectric stack creates ultrasonic vibrations that are mechanically amplified by the horn. The bouncing of the free mass between the hard stops generates the sonic vibrations. The combination of ultrasonic and sonic vibrations gives rise to a hammering action (and a resulting chiseling action at the tip of the tool bit) that is more effective for drilling than is the microhammering action of ultrasonic vibrations alone. The hammering and chiseling actions are so effective that unlike in conventional twist drilling, little applied axial force is needed to make the apparatus advance into the material of interest. There are numerous potential applications for USDCs and related apparatuses in geological exploration on Earth and on remote planets. In early USDC experiments, it was observed that accumulation of cuttings in a drilled hole causes the rate of penetration of the USDC to decrease steeply with depth, and that the rate of penetration can be increased by removing the cuttings. The USRoHD concept provides for

  10. Drilling the ``perfect'' well

    SciTech Connect

    1999-12-01

    In northeastern British Columbia, near Fort St. John, Calahoo Petroleum is chasing the elusive finger channels of a vast alluvial fan formed by runoff from the Rocky Mountains. The Cadomin formation is a thin, shallow, tight Cretaceous sandstore lying about 1,150m below the surface and loaded with gas at virgin pressure. Reserves are estimated at 3 Bcf per section. The formation is extremely fragile, and subject to damage if drilled improperly. Pores are lined with a thin layer of kaolinite, which when invaded will flocculate and clog pore throats, reducing permeability is estimated at 1 to 2 md, and wells that strike a channel can produce up to 3 MMcf/d of gas. Miss the sweet spot in the channel, and the best one can hope for is 0.5 md and 0.5 MMcf/d of gas. Finding the channels is a real challenge. There are only a few 2D spec seismic lines criss-crossing the play, few offset wells to correlate and a blanket of shallow coal seams above the Cadomin that tunes the seismic image and makes interpretation difficult. The combination of limited formation data and drilling challenges presents a complex set of problems. The paper discusses these challenges and what Calahoo is doing to meet them using a multidisciplinary team approach.

  11. Spills, drills, and accountability

    SciTech Connect

    1993-12-31

    NRDC seeks preventive approaches to oil pollution on U.S. coasts. The recent oil spills in Spain and Scotland have highlighted a fact too easy to forget in a society that uses petroleum every minute of every day: oil is profoundly toxic. One tiny drop on a bald eagle`s egg has been known to kill the embryo inside. Every activity involving oil-drilling for it, piping it, shipping it-poses risks that must be taken with utmost caution. Moreover, oil production is highly polluting. It emits substantial air pollution, such as nitrogen oxides that can form smog and acid rain. The wells bring up great quantities of toxic waste: solids, liquids and sludges often contaminated by oil, toxic metals, or even radioactivity. This article examines the following topics focusing on oil pollution control and prevention in coastal regions of the USA: alternate energy sources and accountability of pollutor; ban on offshore drilling as exemplified by the energy policy act; tanker free zones; accurate damage evaluations. Policy of the National Resource Defence Council is articulated.

  12. Horizontal Cross Bracing Detail, Vertical Cross Bracing Detail, Horizontal Cross ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Horizontal Cross Bracing Detail, Vertical Cross Bracing Detail, Horizontal Cross Bracing Joint, Vertical Cross Bracing End Detail - Ceylon Covered Bridge, Limberlost Park, spanning Wabash River at County Road 900 South, Geneva, Adams County, IN

  13. Reducing costs with well tractors for horizontal wells

    SciTech Connect

    Hallundbaek, J.

    1995-12-31

    The Well Tractor is a new concept for a down hole tool that significantly reduces operation costs for servicing horizontal wells. The Well Tractor is a cost effective alternative to the very expensive and time consuming conventional drill pipe conveyed operations. The Well Tractor is capable of pulling coiled tubing and/or wireline horizontally beyond 10,000 ft. The Well Tractor is capable of pulling more then 25,000 ft of coiled tubing and/or wireline into a highly deviated well. Furthermore the tool is designed for pushing other tools into the hole, e.g. logging tools, video cameras. The lateral reach capacity with coiled tubing is therefore increased considerably. Time consuming production logging operations of horizontal wells utilizing jointed pipe can be carried out by the Well Tractor as a wireline job.

  14. Drilling fluids waste minimization and stabilization using polymer technology

    SciTech Connect

    Thompson, L.F.

    1994-12-31

    The purpose of this paper is to address environmental issues associated with generated waste through drilling. Polymers have been proven to be extremely effective in the waste reduction in drilling closed system without the use of solids control equipment with shale shakers optional and the stabilization of drilling discharges using additional polymer technology. The objective is to demonstrate that with the proper use of polymers, waste can be reduced and stabilized without an increase in volume and with a very cost effective method. The result is that the environment will be enhanced while reducing risks and costs.

  15. Benthic foraminiferal responses to operational drill cutting discharge in the SW Barents Sea - a case study.

    NASA Astrophysics Data System (ADS)

    Aagaard-Sørensen, Steffen; Junttila, Juho; Dijkstra, Noortje

    2016-04-01

    Petroleum related exploration activities started in the Barents Sea 1980, reaching 97 exploration wells drilled per January 2013. The biggest operational discharge from drilling operations in the Barents Sea is the release of drill cuttings (crushed seabed and/or bedrock) and water based drilling muds including the commonly used weighing material barite (BaSO4). Barium (Ba), a constituent of barite, does not degrade and can be used to evaluate dispersion and accumulation of drill waste. The environmental impact associated with exploration drilling within the Goliat Field, SW Barents Sea in 2006 was evaluated via a multiproxy investigation of local sediments. The sediments were retrieved in November 2014 at ~350 meters water depth and coring sites were selected at distances of 5, 30, 60, 125 and 250 meters from the drill hole in the eastward downstream direction. The dispersion pattern of drill waste was estimated via measurements of sediment parameters including grain size distribution and water content in addition to heavy metal and total organic carbon contents. The environmental impact was evaluated via micro faunal analysis based on benthic foraminiferal (marine shell bearing protists) fauna composition and concentration changes. Observing the sediment parameters, most notably Ba levels, reveals that dispersion of drill waste was limited to <125 meters from the drill site with drill waste thicknesses decreasing downstream. The abruptness and quantity of drill waste sedimentation initially smothered the foraminiferal fauna at ≤ 30 meters from the drill site, while at a distance of 60 meters, the fauna seemingly survived and bioturbation persisted. Analysis of the live (Nov 2014) foraminiferal fauna reveals a natural species composition at all distances from the drill site within the top sediments (0-5 cm core depth). Furthermore, the fossil foraminiferal fauna composition found within post-impacted top sediment sections, particularly in the cores situated at

  16. Rock Drilling Performance Evaluation by an Energy Dissipation Based Rock Brittleness Index

    NASA Astrophysics Data System (ADS)

    Munoz, H.; Taheri, A.; Chanda, E. K.

    2016-08-01

    To reliably estimate drilling performance both tool-rock interaction laws along with a proper rock brittleness index are required to be implemented. In this study, the performance of a single polycrystalline diamond compact (PDC) cutter cutting and different drilling methods including PDC rotary drilling, roller-cone rotary drilling and percussive drilling were investigated. To investigate drilling performance by rock strength properties, laboratory PDC cutting tests were performed on different rocks to obtain cutting parameters. In addition, results of laboratory and field drilling on different rocks found elsewhere in literature were used. Laboratory and field cutting and drilling test results were coupled with values of a new rock brittleness index proposed herein and developed based on energy dissipation withdrawn from the complete stress-strain curve in uniaxial compression. To quantify cutting and drilling performance, the intrinsic specific energy in rotary-cutting action, i.e. the energy consumed in pure cutting action, and drilling penetration rate values in percussive action were used. The results show that the new energy-based brittleness index successfully describes the performance of different cutting and drilling methods and therefore is relevant to assess drilling performance for engineering applications.

  17. Promising pneumatic punchers for borehole drilling

    SciTech Connect

    A.A. Lipin

    2005-03-15

    The state of borehole drilling by downhole pneumatic punchers and their potential use in open and underground mining as well as in exploration for reliable sampling are analyzed. Performance specification is presented for the new-generation pneumatic punchers equipped with a pin tool, effectively operating at a compressed-air pressure of 0.5-0.7 MPa, and with an additional extended exhaust from the power stroke chamber during working cycle.

  18. Middle East: Output expansions boost drilling

    SciTech Connect

    1996-08-01

    Iraqi exports may return to the market in limited fashion, but none of the region`s producers seems particularly concerned. They believe that global oil demand is rising fast enough to justify their additions to productive capacity. The paper discusses exploration, drilling and development, and production in Saudi Arabia, Kuwait, the Neutral Zone, Abu Dhabi, Dubai, Oman, Iran, Iraq, Yemen, Qatar, Syria, Turkey, and Sharjah. The paper also briefly mentions activities in Bahrain, Israel, Jordan, and Ras al Khaimah.

  19. Structural Pattern Drills: A Classification.

    ERIC Educational Resources Information Center

    Paulston, Christina Bratt

    The author attempts a reclassification of structural pattern drills, taking into account the theories of Skinner as well as Chomsky on language learning. Her intent is to propose a "systematic progression in the classroom from mechanical learning to the internalizing of competence." Drills could be used more effeciently in foreign language…

  20. Novel technology increases drilling potential

    SciTech Connect

    Dempsey, P.

    1982-07-01

    This article examines such innovations in drilling technology as a giant semi-submersible rig for Arctic operation; an all-weather jack-up rig; float on/float-off rig transports; environmentally clean oil-based drilling mud; 15,000 psi BOP hardware; a compact subsea test tree; a satellite rig monitor/communications system and a digital driller training system.

  1. 30 CFR 77.1009 - Drill; operation.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) Drill crews and others shall stay clear of augers or drill stems that are in motion. Persons shall not pass under or step over a moving stem or auger. (e) In the event of power failure, drill controls...

  2. Stabilization/solidification of petroleum drill cuttings.

    PubMed

    Leonard, Sunday A; Stegemann, Julia A

    2010-02-15

    A systematic treatability study was conducted for the treatment of drill cuttings, a waste generated during petroleum exploration and production, by stabilization/solidification with Portland cement (CEM I), with the addition of high carbon power plant fly ash (HCFA), an industrial by-product, as a novel sorbent for organic contaminants. A factorial design experiment was adopted to investigate the effects of waste-to-binder ratio, binder formulation, and curing time on response variables including unconfined compressive strength (UCS), hydraulic conductivity, porosity, leachate pH, and acid neutralization capacity (ANC) of the s/s products. Results show that all factors had significant effects on the properties of the s/s products. Drill cuttings and HCFA addition both reduced UCS, but HCFA improved hydraulic conductivity, relative to CEM I only s/s products. Drill cuttings addition had little effect on the ANC of products prepared with CEM I only, and improved that of products containing HCFA. Management options assessment based on performance criteria adapted from regulatory and other guidance suggests that the s/s products could find application as controlled low-strength materials, landfill liner, and landfill daily cover. This work demonstrates how a systematic treatability study can be used to develop a s/s operating window for the management of a particular waste type.

  3. The Marskhod Egyptian Drill Project

    NASA Astrophysics Data System (ADS)

    Shaltout, M. A. M.

    We describe a possible participation of Egypt in a future Mars rover Mission. It was suggested that Egypt participate through involvement in the design, building and testing of a drill to obtain sub-surface samples. The Space Research Institute of the Russian Academy of Sciences (IKI), formally invited the Egyptian Ministry of Scientific Research to study the concept for potential use on the Russian Mars 2001 Mission. As one of the objectives of the Marskhod mission was the analysis of sub-surface samples, a drilling mechanism in the payload would be essential. The Egyptian expertise in drill development is associated with the archaeological exploration of the Pyramids. A sophisticated drilling system perforated limestone to a depth of 2 m without the use of lubricants or cooling fluids that might have contaminated the Pit's environment. This experience could have been applied to a drill development Mars 2001 mission, which was unfortunately canceled due to economic problems.

  4. OM300 Direction Drilling Module

    DOE Data Explorer

    MacGugan, Doug

    2013-08-22

    OM300 – Geothermal Direction Drilling Navigation Tool: Design and produce a prototype directional drilling navigation tool capable of high temperature operation in geothermal drilling Accuracies of 0.1° Inclination and Tool Face, 0.5° Azimuth Environmental Ruggedness typical of existing oil/gas drilling Multiple Selectable Sensor Ranges High accuracy for navigation, low bandwidth High G-range & bandwidth for Stick-Slip and Chirp detection Selectable serial data communications Reduce cost of drilling in high temperature Geothermal reservoirs Innovative aspects of project Honeywell MEMS* Vibrating Beam Accelerometers (VBA) APS Flux-gate Magnetometers Honeywell Silicon-On-Insulator (SOI) High-temperature electronics Rugged High-temperature capable package and assembly process

  5. Large hole rotary drill performance

    SciTech Connect

    Workman, J.L.; Calder, P.N.

    1996-12-31

    Large hole rotary drilling is one of the most common methods of producing blastholes in open pit mining. Large hole drilling generally refers to diameters from 9 to 17 inch (229 to 432 mm), however a considerable amount of rotary drilling is done in diameters from 6{1/2} to 9 inch (165 to 229 mm). These smaller diameters are especially prevalent in gold mining and quarrying. Rotary drills are major mining machines having substantial capital cost. Drill bit costs can also be high, depending on the bit type and formation being drilled. To keep unit costs low the drills must perform at a high productivity level. The most important factor in rotary drilling is the penetration rate. This paper discusses the factors affecting penetration rate. An empirical factor in rotary drilling is the penetration rate. This paper discusses the factors affecting penetration rate. An empirical factor is given for calculating the penetration rate based on rock strength, pulldown weight and the RPM. The importance of using modern drill performance monitoring systems to calibrate the penetration equation for specific rock formations is discussed. Adequate air delivered to the bottom of the hole is very important to achieving maximum penetration rates. If there is insufficient bailing velocity cuttings will not be transported from the bottom of the hole rapidly enough and the penetration rate is very likely to decrease. An expression for the balancing air velocity is given. The amount by which the air velocity must exceed the balancing velocity for effective operation is discussed. The effect of altitude on compressor size is also provided.

  6. Microgravity Drill and Anchor System

    NASA Technical Reports Server (NTRS)

    Parness, Aaron; Frost, Matthew A.; King, Jonathan P.

    2013-01-01

    This work is a method to drill into a rock surface regardless of the gravitational field or orientation. The required weight-on-bit (WOB) is supplied by a self-contained anchoring mechanism. The system includes a rotary percussive coring drill, forming a complete sampling instrument usable by robot or human. This method of in situ sample acquisition using micro - spine anchoring technology enables several NASA mission concepts not currently possible with existing technology, including sampling from consolidated rock on asteroids, providing a bolt network for astronauts visiting a near-Earth asteroid, and sampling from the ceilings or vertical walls of lava tubes and cliff faces on Mars. One of the most fundamental parameters of drilling is the WOB; essentially, the load applied to the bit that allows it to cut, creating a reaction force normal to the surface. In every drilling application, there is a minimum WOB that must be maintained for the system to function properly. In microgravity (asteroids and comets), even a small WOB could not be supported conventionally by the weight of the robot or astronaut. An anchoring mechanism would be needed to resist the reactions, or the robot or astronaut would push themselves off the surface and into space. The ability of the system to anchor itself to a surface creates potential applications that reach beyond use in low gravity. The use of these anchoring mechanisms as end effectors on climbing robots has the potential of vastly expanding the scope of what is considered accessible terrain. Further, because the drill is supported by its own anchor rather than by a robotic arm, the workspace is not constrained by the reach of such an arm. Yet, if the drill is on a robotic arm, it has the benefit of not reflecting the forces of drilling back to the arm s joints. Combining the drill with the anchoring feet will create a highly mobile, highly stable, and highly reliable system. The drilling system s anchor uses hundreds of

  7. Dicyclic horizontal symmetries

    NASA Astrophysics Data System (ADS)

    Kong, Otto Cho Wing

    In the very successful standard theory of particle physics, the occurrence of repeated quark and lepton flavors, and especially their peculiar mass spectrum, can be accommodated parametrically but is largely unexplained. The present dissertation is an investigation into dicyclic horizontal symmetries as a theory addressing this elusive problem of flavor, as well as some other related issues in particle physics. A horizontal symmetry is a supplement to the perspective based on the experimentally well-established standard model, and its (supersymmetric) unification theories. Dicyclic groups are a special class of discrete non- abelian groups. The most pressing part of the flavor problem in the standard model is the existence of three families of (fermionic) matter and the unnaturally large hierarchy among the parameters describing their masses and mixing. In particular, the top quark is singled out as the only fermion having a natural mass at electroweak breaking scale. While bottom and tau masses may be suppressed by the Higgs vacuum expectation value, the small masses of the other two families beg an explanation. The supersymmetric counterpart of the problem is the need for a high degree of degeneracy especially among the squarks of the lighter two families. We first analyze the phenomenologically-viable quark and squark mass matrix textures using a simple algebraic method, paying particular attention to a 2 + 1 family structure. These serve as inputs for our model building exercises. We next illustrate how the various theoretical and phenomenological constraints single out a gauged dicyclic group as the most appealing candidate for a horizontal symmetry and discuss systematically our major model building strategies. A few models obtained along this line are then presented. These include a supersymmetric SU(5) /otimes Q12 /otimes U(1) model that successfully produces a phenomenologically-viable mass matrix texture pattern for the quarks and squarks.

  8. In vitro assessment of aiming bias in the frontal plane during orthopaedic drilling procedures.

    PubMed

    Sparrow, T; Heller, J; Farrell, M

    2015-04-18

    Drilling trials were performed using drilling boards incorporating pairs of 22 mm polyethylene tubes mounted horizontally. The tubes were premarked with 20, 0.5 mm deep notches along the centre of their upper surface representing the starting point for each drilling trial. Volunteers were instructed to drill 20 straight holes across the tube until they penetrated both walls. Kirschner wires were inserted through each of the drill holes until they made indentations into the base board. Deviation of each mark from mid-line was measured using digital callipers. The measured values were used to calculate deviation angles to the left (negative values) or right (positive values). Trials were performed with the drill and guide held in the surgeon's line-of-sight (LOS) and with 300 mm offset (OFF). A systematic error (aiming bias) was identified in all individuals. Overall, left-hander's drilling action was skewed to the left and right-hander's drilling action was skewed to the right. Using LOS technique, mean overall bias was 2.3° (range 0°-7.7°) to the left for left-handers and 1.5(o) (range 0.3°-3.1°) to the right for right-handers. Surprisingly, aiming bias was greater for LOS than for OFF, although the difference for this comparison was not statistically significant.

  9. Lunar drill footplate and casing

    NASA Technical Reports Server (NTRS)

    Maassen, Erik C.; Hendrix, Thomas H.; Morrison, Eddie W.; Phillips, Rodrick B.; Le, Vu Quang; Works, Bruce A.

    1989-01-01

    To prevent hole collapse during lunar drilling operations, a casing has been devised of a graphite reinforced polyimide composite which will be able to withstand the lunar environment. Additionally, this casing will be inserted into the ground in segments two meters long which will penetrate the regolith simultaneously with the auger. The vertical action of the mobile platform will provide a downward force to the casing string through a special adaptor, giving the casing the needed impetus to sink the anticipated depth of ten meters. Casing segments will be connected with a simple snap arrangement. Excess casing will be cut off by a cylindrical cutting tool which will also transport the excess casing away from the hole. A footplate will be incorporated to grasp the auger rod string during rod segment additions or removals. The footplate grasping mechanism will consist of a set of vice-like arms, one end of each bearing threaded to a common power screw. The power screw will be threaded such that one end's thread pitch opposes that of the other end. The weight of the auger and rod string will be transmitted through the arms to the power screw and absorbed by a set of three ball bearing assemblies. The power screw will be driven by a one-half horsepower brushless motor actuated by radio control. The footplate will rest on four short legs and be anchored with pins that are an integral part of each leg.

  10. Horizontal baffle for nuclear reactors

    DOEpatents

    Rylatt, John A.

    1978-01-01

    A horizontal baffle disposed in the annulus defined between the core barrel and the thermal liner of a nuclear reactor thereby physically separating the outlet region of the core from the annular area below the horizontal baffle. The horizontal baffle prevents hot coolant that has passed through the reactor core from thermally damaging apparatus located in the annulus below the horizontal baffle by utilizing the thermally induced bowing of the horizontal baffle to enhance sealing while accommodating lateral motion of the baffle base plate.

  11. Statistical Analysis for Subjective and Objective Evaluations of Dental Drill Sounds

    PubMed Central

    Yamada, Tomomi; Kuwano, Sonoko; Ebisu, Shigeyuki; Hayashi, Mikako

    2016-01-01

    The sound produced by a dental air turbine handpiece (dental drill) can markedly influence the sound environment in a dental clinic. Indeed, many patients report that the sound of a dental drill elicits an unpleasant feeling. Although several manufacturers have attempted to reduce the sound pressure levels produced by dental drills during idling based on ISO 14457, the sound emitted by such drills under active drilling conditions may negatively influence the dental clinic sound environment. The physical metrics related to the unpleasant impressions associated with dental drill sounds have not been determined. In the present study, psychological measurements of dental drill sounds were conducted with the aim of facilitating improvement of the sound environment at dental clinics. Specifically, we examined the impressions elicited by the sounds of 12 types of dental drills in idling and drilling conditions using a semantic differential. The analysis revealed that the impressions of dental drill sounds varied considerably between idling and drilling conditions and among the examined drills. This finding suggests that measuring the sound of a dental drill in idling conditions alone may be insufficient for evaluating the effects of the sound. We related the results of the psychological evaluations to those of measurements of the physical metrics of equivalent continuous A-weighted sound pressure levels (LAeq) and sharpness. Factor analysis indicated that impressions of the dental drill sounds consisted of two factors: “metallic and unpleasant” and “powerful”. LAeq had a strong relationship with “powerful impression”, calculated sharpness was positively related to “metallic impression”, and “unpleasant impression” was predicted by the combination of both LAeq and calculated sharpness. The present analyses indicate that, in addition to a reduction in sound pressure level, refining the frequency components of dental drill sounds is important for creating

  12. Statistical Analysis for Subjective and Objective Evaluations of Dental Drill Sounds.

    PubMed

    Yamada, Tomomi; Kuwano, Sonoko; Ebisu, Shigeyuki; Hayashi, Mikako

    2016-01-01

    The sound produced by a dental air turbine handpiece (dental drill) can markedly influence the sound environment in a dental clinic. Indeed, many patients report that the sound of a dental drill elicits an unpleasant feeling. Although several manufacturers have attempted to reduce the sound pressure levels produced by dental drills during idling based on ISO 14457, the sound emitted by such drills under active drilling conditions may negatively influence the dental clinic sound environment. The physical metrics related to the unpleasant impressions associated with dental drill sounds have not been determined. In the present study, psychological measurements of dental drill sounds were conducted with the aim of facilitating improvement of the sound environment at dental clinics. Specifically, we examined the impressions elicited by the sounds of 12 types of dental drills in idling and drilling conditions using a semantic differential. The analysis revealed that the impressions of dental drill sounds varied considerably between idling and drilling conditions and among the examined drills. This finding suggests that measuring the sound of a dental drill in idling conditions alone may be insufficient for evaluating the effects of the sound. We related the results of the psychological evaluations to those of measurements of the physical metrics of equivalent continuous A-weighted sound pressure levels (LAeq) and sharpness. Factor analysis indicated that impressions of the dental drill sounds consisted of two factors: "metallic and unpleasant" and "powerful". LAeq had a strong relationship with "powerful impression", calculated sharpness was positively related to "metallic impression", and "unpleasant impression" was predicted by the combination of both LAeq and calculated sharpness. The present analyses indicate that, in addition to a reduction in sound pressure level, refining the frequency components of dental drill sounds is important for creating a comfortable sound

  13. Horizontal-well technology for enhanced recovery in very mature, depletion-drive gas reservoirs

    SciTech Connect

    McCoy, A.W.; Davis, F.A.; Elrod, J.P.; Rhodes, S.L. Jr.; Singh, S.P.

    1998-02-01

    Horizontal-well technology has been applied successfully to exploit reservoirs with thin beds, low-permeability zones, and natural fractures and in high-cost areas and zones with water coming. Horizontal technology has been used to enhance ultimate gas recovery in a very mature, low-pressure zone in the lower Pettit horizon at Carthage field, Panola County, Texas. The Pirkle-2 well was drilled to test the concept that a horizontal well could enhance ultimate recovery by lowering the final abandonment pressure in a very mature, depletion-drive gas reservoir. Many of the older lower Pettit wells have been abandoned because production rates dropped to less than 60 mcf/D. These wells usually produced from thinner pay intervals in the field. Drilling wells to the deeper Cotton Valley sands during the past 20 years has furnished new log information about the Pettit zone and has significantly increased the understanding about this formation. In Oxy U.S.A. Inc.`s portion of the field, several recent replacement wells drilled in thicker pay sections resulted in a substantial improvement in well deliverabilities over that in the older wells. This discovery is what led to the idea of drilling a horizontal well to improve ultimate gas recovery.

  14. Acoustical properties of drill strings

    SciTech Connect

    Drumheller, D.S.

    1988-08-01

    The recovery of petrochemical and geothermal resources requires extensive drilling of wells to increasingly greater depths. Real-time collection and telemetry of data about the drilling process while it occurs thousands of feet below the surface is an effective way of improving the efficiency of drilling operations. Unfortunately, due to hostile down-hole environments, telemetry of this data is an extremely difficult problem. Currently, commercial systems transmit data to the surface by producing pressure pulses within the portion of the drilling mud enclosed in the hollow steel drill string. Transmission rates are between two and four data bits per second. Any system capable of raising data rates without increasing the complexity of the drilling process will have significant economic impact. One alternative system is based upon acoustical carrier waves generated within the drill string itself. If developed, this method would accommodate data rates up to 100 bits per second. Unfortunately, the drill string is a periodic structure of pipe and threaded tool joints, the transmission characteristics are very complex and exhibit a banded and dispersive structure. Over the past forty years, attempts to field systems based upon this transmission method have resulted in little success. This paper examines this acoustical transmission problem in great detail. The basic principles of acoustic wave propagation in the periodic structure of the drill string are examined through theory, laboratory experiment, and field test. The results indicate the existence of frequency bands which are virtually free of attenuation and suitable for data transmission at high bit rates. 9 refs., 38 figs., 2 tabs.

  15. Drilling installation, more specifically for oil-drilling operations

    SciTech Connect

    Gallon, J.

    1983-03-01

    This invention concerns a drilling installation comprising a base which rests on the ground, a rig, a winch, items of equipment such as a drill-pipe storage coffer, and a working floor which is raised above the base, surrounding the rig. The installation is characterized by the fact that it comprises a carrying platform designed to take the rig, and which can be moved from a low position in contact with the base to a high position, and which is connected by a suitable lifting device to lifting uprights attached to the base. The platform also carries the working floor and items of equipment. The invention more specifically concerns drilling installations for oil-drilling operations.

  16. Development drilling problems offshore Malaysia

    SciTech Connect

    Osman, M.N.; Maung, M.

    1984-02-01

    This paper highlights the major drilling problems encountered in the field development programmes offshore Malaysia from 1978 to mid-1983. The major problems identified were pipe sticking which was common in all the areas and top hole drilling problems encountered in a few fields offshore Sabah and Sarawak. Generally, the problems were related to drilling deviated wells through the soft and unconsolidated formations common in this region. Preventive measures employed by the Contractors have been effective in overcoming these problems in the later years of the period under consideration.

  17. Artic ice and drilling structures

    SciTech Connect

    Sodhl, D.S.

    1985-04-01

    The sea ice in the southern Beaufort Sea is examined and subdivided into three zones: the fast ice zone, the seasonal pack-ice zone, an the polar pack ice zone. Each zone requires its own type of system. Existing floating drilling systems include ice-strengthened drill ships, conical drilling systems, and floating ice platforms in deep-water land-fast ice. The development of hydrocarbon resources in the Arctic presents great challenges to engineers, since the structures are required to operate safely under various conditions. Significant progress has yet to be made in understanding the behavior of ice.

  18. Horizontal Roll Vortices and Crown Fires.

    NASA Astrophysics Data System (ADS)

    Haines, Donald A.

    1982-06-01

    Observational evidence from nine crown fires suggests that horizontal roll vortices are a major mechanism in crown-fire spread. Post-burn aerial photography indicates that unburned tree-crown streets are common with crown fire. Investigation of the understory of these crown streets after two fires showed uncharred tree trunks along a center line. This evidence supports a hypothesis of vortex action causing strong downward motion of air along the streets. Additionally, photographs of two ongoing crown fires show apparent horizontal roll vortices. Discussion also includes laboratory and numerical studies in fluid dynamics that may apply to crown fires.

  19. The application of nuclear logs in the ocean drilling program

    SciTech Connect

    Lovell, M.A.; Harvey, P.K. ); Anderson, R.N. )

    1990-06-01

    The Ocean Drilling Program (ODP) is an attempt to directly sample the ocean floor. Following on from the Deep Sea Drilling Project (DSDP) it uses the drilling ship D/V SEDCO/BP 471 (JOIDES RESOLUTION) to investigate selected sites throughout the world's oceans. In addition to obtaining maximum recovery of the rocks drilled in the form of cylindrical cores, the program's objectives have included the development of an extensive suite of downhold measurements. This paper concentrates on the use of the elemental data in scientific investigations of the oceanic crust and consequently deals specifically with the use of chemical concentrations. These interpretations may be enhanced by either further nuclear data, such as variously determined porosity estimates or by integration with data from conventional logs. The results presented pertain to a wide variety of geological environments within the world's oceans.

  20. Gas Drilling, North Dakota

    NASA Image and Video Library

    2017-09-27

    Northwestern North Dakota is one of the least-densely populated parts of the United States. Cities and people are scarce, but satellite imagery shows the area has been aglow at night in recent years. The reason: the area is home to the Bakken shale formation, a site where oil production is booming. Companies hoping to extract oil from the Bakken formation have drilled hundreds of new wells in the last few years; natural gas often bubbles up to the surface as part of the process. Lacking the infrastructure to pipe the gas away, many drillers simply burn it in a practice known as flaring. On November 12, 2012, the Visible Infrared Imaging Radiometer Suite (VIIRS) on the Suomi NPP satellite captured this nighttime view of widespread gas flaring throughout the area. Many of the specks of light are evidence of gas flaring, though others may be the lights around drilling equipment. Some of the brighter areas correspond to towns and cities including Williston, Minot, and Dickinson. The image was captured by the VIIRS “day-night band,” which detects light in a range of wavelengths from green to near-infrared and uses filtering techniques to observe signals such as gas flares, auroras, wildfires, city lights, and reflected moonlight. When VIIRS acquired the image, the moon was in its waning crescent phase, meaning it was reflecting only a small amount of light. According to the U.S. Energy Information Administration, natural gas production from the Bakken shale has increased more than 20-fold between 2007 and 2010. Gas production averaged over 485 million cubic feet per day in September 2011, compared to the 2005 average of about 160 million cubic feet per day. Due to the lack of gas pipeline and processing facilities in the region, about 29 percent of that gas is flared. NASA Earth Observatory image by Jesse Allen and Robert Simmon, using VIIRS Day-Night Band data from the Suomi National Polar-orbiting Partnership. Suomi NPP is the result of a partnership between NASA

  1. Effective Dust Control Systems on Concrete Dowel Drilling Machinery

    PubMed Central

    Echt, Alan S.; Sanderson, Wayne T.; Mead, Kenneth R.; Feng, H. Amy; Farwick, Daniel R.; Farwick, Dawn Ramsey

    2016-01-01

    Rotary-type percussion dowel drilling machines, which drill horizontal holes in concrete pavement, have been documented to produce respirable crystalline silica concentrations above recommended exposure criteria. This places operators at potential risk for developing health effects from exposure. United States manufacturers of these machines offer optional dust control systems. The effectiveness of the dust control systems to reduce respirable dust concentrations on two types of drilling machines was evaluated under controlled conditions with the machines operating inside large tent structures in an effort to eliminate secondary exposure sources not related to the dowel-drilling operation. Area air samples were collected at breathing zone height at three locations around each machine. Through equal numbers of sampling rounds with the control systems randomly selected to be on or off, the control systems were found to significantly reduce respirable dust concentrations from a geometric mean of 54 mg per cubic meter to 3.0 mg per cubic meter on one machine and 57 mg per cubic meter to 5.3 mg per cubic meter on the other machine. This research shows that the dust control systems can dramatically reduce respirable dust concentrations by over 90% under controlled conditions. However, these systems need to be evaluated under actual work conditions to determine their effectiveness in reducing worker exposures to crystalline silica below hazardous levels. PMID:27074062

  2. Spreading and deposition of drill cuttings in the Barents Sea - Plans of the Barents Sea drill cuttings research initiative (BARCUT) project

    NASA Astrophysics Data System (ADS)

    Junttila, Juho; Aagaard Sørensen, Steffen; Dijkstra, Noortje

    2016-04-01

    The increasing petroleum exploration activity in the Barents Sea will lead to increased release of drill cuttings onto the ocean bottom in the future. Drilling mud consists of both drilling fluid with contaminants and fine sediments. This increasing discharge of drill cuttings provides a need for further knowledge of ocean current transportation of both contaminants and fine sediment particles (clay and silt), their impact on microfauna and the prediction of their accumulation areas. The main object is to study the current status of the sediments and microfauna exposed to different types of drill cuttings in the proximity of drilled exploration wells. Detailed objectives are: 1) To identify the main physical and geochemical characteristics of the sediments near the drilled wells including main areas for drill cutting accumulation and the influence of ocean currents on sediments and drill cuttings; 2) To identify the influence of drill cutting discharge on benthic foraminifera; 3) Monitoring and prediction of future spreading, accumulation and distribution of drill cutting related pollutants. We have conducted two field sampling campaigns, and in total visited seven drilling sites, ranging in age from recently drilled (in 2015) to nearly 30 years since abandonment. In this project, we study mainly push cores taken with a remote operated underwater vehicle (ROV) in the close proximity of exploration wells in the SW Barents Sea. We will determine the modern sedimentation rates based on the ²¹°Pb dating method. We analyze sediment grain-size, heavy metal and polyaromatic hydrocarbon (PAH) contents. Additionally analysis on benthic foraminifera, smectite clay minerals and the total organic carbon (TOC) content will be performed.

  3. Combining conventional and thermal drilling in order to increase speed and reduce costs of drilling operations to access deep geothermal resources

    NASA Astrophysics Data System (ADS)

    Rossi, Edoardo; Kant, Michael A.; von Rohr, Philipp Rudolf; Saar, Martin O.

    2017-04-01

    The exploitation of deep geothermal resources for energy production relies on finding cost effective solutions to increase the drilling performance in hard rocks. Conventional rotary drilling techniques, based on mechanical rock exportation, result in high rates of drilling tool wearing, causing significant costs. Additionally, rotary drilling results in low drilling speeds in the typically hard crystalline basement rocks targeted for enhanced geothermal energy utilization technologies. Furthermore, even lower overall drilling rates result, when considering tripping times required to exchange worn drill tools. Therefore, alternative drilling techniques, such as hammering, thermal drilling, plasma drilling, and jetting processes are widely investigated in order to provide cost-effective alternatives to conventional drilling methods. A promising approach, that combines conventional rotary and thermal drilling techniques, is investigated in the present work. Here, the rock material is thermally weakened before being exported by conventional cutters. Heat is locally provided by a flame, which moves over the rock surface, heat-treating the material. Besides reducing the rock strength, an in-depth smoothening effect of the mechanical rock properties is observed due to the thermal treatment. This results in reduced rates of drill bit wearing and higher rates of penetration, which in turn decreases drilling costs significantly, particularly for deep-drilling projects. Due to the high heating rates, rock-hardening, commonly observed at moderate temperatures, can be avoided. The flame action can be modelled as a localized, high heat transfer coefficient flame treatment, which results in orders of magnitude higher heating rates than conventional oven treatments. Therefore, we analyse rock strength variations after different maximum temperatures, flame-based heating rates, and rock confinement pressures. The results show that flame treatments lead to a monotonous decrease of

  4. Horizontal well application in QGPC - Qatar, Arabian Gulf

    SciTech Connect

    Jubralla, A.F.; Al-Omran, J.; Al-Omran, S.

    1995-08-01

    As with many other areas in the world, the application of horizontal well technology in Qatar has changed the {open_quotes}old time{close_quotes} reservoir development philosophy and approach. QGPC`s first experience with this technology was for increased injectivity in an upper Jurassic reservoir which is comprised by alternating high and low permeable layers. The first well drilled in 1990 offshore was an extreme success and the application was justified for fieldwide implementation. Huge costs were saved as a result. This was followed by 2 horizontal wells for increased productivity in a typically tight (< 5 mD) chalky limestone of Cretaceous age. A fourth offshore well drilled in a thin (30 ft) and tight (10-100 mD) Jurassic dolomite overlaying a stack of relatively thick (25-70 ft) and {open_quotes}Watered Out{close_quotes} grain and grain-packstones, (500-4500 mD) indicated another viable and successful application. A similar approach in the Onshore Dukhan field has been adopted for another Upper Jurassic reservoir. The reservoir is 80 ft thick and is being developed by vertical wells. However, permeability contrast between the upper and lower cycles had caused preferential production and hence injection across the lower cycles, leaving the upper cycles effectively undrained. Horizontal wells have resulted in productivity and injectivity improvements by a factor 3 to 5 that of vertical wells. Therefore a field wide development scheme is being implemented. 3D seismic and the imaging tools, such as the FMS, reconciled with horizontal cores have assisted in understanding the lateral variation and the macro and micro architectural and structural details of these reservoirs. Such tools are essential for the optimum design of horizontal wells.

  5. Log response of ultrasonic imaging and its significance for deep mineral prospecting of scientific drilling borehole-2 in Nanling district, China

    NASA Astrophysics Data System (ADS)

    Xiao, Kun; Zou, Changchun; Xiang, Biao; Yue, Xuyuan; Zhou, Xinpeng; Li, Jianguo; Zhao, Bin

    2014-10-01

    The hole NLSD-2, one of the deepest scientific drilling projects in the metallic ore districts of China, is the second scientific drilling deep hole in the Nanling district. Its ultimate depth is 2012.12 m. This hole was created through the implementation of continuous coring, and the measuring of a variety of geophysical well logging methods was performed over the course of the drilling process. This paper analyzes the characteristic responses of the fracture and fractured zone by ultrasonic imaging log data, and characterizes various rules of fracture parameters which change according to drilling depth. It then discusses the denotative meaning of the log results of polymetallic mineralization layers. The formation fractures develop most readily in a depth of 100~200 m, 600~850 m and 1450~1550 m of the hole NLSD-2, and high angle fractures develop most prominently. The strike direction of the fractures is mainly NW-SE, reflecting the orientation of maximum horizontal principal stress. For the polymetallic mineralization layer that occurred in the fractured zone, the characteristic response of ultrasonic imaging log is a wide dark zone, and the characteristic responses of conventional logs displayed high polarizability, high density, high acoustic velocity and low resistivity. All the main polymetallic mineralization layers are developed in fractures or fractured zones, and the fractures and fractured zones can be identified by an ultrasonic imaging log, thus the log results indirectly indicate the occurrence of polymetallic mineralization layers. Additionally, the relationship between the dip direction of fractures and the well deviation provides guidance for straightening of the drilling hole.

  6. Aerodynamic window for high precision laser drilling

    NASA Astrophysics Data System (ADS)

    Sommer, Steffen; Dausinger, Friedrich; Berger, Peter; Hügel, Helmuth

    2007-05-01

    High precision laser drilling is getting more and more interesting for industry. Main applications for such holes are vaporising and injection nozzles. To enhance quality, the energy deposition has to be accurately defined by reducing the pulse duration and thereby reducing the amount of disturbing melting layer. In addition, an appropriate processing technology, for example the helical drilling, yields holes in steel at 1 mm thickness and diameters about 100 μm with correct roundness and thin recast layers. However, the processing times are still not short enough for industrial use. Experiments have shown that the reduction of the atmospheric pressure down to 100 hPa enhances the achievable quality and efficiency, but the use of vacuum chambers in industrial processes is normally quite slow and thus expensive. The possibility of a very fast evacuation is given by the use of an aerodynamic window, which produces the pressure reduction by virtue of its fluid dynamic features. This element, based on a potential vortex, was developed and patented as out-coupling window for high power CO II lasers by IFSW 1, 2, 3. It has excellent tightness and transmission properties, and a beam deflection is not detectable. The working medium is compressed air, only. For the use as vacuum element for laser drilling, several geometrical modifications had to be realized. The prototype is small enough to be integrated in a micromachining station and has a low gas flow. During the laser pulse, which is focussed through the potential flow, a very high fluence is reached, but the measurements have not shown any beam deflection or focal shifting. The evacuation time is below 300 ms so that material treatment with changing ambient pressure is possible, too. Experimental results have proven the positive effect of the reduced ambient pressure on the drilling process for the regime of nano- and picosecond laser pulses. Plasma effects are reduced and, because of the less absorption, the

  7. Modular island drilling system

    SciTech Connect

    Wetmore, Sh. B.

    1985-04-16

    A gravity-type offshore structure, useful as an offshore drilling platform, e.g., is provided for use in ice-covered waters such as offshore of the Alaskan and Canadian North Slope. The structure is composed of a plurality of floatable and controllably ballastable modules, each of which can be fully submerged. The modules are stackable by selective ballasting and deballasting operations in a suitable sequence to define a mobile offshore structure. The structure is assemblable adjacent a site of use and is floatable after assembly to, from and between successive sites of use. At each site of use the assembled structure is ballasted by sea water to be supported by the sea floor and to have sufficient deadweight, in combination with its support by the sea floor, to stand against ice loads urging the structure laterally of the site. Major ones of the modules preferably are constructed of reinforced concrete arranged within the modules in a honeycomb cellular fashion. A reinforced concrete armor belt is removably installed around the structure at its on-site load waterline. The structure is useful in a range of water depths. The armor belt is mountable to the structure at a number of different elevations on the structure to suit differing on-site load waterline locations. Individual modules can be used with other modules of the same or different size in a series of offshore structures individually useful in a characteristic range of water depths.

  8. Drilling Damage in Composite Material.

    PubMed

    Durão, Luís Miguel P; Tavares, João Manuel R S; de Albuquerque, Victor Hugo C; Marques, Jorge Filipe S; Andrade, Oscar N G

    2014-05-14

    The characteristics of carbon fibre reinforced laminates have widened their use from aerospace to domestic appliances, and new possibilities for their usage emerge almost daily. In many of the possible applications, the laminates need to be drilled for assembly purposes. It is known that a drilling process that reduces the drill thrust force can decrease the risk of delamination. In this work, damage assessment methods based on data extracted from radiographic images are compared and correlated with mechanical test results-bearing test and delamination onset test-and analytical models. The results demonstrate the importance of an adequate selection of drilling tools and machining parameters to extend the life cycle of these laminates as a consequence of enhanced reliability.

  9. Geothermal drilling in Cerro Prieto

    SciTech Connect

    Dominguez A., Bernardo

    1982-08-10

    The number of characteristics of the different wells that have been drilled in the Cerro Prieto geothermal field to date enable one to summarize the basic factors in the applied technology, draw some conclusions, improve systems and procedures, and define some problems that have not yet been satisfactorily solved, although the existing solution is the best now available. For all practical purposes, the 100 wells drilled in the three areas or blocks into which the Cerro Prieto field has been divided have been completed. Both exploratory and production wells have been drilled; problems of partial or total lack of control have made it necessary to abandon some of these wells, since they were unsafe to keep in production or even to be used for observation and/or study. The wells and their type, the type of constructed wells and the accumulative meters that have been drilled for such wells are summarized.

  10. Drilling Damage in Composite Material

    PubMed Central

    Durão, Luís Miguel P.; Tavares, João Manuel R.S.; de Albuquerque, Victor Hugo C.; Marques, Jorge Filipe S.; Andrade, Oscar N.G.

    2014-01-01

    The characteristics of carbon fibre reinforced laminates have widened their use from aerospace to domestic appliances, and new possibilities for their usage emerge almost daily. In many of the possible applications, the laminates need to be drilled for assembly purposes. It is known that a drilling process that reduces the drill thrust force can decrease the risk of delamination. In this work, damage assessment methods based on data extracted from radiographic images are compared and correlated with mechanical test results—bearing test and delamination onset test—and analytical models. The results demonstrate the importance of an adequate selection of drilling tools and machining parameters to extend the life cycle of these laminates as a consequence of enhanced reliability. PMID:28788650

  11. Skripochka during Emergency Scario Drill

    NASA Image and Video Library

    2011-01-11

    ISS026-E-016987 (11 Jan. 2011) --- Russian cosmonaut Oleg Skripochka, Expedition 26 flight engineer, participates in an emergency scenarios drill in the Harmony node of the International Space Station.

  12. Cumberland Target Drilled by Curiosity

    NASA Image and Video Library

    2013-05-20

    NASA Mars rover Curiosity drilled into this rock target, Cumberland, during the 279th Martian day, or sol, of the rover work on Mars May 19, 2013 and collected a powdered sample of material from the rock interior.

  13. Kondratyev during Emergency Scario Drill

    NASA Image and Video Library

    2011-01-11

    ISS026-E-016985 (11 Jan. 2011) --- Russian cosmonaut Dmitry Kondratyev, Expedition 26 flight engineer, participates in an emergency scenarios drill in the Harmony node of the International Space Station.

  14. Simulation of Martian Bedrock Drilling

    NASA Image and Video Library

    This animation depicts NASA's Mars rover Curiosity drilling a hole tocollect a rock-powder sample at a target site called "John Klein."Credit: NASA/JPL-Caltech› Curiosity's mission site › ...

  15. HORIZONTAL BOILING REACTOR SYSTEM

    DOEpatents

    Treshow, M.

    1958-11-18

    Reactors of the boiling water type are described wherein water serves both as the moderator and coolant. The reactor system consists essentially of a horizontal pressure vessel divided into two compartments by a weir, a thermal neutronic reactor core having vertical coolant passages and designed to use water as a moderator-coolant posltioned in one compartment, means for removing live steam from the other compartment and means for conveying feed-water and water from the steam compartment to the reactor compartment. The system further includes auxiliary apparatus to utilize the steam for driving a turbine and returning the condensate to the feed-water inlet of the reactor. The entire system is designed so that the reactor is self-regulating and has self-limiting power and self-limiting pressure features.

  16. 30 CFR 77.1009 - Drill; operation.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Drill; operation. 77.1009 Section 77.1009... Control § 77.1009 Drill; operation. (a) While in operation drills shall be attended at all times. (b) Men shall not drill from positions that hinder their access to the control levers, or from insecure footing...

  17. 30 CFR 77.1009 - Drill; operation.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Drill; operation. 77.1009 Section 77.1009... Control § 77.1009 Drill; operation. (a) While in operation drills shall be attended at all times. (b) Men shall not drill from positions that hinder their access to the control levers, or from insecure footing...

  18. 33 CFR 146.125 - Emergency drills.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Emergency drills. 146.125 Section... CONTINENTAL SHELF ACTIVITIES OPERATIONS Manned OCS Facilities § 146.125 Emergency drills. (a) Emergency drills shall be conducted at least once each month by the person in charge of the manned facility. The drill...

  19. 30 CFR 77.1009 - Drill; operation.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Drill; operation. 77.1009 Section 77.1009... Control § 77.1009 Drill; operation. (a) While in operation drills shall be attended at all times. (b) Men shall not drill from positions that hinder their access to the control levers, or from insecure footing...

  20. 30 CFR 56.4331 - Firefighting drills.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Firefighting drills. 56.4331 Section 56.4331 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE... Control Firefighting Procedures/alarms/drills § 56.4331 Firefighting drills. Emergency firefighting drills...