Science.gov

Sample records for addition insulin sensitivity

  1. Quantification of adipose tissue insulin sensitivity.

    PubMed

    Søndergaard, Esben; Jensen, Michael D

    2016-06-01

    In metabolically healthy humans, adipose tissue is exquisitely sensitive to insulin. Similar to muscle and liver, adipose tissue lipolysis is insulin resistant in adults with central obesity and type 2 diabetes. Perhaps uniquely, however, insulin resistance in adipose tissue may directly contribute to development of insulin resistance in muscle and liver because of the increased delivery of free fatty acids to those tissues. It has been hypothesized that insulin adipose tissue resistance may precede other metabolic defects in obesity and type 2 diabetes. Therefore, precise and reproducible quantification of adipose tissue insulin sensitivity, in vivo, in humans, is an important measure. Unfortunately, no consensus exists on how to determine adipose tissue insulin sensitivity. We review the methods available to quantitate adipose tissue insulin sensitivity and will discuss their strengths and weaknesses.

  2. Addition of n-3 fatty acids to a 4-hour lipid infusion does not affect insulin sensitivity, insulin secretion, or markers of oxidative stress in subjects with type 2 diabetes mellitus.

    PubMed

    Mostad, Ingrid L; Bjerve, Kristian S; Basu, Samar; Sutton, Pauline; Frayn, Keith N; Grill, Valdemar

    2009-12-01

    Fatty acids (FA) can impair glucose metabolism to a varying degree depending on time of exposure and also of type of FA. Here we tested for acute effects of marine n-3 FA on insulin sensitivity, insulin secretion, energy metabolism, and oxidative stress. This was a randomized, double-blind, crossover study in 11 subjects with type 2 diabetes mellitus. A 4-hour lipid infusion (Intralipid [Fresenius Kabi, Halden, Norway], total of 384 mL) was compared with a similar lipid infusion partly replaced by Omegaven (Fresenius Kabi) that contributed a median of 0.1 g fish oil per kilogram body weight, amounting to 0.04 g/kg of marine n-3 FA. Insulin sensitivity was assessed by isoglycemic hyperinsulinemic clamps; insulin secretion (measured after the clamps), by C-peptide glucagon tests; and energy metabolism, by indirect calorimetry. Infusion of Omegaven increased the proportion of n-3 FA in plasma nonesterified fatty acids (NEFA) compared with Intralipid alone (20:5n-3: median, 1.5% [interquartile range, 0.6%] vs -0.2% [0.2%], P = .001; 22:6n-3: 0.8% [0.4%] vs -0.7% [0.2%], P = .001). However, glucose utilization was not affected; neither was insulin secretion or total energy production (P = .966, .210, and .423, respectively, for the differences between the lipid clamps). Omegaven tended to lower oxidation of fat (P = .062) compared with Intralipid only, correlating with the rise in individual n-3 NEFA (r = 0.627, P = .039). The effects of clamping on phospholipid FA composition, leptin, adiponectin, or F(2)-isoprostane concentrations were not affected by Omegaven. Enrichment of NEFA with n-3 FA during a 4-hour infusion of Intralipid failed to affect insulin sensitivity, insulin secretion, or markers of oxidative stress in subjects with type 2 diabetes mellitus.

  3. [Molecular action of insulin-sensitizing agents].

    PubMed

    Kacalska, Olga; Krzyczkowska-Sendrakowska, Magdalena; Milewicz, Tomasz; Zabińska-Popiela, Marta; Bereza, Tomasz; Krzysiek-Maczka, Gracjana; Krzysiek, Józef

    2005-01-01

    Atypical endometrial hyperplasia has been associated with progression to endometrial cancer, the most common genital malignancy. There are multiple risk factors for endometrial cancer, such as early menarche, exogenous estrogen exposure, obesity and diabetes. Diabetics have a 3-4 fold relative risk of endometrial cancer. Also, several studies have demonstrated an association between insulin resistance and endometrial cancer. There is known the first description of atypical endometrial hyperplasia resistant to progestogen therapy, which was subsequently treated with an insulin-sensitizng agent, metformin. Metformin is a biguanide antihyperglycemic agent used in the treatment of adult-onset diabetes. Unlike the sulfonylureas, metformin does not act primarily by increasing insulin secretion. In contrast, metformin lowers the rate of gluconeogenesis in the presence of insulin. Therefore, it is considered an insulin-sensitizer. Increased insulin sensitivity may improve the metabolic effect of insulin and decrease its mitogenic effect by tissue-specific mechanisms. One explanation for tissue specific differences in insulin binding and action may be through the relative expression of the insulin receptor (IR) isoforms. The IR isoforms IR-A and IR-D differ by 12 amino acid residues, owing to the alternative splicing of exon. The IR-A is predominantly expressed in malignant tissues and may lead to mitogenic effects within the cell. The relative expressions of IR-A and IR-B in normal and malignant endometrial tissue is not known. Besides direct effects on the IR, several additional mechanisms have been proposed for the mitogenic effect of insulin in endometrial cancer. In addition to the possible direct mitogenic effects of insulin through the IR-A, insulin resistance may be associated with alterations in expression of insulin-like growth factors (IGFs) and the IGF binding proteins (IGFBPs) or may inhibit the protective effect of progestagens. Binding sites for IGF-1 and IGF

  4. Dimethylarginine Dimethylaminohydrolase Overexpression enhances Insulin Sensitivity

    PubMed Central

    Sydow, Karsten; Mondon, Carl E.; Schrader, Joerg; Konishi, Hakuoh; Cooke, John P.

    2011-01-01

    Objective Previous studies suggest that nitric oxide (NO) may modulate insulin-induced uptake of glucose in insulin-sensitive tissues. Asymmetric dimethylarginine (ADMA) is an endogenous inhibitor of NO synthase (NOS). We hypothesized that a reduction in endogenous ADMA would increase NO synthesis and thereby enhance insulin sensitivity. Methods and Results To test this hypothesis we employed a transgenic mouse in which we overexpressed human dimethylarginine dimethylaminohydrolase (DDAH-I). The DDAH-I mice had lower plasma ADMA at all ages (22–70 weeks) by comparison to wild-type (WT) littermates. With a glucose challenge, WT mice showed a prompt increase in ADMA, whereas DDAH-I mice had a blunted response. Furthermore, DDAH-I mice had a blunted increase in plasma insulin and glucose levels after glucose challenge, with a 50% reduction in the insulin resistence index, consistent with enhanced sensitivity to insulin. In liver, we observed an increased Akt phosphorylation in the DDAH-I mice after i.p. glucose challenge. Incubation of skeletal muscle from WT mice ex vivo with ADMA (2μM) markedly suppressed insulin-induced glycogen synthesis in fast-twitch but not slow-twitch muscle. Conclusions These findings suggest that the endogenous NOS inhibitor ADMA reduces insulin sensitivity, consistent with previous observations that NO plays a role in insulin sensitivity. PMID:18239148

  5. Modulating DDAH/NOS Pathway to Discover Vasoprotective Insulin Sensitizers

    PubMed Central

    Lai, Li; Ghebremariam, Yohannes T.

    2016-01-01

    Insulin resistance syndrome (IRS) is a configuration of cardiovascular risk factors involved in the development of metabolic disorders including type 2 diabetes mellitus. In addition to diet, age, socioeconomic, and environmental factors, genetic factors that impair insulin signaling are centrally involved in the development and exacerbation of IRS. Genetic and pharmacological studies have demonstrated that the nitric oxide (NO) synthase (NOS) genes are critically involved in the regulation of insulin-mediated glucose disposal. The generation of NO by the NOS enzymes is known to contribute to vascular homeostasis including insulin-mediated skeletal muscle vasodilation and insulin sensitivity. By contrast, excessive inhibition of NOS enzymes by exogenous or endogenous factors is associated with insulin resistance (IR). Asymmetric dimethylarginine (ADMA) is an endogenous molecule that competitively inhibits all the NOS enzymes and contributes to metabolic perturbations including IR. The concentration of ADMA in plasma and tissue is enzymatically regulated by dimethylarginine dimethylaminohydrolase (DDAH), a widely expressed enzyme in the cardiovascular system. In preclinical studies, overexpression of DDAH has been shown to reduce ADMA levels, improve vascular compliance, and increase insulin sensitivity. This review discusses the feasibility of the NOS/DDAH pathway as a novel target to develop vasoprotective insulin sensitizers. PMID:26770984

  6. Insulin sensitivity and metabolic flexibility following exercise training among different obese insulin-resistant phenotypes.

    PubMed

    Malin, Steven K; Haus, Jacob M; Solomon, Thomas P J; Blaszczak, Alecia; Kashyap, Sangeeta R; Kirwan, John P

    2013-11-15

    Impaired fasting glucose (IFG) blunts the reversal of impaired glucose tolerance (IGT) after exercise training. Metabolic inflexibility has been implicated in the etiology of insulin resistance; however, the efficacy of exercise on peripheral and hepatic insulin sensitivity or substrate utilization in adults with IFG, IGT, or IFG + IGT is unknown. Twenty-four older (66.7 ± 0.8 yr) obese (34.2 ± 0.9 kg/m(2)) adults were categorized as IFG (n = 8), IGT (n = 8), or IFG + IGT (n = 8) according to a 75-g oral glucose tolerance test (OGTT). Subjects underwent 12-wk of exercise (60 min/day for 5 days/wk at ∼85% HRmax) and were instructed to maintain a eucaloric diet. A euglycemic hyperinsulinemic clamp (40 mU·m(2)·min(-1)) with [6,6-(2)H]glucose was used to determine peripheral and hepatic insulin sensitivity. Nonoxidative glucose disposal and metabolic flexibility [insulin-stimulated respiratory quotient (RQ) minus fasting RQ] were also assessed. Glucose incremental area under the curve (iAUCOGTT) was calculated from the OGTT. Exercise increased clamp-derived peripheral and hepatic insulin sensitivity more in adults with IFG or IGT alone than with IFG + IGT (P < 0.05). Exercise reduced glucose iAUCOGTT in IGT only (P < 0.05), and the decrease in glucose iAUCOGTT was inversely correlated with the increase in peripheral but not hepatic insulin sensitivity (P < 0.01). Increased clamp-derived peripheral insulin sensitivity was also correlated with enhanced metabolic flexibility, reduced fasting RQ, and higher nonoxidative glucose disposal (P < 0.05). Adults with IFG + IGT had smaller gains in clamp-derived peripheral insulin sensitivity and metabolic flexibility, which was related to blunted improvements in postprandial glucose. Additional work is required to assess the molecular mechanism(s) by which chronic hyperglycemia modifies insulin sensitivity following exercise training. PMID:24064339

  7. Insulin sensitivity and complications in type 1 diabetes: New insights

    PubMed Central

    Bjornstad, Petter; Snell-Bergeon, Janet K; Nadeau, Kristen J; Maahs, David M

    2015-01-01

    Despite improvements in glucose, lipids and blood pressure control, vascular complications remain the most important cause of morbidity and mortality in patients with type 1 diabetes. For that reason, there is a need to identify additional risk factors to utilize in clinical practice or translate to novel therapies to prevent vascular complications. Reduced insulin sensitivity is an increasingly recognized component of type 1 diabetes that has been linked with the development and progression of both micro- and macrovascular complications. Adolescents and adults with type 1 diabetes have reduced insulin sensitivity, even when compared to their non-diabetic counterparts of similar adiposity, serum triglycerides, high-density lipoprotein cholesterol, level of habitual physical activity, and in adolescents, pubertal stage. Reduced insulin sensitivity is thought to contribute both to the initiation and progression of macro- and microvascular complications in type 1 diabetes. There are currently clinical trials underway examining the benefits of improving insulin sensitivity with regards to vascular complications in type 1 diabetes. Reduced insulin sensitivity is an increasingly recognized component of type 1 diabetes, is implicated in the pathogenesis of vascular complications and is potentially an important therapeutic target to prevent vascular complications. In this review, we will focus on the pathophysiologic contribution of insulin sensitivity to vascular complications and summarize related ongoing clinical trials. PMID:25685274

  8. Insulin sensitivity and complications in type 1 diabetes: New insights.

    PubMed

    Bjornstad, Petter; Snell-Bergeon, Janet K; Nadeau, Kristen J; Maahs, David M

    2015-02-15

    Despite improvements in glucose, lipids and blood pressure control, vascular complications remain the most important cause of morbidity and mortality in patients with type 1 diabetes. For that reason, there is a need to identify additional risk factors to utilize in clinical practice or translate to novel therapies to prevent vascular complications. Reduced insulin sensitivity is an increasingly recognized component of type 1 diabetes that has been linked with the development and progression of both micro- and macrovascular complications. Adolescents and adults with type 1 diabetes have reduced insulin sensitivity, even when compared to their non-diabetic counterparts of similar adiposity, serum triglycerides, high-density lipoprotein cholesterol, level of habitual physical activity, and in adolescents, pubertal stage. Reduced insulin sensitivity is thought to contribute both to the initiation and progression of macro- and microvascular complications in type 1 diabetes. There are currently clinical trials underway examining the benefits of improving insulin sensitivity with regards to vascular complications in type 1 diabetes. Reduced insulin sensitivity is an increasingly recognized component of type 1 diabetes, is implicated in the pathogenesis of vascular complications and is potentially an important therapeutic target to prevent vascular complications. In this review, we will focus on the pathophysiologic contribution of insulin sensitivity to vascular complications and summarize related ongoing clinical trials. PMID:25685274

  9. Insulin sensitizers in polycystic ovary syndrome.

    PubMed

    Pasquali, Renato; Gambineri, Alessandra

    2013-01-01

    From the conceptual point of view, there are several reasons to expect that improvement of insulin sensitivity may produce several benefits in the treatment of a complex disorder like polycystic ovary syndrome (PCOS), including a decrease in insulin and androgen levels, improvement of metabolic comorbidities, and, finally, improved ovulation and fertility. This can be achieved with the help of specific agents, particularly metformin and thiazolidinediones. They may ease the suffering of women with PCOS because insulin resistance and hyperinsulinemia appear to be major contributors to the pathophysiology of the syndrome.

  10. Heat stress increases insulin sensitivity in pigs

    PubMed Central

    Sanz Fernandez, M Victoria; Stoakes, Sara K; Abuajamieh, Mohannad; Seibert, Jacob T; Johnson, Jay S; Horst, Erin A; Rhoads, Robert P; Baumgard, Lance H

    2015-01-01

    Proper insulin homeostasis appears critical for adapting to and surviving a heat load. Further, heat stress (HS) induces phenotypic changes in livestock that suggest an increase in insulin action. The current study objective was to evaluate the effects of HS on whole-body insulin sensitivity. Female pigs (57 ± 4 kg body weight) were subjected to two experimental periods. During period 1, all pigs remained in thermoneutral conditions (TN; 21°C) and were fed ad libitum. During period 2, pigs were exposed to: (i) constant HS conditions (32°C) and fed ad libitum (n = 6), or (ii) TN conditions and pair-fed (PFTN; n = 6) to eliminate the confounding effects of dissimilar feed intake. A hyperinsulinemic euglycemic clamp (HEC) was conducted on d3 of both periods; and skeletal muscle and adipose tissue biopsies were collected prior to and after an insulin tolerance test (ITT) on d5 of period 2. During the HEC, insulin infusion increased circulating insulin and decreased plasma C-peptide and nonesterified fatty acids, similarly between treatments. From period 1 to 2, the rate of glucose infusion in response to the HEC remained similar in HS pigs while it decreased (36%) in PFTN controls. Prior to the ITT, HS increased (41%) skeletal muscle insulin receptor substrate-1 protein abundance, but did not affect protein kinase B or their phosphorylated forms. In adipose tissue, HS did not alter any of the basal or stimulated measured insulin signaling markers. In summary, HS increases whole-body insulin-stimulated glucose uptake. PMID:26243213

  11. Lipid metabolism disturbances contribute to insulin resistance and decrease insulin sensitivity by malathion exposure in Wistar rat.

    PubMed

    Lasram, Mohamed Montassar; Bouzid, Kahena; Douib, Ines Bini; Annabi, Alya; El Elj, Naziha; El Fazaa, Saloua; Abdelmoula, Jaouida; Gharbi, Najoua

    2015-04-01

    Several studies showed that organophosphorus pesticides disturb glucose homeostasis and can increase incidence of metabolic disorders and diabetes via insulin resistance. The current study investigates the influence of malathion on glucose metabolism regulation, in vivo, during subchronic exposure. Malathion was administered orally (200 mg/kg), once a day for 28 consecutive days. Plasma glucose, insulin and Glycated hemoglobin levels were significantly increased while hepatic glycogen content was decreased in intoxicated animals compared with the control group. Furthermore, there was a significant disturbance of lipid content in subchronic treated and post-treated rats deprived of malathion for one month. In addition, we used the homeostasis model assessment (HOMA) to assess insulin resistance (HOMA-IR) and pancreatic β-cell function (HOMA-β). Our results show that malathion increases insulin resistance biomarkers and decreases insulin sensitivity indices. Statistical analysis demonstrates that there was a positive and strong significant correlation between insulin level and insulin resistance indices, HOMA-IR, HOMA-β. Similarly, a negative and significant correlation was also found between insulin level and insulin sensitivity indices. For the first time, we demonstrate that malathion induces insulin resistance in vivo using homeostasis model assessment and these changes were detectable one month after the end of exposure. To explain insulin resistance induced by malathion we focus on lipid metabolism disturbances and their interaction with many proteins involved in insulin signaling pathways.

  12. Anthropometric measurements for assessing insulin sensitivity on patients with metabolic syndrome, sedentaries and marathoners.

    PubMed

    Severeyn, Erika; Wong, Sara; Herrera, Hector; Altuve, Miguel

    2015-08-01

    The diagnosis of low insulin sensitivity is commonly done through the HOMA-IR index, in which fasting insulin and glucose blood levels are evaluated. Insulin and blood glucose levels are used for insulin sensitivity assessment by surrogate methods (HOMA-IR, Matsuda, etc), but anthropometric measurements like body weight, height and waist circumference are not considered, even if these variables also are related to low insulin sensitivity and metabolic syndrome. In this study we evaluate the impact of anthropometric measurements on the HOMA-IR, Matsuda and Caumo indexes to estimate insulin sensitivity. Specifically, we compare insulin sensitivity indexes with and without the anthropometric measurements in their equations on three different groups: patients with metabolic syndrome, sedentaries and marathoners. Results show relationships between anthropometric variables and insulin sensitivity indexes. On the other hand, subjects are mapped differently for insulin sensitivity assessment when anthropometric variables are taken into account. In addition, subjects diagnosed with normal insulin sensitivity could be considered as having low insulin sensitivity when anthropometric variables are considered.

  13. Identification and validation of N-acetyltransferase 2 as an insulin sensitivity gene.

    PubMed

    Knowles, Joshua W; Xie, Weijia; Zhang, Zhongyang; Chennamsetty, Indumathi; Chennemsetty, Indumathi; Assimes, Themistocles L; Paananen, Jussi; Hansson, Ola; Pankow, James; Goodarzi, Mark O; Carcamo-Orive, Ivan; Morris, Andrew P; Chen, Yii-Der I; Mäkinen, Ville-Petteri; Ganna, Andrea; Mahajan, Anubha; Guo, Xiuqing; Abbasi, Fahim; Greenawalt, Danielle M; Lum, Pek; Molony, Cliona; Lind, Lars; Lindgren, Cecilia; Raffel, Leslie J; Tsao, Philip S; Schadt, Eric E; Rotter, Jerome I; Sinaiko, Alan; Reaven, Gerald; Yang, Xia; Hsiung, Chao A; Groop, Leif; Cordell, Heather J; Laakso, Markku; Hao, Ke; Ingelsson, Erik; Frayling, Timothy M; Weedon, Michael N; Walker, Mark; Quertermous, Thomas

    2015-04-01

    Decreased insulin sensitivity, also referred to as insulin resistance (IR), is a fundamental abnormality in patients with type 2 diabetes and a risk factor for cardiovascular disease. While IR predisposition is heritable, the genetic basis remains largely unknown. The GENEticS of Insulin Sensitivity consortium conducted a genome-wide association study (GWAS) for direct measures of insulin sensitivity, such as euglycemic clamp or insulin suppression test, in 2,764 European individuals, with replication in an additional 2,860 individuals. The presence of a nonsynonymous variant of N-acetyltransferase 2 (NAT2) [rs1208 (803A>G, K268R)] was strongly associated with decreased insulin sensitivity that was independent of BMI. The rs1208 "A" allele was nominally associated with IR-related traits, including increased fasting glucose, hemoglobin A1C, total and LDL cholesterol, triglycerides, and coronary artery disease. NAT2 acetylates arylamine and hydrazine drugs and carcinogens, but predicted acetylator NAT2 phenotypes were not associated with insulin sensitivity. In a murine adipocyte cell line, silencing of NAT2 ortholog Nat1 decreased insulin-mediated glucose uptake, increased basal and isoproterenol-stimulated lipolysis, and decreased adipocyte differentiation, while Nat1 overexpression produced opposite effects. Nat1-deficient mice had elevations in fasting blood glucose, insulin, and triglycerides and decreased insulin sensitivity, as measured by glucose and insulin tolerance tests, with intermediate effects in Nat1 heterozygote mice. Our results support a role for NAT2 in insulin sensitivity.

  14. Identification and validation of N-acetyltransferase 2 as an insulin sensitivity gene

    PubMed Central

    Knowles, Joshua W.; Xie, Weijia; Zhang, Zhongyang; Chennemsetty, Indumathi; Assimes, Themistocles L.; Paananen, Jussi; Hansson, Ola; Pankow, James; Goodarzi, Mark O.; Carcamo-Orive, Ivan; Morris, Andrew P.; Chen, Yii-Der I.; Mäkinen, Ville-Petteri; Ganna, Andrea; Mahajan, Anubha; Guo, Xiuqing; Abbasi, Fahim; Greenawalt, Danielle M.; Lum, Pek; Molony, Cliona; Lind, Lars; Lindgren, Cecilia; Raffel, Leslie J.; Tsao, Philip S.; Schadt, Eric E.; Rotter, Jerome I.; Sinaiko, Alan; Reaven, Gerald; Yang, Xia; Hsiung, Chao A.; Groop, Leif; Cordell, Heather J.; Laakso, Markku; Hao, Ke; Ingelsson, Erik; Frayling, Timothy M.; Weedon, Michael N.; Walker, Mark; Quertermous, Thomas

    2015-01-01

    Decreased insulin sensitivity, also referred to as insulin resistance (IR), is a fundamental abnormality in patients with type 2 diabetes and a risk factor for cardiovascular disease. While IR predisposition is heritable, the genetic basis remains largely unknown. The GENEticS of Insulin Sensitivity consortium conducted a genome-wide association study (GWAS) for direct measures of insulin sensitivity, such as euglycemic clamp or insulin suppression test, in 2,764 European individuals, with replication in an additional 2,860 individuals. The presence of a nonsynonymous variant of N-acetyltransferase 2 (NAT2) [rs1208 (803A>G, K268R)] was strongly associated with decreased insulin sensitivity that was independent of BMI. The rs1208 “A” allele was nominally associated with IR-related traits, including increased fasting glucose, hemoglobin A1C, total and LDL cholesterol, triglycerides, and coronary artery disease. NAT2 acetylates arylamine and hydrazine drugs and carcinogens, but predicted acetylator NAT2 phenotypes were not associated with insulin sensitivity. In a murine adipocyte cell line, silencing of NAT2 ortholog Nat1 decreased insulin-mediated glucose uptake, increased basal and isoproterenol-stimulated lipolysis, and decreased adipocyte differentiation, while Nat1 overexpression produced opposite effects. Nat1-deficient mice had elevations in fasting blood glucose, insulin, and triglycerides and decreased insulin sensitivity, as measured by glucose and insulin tolerance tests, with intermediate effects in Nat1 heterozygote mice. Our results support a role for NAT2 in insulin sensitivity. PMID:25798622

  15. Naltrexone effects on insulin sensitivity and insulin secretion in hyperandrogenic women.

    PubMed

    Sir-Petermann, T; López, G; Castillo, T; Calvillán, M; Rabenbauer, B; Wildt, L

    1998-01-01

    A total of 12 women (24.2 +/- 1.6 years old, BMI 36.7 +/- 1.5 Kg/m2) with hyperandrogenism (HA) and with normal glucose tolerance test were studied to evaluate the involvement of endogenous opioids in the pathophysiology of insulin secretion and insulin sensitivity in HA by administering naltrexone, an oral opioid receptor antagonist. Six patients received naltrexone orally (75 mg daily) and another six received placebo for 12 weeks (double-blind study). Before and after therapy a frequently sampled intravenous glucose tolerance test (FSIVGTT) was performed. The insulin sensitivity index (SI) was determined by Bergman's program. SHBG, DHEAS, testosterone, free androgen index (FAI) and plasma concentrations of IGF-I and IGFBP-1 were determined in 3 basal samples, before and after therapy. Treatment with naltrexone in hyperandrogenic patients resulted in a decrease in fasting insulin concentrations of 40% and C-peptide concentrations of 50% (p < 0.05). Insulin and C-peptide from the FSIVGTT displayed a similar pattern with a fall in the area under the curve under naltrexone treatment of 34% for insulin and 35% for C-peptide. Insulin sensitivity did not change under naltrexone (1.26 +/- 0.19 vs 1.32 +/- 0.32 10(-4) x min(-1)/(uU/ml)) or placebo (0.95 +/- 0.19 vs 1.12 +/- 0.28 10(-4) x min(-1)/(uU/ml)) administration. However, glucose effectiveness increased significantly with naltrexone (2.231 +/- 0.002 vs 3.354 +/- 0.006 x 10(-2) min(-1)). Glucose (fasting and area under the curve) was not modified significantly after naltrexone administration. Baseline hormone levels were similar in the two groups, and they did not change after long-term treatment with naltrexone or placebo. In conclusion, these results support the hypothesis of elevated opioid tonus and increased insulin secretion as a possible mechanism of hyperinsulinism in a group of hyperandrogenic women of ovarian origin. This alteration could act as an additional factor in the pathogenesis of insulin

  16. Environmental factors and dam characteristics associated with insulin sensitivity and insulin secretion in newborn Holstein calves.

    PubMed

    Kamal, M M; Van Eetvelde, M; Bogaert, H; Hostens, M; Vandaele, L; Shamsuddin, M; Opsomer, G

    2015-09-01

    The objective of the present retrospective cohort study was to evaluate potential associations between environmental factors and dam characteristics, including level of milk production during gestation, and insulin traits in newborn Holstein calves. Birth weight and gestational age of the calves at delivery were determined. On the next day, heart girth, wither height and diagonal length of both the calves and their dams were measured. Parity, body condition score and age at calving were recorded for all dams. For the cows, days open before last gestation, lactation length (LL), length of dry period (DP) and calving interval were also calculated. The magnitude and shape of the lactation curve both quantified using the MilkBot model based on monthly milk weights, were used to calculate the amount of milk produced during gestation. Using the same procedure, cumulative milk production from conception to drying off (MGEST) was calculated. A blood sample was collected from all calves (n=481; 169 born to heifers and 312 born to cows) at least 5 h after a milk meal on day 3 of life to measure basal glucose and insulin levels. In addition, an intravenous glucose-stimulated insulin secretion test was performed in a subset of the calves (n=316). After descriptive analysis, generalized linear mixed models were used to identify factors that were significantly associated with the major insulin traits (Insb, basal insulin level; QUICKI, quantitative insulin sensitivity check index; AIR, acute insulin response; DI, disposition index) of the newborn calves. The overall average birth weight of the calves was 42.7 ± 5.92 kg. The insulin traits were significantly associated with gender and season of birth when data of all calves were analyzed. In addition, the insulin traits in calves born to cows were significantly associated with MGEST, DP and LL. The Insb was estimated to be higher in calves born to the cows having passed a higher MGEST (P=0.076) and longer DP (P=0.034). The

  17. Environmental factors and dam characteristics associated with insulin sensitivity and insulin secretion in newborn Holstein calves.

    PubMed

    Kamal, M M; Van Eetvelde, M; Bogaert, H; Hostens, M; Vandaele, L; Shamsuddin, M; Opsomer, G

    2015-09-01

    The objective of the present retrospective cohort study was to evaluate potential associations between environmental factors and dam characteristics, including level of milk production during gestation, and insulin traits in newborn Holstein calves. Birth weight and gestational age of the calves at delivery were determined. On the next day, heart girth, wither height and diagonal length of both the calves and their dams were measured. Parity, body condition score and age at calving were recorded for all dams. For the cows, days open before last gestation, lactation length (LL), length of dry period (DP) and calving interval were also calculated. The magnitude and shape of the lactation curve both quantified using the MilkBot model based on monthly milk weights, were used to calculate the amount of milk produced during gestation. Using the same procedure, cumulative milk production from conception to drying off (MGEST) was calculated. A blood sample was collected from all calves (n=481; 169 born to heifers and 312 born to cows) at least 5 h after a milk meal on day 3 of life to measure basal glucose and insulin levels. In addition, an intravenous glucose-stimulated insulin secretion test was performed in a subset of the calves (n=316). After descriptive analysis, generalized linear mixed models were used to identify factors that were significantly associated with the major insulin traits (Insb, basal insulin level; QUICKI, quantitative insulin sensitivity check index; AIR, acute insulin response; DI, disposition index) of the newborn calves. The overall average birth weight of the calves was 42.7 ± 5.92 kg. The insulin traits were significantly associated with gender and season of birth when data of all calves were analyzed. In addition, the insulin traits in calves born to cows were significantly associated with MGEST, DP and LL. The Insb was estimated to be higher in calves born to the cows having passed a higher MGEST (P=0.076) and longer DP (P=0.034). The

  18. Insulin and rabbit anti-insulin receptor antibodies stimulate additively the intrinsic receptor kinase activity.

    PubMed Central

    Ponzio, G; Dolais-Kitabgi, J; Louvard, D; Gautier, N; Rossi, B

    1987-01-01

    This paper describes the properties of rabbit polyclonal antibodies directed against purified human insulin receptor which strongly stimulate the intrinsic tyrosine kinase activity. The stimulatory effect of the antibodies on the kinase activity was obtained on the insulin receptor autophosphorylation as well as on the kinase activity towards a synthetic substrate. This stimulation is additive to that induced by insulin. Moreover, rabbit antibodies do not impair insulin binding. These data strongly suggest that antibodies and insulin act through separate pathways. This conclusion is reinforced by the differences observed on the phosphopeptide maps of the receptor's beta subunit whose phosphorylation was performed either in the presence of insulin or rabbit antibodies. Interestingly, these polyclonal antibodies can also induce an activation of the receptor autophosphorylation by interacting only with extracellular determinants. The anti-insulin receptor antibodies mimic insulin in their stimulatory effect on amino acid (AIB) uptake, but they have a different effect to that found on the kinase activity; the simultaneous addition of the antiserum and insulin failed to stimulate this amino acid transport over the level induced by a saturating concentration of hormone. Images Fig. 1. Fig. 3. Fig. 4. Fig. 6. Fig. 7. PMID:3034584

  19. Dissociation of in vitro sensitivities of glucose transport and antilipolysis to insulin in NIDDM

    SciTech Connect

    Yki-Jaervinen, H.; Kubo, K.; Zawadzki, J.; Lillioja, S.; Young, A.; Abbott, W.; Foley, J.E.

    1987-09-01

    It is unclear from previous studies whether qualitative or only quantitative differences exist in insulin action in adipocytes obtained from obese subjects with non-insulin-dependent diabetes mellitus (NIDDM) when compared with equally obese nondiabetic subjects. In addition, the role of changes in insulin binding as a cause of insulin resistance in NIDDM is still controversial. The authors compared the sensitivities of (/sup 14/C)-glucose transport and antilipolysis to insulin and measured (/sup 125/I)-insulin binding in abdominal adipocytes obtained from 45 obese nondiabetic, obese diabetic, and 15 nonobese female southwestern American Indians. Compared with the nonobese group, the sensitivities of glucose transport antilipolysis were reduced in both the obese nondiabetic and obese diabetic groups. Compared with the obese nondiabetic subjects, the ED/sub 50/ for stimulation of glucose transport was higher in the obese patients with NIDDM. In contrast, the ED/sub 50/S for antilipolysis were similar in obese diabetic patients and obese nondiabetic subjects. No differences was found in insulin binding in patients with NIDDM when compared with the equally obese nondiabetic subjects. These data indicate 1) the mechanism of insulin resistance differs in NIDDM and obesity, and 2) the selective loss of insulin sensitivity in NIDDM precludes changes in insulin binding as a cause of insulin resistance in this disorder.

  20. Cerebral blood flow links insulin resistance and baroreflex sensitivity.

    PubMed

    Ryan, John P; Sheu, Lei K; Verstynen, Timothy D; Onyewuenyi, Ikechukwu C; Gianaros, Peter J

    2013-01-01

    Insulin resistance confers risk for diabetes mellitus and associates with a reduced capacity of the arterial baroreflex to regulate blood pressure. Importantly, several brain regions that comprise the central autonomic network, which controls the baroreflex, are also sensitive to the neuromodulatory effects of insulin. However, it is unknown whether peripheral insulin resistance relates to activity within central autonomic network regions, which may in turn relate to reduced baroreflex regulation. Accordingly, we tested whether resting cerebral blood flow within central autonomic regions statistically mediated the relationship between insulin resistance and an indirect indicator of baroreflex regulation; namely, baroreflex sensitivity. Subjects were 92 community-dwelling adults free of confounding medical illnesses (48 men, 30-50 years old) who completed protocols to assess fasting insulin and glucose levels, resting baroreflex sensitivity, and resting cerebral blood flow. Baroreflex sensitivity was quantified by measuring the magnitude of spontaneous and sequential associations between beat-by-beat systolic blood pressure and heart rate changes. Individuals with greater insulin resistance, as measured by the homeostatic model assessment, exhibited reduced baroreflex sensitivity (b = -0.16, p < .05). Moreover, the relationship between insulin resistance and baroreflex sensitivity was statistically mediated by cerebral blood flow in central autonomic regions, including the insula and cingulate cortex (mediation coefficients < -0.06, p-values < .01). Activity within the central autonomic network may link insulin resistance to reduced baroreflex sensitivity. Our observations may help to characterize the neural pathways by which insulin resistance, and possibly diabetes mellitus, relates to adverse cardiovascular outcomes. PMID:24358272

  1. Neuronal Sirt1 Deficiency Increases Insulin Sensitivity in Both Brain and Peripheral Tissues*

    PubMed Central

    Lu, Min; Sarruf, David A.; Li, Pingping; Osborn, Olivia; Sanchez-Alavez, Manuel; Talukdar, Saswata; Chen, Ai; Bandyopadhyay, Gautam; Xu, Jianfeng; Morinaga, Hidetaka; Dines, Kevin; Watkins, Steven; Kaiyala, Karl; Schwartz, Michael W.; Olefsky, Jerrold M.

    2013-01-01

    Sirt1 is a NAD+-dependent class III deacetylase that functions as a cellular energy sensor. In addition to its well-characterized effects in peripheral tissues, emerging evidence suggests that neuronal Sirt1 activity plays a role in the central regulation of energy balance and glucose metabolism. To assess this idea, we generated Sirt1 neuron-specific knockout (SINKO) mice. On both standard chow and HFD, SINKO mice were more insulin sensitive than Sirt1f/f mice. Thus, SINKO mice had lower fasting insulin levels, improved glucose tolerance and insulin tolerance, and enhanced systemic insulin sensitivity during hyperinsulinemic euglycemic clamp studies. Hypothalamic insulin sensitivity of SINKO mice was also increased over controls, as assessed by hypothalamic activation of PI3K, phosphorylation of Akt and FoxO1 following systemic insulin injection. Intracerebroventricular injection of insulin led to a greater systemic effect to improve glucose tolerance and insulin sensitivity in SINKO mice compared with controls. In line with the in vivo results, insulin-induced AKT and FoxO1 phosphorylation were potentiated by inhibition of Sirt1 in a cultured hypothalamic cell line. Mechanistically, this effect was traced to a reduced effect of Sirt1 to directly deacetylate and repress IRS-1 function. The enhanced central insulin signaling in SINKO mice was accompanied by increased insulin receptor signal transduction in liver, muscle, and adipose tissue. In summary, we conclude that neuronal Sirt1 negatively regulates hypothalamic insulin signaling, leading to systemic insulin resistance. Interventions that reduce neuronal Sirt1 activity have the potential to improve systemic insulin action and limit weight gain on an obesigenic diet. PMID:23457303

  2. The insulin sensitizing effect of topiramate involves KATP channel activation in the central nervous system

    PubMed Central

    Coomans, C P; Geerling, J J; van den Berg, S A A; van Diepen, H C; Garcia-Tardón, N; Thomas, A; Schröder-van der Elst, J P; Ouwens, D M; Pijl, H; Rensen, P C N; Havekes, L M; Guigas, B; Romijn, J A

    2013-01-01

    BACKGROUND AND PURPOSE Topiramate improves insulin sensitivity, in addition to its antiepileptic action. However, the underlying mechanism is unknown. Therefore, the present study was aimed at investigating the mechanism of the insulin-sensitizing effect of topiramate both in vivo and in vitro. EXPERIMENTAL APPROACH Male C57Bl/6J mice were fed a run-in high-fat diet for 6 weeks, before receiving topiramate or vehicle mixed in high-fat diet for an additional 6 weeks. Insulin sensitivity was assessed by hyperinsulinaemic-euglycaemic clamp. The extent to which the insulin sensitizing effects of topiramate were mediated through the CNS were determined by concomitant i.c.v. infusion of vehicle or tolbutamide, an inhibitor of ATP-sensitive potassium channels in neurons. The direct effects of topiramate on insulin signalling and glucose uptake were assessed in vivo and in cultured muscle cells. KEY RESULTS In hyperinsulinaemic-euglycaemic clamp conditions, therapeutic plasma concentrations of topiramate (∼4 μg·mL−1) improved insulin sensitivity (glucose infusion rate + 58%). Using 2-deoxy-D-[3H]glucose, we established that topiramate improved the insulin-mediated glucose uptake by heart (+92%), muscle (+116%) and adipose tissue (+586%). Upon i.c.v. tolbutamide, the insulin-sensitizing effect of topiramate was completely abrogated. Topiramate did not directly affect glucose uptake or insulin signalling neither in vivo nor in cultured muscle cells. CONCLUSION AND IMPLICATIONS In conclusion, topiramate stimulates insulin-mediated glucose uptake in vivo through the CNS. These observations illustrate the possibility of pharmacological modulation of peripheral insulin resistance through a target in the CNS. PMID:23957854

  3. Insulin sensitivity decreases with obesity, and lean cats with low insulin sensitivity are at greatest risk of glucose intolerance with weight gain.

    PubMed

    Appleton, D J; Rand, J S; Sunvold, G D

    2001-12-01

    This study quantifies the effects of marked weight gain on glucose and insulin metabolism in 16 cats which increased their weight by an average of 44.2% over 10 months. Significantly, the development of feline obesity was accompanied by a 52% decrease in tissue sensitivity to insulin and diminished glucose effectiveness. In addition, glucose intolerance and abnormal insulin response occurred in some cats. An important finding was that normal weight cats with low insulin sensitivity and glucose effectiveness were at increased risk of developing impaired glucose tolerance with obesity. High basal insulin concentrations or low acute insulin response to glucose also independently increased the risk for developing impaired glucose tolerance. Male cats gained more weight relative to females and this, combined with their tendency to lower insulin sensitivity and higher insulin concentrations, may explain why male cats are at greater risk for diabetes. Results suggest an underlying predisposition for glucose intolerance in some cats, which is exacerbated by obesity. These cats may be more at risk of progressing to overt type 2 diabetes mellitus.

  4. Insulin sensitivity and hemodynamic responses to insulin in Wistar-Kyoto and spontaneously hypertensive rats.

    PubMed

    Pître, M; Nadeau, A; Bachelard, H

    1996-10-01

    The insulin-mediated vasodilator effect has been proposed as an important physiological determinant of insulin action on glucose disposal in normotensive humans. The present study was designed to further examine the acute regional hemodynamic effects of insulin in different vascular beds and to explore the relationships between insulin vascular effects and insulin sensitivity during euglycemic hyperinsulinemic clamps in conscious normotensive Wistar-Kyoto (WKY) rats and spontaneously hypertensive rats (SHR). The rats were instrumented with intravascular catheters and pulsed Doppler flow probes to measure blood pressure, heart rate, and regional blood flows. In WKY rats, the euglycemic infusion of insulin (4 and 16 mU.kg-1.min-1) causes vasodilations in renal and hindquarter vascular beds but no changes in mean blood pressure, heart rate, or superior mesenteric vascular conductance. In contrast, in SHR, the same doses of insulin produce vasoconstrictions in superior mesenteric and hindquarter vascular beds and, at high doses, increase blood pressure. Moreover, at the lower dose of insulin tested, we found a reduction in the insulin sensitivity index in the SHR compared with the WKY rats. The present findings provide further evidence for an association between insulin sensitivity and insulin-mediated hemodynamic responses.

  5. Human adipose tissue expresses intrinsic circadian rhythm in insulin sensitivity.

    PubMed

    Carrasco-Benso, Maria P; Rivero-Gutierrez, Belen; Lopez-Minguez, Jesus; Anzola, Andrea; Diez-Noguera, Antoni; Madrid, Juan A; Lujan, Juan A; Martínez-Augustin, Olga; Scheer, Frank A J L; Garaulet, Marta

    2016-09-01

    In humans, insulin sensitivity varies according to time of day, with decreased values in the evening and at night. Mechanisms responsible for the diurnal variation in insulin sensitivity are unclear. We investigated whether human adipose tissue (AT) expresses intrinsic circadian rhythms in insulin sensitivity that could contribute to this phenomenon. Subcutaneous and visceral AT biopsies were obtained from extremely obese participants (body mass index, 41.8 ± 6.3 kg/m(2); 46 ± 11 y) during gastric-bypass surgery. To assess the rhythm in insulin signaling, AKT phosphorylation was determined every 4 h over 24 h in vitro in response to different insulin concentrations (0, 1, 10, and 100 nM). Data revealed that subcutaneous AT exhibited robust circadian rhythms in insulin signaling (P < 0.00001). Insulin sensitivity reached its maximum (acrophase) around noon, being 54% higher than during midnight (P = 0.009). The amplitude of the rhythm was positively correlated with in vivo sleep duration (r = 0.53; P = 0.023) and negatively correlated with in vivo bedtime (r = -0.54; P = 0.020). No circadian rhythms were detected in visceral AT (P = 0.643). Here, we demonstrate the relevance of the time of the day for how sensitive AT is to the effects of insulin. Subcutaneous AT shows an endogenous circadian rhythm in insulin sensitivity that could provide an underlying mechanism for the daily rhythm in systemic insulin sensitivity.-Carrasco-Benso, M. P., Rivero-Gutierrez, B., Lopez-Minguez, J., Anzola, A., Diez-Noguera, A., Madrid, J. A., Lujan, J. A., Martínez-Augustin, O., Scheer, F. A. J. L., Garaulet, M. Human adipose tissue expresses intrinsic circadian rhythm in insulin sensitivity.

  6. Effect of Withania somnifera on insulin sensitivity in non-insulin-dependent diabetes mellitus rats.

    PubMed

    Anwer, Tarique; Sharma, Manju; Pillai, Krishna Kolappa; Iqbal, Muzaffar

    2008-06-01

    We investigated the effect of an aqueous extract of Withania somnifera (WS) on insulin sensitivity in non-insulin-dependent diabetes mellitus (NIDDM) rats. NIDDM was induced by single intraperitoneal injection of streptozotocin (100 mg/kg) to 2 days old rat pups. WS (200 and 400 mg/kg) was administered orally once a day for 5 weeks after the animals were confirmed diabetic (i.e. 75 days after streptozotocin injection). A group of citrate control rats (group I) were also maintained that has received citrate buffer on the second day of their birth. A significant increase in blood glucose, glycosylated haemoglobin (HbA(1)c) and serum insulin levels were observed in NIDDM control rats. Treatment with WS reduced the elevated levels of blood glucose, HbA(1)c and insulin in the NIDDM rats. An oral glucose tolerance test was also performed in the same groups, in which we found a significant improvement in glucose tolerance in the rats treated with WS. The insulin sensitivity was assessed for both peripheral insulin resistance and hepatic insulin resistance. WS treatment significantly improved insulin sensitivity index (K(ITT)) that was significantly decreased in NIDDM control rats. There was significant rise in homeostasis model assessment of insulin resistance (HOMA-R) in NIDDM control rats whereas WS treatment significantly prevented the rise in HOMA-R in NIDDM-treated rats. Our data suggest that aqueous extract of WS normalizes hyperglycemia in NIDDM rats by improving insulin sensitivity.

  7. Transmembrane tumor necrosis factor-alpha sensitizes adipocytes to insulin.

    PubMed

    Zhou, Wenjing; Yang, Peng; Liu, Li; Zheng, Shan; Zeng, Qingling; Liang, Huifang; Zhu, Yazhen; Zhang, Zunyue; Wang, Jing; Yin, Bingjiao; Gong, Feili; Wu, Yiping; Li, Zhuoya

    2015-05-01

    Transmembrane TNF-α (tmTNF-α) acts both as a ligand, delivering 'forward signaling' via TNFR, and as a receptor, transducing 'reverse signaling'. The contradiction of available data regarding the effect of tmTNF-α on insulin resistance may be due to imbalance in both signals. Here, we demonstrated that high glucose-induced impairment of insulin-stimulated glucose uptake by 3T3-L1 adipocytes was concomitant with decreased tmTNF-α expression and increased soluble TNF-α (sTNF-α) secretion. However, when TACE was inhibited, preventing the conversion of tmTNF-α to sTNF-α, this insulin resistance was partially reversed, indicating a salutary role of tmTNF-α. Treatment of 3T3-L1 adipocytes with exogenous tmTNF-α promoted insulin-induced phosphorylation of IRS-1 and Akt, facilitated GLUT4 expression and membrane translocation, and increased glucose uptake while addition of sTNF-α resulted in the opposite effect. Furthermore, tmTNF-α downregulated the production of IL-6 and MCP-1 via NF-κB inactivation, as silencing of A20, an inhibitor for NF-κB, by siRNA, abolished this effect of tmTNF-α. However, tmTNF-α upregulated adiponectin expression through the PPAR-γ pathway, as inhibition of PPAR-γ by GW9662 abrogated both tmTNF-α-induced adiponectin transcription and glucose uptake. Our data suggest that tmTNF-α functions as an insulin sensitizer via forward signaling.

  8. Low fish oil intake improves insulin sensitivity, lipid profile and muscle metabolism on insulin resistant MSG-obese rats

    PubMed Central

    2011-01-01

    Background Obesity is commonly associated with diabetes, cardiovascular diseases and cancer. The purpose of this study was to determinate the effect of a lower dose of fish oil supplementation on insulin sensitivity, lipid profile, and muscle metabolism in obese rats. Methods Monosodium glutamate (MSG) (4 mg/g body weight) was injected in neonatal Wistar male rats. Three-month-old rats were divided in normal-weight control group (C), coconut fat-treated normal weight group (CO), fish oil-treated normal weight group (FO), obese control group (Ob), coconut fat-treated obese group (ObCO) and fish oil-treated obese group (ObFO). Obese insulin-resistant rats were supplemented with fish oil or coconut fat (1 g/kg/day) for 4 weeks. Insulin sensitivity, fasting blood biochemicals parameters, and skeletal muscle glucose metabolism were analyzed. Results Obese animals (Ob) presented higher Index Lee and 2.5 fold epididymal and retroperitoneal adipose tissue than C. Insulin sensitivity test (Kitt) showed that fish oil supplementation was able to maintain insulin sensitivity of obese rats (ObFO) similar to C. There were no changes in glucose and HDL-cholesterol levels amongst groups. Yet, ObFO revealed lower levels of total cholesterol (TC; 30%) and triacylglycerol (TG; 33%) compared to Ob. Finally, since exposed to insulin, ObFO skeletal muscle revealed an increase of 10% in lactate production, 38% in glycogen synthesis and 39% in oxidation of glucose compared to Ob. Conclusions Low dose of fish oil supplementation (1 g/kg/day) was able to reduce TC and TG levels, in addition to improved systemic and muscle insulin sensitivity. These results lend credence to the benefits of n-3 fatty acids upon the deleterious effects of insulin resistance mechanisms. PMID:21526994

  9. Mechanisms of human insulin resistance and thiazolidinedione-mediated insulin sensitization

    PubMed Central

    Sears, D. D.; Hsiao, G.; Hsiao, A.; Yu, J. G.; Courtney, C. H.; Ofrecio, J. M.; Chapman, J.; Subramaniam, S.

    2009-01-01

    Cellular and tissue defects associated with insulin resistance are coincident with transcriptional abnormalities and are improved after insulin sensitization with thiazolidinedione (TZD) PPARγ ligands. We characterized 72 human subjects by relating their clinical phenotypes with functional pathway alterations. We transcriptionally profiled 364 biopsies harvested before and after hyperinsulinemic-euglycemic clamp studies, at baseline and after 3-month TZD treatment. We have identified molecular and functional characteristics of insulin resistant subjects and distinctions between TZD treatment responder and nonresponder subjects. Insulin resistant subjects exhibited alterations in skeletal muscle (e.g., glycolytic flux and intramuscular adipocytes) and adipose tissue (e.g., mitochondrial metabolism and inflammation) that improved relative to TZD-induced insulin sensitization. Pre-TZD treatment expression of MLXIP in muscle and HLA-DRB1 in adipose tissue from insulin resistant subjects was linearly predictive of post-TZD insulin sensitization. We have uniquely characterized coordinated cellular and tissue functional pathways that are characteristic of insulin resistance, TZD-induced insulin sensitization, and potential TZD responsiveness. PMID:19841271

  10. Attenuated insulin response and normal insulin sensitivity in lean patients with ankylosing spondylitis.

    PubMed

    Penesova, A; Rovensky, J; Zlnay, M; Dedik, L; Radikova, Z; Koska, J; Vigas, M; Imrich, R

    2005-01-01

    Chronic low-grade inflammation is associated with insulin resistance. The aim of this study was to determine insulin response to intravenous glucose load and insulin sensitivity in patients with ankylosing spondylitis (AS). Fourteen nonobese male patients with AS and 14 matched healthy controls underwent frequent-sampling intravenous glucose tolerance test (FSIVGTT). Insulin secretion and insulin sensitivity were calculated using the computer-minimal and homeostasis-model assessment 2 (HOMA2) models. Fasting glucose, insulin, cholesterol, high-density lipoprotein and low-density lipoprotein cholesterol, triglyceride levels, HOMA2, glucose effectiveness, insulin sensitivity and insulin response to FSIVGTT did not differ between patients and controls. Tumor necrosis factor-alpha and interleukin (IL)-6 concentrations tended to be higher in AS patients than in controls. Second-phase beta-cell responsiveness was 37% lower (p = 0.05) in AS patients than in controls. A negative correlation was found between the percentage of beta-cell secretion and IL-6 in all subjects (r = -0.54, p = 0.006). We found normal insulin sensitivity but attenuated glucose utilization in the second phase of FSIVGTT in AS patients. Our results indicate that elevated IL-6 levels may play a pathophysiological role in attenuating beta-cell responsiveness, which may explain the association between elevated IL-6 levels and increased risk for type 2 diabetes. PMID:16366418

  11. Chromium and Polyphenols From Cinnamon Improve Insulin Sensitivity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Naturally occurring compounds that have been shown to improve insulin sensitivity include chromium and polyphenols found in cinnamon. These compounds also have similar effects on insulin signaling and glucose control. The signs of chromium deficiency are similar to those for the metabolic syndrome ...

  12. Perioperative insulin and glucose infusion maintains normal insulin sensitivity after surgery.

    PubMed

    Nygren, J O; Thorell, A; Soop, M; Efendic, S; Brismar, K; Karpe, F; Nair, K S; Ljungqvist, O

    1998-07-01

    Elective surgery was performed after overnight fasting, a routine that may affect the metabolic response to surgery. We investigated the effects of insulin and glucose infusions before and during surgery on postoperative substrate utilization and insulin sensitivity. Seven patients were given insulin and glucose infusions 3 h before and during surgery (insulin group), and a control group of six patients underwent surgery after fasting overnight. Insulin sensitivity and glucose kinetics (D-[6,6-2H2]glucose) were measured before and immediately after surgery using a hyperinsulinemic, normoglycemic clamp. Glucose infusion rates and whole body glucose disposal decreased after surgery in the control group (-40 and -29%, respectively), whereas no significant change was found in the insulin group (+16 and +25%). Endogenous glucose production remained unchanged in both groups. Postoperative changes in cortisol, glucagon, fat oxidation, and free fatty acids were attenuated in the insulin group (vs. control). We conclude that perioperative insulin and glucose infusions minimize the endocrine stress response and normalize postoperative insulin sensitivity and substrate utilization.

  13. Insulin-sensitizing agents in polycystic ovary syndrome.

    PubMed

    Pasquali, Renato; Gambineri, Alessandra

    2006-06-01

    Insulin-sensitizing agents have been recently proposed as the therapy of choice for polycystic ovary syndrome (PCOS), since insulin resistance and associated hyperinsulinemia are recognized as important pathogenetic factors of the syndrome. Moreover, since almost all obese PCOS women and more than half of those of normal weight are insulin resistant, and therefore present some degree of hyperinsulinemia, the use of insulin sensitizers should be suggested in most patients with PCOS. Insulin sensitizer treatment has been associated with a reduction in serum androgen levels and gonadotropins, and with an improvement in serum lipids and in prothrombotic factor plasminogen-activator inhibitor type 1, whatever the insulin sensitizer used. This therapy has also been associated with a decrease in hirsutism and acne, and with a regulation of menses and an improvement of ovulation and fertility. Notable improvements in all these parameters have also been described after a change in lifestyle approach, particularly in the presence of obesity. Lifestyle interventions should therefore be combined with insulin sensitizers in PCOS when obesity is present.

  14. Bioactives in blueberries improve insulin sensitivity in obese, insulin-resistant men and women.

    PubMed

    Stull, April J; Cash, Katherine C; Johnson, William D; Champagne, Catherine M; Cefalu, William T

    2010-10-01

    Dietary supplementation with whole blueberries in a preclinical study resulted in a reduction in glucose concentrations over time. We sought to evaluate the effect of daily dietary supplementation with bioactives from blueberries on whole-body insulin sensitivity in men and women. A double-blinded, randomized, and placebo-controlled clinical study design was used. After screening to resolve study eligibility, baseline (wk 0) insulin sensitivity was measured on 32 obese, nondiabetic, and insulin-resistant subjects using a high-dose hyperinsulinemic-euglycemic clamp (insulin infusion of 120 mU(861 pmol)⋅m(-2)⋅min(-1)). Serum inflammatory biomarkers and adiposity were measured at baseline. At the end of the study, insulin sensitivity, inflammatory biomarkers, and adiposity were reassessed. Participants were randomized to consume either a smoothie containing 22.5 g blueberry bioactives (blueberry group, n = 15) or a smoothie of equal nutritional value without added blueberry bioactives (placebo group, n = 17) twice daily for 6 wk. Both groups were instructed to maintain their body weight by reducing ad libitum intake by an amount equal to the energy intake of the smoothies. Participants' body weights were evaluated weekly and 3-d food records were collected at baseline, the middle, and end of the study. The mean change in insulin sensitivity improved more in the blueberry group (1.7 ± 0.5 mg⋅kg FFM(-1)⋅min(-1)) than in the placebo group (0.4 ± 0.4 mg⋅kg FFM(-1)⋅min(-1)) (P = 0.04). Insulin sensitivity was enhanced in the blueberry group at the end of the study without significant changes in adiposity, energy intake, and inflammatory biomarkers. In conclusion, daily dietary supplementation with bioactives from whole blueberries improved insulin sensitivity in obese, nondiabetic, and insulin-resistant participants.

  15. Lipid-anthropometric index optimization for insulin sensitivity estimation

    NASA Astrophysics Data System (ADS)

    Velásquez, J.; Wong, S.; Encalada, L.; Herrera, H.; Severeyn, E.

    2015-12-01

    Insulin sensitivity (IS) is the ability of cells to react due to insulińs presence; when this ability is diminished, low insulin sensitivity or insulin resistance (IR) is considered. IR had been related to other metabolic disorders as metabolic syndrome (MS), obesity, dyslipidemia and diabetes. IS can be determined using direct or indirect methods. The indirect methods are less accurate and invasive than direct and they use glucose and insulin values from oral glucose tolerance test (OGTT). The accuracy is established by comparison using spearman rank correlation coefficient between direct and indirect method. This paper aims to propose a lipid-anthropometric index which offers acceptable correlation to insulin sensitivity index for different populations (DB1=MS subjects, DB2=sedentary without MS subjects and DB3=marathoners subjects) without to use OGTT glucose and insulin values. The proposed method is parametrically optimized through a random cross-validation, using the spearman rank correlation as comparator with CAUMO method. CAUMO is an indirect method designed from a simplification of the minimal model intravenous glucose tolerance test direct method (MINMOD-IGTT) and with acceptable correlation (0.89). The results show that the proposed optimized method got a better correlation with CAUMO in all populations compared to non-optimized. On the other hand, it was observed that the optimized method has better correlation with CAUMO in DB2 and DB3 groups than HOMA-IR method, which is the most widely used for diagnosing insulin resistance. The optimized propose method could detect incipient insulin resistance, when classify as insulin resistant subjects that present impaired postprandial insulin and glucose values.

  16. Insulin and Insulin-Sensitizing Drugs in Neurodegeneration: Mitochondria as Therapeutic Targets

    PubMed Central

    Cardoso, Susana; Santos, Renato; Correia, Sonia; Carvalho, Cristina; Zhu, Xiongwei; Lee, Hyoung-Gon; Casadesus, Gemma; Smith, Mark A.; Perry, George; Moreira, Paula I.

    2009-01-01

    Insulin, besides its glucose lowering effects, is involved in the modulation of lifespan, aging and memory and learning processes. As the population ages, neurodegenerative disorders become epidemic and a connection between insulin signaling dysregulation, cognitive decline and dementia has been established. Mitochondria are intracellular organelles that despite playing a critical role in cellular metabolism are also one of the major sources of reactive oxygen species. Mitochondrial dysfunction, oxidative stress and neuroinflammation, hallmarks of neurodegeneration, can result from impaired insulin signaling. Insulin-sensitizing drugs such as the thiazolidinediones are a new class of synthetic compounds that potentiate insulin action in the target tissues and act as specific agonists of the peroxisome proliferator-activated receptor gamma (PPAR-γ). Recently, several PPAR agonists have been proposed as novel and possible therapeutic agents for neurodegenerative disorders. Indeed, the literature shows that these agents are able to protect against mitochondrial dysfunction, oxidative damage, inflammation and apoptosis. This review discusses the role of mitochondria and insulin signaling in normal brain function and in neurodegeneration. Furthermore, the potential protective role of insulin and insulin sensitizers in Alzheimer´s, Parkinson´s and Huntington´s diseases and amyotrophic lateral sclerosis will be also discussed.

  17. Insulin and Insulin-Sensitizing Drugs in Neurodegeneration: Mitochondria as Therapeutic Targets

    PubMed Central

    Cardoso, Susana; Santos, Renato; Correia, Sonia; Carvalho, Cristina; Zhu, Xiongwei; Lee, Hyoung-Gon; Casadesus, Gemma; Smith, Mark A.; Perry, George; Moreira, Paula I.

    2009-01-01

    Insulin, besides its glucose lowering effects, is involved in the modulation of lifespan, aging and memory and learning processes. As the population ages, neurodegenerative disorders become epidemic and a connection between insulin signaling dysregulation, cognitive decline and dementia has been established. Mitochondria are intracellular organelles that despite playing a critical role in cellular metabolism are also one of the major sources of reactive oxygen species. Mitochondrial dysfunction, oxidative stress and neuroinflammation, hallmarks of neurodegeneration, can result from impaired insulin signaling. Insulin-sensitizing drugs such as the thiazolidinediones are a new class of synthetic compounds that potentiate insulin action in the target tissues and act as specific agonists of the peroxisome proliferator-activated receptor gamma (PPAR-γ). Recently, several PPAR agonists have been proposed as novel and possible therapeutic agents for neurodegenerative disorders. Indeed, the literature shows that these agents are able to protect against mitochondrial dysfunction, oxidative damage, inflammation and apoptosis. This review discusses the role of mitochondria and insulin signaling in normal brain function and in neurodegeneration. Furthermore, the potential protective role of insulin and insulin sensitizers in Alzheimer´s, Parkinson´s and Huntington´s diseases and amyotrophic lateral sclerosis will be also discussed. PMID:27713238

  18. Comparison of plasminogen activator inhibitor-1 concentration in insulin-resistant versus insulin-sensitive healthy women.

    PubMed

    Abbasi, F; McLaughlin, T; Lamendola, C; Lipinska, I; Tofler, G; Reaven, G M

    1999-11-01

    The primary goal of this investigation was to see whether plasminogen activator inhibitor-1 (PAI-1) concentrations varied as a function of differences in insulin-mediated glucose disposal in 2 groups of healthy women matched for every other variable that might play a role in regulation of PAI-1. For this purpose, we recruited 32 healthy women, divided on the basis of their steady-state plasma glucose (SSPG) concentrations during the insulin suppression test into an insulin-resistant (SSPG=216+/-12 mg/dL, n=16) and an insulin-sensitive (94+/-6 mg/dL, n=16) group. PAI-1 antigen concentrations were significantly higher (26+/-4 versus 14+/-3 ng/mL, P<0.02) in the insulin-resistant group. In addition, fasting plasma insulin (18+/-3 versus 11+/-2 microU/mL, P<0.02) and triglyceride (160+/-19 versus 93+/-10 mg/dL, P<0.001) concentrations were higher in the insulin-resistant individuals, whereas HDL concentrations were lower (44+/-3 versus 58+/-3 mg/dL, P<0.005). However, the 2 groups were essentially identical in terms of age, menopausal status, hormone replacement therapy, body mass index (BMI), ratio of waist-to-hip girth, and blood pressure. When the experimental population was considered as 1 group, there were statistically significant correlations between PAI-1 antigen and the following variables: adjusting for differences in age and BMI, SSPG (r=0.56, P<0.001); triglyceride (r=0.39, P<0.05); and HDL cholesterol (r=-0. 65, P<0.001) concentrations. Finally, multiple regression analysis revealed the major determinants of PAI-1 to be insulin resistance, or insulin concentration, and HDL cholesterol. These results: 1) demonstrate that PAI-1 concentrations are higher in healthy, insulin-resistant women as compared with insulin-sensitive individuals, independent of differences in BMI or ratio of waist-to-hip girth; and 2) provide another mechanism by which insulin-resistant individuals are at increased thrombotic cardiovascular risk.

  19. Morning Circadian Misalignment during Short Sleep Duration Impacts Insulin Sensitivity.

    PubMed

    Eckel, Robert H; Depner, Christopher M; Perreault, Leigh; Markwald, Rachel R; Smith, Mark R; McHill, Andrew W; Higgins, Janine; Melanson, Edward L; Wright, Kenneth P

    2015-11-16

    Short sleep duration and circadian misalignment are hypothesized to causally contribute to health problems including obesity, diabetes, metabolic syndrome, heart disease, mood disorders, cognitive impairment, and accidents. Here, we investigated the influence of morning circadian misalignment induced by an imposed short nighttime sleep schedule on impaired insulin sensitivity, a precursor to diabetes. Imposed short sleep duration resulted in morning wakefulness occurring during the biological night (i.e., circadian misalignment)-a time when endogenous melatonin levels were still high indicating the internal circadian clock was still promoting sleep and related functions. We show the longer melatonin levels remained high after wake time, insulin sensitivity worsened. Overall, we find a simulated 5-day work week of 5-hr-per-night sleep opportunities and ad libitum food intake resulted in ∼20% reduced oral and intravenous insulin sensitivity in otherwise healthy men and women. Reduced insulin sensitivity was compensated by an increased insulin response to glucose, which may reflect an initial physiological adaptation to maintain normal blood sugar levels during sleep loss. Furthermore, we find that transitioning from the imposed short sleep schedule to 9-hr sleep opportunities for 3 days restored oral insulin sensitivity to baseline, but 5 days with 9-hr sleep opportunities was insufficient to restore intravenous insulin sensitivity to baseline. These findings indicate morning wakefulness and eating during the biological night is a novel mechanism by which short sleep duration contributes to metabolic dysregulation and suggests food intake during the biological night may contribute to other health problems associated with short sleep duration.

  20. Grizzly bears exhibit augmented insulin sensitivity while obese prior to a reversible insulin resistance during hibernation.

    PubMed

    Nelson, O Lynne; Jansen, Heiko T; Galbreath, Elizabeth; Morgenstern, Kurt; Gehring, Jamie Lauren; Rigano, Kimberly Scott; Lee, Jae; Gong, Jianhua; Shaywitz, Adam J; Vella, Chantal A; Robbins, Charles T; Corbit, Kevin C

    2014-08-01

    The confluence of obesity and diabetes as a worldwide epidemic necessitates the discovery of new therapies. Success in this endeavor requires translatable preclinical studies, which traditionally employ rodent models. As an alternative approach, we explored hibernation where obesity is a natural adaptation to survive months of fasting. Here we report that grizzly bears exhibit seasonal tripartite insulin responsiveness such that obese animals augment insulin sensitivity but only weeks later enter hibernation-specific insulin resistance (IR) and subsequently reinitiate responsiveness upon awakening. Preparation for hibernation is characterized by adiposity coupled to increased insulin sensitivity via modified PTEN/AKT signaling specifically in adipose tissue, suggesting a state of "healthy" obesity analogous to humans with PTEN haploinsufficiency. Collectively, we show that bears reversibly cope with homeostatic perturbations considered detrimental to humans and describe a mechanism whereby IR functions not as a late-stage metabolic adaptation to obesity, but rather a gatekeeper of the fed-fasting transition.

  1. Grizzly bears exhibit augmented insulin sensitivity while obese prior to a reversible insulin resistance during hibernation.

    PubMed

    Nelson, O Lynne; Jansen, Heiko T; Galbreath, Elizabeth; Morgenstern, Kurt; Gehring, Jamie Lauren; Rigano, Kimberly Scott; Lee, Jae; Gong, Jianhua; Shaywitz, Adam J; Vella, Chantal A; Robbins, Charles T; Corbit, Kevin C

    2014-08-01

    The confluence of obesity and diabetes as a worldwide epidemic necessitates the discovery of new therapies. Success in this endeavor requires translatable preclinical studies, which traditionally employ rodent models. As an alternative approach, we explored hibernation where obesity is a natural adaptation to survive months of fasting. Here we report that grizzly bears exhibit seasonal tripartite insulin responsiveness such that obese animals augment insulin sensitivity but only weeks later enter hibernation-specific insulin resistance (IR) and subsequently reinitiate responsiveness upon awakening. Preparation for hibernation is characterized by adiposity coupled to increased insulin sensitivity via modified PTEN/AKT signaling specifically in adipose tissue, suggesting a state of "healthy" obesity analogous to humans with PTEN haploinsufficiency. Collectively, we show that bears reversibly cope with homeostatic perturbations considered detrimental to humans and describe a mechanism whereby IR functions not as a late-stage metabolic adaptation to obesity, but rather a gatekeeper of the fed-fasting transition. PMID:25100064

  2. Insulin resistance in cirrhosis: prolonged reduction of hyperinsulinemia normalizes insulin sensitivity.

    PubMed

    Petrides, A S; Stanley, T; Matthews, D E; Vogt, C; Bush, A J; Lambeth, H

    1998-07-01

    Insulin resistance is present in nearly all patients with cirrhosis, but its etiology remains unknown. Chronic hyperinsulinemia has been suspected as a potential candidate, and we therefore tested the hypothesis that, in cirrhosis, prolonged reduction of the hyperinsulinemia restores insulin sensitivity. Whole-body insulin sensitivity (euglycemic insulin-clamp technique), glucose turnover (6,6-2H2-glucose isotope dilution), glucose oxidation (indirect calorimetry), non-oxidative glucose disposal, and fractional glycogen synthase activity in muscle (biopsies) were measured in eight clinically stable patients with cirrhosis before and at the end of a 4-day continuous subcutaneous infusion of the somatostatin-analogue octreotide (200 microg/24 h) designed to continuously reduce plasma insulin levels. Baseline data were compared with results obtained in healthy individuals matched for sex, age, and weight (n = 8). During the baseline (pre-octreotide) study, patients demonstrated a significant decrease in insulin-mediated glucose uptake compared with controls (5.75 +/- 0.21 vs. 7.98 +/- 0.84 mg/kg/min; P < .03), which was entirely accounted for by an impairment in non-oxidative glucose disposal (P < .04). Four-day infusion of octreotide to cirrhotic patients: 1) reduced postabsorptive and meal-stimulated plasma insulin levels by approximately 35% to 45% without significantly affecting glucose tolerance; 2) did not significantly alter plasma free fatty acids (FFA), growth hormone, and glucagon levels in the postabsorptive state and during the meal test; 3) normalized insulin-mediated whole-body glucose disposal (7.63 +/- 0.72 mg/kg/min post-octreotide; P = not significant vs. control). Restoration of insulin-mediated glucose utilization was entirely caused by normalization of non-oxidative glucose disposal; 4) was associated with a considerably more pronounced stimulation by insulin of the fractional glycogen synthase in muscle compared with pre-octreotide results

  3. MARCH1 regulates insulin sensitivity by controlling cell surface insulin receptor levels.

    PubMed

    Nagarajan, Arvindhan; Petersen, Max C; Nasiri, Ali R; Butrico, Gina; Fung, Annie; Ruan, Hai-Bin; Kursawe, Romy; Caprio, Sonia; Thibodeau, Jacques; Bourgeois-Daigneault, Marie-Claude; Sun, Lisha; Gao, Guangping; Bhanot, Sanjay; Jurczak, Michael J; Green, Michael R; Shulman, Gerald I; Wajapeyee, Narendra

    2016-01-01

    Insulin resistance is a key driver of type 2 diabetes (T2D) and is characterized by defective insulin receptor (INSR) signalling. Although surface INSR downregulation is a well-established contributor to insulin resistance, the underlying molecular mechanisms remain obscure. Here we show that the E3 ubiquitin ligase MARCH1 impairs cellular insulin action by degrading cell surface INSR. Using a large-scale RNA interference screen, we identify MARCH1 as a negative regulator of INSR signalling. March1 loss-of-function enhances, and March1 overexpression impairs, hepatic insulin sensitivity in mice. MARCH1 ubiquitinates INSR to decrease cell surface INSR levels, but unlike other INSR ubiquitin ligases, MARCH1 acts in the basal state rather than after insulin stimulation. Thus, MARCH1 may help set the basal gain of insulin signalling. MARCH1 expression is increased in white adipose tissue of obese humans, suggesting that MARCH1 contributes to the pathophysiology of T2D and could be a new therapeutic target. PMID:27577745

  4. MARCH1 regulates insulin sensitivity by controlling cell surface insulin receptor levels

    PubMed Central

    Nagarajan, Arvindhan; Petersen, Max C.; Nasiri, Ali R.; Butrico, Gina; Fung, Annie; Ruan, Hai-Bin; Kursawe, Romy; Caprio, Sonia; Thibodeau, Jacques; Bourgeois-Daigneault, Marie-Claude; Sun, Lisha; Gao, Guangping; Bhanot, Sanjay; Jurczak, Michael J.; Green, Michael R.; Shulman, Gerald I.; Wajapeyee, Narendra

    2016-01-01

    Insulin resistance is a key driver of type 2 diabetes (T2D) and is characterized by defective insulin receptor (INSR) signalling. Although surface INSR downregulation is a well-established contributor to insulin resistance, the underlying molecular mechanisms remain obscure. Here we show that the E3 ubiquitin ligase MARCH1 impairs cellular insulin action by degrading cell surface INSR. Using a large-scale RNA interference screen, we identify MARCH1 as a negative regulator of INSR signalling. March1 loss-of-function enhances, and March1 overexpression impairs, hepatic insulin sensitivity in mice. MARCH1 ubiquitinates INSR to decrease cell surface INSR levels, but unlike other INSR ubiquitin ligases, MARCH1 acts in the basal state rather than after insulin stimulation. Thus, MARCH1 may help set the basal gain of insulin signalling. MARCH1 expression is increased in white adipose tissue of obese humans, suggesting that MARCH1 contributes to the pathophysiology of T2D and could be a new therapeutic target. PMID:27577745

  5. The Adipose Transcriptional Response to Insulin Is Determined by Obesity, Not Insulin Sensitivity.

    PubMed

    Rydén, Mikael; Hrydziuszko, Olga; Mileti, Enrichetta; Raman, Amitha; Bornholdt, Jette; Boyd, Mette; Toft, Eva; Qvist, Veronica; Näslund, Erik; Thorell, Anders; Andersson, Daniel P; Dahlman, Ingrid; Gao, Hui; Sandelin, Albin; Daub, Carsten O; Arner, Peter

    2016-08-30

    Metabolically healthy obese subjects display preserved insulin sensitivity and a beneficial white adipose tissue gene expression pattern. However, this observation stems from fasting studies when insulin levels are low. We investigated adipose gene expression by 5'Cap-mRNA sequencing in 17 healthy non-obese (NO), 21 insulin-sensitive severely obese (ISO), and 30 insulin-resistant severely obese (IRO) subjects, before and 2 hr into a hyperinsulinemic euglycemic clamp. ISO and IRO subjects displayed a clear but globally similar transcriptional response to insulin, which differed from the small effects observed in NO subjects. In the obese, 231 genes were altered; 71 were enriched in ISO subjects (e.g., phosphorylation processes), and 52 were enriched in IRO subjects (e.g., cellular stimuli). Common cardio-metabolic risk factors and gender do not influence these findings. This study demonstrates that differences in the acute transcriptional response to insulin are primarily driven by obesity per se, challenging the notion of healthy obese adipose tissue, at least in severe obesity. PMID:27545890

  6. An acute bout of endurance exercise but not sprint interval exercise enhances insulin sensitivity.

    PubMed

    Brestoff, Jonathan R; Clippinger, Benjamin; Spinella, Thomas; von Duvillard, Serge P; Nindl, Bradley C; Nindl, Bradley; Arciero, Paul J

    2009-02-01

    in healthy males and females. While these findings underscore the use of regular EE as an effective intervention strategy against insulin resistance, additional research examining repeated sessions of SIE on insulin sensitivity is warranted.

  7. Improvement of insulin sensitivity by short-term exercise training in hypertensive African American women.

    PubMed

    Brown, M D; Moore, G E; Korytkowski, M T; McCole, S D; Hagberg, J M

    1997-12-01

    African American women have a high prevalence of insulin resistance, non-insulin-dependent diabetes mellitus, obesity, and hypertension that may be linked to low levels of physical activity. We sought to determine whether 7 days of aerobic exercise improved glucose and insulin metabolism in 12 obese (body fat >35%), hypertensive (systolic blood pressure > or =140 and/or diastolic blood pressure > or =90 mmHg) African American women (mean age 51+/-8 years). Insulin-assisted frequently-sampled intravenous glucose tolerance tests were performed at baseline and 14 to 18 hours after the 7th exercise session. There was no significant change in maximal oxygen consumption, body composition, or body weight after the 7 days of aerobic exercise. The insulin sensitivity index increased (2.68+/-0.45 x 10[-5] to 4.23+/-0.10 x 10[-5] [min(-1)/pmol/L], P=.02). Fasting (73+/-9 to 50+/-9 pmol/L, P=.02) and glucose-stimulated (332+/-58 to 261+/-45 pmol/L, P=.05) plasma insulin levels decreased. Additional measures related to the insulin resistance syndrome also changed with the 7 days of exercise: basal plasma norepinephrine concentrations were reduced (2.46+/-0.27 to 1.81+/-0.27 nmol/L, P=.02) and sodium excretion rate increased from 100+/-13 to 137+/-7 mmol/d (P=.03); however, there was no change in potassium excretion or 24-hour ambulatory blood pressure. We conclude that a short-term aerobic exercise program improves insulin sensitivity in African American hypertensive women independent of changes in fitness levels, body composition, or body weight. The present study indicates that short-term exercise can improve insulin resistance in hypertensive, obese, sedentary African American women and confirms previous reports that a portion of the exercise-induced improvements in glucose and insulin metabolism may be the result of recent exercise.

  8. Subcutaneous abdominal fat and thigh muscle composition predict insulin sensitivity independently of visceral fat.

    PubMed

    Goodpaster, B H; Thaete, F L; Simoneau, J A; Kelley, D E

    1997-10-01

    Whether visceral adipose tissue has a uniquely powerful association with insulin resistance or whether subcutaneous abdominal fat shares this link has generated controversy in the area of body composition and insulin sensitivity. An additional issue is the potential role of fat deposition within skeletal muscle and the relationship with insulin resistance. To address these matters, the current study was undertaken to measure body composition, aerobic fitness, and insulin sensitivity within a cohort of sedentary healthy men (n = 26) and women (n = 28). The subjects, who ranged from lean to obese (BMI 19.6-41.0 kg/m2), underwent dual energy X-ray absorptiometry (DEXA) to measure fat-free mass (FFM) and fat mass (FM), computed tomography to measure cross-sectional abdominal subcutaneous and visceral adipose tissue, and computed tomography (CT) of mid-thigh to measure muscle cross-sectional area, muscle attenuation, and subcutaneous fat. Insulin sensitivity was measured using the glucose clamp technique (40 mU.m-2.min-1), in conjunction with [3-3H]glucose isotope dilution. Maximal aerobic power (VO2max) was determined using an incremental cycling test. Insulin-stimulated glucose disposal (Rd) ranged from 3.03 to 16.83 mg.min-1.kg-1 FFM. Rd was negatively correlated with FM (r = -0.58), visceral fat (r = -0.52), subcutaneous abdominal fat (r = -0.61), and thigh fat (r = -0.38) and positively correlated with muscle attenuation (r = 0.48) and VO2max (r = 0.26, P < 0.05). In addition to manifesting the strongest simple correlation with insulin sensitivity, in stepwise multiple regression, subcutaneous abdominal fat retained significance after adjusting for visceral fat, while the converse was not found. Muscle attenuation contributed independent significance to multiple regression models of body composition and insulin sensitivity, and in analysis of obese subjects, muscle attenuation was the strongest single correlate of insulin resistance. In summary, as a component of

  9. Determination of Insulin Secretory Defect and Insulin Sensitivity in Type 2 Diabetic Subjects in Bangladesh.

    PubMed

    Ferdous, J; Ahmed, S; Laila, R; Islam, M T; Rahaman, M F; Snigdha, K R; Sarkar, S; Khan, A S; Sarkar, A K

    2016-01-01

    Diabetes mellitus (DM) is defined as a group of metabolic diseases characterized by hyperglycemia resulting from defects in insulin secretion, insulin action, or both. This study was undertaken to explore the basic defect in type 2 diabetes patients in Bangladesh. This was an observational study with case control design, was conducted in the Biomedical Research Group, Research Division, Bangladesh Institute of Research and Rehabilitation in Diabetes, Endocrine Metabolic Disorders (BIRDEM), Dhaka, Bangladesh, during the period of July 2008 to June 2009. A total of 153 subjects were included in study of which 63 belonged to type 2 diabetes mellitus group and 90 were healthy controls. Fasting and 2 hours postprandial blood glucose, serum insulin, HOMA%B, HOMA%S, QuickI, Glucose /insulin ratio, TG were measured and age, BMI, WHR were recorded. Waist-hip ratio (WHR), was significantly higher in T2DM as compared to control subjects [WHR, mean±SD, 0.94±0.12 vs. 0.88±0.06, p<0.001]; Glucose and insulin ratio of T2DM was significantly higher as compared to control subject [Glu: Ins, Median (range) of 0.54 (0.17-2.33) vs. 0.37(0.06-1.52)]. Insulin secretion (HOMA%B) was significantly lower in diabetic as compared to control subjects [HOMA%B, median (range), 71(4.90-391) vs. 180(59-634) p<0.001]; The quantitative insulin sensitivity check Index (QUICKI) of diabetic subjects were significantly higher as compared to control [QUICKI median (range) 39.90(4.80-138.10) vs. 0.55(0.36-0.85), <0.001]. Triglyceride (TG) and cholesterol (Chol) were significantly higher [(mg/dl), (mean±SD), TG (142±80.14) vs. (142±80.14); Chol (189±50.76) vs. (172±45), p=0.029] in T2DM as compared to control subjects. Those with diabetes showed significant association with insulin secretory defect (HOMA%B, p=0.006) and insulin resistance as assessed by GINR (p<0.001) and QuickI (p<0.001) but not by HOMA%S (p=0.127). The present data suggest that both insulin secretory defect and insulin

  10. Insulin-Sensitizers, Polycystic Ovary Syndrome and Gynaecological Cancer Risk

    PubMed Central

    Lauretta, Rosa; Lanzolla, Giulia; Vici, Patrizia; Mariani, Luciano; Moretti, Costanzo

    2016-01-01

    Preclinical, early phase clinical trials and epidemiological evidence support the potential role of insulin-sensitizers in cancer prevention and treatment. Insulin-sensitizers improve the metabolic and hormonal profile in PCOS patients and may also act as anticancer agents, especially in cancers associated with hyperinsulinemia and oestrogen dependent cancers. Several lines of evidence support the protection against cancer exerted by dietary inositol, in particular inositol hexaphosphate. Metformin, thiazolidinediones, and myoinositol postreceptor signaling may exhibit direct inhibitory effects on cancer cell growth. AMPK, the main molecular target of metformin, is emerging as a target for cancer prevention and treatment. PCOS may be correlated to an increased risk for developing ovarian and endometrial cancer (up to threefold). Several studies have demonstrated an increase in mortality rate from ovarian cancer among overweight/obese PCOS women compared with normal weight women. Long-term use of metformin has been associated with lower rates of ovarian cancer. Considering the evidence supporting a higher risk of gynaecological cancer in PCOS women, we discuss the potential use of insulin-sensitizers as a potential tool for chemoprevention, hypothesizing a possible rationale through which insulin-sensitizers may inhibit tumourigenesis. PMID:27725832

  11. Insulin secretion and sensitivity in space flight: diabetogenic effects.

    PubMed

    Tobin, Brian W; Uchakin, Peter N; Leeper-Woodford, Sandra K

    2002-10-01

    Nearly three decades of space flight research have suggested that there are subclinical diabetogenic changes that occur in microgravity. Alterations in insulin secretion, insulin sensitivity, glucose tolerance, and metabolism of protein and amino acids support the hypothesis that insulin plays an essential role in the maintenance of muscle mass in extended-duration space flight. Experiments in flight and after flight and ground-based bedrest studies have associated microgravity and its experimental paradigms with manifestations similar to those of diabetes, physical inactivity, and aging. We propose that these manifestations are characterized best by an etiology that falls into the clinical category of "other" causes of diabetes, including, but not restricted to, genetic beta-cell defects, insulin action defects, diseases of the endocrine pancreas, endocrinopathies, drug or chemically induced diabetes, infections, immune-mediated metabolic alteration, and a host of genetic related diseases. We present data showing alterations in tumor necrosis factor-alpha production, insulin secretion, and amino acid metabolism in pancreatic islets of Langerhans cultured in a ground-based cell culture bioreactor that mimics some of the effects of microgravity. Taken together, space flight research, ground-based studies, and bioreactor studies of pancreatic islets of Langerhans support the hypothesis that the pancreas is unable to overcome peripheral insulin resistance and amino acid dysregulation during space flight. We propose that measures of insulin secretion and insulin action will be necessary to design effective countermeasures against muscle loss, and we advance the "disposition index" as an essential model to be used in the clinical management of space flight-induced muscle loss.

  12. Insulin secretion and sensitivity in space flight: diabetogenic effects

    NASA Technical Reports Server (NTRS)

    Tobin, Brian W.; Uchakin, Peter N.; Leeper-Woodford, Sandra K.

    2002-01-01

    Nearly three decades of space flight research have suggested that there are subclinical diabetogenic changes that occur in microgravity. Alterations in insulin secretion, insulin sensitivity, glucose tolerance, and metabolism of protein and amino acids support the hypothesis that insulin plays an essential role in the maintenance of muscle mass in extended-duration space flight. Experiments in flight and after flight and ground-based bedrest studies have associated microgravity and its experimental paradigms with manifestations similar to those of diabetes, physical inactivity, and aging. We propose that these manifestations are characterized best by an etiology that falls into the clinical category of "other" causes of diabetes, including, but not restricted to, genetic beta-cell defects, insulin action defects, diseases of the endocrine pancreas, endocrinopathies, drug or chemically induced diabetes, infections, immune-mediated metabolic alteration, and a host of genetic related diseases. We present data showing alterations in tumor necrosis factor-alpha production, insulin secretion, and amino acid metabolism in pancreatic islets of Langerhans cultured in a ground-based cell culture bioreactor that mimics some of the effects of microgravity. Taken together, space flight research, ground-based studies, and bioreactor studies of pancreatic islets of Langerhans support the hypothesis that the pancreas is unable to overcome peripheral insulin resistance and amino acid dysregulation during space flight. We propose that measures of insulin secretion and insulin action will be necessary to design effective countermeasures against muscle loss, and we advance the "disposition index" as an essential model to be used in the clinical management of space flight-induced muscle loss.

  13. Taiwanese vegetarians have higher insulin sensitivity than omnivores.

    PubMed

    Hung, Chien-Jung; Huang, Po-Chao; Li, Yi-Hwei; Lu, Shao-Chun; Ho, Low-Tone; Chou, Hsu-Fang

    2006-01-01

    The present study was designed to examine the effects of habitual consumption of Taiwanese vegetarian diets on hormonal secretion, and on lipid and glycaemic control. Of the ninety-eight healthy female adults recruited from Hualien, Taiwan (aged 31-45 years), forty-nine were Buddhist lactovegetarians and forty-nine were omnivores. Dietary intakes were measured, and blood levels of nutrients and hormones were analysed. Vegetarians consumed less energy, fat and protein, but more fibre than the omnivores. Compared with the omnivores, the vegetarians had, on average, lower BMI and smaller waist circumference. Except for slightly lower levels of thyroxine (T4) in vegetarians, vegetarians and omnivores both showed similar levels of triiodothyronine (T3), free T4, thyroid-stimulating hormone, T3:T4 ratio and cortisol. Compared with the omnivores, the vegetarians had significantly lower levels of fasting insulin (median: 35.3 v. 50.6 pmol/l) and plasma glucose (mean: 4.7 (se 0.05) v. 4.9 (se 0.05) mmol/l). Insulin resistance, as calculated by the homeostasis model assessment method, was significantly lower in the vegetarians than in the omnivores (median: 1.10 v. 1.56), while beta-cell function was not different between the two groups. BMI and diet were both independent predictors for insulin resistance, and contributed 18 and 15 % of the variation in insulin resistance, respectively. In conclusion, Taiwanese vegetarians had lower glucose and insulin levels and higher insulin sensitivity than did the omnivores. Diet and lower BMI were partially responsible for the high insulin sensitivity observed in young Taiwanese vegetarians.

  14. Adipose tissue monomethyl branched chain fatty acids and insulin sensitivity: effects of obesity and weight loss

    PubMed Central

    Su, Xiong; Magkos, Faidon; Zhou, Dequan; Eagon, J. Christopher; Fabbrini, Elisa; Okunade, Adewole L.; Klein, Samuel

    2014-01-01

    Objective An increase in circulating branched-chain amino acids (BCAA) is associated with insulin resistance. Adipose tissue is a potentially important site for BCAA metabolism. We evaluated whether monomethyl branched chain fatty acids (mmBCFA) in adipose tissue, which are likely derived from BCAA catabolism, are associated with insulin sensitivity. Design and Methods Insulin-stimulated glucose disposal was determined by using the hyperinsulinemic-euglycemic clamp procedure with stable isotope glucose tracer infusion, in 9 lean and 9 obese subjects, and in a separate group of 9 obese subjects before and 1 year after Roux-en-Y gastric bypass (RYGB) surgery (38% weight loss). Adipose tissue mmBCFA content was measured in tissue biopsies taken in the basal state. Results Total adipose tissue mmBCFA content was ~30% lower in obese than lean subjects (P = 0.02), and increased by ~65% after weight loss in the RYGB group (P = 0.01). Adipose tissue mmBCFA content correlated positively with skeletal muscle insulin sensitivity (R2 = 35%, P = 0.01, n = 18). Conclusions These results demonstrate a novel association between adipose tissue mmBCFA content and obesity-related insulin resistance. Additional studies are needed to determine whether the association between adipose tissue mmBCFA and muscle insulin sensitivity is causal or a simple association. PMID:25328153

  15. MiR-155 Enhances Insulin Sensitivity by Coordinated Regulation of Multiple Genes in Mice

    PubMed Central

    Lin, Taoyan; Lin, Xia; Chen, Li; Zeng, Hui; Han, Yanjiang; Wu, Lihong; Huang, Shun; Wang, Meng; Huang, Shenhao; Xie, Raoying; Liang, Liqi; Liu, Yu; Liu, Ruiyu; Zhang, Tingting; Li, Jing; Wang, Shengchun; Sun, Penghui; Huang, Wenhua; Yao, Kaitai; Xu, Kang; Du, Tao; Xiao, Dong

    2016-01-01

    miR-155 plays critical roles in numerous physiological and pathological processes, however, its function in the regulation of blood glucose homeostasis and insulin sensitivity and underlying mechanisms remain unknown. Here, we reveal that miR-155 levels are downregulated in serum from type 2 diabetes (T2D) patients, suggesting that miR-155 might be involved in blood glucose control and diabetes. Gain-of-function and loss-of-function studies in mice demonstrate that miR-155 has no effects on the pancreatic β-cell proliferation and function. Global transgenic overexpression of miR-155 in mice leads to hypoglycaemia, improved glucose tolerance and insulin sensitivity. Conversely, miR-155 deficiency in mice causes hyperglycemia, impaired glucose tolerance and insulin resistance. In addition, consistent with a positive regulatory role of miR-155 in glucose metabolism, miR-155 positively modulates glucose uptake in all cell types examined, while mice overexpressing miR-155 transgene show enhanced glycolysis, and insulin-stimulated AKT and IRS-1 phosphorylation in liver, adipose tissue or skeletal muscle. Furthermore, we reveal these aforementioned phenomena occur, at least partially, through miR-155-mediated repression of important negative regulators (i.e. C/EBPβ, HDAC4 and SOCS1) of insulin signaling. Taken together, these findings demonstrate, for the first time, that miR-155 is a positive regulator of insulin sensitivity with potential applications for diabetes treatment. PMID:27711113

  16. Abatacept Improves Whole-Body Insulin Sensitivity in Rheumatoid Arthritis

    PubMed Central

    Ursini, Francesco; Russo, Emilio; Letizia Hribal, Marta; Mauro, Daniele; Savarino, Francesca; Bruno, Caterina; Tripolino, Cesare; Rubino, Mariangela; Naty, Saverio; Grembiale, Rosa Daniela

    2015-01-01

    Abstract Rheumatoid arthritis (RA) is characterized by increased insulin resistance, a well-known risk factor for diabetes and cardiovascular diseases. The aim of the present study was to evaluate the effect of abatacept on insulin sensitivity in RA patients with moderate to severe disease despite treatment with methotrexate. Fifteen RA patients were recruited for the present study. Patients were evaluated at time 0 and after 6 months of the treatment with i.v. abatacept at the dosage recommended for weight range. Evaluation included oral glucose tolerance test (OGTT) at both time points. Insulin sensitivity was estimated with insulin sensitivity index (ISI) by Matsuda, a measure of whole-body insulin sensitivity. ISI significantly increased after the treatment with abatacept from 3.7 ± 2.6 to 5.0 ± 3.2 (P = 0.003) with a mean difference of 1.23. Analysis of glucose and insulin values during OGTT revealed a reduction of both glucose (303.9 ± 73.4 mg/dL min versus 269.2 ± 69.5 mg/dL min, P = 0.009) and insulin (208.4 ± 119.7 mg/dL min versus 158.0 ± 95.3 mg/dL min, P = 0.01) area under the curves (AUCs). Accordingly also glycated hemoglobin significantly improved (5.5 ± 0.4% versus 5.3 ± 0.3%, P = 0.04). No significant differences were found for measures of β-cell function insulinogenic index (1.11 ± 1.19 versus 1.32 ± 0.82, P = 0.77) and oral disposition index (2.0 ± 5.4 versus 6.0 ± 6.0, P = 0.25). Treatment with abatacept seems to be able to improve whole-body insulin sensitivity in RA patients without affecting β-cell function. PMID:26020396

  17. Disclosing caffeine action on insulin sensitivity: effects on rat skeletal muscle.

    PubMed

    Sacramento, Joana F; Ribeiro, Maria J; Yubero, Sara; Melo, Bernardete F; Obeso, Ana; Guarino, Maria P; Gonzalez, Constancio; Conde, Silvia V

    2015-04-01

    Caffeine, a non-selective adenosine antagonist, has distinct effects on insulin sensitivity when applied acutely or chronically. Herein, we investigated the involvement of adenosine receptors on insulin resistance induced by single-dose caffeine administration. Additionally, the mechanism behind adenosine receptor-mediated caffeine effects in skeletal muscle was assessed. The effect of the administration of caffeine, 8-cycle-1,3-dipropylxanthine (DPCPX, A1 antagonist), 2-(2-Furanyl)-7-(2-phenylethyl)-7H-pyrazolo[4,3-e][1,2,4]triazolo[1,5-c]pyrimidin-5-amine (SCH58261, A2A antagonist) and 8-(4-{[(4-cyanophenyl)carbamoylmethyl]-oxy}phenyl)-1,3-di(n-propyl)xanthine (MRS1754, A2B antagonist) on whole-body insulin sensitivity was tested. Skeletal muscle Glut4,5'-AMP activated protein kinase (AMPK) and adenosine receptor protein expression were also assessed. The effect of A1 and A2B adenosine agonists on skeletal muscle glucose uptake was evaluated in vitro. Sodium nitroprussiate (SNP, 10nM), a nitric oxide (NO) donor, was used to evaluate the effect of NO on insulin resistance induced by adenosine antagonists. Acute caffeine decreased insulin sensitivity in a concentration dependent manner (Emax=55.54±5.37%, IC50=11.61nM), an effect that was mediated by A1 and A2B adenosine receptors. Additionally, acute caffeine administration significantly decreased Glut4, but not AMPK expression, in skeletal muscle. We found that A1, but not A2B agonists increased glucose uptake in skeletal muscle. SNP partially reversed DPCPX and MRS1754 induced-insulin resistance. Our results suggest that insulin resistance induced by acute caffeine administration is mediated by A1 and A2B adenosine receptors. Both Glut4 and NO seem to be downstream effectors involved in insulin resistance induced by acute caffeine.

  18. Disclosing caffeine action on insulin sensitivity: effects on rat skeletal muscle.

    PubMed

    Sacramento, Joana F; Ribeiro, Maria J; Yubero, Sara; Melo, Bernardete F; Obeso, Ana; Guarino, Maria P; Gonzalez, Constancio; Conde, Silvia V

    2015-04-01

    Caffeine, a non-selective adenosine antagonist, has distinct effects on insulin sensitivity when applied acutely or chronically. Herein, we investigated the involvement of adenosine receptors on insulin resistance induced by single-dose caffeine administration. Additionally, the mechanism behind adenosine receptor-mediated caffeine effects in skeletal muscle was assessed. The effect of the administration of caffeine, 8-cycle-1,3-dipropylxanthine (DPCPX, A1 antagonist), 2-(2-Furanyl)-7-(2-phenylethyl)-7H-pyrazolo[4,3-e][1,2,4]triazolo[1,5-c]pyrimidin-5-amine (SCH58261, A2A antagonist) and 8-(4-{[(4-cyanophenyl)carbamoylmethyl]-oxy}phenyl)-1,3-di(n-propyl)xanthine (MRS1754, A2B antagonist) on whole-body insulin sensitivity was tested. Skeletal muscle Glut4,5'-AMP activated protein kinase (AMPK) and adenosine receptor protein expression were also assessed. The effect of A1 and A2B adenosine agonists on skeletal muscle glucose uptake was evaluated in vitro. Sodium nitroprussiate (SNP, 10nM), a nitric oxide (NO) donor, was used to evaluate the effect of NO on insulin resistance induced by adenosine antagonists. Acute caffeine decreased insulin sensitivity in a concentration dependent manner (Emax=55.54±5.37%, IC50=11.61nM), an effect that was mediated by A1 and A2B adenosine receptors. Additionally, acute caffeine administration significantly decreased Glut4, but not AMPK expression, in skeletal muscle. We found that A1, but not A2B agonists increased glucose uptake in skeletal muscle. SNP partially reversed DPCPX and MRS1754 induced-insulin resistance. Our results suggest that insulin resistance induced by acute caffeine administration is mediated by A1 and A2B adenosine receptors. Both Glut4 and NO seem to be downstream effectors involved in insulin resistance induced by acute caffeine. PMID:25661425

  19. Insulin sensitivity of protein and glucose metabolism in human forearm skeletal muscle.

    PubMed Central

    Louard, R J; Fryburg, D A; Gelfand, R A; Barrett, E J

    1992-01-01

    Physiologic increases of insulin promote net amino acid uptake and protein anabolism in forearm skeletal muscle by restraining protein degradation. The sensitivity of this process to insulin is not known. Using the forearm perfusion method, we infused insulin locally in the brachial artery at rates of 0.00 (saline control), 0.01, 0.02, 0.035, or 0.05 mU/min per kg for 150 min to increase local forearm plasma insulin concentration by 0, approximately 20, approximately 35, approximately 60, and approximately 120 microU/ml (n = 35). L-[ring-2,6-3H]phenylalanine and L-[1-14C]leucine were infused systemically, and the net forearm balance, rate of appearance (Ra) and rate of disposal (R(d)) of phenylalanine and leucine, and forearm glucose balance were measured basally and in response to insulin infusion. Compared to saline, increasing rates of insulin infusion progressively increased net forearm glucose uptake from 0.9 mumol/min per 100 ml (saline) to 1.0, 1.8, 2.4, and 4.7 mumol/min per 100 ml forearm, respectively. Net forearm balance for phenylalanine and leucine was significantly less negative than basal (P < 0.01 for each) in response to the lowest dose insulin infusion, 0.01 mU/min per kg, and all higher rates of insulin infusion. Phenylalanine and leucine R(a) declined by approximately 38 and 40% with the lowest dose insulin infusion. Higher doses of insulin produced no greater effect (decline in R(a) varied between 26 and 42% for phenylalanine and 30-50% for leucine). In contrast, R(d) for phenylalanine and leucine did not change with insulin. We conclude that even modest increases of plasma insulin can markedly suppress proteolysis, measured by phenylalanine R(a), in human forearm skeletal muscle. Further increments of insulin within the physiologic range augment glucose uptake but have little additional effect on phenylalanine R(a) or balance. These results suggest that proteolysis in human skeletal muscle is more sensitive than glucose uptake to physiologic

  20. The effect of oral metformin on insulin sensitivity in insulin-resistant ponies.

    PubMed

    Tinworth, Kellie D; Boston, Ray C; Harris, Patricia A; Sillence, Martin N; Raidal, Sharanne L; Noble, Glenys K

    2012-01-01

    Metformin may be an effective therapeutic option for insulin-resistant (I-R) horses/ponies because, in humans, it reportedly enhances insulin sensitivity (SI) of peripheral tissues without stimulating insulin secretion. To determine the effect of metformin on insulin and glucose dynamics in I-R ponies, six ponies were studied in a cross-over design by Minimal Model analysis of a frequently-sampled intravenous glucose tolerance test (FSIGT). Metformin was administered at 15 mg/kg bodyweight (BW), orally, twice-daily, for 21 days to the metformin-treated group. The control group received a placebo. A FSIGT was conducted before and after treatment. The Minimal Model of glucose and insulin dynamics rendered indices describing SI, glucose effectiveness (Sg), acute insulin response to glucose (AIRg) and the disposition index (DI). The body condition score (BCS), BW and cresty neck score (CNS) were also assessed. There was no significant change in SI, Sg, AIRg, DI, BW, BCS or CNS in response to metformin, or over time in the control group. There were no measurable benefits of metformin on SI, consistent with recent work showing that the bioavailability of metformin in horses is poor, and chronic dosing may not achieve therapeutic blood concentrations. Alternatively, metformin may only be effective in obese ponies losing weight or with hyperglycaemia.

  1. Novel repressor regulates insulin sensitivity through interaction with Foxo1

    PubMed Central

    Nakae, Jun; Cao, Yongheng; Hakuno, Fumihiko; Takemori, Hiroshi; Kawano, Yoshinaga; Sekioka, Risa; Abe, Takaya; Kiyonari, Hiroshi; Tanaka, Toshiya; Sakai, Juro; Takahashi, Shin-Ichiro; Itoh, Hiroshi

    2012-01-01

    Forkhead box-containing protein o (Foxo) 1 is a key transcription factor in insulin and glucose metabolism. We identified a Foxo1-CoRepressor (FCoR) protein in mouse adipose tissue that inhibits Foxo1's activity by enhancing acetylation via impairment of the interaction between Foxo1 and the deacetylase Sirt1 and via direct acetylation. FCoR is phosphorylated at Threonine 93 by catalytic subunit of protein kinase A and is translocated into nucleus, making it possible to bind to Foxo1 in both cytosol and nucleus. Knockdown of FCoR in 3T3-F442A cells enhanced expression of Foxo target and inhibited adipocyte differentiation. Overexpression of FCoR in white adipose tissue decreased expression of Foxo-target genes and adipocyte size and increased insulin sensitivity in Leprdb/db mice and in mice fed a high-fat diet. In contrast, Fcor knockout mice were lean, glucose intolerant, and had decreased insulin sensitivity that was accompanied by increased expression levels of Foxo-target genes and enlarged adipocytes. Taken together, these data suggest that FCoR is a novel repressor that regulates insulin sensitivity and energy metabolism in adipose tissue by acting to fine-tune Foxo1 activity. PMID:22510882

  2. Central Administration of Galanin Receptor 1 Agonist Boosted Insulin Sensitivity in Adipose Cells of Diabetic Rats

    PubMed Central

    Zhang, Zhenwen; Fang, Penghua; He, Biao; Guo, Lili; Runesson, Johan; Langel, Ülo; Shi, Mingyi; Zhu, Yan; Bo, Ping

    2016-01-01

    Our previous studies testified the beneficial effect of central galanin on insulin sensitivity of type 2 diabetic rats. The aim of the study was further to investigate whether central M617, a galanin receptor 1 agonist, can benefit insulin sensitivity. The effects of intracerebroventricular administration of M617 on insulin sensitivity and insulin signaling were evaluated in adipose tissues of type 2 diabetic rats. The results showed that central injection of M617 significantly increased plasma adiponectin contents, glucose infusion rates in hyperinsulinemic-euglycemic clamp tests, GLUT4 mRNA expression levels, GLUT4 contents in plasma membranes, and total cell membranes of the adipose cells but reduced the plasma C-reactive protein concentration in nondiabetic and diabetic rats. The ratios of GLUT4 contents were higher in plasma membranes to total cell membranes in both nondiabetic and diabetic M617 groups than each control. In addition, the central administration of M617 enhanced the ratios of pAkt/Akt and pAS160/AS160, but not phosphorylative cAMP response element-binding protein (pCREB)/CREB in the adipose cells of nondiabetic and diabetic rats. These results suggest that excitation of central galanin receptor 1 facilitates insulin sensitivity via activation of the Akt/AS160 signaling pathway in the fat cells of type 2 diabetic rats. PMID:27127795

  3. Effect of vanadium on insulin sensitivity and appetite.

    PubMed

    Wang, J; Yuen, V G; McNeill, J H

    2001-06-01

    Vanadium, a potent nonselective inhibitor of protein tyrosine phosphatases, has been shown to mimic many of the metabolic actions of insulin both in vivo and in vitro. The mechanism(s) of the effect of vanadium on the decrease in appetite and body weight in Zucker fa/fa rats, an insulin-resistant model, is still unclear. Because insulin may inhibit hypothalamic neuropeptide Y (NPY), which is known to be related to appetite, and increase leptin secretion in adipose tissue, we studied the possibility that the changes in appetite produced by vanadium may be linked to altered NPY levels in the hypothalamus. We also examined effects of vanadium on leptin. Zucker lean and fatty rats were chronically treated with bis(maltolato)oxovanadium(IV) (BMOV), an organic vanadium compound, in the drinking water. Plasma and adipose tissue leptin levels were measured by radioimmunoassay and immunoblotting, respectively. Hypothalamic NPY mRNA and peptide levels were measured using in situ hybridization and immunocytochemistry, respectively. BMOV treatment significantly reduced food intake, body fat, body weight, plasma insulin levels, and glucose levels in fatty Zucker rats. Fifteen minutes after insulin injection (5 U/kg, intravenous [IV]), circulating leptin levels (+100%) and adipose leptin levels (+60%) were elevated in BMOV-treated fatty rats, although these effects were not observed in untreated fatty rats. NPY mRNA levels in the arcuate nucleus (ARC) (-29%), NPY peptide levels in ARC (-31%), as well as in the paraventricular nucleus (PVN) (-37%) were decreased with BMOV treatment in these fatty rats. These data indicate that BMOV may increase insulin sensitivity in adipose tissue and decrease appetite and body fat by decreasing NPY levels in the hypothalamus. BMOV-induced reduction in appetite and weight gain along with normalized insulin levels in models of obesity, suggest its possible use as a therapeutic agent in obesity.

  4. Pharmacological Inhibition of Glucosylceramide Synthase Enhances Insulin Sensitivity

    PubMed Central

    Aerts, Johannes M.; Ottenhoff, Roelof; Powlson, Andrew S.; Grefhorst, Aldo; van Eijk, Marco; Dubbelhuis, Peter F.; Aten, Jan; Kuipers, Folkert; Serlie, Mireille J.; Wennekes, Tom; Sethi, Jaswinder K.; O’Rahilly, Stephen; Overkleeft, Hermen S.

    2015-01-01

    A growing body of evidence implicates ceramide and/or its glycosphingolipid metabolites in the pathogenesis of insulin resistance. We have developed a highly specific small molecule inhibitor of glucosylceramide synthase, an enzyme that catalyzes a necessary step in the conversion of ceramide to glycosphingolipids. In cultured 3T3-L1 adipocytes, the iminosugar derivative N-(5′-adamantane-1′-yl-methoxy)-pentyl-1-deoxynojirimycin (AMP-DNM) counteracted tumor necrosis factor-α-induced abnormalities in glycosphingo-lipid concentrations and concomitantly reversed abnormalities in insulin signal transduction. When administered to mice and rats, AMP-DNM significantly reduced glycosphin-golipid but not ceramide concentrations in various tissues. Treatment of ob/ob mice with AMP-DNM normalized their elevated tissue glucosylceramide levels, markedly lowered circulating glucose levels, improved oral glucose tolerance, reduced A1C, and improved insulin sensitivity in muscle and liver. Similarly beneficial metabolic effects were seen in high fat-fed mice and ZDF rats. These findings provide further evidence that glycosphingolipid metabolites of ceramide may be involved in mediating the link between obesity and insulin resistance and that interference with glycosphingolipid biosynthesis might present a novel approach to the therapy of states of impaired insulin action such as type 2 diabetes. PMID:17287460

  5. Femoral Bone Marrow Insulin Sensitivity Is Increased by Resistance Training in Elderly Female Offspring of Overweight and Obese Mothers

    PubMed Central

    Huovinen, Ville; Bucci, Marco; Lipponen, Heta; Kiviranta, Riku; Sandboge, Samuel; Raiko, Juho; Koskinen, Suvi; Koskensalo, Kalle; Eriksson, Johan G.; Parkkola, Riitta; Iozzo, Patricia; Nuutila, Pirjo

    2016-01-01

    Bone marrow insulin sensitivity may be an important factor for bone health in addition to bone mineral density especially in insulin resistant conditions. First we aimed to study if prenatal maternal obesity plays a role in determining bone marrow insulin sensitivity in elderly female offspring. Secondly we studied if a four-month individualized resistance training intervention increases bone marrow insulin sensitivity in elderly female offspring and whether this possible positive outcome is regulated by the offspring’s mother’s obesity status. 37 frail elderly females (mean age 71.9 ± 3.1 years) of which 20 were offspring of lean/normal-weight mothers (OLM, maternal BMI ≤ 26.3 kg/m2) and 17 were offspring of obese/overweight mothers (OOM, maternal BMI ≥ 28.1 kg/m2) were studied before and after a four-month individualized resistance training intervention. Nine age- and sex-matched non-frail controls (maternal BMI ≤ 26.3 kg/m2) were studied at baseline. Femoral bone marrow (FBM) and vertebral bone marrow (VBM) insulin sensitivity were measured using [18F]fluoro-2-deoxy-D-glucose positron emission tomography with computer tomography under hyperinsulinemic euglycemic clamp. We found that bone marrow insulin sensitivity was not related to maternal obesity status but FBM insulin sensitivity correlated with whole body insulin sensitivity (R = 0.487, p = 0.001). A four-month resistance training intervention increased FBM insulin sensitivity by 47% (p = 0.006) only in OOM, while VBM insulin sensitivity remained unchanged regardless of the maternal obesity status. In conclusion, FBM and VBM glucose metabolism reacts differently to a four-month resistance training intervention in elderly women according to their maternal obesity status. Trial Registration ClinicalTrials.gov NCT01931540 PMID:27669153

  6. Metabolomics reveals the protective of Dihydromyricetin on glucose homeostasis by enhancing insulin sensitivity

    PubMed Central

    Le, Liang; Jiang, Baoping; Wan, Wenting; Zhai, Wei; Xu, Lijia; Hu, Keping; Xiao, Peigen

    2016-01-01

    Dihydromyricetin (DMY), an important flavanone found in Ampelopsis grossedentata, possesses antioxidative properties that ameliorate skeletal muscle insulin sensitivity and exert a hepatoprotective effect. However, little is known about the effects of DMY in the context of high-fat diet (HFD)-induced hepatic insulin resistance. Male Sprague-Dawley(SD) rats were fed a HFD(60% fat) supplemented with DMY for 8 weeks. The administration of DMY to the rats with HFD-induced insulin resistance reduces hyperglycemia, plasma levels of insulin, and steatosis in the liver. Furthermore, DMY treatment modulated 24 metabolic pathways, including glucose metabolism, the TCA cycle. DMY significantly enhanced glucose uptake and improved the translocation of glucose transporter 1. The specificity of DMY promoted the phosphorylation of AMP-activated protein kinase (AMPK). In addition, the exposure of HepG2 cells to high glucose concentrations impaired the insulin-stimulated phosphorylation of Akt2 Ser474 and insulin receptor substrate-1 (IRS-1) Ser612, increased GSK-3β phosphorylation, and upregulated G6Pase and PEPCK expression. Collectively, DMY improved glucose-related metabolism while reducing lipid levels in the HFD-fed rats. These data suggest that DMY might be a useful drug for use in type 2 diabetes insulin resistance therapy and for the treatment of hepatic steatosis. PMID:27796348

  7. Proteasome inhibitors, including curcumin, improve pancreatic β-cell function and insulin sensitivity in diabetic mice

    PubMed Central

    Weisberg, S; Leibel, R; Tortoriello, D V

    2016-01-01

    Background: Type 2 diabetes stems from obesity-associated insulin resistance, and in the genetically susceptible, concomitant pancreatic β-cell failure can occur, which further exacerbates hyperglycemia. Recent work by our group and others has shown that the natural polyphenol curcumin attenuates the development of insulin resistance and hyperglycemia in mouse models of hyperinsulinemic or compensated type 2 diabetes. Although several potential downstream molecular targets of curcumin exist, it is now recognized to be a direct inhibitor of proteasome activity. We now show that curcumin also prevents β-cell failure in a mouse model of uncompensated obesity-related insulin resistance (Leprdb/db on the Kaliss background). Results: In this instance, dietary supplementation with curcumin prevented hyperglycemia, increased insulin production and lean body mass, and prolonged lifespan. In addition, we show that short-term in vivo treatment with low dosages of two molecularly distinct proteasome inhibitors celastrol and epoxomicin reverse hyperglycemia in mice with β-cell failure by increasing insulin production and insulin sensitivity. Conclusions: These studies suggest that proteasome inhibitors may prove useful for patients with diabetes by improving both β-cell function and relieving insulin resistance. PMID:27110686

  8. A Spectrum of Dynamic Insulin Sensitivity Test Protocols

    PubMed Central

    Docherty, Paul D; Chase, J Geoffrey; Morenga, Lisa Te; Lotz, Thomas F; Berkeley, Juliet E; Shaw, Geoffrey M; McAuley, Kirsten A; Mann, Jim I

    2011-01-01

    Background Numerous tests have been developed to estimate insulin sensitivity (SI). However, most of the established tests are either too expensive for widespread application or do not yield reliable results. The dynamic insulin sensitivity and secretion test (DISST) uses assays of glucose, insulin, and C-peptide from nine samples to quantify SI and endogenous insulin secretion (UN) at a comparatively low cost. The quick dynamic insulin sensitivity test has shown that the DISST SI values are robust to significant assay omissions. Methods Eight DISST-based variations of the nine-sample assay regimen are proposed to investigate the effects of assay omission within the DISST-based framework. SI and UN were identified using the fully-sampled DISST and data from 218 nine-sample tests undertaken in 74 female individuals with elevated diabetes risk. This same data was then used with appropriate assay omissions to identify SI and UN with the eight DISST-based assay variations. Results Median intraprocedure proportional difference between SI values from fully-sampled DISST and the DISST-based variants was in the range of -17.9 to 7.8%. Correlations were in the range of r = 0.71 to 0.92 with the highest correlations between variants with the greatest commonality with the nine-sample DISST. Metrics of UN correlated relatively well between tests when C-peptide was assayed (r = 0.72 to 1) but were sometimes not well estimated when samples were not assayed for C-peptide (r = -0.14 to 0.75). Conclusions The DISST-based spectrum offers a series of tests with very distinct compromises of information yield, accuracy, assay cost, and clinical intensity. Thus, the spectrum of tests has the potential to enable researchers to better allocate funds by selecting an optimal test configuration for their particular application. PMID:22226272

  9. Effects of Dietary n-3 Fatty Acids on Hepatic and Peripheral Insulin Sensitivity in Insulin-Resistant Humans

    PubMed Central

    Lalia, Antigoni Z.; Johnson, Matthew L.; Jensen, Michael D.; Hames, Kazanna C.; Port, John D.

    2015-01-01

    OBJECTIVE Dietary n-3 polyunsaturated fatty acids, including eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), prevent insulin resistance and stimulate mitochondrial biogenesis in rodents, but the findings of translational studies in humans are thus far ambiguous. The aim of this study was to evaluate the influence of EPA and DHA on insulin sensitivity, insulin secretion, and muscle mitochondrial function in insulin-resistant, nondiabetic humans using a robust study design and gold-standard measurements. RESEARCH DESIGN AND METHODS Thirty-one insulin-resistant adults received 3.9 g/day EPA+DHA or placebo for 6 months in a randomized double-blind study. Hyperinsulinemic-euglycemic clamp with somatostatin was used to assess hepatic and peripheral insulin sensitivity. Postprandial glucose disposal and insulin secretion were measured after a meal. Measurements were performed at baseline and after 6 months of treatment. Abdominal fat distribution was evaluated by MRI. Muscle oxidative capacity was measured in isolated mitochondria using high-resolution respirometry and noninvasively by magnetic resonance spectroscopy. RESULTS Compared with placebo, EPA+DHA did not alter peripheral insulin sensitivity, postprandial glucose disposal, or insulin secretion. Hepatic insulin sensitivity, determined from the suppression of endogenous glucose production by insulin, exhibited a small but significant improvement with EPA+DHA compared with placebo. Muscle mitochondrial function was unchanged by EPA+DHA or placebo. CONCLUSIONS This study demonstrates that dietary EPA+DHA does not improve peripheral glucose disposal, insulin secretion, or skeletal muscle mitochondrial function in insulin-resistant nondiabetic humans. There was a modest improvement in hepatic insulin sensitivity with EPA+DHA, but this was not associated with any improvements in clinically meaningful outcomes. PMID:25852206

  10. The Effect of Regular Exercise on Insulin Sensitivity in Type 2 Diabetes Mellitus: A Systematic Review and Meta-Analysis.

    PubMed

    Way, Kimberley L; Hackett, Daniel A; Baker, Michael K; Johnson, Nathan A

    2016-08-01

    The purpose of this study was to examine the effect of regular exercise training on insulin sensitivity in adults with type 2 diabetes mellitus (T2DM) using the pooled data available from randomised controlled trials. In addition, we sought to determine whether short-term periods of physical inactivity diminish the exercise-induced improvement in insulin sensitivity. Eligible trials included exercise interventions that involved ≥3 exercise sessions, and reported a dynamic measurement of insulin sensitivity. There was a significant pooled effect size (ES) for the effect of exercise on insulin sensitivity (ES, -0.588; 95% confidence interval [CI], -0.816 to -0.359; P<0.001). Of the 14 studies included for meta-analyses, nine studies reported the time of data collection from the last exercise bout. There was a significant improvement in insulin sensitivity in favour of exercise versus control between 48 and 72 hours after exercise (ES, -0.702; 95% CI, -1.392 to -0.012; P=0.046); and this persisted when insulin sensitivity was measured more than 72 hours after the last exercise session (ES, -0.890; 95% CI, -1.675 to -0.105; P=0.026). Regular exercise has a significant benefit on insulin sensitivity in adults with T2DM and this may persist beyond 72 hours after the last exercise session. PMID:27535644

  11. The Effect of Regular Exercise on Insulin Sensitivity in Type 2 Diabetes Mellitus: A Systematic Review and Meta-Analysis

    PubMed Central

    Hackett, Daniel A.; Baker, Michael K.

    2016-01-01

    The purpose of this study was to examine the effect of regular exercise training on insulin sensitivity in adults with type 2 diabetes mellitus (T2DM) using the pooled data available from randomised controlled trials. In addition, we sought to determine whether short-term periods of physical inactivity diminish the exercise-induced improvement in insulin sensitivity. Eligible trials included exercise interventions that involved ≥3 exercise sessions, and reported a dynamic measurement of insulin sensitivity. There was a significant pooled effect size (ES) for the effect of exercise on insulin sensitivity (ES, –0.588; 95% confidence interval [CI], –0.816 to –0.359; P<0.001). Of the 14 studies included for meta-analyses, nine studies reported the time of data collection from the last exercise bout. There was a significant improvement in insulin sensitivity in favour of exercise versus control between 48 and 72 hours after exercise (ES, –0.702; 95% CI, –1.392 to –0.012; P=0.046); and this persisted when insulin sensitivity was measured more than 72 hours after the last exercise session (ES, –0.890; 95% CI, –1.675 to –0.105; P=0.026). Regular exercise has a significant benefit on insulin sensitivity in adults with T2DM and this may persist beyond 72 hours after the last exercise session. PMID:27535644

  12. Heart Rate Variability, Insulin Resistance, and Insulin Sensitivity in Japanese Adults: The Toon Health Study

    PubMed Central

    Saito, Isao; Hitsumoto, Shinichi; Maruyama, Koutatsu; Nishida, Wataru; Eguchi, Eri; Kato, Tadahiro; Kawamura, Ryoichi; Takata, Yasunori; Onuma, Hiroshi; Osawa, Haruhiko; Tanigawa, Takeshi

    2015-01-01

    Background Although impaired cardiac autonomic function is associated with an increased risk of type 2 diabetes in Caucasians, evidence in Asian populations with a lower body mass index is limited. Methods Between 2009–2012, the Toon Health Study recruited 1899 individuals aged 30–79 years who were not taking medication for diabetes. A 75-g oral glucose tolerance test was used to diagnose type 2 diabetes, and fasting and 2-h-postload glucose and insulin concentrations were measured. We assessed the homeostasis model assessment index for insulin resistance (HOMA-IR) and Gutt’s insulin sensitivity index (ISI). Pulse was recorded for 5 min, and time-domain heart rate variability (HRV) indices were calculated: the standard deviation of normal-to-normal intervals (SDNN) and the root mean square of successive difference (RMSSD). Power spectral analysis provided frequency domain measures of HRV: high frequency (HF) power, low frequency (LF) power, and the LF:HF ratio. Results Multivariate-adjusted logistic regression models showed decreased SDNN, RMSSD, and HF, and increased LF:HF ratio were associated significantly with increased HOMA-IR and decreased ISI. When stratified by overweight status, the association of RMSSD, HF, and LF:HF ratio with decreased ISI was also apparent in non-overweight individuals. The interaction between LF:HF ratio and decreased ISI in overweight individuals was significant, with the odds ratio for decreased ISI in the highest quartile of LF:HF ratio in non-overweight individuals being 2.09 (95% confidence interval, 1.41–3.10). Conclusions Reduced HRV was associated with insulin resistance and lower insulin sensitivity. Decreased ISI was linked with parasympathetic dysfunction, primarily in non-overweight individuals. PMID:26277879

  13. The Importance of Palmitoleic Acid to Adipocyte Insulin Resistance and Whole-Body Insulin Sensitivity in Type 1 Diabetes

    PubMed Central

    Howard, David; Schauer, Irene E.; Maahs, David M.; Snell-Bergeon, Janet K.; Clement, Timothy W.; Eckel, Robert H.; Perreault, Leigh; Rewers, Marian

    2013-01-01

    Context: Type 1 diabetes is an insulin-resistant state, but it is less clear which tissues are affected. Our previous report implicated skeletal muscle and liver insulin resistance in people with type 1 diabetes, but this occurred independently of generalized, visceral, or ectopic fat. Objective: The aim of the study was to measure adipose tissue insulin sensitivity and plasma triglyceride composition in individuals with type 1 diabetes after overnight insulin infusion to lower fasting glucose. Design, Patients, and Methods: Fifty subjects (25 individuals with type 1 diabetes and 25 controls without) were studied. After 3 d of dietary control and overnight insulin infusion, we performed a three-stage hyperinsulinemic/euglycemic clamp infusing insulin at 4, 8, and 40 mU/m2 · min. Infusions of [1,1,2,3,3-2H2]glycerol and [1-13C]palmitate were used to quantify lipid metabolism. Results: Basal glycerol and palmitate rates of appearance were similar between groups, decreased more in control subjects during the first two stages of the clamp, and similarly suppressed during the highest insulin dose. The concentration of insulin required for 50% inhibition of lipolysis was twice as high in individuals with type 1 diabetes. Plasma triglyceride saturation was similar between groups, but palmitoleic acid in plasma triglyceride was inversely related to adipocyte insulin sensitivity. Unesterified palmitoleic acid in plasma was positively related to insulin sensitivity in controls, but not in individuals with type 1 diabetes. Conclusions: Adipose tissue insulin resistance is a significant feature of type 1 diabetes. Palmitoleic acid is not related to insulin sensitivity in type 1 diabetes, as it was in controls, suggesting a novel mechanism for insulin resistance in this population. PMID:23150678

  14. Fructose, but not glucose, impairs insulin signaling in the three major insulin-sensitive tissues.

    PubMed

    Baena, Miguel; Sangüesa, Gemma; Dávalos, Alberto; Latasa, María-Jesús; Sala-Vila, Aleix; Sánchez, Rosa María; Roglans, Núria; Laguna, Juan Carlos; Alegret, Marta

    2016-05-19

    Human studies support the relationship between high intake of fructose-sweetened beverages and type 2 diabetes, but there is a debate on whether this effect is fructose-specific or it is merely associated to an excessive caloric intake. Here we investigate the effects of 2 months' supplementation to female rats of equicaloric 10% w/v fructose or glucose solutions on insulin sensitivity in target tissues. Fructose supplementation caused hepatic deposition of triglycerides and changed the fatty acid profile of this fraction, with an increase in monounsaturated and a decrease in polyunsaturated species, but did not cause inflammation and oxidative stress. Fructose but not glucose-supplemented rats displayed an abnormal glucose tolerance test, and did not show increased phosphorylation of V-akt murine thymoma viral oncogene homolog-2 (Akt) in white adipose tissue and liver after insulin administration. In skeletal muscle, phosphorylation of Akt and of Akt substrate of 160 kDA (AS160) was not impaired but the expression of the glucose transporter type 4 (GLUT4) in the plasma membrane was reduced only in fructose-fed rats. In conclusion, fructose but not glucose supplementation causes fatty liver without inflammation and oxidative stress and impairs insulin signaling in the three major insulin-responsive tissues independently from the increase in energy intake.

  15. Fructose, but not glucose, impairs insulin signaling in the three major insulin-sensitive tissues.

    PubMed

    Baena, Miguel; Sangüesa, Gemma; Dávalos, Alberto; Latasa, María-Jesús; Sala-Vila, Aleix; Sánchez, Rosa María; Roglans, Núria; Laguna, Juan Carlos; Alegret, Marta

    2016-01-01

    Human studies support the relationship between high intake of fructose-sweetened beverages and type 2 diabetes, but there is a debate on whether this effect is fructose-specific or it is merely associated to an excessive caloric intake. Here we investigate the effects of 2 months' supplementation to female rats of equicaloric 10% w/v fructose or glucose solutions on insulin sensitivity in target tissues. Fructose supplementation caused hepatic deposition of triglycerides and changed the fatty acid profile of this fraction, with an increase in monounsaturated and a decrease in polyunsaturated species, but did not cause inflammation and oxidative stress. Fructose but not glucose-supplemented rats displayed an abnormal glucose tolerance test, and did not show increased phosphorylation of V-akt murine thymoma viral oncogene homolog-2 (Akt) in white adipose tissue and liver after insulin administration. In skeletal muscle, phosphorylation of Akt and of Akt substrate of 160 kDA (AS160) was not impaired but the expression of the glucose transporter type 4 (GLUT4) in the plasma membrane was reduced only in fructose-fed rats. In conclusion, fructose but not glucose supplementation causes fatty liver without inflammation and oxidative stress and impairs insulin signaling in the three major insulin-responsive tissues independently from the increase in energy intake. PMID:27194405

  16. Fructose, but not glucose, impairs insulin signaling in the three major insulin-sensitive tissues

    PubMed Central

    Baena, Miguel; Sangüesa, Gemma; Dávalos, Alberto; Latasa, María-Jesús; Sala-Vila, Aleix; Sánchez, Rosa María; Roglans, Núria; Laguna, Juan Carlos; Alegret, Marta

    2016-01-01

    Human studies support the relationship between high intake of fructose-sweetened beverages and type 2 diabetes, but there is a debate on whether this effect is fructose-specific or it is merely associated to an excessive caloric intake. Here we investigate the effects of 2 months’ supplementation to female rats of equicaloric 10% w/v fructose or glucose solutions on insulin sensitivity in target tissues. Fructose supplementation caused hepatic deposition of triglycerides and changed the fatty acid profile of this fraction, with an increase in monounsaturated and a decrease in polyunsaturated species, but did not cause inflammation and oxidative stress. Fructose but not glucose-supplemented rats displayed an abnormal glucose tolerance test, and did not show increased phosphorylation of V-akt murine thymoma viral oncogene homolog-2 (Akt) in white adipose tissue and liver after insulin administration. In skeletal muscle, phosphorylation of Akt and of Akt substrate of 160 kDA (AS160) was not impaired but the expression of the glucose transporter type 4 (GLUT4) in the plasma membrane was reduced only in fructose-fed rats. In conclusion, fructose but not glucose supplementation causes fatty liver without inflammation and oxidative stress and impairs insulin signaling in the three major insulin-responsive tissues independently from the increase in energy intake. PMID:27194405

  17. Measuring beta-cell function relative to insulin sensitivity in youth: Does the hyperglycemic clamp suffice?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To compare beta-cell function relative to insulin sensitivity, disposition index (DI), calculated from two clamps (2cDI, insulin sensitivity from the hyperinsulinemic-euglycemic clamp and first-phase insulin from the hyperglycemic clamp) with the DI calculated from the hyperglycemic clamp alone (hcD...

  18. Increased Insulin Sensitivity and Distorted Mitochondrial Adaptations during Muscle Unloading

    PubMed Central

    Qi, Zhengtang; Zhang, Yuan; Guo, Wei; Ji, Liu; Ding, Shuzhe

    2012-01-01

    We aimed to further investigate mitochondrial adaptations to muscle disuse and the consequent metabolic disorders. Male rats were submitted to hindlimb unloading (HU) for three weeks. Interestingly, HU increased insulin sensitivity index (ISI) and decreased blood level of triglyceride and insulin. In skeletal muscle, HU decreased expression of pyruvate dehydrogenase kinase 4 (PDK4) and its protein level in mitochondria. HU decreased mtDNA content and mitochondrial biogenesis biomarkers. Dynamin-related protein (Drp1) in mitochondria and Mfn2 mRNA level were decreased significantly by HU. Our findings provide more extensive insight into mitochondrial adaptations to muscle disuse, involving the shift of fuel utilization towards glucose, the decreased mitochondrial biogenesis and the distorted mitochondrial dynamics. PMID:23443131

  19. Insulin sensitivity of muscle protein metabolism is altered in patients with chronic kidney disease and metabolic acidosis

    PubMed Central

    Garibotto, Giacomo; Sofia, Antonella; Russo, Rodolfo; Paoletti, Ernesto; Bonanni, Alice; Parodi, Emanuele L; Viazzi, Francesca; Verzola, Daniela

    2015-01-01

    An emergent hypothesis is that a resistance to the anabolic drive by insulin may contribute to loss of strength and muscle mass in patients with chronic kidney disease (CKD). We tested whether insulin resistance extends to protein metabolism using the forearm perfusion method with arterial insulin infusion in 7 patients with CKD and metabolic acidosis (bicarbonate 19 mmol/l) and 7 control individuals. Forearm glucose balance and protein turnover (2H-phenylalanine kinetics) were measured basally and in response to insulin infused at different rates for 2 h to increase local forearm plasma insulin concentration by approximately 20 and 50 μU/ml. In response to insulin, forearm glucose uptake was significantly increased to a lesser extent (−40%) in patients with CKD than controls. In addition, whereas in the controls net muscle protein balance and protein degradation were decreased by both insulin infusion rates, in patients with CKD net protein balance and protein degradation were sensitive to the high (0.035 mU/kg per min) but not the low (0.01 mU/kg per min) insulin infusion. Besides blunting muscle glucose uptake, CKD and acidosis interfere with the normal suppression of protein degradation in response to a moderate rise in plasma insulin. Thus, alteration of protein metabolism by insulin may lead to changes in body tissue composition which may become clinically evident in conditions characterized by low insulinemia. PMID:26308671

  20. Intralipid Decreases Apolipoprotein M Levels and Insulin Sensitivity in Rats

    PubMed Central

    Zheng, Lu; Feng, Yuehua; Shi, Yuanping; Zhang, Jun; Mu, Qinfeng; Qin, Li; Berggren-Söderlund, Maria; Nilsson-Ehle, Peter; Zhang, Xiaoying; Luo, Guanghua; Xu, Ning

    2014-01-01

    Background Apolipoprotein M (ApoM) is a constituent of high-density lipoproteins (HDL). It plays a crucial role in HDL-mediated reverse cholesterol transport. Insulin resistance is associated with decreased ApoM levels. Aims To assess the effects of increased free fatty acids (FFAs) levels after short-term Intralipid infusion on insulin sensitivity and hepatic ApoM gene expression. Methods Adult male Sprague-Dawley (SD) rats infused with 20% Intralipid solution for 6 h. Glucose infusion rates (GIR) were determined by hyperinsulinemic-euglycemic clamp during Intralipid infusion and plasma FFA levels were measured by colorimetry. Rats were sacrificed after Intralipid treatment and livers were sampled. Human embryonic kidney 293T cells were transfected with a lentivirus mediated human apoM overexpression system. Goto-Kakizaki (GK) rats were injected with the lentiviral vector and insulin tolerance was assessed. Gene expression was assessed by real-time RT-PCR and PCR array. Results Intralipid increased FFAs by 17.6 folds and GIR was decreased by 27.1% compared to the control group. ApoM gene expression was decreased by 40.4% after Intralipid infusion. PPARβ/δ expression was not changed by Intralipid. Whereas the mRNA levels of Acaca, Acox1, Akt1, V-raf murine sarcoma 3611 viral oncogene homolog, G6pc, Irs2, Ldlr, Map2k1, pyruvate kinase and RBC were significantly increased in rat liver after Intralipid infusion. The Mitogen-activated protein kinase 8 (MAPK8) was significantly down-regulated in 293T cells overexpressing ApoM. Overexpression of human ApoM in GK rats could enhance the glucose-lowering effect of exogenous insulin. Conclusion These results suggest that Intralipid could decrease hepatic ApoM levels. ApoM overexpression may have a potential role in improving insulin resistance in vivo and modulating apoM expression might be a future therapeutic strategy against insulin resistance in type 2 diabetes. PMID:25144649

  1. Chromium propionate in broilers: effect on insulin sensitivity.

    PubMed

    Brooks, M A; Grimes, J L; Lloyd, K E; Krafka, K; Lamptey, A; Spears, J W

    2016-05-01

    The objective of this study was to evaluate the effects of dietary chromium (Cr), as chromium propionate, on measures of insulin sensitivity. Liver and muscle glycogen, and plasma glucose and non-esterified fatty acid (NEFA) concentrations were used as indicators of insulin sensitivity. In total, 288 newly hatched male Ross broilers were divided into 4 dietary treatments consisting of 0 (control diet analyzed 0.43 to 0.45 mg Cr/kg), 0.2, 0.4, or 0.6 mg supplemental Cr/kg diet, resulting in 4 treatments with 9 replicate pens per treatment containing eight birds per pen. At d 21, 2 birds per cage were removed based on the greatest deviation from pen mean BW, resulting in each pen containing 6 birds for the final analyses. Final BW were taken on d 40, and on d 42 two birds from each pen were sampled for plasma NEFA, glucose, and muscle and liver glycogen determination at the initiation and termination of a 22 h fast. The remaining 2 fasted birds were sampled after a 30 min refeeding period. No differences were observed in feed intake, BW gain, or feed efficiency on d 21 or d 40. Liver glycogen tended (P=0.10) to be greater in Cr-supplemented chicks in the fed state, and muscle glycogen concentrations tended (P=0.07) to be greater in Cr-supplemented chicks compared with controls following fasting and refeeding. Plasma glucose concentrations were not affected by dietary Cr in the fed, fasted, or refed state. Plasma NEFA levels were not affected by treatment in fed or fasted birds. However, plasma NEFA concentrations were lower (P<0.01) in chicks supplemented with Cr than in controls following fasting and refeeding, suggesting that Cr increased insulin sensitivity. No differences were detected among birds supplemented with 0.2 or 0.4 mg Cr/kg, and among those receiving 0.4 or 0.6 mg Cr/kg. Results of this study indicate that Cr propionate supplementation of a control diet containing 0.43 to 0.45 mg Cr/kg enhanced insulin sensitivity. PMID:26933236

  2. Resistance training improves indices of muscle insulin sensitivity and β-cell function in overweight/obese, sedentary young men

    PubMed Central

    Croymans, Daniel M.; Paparisto, Ergit; Lee, Mary M.; Brandt, Nina; Le, Brian K.; Lohan, Derek; Lee, Cathy C.

    2013-01-01

    We examined the effects of RT on oral glucose tolerance test (OGTT)-derived indices of muscle insulin sensitivity, hepatic insulin resistance, β-cell function, and skeletal muscle proteins related to glucose transport in overweight/obese, sedentary young men. Twenty-eight participants [median body mass index (BMI) 30.9 kg/m2; age 22 yr] completed 12 wk of RT (3 sessions/wk) and were assessed for changes in OGTT-derived indices, resting metabolic rate, body composition, serum adipokines, and skeletal muscle protein content [hexokinase 2 (HK2), glucose transporter type 4 (GLUT4), RAC-β serine/threonine-protein kinase (AKT2), glycogen synthase kinase 3β, and insulin receptor substrate 1]. Individualized responses to RT were also evaluated. RT significantly improved insulin and glucose area under the curve (both P < 0.03). With the use of OGTT indices of insulin action, we noted improved muscle insulin sensitivity index (mISI; P = 0.03) and oral disposition index (P = 0.03). BMI, lean body mass (LBM), and relative strength also increased (all P < 0.03), as did skeletal muscle protein content of HK2, GLUT4, and AKT2 (26–33%; all P < 0.02). Hepatic insulin resistance index, adiponectin, leptin, and total amylin did not change. Further analysis demonstrated the presence of highly individualized responsiveness to RT for glucose tolerance and other outcomes. RT improved oral indices of muscle insulin sensitivity and β-cell function but not hepatic insulin resistance in overweight/obese young men. In addition to the increase in LBM, the improvements in insulin action may be due, in part, to increases in key insulin signaling proteins. PMID:23970530

  3. Fucosylated chondroitin sulfate from sea cucumber improves insulin sensitivity via activation of PI3K/PKB pathway.

    PubMed

    Hu, Shiwei; Chang, Yaoguang; He, Min; Wang, Jingfeng; Wang, Yuming; Xue, Changhu

    2014-07-01

    This study was to investigate the effects of fucosylated chondroitin sulfate (CHS) from sea cucumber on insulin sensitivity in skeletal muscle of type 2 diabetic mice induced by a high-fat high-sucrose diet (HFSD). CHS supplementation for 19 wk significantly improved insulin sensitivity by 20%, and reduced blood glucose and insulin levels. Western blotting assay showed that CHS significantly increased insulin-stimulated glucose transporter 4 (GLUT4) translocation to 1.7-fold, phosphorylation of phosphoinositide 3-kinase (PI3K) at p85 to 5.0-fold, protein kinase B (PKB) at Ser473 to 1.5-fold, and Thr308 to 1.6-fold in skeletal muscle. However, PI3K, PKB, and GLUT4 total proteins expression were unchangeable. In addition, qRT-PCR analysis proved that the insulin signaling was activated by CHS treatment, showing the increased mRNA expressions of glucose uptake-related key genes. It indicated that CHS improved insulin sensitivity by activation of PI3K/PKB signaling in skeletal muscle of type 2 diabetic mice. Identification of potential mechanism by which CHS increased insulin sensitivity might provide a new functional food or pharmaceutical application of sea cucumber.

  4. A single night of partial sleep loss impairs fasting insulin sensitivity but does not affect cephalic phase insulin release in young men.

    PubMed

    Cedernaes, Jonathan; Lampola, Lauri; Axelsson, Emil K; Liethof, Lisanne; Hassanzadeh, Sara; Yeganeh, Adine; Broman, Jan-Erik; Schiöth, Helgi B; Benedict, Christian

    2016-02-01

    The present study sought to investigate whether a single night of partial sleep deprivation (PSD) would alter fasting insulin sensitivity and cephalic phase insulin release (CPIR) in humans. A rise in circulating insulin in response to food-related sensory stimulation may prepare tissues to break down ingested glucose, e.g. by stimulating rate-limiting glycolytic enzymes. In addition, given insulin's anorexigenic properties once it reaches the brain, the CPIR may serve as an early peripheral satiety signal. Against this background, in the present study 16 men participated in two separate sessions: one night of PSD (4.25 h sleep) versus one night of full sleep (8.5 h sleep). In the morning following each sleep condition, subjects' oral cavities were rinsed with a 1-molar sucrose solution for 45 s, preceded and followed by blood sampling for repeated determination of plasma glucose and serum insulin concentrations (-3, +3, +5, +7, +10 and +20 min). Our main result was that PSD, compared with full sleep, was associated with significantly higher peripheral insulin resistance, as indicated by a higher fasting homeostasis model assessment of insulin resistance index (+16%, P = 0.025). In contrast, no CPIR was observed in any of the two sleep conditions. Our findings indicate that a single night of PSD is already sufficient to impair fasting insulin sensitivity in healthy men. In contrast, brief oral cavity rinsing with sucrose solution did not change serum insulin concentrations, suggesting that a blunted CPIR is an unlikely mechanism through which acute sleep loss causes metabolic perturbations during morning hours in humans. PMID:26361380

  5. Insulin sensitizers prevent fine particulate matter-induced vascular insulin resistance and changes in endothelial progenitor cell homeostasis.

    PubMed

    Haberzettl, Petra; McCracken, James P; Bhatnagar, Aruni; Conklin, Daniel J

    2016-06-01

    Exposure to fine particular matter (PM2.5) increases the risk of developing cardiovascular disease and Type 2 diabetes. Because blood vessels are sensitive targets of air pollutant exposure, we examined the effects of concentrated ambient PM2.5 (CAP) on vascular insulin sensitivity and circulating levels of endothelial progenitor cells (EPCs), which reflect cardiovascular health. We found that CAP exposure for 9 days decreased insulin-stimulated Akt phosphorylation in the aorta of mice maintained on control diet. This change was accompanied by the induction of IL-1β and increases in the abundance of cleaved IL-18 and p10 subunit of Casp-1, consistent with the activation of the inflammasome pathway. CAP exposure also suppressed circulating levels of EPCs (Flk-1(+)/Sca-1(+) cells), while enhancing the bone marrow abundance of these cells. Although similar changes in vascular insulin signaling and EPC levels were observed in mice fed high-fat diet, CAP exposure did not exacerbate diet-induced changes in vascular insulin resistance or EPC homeostasis. Treatment with an insulin sensitizer, metformin or rosiglitazone, prevented CAP-induced vascular insulin resistance and NF-κB and inflammasome activation and restored peripheral blood and bone marrow EPC levels. These findings suggest that PM2.5 exposure induces diet-independent vascular insulin resistance and inflammation and prevents EPC mobilization, and that this EPC mobilization defect could be mediated by vascular insulin resistance. Impaired vascular insulin sensitivity may be an important mechanism underlying PM2.5-induced vascular injury, and pharmacological sensitization to insulin action could potentially prevent deficits in vascular repair and mitigate vascular inflammation due to exposure to elevated levels of ambient air pollution.

  6. A Novel Insulin Resistance Index to Monitor Changes in Insulin Sensitivity and Glucose Tolerance: the ACT NOW Study

    PubMed Central

    Tripathy, Devjit; Cobb, Jeff E.; Gall, Walter; Adam, Klaus-Peter; George, Tabitha; Schwenke, Dawn C.; Banerji, MaryAnn; Bray, George A.; Buchanan, Thomas A.; Clement, Stephen C.; Henry, Robert R.; Kitabchi, Abbas E.; Mudaliar, Sunder; Ratner, Robert E.; Stentz, Frankie B.; Reaven, Peter D.; Musi, Nicolas; Ferrannini, Ele

    2015-01-01

    Objective: The objective was to test the clinical utility of Quantose MQ to monitor changes in insulin sensitivity after pioglitazone therapy in prediabetic subjects. Quantose MQ is derived from fasting measurements of insulin, α-hydroxybutyrate, linoleoyl-glycerophosphocholine, and oleate, three nonglucose metabolites shown to correlate with insulin-stimulated glucose disposal. Research Design and Methods: Participants were 428 of the total of 602 ACT NOW impaired glucose tolerance (IGT) subjects randomized to pioglitazone (45 mg/d) or placebo and followed for 2.4 years. At baseline and study end, fasting plasma metabolites required for determination of Quantose, glycated hemoglobin, and oral glucose tolerance test with frequent plasma insulin and glucose measurements to calculate the Matsuda index of insulin sensitivity were obtained. Results: Pioglitazone treatment lowered IGT conversion to diabetes (hazard ratio = 0.25; 95% confidence interval = 0.13–0.50; P < .0001). Although glycated hemoglobin did not track with insulin sensitivity, Quantose MQ increased in pioglitazone-treated subjects (by 1.45 [3.45] mg·min−1·kgwbm−1) (median [interquartile range]) (P < .001 vs placebo), as did the Matsuda index (by 3.05 [4.77] units; P < .0001). Quantose MQ correlated with the Matsuda index at baseline and change in the Matsuda index from baseline (rho, 0.85 and 0.79, respectively; P < .0001) and was progressively higher across closeout glucose tolerance status (diabetes, IGT, normal glucose tolerance). In logistic models including only anthropometric and fasting measurements, Quantose MQ outperformed both Matsuda and fasting insulin in predicting incident diabetes. Conclusions: In IGT subjects, Quantose MQ parallels changes in insulin sensitivity and glucose tolerance with pioglitazone therapy. Due to its strong correlation with improved insulin sensitivity and its ease of use, Quantose MQ may serve as a useful clinical test to identify and monitor therapy in

  7. Insulin sensitizers prevent fine particulate matter-induced vascular insulin resistance and changes in endothelial progenitor cell homeostasis.

    PubMed

    Haberzettl, Petra; McCracken, James P; Bhatnagar, Aruni; Conklin, Daniel J

    2016-06-01

    Exposure to fine particular matter (PM2.5) increases the risk of developing cardiovascular disease and Type 2 diabetes. Because blood vessels are sensitive targets of air pollutant exposure, we examined the effects of concentrated ambient PM2.5 (CAP) on vascular insulin sensitivity and circulating levels of endothelial progenitor cells (EPCs), which reflect cardiovascular health. We found that CAP exposure for 9 days decreased insulin-stimulated Akt phosphorylation in the aorta of mice maintained on control diet. This change was accompanied by the induction of IL-1β and increases in the abundance of cleaved IL-18 and p10 subunit of Casp-1, consistent with the activation of the inflammasome pathway. CAP exposure also suppressed circulating levels of EPCs (Flk-1(+)/Sca-1(+) cells), while enhancing the bone marrow abundance of these cells. Although similar changes in vascular insulin signaling and EPC levels were observed in mice fed high-fat diet, CAP exposure did not exacerbate diet-induced changes in vascular insulin resistance or EPC homeostasis. Treatment with an insulin sensitizer, metformin or rosiglitazone, prevented CAP-induced vascular insulin resistance and NF-κB and inflammasome activation and restored peripheral blood and bone marrow EPC levels. These findings suggest that PM2.5 exposure induces diet-independent vascular insulin resistance and inflammation and prevents EPC mobilization, and that this EPC mobilization defect could be mediated by vascular insulin resistance. Impaired vascular insulin sensitivity may be an important mechanism underlying PM2.5-induced vascular injury, and pharmacological sensitization to insulin action could potentially prevent deficits in vascular repair and mitigate vascular inflammation due to exposure to elevated levels of ambient air pollution. PMID:27016579

  8. Validation of different measures of insulin sensitivity of glucose metabolism in dairy cows using the hyperinsulinemic euglycemic clamp test as the gold standard.

    PubMed

    De Koster, J; Hostens, M; Hermans, K; Van den Broeck, W; Opsomer, G

    2016-10-01

    The aim of the present research was to compare different measures of insulin sensitivity in dairy cows at the end of the dry period. To do so, 10 clinically healthy dairy cows with a varying body condition score were selected. By performing hyperinsulinemic euglycemic clamp (HEC) tests, we previously demonstrated a negative association between the insulin sensitivity and insulin responsiveness of glucose metabolism and the body condition score of these animals. In the same animals, other measures of insulin sensitivity were determined and the correlation with the HEC test, which is considered as the gold standard, was calculated. Measures derived from the intravenous glucose tolerance test (IVGTT) are based on the disappearance of glucose after an intravenous glucose bolus. Glucose concentrations during the IVGTT were used to calculate the area under the curve of glucose and the clearance rate of glucose. In addition, glucose and insulin data from the IVGTT were fitted in the minimal model to derive the insulin sensitivity parameter, Si. Based on blood samples taken before the start of the IVGTT, basal concentrations of glucose, insulin, NEFA, and β-hydroxybutyrate were determined and used to calculate surrogate indices for insulin sensitivity, such as the homeostasis model of insulin resistance, the quantitative insulin sensitivity check index, the revised quantitative insulin sensitivity check index and the revised quantitative insulin sensitivity check index including β-hydroxybutyrate. Correlation analysis revealed no association between the results obtained by the HEC test and any of the surrogate indices for insulin sensitivity. For the measures derived from the IVGTT, the area under the curve for the first 60 min of the test and the Si derived from the minimal model demonstrated good correlation with the gold standard. PMID:27565238

  9. Validation of different measures of insulin sensitivity of glucose metabolism in dairy cows using the hyperinsulinemic euglycemic clamp test as the gold standard.

    PubMed

    De Koster, J; Hostens, M; Hermans, K; Van den Broeck, W; Opsomer, G

    2016-10-01

    The aim of the present research was to compare different measures of insulin sensitivity in dairy cows at the end of the dry period. To do so, 10 clinically healthy dairy cows with a varying body condition score were selected. By performing hyperinsulinemic euglycemic clamp (HEC) tests, we previously demonstrated a negative association between the insulin sensitivity and insulin responsiveness of glucose metabolism and the body condition score of these animals. In the same animals, other measures of insulin sensitivity were determined and the correlation with the HEC test, which is considered as the gold standard, was calculated. Measures derived from the intravenous glucose tolerance test (IVGTT) are based on the disappearance of glucose after an intravenous glucose bolus. Glucose concentrations during the IVGTT were used to calculate the area under the curve of glucose and the clearance rate of glucose. In addition, glucose and insulin data from the IVGTT were fitted in the minimal model to derive the insulin sensitivity parameter, Si. Based on blood samples taken before the start of the IVGTT, basal concentrations of glucose, insulin, NEFA, and β-hydroxybutyrate were determined and used to calculate surrogate indices for insulin sensitivity, such as the homeostasis model of insulin resistance, the quantitative insulin sensitivity check index, the revised quantitative insulin sensitivity check index and the revised quantitative insulin sensitivity check index including β-hydroxybutyrate. Correlation analysis revealed no association between the results obtained by the HEC test and any of the surrogate indices for insulin sensitivity. For the measures derived from the IVGTT, the area under the curve for the first 60 min of the test and the Si derived from the minimal model demonstrated good correlation with the gold standard.

  10. Dietary composition and its associations with insulin sensitivity and insulin secretion in youth.

    PubMed

    Henderson, Mélanie; Benedetti, Andrea; Gray-Donald, Katherine

    2014-02-01

    The objectives of the present study were to examine the associations between macronutrient intake and insulin sensitivity (IS) and insulin secretion (ISct), taking into consideration moderate-to-vigorous physical activity (MVPA), fitness and sedentary behaviour. Caucasian youth (n 630) aged 8-10 years at recruitment, with at least one obese biological parent, were studied (QUebec Adipose and Lifestyle InvesTigation in Youth cohort). IS was measured using the homeostasis model assessment (HOMA) of insulin resistance and Matsuda IS index. ISct was measured using HOMA2%-β, the ratio of the AUC of insulin:glucose over the first 30 min (AUC I/G(t= 30 min)) of the oral glucose tolerance test and AUC I/G(t= 120 min) over 2 h. Fitness was measured using VO₂(peak), percentage of fat mass by dual-energy X-ray absorptiometry, and 7 d MVPA using accelerometry; screen time (ST) by average daily hours of self-reported television, video game or computer use. Dietary composition was measured using three non-consecutive dietary recalls. Non-parametric smoothing splines were used to model non-linear associations; all models were adjusted for age, sex, season, pubertal stage, MVPA, fitness, ST and adiposity. The percentage of total daily energy from dietary protein, fat, saturated fat and carbohydrate and the consumption of dietary vitamin D, sugar-sweetened beverages, fibre and portions of fruits and vegetables were taken into consideration. No dietary component was associated with any measure of IS after adjusting for MVPA, fitness, ST and adiposity. For every 1% increase in daily protein intake (%), AUC I/G(t= 30 min) decreased by 1·1% (P= 0·033). Otherwise, dietary composition was not associated with ISct. While long-term excess of energy intake has been shown to lead to overweight and obesity, dietary macronutrient composition is not independently correlated with IS or ISct in youth.

  11. Insulin-like growth factor I stimulates lipid oxidation, reduces protein oxidation, and enhances insulin sensitivity in humans.

    PubMed Central

    Hussain, M A; Schmitz, O; Mengel, A; Keller, A; Christiansen, J S; Zapf, J; Froesch, E R

    1993-01-01

    To elucidate the effects of insulin-like growth factor I (IGF-I) on fuel oxidation and insulin sensitivity, eight healthy subjects were treated with saline and recombinant human (IGF-I (10 micrograms/kg.h) during 5 d in a crossover, randomized fashion, while receiving an isocaloric diet (30 kcal/kg.d) throughout the study period. On the third and fourth treatment days, respectively, an L-arginine stimulation test and an intravenous glucose tolerance test were performed. A euglycemic, hyperinsulinemic clamp combined with indirect calorimetry and a glucose tracer infusion were performed on the fifth treatment day. IGF-I treatment led to reduced fasting and stimulated (glucose and/or L-arginine) insulin and growth hormone secretion. Basal and stimulated glucagon secretion remained unchanged. Intravenous glucose tolerance was unaltered despite reduced insulin secretion. Resting energy expenditure and lipid oxidation were both elevated, while protein oxidation was reduced, and glucose turnover rates were unaltered on the fifth treatment day with IGF-I as compared to the control period. Enhanced lipolysis was reflected by elevated circulating free fatty acids. Moreover, insulin-stimulated oxidative and nonoxidative glucose disposal (i.e., insulin sensitivity) were enhanced during IGF-I treatment. Thus, IGF-I treatment leads to marked changes in lipid and protein oxidation, whereas, at the dose used, carbohydrate metabolism remains unaltered in the face of reduced insulin levels and enhanced insulin sensitivity. Images PMID:8227340

  12. Changes of insulin sensitivity and secretion after bariatric/metabolic surgery.

    PubMed

    Mingrone, Geltrude; Cummings, David E

    2016-07-01

    Type 2 diabetes (T2D) is classically characterized by failure of pancreatic β-cell function and insulin secretion to compensate for a prevailing level of insulin resistance, typically associated with visceral obesity. Although this is usually a chronic, progressive disease in which delay of end-organ complications is the primary therapeutic goal for medical and behavioral approaches, several types of bariatric surgery, especially those that include intestinal bypass components, exert powerful antidiabetes effects to yield remission of T2D in most cases. It has become increasingly clear that in addition to the known benefits of acute caloric restriction and chronic weight loss to ameliorate T2D, bariatric/metabolic operations also engage a variety of weight-independent mechanisms to improve glucose homeostasis, enhancing insulin sensitivity and secretion to varying degrees depending on the specific operation. In this paper, we review the effects of Roux-en-Y gastric bypass, biliopancreatic diversion, and vertical sleeve gastrectomy on the primary determinants of glucose homeostasis: insulin sensitivity, insulin secretion, and, to the lesser extent that it is known, insulin-independent glucose disposal. A full understanding of these effects should help optimize surgical and device-based designs to provide maximal antidiabetes impact, and it holds the promise to identify targets for possible novel diabetes pharmacotherapeutics. These insights also contribute to the conceptual rationale for use of bariatric operations as "metabolic surgery," employed primarily to treat T2D, including among patients not obese enough to qualify for surgery based on traditional criteria related to high body mass index. PMID:27568471

  13. Palmitate stimulates glucose transport in rat adipocytes by a mechanism involving translocation of the insulin sensitive glucose transporter (GLUT4)

    NASA Technical Reports Server (NTRS)

    Hardy, R. W.; Ladenson, J. H.; Henriksen, E. J.; Holloszy, J. O.; McDonald, J. M.

    1991-01-01

    In rat adipocytes, palmitate: a) increases basal 2-deoxyglucose transport 129 +/- 27% (p less than 0.02), b) decreases the insulin sensitive glucose transporter (GLUT4) in low density microsomes and increases GLUT4 in plasma membranes and c) increases the activity of the insulin receptor tyrosine kinase. Palmitate-stimulated glucose transport is not additive with the effect of insulin and is not inhibited by the protein kinase C inhibitors staurosporine and sphingosine. In rat muscle, palmitate: a) does not affect basal glucose transport in either the soleus or epitrochlearis and b) inhibits insulin-stimulated glucose transport by 28% (p less than 0.005) in soleus but not in epitrochlearis muscle. These studies demonstrate a potentially important differential role for fatty acids in the regulation of glucose transport in different insulin target tissues.

  14. Modulated insulin permeation across a glucose-sensitive polymeric composite membrane.

    PubMed

    Zhang, Kai; Wu, Xiao Yu

    2002-04-23

    A glucose-sensitive polymeric composite membrane was prepared based on our previously developed stimuli-responsive membrane system. Membranes were cast from a mixture of glucose oxidase (GOD), catalase, and poly(N-isopropylacrylamide-co-methacrylic acid) (poly(NIPAm/MAA)) nanoparticles dispersed in a solution of a hydrophobic polymer. High efficiency of enzyme immobilization was achieved with undetectable leakage. The bioactivity of the immobilized GOD, as measured by pH change of glucose solutions, was found to be equivalent to approximately 80% of that of the free GOD. The addition of catalase markedly increased the oxidation rate of glucose. However, an optimal unit ratio of GOD to catalase and optimal enzyme loading were observed. The rate of insulin permeation through the membrane was modulated by glucose concentration due to shrinking or swelling of the embedded pH-sensitive nanoparticles. The response of insulin permeability to the change in the glucose concentration could be detected within 5-15 min. The permeability of insulin increased more than 3-fold as the glucose concentration was raised from 50 to 200 mg/dl. The average insulin permeability at 400 mg/dl of glucose was 8-fold that at 50 mg/dl in a continuous test in saline and was 6-fold in a three-cycle discontinuous test in pH 7.4 buffer. PMID:11943396

  15. Methazolamide Is a New Hepatic Insulin Sensitizer That Lowers Blood Glucose In Vivo

    PubMed Central

    Konstantopoulos, Nicky; Molero, Juan C.; McGee, Sean L.; Spolding, Briana; Connor, Tim; de Vries, Melissa; Wanyonyi, Stephen; Fahey, Richard; Morrison, Shona; Swinton, Courtney; Jones, Sharon; Cooper, Adrian; Garcia-Guerra, Lucia; Foletta, Victoria C.; Krippner, Guy; Andrikopoulos, Sofianos; Walder, Ken R.

    2012-01-01

    We previously used Gene Expression Signature technology to identify methazolamide (MTZ) and related compounds with insulin sensitizing activity in vitro. The effects of these compounds were investigated in diabetic db/db mice, insulin-resistant diet-induced obese (DIO) mice, and rats with streptozotocin (STZ)-induced diabetes. MTZ reduced fasting blood glucose and HbA1c levels in db/db mice, improved glucose tolerance in DIO mice, and enhanced the glucose-lowering effects of exogenous insulin administration in rats with STZ-induced diabetes. Hyperinsulinemic-euglycemic clamps in DIO mice revealed that MTZ increased glucose infusion rate and suppressed endogenous glucose production. Whole-body or cellular oxygen consumption rate was not altered, suggesting MTZ may inhibit glucose production by different mechanism(s) to metformin. In support of this, MTZ enhanced the glucose-lowering effects of metformin in db/db mice. MTZ is known to be a carbonic anhydrase inhibitor (CAI); however, CAIs acetazolamide, ethoxyzolamide, dichlorphenamide, chlorthalidone, and furosemide were not effective in vivo. Our results demonstrate that MTZ acts as an insulin sensitizer that suppresses hepatic glucose production in vivo. The antidiabetic effect of MTZ does not appear to be a function of its known activity as a CAI. The additive glucose-lowering effect of MTZ together with metformin highlights the potential utility for the management of type 2 diabetes. PMID:22586591

  16. Insulin sensitivity following exercise interventions: systematic review and meta-analysis of outcomes among healthy adults

    PubMed Central

    Conn, Vicki S.; Koopman, Richelle J.; Ruppar, Todd M.; Phillips, Lorraine J.; Mehr, David R.; Hafdahl, Adam R.

    2015-01-01

    Objective Although exercise can improve insulin sensitivity, no adequate synthesis exists of exercise intervention studies with regard to their effect on insulin sensitivity. This comprehensive meta-analysis synthesized the insulin sensitivity outcomes of supervised exercise interventions. Method Extensive literature searching located published and unpublished intervention studies that measured insulin sensitivity outcomes. Eligible studies tested supervised exercise interventions among healthy adults. Primary study characteristics and results were coded. Random-effects meta-analyses of standardized mean differences included moderator analyses. Results Data were synthesized across 2,509 subjects (115 samples, 78 reports). The overall mean effect size for two-group post-intervention comparisons was 0.38 (95% CI [0.25, 0.51], I2 = 0%) and for two-group pre-post comparisons was 0.43 (95% CI [0.30, 0.56], I2 = 52%) (higher mean insulin sensitivity for treatment than control subjects). The post-intervention mean of 0.38 is consistent with treatment subjects ending studies with a mean fasting insulin of 6.8 mU/l if control participants’ mean fasting insulin were 7.9 mU/l. Exploratory moderator analyses did not document different insulin sensitivity effect sizes across intervention characteristics or sample attributes. Conclusion This study documented that exercise is a valuable primary care and community health strategy for healthy adults to improve insulin sensitivity and lower the risk for diabetes conferred by insulin resistance. PMID:24474665

  17. Q192R Paraoxonase (PON)1 Polymorphism, Insulin Sensitivity, and Endothelial Function in Essential Hypertensive Men

    PubMed Central

    Dell’Omo, Giulia; Penno, Giuseppe; Pucci, Laura; Lucchesi, Daniela; Prato, Stefano Del; Pedrinelli, Roberto

    2014-01-01

    AIMS Essential hypertension is characterized by increased reactive oxygen species (ROS) generation harmful for insulin sensitivity and nitric oxide (NO)-mediated vasomotor function, a noxious effect that paraoxonase (PON)1, an antioxidant circulating high-density lipoprotein (HDL)-bound esterase, may counteract. The PON1 gene contains several polymorphisms including a glutamine (Q) to arginine (R) transition at position 192 encoding circulating allozymes with higher antioxidant activity that might influence both parameters. METHODS Q192R was determined by polymerase chain reaction in 72 never-treated, glucose-tolerant, uncomplicated essential hypertensive men. Insulin sensitivity was assessed by homeostasis model assessment (HOMA) and endothelial function by forearm vasodilation (strain-gage venous plethysmography) to intra-arterial acetylcholine (ACH) with sodium nitroprusside (NIP) as a NO-independent control. Additional evaluation variables included 24-hour blood pressure (BP), lipids, BMI, smoking status, and metabolic syndrome (MetS) by Adult Treatment Panel (ATP)-III criteria. R192 was considered as the rare allele, and its associations analyzed by dominant models (Q/Q vs. Q/R + R/R). RESULTS Genotype frequencies were consistent with the Hardy–Weinberg equilibrium. HOMA was lower and insulin resistance (the upper fourth of HOMA values distribution) less prevalent in Q/R + R/R carriers in whom ACH-mediated vasodilatation was greater and endothelial dysfunction (the bottom fourth of ACHAUC values distribution) less frequent than in Q/Q homozygotes. Q192R polymorphism and MetS were unrelated parameters despite their common association with insulin resistance. 24-hour BP, BMI, lipids, and smoking habits were homogeneously distributed across genotypes. CONCLUSIONS Q192R polymorphism associates differentially with insulin sensitivity and endothelial function in essential hypertensive men. PMID:25089090

  18. Effect of body weight gain on insulin sensitivity after retirement from exercise training

    NASA Technical Reports Server (NTRS)

    Dolkas, Constantine B.; Rodnick, Kenneth J.; Mondon, Carl E.

    1990-01-01

    The effect of the body-weight gain after retirement from an exercise-training program on the retained increase in insulin sensitivity elicited by the training was investigated in exercise-trained (ET) rats. Insulin sensitivity was assessed by oral glucose tolerance and insulin suppression tests immediately after training and during retirement. Results show that, compared with sedentary controls, exercise training enhanced insulin-induced glucose uptake, but the enhanced sensitivity was gradually lost with the end of running activity until after seven days of retirement, when it became equal to that of controls. This loss of enhanced sensitivity to insulin was associated with an accelerated gain in body weight beginning one day after the start of retirement. However, those animals that gained weight only at rates similar to those of control rats, retained their enhanced sensitivity to insulin.

  19. Synergic insulin sensitizing effect of rimonabant and BGP-15 in Zucker-obese rats.

    PubMed

    Literati-Nagy, Zsuzsanna; Tory, Kálmán; Literáti-Nagy, Botond; Bajza, Agnes; Vígh, László; Vígh, László; Mandl, József; Szilvássy, Zoltán

    2013-07-01

    Abdominal obesity is referred for as a common pathogenic root of multiple risk factors, which include insulin resistance, dyslipidemia, hypertension, and a pro-atherogenic and pro-inflammatory state. Irrespective of its psychiatric side effects, rimonabant through blocking cannabinoid-1 receptor (CB1R) induces an increase in whole body insulin sensitivity. The aim of this work was to study the effect of selected doses of another insulin sensitizer compound BGP-15, and rimonabant on insulin resistance in Zucker obese rats with a promise of inducing insulin sensitization together at lower doses than would have been expected by rimonabant alone. We found that BGP-15 potentiates the insulin sensitizing effect of rimonabant. The combination at doses, which do not induce insulin sensitization by themselves, improved insulin signaling. Furthermore our results suggest that capsaicin-induced signal may play a role in insulin sensitizing effect of both molecules. Our data might indicate that a lower dose of rimonabant in the treatment of insulin resistance and type 2 diabetes is sufficient to administer, thus a lower incidence of the unfavorable psychiatric side effects of rimonabant are to be expected.

  20. FXR Agonist INT-747 Upregulates DDAH Expression and Enhances Insulin Sensitivity in High-Salt Fed Dahl Rats

    PubMed Central

    Ghebremariam, Yohannes T.; Yamada, Keisuke; Lee, Jerry C.; Johnson, Christine L. C.; Atzler, Dorothee; Anderssohn, Maike; Agrawal, Rani; Higgins, John P.; Patterson, Andrew J.; Böger, Rainer H.; Cooke, John P

    2013-01-01

    Aims Genetic and pharmacological studies have shown that impairment of the nitric oxide (NO) synthase (NOS) pathway is associated with hypertension and insulin-resistance (IR). In addition, inhibition of NOS by the endogenous inhibitor, asymmetric dimethylarginine (ADMA), may also result in hypertension and IR. On the other hand, overexpression of dimethylarginine dimethylaminohydrolase (DDAH), an enzyme that metabolizes ADMA, in mice is associated with lower ADMA, increased NO and enhanced insulin sensitivity. Since DDAH carries a farnesoid X receptor (FXR)-responsive element, we aimed to upregulate its expression by an FXR-agonist, INT-747, and evaluate its effect on blood pressure and insulin sensitivity. Methods and Results In this study, we evaluated the in vivo effect of INT-747 on tissue DDAH expression and insulin sensitivity in the Dahl rat model of salt-sensitive hypertension and IR (Dahl-SS). Our data indicates that high salt (HS) diet significantly increased systemic blood pressure. In addition, HS diet downregulated tissue DDAH expression while INT-747 protected the loss in DDAH expression and enhanced insulin sensitivity compared to vehicle controls. Conclusion Our study may provide the basis for a new therapeutic approach for IR by modulating DDAH expression and/or activity using small molecules. PMID:23593273

  1. A novel function of B-cell translocation gene 1 (BTG1) in the regulation of hepatic insulin sensitivity in mice via c-Jun.

    PubMed

    Xiao, Fei; Deng, Jiali; Yu, Junjie; Guo, Yajie; Chen, Shanghai; Guo, Feifan

    2016-01-01

    Insulin resistance is one of the major factors contributing to metabolic diseases, but the underlying mechanisms are still poorly understood. As an important cofactor, B-cell translocation gene 1 (BTG1) is involved in many physiologic processes; however, the direct effect of BTG1 on insulin sensitivity has not been described. In our study, BTG1 overexpression or knockdown improved or impaired insulin signaling in vitro, respectively. In addition, adenovirus-mediated BTG1 overexpression improved insulin sensitivity in wild-type (WT) and insulin-resistant leptin-receptor mutated (db/db) mice. In addition, transgenic BTG1-overexpressing mice were resistant to high-carbohydrate diet-induced insulin resistance. Adenovirus-mediated BTG1 knockdown consistently impaired insulin sensitivity in WT and insulin-sensitive leucine-deprived mice. Moreover, hepatic BTG1 expression was increased by leucine deprivation via the mammalian target of rapamycin/ribosomal protein S6 kinase 1 pathway. Furthermore, c-Jun expression was up-regulated by BTG1, and adenovirus-mediated c-Jun knockdown blocked BTG1-improved insulin signaling and insulin sensitivity in vitro and in vivo. Finally, BTG1 promoted c-Jun expression via stimulating c-Jun and retinoic acid receptor activities. Taken together, these results identify a novel function for BTG1 in the regulation of hepatic insulin sensitivity and provide important insights into the nutritional regulation of BTG1 expression.- Xiao, F., Deng, J., Yu, J., Guo, Y., Chen, S., Guo, F. A novel function of B-cell translocation gene 1 (BTG1) in the regulation of hepatic insulin sensitivity in mice via c-Jun.

  2. Preserved Na/HCO3 cotransporter sensitivity to insulin may promote hypertension in metabolic syndrome.

    PubMed

    Nakamura, Motonobu; Yamazaki, Osamu; Shirai, Ayumi; Horita, Shoko; Satoh, Nobuhiko; Suzuki, Masashi; Hamasaki, Yoshifumi; Noiri, Eisei; Kume, Haruki; Enomoto, Yutaka; Homma, Yukio; Seki, George

    2015-03-01

    Hyperinsulinemia can contribute to hypertension through effects on sodium transport. To test whether the stimulatory effect of insulin on renal proximal tubule sodium transport is preserved in insulin resistance, we compared the effects of insulin on abdominal adipocytes and proximal tubules in rats and humans. Insulin markedly stimulated the sodium-bicarbonate cotransporter (NBCe1) activity in isolated proximal tubules through the phosphoinositide 3-kinase (PI3-K) pathway. Gene silencing in rats showed that while insulin receptor substrate (IRS)1 mediates the insulin effect on glucose uptake into adipocytes, IRS2 mediates the insulin effect on proximal tubule transport. The stimulatory effect of insulin on glucose uptake into adipocytes was severely reduced, but its stimulatory effect on NBCe1 activity was completely preserved in insulin-resistant Otsuka Long-Evans Tokushima Fatty (OLETF) rats and patients with insulin resistance. Despite widespread reduction of IRS1 and IRS2 expression in insulin-sensitive tissues, IRS2 expression in the kidney cortex was exceptionally preserved in both OLETF rats and patients with insulin resistance. Unlike liver, acute insulin injection failed to change the expression levels of IRS2 and sterol regulatory element-binding protein 1 in rat kidney cortex, indicating that regulatory mechanisms of IRS2 expression are distinct in liver and kidney. Thus, preserved stimulation of proximal tubule transport through the insulin/IRS2/PI3-K pathway may play an important role in the pathogenesis of hypertension associated with metabolic syndrome.

  3. Influence of obesity and insulin sensitivity on insulin signaling genes in human omental and subcutaneous adipose tissue.

    PubMed

    MacLaren, R; Cui, W; Simard, S; Cianflone, K

    2008-02-01

    Obesity and insulin resistance are independent risk factors for metabolic syndrome, diabetes, and cardiovascular disease. Adipose tissue samples from nonobese (NO), insulin-sensitive obese (ISO), and insulin-resistant obese (IRO) subjects from subcutaneous (SC) and omental (OM) adipose tissue (n = 28) were analyzed by microarray and confirmed by real-time PCR. Insulin signaling gene expression changes were greater in OM than in SC tissue and were related to insulin resistance rather than to obesity; few genes correlated with body mass index. Insulin receptor and insulin receptor substrate 1 (IRS-1) increased in the IRO versus pooled insulin-sensitive (NO+ISO) subjects. In glucose transport, PI3Kalpha and PDK2 decreased in IRO subjects, whereas PI3Kgamma, Akt2, GLUT4, and GLUT1 increased. IRS-1 regulators Jnk and IKK increased in IRO (P < 0.01 and P < 0.001 respectively). In protein synthesis, most genes examined were downregulated in IRO subjects, including mTor, Rheb, and 4EBP and eIF members (all P < 0.05). In proliferation, SHC, SOS, and Raf1 (P < 0.05) were increased, whereas Ras and MEK1/2 kinase 1 (P < 0.05) were decreased, in IRO subjects. Finally, in differentiation, PPARgamma, CEBPalpha, and CEBPbeta decreased, whereas PPARdelta, CEBPgamma, and CEBPepsilon increased, in IRO subjects (P < 0.05). Together, microarray and real-time PCR data demonstrate that insulin resistance rather than obesity is associated with altered gene expression of insulin signaling genes, especially in OM adipose tissue. PMID:17986714

  4. IRS2 and PTEN are key molecules in controlling insulin sensitivity in podocytes.

    PubMed

    Santamaria, Beatriz; Marquez, Eva; Lay, Abigail; Carew, RoseaMarie M; González-Rodríguez, Águeda; Welsh, Gavin I; Ni, Lan; Hale, Lorna J; Ortiz, Alberto; Saleem, Moin A; Brazil, Derek P; Coward, Richard J; Valverde, Ángela M

    2015-12-01

    Insulin signaling to the glomerular podocyte is important for normal kidney function and is implicated in the pathogenesis of diabetic nephropathy (DN). This study determined the role of the insulin receptor substrate 2 (IRS2) in this system. Conditionally immortalized murine podocytes were generated from wild-type (WT) and insulin receptor substrate 2-deficient mice (Irs2(-/-)). Insulin signaling, glucose transport, cellular motility and cytoskeleton rearrangement were then analyzed. Within the glomerulus IRS2 is enriched in the podocyte and is preferentially phosphorylated by insulin in comparison to IRS1. Irs2(-/-) podocytes are significantly insulin resistant in respect to AKT signaling, insulin-stimulated GLUT4-mediated glucose uptake, filamentous actin (F-actin) cytoskeleton remodeling and cell motility. Mechanistically, we discovered that Irs2 deficiency causes insulin resistance through up-regulation of the phosphatase and tensin homolog (PTEN). Importantly, suppressing PTEN in Irs2(-/-) podocytes rescued insulin sensitivity. In conclusion, this study has identified for the first time IRS2 as a critical molecule for sensitizing the podocyte to insulin actions through its ability to modulate PTEN expression. This finding reveals two potential molecular targets in the podocyte for modulating insulin sensitivity and treating DN.

  5. Central GLP-2 enhances hepatic insulin sensitivity via activating PI3K signaling in POMC neurons

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Glucagon-like peptides (GLP-1/GLP-2) are coproduced and highlighted as key modulators to improve glucose homeostasis and insulin sensitivity after bariatric surgery. However, it is unknown if CNS GLP-2 plays any physiological role in the control of glucose homeostasis and insulin sensitivity. We sho...

  6. Sortilin facilitates VLDL-B100 secretion by insulin sensitive McArdle RH7777 cells.

    PubMed

    Sparks, Robert P; Guida, Wayne C; Sowden, Mark P; Jenkins, Jermaine L; Starr, Matthew L; Fratti, Rutilio A; Sparks, Charles E; Sparks, Janet D

    2016-09-16

    Studies examining the relationship between cellular sortilin and VLDL-B100 secretion demonstrate inconsistent results. Current studies explore the possibility that discrepancies may be related to insulin sensitivity. McArdle RH7777 cells (McA cells) cultured under serum enriched conditions lose sensitivity to insulin. Following incubation in serum-free DMEM containing 1% BSA, McA cells become insulin responsive and demonstrate reduced apo B secretion. Current studies indicate that insulin sensitive McA cells express lower cellular sortilin that corresponds with reduction in VLDL-B100 secretion without changes in mRNA of either sortilin or apo B. When sortilin expression is further reduced by siRNA knockdown (KD), there are additional decreases in VLDL-B100 secretion. A crystal structure of human sortilin (hsortilin) identifies two binding sites on the luminal domain for the N- and C-termini of neurotensin (NT). A small organic compound (cpd984) was identified that has strong theoretical binding to the N-terminal site. Both cpd984 and NT bind hsortilin by surface plasmon resonance. In incubations with insulin sensitive McA cells, cpd984 was shown to enhance VLDL-B100 secretion at each level of sortilin KD suggesting cpd984 acted through sortilin in mediating its effect. Current results support a role for sortilin to facilitate VLDL-B100 secretion which is limited to insulin sensitive McA cells. Inconsistent reports of the relationship between VLDL-B100 secretion and sortilin in previous studies may relate to differing functions of sortilin in VLDL-B100 secretion depending upon insulin sensitivity.

  7. Differences in Insulin Secretion and Sensitivity in Short-Sleep Insomnia

    PubMed Central

    Vasisht, Kaveeta P.; Kessler, Lynn E.; Booth, John N.; Imperial, Jacqueline G.; Penev, Plamen D.

    2013-01-01

    Objective: Short-sleep insomnia is associated with increased risk of diabetes. The role of altered insulin secretion and action in this association is poorly understood. Design: Observational study. Setting: Academic clinical research center. Participants: Nondiabetic individuals with insomnia (mean [standard deviation] age 48 [9] y, body mass index 25.6 [3.9] kg/m2) with ≤ 6 h (short sleep, n = 14) and > 6 h of sleep (n = 14) during overnight laboratory polysomnography. Measurements and Results: Standard oral glucose testing was used to assess glucose tolerance, beta-cell function (homeostasis model assessment [HOMA-B]; second-phase insulin secretion) and insulin resistance (HOMA-IR; insulin sensitivity index). There was no significant difference in hemoglobin A1C and fasting or 2-h blood glucose concentrations between sleep groups. Short-sleep insomnia sufferers had lower fasting and postchallenge serum insulin concentrations associated with lower estimates of fasting and glucose-stimulated insulin secretion, and increased insulin sensitivity. Conclusions: Individuals with short-sleep insomnia appear to have higher indices of systemic insulin sensitivity and secrete less insulin without changes in overall glucose tolerance. Citation: Vasisht KP; Kessler LE; Booth JN; Imperial JG; Penev PD. Differences in insulin secretion and sensitivity in short-sleep insomnia. SLEEP 2013;36(6):955-957. PMID:23729940

  8. Insulin sensitivity indices: a proposal of cut-off points for simple identification of insulin-resistant subjects.

    PubMed

    Radikova, Z; Koska, J; Huckova, M; Ksinantova, L; Imrich, R; Vigas, M; Trnovec, T; Langer, P; Sebokova, E; Klimes, I

    2006-05-01

    Demanding measurement of insulin sensitivity using clamp methods does not simplify the identification of insulin resistant subjects in the general population. Other approaches such as fasting- or oral glucose tolerance test-derived insulin sensitivity indices were proposed and validated with the euglycemic clamp. Nevertheless, a lack of reference values for these indices prevents their wider use in epidemiological studies and clinical practice. The aim of our study was therefore to define the cut-off points of insulin resistance indices as well as the ranges of the most frequently obtained values for selected indices. A standard 75 g oral glucose tolerance test was carried out in 1156 subjects from a Caucasian rural population with no previous evidence of diabetes or other dysglycemias. Insulin resistance/sensitivity indices (HOMA-IR, HOMA-IR2, ISI Cederholm, and ISI Matsuda) were calculated. The 75th percentile value as the cut-off point to define IR corresponded with a HOMA-IR of 2.29, a HOMA-IR2 of 1.21, a 25th percentile for ISI Cederholm, and ISI Matsuda of 57 and 5.0, respectively. For the first time, the cut-off points for selected indices and their most frequently obtained values were established for groups of subjects as defined by glucose homeostasis and BMI. Thus, insulin-resistant subjects can be identified using this simple approach. PMID:16804799

  9. Genome-Wide Association Study of the Modified Stumvoll Insulin Sensitivity Index Identifies BCL2 and FAM19A2 as Novel Insulin Sensitivity Loci.

    PubMed

    Walford, Geoffrey A; Gustafsson, Stefan; Rybin, Denis; Stančáková, Alena; Chen, Han; Liu, Ching-Ti; Hong, Jaeyoung; Jensen, Richard A; Rice, Ken; Morris, Andrew P; Mägi, Reedik; Tönjes, Anke; Prokopenko, Inga; Kleber, Marcus E; Delgado, Graciela; Silbernagel, Günther; Jackson, Anne U; Appel, Emil V; Grarup, Niels; Lewis, Joshua P; Montasser, May E; Landenvall, Claes; Staiger, Harald; Luan, Jian'an; Frayling, Timothy M; Weedon, Michael N; Xie, Weijia; Morcillo, Sonsoles; Martínez-Larrad, María Teresa; Biggs, Mary L; Chen, Yii-Der Ida; Corbaton-Anchuelo, Arturo; Færch, Kristine; Gómez-Zumaquero, Juan Miguel; Goodarzi, Mark O; Kizer, Jorge R; Koistinen, Heikki A; Leong, Aaron; Lind, Lars; Lindgren, Cecilia; Machicao, Fausto; Manning, Alisa K; Martín-Núñez, Gracia María; Rojo-Martínez, Gemma; Rotter, Jerome I; Siscovick, David S; Zmuda, Joseph M; Zhang, Zhongyang; Serrano-Rios, Manuel; Smith, Ulf; Soriguer, Federico; Hansen, Torben; Jørgensen, Torben J; Linnenberg, Allan; Pedersen, Oluf; Walker, Mark; Langenberg, Claudia; Scott, Robert A; Wareham, Nicholas J; Fritsche, Andreas; Häring, Hans-Ulrich; Stefan, Norbert; Groop, Leif; O'Connell, Jeff R; Boehnke, Michael; Bergman, Richard N; Collins, Francis S; Mohlke, Karen L; Tuomilehto, Jaakko; März, Winfried; Kovacs, Peter; Stumvoll, Michael; Psaty, Bruce M; Kuusisto, Johanna; Laakso, Markku; Meigs, James B; Dupuis, Josée; Ingelsson, Erik; Florez, Jose C

    2016-10-01

    Genome-wide association studies (GWAS) have found few common variants that influence fasting measures of insulin sensitivity. We hypothesized that a GWAS of an integrated assessment of fasting and dynamic measures of insulin sensitivity would detect novel common variants. We performed a GWAS of the modified Stumvoll Insulin Sensitivity Index (ISI) within the Meta-Analyses of Glucose and Insulin-Related Traits Consortium. Discovery for genetic association was performed in 16,753 individuals, and replication was attempted for the 23 most significant novel loci in 13,354 independent individuals. Association with ISI was tested in models adjusted for age, sex, and BMI and in a model analyzing the combined influence of the genotype effect adjusted for BMI and the interaction effect between the genotype and BMI on ISI (model 3). In model 3, three variants reached genome-wide significance: rs13422522 (NYAP2; P = 8.87 × 10(-11)), rs12454712 (BCL2; P = 2.7 × 10(-8)), and rs10506418 (FAM19A2; P = 1.9 × 10(-8)). The association at NYAP2 was eliminated by conditioning on the known IRS1 insulin sensitivity locus; the BCL2 and FAM19A2 associations were independent of known cardiometabolic loci. In conclusion, we identified two novel loci and replicated known variants associated with insulin sensitivity. Further studies are needed to clarify the causal variant and function at the BCL2 and FAM19A2 loci. PMID:27416945

  10. Genome-Wide Association Study of the Modified Stumvoll Insulin Sensitivity Index Identifies BCL2 and FAM19A2 as Novel Insulin Sensitivity Loci.

    PubMed

    Walford, Geoffrey A; Gustafsson, Stefan; Rybin, Denis; Stančáková, Alena; Chen, Han; Liu, Ching-Ti; Hong, Jaeyoung; Jensen, Richard A; Rice, Ken; Morris, Andrew P; Mägi, Reedik; Tönjes, Anke; Prokopenko, Inga; Kleber, Marcus E; Delgado, Graciela; Silbernagel, Günther; Jackson, Anne U; Appel, Emil V; Grarup, Niels; Lewis, Joshua P; Montasser, May E; Landenvall, Claes; Staiger, Harald; Luan, Jian'an; Frayling, Timothy M; Weedon, Michael N; Xie, Weijia; Morcillo, Sonsoles; Martínez-Larrad, María Teresa; Biggs, Mary L; Chen, Yii-Der Ida; Corbaton-Anchuelo, Arturo; Færch, Kristine; Gómez-Zumaquero, Juan Miguel; Goodarzi, Mark O; Kizer, Jorge R; Koistinen, Heikki A; Leong, Aaron; Lind, Lars; Lindgren, Cecilia; Machicao, Fausto; Manning, Alisa K; Martín-Núñez, Gracia María; Rojo-Martínez, Gemma; Rotter, Jerome I; Siscovick, David S; Zmuda, Joseph M; Zhang, Zhongyang; Serrano-Rios, Manuel; Smith, Ulf; Soriguer, Federico; Hansen, Torben; Jørgensen, Torben J; Linnenberg, Allan; Pedersen, Oluf; Walker, Mark; Langenberg, Claudia; Scott, Robert A; Wareham, Nicholas J; Fritsche, Andreas; Häring, Hans-Ulrich; Stefan, Norbert; Groop, Leif; O'Connell, Jeff R; Boehnke, Michael; Bergman, Richard N; Collins, Francis S; Mohlke, Karen L; Tuomilehto, Jaakko; März, Winfried; Kovacs, Peter; Stumvoll, Michael; Psaty, Bruce M; Kuusisto, Johanna; Laakso, Markku; Meigs, James B; Dupuis, Josée; Ingelsson, Erik; Florez, Jose C

    2016-10-01

    Genome-wide association studies (GWAS) have found few common variants that influence fasting measures of insulin sensitivity. We hypothesized that a GWAS of an integrated assessment of fasting and dynamic measures of insulin sensitivity would detect novel common variants. We performed a GWAS of the modified Stumvoll Insulin Sensitivity Index (ISI) within the Meta-Analyses of Glucose and Insulin-Related Traits Consortium. Discovery for genetic association was performed in 16,753 individuals, and replication was attempted for the 23 most significant novel loci in 13,354 independent individuals. Association with ISI was tested in models adjusted for age, sex, and BMI and in a model analyzing the combined influence of the genotype effect adjusted for BMI and the interaction effect between the genotype and BMI on ISI (model 3). In model 3, three variants reached genome-wide significance: rs13422522 (NYAP2; P = 8.87 × 10(-11)), rs12454712 (BCL2; P = 2.7 × 10(-8)), and rs10506418 (FAM19A2; P = 1.9 × 10(-8)). The association at NYAP2 was eliminated by conditioning on the known IRS1 insulin sensitivity locus; the BCL2 and FAM19A2 associations were independent of known cardiometabolic loci. In conclusion, we identified two novel loci and replicated known variants associated with insulin sensitivity. Further studies are needed to clarify the causal variant and function at the BCL2 and FAM19A2 loci.

  11. Beneficial insulin-sensitizing and vascular effects of S15261 in the insulin-resistant JCR:LA-cp rat.

    PubMed

    Russell, J C; Ravel, D; Pégorier, J P; Delrat, P; Jochemsen, R; O'Brien, S F; Kelly, S E; Davidge, S T; Brindley, D N

    2000-11-01

    S15261, a compound developed for the oral treatment of type II diabetes, is cleaved by esterases to the fragments Y415 and S15511. The aim was to define the insulin-sensitizing effects of S15261, the cleavage products, and troglitazone and metformin in the JCR:LA-cp rat, an animal model of the obesity/insulin resistance syndrome that exhibits an associated vasculopathy and cardiovascular disease. Treatment of the animals from 8 to 12 weeks of age with S15261 or S15511 resulted in reductions in food intake and body weights, whereas Y415 had no effect. Troglitazone caused a small increase in food intake (P <.05). Treatment with S15261 or S15511 decreased plasma insulin levels in fed rats and prevented the postprandial peak in insulin levels in a meal tolerance test. Y415 had no effect on insulin levels. Troglitazone halved the insulin response to the test meal, but metformin gave no improvement. S15261 decreased the expression of phosphoenolpyruvate carboxykinase and glucose-6-phosphatase and stimulated the expression of acetyl-CoA carboxylase and acyl-CoA synthase. S15261 also reduced the expression of carnitine palmitoyltransferase I and hydroxymethyl-glutaryl-CoA synthase. S15261, but not troglitazone, reduced the exaggerated contractile response of mesenteric resistance vessels to norepinephrine, and increased the maximal nitric oxide-mediated relaxation. S15261, through S15511, increased insulin sensitivity, decreased insulin levels, and reduced the vasculopathy of the JCR:LA-cp rat. S15261 may thus offer effective treatment for the insulin resistance syndrome and its associated vascular complications.

  12. Human gut microbes impact host serum metabolome and insulin sensitivity.

    PubMed

    Pedersen, Helle Krogh; Gudmundsdottir, Valborg; Nielsen, Henrik Bjørn; Hyotylainen, Tuulia; Nielsen, Trine; Jensen, Benjamin A H; Forslund, Kristoffer; Hildebrand, Falk; Prifti, Edi; Falony, Gwen; Le Chatelier, Emmanuelle; Levenez, Florence; Doré, Joel; Mattila, Ismo; Plichta, Damian R; Pöhö, Päivi; Hellgren, Lars I; Arumugam, Manimozhiyan; Sunagawa, Shinichi; Vieira-Silva, Sara; Jørgensen, Torben; Holm, Jacob Bak; Trošt, Kajetan; Kristiansen, Karsten; Brix, Susanne; Raes, Jeroen; Wang, Jun; Hansen, Torben; Bork, Peer; Brunak, Søren; Oresic, Matej; Ehrlich, S Dusko; Pedersen, Oluf

    2016-07-21

    Insulin resistance is a forerunner state of ischaemic cardiovascular disease and type 2 diabetes. Here we show how the human gut microbiome impacts the serum metabolome and associates with insulin resistance in 277 non-diabetic Danish individuals. The serum metabolome of insulin-resistant individuals is characterized by increased levels of branched-chain amino acids (BCAAs), which correlate with a gut microbiome that has an enriched biosynthetic potential for BCAAs and is deprived of genes encoding bacterial inward transporters for these amino acids. Prevotella copri and Bacteroides vulgatus are identified as the main species driving the association between biosynthesis of BCAAs and insulin resistance, and in mice we demonstrate that P. copri can induce insulin resistance, aggravate glucose intolerance and augment circulating levels of BCAAs. Our findings suggest that microbial targets may have the potential to diminish insulin resistance and reduce the incidence of common metabolic and cardiovascular disorders. PMID:27409811

  13. Human gut microbes impact host serum metabolome and insulin sensitivity.

    PubMed

    Pedersen, Helle Krogh; Gudmundsdottir, Valborg; Nielsen, Henrik Bjørn; Hyotylainen, Tuulia; Nielsen, Trine; Jensen, Benjamin A H; Forslund, Kristoffer; Hildebrand, Falk; Prifti, Edi; Falony, Gwen; Le Chatelier, Emmanuelle; Levenez, Florence; Doré, Joel; Mattila, Ismo; Plichta, Damian R; Pöhö, Päivi; Hellgren, Lars I; Arumugam, Manimozhiyan; Sunagawa, Shinichi; Vieira-Silva, Sara; Jørgensen, Torben; Holm, Jacob Bak; Trošt, Kajetan; Kristiansen, Karsten; Brix, Susanne; Raes, Jeroen; Wang, Jun; Hansen, Torben; Bork, Peer; Brunak, Søren; Oresic, Matej; Ehrlich, S Dusko; Pedersen, Oluf

    2016-07-21

    Insulin resistance is a forerunner state of ischaemic cardiovascular disease and type 2 diabetes. Here we show how the human gut microbiome impacts the serum metabolome and associates with insulin resistance in 277 non-diabetic Danish individuals. The serum metabolome of insulin-resistant individuals is characterized by increased levels of branched-chain amino acids (BCAAs), which correlate with a gut microbiome that has an enriched biosynthetic potential for BCAAs and is deprived of genes encoding bacterial inward transporters for these amino acids. Prevotella copri and Bacteroides vulgatus are identified as the main species driving the association between biosynthesis of BCAAs and insulin resistance, and in mice we demonstrate that P. copri can induce insulin resistance, aggravate glucose intolerance and augment circulating levels of BCAAs. Our findings suggest that microbial targets may have the potential to diminish insulin resistance and reduce the incidence of common metabolic and cardiovascular disorders.

  14. β-Cell Sensitivity to GLP-1 in Healthy Humans Is Variable and Proportional to Insulin Sensitivity

    PubMed Central

    Aulinger, Benedikt A.; Vahl, Torsten P.; Wilson-Pérez, Hilary E.; Prigeon, Ron L.

    2015-01-01

    Context: Glucagon-like peptide-1 (GLP-1) is an insulinotropic factor made in the gastrointestinal tract that is essential for normal glucose tolerance. Infusion of GLP-1 increases insulin secretion in both diabetic and nondiabetic humans. However, the degree to which people vary in their β-cell sensitivity to GLP-1 and the factors contributing to this variability have not been reported. Objective: The objective was to measure the sensitivity of insulin secretion to GLP-1 in cohorts of lean and obese subjects across a broad range of insulin sensitivity. Methods: Insulin secretion was measured during clamped hyperglycemia (7.2 mmol/L) and graded GLP-1 infusion in young, healthy subjects, and GLP-1 sensitivity was computed from the insulin secretion rate (ISR) during progressive increases in plasma GLP-1. Results: All subjects had fasting glucose values <5.2 mm. The obese subjects were insulin resistant compared to the lean group (homeostasis model of assessment 2 for insulin resistance: obese, 2.6 ± 0.5; lean, 0.8 ± 0.1; P < .001). ISR increased linearly in both cohorts with escalating doses of GLP-1, but the slope of ISR in response to GLP-1 was greater in the obese than in the lean subjects (obese, 0.17 ± 0.03 nmol/min/pm; lean, 0.05 ± 0.01 nmol/min/pm; P < .001). There was a significant association of β-cell GLP-1 sensitivity and insulin resistance (r = 0.83; P < .001), and after correction for homeostasis model of assessment 2 for insulin resistance, the slopes of ISR vs GLP-1 concentration did not differ in the two cohorts (obese, 0.08 ± 0.01; lean, 0.08 ± 0.01; P = .98). However, within the entire study group, β-cell GLP-1 sensitivity corrected for insulin resistance varied nearly 10-fold. Conclusions: Insulin secretion in response to GLP-1 is proportional to insulin resistance in healthy subjects. However, there is considerable variability in the sensitivity of the β-cell to GLP-1 that is independent of insulin sensitivity. PMID:25825945

  15. Rosmarinic acid ameliorates hyperglycemia and insulin sensitivity in diabetic rats, potentially by modulating the expression of PEPCK and GLUT4

    PubMed Central

    Runtuwene, Joshua; Cheng, Kai-Chun; Asakawa, Akihiro; Amitani, Haruka; Amitani, Marie; Morinaga, Akinori; Takimoto, Yoshiyuki; Kairupan, Bernabas Harold Ralph; Inui, Akio

    2016-01-01

    Background Rosmarinic acid (RA) is a natural substance that may be useful for treating diabetes mellitus. The present study investigated the effects of RA on glucose homeostasis and insulin regulation in rats with streptozocin (STZ)-induced type 1 diabetes or high-fat diet (HFD)-induced type 2 diabetes. Methods Glucose homeostasis was determined using oral glucose tolerance tests and postprandial glucose tests, and insulin activity was evaluated using insulin tolerance tests and the homeostatic model assessment for insulin resistance. Additionally, the protein expression levels of PEPCK and GLUT4 were determined using Western blot analysis. Results RA administration exerted a marked hypoglycemic effect on STZ-induced diabetic rats and enhanced glucose utilization and insulin sensitivity in HFD-fed diabetic rats. These effects of RA were dose-dependent. Meanwhile, RA administration reversed the STZ- and HFD-induced increase in PEPCK expression in the liver and the STZ- and HFD-induced decrease in GLUT4 expression in skeletal muscle. Conclusion RA reduces hyperglycemia and ameliorates insulin sensitivity by decreasing PEPCK expression and increasing GLUT4 expression. PMID:27462144

  16. Prolonged insulin treatment sensitizes apoptosis pathways in pancreatic β cells.

    PubMed

    Bucris, E; Beck, A; Boura-Halfon, S; Isaac, R; Vinik, Y; Rosenzweig, T; Sampson, S R; Zick, Y

    2016-09-01

    Insulin resistance results from impaired insulin signaling in target tissues that leads to increased levels of insulin required to control plasma glucose levels. The cycle of hyperglycemia and hyperinsulinemia eventually leads to pancreatic cell deterioration and death by a mechanism that is yet unclear. Insulin induces ROS formation in several cell types. Furthermore, death of pancreatic cells induced by oxidative stress could be potentiated by insulin. Here, we investigated the mechanism underlying this phenomenon. Experiments were done on pancreatic cell lines (Min-6, RINm, INS-1), isolated mouse and human islets, and on cell lines derived from nonpancreatic sources. Insulin (100nM) for 24h selectively increased the production of ROS in pancreatic cells and isolated pancreatic islets, but only slightly affected the expression of antioxidant enzymes. This was accompanied by a time- and dose-dependent decrease in cellular reducing power of pancreatic cells induced by insulin and altered expression of several ER stress response elements including a significant increase in Trb3 and a slight increase in iNos The effect on iNos did not increase NO levels. Insulin also potentiated the decrease in cellular reducing power induced by H2O2 but not cytokines. Insulin decreased the expression of MCL-1, an antiapoptotic protein of the BCL family, and induced a modest yet significant increase in caspase 3/7 activity. In accord with these findings, inhibition of caspase activity eliminated the ability of insulin to increase cell death. We conclude that prolonged elevated levels of insulin may prime apoptosis and cell death-inducing mechanisms as a result of oxidative stress in pancreatic cells. PMID:27411561

  17. Comparison of several insulin sensitivity indices derived from basal plasma insulin and glucose levels with minimal model indices.

    PubMed

    García-Estévez, D A; Araújo-Vilar, D; Fiestras-Janeiro, G; Saavedra-González, A; Cabezas-Cerrato, J

    2003-01-01

    Some techniques for the evaluation of insulin resistance (IR), such as the clamp technique, are not viable for the study of large populations; and for this reason, alternative approaches based on fasting plasma glucose (FPG) and plasma insulin (FPI) have been proposed. The aim of this study was to compare the IR calculations obtained from FPI and FPG values with the insulin sensitivity (IS) index derived from the minimal model. Eighty-seven healthy subjects with a wide range of body mass index (18 - 44 kg x m -2) and 16 DM2 non-obese patients were included in the study. All of the patients underwent a frequently sampled intravenous glucose tolerance test (FSIGTT), and the minimal model of glucose was used for the estimation of insulin sensitivity (IS MINIMAL ). The HOMA-IR index, the Avignon index, and the quotient FPG/FPI were used to calculate basal steady-state IR. The basal IR value that best correlated with IS was Log (1/HOMA-IR) (r = 0.70, p < 0.001). All of the basal indices showed a high correlation with each other. In conclusions, insulin sensitivity indices as determined from the basal glycaemia and insulinemia values are not good estimators for metabolic reality from the perspective of the minimal model. Nevertheless, they might well have an IR screening value for epidemiological studies, as long as there is no pancreatic beta-cell dysfunction. PMID:12669265

  18. Insulin Causes Hyperthermia by Direct Inhibition of Warm-Sensitive Neurons

    PubMed Central

    Sanchez-Alavez, Manuel; Tabarean, Iustin V.; Osborn, Olivia; Mitsukawa, Kayo; Schaefer, Jean; Dubins, Jeffrey; Holmberg, Kristina H.; Klein, Izabella; Klaus, Joe; Gomez, Luis F.; Kolb, Hartmuth; Secrest, James; Jochems, Jeanine; Myashiro, Kevin; Buckley, Peter; Hadcock, John R.; Eberwine, James; Conti, Bruno; Bartfai, Tamas

    2010-01-01

    OBJECTIVE Temperature and nutrient homeostasis are two interdependent components of energy balance regulated by distinct sets of hypothalamic neurons. The objective is to examine the role of the metabolic signal insulin in the control of core body temperature (CBT). RESEARCH DESIGN AND METHODS The effect of preoptic area administration of insulin on CBT in mice was measured by radiotelemetry and respiratory exchange ratio. In vivo 2-[18F]fluoro-2-deoxyglucose uptake into brown adipose tissue (BAT) was measured in rats after insulin treatment by positron emission tomography combined with X-ray computed tomography imaging. Insulin receptor–positive neurons were identified by retrograde tracing from the raphe pallidus. Insulin was locally applied on hypothalamic slices to determine the direct effects of insulin on intrinsically warm-sensitive neurons by inducing hyperpolarization and reducing firing rates. RESULTS Injection of insulin into the preoptic area of the hypothalamus induced a specific and dose-dependent elevation of CBT mediated by stimulation of BAT thermogenesis as shown by imaging and respiratory ratio measurements. Retrograde tracing indicates that insulin receptor–expressing warm-sensitive neurons activate BAT through projection via the raphe pallidus. Insulin applied on hypothalamic slices acted directly on intrinsically warm-sensitive neurons by inducing hyperpolarization and reducing firing rates. The hyperthermic effects of insulin were blocked by pretreatment with antibodies to insulin or with a phosphatidylinositol 3–kinase inhibitor. CONCLUSIONS Our findings demonstrate that insulin can directly modulate hypothalamic neurons that regulate thermogenesis and CBT and indicate that insulin plays an important role in coupling metabolism and thermoregulation at the level of anterior hypothalamus. PMID:19846801

  19. [PPAR receptors and insulin sensitivity: new agonists in development].

    PubMed

    Pégorier, J-P

    2005-04-01

    Thiazolidinediones (or glitazones) are synthetic PPARgamma (Peroxisome Proliferator-Activated Receptors gamma) ligands with well recognized effects on glucose and lipid metabolism. The clinical use of these PPARgamma agonists in type 2 diabetic patients leads to an improved glycemic control and an inhanced insulin sensitivity, and at least in animal models, to a protective effect on pancreatic beta-cell function. However, they can produce adverse effects, generally mild or moderate, but some of them (mainly peripheral edema and weight gain) may conduct to treatment cessation. Several pharmacological classes are currently in pre-clinical or clinical development, with the objective to retain the beneficial metabolic properties of PPARgamma agonists, either alone or in association with the PPARalpha agonists (fibrates) benefit on lipid profile, but devoid of the side-effects on weight gain and fluid retention. These new pharmacological classes: partial PPARgamma agonists, PPARgamma antagonists, dual PPARalpha/PPARgamma agonists, pan PPARalpha/beta(delta)/gamma agonists, RXR receptor agonists (rexinoids), are presented in this review. Main results from in vitro cell experiments and animal model studies are discussed, as well as the few published short-term studies in type 2 diabetic patients. PMID:15959400

  20. Bioactives from Artemisia dracunculus L. Enhance Insulin Sensitivity via Modulation of Skeletal Muscle Protein Phosphorylation

    PubMed Central

    Kheterpal, Indu; Scherp, Peter; Kelley, Lauren; Wang, Zhong; Johnson, William; Ribnicky, David; Cefalu, William T.

    2014-01-01

    A botanical extract from Artemisia dracunculus L., termed PMI 5011, has been shown previously to improve insulin sensitivity by increasing cellular insulin signaling in in vitro and in vivo studies. These studies suggest that PMI 5011 effects changes in phosphorylation levels of proteins involved in insulin signaling. To explore effects of this promising botanical extract on the human skeletal muscle phosphoproteome, changes in site-specific protein phosphorylation levels in primary skeletal muscle cultures from obese, insulin resistant individuals were evaluated with and without insulin stimulation. Insulin resistance is a condition in which a normal or elevated insulin level results in an abnormal biologic response, e.g., glucose uptake. Using isobaric tagging for relative and absolute quantification (iTRAQ™) followed by phosphopeptide enrichment and liquid chromatography – tandem mass spectrometry, 125 unique phosphopeptides and 159 unique phosphorylation sites from 80 unique proteins were identified and quantified. Insulin stimulation of primary cultured muscle cells from insulin resistant individuals resulted in minimal increase in phosphorylation, demonstrating impaired insulin action in this condition. Treatment with PMI 5011 resulted in significant up regulation of 35 phosphopeptides that were mapped to proteins participating in the regulation of transcription, translation, actin cytoskeleton signaling, caveolae translocation and GLUT4 transport. These data further showed that PMI 5011 increased phosphorylation levels of specific amino acids in proteins in the insulin resistant state that are normally phosphorylated by insulin (thus, increasing cellular insulin signaling) and PMI 5011 also increased the abundance of phosphorylation sites of proteins regulating anti-apoptotic effects. Thus, the phosphoproteomics analysis demonstrated conclusively that PMI 5011 effects changes in phosphorylation levels of proteins and identified novel pathways by which

  1. Additional disulfide bonds in insulin: Prediction, recombinant expression, receptor binding affinity, and stability

    PubMed Central

    Vinther, Tine N; Pettersson, Ingrid; Huus, Kasper; Schlein, Morten; Steensgaard, Dorte B; Sørensen, Anders; Jensen, Knud J; Kjeldsen, Thomas; Hubalek, František

    2015-01-01

    The structure of insulin, a glucose homeostasis-controlling hormone, is highly conserved in all vertebrates and stabilized by three disulfide bonds. Recently, we designed a novel insulin analogue containing a fourth disulfide bond located between positions A10-B4. The N-terminus of insulin's B-chain is flexible and can adapt multiple conformations. We examined how well disulfide bond predictions algorithms could identify disulfide bonds in this region of insulin. In order to identify stable insulin analogues with additional disulfide bonds, which could be expressed, the Cβ cut-off distance had to be increased in many instances and single X-ray structures as well as structures from MD simulations had to be used. The analogues that were identified by the algorithm without extensive adjustments of the prediction parameters were more thermally stable as assessed by DSC and CD and expressed in higher yields in comparison to analogues with additional disulfide bonds that were more difficult to predict. In contrast, addition of the fourth disulfide bond rendered all analogues resistant to fibrillation under stress conditions and all stable analogues bound to the insulin receptor with picomolar affinities. Thus activity and fibrillation propensity did not correlate with the results from the prediction algorithm. PMID:25627966

  2. Rosiglitazone improves insulin sensitivity with increased serum leptin levels in patients with type 2 diabetes mellitus.

    PubMed

    Kim, Hae Jin; Kim, Soo Kyung; Shim, Wan Sub; Lee, Jae Hyuk; Hur, Kyu Yeon; Kang, Eun Seok; Ahn, Chul Woo; Lim, Sung Kil; Lee, Hyun Chul; Cha, Bong Soo

    2008-07-01

    Rosiglitazone (RSG) is known to be an agonist for the peroxisome proliferator-activated receptor-gamma (PPARgamma) and promotes differentiation of pre-adipocytes into adipocytes. Leptin is highly correlated with adiposity, while the activation of PPARgamma is known to inhibit Lep gene expression and leptin release. This study was performed to evaluate the relationship between changes in circulating leptin levels, insulin sensitivity and regional adiposity after RSG treatment. Two hundred fifty-one type 2 diabetic patients (176 men and 75 women) who had been treated with sulfonylurea and/or metformin received 4 mg of RSG daily, in addition to the previous medications. Before and after RSG treatment (average duration 5.6+/-0.9 months), indices of insulin resistance, metabolic parameters, and serum leptin and adiponectin levels were measured. Abdominal subcutaneous fat thickness (SFT(max)) and visceral fat thickness were measured by sonography. After RSG treatment, HOMA-IR index decreased significantly (2.82+/-1.94 vs. 2.01+/-1.58), while BMI and SFT(max) increased, and leptin (4.72+/-3.77 vs. 5.69+/-4.30 ng/ml) and adiponectin levels (7.54+/-10.20 vs. 12.89+/-10.13 microg/ml) increased. The increase in serum leptin correlated with an increase in SFT(max) (r=0.511, p<0.001) and with a reduction in HOMA-IR (r=-0.368, p<0.001). The correlation of Delta leptin with Delta HOMA-IR and with Delta SFT(max) was higher in females and among insulin-resistant subjects. In conclusion, RSG improves the insulin sensitivity with increased serum leptin levels in patients with type 2 diabetes mellitus, which is related to an increase in subcutaneous adiposity.

  3. Insulin regulates enzyme activity, malonyl-CoA sensitivity and mRNA abundance of hepatic carnitine palmitoyltransferase-I.

    PubMed Central

    Park, E A; Mynatt, R L; Cook, G A; Kashfi, K

    1995-01-01

    The regulation of hepatic mitochondrial carnitine palmitoyltransferase-I (CPT-I) was studied in rats during starvation and insulin-dependent diabetes and in rat H4IIE cells. The Vmax. for CPT-I in hepatic mitochondrial outer membranes isolated from starved and diabetic rats increased 2- and 3-fold respectively over fed control values with no change in Km values for substrates. Regulation of malonyl-CoA sensitivity of CPT-I in isolated mitochondrial outer membranes was indicated by an 8-fold increase in Ki during starvation and by a 50-fold increase in Ki in the diabetic state. Peroxisomal and microsomal CPT also had decreased sensitivity to inhibition by malonyl-CoA during starvation. CPT-I mRNA abundance was 7.5 times greater in livers of 48-h-starved rats and 14.6 times greater in livers of insulin-dependent diabetic rats compared with livers of fed rats. In H4IIE cells, insulin increased CPT-I sensitivity to inhibition by malonyl-CoA in 4 h, and sensitivity continued to increase up to 24 h after insulin addition. CPT-I mRNA levels in H4IIE cells were decreased by insulin after 4 h and continued to decrease so that at 24 h there was a 10-fold difference. The half-life of CPT-I mRNA was 4 h in the presence of actinomycin D or with actinomycin D plus insulin. These results suggest that insulin regulates CPT-I by inhibiting transcription of the CPT-I gene. Images Figure 2 Figure 4 PMID:7575418

  4. A Genome-Wide siRNA Screen to Identify Modulators of Insulin Sensitivity and Gluconeogenesis

    PubMed Central

    Yang, Ruojing; Lacson, Raul G.; Castriota, Gino; Zhang, Xiaohua D.; Liu, Yaping; Zhao, Wenqing; Einstein, Monica; Camargo, Luiz Miguel; Qureshi, Sajjad; Wong, Kenny K.; Zhang, Bei B.; Ferrer, Marc; Berger, Joel P.

    2012-01-01

    Background Hepatic insulin resistance impairs insulin’s ability to suppress hepatic glucose production (HGP) and contributes to the development of type 2 diabetes (T2D). Although the interests to discover novel genes that modulate insulin sensitivity and HGP are high, it remains challenging to have a human cell based system to identify novel genes. Methodology/Principal Findings To identify genes that modulate hepatic insulin signaling and HGP, we generated a human cell line stably expressing beta-lactamase under the control of the human glucose-6-phosphatase (G6PC) promoter (AH-G6PC cells). Both beta-lactamase activity and endogenous G6PC mRNA were increased in AH-G6PC cells by a combination of dexamethasone and pCPT-cAMP, and reduced by insulin. A 4-gene High-Throughput-Genomics assay was developed to concomitantly measure G6PC and pyruvate-dehydrogenase-kinase-4 (PDK4) mRNA levels. Using this assay, we screened an siRNA library containing pooled siRNA targeting 6650 druggable genes and identified 614 hits that lowered G6PC expression without increasing PDK4 mRNA levels. Pathway analysis indicated that siRNA-mediated knockdown (KD) of genes known to positively or negatively affect insulin signaling increased or decreased G6PC mRNA expression, respectively, thus validating our screening platform. A subset of 270 primary screen hits was selected and 149 hits were confirmed by target gene KD by pooled siRNA and 7 single siRNA for each gene to reduce G6PC expression in 4-gene HTG assay. Subsequently, pooled siRNA KD of 113 genes decreased PEPCK and/or PGC1alpha mRNA expression thereby demonstrating their role in regulating key gluconeogenic genes in addition to G6PC. Last, KD of 61 of the above 113 genes potentiated insulin-stimulated Akt phosphorylation, suggesting that they suppress gluconeogenic gene by enhancing insulin signaling. Conclusions/Significance These results support the proposition that the proteins encoded by the genes identified in our cell

  5. Oxidative stress contributes to abnormal glucose metabolism and insulin sensitivity in two hyperlipidemia models

    PubMed Central

    Bai, Jiefei; Zheng, Shuang; Jiang, Dongdong; Han, Tingting; Li, Yangxue; Zhang, Yao; Liu, Wei; Cao, Yunshan; Hu, Yaomin

    2015-01-01

    Objective: Lipid metabolism disturbance can result in insulin resistance and glucose intolerance; however, the features of glucose metabolism are still elusive in different dyslipidemia. Our study intended to explore the characteristics and molecular mechanisms of glucose metabolism abnormal in hypercholesterolemia and hypertriglyceridemia models. Methods: Two mouse models were used in this study, one was lipoprotein lipase gene-deleted (LPL+/-) mice, and the other was high fat dietary (HFD) mice. Levels of total cholesterol (TC), triglyceride (TG), high-density lipoprotein-cholesterin (HDL-c) and low-density lipoprotein-cholesterin (LDL-c) in serum were measured by full-automatic biochemical analyzer. Intraperitoneal glucose tolerance test (IPGTT) was performed to evaluate insulin sensitivity and β-cell function. Malondialdehyde (MDA) and total superoxide dismutase (T-SOD) levels in serum were measured by colorimetric determination. mRNA expression of superoxide dismutase 1 (SOD1), catalase (CAT), glutathione peroxidase 1 (Gpx1), nuclear factor erythroid 2-related factor 2 (Nrf2a) and peroxisome proliferator-activated receptor-gamma coactivator 1 alpha (PGC-1α) in liver, skeletal muscle, visceral fat and subcutaneous fat were measured by Real-Time PCR. Results: Compared with HFD mice, the levels of serum TG were significantly higher in LPL+/- mice, whereas the levels of TC, HDL-c, LDL-c were significantly lower. The plasma glucose levels were increased at each time point of intra-peritoneal glucose tolerance test (IPGTT) in both groups. Furthermore, the level of serum fasting insulin and homeostasis model assessment index-insulin resistance (HOMA-IR) increased with a decreased ISI in both groups. In addition, the plasma MDA of HFD group was higher than that of lipoprotein lipase-deficiency (LPL+/-) group, while the activity of T-SOD in HFD group was lower than that in LPL+/- group. Real-Time PCR revealed that the expressions of SOD1, CAT and Gpx1 in liver and

  6. Investigation of insulin sensitivity in early diabetes III. The effect of a combined physical training and diet programme on body weight, serum lipids and insulin sensitivity in obese asymptomatic diabetics.

    PubMed

    Ratzmann, K P; Zander, E; Witt, S; Schulz, B

    1981-04-01

    The effect of a physical training and low caloric diet (700 calories/day) for 4 weeks on insulin sensitivity in vivo, body weight and serum lipids was investigated in 10 obese asymptomatic diabetics (normal fasting plasma glucose and pathological glucose tolerance). Glucose tolerance and insulin secretion pattern were characterized by means of a 2h-glucose infusion test (12 mg/kg/min) primed by an initial injection of 0.33 g/kg glucose. Insulin responsiveness in vivo was estimated by means of a 1h-insulin infusion test (two 30-min. periods of 8 and 16 mU/kg insulin MC-Actrapid, primed by initial injection of 1 and 2 mU/kg, respectively). Under comparable steady-state insulin levels the decrease in plasma glucose and free fatty acids (FFA) was considered as estimate of insulin sensitivity in vivo. Physical working capacity (PWC170) was determined by means of a bicycle ergometer test in stepwise working loads. The training programme consisted of daily 15 min. bicycle ergometer training periods (75% of the maximal working capacity) in the morning and a 1 h mild physical training on a bicycle in the afternoon. After the combined training and diet programme the mean decrease in absolute and relative body weight amounted to 11.9 +/- 1.07 kg and 16.7 +/- 1.2%, respectively. There was a significant decrease of plasma triglycerides whereas the decrease in cholesterol was modest. Physical fitness increased by delta PWC170 of 31.1 +/- 11.6 W. In addition, the combined training and diet programme for 4 weeks resulted in a significant improvement of insulin sensitivity in vivo as indicated by an augmented insulin-induced decrease in plasma glucose and FFA (17.60 +/- 3.91%, vs 36.40 +/- 5.54%; p less than 0.05 and 35.90 +/- 6.95% vs 56.50 +/- 3.63%; p less than 0.05; respectively). Our findings provide direct evidence that physical training and low caloric diet enhance insulin sensitivity in vivo. From the practical point of view our results suggest the potential benefits of

  7. Insulin resistance: an additional risk factor in the pathogenesis of cardiovascular disease in type 2 diabetes.

    PubMed

    Patel, Tushar P; Rawal, Komal; Bagchi, Ashim K; Akolkar, Gauri; Bernardes, Nathalia; Dias, Danielle da Silva; Gupta, Sarita; Singal, Pawan K

    2016-01-01

    Sedentary life style and high calorie dietary habits are prominent leading cause of metabolic syndrome in modern world. Obesity plays a central role in occurrence of various diseases like hyperinsulinemia, hyperglycemia and hyperlipidemia, which lead to insulin resistance and metabolic derangements like cardiovascular diseases (CVDs) mediated by oxidative stress. The mortality rate due to CVDs is on the rise in developing countries. Insulin resistance (IR) leads to micro or macro angiopathy, peripheral arterial dysfunction, hampered blood flow, hypertension, as well as the cardiomyocyte and the endothelial cell dysfunctions, thus increasing risk factors for coronary artery blockage, stroke and heart failure suggesting that there is a strong association between IR and CVDs. The plausible linkages between these two pathophysiological conditions are altered levels of insulin signaling proteins such as IR-β, IRS-1, PI3K, Akt, Glut4 and PGC-1α that hamper insulin-mediated glucose uptake as well as other functions of insulin in the cardiomyocytes and the endothelial cells of the heart. Reduced AMPK, PFK-2 and elevated levels of NADP(H)-dependent oxidases produced by activated M1 macrophages of the adipose tissue and elevated levels of circulating angiotensin are also cause of CVD in diabetes mellitus condition. Insulin sensitizers, angiotensin blockers, superoxide scavengers are used as therapeutics in the amelioration of CVD. It evidently becomes important to unravel the mechanisms of the association between IR and CVDs in order to formulate novel efficient drugs to treat patients suffering from insulin resistance-mediated cardiovascular diseases. The possible associations between insulin resistance and cardiovascular diseases are reviewed here. PMID:26542377

  8. Jicama (Pachyrhizus erosus) extract increases insulin sensitivity and regulates hepatic glucose in C57BL/Ksj-db/db mice

    PubMed Central

    Park, Chan Joo; Lee, Hyun-Ah; Han, Ji-Sook

    2016-01-01

    This study investigated the effect of jicama extract on hyperglycemia and insulin sensitivity in an animal model of type 2 diabetes. Male C57BL/Ksj-db/db mice were divided into groups subsequently fed a regular diet (controls), or diet supplemented with jicama extract, and rosiglitazone. After 6 weeks, blood levels of glucose and glycosylated hemoglobin were significantly lower in animals administered the jicama extract than the control group. Additionally, glucose and insulin tolerance tests showed that jicama extract increased insulin sensitivity. The homeostatic index of insulin resistance was lower in the jicama extract-treated group than in the diabetic control group. Administration of jicama extract significantly enhanced the expressions of the phosphorylated AMP-activated protein kinase and Akt substrate of 160 kDa, and plasma membrane glucose transporter type 4 in skeletal muscle. Jicama extract administration also decreased the expressions of glucose 6-phosphatase and phosphoenol pyruvate carboxykinase in the liver. Jicama extract may increases insulin sensitivity and inhibites the gluconeogenesis in the liver. PMID:26798198

  9. Jicama (Pachyrhizus erosus) extract increases insulin sensitivity and regulates hepatic glucose in C57BL/Ksj-db/db mice.

    PubMed

    Park, Chan Joo; Lee, Hyun-Ah; Han, Ji-Sook

    2016-01-01

    This study investigated the effect of jicama extract on hyperglycemia and insulin sensitivity in an animal model of type 2 diabetes. Male C57BL/Ksj-db/db mice were divided into groups subsequently fed a regular diet (controls), or diet supplemented with jicama extract, and rosiglitazone. After 6 weeks, blood levels of glucose and glycosylated hemoglobin were significantly lower in animals administered the jicama extract than the control group. Additionally, glucose and insulin tolerance tests showed that jicama extract increased insulin sensitivity. The homeostatic index of insulin resistance was lower in the jicama extract-treated group than in the diabetic control group. Administration of jicama extract significantly enhanced the expressions of the phosphorylated AMP-activated protein kinase and Akt substrate of 160 kDa, and plasma membrane glucose transporter type 4 in skeletal muscle. Jicama extract administration also decreased the expressions of glucose 6-phosphatase and phosphoenol pyruvate carboxykinase in the liver. Jicama extract may increases insulin sensitivity and inhibites the gluconeogenesis in the liver. PMID:26798198

  10. Aerobic exercise increases peripheral and hepatic insulin sensitivity in sedentary adolescents

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Data are limited on the effects of controlled aerobic exercise programs (without weight loss) on insulin sensitivity and glucose metabolism in children and adolescents. To determine whether a controlled aerobic exercise program (without weight loss) improves peripheral and hepatic insulin sensitivi...

  11. Endocrinization of FGF1 produces a neomorphic and potent insulin sensitizer

    PubMed Central

    Suh, Jae Myoung; Jonker, Johan W.; Ahmadian, Maryam; Goetz, Regina; Lackey, Denise; Osborn, Olivia; Huang, Zifeng; Liu, Weilin; Yoshihara, Eiji; van Dijk, Theo; Havinga, Rick; Fan, Weiwei; Yin, Yun-Qiang; Yu, Ruth T.; Liddle, Christopher; Atkins, Annette R.; Olefsky, Jerrold M.; Mohammadi, Moosa; Downes, Michael; Evans, Ronald M.

    2014-01-01

    FGF1 is an autocrine/paracrine regulator whose binding to heparan sulfate proteoglycans effectively precludes its circulation 1,2. Though known as a mitogenic factor, FGF1 knockout mice develop insulin resistance when stressed by a high fat diet, suggesting a potential role in nutrient homeostasis 3,4. Here we show that parenteral delivery of a single dose of recombinant FGF1 (rFGF1) results in potent, insulin-dependent glucose lowering in diabetic mice that is dose-dependent, but does not lead to hypoglycemia. Chronic pharmacological rFGF1 treatment increases insulin-dependent glucose uptake in skeletal muscle and suppresses hepatic glucose production to achieve whole-body insulin sensitization. The sustained glucose lowering and insulin sensitization attributed to rFGF1 are not accompanied by the side effects of weight gain, liver steatosis and bone loss associated with current insulin sensitizing therapies. Furthermore, we demonstrate that the glucose lowering activity of FGF1 can be dissociated from its mitogenic activity and is mediated predominantly via FGF receptor 1 (FGFR1) signaling. In summary, we have uncovered an unexpected, neomorphic insulin sensitizing action for exogenous non-mitogenic human FGF1 with therapeutic potential for treatment of insulin resistance and type 2 diabetes. PMID:25043058

  12. 5,7-Dihydroxy-6-geranylflavanone improves insulin sensitivity through PPARα/γ dual activation.

    PubMed

    Lee, Woojung; Yoon, Goo; Kim, Min Cheol; Kwon, Hak Cheol; Bae, Gyu-Un; Kim, Yong Kee; Kim, Su-Nam

    2016-05-01

    In the present study, we demonstrate that 5,7-dihydroxy-6-geranylflavanone (DGF) isolated from Amorpha fruticosa (A. fruticosa) is a novel peroxisome proliferator-activated receptor (PPAR)α/γ dual agonist which may be used to improve insulin sensitivity. The extract from A. fruticosa increased the transcriptional activity of both PPARα and PPARγ which was, in part, driven by the active ingredient DGF. Treatment with DGF markedly enhanced the adipogenesis of 3T3-L1 preadipocytes, which was comparable to the effect of the PPARγ agonist, troglitazone. In addition, DGF was found to enhance fatty acid oxidation and glucose utilization through the dual activation of PPARα/γ. In addition treatment with DGF led to an improvement in insulin sensitivity, resulting in enhanced glucose uptake in muscle cells. The findings of our study data suggest that DGF may be used as potential therapeutic agent in the treatment of type 2 diabetes and related metabolic disorders by enhancing glucose and lipid metabolism. PMID:26986637

  13. Endocrine Determinants of Changes in Insulin Sensitivity and Insulin Secretion during a Weight Cycle in Healthy Men

    PubMed Central

    Karschin, Judith; Lagerpusch, Merit; Enderle, Janna; Eggeling, Ben; Müller, Manfred J.; Bosy-Westphal, Anja

    2015-01-01

    Objective Changes in insulin sensitivity (IS) and insulin secretion occur with perturbations in energy balance and glycemic load (GL) of the diet that may precede the development of insulin resistance and hyperinsulinemia. Determinants of changes in IS and insulin secretion with weight cycling in non-obese healthy subjects remain unclear. Methods In a 6wk controlled 2-stage randomized dietary intervention 32 healthy men (26±4y, BMI: 24±2kg/m2) followed 1wk of overfeeding (OF), 3wks of caloric restriction (CR) containing either 50% or 65% carbohydrate (CHO) and 2wks of refeeding (RF) with the same amount of CHO but either low or high glycaemic index at ±50% energy requirement. Measures of IS (basal: HOMA-index, postprandial: Matsuda-ISI), insulin secretion (early: Stumvoll-index, total: tAUC-insulin/tAUC-glucose) and potential endocrine determinants (ghrelin, leptin, adiponectin, thyroid hormone levels, 24h-urinary catecholamine excretion) were assessed. Results IS improved and insulin secretion decreased due to CR and normalized upon RF. Weight loss-induced improvements in basal and postprandial IS were associated with decreases in leptin and increases in ghrelin levels, respectively (r = 0.36 and r = 0.62, p<0.05). Weight regain-induced decrease in postprandial IS correlated with increases in adiponectin, fT3, TSH, GL of the diet and a decrease in ghrelin levels (r-values between -0.40 and 0.83, p<0.05) whereas increases in early and total insulin secretion were associated with a decrease in leptin/adiponectin-ratio (r = -0.52 and r = -0.46, p<0.05) and a decrease in fT4 (r = -0.38, p<0.05 for total insulin secretion only). After controlling for GL associations between RF-induced decrease in postprandial IS and increases in fT3 and TSH levels were no longer significant. Conclusion Weight cycling induced changes in IS and insulin secretion were associated with changes in all measured hormones, except for catecholamine excretion. While leptin, adiponectin and

  14. Insulin Sensitivity and β-Cell Function Improve after Gastric Bypass in Severely Obese Adolescents

    PubMed Central

    Inge, Thomas H.; Prigeon, Ronald L.; Elder, Deborah A.; Jenkins, Todd M.; Cohen, Robert M.; Xanthakos, Stavra A.; Benoit, Stephen C.; Dolan, Lawrence M.; Daniels, Stephen R.; D’Alessio, David A.

    2016-01-01

    Objective To test the hypothesis that insulin secretion and insulin sensitivity would be improved in adolescents after Roux-en-Y gastric bypass (RYGB). Study design A longitudinal study of 22 adolescents and young adults without diabetes undergoing laparoscopic RYGB (mean age 17.1 ± 1.42 years; range 14.5–20.1; male/female 8/14; Non-Hispanic White/African American 17/5) was conducted. Intravenous glucose tolerance tests were done to obtain insulin sensitivity (insulin sensitivity index), insulin secretion (acute insulin response to glucose), and the disposition index as primary outcome variables. These variables were compared over the 1 year of observation using linear mixed modeling. Results In the 1-year following surgery, body mass index fell by 38% from a mean of 61 ± 12.3 to 39 ± 8.0 kg/m2 (P < .01). Over the year following surgery, fasting glucose and insulin values declined by 54% and 63%, respectively. Insulin sensitivity index increased 300% (P < .01), acute insulin response to glucose decreased 56% (P < .01), leading to a nearly 2-fold increase in the disposition index (P < .01). Consistent with improved β-cell function, the proinsulin to C-peptide ratio decreased by 21% (P < .01). Conclusions RYGB reduced body mass index and improved both insulin sensitivity and β-cell function in severely obese teens and young adults. These findings demonstrate that RYGB is associated with marked metabolic improvements in obese young people even as significant obesity persists. Trial registration ClinicalTrials.gov: NCT00360373. PMID:26363548

  15. Relationship between Insulin Sensitivity and Muscle Lipids may Differ with Muscle Group and Ethnicity

    PubMed Central

    Lawrence, Jeannine C.; Gower, Barbara A.; Garvey, W. Timothy; Muñoz, A. Julian; Darnell, Betty E.; Oster, Robert A.; Buchthal, Steven D.; Goran, Michael I.; Newcomer, Bradley R.

    2011-01-01

    Intramyocellular lipid (IMCL) has been inversely associated with insulin sensitivity in some, but not all, studies. This study utilized fast, high-resolution, magnetic resonance spectroscopic imaging (MRSI) to: investigate relationships between muscle lipids (IMCL and extramyocellular lipid (EMCL)) and insulin sensitivity in muscles of varying oxidative capacity, explore ethnic differences in these relationships, and determine whether a eucaloric, low-fat dietary intervention would reduce IMCL and increase insulin sensitivity. Subjects were 30 healthy, African-American (AA; n=14) and European-American (EA; n=16) males, BMI 26.49 (±5.57) kg/m2, age 21.80 (±7.84) yrs. Soleus and tibialis anterior muscle lipids were quantified using MRSI. Insulin sensitivity was assessed via intravenous glucose tolerance test. A 2-week, eucaloric, low-fat diet intervention was conducted in a sub-group (n=12) subjects with assessments at baseline and post-intervention. Neither IMCL nor EMCL levels differed between ethnicities. In the total group, and within EA (but not AA), both tibialis anterior IMCL and EMCL were inversely associated with insulin sensitivity (P<0.05 for both); soleus muscle lipids were not associated with insulin sensitivity. Soleus, but not tibialis anterior, IMCL declined in both ethnic groups (average 25.3%; p<0.01) following dietary intervention; insulin sensitivity was unchanged. Results suggest that an association of muscle lipids with insulin sensitivity may be influenced by the oxidative capacity of the muscle group studied and may vary with ethnicity. PMID:22039395

  16. Differential insulin sensitivities of glucose, amino acid, and albumin metabolism in elderly men and women.

    PubMed

    Boirie, Y; Gachon, P; Cordat, N; Ritz, P; Beaufrère, B

    2001-02-01

    Regulation of glucose homeostasis by insulin is modified during aging, but whether this alteration is associated with changes in protein metabolism is less defined. Insulin dose responses of whole body glucose, leucine, and albumin metabolism have been investigated using isotopic dilution of D-[6, 6-(2)H(2)]glucose and L-[1-(13)C]leucine in 14 young (Y; 24.0 +/- 0.9 yr; mean +/- SEM, 20.5 +/- 0.4 kg/m(2)) and 12 healthy elderly subjects (E; 69.4 +/- 0.6 yr; 24.6 +/- 0.8 kg/m(2)) using a euglycemic and euaminoacidemic hyperinsulinemic clamp at two insulin infusion rates of 0.2 and 0.5 mU/kg.min (CL1 and CL2, respectively). Despite significantly higher plasma insulin in E than in Y, the glucose disposal rate was lower in E than in Y at both insulin levels, whereas glucose production was normally suppressed. Whole body protein breakdown was less inhibited by insulin in E than in Y at CL1 (-13.5 +/- 1.4% vs. -8.8 +/- 1.3%, Y vs. E, P < 0.05), but not significantly at CL2 (-22.0 +/- 1.4% vs. -18.8 +/- 1.7%, Y vs. E, P = NS). The albumin synthesis rate was identical and stimulated to the same extent by insulin in groups Y and E. Gender affected basal leucine metabolism, but the response to insulin was similar in both groups. In conclusion, decreased insulin action on glucose disposal is associated with a reduced insulin sensitivity for protein breakdown in healthy elderly subjects at low insulin concentrations. Higher insulin levels compensate for a reduced insulin action on protein metabolism in elderly subjects. PMID:11158022

  17. AgRP Neurons Control Systemic Insulin Sensitivity via Myostatin Expression in Brown Adipose Tissue.

    PubMed

    Steculorum, Sophie M; Ruud, Johan; Karakasilioti, Ismene; Backes, Heiko; Engström Ruud, Linda; Timper, Katharina; Hess, Martin E; Tsaousidou, Eva; Mauer, Jan; Vogt, Merly C; Paeger, Lars; Bremser, Stephan; Klein, Andreas C; Morgan, Donald A; Frommolt, Peter; Brinkkötter, Paul T; Hammerschmidt, Philipp; Benzing, Thomas; Rahmouni, Kamal; Wunderlich, F Thomas; Kloppenburg, Peter; Brüning, Jens C

    2016-03-24

    Activation of Agouti-related peptide (AgRP) neurons potently promotes feeding, and chronically altering their activity also affects peripheral glucose homeostasis. We demonstrate that acute activation of AgRP neurons causes insulin resistance through impairment of insulin-stimulated glucose uptake into brown adipose tissue (BAT). AgRP neuron activation acutely reprograms gene expression in BAT toward a myogenic signature, including increased expression of myostatin. Interference with myostatin activity improves insulin sensitivity that was impaired by AgRP neurons activation. Optogenetic circuitry mapping reveals that feeding and insulin sensitivity are controlled by both distinct and overlapping projections. Stimulation of AgRP → LHA projections impairs insulin sensitivity and promotes feeding while activation of AgRP → anterior bed nucleus of the stria terminalis (aBNST)vl projections, distinct from AgRP → aBNSTdm projections controlling feeding, mediate the effect of AgRP neuron activation on BAT-myostatin expression and insulin sensitivity. Collectively, our results suggest that AgRP neurons in mice induce not only eating, but also insulin resistance by stimulating expression of muscle-related genes in BAT, revealing a mechanism by which these neurons rapidly coordinate hunger states with glucose homeostasis. PMID:27015310

  18. Adipose Tissue Promotes a Serum Cytokine Profile Related to Lower Insulin Sensitivity after Chronic Central Leptin Infusion

    PubMed Central

    Burgos-Ramos, Emma; Canelles, Sandra; Perianes-Cachero, Arancha; Arilla-Ferreiro, Eduardo; Argente, Jesús; Barrios, Vicente

    2012-01-01

    Obesity is an inflammatory state characterized by an augment in circulating inflammatory factors. Leptin may modulate the synthesis of these factors by white adipose tissue decreasing insulin sensitivity. We have examined the effect of chronic central administration of leptin on circulating levels of cytokines and the possible relationship with cytokine expression and protein content as well as with leptin and insulin signaling in subcutaneous and visceral adipose tissues. In addition, we analyzed the possible correlation between circulating levels of cytokines and peripheral insulin resistance. We studied 18 male Wistar rats divided into controls (C), those treated icv for 14 days with a daily dose of 12 μg of leptin (L) and a pair-fed group (PF) that received the same food amount consumed by the leptin group. Serum leptin and insulin were measured by ELISA, mRNA levels of interferon-γ (IFN-γ), interleukin-2 (IL-2), IL-4, IL-6, IL-10 and tumor necrosis factor-α (TNF-α) by real time PCR and serum and adipose tissue levels of these cytokines by multiplexed bead immunoassay. Serum leptin, IL-2, IL-4, IFN-γ and HOMA-IR were increased in L and TNF-α was decreased in PF and L. Serum leptin and IL-2 levels correlate positively with HOMA-IR index and negatively with serum glucose levels during an ip insulin tolerance test. In L, an increase in mRNA levels of IL-2 was found in both adipose depots and IFN-γ only in visceral tissue. Activation of leptin signaling was increased and insulin signaling decreased in subcutaneous fat of L. In conclusion, leptin mediates the production of inflammatory cytokines by adipose tissue independent of its effects on food intake, decreasing insulin sensitivity. PMID:23056516

  19. Important genetic checkpoints for insulin resistance in salt-sensitive (S) Dahl rats

    PubMed Central

    Shehata, Marlene F

    2008-01-01

    Despite the marked advances in research on insulin resistance (IR) in humans and animal models of insulin resistance, the mechanisms underlying high salt-induced insulin resistance remain unclear. Insulin resistance is a multifactorial disease with both genetic and environmental factors (such as high salt) involved in its pathogenesis. High salt triggers insulin resistance in genetically susceptible patients and animal models of insulin resistance. One of the mechanisms by which high salt might precipitate insulin resistance is through its ability to enhance an oxidative stress-induced inflammatory response that disrupts the insulin signaling pathway. The aim of this hypothesis is to discuss two complementary approaches to find out how high salt might interact with genetic defects along the insulin signaling and inflammatory pathways to predispose to insulin resistance in a genetically susceptible model of insulin resistance. The first approach will consist of examining variations in genes involved in the insulin signaling pathway in the Dahl S rat (an animal model of insulin resistance and salt-sensitivity) and the Dahl R rat (an animal model of insulin sensitivity and salt-resistance), and the putative cellular mechanisms responsible for the development of insulin resistance. The second approach will consist of studying the over-expressed genes along the inflammatory pathway whose respective activation might be predictive of high salt-induced insulin resistance in Dahl S rats. Variations in genes encoding the insulin receptor substrates -1 and/or -2 (IRS-1, -2) and/or genes encoding the glucose transporter (GLUTs) proteins have been found in patients with insulin resistance. To better understand the combined contribution of excessive salt and genetic defects to the etiology of the disease, it is essential to investigate the following question: Question 1: Do variations in genes encoding the IRS -1 and -2 and/or genes encoding the GLUTs proteins predict high salt

  20. pH sensitive N-succinyl chitosan grafted polyacrylamide hydrogel for oral insulin delivery.

    PubMed

    Mukhopadhyay, Piyasi; Sarkar, Kishor; Bhattacharya, Sourav; Bhattacharyya, Aditi; Mishra, Roshnara; Kundu, P P

    2014-11-01

    pH sensitive PAA/S-chitosan hydrogel was prepared using ammonium persulfate (APS) as an initiator and methylenebisacrylamide (MBA) as a crosslinker for oral insulin delivery. The synthesized copolymer was characterized by Fourier transform infrared spectroscopy (FT-IR) and X-ray diffraction (XRD) study; morphology was observed under scanning electron microscope (SEM). The PAA/S-chitosan with ∼ 38% of insulin loading efficiency (LE) and ∼ 76% of insulin encapsulation efficiency (EE), showed excellent pH sensitivity, retaining ∼ 26% of encapsulated insulin in acidic stomach pH 1.2 and releasing of ∼ 98% of insulin in the intestine (pH 7.4), providing a prolonged attachment with the intestinal tissue. The oral administration of insulin loaded PAA/S-chitosan hydrogel was successful in lowering the blood glucose level of diabetic mice. The bioavailability of insulin was ∼ 4.43%. Furthermore, no lethality or toxicity was documented after its peroral administration. Thus, PAA/S-chitosan hydrogel could serve as a promising oral insulin carrier in future. PMID:25129792

  1. Normocaloric Diet Restores Weight Gain and Insulin Sensitivity in Obese Mice

    PubMed Central

    Lombardo, Giovanni Enrico; Arcidiacono, Biagio; De Rose, Roberta Francesca; Lepore, Saverio Massimo; Costa, Nicola; Montalcini, Tiziana; Brunetti, Antonio; Russo, Diego; De Sarro, Giovambattista; Celano, Marilena

    2016-01-01

    An increased incidence of obesity is registered worldwide, and its association with insulin resistance and type 2 diabetes is closely related with increased morbidity and mortality for cardiovascular diseases. A major clinical problem in the management of obesity is the non-adherence or low adherence of patients to a hypocaloric dietetic restriction. In this study, we evaluated in obese mice the effects of shifting from high-calorie foods to normal diet on insulin sensitivity. Male C57BL/6JOlaHsd mice (n = 20) were fed with high fat diet (HFD) for a 24-week period. Afterward, body weight, energy, and food intake were measured in all animals, together with parameters of insulin sensitivity by homeostatic model assessment of insulin resistance and plasma glucose levels in response to insulin administration. Moreover, in half of these mice, Glut4 mRNA levels were measured in muscle at the end of the high fat treatment, whereas the rest of the animals (n = 10) were shifted to normocaloric diet (NCD) for 10 weeks, after which the same analyses were carried out. A significant reduction of body weight was found after the transition from high to normal fat diet, and this decrease correlated well with an improvement in insulin sensitivity. In fact, we found a reduction in serum insulin levels and the recovery of insulin responsiveness in terms of glucose disposal measured by insulin tolerance test and Glut4 mRNA and protein expression. These results indicate that obesity-related insulin resistance may be rescued by shifting from HFD to NCD. PMID:27303363

  2. Genetic variants associated with glycine metabolism and their role in insulin sensitivity and type 2 diabetes.

    PubMed

    Xie, Weijia; Wood, Andrew R; Lyssenko, Valeriya; Weedon, Michael N; Knowles, Joshua W; Alkayyali, Sami; Assimes, Themistocles L; Quertermous, Thomas; Abbasi, Fahim; Paananen, Jussi; Häring, Hans; Hansen, Torben; Pedersen, Oluf; Smith, Ulf; Laakso, Markku; Dekker, Jacqueline M; Nolan, John J; Groop, Leif; Ferrannini, Ele; Adam, Klaus-Peter; Gall, Walter E; Frayling, Timothy M; Walker, Mark

    2013-06-01

    Circulating metabolites associated with insulin sensitivity may represent useful biomarkers, but their causal role in insulin sensitivity and diabetes is less certain. We previously identified novel metabolites correlated with insulin sensitivity measured by the hyperinsulinemic-euglycemic clamp. The top-ranking metabolites were in the glutathione and glycine biosynthesis pathways. We aimed to identify common genetic variants associated with metabolites in these pathways and test their role in insulin sensitivity and type 2 diabetes. With 1,004 nondiabetic individuals from the RISC study, we performed a genome-wide association study (GWAS) of 14 insulin sensitivity-related metabolites and one metabolite ratio. We replicated our results in the Botnia study (n = 342). We assessed the association of these variants with diabetes-related traits in GWAS meta-analyses (GENESIS [including RISC, EUGENE2, and Stanford], MAGIC, and DIAGRAM). We identified four associations with three metabolites-glycine (rs715 at CPS1), serine (rs478093 at PHGDH), and betaine (rs499368 at SLC6A12; rs17823642 at BHMT)-and one association signal with glycine-to-serine ratio (rs1107366 at ALDH1L1). There was no robust evidence for association between these variants and insulin resistance or diabetes. Genetic variants associated with genes in the glycine biosynthesis pathways do not provide consistent evidence for a role of glycine in diabetes-related traits.

  3. [Effects of doxazosin and hydralazine on insulin sensitivity and sympathetic function in spontaneously hypertensive rat (SHR)].

    PubMed

    Takahashi, A; Kushiro, T; Kanmatsuse, K

    1998-05-01

    Since insulin resistance and/or hyperinsulinemia may contribute to structural changes of the vascular wall, the influence of antihypertensive agents on insulin sensitivity could interfere with the long term outcome of blood pressure reduction. Although it is postulated that increased peripheral circulation due to vasodilating agents improves insulin sensitivity, reflex sympathetic activation elicited by blood pressure reduction may influence insulin sensitivity. Thus we investigated the different effects of an alpha blocker (doxazosin) as well as a direct vasodilation (hydralazine) on insulin sensitivity and on sympathetic function in spontaneously hypertensive rats (SHR). Doxazosin and hydralazine decreased mean arterial pressure to a similar extent. Doxazosin, but not hydralazine decreased steady state blood glucose. Plasma norepinephrine increased in doxazosin and hydralazine treated groups as compared to the control group. Thus, despite their similar effects on blood pressure and plasma norepinephrine, alpha-1 blocker improved insulin sensitivity while the direct vasodilator failed to do so, and this difference is probably related to blockade of the alpha-1 receptor rather than to peripheral vasodilation.

  4. Effects of eicosapentaenoic acid (EPA) treatment on insulin sensitivity in an animal model of diabetes: improvement of the inflammatory status.

    PubMed

    Figueras, Maite; Olivan, Mireia; Busquets, Sílvia; López-Soriano, Francisco J; Argilés, Josep M

    2011-02-01

    In addition to decreased insulin sensitivity, diabetes is a pathological condition associated with increased inflammation. The ω-3 fatty acids have been proposed as anti-inflammatory agents. Thus, the major goal of this study was to analyze the effects of fatty acid supplementation on both insulin sensitivity and inflammatory status in an animal model of type 2 diabetes. Diabetic rats (Goto-Kakizaki model) were treated with eicosapentaenoic acid (EPA) or linoleic acid at 0.5 g/kg body weigh (bw) dose. In vivo incorporation of (14)C-triolein into adipose tissue was improved by the ω-3 administration. In vitro incubations of adipose tissue slices from EPA-treated rats showed an increase in (14)C-palmitate incorporation into the lipid fraction. These observations were linked with a decreased rate of fatty acid oxidation. EPA treatment resulted in a decreased fatty acid oxidation in incubated strips from extensor digitorum longus (EDL) muscles. The changes in lipid utilization were associated with a decrease in insulin plasma concentration, suggesting an improvement in insulin sensitivity. These changes in lipid metabolism were associated with an activation of AMP-activated protein kinase (AMPK) in white adipose tissue. In addition, EPA treatment resulted in a decreased content of peroxisome proliferator-activated receptor-α (PPARα) and PPARδ and in increased GLUT4 expression in skeletal muscle. Moreover, EPA increased 2-deoxy-D-[(14)C]glucose (2-DOG) uptake in C2C12 myotubes, suggesting an improvement in glucose metabolism. Concerning the inflammatory status, EPA treatment resulted in a decreased gene expression for both tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) both in skeletal muscle and adipose tissue. The data suggest that EPA treatment to diabetic rats clearly improves lipid metabolism although the evidences on insulin sensitization are less clear. PMID:20885391

  5. Effects of eicosapentaenoic acid (EPA) treatment on insulin sensitivity in an animal model of diabetes: improvement of the inflammatory status.

    PubMed

    Figueras, Maite; Olivan, Mireia; Busquets, Sílvia; López-Soriano, Francisco J; Argilés, Josep M

    2011-02-01

    In addition to decreased insulin sensitivity, diabetes is a pathological condition associated with increased inflammation. The ω-3 fatty acids have been proposed as anti-inflammatory agents. Thus, the major goal of this study was to analyze the effects of fatty acid supplementation on both insulin sensitivity and inflammatory status in an animal model of type 2 diabetes. Diabetic rats (Goto-Kakizaki model) were treated with eicosapentaenoic acid (EPA) or linoleic acid at 0.5 g/kg body weigh (bw) dose. In vivo incorporation of (14)C-triolein into adipose tissue was improved by the ω-3 administration. In vitro incubations of adipose tissue slices from EPA-treated rats showed an increase in (14)C-palmitate incorporation into the lipid fraction. These observations were linked with a decreased rate of fatty acid oxidation. EPA treatment resulted in a decreased fatty acid oxidation in incubated strips from extensor digitorum longus (EDL) muscles. The changes in lipid utilization were associated with a decrease in insulin plasma concentration, suggesting an improvement in insulin sensitivity. These changes in lipid metabolism were associated with an activation of AMP-activated protein kinase (AMPK) in white adipose tissue. In addition, EPA treatment resulted in a decreased content of peroxisome proliferator-activated receptor-α (PPARα) and PPARδ and in increased GLUT4 expression in skeletal muscle. Moreover, EPA increased 2-deoxy-D-[(14)C]glucose (2-DOG) uptake in C2C12 myotubes, suggesting an improvement in glucose metabolism. Concerning the inflammatory status, EPA treatment resulted in a decreased gene expression for both tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) both in skeletal muscle and adipose tissue. The data suggest that EPA treatment to diabetic rats clearly improves lipid metabolism although the evidences on insulin sensitization are less clear.

  6. Effects of intravenous neuropeptide Y on insulin secretion and insulin sensitivity in skeletal muscle in normal rats.

    PubMed

    Vettor, R; Pagano, C; Granzotto, M; Englaro, P; Angeli, P; Blum, W F; Federspil, G; Rohner-Jeanrenaud, F; Jeanrenaud, B

    1998-11-01

    Intracerebroventricular administration of neuropeptide Y to normal rats induces a syndrome characterised by obesity, hyperinsulinaemia, insulin resistance and over expression of the adipose tissue ob gene. Little is known about the effect of circulating neuropeptide Y on glucose metabolism, insulin secretion and leptin. We therefore aimed to evaluate the effect of an intravenous infusion of neuropeptide Y on glucose disposal, endogenous glucose production, whole body glycolytic flux, and glucose storage as assessed during euglycaemic hyperinsulinaemic clamp. In addition, the insulin-stimulated glucose utilisation index in individual tissues was measured by the 2-deoxy-[1-3H]-glucose technique. The effect of neuropeptide Y on insulin secretion was evaluated by hyperglycaemic clamp. Infusion did not induce any change in endogenous glucose production during basal conditions or at the end of the clamp. Glucose disposal was significantly increased in the rats given neuropeptide Y compared with controls (27.8 +/- 1.3 vs 24.3 +/- 1.6 mg x min(-1) x kg(-1); p < 0.05) as was the glycolytic flux (18.9 +/- 1.6 vs 14.4 +/- 0.8 mg x min(-1) x kg(-1); p < 0.05), while glucose storage was comparable in the two groups. In skeletal muscle, the glucose utilisation index was increased significantly in rats given neuropeptide Y. The glucose utilisation index in subcutaneous and epididimal adipose tissue was not significantly different between the two groups. Plasma leptin was significantly increased by hyperinsulinaemia, but was not affected by neuropeptide Y infusion. Both the early and late phase of the insulin response to hyperglycaemia were significantly reduced by neuropeptide Y. In conclusion neuropeptide Y infusion may increase insulin-induced glucose disposal in normal rats, accelerating its utilisation through the glycolytic pathway. Neuropeptide Y reduces both phases of the insulin response to hyperglycaemia.

  7. Evidence in Obese Children: Contribution of Hyperlipidemia, Obesity-Inflammation, and Insulin Sensitivity

    PubMed Central

    Chang, Chi-Jen; Jian, Deng-Yuan; Lin, Ming-Wei; Zhao, Jun-Zhi; Ho, Low-Tone; Juan, Chi-Chang

    2015-01-01

    Background Evidence shows a high incidence of insulin resistance, inflammation and dyslipidemia in adult obesity. The aim of this study was to assess the relevance of inflammatory markers, circulating lipids, and insulin sensitivity in overweight/obese children. Methods We enrolled 45 male children (aged 6 to 13 years, lean control = 16, obese = 19, overweight = 10) in this study. The plasma total cholesterol, HDL cholesterol, triglyceride, glucose and insulin levels, the circulating levels of inflammatory factors, such as TNF-α, IL-6, and MCP-1, and the high-sensitive CRP level were determined using quantitative colorimetric sandwich ELISA kits. Results Compared with the lean control subjects, the obese subjects had obvious insulin resistance, abnormal lipid profiles, and low-grade inflammation. The overweight subjects only exhibited significant insulin resistance and low-grade inflammation. Both TNF-α and leptin levels were higher in the overweight/obese subjects. A concurrent correlation analysis showed that body mass index (BMI) percentile and fasting insulin were positively correlated with insulin resistance, lipid profiles, and inflammatory markers but negatively correlated with adiponectin. A factor analysis identified three domains that explained 74.08% of the total variance among the obese children (factor 1: lipid, 46.05%; factor 2: obesity-inflammation, 15.38%; factor 3: insulin sensitivity domains, 12.65%). Conclusions Our findings suggest that lipid, obesity-inflammation, and insulin sensitivity domains predominantly exist among obese children. These factors might be applied to predict the outcomes of cardiovascular diseases in the future. PMID:26011530

  8. Angiotensin 1-7 improves insulin sensitivity by increasing skeletal muscle glucose uptake in vivo.

    PubMed

    Echeverría-Rodríguez, Omar; Del Valle-Mondragón, Leonardo; Hong, Enrique

    2014-01-01

    The renin-angiotensin system (RAS) regulates skeletal muscle insulin sensitivity through different mechanisms. The overactivation of the ACE (angiotensin-converting enzyme)/Ang (angiotensin) II/AT1R (Ang II type 1 receptor) axis has been associated with the development of insulin resistance, whereas the stimulation of the ACE2/Ang 1-7/MasR (Mas receptor) axis improves insulin sensitivity. The in vivo mechanisms by which this axis enhances skeletal muscle insulin sensitivity are scarcely known. In this work, we investigated whether rat soleus muscle expresses the ACE2/Ang 1-7/MasR axis and determined the effect of Ang 1-7 on rat skeletal muscle glucose uptake in vivo. Western blot analysis revealed the expression of ACE2 and MasR, while Ang 1-7 levels were detected in rat soleus muscle by capillary zone electrophoresis. The euglycemic clamp exhibited that Ang 1-7 by itself did not promote glucose transport, but it increased insulin-stimulated glucose disposal in the rat. In a similar manner, captopril (an ACE inhibitor) enhanced insulin-induced glucose uptake and this effect was blocked by the MasR antagonist A-779. Our results show for the first time that rat soleus muscle expresses the ACE2/Ang 1-7/MasR axis of the RAS, and Ang 1-7 improves insulin sensitivity by enhancing insulin-stimulated glucose uptake in rat skeletal muscle in vivo. Thus, endogenous (systemic and/or local) Ang 1-7 could regulate insulin-mediated glucose transport in vivo.

  9. Peripheral insulin sensitivity as modified by diet and exercise training.

    PubMed

    Grimditch, G K; Barnard, R J; Hendricks, L; Weitzman, D

    1988-07-01

    To determine which component of a high-fat sucrose diet (HFS) caused insulin resistance and whether exercise training or fiber could prevent it, six dietary treatments were tested in rats: low-fat complex carbohydrate (LFCC); high-fat complex carbohydrate (HFCC); low-fat sucrose (LFS); high-fat sucrose (HFS); HFS plus fiber (HFS + F); and HFS plus exercise training (HFS + EX). After 10 wk rats were subjected to an intravenous glucose-tolerance test. The HFS and HFS + F groups developed glucose intolerance, as indicated by significantly greater areas under their glucose curves compared with the LFCC group's areas. The LFS, HFS, HFS + F, and HFS + EX groups developed insulin resistance, as indicated by significantly greater areas under their insulin curves compared with the LFCC and HFCC groups' areas. Either the presence of sucrose or the absence of complex carbohydrates, not high fat, was responsible for the insulin resistance and it was not improved by adding fiber to the diet or by exercise training.

  10. Characterization of lipid metabolism in insulin-sensitive adipocytes differentiated from immortalized human mesenchymal stem cells

    SciTech Connect

    Prawitt, Janne; Niemeier, Andreas; Kassem, Moustapha; Beisiegel, Ulrike; Heeren, Joerg

    2008-02-15

    There is a great demand for cell models to study human adipocyte function. Here we describe the adipogenic differentiation of a telomerase-immortalized human mesenchymal stem cell line (hMSC-Tert) that maintains numerous features of terminally differentiated adipocytes even after prolonged withdrawal of the peroxisome proliferator activated receptor {gamma} (PPAR{gamma}) agonist rosiglitazone. Differentiated hMSC-Tert developed the characteristic monolocular phenotype of mature adipocytes. The expression of adipocyte specific markers was highly increased during differentiation. Most importantly, the presence of the PPAR{gamma} agonist rosiglitazone was not required for the stable expression of lipoprotein lipase, adipocyte fatty acid binding protein and perilipin on mRNA and protein levels. Adiponectin expression was post-transcriptionally down-regulated in the absence of rosiglitazone. Insulin sensitivity as measured by insulin-induced phosphorylation of Akt and S6 ribosomal protein was also independent of rosiglitazone. In addition to commonly used adipogenic markers, we investigated further PPAR{gamma}-stimulated proteins with a role in lipid metabolism. We observed an increase of lipoprotein receptor (VLDLR, LRP1) and apolipoprotein E expression during differentiation. Despite this increased expression, the receptor-mediated endocytosis of lipoproteins was decreased in differentiated adipocytes, suggesting that these proteins may have an additional function in adipose tissue beyond lipoprotein uptake.

  11. Insulin

    MedlinePlus

    ... pump is connected to your body by a flexible tube that has a tip that sticks under your skin. A cartridge of insulin is put in the pump. The insulin flows through the tube into your body. The pump controls how much insulin goes into your body. The ...

  12. Effects of a 12-month moderate weight loss intervention on insulin sensitivity and inflammation status in nondiabetic overweight and obese subjects.

    PubMed

    Ho, T P; Zhao, X; Courville, A B; Linderman, J D; Smith, S; Sebring, N; Della Valle, D M; Fitzpatrick, B; Simchowitz, L; Celi, F S

    2015-04-01

    Weight loss intervention is the principal non-pharmacological method for prevention and treatment of type 2 diabetes. However, little is known whether it influences insulin sensitivity directly or via its anti-inflammatory effect. The aim of this study was to assess the independent role of changes in inflammation status and weight loss on insulin sensitivity in this population.Overweight and obese nondiabetic participants without co-morbidities underwent a one-year weight loss intervention focused on caloric restriction and behavioral support. Markers of inflammation, body composition, anthropometric para-meters, and insulin sensitivity were recorded at baseline, 6, and 12 months. Insulin sensitivity was assessed with frequently sampled intravenous glucose tolerance test and Minimal Model. Twenty-eight participants (F: 15, M: 13, age 39±5 years, BMI 33.2±4.6 kg/m(2)) completed the study, achieving 9.4±6.9% weight loss, which was predominantly fat mass (7.7±5.6 kg, p<0.0001). Dietary intervention resulted in significant decrease in leptin, leptin-to-adiponectin ratio, hs-CRP, and IL-6 (all p<0.02), and improvement in HOMA-IR and Insulin Sensitivity Index (SI) (both p<0.001). In response to weight loss IL-1β, IL-2, leptin, and resistin were significantly associated with insulin, sensitivity, whereas sICAM-1 had only marginal additive effect. Moderate weight loss in otherwise healthy overweight and obese individuals resulted in an improvement in insulin sensitivity and in the overall inflammation state; the latter played only a minimal independent role in modulating insulin sensitivity.

  13. Enhanced insulin sensitivity of gene-targeted mice lacking functional KCNQ1

    PubMed Central

    Boini, Krishna M.; Graf, Dirk; Hennige, Anita M.; Koka, Saisudha; Kempe, Daniela S.; Wang, Kan; Ackermann, Teresa F.; Föller, Michael; Vallon, Volker; Pfeifer, Karl; Schleicher, Erwin; Ullrich, Susanne; Häring, Hans-Ulrich; Häussinger, Dieter; Lang, Florian

    2009-01-01

    The pore-forming K+-channel α-subunit KCNQ1 is expressed in a wide variety of tissues including heart, skeletal muscle, liver, and epithelia. Most recent evidence revealed an association of the KCNQ1 gene with the susceptibility to type 2 diabetes. KCNQ1 participates in the regulation of cell volume, which is, in turn, critically important for the regulation of metabolism by insulin. The present study explored the influence of KCNQ1 on insulin-induced cellular K+ uptake and glucose metabolism. Insulin (100 nM)-induced K+ uptake was determined in isolated perfused livers from KCNQ1-deficient mice (kcnq1−/−) and their wild-type littermates (kcnq1+/+). Moreover, plasma glucose and insulin levels, intraperitoneal glucose (3 g/kg) tolerance, insulin (0.15 U/kg)-induced hypoglycemia, and peripheral uptake of radiolabeled 3H-deoxy-glucose were determined in both genotypes. Insulin-stimulated hepatocellular K+ uptake was significantly more sustained in isolated perfused livers from kcnq1−/− mice than from kcnq1+/+mice. The decline of plasma glucose concentration following an intraperitoneal injection of insulin was again significantly more sustained in kcnq1−/− than in kcnq1+/+ mice. Both fasted and nonfasted plasma glucose and insulin concentrations were significantly lower in kcnq1−/− than in kcnq1+/+mice. Following an intraperitoneal glucose injection, the peak plasma glucose concentration was significantly lower in kcnq1−/− than in kcnq1+/+mice. Uptake of 3H-deoxy-glucose into skeletal muscle, liver, kidney and lung tissue was significantly higher in kcnq1−/− than in kcnq1+/+mice. In conclusion, KCNQ1 counteracts the stimulation of cellular K+ uptake by insulin and thereby influences K+-dependent insulin signaling on glucose metabolism. The observations indicate that KCNQ1 is a novel molecule affecting insulin sensitivity of glucose metabolism. PMID:19369585

  14. A rapid, sensitive, and easy-to-perform solid phase insulin radioimmunoassay

    SciTech Connect

    Vaeaenaenen, J.E.; Buchan, A.M.J.; Pederson, R.A. )

    1992-01-01

    Accurate measurement of basal insulin release in perifusion and low-density {beta}-cell preparation has been difficult with present assays. A simple, competitive, equilibrium, 15-hour insulin assay using {sup 125}I-insulin with microtiter plate immobilized antibody, has been developed. This method, a Solid-phase-RadioImmunoAssay (SPRIA), is very sensitive and has a broad useful range. Nonspecific binding was not significantly different from empty borosilicate culture tubes. This SPRIA can be used with existing {gamma}-counters, while reducing the radioactive and glass waste presently produced by RIA. The radioactivity of unused test-tubes was compared against test-tubes used for greater than 10 assays, values were 3.5 {plus minus} 0.5 and 4.4 {plus minus} 0.6 counts/minute, respectively. Results of an oral glucose tolerance test (oGTT) performed on four make Wistar Furth rats showed a close correlation between SPRIA and RIA insulin values. This SPRIA measured plasma insulin levels from a human oGTT with a variation of {le} 3.7% (SEM) between sample triplicates. Standard curves from three commonly measured insulin isoforms (human, rat and porcine) showed a high correlation. In order to determine SPRIA's ability to measure acid extracts, insulin recovery from 2N acetic acid was compared against insulin recovery from Dulbecco's Modified Eagles medium (DME).

  15. Bilirubin Increases Insulin Sensitivity by Regulating Cholesterol Metabolism, Adipokines and PPARγ Levels.

    PubMed

    Liu, Jinfeng; Dong, Huansheng; Zhang, Yong; Cao, Mingjun; Song, Lili; Pan, Qingjie; Bulmer, Andrew; Adams, David B; Dong, Xiao; Wang, Hongjun

    2015-01-01

    Obesity can cause insulin resistance and type 2 diabetes. Moderate elevations in bilirubin levels have anti-diabetic effects. This study is aimed at determining the mechanisms by which bilirubin treatment reduces obesity and insulin resistance in a diet-induced obesity (DIO) mouse model. DIO mice were treated with bilirubin or vehicle for 14 days. Body weights, plasma glucose, and insulin tolerance tests were performed prior to, immediately, and 7 weeks post-treatment. Serum lipid, leptin, adiponectin, insulin, total and direct bilirubin levels were measured. Expression of factors involved in adipose metabolism including sterol regulatory element-binding protein (SREBP-1), insulin receptor (IR), and PPARγ in liver were measured by RT-PCR and Western blot. Compared to controls, bilirubin-treated mice exhibited reductions in body weight, blood glucose levels, total cholesterol (TC), leptin, total and direct bilirubin, and increases in adiponectin and expression of SREBP-1, IR, and PPARγ mRNA. The improved metabolic control achieved by bilirubin-treated mice was persistent: at two months after treatment termination, bilirubin-treated DIO mice remained insulin sensitive with lower leptin and higher adiponectin levels, together with increased PPARγ expression. These results indicate that bilirubin regulates cholesterol metabolism, adipokines and PPARγ levels, which likely contribute to increased insulin sensitivity and glucose tolerance in DIO mice. PMID:26017184

  16. Enhanced skeletal muscle insulin sensitivity in year-old rats adapted to hypergravity

    NASA Technical Reports Server (NTRS)

    Mondon, C. E.; Dolkas, C. B.; Oyama, J.

    1981-01-01

    Rats induced into a hypermetabolic state by exposure to chronic (7 mo) centrifugation at 4.15 g exhibited increased glucose uptake at lower plasma insulin levels than weight-matched control animals following oral glucose administration. In order to determine the insulin sensitivity of specific tissues, the effect of exogenous insulin on glucose uptake by isolated perfused livers and hindlim skeletal muscle from rats adapted to chronic centrifugation for one year was compared with perfused tissue from 2.5 mo-old noncentrifuged control animals of equal body weight. Metabolic glucose clearance by skeletal muscle from hypergravic rats did not prove significantly greater than control muscle when perfused in the absence of insulin (10.6 vs 8.1 microliters/min-g-muscle), but was twice as fast (23.0 vs 9.5) at perfusate insulin levels of 35 micro-U/ml. Conversely, glucose uptake by hypergravic livers was significantly decreased (P is less than 0.001) compared with control livers (10.3 vs 27.8) at perfusate insulin levels of 40 micro-U/ml. Results suggest that skeletal muscle rather than liver is primarily responsible for the enhanced sensitivity to insulin and the increased energy expenditure observed in rats subjected to hypergravity.

  17. Bilirubin Increases Insulin Sensitivity by Regulating Cholesterol Metabolism, Adipokines and PPARγ Levels

    PubMed Central

    Liu, Jinfeng; Dong, Huansheng; Zhang, Yong; Cao, Mingjun; Song, Lili; Pan, Qingjie; Bulmer, Andrew; Adams, David B.; Dong, Xiao; Wang, Hongjun

    2015-01-01

    Obesity can cause insulin resistance and type 2 diabetes. Moderate elevations in bilirubin levels have anti-diabetic effects. This study is aimed at determining the mechanisms by which bilirubin treatment reduces obesity and insulin resistance in a diet-induced obesity (DIO) mouse model. DIO mice were treated with bilirubin or vehicle for 14 days. Body weights, plasma glucose, and insulin tolerance tests were performed prior to, immediately, and 7 weeks post-treatment. Serum lipid, leptin, adiponectin, insulin, total and direct bilirubin levels were measured. Expression of factors involved in adipose metabolism including sterol regulatory element-binding protein (SREBP-1), insulin receptor (IR), and PPARγ in liver were measured by RT-PCR and Western blot. Compared to controls, bilirubin-treated mice exhibited reductions in body weight, blood glucose levels, total cholesterol (TC), leptin, total and direct bilirubin, and increases in adiponectin and expression of SREBP-1, IR, and PPARγ mRNA. The improved metabolic control achieved by bilirubin-treated mice was persistent: at two months after treatment termination, bilirubin-treated DIO mice remained insulin sensitive with lower leptin and higher adiponectin levels, together with increased PPARγ expression. These results indicate that bilirubin regulates cholesterol metabolism, adipokines and PPARγ levels, which likely contribute to increased insulin sensitivity and glucose tolerance in DIO mice. PMID:26017184

  18. Effect of green tea supplementation on insulin sensitivity in Sprague-Dawley rats.

    PubMed

    Wu, Liang-Yi; Juan, Chi-Chang; Ho, Low-Tone; Hsu, Yung-Pei; Hwang, Lucy Sun

    2004-02-11

    Epidemiological observations and laboratory studies have shown that green tea has a variety of health effects, including antitumor, antioxidative, and hypolipidemic activities. The aim of this study was to examine whether it had an effect on glucose tolerance and insulin sensitivity in Sprague-Dawley rats. In experiment 1 (in vivo study), rats were divided into two groups: a control group fed standard chow and deionized distilled water and a "green tea" group fed the same chow diet but with green tea instead of water (0.5 g of lyophilized green tea powder dissolved in 100 mL of deionized distilled water). After 12 weeks of green tea supplementation, the green tea group had lower fasting plasma levels of glucose, insulin, triglyceride, and free fatty acid than the control rats. Insulin-stimulated glucose uptake of, and insulin binding to, adipocytes were significantly increased in the green tea group. In experiment 2 (in vitro study), a tea polyphenol extract was used to determine its effect on insulin activity in vitro. Green tea polyphenols (0.075%) significantly increased basal and insulin-stimulated glucose uptake of adipocytes. Results demonstrated that green tea increases insulin sensitivity in Sprague-Dawley rats and that green tea polyphenol is one of the active components.

  19. Estimated insulin sensitivity predicts regression of albuminuria in Type 1 diabetes

    PubMed Central

    Bjornstad, P.; Maahs, D. M.; Johnson, R. J.; Rewers, M.; Snell-Bergeon, J. K.

    2014-01-01

    Aim To test the hypothesis that greater baseline insulin sensitivity would predict regression of albuminuria over 6 years in adults with Type 1 diabetes. Method We enrolled 81 people aged 30–48 years with albuminuria at baseline in the present study and re-examined them 6 years later. Urinary albumin excretion rate was measured and albuminuria was defined as urinary albumin excretion rate ≥20 µg/min. Regression of albuminuria was defined as normoalbuminuria (urinary albumin excretion rate <20µg/min) at follow-up. Predictors of regression of albuminuria were examined in stepwise logistic regression. The variables age, diabetes duration, sex, serum uric acid, HbA1c, systolic blood pressure, LDL cholesterol, HDL cholesterol, BMI, baseline albumin excretion rate, estimated insulin sensitivity at baseline, change in estimated insulin sensitivity from baseline to follow-up and angiotensinconverting enzyme inhibitor/angiotensin receptor blocker use were considered for inclusion in the model. Results Estimated insulin sensitivity was significantly higher at both baseline (4.6±1.2 vs 3.4±1.7; P=0.002) and follow-up (5.2±1.9 vs. 3.5±1.7; P<0.0001) in people who had regression of albuminuria vs those who did not. HbA1c (odds ratio 0.4, 95% CI 0.2–0.8; P=0.006), estimated insulin sensitivity (odds ratio 2.5, 95% CI 1.3–4.9; P=0.006) at baseline and change in estimated insulin sensitivity from baseline to follow-up (odds ratio 2.7, 95% CI 1.4–5.3; P=0.003) were independently associated with regression of albuminuria in a multivariable stepwise model. Conclusions In conclusion, over 6 years, higher baseline estimated insulin sensitivity and change in estimated insulin sensitivity independently predicted regression of albuminuria. Improving insulin sensitivity in people with Type 1 diabetes is a potential therapeutic target to increase rates of regression of albuminuria. PMID:25303233

  20. Detection of Independent Associations of Plasma Lipidomic Parameters with Insulin Sensitivity Indices Using Data Mining Methodology

    PubMed Central

    Schuhmann, Kai; Xu, Aimin; Schulte, Klaus-Martin; Simeonovic, Charmaine J.; Schwarz, Peter E. H.; Bornstein, Stefan R.; Shevchenko, Andrej; Graessler, Juergen

    2016-01-01

    Objective Glucolipotoxicity is a major pathophysiological mechanism in the development of insulin resistance and type 2 diabetes mellitus (T2D). We aimed to detect subtle changes in the circulating lipid profile by shotgun lipidomics analyses and to associate them with four different insulin sensitivity indices. Methods The cross-sectional study comprised 90 men with a broad range of insulin sensitivity including normal glucose tolerance (NGT, n = 33), impaired glucose tolerance (IGT, n = 32) and newly detected T2D (n = 25). Prior to oral glucose challenge plasma was obtained and quantitatively analyzed for 198 lipid molecular species from 13 different lipid classes including triacylglycerls (TAGs), phosphatidylcholine plasmalogen/ether (PC O-s), sphingomyelins (SMs), and lysophosphatidylcholines (LPCs). To identify a lipidomic signature of individual insulin sensitivity we applied three data mining approaches, namely least absolute shrinkage and selection operator (LASSO), Support Vector Regression (SVR) and Random Forests (RF) for the following insulin sensitivity indices: homeostasis model of insulin resistance (HOMA-IR), glucose insulin sensitivity index (GSI), insulin sensitivity index (ISI), and disposition index (DI). The LASSO procedure offers a high prediction accuracy and and an easier interpretability than SVR and RF. Results After LASSO selection, the plasma lipidome explained 3% (DI) to maximal 53% (HOMA-IR) variability of the sensitivity indexes. Among the lipid species with the highest positive LASSO regression coefficient were TAG 54:2 (HOMA-IR), PC O- 32:0 (GSI), and SM 40:3:1 (ISI). The highest negative regression coefficient was obtained for LPC 22:5 (HOMA-IR), TAG 51:1 (GSI), and TAG 58:6 (ISI). Conclusion Although a substantial part of lipid molecular species showed a significant correlation with insulin sensitivity indices we were able to identify a limited number of lipid metabolites of particular importance based on the LASSO approach. These

  1. Ginsenoside Rb1 increases insulin sensitivity by activating AMP-activated protein kinase in male rats.

    PubMed

    Shen, Ling; Haas, Michael; Wang, David Q-H; May, Aaron; Lo, Chunmin C; Obici, Silvana; Tso, Patrick; Woods, Stephen C; Liu, Min

    2015-09-01

    Although ginseng has been reported to ameliorate hyperglycemia in animal models and clinical studies, the molecular mechanisms are largely unknown. We previously reported that chronic treatment with ginsenoside Rb1 (Rb1), a major component of ginseng, significantly reduced fasting glucose and improved glucose tolerance in high-fat diet (HFD)-induced obese rats. These effects were greater than those observed in pair-fed rats, suggesting a direct effect of Rb1 on glucose homeostasis, and this possibility was confirmed in the present study. In lean rats fed standard rodent chow, 5-day treatment with Rb1 significantly improved glucose tolerance and enhanced insulin sensitivity. Notably, those effects were not accompanied by reduced food intake or changed body weight. To elucidate the underlying molecular mechanisms, rats fed a HFD for 4 weeks were treated with Rb1 for 5 days. Subsequently, euglycemic-hyperinsulinemic clamp studies found that compared to vehicle, Rb1, while not changing food intake or body weight, significantly increased glucose infusion rate required to maintain euglycemia. Consistent with this, insulin-induced inhibition of hepatic gluconeogenesis was significantly enhanced and hepatic phosphoenolpyruvate carboxykinase and glucose-6-phosphatase gene expression was suppressed. Additionally, glucose uptake was significantly increased in skeletal muscle. While proximal insulin signaling was not changed after Rb1 treatment, increased phosphorylation of TBC1D4, a downstream target of AMPK signaling, appears to be a key part of the mechanism for Rb1-stimulated glucose uptake in skeletal muscle. These findings indicate that Rb1 has multiple effects on glucose homeostasis, and provide strong rationale for further evaluation of its potential therapeutic role. PMID:26359241

  2. Phytic acid and myo-inositol support adipocyte differentiation and improve insulin sensitivity in 3T3-L1 cells.

    PubMed

    Kim, Jin Nam; Han, Sung Nim; Kim, Hye-Kyeong

    2014-08-01

    Phytic acid, also known as myo-inositol hexaphosphate, has been shown to lower blood glucose levels and to improve insulin sensitivity in rodents. We investigated the effects of phytic acid and myo-inositol on differentiation, insulin-stimulated glucose uptake, and lipolysis of adipocytes to test the hypothesis that the antidiabetic properties of phytic acid and myo-inositol are mediated directly through adipocytes. 3T3-L1 cells were treated with 10, 50, or 200 μmol/L of phytic acid or myo-inositol. Oil Red O staining and an intracellular triacylglycerol assay were used to determine lipid accumulation during adipocyte differentiation. Immunoblotting and real-time polymerase chain reaction (PCR) were performed to evaluate expression of transcription factors, a target protein, and insulin signaling molecules. Phytic acid and myo-inositol exposures increased lipid accumulation in a dose-dependent manner (P < .01). The expression of key transcription factors associated with adipocyte differentiation, such as peroxisome proliferator-activated receptor γ (PPARγ) and sterol regulatory element-binding protein 1c, and the expression of fatty acid synthase increased upon treatments with phytic acid and myo-inositol (P < .05). Insulin-stimulated glucose uptake in mature adipocytes increased with phytic acid and myo-inositol treatments (P < .01). In addition, mRNA levels of insulin receptor substrate 1 (IRS1), mRNA levels of glucose transporter 4, and phosphorylation of tyrosine in IRS1 increased upon phytic acid and myo-inositol treatments. In fully differentiated adipocytes, phytic acid and myo-inositol reduced basal lipolysis dose dependently (P < .01). These results suggest that phytic acid and myo-inositol increase insulin sensitivity in adipocytes by increasing lipid storage capacity, improving glucose uptake, and inhibiting lipolysis.

  3. Gynostemma pentaphyllum Tea Improves Insulin Sensitivity in Type 2 Diabetic Patients

    PubMed Central

    Huyen, V. T. T.; Phan, D. V.; Thang, P.; Hoa, N. K.; Östenson, C. G.

    2013-01-01

    Aims. To evaluate the effect of the traditional Vietnamese herb Gynostemma pentaphyllum tea on insulin sensitivity in drug-naïve type 2 diabetic patients. Methods. Patients received GP or placebo tea 6 g daily for four weeks and vice versa with a 2-week wash-out period. At the end of each period, a somatostatin-insulin-glucose infusion test (SIGIT) was performed to evaluate the insulin sensitivity. Fasting plasma glucose (FPG), HbA1C, and oral glucose tolerance tests and insulin levels were measured before, during, and after the treatment. Results. FPG and steady-state plasma glucose (SIGIT mean) were lower after GP treatment compared to placebo treatment (P < 0.001). The levels of FPG in the control group were slightly reduced to 0.2 ± 1.5 versus 1.9 ± 1.0 mmol/L in GP group (P < 0.001), and the effect on FPG was reversed after exchanging treatments. The glycometabolic improvements were achieved without any major change of circulating insulin levels. There were no changes in lipids, body measurements, blood pressure, and no reported hypoglycemias or acute adverse effects regarding kidney and liver parameters. Conclusion. The results of this study suggested that the GP tea exerted antidiabetic effect by improving insulin sensitivity. PMID:23431428

  4. Systemic inflammation and insulin sensitivity in obese IFN-γ knockout mice

    PubMed Central

    O’Rourke, Robert W.; White, Ashley E.; Metcalf, Monja D.; Winters, Brian R.; Diggs, Brian S.; Zhu, Xinxia; Marks, Daniel L.

    2012-01-01

    Adipose tissue macrophages are important mediators of inflammation and insulin resistance in obesity. IFN-γ is a central regulator of macrophage function. The role of IFN-γ in regulating systemic inflammation and insulin resistance in obesity is unknown. We studied obese IFN-γ knockout mice to identify the role of IFN-γ in regulating inflammation and insulin sensitivity in obesity. IFN-γ-knockout C57Bl/6 mice and wild-type control litter mates were maintained on normal chow or a high fat diet for 13 weeks and then underwent insulin sensitivity testing then sacrifice and tissue collection. Flow cytometry, intracellular cytokine staining, and QRTPCR were used to define tissue lymphocyte phenotype and cytokine expression profiles. Adipocyte size was determined from whole adipose tissue explants examined under immunofluorescence microscopy. Diet-induced obesity induced systemic inflammation and insulin resistance, along with a pan-leukocyte adipose tissue infiltrate that includes macrophages, T-cells, and NK cells. Obese IFN-γ-knockout animals, compared with obese wild-type control animals, demonstrate modest improvements in insulin sensitivity, decreased adipocyte size, and an M2-shift in ATM phenotype and cytokine expression. These data suggest a role for IFN-γ in the regulation of inflammation and glucose homeostasis in obesity though multiple potential mechanisms, including effects on adipogenesis, cytokine expression, and macrophage phenotype. PMID:22386937

  5. Uncoupling protein 3 expression levels influence insulin sensitivity, fatty acid oxidation, and related signaling pathways.

    PubMed

    Senese, Rosalba; Valli, Vivien; Moreno, Maria; Lombardi, Assunta; Busiello, Rosa Anna; Cioffi, Federica; Silvestri, Elena; Goglia, Fernando; Lanni, Antonia; de Lange, Pieter

    2011-01-01

    Controversy exists on whether uncoupling protein 3 (UCP3) positively or negatively influences insulin sensitivity in vivo, and the underlying signaling pathways have been scarcely studied. We studied how a progressive reduction in UCP3 expression (using UCP3 +/+, UCP3 +/-, and UCP3 -/- mice) modulates insulin sensitivity and related metabolic parameters. In order to further validate our observations, we also studied animals in which insulin resistance was induced by administration of a high-fat diet (HFD). In UCP3 +/- and UCP3 -/- mice, gastrocnemius muscle Akt/protein kinase B (Akt/PKB) (serine 473) and AMP-activated protein kinase (AMPK) (threonine 171) phosphorylation, and glucose transporter 4 (GLUT4) membrane levels were reduced compared to UCP3 +/+ mice. The HOMA-IR index (insulin resistance parameter) was increased both in the UCP3 +/- and UCP3 -/- mice. In these mice, insulin administration normalized Akt/PKB phosphorylation between genotypes while AMPK phosphorylation was further reduced, and sarcolemmal GLUT4 levels were induced but did not reach control levels. Furthermore, non-insulin-stimulated muscle fatty acid oxidation and the expression of several involved genes both in muscle and in liver were reduced. HFD administration induced insulin resistance in UCP3 +/+ mice and the aforementioned parameters resulted similar to those of chow-fed UCP3 +/- and UCP3 -/- mice. In conclusion, high-fat-diet-induced insulin resistance in wild-type mice mimics that of chow-fed UCP3 +/- and UCP3 -/- mice showing that progressive reduction of UCP3 levels results in insulin resistance. This is accompanied by decreased fatty acid oxidation and a less intense Akt/PKB and AMPK signaling.

  6. Spirulina versicolor improves insulin sensitivity and attenuates hyperglycemia-mediated oxidative stress in fructose-fed rats

    PubMed Central

    Hozayen, Walaa G.; Mahmoud, Ayman M.; Soliman, Hanan A.; Mostafa, Sanura R.

    2016-01-01

    Aim: The current study aimed to investigate the anti-hyperglycemic, anti-hyperlipidemic and insulin sensitizing effects of the cyanobacterium Spirulina versicolor extract in fructose-fed rats. Materials and Methods: Rats were fed 30% fructose solution in drinking water for 4 weeks. Animals exhibited hyperglycemia and hyperinsulinemia were selected for further investigations. Diabetic and control rats were orally supplemented with 50 mg/kg body weight S. versicolor extract for 4 weeks. Results: At the end of 8 weeks, fructose-fed rats showed a significant increase in serum glucose, insulin, cholesterol, triglycerides, cardiovascular risk indices and insulin resistance. Treatment of the fructose-fed rats with S. versicolor extract improved this metabolic profile. Fructose feeding produced a significant increase in serum tumor necrosis factor alpha and a decrease in adiponectin levels. In addition, fructose-fed rats exhibited a significant increase in liver, kidney and heart lipid peroxidation levels, and declined antioxidant defenses. Supplementation of the fructose-fed rats with S. versicolor extract reversed these alterations. Conclusion: S. versicolor attenuates hyperglycemia-mediated oxidative stress and inflammation, and is thus effective in improving insulin sensitivity in fructose-fed rats. PMID:27069726

  7. Exercise and Weight Loss Improve Muscle Mitochondrial Respiration, Lipid Partitioning, and Insulin Sensitivity After Gastric Bypass Surgery

    PubMed Central

    Coen, Paul M.; Menshikova, Elizabeth V.; Distefano, Giovanna; Zheng, Donghai; Tanner, Charles J.; Standley, Robert A.; Helbling, Nicole L.; Dubis, Gabriel S.; Ritov, Vladimir B.; Xie, Hui; Desimone, Marisa E.; Smith, Steven R.; Stefanovic-Racic, Maja; Toledo, Frederico G.S.; Houmard, Joseph A.

    2015-01-01

    Both Roux-en-Y gastric bypass (RYGB) surgery and exercise can improve insulin sensitivity in individuals with severe obesity. However, the impact of RYGB with or without exercise on skeletal muscle mitochondria, intramyocellular lipids, and insulin sensitivity index (SI) is unknown. We conducted a randomized exercise trial in patients (n = 101) who underwent RYGB surgery and completed either a 6-month moderate exercise (EX) or a health education control (CON) intervention. SI was determined by intravenous glucose tolerance test. Mitochondrial respiration and intramyocellular triglyceride, sphingolipid, and diacylglycerol content were measured in vastus lateralis biopsy specimens. We found that EX provided additional improvements in SI and that only EX improved cardiorespiratory fitness, mitochondrial respiration and enzyme activities, and cardiolipin profile with no change in mitochondrial content. Muscle triglycerides were reduced in type I fibers in CON, and sphingolipids decreased in both groups, with EX showing a further reduction in a number of ceramide species. In conclusion, exercise superimposed on bariatric surgery–induced weight loss enhances mitochondrial respiration, induces cardiolipin remodeling, reduces specific sphingolipids, and provides additional improvements in insulin sensitivity. PMID:26293505

  8. Exercise and Weight Loss Improve Muscle Mitochondrial Respiration, Lipid Partitioning, and Insulin Sensitivity After Gastric Bypass Surgery.

    PubMed

    Coen, Paul M; Menshikova, Elizabeth V; Distefano, Giovanna; Zheng, Donghai; Tanner, Charles J; Standley, Robert A; Helbling, Nicole L; Dubis, Gabriel S; Ritov, Vladimir B; Xie, Hui; Desimone, Marisa E; Smith, Steven R; Stefanovic-Racic, Maja; Toledo, Frederico G S; Houmard, Joseph A; Goodpaster, Bret H

    2015-11-01

    Both Roux-en-Y gastric bypass (RYGB) surgery and exercise can improve insulin sensitivity in individuals with severe obesity. However, the impact of RYGB with or without exercise on skeletal muscle mitochondria, intramyocellular lipids, and insulin sensitivity index (SI) is unknown. We conducted a randomized exercise trial in patients (n = 101) who underwent RYGB surgery and completed either a 6-month moderate exercise (EX) or a health education control (CON) intervention. SI was determined by intravenous glucose tolerance test. Mitochondrial respiration and intramyocellular triglyceride, sphingolipid, and diacylglycerol content were measured in vastus lateralis biopsy specimens. We found that EX provided additional improvements in SI and that only EX improved cardiorespiratory fitness, mitochondrial respiration and enzyme activities, and cardiolipin profile with no change in mitochondrial content. Muscle triglycerides were reduced in type I fibers in CON, and sphingolipids decreased in both groups, with EX showing a further reduction in a number of ceramide species. In conclusion, exercise superimposed on bariatric surgery-induced weight loss enhances mitochondrial respiration, induces cardiolipin remodeling, reduces specific sphingolipids, and provides additional improvements in insulin sensitivity.

  9. Metabolic neutrality of perindopril: focus on insulin sensitivity in overweight patients with essential hypertension.

    PubMed

    Böhlen, L; Bienz, R; Doser, M; Papiri, M; Shaw, S; Riesen, W; Weidmann, P

    1996-06-01

    To assess the effects of antihypertensive treatment with the angiotensin-converting enzyme (ACE) inhibitor perindopril on insulin sensitivity, plasma insulin, and lipoprotein metabolism in overweight hypertensive patients, we measured the insulin sensitivity index (SI, determined according to the minimal model method of Bergman), fasting plasma insulin and glucose concentrations, serum total triglyceride and lipoprotein cholesterol fractions, and blood pressure (BP) in 30 overweight [mean body mass index (BMI) 30.9 kg/m2], nondiabetic patients with essential hypertension after a 4-week run-in period and after 6 weeks of perindopril (n = 20) or placebo (n = 10) administered in a double-blind fashion. Furthermore, we estimated their state of physical fitness using the Conconi bicycle ergometer test before and after perindopril or placebo administration. SI was low in our study population (3.2 vs. 13.3 10(-4) ml.microU-1.min-1 in normal lean control subjects). It did not differ between the perindopril and placebo group after the placebo run-in period (3.1 vs. 3.3 x 10(-4) ml.microU-1.min-1) and was not influenced by perindopril (3.3 x 10(-4) ml.microU-1.min-1) or placebo (3.6 x 10(-4) ml.microU-1.min-1) treatment. Moreover, no significant changes were apparent in fasting plasma insulin and glucose, the areas under the glucose and insulin curves, the glucose disappearance rates, serum total triglycerides (TG), or cholesterol or lipoprotein cholesterol fractions between run-in and active treatment phases in the perindopril or the placebo group, respectively. Heart rate (HR), body weight, and anaerobic threshold remained stable in both groups. Compliance, assessed by pill counting was > 90% in both groups at all visits. Therefore, the ACE inhibitor perindopril is neutral with regard to insulin sensitivity, plasma insulin and glucose, and lipoprotein metabolism in overweight, nondiabetic patients with essential hypertension.

  10. Brown adipose tissue improves whole-body glucose homeostasis and insulin sensitivity in humans.

    PubMed

    Chondronikola, Maria; Volpi, Elena; Børsheim, Elisabet; Porter, Craig; Annamalai, Palam; Enerbäck, Sven; Lidell, Martin E; Saraf, Manish K; Labbe, Sebastien M; Hurren, Nicholas M; Yfanti, Christina; Chao, Tony; Andersen, Clark R; Cesani, Fernando; Hawkins, Hal; Sidossis, Labros S

    2014-12-01

    Brown adipose tissue (BAT) has attracted scientific interest as an antidiabetic tissue owing to its ability to dissipate energy as heat. Despite a plethora of data concerning the role of BAT in glucose metabolism in rodents, the role of BAT (if any) in glucose metabolism in humans remains unclear. To investigate whether BAT activation alters whole-body glucose homeostasis and insulin sensitivity in humans, we studied seven BAT-positive (BAT(+)) men and five BAT-negative (BAT(-)) men under thermoneutral conditions and after prolonged (5-8 h) cold exposure (CE). The two groups were similar in age, BMI, and adiposity. CE significantly increased resting energy expenditure, whole-body glucose disposal, plasma glucose oxidation, and insulin sensitivity in the BAT(+) group only. These results demonstrate a physiologically significant role of BAT in whole-body energy expenditure, glucose homeostasis, and insulin sensitivity in humans, and support the notion that BAT may function as an antidiabetic tissue in humans.

  11. Effect of cabergoline on insulin sensitivity, inflammation, and carotid intima media thickness in patients with prolactinoma.

    PubMed

    Inancli, Serap Soytac; Usluogullari, Alper; Ustu, Yusuf; Caner, Sedat; Tam, Abbas Ali; Ersoy, Reyhan; Cakir, Bekir

    2013-08-01

    The aim of this study was to evaluate the effect of Cabergoline on insulin sensitivity, inflammatory markers, and carotid intima media thickness in prolactinoma patients. Twenty-one female, newly diagnosed patients with prolactinoma were included in the study. None of the patients were treated previously. Cabergoline was given as treatment, starting with 0.5 mg/day and tapered necessarily. Blood samples were taken for prolactin, highly sensitive C-reactive protein, homocysteine, total cholesterol, low density lipoprotein (LDL) cholesterol, fasting glucose, insulin, and HOMA (homeostasis model assessment of insulin resistance) score was calculated, prior to and 6 months after starting treatment. The body mass index (BMI) was measured and carotid intima media thickness (CIMT) was evaluated for each patient prior to and 6 months after the treatment. The prolactin levels and LDL decreased significantly after cabergoline treatment. Insulin sensitivity improved independently from the decrease in prolactin levels and BMI. The significant decrease in homocysteine and hs-CRP was not related with the decrease in prolactin levels. The significant decrease in CIMT was independent from the decrease in prolactin levels, HOMA score, and BMI. Our data suggest that cabergoline treatment causes an improvement in insulin sensitivity and inflammatory markers and causes a decrease in CIMT independent from the decrease in prolactin, LDL cholesterol, and BMI. We conclude that short term cabergoline treatment can improve endothelial function independently from the changes in metabolic disturbances and inflammatory markers.

  12. High intensity interval training improves liver and adipose tissue insulin sensitivity

    PubMed Central

    Marcinko, Katarina; Sikkema, Sarah R.; Samaan, M. Constantine; Kemp, Bruce E.; Fullerton, Morgan D.; Steinberg, Gregory R.

    2015-01-01

    Objective Endurance exercise training reduces insulin resistance, adipose tissue inflammation and non-alcoholic fatty liver disease (NAFLD), an effect often associated with modest weight loss. Recent studies have indicated that high-intensity interval training (HIIT) lowers blood glucose in individuals with type 2 diabetes independently of weight loss; however, the organs affected and mechanisms mediating the glucose lowering effects are not known. Intense exercise increases phosphorylation and inhibition of acetyl-CoA carboxylase (ACC) by AMP-activated protein kinase (AMPK) in muscle, adipose tissue and liver. AMPK and ACC are key enzymes regulating fatty acid metabolism, liver fat content, adipose tissue inflammation and insulin sensitivity but the importance of this pathway in regulating insulin sensitivity with HIIT is unknown. Methods In the current study, the effects of 6 weeks of HIIT were examined using obese mice with serine–alanine knock-in mutations on the AMPK phosphorylation sites of ACC1 and ACC2 (AccDKI) or wild-type (WT) controls. Results HIIT lowered blood glucose and increased exercise capacity, food intake, basal activity levels, carbohydrate oxidation and liver and adipose tissue insulin sensitivity in HFD-fed WT and AccDKI mice. These changes occurred independently of weight loss or reductions in adiposity, inflammation and liver lipid content. Conclusions These data indicate that HIIT lowers blood glucose levels by improving adipose and liver insulin sensitivity independently of changes in adiposity, adipose tissue inflammation, liver lipid content or AMPK phosphorylation of ACC. PMID:26909307

  13. The Association of Short and Long Sleep Durations with Insulin Sensitivity In Adolescents

    PubMed Central

    Javaheri, Sogol; Storfer-Isser, Amy; Rosen, Carol L; Redline, Susan

    2010-01-01

    Objective To characterize the relationship between insulin sensitivity, assessed by the homeostasis model of insulin (HOMA), and objective measurements of sleep duration in adolescents. Study design Cross-sectional analysis from two examinations conducted in the Cleveland Children’s Sleep and Health Cohort (n=387; 43% minorities). Biochemical and anthropometry measurements made in a Clinical Research Unit. Sleep duration measured by actigraphy. Results Decreased sleep duration was associated with increased adiposity and minority race. Sleep duration had a quadratic “u-shape” association with HOMA. When adjusted for age, sex, race, preterm status and activity, adolescents who slept 7.75 hours had the lowest predicted HOMA (1.96 [95% CI: 1.82, 2.10]), and adolescents who slept 5.0 hours or 10.5 hours had HOMA indices that were about 20% higher (2.36 [95% CI: 1.94, 2.86] and 2.41 [95% CI: 1.93, 3.01], respectively). After adjusting for adiposity, the association between shorter sleep and HOMA was appreciably attenuated, but the association with longer sleep persisted. Conclusions Shorter and longer sleep durations are associated with decreased insulin sensitivity in adolescents. Whereas the association between shorter sleep duration with insulin sensitivity is likely explained by the association between short sleep and obesity, association between longer sleep and insulin sensitivity is independent of obesity. PMID:21146189

  14. Adipose Cell Size and Regional Fat Deposition as Predictors of Metabolic Response to Overfeeding in Insulin-Resistant and Insulin-Sensitive Humans.

    PubMed

    McLaughlin, Tracey; Craig, Colleen; Liu, Li-Fen; Perelman, Dalia; Allister, Candice; Spielman, Daniel; Cushman, Samuel W

    2016-05-01

    Obesity is associated with insulin resistance, but significant variability exists between similarly obese individuals, pointing to qualitative characteristics of body fat as potential mediators. To test the hypothesis that obese, insulin-sensitive (IS) individuals possess adaptive adipose cell/tissue responses, we measured subcutaneous adipose cell size, insulin suppression of lipolysis, and regional fat responses to short-term overfeeding in BMI-matched overweight/obese individuals classified as IS or insulin resistant (IR). At baseline, IR subjects exhibited significantly greater visceral adipose tissue (VAT), intrahepatic lipid (IHL), plasma free fatty acids, adipose cell diameter, and percentage of small adipose cells. With weight gain (3.1 ± 1.4 kg), IR subjects demonstrated no significant change in adipose cell size, VAT, or insulin suppression of lipolysis and only 8% worsening of insulin-mediated glucose uptake (IMGU). Alternatively, IS subjects demonstrated significant adipose cell enlargement; decrease in the percentage of small adipose cells; increase in VAT, IHL, and lipolysis; 45% worsening of IMGU; and decreased expression of lipid metabolism genes. Smaller baseline adipose cell size and greater enlargement with weight gain predicted decline in IMGU, as did increase in IHL and VAT and decrease in insulin suppression of lipolysis. Weight gain in IS humans causes maladaptive changes in adipose cells, regional fat distribution, and insulin resistance. The correlation between development of insulin resistance and changes in adipose cell size, VAT, IHL, and insulin suppression of lipolysis highlight these factors as potential mediators between obesity and insulin resistance. PMID:26884438

  15. Adipose Cell Size and Regional Fat Deposition as Predictors of Metabolic Response to Overfeeding in Insulin-Resistant and Insulin-Sensitive Humans.

    PubMed

    McLaughlin, Tracey; Craig, Colleen; Liu, Li-Fen; Perelman, Dalia; Allister, Candice; Spielman, Daniel; Cushman, Samuel W

    2016-05-01

    Obesity is associated with insulin resistance, but significant variability exists between similarly obese individuals, pointing to qualitative characteristics of body fat as potential mediators. To test the hypothesis that obese, insulin-sensitive (IS) individuals possess adaptive adipose cell/tissue responses, we measured subcutaneous adipose cell size, insulin suppression of lipolysis, and regional fat responses to short-term overfeeding in BMI-matched overweight/obese individuals classified as IS or insulin resistant (IR). At baseline, IR subjects exhibited significantly greater visceral adipose tissue (VAT), intrahepatic lipid (IHL), plasma free fatty acids, adipose cell diameter, and percentage of small adipose cells. With weight gain (3.1 ± 1.4 kg), IR subjects demonstrated no significant change in adipose cell size, VAT, or insulin suppression of lipolysis and only 8% worsening of insulin-mediated glucose uptake (IMGU). Alternatively, IS subjects demonstrated significant adipose cell enlargement; decrease in the percentage of small adipose cells; increase in VAT, IHL, and lipolysis; 45% worsening of IMGU; and decreased expression of lipid metabolism genes. Smaller baseline adipose cell size and greater enlargement with weight gain predicted decline in IMGU, as did increase in IHL and VAT and decrease in insulin suppression of lipolysis. Weight gain in IS humans causes maladaptive changes in adipose cells, regional fat distribution, and insulin resistance. The correlation between development of insulin resistance and changes in adipose cell size, VAT, IHL, and insulin suppression of lipolysis highlight these factors as potential mediators between obesity and insulin resistance.

  16. pH-Sensitive oral insulin delivery systems using Eudragit microspheres.

    PubMed

    Mundargi, Raghavendra C; Rangaswamy, Vidhya; Aminabhavi, Tejraj M

    2011-08-01

    In this paper, we present in vitro and in vivo release data on pH-sensitive microspheres of Eudragit L100, Eudragit RS100 and their blend systems prepared by double emulsion-solvent evaporation technique for oral delivery of insulin. Of the three systems developed, Eudragit L100 was chosen for preclinical studies. Insulin was encapsulated and in vitro experiments performed on insulin-loaded microspheres in pH 1.2 media did not release insulin during the first 2 h, but maximum insulin was released in pH 7.4 buffer media from 4 to 6 h. The microspheres were characterized by scanning electron microscopy to understand particle size, shape and surface morphology. The size of microspheres ranged between 1 and 40 μm. Circular dichroism spectra indicated the structural integrity of insulin during encapsulation as well as after its release in pH 7.4 buffer media. The in vivo release studies on diabetic-induced rat models exhibited maximum inhibition of up to 86%, suggesting absorption of insulin in the intestine.

  17. Persistent glucose production and greater peripheral sensitivity to insulin in the neonate vs. the adult.

    PubMed

    Farrag, H M; Nawrath, L M; Healey, J E; Dorcus, E J; Rapoza, R E; Oh, W; Cowett, R M

    1997-01-01

    Insulin resistance has been reported to partially explain the clinical appearance of neonatal hyperglycemia. To determine the relative resistance to insulin of glucose production vs. glucose utilization, the euglycemic hyperinsulinemic clamp technique was employed for the first time in the human neonate and was combined with stable isotopic determination of glucose production and glucose utilization. The basal rates of glucose production and glucose utilization were determined, after which each neonate was clamped at his or her own euglycemic glucose concentration while receiving regular human insulin at one rate of 0.2, 0.5, 1.0, 2.0, or 4.0 mU. kg-1.min-1. Persistent glucose production (> or = 1 mg.kg-1.min-1) during the clamp was recorded for all groups. A significant increase in the glucose infusion rate (P < 0.001) and in percent glucose utilization (P < 0.01) occurred in the 2.0 and 4.0 mU.kg-1.min-1 insulin groups. Metabolic clearance rate of insulin was significantly greater in the neonate compared with the adult at the 2.0 mU.kg-1.min-1 insulin infusion rate (P = 0.036). Our results indicate that, in contrast to the adult, the neonate has persistent glucose production (P = 0.001) and greater peripheral sensitivity to insulin (P = 0.015). PMID:9038856

  18. The AMPK activator R419 improves exercise capacity and skeletal muscle insulin sensitivity in obese mice

    PubMed Central

    Marcinko, Katarina; Bujak, Adam L.; Lally, James S.V.; Ford, Rebecca J.; Wong, Tammy H.; Smith, Brennan K.; Kemp, Bruce E.; Jenkins, Yonchu; Li, Wei; Kinsella, Todd M.; Hitoshi, Yasumichi; Steinberg, Gregory R.

    2015-01-01

    Objective Skeletal muscle AMP-activated protein kinase (AMPK) is important for regulating glucose homeostasis, mitochondrial content and exercise capacity. R419 is a mitochondrial complex-I inhibitor that has recently been shown to acutely activate AMPK in myotubes. Our main objective was to examine whether R419 treatment improves insulin sensitivity and exercise capacity in obese insulin resistant mice and whether skeletal muscle AMPK was important for mediating potential effects. Methods Glucose homeostasis, insulin sensitivity, exercise capacity, and electron transport chain content/activity were examined in wildtype (WT) and AMPK β1β2 muscle-specific null (AMPK-MKO) mice fed a high-fat diet (HFD) with or without R419 supplementation. Results There was no change in weight gain, adiposity, glucose tolerance or insulin sensitivity between HFD-fed WT and AMPK-MKO mice. In both HFD-fed WT and AMPK-MKO mice, R419 enhanced insulin tolerance, insulin-stimulated glucose disposal, skeletal muscle 2-deoxyglucose uptake, Akt phosphorylation and glucose transporter 4 (GLUT4) content independently of alterations in body mass. In WT, but not AMPK-MKO mice, R419 improved treadmill running capacity. Treatment with R419 increased muscle electron transport chain content and activity in WT mice; effects which were blunted in AMPK-MKO mice. Conclusions Treatment of obese mice with R419 improved skeletal muscle insulin sensitivity through a mechanism that is independent of skeletal muscle AMPK. R419 also increases exercise capacity and improves mitochondrial function in obese WT mice; effects that are diminished in the absence of skeletal muscle AMPK. These findings suggest that R419 may be a promising therapy for improving whole-body glucose homeostasis and exercise capacity. PMID:26413470

  19. Effects of Exercise Intensity on Postprandial Improvement in Glucose Disposal and Insulin Sensitivity in Prediabetic Adults

    PubMed Central

    Rynders, Corey A.; Weltman, Judy Y.; Jiang, Boyi; Breton, Marc; Patrie, James; Barrett, Eugene J.

    2014-01-01

    Background: A single bout of exercise improves postprandial glycemia and insulin sensitivity in prediabetic patients; however, the impact of exercise intensity is not well understood. The present study compared the effects of acute isocaloric moderate (MIE) and high-intensity (HIE) exercise on glucose disposal and insulin sensitivity in prediabetic adults. Methods: Subjects (n = 18; age 49 ± 14 y; fasting glucose 105 ± 11 mg/dL; 2 h glucose 170 ± 32 mg/dL) completed a peak O2 consumption/lactate threshold (LT) protocol plus three randomly assigned conditions: 1) control, 1 hour of seated rest, 2) MIE (at LT), and 3) HIE (75% of difference between LT and peak O2 consumption). One hour after exercise, subjects received an oral glucose tolerance test (OGTT). Plasma glucose, insulin, and C-peptide concentrations were sampled at 5- to 10-minute intervals at baseline, during exercise, after exercise, and for 3 hours after glucose ingestion. Total, early-phase, and late-phase area under the glucose and insulin response curves were compared between conditions. Indices of insulin sensitivity (SI) were derived from OGTT data using the oral minimal model. Results: Compared with control, SI improved by 51% (P = .02) and 85% (P < .001) on the MIE and HIE days, respectively. No differences in SI were observed between the exercise conditions (P = .62). Improvements in SI corresponded to significant reductions in the glucose, insulin, and C-peptide area under the curve values during the late phase of the OGTT after HIE (P < .05), with only a trend for reductions after MIE. Conclusion: These results suggest that in prediabetic adults, acute exercise has an immediate and intensity-dependent effect on improving postprandial glycemia and insulin sensitivity. PMID:24243632

  20. Developmental Programming: Impact of Gestational Steroid and Metabolic Milieus on Adiposity and Insulin Sensitivity in Prenatal Testosterone-Treated Female Sheep.

    PubMed

    Cardoso, Rodolfo C; Veiga-Lopez, Almudena; Moeller, Jacob; Beckett, Evan; Pease, Anthony; Keller, Erica; Madrigal, Vanessa; Chazenbalk, Gregorio; Dumesic, Daniel; Padmanabhan, Vasantha

    2016-02-01

    Prenatally testosterone (T)-treated sheep present metabolic disruptions similar to those seen in women with polycystic ovary syndrome. These females exhibit an increased ratio of small to large adipocytes, which may be the earliest event in the development of adult insulin resistance. Additionally, our longitudinal studies suggest the existence of a period of compensatory adaptation during development. This study tested whether 1) in utero cotreatment of prenatally T-treated sheep with androgen antagonist (flutamide) or insulin sensitizer (rosiglitazone) prevents juvenile insulin resistance and adult changes in adipocyte size; and 2) visceral adiposity and insulin sensitivity are both unaltered during early adulthood, confirming the predicted developmental trajectory in this animal model. Insulin sensitivity was tested during juvenile development and adipose tissue distribution, adipocyte size, and concentrations of adipokines were determined during early adulthood. Prenatal T-treated females manifested juvenile insulin resistance, which was prevented by prenatal rosiglitazone cotreatment. Neither visceral adiposity nor insulin sensitivity differed between groups during early adulthood. Prenatal T-treated sheep presented an increase in the relative proportion of small adipocytes, which was not substantially prevented by either prenatal intervention. A large effect size was observed for increased leptin concentrations in prenatal T-treated sheep compared with controls, which was prevented by prenatal rosiglitazone. In conclusion, gestational alterations in insulin-glucose homeostasis likely play a role in programming insulin resistance, but not adipocyte size distribution, in prenatal T-treated sheep. Furthermore, these results support the notion that a period of compensatory adaptation of the metabolic system to prenatal T exposure occurs between puberty and adulthood. PMID:26650569

  1. Developmental Programming: Impact of Gestational Steroid and Metabolic Milieus on Adiposity and Insulin Sensitivity in Prenatal Testosterone-Treated Female Sheep.

    PubMed

    Cardoso, Rodolfo C; Veiga-Lopez, Almudena; Moeller, Jacob; Beckett, Evan; Pease, Anthony; Keller, Erica; Madrigal, Vanessa; Chazenbalk, Gregorio; Dumesic, Daniel; Padmanabhan, Vasantha

    2016-02-01

    Prenatally testosterone (T)-treated sheep present metabolic disruptions similar to those seen in women with polycystic ovary syndrome. These females exhibit an increased ratio of small to large adipocytes, which may be the earliest event in the development of adult insulin resistance. Additionally, our longitudinal studies suggest the existence of a period of compensatory adaptation during development. This study tested whether 1) in utero cotreatment of prenatally T-treated sheep with androgen antagonist (flutamide) or insulin sensitizer (rosiglitazone) prevents juvenile insulin resistance and adult changes in adipocyte size; and 2) visceral adiposity and insulin sensitivity are both unaltered during early adulthood, confirming the predicted developmental trajectory in this animal model. Insulin sensitivity was tested during juvenile development and adipose tissue distribution, adipocyte size, and concentrations of adipokines were determined during early adulthood. Prenatal T-treated females manifested juvenile insulin resistance, which was prevented by prenatal rosiglitazone cotreatment. Neither visceral adiposity nor insulin sensitivity differed between groups during early adulthood. Prenatal T-treated sheep presented an increase in the relative proportion of small adipocytes, which was not substantially prevented by either prenatal intervention. A large effect size was observed for increased leptin concentrations in prenatal T-treated sheep compared with controls, which was prevented by prenatal rosiglitazone. In conclusion, gestational alterations in insulin-glucose homeostasis likely play a role in programming insulin resistance, but not adipocyte size distribution, in prenatal T-treated sheep. Furthermore, these results support the notion that a period of compensatory adaptation of the metabolic system to prenatal T exposure occurs between puberty and adulthood.

  2. Beneficial effect of the insulin sensitizer (HSP inducer) BGP-15 on olanzapine-induced metabolic disorders.

    PubMed

    Literáti-Nagy, B; Péterfai, E; Kulcsár, E; Literáti-Nagy, Zs; Buday, B; Tory, K; Mandl, J; Sümegi, B; Fleming, A; Roth, J; Korányi, L

    2010-11-20

    Olanzapine is a widely used atypical antipsychotic, with well known metabolic side effects such as weight gain, insulin resistance and blood glucose abnormalities. It has been previously shown in a phase II clinical trial that BGP-15, an amidoxim derivative has insulin-sensitizing effects. The aim of this study was to investigate the efficacy of BGP-15 for the treatment of olanzapine-induced metabolic side effects, in healthy volunteers. Thirty-seven (37) subjects (ages 18-55 years) with normal glucose metabolism were randomly assigned to 17 days of once-daily treatment with 400mg of BGP-15 or placebo and 5mg of olanzapine for 3 days followed by 10mg for 14 days. Total body and muscle tissue glucose utilization was determined by hyperinsulinemic-euglycemic clamp technique. As expected the 17-day olanzapine treatment provoked insulin resistance and body weight gain (p<0.05) in both groups. Administration of BGP-15 significantly reduced olanzapine-induced insulin resistance. The protective effect of BGP-15 on insulin stimulated glucose utilization had the highest magnitude in the values calculated for the muscle tissue (p=0.002). In healthy individuals BGP-15 was safe and well tolerated during the whole study period. It is suggested that BGP-15 can be a successful insulin sensitizer agent to prevent side effects of olanzapine treatment.

  3. IL-4/STAT6 immune axis regulates peripheral nutrient metabolism and insulin sensitivity.

    PubMed

    Ricardo-Gonzalez, Roberto R; Red Eagle, Alex; Odegaard, Justin I; Jouihan, Hani; Morel, Christine R; Heredia, Jose E; Mukundan, Lata; Wu, Davina; Locksley, Richard M; Chawla, Ajay

    2010-12-28

    Immune cells take residence in metabolic tissues, providing a framework for direct regulation of nutrient metabolism. Despite conservation of this anatomic relationship through evolution, the signals and mechanisms by which the immune system regulates nutrient homeostasis and insulin action remain poorly understood. Here, we demonstrate that the IL-4/STAT6 immune axis, a key pathway in helminth immunity and allergies, controls peripheral nutrient metabolism and insulin sensitivity. Disruption of signal transducer and activator of transcription 6 (STAT6) decreases insulin action and enhances a peroxisome proliferator-activated receptor α (PPARα) driven program of oxidative metabolism. Conversely, activation of STAT6 by IL-4 improves insulin action by inhibiting the PPARα-regulated program of nutrient catabolism and attenuating adipose tissue inflammation. These findings have thus identified an unexpected molecular link between the immune system and macronutrient metabolism, suggesting perhaps the coevolution of these pathways occurred to ensure access to glucose during times of helminth infection.

  4. Cattle temperament influences metabolism: metabolic response to glucose tolerance and insulin sensitivity tests in beef steers.

    PubMed

    Burdick Sanchez, N C; Carroll, J A; Broadway, P R; Hughes, H D; Roberts, S L; Richeson, J T; Schmidt, T B; Vann, R C

    2016-07-01

    Cattle temperament, defined as the reactivity of cattle to humans or novel environments, can greatly influence several physiological systems in the body, including immunity, stress, and most recently discovered, metabolism. Greater circulating concentrations of nonesterified fatty acids (NEFAs) found in temperamental cattle suggest that temperamental cattle are metabolically different than calm cattle. Further, elevated NEFA concentrations have been reported to influence insulin sensitivity. Therefore, the objective of this study was to determine whether cattle temperament would influence the metabolic response to a glucose tolerance test (GTT) and insulin sensitivity test (IST). Angus-cross steers (16 calm and 15 temperamental; 216 ± 6 kg BW) were selected based on temperament score measured at weaning. On day 1, steers were moved into indoor stanchions to allow measurement of individual ad libitum feed intake. On day 6, steers were fitted with indwelling rectal temperature probes and jugular catheters. At 9 AM on day 7, steers received the GTT (0.5-mL/kg BW of a 50% dextrose solution), and at 2 PM on day 7, steers received the IST (2.5 IU bovine insulin/kg BW). Blood samples were collected and serum isolated at -60, -45, -30, -15, 0, 10, 20, 30, 45, 60, 90, 120, and 150 min relative to each challenge. Serum was stored at -80°C until analyzed for cortisol, glucose, NEFA, and blood urea nitrogen concentrations. All variables changed over time (P < 0.01). For the duration of the study, temperamental steers maintained greater (P < 0.01) serum NEFA and less (P ≤ 0.01) serum blood urea nitrogen and insulin sensitivity (calculated using Revised Quantitative Insulin Sensitivity Check Index) compared with calm steers. During the GTT, temperamental steers had greater (P < 0.01) serum glucose, yet decreased (P = 0.03) serum insulin and (P < 0.01) serum insulin: serum glucose compared to calm cattle. During the IST, temperamental steers had greater (P < 0.01) serum

  5. Chronic hyperinsulinemia reduces insulin sensitivity and metabolic functions of brown adipocyte.

    PubMed

    Rajan, Sujith; Shankar, Kripa; Beg, Muheeb; Varshney, Salil; Gupta, Abhishek; Srivastava, Ankita; Kumar, Durgesh; Mishra, Raj K; Hussain, Zakir; Gayen, Jiaur R; Gaikwad, Anil N

    2016-09-01

    The growing pandemics of diabetes have become a real threat to world economy. Hyperinsulinemia and insulin resistance are closely associated with the pathophysiology of type 2 diabetes. In pretext of brown adipocytes being considered as the therapeutic strategy for the treatment of obesity and insulin resistance, we have tried to understand the effect of hyperinsulinemia on brown adipocyte function. We here with for the first time report that hyperinsulinemia-induced insulin resistance in brown adipocyte is also accompanied with reduced insulin sensitivity and brown adipocyte characteristics. CI treatment decreased expression of brown adipocyte-specific markers (such as PRDM16, PGC1α, and UCP1) and mitochondrial content as well as activity. CI-treated brown adipocytes showed drastic decrease in oxygen consumption rate (OCR) and spare respiratory capacity. Morphological study indicates increased accumulation of lipid droplets in CI-treated brown adipocytes. We have further validated these findings in vivo in C57BL/6 mice implanted with mini-osmotic insulin pump for 8weeks. CI treatment in mice leads to increased body weight gain, fat mass and impaired glucose intolerance with reduced energy expenditure and insulin sensitivity. CI-treated mice showed decreased BAT characteristics and function. We also observed increased inflammation and ER stress markers in BAT of CI-treated animals. The above results conclude that hyperinsulinemia has deleterious effect on brown adipocyte function, making it susceptible to insulin resistance. Thus, the above findings have greater implication in designing approaches for the treatment of insulin resistance and diabetes via recruitment of brown adipocytes. PMID:27340034

  6. Circulating insulin stimulates fatty acid retention in white adipose tissue via KATP channel activation in the central nervous system only in insulin-sensitive mice[S

    PubMed Central

    Coomans, Claudia P.; Geerling, Janine J.; Guigas, Bruno; van den Hoek, Anita M.; Parlevliet, Edwin T.; Ouwens, D. Margriet; Pijl, Hanno; Voshol, Peter J.; Rensen, Patrick C. N.; Havekes, Louis M.; Romijn, Johannes A.

    2011-01-01

    Insulin signaling in the central nervous system (CNS) is required for the inhibitory effect of insulin on glucose production. Our aim was to determine whether the CNS is also involved in the stimulatory effect of circulating insulin on the tissue-specific retention of fatty acid (FA) from plasma. In wild-type mice, hyperinsulinemic-euglycemic clamp conditions stimulated the retention of both plasma triglyceride-derived FA and plasma albumin-bound FA in the various white adipose tissues (WAT) but not in other tissues, including brown adipose tissue (BAT). Intracerebroventricular (ICV) administration of insulin induced a similar pattern of tissue-specific FA partitioning. This effect of ICV insulin administration was not associated with activation of the insulin signaling pathway in adipose tissue. ICV administration of tolbutamide, a KATP channel blocker, considerably reduced (during hyperinsulinemic-euglycemic clamp conditions) and even completely blocked (during ICV administration of insulin) WAT-specific retention of FA from plasma. This central effect of insulin was absent in CD36-deficient mice, indicating that CD36 is the predominant FA transporter in insulin-stimulated FA retention by WAT. In diet-induced insulin-resistant mice, these stimulating effects of insulin (circulating or ICV administered) on FA retention in WAT were lost. In conclusion, in insulin-sensitive mice, circulating insulin stimulates tissue-specific partitioning of plasma-derived FA in WAT in part through activation of KATP channels in the CNS. Apparently, circulating insulin stimulates fatty acid uptake in WAT but not in BAT, directly and indirectly through the CNS. PMID:21700834

  7. Association of oxidative status and insulin sensitivity in periparturient dairy cattle: an observational study.

    PubMed

    Abuelo, A; Hernández, J; Benedito, J L; Castillo, C

    2016-04-01

    Post-parturient insulin resistance (IR) is a common feature in all mammalian animals. However, in dairy cows, it can be exacerbated because of high milk yield, leading to excessive negative energy balance, which is related with increased disease incidence, reduced milk production and worsened reproductive performance. IR has been extensively investigated in humans suffering from diabetes mellitus. In these subjects, it is known that oxidative stress (OS) plays a causative role in the onset of IR. Although OS occurs in transitional dairy cattle, there are yet no studies that investigated the association between IR and OS in dairy cattle. Therefore, the aim of this study was to investigate whether there is a relationship between OS and IR in dairy cattle. Serum samples were taken repeatedly from 22 dairy cows from 2 months prior to the expected calving date to 2 months after calving and were analysed for markers of metabolic and redox balance. Surrogate indices of insulin sensitivity were also calculated. Generalised linear mixed models revealed an effect of the oxidative status on peripheral insulin concentration and on indices of insulin sensitivity. Hence, field trials should investigate the effectiveness of antioxidant therapy on insulin sensitivity in peripheral tissues during the transition period of dairy cattle.

  8. Vasopeptidase inhibition improves insulin sensitivity and endothelial function in the JCR:LA-cp rat.

    PubMed

    Russell, James C; Kelly, Sandra E; Schäfer, Stefan

    2004-08-01

    The insulin-resistant, hyperinsulinemic, normoglycemic, and obese JCR:LA-cp rat was used to study the effects of ramipril (an ACE inhibitor) and AVE7688 (a dual inhibitor of ACE and neutral endopeptidases) on insulin sensitivity and vascular function. Both compounds reduced the surge of plasma insulin in a meal tolerance test by approximately 50%. Ramipril had no effect on acetylcholine-induced relaxation but increased the sensitivity to sodium nitroprus-side at low concentrations. AVE7688 significantly reduced the EC50 for acetylcholine to relax phenylephrine-contracted aortic rings. None of the compounds affected the baseline coronary flow and reactive hyperemia. Coronary flow response to bradykinin in AVE7688- and ramipril-treated rat hearts showed a significantly lower EC50 than in control rats. Maximum flow rate was not different between groups. In summary, both ramipril and AVE7688 had significant hypoinsulinemic and insulin-sensitizing effects. Whereas ramipril had limited vascular effects, AVE7688 had more marked beneficial vascular effects, probably of endothelial origin and possibly related to lowered insulin levels.

  9. Effects of restrained eating behaviour on insulin sensitivity in normal-weight individuals.

    PubMed

    Martins, C; Morgan, L M; Robertson, M D

    2009-03-23

    Restrained eating behaviour has been linked to abnormalities in metabolic and endocrine functions. However, the impact of restraint on fasting insulin and glucose plasma levels and insulin sensitivity remains controversial. Moreover, the few postprandial studies to date are limited by an inappropriate sampling time frame and a low "net" energy and carbohydrate load. The aims of this study are to assess the role of dietary restraint on fasting and postprandial plasma levels of insulin, glucose, triacylglycerol (TAG) and non esterified fatty acids (NEFA) in healthy volunteers with a normal and stable body weight and to determine whether the effect of restraint on the plasma levels of the previous hormones/metabolites is load dependent. Normal-weight participants (21 women and 12 men) were classified as restrained/unrestrained based on the restraint scale of the Three Factor Eating Questionnaire-18R and Dutch Eating Behaviour Questionnaire. The impact of restraint on the plasma levels of different hormones/metabolites was measured, in response to a 500 kcal and 1000 kcal breakfast, using a randomised crossover design. Restraint was associated with lower fasting insulin plasma levels (P<0.05) and a lower insulin (P<0.015) and glucose (P<0.05) plasma levels in the postprandial state, but did not impact on TAG or NEFA. Moreover, restrained eaters showed a better fasting (P<0.05) and postprandial insulin sensitivity (P<0.01). Restrained eating behaviour has, therefore, a significant impact on both fasting and postprandial glucose metabolism, being associated with increased insulin sensitivity. These findings suggest the need for adjusting for restraint level in studies where glucose metabolism is a major outcome.

  10. Associations of Adiponectin with Adiposity, Insulin Sensitivity, and Diet in Young, Healthy, Mexican Americans and Non-Latino White Adults.

    PubMed

    Pereira, Rocio I; Low Wang, Cecilia C; Wolfe, Pamela; Havranek, Edward P; Long, Carlin S; Bessesen, Daniel H

    2015-12-22

    Low circulating adiponectin levels may contribute to higher diabetes risk among Mexican Americans (MA) compared to non-Latino whites (NLW). Our objective was to determine if among young healthy adult MAs have lower adiponectin than NLWs, independent of differences in adiposity. In addition, we explored associations between adiponectin and diet. This was an observational, cross-sectional study of healthy MA and NLW adults living in Colorado (U.S.A.). We measured plasma total adiponectin, adiposity (BMI, and visceral adipose tissue), insulin sensitivity (IVGTT), and self-reported dietary intake in 43 MA and NLW adults. Mean adiponectin levels were 40% lower among MA than NLW (5.8 ± 3.3 vs. 10.7 ± 4.2 µg/mL, p = 0.0003), and this difference persisted after controlling for age, sex, BMI, and visceral adiposity. Lower adiponectin in MA was associated with lower insulin sensitivity (R² = 0.42, p < 0.01). Lower adiponectin was also associated with higher dietary glycemic index, lower intake of vegetables, higher intake of trans fat, and higher intake of grains. Our findings confirm that ethnic differences in adiponectin reflect differences in insulin sensitivity, but suggest that these are not due to differences in adiposity. Observed associations between adiponectin and diet support the need for future studies exploring the regulation of adiponectin by diet and other environmental factors.

  11. Effects of delayed gastric emptying on postprandial glucose kinetics, insulin sensitivity, and β-cell function.

    PubMed

    Hinshaw, Ling; Schiavon, Michele; Mallad, Ashwini; Man, Chiara Dalla; Basu, Rita; Bharucha, Adil E; Cobelli, Claudio; Carter, Rickey E; Basu, Ananda; Kudva, Yogish C

    2014-09-15

    Controlling meal-related glucose excursions continues to be a therapeutic challenge in diabetes mellitus. Mechanistic reasons for this need to be understood better to develop appropriate therapies. To investigate delayed gastric emptying effects on postprandial glucose turnover, insulin sensitivity, and β-cell responsivity and function, as a feasibility study prior to studying patients with type 1 diabetes, we used the triple tracer technique C-peptide and oral minimal model approach in healthy subjects. A single dose of 30 μg of pramlintide administered at the start of a mixed meal was used to delay gastric emptying rates. With delayed gastric emptying rates, peak rate of meal glucose appearance was delayed, and rate of endogenous glucose production (EGP) was lower. C-peptide and oral minimal models enabled the assessments of β-cell function, insulin sensitivity, and β-cell responsivity simultaneously. Delayed gastric emptying induced by pramlintide improved total insulin sensitivity and decreased total β-cell responsivity. However, β-cell function as measured by total disposition index did not change. The improved whole body insulin sensitivity coupled with lower rate of appearance of EGP with delayed gastric emptying provides experimental proof of the importance of evaluating pramlintide in artificial endocrine pancreas approaches to reduce postprandial blood glucose variability in patients with type 1 diabetes. PMID:25074985

  12. Modulation of age-related insulin sensitivity by VEGF-dependent vascular plasticity in adipose tissues.

    PubMed

    Honek, Jennifer; Seki, Takahiro; Iwamoto, Hideki; Fischer, Carina; Li, Jingrong; Lim, Sharon; Samani, Nilesh J; Zang, Jingwu; Cao, Yihai

    2014-10-14

    Mechanisms underlying age-related obesity and insulin resistance are generally unknown. Here, we report age-related adipose vascular changes markedly modulated fat mass, adipocyte functions, blood lipid composition, and insulin sensitivity. Notably, VEGF expression levels in various white adipose tissues (WATs) underwent changes uninterruptedly in different age populations. Anti-VEGF and anti- VEGF receptor 2 treatment in different age populations showed marked variations of vascular regression, with midaged mice exhibiting modest sensitivity. Interestingly, anti-VEGF treatment produced opposing effects on WAT adipocyte sizes in different age populations and affected vascular density and adipocyte sizes in brown adipose tissue. Consistent with changes of vasculatures and adipocyte sizes, anti-VEGF treatment increased insulin sensitivity in young and old mice but had no effects in the midaged group. Surprisingly, anti-VEGF treatment significantly improved insulin sensitivity in midaged obese mice fed a high-fat diet. Our findings demonstrate that adipose vasculatures show differential responses to anti-VEGF treatment in various age populations and have therapeutic implications for treatment of obesity and diabetes with anti-VEGF-based antiangiogenic drugs.

  13. Aerobic exercise increases peripheral and hepatic insulin sensitivity in sedentary adolescents

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The increasing prevalence of obesity and its consequences is a serious public health concern. The present study was undertaken to determine whether a controlled aerobic exercise program (without weight loss) improves insulin sensitivity and glucose metabolism in sedentary adolescents. Twenty nine p...

  14. Metabolomic profiling of amino acids and beta-cell function relative to insulin sensitivity in youth

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In longitudinal studies of adults, elevated amino acid (AA) concentrations predicted future type 2 diabetes mellitus (T2DM). The aim of the present investigation was to examine whether increased plasma AA concentrations are associated with impaired beta-cell function relative to insulin sensitivity ...

  15. Resistance exercise increase lean body mass and improves basal and hepatic insulin sensitivity in obese adolescents

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Little is known about the metabolic effects of resistance exercise, for instance, weight lifting. We studied whether a resistance exercise program improves insulin sensitivity and glucose metabolism in sedentary obese adolescents. Elevn obese subjects (15.7 +/- 0.4 year; 35.4 +/- 0.8 kg/m2; 41.3 +/-...

  16. The farnesoid X receptor modulates adiposity and peripheral insulin sensitivity in mice.

    PubMed

    Cariou, Bertrand; van Harmelen, Kirsten; Duran-Sandoval, Daniel; van Dijk, Theo H; Grefhorst, Aldo; Abdelkarim, Mouaadh; Caron, Sandrine; Torpier, Gérard; Fruchart, Jean-Charles; Gonzalez, Frank J; Kuipers, Folkert; Staels, Bart

    2006-04-21

    The farnesoid X receptor (FXR) is a bile acid (BA)-activated nuclear receptor that plays a major role in the regulation of BA and lipid metabolism. Recently, several studies have suggested a potential role of FXR in the control of hepatic carbohydrate metabolism, but its contribution to the maintenance of peripheral glucose homeostasis remains to be established. FXR-deficient mice display decreased adipose tissue mass, lower serum leptin concentrations, and elevated plasma free fatty acid levels. Glucose and insulin tolerance tests revealed that FXR deficiency is associated with impaired glucose tolerance and insulin resistance. Moreover, whole-body glucose disposal during a hyperinsulinemic euglycemic clamp is decreased in FXR-deficient mice. In parallel, FXR deficiency alters distal insulin signaling, as reflected by decreased insulin-dependent Akt phosphorylation in both white adipose tissue and skeletal muscle. Whereas FXR is not expressed in skeletal muscle, it was detected at a low level in white adipose tissue in vivo and induced during adipocyte differentiation in vitro. Moreover, mouse embryonic fibroblasts derived from FXR-deficient mice displayed impaired adipocyte differentiation, identifying a direct role for FXR in adipocyte function. Treatment of differentiated 3T3-L1 adipocytes with the FXR-specific synthetic agonist GW4064 enhanced insulin signaling and insulin-stimulated glucose uptake. Finally, treatment with GW4064 improved insulin resistance in genetically obese ob/ob mice in vivo. Although the underlying molecular mechanisms remain to be unraveled, these results clearly identify a novel role of FXR in the regulation of peripheral insulin sensitivity and adipocyte function. This unexpected function of FXR opens new perspectives for the treatment of type 2 diabetes.

  17. Acupoint-specific, frequency-dependent, and improved insulin sensitivity hypoglycemic effect of electroacupuncture applied to drug-combined therapy studied by a randomized control clinical trial.

    PubMed

    Lin, Rong-Tsung; Tzeng, Chung-Yuh; Lee, Yu-Chen; Chen, Ying-I; Hsu, Tai-Hao; Lin, Jaung-Geng; Chang, Shih-Liang

    2014-01-01

    The application of electroacupuncture (EA) to specific acupoints can induce a hypoglycemic effect in streptozotocin-induced rats, normal rats, and rats with steroid-induced insulin resistance. EA combined with the oral insulin sensitizer rosiglitazone improved insulin sensitivity in rats and humans with type II diabetes mellitus (DM). There are different hypoglycemic mechanisms between Zhongwan and Zusanli acupoints by EA stimulation. On low-frequency (2 Hz) stimulation at bilateral Zusanli acupoints, serotonin was involved in the hypoglycemic effect in normal rats. Moreover, after 15 Hz EA stimulation at the bilateral Zusanli acupoints, although enhanced insulin activity mainly acts on the insulin-sensitive target organs, the muscles must be considered. In addition, 15 Hz EA stimulation at the bilateral Zusanli acupoints has the combined effect of enhancing cholinergic nerve activity and increasing nitric oxide synthase (NOS) activity to enhance insulin activity. Despite the well-documented effect of pain control by EA in many systemic diseases, there are few high-quality long-term clinical trials on the hypoglycemic effect of EA in DM. Combination treatment with EA and other medications seems to be an alternative treatment to achieve better therapeutic goals that merit future investigation. PMID:25024728

  18. Insulin-Sensitizing Effects of Omega-3 Fatty Acids: Lost in Translation?

    PubMed Central

    Lalia, Antigoni Z.; Lanza, Ian R.

    2016-01-01

    Omega-3 polyunsaturated fatty acids (n-3 PUFA) of marine origin, eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA), have been long studied for their therapeutic potential in the context of type 2 diabetes, insulin resistance, and glucose homeostasis. Glaring discordance between observations in animal and human studies precludes, to date, any practical application of n-3 PUFA as nutritional therapeutics against insulin resistance in humans. Our objective in this review is to summarize current knowledge and provide an up-to-date commentary on the therapeutic value of EPA and DHA supplementation for improving insulin sensitivity in humans. We also sought to discuss potential mechanisms of n-3 PUFA action in target tissues, in specific skeletal muscle, based on our recent work, as well as in liver and adipose tissue. We conducted a literature search to include all preclinical and clinical studies performed within the last two years and to comment on representative studies published earlier. Recent studies support a growing consensus that there are beneficial effects of n-3 PUFA on insulin sensitivity in rodents. Observational studies in humans are encouraging, however, the vast majority of human intervention studies fail to demonstrate the benefit of n-3 PUFA in type 2 diabetes or insulin-resistant non-diabetic people. Nevertheless, there are still several unanswered questions regarding the potential impact of n-3 PUFA on metabolic function in humans. PMID:27258299

  19. Saffron (Crocus sativus L.) increases glucose uptake and insulin sensitivity in muscle cells via multipathway mechanisms.

    PubMed

    Kang, Changkeun; Lee, Hyunkyoung; Jung, Eun-Sun; Seyedian, Ramin; Jo, MiNa; Kim, Jehein; Kim, Jong-Shu; Kim, Euikyung

    2012-12-15

    Saffron (Crocus sativus Linn.) has been an important subject of research in the past two decades because of its various biological properties, including anti-cancer, anti-inflammatory, and anti-atherosclerotic activities. On the other hand, the molecular bases of its actions have been scarcely understood. Here, we elucidated the mechanism of the hypoglycemic actions of saffron through investigating its signaling pathways associated with glucose metabolism in C(2)C(12) skeletal muscle cells. Saffron strongly enhanced glucose uptake and the phosphorylation of AMPK (AMP-activated protein kinase)/ACC (acetyl-CoA carboxylase) and MAPKs (mitogen-activated protein kinases), but not PI 3-kinase (Phosphatidylinositol 3-kinase)/Akt. Interestingly, the co-treatment of saffron and insulin further improved the insulin sensitivity via both insulin-independent (AMPK/ACC and MAPKs) and insulin-dependent (PI 3-kinase/Akt and mTOR) pathways. It also suggested that there is a crosstalk between the two signaling pathways of glucose metabolism in skeletal muscle cells. These results could be confirmed from the findings of GLUT4 translocation. Taken together, AMPK plays a major role in the effects of saffron on glucose uptake and insulin sensitivity in skeletal muscle cells. Our study provides important insights for the possible mechanism of action of saffron and its potential as a therapeutic agent in diabetic patients.

  20. Association of insulin sensitivity and muscle strength in overweight and obese sedentary postmenopausal women.

    PubMed

    Karelis, Antony D; Tousignant, Benoit; Nantel, Julie; Proteau-Labelle, Majorique; Malita, Florin M; St-Pierre, David H; Brochu, Martin; Doucet, Eric; Rabasa-Lhoret, Rémi

    2007-04-01

    The objective of this study was to examine the relationship between insulin sensitivity and lower body muscle strength in overweight and obese sedentary postmenopausal women. The design of the study was cross-sectional. The study population consisted of 82 non-diabetic overweight and obese sedentary postmenopausal women (age: 58.2 +/- 5.1 y; body mass index (BMI): 32.4 +/- 4.6 kg.m-2). Subjects were classified by dividing the entire cohort into quartiles based on relative insulin sensitivity expressed per kilograms of lean body mass (LBM) (Q1, < 10.3, vs. Q2, 10.3-12.4, vs. Q3, 12.5-14.0, vs. Q4, >14.0 mg.min-1.kg LBM-1). We measured insulin sensitivity (using the hyperinsulinemic-euglycemic clamp technique), body composition (using dual-energy X-ray absorptiometry), visceral fat and muscle attenuation (using computed tomography), and a lower-body muscle strength index expressed as weight lifted in kilograms per kilogram of LBM (kg.kg LBM-1) (using weight-training equipment). A positive and significant relationship was observed between insulin sensitivity and the muscle strength index (r = 0.37; p < 0.001). Moreover, a moderate but significant correlation was observed between the muscle strength index and muscle attenuation (r = 0.22; p < 0.05). Finally, the muscle strength index was significantly higher in the Q4 group compared with the Q2 and Q1 groups, respectively (3.78 +/- 1.13 vs. 2.99 +/- 0.77 and 2.93 +/- 0.91 kg.kg LBM-1; p < 0.05). Insulin sensitivity is positively associated with lower-body muscle strength in overweight and obese sedentary postmenopausal women.

  1. Serum Resistin Levels Are Associated with Adiposity and Insulin Sensitivity in Obese Hispanic Subjects

    PubMed Central

    Nieva-Vazquez, Adriana; Torres-Rasgado, Enrique; López-López, José G.; Romero, Jose R.

    2014-01-01

    Abstract Background and Aims: Resistin is involved in the development of obesity and insulin resistance (IR) in mice and may play a similar role in humans through mechanisms that remain unresolved. The objective of this study was to characterize the relationship between resistin levels in obese subjects with and without IR among Hispanic subjects. Material and Methods: A cross-sectional study was performed on 117 nondiabetic Hispanic subjects of both genders that were allocated into three study groups: A control group (n=47) of otherwise healthy individuals in metabolic balance, a group with obesity (OB) (n=36), and a group with obesity and IR (OB-IR) (n=34). Anthropometric and clinical characterization was carried out, and resistin levels were determined by enzyme-linked immunosorbent assay (ELISA). Results: We found that resistin levels were higher in OB and OB-IR groups when compared to the control group (1331.79±142.15 pg/mL, 1266.28±165.97 pg/mL vs. 959.21±171.43 pg/mL; P<0.05), an effect that was not confounded by age (control, 34.04±10.00 years; OB, 37.30±10.78 years; and OB-IR, 35.67±10.15 years). In addition, we observed a significant correlation (P<0.001) between resistin levels and higher adiposity and insulin sensitivity (IS) in our cohort. Conclusions: Our results suggest that higher resistin levels are associated with higher adiposity and lower IS among obese Hispanic subjects. PMID:24266722

  2. Antidiabetic Property of Symplocos cochinchinensis Is Mediated by Inhibition of Alpha Glucosidase and Enhanced Insulin Sensitivity

    PubMed Central

    Antu, Kalathookunnel Antony; Riya, Mariam Philip; Mishra, Arvind; Anilkumar, Karunakaran S.; Chandrakanth, Chandrasekharan K.; Tamrakar, Akhilesh K.; Srivastava, Arvind K.; Raghu, K. Gopalan

    2014-01-01

    The study is designed to find out the biochemical basis of antidiabetic property of Symplocos cochinchinensis (SC), the main ingredient of ‘Nisakathakadi’ an Ayurvedic decoction for diabetes. Since diabetes is a multifactorial disease, ethanolic extract of the bark (SCE) and its fractions (hexane, dichloromethane, ethyl acetate and 90% ethanol) were evaluated by in vitro methods against multiple targets relevant to diabetes such as the alpha glucosidase inhibition, glucose uptake, adipogenic potential, oxidative stress, pancreatic beta cell proliferation, inhibition of protein glycation, protein tyrosine phosphatase-1B (PTP-1B) and dipeptidyl peptidase-IV (DPP-IV). Among the extracts, SCE exhibited comparatively better activity like alpha glucosidase inhibition (IC50 value-82.07±2.10 µg/mL), insulin dependent glucose uptake (3 fold increase) in L6 myotubes, pancreatic beta cell regeneration in RIN-m5F (3.5 fold increase) and reduced triglyceride accumulation (22% decrease) in 3T3L1 cells, protection from hyperglycemia induced generation of reactive oxygen species in HepG2 cells (59.57% decrease) with moderate antiglycation and PTP-1B inhibition. Chemical characterization by HPLC revealed the superiority of SCE over other extracts due to presence and quantity of bioactives (beta-sitosterol, phloretin 2′glucoside, oleanolic acid) in addition to minerals like magnesium, calcium, potassium, sodium, zinc and manganese. So SCE has been subjected to oral sucrose tolerance test to evaluate its antihyperglycemic property in mild diabetic and diabetic animal models. SCE showed significant antihyperglycemic activity in in vivo diabetic models. We conclude that SC mediates the antidiabetic activity mainly via alpha glucosidase inhibition, improved insulin sensitivity, with moderate antiglycation and antioxidant activity. PMID:25184241

  3. Insulin receptor binding motif tagged with IgG4 Fc (Yiminsu) works as an insulin sensitizer to activate Akt signaling in hepatocytes.

    PubMed

    Wang, J; Zou, T; Yang, H X; Gong, Y Z; Xie, X J; Liu, H Y; Liao, D F

    2015-01-01

    Insulin resistance is a key feature of obesity and type 2 diabetes mellitus (T2DM). Interaction of insulin with the insulin receptor (IR) leads to both its auto-phosphorylation and phosphorylation of tyrosine residues on the IR substrate (IRS) proteins, initiating the activation of intracellular signaling cascades. The metabolic effects of IRS are known to be mediated through pathways involving phosphatidyl-inositol 3-kinase (PI-3K), which result in the activation of Akt signaling. The C-terminal region of the IR ectodomain is required to facilitate the conformational changes that are required for high-affinity binding to insulin. Furthermore, the CH2 and CH3 domains in the Fc fragments of immunoglobulins are responsible for their binding to the Fc receptor, which triggers transcytosis. In this study, we created a fusion peptide of the C-terminal end of the human IR ectodomain with the IgG4 Fc fragment, including an intervening polyG fragment to ensure enough space for insulin binding. We named this new peptide "Yiminsu", meaning an insulin sensitizer. The results of our analyses show that Yiminsu significantly facilitates insulin signaling via the activation of Akt in hepatocytes in a dose- and time-dependent manner. Further studies are required to determine whether Yiminsu can act as an insulin sensitizer. PMID:26345813

  4. Long-chain omega-3 fatty acids regulate bovine whole-body protein metabolism by promoting muscle insulin signalling to the Akt–mTOR–S6K1 pathway and insulin sensitivity

    PubMed Central

    Gingras, Andrée-Anne; White, Phillip James; Chouinard, P Yvan; Julien, Pierre; Davis, Teresa A; Dombrowski, Luce; Couture, Yvon; Dubreuil, Pascal; Myre, Alexandre; Bergeron, Karen; Marette, André; Thivierge, M Carole

    2007-01-01

    The ability of the skeletal musculature to use amino acids to build or renew constitutive proteins is gradually lost with age and this is partly due to a decline in skeletal muscle insulin sensitivity. Since long-chain omega-3 polyunsaturated fatty acids (LCn–3PUFA) from fish oil are known to improve insulin-mediated glucose metabolism in insulin-resistant states, their potential role in regulating insulin-mediated protein metabolism was investigated in this study. Experimental data are based on a switchback design composed of three 5 week experimental periods using six growing steers to compare the effect of a continuous abomasal infusion of LCn–3PUFA-rich menhaden oil with an iso-energetic control oil mixture. Clamp and insulin signalling observations were combined with additional data from a second cohort of six steers. We found that enteral LCn–3PUFA potentiate insulin action by increasing the insulin-stimulated whole-body disposal of amino acids from 152 to 308 μmol kg−1 h−1 (P = 0.006). The study further showed that in the fed steady-state, chronic adaptation to LCn–3PUFA induces greater activation (P < 0.05) of the Akt–mTOR–S6K1 signalling pathway. Simultaneously, whole-body total flux of phenylalanine was reduced from 87 to 67 μmol kg−1 h−1 (P = 0.04) and oxidative metabolism was decreased (P = 0.05). We conclude that chronic feeding of menhaden oil provides a novel nutritional mean to enhance insulin-sensitive aspects of protein metabolism. PMID:17158167

  5. Long-chain omega-3 fatty acids regulate bovine whole-body protein metabolism by promoting muscle insulin signalling to the Akt-mTOR-S6K1 pathway and insulin sensitivity.

    PubMed

    Gingras, Andrée-Anne; White, Phillip James; Chouinard, P Yvan; Julien, Pierre; Davis, Teresa A; Dombrowski, Luce; Couture, Yvon; Dubreuil, Pascal; Myre, Alexandre; Bergeron, Karen; Marette, André; Thivierge, M Carole

    2007-02-15

    The ability of the skeletal musculature to use amino acids to build or renew constitutive proteins is gradually lost with age and this is partly due to a decline in skeletal muscle insulin sensitivity. Since long-chain omega-3 polyunsaturated fatty acids (LCn-3PUFA) from fish oil are known to improve insulin-mediated glucose metabolism in insulin-resistant states, their potential role in regulating insulin-mediated protein metabolism was investigated in this study. Experimental data are based on a switchback design composed of three 5 week experimental periods using six growing steers to compare the effect of a continuous abomasal infusion of LCn-3PUFA-rich menhaden oil with an iso-energetic control oil mixture. Clamp and insulin signalling observations were combined with additional data from a second cohort of six steers. We found that enteral LCn-3PUFA potentiate insulin action by increasing the insulin-stimulated whole-body disposal of amino acids from 152 to 308 micromol kg(-1) h(-1) (P=0.006). The study further showed that in the fed steady-state, chronic adaptation to LCn-3PUFA induces greater activation (P<0.05) of the Akt-mTOR-S6K1 signalling pathway. Simultaneously, whole-body total flux of phenylalanine was reduced from 87 to 67 micromol kg(-1) h(-1) (P=0.04) and oxidative metabolism was decreased (P=0.05). We conclude that chronic feeding of menhaden oil provides a novel nutritional mean to enhance insulin-sensitive aspects of protein metabolism. PMID:17158167

  6. Exenatide Treatment for 6 Months Improves Insulin Sensitivity in Adults With Type 1 Diabetes

    PubMed Central

    Sarkar, Gayatri; Alattar, May; Brown, Rebecca J.; Quon, Michael J.; Harlan, David M.; Rother, Kristina I.

    2014-01-01

    OBJECTIVE Exenatide treatment improves glycemia in adults with type 2 diabetes and has been shown to reduce postprandial hyperglycemia in adolescents with type 1 diabetes. We studied the effects of exenatide on glucose homeostasis in adults with long-standing type 1 diabetes. RESEARCH DESIGN AND METHODS Fourteen patients with type 1 diabetes participated in a crossover study of 6 months' duration on exenatide (10 μg four times a day) and 6 months off exenatide. We assessed changes in fasting and postprandial blood glucose and changes in insulin sensitivity before and after each study period. RESULTS High-dose exenatide therapy reduced postprandial blood glucose but was associated with higher fasting glucose concentrations without net changes in hemoglobin A1c. Exenatide increased insulin sensitivity beyond the effects expected as a result of weight reduction. CONCLUSIONS Exenatide is a promising adjunctive agent to insulin therapy because of its beneficial effects on postprandial blood glucose and insulin sensitivity in patients with type 1 diabetes. PMID:24194508

  7. Growth-Blocking Peptides As Nutrition-Sensitive Signals for Insulin Secretion and Body Size Regulation

    PubMed Central

    Koyama, Takashi; Mirth, Christen K.

    2016-01-01

    In Drosophila, the fat body, functionally equivalent to the mammalian liver and adipocytes, plays a central role in regulating systemic growth in response to nutrition. The fat body senses intracellular amino acids through Target of Rapamycin (TOR) signaling, and produces an unidentified humoral factor(s) to regulate insulin-like peptide (ILP) synthesis and/or secretion in the insulin-producing cells. Here, we find that two peptides, Growth-Blocking Peptide (GBP1) and CG11395 (GBP2), are produced in the fat body in response to amino acids and TOR signaling. Reducing the expression of GBP1 and GBP2 (GBPs) specifically in the fat body results in smaller body size due to reduced growth rate. In addition, we found that GBPs stimulate ILP secretion from the insulin-producing cells, either directly or indirectly, thereby increasing insulin and insulin-like growth factor signaling activity throughout the body. Our findings fill an important gap in our understanding of how the fat body transmits nutritional information to the insulin producing cells to control body size. PMID:26928023

  8. Synthesis and evaluation of temperature- and glucose-sensitive nanoparticles based on phenylboronic acid and N-vinylcaprolactam for insulin delivery.

    PubMed

    Wu, Jun-Zi; Bremner, David H; Li, He-Yu; Sun, Xiao-Zhu; Zhu, Li-Min

    2016-12-01

    Poly N-vinylcaprolactam-co-acrylamidophenylboronic acid p(NVCL-co-AAPBA) was prepared from N-vinylcaprolactam (NVCL) and 3-acrylamidophenylboronic acid (AAPBA), using 2,2-azobisisobutyronitrile (AIBN) as initiator. The synthesis and structure of the polymer were examined by Fourier Transform infrared spectroscopy (FT-IR) and (1)H-NMR. Dynamic light scattering (DLS), lower critical solution temperature (LCST) and transmission electron microscopy (TEM) were utilized to characterize the nanoparticles, CD spectroscopy was used to determine if there were any changes to the conformation of the insulin, and cell and animal toxicity were also investigated. The prepared nanoparticles were found to be monodisperse submicron particles and were glucose- and temperature-sensitive. In addition, the nanoparticles have good insulin-loading characteristics, do not affect the conformation of the insulin and show low-toxicity to cells and animals. These p(NVCL-co-AAPBA) nanoparticles may have some value for insulin or other hypoglycemic protein delivery. PMID:27612799

  9. Complement C3 Is the Strongest Predictor of Whole-Body Insulin Sensitivity in Psoriatic Arthritis

    PubMed Central

    D’Angelo, Salvatore; Russo, Emilio; Nicolosi, Kassandra; Gallucci, Antonio; Chiaravalloti, Agostino; Bruno, Caterina; Naty, Saverio; De Sarro, Giovambattista; Olivieri, Ignazio; Grembiale, Rosa Daniela

    2016-01-01

    Objectives To evaluate the correlation between inflammatory measures and whole-body insulin sensitivity in psoriatic arthritis (PsA) patients. Methods For the present study, 40 nondiabetic PsA patients were recruited. A standard oral glucose tolerance test (OGTT) was performed. The insulin sensitivity index (ISI), insulinogenic index (IGI) and oral disposition index (ODI) were calculated from dynamic values of glucose and insulin obtained during OGTT. Results In our study population, mean ISI was 3.5 ± 2.5, median IGI was 1.2 (0.7–1.8), mean ODI 4.5 ± 4.5. In univariate correlation analysis, ISI correlated inversely with systolic blood pressure (sBP) (R = -0.52, p = 0.001), diastolic blood pressure (dBP) (R = -0.45, p = 0.004) and complement C3 (R = -0.43, p = 0.006) and ODI correlated inversely with sBP (R = -0.38, p = 0.02), dBP (R = -0.35, p = 0.03) and complement C3 (R = -0.37, p = 0.02). No significant correlations were found between analyzed variables and IGI. In a stepwise multiple regression, only complement C3 entered in the regression equation and accounted for approximately 50% of the variance of ISI. Using a receiver operating characteristic (ROC) curve we identified the best cut-off for complement C3 of 1.32 g/L that yielded a sensitivity of 56% and a specificity of 96% for classification of insulin resistant patients. Conclusions In conclusion, our data suggest that serum complement C3 could represent a useful marker of whole-body insulin sensitivity in PsA patients. PMID:27656896

  10. Redox regulation of insulin sensitivity due to enhanced fatty acid utilization in the mitochondria.

    PubMed

    Rindler, Paul M; Crewe, Clair L; Fernandes, Jolyn; Kinter, Michael; Szweda, Luke I

    2013-09-01

    Obesity enhances the risk for the development of type 2 diabetes and cardiovascular disease. Loss in insulin sensitivity and diminished ability of muscle to take up and use glucose are characteristics of type 2 diabetes. Paradoxically, regulatory mechanisms that promote utilization of fatty acids appear to initiate diet-induced insulin insensitivity. In this review, we discuss recent findings implicating increased mitochondrial production of the prooxidant H2O2 due to enhanced utilization of fatty acids, as a signal to diminish reliance on glucose and its metabolites for energy. In the short term, the ability to preferentially use fatty acids may be beneficial, promoting a metabolic shift that ensures use of available fat by skeletal muscle and heart while preventing intracellular glucose accumulation and toxicity. However, with prolonged consumption of high dietary fat and ensuing obesity, the near exclusive dependence on fatty acid oxidation for production of energy by the mitochondria drives insulin resistance, diabetes, and cardiovascular disease.

  11. Improved insulin sensitivity and islet function after PPARdelta activation in diabetic db/db mice.

    PubMed

    Winzell, Maria Sörhede; Wulff, Erik Max; Olsen, Grith Skytte; Sauerberg, Per; Gotfredsen, Carsten F; Ahrén, Bo

    2010-01-25

    The peroxisome proliferator-activated receptors (PPARs) are transcription factors belonging to the nuclear receptor superfamily. Several reports have shown that PPARdelta is involved in lipid metabolism, increasing fat oxidation and depleting lipid accumulation. Whether PPARdelta is involved in the regulation of glucose metabolism is not completely understood. In this study, we examined effects of long-term PPARdelta activation on glycemic control, islet function and insulin sensitivity in diabetic db/db mice. Male db/db mice were administered orally once daily with a selective and partial PPARdelta agonist (NNC 61-5920, 30 mg/kg) for eight weeks; control mice received vehicle. Fasting and non-fasting plasma glucose were reduced, reflected in reduced hemoglobinA(1c) (3.6+/-1.6% vs. 5.4+/-1.8 in db/db controls, P<0.05) and furthermore, the AUC(glucose) after oral glucose (3g/kg) was reduced by 67% (P<0.05) after long-term PPARdelta activation. Following intravenous glucose (1g/kg), glucose tolerance was improved after PPARdelta activation (K(G) 1.3+/-0.6 vs. -0.05+/-0.7 %/min, P=0.048). Insulin sensitivity, measured as the glucose clearance after intravenous injection of glucose (1g/kg) and insulin (0.75 or 1.0 U/kg), during inhibition of endogenous insulin secretion by diazoxide (25mg/kg), was improved (K(G) 2.9+/-0.6 vs. 1.3+/-0.3 %/min in controls, P<0.05) despite lower insulin levels. Furthermore, islets isolated from PPARdelta agonist treated mice demonstrated improved glucose responsiveness as well as improved cellular topography. In conclusion, PPARdelta agonism alleviates insulin resistance and improves islet function and topography, resulting in improved glycemia in diabetic db/db mice. This suggests that activation of PPARdelta improves glucose metabolism and may therefore potentially be target for treatment of type 2 diabetes.

  12. The role of adipose cell size and adipose tissue insulin sensitivity in the carbohydrate intolerance of human obesity.

    PubMed

    Salans, L B; Knittle, J L; Hirsch, J

    1968-01-01

    Glucose metabolism and insulin sensitivity of isolated human adipose tissue was studied as a function of adipose cell size and number. Glucose metabolism by these tissues was closely related to the number of cells in the fragment, irrespective of cell size. Adipose cells of obese individuals metabolized glucose to carbon dioxide and triglyceride at rates similar to adipose cells of nonobese subjects. In contrast, insulin responsiveness of adipose tissue was dependent upon adipose cell size. The larger its adipose cells the less insulin sensitive was the tissue. Thus, adipose tissue of obese subjects, with enlarged cells, showed a diminished response to insulin. After weight loss and reduction in adipose cell size, insulin sensitivity of the adipose tissue of obese patients was restored to normal. When adipose tissue of obese individuals showed impaired responsiveness to insulin, their plasma insulin levels, after oral glucose, were elevated. Weight loss and reduction in adipose cell size restored plasma insulin concentration to normal, concomitant with the return of normal tissue insulin sensitivity.

  13. Insulin

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The manipulation of organic materials--cells, tissues, and even living organisms--offers many exciting possibilities for the future from organic computers to improved aquaculture. Commercial researchers are using the microgravity environment to produce large near perfect protein crystals Research on insulin has yielded crystals that far surpass the quality of insulin crystals grown on the ground. Using these crystals industry partners are working to develop new and improved treatments for diabetes. Other researchers are exploring the possibility of producing antibiotics using plant cell cultures which could lead to both orbital production and the improvement of ground-based antibiotic production.

  14. Hypothalamic neurogenesis is not required for the improved insulin sensitivity following exercise training.

    PubMed

    Borg, Melissa L; Lemus, Moyra; Reichenbach, Alex; Selathurai, Ahrathy; Oldfield, Brian J; Andrews, Zane B; Watt, Matthew J

    2014-11-01

    Neurons within the hypothalamic arcuate nucleus (ARC) are important regulators of energy balance. Recent studies suggest that neurogenesis in the ARC is an important regulator of body mass in response to pharmacological stressors. Regular exercise training improves insulin action, and is a primary treatment modality for obesity and type 2 diabetes. We examined whether exercise training causes hypothalamic neurogenesis and whether this contributes to exercise-induced improvements in insulin action. Short-term exercise in adult mice induced a proneurogenic transcriptional program involving growth factors, cell proliferation, and neurogenic regulators in the hypothalamus. Daily exercise training for 7 days increased hypothalamic cell proliferation 3.5-fold above that of sedentary mice, and exercise-induced cell proliferation was maintained in diet-induced obese mice. Colocalization studies indicated negligible neurogenesis in the ARC of sedentary or exercise-trained mice. Blocking cell proliferation via administration of the mitotic blocker arabinosylcytosine (AraC) did not affect food intake or body mass in obese mice. While 4 weeks of exercise training improved whole-body insulin sensitivity compared with sedentary mice, insulin action was not affected by AraC administration. These data suggest that regular exercise training induces significant non-neuronal cell proliferation in the hypothalamus of obese mice, but this proliferation is not required for enhanced insulin action.

  15. Bezafibrate Improves Insulin Sensitivity and Metabolic Flexibility in STZ-Induced Diabetic Mice.

    PubMed

    Franko, Andras; Huypens, Peter; Neschen, Susanne; Irmler, Martin; Rozman, Jan; Rathkolb, Birgit; Neff, Frauke; Prehn, Cornelia; Dubois, Guillaume; Baumann, Martina; Massinger, Rebecca; Gradinger, Daniel; Przemeck, Gerhard K H; Repp, Birgit; Aichler, Michaela; Feuchtinger, Annette; Schommers, Philipp; Stöhr, Oliver; Sanchez-Lasheras, Carmen; Adamski, Jerzy; Peter, Andreas; Prokisch, Holger; Beckers, Johannes; Walch, Axel K; Fuchs, Helmut; Wolf, Eckhard; Schubert, Markus; Wiesner, Rudolf J; Hrabě de Angelis, Martin

    2016-09-01

    Bezafibrate (BEZ), a pan activator of peroxisome proliferator-activated receptors (PPARs), has been generally used to treat hyperlipidemia for decades. Clinical trials with type 2 diabetes patients indicated that BEZ also has beneficial effects on glucose metabolism, although the underlying mechanisms of these effects remain elusive. Even less is known about a potential role for BEZ in treating type 1 diabetes. Here we show that BEZ markedly improves hyperglycemia and glucose and insulin tolerance in mice with streptozotocin (STZ)-induced diabetes, an insulin-deficient mouse model of type 1 diabetes. BEZ treatment of STZ mice significantly suppressed the hepatic expression of genes that are annotated in inflammatory processes, whereas the expression of PPAR and insulin target gene transcripts was increased. Furthermore, BEZ-treated mice also exhibited improved metabolic flexibility as well as an enhanced mitochondrial mass and function in the liver. Finally, we show that the number of pancreatic islets and the area of insulin-positive cells tended to be higher in BEZ-treated mice. Our data suggest that BEZ may improve impaired glucose metabolism by augmenting hepatic mitochondrial performance, suppressing hepatic inflammatory pathways, and improving insulin sensitivity and metabolic flexibility. Thus, BEZ treatment might also be useful for patients with impaired glucose tolerance or diabetes. PMID:27284107

  16. Developmental Programming: Impact of Prenatal Testosterone Excess on Insulin Sensitivity, Adiposity, and Free Fatty Acid Profile in Postpubertal Female Sheep

    PubMed Central

    Veiga-Lopez, A.; Moeller, J.; Patel, D.; Ye, W.; Pease, A.; Kinns, J.

    2013-01-01

    Prenatal T excess causes reproductive and metabolic disruptions including insulin resistance, attributes of women with polycystic ovary syndrome. This study tested whether increases in visceral adiposity, adipocyte size, and total free fatty acids underlie the insulin resistance seen in prenatal T-treated female sheep. At approximately 16 months of age, insulin resistance and adipose tissue partitioning were determined via hyperinsulinemic euglycemic clamp and computed tomography, respectively, in control and prenatal T-treated females. Three months later, adipocyte size and free fatty acid composition were determined. Results revealed that at the postpubertal time points tested, insulin sensitivity was increased, visceral adiposity and adipocyte size in both the sc and the visceral compartments were reduced, and circulating palmitic acid was increased in prenatal T-treated females relative to controls. In parallel studies, 20-month-old prenatal T-treated females tended to have increased basal insulin to glucose ratio. Relative to earlier findings of reduced insulin sensitivity of prenatal T-treated females during early life and adulthood, these findings of increased insulin sensitivity and reduced adiposity postpubertally are suggestive of a period of developmental adaptation. The disruption observed in free fatty acid metabolism a few months later correspond to a time point when the insulin sensitivity indices of prenatal T-treated animals appear to shift toward insulin resistance. In summary, current findings of improved insulin sensitivity and reduced visceral adiposity in postpubertal prenatal T-treated sheep relative to our earlier findings of reduced insulin sensitivity during early postnatal life and adulthood are indicative of a period of developmental adaptation. PMID:23525243

  17. Chronic exposure to nicotine enhances insulin sensitivity through α7 nicotinic acetylcholine receptor-STAT3 pathway.

    PubMed

    Xu, Tian-Ying; Guo, Ling-Ling; Wang, Pei; Song, Jie; Le, Ying-Ying; Viollet, Benoit; Miao, Chao-Yu

    2012-01-01

    This study was to investigate the effect of nicotine on insulin sensitivity and explore the underlying mechanisms. Treatment of Sprague-Dawley rats with nicotine (3 mg/kg/day) for 6 weeks reduced 43% body weight gain and 65% blood insulin level, but had no effect on blood glucose level. Both insulin tolerance test and glucose tolerance test demonstrated that nicotine treatment enhanced insulin sensitivity. Pretreatment of rats with hexamethonium (20 mg/kg/day) to antagonize peripheral nicotinic receptors except for α7 nicotinic acetylcholine receptor (α7-nAChR) had no effect on the insulin sensitizing effect of nicotine. However, the insulin sensitizing effect but not the bodyweight reducing effect of nicotine was abrogated in α7-nAChR knockout mice. Further, chronic treatment with PNU-282987 (0.53 mg/kg/day), a selective α7-nAChR agonist, significantly enhanced insulin sensitivity without apparently modifying bodyweight not only in normal mice but also in AMP-activated kinase-α2 knockout mice, an animal model of insulin resistance with no sign of inflammation. Moreover, PNU-282987 treatment enhanced phosphorylation of signal transducer and activator of transcription 3 (STAT3) in skeletal muscle, adipose tissue and liver in normal mice. PNU-282987 treatment also increased glucose uptake by 25% in C2C12 myotubes and this effect was total abrogated by STAT3 inhibitor, S3I-201. All together, these findings demonstrated that nicotine enhanced insulin sensitivity in animals with or without insulin resistance, at least in part via stimulating α7-nAChR-STAT3 pathway independent of inflammation. Our results contribute not only to the understanding of the pharmacological effects of nicotine, but also to the identifying of new therapeutic targets against insulin resistance.

  18. Highly sensitive sensor for picomolar detection of insulin at physiological pH, using GC electrode modified with guanine and electrodeposited nickel oxide nanoparticles.

    PubMed

    Salimi, Abdollah; Noorbakhash, Abdollah; Sharifi, Ensieh; Semnani, Abolfazl

    2008-12-01

    The electrochemical behavior of insulin at glassy carbon (GC) electrode modified with nickel oxide nanoparticles and guanine was investigated. Cyclic voltammetry technique has been used for electrodeposition of nickel oxide nanoparticles (NiOx) and immobilization of guanine on the surface GC electrode. In comparison to glassy carbon electrode modified with nickel oxide nanoparticles and bare GC electrode modified with adsorbed guanine, the guanine/nickel oxide nanoparticles/modified GC electrode exhibited excellent catalytic activity for the oxidation of insulin in physiological pH solutions at reduced overpotential. The modified electrode was applied for insulin detection using cyclic voltammetry or hydrodynamic amperometry techniques. It was found that the calibration curve was linear up to 4muM with a detection limit of 22pM and sensitivity of 100.9pA/pM under the optimized condition for hydrodynamic amperometry using a rotating disk modified electrode. In comparison to other electrochemical insulin sensors, this sensor shows many advantages such as simple preparation method without using any special electron transfer mediator or specific reagent, high sensitivity, excellent catalytic activity at physiological pH values, short response time, long-term stability and remarkable antifouling property toward insulin and its oxidation product. Additionally, it is promising for the monitoring of insulin in chromatographic effluents.

  19. Fibroblast Growth Factor 21 Improves Insulin Sensitivity and Synergizes with Insulin in Human Adipose Stem Cell-Derived (hASC) Adipocytes

    PubMed Central

    Lee, Darwin V.; Li, Dongmei; Yan, Qingyun; Zhu, Yimin; Goodwin, Bryan; Calle, Roberto; Brenner, Martin B.; Talukdar, Saswata

    2014-01-01

    Fibroblast growth factor 21 (FGF21) has evolved as a major metabolic regulator, the pharmacological administration of which causes weight loss, insulin sensitivity and glucose control in rodents and humans. To understand the molecular mechanisms by which FGF21 exerts its metabolic effects, we developed a human in vitro model of adipocytes to examine crosstalk between FGF21 and insulin signaling. Human adipose stem cell-derived (hASC) adipocytes were acutely treated with FGF21 alone, insulin alone, or in combination. Insulin signaling under these conditions was assessed by measuring tyrosine phosphorylation of insulin receptor (InsR), insulin receptor substrate-1 (IRS-1), and serine 473 phosphorylation of Akt, followed by a functional assay using 14C-2-deoxyglucose [14C]-2DG to measure glucose uptake in these cells. FGF21 alone caused a modest increase of glucose uptake, but treatment with FGF21 in combination with insulin had a synergistic effect on glucose uptake in these cells. The presence of FGF21 also effectively lowered the insulin concentration required to achieve the same level of glucose uptake compared to the absence of FGF21 by 10-fold. This acute effect of FGF21 on insulin signaling was not due to IR, IGF-1R, or IRS-1 activation. Moreover, we observed a substantial increase in basal S473-Akt phosphorylation by FGF21 alone, in contrast to the minimal shift in basal glucose uptake. Taken together, our data demonstrate that acute co-treatment of hASC-adipocytes with FGF21 and insulin can result in a synergistic improvement in glucose uptake. These effects were shown to occur at or downstream of Akt, or separate from the canonical insulin signaling pathway. PMID:25365322

  20. Insulin resistance and alterations in angiogenesis: additive insults that may lead to preeclampsia.

    PubMed

    Thadhani, Ravi; Ecker, Jeffrey L; Mutter, Walter P; Wolf, Myles; Smirnakis, Karen V; Sukhatme, Vikas P; Levine, Richard J; Karumanchi, S Ananth

    2004-05-01

    Altered angiogenesis and insulin resistance, which are intimately related at a molecular level, characterize preeclampsia. To test if an epidemiological interaction exists between these two alterations, we performed a nested case-control study of 28 women who developed preeclampsia and 57 contemporaneous controls. Serum samples at 12 weeks of gestation were measured for sex hormone binding globulin (SHBG; low levels correlate with insulin resistance) and placental growth factor (PlGF; a proangiogenic molecule). Compared with controls, women who developed preeclampsia had lower serum levels of SHBG (208+/-116 versus 256+/-101 nmol/L, P=0.05) and PlGF (16+/-14 versus 67+/-150 pg/mL, P<0.001), and in multivariable analysis, women with serum levels of PlGF < or =20 pg/mL had an increased risk of developing preeclampsia (odds ratio [OR] 7.6, 95% CI 1.4 to 38.4). Stratified by levels of serum SHBG (< or =175 versus >175 mg/dL), women with low levels of SHBG and PlGF had a 25.5-fold increased risk of developing preeclampsia (P=0.10), compared with 1.8 (P=0.38) among women with high levels of SHBG and low levels of PlGF. Formal testing for interaction (PlGFxSHBG) was significant (P=0.02). In a model with 3 (n-1) interaction terms (high PlGF and high SHBG, reference), the risk for developing preeclampsia was as follows: low PlGF and low SHBG, OR 15.1, 95% CI 1.7 to 134.9; high PlGF and low SHBG, OR 4.1, 95% CI 0.45 to 38.2; low PlGF and high SHBG, OR 8.7, 95% CI 1.2 to 60.3. Altered angiogenesis and insulin resistance are additive insults that lead to preeclampsia.

  1. Myostatin Inhibition in Muscle, but Not Adipose Tissue, Decreases Fat Mass and Improves Insulin Sensitivity

    PubMed Central

    Guo, Tingqing; Jou, William; Chanturiya, Tatyana; Portas, Jennifer; Gavrilova, Oksana; McPherron, Alexandra C.

    2009-01-01

    Myostatin (Mstn) is a secreted growth factor expressed in skeletal muscle and adipose tissue that negatively regulates skeletal muscle mass. Mstn−/− mice have a dramatic increase in muscle mass, reduction in fat mass, and resistance to diet-induced and genetic obesity. To determine how Mstn deletion causes reduced adiposity and resistance to obesity, we analyzed substrate utilization and insulin sensitivity in Mstn−/− mice fed a standard chow. Despite reduced lipid oxidation in skeletal muscle, Mstn−/− mice had no change in the rate of whole body lipid oxidation. In contrast, Mstn−/− mice had increased glucose utilization and insulin sensitivity as measured by indirect calorimetry, glucose and insulin tolerance tests, and hyperinsulinemic-euglycemic clamp. To determine whether these metabolic effects were due primarily to the loss of myostatin signaling in muscle or adipose tissue, we compared two transgenic mouse lines carrying a dominant negative activin IIB receptor expressed specifically in adipocytes or skeletal muscle. We found that inhibition of myostatin signaling in adipose tissue had no effect on body composition, weight gain, or glucose and insulin tolerance in mice fed a standard diet or a high-fat diet. In contrast, inhibition of myostatin signaling in skeletal muscle, like Mstn deletion, resulted in increased lean mass, decreased fat mass, improved glucose metabolism on standard and high-fat diets, and resistance to diet-induced obesity. Our results demonstrate that Mstn−/− mice have an increase in insulin sensitivity and glucose uptake, and that the reduction in adipose tissue mass in Mstn−/− mice is an indirect result of metabolic changes in skeletal muscle. These data suggest that increasing muscle mass by administration of myostatin antagonists may be a promising therapeutic target for treating patients with obesity or diabetes. PMID:19295913

  2. Shorter Sleep Duration is Associated with Decreased Insulin Sensitivity in Healthy White Men

    PubMed Central

    Wong, Patricia M.; Manuck, Stephen B.; DiNardo, Monica M.; Korytkowski, Mary; Muldoon, Matthew F.

    2015-01-01

    Study Objective: Short sleep has been linked to increased risk for type 2 diabetes and incident cardiovascular disease and acute sleep restriction impairs insulin-mediated glucose disposal. Here, we examined whether indices of glucose metabolism vary with naturally occurring differences in sleep duration. Design and Measures: Subjects were midlife, nondiabetic community volunteers (N = 224; mean age 44.5 ± 6.6 y [range: 30–54]; 52% female; 89% white). Laboratory measures of insulin sensitivity (Si) and acute secretion (AIRg), glucose effectiveness (Sg), and disposition index (Di) were obtained from a 180-min, intravenous glucose tolerance test. Results: Shorter self-reported sleep duration (in hours) was associated with lower Si (P = 0.043), although an interaction of sleep duration with participant race (β = −0.81, P = 0.002) showed this association significant only in whites. Moreover, sex-stratified analyses revealed that shorter sleep duration predicted lower Si in white men (β = 0.29, P = 0.003) but not in white women (P = 0.22). Findings were similar for AIRg. The relationship between sleep duration and AIRg was moderated by race as well as sex, such that shorter sleep duration associated with greater insulin release only in white men (β = −0.28, P = 0.004). Sleep duration was unrelated to Sg and Di (P's > 0.05). Conclusions: Our findings suggest that shorter sleep duration may impair insulin sensitivity and beta-cell function in nondiabetic white men, possibly contributing to later type 2 diabetes and cardiovascular disease. Citation: Wong PM, Manuck SB, DiNardo MM, Korytkowski M, Muldoon MF. Shorter sleep duration is associated with decreased insulin sensitivity in healthy white men. SLEEP 2015;38(2):223–231. PMID:25325485

  3. Solvent mediated microstructures and release behavior of insulin from pH-sensitive nanoparticles.

    PubMed

    Wu, Zhi Min; Guo, Xin Dong; Zhang, Li Juan; Jiang, Wei; Ling, Li; Qian, Yu; Chen, Yun

    2012-06-01

    The insulin loaded nanoparticles composed of poly (lactic-co-glycolic acid) (PLGA) and hydroxypropyl methylcellulose phthalate (HP55) were prepared via the emulsions solvent diffusion method with two different solvents, namely, DMSO and acetone/water. The microstructures of the nanoparticles were studied by the solubility parameters theory, DSC, FTIR, and the nitrogen adsorption technique. Phase-separated PLGA domains were observed from the nanoparticles prepared with both types of solvents. Mesopores were observed from the nanoparticles prepared with DMSO as the solvent and almost did not exist with acetone/water. An in vitro drug release study showed that the pH-sensitivity of nanoparticles was not only attributed to the pH-dependent dissolubility of HP55 but also to the internal microstructure. The formation of mesopores accelerated the release of insulin, leading to no obvious pH-sensitivity of the nanoparticles prepared with DMSO. However, for the nanoparticles prepared with acetone/water, the release of insulin was pH-dependent. The results demonstrated that solvents played an important role in affecting the microstructures of nanoparticles, which influenced markedly the insulin release behavior.

  4. The effects of acute exercise on serum adiponectin and resistin levels and their relation to insulin sensitivity in overweight males.

    PubMed

    Jamurtas, A Z; Theocharis, V; Koukoulis, G; Stakias, N; Fatouros, I G; Kouretas, D; Koutedakis, Y

    2006-05-01

    The purpose of this study was to investigate the effects of a submaximal aerobic exercise bout on adiponectin and resistin levels as well as insulin sensitivity, until 48 h post-exercise in healthy overweight males. Nine subjects performed an exercise bout at an intensity corresponding to approximately 65% of their maximal oxygen consumption for 45 min. Adiponectin, resistin, cortisol, insulin, glucose and insulin sensitivity were measured prior to exercise, immediately after exercise as well as 24 and 48 h after exercise. Data were analyzed using repeated measures ANOVA while Pearson's correlations were performed to identify possible relationship among the assessed variables. There were no significant differences for adiponectin (microg ml(-1)) [pre, 3.61(0.73); post, 3.15(0.43); 24 h, 3.15(0.81); 48 h, 3.37(0.76)] or resistin (ng ml(-1)) [pre, 0.19(0.03); post, 0.13(0.03); 24 h, 0.23(0.04); 48 h, 0.23(0.03)] across time. Insulin sensitivity increased and insulin concentration decreased significantly only immediately after exercise. Furthermore, no significant correlations were observed among the variables assessed except for the expected between insulin level and insulin sensitivity. These results indicate that a submaximal aerobic workout does not result in significant changes in adiponectin and resistin up to 48 h post-exercise. Furthermore, it appears that adiponectin or resistin is not associated with insulin sensitivity.

  5. Insulin Signaling And Insulin Resistance

    PubMed Central

    Beale, Elmus G.

    2013-01-01

    Insulin resistance or its sequelae may be the common etiology of maladies associated with metabolic syndrome (e.g., hypertension, type 2 diabetes, atherosclerosis, heart attack, stroke and kidney failure). It is thus important to understand those factors that affect insulin sensitivity. This review stems from the surprising discovery that interference with angiotensin signaling improves insulin sensitivity and it provides a general overview of insulin action and factors that control insulin sensitivity. PMID:23111650

  6. Activation of G proteins by GIV-GEF is a pivot point for insulin resistance and sensitivity

    PubMed Central

    Ma, Gary S.; Lopez-Sanchez, Inmaculada; Aznar, Nicolas; Kalogriopoulos, Nicholas; Pedram, Shabnam; Midde, Krishna; Ciaraldi, Theodore P.; Henry, Robert R.; Ghosh, Pradipta

    2015-01-01

    Insulin resistance (IR) is a metabolic disorder characterized by impaired insulin signaling and cellular glucose uptake. The current paradigm for insulin signaling centers upon the insulin receptor (InsR) and its substrate IRS1; the latter is believed to be the sole conduit for postreceptor signaling. Here we challenge that paradigm and show that GIV/Girdin, a guanidine exchange factor (GEF) for the trimeric G protein Gαi, is another major hierarchical conduit for the metabolic insulin response. By virtue of its ability to directly bind InsR, IRS1, and phosphoinositide 3-kinase, GIV serves as a key hub in the immediate postreceptor level, which coordinately enhances the metabolic insulin response and glucose uptake in myotubes via its GEF function. Site-directed mutagenesis or phosphoinhibition of GIV-GEF by the fatty acid/protein kinase C-theta pathway triggers IR. Insulin sensitizers reverse phosphoinhibition of GIV and reinstate insulin sensitivity. We also provide evidence for such reversible regulation of GIV-GEF in skeletal muscles from patients with IR. Thus GIV is an essential upstream component that couples InsR to G-protein signaling to enhance the metabolic insulin response, and impairment of such coupling triggers IR. We also provide evidence that GIV-GEF serves as therapeutic target for exogenous manipulation of physiological insulin response and reversal of IR in skeletal muscles. PMID:26378251

  7. Activation of G proteins by GIV-GEF is a pivot point for insulin resistance and sensitivity.

    PubMed

    Ma, Gary S; Lopez-Sanchez, Inmaculada; Aznar, Nicolas; Kalogriopoulos, Nicholas; Pedram, Shabnam; Midde, Krishna; Ciaraldi, Theodore P; Henry, Robert R; Ghosh, Pradipta

    2015-11-15

    Insulin resistance (IR) is a metabolic disorder characterized by impaired insulin signaling and cellular glucose uptake. The current paradigm for insulin signaling centers upon the insulin receptor (InsR) and its substrate IRS1; the latter is believed to be the sole conduit for postreceptor signaling. Here we challenge that paradigm and show that GIV/Girdin, a guanidine exchange factor (GEF) for the trimeric G protein Gαi, is another major hierarchical conduit for the metabolic insulin response. By virtue of its ability to directly bind InsR, IRS1, and phosphoinositide 3-kinase, GIV serves as a key hub in the immediate postreceptor level, which coordinately enhances the metabolic insulin response and glucose uptake in myotubes via its GEF function. Site-directed mutagenesis or phosphoinhibition of GIV-GEF by the fatty acid/protein kinase C-theta pathway triggers IR. Insulin sensitizers reverse phosphoinhibition of GIV and reinstate insulin sensitivity. We also provide evidence for such reversible regulation of GIV-GEF in skeletal muscles from patients with IR. Thus GIV is an essential upstream component that couples InsR to G-protein signaling to enhance the metabolic insulin response, and impairment of such coupling triggers IR. We also provide evidence that GIV-GEF serves as therapeutic target for exogenous manipulation of physiological insulin response and reversal of IR in skeletal muscles. PMID:26378251

  8. ADRB2 haplotype is associated with glucose tolerance and insulin sensitivity in obese postmenopausal women.

    PubMed

    Prior, Steven J; Goldberg, Andrew P; Ryan, Alice S

    2011-02-01

    The β(2)-adrenergic receptor (ADRB2) mediates obesity, cardiorespiratory fitness, and insulin resistance. We examined the hypothesis that ADRB2 Arg16Gly-Gln27Glu haplotype is associated with body composition, glucose tolerance, and insulin sensitivity in obese, postmenopausal women. Obese (>35% body fat), postmenopausal (age 45-75 years) women (n = 123) underwent genotyping, dual-energy X-ray absorptiometry, and computed tomography scans, exercise testing (VO(2(max))), 2-h oral glucose tolerance tests (OGTTs), and hyperinsulinemic-euglycemic clamps (80 mU/m(2)/min). Analysis of covariance (ANCOVA) tested for differences among haplotypes, with race, % body fat, and VO(2(max)) as covariates. We found that ADRB2 haplotype was independently associated with % body fat, abdominal fat distribution, VO(2(max)), insulin sensitivity (M/ΔInsulin), and glucose tolerance (ANOVA, P < 0.05 for all). Women homozygous for Gly16-Gln27 haplotype had the highest % body fat (52.7 ± 1.9%), high abdominal fat, low M/ΔInsulin (0.49 ± 0.08 mg/kg/min/pmol/l/10(2)), and impaired glucose tolerance (IGT) during an OGTT (G(120) = 10.2 ± 0.9 mmol/l). Women homozygous for Gly16-Glu27 haplotype also had low M/ΔInsulin (0.51 ± 0.05 mg/kg/min/pmol/l/10(2)) and IGT (G(120) = 8.2 ± 0.7 mmol/l). Subjects with Arg16-Gln27/Gly16-Gln27 haplotype combination had the highest VO(2(max)) (1.84 ± 0.07 l/min) and M/ΔInsulin (0.7 ± 0.04 mg/kg/min/pmol/l/10(2)), and normal glucose tolerance (G(120) = 6.4 ± 0.4 mmol/l), despite being obese. These data show associations of the ADRB2 Arg16Gly-Gln27Glu haplotype with VO(2(max)) and body composition, and an independent association with glucose metabolism, which persists after controlling for body composition and fitness. This suggests that ADRB2 haplotypes may mediate insulin action, glucose tolerance, and potentially risk for type 2 diabetes mellitus (T2DM) in obese, postmenopausal women.

  9. Cardiorespiratory Fitness and Insulin Sensitivity in Overweight or Obese Subjects May Be Linked Through Intrahepatic Lipid Content

    PubMed Central

    Haufe, Sven; Engeli, Stefan; Budziarek, Petra; Utz, Wolfgang; Schulz-Menger, Jeanette; Hermsdorf, Mario; Wiesner, Susanne; Otto, Christoph; Haas, Verena; de Greiff, Armin; Luft, Friedrich C.; Boschmann, Michael; Jordan, Jens

    2010-01-01

    OBJECTIVE Low cardiorespiratory fitness (CRF) predisposes one to cardiovascular disease and type 2 diabetes in part independently of body weight. Given the close relationship between intrahepatic lipid content (IHL) and insulin sensitivity, we hypothesized that the direct relationship between fitness and insulin sensitivity may be explained by IHL. RESEARCH DESIGN AND METHODS We included 138 overweight to obese, otherwise healthy subjects (aged 43.6 ± 8.9 years, BMI 33.8 ± 4 kg/m2). Body composition was estimated by bioimpedance analyses. Abdominal fat distribution, intramyocellular, and IHL were assessed by magnetic resonance spectroscopy and tomography. Incremental exercise testing was performed to estimate an individual's CRF. Insulin sensitivity was determined during an oral glucose tolerance test. RESULTS For all subjects, CRF was related to insulin sensitivity (r = 0.32, P < 0.05), IHL (r = −0.27, P < 0.05), and visceral (r = −0.25, P < 0.05) and total fat mass (r = −0.32, P < 0.05), but not to intramyocellular lipids (r = −0.08, NS). Insulin sensitivity correlated significantly with all fat depots. In multivariate regression analyses, independent predictors of insulin sensitivity were IHL, visceral fat, and fitness (r2 = −0.43, P < 0.01, r2 = −0.34, and r2 = 0.29, P < 0.05, respectively). However, the positive correlation between fitness and insulin sensitivity was abolished after adjustment for IHL (r = 0.16, NS), whereas it remained significant when adjusted for visceral or total body fat. Further, when subjects were grouped into high versus low IHL, insulin sensitivity was higher in those subjects with low IHL, irrespective of fitness levels. CONCLUSIONS Our study suggests that the positive effect of increased CRF on insulin sensitivity in overweight to obese subjects may be mediated indirectly through IHL reduction. PMID:20357364

  10. Loss of intestinal GATA4 prevents diet-induced obesity and promotes insulin sensitivity in mice

    PubMed Central

    Patankar, Jay V.; Chandak, Prakash G.; Obrowsky, Sascha; Pfeifer, Thomas; Diwoky, Clemens; Uellen, Andreas; Sattler, Wolfgang; Stollberger, Rudolf; Hoefler, Gerald; Heinemann, Akos; Battle, Michele; Duncan, Stephen; Kratky, Dagmar

    2011-01-01

    Transcriptional regulation of small intestinal gene expression controls plasma total cholesterol (TC) and triglyceride (TG) levels, which are major determinants of metabolic diseases. GATA4, a zinc finger domain transcription factor, is critical for jejunal identity, and intestinal GATA4 deficiency leads to a jejunoileal transition. Although intestinal GATA4 ablation is known to misregulate jejunal gene expression, its pathophysiological impact on various components of metabolic syndrome remains unknown. Here, we used intestine-specific GATA4 knockout (GATA4iKO) mice to dissect the contribution of GATA4 on obesity development. We challenged adult GATA4iKO mice and control littermates with a Western-type diet (WTD) for 20 wk. Our findings show that WTD-fed GATA4iKO mice are resistant to diet-induced obesity. Accordingly, plasma TG and TC levels are markedly decreased. Intestinal lipid absorption in GATA4iKO mice was strongly reduced, whereas luminal lipolysis was unaffected. GATA4iKO mice displayed a greater glucagon-like peptide-1 (GLP-1) release on normal chow and even after long-term challenge with WTD remained glucose sensitive. In summary, our findings show that the absence of intestinal GATA4 has a beneficial effect on decreasing intestinal lipid absorption causing resistance to hyperlipidemia and obesity. In addition, we show that increased GLP-1 release in GATA4iKO mice decreases the risk for development of insulin resistance. PMID:21177287

  11. Improvement of insulin sensitivity by a novel drug, BGP-15, in insulin-resistant patients: a proof of concept randomized double-blind clinical trial.

    PubMed

    Literáti-Nagy, B; Kulcsár, E; Literáti-Nagy, Zs; Buday, B; Péterfai, E; Horváth, T; Tory, K; Kolonics, A; Fleming, A; Mandl, J; Korányi, L

    2009-05-01

    The efficacy and safety of the new drug, BGP-15, were compared with placebo in insulin-resistant patients in a 28-day dose-ranging study. Forty-seven nondiabetic patients with impaired glucose tolerance were randomly assigned to 4 weeks of treatment with 200 or 400 mg of BGP-15 or placebo. Insulin resistance was determined by hyperinsulinemic euglycemic clamp technique and homeostasis model assessment method, and beta-cell function was measured by intravenous glucose tolerance test. Each BGP-15 dose significantly increased whole body insulin sensitivity (M-1, p=0.032), total body glucose utilization (M-2, p=0.035), muscle tissue glucose utilization (M-3, p=0.040), and fat-free body mass glucose utilization (M-4, p=0.038) compared to baseline and placebo. No adverse drug effects were observed during treatment. BGP-15 at 200 or 400 mg significantly improved insulin sensitivity in insulin-resistant, nondiabetic patients during treatment compared to placebo and was safe and well-tolerated. This was the first clinical study demonstrating the insulin-sensitizing effect of a molecule, which is considered as a co-inducer of heat shock proteins.

  12. GH Receptor Deficiency in Ecuadorian Adults Is Associated With Obesity and Enhanced Insulin Sensitivity

    PubMed Central

    Rosenbloom, Arlan L.; Balasubramanian, Priya; Teran, Enrique; Guevara-Aguirre, Marco; Guevara, Carolina; Procel, Patricio; Alfaras, Irene; De Cabo, Rafael; Di Biase, Stefano; Narvaez, Luis; Saavedra, Jannette

    2015-01-01

    Context: Ecuadorian subjects with GH receptor deficiency (GHRD) have not developed diabetes, despite obesity. Objective: We sought to determine the metabolic associations for this phenomenon. Design: Four studies were carried out: 1) glucose, lipid, adipocytokine concentrations; 2) metabolomics evaluation; 3) metabolic responses to a high-calorie meal; and 4) oral glucose tolerance tests. Setting: Clinical Research Institute in Quito, Ecuador. Subjects: Adults homozygous for the E180 splice mutation of the GH receptor (GHRD) were matched for age, gender, and body mass index with unaffected control relatives (C) as follows: study 1, 27 GHRD and 35 C; study 2, 10 GHRD and 10 C; study 3, seven GHRD and 11 C; and study 4, seven GHRD and seven C. Results: Although GHRD subjects had greater mean percentage body fat than controls, their fasting insulin, 2-hour blood glucose, and triglyceride levels were lower. The indicator of insulin sensitivity, homeostasis model of assessment 2%S, was greater (P < .0001), and the indicator of insulin resistance, homeostasis model of assessment 2-IR, was lower (P = .0025). Metabolomic differences between GHRD and control subjects were consistent with their differing insulin sensitivity, including postprandial decreases of branched-chain amino acids that were more pronounced in controls. High molecular weight and total adiponectin concentrations were greater in GHRD (P = .0004 and P = .0128, respectively), and leptin levels were lower (P = .02). Although approximately 65% the weight of controls, GHRD subjects consumed an identical high-calorie meal; nonetheless, their mean glucose concentrations were lower, with mean insulin levels one-third those of controls. Results of the 2-hour oral glucose tolerance test were similar. Main Outcome Measures: Measures of insulin sensitivity, adipocytokines, and energy metabolites. Conclusions: Without GH counter-regulation, GHRD is associated with insulin efficiency and obesity. Lower leptin levels

  13. pH sensitive thiolated cationic hydrogel for oral insulin delivery.

    PubMed

    Sonia, T A; Sharma, Chandra P

    2014-04-01

    The objective of this work is to study the efficacy of pH sensitive thiolated Polydimethylaminoethylmethacrylate for oral delivery of insulin. Synthesis of pH sensitive thiolated Polydimethylaminoethylmethacrylate (PDCPA) was carried out by crosslinking Polymethacrylic acid with thiolated Polydimethylaminoethylmethacrylate (PDCys) via carbodiimide chemistry. Prior to in vivo experiment, various physicochemical and biological characterisation were carried out to evaluate the efficacy of PDCPA. Modification was confirmed by IR and NMR spectroscopy. The particle size was found to be 284 nm with a zeta potential of 37.3+/-1.58 mV. Texture analyser measurements showed that PDCPA is more mucoadhesive than the parent polymer. Transepithelial electrical measurements showed a reduction of greater than 50% on incubation with PDCPA particles. Permeation studies showed that PDCPA is more permeable than the parent polymer. On in vivo evaluation on male diabetic rats, insulin loaded PDCPA exhibited a blood glucose reduction of 19%. PMID:24734516

  14. pH sensitive thiolated cationic hydrogel for oral insulin delivery.

    PubMed

    Sonia, T A; Sharma, Chandra P

    2014-04-01

    The objective of this work is to study the efficacy of pH sensitive thiolated Polydimethylaminoethylmethacrylate for oral delivery of insulin. Synthesis of pH sensitive thiolated Polydimethylaminoethylmethacrylate (PDCPA) was carried out by crosslinking Polymethacrylic acid with thiolated Polydimethylaminoethylmethacrylate (PDCys) via carbodiimide chemistry. Prior to in vivo experiment, various physicochemical and biological characterisation were carried out to evaluate the efficacy of PDCPA. Modification was confirmed by IR and NMR spectroscopy. The particle size was found to be 284 nm with a zeta potential of 37.3+/-1.58 mV. Texture analyser measurements showed that PDCPA is more mucoadhesive than the parent polymer. Transepithelial electrical measurements showed a reduction of greater than 50% on incubation with PDCPA particles. Permeation studies showed that PDCPA is more permeable than the parent polymer. On in vivo evaluation on male diabetic rats, insulin loaded PDCPA exhibited a blood glucose reduction of 19%.

  15. Artemisia extracts activate PPARγ, promote adipogenesis, and enhance insulin sensitivity in adipose tissue of obese mice

    PubMed Central

    Richard, Allison J.; Burris, Thomas P.; Sanchez-Infantes, David; Wang, Yongjun; Ribnicky, David M.; Stephens, Jacqueline M.

    2014-01-01

    Objective Studies have shown that the inability of adipose tissue to properly expand during the obese state or respond to insulin can lead to metabolic dysfunction. Artemisia is a diverse group of plants that has a history of medicinal use. This study examines the ability of ethanolic extracts of Artemisia scoparia (SCO) and Artemisia santolinifolia (SAN) to modulate adipocyte development in cultured adipocytes and white adipose tissue (WAT) function in vivo using a mouse model of diet-induced obesity. Research Design & Procedures Adipogenesis was assessed using Oil Red O staining and immunoblotting. A nuclear receptor specificity assay was used to examine the specificity of SCO- and SAN-induced PPARγ activation. C57BL/6J mice, fed a high-fat diet, were gavaged with saline, SCO, or SAN for 2 weeks. Whole-body insulin sensitivity was examined using insulin tolerance tests. WAT depots were assessed via immunoblotting for markers of insulin action and adipokine production. Results We established that SCO and SAN were highly specific activators of PPARγ and did not activate other nuclear receptors. After a one-week daily gavage, SCO- and SAN-treated mice had lower insulin-induced glucose disposal rates than control mice. At the end of the 2-week treatment period, SCO- and SAN-treated mice had enhanced insulin-responsive Akt serine-473 phosphorylation and significantly decreased MCP-1 levels in visceral WAT relative to control mice; these differences were depot specific. Moreover, plasma adiponectin levels were increased following SCO treatment. Conclusion Overall, these studies demonstrate that extracts from two Artemisia species can have metabolically favorable effects on adipocytes and WAT. PMID:24985103

  16. No effect of bicarbonate treatment on insulin sensitivity and glucose control in non-diabetic older adults

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Chronic mild metabolic acidosis is common among older adults, and limited evidence suggests that it may contribute to insulin resistance and type 2 diabetes. This analysis was conducted to determine whether bicarbonate supplementation, an alkalinizing treatment, improves insulin sensitivity or gluco...

  17. Trigonella foenum-graecum water extract improves insulin sensitivity and stimulates PPAR and γ gene expression in high fructose-fed insulin-resistant rats

    PubMed Central

    Mohammadi, Abbas; Gholamhosseinian, Ahmad; Fallah, Hossein

    2016-01-01

    Background: Insulin resistance is the main defect associated with the metabolic syndrome. In obesity, the decreased adiponectin levels and elevation of plasma-free fatty acids are the main factors associated with insulin resistance. In this study, we evaluated the effect of trigonella foenum-graecum (TFG) extract on insulin sensitivity in high fructose-fed insulin-resistant rats. Materials and Methods: Experimental rats were fed with a high fructose diet for eight weeks. After the first six weeks, the animals were treated with trigonella foenum-graecum extract or pioglitazone for two weeks. Serum glucose, triglycerides, cholesterol, and HDL-c were measured. The insulin and adiponectin levels were assayed by the enzyme-linked immunosorbent assay (ELISA), and Homeostasis Model Assessment of Insulin Resistance (HOMA-IR) was calculated. The plasma-free fatty acid profile was obtained by gas chromatography. PPARγ and GLUT4 gene expression were assessed by real-time polymerase chain reaction (PCR) and western blotting. Results: In the trigonella foenum-graecum- extract treated group the following results were obtained: Insulin (49.02 ± 6.93 pmol/L), adiponectin (7.1 ± 0.64 μg/ml), and triglycerides (110.3 ± 16.7 mg/dl), which were significantly different and improved compared to the control group (insulin (137 ± 34 pmol/l), adiponectin (3.9 ± 0.15 μg/ml), glucose (187 ± 15 mg/dl), and triglycerides (217 ± 18 mg/dl). Also the PPARγ gene expression was significantly increased compared to the control group. Conclusion: This study demonstrates the beneficial effects of trigonella foenum-graecum extract on insulin resistance in rats fed on a high-fructose diet. At least three mechanisms are involved, including direct insulin-like effect, increase in adiponectin levels, and PPARγ protein expression. PMID:27110551

  18. Increased Skeletal Muscle Capillarization Independently Enhances Insulin Sensitivity in Older Adults After Exercise Training and Detraining.

    PubMed

    Prior, Steven J; Goldberg, Andrew P; Ortmeyer, Heidi K; Chin, Eva R; Chen, Dapeng; Blumenthal, Jacob B; Ryan, Alice S

    2015-10-01

    Intramuscular signaling and glucose transport mechanisms contribute to improvements in insulin sensitivity after aerobic exercise training. This study tested the hypothesis that increases in skeletal muscle capillary density (CD) also contribute to exercise-induced improvements in whole-body insulin sensitivity (insulin-stimulated glucose uptake per unit plasma insulin [M/I]) independent of other mechanisms. The study design included a 6-month aerobic exercise training period followed by a 2-week detraining period to eliminate short-term effects of exercise on intramuscular signaling and glucose transport. Before and after exercise training and detraining, 12 previously sedentary older (65 ± 3 years) men and women underwent research tests, including hyperinsulinemic-euglycemic clamps and vastus lateralis biopsies. Exercise training increased Vo2max (2.2 ± 0.2 vs. 2.5 ± 0.2 L/min), CD (313 ± 13 vs. 349 ± 18 capillaries/mm(2)), and M/I (0.041 ± 0.005 vs. 0.051 ± 0.007 μmol/kg fat-free mass/min) (P < 0.05 for all). Exercise training also increased the insulin activation of glycogen synthase by 60%, GLUT4 expression by 16%, and 5' AMPK-α1 expression by 21%, but these reverted to baseline levels after detraining. Conversely, CD and M/I remained 15% and 18% higher after detraining, respectively (P < 0.05), and the changes in M/I (detraining minus baseline) correlated directly with changes in CD in regression analysis (partial r = 0.70; P = 0.02). These results suggest that an increase in CD is one mechanism contributing to sustained improvements in glucose metabolism after aerobic exercise training. PMID:26068543

  19. Increased Skeletal Muscle Capillarization Independently Enhances Insulin Sensitivity in Older Adults After Exercise Training and Detraining

    PubMed Central

    Goldberg, Andrew P.; Ortmeyer, Heidi K.; Chin, Eva R.; Chen, Dapeng; Blumenthal, Jacob B.; Ryan, Alice S.

    2015-01-01

    Intramuscular signaling and glucose transport mechanisms contribute to improvements in insulin sensitivity after aerobic exercise training. This study tested the hypothesis that increases in skeletal muscle capillary density (CD) also contribute to exercise-induced improvements in whole-body insulin sensitivity (insulin-stimulated glucose uptake per unit plasma insulin [M/I]) independent of other mechanisms. The study design included a 6-month aerobic exercise training period followed by a 2-week detraining period to eliminate short-term effects of exercise on intramuscular signaling and glucose transport. Before and after exercise training and detraining, 12 previously sedentary older (65 ± 3 years) men and women underwent research tests, including hyperinsulinemic-euglycemic clamps and vastus lateralis biopsies. Exercise training increased Vo2max (2.2 ± 0.2 vs. 2.5 ± 0.2 L/min), CD (313 ± 13 vs. 349 ± 18 capillaries/mm2), and M/I (0.041 ± 0.005 vs. 0.051 ± 0.007 μmol/kg fat-free mass/min) (P < 0.05 for all). Exercise training also increased the insulin activation of glycogen synthase by 60%, GLUT4 expression by 16%, and 5′ AMPK-α1 expression by 21%, but these reverted to baseline levels after detraining. Conversely, CD and M/I remained 15% and 18% higher after detraining, respectively (P < 0.05), and the changes in M/I (detraining minus baseline) correlated directly with changes in CD in regression analysis (partial r = 0.70; P = 0.02). These results suggest that an increase in CD is one mechanism contributing to sustained improvements in glucose metabolism after aerobic exercise training. PMID:26068543

  20. Modified method using a somatostatin analogue, octreotide acetate (Sandostatin) to assess in vivo insulin sensitivity.

    PubMed

    Ikebuchi, M; Suzuki, M; Kageyama, A; Hirose, J; Yokota, C; Ikeda, K; Shinozaki, K; Todo, R; Harano, Y

    1996-02-01

    In order to evaluate the steady state plasma glucose (SSPG) method by using a new somatostatin derivative, octreotide acetate (Sandostatin) instead of somatostatin that we had used for the insulin sensitivity test, we examined whether octreotide was able to suppress C-peptide (CPR), glucagon (IRG), and GH to a similar degree to that achieved with somatostatin. A total of 52 studies were performed in 45 essential hypertensive subjects and 7 healthy subjects. Octreotide was given subcutaneously in a does of 50 micrograms or 100 micrograms 10 min before the test (sc 50, sc 100 groups) or intravenously infused over 2 h (10 micrograms in bolus followed by a constant infusion, 50, 100, or 150 micrograms/2 h: i.v. 50, i.v. 100, i.v. 150 groups). In all of the groups the plasma immunoreactive insulin (IRI) concentration increased gradually after insulin injection and reached the steady state plasma insulin (SSPI) level between 40 and 60 microU/ml at 60 min through 120 min. Plasma CPR at 120 min was the most suppressed (by 67% of the basal level in i.v. 150 group during the study period), but on the other hand in both the sc 100 and i.v. 100 groups the plasma CPR concentration at 120 min was suppressed by nearly 40%, but not significantly suppressed in either the sc 50 or the i.v. 50 group. Plasma IRG and GH were strongly suppressed after 60 min in all groups during the study period. Plasma glucose had increased significantly at 30 min and reached the steady state at 90 min through 120 min in hypertensive and healthy subjects. The results indicated that the modified SSPG method with continuous intravenous infusion of Octreotide at 150 micrograms/2 h was adequate for the measurement of insulin sensitivity.

  1. Improved Insulin Sensitivity After Exercise Training is Linked to Reduced Plasma C14:0 Ceramide in Obesity and Type 2 Diabetes

    PubMed Central

    Kasumov, Takhar; Solomon, Thomas P.J.; Hwang, Calvin; Huang, Hazel; Haus, Jacob M.; Zhang, Renliang; Kirwan, John P.

    2015-01-01

    Objective To assess the effect of exercise training on insulin sensitivity and plasma ceramides in obesity and type 2 diabetes (T2D). Methods Twenty-four adults with obesity and normal glucose tolerance (NGT, n=14), or diabetes (n=10) were studied before and after a 12-week supervised exercise-training program (5 d/wk, 1 hr/d, 80–85% of maximum heart rate). Changes in body composition were assessed using hydrostatic weighing and computed tomography. Peripheral tissue insulin sensitivity was assessed by a 40 mU/m2/min hyperinsulinemic euglycemic clamp. Plasma ceramides (C14:0, C16:0, C18:0, C18:1, C20:0, C24:0 and C24:1) were quantified using electrospray ionization tandem mass spectrometry after separation with HPLC. Results Plasma ceramides were similar for the obese NGT and subjects with diabetes, despite differences in glucose tolerance. Exercise significantly reduced body weight and adiposity, and increased peripheral insulin sensitivity in both groups (P<0.05). In addition, plasma C14:0, C16:0, C18:1, and C24:0 ceramide levels were reduced in all subjects following the intervention (P<0.05). Decreases in total (r=-0.51, P=0.02) and C14:0 (r=-0.56, P=0.009) ceramide were negatively correlated with the increase in insulin sensitivity. Conclusion Ceramides are linked to exercise training-induced improvements in insulin sensitivity, and plasma C14:0 ceramide may provide a specific target for investigating lipid-related insulin resistance in obesity and T2D. PMID:25966363

  2. Protein kinase B modulates the sensitivity of human neuroblastoma cells to insulin-like growth factor receptor inhibition.

    PubMed

    Guerreiro, Ana S; Boller, Danielle; Shalaby, Tarek; Grotzer, Michael A; Arcaro, Alexandre

    2006-12-01

    The potential of the novel insulin-like growth factor receptor (IGF-IR) inhibitor NVP-AEW541 as an antiproliferative agent in human neuroblastoma was investigated. Proliferation of a panel of neuroblastoma cell lines was inhibited by NVP-AEW541 with IC(50) values ranging from 0.15 to 5 microM. Experiments using an IGF-IR neutralizing antibody confirmed that the IGF-IR was essential to support growth of neuroblastoma cell lines. The expression levels of the IGF-IR in individual neuroblastoma cell lines did not correlate with the sensitivities to NVP-AEW541, while coexpression of the IGF-IR and the insulin receptor (IR) correlated with lower sensitivity to the inhibitor in some cell lines. Intriguingly, high levels of activation of Akt/protein kinase B (PKB) and phosphorylation of the ribosomal S6 protein were observed in neuroblastoma cell lines with decreased sensitivities to NVP-AEW541. Inhibition of Akt/PKB activity restored the sensitivity of neuroblastoma cells to the IGF-IR inhibitor. Transfection of neuroblastoma cells with activated Akt or ribosomal protein S6 kinase (S6K) decreased the sensitivity of the cells to NVP-AEW541. IGF-I-stimulated proliferation of neuroblastoma cell lines was completely blocked by NVP-AEW541, or by a combination of an inhibitor of phosphoinositide 3-kinase and rapamycin. In addition to its antiproliferative effects, NVP-AEW541 sensitized neuroblastoma cells to cisplatin-induced apoptosis. Together, our data demonstrate that NVP-AEW541 in combination with Akt/PKB inhibitors or chemotherapeutic agents may represent a novel approach to target human neuroblastoma cell proliferation.

  3. Thecal cell sensitivity to luteinizing hormone and insulin in polycystic ovarian syndrome.

    PubMed

    Cadagan, David; Khan, Raheela; Amer, Saad

    2016-03-01

    This study examined whether a defect of steroid synthesis in ovarian theca cells may lead to the development of PCOS, through contributions to excess androgen secretion. Polycystic ovarian syndrome (PCOS) is one of the leading causes of infertility worldwide affecting around 1 in 10 of women of a reproductive age. One of the fundamental abnormalities in this syndrome is the presence of hormonal irregularities, including hyperandrogenemia, hyperinsulinemia and hypersecretion of luteinizing hormone (LH). Studies suggest that insulin treatment increases progesterone and androstenedione secretion in PCOS theca cells when compared to insulin treated normal theca cells. Furthermore the augmented effects of LH and insulin have been seen to increase ovarian androgen synthesis in non-PCOS theca cultures whilst also increasing the expression of steroidogenic enzymes specific to the PI3-K pathway. Our examination of primary thecal cultures showed an increase in both the expression of the steroidogenic enzyme CYP17 and androgen secretion in PCOS theca cells under basal conditions, when compared to non-PCOS cells. This was increased significantly under treatments of LH and insulin combined. Our results support the previous reported hypothesis that a dysfunction may exist within the PI3-K pathway. Specifically, that sensitivity exists to physiological symptoms including hyperinsulinemia and hyper secretion of LH found in PCOS through co-stimulation. The impact of these findings may allow the development of a therapeutic target in PCOS. PMID:26952754

  4. Impairment of vesicular ATP release affects glucose metabolism and increases insulin sensitivity

    PubMed Central

    Sakamoto, Shohei; Miyaji, Takaaki; Hiasa, Miki; Ichikawa, Reiko; Uematsu, Akira; Iwatsuki, Ken; Shibata, Atsushi; Uneyama, Hisayuki; Takayanagi, Ryoichi; Yamamoto, Akitsugu; Omote, Hiroshi; Nomura, Masatoshi; Moriyama, Yoshinori

    2014-01-01

    Neuroendocrine cells store ATP in secretory granules and release it along with hormones that may trigger a variety of cellular responses in a process called purinergic chemical transmission. Although the vesicular nucleotide transporter (VNUT) has been shown to be involved in vesicular storage and release of ATP, its physiological relevance in vivo is far less well understood. In Vnut knockout (Vnut−/−) mice, we found that the loss of functional VNUT in adrenal chromaffin granules and insulin granules in the islets of Langerhans led to several significant effects. Vesicular ATP accumulation and depolarization-dependent ATP release were absent in the chromaffin granules of Vnut−/− mice. Glucose-responsive ATP release was also absent in pancreatic β-cells in Vnut−/− mice, while glucose-responsive insulin secretion was enhanced to a greater extent than that in wild-type tissue. Vnut−/− mice exhibited improved glucose tolerance and low blood glucose upon fasting due to increased insulin sensitivity. These results demonstrated an essential role of VNUT in vesicular storage and release of ATP in neuroendocrine cells in vivo and suggest that vesicular ATP and/or its degradation products act as feedback regulators in catecholamine and insulin secretion, thereby regulating blood glucose homeostasis. PMID:25331291

  5. Impairment of vesicular ATP release affects glucose metabolism and increases insulin sensitivity.

    PubMed

    Sakamoto, Shohei; Miyaji, Takaaki; Hiasa, Miki; Ichikawa, Reiko; Uematsu, Akira; Iwatsuki, Ken; Shibata, Atsushi; Uneyama, Hisayuki; Takayanagi, Ryoichi; Yamamoto, Akitsugu; Omote, Hiroshi; Nomura, Masatoshi; Moriyama, Yoshinori

    2014-10-21

    Neuroendocrine cells store ATP in secretory granules and release it along with hormones that may trigger a variety of cellular responses in a process called purinergic chemical transmission. Although the vesicular nucleotide transporter (VNUT) has been shown to be involved in vesicular storage and release of ATP, its physiological relevance in vivo is far less well understood. In Vnut knockout (Vnut(-/-)) mice, we found that the loss of functional VNUT in adrenal chromaffin granules and insulin granules in the islets of Langerhans led to several significant effects. Vesicular ATP accumulation and depolarization-dependent ATP release were absent in the chromaffin granules of Vnut(-/-) mice. Glucose-responsive ATP release was also absent in pancreatic β-cells in Vnut(-/-) mice, while glucose-responsive insulin secretion was enhanced to a greater extent than that in wild-type tissue. Vnut(-/-) mice exhibited improved glucose tolerance and low blood glucose upon fasting due to increased insulin sensitivity. These results demonstrated an essential role of VNUT in vesicular storage and release of ATP in neuroendocrine cells in vivo and suggest that vesicular ATP and/or its degradation products act as feedback regulators in catecholamine and insulin secretion, thereby regulating blood glucose homeostasis.

  6. The neuronal insulin sensitizer dicholine succinate reduces stress-induced depressive traits and memory deficit: possible role of insulin-like growth factor 2

    PubMed Central

    2012-01-01

    Background A number of epidemiological studies have established a link between insulin resistance and the prevalence of depression. The occurrence of depression was found to precede the onset of diabetes and was hypothesized to be associated with inherited inter-related insufficiency of the peripheral and central insulin receptors. Recently, dicholine succinate, a sensitizer of the neuronal insulin receptor, was shown to stimulate insulin-dependent H2O2 production of the mitochondrial respiratory chain leading to an enhancement of insulin receptor autophosphorylation in neurons. As such, this mechanism can be a novel target for the elevation of insulin signaling. Results Administration of DS (25 mg/kg/day, intraperitoneal) in CD1 mice for 7 days prior to the onset of stress procedure, diminished manifestations of anhedonia defined in a sucrose test and behavioral despair in the forced swim test. Treatment with dicholine succinate reduced the anxiety scores of stressed mice in the dark/light box paradigm, precluded stress-induced decreases of long-term contextual memory in the step-down avoidance test and hippocampal gene expression of IGF2. Conclusions Our data suggest that dicholine succinate has an antidepressant-like effect, which might be mediated via the up-regulation of hippocampal expression of IGF2, and implicate the neuronal insulin receptor in the pathogenesis of stress-induced depressive syndrome. PMID:22989159

  7. Inherent insulin sensitivity is a major determinant of multimeric adiponectin responsiveness to short-term weight loss in extreme obesity

    PubMed Central

    Mai, Stefania; Walker, Gillian E.; Brunani, Amelia; Guzzaloni, Gabriele; Grossi, Glenda; Oldani, Alberto; Aimaretti, Gianluca; Scacchi, Massimo; Marzullo, Paolo

    2014-01-01

    High molecular weight (HMW-A) adiponectin levels mirror alterations in glucose homeostasis better than medium (MMW-A) and low molecular weight (LMW-A) components. In 25 patients with wide-range extreme obesity (BMI 40-77 kg/m2), we aimed to explore if improvements of multimeric adiponectin following 4-wk weight loss reflect baseline OGTT-derived insulin sensitivity (ISIOGTT) and disposition index (DIOGTT). Compared to 40 lean controls, adiponectin oligomers were lower in extreme obesity (p < 0.001) and, within this group, HMW-A levels were higher in insulin-sensitive (p < 0.05) than -resistant patients. In obese patients, short-term weight loss did not change total adiponectin levels and insulin resistance, while the distribution pattern of adiponectin oligomers changed due to significant increment of HMW-A (p < 0.01) and reduction of MMW-A (p < 0.05). By multivariate analysis, final HMW-A levels were significantly related to baseline ISIOGTT and final body weight (adjusted R2 = 0.41). Our data suggest that HMW adiponectin may reflect baseline insulin sensitivity appropriately in the context of extreme obesity. Especially, we documented that HMW-A is promptly responsive to short-term weight loss prior to changes in insulin resistance, by a magnitude that is proportioned to whole body insulin sensitivity. This may suggest an insulin sensitivity-dependent control operated by HMW-A on metabolic dynamics of patients with extreme obesity. PMID:25056918

  8. Interaction of growth hormone receptor/binding protein gene disruption and caloric restriction for insulin sensitivity and attenuated aging.

    PubMed

    Arum, Oge; Saleh, Jamal; Boparai, Ravneet; Turner, Jeremy; Kopchick, John; Khardori, Romesh; Bartke, Andrzej

    2014-01-01

    The correlation of physiological sensitivity to insulin ( vis-à-vis glycemic regulation) and longevity is extensively established, creating a justifiable gerontological interest on whether insulin sensitivity is causative, or even predictive, of some or all phenotypes of slowed senescence (including longevity). The growth hormone receptor/ binding protein gene-disrupted (GHR-KO) mouse is the most extensively investigated insulin-sensitive, attenuated aging model. It was reported that, in a manner divergent from similar mutants, GHR-KO mice fail to respond to caloric restriction (CR) by altering their insulin sensitivity. We hypothesized that maximized insulin responsiveness is what causes GHR-KO mice to exhibit a suppressed survivorship response to dietary (including caloric) restriction; and attempted to refute this hypothesis by assessing the effects of CR on GHR-KO mice for varied slow-aging-associated phenotypes. In contrast to previous reports, we found GHR-KO mice on CR to be less responsive than their ad libitum (A.L.) counterparts to the hypoglycemia-inducing effects of insulin. Further, CR had negligible effects on the metabolism or cognition of GHR-KO mice. Therefore, our data suggest that the effects of CR on the insulin sensitivity of GHR-KO mice do not concur with the effects of CR on the aging of GHR-KO mice. PMID:25789159

  9. Effect of confinement in small space flight size cages on insulin sensitivity of exercise-trained rats

    NASA Technical Reports Server (NTRS)

    Mondon, C. E.; Dolkas, C. B.; Reaven, G. M.

    1983-01-01

    The effect of confinement in small cages (simulating the size to be used in future space Shuttle missions) on insulin sensitivity was studied in rats having an increased insulin sensitivity due to exercise training prior to confinement. Oral glucose tolerance tests (OGTT) were given to both control and exercise-trained rats before and after placement in the small cages for 7 days. The insulin resistance was assessed by the product of the area of the insulin and glucose curves of the OGTT (IG index). Results show that the values obtained before confinement were one-half as high in exercise-trained rats as those in control rats, reflecting an increased sensitivity to insulin with exercise training. After 7 days confinement, the IG index was found to be not significantly different from initial values for both control and exercise-trained rats. These findings suggest that increased insulin sensitivity in exercise-trained rats persists 7 days after cessation of running activity. The data also indicate that exercise training, before flight, may be beneficial in minimizing the loss of insulin sensitivity expected with decreased use of gravity dependent muscles during exposure to hypogravity in space flight.

  10. A sensitive chemiluminescent enzyme immunoassay for the bioanalysis of carboxyl-terminal B-chain analogues of human insulin.

    PubMed

    Cao, Y; Smith, W C; Bowsher, R R

    2001-08-01

    Quantification of analogues of human insulin in biological matrices is complicated by differences in their immunoreactivity and the presence of both the analogue and endogenous concentrations of insulin in test samples. To facilitate pharmacokinetic comparisons of carboxyl-terminal B-chain analogues of human insulin, we undertook development of a sensitive ELISA. The ELISA detection method was optimized systematically to permit routine analysis of 10-microl serum samples. Accordingly, a noncompetitive 'sandwich' chemiluminescent ELISA was validated for the quantification of carboxyl-terminal B-chain insulin analogues in human serum over a concentration range from 5 to 3125 pM. The mean bias (RE%) within the validated range varied from -10.3 to 4.3%, with an intermediate precision (inter-assay CV%) from 4.2 to 11.5%. The two-sided 90% expectation tolerance interval for total measurement error was within +/-25% of the nominal concentration for all levels of validation samples. Insulin lispro, human insulin, proinsulin, despentapeptide insulin (DPI) and porcine insulin displayed comparable crossreactivity in the ELISA. Potential utility of the new assay for insulin bioanalysis in nonhuman species was investigated by assessing the pharmacokinetic profile of DPI in rats following administration of a single subcutaneous dose. The sensitive chemiluminescent detection method is simple to perform and should be readily adaptable for ELISAs of other therapeutic proteins.

  11. Dietary carbohydrate restriction improves insulin sensitivity, blood pressure, microvascular function, and cellular adhesion markers in individuals taking statins.

    PubMed

    Ballard, Kevin D; Quann, Erin E; Kupchak, Brian R; Volk, Brittanie M; Kawiecki, Diana M; Fernandez, Maria Luz; Seip, Richard L; Maresh, Carl M; Kraemer, William J; Volek, Jeff S

    2013-11-01

    Statins positively impact plasma low-density lipoprotein cholesterol, inflammation and vascular endothelial function (VEF). Carbohydrate restricted diets (CRD) improve atherogenic dyslipidemia, and similar to statins, have been shown to favorably affect markers of inflammation and VEF. No studies have examined whether a CRD provides additional benefit beyond that achieved by habitual statin use. We hypothesized that a CRD (<50 g carbohydrate/d) for 6 weeks would improve lipid profiles and insulin sensitivity, reduce blood pressure, decrease cellular adhesion and inflammatory biomarkers, and augment VEF (flow-mediated dilation and forearm blood flow) in statin users. Participants (n = 21; 59.3 ± 9.3 y, 29.5 ± 3.0 kg/m(2)) decreased total caloric intake by approximately 415 kcal at 6 weeks (P < .001). Daily nutrient intakes at baseline (46/36/17% carb/fat/pro) and averaged across the intervention (11/58/28% carb/fat/pro) demonstrated dietary compliance, with carbohydrate intake at baseline nearly 5-fold greater than during the intervention (P < .001). Compared to baseline, both systolic and diastolic blood pressure decreased after 3 and 6 weeks (P < .01). Peak forearm blood flow, but not flow-mediated dilation, increased at week 6 compared to baseline and week 3 (P ≤ .03). Serum triglyceride, insulin, soluble E-Selectin and intracellular adhesion molecule-1 decreased (P < .01) from baseline at week 3, and this effect was maintained at week 6. In conclusion, these findings demonstrate that individuals undergoing statin therapy experience additional improvements in metabolic and vascular health from a 6 weeks CRD as evidenced by increased insulin sensitivity and resistance vessel endothelial function, and decreased blood pressure, triglycerides, and adhesion molecules. PMID:24176230

  12. Dietary carbohydrate restriction improves insulin sensitivity, blood pressure, microvascular function, and cellular adhesion markers in individuals taking statins.

    PubMed

    Ballard, Kevin D; Quann, Erin E; Kupchak, Brian R; Volk, Brittanie M; Kawiecki, Diana M; Fernandez, Maria Luz; Seip, Richard L; Maresh, Carl M; Kraemer, William J; Volek, Jeff S

    2013-11-01

    Statins positively impact plasma low-density lipoprotein cholesterol, inflammation and vascular endothelial function (VEF). Carbohydrate restricted diets (CRD) improve atherogenic dyslipidemia, and similar to statins, have been shown to favorably affect markers of inflammation and VEF. No studies have examined whether a CRD provides additional benefit beyond that achieved by habitual statin use. We hypothesized that a CRD (<50 g carbohydrate/d) for 6 weeks would improve lipid profiles and insulin sensitivity, reduce blood pressure, decrease cellular adhesion and inflammatory biomarkers, and augment VEF (flow-mediated dilation and forearm blood flow) in statin users. Participants (n = 21; 59.3 ± 9.3 y, 29.5 ± 3.0 kg/m(2)) decreased total caloric intake by approximately 415 kcal at 6 weeks (P < .001). Daily nutrient intakes at baseline (46/36/17% carb/fat/pro) and averaged across the intervention (11/58/28% carb/fat/pro) demonstrated dietary compliance, with carbohydrate intake at baseline nearly 5-fold greater than during the intervention (P < .001). Compared to baseline, both systolic and diastolic blood pressure decreased after 3 and 6 weeks (P < .01). Peak forearm blood flow, but not flow-mediated dilation, increased at week 6 compared to baseline and week 3 (P ≤ .03). Serum triglyceride, insulin, soluble E-Selectin and intracellular adhesion molecule-1 decreased (P < .01) from baseline at week 3, and this effect was maintained at week 6. In conclusion, these findings demonstrate that individuals undergoing statin therapy experience additional improvements in metabolic and vascular health from a 6 weeks CRD as evidenced by increased insulin sensitivity and resistance vessel endothelial function, and decreased blood pressure, triglycerides, and adhesion molecules.

  13. pH-sensitive poly(lactide-co-glycolide) nanoparticle composite microcapsules for oral delivery of insulin.

    PubMed

    Sun, Shaoping; Liang, Na; Yamamoto, Hiromitsu; Kawashima, Yoshiaki; Cui, Fude; Yan, Pengfei

    2015-01-01

    This study proposes a new concept of pH-sensitive poly(lactide-co-glycolide) (PLGA) nanoparticle composite microcapsules for oral delivery of insulin. Firstly, insulin-sodium oleate complex was prepared by the hydrophobic ion pairing method and then encapsulated into PLGA nanoparticles by the emulsion solvent diffusion method. In order to reduce the burst release of insulin from PLGA nanoparticles and deliver insulin to specific gastrointestinal regions, hence to enhance bioavailability of insulin, the PLGA nanoparticles were further encapsulated into Eudragit(®) FS 30D to prepare PLGA nanoparticle composite microcapsules by organic spray-drying method. The preparation was evaluated in vitro and in vivo, and the absorption mechanism was discussed. The in vitro drug release studies revealed that the drug release was pH dependent, and the in vivo results demonstrated that the formulation of PLGA nanoparticle composite microcapsules was an effective candidate for oral insulin delivery.

  14. Nitrogen Addition Enhances Drought Sensitivity of Young Deciduous Tree Species.

    PubMed

    Dziedek, Christoph; Härdtle, Werner; von Oheimb, Goddert; Fichtner, Andreas

    2016-01-01

    Understanding how trees respond to global change drivers is central to predict changes in forest structure and functions. Although there is evidence on the mode of nitrogen (N) and drought (D) effects on tree growth, our understanding of the interplay of these factors is still limited. Simultaneously, as mixtures are expected to be less sensitive to global change as compared to monocultures, we aimed to investigate the combined effects of N addition and D on the productivity of three tree species (Fagus sylvatica, Quercus petraea, Pseudotsuga menziesii) in relation to functional diverse species mixtures using data from a 4-year field experiment in Northwest Germany. Here we show that species mixing can mitigate the negative effects of combined N fertilization and D events, but the community response is mainly driven by the combination of certain traits rather than the tree species richness of a community. For beech, we found that negative effects of D on growth rates were amplified by N fertilization (i.e., combined treatment effects were non-additive), while for oak and fir, the simultaneous effects of N and D were additive. Beech and oak were identified as most sensitive to combined N+D effects with a strong size-dependency observed for beech, suggesting that the negative impact of N+D becomes stronger with time as beech grows larger. As a consequence, the net biodiversity effect declined at the community level, which can be mainly assigned to a distinct loss of complementarity in beech-oak mixtures. This pattern, however, was not evident in the other species-mixtures, indicating that neighborhood composition (i.e., trait combination), but not tree species richness mediated the relationship between tree diversity and treatment effects on tree growth. Our findings point to the importance of the qualitative role ('trait portfolio') that biodiversity play in determining resistance of diverse tree communities to environmental changes. As such, they provide further

  15. Adipose tissue natriuretic peptide receptor expression is related to insulin sensitivity in obesity and diabetes

    PubMed Central

    Kovacova, Zuzana; Tharp, William G.; Liu, Dianxin; Wei, Wan; Xie, Hui

    2016-01-01

    Objective Cardiac natriuretic peptides (NPs) bind to two receptors (NPRA‐mediator of signaling; NPRC‐clearance receptor) whose ratio, NPRR (NPRA/NPRC), determines the NP bioactivity. This study investigated the relationship of NP receptor gene expression in adipose tissue and muscle with obesity and glucose intolerance. Prospectively, the study also assessed whether changes in NP receptor expression and thermogenic gene markers accompanied improvements of insulin sensitivity. Methods A cross‐sectional study of subjects with a wide range of BMI and glucose tolerance (n = 50) was conducted, as well as a randomized 12‐week trial of subjects with type 2 diabetes mellitus (T2DM) treated with pioglitazone (n = 9) or placebo (n = 10). Results NPRR mRNA was significantly lower in adipose tissue of subjects with obesity when compared with lean subjects (P ≤ 0.001). NPRR decreased with progression from normal glucose tolerance to T2DM (P < 0.01) independently of obesity. Treatment of subjects with T2DM with pioglitazone increased NPRR in adipose tissue (P ≤ 0.01) in conjunction with improvements in insulin sensitivity and increases of the thermogenic markers PPARγ coactivator‐1α and uncoupling protein 1 (P ≤ 0.01). Conclusions Decreased adipose tissue NPRR was associated with obesity, glucose intolerance, and insulin resistance. This relationship was not observed for skeletal muscle NPRR. Pharmacological improvement of insulin sensitivity in subjects with T2DM was tied to improvement in NPRR and increased expression of genes involved in thermogenic processes. PMID:26887289

  16. The Effect of Insulin Infusion on the Metabolites in Cerebral Tissues Assessed With Proton Magnetic Resonance Spectroscopy in Young Healthy Subjects With High and Low Insulin Sensitivity

    PubMed Central

    Karczewska-Kupczewska, Monika; Tarasów, Eugeniusz; Nikołajuk, Agnieszka; Stefanowicz, Magdalena; Matulewicz, Natalia; Otziomek, Elżbieta; Górska, Maria; Strączkowski, Marek; Kowalska, Irina

    2013-01-01

    OBJECTIVE Insulin may play important roles in brain metabolism. Proton magnetic resonance spectroscopy (1H-MRS) of the central nervous system gives information on neuronal viability, cellular energy, and membrane status. To elucidate the specific role of insulin action in the brain, we estimated neurometabolites with 1H-MRS and assessed their regulation by insulin infusion and their relationship with insulin sensitivity. RESEARCH DESIGN AND METHODS We studied 16 healthy young men. 1H-MRS was performed at baseline and after 240 min of euglycemic-hyperinsulinemic clamp. Voxels were positioned in the left frontal lobe, left temporal lobe, and left thalamus. The ratios of N-acetylaspartate (NAA), choline-containing compounds (Cho), myo-inositol, and glutamate/glutamine/γ-aminobutyric acid complex (Glx) to creatine (Cr) and nonsuppressed water signal were determined. The participants were divided into subgroups of high (high IS) and low (low IS) insulin sensitivity. RESULTS Baseline neurometabolic substrates were not different between the groups. Insulin infusion resulted in an increase in frontal NAA/Cr and NAA/H2O and frontal and temporal Glx/Cr and Glx/H2O and a decrease in frontal Cho/Cr and temporal Cho/H2O and myo-inositol/H2O (all P < 0.05, except temporal Glx/H2O, P = 0.054, NS) in the high-IS, but not in the low-IS, group. Insulin sensitivity correlated positively with frontal NAA/Cr and NAA/H2O and temporal Glx/H2O and negatively with temporal myo-inositol/Cr and myo-inositol/H2O assessed during the second 1H-MRS (all P < 0.05). CONCLUSIONS Insulin might influence cerebral metabolites, and this action is impaired in subjects with low whole-body insulin sensitivity. Thus, our results provide a potential link between insulin resistance and altered metabolism of the central nervous system. PMID:23596182

  17. Prostaglandin A2 enhances cellular insulin sensitivity via a mechanism that involves the orphan nuclear receptor NR4A3.

    PubMed

    Zhu, X; Walton, R G; Tian, L; Luo, N; Ho, S-R; Fu, Y; Garvey, W T

    2013-03-01

    We have previously reported that members of the NR4A family of orphan nuclear receptors can augment insulin's ability to stimulate glucose transport in adipocytes. In the current study, we endeavored to test for an insulin-sensitizing effect in muscle cells and to identify a potential transactivator. Lentiviral constructs were used to engineer both hyperexpression and shRNA silencing of NR4A3 in C2C12 myocytes. The NR4A3 hyper-expression construct led to a significant increase in glucose transport rates in the presence of maximal insulin while the NR4A3 knock-down exhibited a significant reduction in insulin-stimulated glucose transport rates. Consistently, insulin-mediated AKT phosphorylation was increased by NR4A3 hyperexpression and decreased following shRNA NR4A3 suppression. Then, we examined effects of prostaglandin A2 (PGA2) on insulin action and NR4A3 transactivation. PGA2 augmented insulin-stimulated glucose uptake in C2C12 myocytes and AKT phosphorylation after 12-h treatment, without significant effects on basal transport or basal AKT phosphorylation. More importantly, we demonstrated that PGA2 led to a greater improvement in insulin-stimulated glucose rates in NR4A3 overexpressing C2C12 myocytes, when compared with Lac-Z controls stimulated with insulin and PGA2. Moreover, the sensitizing effect of PGA2 was significantly diminished in NR4A3 knockdown myocytes compared to scramble controls. These results show for the first time that: (i) PGA2 augments insulin action in myocytes as manifested by enhanced stimulation of glucose transport and AKT phosphorylation; and (ii) the insulin sensitizing effect is dependent upon the orphan nuclear receptor NR4A3. PMID:23104421

  18. Comparative evaluation of the therapeutic effect of metformin monotherapy with metformin and acupuncture combined therapy on weight loss and insulin sensitivity in diabetic patients

    PubMed Central

    Firouzjaei, A; Li, G-C; Wang, N; Liu, W-X; Zhu, B-M

    2016-01-01

    Objective: Obesity induces insulin resistance (IR), the key etiologic defect of type 2 diabetes mellitus (T2DM). Therefore, an incidence of obesity-induced diabetes is expected to decrease if obesity is controlled. Although Metformin is currently one of the main treatment options for T2DM in obese patients, resulting in an average of 5% weight loss, adequate weight control in all patients cannot be achieved with Metformin alone. Thus, additional therapies with a weight loss effect, such as acupuncture, may improve the effectiveness of Metformin. Subjective: We designed this randomized clinical trial (RCT) to compare the effects of Metformin monotherapy with that of Metformin and acupuncture combined therapy on weight loss and insulin sensitivity among overweight/obese T2DM patients, to understand whether acupuncture plus Metformin is a better approach than Metformin only on treating diabetes. To understand whether acupuncture can be an insulin sensitizer and, if so, its therapeutic mechanism. Results: Our results show that Metformin and acupuncture combined therapy significantly improves body weight, body mass index (BMI), fasting blood sugar (FBS), fasting insulin (FINS), homeostasis model assessment (HOMA) index, interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), leptin, adiponectin, glucagon-like peptide-1 (GLP-1), resistin, serotonin, free fatty acids (FFAs), triglyceride (TG), low-density lipoprotein cholesterol (LDLc), high-density lipoprotein cholesterol (HDLc) and ceramides. Conclusions: Consequently, Metformin and acupuncture combined therapy is more effective than Metformin only, proving that acupuncture is an insulin sensitizer and is able to improve insulin sensitivity possibly by reducing body weight and inflammation, while improving lipid metabolism and adipokines. As a result, electro-acupuncture (EA) might be useful in controlling the ongoing epidemics in obesity and T2DM. PMID:27136447

  19. Long-lived crowded-litter mice exhibit lasting effects on insulin sensitivity and energy homeostasis

    PubMed Central

    Landeryou, Taylor; Blandino-Rosano, Manuel; Cady, Gillian; Elghazi, Lynda; Meister, Daniel; See, Lauren; Bartke, Andrzej; Bernal-Mizrachi, Ernesto; Miller, Richard A.

    2014-01-01

    The action of nutrients on early postnatal growth can influence mammalian aging and longevity. Recent work has demonstrated that limiting nutrient availability in the first 3 wk of life [by increasing the number of pups in the crowded-litter (CL) model] leads to extension of mean and maximal lifespan in genetically normal mice. In this study, we aimed to characterize the impact of early-life nutrient intervention on glucose metabolism and energy homeostasis in CL mice. In our study, we used mice from litters supplemented to 12 or 15 pups and compared those to control litters limited to eight pups. At weaning and then throughout adult life, CL mice are significantly leaner and consume more oxygen relative to control mice. At 6 mo of age, CL mice had low fasting leptin concentrations, and low-dose leptin injections reduced body weight and food intake more in CL female mice than in controls. At 22 mo, CL female mice also have smaller adipocytes compared with controls. Glucose and insulin tolerance tests show an increase in insulin sensitivity in 6 mo old CL male mice, and females become more insulin sensitive later in life. Furthermore, β-cell mass was significantly reduced in the CL male mice and was associated with reduction in β-cell proliferation rate in these mice. Together, these data show that early-life nutrient intervention has a significant lifelong effect on metabolic characteristics that may contribute to the increased lifespan of CL mice. PMID:24735888

  20. Thyroid-stimulating hormone improves insulin sensitivity in skeletal muscle cells via cAMP/PKA/CREB pathway-dependent upregulation of insulin receptor substrate-1 expression.

    PubMed

    Moon, Min Kyong; Kang, Geun Hyung; Kim, Hwan Hee; Han, Sun Kyoung; Koo, Young Do; Cho, Sun Wook; Kim, Ye An; Oh, Byung-Chul; Park, Do Joon; Chung, Sung Soo; Park, Kyong Soo; Park, Young Joo

    2016-11-15

    Thyroid-stimulating hormone (TSH) receptor is expressed in extrathyroidal tissues such as hepatocytes, adipocytes, and skeletal muscle, which suggests a possible novel role of TSH in various metabolic processes in extrathyroidal tissues independent of thyroid hormones. We investigated whether TSH has any effects on glucose tolerance and insulin sensitivity in the skeletal muscle using diet-induced obesity (DIO) mouse models and rodent skeletal muscle cells. TSH improved glucose tolerance in DIO mice and this was associated with an improvement of skeletal muscle insulin sensitivity resulting from the increased expression of insulin receptor substrate (IRS)-1 protein and mRNA therein. TSH significantly increased both basal and insulin-stimulated glucose transport in rat L6 myotubes and increased the expression of IRS-1 protein and mRNA in these cells as well. TSH also stimulated Irs1 promoter activation; this stimulation was abolished by protein kinase A (PKA) inhibition using H89 or by mutation of the cAMP-response element site located at -1155 to -875 bp of the Irs1 promoter region, supporting a novel role of TSH activated-cAMP/PKA/CREB signaling in the regulation of Irs1 expression. In conclusion, TSH improves insulin sensitivity in skeletal muscle by increasing Irs1 gene expression. This regulatory effect is mediated by a PKA-CREB-dependent pathway.

  1. Proteasome Dysfunction Associated to Oxidative Stress and Proteotoxicity in Adipocytes Compromises Insulin Sensitivity in Human Obesity

    PubMed Central

    Díaz-Ruiz, Alberto; Guzmán-Ruiz, Rocío; Moreno, Natalia R.; García-Rios, Antonio; Delgado-Casado, Nieves; Membrives, Antonio; Túnez, Isaac; El Bekay, Rajaa; Fernández-Real, José M.; Tovar, Sulay; Diéguez, Carlos; Tinahones, Francisco J.; Vázquez-Martínez, Rafael; López-Miranda, José

    2015-01-01

    Abstract Aims: Obesity is characterized by a low-grade systemic inflammatory state and adipose tissue (AT) dysfunction, which predispose individuals to the development of insulin resistance (IR) and metabolic disease. However, a subset of obese individuals, referred to as metabolically healthy obese (MHO) individuals, are protected from obesity-associated metabolic abnormalities. Here, we aim at identifying molecular factors and pathways in adipocytes that are responsible for the progression from the insulin-sensitive to the insulin-resistant, metabolically unhealthy obese (MUHO) phenotype. Results: Proteomic analysis of paired samples of adipocytes from subcutaneous (SC) and omental (OM) human AT revealed that both types of cells are altered in the MUHO state. Specifically, the glutathione redox cycle and other antioxidant defense systems as well as the protein-folding machinery were dysregulated and endoplasmic reticulum stress was increased in adipocytes from IR subjects. Moreover, proteasome activity was also compromised in adipocytes of MUHO individuals, which was associated with enhanced accumulation of oxidized and ubiquitinated proteins in these cells. Proteasome activity was also impaired in adipocytes of diet-induced obese mice and in 3T3-L1 adipocytes exposed to palmitate. In line with these data, proteasome inhibition significantly impaired insulin signaling in 3T3-L1 adipocytes. Innovation: This study provides the first evidence of the occurrence of protein homeostasis deregulation in adipocytes in human obesity, which, together with oxidative damage, interferes with insulin signaling in these cells. Conclusion: Our results suggest that proteasomal dysfunction and impaired proteostasis in adipocytes, resulting from protein oxidation and/or misfolding, constitute major pathogenic mechanisms in the development of IR in obesity. Antioxid. Redox Signal. 23, 597–612. PMID:25714483

  2. Short term low-calorie diet improves insulin sensitivity and metabolic parameters in obese women.

    PubMed

    Bôas Huguenin, Grazielle Vilas; Kimi Uehara, Sofia; Nogueira Netto, José Firmino; Gaspar de Moura, Egberto; Rosa, Glorimar; da Fonseca Passos, Magna Cottini

    2014-07-01

    Obesity and insulin resistance are associated with an increase of cardiovascular risk factors, including adipocytokines. The aim of this study was to investigate the effect of low-calorie diet on serum lipids, adipokines, insulin resistance and body composition in obese women. It was a clinical trial with class I obese women aged 30-45 years submitted to hypocaloric diet for 90 days. Dietary intake, anthropometric parameters, body composition, serum lipids, glucose, insulin, leptin, adiponectin, HOMA-IR and QUICKI indexes were evaluated at the baseline, 30, 60 and 90 days. There was 30% significant decrease in energy intake, and also decrease in body weight, body mass index and waist circumference (p < 0.01) throughout the treatment period. Despite the amount of lean body mass (kg) reduced in average, it was observed that lean body mass (%) had increased (p < 0.01) and that the amount of fat body mass (kg) had decreased significantly in the third month (p < 0.05). Systolic blood pressure reduced up to -5mmHg (p < 0.05) after 90 days. Was observed a decrease (p < 0.05) on serum insulin and HOMA-IR until the 60th day, while the serum adiponectin increased (p < 0.01) during treatment. Corroborating with the reduction of fat body mass and weight, serum leptin also reduced (p < 0.01). These results suggest that the short-term low-calorie diet reduces total body fat, mainly found in the abdominal region, and efficiently improve insulin sensitivity decreasing cardiovascular risk in obese women.

  3. Association Between Thyrotropin Levels and Insulin Sensitivity in Euthyroid Obese Adolescents

    PubMed Central

    Javed, Asma; Balagopal, P. Babu; Vella, Adrian; Fischer, Philip R.; Piccinini, Francesca; Dalla Man, Chiara; Cobelli, Claudio; Giesler, Paula D.; Laugen, Jeanette M.

    2015-01-01

    Background: Thyrotropin (TSH) levels display a positive association with body mass index (BMI), and the prevalence of isolated hyperthyrotropinemia is higher in obese adolescents compared to their normal weight controls. However, the metabolic significance of the higher TSH in obese adolescents is less clear. The objective of this study was to determine the relationship between TSH concentrations and insulin sensitivity, lipids, and adipokines in euthyroid, non-diabetic, obese adolescents. Methods: Thirty-six euthyroid, non-diabetic, obese adolescents between the ages of 12 and 18 years underwent a 75 g oral glucose tolerance test. Insulin sensitivity (Si) and pancreatic β-cell function as assessed by disposition index (DI) were measured using the oral glucose minimal model approach. Cholesterol (total, low-density lipoprotein [LDL-C], and high-density lipoprotein [HDL-C]), triglycerides (TG), interleukin-6 (IL-6), total and high molecular weight (HMW) adiponectin, and retinol binding protein-4 (RBP4) were also determined. Associations between measures of thyroid function and Si, DI, lipids, and adipokines were computed using Pearson's correlation coefficient and multiple regression analysis. Results: The mean age of the subjects was 14.3±1.88 years, and the mean BMI was 32.5±4.65 kg/m2; 97% were non-Hispanic white and 47% were male. The mean TSH was 2.7±1.2 mIU/L. Increasing serum TSH was correlated with decreasing Si (log Si) in the entire cohort (p=0.03), but this relationship persisted only in males (p=0.02). The correlation between TSH and Si in males remained significant after adjusting for BMI (p=0.02). There was no correlation between TSH and pancreatic β-cell function as assessed by DI (p=0.48). TSH correlated positively with LDL-C (p=0.04) and IL-6 (p=0.03), but these associations vanished or weakened after adjusting for BMI (LDL-C p-value=0.44; IL-6 p-value=0.07). Conclusions: This study suggests a sex-specific association between TSH and insulin

  4. Moderate Amounts of Fructose Consumption Impair Insulin Sensitivity in Healthy Young Men

    PubMed Central

    Aeberli, Isabelle; Hochuli, Michel; Gerber, Philip A.; Sze, Lisa; Murer, Stefanie B.; Tappy, Luc; Spinas, Giatgen A.; Berneis, Kaspar

    2013-01-01

    OBJECTIVE Adverse effects of hypercaloric, high-fructose diets on insulin sensitivity and lipids in human subjects have been shown repeatedly. The implications of fructose in amounts close to usual daily consumption, however, have not been well studied. This study assessed the effect of moderate amounts of fructose and sucrose compared with glucose on glucose and lipid metabolism. RESEARCH DESIGN AND METHODS Nine healthy, normal-weight male volunteers (aged 21–25 years) were studied in this double-blind, randomized, cross-over trial. All subjects consumed four different sweetened beverages (600 mL/day) for 3 weeks each: medium fructose (MF) at 40 g/day, and high fructose (HF), high glucose (HG), and high sucrose (HS) each at 80 g/day. Euglycemic-hyperinsulinemic clamps with [6,6]-2H2 glucose labeling were used to measure endogenous glucose production. Lipid profile, glucose, and insulin were measured in fasting samples. RESULTS Hepatic suppression of glucose production during the clamp was significantly lower after HF (59.4 ± 11.0%) than HG (70.3 ± 10.5%, P < 0.05), whereas fasting glucose, insulin, and C-peptide did not differ between the interventions. Compared with HG, LDL cholesterol and total cholesterol were significantly higher after MF, HF, and HS, and free fatty acids were significantly increased after MF, but not after the two other interventions (P < 0.05). Subjects’ energy intake during the interventions did not differ significantly from baseline intake. CONCLUSIONS This study clearly shows that moderate amounts of fructose and sucrose significantly alter hepatic insulin sensitivity and lipid metabolism compared with similar amounts of glucose. PMID:22933433

  5. Effect of exercise intensity and volume on persistence of insulin sensitivity during training cessation.

    PubMed

    Bajpeyi, Sudip; Tanner, Charles J; Slentz, Cris A; Duscha, Brian D; McCartney, Jennifer S; Hickner, Robert C; Kraus, William E; Houmard, Joseph A

    2009-04-01

    The purpose of this study was to determine whether exercise prescriptions differing in volume or intensity also differ in their ability to retain insulin sensitivity during an ensuing period of training cessation. Sedentary, overweight/obese subjects were assigned to one of three 8-mo exercise programs: 1) low volume/moderate intensity [equivalent of approximately 12 miles/wk, 1,200 kcal/wk at 40-55% peak O(2) consumption (Vo(2peak)), 200 min exercise/wk], 2) low volume/vigorous intensity ( approximately 12 miles/wk, 1,200 kcal/wk at 65-80% Vo(2peak), 125 min/wk), and 3) high volume/vigorous intensity ( approximately 20 miles/wk, 2,000 kcal/wk at 65-80% Vo(2peak), 200 min/wk). Insulin sensitivity (intravenous glucose tolerance test, S(I)) was measured when subjects were sedentary and at 16-24 h and 15 days after the final training bout. S(I) increased with training compared with the sedentary condition (P < or = 0.05) at 16-24 h with all of the exercise prescriptions. S(I) decreased to sedentary, pretraining values after 15 days of training cessation in the low-volume/vigorous-intensity group. In contrast, at 15 days S(I) was significantly elevated compared with sedentary (P < or = 0.05) in the prescriptions utilizing 200 min/wk (low volume/moderate intensity, high volume/vigorous intensity). In the high-volume/vigorous-intensity group, indexes of muscle mitochondrial density followed a pattern paralleling insulin action by being elevated at 15 days compared with pretraining; this trend was not evident in the low-volume/moderate-intensity group. These findings suggest that in overweight/obese subjects a relatively chronic persistence of enhanced insulin action may be obtained with endurance-oriented exercise training; this persistence, however, is dependent on the characteristics of the exercise training performed.

  6. Role of body fat distribution in the decline in insulin sensitivity and glucose tolerance with age.

    PubMed

    Coon, P J; Rogus, E M; Drinkwater, D; Muller, D C; Goldberg, A P

    1992-10-01

    The relationships of body composition and physical fitness [maximal aerobic capacity (VO2max)] to the decline in insulin sensitivity with age were examined in healthy older (47-73 yr; n = 36) and young (19-36 yr; n = 13) men. In 18 older men with normal glucose tolerance (OGTT), glucose disposal rates (M) during hyperinsulinemic euglycemic clamps correlated negatively with the waist to hip ratio (WHR; r = -0.77; P < .001) and percent body fat (r = -0.46; P < 0.05) and positively with VO2max (r = 0.54; P < 0.05), but not with age. Similar relationships existed in the 36 older men with a spectrum of OGTT responses; however, only WHR was independently related to M (r2 = 0.32; P < 0.01). In the older men with normal OGTT, M (mean +/- SEM, 7.88 +/- 0.43 mg/kg fat-free mass.min) was not different from that in the young men (8.56 +/- 0.47; P = NS). Furthermore, in older and young men with normal OGTT matched for WHR, percent fat, or VO2max, glucose disposal was comparable at sequential 15-min intervals during the clamp and in its relationship to insulin concentrations at the tissue level (multicompartmental analysis). In contrast, despite higher steady state plasma insulin levels during the clamp, M was significantly lower in the older men with a higher WHR, greater percent fat, lower VO2max, or impaired OGTT. Thus, in healthy older men up to the age of 73 yr, insulin sensitivity and glucose tolerance are affected primarily by the regional body fat distribution, not age, obesity, or VO2max.

  7. Nitrogen Addition Enhances Drought Sensitivity of Young Deciduous Tree Species

    PubMed Central

    Dziedek, Christoph; Härdtle, Werner; von Oheimb, Goddert; Fichtner, Andreas

    2016-01-01

    Understanding how trees respond to global change drivers is central to predict changes in forest structure and functions. Although there is evidence on the mode of nitrogen (N) and drought (D) effects on tree growth, our understanding of the interplay of these factors is still limited. Simultaneously, as mixtures are expected to be less sensitive to global change as compared to monocultures, we aimed to investigate the combined effects of N addition and D on the productivity of three tree species (Fagus sylvatica, Quercus petraea, Pseudotsuga menziesii) in relation to functional diverse species mixtures using data from a 4-year field experiment in Northwest Germany. Here we show that species mixing can mitigate the negative effects of combined N fertilization and D events, but the community response is mainly driven by the combination of certain traits rather than the tree species richness of a community. For beech, we found that negative effects of D on growth rates were amplified by N fertilization (i.e., combined treatment effects were non-additive), while for oak and fir, the simultaneous effects of N and D were additive. Beech and oak were identified as most sensitive to combined N+D effects with a strong size-dependency observed for beech, suggesting that the negative impact of N+D becomes stronger with time as beech grows larger. As a consequence, the net biodiversity effect declined at the community level, which can be mainly assigned to a distinct loss of complementarity in beech-oak mixtures. This pattern, however, was not evident in the other species-mixtures, indicating that neighborhood composition (i.e., trait combination), but not tree species richness mediated the relationship between tree diversity and treatment effects on tree growth. Our findings point to the importance of the qualitative role (‘trait portfolio’) that biodiversity play in determining resistance of diverse tree communities to environmental changes. As such, they provide

  8. Nitrogen Addition Enhances Drought Sensitivity of Young Deciduous Tree Species.

    PubMed

    Dziedek, Christoph; Härdtle, Werner; von Oheimb, Goddert; Fichtner, Andreas

    2016-01-01

    Understanding how trees respond to global change drivers is central to predict changes in forest structure and functions. Although there is evidence on the mode of nitrogen (N) and drought (D) effects on tree growth, our understanding of the interplay of these factors is still limited. Simultaneously, as mixtures are expected to be less sensitive to global change as compared to monocultures, we aimed to investigate the combined effects of N addition and D on the productivity of three tree species (Fagus sylvatica, Quercus petraea, Pseudotsuga menziesii) in relation to functional diverse species mixtures using data from a 4-year field experiment in Northwest Germany. Here we show that species mixing can mitigate the negative effects of combined N fertilization and D events, but the community response is mainly driven by the combination of certain traits rather than the tree species richness of a community. For beech, we found that negative effects of D on growth rates were amplified by N fertilization (i.e., combined treatment effects were non-additive), while for oak and fir, the simultaneous effects of N and D were additive. Beech and oak were identified as most sensitive to combined N+D effects with a strong size-dependency observed for beech, suggesting that the negative impact of N+D becomes stronger with time as beech grows larger. As a consequence, the net biodiversity effect declined at the community level, which can be mainly assigned to a distinct loss of complementarity in beech-oak mixtures. This pattern, however, was not evident in the other species-mixtures, indicating that neighborhood composition (i.e., trait combination), but not tree species richness mediated the relationship between tree diversity and treatment effects on tree growth. Our findings point to the importance of the qualitative role ('trait portfolio') that biodiversity play in determining resistance of diverse tree communities to environmental changes. As such, they provide further

  9. Insulin-Stimulated Release of D-Chiro-Inositol-Containing Inositolphosphoglycan Mediator Correlates with Insulin Sensitivity in Women with Polycystic Ovary Syndrome

    PubMed Central

    Cheang, Kai I.; Baillargeon, Jean-Patrice; Essah, Paulina A.; Ostlund, Richard E.; Apridonize, Teimuraz; Islam, Leila; Nestler, John E.

    2008-01-01

    Some actions of insulin are mediated by inositolphosphoglycan mediators. Deficient release of a putative D-chiro-inositol-containing inositolphosphoglycan (DCI-IPG) mediator may contribute to insulin resistance in women with polycystic ovary syndrome (PCOS). Previously we demonstrated that oral DCI supplementation improved ovulation and metabolic parameters in women with PCOS. However, whether oral DCI mediates an increase in the release of the DCI-IPG mediator and an improvement in insulin sensitivity in women with PCOS is unknown. We conducted a randomized controlled trial of DCI supplementation vs. placebo in 11 women with PCOS who were assessed at two-time points, 6 weeks apart. Plasma DCI, DCI-IPG release during OGTT (AUCDCI-IPG) and insulin sensitivity (Si) by FSIVGTT were assessed at baseline and end-of-study. The study was terminated early due to a sudden unavailability of the study drug. However, in all subjects without regard to treatment assignment, there was a positive correlation between the change in AUCDCI-IPG / AUCInsulin ratio and the change in Si during the 6-week period (r=0.69, p=0.02), which remained significant after adjustment for BMI (p=0.022), and after further adjustment for BMI and treatment allocation (p=0.0261). This suggests that in women with PCOS, increased glucose-stimulated DCI-IPG release is significantly correlated with improved insulin sensitivity. The significant relationship between DCI-IPG release and insulin sensitivity suggests that the DCI-IPG mediator may be a target for therapeutic interventions in PCOS. PMID:18803944

  10. How does acupuncture affect insulin sensitivity in women with polycystic ovary syndrome and insulin resistance? Study protocol of a prospective pilot study

    PubMed Central

    Zheng, Yanhua; Stener-Victorin, Elisabet; Ng, Ernest H Y; Li, Juan; Wu, Xiaoke; Ma, Hongxia

    2015-01-01

    Introduction Hyperinsulinaemia and insulin resistance (IR) are key features of polycystic ovary syndrome (PCOS) and metabolic syndrome. The effect of 5 weeks of acupuncture treatment has been investigated in a completed prospective pilot trial (Clinicaltrials.gov: NCT01457209), and acupuncture with electrical stimulation applied to insulin-resistant rats with dihydrotestosterone-induced PCOS was shown to improve insulin sensitivity. Therefore, we now aim to conduct a prospective pilot study to evaluate whether using the same acupuncture treatment protocol given over a longer period of time (6 months) than in the previous pilot trial will improve insulin sensitivity in women with PCOS and IR. Our hypothesis is that acupuncture with combined manual and low-frequency electrical stimulation of the needles will improve insulin sensitivity in women with PCOS and IR. Methods/analysis This is a prospective pilot trial. A total of 112 women with PCOS and IR will be recruited and categorised according to their body mass index (BMI) as normal weight (BMI=18.5−23 kg/m2) or as overweight/obese (BMI>23 kg/m2). Acupuncture will be applied three times per week for 6 months at 30 min per treatment. The primary outcome will be the change in insulin sensitivity before and after 6 months of acupuncture treatment, as measured by an oral glucose tolerance test. Ethics/dissemination Ethical approval of this study has been granted from the ethics committee of the First Affiliated Hospital of Guangzhou Medical University (No. 2013039). Written and informed consent will be obtained from each patient before any study procedure is performed, according to good clinical practice. The results of this trial will be disseminated in a peer-reviewed journal and presented at international congresses. Trial registration numbers NCT02026323 and ChiCTR-OCH-13003921. PMID:25941189

  11. Estimating insulin sensitivity from glucose levels only: Use of a non-linear mixed effects approach and maximum a posteriori (MAP) estimation.

    PubMed

    Yates, James W T; Watson, Edmund M

    2013-02-01

    Insulin Sensitivity is an important parameter for the management of Diabetes. It can be derived for a particular patient using data derived from some glucose challenge tests using measured glucose and insulin levels at various times. Whilst a useful approach, deriving insulin sensitivities to inform insulin dosing in other settings such as Intensive Care Units can be more challenging - especially as insulin levels have to be assayed in a laboratory, not at the bedside. This paper investigates an approach to measure insulin sensitivity from glucose levels only. Estimates of mean and between individual parameter variances are used to derive conditional estimates of insulin sensitivity. The method is demonstrated to perform reasonably well, with conditional estimates comparing well with estimates derived from insulin data as well. PMID:22244505

  12. Estimating insulin sensitivity from glucose levels only: Use of a non-linear mixed effects approach and maximum a posteriori (MAP) estimation.

    PubMed

    Yates, James W T; Watson, Edmund M

    2013-02-01

    Insulin Sensitivity is an important parameter for the management of Diabetes. It can be derived for a particular patient using data derived from some glucose challenge tests using measured glucose and insulin levels at various times. Whilst a useful approach, deriving insulin sensitivities to inform insulin dosing in other settings such as Intensive Care Units can be more challenging - especially as insulin levels have to be assayed in a laboratory, not at the bedside. This paper investigates an approach to measure insulin sensitivity from glucose levels only. Estimates of mean and between individual parameter variances are used to derive conditional estimates of insulin sensitivity. The method is demonstrated to perform reasonably well, with conditional estimates comparing well with estimates derived from insulin data as well.

  13. Lipid accumulation in overweight type 2 diabetic subjects: relationships with insulin sensitivity and adipokines.

    PubMed

    Sambataro, Maria; Perseghin, Gianluca; Lattuada, Guido; Beltramello, Giampietro; Luzi, Livio; Pacini, Giovanni

    2013-06-01

    Adipokines are known to play a fundamental role in the etiology of obesity, that is, in the impaired balance between increased feeding and decreased energy expenditure. While the adipokine-induced changes of insulin resistance in obese diabetic and nondiabetic subjects are well known, the possible role of fat source in modulating insulin sensitivity (IS) remains controversial. The aim of our study was to explore in overweight type 2 diabetic patients (T2DM) with metabolic syndrome IS in different energy storage conditions (basal and dynamic) for relating it to leptin and adiponectin. Sixteen T2DM (5/11 F/M; 59 ± 2 years; 29.5 ± 1.1 kg/m(2)) and 16 control (CNT 5/11; 54 ± 2; 29.1 ± 1.0) underwent an oral glucose tolerance test. Fasting IS was measured by QUICKI, while the dynamic one with OGIS. The insulinogenic index (IGI) described beta cell function. Also, the lipid accumulation product parameter (LAP) was assessed. LAP accounts for visceral abdominal fat and triglycerides, and it is known to be related to IS. Possible interrelationships between LAP and adipokines were explored. In T2DM and CNT, adiponectin (7.4 ± 0.5 vs. 7.8 ± 0.9 μg/mL), leptin (13.3 ± 3.0 vs. 12.4 ± 2.6 ng/mL), and QUICKI (0.33 ± 0.01 vs. 0.33 ± 0.01) were not different (P > 0.40), at variance with OGIS (317 ± 11 vs. 406 ± 13 mL/min/m(2); P = 0.006) and IGI (0.029 ± 0.005 vs. 0.185 ± 0.029 × 10(3) pmolI/mmolG; P = 0.00001). LAP was 85 ± 15 cm × mg/dL in T2DM and 74 ± 10 in CNT (P > 0.1), correlated with OGIS in all subjects (R = -0.42, P = 0.02) and QUICKI (R = -0.56, P = 0.025) in T2DM. Leptin correlated with QUICKI (R = -0.45, P = 0.009), and adiponectin correlated with OGIS (R = 0.43, P = 0.015). In overweight T2DM, insulin sensitivity in basal condition appears to be multifaceted with respect to the dynamic one, because it should be more fat-related. Insulin sensitivity appears to be incompletely described by functions of fasting glucose and insulin values alone and the

  14. Effect of a β-Hydroxyphosphonate Analogue of ʟ-Carnitine on Insulin-Sensitive and Insulin-Resistant 3T3-L1 Adipocytes.

    PubMed

    Avalos-Soriano, Anaguiven; De la Cruz-Cordero, Ricardo; López-Martínez, Francisco Josue; Rosado, Jorge L; Duarte-Vázquez, Miguel Ángel; Garcia-Gasca, Teresa

    2015-01-01

    This study investigated the effect of a β-x200B;hydroxyphosphonate analog of ʟ-carnitine (L-CA) (CAS number: 1220955-x200B;20-3, Component: 1221068-91-2, C12H29NO4PI), (3-Hexanaminium, 1-(dimethoxyphosphinyl)-2-hydroxy-N,N,N,5-x200B;tetramethy-iodide (1:1), (2R, 3S)) on parameters related with type-2 diabetes in an in vitro model. Nontoxic concentrations of L-CA were assayed and compared to commercial ʟ-carnitine effects. L-CA did not affect adipogenesis in normal cells, but an increment of TG accumulation was observed on insulin-resistant adipocytes (80%) when compared with resistant control. L-CA also stimulated glucose analog 2-NBDG uptakes on insulin-resistant adipocytes in a similar way as insulin when compared to insulin-resistant cells. Our results show that the L-CA promoted insulin-like responses on insulin-resistant adipocytes without appreciable pro-adipogenic effect in sensitive adipocytes. PMID:26160659

  15. Mulberry (Morus alba L.) Fruit Extract Containing Anthocyanins Improves Glycemic Control and Insulin Sensitivity via Activation of AMP-Activated Protein Kinase in Diabetic C57BL/Ksj-db/db Mice.

    PubMed

    Choi, Kyung Ha; Lee, Hyun Ah; Park, Mi Hwa; Han, Ji-Sook

    2016-08-01

    The effect of mulberry (Morus alba L.) fruit extract (MFE) on hyperglycemia and insulin sensitivity in an animal model of type 2 diabetes was evaluated. C57BL/Ksj-diabetic db/db mice were divided into three groups: diabetic control, rosiglitazone, and MFE groups. Blood glucose, plasma insulin, and intraperitoneal glucose were measured, and an insulin tolerance test was performed after MFE supplementation in db/db mice. In addition, the protein levels of various targets of insulin signaling were measured by western blotting. The blood levels of glucose and HbA1c were significantly lower in the MFE-supplemented group than in the diabetic control group. Moreover, glucose and insulin tolerance tests showed that MFE treatment increased insulin sensitivity. The homeostatic index of insulin resistance significantly decreased in the MFE-supplemented group relative to the diabetic control group. MFE supplementation significantly stimulated the levels of phosphorylated (p)-AMP-activated protein kinase (pAMPK) and p-Akt substrate of 160 kDa (pAS160) and enhanced the level of plasma membrane-glucose transporter 4 (GLUT4) in skeletal muscles. Further, dietary MFE significantly increased pAMPK and decreased the levels of glucose 6-phosphatase and phosphoenolpyruvate carboxykinase in the liver. MFE may improve hyperglycemia and insulin sensitivity via activation of AMPK and AS160 in skeletal muscles and inhibition of gluconeogenesis in the liver.

  16. Mulberry (Morus alba L.) Fruit Extract Containing Anthocyanins Improves Glycemic Control and Insulin Sensitivity via Activation of AMP-Activated Protein Kinase in Diabetic C57BL/Ksj-db/db Mice.

    PubMed

    Choi, Kyung Ha; Lee, Hyun Ah; Park, Mi Hwa; Han, Ji-Sook

    2016-08-01

    The effect of mulberry (Morus alba L.) fruit extract (MFE) on hyperglycemia and insulin sensitivity in an animal model of type 2 diabetes was evaluated. C57BL/Ksj-diabetic db/db mice were divided into three groups: diabetic control, rosiglitazone, and MFE groups. Blood glucose, plasma insulin, and intraperitoneal glucose were measured, and an insulin tolerance test was performed after MFE supplementation in db/db mice. In addition, the protein levels of various targets of insulin signaling were measured by western blotting. The blood levels of glucose and HbA1c were significantly lower in the MFE-supplemented group than in the diabetic control group. Moreover, glucose and insulin tolerance tests showed that MFE treatment increased insulin sensitivity. The homeostatic index of insulin resistance significantly decreased in the MFE-supplemented group relative to the diabetic control group. MFE supplementation significantly stimulated the levels of phosphorylated (p)-AMP-activated protein kinase (pAMPK) and p-Akt substrate of 160 kDa (pAS160) and enhanced the level of plasma membrane-glucose transporter 4 (GLUT4) in skeletal muscles. Further, dietary MFE significantly increased pAMPK and decreased the levels of glucose 6-phosphatase and phosphoenolpyruvate carboxykinase in the liver. MFE may improve hyperglycemia and insulin sensitivity via activation of AMPK and AS160 in skeletal muscles and inhibition of gluconeogenesis in the liver. PMID:27441957

  17. Effects of insulin sensitizers on plaque vulnerability associated with elevated lipid content in atheroma in ApoE-knockout mice.

    PubMed

    Cefalu, W T; Wang, Z Q; Schneider, D J; Absher, P M; Baldor, L C; Taatjes, D J; Sobel, B E

    2004-03-01

    Acute coronary syndromes are generally precipitated by rupture of lipid-laden, relatively acellular, vulnerable atherosclerotic plaques with thin fibrous caps. We investigated whether a high-fat diet alters insulin sensitivity and whether insulin sensitizers (troglitazone and rosiglitazone) alter the composition of otherwise lipidladen atherosclerotic plaques in mice deficient in apolipoprotein E (ApoE). ApoE-knockout mice were fed a high-fat (n=30) or standard chow (n=10) diet for two weeks. Thereafter, those fed the high-fat diet were treated with troglitazone (n=10), rosiglitazone (n=10) or no drug (n=10) for 16 weeks beginning at 8 weeks of age. Carbohydrate metabolism was assessed with intraperitoneal glucose tolerance tests and insulin tolerance tests. Plaque composition was characterised with confocal laser scanning microscopy. The high-fat diet induced insulin resistance in the absence of weight gain. Compared with control animals on the high-fat diet, animals given troglitazone (400 mg/kg/day) or rosiglitazone (4 mg/kg/day) had significantly less area under the curve (AUC) for insulin ( p<0.05) and glucose disposal ( p<0.05). Despite significant increases in insulin sensitivity with drug treatment, no change in HDL-cholesterol and triglyceride levels, nor reduction in atheroma size or lipid content was noted. Thus, improvement in insulin resistance induced by a high-fat diet in this animal model of vasculopathy did not alter plaque composition.

  18. Berberine in Combination with Insulin Has Additive Effects on Titanium Implants Osseointegration in Diabetes Mellitus Rats

    PubMed Central

    Lu, Li; Zhijian, Huang; Lei, Li; Wenchuan, Chen; Zhimin, Zhu

    2015-01-01

    This study evaluated the effects of berberine in combination with insulin on early osseointegration of implants in diabetic rats. Fifty male Sprague-Dawley rats were randomly divided into 5 groups: healthy rats were used as control (HC), and streptozotocin-induced diabetic rats were treated with insulin, berberine, berberine + insulin (IB), or no treatment. Each rat received one machined-surface cp-Ti implant into the right tibia and was given insulin injection and/or gavage feeding with berberine daily for 8 weeks until being sacrificed. Serum levels of alkaline phosphatase (ALP) and bone gamma-carboxyglutamic acid-containing protein (BGP) were analyzed in each group. Peri-implant mineral apposition was marked by fluorochrome double-labeling and osseointegration was histomorphologically examined. The ALP and BGP levels decreased in diabetic rats but were successfully corrected by insulin and berberine combined treatment. Moreover, untreated diabetic rats had less labeled mineral apposition and impaired osseointegration. In contrast, Groups I, B, and IB were observed with increased peri-implant bone formation. The combination treatment of insulin and berberine was more effective than each administrated as a monotherapy. These results suggest that berberine combined with insulin could promote osseointegration in diabetic rats, thereby highlighting its potential application to patients, though further studies are needed. PMID:26783411

  19. Di-(2-Ethylhexyl) Phthalate Metabolites in Urine Show Age-Related Changes and Associations with Adiposity and Parameters of Insulin Sensitivity in Childhood

    PubMed Central

    Smerieri, Arianna; Testa, Chiara; Lazzeroni, Pietro; Nuti, Francesca; Grossi, Enzo; Cesari, Silvia; Montanini, Luisa; Latini, Giuseppe; Bernasconi, Sergio; Papini, Anna Maria; Street, Maria E.

    2015-01-01

    Objectives Phthalates might be implicated with obesity and insulin sensitivity. We evaluated the levels of primary and secondary metabolites of Di-(2-ethylhexyl) phthalate (DEHP) in urine in obese and normal-weight subjects both before and during puberty, and investigated their relationships with auxological parameters and indexes of insulin sensitivity. Design and Methods DEHP metabolites (MEHP, 6-OH-MEHP, 5-oxo-MEHP, 5-OH-MEHP, and 5-CX-MEHP), were measured in urine by RP-HPLC-ESI-MS. Traditional statistical analysis and a data mining analysis using the Auto-CM analysis were able to offer an insight into the complex biological connections between the studied variables. Results The data showed changes in DEHP metabolites in urine related with obesity, puberty, and presence of insulin resistance. Changes in urine metabolites were related with age, height and weight, waist circumference and waist to height ratio, thus to fat distribution. In addition, clear relationships in both obese and normal-weight subjects were detected among MEHP, its products of oxidation and measurements of insulin sensitivity. Conclusion It remains to be elucidated whether exposure to phthalates per se is actually the risk factor or if the ability of the body to metabolize phthalates is actually the key point. Further studies that span from conception to elderly subjects besides further understanding of DEHP metabolism are warranted to clarify these aspects. PMID:25706863

  20. Imeglimin normalizes glucose tolerance and insulin sensitivity and improves mitochondrial function in liver of a high-fat, high-sucrose diet mice model.

    PubMed

    Vial, Guillaume; Chauvin, Marie-Agnès; Bendridi, Nadia; Durand, Annie; Meugnier, Emmanuelle; Madec, Anne-Marie; Bernoud-Hubac, Nathalie; Pais de Barros, Jean-Paul; Fontaine, Éric; Acquaviva, Cécile; Hallakou-Bozec, Sophie; Bolze, Sébastien; Vidal, Hubert; Rieusset, Jennifer

    2015-06-01

    Imeglimin is the first in a new class of oral glucose-lowering agents currently in phase 2b development. Although imeglimin improves insulin sensitivity in humans, the molecular mechanisms are unknown. This study used a model of 16-week high-fat, high-sucrose diet (HFHSD) mice to characterize its antidiabetic effects. Six-week imeglimin treatment significantly decreased glycemia, restored normal glucose tolerance, and improved insulin sensitivity without modifying organs, body weights, and food intake. This was associated with an increase in insulin-stimulated protein kinase B phosphorylation in the liver and muscle. In liver mitochondria, imeglimin redirects substrate flows in favor of complex II, as illustrated by increased respiration with succinate and by the restoration of respiration with glutamate/malate back to control levels. In addition, imeglimin inhibits complex I and restores complex III activities, suggesting an increase in fatty acid oxidation, which is supported by an increase in hepatic 3-hydroxyacetyl-CoA dehydrogenase activity and acylcarnitine profile and the reduction of liver steatosis. Imeglimin also reduces reactive oxygen species production and increases mitochondrial DNA. Finally, imeglimin effects on mitochondrial phospholipid composition could participate in the benefit of imeglimin on mitochondrial function. In conclusion, imeglimin normalizes glucose tolerance and insulin sensitivity by preserving mitochondrial function from oxidative stress and favoring lipid oxidation in liver of HFHSD mice. PMID:25552598

  1. ApoA-1 mimetic restores adiponectin expression and insulin sensitivity independent of changes in body weight in female obese mice

    PubMed Central

    Marino, J S; Peterson, S J; Li, M; Vanella, L; Sodhi, K; Hill, J W; Abraham, N G

    2012-01-01

    Background: We examined the ability of the apolipoprotein AI mimetic peptide L-4F to improve the metabolic state of female and male ob mice and the mechanisms involved. Methods: Female and male lean and obese (ob) mice were administered L-4F or vehicle for 6 weeks. Body weight was measured weekly. Fat distribution, serum cytokines and markers of cardiovascular dysfunction were determined at the end of treatment. Results: L-4F significantly decreased serum interleukin (IL)-6, tumor necrosis factor-α and IL-1β. L-4F improved vascular function, and increased serum adiponectin levels and insulin sensitivity compared with untreated mice. In addition, L-4F treatment increased heme oxygenase (HO)-1, pAKT and pAMPK levels in kidneys of ob animals. pAKT and pAMPK levels were significantly reduced in the presence of an HO inhibitor. Interestingly, L4F did not alter body weight in female mice, but caused a significant reduction in males. Conclusions: L-4F treatments reduced cardiovascular risk factors and improved insulin sensitivity in female ob mice independent of body fat changes. Reduced inflammatory cytokine levels accompanied by increased HO activity, serum adiponectin and improved insulin sensitivity suggest that L-4F may promote the conversion of visceral fat to a healthier phenotype. Therefore, L-4F appears to be a promising therapeutic strategy for treating both cardiovascular risk factors and insulin resistance in obese patients of either gender. PMID:23169576

  2. Adiponectin in mice with altered GH action: links to insulin sensitivity and longevity?

    PubMed

    Lubbers, Ellen R; List, Edward O; Jara, Adam; Sackman-Sala, Lucila; Cordoba-Chacon, Jose; Gahete, Manuel D; Kineman, Rhonda D; Boparai, Ravneet; Bartke, Andrzej; Kopchick, John J; Berryman, Darlene E

    2013-03-01

    Adiponectin is positively correlated with longevity and negatively correlated with many obesity-related diseases. While there are several circulating forms of adiponectin, the high-molecular-weight (HMW) version has been suggested to have the predominant bioactivity. Adiponectin gene expression and cognate serum protein levels are of particular interest in mice with altered GH signaling as these mice exhibit extremes in obesity that are positively associated with insulin sensitivity and lifespan as opposed to the typical negative association of these factors. While a few studies have reported total adiponectin levels in young adult mice with altered GH signaling, much remains unresolved, including changes in adiponectin levels with advancing age, proportion of total adiponectin in the HMW form, adipose depot of origin, and differential effects of GH vs IGF1. Therefore, the purpose of this study was to address these issues using assorted mouse lines with altered GH signaling. Our results show that adiponectin is generally negatively associated with GH activity, regardless of age. Further, the amount of HMW adiponectin is consistently linked with the level of total adiponectin and not necessarily with previously reported lifespan or insulin sensitivity of these mice. Interestingly, circulating adiponectin levels correlated strongly with inguinal fat mass, implying that the effects of GH on adiponectin are depot specific. Interestingly, rbGH, but not IGF1, decreased circulating total and HMW adiponectin levels. Taken together, these results fill important gaps in the literature related to GH and adiponectin and question the frequently reported associations of total and HMW adiponectin with insulin sensitivity and longevity. PMID:23261955

  3. Association of common JAK2 variants with body fat, insulin sensitivity and lipid profile

    PubMed Central

    Ge, Dongliang; Gooljar, Sakina B; Kyriakou, Theodosios; Collins, Laura J; Swaminathan, Ramasamyiyer; Snieder, Harold; Spector, Tim D; O'Dell, Sandra D

    2007-01-01

    The leptin signal is transduced via the JAK2-STAT3 pathway at the leptin receptor. JAK2 also phosphorylates IRS, integral to insulin and leptin action and is required for optimum ABCA1-dependent transport of lipids from cells to apoA-I. We hypothesised that common variation in the JAK2 gene may be associated with body fat, insulin sensitivity and modulation of the serum lipid profile in the general population. Ten tagging SNPs spanning the gene were genotyped in 2760 Caucasian female twin subjects (mean age 47.3±12.6 years) from the St Thomas' UK Adult Twin Registry (Twins UK). Minor allele frequencies were between 0.170 and 0.464. The major allele of rs7849191 was associated with higher central fat (P=0.030), % central fat (P=0.014) and waist circumference (P=0.027) and the major allele of rs3780378 with higher serum apoA (P=0.026), total cholesterol (P=0.014) and LDL cholesterol (P=0.012) and lower triglyceride (P=0.023). However, no associations were significant at a level which took account of multiple testing. Although JAK2 is a critical element in leptin and insulin signalling and has a role in cellular cholesterol transport, we failed to establish associations of common SNPs with relevant phenotypes in this human study. PMID:18239666

  4. Increased fetal myocardial sensitivity to insulin-stimulated glucose metabolism during ovine fetal growth restriction

    PubMed Central

    Barry, James S; Rozance, Paul J; Brown, Laura D; Anthony, Russell V; Thornburg, Kent L

    2016-01-01

    Unlike other visceral organs, myocardial weight is maintained in relation to fetal body weight in intrauterine growth restriction (IUGR) fetal sheep despite hypoinsulinemia and global nutrient restriction. We designed experiments in fetal sheep with placental insufficiency and restricted growth to determine basal and insulin-stimulated myocardial glucose and oxygen metabolism and test the hypothesis that myocardial insulin sensitivity would be increased in the IUGR heart. IUGR was induced by maternal hyperthermia during gestation. Control (C) and IUGR fetal myocardial metabolism were measured at baseline and under acute hyperinsulinemic/euglycemic clamp conditions at 128–132 days gestation using fluorescent microspheres to determine myocardial blood flow. Fetal body and heart weights were reduced by 33% (P = 0.008) and 30% (P = 0.027), respectively. Heart weight to body weight ratios were not different. Basal left ventricular (LV) myocardial blood flow per gram of LV tissue was maintained in IUGR fetuses compared to controls. Insulin increased LV myocardial blood flow by ∼38% (P < 0.01), but insulin-stimulated LV myocardial blood flow in IUGR fetuses was 73% greater than controls. Similar to previous reports testing acute hypoxia, LV blood flow was inversely related to arterial oxygen concentration (r2 = 0.71) in both control and IUGR animals. Basal LV myocardial glucose delivery and uptake rates were not different between IUGR and control fetuses. Insulin increased LV myocardial glucose delivery (by 40%) and uptake (by 78%) (P < 0.01), but to a greater extent in the IUGR fetuses compared to controls. During basal and hyperinsulinemic–euglycemic clamp conditions LV myocardial oxygen delivery, oxygen uptake, and oxygen extraction efficiency were not different between groups. These novel results demonstrate that the fetal heart exposed to nutrient and oxygen deprivation from placental insufficiency appears to maintain myocardial energy

  5. Sensitivity analysis of geometric errors in additive manufacturing medical models.

    PubMed

    Pinto, Jose Miguel; Arrieta, Cristobal; Andia, Marcelo E; Uribe, Sergio; Ramos-Grez, Jorge; Vargas, Alex; Irarrazaval, Pablo; Tejos, Cristian

    2015-03-01

    Additive manufacturing (AM) models are used in medical applications for surgical planning, prosthesis design and teaching. For these applications, the accuracy of the AM models is essential. Unfortunately, this accuracy is compromised due to errors introduced by each of the building steps: image acquisition, segmentation, triangulation, printing and infiltration. However, the contribution of each step to the final error remains unclear. We performed a sensitivity analysis comparing errors obtained from a reference with those obtained modifying parameters of each building step. Our analysis considered global indexes to evaluate the overall error, and local indexes to show how this error is distributed along the surface of the AM models. Our results show that the standard building process tends to overestimate the AM models, i.e. models are larger than the original structures. They also show that the triangulation resolution and the segmentation threshold are critical factors, and that the errors are concentrated at regions with high curvatures. Errors could be reduced choosing better triangulation and printing resolutions, but there is an important need for modifying some of the standard building processes, particularly the segmentation algorithms.

  6. Insulin Sensitizing Pharmacology of Thiazolidinediones Correlates with Mitochondrial Gene Expression rather than Activation of PPARγ

    PubMed Central

    Bolten, Charles W.; Blanner, Patrick M.; McDonald, William G.; Staten, Nicholas R.; Mazzarella, Richard A.; Arhancet, Graciela B.; Meier, Martin F.; Weiss, David J.; Sullivan, Patrick M.; Hromockyj, Alexander E.; Kletzien, Rolf F.; Colca, Jerry R.

    2007-01-01

    Insulin sensitizing thiazolidinediones (TZDs) are generally considered to work as agonists for the nuclear receptor peroxisome proliferative activated receptor-gamma (PPARγ). However, TZDs also have acute, non-genomic metabolic effects and it is unclear which actions are responsible for the beneficial pharmacology of these compounds. We have taken advantage of an analog, based on the metabolism of pioglitazone, which has much reduced ability to activate PPARγ. This analog (PNU-91325) was compared to rosiglitazone, the most potent PPARγ activator approved for human use, in a variety of studies both in vitro and in vivo. The data demonstrate that PNU-91325 is indeed much less effective than rosiglitazone at activating PPARγ both in vitro and in vivo. In contrast, both compounds bound similarly to a mitochondrial binding site and acutely activated PI-3 kinase-directed phosphorylation of AKT, an action that was not affected by elimination of PPARγ activation. The two compounds were then compared in vivo in both normal C57 mice and diabetic KKAy mice to determine whether their pharmacology correlated with biomarkers of PPARγ activation or with the expression of other gene transcripts. As expected from previous studies, both compounds improved insulin sensitivity in the diabetic mice, and this occurred in spite of the fact that there was little increase in expression of the classic PPARγ target biomarker adipocyte binding protein-2 (aP2) with PNU-91325 under these conditions. An examination of transcriptional profiling of key target tissues from mice treated for one week with both compounds demonstrated that the relative pharmacology of the two thiazolidinediones correlated best with an increased expression of an array of mitochondrial proteins and with expression of PPARγ coactivator 1-alpha (PGC1α), the master regulator of mitochondrial biogenesis. Thus, important pharmacology of the insulin sensitizing TZDs may involve acute actions, perhaps on the

  7. pH-sensitive poly(lactide-co-glycolide) nanoparticle composite microcapsules for oral delivery of insulin

    PubMed Central

    Sun, Shaoping; Liang, Na; Yamamoto, Hiromitsu; Kawashima, Yoshiaki; Cui, Fude; Yan, Pengfei

    2015-01-01

    This study proposes a new concept of pH-sensitive poly(lactide-co-glycolide) (PLGA) nanoparticle composite microcapsules for oral delivery of insulin. Firstly, insulin–sodium oleate complex was prepared by the hydrophobic ion pairing method and then encapsulated into PLGA nanoparticles by the emulsion solvent diffusion method. In order to reduce the burst release of insulin from PLGA nanoparticles and deliver insulin to specific gastrointestinal regions, hence to enhance bioavailability of insulin, the PLGA nanoparticles were further encapsulated into Eudragit® FS 30D to prepare PLGA nanoparticle composite microcapsules by organic spray-drying method. The preparation was evaluated in vitro and in vivo, and the absorption mechanism was discussed. The in vitro drug release studies revealed that the drug release was pH dependent, and the in vivo results demonstrated that the formulation of PLGA nanoparticle composite microcapsules was an effective candidate for oral insulin delivery. PMID:25999713

  8. Association of insulin sensitivity to lipids across the lifespan in people with Type 1 diabetes

    PubMed Central

    Maahs, D. M.; Nadeau, K.; Snell-Bergeon, J. K.; Schauer, I.; Bergman, B.; West, N. A.; Rewers, M.; Daniels, S. R.; Ogden, L. G.; Hamman, R. F.; Dabelea, D.

    2010-01-01

    Aims Insulin resistance and dyslipidaemia both increase cardiovascular risk in Type 1 diabetes. However, little data exist on the associations of insulin resistance to lipids in Type 1 diabetes. Our objective was to explore the associations between insulin resistance (assessed by glucose infusion rate) and lipids in people with Type 1 diabetes and determine whether adiposity and/or average glycaemia influence these associations. Methods Hyperinsulinaemic–euglycaemic clamp studies were performed in 60 subjects with Type 1 diabetes aged 12–19 years (age 15 ± 2 years, 57% female, duration of diabetes 6.3 ± 3.8 years, HbA1c 8.6 ± 1.5%) and 40 subjects with Type 1 diabetes aged 27–61 years (age 45 ± 9 years, 53% female, duration of diabetes 23 ± 8 years, HbA1c 7.5 ± 0.9%). Multiple linear regression models were fit to examine the association between glucose infusion rate and fasting lipid levels with adjustment for possible confounders. Results Lower glucose infusion rate was significantly associated with lower levels of HDL cholesterol in youths with Type 1 diabetes and with higher levels of triglycerides and higher triglyceride/HDL ratio in both youths and adults. The magnitude of the associations between glucose infusion rate and lipid levels translate into interquartile differences of 0.098 mmol/l for HDL cholesterol, 0.17 mmol/l for triglycerides and 1.06 for triglycerides/HDL in the adolescents and 0.20 mmol/l for triglycerides and 1.01 for triglycerides/HDL in the adults. The associations were attenuated and no longer statistically significant by adjustment for adiposity among adults, while adjustment for HbA1c had a small effect in youths and adults. Conclusions Lower insulin sensitivity is associated with a more atherogenic lipid profile in both youths and adults with Type 1 diabetes. PMID:21219421

  9. Pioglitazone Improves Cognitive Function via Increasing Insulin Sensitivity and Strengthening Antioxidant Defense System in Fructose-Drinking Insulin Resistance Rats

    PubMed Central

    Yin, Qing-Qing; Pei, Jin-Jing; Xu, Song; Luo, Ding-Zhen; Dong, Si-Qing; Sun, Meng-Han; You, Li; Sun, Zhi-Jian; Liu, Xue-Ping

    2013-01-01

    Insulin resistance (IR) links Alzheimer’s disease (AD) with oxidative damage, cholinergic deficit, and cognitive impairment. Peroxisome proliferator-activated receptor γ (PPARγ) agonist pioglitazone previously used to treat type 2 diabetes mellitus (T2DM) has also been demonstrated to be effective in anti-inflammatory reaction and anti-oxidative stress in the animal models of AD and other neuroinflammatory diseases. Here, we investigated the effect of pioglitazone on learning and memory impairment and the molecular events that may cause it in fructose-drinking insulin resistance rats. We found that long-term fructose-drinking causes insulin resistance, oxidative stress, down-regulated activity of cholinergic system, and cognitive deficit, which could be ameliorated by pioglitazone administration. The results from the present study provide experimental evidence for using pioglitazone in the treatment of brain damage caused by insulin resistance. PMID:23527159

  10. Moderate alcohol consumption increases insulin sensitivity and ADIPOQ expression in postmenopausal women: a randomised, crossover trial

    PubMed Central

    Beulens, J. W. J.; Kersten, S.; Hendriks, H. F. J.

    2008-01-01

    Aims/hypothesis To determine whether 6 weeks of daily, moderate alcohol consumption increases expression of the gene encoding adiponectin (ADIPOQ) and plasma levels of the protein, and improves insulin sensitivity in postmenopausal women. Methods In a randomised, open-label, crossover trial conducted in the Netherlands, 36 apparently healthy postmenopausal women who were habitual alcohol consumers, received 250 ml white wine (∼25 g alcohol/day) or 250 ml of white grape juice (control) daily during dinner for 6 weeks. Randomisation to treatment allocation occurred according to BMI. Insulin sensitivity and ADIPOQ mRNA and plasma adiponectin levels were measured at the end of both periods. Insulin sensitivity was estimated using the homeostasis model assessment of insulin resistance (HOMA-IR). Levels of ADIPOQ mRNA in subcutaneous adipose tissue were determined by RT-PCR. Results All subjects completed the study. Six weeks of white wine consumption reduced fasting insulin (mean ± SEM 40.0 ± 3.4 vs 46.5 ± 3.4 pmol/l; p < 0.01) and HOMA-IR (1.42 ± 0.13 vs 1.64 ± 0.13; p = 0.02) compared with 6 weeks of grape juice consumption. ADIPOQ mRNA levels (1.09 ± 0.15 vs 0.98 ± 0.15; p = 0.04) and plasma levels of total (13.1 ± 0.8 vs 12.0 ± 0.8 μg/ml; p < 0.001) and high molecular weight (HMW) adiponectin (9.9 ± 1.2 vs 8.8 ± 1.2 μg/ml; p = 0.02) significantly increased after alcohol compared with juice consumption. Changes in ADIPOQ mRNA levels correlated with changes in plasma levels of total adiponectin (ρ = 0.46; p < 0.01). Both fasting triacylglycerol (8.2%; p = 0.04) and LDL-cholesterol levels (7.8%; p < 0.0001) decreased, whereas HDL-cholesterol increased (7.0%; p < 0.0001) after prolonged moderate alcohol intake. No notable adverse effects were reported. Conclusions/interpretation Moderate alcohol consumption for 6 weeks improves insulin sensitivity, adiponectin

  11. Comparison of the effects of barnidipine+losartan compared with telmisartan+hydrochlorothiazide on several parameters of insulin sensitivity in patients with hypertension and type 2 diabetes mellitus.

    PubMed

    Derosa, Giuseppe; Querci, Fabrizio; Franzetti, Ivano; Dario Ragonesi, Pietro; D'Angelo, Angela; Maffioli, Pamela

    2015-10-01

    The aim of this study was to evaluate the effects of barnidipine+losartan compared with telmisartan+hydrochlorothiazide on several parameters of insulin sensitivity in patients with hypertension and type 2 diabetes mellitus. We enrolled 148 normocholesterolemic patients with mild-to-moderate hypertension and type 2 diabetes mellitus. Patients were treated with barnidipine, 20 mg day(-1), in combination with losartan, 100 mg day(-1), or with telmisartan+hydrochlorothiazide, 80/12.5 mg day(-1), for 6 months. We assessed blood pressure (BP) on a monthly basis; additionally, blood samples were collected to assess, at baseline and after 6 months, the following parameters: fasting plasma glucose; glycated hemoglobin; fasting plasma insulin; HOMA index; and some adipocytokines, such as adiponectin (ADN), resistin, leptin, visfatin and vaspin. Patients were also subjected to an euglycemic hyperinsulinemic clamp to assess the M value and glucose infusion rate to ascertain their insulin sensitivity. One hundred and forty-one patients completed the study. The BP was reduced in both groups, although the reduction was greater with barnidipine+losartan (P<0.001 vs. baseline and P<0.01 vs. telmisartan+hydrochlorothiazide). Barnidipine+losartan increased the M value and glucose infusion rate during the euglycemic hyperinsulinemic clamp (P<0.05 vs. baseline and vs. telmisartan+hydrochlorothiazide). With respect to the levels of adipocytokines, ADN was increased (P<0.05), and resistin and leptin were reduced from baseline with barnidipine+losartan (P<0.05 vs. baseline), but they were not reduced with telmisartan+hydrochlorothiazide. Visfatin and vaspin were reduced by barnidipine+losartan compared with baseline (P<0.05). The adipocytokine levels obtained with barnidipine+losartan were significantly better than those obtained with telmisartan+hydrochlorothiazide (P<0.05 for all parameters). In addition to providing a greater BP reduction, barnidipine+losartan improved the insulin

  12. THE EFFECTS OF THE DASH DIET ALONE AND IN COMBINATION WITH EXERCISE AND CALORIC RESTRICTION ON INSULIN SENSITIVITY AND LIPIDS

    PubMed Central

    Blumenthal, James A.; Babyak, Michael A.; Sherwood, Andrew; Craighead, Linda; Lin, Pao-Hwa; Johnson, Julie; Watkins, Lana L.; Wang, Jenny T.; Kuhn, Cynthia; Feinglos, Mark; Hinderliter, Alan

    2010-01-01

    This study examined the effects of the Dietary Approaches to Stop Hypertension (DASH) diet on insulin sensitivity and lipids. In a randomized control trial, 144 overweight (body mass index 25–40) men (N= 47) and women (N= 97) with high blood pressure (130–159/85–99 mm Hg) were randomly assigned to either: (1) DASH diet alone (DASH-A); (2) DASH diet with aerobic exercise and caloric restriction (DASH-WM); or usual diet controls (UC). Body composition, fitness, insulin sensitivity, and fasting lipids were measured before and following 4 months of treatment. Insulin sensitivity was estimated based on glucose and insulin levels in the fasting state and after an oral glucose load. Participants in the DASH-WM condition lost weight (−8.7 [95% CI = −2.0, −9.7] kg,), and exhibited a significant increase in aerobic capacity, while the DASH-A and UC participants maintained their weight (−0.3 [95% CI = −1.2, 0.5] kg and +0.9 [95% CI = 0.0, 1.7] kg, respectively) and had no improvement in exercise capacity. DASH-WM demonstrated lower glucose levels following the oral glucose load, improved insulin sensitivity, and lower total cholesterol and triglycerides compared to both DASH-A and UC, and lower fasting glucose and low-density lipoprotein cholesterol compared to UC; DASH-A participants generally did not differ from UC in these measures. Combining the DASH diet with exercise and weight loss resulted in significant improvements in insulin sensitivity and lipids. Despite clinically significant reductions in blood pressure, the DASH diet alone, without caloric restriction or exercise, resulted in minimal improvements in insulin sensitivity or lipids. PMID:20212264

  13. Gender Differences in Skeletal Muscle Substrate Metabolism – Molecular Mechanisms and Insulin Sensitivity

    PubMed Central

    Lundsgaard, Anne-Marie; Kiens, Bente

    2014-01-01

    It has become increasingly apparent that substrate metabolism is subject to gender-specific regulation, and the aim of this review is to outline the available evidence of molecular gender differences in glucose and lipid metabolism of skeletal muscle. Female sex has been suggested to have a favorable effect on glucose homeostasis, and the available evidence from hyperinsulinemic–euglycemic clamp studies is summarized to delineate whether there is a gender difference in whole-body insulin sensitivity and in particular insulin-stimulated glucose uptake of skeletal muscle. Whether an eventual higher insulin sensitivity of female skeletal muscle can be related to gender-specific regulation of molecular metabolism will be topic for discussion. Gender differences in muscle fiber type distribution and substrate availability to and in skeletal muscle are highly relevant for substrate metabolism in men and women. In particular, the molecular machinery for glucose and fatty acid oxidative and storage capacities in skeletal muscle and its implications for substrate utilization during metabolic situations of daily living are discussed, emphasizing their relevance for substrate choice in the fed and fasted state, and during periods of physical activity and recovery. Together, handling of carbohydrate and lipids and regulation of their utilization in skeletal muscle have implications for whole-body glucose homeostasis in men and women. 17-β estradiol is the most important female sex hormone, and the identification of estradiol receptors in skeletal muscle has opened for a role in regulation of substrate metabolism. Also, higher levels of circulating adipokines as adiponectin and leptin in women and their implications for muscle metabolism will be considered. PMID:25431568

  14. The effect of n-3 fatty acids on glucose homeostasis and insulin sensitivity.

    PubMed

    Flachs, P; Rossmeisl, M; Kopecky, J

    2014-01-01

    Type 2 diabetes (T2D) as well as cardiovascular disease (CVD) represent major complications of obesity and associated metabolic disorders (metabolic syndrome). This review focuses on the effects of long-chain n-3 polyunsaturated fatty acids (omega-3) on insulin sensitivity and glucose homeostasis, which are improved by omega-3 in many animal models of metabolic syndrome, but remain frequently unaffected in humans. Here we focus on: (i) mechanistic aspects of omega-3 action, reflecting also our experiments in dietary obese mice; and (ii) recent studies analysing omega-3's effects in various categories of human subjects. Most animal experiments document beneficial effects of omega-3 on insulin sensitivity and glucose metabolism even under conditions of established obesity and insulin resistance. Besides positive results obtained in both cross-sectional and prospective cohort studies on healthy human populations, also some intervention studies in prediabetic subjects document amelioration of impaired glucose homeostasis by omega-3. However, the use of omega-3 to reduce a risk of new-onset diabetes in prediabetic subjects still remains to be further characterized. The results of a majority of clinical trials performed in T2D patients suggest that omega-3 have none or marginal effects on metabolic control, while effectively reducing hypertriglyceridemia in these patients. Despite most of the recent randomized clinical trials do not support the role of omega-3 in secondary prevention of CVD, this issue remains still controversial. Combined interventions using omega-3 and antidiabetic or hypolipidemic drugs should be further explored and considered for treatment of patients with T2D and other diseases. PMID:24564669

  15. Maternal insulin sensitivity during pregnancy predicts infant weight gain and adiposity at 1 year of age.

    PubMed

    Hamilton, Jill K; Odrobina, Ewa; Yin, Junlang; Hanley, Anthony J; Zinman, Bernard; Retnakaran, Ravi

    2010-02-01

    Emerging evidence suggests that fetal environmental exposures impact on future development of obesity. The objectives of this study were to assess the relationships between (i) maternal insulin sensitivity and glucose tolerance status in pregnancy and (ii) early infant weight gain and adiposity in the first year of life. In this prospective cohort study, 301 women underwent oral glucose tolerance testing for assessment of glucose tolerance status and insulin sensitivity (IS(OGTT)) in pregnancy. Their infants underwent anthropometric assessment at 12 months of age, including determination of weight gain in the first year of life and sum of skinfold thickness (SFT), a measure of infant adiposity. Infant weight gain and sum of SFT at 12 months did not differ according to maternal glucose tolerance status. On univariate analyses, weight gain from 0 to 12 months and sum of SFT were negatively associated with maternal IS(OGTT) during pregnancy. On multiple linear regression analysis, negative independent predictors of weight gain from 0 to 12 months were maternal IS(OGTT) during pregnancy (t = -2.73; P = 0.007), infant female gender (t = -3.16; P = 0.002), and parental education (t = -1.98; P = 0.05), whereas white ethnicity was a positive independent predictor (t = 2.68; P = 0.008). Maternal IS(OGTT) (t = -2.7; P = 0.008) and parental education (t = -2.58; P = 0.01) were independent negative predictors of sum of SFT at 12 months. Independent of maternal glucose tolerance status, maternal insulin resistance during pregnancy is associated with increased infant weight gain and adiposity over the first year of life. Further longitudinal study to evaluate obesity in this group of children will increase our understanding of the contribution of the intrauterine environment to their long-term health.

  16. Improvement in insulin sensitivity following a 1-year lifestyle intervention program in viscerally obese men: contribution of abdominal adiposity.

    PubMed

    Borel, Anne-Laure; Nazare, Julie-Anne; Smith, Jessica; Alméras, Natalie; Tremblay, Angelo; Bergeron, Jean; Poirier, Paul; Després, Jean-Pierre

    2012-02-01

    The objectives of the study were to quantify the effect of a 1-year healthy eating-physical activity/exercise lifestyle modification program on insulin sensitivity in viscerally obese men classified according to their glucose tolerance status and to evaluate the respective contributions of changes in body fat distribution vs changes in cardiorespiratory fitness (CRF) to the improvements in indices of plasma glucose/insulin homeostasis. Abdominally obese, dyslipidemic men (waist circumference ≥90 cm, triglycerides ≥1.69 mmol/L, and/or high-density lipoprotein cholesterol <1.03 mmol/L) were recruited. The 1-year intervention/evaluation was completed by 104 men. Body weight, composition, and fat distribution were assessed by dual-energy x-ray absorptiometry/computed tomography. Cardiorespiratory fitness and cardiometabolic risk profile were measured. After 1 year, insulin sensitivity improved in association with decreases in both visceral (VAT) and subcutaneous adiposity (SAT) as well as with the improvement in CRF, regardless of baseline glucose tolerance. Further analyses were performed according to changes in glucose tolerance status: improvement (group I, n = 39), no change (group N, n = 50), or worsening (group W, n = 15) after 1 year. Groups I and N improved their insulin sensitivity and their CRF, whereas group W did not, while losing less VAT than groups I and N. Multiple regressions showed that reduction in VAT was associated with an improvement in homeostasis model assessment of insulin resistance, whereas reduction in SAT was rather associated with improvement of the insulin sensitivity index of Matsuda. Changes in CRF were not independently associated with changes in indices of plasma glucose/insulin homeostasis. A 1-year lifestyle intervention improved plasma glucose/insulin homeostasis in viscerally obese men, including those with normal glucose tolerance status at baseline. Changes in SAT and VAT but not in CRF appeared to mediate these improvements

  17. Peroxisome proliferator-activated receptor gamma agonists as insulin sensitizers: from the discovery to recent progress.

    PubMed

    Cho, Nobuo; Momose, Yu

    2008-01-01

    An epidemic of metabolic diseases including type 2 diabetes and obesity is undermining the health of people living in industrialized societies. There is an urgent need to develop innovative therapeutics. The peroxisome proliferator-activated receptor gamma (PPARgamma) is one of the ligand-activated transcription factors in the nuclear hormone receptor superfamily and a pivotal regulator of glucose and lipid homeostasis. The discovery of PPARgamma as a target of multimodal insulin sensitizers, represented by thiazolidinediones (TZDs), has attracted remarkable scientific interest and had a great impact on the pharmaceutical industry. With the clinical success of the PPARgamma agonists, pioglitazone (Actos) and rosiglitazone (Avandia), development of novel and potent insulin-sensitizing agents with diverse clinical profiles has been accelerated. Currently, a number of PPARgamma agonists from different chemical classes and with varying pharmacological profiles are being developed. Despite quite a few obstacles to the development of PPAR-related drugs, PPARgamma-targeted agents still hold promise. There are new concepts and encouraging evidence emerging that suggest this class can yield improved anti-diabetic agents. This review covers the discovery of TZDs, provides an overview of PPARgamma including the significance of PPARgamma as a drug target, describes the current status of a wide variety of novel PPARgamma ligands including PPAR dual and pan agonists and selective PPARgamma modulators (SPPARgammaMs), and highlights new approaches for identifying agents targeting PPARgamma in the treatment of type 2 diabetes. PMID:19075761

  18. Brown adipose tissue triglyceride content is associated with decreased insulin sensitivity, independently of age and obesity.

    PubMed

    Raiko, J; Holstila, M; Virtanen, K A; Orava, J; Saunavaara, V; Niemi, T; Laine, J; Taittonen, M; Borra, R J H; Nuutila, P; Parkkola, R

    2015-05-01

    The aim of the present study was to determine whether single-voxel proton magnetic resonance spectroscopy ((1)H-MRS) can non-invasively assess triglyceride content in both supraclavicular fat depots and subcutaneous white adipose tissue (WAT) to determine whether these measurements correlate to metabolic variables. A total of 25 healthy volunteers were studied using (18)F-fluorodeoxyglucose positron emission tomography (PET) and (15)O-H2O PET perfusion during cold exposure, and (1)H-MRS at ambient temperature. Image-guided biopsies were collected from nine volunteers. The supraclavicular triglyceride content determined by (1)H-MRS varied between 60 and 91% [mean ± standard deviation (s.d.) 77 ± 10%]. It correlated positively with body mass index, waist circumference, subcutaneous and visceral fat masses and 8-year diabetes risk based on the Framingham risk score and inversely with HDL cholesterol and insulin sensitivity (M-value; euglycaemic-hyperinsulinaemic clamp). Subcutaneous WAT had a significantly higher triglyceride content, 76-95% (mean ± s.d. 87 ± 5%; p = 0.0002). In conclusion, the triglyceride content in supraclavicular fat deposits measured by (1)H-MRS may be an independent marker of whole-body insulin sensitivity, independent of brown adipose tissue metabolic activation. PMID:25586670

  19. Temperature-Acclimated Brown Adipose Tissue Modulates Insulin Sensitivity in Humans

    PubMed Central

    Lee, Paul; Smith, Sheila; Linderman, Joyce; Courville, Amber B.; Brychta, Robert J.; Dieckmann, William; Werner, Charlotte D.; Chen, Kong Y.

    2014-01-01

    In rodents, brown adipose tissue (BAT) regulates cold- and diet-induced thermogenesis (CIT; DIT). Whether BAT recruitment is reversible and how it impacts on energy metabolism have not been investigated in humans. We examined the effects of temperature acclimation on BAT, energy balance, and substrate metabolism in a prospective crossover study of 4-month duration, consisting of four consecutive blocks of 1-month overnight temperature acclimation (24°C [month 1] → 19°C [month 2] → 24°C [month 3] → 27°C [month 4]) of five healthy men in a temperature-controlled research facility. Sequential monthly acclimation modulated BAT reversibly, boosting and suppressing its abundance and activity in mild cold and warm conditions (P < 0.05), respectively, independent of seasonal fluctuations (P < 0.01). BAT acclimation did not alter CIT but was accompanied by DIT (P < 0.05) and postprandial insulin sensitivity enhancement (P < 0.05), evident only after cold acclimation. Circulating and adipose tissue, but not skeletal muscle, expression levels of leptin and adiponectin displayed reciprocal changes concordant with cold-acclimated insulin sensitization. These results suggest regulatory links between BAT thermal plasticity and glucose metabolism in humans, opening avenues to harnessing BAT for metabolic benefits. PMID:24954193

  20. Beef Fat Enriched with Polyunsaturated Fatty Acid Biohydrogenation Products Improves Insulin Sensitivity Without Altering Dyslipidemia in Insulin Resistant JCR:LA-cp Rats.

    PubMed

    Diane, Abdoulaye; Borthwick, Faye; Mapiye, Cletos; Vahmani, Payam; David, Rolland C; Vine, Donna F; Dugan, Michael E R; Proctor, Spencer D

    2016-07-01

    The main dietary sources of trans fatty acids are partially hydrogenated vegetable oils (PHVO), and products derived from polyunsaturated fatty acid biohydrogenation (PUFA-BHP) in ruminants. Trans fatty acid intake has historically been associated with negative effects on health, generating an anti-trans fat campaign to reduce their consumption. The profiles and effects on health of PHVO and PUFA-BHP can, however, be quite different. Dairy products naturally enriched with vaccenic and rumenic acids have many purported health benefits, but the putative benefits of beef fat naturally enriched with PUFA-BHP have not been investigated. The objective of the present experiment was to determine the effects of beef peri-renal fat (PRF) with differing enrichments of PUFA-BHP on lipid and insulin metabolism in a rodent model of dyslipidemia and insulin resistance (JCR:LA-cp rat). The results showed that 6 weeks of diet supplementation with beef PRF naturally enriched due to flaxseed (FS-PRF) or sunflower-seed (SS-PRF) feeding to cattle significantly improved plasma fasting insulin levels and insulin sensitivity, postprandial insulin levels (only in the FS-PRF) without altering dyslipidemia. Moreover, FS-PRF but not SS-PRF attenuated adipose tissue accumulation. Therefore, enhancing levels of PUFA-BHP in beef PRF with FS feeding may be a useful approach to maximize the health-conferring value of beef-derived fats. PMID:27072368

  1. Beef Fat Enriched with Polyunsaturated Fatty Acid Biohydrogenation Products Improves Insulin Sensitivity Without Altering Dyslipidemia in Insulin Resistant JCR:LA-cp Rats.

    PubMed

    Diane, Abdoulaye; Borthwick, Faye; Mapiye, Cletos; Vahmani, Payam; David, Rolland C; Vine, Donna F; Dugan, Michael E R; Proctor, Spencer D

    2016-07-01

    The main dietary sources of trans fatty acids are partially hydrogenated vegetable oils (PHVO), and products derived from polyunsaturated fatty acid biohydrogenation (PUFA-BHP) in ruminants. Trans fatty acid intake has historically been associated with negative effects on health, generating an anti-trans fat campaign to reduce their consumption. The profiles and effects on health of PHVO and PUFA-BHP can, however, be quite different. Dairy products naturally enriched with vaccenic and rumenic acids have many purported health benefits, but the putative benefits of beef fat naturally enriched with PUFA-BHP have not been investigated. The objective of the present experiment was to determine the effects of beef peri-renal fat (PRF) with differing enrichments of PUFA-BHP on lipid and insulin metabolism in a rodent model of dyslipidemia and insulin resistance (JCR:LA-cp rat). The results showed that 6 weeks of diet supplementation with beef PRF naturally enriched due to flaxseed (FS-PRF) or sunflower-seed (SS-PRF) feeding to cattle significantly improved plasma fasting insulin levels and insulin sensitivity, postprandial insulin levels (only in the FS-PRF) without altering dyslipidemia. Moreover, FS-PRF but not SS-PRF attenuated adipose tissue accumulation. Therefore, enhancing levels of PUFA-BHP in beef PRF with FS feeding may be a useful approach to maximize the health-conferring value of beef-derived fats.

  2. Insulin-sensitizing and beneficial lipid-metabolic effects of the water-soluble melanin complex extracted from Inonotus obliquus.

    PubMed

    Lee, Jung-Han; Hyun, Chang-Kee

    2014-09-01

    Inonotus obliquus has been traditionally used for treatment of metabolic diseases; however, the mechanism remains to be elucidated. In this study, we found that the water-soluble melanin complex extracted from I. obliquus improved insulin sensitivity and reduced adiposity in high fat (HF)-fed obese mice. When the melanin complex was treated to 3T3-L1 adipocytes, insulin-stimulated glucose uptake was increased significantly, and its phosphoinositide 3-kinase-dependent action was proven with wortmannin treatment. Additionally, dose-dependent increases in Akt phosphorylation and glucose transporter 4 translocation into the plasma membrane were observed in melanin complex-treated cells. Adiponectin gene expression in 3T3-L1 cells incubated with melanin complex increased which was corroborated by increased AMP-activated protein kinase phosphorylation in HepG2 and C2C12 cells treated with conditioned media from the 3T3-L1 culture. Melanin complex-treated 3T3-L1 cells showed no significant change in expression of several lipogenic genes, whereas enhanced expressions of fatty acid oxidative genes were observed. Similarly, the epididymal adipose tissue of melanin complex-treated HF-fed mice had higher expression of fatty acid oxidative genes without significant change in lipogenic gene expression. Together, these results suggest that the water-soluble melanin complex of I. obliquus exerts antihyperglycemic and beneficial lipid-metabolic effects, making it a candidate for promising antidiabetic agent.

  3. Macro fat and micro fat: insulin sensitivity and gender dependent response of adipose tissue to isocaloric diet change.

    PubMed

    Li, Yanjun; Gaillard, Jonathan R; McLaughlin, Tracey; Sørensen, Thorkild Ia; Periwal, Vipul

    2015-01-01

    The adipose cell-size distribution is a quantitative characterization of adipose tissue morphology. At a population level, the adipose cell-size distribution is insulin-sensitivity dependent, and the observed correlation between obesity and insulin resistance is believed to play a key role in the metabolic syndrome. Changes in fat mass can be induced by altered energy intake or even diet composition. These macroscopic changes must manifest themselves as dynamic adipose cell-size distribution alterations at the microscopic level. The dynamic relationship between these 2 independent measurements of body fat is unknown. In this study, we investigate adipose tissue dynamics in response to various isocaloric diet compositions, comparing gender- and insulin sensitivity-dependent differences. A body composition model is used to predict fat mass changes in response to changes in diet composition for 28 individuals, separated into 4 subgroups according to gender and insulin sensitivity/resistance. Adipose cell-size distribution changes in each individual are simulated with a dynamic model and parameters corresponding to lipid turnover and cell growth rates are determined for each subgroup to match the relative change of fat mass for each diet composition, respectively. We find that adipose cell-size dynamics are associated with different modulations dependent on gender and insulin resistance. Larger turnover and growth/shrinkage rates in insulin resistant individuals suggest they may be more sensitive to changes in energy intake and diet composition than insulin sensitive subjects. The different cell-size distribution changes of adipose cells of various sizes in different subject groups further suggest distinct modulations of adipose cell dynamics. PMID:26451281

  4. Macro fat and micro fat: insulin sensitivity and gender dependent response of adipose tissue to isocaloric diet change.

    PubMed

    Li, Yanjun; Gaillard, Jonathan R; McLaughlin, Tracey; Sørensen, Thorkild Ia; Periwal, Vipul

    2015-01-01

    The adipose cell-size distribution is a quantitative characterization of adipose tissue morphology. At a population level, the adipose cell-size distribution is insulin-sensitivity dependent, and the observed correlation between obesity and insulin resistance is believed to play a key role in the metabolic syndrome. Changes in fat mass can be induced by altered energy intake or even diet composition. These macroscopic changes must manifest themselves as dynamic adipose cell-size distribution alterations at the microscopic level. The dynamic relationship between these 2 independent measurements of body fat is unknown. In this study, we investigate adipose tissue dynamics in response to various isocaloric diet compositions, comparing gender- and insulin sensitivity-dependent differences. A body composition model is used to predict fat mass changes in response to changes in diet composition for 28 individuals, separated into 4 subgroups according to gender and insulin sensitivity/resistance. Adipose cell-size distribution changes in each individual are simulated with a dynamic model and parameters corresponding to lipid turnover and cell growth rates are determined for each subgroup to match the relative change of fat mass for each diet composition, respectively. We find that adipose cell-size dynamics are associated with different modulations dependent on gender and insulin resistance. Larger turnover and growth/shrinkage rates in insulin resistant individuals suggest they may be more sensitive to changes in energy intake and diet composition than insulin sensitive subjects. The different cell-size distribution changes of adipose cells of various sizes in different subject groups further suggest distinct modulations of adipose cell dynamics.

  5. Effect of Opuntia humifusa supplementation and acute exercise on insulin sensitivity and associations with PPAR-γ and PGC-1α protein expression in skeletal muscle of rats.

    PubMed

    Kang, Junyong; Lee, Junghun; Kwon, Daekeun; Song, Youngju

    2013-03-28

    This study examined whether Opuntia humifusa (O. humifusa), which is a member of the Cactaceae family, supplementation and acute swimming exercise affect insulin sensitivity and associations with PPAR-γ and PGC-1α protein expression in rats. Thirty-two rats were randomly divided into four groups (HS: high fat diet sedentary group, n = 8; HE: high fat diet acute exercise group, n = 8; OS: 5% O. humifusa supplemented high fat diet sedentary group, n = 8; OE: 5% O. humifusa supplemented high fat diet acute exercise group, n = 8). Rats in the HE and OE swam for 120 min. before being sacrificed. Our results indicated that serum glucose level, fasting insulin level and homeostasis model assessment of insulin resistance (HOMA-IR) in OS were significantly lower compared to those of the HS (p < 0.01, p < 0.05, p < 0.05). In addition, PPAR-γ protein expression in the OS and OE was significantly higher than that of the HS and HE, respectively (p < 0.05, p < 0.01). PGC-1α and GLUT-4 protein expressions in the OS were significantly higher compared to those of the HS (p < 0.05, p < 0.05). From these results, O. humifusa supplementation might play an important role for improving insulin sensitivity through elevation of PPAR-γ, PGC-1α, and GLUT-4 protein expression in rat skeletal muscle.

  6. Effect of Opuntia humifusa Supplementation and Acute Exercise on Insulin Sensitivity and Associations with PPAR-γ and PGC-1α Protein Expression in Skeletal Muscle of Rats

    PubMed Central

    Kang, Junyong; Lee, Junghun; Kwon, Daekeun; Song, Youngju

    2013-01-01

    This study examined whether Opuntia humifusa (O. humifusa), which is a member of the Cactaceae family, supplementation and acute swimming exercise affect insulin sensitivity and associations with PPAR-γ and PGC-1α protein expression in rats. Thirty-two rats were randomly divided into four groups (HS: high fat diet sedentary group, n = 8; HE: high fat diet acute exercise group, n = 8; OS: 5% O. humifusa supplemented high fat diet sedentary group, n = 8; OE: 5% O. humifusa supplemented high fat diet acute exercise group, n = 8). Rats in the HE and OE swam for 120 min. before being sacrificed. Our results indicated that serum glucose level, fasting insulin level and homeostasis model assessment of insulin resistance (HOMA-IR) in OS were significantly lower compared to those of the HS (p < 0.01, p < 0.05, p < 0.05). In addition, PPAR-γ protein expression in the OS and OE was significantly higher than that of the HS and HE, respectively (p < 0.05, p < 0.01). PGC-1α and GLUT-4 protein expressions in the OS were significantly higher compared to those of the HS (p < 0.05, p < 0.05). From these results, O. humifusa supplementation might play an important role for improving insulin sensitivity through elevation of PPAR-γ, PGC-1α, and GLUT-4 protein expression in rat skeletal muscle. PMID:23538842

  7. Consuming fructose-sweetened, not glucose-sweetened, beverages increases visceral adiposity and lipids and decreases insulin sensitivity in overweight/obese humans

    PubMed Central

    Stanhope, Kimber L.; Schwarz, Jean Marc; Keim, Nancy L.; Griffen, Steven C.; Bremer, Andrew A.; Graham, James L.; Hatcher, Bonnie; Cox, Chad L.; Dyachenko, Artem; Zhang, Wei; McGahan, John P.; Seibert, Anthony; Krauss, Ronald M.; Chiu, Sally; Schaefer, Ernst J.; Ai, Masumi; Otokozawa, Seiko; Nakajima, Katsuyuki; Nakano, Takamitsu; Beysen, Carine; Hellerstein, Marc K.; Berglund, Lars; Havel, Peter J.

    2009-01-01

    Studies in animals have documented that, compared with glucose, dietary fructose induces dyslipidemia and insulin resistance. To assess the relative effects of these dietary sugars during sustained consumption in humans, overweight and obese subjects consumed glucose- or fructose-sweetened beverages providing 25% of energy requirements for 10 weeks. Although both groups exhibited similar weight gain during the intervention, visceral adipose volume was significantly increased only in subjects consuming fructose. Fasting plasma triglyceride concentrations increased by approximately 10% during 10 weeks of glucose consumption but not after fructose consumption. In contrast, hepatic de novo lipogenesis (DNL) and the 23-hour postprandial triglyceride AUC were increased specifically during fructose consumption. Similarly, markers of altered lipid metabolism and lipoprotein remodeling, including fasting apoB, LDL, small dense LDL, oxidized LDL, and postprandial concentrations of remnant-like particle–triglyceride and –cholesterol significantly increased during fructose but not glucose consumption. In addition, fasting plasma glucose and insulin levels increased and insulin sensitivity decreased in subjects consuming fructose but not in those consuming glucose. These data suggest that dietary fructose specifically increases DNL, promotes dyslipidemia, decreases insulin sensitivity, and increases visceral adiposity in overweight/obese adults. PMID:19381015

  8. Involvement of insulin-degrading enzyme in insulin- and atrial natriuretic peptide-sensitive internalization of amyloid-β peptide in mouse brain capillary endothelial cells.

    PubMed

    Ito, Shingo; Ohtsuki, Sumio; Murata, Sho; Katsukura, Yuki; Suzuki, Hiroya; Funaki, Miho; Tachikawa, Masanori; Terasaki, Tetsuya

    2014-01-01

    Cerebral clearance of amyloid-β peptide (Aβ), which is implicated in Alzheimer's disease, involves elimination across the blood-brain barrier (BBB), and we previously showed that an insulin-sensitive process is involved in the case of Aβ1-40. The purpose of this study was to clarify the molecular mechanism of the insulin-sensitive Aβ1-40 elimination across mouse BBB. An in vivo cerebral microinjection study demonstrated that [125I]hAβ1-40 elimination from mouse brain was inhibited by human natriuretic peptide (hANP), and [125I]hANP elimination was inhibited by hAβ1-40, suggesting that hAβ1-40 and hANP share a common elimination process. Internalization of [125I]hAβ1-40 into cultured mouse brain capillary endothelial cells (TM-BBB4) was significantly inhibited by either insulin, hANP, other natriuretic peptides or insulin-degrading enzyme (IDE) inhibitors, but was not inhibited by phosphoramidon or thiorphan. Although we have reported the involvement of natriuretic peptide receptor C (Npr-C) in hANP internalization, cells stably expressing Npr-C internalized [125I]hANP but not [125I]hAβ1-40, suggesting that there is no direct interaction between Npr-C and hAβ1-40. IDE was detected in plasma membrane of TM-BBB4 cells, and internalization of [125I]hAβ1-40 by TM-BBB4 cells was reduced by IDE-targeted siRNAs. We conclude that elimination of hAβ1-40 from mouse brain across the BBB involves an insulin- and ANP-sensitive process, mediated by IDE expressed in brain capillary endothelial cells.

  9. The Relationship between Adiposity and Insulin Sensitivity in African Women Living with the Polycystic Ovarian Syndrome: A Clamp Study.

    PubMed

    Doh, Emmanuella; Mbanya, Armand; Kemfang-Ngowa, Jean Dupont; Dohbit, Sama; Tchana-Sinou, Mycilline; Foumane, Pascal; Donfack, Olivier Trésor; Doh, Anderson S; Mbanya, Jean Claude; Sobngwi, Eugene

    2016-01-01

    Objectives. We aimed to assess the variation of insulin sensitivity in relation to obesity in women living with PCOS in a sub-Sahara African setting. Methods. We studied body composition, insulin sensitivity, and resting energy expenditure in 14 PCOS patients (6 obese and 8 nonobese) compared to 10 matched nonobese non-PCOS subjects. Insulin sensitivity was assessed using the gold standard 80 mU/m(2)/min euglycemic-hyperinsulinemic clamp and resting energy expenditure was measured by indirect calorimetry. Results. Insulin sensitivity adjusted to lean mass was lowest in obese PCOS subjects and highest in healthy subjects (11.2 [10.1-12.4] versus 12.9 [12.1-13.8] versus 16.6 [13.8-17.9], p = 0.012); there was a tendency for resting energy expenditure adjusted for total body mass to decrease across the groups highest in obese PCOS subjects (1411 [1368-1613] versus 1274 [1174-1355] versus 1239 [1195-1454], p = 0.306). Conclusion. In this sub-Saharan population, insulin resistance is associated with PCOS per se but is further aggravated by obesity. Obesity did not seem to be explained by low resting energy expenditure suggesting that dietary intake may be a determinant of the obesity in this context.

  10. The Relationship between Adiposity and Insulin Sensitivity in African Women Living with the Polycystic Ovarian Syndrome: A Clamp Study

    PubMed Central

    Dohbit, Sama; Tchana-Sinou, Mycilline; Foumane, Pascal; Donfack, Olivier Trésor; Doh, Anderson S.

    2016-01-01

    Objectives. We aimed to assess the variation of insulin sensitivity in relation to obesity in women living with PCOS in a sub-Sahara African setting. Methods. We studied body composition, insulin sensitivity, and resting energy expenditure in 14 PCOS patients (6 obese and 8 nonobese) compared to 10 matched nonobese non-PCOS subjects. Insulin sensitivity was assessed using the gold standard 80 mU/m2/min euglycemic-hyperinsulinemic clamp and resting energy expenditure was measured by indirect calorimetry. Results. Insulin sensitivity adjusted to lean mass was lowest in obese PCOS subjects and highest in healthy subjects (11.2 [10.1–12.4] versus 12.9 [12.1–13.8] versus 16.6 [13.8–17.9], p = 0.012); there was a tendency for resting energy expenditure adjusted for total body mass to decrease across the groups highest in obese PCOS subjects (1411 [1368–1613] versus 1274 [1174–1355] versus 1239 [1195–1454], p = 0.306). Conclusion. In this sub-Saharan population, insulin resistance is associated with PCOS per se but is further aggravated by obesity. Obesity did not seem to be explained by low resting energy expenditure suggesting that dietary intake may be a determinant of the obesity in this context. PMID:27672393

  11. The Relationship between Adiposity and Insulin Sensitivity in African Women Living with the Polycystic Ovarian Syndrome: A Clamp Study

    PubMed Central

    Dohbit, Sama; Tchana-Sinou, Mycilline; Foumane, Pascal; Donfack, Olivier Trésor; Doh, Anderson S.

    2016-01-01

    Objectives. We aimed to assess the variation of insulin sensitivity in relation to obesity in women living with PCOS in a sub-Sahara African setting. Methods. We studied body composition, insulin sensitivity, and resting energy expenditure in 14 PCOS patients (6 obese and 8 nonobese) compared to 10 matched nonobese non-PCOS subjects. Insulin sensitivity was assessed using the gold standard 80 mU/m2/min euglycemic-hyperinsulinemic clamp and resting energy expenditure was measured by indirect calorimetry. Results. Insulin sensitivity adjusted to lean mass was lowest in obese PCOS subjects and highest in healthy subjects (11.2 [10.1–12.4] versus 12.9 [12.1–13.8] versus 16.6 [13.8–17.9], p = 0.012); there was a tendency for resting energy expenditure adjusted for total body mass to decrease across the groups highest in obese PCOS subjects (1411 [1368–1613] versus 1274 [1174–1355] versus 1239 [1195–1454], p = 0.306). Conclusion. In this sub-Saharan population, insulin resistance is associated with PCOS per se but is further aggravated by obesity. Obesity did not seem to be explained by low resting energy expenditure suggesting that dietary intake may be a determinant of the obesity in this context.

  12. The Relationship between Adiposity and Insulin Sensitivity in African Women Living with the Polycystic Ovarian Syndrome: A Clamp Study.

    PubMed

    Doh, Emmanuella; Mbanya, Armand; Kemfang-Ngowa, Jean Dupont; Dohbit, Sama; Tchana-Sinou, Mycilline; Foumane, Pascal; Donfack, Olivier Trésor; Doh, Anderson S; Mbanya, Jean Claude; Sobngwi, Eugene

    2016-01-01

    Objectives. We aimed to assess the variation of insulin sensitivity in relation to obesity in women living with PCOS in a sub-Sahara African setting. Methods. We studied body composition, insulin sensitivity, and resting energy expenditure in 14 PCOS patients (6 obese and 8 nonobese) compared to 10 matched nonobese non-PCOS subjects. Insulin sensitivity was assessed using the gold standard 80 mU/m(2)/min euglycemic-hyperinsulinemic clamp and resting energy expenditure was measured by indirect calorimetry. Results. Insulin sensitivity adjusted to lean mass was lowest in obese PCOS subjects and highest in healthy subjects (11.2 [10.1-12.4] versus 12.9 [12.1-13.8] versus 16.6 [13.8-17.9], p = 0.012); there was a tendency for resting energy expenditure adjusted for total body mass to decrease across the groups highest in obese PCOS subjects (1411 [1368-1613] versus 1274 [1174-1355] versus 1239 [1195-1454], p = 0.306). Conclusion. In this sub-Saharan population, insulin resistance is associated with PCOS per se but is further aggravated by obesity. Obesity did not seem to be explained by low resting energy expenditure suggesting that dietary intake may be a determinant of the obesity in this context. PMID:27672393

  13. Effect of long-term olanzapine treatment on meal-induced insulin sensitization and on gastrointestinal peptides in female Sprague-Dawley rats.

    PubMed

    Hegedűs, Csaba; Kovács, Diána; Kiss, Rita; Sári, Réka; Németh, József; Szilvássy, Zoltán; Peitl, Barna

    2015-12-01

    Meal-induced insulin sensitization (MIS), an endogenous adaptive mechanism is activated post-prandially. Reduced MIS leads to diabetes, but its activation improves insulin sensitivity. MIS is preserved to single olanzapine administration, therefore we aimed to investigate the chronic effect of olanzapine on fasted-state insulin sensitivity and on MIS in female Sprague-Dawley rats. Daily food and water intake, stool and urine production and body weight were determined. The MIS was characterized by a rapid insulin sensitivity test. Fasting hepatic and peripheral insulin sensitivity were determined by a hyperinsulinaemic euglycaemic glucose clamping supplemented with radiotracer technique. Fasted and post-prandial blood samples were obtained for plasma insulin, leptin, ghrelin, amylin, GLP-1, GIP, PYY and PP determination. Adiposity was characterized by weighing intra-abdominal and inguinal fat pads. Olanzapine caused hepatic insulin resistance and a reduced metabolic clearance rate of insulin, but the MIS retained its function. Body weight and adiposity were enhanced, but olanzapine failed to increase food intake. Fasting insulin and leptin were elevated and the post-prandial reduction in ghrelin level was inhibited by olanzapine.The MIS remained functionally intact after long-term olanzapine treatment. Altered insulin, leptin and ghrelin levels indicate olanzapine-induced metabolic derangements. Pharmacological activation of MIS could potentially be exploited to treat or prevent olanzapine-induced insulin resistance. PMID:26349558

  14. Molecular mechanisms underlying fasting modulated liver insulin sensitivity and metabolism in male lipodystrophic Bscl2/Seipin-deficient mice.

    PubMed

    Chen, Weiqin; Zhou, Hongyi; Saha, Pradip; Li, Luge; Chan, Lawrence

    2014-11-01

    Bscl2(-/-) mice recapitulate many of the major metabolic manifestations in Berardinelli-Seip congenital lipodystrophy type 2 (BSCL2) individuals, including lipodystrophy, hepatomegly, hepatic steatosis, and insulin resistance. The mechanisms that underlie hepatic steatosis and insulin resistance in Bscl2(-/-) mice are poorly understood. To address this issue, we performed hyperinsulinemic-euglycemic clamp on Bscl2(-/-) and wild-type mice after an overnight (16-h) fast, and found that Bscl2(-/-) actually displayed increased hepatic insulin sensitivity. Interestingly, liver in Bscl2(-/-) mice after a short term (4-h) fast had impaired acute insulin signaling, a defect that disappeared after a 16-hour fast. Notably, fasting-dependent hepatic insulin signaling in Bscl2(-/-) mice was not associated with liver diacylglyceride and ceramide contents, but could be attributable in part to the expression of hepatic insulin signaling receptor and substrates. Meanwhile, increased de novo lipogenesis and decreased β-oxidation led to severe hepatic steatosis in fed or short-fasted Bscl2(-/-) mice whereas liver lipid accumulation and metabolism in Bscl2(-/-) mice was markedly affected by prolonged fasting. Furthermore, mice with liver-specific inactivation of Bscl2 manifested no hepatic steatosis even under high-fat diet, suggesting Bscl2 does not play a cell autonomous role in regulating liver lipid homeostasis. Overall, our results offered new insights into the metabolic adaptations of liver in response to fasting and uncovered a novel fasting-dependent regulation of hepatic insulin signaling in a mouse model of human BSCL2.

  15. Microneedle-array patches loaded with hypoxia-sensitive vesicles provide fast glucose-responsive insulin delivery.

    PubMed

    Yu, Jicheng; Zhang, Yuqi; Ye, Yanqi; DiSanto, Rocco; Sun, Wujin; Ranson, Davis; Ligler, Frances S; Buse, John B; Gu, Zhen

    2015-07-01

    A glucose-responsive "closed-loop" insulin delivery system mimicking the function of pancreatic cells has tremendous potential to improve quality of life and health in diabetics. Here, we report a novel glucose-responsive insulin delivery device using a painless microneedle-array patch ("smart insulin patch") containing glucose-responsive vesicles (GRVs; with an average diameter of 118 nm), which are loaded with insulin and glucose oxidase (GOx) enzyme. The GRVs are self-assembled from hypoxia-sensitive hyaluronic acid (HS-HA) conjugated with 2-nitroimidazole (NI), a hydrophobic component that can be converted to hydrophilic 2-aminoimidazoles through bioreduction under hypoxic conditions. The local hypoxic microenvironment caused by the enzymatic oxidation of glucose in the hyperglycemic state promotes the reduction of HS-HA, which rapidly triggers the dissociation of vesicles and subsequent release of insulin. The smart insulin patch effectively regulated the blood glucose in a mouse model of chemically induced type 1 diabetes. The described work is the first demonstration, to our knowledge, of a synthetic glucose-responsive device using a hypoxia trigger for regulation of insulin release. The faster responsiveness of this approach holds promise in avoiding hyperglycemia and hypoglycemia if translated for human therapy. PMID:26100900

  16. Microneedle-array patches loaded with hypoxia-sensitive vesicles provide fast glucose-responsive insulin delivery

    PubMed Central

    Yu, Jicheng; Zhang, Yuqi; Ye, Yanqi; DiSanto, Rocco; Sun, Wujin; Ranson, Davis; Ligler, Frances S.; Buse, John B.; Gu, Zhen

    2015-01-01

    A glucose-responsive “closed-loop” insulin delivery system mimicking the function of pancreatic cells has tremendous potential to improve quality of life and health in diabetics. Here, we report a novel glucose-responsive insulin delivery device using a painless microneedle-array patch (“smart insulin patch”) containing glucose-responsive vesicles (GRVs; with an average diameter of 118 nm), which are loaded with insulin and glucose oxidase (GOx) enzyme. The GRVs are self-assembled from hypoxia-sensitive hyaluronic acid (HS-HA) conjugated with 2-nitroimidazole (NI), a hydrophobic component that can be converted to hydrophilic 2-aminoimidazoles through bioreduction under hypoxic conditions. The local hypoxic microenvironment caused by the enzymatic oxidation of glucose in the hyperglycemic state promotes the reduction of HS-HA, which rapidly triggers the dissociation of vesicles and subsequent release of insulin. The smart insulin patch effectively regulated the blood glucose in a mouse model of chemically induced type 1 diabetes. The described work is the first demonstration, to our knowledge, of a synthetic glucose-responsive device using a hypoxia trigger for regulation of insulin release. The faster responsiveness of this approach holds promise in avoiding hyperglycemia and hypoglycemia if translated for human therapy. PMID:26100900

  17. Chronic treatment with myo-inositol reduces white adipose tissue accretion and improves insulin sensitivity in female mice.

    PubMed

    Croze, Marine L; Vella, Roxane E; Pillon, Nicolas J; Soula, Hédi A; Hadji, Lilas; Guichardant, Michel; Soulage, Christophe O

    2013-02-01

    Type 2 diabetes is a complex disease characterized by a state of insulin resistance in peripheral tissues such as skeletal muscle, adipose tissue or liver. Some inositol isomers have been reported to possess insulin-mimetic activity and to be efficient in lowering blood glucose level. The aim of the present study was to assess in mice the metabolic effects of a chronic treatment with myo-inositol, the most common stereoisomer of inositol. Mice given myo-inositol treatment (0.9 or 1.2 mg g(-1) day(-1), 15 days, orally or intraperitoneally) exhibited an improved glucose tolerance due to a greater insulin sensitivity. Mice treated with myo-inositol exhibited a decreased white adipose tissue accretion (-33%, P<.005) compared with controls. The decrease in white adipose tissue deposition was due to a decrease in adipose cell volume (-33%, P<.05), while no change was noticed in total adipocyte number. In skeletal muscle, in vivo as well as ex vivo myo-inositol treatment increased protein kinase B/Akt phosphorylation under baseline and insulin-stimulated conditions, suggesting a synergistic action of myo-inositol treatment and insulin on proteins of the insulin signalling pathway. Myo-inositol could therefore constitute a viable nutritional strategy for the prevention and/or treatment of insulin resistance and type 2 diabetes.

  18. Expression and regulation of facilitative glucose transporters in equine insulin-sensitive tissue: from physiology to pathology.

    PubMed

    Lacombe, Véronique A

    2014-01-01

    Glucose uptake is the rate-limiting step in glucose utilization in mammalians and is tightly regulated by a family of specialized proteins, called the facilitated glucose transporters (GLUTs/SLC2). GLUT4, the major isoform in insulin-responsive tissue, translocates from an intracellular pool to the cell surface and as such determines insulin-stimulated glucose uptake. However, despite intensive research over 50 years, the insulin-dependent and -independent pathways that mediate GLUT4 translocation are not fully elucidated in any species. Insulin resistance (IR) is one of the hallmarks of equine metabolic syndrome and is the most common metabolic predisposition for laminitis in horses. IR is characterized by the impaired ability of insulin to stimulate glucose disposal into insulin-sensitive tissues. Similar to other species, the functional capability of the insulin-responsive GLUTs is impaired in muscle and adipose tissue during IR in horses. However, the molecular mechanisms of altered glucose transport remain elusive in all species, and there is still much to learn about the physiological and pathophysiological functions of the GLUT family members, especially in regard to class III. Since GLUTs are key regulators of whole-body glucose homeostasis, they have received considerable attention as potential therapeutic targets to treat metabolic disorders in human and equine patients. PMID:24977043

  19. Relationships of serum soluble E-selectin concentration with insulin sensitivity and metabolic flexibility in lean and obese women.

    PubMed

    Adamska, Agnieszka; Karczewska-Kupczewska, Monika; Nikołajuk, Agnieszka; Otziomek, Elżbieta; Górska, Maria; Kowalska, Irina; Strączkowski, Marek

    2014-04-01

    The markers of endothelial dysfunction, including soluble E-selectin (sE-selectin), are related to insulin resistance, which is associated with metabolic inflexibility, i.e., impaired stimulation of carbohydrate oxidation and impaired inhibition of lipid oxidation by insulin. Endothelial dysfunction may also be important in the metabolic syndrome. The aim of our study was to analyze the association of sE-selectin with insulin sensitivity and metabolic flexibility in lean and obese women. We examined 22 lean women (BMI < 25 kg m(-2)) and 26 overweight or obese women (BMI > 25 kg m(-2)) with normal glucose tolerance. A hyperinsulinemic euglycemic clamp and indirect calorimetry were performed. An increase in the respiratory exchange ratio in response to insulin was used as a measure of metabolic flexibility. Obese women had lower insulin sensitivity (P < 0.01), higher plasma sE-selectin (P = 0.007), and higher the metabolic syndrome total Z-score (MS Z-score) (P < 0.0001). Insulin sensitivity was negatively correlated with sE-selectin level (r = -0.24, P = 0.04). sE-selectin was associated with the rate of carbohydrate oxidation at the baseline state (r = 0.31, P = 0.007) and was negatively correlated with metabolic flexibility (r = -0.34, P = 0.003). MS Z-score correlated positively with sE-selectin level and negatively with metabolic flexibility and insulin sensitivity (r = 0.49, P < 0.0001, r = -0.29, P = 0.04, r = -0.51, P < 0.0001, respectively). In multiple regression analysis we observed that the relationship between metabolic flexibility and sE-selectin (β = -0.36; P = 0.004) was independent of the other evaluated factors. Our data suggest that endothelial dysfunction as assessed by plasma sE-selectin is associated with metabolic flexibility, inversely and independently of the other estimated factors. PMID:23934358

  20. Relationships of serum soluble E-selectin concentration with insulin sensitivity and metabolic flexibility in lean and obese women.

    PubMed

    Adamska, Agnieszka; Karczewska-Kupczewska, Monika; Nikołajuk, Agnieszka; Otziomek, Elżbieta; Górska, Maria; Kowalska, Irina; Strączkowski, Marek

    2014-04-01

    The markers of endothelial dysfunction, including soluble E-selectin (sE-selectin), are related to insulin resistance, which is associated with metabolic inflexibility, i.e., impaired stimulation of carbohydrate oxidation and impaired inhibition of lipid oxidation by insulin. Endothelial dysfunction may also be important in the metabolic syndrome. The aim of our study was to analyze the association of sE-selectin with insulin sensitivity and metabolic flexibility in lean and obese women. We examined 22 lean women (BMI < 25 kg m(-2)) and 26 overweight or obese women (BMI > 25 kg m(-2)) with normal glucose tolerance. A hyperinsulinemic euglycemic clamp and indirect calorimetry were performed. An increase in the respiratory exchange ratio in response to insulin was used as a measure of metabolic flexibility. Obese women had lower insulin sensitivity (P < 0.01), higher plasma sE-selectin (P = 0.007), and higher the metabolic syndrome total Z-score (MS Z-score) (P < 0.0001). Insulin sensitivity was negatively correlated with sE-selectin level (r = -0.24, P = 0.04). sE-selectin was associated with the rate of carbohydrate oxidation at the baseline state (r = 0.31, P = 0.007) and was negatively correlated with metabolic flexibility (r = -0.34, P = 0.003). MS Z-score correlated positively with sE-selectin level and negatively with metabolic flexibility and insulin sensitivity (r = 0.49, P < 0.0001, r = -0.29, P = 0.04, r = -0.51, P < 0.0001, respectively). In multiple regression analysis we observed that the relationship between metabolic flexibility and sE-selectin (β = -0.36; P = 0.004) was independent of the other evaluated factors. Our data suggest that endothelial dysfunction as assessed by plasma sE-selectin is associated with metabolic flexibility, inversely and independently of the other estimated factors.

  1. Effects of Chronic Calorie Restriction or Dietary Resveratrol Supplementation on Insulin Sensitivity Markers in a Primate, Microcebus murinus

    PubMed Central

    Marchal, Julia; Blanc, Stéphane; Epelbaum, Jacques; Aujard, Fabienne; Pifferi, Fabien

    2012-01-01

    The prevalence of diabetes and hyperinsulinemia increases with age, inducing metabolic failure and limiting lifespan. Calorie restriction (CR) without malnutrition delays the aging process, but its long-term application to humans seems difficult. Resveratrol (RSV), a dietary polyphenol, appears to be a promising CR mimetic that can be easily administered in humans. In this work, we hypothesized that both CR and RSV impact insulin sensitivity in a non-human primate compared to standard-fed control (CTL) animals. Four- to five-year-old male grey mouse lemurs (Microcebus murinus) were assigned to three dietary groups: a CTL group, a CR group receiving 30% fewer calories than the CTL and a RSV group receiving the CTL diet supplemented with RSV (200 mg·day−1·kg−1). Insulin sensitivity and glycemia were assessed using an oral glucose tolerance test (OGTT) and the homeostasis model assessment of insulin resistance (HOMA-IR index) evaluation after 21 or 33 months of chronic treatment. Resting metabolic rate was also measured to assess the potential relationships between this energy expenditure parameter and insulin sensitivity markers. No differences were found after a 21-month period of treatment, except for lower glucose levels 30 min after glucose loading in CR animals. After 33 months, CR and RSV decreased glycemia after the oral glucose loading without decreasing fasting blood insulin. A general effect of treatment was observed on the HOMA-IR index, with an 81% reduction in CR animals and 53% in RSV animals after 33 months of treatment compared to CTL. Chronic CR and dietary supplementation with RSV affected insulin sensitivity by improving the glucose tolerance of animals without disturbing their baseline insulin secretion. These results suggest that both CR and RSV have beneficial effects on metabolic alterations, although these effects are different in amplitude between the two anti-aging treatments and potentially rely on different metabolic changes. PMID

  2. UCP1 is an essential mediator of the effects of methionine restriction on energy balance but not insulin sensitivity

    PubMed Central

    Wanders, Desiree; Burk, David H.; Cortez, Cory C.; Van, Nancy T.; Stone, Kirsten P.; Baker, Mollye; Mendoza, Tamra; Mynatt, Randall L.; Gettys, Thomas W.

    2015-01-01

    Dietary methionine restriction (MR) by 80% increases energy expenditure (EE), reduces adiposity, and improves insulin sensitivity. We propose that the MR-induced increase in EE limits fat deposition by increasing sympathetic nervous system–dependent remodeling of white adipose tissue and increasing uncoupling protein 1 (UCP1) expression in both white and brown adipose tissue. In independent assessments of the role of UCP1 as a mediator of MR’s effects on EE and insulin sensitivity, EE did not differ between wild-type (WT) and Ucp1−/− mice on the control diet, but MR increased EE by 31% and reduced adiposity by 25% in WT mice. In contrast, MR failed to increase EE or reduce adiposity in Ucp1−/− mice. However, MR was able to increase overall insulin sensitivity by 2.2-fold in both genotypes. Housing temperatures used to minimize (28°C) or increase (23°C) sympathetic nervous system activity revealed temperature-independent effects of the diet on EE. Metabolomics analysis showed that genotypic and dietary effects on white adipose tissue remodeling resulted in profound increases in fatty acid metabolism within this tissue. These findings establish that UCP1 is required for the MR-induced increase in EE but not insulin sensitivity and suggest that diet-induced improvements in insulin sensitivity are not strictly derived from dietary effects on energy balance.—Wanders, D., Burk, D. H., Cortez, C. C., Van, N. T., Stone, K. P., Baker, M., Mendoza, T., Mynatt, R. L., Gettys, T. W. UCP1 is an essential mediator of the effects of methionine restriction on energy balance but not insulin sensitivity. PMID:25742717

  3. [Repeatability of insulin sensitivity estimation using the Minimal Model and comparison with a modified short low-dose insulin tolerance test].

    PubMed

    Rey, R H; Masnatta, L D; Pirola, D; Cuniberti, L A; Maceira, C; Werba, J P

    1996-01-01

    Hyperinsulinemia and insulin-resistance are metabolic disturbances associated with obesity, essential hypertension, hypertriglyceridemia, glucose intolerance, overt non-insulin dependent diabetes mellitus, polymetabolic syndrome and atherosclerotic disease. The assessment of in vivo insulin sensitivity (SAI in vivo) changes achieved by life style modifications or drug interventions require a reproducible technique. To evaluate the day-to-day intra-individual repeatability of SAI-in vivo, we determined the variation in the SI index (calculated from the Minimal Model of Bergman modified by insulin or MMins) in 11 subjects with a wide range of insulin-resistance. SI (first study) varied from 0.82 to 8.48 x 10(-4) min-1/microU.mL (4.43 +/- 2.85 x 10(-4) min-1/microU.mL mean +/- SD) and highly correlated with SI (second study) (r = 0.89; p = 0.0002). The average interday coefficient of variation was 20.9 +/- 13.9% and was similar in subjects with low or high SI values. We also measured SAI in vivo by assessing the rate of serum glucose decline induced by human cristalline insulin 0.025 U/kg IV dose after a 12-14 hours fasting period (a modified Bonora's method or BBD) in 11 subjects. No subject presented biochemical or symptomatic hypoglycemia. SAI in vivo values determined by BBD varied from 21 a 234 mumol/ml/min (134 +/- 64.8 mumol/ml/min, mean +/- SD). We found a highly significant correlation between SI values obtained from MMins and SAI in vivo assessed by the BBD (r = 0.89, p = 0.0002). Our results suggest that the Mmins is a fairly reproducible procedure and that a BBD is an acceptable option to quantify SAI in vivo, mainly when a fast-execution practice is necessary or cost restrictions are required.

  4. Isolation of insulin-sensitive phosphatidylinositol-glycan from rat adipocytes. Its impaired breakdown in the streptozotocin-diabetic rat.

    PubMed Central

    Macaulay, S L; Larkins, R G

    1990-01-01

    In this study an insulin-sensitive glycophospholipid from rat adipocytes was isolated and partially characterized. A material that activated pyruvate dehydrogenase was extracted from rat adipocyte membrane supernatants. Its release was stimulated by insulin and phosphatidylinositol-specific-phospholipase C and its activity was destroyed by nitrous acid deamination. These findings suggested that insulin might stimulate breakdown of a glycophospholipid containing inositol and glucosamine, as previously reported for some other cell types [Low & Saltiel (1988) Science 239, 268-275]. A lipid that incorporated [3H]glucosamine, [3H]galactose, [3H]inositol, and [3H]myristate and whose turnover was stimulated by insulin was subsequently isolated from intact adipocytes by sequential t.l.c. using an acidic solvent system followed by a basic solvent system. The effects of insulin on turnover of the lipid in these cells were transient, with maximal effects at 1 min, and there was a typical concentration-response curve to insulin (0.07 nM-7 nM), with effects being detected over the physiological range of insulin concentrations. In contrast with studies in other cells, there was appreciable turnover of the sugar labels. The majority of the [3H]glucosamine and [3H]galactose labels were cycled through to triacylglycerol in the adipocyte. However, of that recovered in the glycophospholipid band, a major proportion (less than 40%) was recovered as the native label. Digestion of the purified molecule with phosphatidylinositol-specific phospholipase C generated a material that activated both pyruvate dehydrogenase and low-Km cyclic AMP phosphodiesterase. Impairment in insulin-stimulated breakdown of the molecule in adipocytes of streptozotocin-diabetic rats was found, consistent with the impaired insulin activation of pyruvate dehydrogenase and glucose utilization seen in this model. These findings suggest that insulin stimulates breakdown of this glycophospholipid by stimulating an

  5. Control of glucose homeostasis and insulin sensitivity by the Let-7 family of microRNAs.

    PubMed

    Frost, Robert J A; Olson, Eric N

    2011-12-27

    Diabetes mellitus is the most common metabolic disorder worldwide and a major risk factor for cardiovascular disease. MicroRNAs are negative regulators of gene expression that have been implicated in many biological processes, including metabolism. Here we show that the Let-7 family of microRNAs regulates glucose metabolism in multiple organs. Global and pancreas-specific overexpression of Let-7 in mice resulted in impaired glucose tolerance and reduced glucose-induced pancreatic insulin secretion. Mice overexpressing Let-7 also had decreased fat mass and body weight, as well as reduced body size. Global knockdown of the Let-7 family with an antimiR was sufficient to prevent and treat impaired glucose tolerance in mice with diet-induced obesity, at least in part by improving insulin sensitivity in liver and muscle. AntimiR treatment of mice on a high-fat diet also resulted in increased lean and muscle mass, but not increased fat mass, and prevented ectopic fat deposition in the liver. These findings demonstrate that Let-7 regulates multiple aspects of glucose metabolism and suggest antimiR-induced Let-7 knockdown as a potential treatment for type 2 diabetes mellitus. Furthermore, our Cre-inducible Let-7-transgenic mice provide a unique model for studying tissue-specific aspects of body growth and type 2 diabetes. PMID:22160727

  6. Control of glucose homeostasis and insulin sensitivity by the Let-7 family of microRNAs.

    PubMed

    Frost, Robert J A; Olson, Eric N

    2011-12-27

    Diabetes mellitus is the most common metabolic disorder worldwide and a major risk factor for cardiovascular disease. MicroRNAs are negative regulators of gene expression that have been implicated in many biological processes, including metabolism. Here we show that the Let-7 family of microRNAs regulates glucose metabolism in multiple organs. Global and pancreas-specific overexpression of Let-7 in mice resulted in impaired glucose tolerance and reduced glucose-induced pancreatic insulin secretion. Mice overexpressing Let-7 also had decreased fat mass and body weight, as well as reduced body size. Global knockdown of the Let-7 family with an antimiR was sufficient to prevent and treat impaired glucose tolerance in mice with diet-induced obesity, at least in part by improving insulin sensitivity in liver and muscle. AntimiR treatment of mice on a high-fat diet also resulted in increased lean and muscle mass, but not increased fat mass, and prevented ectopic fat deposition in the liver. These findings demonstrate that Let-7 regulates multiple aspects of glucose metabolism and suggest antimiR-induced Let-7 knockdown as a potential treatment for type 2 diabetes mellitus. Furthermore, our Cre-inducible Let-7-transgenic mice provide a unique model for studying tissue-specific aspects of body growth and type 2 diabetes.

  7. Preventing High Fat Diet-induced Obesity and Improving Insulin Sensitivity through Neuregulin 4 Gene Transfer.

    PubMed

    Ma, Yongjie; Gao, Mingming; Liu, Dexi

    2016-01-01

    Neuregulin 4 (NRG4), an epidermal growth factor-like signaling molecule, plays an important role in cell-to-cell communication during tissue development. Its function to regulate energy metabolism has recently been reported. This current study was designed to assess the preventive and therapeutic effects of NRG4 overexpression on high fat diet (HFD)-induced obesity. Using the hydrodynamic gene transfer method, we demonstrate that Nrg4 gene transfer in mice suppressed the development of diet-induced obesity, but did not affect pre-existing adiposity and body weight in obese mice. Nrg4 gene transfer curbed HFD-induced hepatic steatosis by inhibiting lipogenesis and PPARγ-mediated lipid storage. Concurrently, overexpression of NRG4 reduced chronic inflammation in both preventive and treatment studies, evidenced by lower mRNA levels of macrophage marker genes including F4/80, Cd68, Cd11b, Cd11c, and macrophage chemokine Mcp1, resulting in improved insulin sensitivity. Collectively, these results demonstrate that overexpression of the Nrg4 gene by hydrodynamic gene delivery prevents HFD-induced weight gain and fatty liver, alleviates obesity-induced chronic inflammation and insulin resistance, and supports the health benefits of NRG4 in managing obesity and obesity-associated metabolic disorders. PMID:27184920

  8. Preventing High Fat Diet-induced Obesity and Improving Insulin Sensitivity through Neuregulin 4 Gene Transfer

    PubMed Central

    Ma, Yongjie; Gao, Mingming; Liu, Dexi

    2016-01-01

    Neuregulin 4 (NRG4), an epidermal growth factor-like signaling molecule, plays an important role in cell-to-cell communication during tissue development. Its function to regulate energy metabolism has recently been reported. This current study was designed to assess the preventive and therapeutic effects of NRG4 overexpression on high fat diet (HFD)-induced obesity. Using the hydrodynamic gene transfer method, we demonstrate that Nrg4 gene transfer in mice suppressed the development of diet-induced obesity, but did not affect pre-existing adiposity and body weight in obese mice. Nrg4 gene transfer curbed HFD-induced hepatic steatosis by inhibiting lipogenesis and PPARγ-mediated lipid storage. Concurrently, overexpression of NRG4 reduced chronic inflammation in both preventive and treatment studies, evidenced by lower mRNA levels of macrophage marker genes including F4/80, Cd68, Cd11b, Cd11c, and macrophage chemokine Mcp1, resulting in improved insulin sensitivity. Collectively, these results demonstrate that overexpression of the Nrg4 gene by hydrodynamic gene delivery prevents HFD-induced weight gain and fatty liver, alleviates obesity-induced chronic inflammation and insulin resistance, and supports the health benefits of NRG4 in managing obesity and obesity-associated metabolic disorders. PMID:27184920

  9. Prevention of diabetes and cardiovascular disease in women with PCOS: treatment with insulin sensitizers.

    PubMed

    Sharma, Susmeeta T; Nestler, John E

    2006-06-01

    Polycystic ovary syndrome (PCOS) is the most common cause of anovulatory infertility in United States, affecting 6-10% of females in the reproductive age group. Recent studies have shown that insulin resistance plays an important role in the pathogenesis of PCOS. Traditionally, management of PCOS consisted mainly of ovulation induction, treatment of acne and hirsutism, and prevention of endometrial cancer. However, with mounting evidence showing that PCOS is associated with dysmetabolic syndrome and an increased risk for developing diabetes and heart disease, this can no longer be our sole focus. Current data support a strong recommendation that women with PCOS should undergo comprehensive evaluation for diabetes and recognized cardiovascular risk factors and receive appropriate treatment as needed. Lifestyle modifications remain the first-line therapy for all obese women with PCOS. However, many obese women with PCOS find weight loss difficult to achieve and maintain, and this is not an option for lean women with PCOS. For these reasons, insulin-sensitizing drugs are proving to be a promising and unique therapeutic option for chronic treatment of PCOS.

  10. Obesity in MENX Rats Is Accompanied by High Circulating Levels of Ghrelin and Improved Insulin Sensitivity.

    PubMed

    Wiedemann, Tobias; Bielohuby, Maximilian; Müller, Timo D; Bidlingmaier, Martin; Pellegata, Natalia S

    2016-02-01

    Ghrelin, the natural ligand of the growth hormone secretagogue receptor type 1a (GHS-R1a), is mainly secreted from the stomach and regulates food intake and energy homeostasis. p27 regulates cell cycle progression in many cell types. Here, we report that rats affected by the multiple endocrine neoplasia syndrome MENX, caused by a p27 mutation, develop pancreatic islet hyperplasia containing elevated numbers of ghrelin-producing ε-cells. The metabolic phenotype of MENX-affected rats featured high endogenous acylated and unacylated plasma ghrelin levels. Supporting increased ghrelin action, MENX rats show increased food intake, enhanced body fat mass, and elevated plasma levels of triglycerides and cholesterol. Ghrelin effect on food intake was confirmed by treating MENX rats with a GHS-R1a antagonist. At 7.5 months, MENX-affected rats show decreased mRNA levels of hypothalamic GHS-R1a, neuropeptide Y (NPY), and agouti-related protein (AgRP), suggesting that prolonged hyperghrelinemia may lead to decreased ghrelin efficacy. In line with ghrelin's proposed role in glucose metabolism, we find decreased glucose-stimulated insulin secretion in MENX rats, while insulin sensitivity is improved. In summary, we provide a novel nontransgenic rat model with high endogenous ghrelin plasma levels and, interestingly, improved glucose tolerance. This model might aid in identifying new therapeutic approaches for obesity and obesity-related diseases, including type 2 diabetes. PMID:26512025

  11. Insulin-sensitive glucose transporter transcript levels in calf muscles assessed with a bovine GLUT4 cDNA fragment.

    PubMed

    Hocquette, J F; Graulet, B; Castiglia-Delavaud, C; Bornes, F; Lepetit, N; Ferre, P

    1996-07-01

    Previous studies have shown that the expression of the insulin-sensitive glucose transporter (GLUT4) is lower in oxidative muscles than in glycolytic muscles in bovines and goats in contrast to observations in rats. Additional experiments in this work provide very strong arguments that the immunoreactive band detected does represent GLUT4 protein, which further validates our previous results. Therefore, to determine the level of regulation, the main objective of the present study was to measure GLUT4 mRNA amounts in various bovine muscles. A 241-bp fragment of the bovine GLUT4 cDNA was cloned by polymerase chain reaction (PCR). It shares 80-90% sequence identity with related sequences in other species. This PCR-amplified bovine GLUT4 probe was used to determine the distribution of GLUT4 mRNA in bovine tissues in comparison with that of GLUT1 mRNA. Moreover, GLUT4 mRNA amounts were quantified by Northern-blot analysis in heart and seven skeletal muscles with various oxidative and glycolytic activities from seven ruminant calves. GLUT4 mRNA was detected by Northern-blot analysis only in calf insulin-sensitive tissues. In contrast, GLUT1 mRNA was detected in all tissues studied except liver. GLUT4 mRNA amount was the highest in masseter and heart, which are oxidative muscles (1.67 +/- 0.16 and 1.53 +/- 0.19 units/g wet tissue weight, respectively) and the lowest in glycolytic or oxido-glycolytic muscles (0.31 +/- 0.04 to 1.00 +/- 0.09 units/g wet tissue weight; SEM, n = 7). These data and our previous results provide evidence for translational and/or post-translational control mechanisms of bovine GLUT4 protein expression in a muscle type-specific manner.

  12. Preparation of pH sensitive insulin-loaded nano hydrogels and evaluation of insulin releasing in different pH conditions.

    PubMed

    Karnoosh-Yamchi, Jalil; Mobasseri, Majid; Akbarzadeh, Abolfazl; Davaran, Soodabeh; Ostad-Rahimi, Ali Reza; Hamishehkar, Hamed; Salehi, Roya; Bahmani, Zahra; Nejati-Koshki, Kazem; Darbin, Akbar; Rahmati-Yamchi, Mohammad

    2014-10-01

    In the recent years, temperature and pH-sensitive hydrogels were developed as suitable carriers for drug delivery. In this study, four different pH-sensitive nanohydrogels were designed for an oral insulin delivery modeling. NIPAAm-MAA-HEM copolymers were synthesized by radical chain reaction with 80:8:12 ratios respectively. Reactions were carried out in four conditions including 1,4-dioxan and water as two distinct solution under nitrogen gas-flow. The copolymers were characterized with FT-IR, SEM and TEM. Copolymers were loaded with regular insulin by modified double emulsion method with ratio of 1:10. Release study carried out in pH 1.2 and pH 6.8 at 37 °C. For pH 6.8 and pH 1.2, 2 mg of the insulin loaded nanohydrogels was float in a beaker containing 100 mL of PBS with pH 6.8 and 100 mL of HCl solution with pH 1.2, respectively. Sample collection was done in different times and HPLC was used for analysis of samples using water/acetonitrile (65/35) as the mobile phase. Nanohydrogels synthesis reaction yield was 95 %, HPLC results showed that loading in 1,4-dioxan without cross-linker nanohydrogels was more than others, also indicated that the insulin release of 1,4-dioxan without cross-linker nanohydrogels at acidic pH is less, but in pH 6.8 is the most. Results showed that by opting suitable polymerization method and selecting the best nanohydrogels, we could obtain a suitable insulin loaded nanohydrogels for oral administration. PMID:24996289

  13. Gynura procumbens extract improves insulin sensitivity and suppresses hepatic gluconeogenesis in C57BL/KsJ-db/db mice

    PubMed Central

    Choi, Sung-In; Lee, Hyun-Ah

    2016-01-01

    BACKGROUND/OBJECTIVES This study was designed to investigate whether Gynura procumbens extract (GPE) can improve insulin sensitivity and suppress hepatic glucose production in an animal model of type 2 diabetes. MATERIALS/METHODS C57BL/Ksj-db/db mice were divided into 3 groups, a regular diet (control), GPE, and rosiglitazone groups (0.005 g/100 g diet) and fed for 6 weeks. RESULTS Mice supplemented with GPE showed significantly lower blood levels of glucose and glycosylated hemoglobin than diabetic control mice. Glucose and insulin tolerance test also showed the positive effect of GPE on increasing insulin sensitivity. The homeostatic index of insulin resistance was significantly lower in mice supplemented with GPE than in the diabetic control mice. In the skeletal muscle, the expression of phosphorylated AMP-activated protein kinase, pAkt substrate of 160 kDa, and PM-glucose transporter type 4 increased in mice supplemented with GPE when compared to that of the diabetic control mice. GPE also decreased the expression of glucose-6-phosphatase and phosphoenolpyruvate carboxykinase in the liver. CONCLUSIONS These findings demonstrate that GPE might improve insulin sensitivity and inhibit gluconeogenesis in the liver. PMID:27698958

  14. A PPARγ-Bnip3 Axis Couples Adipose Mitochondrial Fusion-Fission Balance to Systemic Insulin Sensitivity.

    PubMed

    Tol, Marc J; Ottenhoff, Roelof; van Eijk, Marco; Zelcer, Noam; Aten, Jan; Houten, Sander M; Geerts, Dirk; van Roomen, Cindy; Bierlaagh, Marlou C; Scheij, Saskia; Hoeksema, Marten A; Aerts, Johannes M; Bogan, Jonathan S; Dorn, Gerald W; Argmann, Carmen A; Verhoeven, Arthur J

    2016-09-01

    Aberrant mitochondrial fission plays a pivotal role in the pathogenesis of skeletal muscle insulin resistance. However, fusion-fission dynamics are physiologically regulated by inherent tissue-specific and nutrient-sensitive processes that may have distinct or even opposing effects with respect to insulin sensitivity. Based on a combination of mouse population genetics and functional in vitro assays, we describe here a regulatory circuit in which peroxisome proliferator-activated receptor γ (PPARγ), the adipocyte master regulator and receptor for the thiazolidinedione class of antidiabetic drugs, controls mitochondrial network fragmentation through transcriptional induction of Bnip3. Short hairpin RNA-mediated knockdown of Bnip3 in cultured adipocytes shifts the balance toward mitochondrial elongation, leading to compromised respiratory capacity, heightened fatty acid β-oxidation-associated mitochondrial reactive oxygen species generation, insulin resistance, and reduced triacylglycerol storage. Notably, the selective fission/Drp1 inhibitor Mdivi-1 mimics the effects of Bnip3 knockdown on adipose mitochondrial bioenergetics and glucose disposal. We further show that Bnip3 is reciprocally regulated in white and brown fat depots of diet-induced obesity and leptin-deficient ob/ob mouse models. Finally, Bnip3(-/-) mice trade reduced adiposity for increased liver steatosis and develop aggravated systemic insulin resistance in response to high-fat feeding. Together, our data outline Bnip3 as a key effector of PPARγ-mediated adipose mitochondrial network fragmentation, improving insulin sensitivity and limiting oxidative stress. PMID:27325287

  15. Gynura procumbens extract improves insulin sensitivity and suppresses hepatic gluconeogenesis in C57BL/KsJ-db/db mice

    PubMed Central

    Choi, Sung-In; Lee, Hyun-Ah

    2016-01-01

    BACKGROUND/OBJECTIVES This study was designed to investigate whether Gynura procumbens extract (GPE) can improve insulin sensitivity and suppress hepatic glucose production in an animal model of type 2 diabetes. MATERIALS/METHODS C57BL/Ksj-db/db mice were divided into 3 groups, a regular diet (control), GPE, and rosiglitazone groups (0.005 g/100 g diet) and fed for 6 weeks. RESULTS Mice supplemented with GPE showed significantly lower blood levels of glucose and glycosylated hemoglobin than diabetic control mice. Glucose and insulin tolerance test also showed the positive effect of GPE on increasing insulin sensitivity. The homeostatic index of insulin resistance was significantly lower in mice supplemented with GPE than in the diabetic control mice. In the skeletal muscle, the expression of phosphorylated AMP-activated protein kinase, pAkt substrate of 160 kDa, and PM-glucose transporter type 4 increased in mice supplemented with GPE when compared to that of the diabetic control mice. GPE also decreased the expression of glucose-6-phosphatase and phosphoenolpyruvate carboxykinase in the liver. CONCLUSIONS These findings demonstrate that GPE might improve insulin sensitivity and inhibit gluconeogenesis in the liver.

  16. Effects of testosterone administration on fat distribution, insulin sensitivity, and atherosclerosis progression.

    PubMed

    Bhasin, Shalender

    2003-01-01

    In spite of the widespread belief that testosterone supplementation increases the risk of atherosclerotic heart disease, evidence to support this premise is lacking. Although supraphysiological doses of testosterone, such as those used by athletes and recreational body builders, decrease plasma high-density lipoprotein (HDL) cholesterol concentrations, replacement doses of testosterone have had only a modest or no effect on plasma HDL in placebo-controlled trials. In epidemiological studies, serum total and free testosterone concentrations have been inversely correlated with intra-abdominal fat mass, risk of coronary artery disease, and type 2 diabetes mellitus. Testosterone administration to middle-aged men is associated with decreased visceral fat and glucose concentrations and increased insulin sensitivity. Testosterone infusion increases coronary blood flow. Similarly, testosterone replacement retards atherogenesis in experimental models of atherosclerosis. However, the long-term risks and benefits of testosterone administration in human immunodeficiency virus-infected men with fat redistribution syndrome have not been studied in randomized clinical trials.

  17. Partial Inhibition of Adipose Tissue Lipolysis Improves Glucose Metabolism and Insulin Sensitivity Without Alteration of Fat Mass

    PubMed Central

    Girousse, Amandine; Tavernier, Geneviève; Valle, Carine; Moro, Cedric; Mejhert, Niklas; Dinel, Anne-Laure; Houssier, Marianne; Roussel, Balbine; Besse-Patin, Aurèle; Combes, Marion; Mir, Lucile; Monbrun, Laurent; Bézaire, Véronic; Prunet-Marcassus, Bénédicte; Waget, Aurélie; Vila, Isabelle; Caspar-Bauguil, Sylvie; Louche, Katie; Marques, Marie-Adeline; Mairal, Aline; Renoud, Marie-Laure; Galitzky, Jean; Holm, Cecilia; Mouisel, Etienne; Thalamas, Claire; Viguerie, Nathalie; Sulpice, Thierry; Burcelin, Rémy; Arner, Peter; Langin, Dominique

    2013-01-01

    When energy is needed, white adipose tissue (WAT) provides fatty acids (FAs) for use in peripheral tissues via stimulation of fat cell lipolysis. FAs have been postulated to play a critical role in the development of obesity-induced insulin resistance, a major risk factor for diabetes and cardiovascular disease. However, whether and how chronic inhibition of fat mobilization from WAT modulates insulin sensitivity remains elusive. Hormone-sensitive lipase (HSL) participates in the breakdown of WAT triacylglycerol into FAs. HSL haploinsufficiency and treatment with a HSL inhibitor resulted in improvement of insulin tolerance without impact on body weight, fat mass, and WAT inflammation in high-fat-diet–fed mice. In vivo palmitate turnover analysis revealed that blunted lipolytic capacity is associated with diminution in FA uptake and storage in peripheral tissues of obese HSL haploinsufficient mice. The reduction in FA turnover was accompanied by an improvement of glucose metabolism with a shift in respiratory quotient, increase of glucose uptake in WAT and skeletal muscle, and enhancement of de novo lipogenesis and insulin signalling in liver. In human adipocytes, HSL gene silencing led to improved insulin-stimulated glucose uptake, resulting in increased de novo lipogenesis and activation of cognate gene expression. In clinical studies, WAT lipolytic rate was positively and negatively correlated with indexes of insulin resistance and WAT de novo lipogenesis gene expression, respectively. In obese individuals, chronic inhibition of lipolysis resulted in induction of WAT de novo lipogenesis gene expression. Thus, reduction in WAT lipolysis reshapes FA fluxes without increase of fat mass and improves glucose metabolism through cell-autonomous induction of fat cell de novo lipogenesis, which contributes to improved insulin sensitivity. PMID:23431266

  18. Partial inhibition of adipose tissue lipolysis improves glucose metabolism and insulin sensitivity without alteration of fat mass.

    PubMed

    Girousse, Amandine; Tavernier, Geneviève; Valle, Carine; Moro, Cedric; Mejhert, Niklas; Dinel, Anne-Laure; Houssier, Marianne; Roussel, Balbine; Besse-Patin, Aurèle; Combes, Marion; Mir, Lucile; Monbrun, Laurent; Bézaire, Véronic; Prunet-Marcassus, Bénédicte; Waget, Aurélie; Vila, Isabelle; Caspar-Bauguil, Sylvie; Louche, Katie; Marques, Marie-Adeline; Mairal, Aline; Renoud, Marie-Laure; Galitzky, Jean; Holm, Cecilia; Mouisel, Etienne; Thalamas, Claire; Viguerie, Nathalie; Sulpice, Thierry; Burcelin, Rémy; Arner, Peter; Langin, Dominique

    2013-01-01

    When energy is needed, white adipose tissue (WAT) provides fatty acids (FAs) for use in peripheral tissues via stimulation of fat cell lipolysis. FAs have been postulated to play a critical role in the development of obesity-induced insulin resistance, a major risk factor for diabetes and cardiovascular disease. However, whether and how chronic inhibition of fat mobilization from WAT modulates insulin sensitivity remains elusive. Hormone-sensitive lipase (HSL) participates in the breakdown of WAT triacylglycerol into FAs. HSL haploinsufficiency and treatment with a HSL inhibitor resulted in improvement of insulin tolerance without impact on body weight, fat mass, and WAT inflammation in high-fat-diet-fed mice. In vivo palmitate turnover analysis revealed that blunted lipolytic capacity is associated with diminution in FA uptake and storage in peripheral tissues of obese HSL haploinsufficient mice. The reduction in FA turnover was accompanied by an improvement of glucose metabolism with a shift in respiratory quotient, increase of glucose uptake in WAT and skeletal muscle, and enhancement of de novo lipogenesis and insulin signalling in liver. In human adipocytes, HSL gene silencing led to improved insulin-stimulated glucose uptake, resulting in increased de novo lipogenesis and activation of cognate gene expression. In clinical studies, WAT lipolytic rate was positively and negatively correlated with indexes of insulin resistance and WAT de novo lipogenesis gene expression, respectively. In obese individuals, chronic inhibition of lipolysis resulted in induction of WAT de novo lipogenesis gene expression. Thus, reduction in WAT lipolysis reshapes FA fluxes without increase of fat mass and improves glucose metabolism through cell-autonomous induction of fat cell de novo lipogenesis, which contributes to improved insulin sensitivity. PMID:23431266

  19. Effect of a 1-week, eucaloric, moderately high-fat diet on peripheral insulin sensitivity in healthy premenopausal women

    PubMed Central

    Branis, Natalia M; Etesami, Marjan; Walker, Ryan W; Berk, Evan S; Albu, Jeanine B

    2015-01-01

    Objectives To determine whether a weight-maintaining, moderate (50%) high-fat diet is deleterious to insulin sensitivity in healthy premenopausal women. Design/setting/participants 23 African-American and non-Hispanic white, healthy, overweight, and obese premenopausal women recruited in New York City, USA, fed either a eucaloric, 1-week long high-fat (50% of total Kcal from fat) diet or a eucaloric, 1-week long low-fat (30% of total Kcal from fat) diet, assigned in a randomized crossover design. Main outcome measures Peripheral insulin sensitivity and metabolic flexibility during a euglycemic hyperinsulinemic (80 mU/m2/min) clamp measured during the follicular phase of the menstrual cycle, at the end of each diet period. Results Peripheral insulin sensitivity (mg kg/fat-free mass/min (µU/mL)×10−1) was not decreased after the high-fat diet vs the low-fat diet (0.09±0.01 vs 0.08±0.01, p=0.09, respectively) in the combined group of African-American and white women, with no significant diet by race interaction (p=0.6). Metabolic flexibility (change in substrate utilization, ΔNPRQ, in response to insulin during the clamp) was similarly unaltered by the diet (0.12±0.01 vs 0.11, p=0.48, for the high-fat diet vs the low-fat diet, respectively) in the combined group of women, with no significant diet by race interaction (p=0.9). African–American women had a lower insulin clearance compared with the white women, regardless of the diet (p<0.05). Conclusions We conclude that a short term (1 week), moderate (50%), eucaloric high-fat diet does not lower peripheral insulin sensitivity in healthy, overweight and obese premenopausal women. PMID:26203360

  20. mRNA expression of diacylglycerol kinase isoforms in insulin-sensitive tissues: effects of obesity and insulin resistance.

    PubMed

    Mannerås-Holm, Louise; Kirchner, Henriette; Björnholm, Marie; Chibalin, Alexander V; Zierath, Juleen R

    2015-04-01

    Diacylglycerol kinase (DGK) isoforms regulate signal transduction and lipid metabolism. DGKδ deficiency leads to hyperglycemia, peripheral insulin resistance, and metabolic inflexibility. Thus, dysregulation of other DGK isoforms may play a role in metabolic dysfunction. We investigated DGK isoform mRNA expression in extensor digitorum longus (EDL) and soleus muscle, liver as well as subcutaneous and epididymal adipose tissue in C57BL/6J mice and obese and insulin-resistant ob/ob mice. All DGK isoforms, except for DGKκ, were detectable, although with varying mRNA expression. Liver DGK expression was generally lowest, with several isoforms undetectable. In soleus muscle, subcutaneous and epididymal adipose tissue, DGKδ was the most abundant isoform. In EDL muscle, DGKα and DGKζ were the most abundant isoforms. In liver, DGKζ was the most abundant isoform. Comparing obese insulin-resistant ob/ob mice to lean C57BL/6J mice, DGKβ, DGKι, and DGKθ were increased and DGKε expression was decreased in EDL muscle, while DGKβ, DGKη and DGKθ were decreased and DGKδ and DGKι were increased in soleus muscle. In liver, DGKδ and DGKζ expression was increased in ob/ob mice. DGKη was increased in subcutaneous fat, while DGKζ was increased and DGKβ, DGKδ, DGKη and DGKε were decreased in epididymal fat from ob/ob mice. In both adipose tissue depots, DGKα and DGKγ were decreased and DGKι was increased in ob/ob mice. In conclusion, DGK mRNA expression is altered in an isoform- and tissue-dependent manner in obese insulin-resistant ob/ob mice. DGK isoforms likely have divergent functional roles in distinct tissues, which may contribute to metabolic dysfunction. PMID:25847921

  1. Lifestyle and Metformin Ameliorate Insulin Sensitivity Independently of the Genetic Burden of Established Insulin Resistance Variants in Diabetes Prevention Program Participants.

    PubMed

    Hivert, Marie-France; Christophi, Costas A; Franks, Paul W; Jablonski, Kathleen A; Ehrmann, David A; Kahn, Steven E; Horton, Edward S; Pollin, Toni I; Mather, Kieren J; Perreault, Leigh; Barrett-Connor, Elizabeth; Knowler, William C; Florez, Jose C

    2016-02-01

    Large genome-wide association studies of glycemic traits have identified genetics variants that are associated with insulin resistance (IR) in the general population. It is unknown whether people with genetic enrichment for these IR variants respond differently to interventions that aim to improve insulin sensitivity. We built a genetic risk score (GRS) based on 17 established IR variants and effect sizes (weighted IR-GRS) in 2,713 participants of the Diabetes Prevention Program (DPP) with genetic consent. We tested associations between the weighted IR-GRS and insulin sensitivity index (ISI) at baseline in all participants, and with change in ISI over 1 year of follow-up in the DPP intervention (metformin and lifestyle) and control (placebo) arms. All models were adjusted for age, sex, ethnicity, and waist circumference at baseline (plus baseline ISI for 1-year ISI change models). A higher IR-GRS was associated with lower baseline ISI (β = -0.754 [SE = 0.229] log-ISI per unit, P = 0.001 in fully adjusted models). There was no differential effect of treatment for the association between the IR-GRS on the change in ISI; higher IR-GRS was associated with an attenuation in ISI improvement over 1 year (β = -0.520 [SE = 0.233], P = 0.03 in fully adjusted models; all treatment arms). Lifestyle intervention and metformin treatment improved the ISI, regardless of the genetic burden of IR variants. PMID:26525880

  2. A 12 week aerobic exercise program improves fitness, hepatic insulin sensitivity and glucose metabolism in obese Hispanic adolescents

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The rise in obesity related morbidity in children and adolescents requires urgent prevention and treatment strategies. Strictly controlled exercise programs might be useful tools to improve insulin sensitivity and glucose kinetics. Our objective was to test the hypothesis that a 12-wk aerobic exerci...

  3. Diabetes Alters the Expression and Translocation of the Insulin-Sensitive Glucose Transporters 4 and 8 in the Atria.

    PubMed

    Maria, Zahra; Campolo, Allison R; Lacombe, Veronique A

    2015-01-01

    Although diabetes has been identified as a major risk factor for atrial fibrillation, little is known about glucose metabolism in the healthy and diabetic atria. Glucose transport into the cell, the rate-limiting step of glucose utilization, is regulated by the Glucose Transporters (GLUTs). Although GLUT4 is the major isoform in the heart, GLUT8 has recently emerged as a novel cardiac isoform. We hypothesized that GLUT-4 and -8 translocation to the atrial cell surface will be regulated by insulin and impaired during insulin-dependent diabetes. GLUT protein content was measured by Western blotting in healthy cardiac myocytes and type 1 (streptozotocin-induced, T1Dx) diabetic rodents. Active cell surface GLUT content was measured using a biotinylated photolabeled assay in the perfused heart. In the healthy atria, insulin stimulation increased both GLUT-4 and -8 translocation to the cell surface (by 100% and 240%, respectively, P<0.05). Upon insulin stimulation, we reported an increase in Akt (Th308 and s473 sites) and AS160 phosphorylation, which was positively (P<0.05) correlated with GLUT4 protein content in the healthy atria. During diabetes, active cell surface GLUT-4 and -8 content was downregulated in the atria (by 70% and 90%, respectively, P<0.05). Akt and AS160 phosphorylation was not impaired in the diabetic atria, suggesting the presence of an intact insulin signaling pathway. This was confirmed by the rescued translocation of GLUT-4 and -8 to the atrial cell surface upon insulin stimulation in the atria of type 1 diabetic subjects. In conclusion, our data suggest that: 1) both GLUT-4 and -8 are insulin-sensitive in the healthy atria through an Akt/AS160 dependent pathway; 2) GLUT-4 and -8 trafficking is impaired in the diabetic atria and rescued by insulin treatment. Alterations in atrial glucose transport may induce perturbations in energy production, which may provide a metabolic substrate for atrial fibrillation during diabetes.

  4. Pterocarpan-enriched soy leaf extract ameliorates insulin sensitivity and pancreatic β-cell proliferation in type 2 diabetic mice.

    PubMed

    Kim, Un-Hee; Yoon, Jeong-Hyun; Li, Hua; Kang, Ji-Hyun; Ji, Hyeon-Seon; Park, Ki Hun; Shin, Dong-Ha; Park, Ho-Yong; Jeong, Tae-Sook

    2014-01-01

    In Korea, soy (Glycine max (L.) Merr.) leaves are eaten as a seasonal vegetable or pickled in soy sauce. Ethyl acetate extracts of soy leaves (EASL) are enriched in pterocarpans and have potent α-glucosidase inhibitory activity. This study investigated the molecular mechanisms underlying the anti-diabetic effect of EASL in C57BL/6J mice with high-fat diet (HFD)-induced type 2 diabetes. Mice were randomly divided into normal diet (ND), HFD (60 kcal% fat diet), EASL (HFD with 0.56% (wt/wt) EASL), and Pinitol (HFD with 0.15% (wt/wt) pinitol) groups. Weight gain and abdominal fat accumulation were significantly suppressed by EASL. Levels of plasma glucose, HbA1c, and insulin in the EASL group were significantly lower than those of the HFD group, and the pancreatic islet of the EASL group had greater size than those of the HFD group. EASL group up-regulated neurogenin 3 (Ngn3), paired box 4 (Pax4), and v-maf musculoaponeurotic fibrosarcoma oncogene homolog A (MafA), which are markers of pancreatic cell development, as well as insulin receptor substrate 1 (IRS1), IRS2, and glucose transporter 4 (GLUT4), which are related to insulin sensitivity. Furthermore, EASL suppressed genes involved in hepatic gluconeogenesis and steatosis. These results suggest that EASL improves plasma glucose and insulin levels in mice with HDF-induced type 2 diabetes by regulating β-cell proliferation and insulin sensitivity. PMID:25401395

  5. A novel insulin sensitizer drug candidate-BGP-15-can prevent metabolic side effects of atypical antipsychotics.

    PubMed

    Literati-Nagy, Zsuzsanna; Tory, Kálmán; Literáti-Nagy, Botond; Kolonics, Attila; Vígh, László; Vígh, László; Mandl, József; Szilvássy, Zoltán

    2012-10-01

    Atypical antipsychotic drugs (AAPD) are widely used to treat severe psychiatric disorders, have well documented metabolic side effects such as disturbances in glucose metabolism, insulin resistance and weight gain. It has been shown that BGP-15, a hydroxylamine derivative with insulin sensitizing activity can prevent AAPD provoked fat accumulation in adipocyte cultures, and insulin resistance in animal experiments and in healthy volunteers. The aim of this study was to compare the preventive effect of BGP-15 with conventional oral antidiabetics on metabolic side effects of AAPDs. We found that BGP-15 that does not belong to either conventional insulin sensitizers or oral antidiabetics, is able to counteract insulin resistance and weight gain provoked by antipsychotic agents in rats while rosiglitazone and metformin were not effective in the applied doses. Our results confirm that BGP-15 is a promising new drug candidate to control the metabolic side effects of atypical antipsychotics. Data indicate that this rat model is suitable to analyze the metabolic side effects of AAPDs and the protective mechanism of BGP-15.

  6. Additional Investigations of Ice Shape Sensitivity to Parameter Variations

    NASA Technical Reports Server (NTRS)

    Miller, Dean R.; Potapczuk, Mark G.; Langhals, Tammy J.

    2006-01-01

    A second parameter sensitivity study was conducted at the NASA Glenn Research Center's Icing Research Tunnel (IRT) using a 36 in. chord (0.91 m) NACA-0012 airfoil. The objective of this work was to further investigate the feasibility of using ice shape feature changes to define requirements for the simulation and measurement of SLD and appendix C icing conditions. A previous study concluded that it was feasible to use changes in ice shape features (e.g., ice horn angle, ice horn thickness, and ice shape mass) to detect relatively small variations in icing spray condition parameters (LWC, MVD, and temperature). The subject of this current investigation extends the scope of this previous work, by also examining the effect of icing tunnel spray-bar parameter variations (water pressure, air pressure) on ice shape feature changes. The approach was to vary spray-bar water pressure and air pressure, and then evaluate the effects of these parameter changes on the resulting ice shapes. This paper will provide a description of the experimental method, present selected experimental results, and conclude with an evaluation of these results.

  7. Effects of Chronic Consumption of Sugar-Enriched Diets on Brain Metabolism and Insulin Sensitivity in Adult Yucatan Minipigs

    PubMed Central

    Ochoa, Melissa; Malbert, Charles-Henri; Meurice, Paul; Val-Laillet, David

    2016-01-01

    Excessive sugar intake might increase the risk to develop eating disorders via an altered reward circuitry, but it remains unknown whether different sugar sources induce different neural effects and whether these effects are dependent from body weight. Therefore, we compared the effects of three high-fat and isocaloric diets varying only in their carbohydrate sources on brain activity of reward-related regions, and assessed whether brain activity is dependent on insulin sensitivity. Twenty-four minipigs underwent 18FDG PET brain imaging following 7-month intake of high-fat diets of which 20% in dry matter weight (36.3% of metabolisable energy) was provided by starch, glucose or fructose (n = 8 per diet). Animals were then subjected to a euglycemic hyperinsulinemic clamp to determine peripheral insulin sensitivity. After a 7-month diet treatment, all groups had substantial increases in body weight (from 36.02±0.85 to 63.33±0.81 kg; P<0.0001), regardless of the diet. All groups presented similar insulin sensitivity index (ISI = 1.39±0.10 mL·min-1·μUI·kg). Compared to starch, chronic exposure to fructose and glucose induced bilateral brain activations, i.e. increased basal cerebral glucose metabolism, in several reward-related brain regions including the anterior and dorsolateral prefrontal cortex, the orbitofrontal cortex, the anterior cingulate cortex, the caudate and putamen. The lack of differences in insulin sensitivity index and body weight suggests that the observed differences in basal brain glucose metabolism are not related to differences in peripheral insulin sensitivity and weight gain. The differences in basal brain metabolism in reward-related brain areas suggest the onset of cerebral functional alterations induced by chronic consumption of dietary sugars. Further studies should explore the underlying mechanisms, such as the availability of intestinal and brain sugar transporter, or the appearance of addictive-like behavioral correlates of these

  8. Effects of Chronic Consumption of Sugar-Enriched Diets on Brain Metabolism and Insulin Sensitivity in Adult Yucatan Minipigs.

    PubMed

    Ochoa, Melissa; Malbert, Charles-Henri; Meurice, Paul; Val-Laillet, David

    2016-01-01

    Excessive sugar intake might increase the risk to develop eating disorders via an altered reward circuitry, but it remains unknown whether different sugar sources induce different neural effects and whether these effects are dependent from body weight. Therefore, we compared the effects of three high-fat and isocaloric diets varying only in their carbohydrate sources on brain activity of reward-related regions, and assessed whether brain activity is dependent on insulin sensitivity. Twenty-four minipigs underwent 18FDG PET brain imaging following 7-month intake of high-fat diets of which 20% in dry matter weight (36.3% of metabolisable energy) was provided by starch, glucose or fructose (n = 8 per diet). Animals were then subjected to a euglycemic hyperinsulinemic clamp to determine peripheral insulin sensitivity. After a 7-month diet treatment, all groups had substantial increases in body weight (from 36.02±0.85 to 63.33±0.81 kg; P<0.0001), regardless of the diet. All groups presented similar insulin sensitivity index (ISI = 1.39±0.10 mL·min-1·μUI·kg). Compared to starch, chronic exposure to fructose and glucose induced bilateral brain activations, i.e. increased basal cerebral glucose metabolism, in several reward-related brain regions including the anterior and dorsolateral prefrontal cortex, the orbitofrontal cortex, the anterior cingulate cortex, the caudate and putamen. The lack of differences in insulin sensitivity index and body weight suggests that the observed differences in basal brain glucose metabolism are not related to differences in peripheral insulin sensitivity and weight gain. The differences in basal brain metabolism in reward-related brain areas suggest the onset of cerebral functional alterations induced by chronic consumption of dietary sugars. Further studies should explore the underlying mechanisms, such as the availability of intestinal and brain sugar transporter, or the appearance of addictive-like behavioral correlates of these

  9. Gender dimorphism in aspartame-induced impairment of spatial cognition and insulin sensitivity.

    PubMed

    Collison, Kate S; Makhoul, Nadine J; Zaidi, Marya Z; Saleh, Soad M; Andres, Bernard; Inglis, Angela; Al-Rabiah, Rana; Al-Mohanna, Futwan A

    2012-01-01

    Previous studies have linked aspartame consumption to impaired retention of learned behavior in rodents. Prenatal exposure to aspartame has also been shown to impair odor-associative learning in guinea pigs; and recently, aspartame-fed hyperlipidemic zebrafish exhibited weight gain, hyperglycemia and acute swimming defects. We therefore investigated the effects of chronic lifetime exposure to aspartame, commencing in utero, on changes in blood glucose parameters, spatial learning and memory in C57BL/6J mice. Morris Water Maze (MWM) testing was used to assess learning and memory, and a random-fed insulin tolerance test was performed to assess glucose homeostasis. Pearson correlation analysis was used to investigate the associations between body characteristics and MWM performance outcome variables. At 17 weeks of age, male aspartame-fed mice exhibited weight gain, elevated fasting glucose levels and decreased insulin sensitivity compared to controls (P<0.05). Females were less affected, but had significantly raised fasting glucose levels. During spatial learning trials in the MWM (acquisition training), the escape latencies of male aspartame-fed mice were consistently higher than controls, indicative of learning impairment. Thigmotactic behavior and time spent floating directionless was increased in aspartame mice, who also spent less time searching in the target quadrant of the maze (P<0.05). Spatial learning of female aspartame-fed mice was not significantly different from controls. Reference memory during a probe test was affected in both genders, with the aspartame-fed mice spending significantly less time searching for the former location of the platform. Interestingly, the extent of visceral fat deposition correlated positively with non-spatial search strategies such as floating and thigmotaxis, and negatively with time spent in the target quadrant and swimming across the location of the escape platform. These data suggest that lifetime exposure to aspartame

  10. Gender Dimorphism in Aspartame-Induced Impairment of Spatial Cognition and Insulin Sensitivity

    PubMed Central

    Collison, Kate S.; Makhoul, Nadine J.; Zaidi, Marya Z.; Saleh, Soad M.; Andres, Bernard; Inglis, Angela; Al-Rabiah, Rana; Al-Mohanna, Futwan A.

    2012-01-01

    Previous studies have linked aspartame consumption to impaired retention of learned behavior in rodents. Prenatal exposure to aspartame has also been shown to impair odor-associative learning in guinea pigs; and recently, aspartame-fed hyperlipidemic zebrafish exhibited weight gain, hyperglycemia and acute swimming defects. We therefore investigated the effects of chronic lifetime exposure to aspartame, commencing in utero, on changes in blood glucose parameters, spatial learning and memory in C57BL/6J mice. Morris Water Maze (MWM) testing was used to assess learning and memory, and a random-fed insulin tolerance test was performed to assess glucose homeostasis. Pearson correlation analysis was used to investigate the associations between body characteristics and MWM performance outcome variables. At 17 weeks of age, male aspartame-fed mice exhibited weight gain, elevated fasting glucose levels and decreased insulin sensitivity compared to controls (P<0.05). Females were less affected, but had significantly raised fasting glucose levels. During spatial learning trials in the MWM (acquisition training), the escape latencies of male aspartame-fed mice were consistently higher than controls, indicative of learning impairment. Thigmotactic behavior and time spent floating directionless was increased in aspartame mice, who also spent less time searching in the target quadrant of the maze (P<0.05). Spatial learning of female aspartame-fed mice was not significantly different from controls. Reference memory during a probe test was affected in both genders, with the aspartame-fed mice spending significantly less time searching for the former location of the platform. Interestingly, the extent of visceral fat deposition correlated positively with non-spatial search strategies such as floating and thigmotaxis, and negatively with time spent in the target quadrant and swimming across the location of the escape platform. These data suggest that lifetime exposure to aspartame

  11. Effects of Native Banana Starch Supplementation on Body Weight and Insulin Sensitivity in Obese Type 2 Diabetics

    PubMed Central

    Ble-Castillo, Jorge L.; Aparicio-Trápala, María A.; Francisco-Luria, Mateo U.; Córdova-Uscanga, Rubén; Rodríguez-Hernández, Arturo; Méndez, José D.; Díaz-Zagoya, Juan C.

    2010-01-01

    Few fiber supplements have been studied for physiological effectiveness. The effects of native banana starch (NBS) and soy milk (control) on body weight and insulin sensitivity in obese type 2 diabetics were compared using a blind within-subject crossover design. Subjects undertook two phases of 4-week supplementation either with NBS or soy milk. Patients on NBS lost more body weight than when they were on control treatment. Plasma insulin and HOMA-I were reduced after NBS consumption, compared with baseline levels, but not significantly when compared to the control treatment. Results support the use of NBS as part of dietary fiber supplementation. PMID:20623003

  12. Limitations in the use of indices using glucose and insulin levels to predict insulin sensitivity: impact of race and gender and superiority of the indices derived from oral glucose tolerance test in African Americans.

    PubMed

    Pisprasert, Veeradej; Ingram, Katherine H; Lopez-Davila, Maria F; Munoz, A Julian; Garvey, W Timothy

    2013-04-01

    OBJECTIVE To examine the utility of commonly used insulin sensitivity indices in nondiabetic European Americans (EAs) and African Americans (AAs). RESEARCH DESIGN AND METHODS Two-hundred forty nondiabetic participants were studied. Euglycemic-hyperinsulinemic clamp was the gold standard approach to assess glucose disposal rates (GDR) normalized by lean body mass. The homeostatic model assessment for insulin resistance (HOMA-IR) and the quantitative insulin sensitivity check index (QUICKI) were calculated from fasting plasma glucose and insulin (FIL). Oral glucose tolerance test (OGTT) was performed to determine Matsuda index, the simple index assessing insulin sensitivity (SI(is)OGTT), Avignon index, and Stomvoll index. Relationships among these indices with GDR were analyzed by multiple regression. RESULTS GDR values were similar in EA and AA subgroups; even so, AA exhibited higher FIL and were insulin-resistant compared with EA, as assessed by HOMA-IR, QUICKI, Matsuda index, SI(is)OGTT, Avignon index, and Stumvoll index. In the overall study population, GDR was significantly correlated with all studied insulin sensitivity indices (/r/ = 0.381-0.513); however, these indices were not superior to FIL in predicting GDR. Race and gender affected the strength of this relationship. In AA males, FIL and HOMA-IR were not correlated with GDR. In contrast, Matsuda index and SI(is)OGTT were significantly correlated with GDR in AA males, and Matsuda index was superior to HOMA-IR and QUICKI in AAs overall. CONCLUSIONS Insulin sensitivity indices based on glucose and insulin levels should be used cautiously as measures of peripheral insulin sensitivity when comparing mixed gender and mixed race populations. Matsuda index and SI(is)OGTT are reliable in studies that include AA males.

  13. An Evaluation of MSDC-0160, A Prototype mTOT Modulating Insulin Sensitizer, in Patients with Mild Alzheimer’s Disease

    PubMed Central

    Shah, Raj C; Matthews, Dawn C; Andrews, Randolph D; Capuano, Ana W; Fleischman, Debra A; VanderLugt, James T; Colca, Jerry R

    2014-01-01

    Alzheimer’s disease (AD) is associated with insulin resistance and specific regional declines in cerebral metabolism. The effects of a novel mTOT modulating insulin sensitizer (MSDC-0160) were explored in non-diabetic patients with mild AD to determine whether treatment would impact glucose metabolism measured by FDG-PET in regions that decline in AD. MSDC-0160 (150 mg once daily; N=16) compared to placebo (N=13) for 12 weeks did not result in a significant difference in glucose metabolism in pre-defined regions when referenced to the pons or whole brain. However, glucose metabolism referenced to cerebellum was maintained in MSDC-0160 treated participants while it significantly declined for placebo patients in anterior and posterior cingulate, and parietal, lateral temporal, medial temporal cortices. Voxel-based analyses showed additional differences in FDG-PET related to MSDC-0160 treatment. These exploratory results suggest central effects of MSDC-0160 and provide a basis for further investigation of mTOT modulating insulin sensitizers in AD patients. PMID:24931567

  14. Redox Signal-mediated Enhancement of the Temperature Sensitivity of Transient Receptor Potential Melastatin 2 (TRPM2) Elevates Glucose-induced Insulin Secretion from Pancreatic Islets.

    PubMed

    Kashio, Makiko; Tominaga, Makoto

    2015-05-01

    Transient receptor potential melastatin 2 (TRPM2) is a thermosensitive Ca(2+)-permeable cation channel expressed by pancreatic β cells where channel function is constantly affected by body temperature. We focused on the physiological functions of redox signal-mediated TRPM2 activity at body temperature. H2O2, an important molecule in redox signaling, reduced the temperature threshold for TRPM2 activation in pancreatic β cells of WT mice but not in TRPM2KO cells. TRPM2-mediated [Ca(2+)]i increases were likely caused by Ca(2+) influx through the plasma membrane because the responses were abolished in the absence of extracellular Ca(2+). In addition, TRPM2 activation downstream from the redox signal plus glucose stimulation enhanced glucose-induced insulin secretion. H2O2 application at 37 °C induced [Ca(2+)]i increases not only in WT but also in TRPM2KO β cells. This was likely due to the effect of H2O2 on KATP channel activity. However, the N-acetylcysteine-sensitive fraction of insulin secretion by WT islets was increased by temperature elevation, and this temperature-dependent enhancement was diminished significantly in TRPM2KO islets. These data suggest that endogenous redox signals in pancreatic β cells elevate insulin secretion via TRPM2 sensitization and activity at body temperature. The results in this study could provide new therapeutic approaches for the regulation of diabetic conditions by focusing on the physiological function of TRPM2 and redox signals.

  15. Kazinol B from Broussonetia kazinoki improves insulin sensitivity via Akt and AMPK activation in 3T3-L1 adipocytes.

    PubMed

    Lee, Hyejin; Li, Hua; Jeong, Ji Hye; Noh, Minsoo; Ryu, Jae-Ha

    2016-07-01

    In this study, we evaluated the insulin-sensitizing effect of flavans purified from Broussonetia kazinoki Siebold (BK) on 3T3-L1 adipocytes. Among the tested compounds, kazinol B enhanced intracellular lipid accumulation, gene expression of proliferator-activated receptorγ (PPARγ) and CCAAT/enhancer binding protein-alpha (C/EBPα), and consistently induced PPARγ transcriptional activation. To further investigate the insulin-sensitizing effect of kazinol B, we measured glucose analogue uptake by fully differentiated adipocytes and myotubes. Kazinol B increased 2-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino]-2-deoxy-d-glucose (2-NBDG) uptake by cells by upregulating the gene expression and translocation of glucose transporter 4 (GLUT-4) into the plasma membrane in adipocytes. Kazinol B stimulated the gene expression and secretion of adiponectin, which is associated with a low risk of types 1 and 2 diabetes mellitus. We also suggested the mechanism of the antidiabetic effect of kazinol B by assaying Akt and AMP-activated protein kinase (AMPK) phosphorylation. In conclusion, kazinol B isolated from BK improved insulin sensitivity by enhancing glucose uptake via the insulin-Akt signaling pathway and AMPK activation. These results suggest that kazinol B might be a therapeutic candidate for diabetes mellitus. PMID:27223849

  16. Insulin Sensitivity in Adipose and Skeletal Muscle Tissue of Dairy Cows in Response to Dietary Energy Level and 2,4-Thiazolidinedione (TZD).

    PubMed

    Hosseini, Afshin; Tariq, Muhammad Rizwan; Trindade da Rosa, Fernanda; Kesser, Julia; Iqbal, Zeeshan; Mora, Ofelia; Sauerwein, Helga; Drackley, James K; Trevisi, Erminio; Loor, Juan J

    2015-01-01

    The effects of dietary energy level and 2,4-thiazolidinedione (TZD) injection on feed intake, body fatness, blood biomarkers and TZD concentrations, genes related to insulin sensitivity in adipose tissue (AT) and skeletal muscle, and peroxisome proliferator-activated receptor gamma (PPARG) protein in subcutaneous AT (SAT) were evaluated in Holstein cows. Fourteen nonpregnant nonlactating cows were fed a control low-energy (CON, 1.30 Mcal/kg) diet to meet 100% of estimated nutrient requirements for 3 weeks, after which half of the cows were assigned to a higher-energy diet (OVE, 1.60 Mcal/kg) and half of the cows continued on CON for 6 weeks. All cows received an intravenous injection of TZD starting 2 weeks after initiation of dietary treatments and for an additional 2 weeks, which served as the washout period. Cows fed OVE had greater energy intake and body mass than CON, and TZD had no effect during the administration period. The OVE cows had greater TZD clearance rate than CON cows. The lower concentration of nonesterified fatty acids (NEFA) and greater concentration of insulin in blood of OVE cows before TZD injection indicated positive energy balance and higher insulin sensitivity. Administration of TZD increased blood concentrations of glucose, insulin, and beta-hydroxybutyrate (BHBA) at 2 to 4 weeks after diet initiation, while the concentration of NEFA and adiponectin (ADIPOQ) remained unchanged during TZD. The TZD upregulated the mRNA expression of PPARG and its targets FASN and SREBF1 in SAT, but also SUMO1 and UBC9 which encode sumoylation proteins known to down-regulate PPARG expression and curtail adipogenesis. Therefore, a post-translational response to control PPARG gene expression in SAT could be a counteregulatory mechanism to restrain adipogenesis. The OVE cows had greater expression of the insulin sensitivity-related genes IRS1, SLC2A4, INSR, SCD, INSIG1, DGAT2, and ADIPOQ in SAT. In skeletal muscle, where PPARA and its targets orchestrate

  17. Insulin Sensitivity in Adipose and Skeletal Muscle Tissue of Dairy Cows in Response to Dietary Energy Level and 2,4-Thiazolidinedione (TZD)

    PubMed Central

    Hosseini, Afshin; Tariq, Muhammad Rizwan; Trindade da Rosa, Fernanda; Kesser, Julia; Iqbal, Zeeshan; Mora, Ofelia; Sauerwein, Helga; Drackley, James K.; Trevisi, Erminio; Loor, Juan J.

    2015-01-01

    The effects of dietary energy level and 2,4-thiazolidinedione (TZD) injection on feed intake, body fatness, blood biomarkers and TZD concentrations, genes related to insulin sensitivity in adipose tissue (AT) and skeletal muscle, and peroxisome proliferator-activated receptor gamma (PPARG) protein in subcutaneous AT (SAT) were evaluated in Holstein cows. Fourteen nonpregnant nonlactating cows were fed a control low-energy (CON, 1.30 Mcal/kg) diet to meet 100% of estimated nutrient requirements for 3 weeks, after which half of the cows were assigned to a higher-energy diet (OVE, 1.60 Mcal/kg) and half of the cows continued on CON for 6 weeks. All cows received an intravenous injection of TZD starting 2 weeks after initiation of dietary treatments and for an additional 2 weeks, which served as the washout period. Cows fed OVE had greater energy intake and body mass than CON, and TZD had no effect during the administration period. The OVE cows had greater TZD clearance rate than CON cows. The lower concentration of nonesterified fatty acids (NEFA) and greater concentration of insulin in blood of OVE cows before TZD injection indicated positive energy balance and higher insulin sensitivity. Administration of TZD increased blood concentrations of glucose, insulin, and beta-hydroxybutyrate (BHBA) at 2 to 4 weeks after diet initiation, while the concentration of NEFA and adiponectin (ADIPOQ) remained unchanged during TZD. The TZD upregulated the mRNA expression of PPARG and its targets FASN and SREBF1 in SAT, but also SUMO1 and UBC9 which encode sumoylation proteins known to down-regulate PPARG expression and curtail adipogenesis. Therefore, a post-translational response to control PPARG gene expression in SAT could be a counteregulatory mechanism to restrain adipogenesis. The OVE cows had greater expression of the insulin sensitivity-related genes IRS1, SLC2A4, INSR, SCD, INSIG1, DGAT2, and ADIPOQ in SAT. In skeletal muscle, where PPARA and its targets orchestrate

  18. Insulin-like growth factor 2 silencing restores taxol sensitivity in drug resistant ovarian cancer.

    PubMed

    Brouwer-Visser, Jurriaan; Lee, Jiyeon; McCullagh, KellyAnne; Cossio, Maria J; Wang, Yanhua; Huang, Gloria S

    2014-01-01

    Drug resistance is an obstacle to the effective treatment of ovarian cancer. We and others have shown that the insulin-like growth factor (IGF) signaling pathway is a novel potential target to overcome drug resistance. The purpose of this study was to validate IGF2 as a potential therapeutic target in drug resistant ovarian cancer and to determine the efficacy of targeting IGF2 in vivo. An analysis of The Cancer Genome Atlas (TCGA) data in the serous ovarian cancer cohort showed that high IGF2 mRNA expression is significantly associated with shortened interval to disease progression and death, clinical indicators of drug resistance. In a genetically diverse panel of ovarian cancer cell lines, the IGF2 mRNA levels measured in cell lines resistant to various microtubule-stabilizing agents including Taxol were found to be significantly elevated compared to the drug sensitive cell lines. The effect of IGF2 knockdown on Taxol resistance was investigated in vitro and in vivo. Transient IGF2 knockdown significantly sensitized drug resistant cells to Taxol treatment. A Taxol-resistant ovarian cancer xenograft model, developed from HEY-T30 cells, exhibited extreme drug resistance, wherein the maximal tolerated dose of Taxol did not delay tumor growth in mice. Blocking the IGF1R (a transmembrane receptor that transmits signals from IGF1 and IGF2) using a monoclonal antibody did not alter the response to Taxol. However, stable IGF2 knockdown using short-hairpin RNA in HEY-T30 effectively restored Taxol sensitivity. These findings validate IGF2 as a potential therapeutic target in drug resistant ovarian cancer and show that directly targeting IGF2 may be a preferable strategy compared with targeting IGF1R alone.

  19. Insulin-Like Growth Factor 2 Silencing Restores Taxol Sensitivity in Drug Resistant Ovarian Cancer

    PubMed Central

    Brouwer-Visser, Jurriaan; Lee, Jiyeon; McCullagh, KellyAnne; Cossio, Maria J.; Wang, Yanhua; Huang, Gloria S.

    2014-01-01

    Drug resistance is an obstacle to the effective treatment of ovarian cancer. We and others have shown that the insulin-like growth factor (IGF) signaling pathway is a novel potential target to overcome drug resistance. The purpose of this study was to validate IGF2 as a potential therapeutic target in drug resistant ovarian cancer and to determine the efficacy of targeting IGF2 in vivo. An analysis of The Cancer Genome Atlas (TCGA) data in the serous ovarian cancer cohort showed that high IGF2 mRNA expression is significantly associated with shortened interval to disease progression and death, clinical indicators of drug resistance. In a genetically diverse panel of ovarian cancer cell lines, the IGF2 mRNA levels measured in cell lines resistant to various microtubule-stabilizing agents including Taxol were found to be significantly elevated compared to the drug sensitive cell lines. The effect of IGF2 knockdown on Taxol resistance was investigated in vitro and in vivo. Transient IGF2 knockdown significantly sensitized drug resistant cells to Taxol treatment. A Taxol-resistant ovarian cancer xenograft model, developed from HEY-T30 cells, exhibited extreme drug resistance, wherein the maximal tolerated dose of Taxol did not delay tumor growth in mice. Blocking the IGF1R (a transmembrane receptor that transmits signals from IGF1 and IGF2) using a monoclonal antibody did not alter the response to Taxol. However, stable IGF2 knockdown using short-hairpin RNA in HEY-T30 effectively restored Taxol sensitivity. These findings validate IGF2 as a potential therapeutic target in drug resistant ovarian cancer and show that directly targeting IGF2 may be a preferable strategy compared with targeting IGF1R alone. PMID:24932685

  20. Lactose in milk replacer can partly be replaced by glucose, fructose, or glycerol without affecting insulin sensitivity in veal calves.

    PubMed

    Pantophlet, A J; Gilbert, M S; van den Borne, J J G C; Gerrits, W J J; Roelofsen, H; Priebe, M G; Vonk, R J

    2016-04-01

    Calf milk replacer (MR) contains 40 to 50% lactose. Lactose strongly fluctuates in price and alternatives are desired. Also, problems with glucose homeostasis and insulin sensitivity (i.e., high incidence of hyperglycemia and hyperinsulinemia) have been described for heavy veal calves (body weight >100 kg). Replacement of lactose by other dietary substrates can be economically attractive, and may also positively (or negatively) affect the risk of developing problems with glucose metabolism. An experiment was designed to study the effects of replacing one third of the dietary lactose by glucose, fructose, or glycerol on glucose homeostasis and insulin sensitivity in veal calves. Forty male Holstein-Friesian (body weight=114 ± 2.4 kg; age=97 ± 1.4 d) calves were fed an MR containing 462 g of lactose/kg (CON), or an MR in which 150 g of lactose/kg of MR was replaced by glucose (GLU), fructose (FRU), or glycerol (GLY). During the first 10d of the trial, all calves received CON. The CON group remained on this diet and the other groups received their experimental diets for a period of 8 wk. Measurements were conducted during the first (baseline) and last week of the trial. A frequently sampled intravenous glucose tolerance test was performed to assess insulin sensitivity and 24 h of urine was collected to measure glucose excretion. During the last week of the trial, a bolus of 1.5 g of [U-(13)C] substrates was added to their respective meals and plasma glucose, insulin, and (13)C-glucose responses were measured. Insulin sensitivity was low at the start of the trial and remained low [1.2 ± 0.1 and 1.0 ± 0.1 (mU/L)(-1) × min(-1)], and no treatment effect was noted. Glucose excretion was low at the start of the trial (3.4 ± 1.0 g/d), but increased in CON and GLU calves (26.9 ± 3.9 and 43.0 ± 10.6g/d) but not in FRU and GLY calves. Postprandial glucose was higher in GLU, lower in FRU, and similar in GLY compared with CON calves. Postprandial insulin was lower in FRU

  1. A highly sensitive peptide substrate for detecting two Aß-degrading enzymes: neprilysin and insulin-degrading enzyme.

    PubMed

    Chen, Po-Ting; Liao, Tai-Yan; Hu, Chaur-Jong; Wu, Shu-Ting; Wang, Steven S-S; Chen, Rita P-Y

    2010-06-30

    Neprilysin has been singled out as the most promising candidate for use in the degradation of Abeta as a therapy for Alzheimer's disease. In this study, a quenched fluorogenic peptide substrate containing the first seven residues of the Abeta peptide plus a C-terminal Cysteine residue was synthesized to detect neprilysin activity. A fluorophore was attached to the C-terminal Cysteine and its fluorescence was quenched by a quencher linked to the N-terminus of the peptide. When this peptide substrate was degraded by an endopeptidase, fluorescence was produced and proved to be a sensitive detection system for endopeptidase activity. Our results showed that this assay system was extremely sensitive to neprilysin and insulin-degrading enzyme, but insensitive, or much less sensitive, to other Abeta-degrading enzymes. As low as 0.1 nM of neprilysin and 0.2 nM of insulin-degrading enzyme can be detected.

  2. Protein deficiency during pregnancy and lactation impairs glucose-induced insulin secretion but increases the sensitivity to insulin in weaned rats.

    PubMed

    Latorraca, M Q; Carneiro, E M; Boschero, A C; Mello, M A

    1998-09-01

    We studied glucose homeostasis in rat pups from dams fed on a normal-protein (170 g/kg) (NP) diet or a diet containing 60 g protein/kg (LP) during fetal life and the suckling period. At birth, total serum protein, serum albumin and serum insulin levels were similar in both groups. However, body weight and serum glucose levels in LP rats were lower than those in NP rats. At the end of the suckling period (28 d of age), total serum protein, serum albumin and serum insulin were significantly lower and the liver glycogen and serum free fatty acid levels were significantly higher in LP rats compared with NP rats. Although the fasting serum glucose level was similar in both groups, the area under the blood glucose concentration curve after a glucose load was higher for NP rats (859 (SEM 58) mmol/l per 120 min for NP rats v. 607 (SEM 52) mmol/l per 120 min for LP rats; P < 0.005). The mean post-glucose increase in insulin was higher for NP rats (30 (SEM 4.7) nmol/l per 120 min for NP rats v. 17 (SEM 3.9) nmol/l per 120 min for LP rats; P < 0.05). The glucose disappearance rate for NP rats (0.7 (SEM 0.1) %/min) was lower than that for LP rats (1.6 (SEM 0.2) %/min; P < 0.001). Insulin secretion from isolated islets (1 h incubation) in response to 16.7 mmol glucose/l was augmented 14-fold in NP rats but only 2.6-fold in LP rats compared with the respective basal secretion (2.8 mmol/l; P < 0.001). These results indicate that in vivo as well as in vitro insulin secretion in pups from dams maintained on a LP diet is reduced. This defect may be counteracted by an increase in the sensitivity of target tissues to insulin. PMID:9875069

  3. Krüppel-like factor 14 increases insulin sensitivity through activation of PI3K/Akt signal pathway.

    PubMed

    Yang, Min; Ren, Yan; Lin, Zhimin; Tang, Chenchen; Jia, Yanjun; Lai, Yerui; Zhou, Tingting; Wu, Shaobo; Liu, Hua; Yang, Gangyi; Li, Ling

    2015-11-01

    Genome-wide association studies (GWAS) have shown that Krüppel-like factor 14 (KLF14) is associated with type 2 diabetes mellitus (T2DM). However, no report has demonstrated a relationship between KLF14 and glucose metabolism. The aim of this study was to determine whether KLF14 is associated with glucose metabolism and insulin signaling in vitro. The mRNA and protein expressions of KLF14 were determined by Real-time PCR and Western blotting. Glucose uptake was assessed by 2-[(3)H]-deoxyglucose (2-DG) uptake. Western blotting was used to identify the activation of insulin signaling proteins. KLF14 mRNA and protein in fat and muscle were significantly decreased in HFD-fed mice, db/db mice and T2DM patients. Overexpression of KLF14 enhanced insulin-stimulated glucose uptake and the activation of Akt kinase in Hepa1-6 cells. The phosphorylation of insulin receptor (InsR), insulin receptor substrate-1(IRS-1), glycogen synthase kinase-3β (GSK-3β) and Akt also elevated significantly by up-regulation of KLF14. KLF14 overexpression in Hepa1-6 cells prevented the inhibition of glucose uptake and Akt phosphorylation induced by high glucose and/or high insulin, or T2DM serum. However, KLF14's ability to increase glucose uptake and Akt activation was significantly attenuated by LY294002, a PI3-kinase inhibitor. These data suggested that KLF14 could increase insulin sensitivity probably through the PI3K/Akt pathway. PMID:26226221

  4. Polyphenol-Rich Extract of Syzygium cumini Leaf Dually Improves Peripheral Insulin Sensitivity and Pancreatic Islet Function in Monosodium L-Glutamate-Induced Obese Rats.

    PubMed

    Sanches, Jonas R; França, Lucas M; Chagas, Vinicyus T; Gaspar, Renato S; Dos Santos, Kayque A; Gonçalves, Luciana M; Sloboda, Deborah M; Holloway, Alison C; Dutra, Richard P; Carneiro, Everardo M; Cappelli, Ana Paula G; Paes, Antonio Marcus de A

    2016-01-01

    Syzygium cumini (L.) Skeels (Myrtaceae) has been traditionally used to treat a number of illnesses. Ethnopharmacological studies have particularly addressed antidiabetic and metabolic-related effects of extracts prepared from its different parts, especially seed, and pulp-fruit, however. there is a lack of studies on phytochemical profile and biological properties of its leaf. As there is considerable interest in bioactive compounds to treat metabolic syndrome and its clustered risk factors, we sought to characterize the metabolic effects of hydroethanolic extract of S. cumini leaf (HESc) on lean and monosodium L-glutamate (MSG)-induced obese rats. HPLC-MS/MS characterization of the HESc polyphenolic profile, at 254 nm, identified 15 compounds pertaining to hydrolysable tannin and flavanol subclasses. At 60 days of age, both groups were randomly assigned to receive HESc (500 mg/kg) or vehicle for 30 days. At the end of treatment, obese+HESc exhibited significantly lower body weight gain, body mass index, and white adipose tissue mass, compared to obese rats receiving vehicle. Obese rats treated with HESc showed a twofold increase in lipolytic activity in the periepididymal fat pad, as well as, brought triglyceride levels in serum, liver and skeletal muscle back to levels close those found in lean animals. Furthermore, HESc also improved hyperinsulinemia and insulin resistance in obese+HESc rats, which resulted in partial reversal of glucose intolerance, as compared to obese rats. HESc had no effect in lean rats. Assessment of ex vivo glucose-stimulated insulin secretion showed HESc potentiated pancreatic function in islets isolated from both lean and obese rats treated with HESc. In addition, HESc (10-1000 μg/mL) increased glucose stimulated insulin secretion from both isolated rat islets and INS-1E β-cells. These data demonstrate that S. cumini leaf improved peripheral insulin sensitivity via stimulating/modulating β-cell insulin release, which was associated

  5. Polyphenol-Rich Extract of Syzygium cumini Leaf Dually Improves Peripheral Insulin Sensitivity and Pancreatic Islet Function in Monosodium L-Glutamate-Induced Obese Rats

    PubMed Central

    Sanches, Jonas R.; França, Lucas M.; Chagas, Vinicyus T.; Gaspar, Renato S.; dos Santos, Kayque A.; Gonçalves, Luciana M.; Sloboda, Deborah M.; Holloway, Alison C.; Dutra, Richard P.; Carneiro, Everardo M.; Cappelli, Ana Paula G.; Paes, Antonio Marcus de A.

    2016-01-01

    Syzygium cumini (L.) Skeels (Myrtaceae) has been traditionally used to treat a number of illnesses. Ethnopharmacological studies have particularly addressed antidiabetic and metabolic-related effects of extracts prepared from its different parts, especially seed, and pulp-fruit, however. there is a lack of studies on phytochemical profile and biological properties of its leaf. As there is considerable interest in bioactive compounds to treat metabolic syndrome and its clustered risk factors, we sought to characterize the metabolic effects of hydroethanolic extract of S. cumini leaf (HESc) on lean and monosodium L-glutamate (MSG)-induced obese rats. HPLC-MS/MS characterization of the HESc polyphenolic profile, at 254 nm, identified 15 compounds pertaining to hydrolysable tannin and flavanol subclasses. At 60 days of age, both groups were randomly assigned to receive HESc (500 mg/kg) or vehicle for 30 days. At the end of treatment, obese+HESc exhibited significantly lower body weight gain, body mass index, and white adipose tissue mass, compared to obese rats receiving vehicle. Obese rats treated with HESc showed a twofold increase in lipolytic activity in the periepididymal fat pad, as well as, brought triglyceride levels in serum, liver and skeletal muscle back to levels close those found in lean animals. Furthermore, HESc also improved hyperinsulinemia and insulin resistance in obese+HESc rats, which resulted in partial reversal of glucose intolerance, as compared to obese rats. HESc had no effect in lean rats. Assessment of ex vivo glucose-stimulated insulin secretion showed HESc potentiated pancreatic function in islets isolated from both lean and obese rats treated with HESc. In addition, HESc (10–1000 μg/mL) increased glucose stimulated insulin secretion from both isolated rat islets and INS-1E β-cells. These data demonstrate that S. cumini leaf improved peripheral insulin sensitivity via stimulating/modulating β-cell insulin release, which was associated

  6. Oxamate Improves Glycemic Control and Insulin Sensitivity via Inhibition of Tissue Lactate Production in db/db Mice

    PubMed Central

    Ye, Weiran; Zheng, Yijia; Zhang, Shanshan; Yan, Li; Cheng, Hua; Wu, Muchao

    2016-01-01

    Oxamate (OXA) is a pyruvate analogue that directly inhibits the lactate dehydrogenase (LDH)-catalyzed conversion process of pyruvate into lactate. Earlier and recent studies have shown elevated blood lactate levels among insulin-resistant and type 2 diabetes subjects and that blood lactate levels independently predicted the development of incident diabetes. To explore the potential of OXA in the treatment of diabetes, db/db mice were treated with OXA in vivo. Treatment of OXA (350–750 mg/kg of body weight) for 12 weeks was shown to decrease body weight gain and blood glucose and HbA1c levels and improve insulin secretion, the morphology of pancreatic islets, and insulin sensitivity in db/db mice. Meanwhile, OXA reduced the lactate production of adipose tissue and skeletal muscle and serum lactate levels and decreased serum levels of TG, FFA, CRP, IL-6, and TNF-α in db/db mice. The PCR array showed that OXA downregulated the expression of Tnf, Il6, leptin, Cxcr3, Map2k1, and Ikbkb, and upregulated the expression of Irs2, Nfkbia, and Pde3b in the skeletal muscle of db/db mice. Interestingly, LDH-A expression increased in the islet cells of db/db mice, and both treatment of OXA and pioglitazone decreased LDH-A expression, which might be related to the improvement of insulin secretion. Taken together, increased lactate production of adipose tissue and skeletal muscle may be at least partially responsible for insulin resistance and diabetes in db/db mice. OXA improved glycemic control and insulin sensitivity in db/db mice primarily via inhibition of tissue lactate production. Oxamic acid derivatives may be a potential drug for the treatment of type 2 diabetes. PMID:26938239

  7. Oxamate Improves Glycemic Control and Insulin Sensitivity via Inhibition of Tissue Lactate Production in db/db Mice.

    PubMed

    Ye, Weiran; Zheng, Yijia; Zhang, Shanshan; Yan, Li; Cheng, Hua; Wu, Muchao

    2016-01-01

    Oxamate (OXA) is a pyruvate analogue that directly inhibits the lactate dehydrogenase (LDH)-catalyzed conversion process of pyruvate into lactate. Earlier and recent studies have shown elevated blood lactate levels among insulin-resistant and type 2 diabetes subjects and that blood lactate levels independently predicted the development of incident diabetes. To explore the potential of OXA in the treatment of diabetes, db/db mice were treated with OXA in vivo. Treatment of OXA (350-750 mg/kg of body weight) for 12 weeks was shown to decrease body weight gain and blood glucose and HbA1c levels and improve insulin secretion, the morphology of pancreatic islets, and insulin sensitivity in db/db mice. Meanwhile, OXA reduced the lactate production of adipose tissue and skeletal muscle and serum lactate levels and decreased serum levels of TG, FFA, CRP, IL-6, and TNF-α in db/db mice. The PCR array showed that OXA downregulated the expression of Tnf, Il6, leptin, Cxcr3, Map2k1, and Ikbkb, and upregulated the expression of Irs2, Nfkbia, and Pde3b in the skeletal muscle of db/db mice. Interestingly, LDH-A expression increased in the islet cells of db/db mice, and both treatment of OXA and pioglitazone decreased LDH-A expression, which might be related to the improvement of insulin secretion. Taken together, increased lactate production of adipose tissue and skeletal muscle may be at least partially responsible for insulin resistance and diabetes in db/db mice. OXA improved glycemic control and insulin sensitivity in db/db mice primarily via inhibition of tissue lactate production. Oxamic acid derivatives may be a potential drug for the treatment of type 2 diabetes. PMID:26938239

  8. Fluctuations of Hyperglycemia and Insulin Sensitivity Are Linked to Menstrual Cycle Phases in Women With T1D

    PubMed Central

    Brown, Sue A.; Jiang, Boyi; McElwee-Malloy, Molly; Wakeman, Christian; Breton, Marc D.

    2015-01-01

    Background: Factors influencing glycemic variability in type 1 diabetes (T1D) may play a significant role in the refinement of closed loop insulin administration. Phase of menstrual cycle is one such factor that has been inadequately investigated. We propose that unique individual patterns can be constructed and used as parameters of closed loop systems. Method: Women with T1D on continuous subcutaneous insulin infusion and continuous glucose monitoring were studied for 3 consecutive menstrual cycles. Ovulation prediction kits and labs were used to confirm phase of menstrual cycle. Glycemic risks were assessed using the low- and high blood glucose indices (LBGI and HBGI). Insulin sensitivity (SI) was estimated using a Kalman filtering method from meal and insulin data. Overall change significance for glycemic risks was assessed by repeated measures ANOVA, with specific phases emphasized using contrasts. Results: Ovulation was confirmed in 33/36 cycles studied in 12 subjects (age = 33.1 ± 7.0 years, BMI = 25.7 ± 2.9 kg/m2, A1c = 6.8 ± 0.7%). Risk for hyperglycemia changed significantly during the cycle (P = .023), with HBGI increasing until early luteal phase and returning to initial levels thereafter. LBGI was steady in the follicular phase, decreasing thereafter but not significantly. SI was depressed during the luteal phase when compared to the early follicular phase (P ≤ .05). Total daily insulin, carbohydrates, or calories did not show any significant fluctuations. Conclusions: Women with T1D have glycemic variability changes that are specific to the individual and are linked to phase of cycle. An increased risk of hyperglycemia was observed during periovulation and early luteal phases compared to the early follicular phase; these changes appear to be associated with decreased insulin sensitivity during the luteal phase. PMID:26468135

  9. High density lipoproteins improve insulin sensitivity in high-fat diet-fed mice by suppressing hepatic inflammation[S

    PubMed Central

    McGrath, Kristine C.; Li, Xiao Hong; Whitworth, Phillippa T.; Kasz, Robert; Tan, Joanne T.; McLennan, Susan V.; Celermajer, David S.; Barter, Philip J.; Rye, Kerry-Anne; Heather, Alison K.

    2014-01-01

    Obesity-induced liver inflammation can drive insulin resistance. HDL has anti-inflammatory properties, so we hypothesized that low levels of HDL would perpetuate inflammatory responses in the liver and that HDL treatment would suppress liver inflammation and insulin resistance. The aim of this study was to investigate the effects of lipid-free apoAI on hepatic inflammation and insulin resistance in mice. We also investigated apoAI as a component of reconstituted HDLs (rHDLs) in hepatocytes to confirm results we observed in vivo. To test our hypothesis, C57BL/6 mice were fed a high-fat diet (HFD) for 16 weeks and administered either saline or lipid-free apoAI. Injections of lipid-free apoAI twice a week for 2 or 4 weeks with lipid-free apoAI resulted in: i) improved insulin sensitivity associated with decreased systemic and hepatic inflammation; ii) suppression of hepatic mRNA expression for key transcriptional regulators of lipogenic gene expression; and iii) suppression of nuclear factor κB (NF-κB) activation. Human hepatoma HuH-7 cells exposed to rHDLs showed suppressed TNFα-induced NF-κB activation, correlating with decreased NF-κB target gene expression. We conclude that apoAI suppresses liver inflammation in HFD mice and improves insulin resistance via a mechanism that involves a downregulation of NF-κB activation. PMID:24347528

  10. A Fasting Insulin–Raising Allele at IGF1 Locus Is Associated with Circulating Levels of IGF-1 and Insulin Sensitivity

    PubMed Central

    Mannino, Gaia Chiara; Greco, Annalisa; De Lorenzo, Carlo; Andreozzi, Francesco; Marini, Maria A.; Perticone, Francesco; Sesti, Giorgio

    2013-01-01

    Background A meta-analysis of genome-wide data reported the discovery of the rs35767 polymorphism near IGF1 with genome-wide significant association with fasting insulin levels. However, it is unclear whether the effects of this polymorphism on fasting insulin are mediated by a reduced insulin sensitivity or impaired insulin clearance. We investigated the effects of the rs35767 polymorphism on circulating IGF-1 levels, insulin sensitivity, and insulin clearance. Methodology/Principal Findings Two samples of adult nondiabetic white Europeans were studied. In sample 1 (n=569), IGF-1 levels were lower in GG genotype carriers compared with A allele carriers (190±77 vs. 218±97 ng/ml, respectively; P=0.007 after adjusting for age, gender, and BMI). Insulin sensitivity assessed by euglycaemic-hyperinsulinemic clamp was lower in GG genotype carriers compared with A allele carriers (8.9±4.1 vs. 10.1±5.1 mg x Kg-1 free fat mass x min-1, respectively; P=0.03 after adjusting for age, gender, and BMI). The rs35767 polymorphism did not show significant association with insulin clearance. In sample 2 (n=859), IGF-1 levels were lower in GG genotype carriers compared with A allele carriers (155±60 vs. 164±63 ng/ml, respectively; P=0.02 after adjusting for age, gender, and BMI). Insulin sensitivity, as estimated by the HOMA index, was lower in GG genotype carriers compared with A allele carriers (2.8±2.2 vs. 2.5±1.3, respectively; P=0.03 after adjusting for age, gender, and BMI). Conclusion/Significance The rs35767 polymorphism near IGF1 was associated with circulating IGF-1 levels, and insulin sensitivity with carriers of the GG genotype exhibiting lower IGF-1 concentrations and insulin sensitivity as compared with subjects carrying the A allele. PMID:24392014

  11. The inability of phosphatidylinositol 3-kinase activation to stimulate GLUT4 translocation indicates additional signaling pathways are required for insulin-stimulated glucose uptake.

    PubMed

    Isakoff, S J; Taha, C; Rose, E; Marcusohn, J; Klip, A; Skolnik, E Y

    1995-10-24

    Recent experimental evidence has focused attention to the role of two molecules, insulin receptor substrate 1 (IRS-1) and phosphatidylinositol 3-kinase (PI3-kinase), in linking the insulin receptor to glucose uptake; IRS-1 knockout mice are insulin resistant, and pharmacological inhibitors of PI3-kinase block insulin-stimulated glucose uptake. To investigate the role of PI3-kinase and IRS-1 in insulin-stimulated glucose uptake we examined whether stimulation of insulin-sensitive cells with platelet-derived growth factor (PDGF) or with interleukin 4 (IL-4) stimulates glucose uptake; the activated PDGF receptor (PDGFR) directly binds and activates PI3-kinase, whereas the IL-4 receptor (IL-4R) activates PI3-kinase via IRS-1 or the IRS-1-related molecule 4PS. We found that stimulation of 3T3-L1 adipocytes with PDGF resulted in tyrosine phosphorylation of the PDGFR and activation of PI3-kinase in these cells. To examine whether IL-4 stimulates glucose uptake, L6 myoblasts were engineered to overexpress GLUT4 as well as both chains of the IL-4R (L6/IL-4R/GLUT4); when these L6/IL-4R/GLUT4 myoblasts were stimulated with IL-4, IRS-1 became tyrosine phosphorylated and associated with PI3-kinase. Although PDGF and IL-4 can activate PI3-kinase in the respective cell lines, they do not possess insulin's ability to stimulate glucose uptake and GLUT4 translocation to the plasma membrane. These findings indicate that activation of PI3-kinase is not sufficient to stimulate GLUT4 translocation to the plasma membrane. We postulate that activation of a second signaling pathway by insulin, distinct from PI3-kinase, is necessary for the stimulation of glucose uptake in insulin-sensitive cells.

  12. Diuretics Prevent Thiazolidinedione-Induced Cardiac Hypertrophy without Compromising Insulin-Sensitizing Effects in Mice

    PubMed Central

    Chang, Cherng-Shyang; Tsai, Pei-Jane; Sung, Junne-Ming; Chen, Ju-Yi; Ho, Li-Chun; Pandya, Kumar; Maeda, Nobuyo; Tsai, Yau-Sheng

    2015-01-01

    Much concern has arisen regarding critical adverse effects of thiazolidinediones (TZDs), including rosiglitazone and pioglitazone, on cardiac tissue. Although TZD-induced cardiac hypertrophy (CH) has been attributed to an increase in plasma volume or a change in cardiac nutrient preference, causative roles have not been established. To test the hypothesis that volume expansion directly mediates rosiglitazone-induced CH, mice were fed a high-fat diet with rosiglitazone, and cardiac and metabolic consequences were examined. Rosiglitazone treatment induced volume expansion and CH in wild-type and PPARγ heterozygous knockout (Pparg+/−) mice, but not in mice defective for ligand binding (PpargP465L/+). Cotreatment with the diuretic furosemide in wild-type mice attenuated rosiglitazone-induced CH, hypertrophic gene reprogramming, cardiomyocyte apoptosis, hypertrophy-related signal activation, and left ventricular dysfunction. Similar changes were observed in mice treated with pioglitazone. The diuretics spironolactone and trichlormethiazide, but not amiloride, attenuated rosiglitazone effects on volume expansion and CH. Interestingly, expression of glucose and lipid metabolism genes in the heart was altered by rosiglitazone, but these changes were not attenuated by furosemide cotreatment. Importantly, rosiglitazone-mediated whole-body metabolic improvements were not affected by furosemide cotreatment. We conclude that releasing plasma volume reduces adverse effects of TZD-induced volume expansion and cardiac events without compromising TZD actions in metabolic switch in the heart and whole-body insulin sensitivity. PMID:24287404

  13. Training Does Not Alter Muscle Ceramide and Diacylglycerol in Offsprings of Type 2 Diabetic Patients Despite Improved Insulin Sensitivity

    PubMed Central

    Østergård, Torben; Blachnio-Zabielska, Agnieszka U.; Baranowski, Marcin; Vigelsø, Andreas Hansen; Andersen, Jesper Løvind; Helge, Jørn Wulff

    2016-01-01

    Ceramide and diacylglycerol (DAG) may be involved in the early phase of insulin resistance but data are inconsistent in man. We evaluated if an increase in insulin sensitivity after endurance training was accompanied by changes in these lipids in skeletal muscle. Nineteen first-degree type 2 diabetes Offsprings (Offsprings) (age: 33.1 ± 1.4 yrs; BMI: 26.4 ± 0.4 kg/m2) and sixteen matched Controls (age: 31.3 ± 1.5 yrs; BMI: 25.3 ± 0.7 kg/m2) performed 10 weeks of endurance training three times a week at 70% of VO2max on a bicycle ergometer. Before and after the intervention a hyperinsulinemic-euglycemic clamp and VO2max test were performed and muscle biopsies obtained. Insulin sensitivity was significantly lower in Offsprings compared to control subjects (p < 0.01) but improved in both groups after 10 weeks of endurance training (Off: 17 ± 6%; Con: 12 ± 9%, p < 0.01). The content of muscle ceramide, DAG, and their subspecies were similar between groups and did not change in response to the endurance training except for an overall reduction in C22:0-Cer (p < 0.05). Finally, the intervention induced an increase in AKT protein expression (Off: 27 ± 11%; Con: 20 ± 24%, p < 0.05). This study showed no relation between insulin sensitivity and ceramide or DAG content suggesting that ceramide and DAG are not major players in the early phase of insulin resistance in human muscle. PMID:27777958

  14. Small Molecule Kaempferol Promotes Insulin Sensitivity and Preserved Pancreatic β-Cell Mass in Middle-Aged Obese Diabetic Mice

    PubMed Central

    Alkhalidy, Hana; Moore, William; Zhang, Yanling; Wang, Aihua; Ali, Mostafa; Suh, Kyung-Shin; Zhen, Wei; Cheng, Zhiyong; Jia, Zhenquan; Hulver, Matthew

    2015-01-01

    Insulin resistance and a progressive decline in functional β-cell mass are hallmarks of developing type 2 diabetes (T2D). Thus, searching for natural, low-cost compounds to target these two defects could be a promising strategy to prevent the pathogenesis of T2D. Here, we show that dietary intake of flavonol kaempferol (0.05% in the diet) significantly ameliorated hyperglycemia, hyperinsulinemia, and circulating lipid profile, which were associated with the improved peripheral insulin sensitivity in middle-aged obese mice fed a high-fat (HF) diet. Kaempferol treatment reversed HF diet impaired glucose transport-4 (Glut4) and AMP-dependent protein kinase (AMPK) expression in both muscle and adipose tissues from obese mice. In vitro, kaempferol increased lipolysis and prevented high fatty acid-impaired glucose uptake, glycogen synthesis, AMPK activity, and Glut4 expression in skeletal muscle cells. Using another mouse model of T2D generated by HF diet feeding and low doses of streptozotocin injection, we found that kaempferol treatment significantly improved hyperglycemia, glucose tolerance, and blood insulin levels in obese diabetic mice, which are associated with the improved islet β-cell mass. These results demonstrate that kaempferol may be a naturally occurring anti-diabetic agent by improving peripheral insulin sensitivity and protecting against pancreatic β-cell dysfunction. PMID:26064984

  15. MicroRNA-16 modulates macrophage polarization leading to improved insulin sensitivity in myoblasts.

    PubMed

    Talari, Malathi; Kapadia, Bandish; Kain, Vasundhara; Seshadri, Sriram; Prajapati, Bhumika; Rajput, Parth; Misra, Parimal; Parsa, Kishore V L

    2015-12-01

    Uncontrolled inflammation leads to several diseases such as insulin resistance, T2D and several types of cancers. The functional role of microRNAs in inflammation induced insulin resistance is poorly studied. MicroRNAs are post-transcriptional regulatory molecules which mediate diverse biological processes. We here show that miR-16 expression levels are down-regulated in different inflammatory conditions such as LPS/IFNγ or palmitate treated macrophages, palmitate exposed myoblasts and insulin responsive tissues of high sucrose diet induced insulin resistant rats. Importantly, forced expression of miR-16 in macrophages impaired the production of TNF-α, IL-6 and IFN-β leading to enhanced insulin stimulated glucose uptake in co-cultured skeletal myoblasts. Further, ectopic expression of miR-16 enhanced insulin stimulated glucose uptake in skeletal myoblasts via the up-regulation of GLUT4 and MEF2A, two key players involved in insulin stimulated glucose uptake. Collectively, our data highlight the important role of miR-16 in ameliorating inflammation induced insulin resistance. PMID:26453808

  16. beta-Cell function and insulin sensitivity in adolescents from an OGTT

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Given the increase in the incidence of insulin resistance, obesity, and type 2 diabetes in children and adolescents, it would be of paramount importance to assess quantitative indices of insulin secretion and action during a physiological perturbation, such as a meal or an oral glucose-tolerance tes...

  17. Reduced Insulin Sensitivity Is Related to Less Endogenous Dopamine at D2/3 Receptors in the Ventral Striatum of Healthy Nonobese Humans

    PubMed Central

    Caravaggio, Fernando; Borlido, Carol; Hahn, Margaret; Feng, Zhe; Fervaha, Gagan; Gerretsen, Philip; Nakajima, Shinichiro; Plitman, Eric; Chung, Jun Ku; Iwata, Yusuke; Wilson, Alan; Remington, Gary

    2015-01-01

    Background: Food addiction is a debated topic in neuroscience. Evidence suggests diabetes is related to reduced basal dopamine levels in the nucleus accumbens, similar to persons with drug addiction. It is unknown whether insulin sensitivity is related to endogenous dopamine levels in the ventral striatum of humans. We examined this using the agonist dopamine D2/3 receptor radiotracer [11C]-(+)-PHNO and an acute dopamine depletion challenge. In a separate sample of healthy persons, we examined whether dopamine depletion could alter insulin sensitivity. Methods: Insulin sensitivity was estimated for each subject from fasting plasma glucose and insulin using the Homeostasis Model Assessment II. Eleven healthy nonobese and nondiabetic persons (3 female) provided a baseline [11C]-(+)-PHNO scan, 9 of which provided a scan under dopamine depletion, allowing estimates of endogenous dopamine at dopamine D2/3 receptor. Dopamine depletion was achieved via alpha-methyl-para-tyrosine (64mg/kg, P.O.). In 25 healthy persons (9 female), fasting plasma and glucose was acquired before and after dopamine depletion. Results: Endogenous dopamine at ventral striatum dopamine D2/3 receptor was positively correlated with insulin sensitivity (r(7)=.84, P=.005) and negatively correlated with insulin levels (r(7)=-.85, P=.004). Glucose levels were not correlated with endogenous dopamine at ventral striatum dopamine D2/3 receptor (r(7)=-.49, P=.18). Consistently, acute dopamine depletion in healthy persons significantly decreased insulin sensitivity (t(24)=2.82, P=.01), increased insulin levels (t(24)=-2.62, P=.01), and did not change glucose levels (t(24)=-0.93, P=.36). Conclusion: In healthy individuals, diminished insulin sensitivity is related to less endogenous dopamine at dopamine D2/3 receptor in the ventral striatum. Moreover, acute dopamine depletion reduces insulin sensitivity. These findings may have important implications for neuropsychiatric populations with metabolic

  18. Breed differences in insulin sensitivity and insulinemic responses to oral glucose in horses and ponies of moderate body condition score.

    PubMed

    Bamford, N J; Potter, S J; Harris, P A; Bailey, S R

    2014-04-01

    Breed-related differences may occur in the innate insulin sensitivity (SI) of horses and ponies, an important factor believed to be associated with the risk of laminitis. The aim of this study was to measure the glucose and insulin responses of different breeds of horses and ponies in moderate body condition to a glucose-containing meal and to compare these responses with the indices of SI as determined by a frequently sampled intravenous glucose tolerance test (FSIGT). Eight Standardbred horses, 8 mixed-breed ponies, and 7 Andalusian-cross horses with a mean ± SEM BCS 5.0 ± 0.3 of 9 were used in this study. Each animal underwent an oral glucose tolerance test (OGTT) in which they were fed a fiber-based ration (2.0 g/kg BW) containing 1.5 g/kg BW added glucose, as well as a standard FSIGT with minimal model analysis. The glucose response variables from the OGTT were similar between groups; however, the peak insulin concentration was higher in ponies (94.1 ± 29.1 μIU/mL; P = 0.003) and Andalusians (85.3 ± 18.6; P = 0.004) than in Standardbreds (21.2 ± 3.5). The insulin area under the curve was also higher in ponies (13.5 ± 3.6 IU · min · L(-1); P = 0.009) and Andalusians (15.0 ± 2.7; P = 0.004) than in Standardbreds (3.1 ± 0.6). Insulin sensitivity, as determined by the FSIGT, was lower in Andalusians (0.99 ± 0.18 × 10(-4)/[mIU · min]) than in Standardbreds (5.43 ± 0.94; P < 0.001) and in ponies (2.12 ± 0.44; P = 0.003) than in Standardbreds. Peak insulin concentrations from the OGTT were negatively correlated with SI (P < 0.001; rs = -0.75). These results indicate that there are clear breed-related differences in the insulin responses of horses and ponies to oral and intravenous glucose. All animals were in moderate body condition, indicating that breed-related differences in insulin dynamics occurred independent of obesity. PMID:24308928

  19. Multi-carbohydrase and phytase supplementation improves growth performance and liver insulin receptor sensitivity in broiler chickens fed diets containing full-fat rapeseed.

    PubMed

    Józefiak, D; Ptak, A; Kaczmarek, S; Mackowiak, P; Sassek, M; Slominski, B A

    2010-09-01

    The effect of a combination of carbohydrase and phytase enzymes on growth performance, insulin-like growth factor 1 gene expression, insulin status, and insulin receptor sensitivity in broiler chickens fed wheat-soybean meal diets containing 6% (starter) and 12% (grower-finisher) of full-fat rapeseed (canola type; low glucosinolate, low erucic acid) from 1 to 42 d of age was studied. A total of 510 one-day-old male broiler chickens were randomly assigned to 3 dietary treatments, with 17 pens per treatment and 10 birds per pen. The dietary treatments consisted of a control diet and P- and Ca-deficient diets supplemented with either phytase (500 U/kg) or a combination of phytase and a multi-carbohydrase enzyme (Superzyme OM). The diets were pelleted at 78 degrees C and were fed ad libitum throughout the starter (9 d), grower (18 d), and finisher (15 d) phases of the experiment. Over the entire trial, growth performance of birds fed the phytase-supplemented diet did not differ from birds fed the control diet. The use of phytase in combination with a multicarbohydrase enzyme improved (P = 0.007) the feed conversion ratio from 1.90 to 1.84. Insulin liver receptor sensitivity increased by 9.3 and 12.3% (P = 0.004) for the phytase- and the carbohydrase-phytase-supplemented diets, respectively. There was no effect of phytase alone or carbohydrase and phytase supplementation on total plasma cholesterol, high-density lipoprotein cholesterol, and blood glucose levels. However, low-density lipoprotein cholesterol decreased (P = 0.007) for the phytase-carbohydrase treatment. Gene expression of insulin-like growth factor 1 tended to decrease by 32% (P = 0.083) after phytase-carbohydrase supplementation. The combination of carbohydrase and phytase enzymes may serve as an attractive means of facilitating nutrient availability for digestion and thus enhance the feeding value of wheat-soybean meal-based diets containing full-fat rapeseed. However, the extent to which the effects of

  20. Naturally occurring mitochondrial-derived peptides are age-dependent regulators of apoptosis, insulin sensitivity, and inflammatory markers

    PubMed Central

    Cobb, Laura J.; Lee, Changhan; Xiao, Jialin; Yen, Kelvin; Wong, Richard G.; Nakamura, Hiromi K.; Mehta, Hemal H.; Gao, Qinglei; Ashur, Carmel; Huffman, Derek M.; Wan, Junxiang; Muzumdar, Radhika; Barzilai, Nir; Cohen, Pinchas

    2016-01-01

    Mitochondria are key players in aging and in the pathogenesis of age-related diseases. Recent mitochondrial transcriptome analyses revealed the existence of multiple small mRNAs transcribed from mitochondrial DNA (mtDNA). Humanin (HN), a peptide encoded in the mtDNA 16S ribosomal RNA region, is a neuroprotective factor. An in silico search revealed six additional peptides in the same region of mtDNA as humanin; we named these peptides small humanin-like peptides (SHLPs). We identified the functional roles for these peptides and the potential mechanisms of action. The SHLPs differed in their ability to regulate cell viability in vitro. We focused on SHLP2 and SHLP3 because they shared similar protective effects with HN. Specifically, they significantly reduced apoptosis and the generation of reactive oxygen species, and improved mitochondrial metabolism in vitro. SHLP2 and SHLP3 also enhanced 3T3-L1 pre-adipocyte differentiation. Systemic hyperinsulinemic-euglycemic clamp studies showed that intracerebrally infused SHLP2 increased glucose uptake and suppressed hepatic glucose production, suggesting that it functions as an insulin sensitizer both peripherally and centrally. Similar to HN, the levels of circulating SHLP2 were found to decrease with age. These results suggest that mitochondria play critical roles in metabolism and survival through the synthesis of mitochondrial peptides, and provide new insights into mitochondrial biology with relevance to aging and human biology. PMID:27070352

  1. Gsα deficiency in adipose tissue improves glucose metabolism and insulin sensitivity without an effect on body weight.

    PubMed

    Li, Yong-Qi; Shrestha, Yogendra B; Chen, Min; Chanturiya, Tatyana; Gavrilova, Oksana; Weinstein, Lee S

    2016-01-12

    Gsα, the G protein that transduces receptor-stimulated cAMP generation, mediates sympathetic nervous system stimulation of brown adipose tissue (BAT) thermogenesis and browning of white adipose tissue (WAT), which are both potential targets for treating obesity, as well as lipolysis. We generated a mouse line with Gsα deficiency in mature BAT and WAT adipocytes (Ad-GsKO). Ad-GsKO mice had impaired BAT function, absent browning of WAT, and reduced lipolysis, and were therefore cold-intolerant. Despite the presence of these abnormalities, Ad-GsKO mice maintained normal energy balance on both standard and high-fat diets, associated with decreases in both lipolysis and lipid synthesis. In addition, Ad-GsKO mice maintained at thermoneutrality on a standard diet also had normal energy balance. Ad-GsKO mice had improved insulin sensitivity and glucose metabolism, possibly secondary to the effects of reduced lipolysis and lower circulating fatty acid binding protein 4 levels. Gsα signaling in adipose tissues may therefore affect whole-body glucose metabolism in the absence of an effect on body weight. PMID:26712027

  2. Gsα deficiency in adipose tissue improves glucose metabolism and insulin sensitivity without an effect on body weight

    PubMed Central

    Li, Yong-Qi; Shrestha, Yogendra B.; Chen, Min; Chanturiya, Tatyana; Gavrilova, Oksana; Weinstein, Lee S.

    2016-01-01

    Gsα, the G protein that transduces receptor-stimulated cAMP generation, mediates sympathetic nervous system stimulation of brown adipose tissue (BAT) thermogenesis and browning of white adipose tissue (WAT), which are both potential targets for treating obesity, as well as lipolysis. We generated a mouse line with Gsα deficiency in mature BAT and WAT adipocytes (Ad-GsKO). Ad-GsKO mice had impaired BAT function, absent browning of WAT, and reduced lipolysis, and were therefore cold-intolerant. Despite the presence of these abnormalities, Ad-GsKO mice maintained normal energy balance on both standard and high-fat diets, associated with decreases in both lipolysis and lipid synthesis. In addition, Ad-GsKO mice maintained at thermoneutrality on a standard diet also had normal energy balance. Ad-GsKO mice had improved insulin sensitivity and glucose metabolism, possibly secondary to the effects of reduced lipolysis and lower circulating fatty acid binding protein 4 levels. Gsα signaling in adipose tissues may therefore affect whole-body glucose metabolism in the absence of an effect on body weight. PMID:26712027

  3. Increased Skeletal Muscle Capillarization After Aerobic Exercise Training and Weight Loss Improves Insulin Sensitivity in Adults With IGT

    PubMed Central

    Prior, Steven J.; Blumenthal, Jacob B.; Katzel, Leslie I.; Goldberg, Andrew P.; Ryan, Alice S.

    2014-01-01

    OBJECTIVE Transcapillary transport of insulin is one determinant of glucose uptake by skeletal muscle; thus, a reduction in capillary density (CD) may worsen insulin sensitivity. Skeletal muscle CD is lower in older adults with impaired glucose tolerance (IGT) compared with those with normal glucose tolerance and may be modifiable through aerobic exercise training and weight loss (AEX+WL). We tested the hypothesis that 6-month AEX+WL would increase CD to improve insulin sensitivity and glucose tolerance in older adults with IGT. RESEARCH DESIGN AND METHODS Sixteen sedentary, overweight-obese (BMI 27–35 kg/m2), older (63 ± 2 years) men and women with IGT underwent hyperinsulinemic-euglycemic clamps to measure insulin sensitivity, oral glucose tolerance tests, exercise and body composition testing, and vastus lateralis muscle biopsies to determine CD before and after 6-month AEX+WL. RESULTS Insulin sensitivity (M) and 120-min postprandial glucose (G120) correlated with CD at baseline (r = 0.58 and r = −0.60, respectively, P < 0.05). AEX+WL increased maximal oxygen consumption (VO2max) 18% (P = 0.02) and reduced weight and fat mass 8% (P < 0.02). CD increased 15% (264 ± 11 vs. 304 ± 14 capillaries/mm2, P = 0.01), M increased 21% (42.4 ± 4.0 vs. 51.4 ± 4.3 µmol/kg FFM/min, P < 0.05), and G120 decreased 16% (9.35 ± 0.5 vs. 7.85 ± 0.5 mmol/L, P = 0.008) after AEX+WL. Regression analyses showed that the AEX+WL-induced increase in CD independently predicted the increase in M (r = 0.74, P < 0.01) as well as the decrease in G120 (r = −0.55, P < 0.05). CONCLUSIONS Six-month AEX+WL increases skeletal muscle CD in older adults with IGT. This represents one mechanism by which AEX+WL improves insulin sensitivity in older adults with IGT. PMID:24595633

  4. Clinical Correlates of Insulin Sensitivity and Its Association with Mortality among Men with CKD Stages 3 and 4

    PubMed Central

    Xu, Hong; Huang, Xiaoyan; Ärnlöv, Johan; Cederholm, Tommy; Stenvinkel, Peter; Lindholm, Bengt; Risérus, Ulf

    2014-01-01

    Background and objectives Insulin resistance participates in the pathogenesis of multiple metabolic and cardiovascular diseases. CKD patients have impaired insulin sensitivity, but the clinical correlates and outcome associations of impaired insulin sensitivity in this vulnerable population are not well defined. Design, setting, participants, & measurements The prospective cohort study was from the third examination cycle of the Uppsala Longitudinal Study of Adult Men, a population-based survey of elderly men ages 70–71 years; insulin sensitivity was assessed by glucose disposal rate as measured with euglycemic clamps. Inclusion criterion was eGFR<60 ml/min per 1.73 m2 (n=543). Exclusion criteria were incomplete data on euglycemic clamp and diabetes (n=97), leaving 446 men with CKD stages 3 and 4 (eGFR median=51.9 ml/min per 1.73 m2; range=20.2–59.5 ml/min per 1.73 m2). Results The mean of glucose disposal rate was 5.4±1.9 mg/kg per minute. In multivariable analysis, the independent clinical correlates of glucose disposal rate were eGFR (slope, 0.02; 95% confidence interval, 0.01 to 0.04), hypertension (−0.48; 95% confidence interval, −0.86 to −0.11), hyperlipidemia (−0.51; 95% confidence interval, −0.84 to −0.18), and body mass index (−0.32; 95% confidence interval, −0.37 to −0.27). During follow-up (median=10.0 years; interquartile range=8.7–11.0 years), 149 participants died. In Cox regression models, glucose disposal rate was not associated with all-cause or cardiovascular mortality. Multiplicative interactions (P<0.05) were observed between glucose disposal rate and physical activity or smoking in total mortality association. After subsequent stratification, glucose disposal rate was an independent correlate of all-cause mortality in smokers (adjusted hazard ratio, 0.72; 95% confidence interval, 0.54 to 0.96 per 1 mg/kg per minute glucose disposal rate increase) and physically inactive individuals (hazard ratio, 0.77; 95% confidence

  5. Insulin sensitive and resistant obesity in humans: AMPK activity, oxidative stress, and depot-specific changes in gene expression in adipose tissue[S

    PubMed Central

    Xu, X. Julia; Gauthier, Marie-Soleil; Hess, Donald T.; Apovian, Caroline M.; Cacicedo, Jose M.; Gokce, Noyan; Farb, Melissa; Valentine, Rudy J.; Ruderman, Neil B.

    2012-01-01

    We previously reported that adenosine monophosphate-activated protein kinase (AMPK) activity is lower in adipose tissue of morbidly obese individuals who are insulin resistant than in comparably obese people who are insulin sensitive. However, the number of patients and parameters studied were small. Here, we compared abdominal subcutaneous, epiploic, and omental fat from 16 morbidly obese individuals classified as insulin sensitive or insulin resistant based on the homeostatic model assessment of insulin resistance. We confirmed that AMPK activity is diminished in the insulin resistant group. A custom PCR array revealed increases in mRNA levels of a wide variety of genes associated with inflammation and decreases in PGC-1α and Nampt in omental fat of the insulin resistant group. In contrast, subcutaneous abdominal fat of the same patients showed increases in PTP-1b, VEGFa, IFNγ, PAI-1, and NOS-2 not observed in omental fat. Only angiotensinogen and CD4+ mRNA levels were increased in both depots. Surprisingly, TNFα was only increased in epiploic fat, which otherwise showed very few changes. Protein carbonyl levels, a measure of oxidative stress, were increased in all depots. Thus, adipose tissues of markedly obese insulin resistant individuals uniformly show decreased AMPK activity and increased oxidative stress compared with insulin sensitive patients. However, most changes in gene expression appear to be depot-specific. PMID:22323564

  6. Similar and Additive Effects of Ovariectomy and Diabetes on Insulin Resistance and Lipid Metabolism

    PubMed Central

    Tawfik, Shady H.; Mahmoud, Bothaina F.; Saad, Mohamed I.; Shehata, Mona; Kamel, Maher A.; Helmy, Madiha H.

    2015-01-01

    Type 2 diabetes mellitus (T2DM) is among the leading causes of death in postmenopausal women. The disruption of ovarian function may contribute to the incidence of T2DM. The purpose of this study was to investigate the effects of ovariectomy and T2DM on glucose and lipid homeostasis, perilipin levels in adipose tissues, as a lipolytic regulator, and levels of certain adipokines. Ovariectomized (OVX) rats were used as a model for postmenopausal women. The study was performed on sham, OVX, sham diabetic, and OVX diabetic female rats. The results indicated that ovariectomy alters adipose tissue metabolism through reducing perilipin content in white adipose tissue (WAT); however it has no effect on perilipin level in brown adipose tissue (BAT). OVX diabetic females suffer from serious metabolic disturbances, suggested by exacerbation of insulin resistance in terms of disrupted lipid profile, higher HOMA-IR, hyperinsulinemia, higher leptin, and lower adiponectin concentrations. These metabolic derangements may underlie the predisposition for cardiovascular disease in women after menopause. Therefore, for efficient treatment, the menopausal status of diabetic female should be addressed, and the order of events is of great importance because ovariectomy following development of diabetes has more serious complications compared to development of diabetes as result of menopause. PMID:25834745

  7. The Mechanism by Which Safflower Yellow Decreases Body Fat Mass and Improves Insulin Sensitivity in HFD-Induced Obese Mice

    PubMed Central

    Zhu, Huijuan; Wang, Xiangqing; Pan, Hui; Dai, Yufei; Li, Naishi; Wang, Linjie; Yang, Hongbo; Gong, Fengying

    2016-01-01

    Objectives: Safflower yellow (SY) is the main effective ingredient of Carthamus tinctorius L. It has been reported that SY plays an important role in anti-inflammation, anti-platelet aggregation, and inhibiting thrombus formation. In present study, we try to investigate the effects of SY on body weight, body fat mass, insulin sensitivity in high fat diet (HFD)-induced obese mice. Methods: HFD-induced obese male ICR mice were intraperitoneally injected with SY (120 mg kg−1) daily. Eight weeks later, intraperitoneal insulin tolerance test (IPITT), and intraperitoneal glucose tolerance test (IPGTT) were performed, and body weight, body fat mass, serum insulin levels were measured. The expression of glucose and lipid metabolic related genes in white adipose tissue (WAT) were determined by RT-qPCR and western blot technologies. Results: The administration obese mice with SY significantly reduced the body fat mass of HFD-induced obese mice (P < 0.05). IPITT test showed that the insulin sensitivity of SY treated obese mice were evidently improved. The mRNA levels of insulin signaling pathway related genes including insulin receptor substrate 1(IRS1), PKB protein kinase (AKT), glycogen synthase kinase 3β (GSK3β) and forkhead box protein O1(FOXO1) in mesenteric WAT of SY treated mice were significantly increased to 1.9- , 2.8- , 3.3- , and 5.9-folds of that in HFD-induced control obese mice, respectively (P < 0.05). The protein levels of AKT and GSK3β were also significantly increased to 3.0 and 5.2-folds of that in HFD-induced control obese mice, respectively (P < 0.05). Meanwhile, both the mRNA and protein levels of peroxisome proliferator-activated receptorgamma coactivator 1α (PGC1α) in inguinal subcutaneous WAT of SY group were notably increased to 2.5 and 3.0-folds of that in HFD-induced control obese mice (P < 0.05). Conclusions: SY significantly reduce the body fat mass, fasting blood glucose and increase insulin sensitivity of HFD-induced obese mice. The

  8. Heterodimerization of Glycosylated Insulin-Like Growth Factor-1 Receptors and Insulin Receptors in Cancer Cells Sensitive to Anti-IGF1R Antibody

    PubMed Central

    Kim, Jun Gyu; Kang, Min Jueng; Yoon, Young-Kwang; Kim, Hwang-Phill; Park, Jinah; Song, Sang-Hyun; Han, Sae-Won; Park, Jong-Wan; Kang, Gyeong Hoon; Kang, Keon Wook; Oh, Do Youn; Im, Seock-Ah; Bang, Yung-Jue; Yi, Eugene C.; Kim, Tae-You

    2012-01-01

    Background Identification of predictive biomarkers is essential for the successful development of targeted therapy. Insulin-like growth factor 1 receptor (IGF1R) has been examined as a potential therapeutic target for various cancers. However, recent clinical trials showed that anti-IGF1R antibody and chemotherapy are not effective for treating lung cancer. Methodology/Principal Findings In order to define biomarkers for predicting successful IGF1R targeted therapy, we evaluated the anti-proliferation effect of figitumumab (CP-751,871), a humanized anti-IGF1R antibody, against nine gastric and eight hepatocellular cancer cell lines. Out of 17 cancer cell lines, figitumumab effectively inhibited the growth of three cell lines (SNU719, HepG2, and SNU368), decreased p-AKT and p-STAT3 levels, and induced G 1 arrest in a dose-dependent manner. Interestingly, these cells showed co-overexpression and altered mobility of the IGF1R and insulin receptor (IR). Immunoprecipitaion (IP) assays and ELISA confirmed the presence of IGF1R/IR heterodimeric receptors in figitumumab-sensitive cells. Treatment with figitumumab led to the dissociation of IGF1-dependent heterodimeric receptors and inhibited tumor growth with decreased levels of heterodimeric receptors in a mouse xenograft model. We next found that both IGF1R and IR were N-linked glyosylated in figitumumab-sensitive cells. In particular, mass spectrometry showed that IGF1R had N-linked glycans at N913 in three figitumumab-sensitive cell lines. We observed that an absence of N-linked glycosylation at N913 led to a lack of membranous localization of IGF1R and figitumumab insensitivity. Conclusion and Significance The data suggest that the level of N-linked glycosylated IGF1R/IR heterodimeric receptor is highly associated with sensitivity to anti-IGF1R antibody in cancer cells. PMID:22438913

  9. Leptin Suppression of Insulin Secretion by the Activation of ATP-Sensitive K+ Channels in Pancreatic β-Cells

    PubMed Central

    Kieffer, Timothy J.; Heller, R. Scott; Leech, Colin A.; Holz, George G.; Habener, Joel F.

    2010-01-01

    In the genetic mutant mouse models ob/ob or db/db, leptin deficiency or resistance, respectively, results in severe obesity and the development of a syndrome resembling NIDDM. One of the earliest manifestations in these mutant mice is hyperinsulinemia, suggesting that leptin may normally directly suppress the secretion of insulin. Here, we show that pancreatic islets express a long (signal-transducing) form of leptin-receptor mRNA and that β-cells bind a fluorescent derivative of leptin (Cy3-leptin). The expression of leptin receptors on insulin-secreting β-cells was also visualized utilizing antisera generated against an extracellular epitope of the receptor. A functional role for the β-cell leptin receptor is indicated by our observation that leptin (100 ng/ml) suppressed the secretion of insulin from islets isolated from ob/ob mice. Furthermore, leptin produced a marked lowering of [Ca2+]i in ob/ob β-cells, which was accompanied by cellular hyperpolarization and increased membrane conductance. Cell-attached patch measurements of ob/ob β-cells demonstrated that leptin activated ATP-sensitive potassium channels (KATP) by increasing the open channel probability, while exerting no effect on mean open time. These effects were reversed by the sulfonylurea tolbutamide, a specific inhibitor of KATP. Taken together, these observations indicate an important physiological role for leptin as an inhibitor of insulin secretion and lead us to propose that the failure of leptin to inhibit insulin secretion from the β-cells of ob/ob and db/db mice may explain, in part, the development of hyperinsulinemia, insulin resistance, and the progression to NIDDM. PMID:9166685

  10. Acute effects of 17 β-estradiol and genistein on insulin sensitivity and spatial memory in aged ovariectomized female rats.

    PubMed

    Alonso, Ana; González-Pardo, Héctor; Garrido, Pablo; Conejo, Nélida M; Llaneza, Plácido; Díaz, Fernando; Del Rey, Carmen González; González, Celestino

    2010-12-01

    Aging is characterized by decline in metabolic function and insulin resistance, and both seem to be in the basis of neurodegenerative diseases and cognitive dysfunction. Estrogens prevent age-related changes, and phytoestrogens influence learning and memory. Our hypothesis was that estradiol and genistein, using rapid-action mechanisms, are able to modify insulin sensitivity, process of learning, and spatial memory. Young and aged ovariectomized rats received acute treatment with estradiol or genistein. Aged animals were more insulin-resistant than young. In each age, estradiol and genistein-treated animals were less insulin-resistant than the others, except in the case of young animals treated with high doses of genistein. In aged rats, no differences between groups were found in spatial memory test, showing a poor performance in the water maze task. However, young females treated with estradiol or high doses of genistein performed well in spatial memory task like the control group. Only rats treated with high doses of genistein showed an optimal spatial memory similar to the control group. Conversely, acute treatment with high doses of phytoestrogens improved spatial memory consolidation only in young rats, supporting the critical period hypothesis for the beneficial effects of estrogens on memory. Therefore, genistein treatment seems to be suitable treatment in aged rats in order to prevent insulin resistance but not memory decline associated with aging. Acute genistein treatment is not effective to restore insulin resistance associated to the early loss of ovarian function, although it can be useful to improve memory deficits in this condition. PMID:20467821

  11. Exercise and improved insulin sensitivity in older women: evidence of the enduring benefits of higher intensity training.

    PubMed

    DiPietro, Loretta; Dziura, James; Yeckel, Catherine W; Neufer, P Darrell

    2006-01-01

    Few studies have compared the relative benefits of moderate- vs. higher intensity exercise training on improving insulin sensitivity in older people while holding exercise volume constant. Healthy older (73 +/- 10 yr) women (N = 25) who were inactive, but not obese, were randomized into one of three training programs (9-mo duration): 1) high-intensity [80% peak aerobic capacity (V(O2)peak); T(H)] aerobic training; 2) moderate-intensity (65% V(O2)peak; T(M)) aerobic training; or 3) low-intensity (stretching) placebo control (50% V(O2)peak); C(TB)). Importantly, exercise volume (300 kcal/session) was held constant for subjects in both the T(H) and the T(M) groups. V(O2)peak was determined by using a graded exercise challenge on a treadmill. Total body fat and lean mass were determined with dual-energy X-ray absorptiometry. The rate of insulin-stimulated glucose utilization as well as the suppression of lipolysis were determined approximately 72 h after the final exercise bout by using a two-step euglycemic-hyperinsulinemic clamp. We observed improved glucose utilization at the higher insulin dose with training, but these improvements were statistically significant only in the T(H) (21%; P = 0.02) compared with the T(M) (16%; P = 0.17) and C(TB) (8%; P = 0.37) groups and were observed without changes in either body composition or V(O2)peak. Likewise in the T(H) group, we detected a significant improvement in insulin-stimulated suppression (%) of adipose tissue lipolysis at the low-insulin dose (38-55%, P < 0.05). Our findings suggest that long-term higher intensity exercise training provides more enduring benefits to insulin action compared with moderate- or low-intensity exercise, likely due to greater transient effects.

  12. The Amelioration of Hepatic Steatosis by Thyroid Hormone Receptor Agonists Is Insufficient to Restore Insulin Sensitivity in Ob/Ob Mice

    PubMed Central

    Cimini, Stephanie L.; Webb, Paul; Phillips, Kevin J.

    2015-01-01

    Thyroid hormone receptor (TR) agonists have been proposed as therapeutic agents to treat non-alcoholic fatty liver disease (NAFLD) and insulin resistance. We investigated the ability of the TR agonists GC-1 and KB2115 to reduce hepatic steatosis in ob/ob mice. Both compounds markedly reduced hepatic triglyceride levels and ameliorated hepatic steatosis. However, the amelioration of fatty liver was not sufficient to improve insulin sensitivity in these mice and reductions in hepatic triglycerides did not correlate with improvements in insulin sensitivity or glycemic control. Instead, the effects of TR activation on glycemia varied widely and were found to depend upon the time of treatment as well as the compound and dosage used. Lower doses of GC-1 were found to further impair glycemic control, while a higher dose of the same compound resulted in substantially improved glucose tolerance and insulin sensitivity, despite all doses being equally effective at reducing hepatic triglyceride levels. Improvements in glycemic control and insulin sensitivity were observed only in treatments that also increased body temperature, suggesting that the induction of thermogenesis may play a role in mediating these beneficial effects. These data illustrate that the relationship between TR activation and insulin sensitivity is complex and suggests that although TR agonists may have value in treating NAFLD, their effect on insulin sensitivity must also be considered. PMID:25849936

  13. Effects of protein intake on blood pressure, insulin sensitivity and blood lipids in children: a systematic review.

    PubMed

    Voortman, Trudy; Vitezova, Anna; Bramer, Wichor M; Ars, Charlotte L; Bautista, Paula K; Buitrago-Lopez, Adriana; Felix, Janine F; Leermakers, Elisabeth T M; Sajjad, Ayesha; Sedaghat, Sanaz; Tharner, Anne; Franco, Oscar H; van den Hooven, Edith H

    2015-02-14

    High protein intake in early childhood is associated with obesity, suggesting possible adverse effects on other cardiometabolic outcomes. However, studies in adults have suggested beneficial effects of protein intake on blood pressure (BP) and lipid profile. Whether dietary protein intake is associated with cardiovascular and metabolic health in children is unclear. Therefore, we aimed to systematically review the evidence on the associations of protein intake with BP, insulin sensitivity and blood lipids in children. We searched the databases Medline, Embase, Cochrane Central and PubMed for interventional and observational studies in healthy children up to the age of 18 years, in which associations of total, animal and/or vegetable protein intake with one or more of the following outcomes were reported: BP; measures of insulin sensitivity; cholesterol levels; or TAG levels. In the search, we identified 6636 abstracts, of which fifty-six studies met all selection criteria. In general, the quality of the included studies was low. Most studies were cross-sectional, and many did not control for potential confounders. No overall associations were observed between protein intake and insulin sensitivity or blood lipids. A few studies suggested an inverse association between dietary protein intake and BP, but evidence was inconclusive. Only four studies examined the effects of vegetable or animal protein intake, but with inconsistent results. In conclusion, the literature, to date provides insufficient evidence for effects of protein intake on BP, insulin sensitivity or blood lipids in children. Future studies could be improved by adequately adjusting for key confounders such as energy intake and obesity.

  14. mTOR Inhibition: Reduced Insulin Secretion and Sensitivity in a Rat Model of Metabolic Syndrome

    PubMed Central

    Rovira, Jordi; Ramírez-Bajo, María Jose; Banon-Maneus, Elisenda; Moya-Rull, Daniel; Ventura-Aguiar, Pedro; Hierro-Garcia, Natalia; Lazo-Rodriguez, Marta; Revuelta, Ignacio; Torres, Armando; Oppenheimer, Federico; Campistol, Josep M.; Diekmann, Fritz

    2016-01-01

    Background Sirolimus (SRL) has been associated with new-onset diabetes mellitus after transplantation. The aim was to determine the effect of SRL on development of insulin resistance and β-cell toxicity. Methods Lean Zucker rat (LZR) and obese Zucker rat (OZR) were distributed into groups: vehicle and SRL (0.25, 0.5, or 1.0 mg/kg) during 12 or 28 days. Intraperitoneal glucose tolerance test (IPGTT) was evaluated at days 0, 12, 28, and 45. Islet morphometry, β-cell proliferation, and apoptosis were analyzed at 12 days. Islets were isolated to analyze insulin content, insulin secretion, and gene expression. Results After 12 days, SRL treatment only impaired IPGTT in a dose-dependent manner in OZR. Treatment prolongation induced increase of area under the curve of IPGTT in LZR and OZR; however, in contrast to OZR, LZR normalized glucose levels after 2 hours. The SRL reduced pancreas weight and islet proliferation in LZR and OZR as well as insulin content. Insulin secretion was only affected in OZR. Islets from OZR + SRL rats presented a downregulation of Neurod1, Pax4, and Ins2 gene. Genes related with insulin secretion remained unchanged or upregulated. Conclusions In conditions that require adaptive β-cell proliferation, SRL might reveal harmful effects by blocking β-cell proliferation, insulin production and secretion. These effects disappeared when removing the therapy. PMID:27500257

  15. Effects of selective alfa 1 and beta 1-adrenoreceptor blockade on lipoprotein and carbohydrate metabolism in hypertensive subjects, with special emphasis on insulin sensitivity.

    PubMed

    Andersson, P E; Johansson, J; Berne, C; Lithell, H

    1994-03-01

    The central role of insulin resistance in patients with essential hypertension was the impetus for the present study, in which carbohydrate and lipid metabolism were examined before and after three months treatment with doxazosin (n = 14) and atenolol (n = 15). After completion of a randomised parallel group trial, the study was extended in a subgroup of the patients who continued treatment with doxazosin for a further nine months (n = 18). Insulin sensitivity was measured with the euglycemic hyperinsulinaemic clamp. Blood glucose and plasma insulin were analysed in the fasting state and during an intravenous glucose tolerance test (IVGTT). Lipoprotein fractions were analysed in serum. After three months, SBP and DBP in the standing position decreased to the same extent after the two drugs whereas the decrease in supine SBP did not reach statistical significance in the doxazosin group. Doxazosin, in contrast to atenolol, decreased serum triglycerides (-17%, P < 0.04) by lowering the VLDL and LDL fractions. Serum cholesterol fell after doxazosin (-7%, P < 0.02) but not after atenolol. The effects of doxazosin on serum lipids remained the same during the long-term follow-up. At three months neither drug had significantly affected variables reflecting insulin sensitivity although atenolol tended to decrease the insulin sensitivity index (-17%, P = 0.08). After 12 months the doxazosin group showed a significant increase in the insulin sensitivity index and a significant decrease in both basal plasma insulin and in the late insulin response at IVGTT.(ABSTRACT TRUNCATED AT 250 WORDS)

  16. Sweet potato [Ipomoea batatas (L.) Lam. "Tainong 57"] starch improves insulin sensitivity in high-fructose diet-fed rats by ameliorating adipocytokine levels, pro-inflammatory status, and insulin signaling.

    PubMed

    Chen, Ya-Yen; Lai, Ming-Hoang; Hung, Hsin-Yu; Liu, Jen-Fang

    2013-01-01

    The aim of this study was to investigate the effects of low-glycemic index (GI) sweet potato starch on adipocytokines, pro-inflammatory status, and insulin signaling in the high-fructose diet-induced insulin-resistant rat. We randomly divided 24 insulin-resistant rats and 16 normal rats into two groups fed a diet containing 575 g/kg of starch: a low-GI sweet potato starch (S) or a high-GI potato starch (P). The four experimental groups were labeled as follows: insulin-resistant P (IR-P), insulin-resistant S (IR-S), normal P (N-P) and normal S (N-S). After 4 wk on the experimental diets, an intraperitoneal glucose tolerance test (IPGTT) was conducted, and the homeostasis model assessment (HOMA), adipocytokines, pro-inflammatory cytokines levels, and insulin signaling-related protein expression were measured. The homeostasis model assessment values were significantly lower in the IR-S than in the IR-P group, suggesting that insulin sensitivity was improved among sweet potato starch-fed rats. Levels of tumor necrosis factor-α, interleukin-6, resistin, and retinol binding protein-4 were significantly lower in the IR-S versus the IR-P group, indicating an improvement of pro-inflammatory status in sweet potato starch-fed rats. The sweet potato starch diet also significantly enhanced the protein expression of phospho-Tyr-insulin receptor substrate-1 and improved the translocation of glucose transporter 4 in the skeletal muscle. Our results illustrated that sweet potato starch feeding for 4 wk can improve insulin sensitivity in insulin-resistant rats, possibly by improving the adipocytokine levels, pro-inflammatory status, and insulin signaling.

  17. Effect of Metformin Glycinate on Glycated Hemoglobin A1c Concentration and Insulin Sensitivity in Drug-Naive Adult Patients with Type 2 Diabetes Mellitus

    PubMed Central

    Martínez-Abundis, Esperanza; Robles-Cervantes, José A.; Ramos-Zavala, Maria G.; Barrera-Durán, Carmelita; González-Canudas, Jorge

    2012-01-01

    Abstract Aim This study evaluated the effect of metformin glycinate on glycated hemoglobin A1c (A1C) concentration and insulin sensitivity in drug-naive adult patients with type 2 diabetes mellitus (T2DM). Subjects and Methods A randomized, double-blind, placebo-controlled clinical trial was carried out in 20 patients with drug-naive T2DM. Ten subjects received metformin glycinate (1,050.6 mg) once daily during the first month and force-titrated twice daily during the second month. Ten additional patients received placebo as the control group. Before and after the intervention, metabolic profile including A1C and insulin sensitivity (euglycemic-hyperinsulinemic clamp technique) was estimated. Results A1C concentrations decreased significantly with metformin glycinate administration (8.0±0.7% vs. 7.1±0.9%, P=0.008) before and after the intervention, respectively. There were significant differences in changes from baseline of A1C between groups (0.0±0.7% vs. −1.0±0.5% for placebo and metformin glycinate groups, respectively; P=0.004). A reduction of ≥1% in A1C levels was reached in 60.0% of patients with metformin glycinate administration (P=0.02). Insulin sensitivity was not modified by the intervention. Conclusions Administration of metformin glycinate during a 2-month period showed a greater decrease in A1C concentrations than placebo in a selected group of drug-naive adult patients with T2DM. PMID:22974412

  18. Serum uric acid and insulin sensitivity in adolescents and adults with and without type 1 diabetes

    PubMed Central

    Bjornstad, Petter; Snell-Bergeon, Janet K.; McFann, Kimberly; Wadwa, R. Paul; Rewers, Marian; Rivard, Christopher J.; Jalal, Diana; Chonchol, Michel B.; Johnson, Richard J.; Maahs, David M.

    2014-01-01

    Hypothesis Decreased insulin sensitivity (IS) exists in type 1 diabetes. Serum uric acid (SUA), whose concentration is related to renal clearance, predicts vascular complications in type 1 diabetes. SUA is also inversely associated with IS in non-diabetics, but has not been examined in type 1 diabetes. We hypothesized SUA would be associated with reduced IS in adolescents and adults with type 1 diabetes. Methods The cross-sectional and longitudinal associations of SUA with IS was investigated in 254 adolescents with type 1 diabetes and 70 without in the Determinants of Macrovascular Disease in Adolescents with Type 1 Diabetes Study, and in 471 adults with type 1 diabetes and 571 without in the Coronary Artery Calcification in Type 1 diabetes (CACTI) study. Results SUA was lower in subjects with type 1 diabetes (p<0.0001), but still remained inversely associated with IS after multivariable adjustments- in adolescents (β±SE: −1.99±0.62, p=0.001, R2=2%) and adults (β±SE:−0.91±0.33, p=0.006, R2=6%) with type 1 diabetes, though less strongly than in non-diabetic controls (adolescents: β±SE: −2.70±1.19, p=0.03, R2=15%, adults: β±SE:−5.99±0.75, p<0.0001, R2=39%). Conclusion We demonstrated a significantly weaker relationship between SUA and reduced IS in subjects with type 1 diabetes than non-diabetic controls. PMID:24461546

  19. Insulin sensitivity improvement of fermented Korean Red Ginseng (Panax ginseng) mediated by insulin resistance hallmarks in old-aged ob/ob mice

    PubMed Central

    Cheon, Jeong-Mu; Kim, Dae-Ik; Kim, Kil-Soo

    2015-01-01

    Background The biological actions of various ginseng extracts have been studied for treating obesity and diabetes mellitus. However, few studies have evaluated the effects of fermented Korean Red Ginseng (Panax ginseng Meyer) on metabolic syndrome. The present study evaluated the antiobesity and antidiabetic effects of fermented red ginseng (FRG) on old-aged, obese, leptin-deficient (B6.V-Lepob, “ob/ob”) mice. Methods The animals were divided into three groups and given water containing 0%, 0.5%, and 1.0% FRG for 16 wk. The effect of FRG on ob/ob mice was determined by measuring changes in body weight, levels of blood glucose, serum contents of triglycerides, total cholesterol and free fatty acids, messenger RNA (mRNA) expressions of key factors associated with insulin action, such as insulin receptor (IR), lipoprotein lipase (LPL), glucose transporter 1 and 4 (GLUT1 and GLUT4), peroxisome proliferators-activated receptor gamma (PPAR-γ), and phosphoenolpyruvate carboxykinase (PEPCK) in the liver and in muscle, and histology of the liver and pancreas. Results FRG-treated mice had decreased body weight and blood glucose levels compared with control ob/ob mice. However, anti-obesity effect of FRG was not evident rather than hypoglycemic effect in old aged ob/ob mice. The hyperlipidemia in control group was attenuated in FRG-treated ob/ob mice. The mRNA expressions of IR, LPL, GLUT1, GLUT4, PPAR-γ, and PEPCK in the liver and in muscle were increased in the FRG-treated groups compared with the control group. Conclusion These results suggest that FRG may play a vital role in improving insulin sensitivity relative to reducing body weight in old-aged ob/ob mice. PMID:26869825

  20. The CDP-Ethanolamine Pathway Regulates Skeletal Muscle Diacylglycerol Content and Mitochondrial Biogenesis without Altering Insulin Sensitivity.

    PubMed

    Selathurai, Ahrathy; Kowalski, Greg M; Burch, Micah L; Sepulveda, Patricio; Risis, Steve; Lee-Young, Robert S; Lamon, Severine; Meikle, Peter J; Genders, Amanda J; McGee, Sean L; Watt, Matthew J; Russell, Aaron P; Frank, Matthew; Jackowski, Suzanne; Febbraio, Mark A; Bruce, Clinton R

    2015-05-01

    Accumulation of diacylglycerol (DG) in muscle is thought to cause insulin resistance. DG is a precursor for phospholipids, thus phospholipid synthesis could be involved in regulating muscle DG. Little is known about the interaction between phospholipid and DG in muscle; therefore, we examined whether disrupting muscle phospholipid synthesis, specifically phosphatidylethanolamine (PtdEtn), would influence muscle DG content and insulin sensitivity. Muscle PtdEtn synthesis was disrupted by deleting CTP:phosphoethanolamine cytidylyltransferase (ECT), the rate-limiting enzyme in the CDP-ethanolamine pathway, a major route for PtdEtn production. While PtdEtn was reduced in muscle-specific ECT knockout mice, intramyocellular and membrane-associated DG was markedly increased. Importantly, however, this was not associated with insulin resistance. Unexpectedly, mitochondrial biogenesis and muscle oxidative capacity were increased in muscle-specific ECT knockout mice and were accompanied by enhanced exercise performance. These findings highlight the importance of the CDP-ethanolamine pathway in regulating muscle DG content and challenge the DG-induced insulin resistance hypothesis. PMID:25955207

  1. NAMPT-Mediated NAD(+) Biosynthesis in Adipocytes Regulates Adipose Tissue Function and Multi-organ Insulin Sensitivity in Mice.

    PubMed

    Stromsdorfer, Kelly L; Yamaguchi, Shintaro; Yoon, Myeong Jin; Moseley, Anna C; Franczyk, Michael P; Kelly, Shannon C; Qi, Nathan; Imai, Shin-Ichiro; Yoshino, Jun

    2016-08-16

    Obesity is associated with adipose tissue dysfunction and multi-organ insulin resistance. However, the mechanisms of such obesity-associated systemic metabolic complications are not clear. Here, we characterized mice with adipocyte-specific deletion of nicotinamide phosphoribosyltransferase (NAMPT), a rate-limiting NAD(+) biosynthetic enzyme known to decrease in adipose tissue of obese and aged rodents and people. We found that adipocyte-specific Nampt knockout mice had severe insulin resistance in adipose tissue, liver, and skeletal muscle and adipose tissue dysfunction, manifested by increased plasma free fatty acid concentrations and decreased plasma concentrations of a major insulin-sensitizing adipokine, adiponectin. Loss of Nampt increased phosphorylation of CDK5 and PPARγ (serine-273) and decreased gene expression of obesity-linked phosphorylated PPARγ targets in adipose tissue. These deleterious alterations were normalized by administering rosiglitazone or a key NAD(+) intermediate, nicotinamide mononucleotide (NMN). Collectively, our results provide important mechanistic and therapeutic insights into obesity-associated systemic metabolic derangements, particularly multi-organ insulin resistance.

  2. NAMPT-mediated NAD+ biosynthesis in adipocytes regulates adipose tissue function and multi-organ insulin sensitivity in mice

    PubMed Central

    Stromsdorfer, Kelly L.; Yamaguchi, Shintaro; Yoon, Myeong Jin; Moseley, Anna C.; Franczyk, Michael P.; Kelly, Shannon C.; Qi, Nathan; Imai, Shin-ichiro; Yoshino, Jun

    2016-01-01

    SUMMARY Obesity is associated with adipose tissue dysfunction and multi-organ insulin resistance. However, the mechanisms of such obesity-associated systemic metabolic complications are not clear. Here, we characterized mice with adipocyte-specific deletion of nicotinamide phosphoribosyltransferase (NAMPT), a rate-limiting NAD+ biosynthetic enzyme known to decrease in adipose tissue of obese and aged rodents and people. We found that adipocyte-specific Nampt knockout mice had severe insulin resistance in adipose tissue, liver, and skeletal muscle, and adipose tissue dysfunction, manifested by increased plasma free fatty acids concentrations and decreased plasma concentrations of a major insulin-sensitizing adipokine, adiponectin. Loss of Nampt increased phosphorylation of CDK5 and PPARγ (serine-273) and decreased gene expression of obesity-linked phosphorylated PPARγ targets in adipose tissue. Remarkably, these deleterious alterations were normalized by administering rosiglitazone or a key NAD+ intermediate, nicotinamide mononucleotide (NMN). Collectively, our results provide important mechanistic and therapeutic insights into obesity-associated systemic metabolic derangements, particularly multi-organ insulin resistance. PMID:27498863

  3. Seipin deficiency alters brown adipose tissue thermogenesis and insulin sensitivity in a non-cell autonomous mode

    PubMed Central

    Dollet, L.; Magré, J.; Joubert, M.; Le May, C.; Ayer, A.; Arnaud, L.; Pecqueur, C.; Blouin, V.; Cariou, B.; Prieur, X.

    2016-01-01

    Loss-of-function mutations in BSCL2 are responsible for Berardinelli-Seip congenital lipodystrophy, a rare disorder characterized by near absence of adipose tissue associated with insulin resistance. Seipin-deficient (Bscl2−/−) mice display an almost total loss of white adipose tissue (WAT) with residual brown adipose tissue (BAT). Previous cellular studies have shown that seipin deficiency alters white adipocyte differentiation. In this study, we aimed to decipher the consequences of seipin deficiency in BAT. Using a brown adipocyte cell-line, we show that seipin knockdown had very little effect on adipocyte differentiation without affecting insulin sensitivity and oxygen consumption. However, when submitted to cold acclimation or chronic β3 agonist treatment, Bscl2−/− mice displayed altered thermogenic capacity, despite several signs of BAT remodeling. Under cold activation, Bscl2−/− mice were able to maintain their body temperature when fed ad libitum, but not under short fasting. At control temperature (i.e. 21 °C), fasting worsened Bscl2−/− BAT properties. Finally, Bscl2−/− BAT displayed obvious signs of insulin resistance. Our results in these lipodystrophic mice strongly suggest that BAT activity relies on WAT as an energetic substrate provider and adipokine-producing organ. Therefore, the WAT/BAT dialogue is a key component of BAT integrity in guaranteeing its response to insulin and cold-activated adrenergic signals. PMID:27748422

  4. HSP72 Is a Mitochondrial Stress Sensor Critical for Parkin Action, Oxidative Metabolism, and Insulin Sensitivity in Skeletal Muscle

    PubMed Central

    Drew, Brian G.; Ribas, Vicente; Le, Jamie A.; Henstridge, Darren C.; Phun, Jennifer; Zhou, Zhenqi; Soleymani, Teo; Daraei, Pedram; Sitz, Daniel; Vergnes, Laurent; Wanagat, Jonathan; Reue, Karen; Febbraio, Mark A.; Hevener, Andrea L.

    2014-01-01

    Increased heat shock protein (HSP) 72 expression in skeletal muscle prevents obesity and glucose intolerance in mice, although the underlying mechanisms of this observation are largely unresolved. Herein we show that HSP72 is a critical regulator of stress-induced mitochondrial triage signaling since Parkin, an E3 ubiquitin ligase known to regulate mitophagy, was unable to ubiquitinate and control its own protein expression or that of its central target mitofusin (Mfn) in the absence of HSP72. In wild-type cells, we show that HSP72 rapidly translocates to depolarized mitochondria prior to Parkin recruitment and immunoprecipitates with both Parkin and Mfn2 only after specific mitochondrial insult. In HSP72 knockout mice, impaired Parkin action was associated with retention of enlarged, dysmorphic mitochondria and paralleled by reduced muscle respiratory capacity, lipid accumulation, and muscle insulin resistance. Reduced oxygen consumption and impaired insulin action were recapitulated in Parkin-null myotubes, confirming a role for the HSP72-Parkin axis in the regulation of muscle insulin sensitivity. These data suggest that strategies to maintain HSP72 may provide therapeutic benefit to enhance mitochondrial quality and insulin action to ameliorate complications associated with metabolic diseases, including type 2 diabetes. PMID:24379352

  5. Effects of ambient temperature on glucose tolerance and insulin sensitivity test outcomes in normal and obese C57 male mice.

    PubMed

    Dudele, Anete; Rasmussen, Gitte Marie; Mayntz, David; Malte, Hans; Lund, Sten; Wang, Tobias

    2015-05-01

    Mice are commonly used as animal models to study human metabolic diseases, but experiments are typically performed at room temperature, which is far below their thermoneutral zone and is associated with elevated heart rate, food intake, and energy expenditure. We set out to study how ambient temperature affects glucose tolerance and insulin sensitivity in control and obese male mice. Adult male C57BL/6J mice were housed at room temperature (23°C) for 6 weeks and fed either control or high fat diet. They were then fasted for 6 h before glucose or insulin tolerance tests were performed at 15, 20, 25, or 30°C. To ensure that behavioral thermoregulation did not counterbalance the afflicted ambient temperatures, oxygen consumption was determined on mice with the same thermoregulatory opportunities as during the tests. Decreasing ambient temperatures increased oxygen consumption and body mass loss during fasting in both groups. Mice fed high fat diet had improved glucose tolerance at 30°C and increased levels of fasting insulin followed by successive decrease of fasting glucose. However, differences between control and high-fat diet mice were present at all temperatures. Ambient temperature did not affect glucose tolerance in control group and insulin tolerance in either of the groups. Ambient temperature affects glucose metabolism in mice and this effect is phenotype specific.

  6. Hormone-sensitive lipase deficiency suppresses insulin secretion from pancreatic islets of Lep{sup ob/ob} mice

    SciTech Connect

    Sekiya, Motohiro; Yahagi, Naoya; Tamura, Yoshiaki; Okazaki, Hiroaki; Igarashi, Masaki; Ohta, Keisuke; Takanashi, Mikio; Kumagai, Masayoshi; Takase, Satoru; Nishi, Makiko; Takeuchi, Yoshinori; Izumida, Yoshihiko; Kubota, Midori; Ohashi, Ken; Iizuka, Yoko; Yagyu, Hiroaki; Gotoda, Takanari; Nagai, Ryozo; Shimano, Hitoshi; Yamada, Nobuhiro; and others

    2009-09-25

    It has long been a matter of debate whether the hormone-sensitive lipase (HSL)-mediated lipolysis in pancreatic {beta}-cells can affect insulin secretion through the alteration of lipotoxicity. We