Unique Microbial Diversity and Metabolic Pathway Features of Fermented Vegetables From Hainan, China
Peng, Qiannan; Jiang, Shuaiming; Chen, Jieling; Ma, Chenchen; Huo, Dongxue; Shao, Yuyu; Zhang, Jiachao
2018-01-01
Fermented vegetables are typically traditional foods made of fresh vegetables and their juices, which are fermented by beneficial microorganisms. Herein, we applied high-throughput sequencing and culture-dependent technology to describe the diversities of microbiota and identify core microbiota in fermented vegetables from different areas of Hainan Province, and abundant metabolic pathways in the fermented vegetables were simultaneously predicted. At the genus level, Lactobacillus bacteria were the most abundant. Lactobacillus plantarum was the most abundant species, followed by Lactobacillus fermentum, Lactobacillus pentosaceus, and Weissella cibaria. These species were present in each sample with average absolute content values greater than 1% and were thus defined as core microbiota. Analysis results based on the alpha and beta diversities of the microbial communities showed that the microbial profiles of the fermented vegetables differed significantly based on the regions and raw materials used, and the species of the vegetables had a greater effect on the microbial community structure than the region from where they were harvested. Regarding microbial functional metabolism, we observed an enrichment of metabolic pathways, including membrane transport, replication and repair and translation, which implied that the microbial metabolism in the fermented vegetables tended to be vigorous. In addition, Lactobacillus plantarum and Lactobacillus fermentum were calculated to be major metabolic pathway contributors. Finally, we constructed a network to better explain correlations among the core microbiota and metabolic pathways. This study facilitates an understanding of the differences in microbial profiles and fermentation pathways involved in the production of fermented vegetables, establishes a basis for optimally selecting microorganisms to manufacture high-quality fermented vegetable products, and lays the foundation for better utilizing tropical microbial resources. PMID:29559966
Zhang, Wanguang; Lei, Qiongye; Li, Zhengkui; Han, Huayang
2016-02-01
Slightly polluted water has become one of the main sources of nitrogen contaminants in recent years, for which constructed wetlands (CW) is a typical and efficient treatment. However, the knowledge about contribution of individual nitrogen removal pathways and nitrogen balance in constructed wetlands is still limited. In this study, a stable-isotope-addition experiment was performed in laboratory-scale constructed wetlands treating slightly polluted water to determine quantitative contribution of different pathways and temporal variation of nitrogen balance using Na(15)NO3 as tracer. Microbial conversion and substrate retention were found to be the dominant pathways in nitrogen removal contributing 24.4-79.9 and 8.9-70.7 %, respectively, while plant contributed only 4.6-11.1 % through direct assimilation but promoted the efficiency of other pathways. In addition, microbial conversion became the major way to remove N whereas nitrogen retained in substrate at first was gradually released to be utilized by microbes and plants over time. The findings indicated that N2 emission representing microbial conversion was not only the major but also permanent nitrogen removal process, thus keeping a high efficiency of microbial conversion is important for stable and efficient nitrogen removal in constructed wetlands.
Nitrogen Cycling Potential of a Grassland Litter Microbial Community
Berlemont, Renaud; Martiny, Adam C.; Martiny, Jennifer B. H.
2015-01-01
Because microorganisms have different abilities to utilize nitrogen (N) through various assimilatory and dissimilatory pathways, microbial composition and diversity likely influence N cycling in an ecosystem. Terrestrial plant litter decomposition is often limited by N availability; however, little is known about the microorganisms involved in litter N cycling. In this study, we used metagenomics to characterize the potential N utilization of microbial communities in grassland plant litter. The frequencies of sequences associated with eight N cycling pathways differed by several orders of magnitude. Within a pathway, the distributions of these sequences among bacterial orders differed greatly. Many orders within the Actinobacteria and Proteobacteria appeared to be N cycling generalists, carrying genes from most (five or six) of the pathways. In contrast, orders from the Bacteroidetes were more specialized and carried genes for fewer (two or three) pathways. We also investigated how the abundance and composition of microbial N cycling genes differed over time and in response to two global change manipulations (drought and N addition). For many pathways, the abundance and composition of N cycling taxa differed over time, apparently reflecting precipitation patterns. In contrast to temporal variability, simulated global change had minor effects on N cycling potential. Overall, this study provides a blueprint for the genetic potential of N cycle processes in plant litter and a baseline for comparisons to other ecosystems. PMID:26231641
Morrill, Penny L.; Brazelton, William J.; Kohl, Lukas; Rietze, Amanda; Miles, Sarah M.; Kavanagh, Heidi; Schrenk, Matthew O.; Ziegler, Susan E.; Lang, Susan Q.
2014-01-01
Ultra-basic reducing springs at continental sites of serpentinization act as portals into the biogeochemistry of a subsurface environment with H2 and CH4 present. Very little, however, is known about the carbon substrate utilization, energy sources, and metabolic pathways of the microorganisms that live in this ultra-basic environment. The potential for microbial methanogenesis with bicarbonate, formate, acetate, and propionate precursors and carbon monoxide (CO) utilization pathways were tested in laboratory experiments by adding substrates to water and sediment from the Tablelands, NL, CAD, a site of present-day continental serpentinization. Microbial methanogenesis was not observed after bicarbonate, formate, acetate, or propionate addition. CO was consumed in the live experiments but not in the killed controls and the residual CO in the live experiments became enriched in 13C. The average isotopic enrichment factor resulting from this microbial utilization of CO was estimated to be 11.2 ± 0.2‰. Phospholipid fatty acid concentrations and δ13C values suggest limited incorporation of carbon from CO into microbial lipids. This indicates that in our experiments, CO was used primarily as an energy source, but not for biomass growth. Environmental DNA sequencing of spring fluids collected at the same time as the addition experiments yielded a large proportion of Hydrogenophaga-related sequences, which is consistent with previous metagenomic data indicating the potential for these taxa to utilize CO. PMID:25431571
Morrill, Penny L; Brazelton, William J; Kohl, Lukas; Rietze, Amanda; Miles, Sarah M; Kavanagh, Heidi; Schrenk, Matthew O; Ziegler, Susan E; Lang, Susan Q
2014-01-01
Ultra-basic reducing springs at continental sites of serpentinization act as portals into the biogeochemistry of a subsurface environment with H2 and CH4 present. Very little, however, is known about the carbon substrate utilization, energy sources, and metabolic pathways of the microorganisms that live in this ultra-basic environment. The potential for microbial methanogenesis with bicarbonate, formate, acetate, and propionate precursors and carbon monoxide (CO) utilization pathways were tested in laboratory experiments by adding substrates to water and sediment from the Tablelands, NL, CAD, a site of present-day continental serpentinization. Microbial methanogenesis was not observed after bicarbonate, formate, acetate, or propionate addition. CO was consumed in the live experiments but not in the killed controls and the residual CO in the live experiments became enriched in (13)C. The average isotopic enrichment factor resulting from this microbial utilization of CO was estimated to be 11.2 ± 0.2‰. Phospholipid fatty acid concentrations and δ(13)C values suggest limited incorporation of carbon from CO into microbial lipids. This indicates that in our experiments, CO was used primarily as an energy source, but not for biomass growth. Environmental DNA sequencing of spring fluids collected at the same time as the addition experiments yielded a large proportion of Hydrogenophaga-related sequences, which is consistent with previous metagenomic data indicating the potential for these taxa to utilize CO.
NASA Astrophysics Data System (ADS)
Blumenfeld, H. N.; Kelley, D. S.; Girguis, P. R.; Schrenk, M. O.
2010-12-01
The walls of deep-sea hydrothermal vent chimneys sustain steep thermal and chemical gradients resulting from the mixing of hot (350°C+) hydrothermal fluids with cold, oxygenated seawater. The chemical disequilibrium generated from this process has the potential to drive numerous chemolithoautotrophic metabolisms, many of which have been demonstrated to be operative in microbial pure cultures. In addition to the well-known Calvin Cycle, at least five additional pathways have been discovered including the Reverse Tricarboxylic Acid Cycle (rTCA), the Reductive Acetyl-CoA pathway, and the 3-hydroxyproprionate pathway. Most of the newly discovered pathways have been found in thermophilic and hyperthermophilic Bacteria and Archaea, which are the well represented in microbial diversity studies of hydrothermal chimney walls. However, to date, little is known about the environmental controls that impact various carbon fixation pathways. The overlap of limited microbial diversity with distinct habitat conditions in hydrothermal chimney walls provides an ideal setting to explore these relationships. Hydrothermal chimney walls from multiple structures recovered from the Juan de Fuca Ridge in the northeastern Pacific were sub-sampled and analyzed using PCR-based assays. Earlier work showed elevated microbial abundances in the outer portions of mature chimney walls, with varying ratios of Archaea to Bacteria from the outer to inner portions of the chimneys. Common phylotypes identified in these regions included Epsilonproteobacteria, Gammaproteobacteria, and Desulfurococcales. Total genomic DNA was extracted from mineralogically distinct niches within these structures and queried for genes coding key regulatory enzymes for each of the well studied carbon fixation pathways. Preliminary results show the occurrence of genes representing rTCA cycle (aclB) and methyl coenzyme A reductase (mcrA) - a proxy for the Reductive Acetyl-CoA Pathway within interior portion of mature hydrothermal chimneys. Ongoing analyses are aimed at quantifying the abundances of these diagnostic carbon fixation genes within the hydrothermal chimney gradients. These data are being compared to a broad array of contextual data to provide insight into the environmental and biological controls that may impact the distribution of the various carbon fixation pathways. Application of genomic approaches to the hydrothermal chimney ecosystem will provide insight into the microbial ecology of such structures and refine our ability to measure autotrophy in hydrothermal habitats sustained by chemical energy.
Biofuel alternatives to ethanol: pumping the microbial well
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fortman, J. L.; Chhabra, Swapnil; Mukhopadhyay, Aindrila
Engineered microorganisms are currently used for the production of food products, pharmaceuticals, ethanol fuel and more. Even so, the enormous potential of this technology has yet to be fully exploited. The need for sustainable sources of transportation fuels has gener-ated a tremendous interest in technologies that enable biofuel production. Decades of work have produced a considerable knowledge-base for the physiology and pathway engineering of microbes, making microbial engineering an ideal strategy for producing biofuel. Although ethanol currently dominates the biofuel mar-ket, some of its inherent physical properties make it a less than ideal product. To highlight additional options, we reviewmore » advances in microbial engineering for the production of other potential fuel molecules, using a variety of biosynthetic pathways.« less
Biofuel alternatives to ethanol: pumping the microbial well
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fortman, J.L.; Chhabra, Swapnil; Mukhopadhyay, Aindrila
2009-08-19
Engineered microorganisms are currently used for the production of food products, pharmaceuticals, ethanol fuel and more. Even so, the enormous potential of this technology has yet to be fully exploited. The need for sustainable sources of transportation fuels has generated a tremendous interest in technologies that enable biofuel production. Decades of work have produced a considerable knowledge-base for the physiology and pathway engineering of microbes, making microbial engineering an ideal strategy for producing biofuel. Although ethanol currently dominates the biofuel market, some of its inherent physical properties make it a less than ideal product. To highlight additional options, we reviewmore » advances in microbial engineering for the production of other potential fuel molecules, using a variety of biosynthetic pathways.« less
Decomposition of complex microbial behaviors into resource-based stress responses
Carlson, Ross P.
2009-01-01
Motivation: Highly redundant metabolic networks and experimental data from cultures likely adapting simultaneously to multiple stresses can complicate the analysis of cellular behaviors. It is proposed that the explicit consideration of these factors is critical to understanding the competitive basis of microbial strategies. Results: Wide ranging, seemingly unrelated Escherichia coli physiological fluxes can be simply and accurately described as linear combinations of a few ecologically relevant stress adaptations. These strategies were identified by decomposing the central metabolism of E.coli into elementary modes (mathematically defined biochemical pathways) and assessing the resource investment cost–benefit properties for each pathway. The approach capitalizes on the inherent tradeoffs related to investing finite resources like nitrogen into different pathway enzymes when the pathways have varying metabolic efficiencies. The subset of ecologically competitive pathways represented 0.02% of the total permissible pathways. The biological relevance of the assembled strategies was tested against 10 000 randomly constructed pathway subsets. None of the randomly assembled collections were able to describe all of the considered experimental data as accurately as the cost-based subset. The results suggest these metabolic strategies are biologically significant. The current descriptions were compared with linear programming (LP)-based flux descriptions using the Euclidean distance metric. The current study's pathway subset described the experimental fluxes with better accuracy than the LP results without having to test multiple objective functions or constraints and while providing additional ecological insight into microbial behavior. The assembled pathways seem to represent a generalized set of strategies that can describe a wide range of microbial responses and hint at evolutionary processes where a handful of successful metabolic strategies are utilized simultaneously in different combinations to adapt to diverse conditions. Contact: rossc@biofilms.montana.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:19008248
Global biogeography of microbial nitrogen-cycling traits in soil
NASA Astrophysics Data System (ADS)
Nelson, M.; Martiny, A.; Martiny, J. B. H.
2016-12-01
Microorganisms drive much of the Earth's nitrogen (N) cycle. However, despite their importance, many ecosystem models do not explicitly consider microbial communities and their functions. One obstacle in doing this is that we lack a complete understanding of the role that microbes play in biogeochemical processes. To address this challenge we used metagenomics to assess various N cycling traits of soil microorganisms in samples from around the globe. As measurable characteristics of an organism, traits can be used to quantify the role of microbes in ecosystem processes. Using 365 publically available soil metagenomes, we characterized the biogeography of microbial N cycling traits, defined as the abundance and composition of eight N pathways. We found strong biogeographic patterns in the frequency of N pathway traits; however, our models explained much less variation in taxonomic composition across sites. Focusing on individual N pathways, we identified the prominent taxa harboring these pathways. In addition, we found an unexpectedly high frequency of Bacteria encoding the dissimilatory nitrate reduction to ammonium (DNRA) pathway, a little studied N cycle process in soils. Finally, across all N pathways, phylogenetic analysis revealed that some phyla seem to be N cycle generalists (i.e delta-Proteobacteria), with the potential to carry out many N transformations, whereas others seem to be specialists (i.e. Cyanobacteria). As the most comprehensive map to date of the global distribution of microbial N traits, this study provides a springboard for further investigation of the prominent players in N cycling in soils. Overall, biogeographic patterns of traits can provide a foundation for understanding how microbial diversity impacts ecosystem processes and ultimately predicting how this diversity may shift in the face of global change.
Expanding the product profile of a microbial alkane biosynthetic pathway.
Harger, Matthew; Zheng, Lei; Moon, Austin; Ager, Casey; An, Ju Hye; Choe, Chris; Lai, Yi-Ling; Mo, Benjamin; Zong, David; Smith, Matthew D; Egbert, Robert G; Mills, Jeremy H; Baker, David; Pultz, Ingrid Swanson; Siegel, Justin B
2013-01-18
Microbially produced alkanes are a new class of biofuels that closely match the chemical composition of petroleum-based fuels. Alkanes can be generated from the fatty acid biosynthetic pathway by the reduction of acyl-ACPs followed by decarbonylation of the resulting aldehydes. A current limitation of this pathway is the restricted product profile, which consists of n-alkanes of 13, 15, and 17 carbons in length. To expand the product profile, we incorporated a new part, FabH2 from Bacillus subtilis , an enzyme known to have a broader specificity profile for fatty acid initiation than the native FabH of Escherichia coli . When provided with the appropriate substrate, the addition of FabH2 resulted in an altered alkane product profile in which significant levels of n-alkanes of 14 and 16 carbons in length are produced. The production of even chain length alkanes represents initial steps toward the expansion of this recently discovered microbial alkane production pathway to synthesize complex fuels. This work was conceived and performed as part of the 2011 University of Washington international Genetically Engineered Machines (iGEM) project.
Microbial Succession and Flavor Production in the Fermented Dairy Beverage Kefir
Walsh, Aaron M.; Crispie, Fiona; Kilcawley, Kieran; O’Sullivan, Orla; O’Sullivan, Maurice G.; Claesson, Marcus J.
2016-01-01
ABSTRACT Kefir is a putatively health-promoting dairy beverage that is produced when a kefir grain, consisting of a consortium of microorganisms, is added to milk to initiate a natural fermentation. Here, a detailed analysis was carried out to determine how the microbial population, gene content, and flavor of three kefirs from distinct geographic locations change over the course of 24-h fermentations. Metagenomic sequencing revealed that Lactobacillus kefiranofaciens was the dominant bacterial species in kefir during early stages of fermentations but that Leuconostoc mesenteroides became more prevalent in later stages. This pattern is consistent with an observation that genes involved in aromatic amino acid biosynthesis were absent from L. kefiranofaciens but were present in L. mesenteroides. Additionally, these shifts in the microbial community structure, and associated pathways, corresponded to changes in the levels of volatile compounds. Specifically, Acetobacter spp. correlated with acetic acid; Lactobacillus spp. correlated with carboxylic acids, esters and ketones; Leuconostoc spp. correlated with acetic acid and 2,3-butanedione; and Saccharomyces spp. correlated with esters. The correlation data suggest a causal relationship between microbial taxa and flavor that is supported by observations that addition of L. kefiranofaciens NCFB 2797 increased the levels of esters and ketones whereas addition of L. mesenteroides 213M0 increased the levels of acetic acid and 2,3-butanedione. Finally, we detected genes associated with probiotic functionalities in the kefir microbiome. Our results illustrate the dynamic nature of kefir fermentations and microbial succession patterns therein and can be applied to optimize the fermentation processes, flavors, and health-related attributes of this and other fermented foods. IMPORTANCE Traditional fermented foods represent relatively low-complexity microbial environments that can be used as model microbial communities to understand how microbes interact in natural environments. Our results illustrate the dynamic nature of kefir fermentations and microbial succession patterns therein. In the process, the link between individual species, and associated pathways, with flavor compounds is revealed and several genes that could be responsible for the purported gut health-associated benefits of consuming kefir are identified. Ultimately, in addition to providing an important fundamental insight into microbial interactions, this information can be applied to optimize the fermentation processes, flavors, and health-related attributes of this and other fermented foods. Author Video: An author video summary of this article is available. PMID:27822552
Microbial Succession and Flavor Production in the Fermented Dairy Beverage Kefir.
Walsh, Aaron M; Crispie, Fiona; Kilcawley, Kieran; O'Sullivan, Orla; O'Sullivan, Maurice G; Claesson, Marcus J; Cotter, Paul D
2016-01-01
Kefir is a putatively health-promoting dairy beverage that is produced when a kefir grain, consisting of a consortium of microorganisms, is added to milk to initiate a natural fermentation. Here, a detailed analysis was carried out to determine how the microbial population, gene content, and flavor of three kefirs from distinct geographic locations change over the course of 24-h fermentations. Metagenomic sequencing revealed that Lactobacillus kefiranofaciens was the dominant bacterial species in kefir during early stages of fermentations but that Leuconostoc mesenteroides became more prevalent in later stages. This pattern is consistent with an observation that genes involved in aromatic amino acid biosynthesis were absent from L. kefiranofaciens but were present in L. mesenteroides . Additionally, these shifts in the microbial community structure, and associated pathways, corresponded to changes in the levels of volatile compounds. Specifically, Acetobacter spp. correlated with acetic acid; Lactobacillus spp. correlated with carboxylic acids, esters and ketones; Leuconostoc spp. correlated with acetic acid and 2,3-butanedione; and Saccharomyces spp. correlated with esters. The correlation data suggest a causal relationship between microbial taxa and flavor that is supported by observations that addition of L. kefiranofaciens NCFB 2797 increased the levels of esters and ketones whereas addition of L. mesenteroides 213M0 increased the levels of acetic acid and 2,3-butanedione. Finally, we detected genes associated with probiotic functionalities in the kefir microbiome. Our results illustrate the dynamic nature of kefir fermentations and microbial succession patterns therein and can be applied to optimize the fermentation processes, flavors, and health-related attributes of this and other fermented foods. IMPORTANCE Traditional fermented foods represent relatively low-complexity microbial environments that can be used as model microbial communities to understand how microbes interact in natural environments. Our results illustrate the dynamic nature of kefir fermentations and microbial succession patterns therein. In the process, the link between individual species, and associated pathways, with flavor compounds is revealed and several genes that could be responsible for the purported gut health-associated benefits of consuming kefir are identified. Ultimately, in addition to providing an important fundamental insight into microbial interactions, this information can be applied to optimize the fermentation processes, flavors, and health-related attributes of this and other fermented foods.
Yang, Guang-Chao; Zhou, Lei; Mbadinga, Serge M; Liu, Jin-Feng; Yang, Shi-Zhong; Gu, Ji-Dong; Mu, Bo-Zhong
2016-01-01
CO2 sequestration in deep-subsurface formations including oil reservoirs is a potential measure to reduce the CO2 concentration in the atmosphere. However, the fate of the CO2 and the ecological influences in carbon dioxide capture and storage (CDCS) facilities is not understood clearly. In the current study, the fate of CO2 (in bicarbonate form; 0∼90 mM) with 10 mM of formate as electron donor and carbon source was investigated with high-temperature production water from oilfield in China. The isotope data showed that bicarbonate could be reduced to methane by methanogens and major pathway of methanogenesis could be syntrophic formate oxidation coupled with CO2 reduction and formate methanogenesis under the anaerobic conditions. The bicarbonate addition induced the shift of microbial community. Addition of bicarbonate and formate was associated with a decrease of Methanosarcinales, but promotion of Methanobacteriales in all treatments. Thermodesulfovibrio was the major group in all the samples and Thermacetogenium dominated in the high bicarbonate treatments. The results indicated that CO2 from CDCS could be transformed to methane and the possibility of microbial CO2 conversion for enhanced microbial energy recovery in oil reservoirs.
Yang, Guang-Chao; Zhou, Lei; Mbadinga, Serge M.; Liu, Jin-Feng; Yang, Shi-Zhong; Gu, Ji-Dong; Mu, Bo-Zhong
2016-01-01
CO2 sequestration in deep-subsurface formations including oil reservoirs is a potential measure to reduce the CO2 concentration in the atmosphere. However, the fate of the CO2 and the ecological influences in carbon dioxide capture and storage (CDCS) facilities is not understood clearly. In the current study, the fate of CO2 (in bicarbonate form; 0∼90 mM) with 10 mM of formate as electron donor and carbon source was investigated with high-temperature production water from oilfield in China. The isotope data showed that bicarbonate could be reduced to methane by methanogens and major pathway of methanogenesis could be syntrophic formate oxidation coupled with CO2 reduction and formate methanogenesis under the anaerobic conditions. The bicarbonate addition induced the shift of microbial community. Addition of bicarbonate and formate was associated with a decrease of Methanosarcinales, but promotion of Methanobacteriales in all treatments. Thermodesulfovibrio was the major group in all the samples and Thermacetogenium dominated in the high bicarbonate treatments. The results indicated that CO2 from CDCS could be transformed to methane and the possibility of microbial CO2 conversion for enhanced microbial energy recovery in oil reservoirs. PMID:27047478
Liu, Xiaonan; Ding, Wentao; Jiang, Huifeng
2017-07-19
Plant natural products (PNPs) are widely used as pharmaceuticals, nutraceuticals, seasonings, pigments, etc., with a huge commercial value on the global market. However, most of these PNPs are still being extracted from plants. A resource-conserving and environment-friendly synthesis route for PNPs that utilizes microbial cell factories has attracted increasing attention since the 1940s. However, at the present only a handful of PNPs are being produced by microbial cell factories at an industrial scale, and there are still many challenges in their large-scale application. One of the challenges is that most biosynthetic pathways of PNPs are still unknown, which largely limits the number of candidate PNPs for heterologous microbial production. Another challenge is that the metabolic fluxes toward the target products in microbial hosts are often hindered by poor precursor supply, low catalytic activity of enzymes and obstructed product transport. Consequently, despite intensive studies on the metabolic engineering of microbial hosts, the fermentation costs of most heterologously produced PNPs are still too high for industrial-scale production. In this paper, we review several aspects of PNP production in microbial cell factories, including important design principles and recent progress in pathway mining and metabolic engineering. In addition, implemented cases of industrial-scale production of PNPs in microbial cell factories are also highlighted.
NASA Astrophysics Data System (ADS)
Bore, Ezekiel
2016-04-01
Microbial transformation of organic substances in soil is the most important process of the C cycle. Most of the current studies base their information about transformation of organic substances on incubation studies under laboratory conditions and thus, we have a profound knowledge on SOM transformations at ambient temperatures. However, metabolic pathway activities at low temperature are not well understood, despite the fact that the processes are relevant for many soils globally and seasonally. To analyze microbial metabolism at low soil temperatures, isotopomeres of position-specifically 13C labeled glucose were incubated at three temperature; 5, -5 -20 oC. Soils were sampled after 1, 3 and 10 days and additionally after 30 days for samples at -20 °C. The 13C from individual molecule position was quantifed in respired CO2, bulk soil, extractable organic C and extractable microbial biomass by chloroform fumigation extraction (CFE) and cell membranes of microbial communities classified by 13C phospholipid fatty acid (PLFA) analysis. 13CO2 released showed a dominance of the flux from C-1 position at 5 °C. Consequently, at 5 °C, pentose phosphate pathway activity is a dominant metabolic pathway of glucose metabolization. In contrast to -5 °C and -20 oC, metabolic behaviors completely switched towards a preferential respiration of the glucose C-4 position. With decreasing temperature, microorganism strongly shifted towards metabolization of glucose via glycolysis which indicates a switch to cellular maintenance. High recoveries of 13C in extractable microbial biomass at -5 °C indicates optimal growth condition for the microorganisms. PLFA analysis showed high incorporation of 13C into Gram negative bacteria at 5 °C but decreased with temperature. Gram positive bacteria out-competed Gram negatives with decreasing temperature. This study revealed a remarkable microbial activity at temperatures below 0 °C, differing significantly from that at ambient temperatures. These metabolic pathways, can be unraveled based on position-specific labeling.
Schreiber, Frank; Wunderlin, Pascal; Udert, Kai M.; Wells, George F.
2012-01-01
Nitrous oxide (N2O) is an environmentally important atmospheric trace gas because it is an effective greenhouse gas and it leads to ozone depletion through photo-chemical nitric oxide (NO) production in the stratosphere. Mitigating its steady increase in atmospheric concentration requires an understanding of the mechanisms that lead to its formation in natural and engineered microbial communities. N2O is formed biologically from the oxidation of hydroxylamine (NH2OH) or the reduction of nitrite (NO−2) to NO and further to N2O. Our review of the biological pathways for N2O production shows that apparently all organisms and pathways known to be involved in the catabolic branch of microbial N-cycle have the potential to catalyze the reduction of NO−2 to NO and the further reduction of NO to N2O, while N2O formation from NH2OH is only performed by ammonia oxidizing bacteria (AOB). In addition to biological pathways, we review important chemical reactions that can lead to NO and N2O formation due to the reactivity of NO−2, NH2OH, and nitroxyl (HNO). Moreover, biological N2O formation is highly dynamic in response to N-imbalance imposed on a system. Thus, understanding NO formation and capturing the dynamics of NO and N2O build-up are key to understand mechanisms of N2O release. Here, we discuss novel technologies that allow experiments on NO and N2O formation at high temporal resolution, namely NO and N2O microelectrodes and the dynamic analysis of the isotopic signature of N2O with quantum cascade laser absorption spectroscopy (QCLAS). In addition, we introduce other techniques that use the isotopic composition of N2O to distinguish production pathways and findings that were made with emerging molecular techniques in complex environments. Finally, we discuss how a combination of the presented tools might help to address important open questions on pathways and controls of nitrogen flow through complex microbial communities that eventually lead to N2O build-up. PMID:23109930
Microbial translocation and microbiome dsybiosis in HIV-associated immune activation
Zevin, Alexander S.; McKinnon, Lyle; Burgener, Adam; Klatt, Nichole R.
2016-01-01
Purpose of Review To describe the mechanisms and consequences of both microbial translocation and microbial dysbiosis in HIV infection. Recent Findings Microbes in HIV are likely playing a large role in contributing to HIV pathogenesis, morbidities and mortality. Two major disruptions to microbial systems in HIV infection include microbial translocation and microbiome dysbiosis. Microbial translocation occurs when the bacteria (or bacterial products) that should be in the lumen of the intestine translocate across the tight epithelial barrier into systemic circulation, where they contribute to inflammation and pathogenesis. This is associated with poorer health outcomes in HIV infected individuals. In addition, microbial populations in the GI tract are also altered after HIV infection, resulting in microbiome dysbiosis, which further exacerbates microbial translocation, epithelial barrier disruption, inflammation, and mucosal immune functioning. Summary Altered microbial regulation in HIV infection can lead to poor health outcomes, and understanding the mechanisms underlying microbial dysbiosis and translocation may result in novel pathways for therapeutic interventions. PMID:26679414
Luo, Shuai; Guo, Weihua; Nealson, Kenneth H; Feng, Xueyang; He, Zhen
2016-02-12
Microbial fuel cell (MFC) is a promising technology for direct electricity generation from organics by microorganisms. The type of electron donors fed into MFCs affects the electrical performance, and mechanistic understanding of such effects is important to optimize the MFC performance. In this study, we used a model organism in MFCs, Shewanella oneidensis MR-1, and (13)C pathway analysis to investigate the role of formate in electricity generation and the related microbial metabolism. Our results indicated a synergistic effect of formate and lactate on electricity generation, and extra formate addition on the original lactate resulted in more electrical output than using formate or lactate as a sole electron donor. Based on the (13)C tracer analysis, we discovered decoupled cell growth and electricity generation in S. oneidensis MR-1 during co-utilization of lactate and formate (i.e., while the lactate was mainly metabolized to support the cell growth, the formate was oxidized to release electrons for higher electricity generation). To our best knowledge, this is the first time that (13)C tracer analysis was applied to study microbial metabolism in MFCs and it was demonstrated to be a valuable tool to understand the metabolic pathways affected by electron donors in the selected electrochemically-active microorganisms.
Campanaro, Stefano; Treu, Laura; Kougias, Panagiotis G; De Francisci, Davide; Valle, Giorgio; Angelidaki, Irini
2016-01-01
Biogas production is an economically attractive technology that has gained momentum worldwide over the past years. Biogas is produced by a biologically mediated process, widely known as "anaerobic digestion." This process is performed by a specialized and complex microbial community, in which different members have distinct roles in the establishment of a collective organization. Deciphering the complex microbial community engaged in this process is interesting both for unraveling the network of bacterial interactions and for applicability potential to the derived knowledge. In this study, we dissect the bioma involved in anaerobic digestion by means of high throughput Illumina sequencing (~51 gigabases of sequence data), disclosing nearly one million genes and extracting 106 microbial genomes by a novel strategy combining two binning processes. Microbial phylogeny and putative taxonomy performed using >400 proteins revealed that the biogas community is a trove of new species. A new approach based on functional properties as per network representation was developed to assign roles to the microbial species. The organization of the anaerobic digestion microbiome is resembled by a funnel concept, in which the microbial consortium presents a progressive functional specialization while reaching the final step of the process (i.e., methanogenesis). Key microbial genomes encoding enzymes involved in specific metabolic pathways, such as carbohydrates utilization, fatty acids degradation, amino acids fermentation, and syntrophic acetate oxidation, were identified. Additionally, the analysis identified a new uncultured archaeon that was putatively related to Methanomassiliicoccales but surprisingly having a methylotrophic methanogenic pathway. This study is a pioneer research on the phylogenetic and functional characterization of the microbial community populating biogas reactors. By applying for the first time high-throughput sequencing and a novel binning strategy, the identified genes were anchored to single genomes providing a clear understanding of their metabolic pathways and highlighting their involvement in anaerobic digestion. The overall research established a reference catalog of biogas microbial genomes that will greatly simplify future genomic studies.
Microbial co-occurrence patterns in deep Precambrian bedrock fracture fluids
NASA Astrophysics Data System (ADS)
Purkamo, Lotta; Bomberg, Malin; Kietäväinen, Riikka; Salavirta, Heikki; Nyyssönen, Mari; Nuppunen-Puputti, Maija; Ahonen, Lasse; Kukkonen, Ilmo; Itävaara, Merja
2016-05-01
The bacterial and archaeal community composition and the possible carbon assimilation processes and energy sources of microbial communities in oligotrophic, deep, crystalline bedrock fractures is yet to be resolved. In this study, intrinsic microbial communities from groundwater of six fracture zones from 180 to 2300 m depths in Outokumpu bedrock were characterized using high-throughput amplicon sequencing and metagenomic prediction. Comamonadaceae-, Anaerobrancaceae- and Pseudomonadaceae-related operational taxonomic units (OTUs) form the core community in deep crystalline bedrock fractures in Outokumpu. Archaeal communities were mainly composed of Methanobacteriaceae-affiliating OTUs. The predicted bacterial metagenomes showed that pathways involved in fatty acid and amino sugar metabolism were common. In addition, relative abundance of genes coding the enzymes of autotrophic carbon fixation pathways in predicted metagenomes was low. This indicates that heterotrophic carbon assimilation is more important for microbial communities of the fracture zones. Network analysis based on co-occurrence of OTUs revealed possible "keystone" genera of the microbial communities belonging to Burkholderiales and Clostridiales. Bacterial communities in fractures resemble those found in oligotrophic, hydrogen-enriched environments. Serpentinization reactions of ophiolitic rocks in Outokumpu assemblage may provide a source of energy and organic carbon compounds for the microbial communities in the fractures. Sulfate reducers and methanogens form a minority of the total microbial communities, but OTUs forming these minor groups are similar to those found in other deep Precambrian terrestrial bedrock environments.
NASA Astrophysics Data System (ADS)
Schidlowski, Manfred
1985-12-01
The isotopic composition of organic carbon from extant stromatolite-type microbial ecosystems is commonly slanted toward heavy δ13 C values as compared to respective compositions of average organic matter (including that from Precambrian stromatolites). This seems the more enigmatic as the bulk of primary producers from benthic microbial communities are known to fix carbon via the C3 pathway normally entailing the sizable fractionations of the RuBP carboxylase reaction. There is reason to believe that the small fractionations displayed by aquatic microorganisms result from the limitations of a diffusion-controlled assimilatory pathway in which the isotope effect of the enzymatic reaction is largely suppressed. Apart from the diffusion-control exercised by the aqueous environment, transport of CO2 to the photosynthetically active sites will be further impeded by the protective slime (polysaccharide) coatings commonly covering microbial mats in which gas diffusivities are extremely low. Ineffective discrimination against13C becomes, however, most pronounced in hypersaline environments where substantially reduced CO2 solubilities tend to push carbon into the role of a limiting nutrient (brine habitats constitute preferential sanctuaries of mat-forming microbenthos since the emergence of Metazoan grazers ˜ 0.7 Ga ago). As the same microbial communities had been free to colonize normal marine environments during the Precambrian, the CO2 concentration effect was irrelevant to the carbon-fixing pathway of these ancient forms. Therefore, it might not surprise that organic matter from Precambrian stromatolites displays the large fractionations commonly associated with C3 photosynthesis. Increased mixing ratios of CO2 in the Precambrian atmosphere may have additionally contributed to the elimination of the diffusion barrier in the carbon-fixing pathways of ancient mat-forming microbiota.
Vinson, David S.; Blair, Neal E.; Martini, Anna M.; Larter, Steve; Orem, William H.; McIntosh, Jennifer C.
2017-01-01
Stable carbon and hydrogen isotope signatures of methane, water, and inorganic carbon are widely utilized in natural gas systems for distinguishing microbial and thermogenic methane and for delineating methanogenic pathways (acetoclastic, hydrogenotrophic, and/or methylotrophic methanogenesis). Recent studies of coal and shale gas systems have characterized in situ microbial communities and provided stable isotope data (δD-CH4, δD-H2O, δ13C-CH4, and δ13C-CO2) from a wider range of environments than available previously. Here we review the principal biogenic methane-yielding pathways in coal beds and shales and the isotope effects imparted on methane, document the uncertainties and inconsistencies in established isotopic fingerprinting techniques, and identify the knowledge gaps in understanding the subsurface processes that govern H and C isotope signatures of biogenic methane. We also compare established isotopic interpretations with recent microbial community characterization techniques, which reveal additional inconsistencies in the interpretation of microbial metabolic pathways in coal beds and shales. Collectively, the re-assessed data show that widely-utilized isotopic fingerprinting techniques neglect important complications in coal beds and shales.Isotopic fingerprinting techniques that combine δ13C-CH4 with δD-CH4 and/or δ13C-CO2have significant limitations: (1) The consistent ~ 160‰ offset between δD-H2O and δD-CH4 could imply that hydrogenotrophic methanogenesis is the dominant metabolic pathway in microbial gas systems. However, hydrogen isotopes can equilibrate between methane precursors and coexisting water, yielding a similar apparent H isotope signal as hydrogenotrophic methanogenesis, regardless of the actual methane formation pathway. (2) Non-methanogenic processes such as sulfate reduction, Fe oxide reduction, inputs of thermogenic methane, anaerobic methane oxidation, and/or formation water interaction can cause the apparent carbon isotope fractionation between δ13C-CH4 and δ13C-CO2(α13CCO2-CH4) to differ from the true methanogenic fractionation, complicating interpretation of methanogenic pathways. (3) Where little-fractionating non-methanogenic bacterial processes compete with highly-fractionating methanogenesis, the mass balance between CH4 and CO2 is affected. This has implications for δ13C values and provides an alternative interpretation for net C isotope signatures than solely the pathways used by active methanogens. (4) While most of the reviewed values of δD-H2O - δD-CH4 and α13CCO2-CH4 are apparently consistent with hydrogenotrophic methanogenesis as the dominant pathway in coal beds and shales, recent microbial community characterization techniques suggest a possible role for acetoclastic or methylotrophic methanogenesis in some basins.
Characterization of phenol and cresol biodegradation by compound-specific stable isotope analysis.
Wei, Xi; Gilevska, Tetyana; Wetzig, Felix; Dorer, Conrad; Richnow, Hans-Hermann; Vogt, Carsten
2016-03-01
Microbial degradation of phenol and cresols can occur under oxic and anoxic conditions by different degradation pathways. One recent technique to take insight into reaction mechanisms is compound-specific isotope analysis (CSIA). While enzymes and reaction mechanisms of several degradation pathways have been characterized in (bio)chemical studies, associated isotope fractionation patterns have been rarely reported, possibly due to constraints in current analytical methods. In this study, carbon enrichment factors and apparent kinetic isotope effects (AKIEc) of the initial steps of different aerobic and anaerobic phenol and cresols degradation pathways were analyzed by isotope ratio mass spectrometry connected with liquid chromatography (LC-IRMS). Significant isotope fractionation was detected for aerobic ring hydroxylation, anoxic side chain hydroxylation, and anoxic fumarate addition, while anoxic carboxylation reactions produced small and inconsistent fractionation. The results suggest that several microbial degradation pathways of phenol and cresols are detectable in the environment by CSIA. Copyright © 2015 Elsevier Ltd. All rights reserved.
Co-factors Required for TLR7- and TLR9- dependent Innate Immune Responses
Chiang, Chih-yuan; Engel, Alex; Opaluch, Amanda M.; Ramos, Irene; Maestre, Ana M.; Secundino, Ismael; De Jesus, Paul D.; Nguyen, Quy T.; Welch, Genevieve; Bonamy, Ghislain M.C.; Miraglia, Loren J.; Orth, Anthony P.; Nizet, Victor; Fernandez-Sesma, Ana; Zhou, Yingyao; Barton, Gregory M.; Chanda, Sumit K.
2012-01-01
SUMMARY Pathogens commonly utilize endocytic pathways to gain cellular access. The endosomal pattern recognition receptors TLR7 and TLR9 detect pathogen-encoded nucleic acids to initiate MyD88-dependent pro-inflammatory responses to microbial infection. Using genome-wide RNAi screening and integrative systems-based analysis we identify 190 co-factors required for TLR7- and TLR9-directed signaling responses. A set of co-factors were cross-profiled for their activities downstream of several immunoreceptors, and then functionally mapped based on the known architecture of NF-κB signaling pathways. Protein complexes and pathways involved in ubiquitin-protein ligase activities, sphingolipid metabolism, chromatin modifications, and ancient stress responses were found to modulate innate recognition of endosomal nucleic acids. Additionally, hepatocyte growth factor-regulated tyrosine kinase substrate (HRS) was characterized as necessary for ubiquitin-dependent TLR9 targeting to the endolysosome. Proteins and pathways identified here should prove useful in delineating strategies to manipulate innate responses for treatment of autoimmune disorders and microbial infection. PMID:22423970
The use of direct-fed microbials for mitigation of ruminant methane emissions: a review.
Jeyanathan, J; Martin, C; Morgavi, D P
2014-02-01
Concerns about the environmental effect and the economic burden of methane (CH4) emissions from ruminants are driving the search for ways to mitigate rumen methanogenesis. The use of direct-fed microbials (DFM) is one possible option to decrease CH4 emission from ruminants. Direct-fed microbials are already used in ruminants mainly to increase productivity and to improve health, and are readily accepted by producers and consumers alike. However, studies on the use of DFM as rumen CH4 mitigants are scarce. A few studies using Saccharomyces cerevisiae have shown a CH4-decreasing effect but, to date, there has not been a systematic exploration of DFM as modulators of rumen methanogenesis. In this review, we explored biochemical pathways competing with methanogenesis that, potentially, could be modulated by the use of DFM. Pathways involving the redirection of H2 away from methanogenesis and pathways producing less H2 during feed fermentation are the preferred options. Propionate formation is an example of the latter option that in addition to decrease CH4 formation increases the retention of energy from the diet. Homoacetogenesis is a pathway using H2 to produce acetate, however up to now no acetogen has been shown to efficiently compete with methanogens in the rumen. Nitrate and sulphate reduction are pathways competing with methanogenesis, but the availability of these substances in the rumen is limited. Although there were studies using nitrate and sulphate as chemical additives, use of DFM for improving these processes and decrease the accumulation of toxic metabolites needs to be explored more. There are some other pathways such as methanotrophy and capnophily or modes of action such as inhibition of methanogens that theoretically could be provided by DFM and affect methanogenesis. We conclude that DFM is a promising alternative for rumen methane mitigation that should be further explored for their practical usage.
Cowie, Benjamin R; Greenberg, Bruce M; Slater, Gregory F
2010-04-01
In a petroleum impacted land-farm soil in Sarnia, Ontario, compound-specific natural abundance radiocarbon analysis identified biodegradation by the soil microbial community as a major pathway for hydrocarbon removal in a novel remediation system. During remediation of contaminated soils by a plant growth promoting rhizobacteria enhanced phytoremediation system (PEPS), the measured Delta(14)C of phospholipid fatty acid (PLFA) biomarkers ranged from -793 per thousand to -897 per thousand, directly demonstrating microbial uptake and utilization of petroleum hydrocarbons (Delta(14)C(PHC) = -1000 per thousand). Isotopic mass balance indicated that more than 80% of microbial PLFA carbon was derived from petroleum hydrocarbons (PHC) and a maximum of 20% was obtained from metabolism of more modern carbon sources. These PLFA from the contaminated soils were the most (14)C-depleted biomarkers ever measured for an in situ environmental system, and this study demonstrated that the microbial community in this soil was subsisting primarily on petroleum hydrocarbons. In contrast, the microbial community in a nearby uncontaminated control soil maintained a more modern Delta(14)C signature than total organic carbon (Delta(14)C(PLFA) = +36 per thousand to -147 per thousand, Delta(14)C(TOC) = -148 per thousand), indicating preferential consumption of the most modern plant-derived fraction of soil organic carbon. Measurements of delta(13)C and Delta(14)C of soil CO(2) additionally demonstrated that mineralization of PHC contributed to soil CO(2) at the contaminated site. The CO(2) in the uncontaminated control soil exhibited substantially more modern Delta(14)C values, and lower soil CO(2) concentrations than the contaminated soils, suggesting increased rates of soil respiration in the contaminated soils. In combination, these results demonstrated that biodegradation in the soil microbial community was a primary pathway of petroleum hydrocarbon removal in the PEPS system. This study highlights the power of natural abundance radiocarbon for determining microbial carbon sources and identifying biodegradation pathways in complex remediation systems.
Production of caffeoylmalic acid from glucose in engineered Escherichia coli.
Li, Tianzhen; Zhou, Wei; Bi, Huiping; Zhuang, Yibin; Zhang, Tongcun; Liu, Tao
2018-07-01
To achieve biosynthesis of caffeoylmalic acid from glucose in engineered Escherichia coli. We constructed the biosynthetic pathway of caffeoylmalic acid in E. coli by co-expression of heterologous genes RgTAL, HpaBC, At4CL2 and HCT2. To enhance the production of caffeoylmalic acid, we optimized the tyrosine metabolic pathway of E. coli to increase the supply of the substrate caffeic acid. Consequently, an E. coli-E. coli co-culture system was used for the efficient production of caffeoylmalic acid. The final titer of caffeoylmalic acid reached 570.1 mg/L. Microbial production of caffeoylmalic acid using glucose has application potential. In addition, microbial co-culture is an efficient tool for producing caffeic acid esters.
Recent Advances in Microbial Production of Aromatic Chemicals and Derivatives.
Noda, Shuhei; Kondo, Akihiko
2017-08-01
Along with the development of metabolic engineering and synthetic biology tools, various microbes are being used to produce aromatic chemicals. In microbes, aromatics are mainly produced via a common important precursor, chorismate, in the shikimate pathway. Natural or non-natural aromatics have been produced by engineering metabolic pathways involving chorismate. In the past decade, novel approaches have appeared to produce various aromatics or to increase their productivity, whereas previously, the targets were mainly aromatic amino acids and the strategy was deregulating feedback inhibition. In this review, we summarize recent studies of microbial production of aromatics based on metabolic engineering approaches. In addition, future perspectives and challenges in this research area are discussed. Copyright © 2017 Elsevier Ltd. All rights reserved.
Luo, Shuai; Guo, Weihua; H. Nealson, Kenneth; Feng, Xueyang; He, Zhen
2016-01-01
Microbial fuel cell (MFC) is a promising technology for direct electricity generation from organics by microorganisms. The type of electron donors fed into MFCs affects the electrical performance, and mechanistic understanding of such effects is important to optimize the MFC performance. In this study, we used a model organism in MFCs, Shewanella oneidensis MR-1, and 13C pathway analysis to investigate the role of formate in electricity generation and the related microbial metabolism. Our results indicated a synergistic effect of formate and lactate on electricity generation, and extra formate addition on the original lactate resulted in more electrical output than using formate or lactate as a sole electron donor. Based on the 13C tracer analysis, we discovered decoupled cell growth and electricity generation in S. oneidensis MR-1 during co-utilization of lactate and formate (i.e., while the lactate was mainly metabolized to support the cell growth, the formate was oxidized to release electrons for higher electricity generation). To our best knowledge, this is the first time that 13C tracer analysis was applied to study microbial metabolism in MFCs and it was demonstrated to be a valuable tool to understand the metabolic pathways affected by electron donors in the selected electrochemically-active microorganisms. PMID:26868848
Dhamankar, Himanshu; Prather, Kristala L J
2011-08-01
The dwindling nature of petroleum and other fossil reserves has provided impetus towards microbial synthesis of fuels and value added chemicals from biomass-derived sugars as a renewable resource. Microbes have naturally evolved enzymes and pathways that can convert biomass into hundreds of unique chemical structures, a property that can be effectively exploited for their engineering into Microbial Chemical Factories (MCFs). De novo pathway engineering facilitates expansion of the repertoire of microbially synthesized compounds beyond natural products. In this review, we visit some recent successes in such novel pathway engineering and optimization, with particular emphasis on the selection and engineering of pathway enzymes and balancing of their accessory cofactors. Copyright © 2011 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Purkamo, L.; Bomberg, M.; Kietäväinen, R.; Salavirta, H.; Nyyssönen, M.; Nuppunen-Puputti, M.; Ahonen, L.; Kukkonen, I.; Itävaara, M.
2015-11-01
The bacterial and archaeal community composition and the possible carbon assimilation processes and energy sources of microbial communities in oligotrophic, deep, crystalline bedrock fractures is yet to be resolved. In this study, intrinsic microbial communities from six fracture zones from 180-2300 m depths in Outokumpu bedrock were characterized using high-throughput amplicon sequencing and metagenomic prediction. Comamonadaceae-, Anaerobrancaceae- and Pseudomonadaceae-related OTUs form the core community in deep crystalline bedrock fractures in Outokumpu. Archaeal communities were mainly composed of Methanobacteraceae-affiliating OTUs. The predicted bacterial metagenomes showed that pathways involved in fatty acid and amino sugar metabolism were common. In addition, relative abundance of genes coding the enzymes of autotrophic carbon fixation pathways in predicted metagenomes was low. This indicates that heterotrophic carbon assimilation is more important for microbial communities of the fracture zones. Network analysis based on co-occurrence of OTUs revealed the keystone genera of the microbial communities belonging to Burkholderiales and Clostridiales. Bacterial communities in fractures resemble those found from oligotrophic, hydrogen-enriched environments. Serpentinization reactions of ophiolitic rocks in Outokumpu assemblage may provide a source of energy and organic carbon compounds for the microbial communities in the fractures. Sulfate reducers and methanogens form a minority of the total microbial communities, but OTUs forming these minor groups are similar to those found from other deep Precambrian terrestrial bedrock environments.
NASA Astrophysics Data System (ADS)
Kritee, K.; Barkay, Tamar; Blum, Joel D.
2009-03-01
Controlling bioaccumulation of toxic monomethylmercury (MMHg) in aquatic food chains requires differentiation between biotic and abiotic pathways that lead to its production and degradation. Recent mercury (Hg) stable isotope measurements of natural samples suggest that Hg isotope ratios can be a powerful proxy for tracing dominant Hg transforming pathways in aquatic ecosystems. Specifically, it has been shown that photo-degradation of MMHg causes both mass dependent (MDF) and mass independent fractionation (MIF) of Hg isotopes. Because the extent of MDF and MIF observed in natural samples (e.g., fish, soil and sediments) can potentially be used to determine the relative importance of pathways leading to MMHg accumulation, it is important to determine the potential role of microbial pathways in contributing to the fractionation, especially MIF, observed in these samples. This study reports the extent of fractionation of Hg stable isotopes during degradation of MMHg to volatile elemental Hg and methane via the microbial Hg resistance ( mer) pathway in Escherichia coli carrying a mercury resistance ( mer) genetic system on a multi-copy plasmid. During experimental microbial degradation of MMHg, MMHg remaining in reactors became progressively heavier (increasing δ202Hg) with time and underwent mass dependent Rayleigh fractionation with a fractionation factor α202/198 = 1.0004 ± 0.0002 (2SD). However, MIF was not observed in any of the microbial MMHg degradation experiments indicating that the isotopic signature left by mer mediated MMHg degradation is significantly different from fractionation observed during DOC mediated photo-degradation of MMHg. Additionally, a clear suppression of Hg isotope fractionation, both during reduction of Hg(II) and degradation of MMHg, was observed when the cell densities increased, possibly due to a reduction in substrate bioavailability. We propose a multi-step framework for understanding the extent of fractionation seen in our MMHg degradation experiments and, based on estimates of the rates of the various steps involved in this mer mediated pathway, suggest which steps in the process could contribute towards the observed extent of fractionation. This framework suggests that at lower cell densities catalysis by MerB was the rate limiting step while at higher cell densities transport into the cell, which does not cause fractionation, became the rate limiting step. In addition to presenting evidence for absence of MIF during mer mediated Hg transformations, based on the nature of Hg compounds and microbe-Hg interactions, we suggest that the nuclear spin dependent MIF (i.e., the magnetic isotope effect) is also unlikely to occur during other non mer mediated 'dark' microbial Hg transformations (e.g., formation of MMHg and oxidative degradation of MMHg). Because of the important implications of the absence of MIF during biological processes on Hg isotope systematics, we discuss theoretical considerations and experimental strategies that could be used to confirm this suggestion.
Lv, Xiaomei; Gu, Jiali; Wang, Fan; Xie, Wenping; Liu, Min; Ye, Lidan; Yu, Hongwei
2016-12-01
Metabolic engineering of microorganisms for heterologous biosynthesis is a promising route to sustainable chemical production which attracts increasing research and industrial interest. However, the efficiency of microbial biosynthesis is often restricted by insufficient activity of pathway enzymes and unbalanced utilization of metabolic intermediates. This work presents a combinatorial strategy integrating modification of multiple rate-limiting enzymes and modular pathway engineering to simultaneously improve intra- and inter-pathway balance, which might be applicable for a range of products, using isoprene as an example product. For intra-module engineering within the methylerythritol-phosphate (MEP) pathway, directed co-evolution of DXS/DXR/IDI was performed adopting a lycopene-indicated high-throughput screening method developed herein, leading to 60% improvement of isoprene production. In addition, inter-module engineering between the upstream MEP pathway and the downstream isoprene-forming pathway was conducted via promoter manipulation, which further increased isoprene production by 2.94-fold compared to the recombinant strain with solely protein engineering and 4.7-fold compared to the control strain containing wild-type enzymes. These results demonstrated the potential of pathway optimization in isoprene overproduction as well as the effectiveness of combining metabolic regulation and protein engineering in improvement of microbial biosynthesis. Biotechnol. Bioeng. 2016;113: 2661-2669. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Systems Reliability Framework for Surface Water Sustainability and Risk Management
NASA Astrophysics Data System (ADS)
Myers, J. R.; Yeghiazarian, L.
2016-12-01
With microbial contamination posing a serious threat to the availability of clean water across the world, it is necessary to develop a framework that evaluates the safety and sustainability of water systems in respect to non-point source fecal microbial contamination. The concept of water safety is closely related to the concept of failure in reliability theory. In water quality problems, the event of failure can be defined as the concentration of microbial contamination exceeding a certain standard for usability of water. It is pertinent in watershed management to know the likelihood of such an event of failure occurring at a particular point in space and time. Microbial fate and transport are driven by environmental processes taking place in complex, multi-component, interdependent environmental systems that are dynamic and spatially heterogeneous, which means these processes and therefore their influences upon microbial transport must be considered stochastic and variable through space and time. A physics-based stochastic model of microbial dynamics is presented that propagates uncertainty using a unique sampling method based on artificial neural networks to produce a correlation between watershed characteristics and spatial-temporal probabilistic patterns of microbial contamination. These results are used to address the question of water safety through several sustainability metrics: reliability, vulnerability, resilience and a composite sustainability index. System reliability is described uniquely though the temporal evolution of risk along watershed points or pathways. Probabilistic resilience describes how long the system is above a certain probability of failure, and the vulnerability metric describes how the temporal evolution of risk changes throughout a hierarchy of failure levels. Additionally our approach allows for the identification of contributions in microbial contamination and uncertainty from specific pathways and sources. We expect that this framework will significantly improve the efficiency and precision of sustainable watershed management strategies through providing a better understanding of how watershed characteristics and environmental parameters affect surface water quality and sustainability. With microbial contamination posing a serious threat to the availability of clean water across the world, it is necessary to develop a framework that evaluates the safety and sustainability of water systems in respect to non-point source fecal microbial contamination. The concept of water safety is closely related to the concept of failure in reliability theory. In water quality problems, the event of failure can be defined as the concentration of microbial contamination exceeding a certain standard for usability of water. It is pertinent in watershed management to know the likelihood of such an event of failure occurring at a particular point in space and time. Microbial fate and transport are driven by environmental processes taking place in complex, multi-component, interdependent environmental systems that are dynamic and spatially heterogeneous, which means these processes and therefore their influences upon microbial transport must be considered stochastic and variable through space and time. A physics-based stochastic model of microbial dynamics is presented that propagates uncertainty using a unique sampling method based on artificial neural networks to produce a correlation between watershed characteristics and spatial-temporal probabilistic patterns of microbial contamination. These results are used to address the question of water safety through several sustainability metrics: reliability, vulnerability, resilience and a composite sustainability index. System reliability is described uniquely though the temporal evolution of risk along watershed points or pathways. Probabilistic resilience describes how long the system is above a certain probability of failure, and the vulnerability metric describes how the temporal evolution of risk changes throughout a hierarchy of failure levels. Additionally our approach allows for the identification of contributions in microbial contamination and uncertainty from specific pathways and sources. We expect that this framework will significantly improve the efficiency and precision of sustainable watershed management strategies through providing a better understanding of how watershed characteristics and environmental parameters affect surface water quality and sustainability.
Kearns, Patrick J.; Angell, John H.; Howard, Evan M.; Deegan, Linda A.; Stanley, Rachel H. R.; Bowen, Jennifer L.
2016-01-01
Microorganisms control key biogeochemical pathways, thus changes in microbial diversity, community structure and activity can affect ecosystem response to environmental drivers. Understanding factors that control the proportion of active microbes in the environment and how they vary when perturbed is critical to anticipating ecosystem response to global change. Increasing supplies of anthropogenic nitrogen to ecosystems globally makes it imperative that we understand how nutrient supply alters active microbial communities. Here we show that nitrogen additions to salt marshes cause a shift in the active microbial community despite no change in the total community. The active community shift causes the proportion of dormant microbial taxa to double, from 45 to 90%, and induces diversity loss in the active portion of the community. Our results suggest that perturbations to salt marshes can drastically alter active microbial communities, however these communities may remain resilient by protecting total diversity through increased dormancy. PMID:27666199
Kearns, Patrick J; Angell, John H; Howard, Evan M; Deegan, Linda A; Stanley, Rachel H R; Bowen, Jennifer L
2016-09-26
Microorganisms control key biogeochemical pathways, thus changes in microbial diversity, community structure and activity can affect ecosystem response to environmental drivers. Understanding factors that control the proportion of active microbes in the environment and how they vary when perturbed is critical to anticipating ecosystem response to global change. Increasing supplies of anthropogenic nitrogen to ecosystems globally makes it imperative that we understand how nutrient supply alters active microbial communities. Here we show that nitrogen additions to salt marshes cause a shift in the active microbial community despite no change in the total community. The active community shift causes the proportion of dormant microbial taxa to double, from 45 to 90%, and induces diversity loss in the active portion of the community. Our results suggest that perturbations to salt marshes can drastically alter active microbial communities, however these communities may remain resilient by protecting total diversity through increased dormancy.
NASA Astrophysics Data System (ADS)
Kearns, Patrick J.; Angell, John H.; Howard, Evan M.; Deegan, Linda A.; Stanley, Rachel H. R.; Bowen, Jennifer L.
2016-09-01
Microorganisms control key biogeochemical pathways, thus changes in microbial diversity, community structure and activity can affect ecosystem response to environmental drivers. Understanding factors that control the proportion of active microbes in the environment and how they vary when perturbed is critical to anticipating ecosystem response to global change. Increasing supplies of anthropogenic nitrogen to ecosystems globally makes it imperative that we understand how nutrient supply alters active microbial communities. Here we show that nitrogen additions to salt marshes cause a shift in the active microbial community despite no change in the total community. The active community shift causes the proportion of dormant microbial taxa to double, from 45 to 90%, and induces diversity loss in the active portion of the community. Our results suggest that perturbations to salt marshes can drastically alter active microbial communities, however these communities may remain resilient by protecting total diversity through increased dormancy.
Evasion Mechanisms Used by Pathogens to Escape the Lectin Complement Pathway.
Rosbjerg, Anne; Genster, Ninette; Pilely, Katrine; Garred, Peter
2017-01-01
The complement system is a crucial defensive network that protects the host against invading pathogens. It is part of the innate immune system and can be initiated via three pathways: the lectin, classical and alternative activation pathway. Overall the network compiles a group of recognition molecules that bind specific patterns on microbial surfaces, a group of associated proteases that initiates the complement cascade, and a group of proteins that interact in proteolytic complexes or the terminal pore-forming complex. In addition, various regulatory proteins are important for controlling the level of activity. The result is a pro-inflammatory response meant to combat foreign microbes. Microbial elimination is, however, not a straight forward procedure; pathogens have adapted to their environment by evolving a collection of evasion mechanisms that circumvent the human complement system. Complement evasion strategies features different ways of exploiting human complement proteins and moreover features different pathogen-derived proteins that interfere with the normal processes. Accumulated, these mechanisms target all three complement activation pathways as well as the final common part of the cascade. This review will cover the currently known lectin pathway evasion mechanisms and give examples of pathogens that operate these to increase their chance of invasion, survival and dissemination.
Microbial degradation and toxicity of hexahydro-1,3,5-trinitro-1,3,5-triazine.
Khan, Muhammad Imran; Lee, Jaejin; Park, Joonhong
2012-10-01
In the present work, current knowledge on the potential fate, microbial degradation, and toxicity of hexahydro- 1,3,5-trinitro-1,3,5-triazine (RDX) was thoroughly reviewed, focusing on the toxicological assessment of a variety of potential RDX degradation pathways in bacteria and fungi. The present review on microbial degradation pathways and toxicities of degradation intermediates suggests that, among aerobic RDX degradation pathways, the one via denitration may be preferred in a toxicological perspective, and that among anaerobic pathways, those forming 4- nitro-2,4-diazabutanal (NDAB) via ring cleavage of 1-nitroso- 3,5-dinitro-1,3,5-triazinane (MNX) may be toxicologically advantageous owing to its potential mineralization under partial or complete anoxic conditions. These findings provide important information on RDX-degrading microbial pathways, toxicologically most suitable to be stimulated in contaminated fields.
Mixotrophy and intraguild predation - dynamic consequences of shifts between food web motifs
NASA Astrophysics Data System (ADS)
Karnatak, Rajat; Wollrab, Sabine
2017-06-01
Mixotrophy is ubiquitous in microbial communities of aquatic systems with many flagellates being able to use autotroph as well as heterotroph pathways for energy acquisition. The usage of one over the other pathway is associated with resource availability and the coupling of alternative pathways has strong implications for system stability. We investigated the impact of dominance of different energy pathways related to relative resource availability on system dynamics in the setting of a tritrophic food web motif. This motif consists of a mixotroph feeding on a purely autotroph species while competing for a shared resource. In addition, the autotroph can use an additional exclusive food source. By changing the relative abundance of shared vs. exclusive food source, we shift the food web motif from an intraguild predation motif to a food chain motif. We analyzed the dependence of system dynamics on absolute and relative resource availability. In general, the system exhibits a transition from stable to oscillatory dynamics with increasing nutrient availability. However, this transition occurs at a much lower nutrient level for the food chain in comparison to the intraguild predation motif. A similar transition is also observed with variations in the relative abundance of food sources for a range of nutrient levels. We expect this shift in food web motifs to occur frequently in microbial communities and therefore the results from our study are highly relevant for natural systems.
Planktonic food webs revisited: Reanalysis of results from the linear inverse approach
NASA Astrophysics Data System (ADS)
Hlaili, Asma Sakka; Niquil, Nathalie; Legendre, Louis
2014-01-01
Identification of the trophic pathway that dominates a given planktonic assemblage is generally based on the distribution of biomasses among food-web compartments, or better, the flows of materials or energy among compartments. These flows are obtained by field observations and a posteriori analyses, including the linear inverse approach. In the present study, we re-analysed carbon flows obtained by inverse analysis at 32 stations in the global ocean and one large lake. Our results do not support two "classical" views of plankton ecology, i.e. that the herbivorous food web is dominated by mesozooplankton grazing on large phytoplankton, and the microbial food web is based on microzooplankton significantly consuming bacteria; our results suggest instead that phytoplankton are generally grazed by microzooplankton, of which they are the main food source. Furthermore, we identified the "phyto-microbial food web", where microzooplankton largely feed on phytoplankton, in addition to the already known "poly-microbial food web", where microzooplankton consume more or less equally various types of food. These unexpected results led to a (re)definition of the conceptual models corresponding to the four trophic pathways we found to exist in plankton, i.e. the herbivorous, multivorous, and two types of microbial food web. We illustrated the conceptual trophic pathways using carbon flows that were actually observed at representative stations. The latter can be calibrated to correspond to any field situation. Our study also provides researchers and managers with operational criteria for identifying the dominant trophic pathway in a planktonic assemblage, these criteria being based on the values of two carbon ratios that could be calculated from flow values that are relatively easy to estimate in the field.
Growing Rocks: Implications of Lithification for Microbial Communities and Nutrient Cycling
NASA Astrophysics Data System (ADS)
Corman, J. R.; Poret-Peterson, A. T.; Elser, J. J.
2014-12-01
Lithifying microbial communities ("microbialites") have left their signature on Earth's rock record for over 3.4 billion years and are regarded as important players in paleo-biogeochemical cycles. In this project, we study extant microbialites to understand the interactions between lithification and resource availability. All microbes need nutrients and energy for growth; indeed, nutrients are often a factor limiting microbial growth. We hypothesize that calcium carbonate deposition can sequester bioavailable phosphorus (P) and expect the growth of microbialites to be P-limited. To test our hypothesis, we first compared nutrient limitation in lithifying and non-lithifying microbial communities in Río Mesquites, Cuatro Ciénegas. Then, we experimentally manipulated calcification rates in the Río Mesquites microbialites. Our results suggest that lithifying microbialites are indeed P-limited, while non-lithifying, benthic microbial communities tend towards co-limitation by nitrogen (N) and P. Indeed, in microbialites, photosynthesis and aerobic respiration responded positively to P additions (P<0.05). Organic carbon (OC) additions caused shifts in bacterial community composition based on analysis of 16S rRNA genes. Unexpectedly, calcification rates increased with OC additions (P<0.05), but not with P additions, suggesting that sulfate reduction may be an important pathway for calcification. Experimental reductions in calcification rates caused changes to microbial biomass OC and P concentrations (P<0.01 and P<0.001, respectively), although shifts depended on whether calcification was decreased abiotically or biotically. These results show that resource availability does influence microbialite formation and that lithification may promote phosphorus limitation; however, further investigation is required to understand the mechanism by which the later occurs.
Pathway engineering strategies for production of beneficial carotenoids in microbial hosts.
Ye, Victor M; Bhatia, Sujata K
2012-08-01
Carotenoids, such as lycopene, β-carotene, zeaxanthin, canthaxanthin and astaxanthin have many benefits for human health. In addition to the functional role of carotenoids as vitamin A precursors, adequate consumption of carotenoids prevents the development of a variety of serious diseases. Biosynthesis of carotenoids is a complex process and it starts with the common isoprene precursors. Condensation of these precursors and subsequent modifications, by introducing hydroxyl- and keto-groups, leads to the generation of diversified carotenoid structures. To improve carotenoid production, metabolic engineering has been explored in bacteria, yeast, and algae. The success of the pathway engineering effort depends on the host metabolism, specific enzymes used, the enzyme expression levels, and the strategies employed. Despite the difficulty of pathway engineering for carotenoid production, great progress has been made over the past decade. We review metabolic engineering approaches used in a variety of microbial hosts for carotenoid biosynthesis. These advances will greatly expedite our efforts to bring the health benefits of carotenoids and other nutritional compounds to our diet.
Methanogenic pathways of coal-bed gas in the Powder River Basin, United States: The geologic factor
Flores, R.M.; Rice, C.A.; Stricker, G.D.; Warden, A.; Ellis, M.S.
2008-01-01
Coal-bed gas of the Tertiary Fort Union and Wasatch Formations in the Powder River Basin in Wyoming and Montana, U.S. was interpreted as microbial in origin by previous studies based on limited data on the gas and water composition and isotopes associated with the coal beds. To fully evaluate the microbial origin of the gas and mechanisms of methane generation, additional data for 165 gas and water samples from 7 different coal-bed methane-bearing coal-bed reservoirs were collected basinwide and correlated to the coal geology and stratigraphy. The C1/(C2 + C3) ratio and vitrinite reflectance of coal and organic shale permitted differentiation between microbial gas and transitional thermogenic gas in the central part of the basin. Analyses of methane ??13C and ??D, carbon dioxide ??13C, and water ??D values indicate gas was generated primarily from microbial CO2 reduction, but with significant gas generated by microbial methyl-type fermentation (aceticlastic) in some areas of the basin. Microbial CO2 reduction occurs basinwide, but is generally dominant in Paleocene Fort Union Formation coals in the central part of the basin, whereas microbial methyl-type fermentation is common along the northwest and east margins. Isotopically light methane ??13C is distributed along the basin margins where ??D is also depleted, indicating that both CO2-reduction and methyl-type fermentation pathways played major roles in gas generation, but gas from the latter pathway overprinted gas from the former pathway. More specifically, along the northwest basin margin gas generation by methyl-type fermentation may have been stimulated by late-stage infiltration of groundwater recharge from clinker areas, which flowed through highly fractured and faulted coal aquifers. Also, groundwater recharge controlled a change in gas composition in the shallow Eocene Wasatch Formation with the increase of nitrogen and decrease of methane composition of the coal-bed gas. Other geologic factors, such as burial, thermal and maturation history, lateral and vertical continuity, and coalification of the coal beds, also played a significant role in controlling methanogenic pathways and provided new perspectives on gas evolution and emplacement. The early-stage gas produced by CO2 reduction has mixed with transitional thermogenic gas in the deeper, central parts of the Powder River Basin to form 'old' gas, whereas along the basin margins the overprint of gas from methyl-type fermentation represents 'new' gas. Thus, a clear understanding of these geologic factors is necessary to relate the microbiological, biogeochemical, and hydrological processes involved in the generation of coal-bed gas.
Enhancing microbial production of biofuels by expanding microbial metabolic pathways.
Yu, Ping; Chen, Xingge; Li, Peng
2017-09-01
Fatty acid, isoprenoid, and alcohol pathways have been successfully engineered to produce biofuels. By introducing three genes, atfA, adhE, and pdc, into Escherichia coli to expand fatty acid pathway, up to 1.28 g/L of fatty acid ethyl esters can be achieved. The isoprenoid pathway can be expanded to produce bisabolene with a high titer of 900 mg/L in Saccharomyces cerevisiae. Short- and long-chain alcohols can also be effectively biosynthesized by extending the carbon chain of ketoacids with an engineered "+1" alcohol pathway. Thus, it can be concluded that expanding microbial metabolic pathways has enormous potential for enhancing microbial production of biofuels for future industrial applications. However, some major challenges for microbial production of biofuels should be overcome to compete with traditional fossil fuels: lowering production costs, reducing the time required to construct genetic elements and to increase their predictability and reliability, and creating reusable parts with useful and predictable behavior. To address these challenges, several aspects should be further considered in future: mining and transformation of genetic elements related to metabolic pathways, assembling biofuel elements and coordinating their functions, enhancing the tolerance of host cells to biofuels, and creating modular subpathways that can be easily interconnected. © 2016 International Union of Biochemistry and Molecular Biology, Inc.
NASA Astrophysics Data System (ADS)
Morrill, P. L.; Rietze, A.; Kohl, L.; Miles, S.; Kavanagh, H.; Cox, A.; Brazelton, W. J.; Ishii, S.; Sherwood Lollar, B.; Schrenk, M. O.; Nealson, K. H.; Ziegler, S. E.; Ono, S.; Wang, D. T.; Lang, S. Q.; Cumming, E.
2014-12-01
Ultra-basic reducing springs at continental sites of serpentinization act as portals into the biogeochemistry of a subsurface ultramafic environment rich in hydrogen and methane gases. Field data and results from substrate addition microcosm experiments will be presented from two contrasting continental sites of serpentinization: the Tablelands, NL, CAN and The Cedars, CA, USA both Phanerozoic in age. These continental sites share geochemical characteristics that make these environments challenging for life, such as high pH, low Eh, scarce electron acceptors, and limited dissolved inorganic carbon for autotrophic growth. However, microbiological analyses have demonstrated that life does indeed exist in these environments. While environmental genomic studies indicated the potential metabolic capabilities of microorganisms in the sites, actual microbial metabolic activities in these environments remain unknown. To expand the understanding of biogeochemistry of the sites, we are conducting studies focusing on chemical and isotopic measurements, carbon substrate utilization, energy sources, and metabolic pathways of the microorganisms. Thus far, in situ geochemical data suggests that the methane from the Tablelands is primarily non-microbial, while the methane from The Cedars likely has some microbial contributions. To date, substrate addition microcosm experiments show no microbial production of methane from Tablelands' water and sediments. However, microbial carbon monoxide utilization has been observed in Tableland microcosms, but not in The Cedars microcosms. These results demonstrate how geochemistry and substrate addition experiments can be complementary for the determination of the processes favored at these continental sites of serpentinization.
Glass, Jennifer B.; Orphan, Victoria J.
2011-01-01
Fluxes of greenhouse gases to the atmosphere are heavily influenced by microbiological activity. Microbial enzymes involved in the production and consumption of greenhouse gases often contain metal cofactors. While extensive research has examined the influence of Fe bioavailability on microbial CO2 cycling, fewer studies have explored metal requirements for microbial production and consumption of the second- and third-most abundant greenhouse gases, methane (CH4), and nitrous oxide (N2O). Here we review the current state of biochemical, physiological, and environmental research on transition metal requirements for microbial CH4 and N2O cycling. Methanogenic archaea require large amounts of Fe, Ni, and Co (and some Mo/W and Zn). Low bioavailability of Fe, Ni, and Co limits methanogenesis in pure and mixed cultures and environmental studies. Anaerobic methane oxidation by anaerobic methanotrophic archaea (ANME) likely occurs via reverse methanogenesis since ANME possess most of the enzymes in the methanogenic pathway. Aerobic CH4 oxidation uses Cu or Fe for the first step depending on Cu availability, and additional Fe, Cu, and Mo for later steps. N2O production via classical anaerobic denitrification is primarily Fe-based, whereas aerobic pathways (nitrifier denitrification and archaeal ammonia oxidation) require Cu in addition to, or possibly in place of, Fe. Genes encoding the Cu-containing N2O reductase, the only known enzyme capable of microbial N2O conversion to N2, have only been found in classical denitrifiers. Accumulation of N2O due to low Cu has been observed in pure cultures and a lake ecosystem, but not in marine systems. Future research is needed on metalloenzymes involved in the production of N2O by enrichment cultures of ammonia oxidizing archaea, biological mechanisms for scavenging scarce metals, and possible links between metal bioavailability and greenhouse gas fluxes in anaerobic environments where metals may be limiting due to sulfide-metal scavenging. PMID:22363333
Ye, Chao; Xu, Nan; Dong, Chuan; Ye, Yuannong; Zou, Xuan; Chen, Xiulai; Guo, Fengbiao; Liu, Liming
2017-04-07
Genome-scale metabolic models (GSMMs) constitute a platform that combines genome sequences and detailed biochemical information to quantify microbial physiology at the system level. To improve the unity, integrity, correctness, and format of data in published GSMMs, a consensus IMGMD database was built in the LAMP (Linux + Apache + MySQL + PHP) system by integrating and standardizing 328 GSMMs constructed for 139 microorganisms. The IMGMD database can help microbial researchers download manually curated GSMMs, rapidly reconstruct standard GSMMs, design pathways, and identify metabolic targets for strategies on strain improvement. Moreover, the IMGMD database facilitates the integration of wet-lab and in silico data to gain an additional insight into microbial physiology. The IMGMD database is freely available, without any registration requirements, at http://imgmd.jiangnan.edu.cn/database.
Dispersed oil disrupts microbial pathways in pelagic food webs.
Ortmann, Alice C; Anders, Jennifer; Shelton, Naomi; Gong, Limin; Moss, Anthony G; Condon, Robert H
2012-01-01
Most of the studies of microbial processes in response to the Deepwater Horizon oil spill focused on the deep water plume, and not on the surface communities. The effects of the crude oil and the application of dispersants on the coastal microbial food web in the northern Gulf of Mexico have not been well characterized even though these regions support much of the fisheries production in the Gulf. A mesocosm experiment was carried out to determine how the microbial community off the coast of Alabama may have responded to the influx of surface oil and dispersants. While the addition of glucose or oil alone resulted in an increase in the biomass of ciliates, suggesting transfer of carbon to higher trophic levels was likely; a different effect was seen in the presence of dispersant. The addition of dispersant or dispersed oil resulted in an increase in the biomass of heterotrophic prokaryotes, but a significant inhibition of ciliates, suggesting a reduction in grazing and decrease in transfer of carbon to higher trophic levels. Similar patterns were observed in two separate experiments with different starting nutrient regimes and microbial communities suggesting that the addition of dispersant and dispersed oil to the northern Gulf of Mexico waters in 2010 may have reduced the flow of carbon to higher trophic levels, leading to a decrease in the production of zooplankton and fish on the Alabama shelf.
Burow, Luke C.; Woebken, Dagmar; Marshall, Ian PG; ...
2012-11-29
Photosynthetic microbial mats possess extraordinary phylogenetic and functional diversity that makes linking specific pathways with individual microbial populations a daunting task. Close metabolic and spatial relationships between Cyanobacteria and Chloroflexi have previously been observed in diverse microbial mats. Here in this paper, we report that an expressed metabolic pathway for the anoxic catabolism of photosynthate involving Cyanobacteria and Chloroflexi in microbial mats can be reconstructed through metatranscriptomic sequencing of mats collected at Elkhorn Slough, Monterey Bay, CA, USA. In this reconstruction, Microcoleus spp., the most abundant cyanobacterial group in the mats, ferment photosynthate to organic acids, CO 2 and Hmore » 2 through multiple pathways, and an uncultivated lineage of the Chloroflexi take up these organic acids to store carbon as polyhydroxyalkanoates. The metabolic reconstruction is consistent with metabolite measurements and single cell microbial imaging with fluorescence in situ hybridization and NanoSIMS.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burow, Luke C.; Woebken, Dagmar; Marshall, Ian PG
Photosynthetic microbial mats possess extraordinary phylogenetic and functional diversity that makes linking specific pathways with individual microbial populations a daunting task. Close metabolic and spatial relationships between Cyanobacteria and Chloroflexi have previously been observed in diverse microbial mats. Here in this paper, we report that an expressed metabolic pathway for the anoxic catabolism of photosynthate involving Cyanobacteria and Chloroflexi in microbial mats can be reconstructed through metatranscriptomic sequencing of mats collected at Elkhorn Slough, Monterey Bay, CA, USA. In this reconstruction, Microcoleus spp., the most abundant cyanobacterial group in the mats, ferment photosynthate to organic acids, CO 2 and Hmore » 2 through multiple pathways, and an uncultivated lineage of the Chloroflexi take up these organic acids to store carbon as polyhydroxyalkanoates. The metabolic reconstruction is consistent with metabolite measurements and single cell microbial imaging with fluorescence in situ hybridization and NanoSIMS.« less
NASA Astrophysics Data System (ADS)
Apostel, C.; Dippold, M. A.; Kuzyakov, Y.
2015-12-01
Understanding the microbial impact on C and nutrient cycles is one of the most important challenges in terrestrial biogeochemistry. Transformation of low molecular weight organic substances (LMWOS) is a key step in all biogeochemical cycles because 1) all high molecular substances pass the LMWOS pool during their degradation and 2) only LMWOS can be taken up by microorganisms intact. Thus, the transformations of LMWOS are dominated by biochemical pathways of the soil microorganisms. Thus, understanding fluxes and transformations in soils requires a detailed knowledge on the microbial metabolic network and its control mechanism. Tracing C fate in soil by isotopes became on of the most applied and promising biogeochemistry tools but studies were nearly exclusively based on uniformly labeled substances. However, such tracers do not allow the differentiation of the intact use of the initial substances from its transformation to metabolites. The novel tool of position-specific labeling enables to trace molecule atoms separately and thus to determine the cleavage of molecules - a prerequisite for metabolic tracing. Position-specific labeling of basic metabolites and quantification of isotope incorporation in CO2 and bulk soil enabled following the basic metabolic pathways of microorganisms. However, the combination of position-specific 13C labeling with compound-specific isotope analysis of microbial biomarkers and metabolites like phospholipid fatty acids (PLFA) or amino sugars revealed new insights into the soil fluxome: First, it enables tracing specific anabolic pathways in diverse microbial communities in soils e.g. carbon starvation pathways versus pathways reflecting microbial growth. Second, it allows identification of specific pathways of individual functional microbial groups in soils in situ. Tracing metabolic pathways and understanding their regulating factors are crucial for soil C fluxomics i.e. the unravaling of the complex network of C transformations. Quantitative models to assess microbial group specific metabolic pathways can be generated and parameterized by this approach. The knowledge of submolecular C transformation steps and its regulating factors is essential for understanding C cycling and long-term C storage in soils.
Microbial synthesis of propane by engineering valine pathway and aldehyde-deformylating oxygenase.
Zhang, Lei; Liang, Yajing; Wu, Wei; Tan, Xiaoming; Lu, Xuefeng
2016-01-01
Propane, a major component of liquid petroleum gas (LPG) derived from fossil fuels, has widespread applications in vehicles, cooking, and ambient heating. Given the concerns about fossil fuel depletion and carbon emission, exploiting alternative and renewable source of propane have become attractive. In this study, we report the construction of a novel propane biosynthetic pathway in Escherichia coli. We constructed an aldehyde reductases (ALR)-deprived E. coli strain BW25113(DE3) Δ13 via genetic engineering, which produced sufficient isobutyraldehyde precursors and finally achieved de novo synthesis of propane (91 μg/L) by assembling the engineered valine pathway and cyanobacterial aldehyde-deformylating oxygenase (ADO). Additionally, after extensive screening of ADO mutants generated by engineering the active center to accommodate branched-chain isobutyraldehyde, we identified two ADO mutants (I127G, I127G/A48G) which exhibited higher catalytic activity for isobutyraldehyde and improved propane productivity by three times (267 μg/L). The propane biosynthetic pathway constructed here through the engineered valine pathway can produce abundant isobutyraldehyde for ADO and overcome the low availability of precursors in propane production. Furthermore, the rational design aiming at the ADO active center illustrates the plasticity and catalytic potential of ADO. These results together highlight the potential for developing a microbial biomanufacturing platform for propane.
Evasion Mechanisms Used by Pathogens to Escape the Lectin Complement Pathway
Rosbjerg, Anne; Genster, Ninette; Pilely, Katrine; Garred, Peter
2017-01-01
The complement system is a crucial defensive network that protects the host against invading pathogens. It is part of the innate immune system and can be initiated via three pathways: the lectin, classical and alternative activation pathway. Overall the network compiles a group of recognition molecules that bind specific patterns on microbial surfaces, a group of associated proteases that initiates the complement cascade, and a group of proteins that interact in proteolytic complexes or the terminal pore-forming complex. In addition, various regulatory proteins are important for controlling the level of activity. The result is a pro-inflammatory response meant to combat foreign microbes. Microbial elimination is, however, not a straight forward procedure; pathogens have adapted to their environment by evolving a collection of evasion mechanisms that circumvent the human complement system. Complement evasion strategies features different ways of exploiting human complement proteins and moreover features different pathogen-derived proteins that interfere with the normal processes. Accumulated, these mechanisms target all three complement activation pathways as well as the final common part of the cascade. This review will cover the currently known lectin pathway evasion mechanisms and give examples of pathogens that operate these to increase their chance of invasion, survival and dissemination. PMID:28553281
NASA Astrophysics Data System (ADS)
Hunter, K. S.; Van Cappellen, P.
2000-01-01
Our paper, 'Kinetic modeling of microbially-driven redox chemistry of subsurface environments: coupling transport, microbial metabolism and geochemistry' (Hunter et al., 1998), presents a theoretical exploration of biogeochemical reaction networks and their importance to the biogeochemistry of groundwater systems. As with any other model, the kinetic reaction-transport model developed in our paper includes only a subset of all physically, biologically and chemically relevant processes in subsurface environments. It considers aquifer systems where the primary energy source driving microbial activity is the degradation of organic matter. In addition to the primary biodegradation pathways of organic matter (i.e. respiration and fermentation), the redox chemistry of groundwaters is also affected by reactions not directly involving organic matter oxidation. We refer to the latter as secondary reactions. By including secondary redox reactions which consume reduced reaction products (e.g., Mn2+, FeS, H2S), and in the process compete with microbial heterotrophic populations for available oxidants (i.e. O2, NO3-, Mn(IV), Fe(III), SO42-), we predict spatio-temporal distributions of microbial activity which differ significantly from those of models which consider only the biodegradation reactions. That is, the secondary reactions have a significant impact on the distributions of the rates of heterotrophic and chemolithotrophic metabolic pathways. We further show that secondary redox reactions, as well as non-redox reactions, significantly influence the acid-base chemistry of groundwaters. The distributions of dissolved inorganic redox species along flowpaths, however, are similar in simulations with and without secondary reactions (see Figs. 3(b) and 7(b) in Hunter et al., 1998), indicating that very different biogeochemical reaction dynamics may lead to essentially the same chemical redox zonation of a groundwater system.
Ritter, Daniel J.; Vinson, David S.; Barnhart, Elliott P.; Akob, Denise M.; Fields, Matthew W.; Cunningham, Al B.; Orem, William H.; McIntosh, Jennifer C.
2015-01-01
Coalbed methane (CBM) makes up a significant portion of the world’s natural gas resources. The discovery that approximately 20% of natural gas is microbial in origin has led to interest in microbially enhanced CBM (MECoM), which involves stimulating microorganisms to produce additional CBM from existing production wells. This paper reviews current laboratory and field research on understanding processes and reservoir conditions which are essential for microbial CBM generation, the progress of efforts to stimulate microbial methane generation in coal beds, and key remaining knowledge gaps. Research has been primarily focused on identifying microbial communities present in areas of CBM generation and attempting to determine their function, in-situ reservoir conditions that are most favorable for microbial CBM generation, and geochemical indicators of metabolic pathways of methanogenesis (i.e., acetoclastic or hydrogenotrophic methanogenesis). Meanwhile, researchers at universities, government agencies, and companies have focused on four primary MECoM strategies: 1) microbial stimulation (i.e., addition of nutrients to stimulate native microbes); 2) microbial augmentation (i.e., addition of microbes not native to or abundant in the reservoir of interest); 3) physically increasing microbial access to coal and distribution of amendments; and 4) chemically increasing the bioavailability of coal organics. Most companies interested in MECoM have pursued microbial stimulation: Luca Technologies, Inc., successfully completed a pilot scale field test of their stimulation strategy, while two others, Ciris Energy and Next Fuel, Inc., have undertaken smaller scale field tests. Several key knowledge gaps remain that need to be addressed before MECoM strategies can be implemented commercially. Little is known about the bacterial community responsible for coal biodegradation and how these microorganisms may be stimulated to enhance microbial methanogenesis. In addition, research is needed to understand what fraction of coal is available for biodegradation, and methods need to be developed to determine the extent of in-situ coal biodegradation by MECoM processes for monitoring changes to coal quality. Questions also remain about how well field-scale pilot tests will scale to commercial production, how often amendments will need to be added to maintain new methane generation, and how well MECoM strategies transfer between coal basins with different formation water geochemistries and coal ranks. Addressing these knowledge gaps will be key in determining the feasibility and commercial viability of MECoM technology.
Zhang, Jian-Hua; Yu, Na; Xu, Xi-Xia; Liu, Ze-Wen
2018-02-09
The endosymbionts play vital roles in growth, development and reproduction in insects. Yeast-like endosymbionts (YLSs) have been well studied in Nilaparvata lugens (N. lugens), but little is known about the tissue-specific bacterial microbiomes, especially on the microbial intersection among internal tissues. Here, the correlation of microbial composition, structure, dispersal ability and functional profiling were illuminated in two tissues, the fat body and ovary in N. lugens. A total of 11 phyla and 105 genera were captured from all samples; Firmicutes and Proteobacteria were the most predominant and accounted for more than 99% in all samples. However, the relative abundance of Firmicutes and Proteobacteria was significantly different in ovary and fat body through Fisher's Least Significant Difference test. Microbial diversity but not the richness index in the two tissues exhibited significant difference. Furthermore, the microbial community structure of the ovary and fat body were primarily determined by tissue quality. Firmicutes showed strong dispersal ability between ovary and fat body based on the quantitative null model assessing, indicating the frequent interaction of these microbiomes in the two tissues. In addition, the Kyoto Encyclopedia of Genes and Genomes pathways of microbial participation were delineated. The ten most abundant pathways counted for over 46% of the annotation and were shared between the two tissues, mainly containing Energy Metabolism and Amino Acid Metabolism/Biosynthesis. The results will provide insights into the correlation of microbial community structure between ovary and fat body of N. lugens. © 2018 Institute of Zoology, Chinese Academy of Sciences.
Intrinsic association between diet and the gut microbiome: current evidence
Winglee, Kathryn; Fodor, Anthony A
2017-01-01
The gut microbiome performs many crucial functions for the human host, but the molecular mechanisms by which host, microbe and diet interact to mediate health and disease are only starting to be revealed. Here we review the literature on how changes in the diet affect the microbiome. A number of studies have shown that within a geographic region, different diets (such as vegan vs. omnivore) are associated with differences in a modest number of taxa but do not reliably produce radical differences within the gut microbial community. In contrast, studies that look across continents consistently find profoundly different microbial communities between Westernized and traditional populations, although it remains unclear to what extent diet or other differences in lifestyle drive these distinct microbial community structures. Furthermore, studies that place subjects on controlled short term experimental diets have found the resulting alterations to the gut microbial community to generally be small in scope, with changes that do not overcome initial individual differences in microbial community structure. These results emphasize that the human gut microbial community is relatively stable over time. In contrast, short term changes in diet can cause large changes in metabolite profiles, including metabolites processed by the gut microbial community. These results suggest that commensal gut microbes have a great deal of genetic plasticity and can activate different metabolic pathways independent of changes to microbial community composition. Thus, future studies of the how diet impacts host health via the microbiome may wish to focus on functional assays such as transcriptomics and metabolomics, in addition to 16S rRNA and whole-genome metagenome shotgun analyses of DNA. Taken together, the literature is most consistent with a model in which the composition of the adult gut microbial community undergoes modest compositional changes in response to altered diet but can nonetheless respond very rapidly to dietary changes via up- or down-regulation of metabolic pathways that can have profound and immediate consequences for host health. PMID:28690398
Zhao, Xiao-Fan; Vasta, Gerardo R.
2017-01-01
C-type lectins (CTLs) are characterized by the presence of a C-type carbohydrate recognition domain (CTLD) that by recognizing microbial glycans, is responsible for their roles as pattern recognition receptors in the immune response to bacterial infection. In addition to the CTLD, however, some CTLs display additional domains that can carry out effector functions, such as the collagenous domain of the mannose-binding lectin. While in vertebrates, the mechanisms involved in these effector functions have been characterized in considerable detail, in invertebrates they remain poorly understood. In this study, we identified in the kuruma shrimp (Marsupenaeus japonicus) a structurally novel CTL (MjCC-CL) that in addition to the canonical CTLD, contains a coiled-coil domain (CCD) responsible for the effector functions that are key to the shrimp’s antibacterial response mediated by antimicrobial peptides (AMPs). By the use of in vitro and in vivo experimental approaches we elucidated the mechanism by which the recognition of bacterial glycans by the CTLD of MjCC-CL leads to activation of the JAK/STAT pathway via interaction of the CCD with the surface receptor Domeless, and upregulation of AMP expression. Thus, our study of the shrimp MjCC-CL revealed a striking functional difference with vertebrates, in which the JAK/STAT pathway is indirectly activated by cell death and stress signals through cytokines or growth factors. Instead, by cross-linking microbial pathogens with the cell surface receptor Domeless, a lectin directly activates the JAK/STAT pathway, which plays a central role in the shrimp antibacterial immune responses by upregulating expression of selected AMPs. PMID:28931061
Ab initio genotype–phenotype association reveals intrinsic modularity in genetic networks
Slonim, Noam; Elemento, Olivier; Tavazoie, Saeed
2006-01-01
Microbial species express an astonishing diversity of phenotypic traits, behaviors, and metabolic capacities. However, our molecular understanding of these phenotypes is based almost entirely on studies in a handful of model organisms that together represent only a small fraction of this phenotypic diversity. Furthermore, many microbial species are not amenable to traditional laboratory analysis because of their exotic lifestyles and/or lack of suitable molecular genetic techniques. As an adjunct to experimental analysis, we have developed a computational information-theoretic framework that produces high-confidence gene–phenotype predictions using cross-species distributions of genes and phenotypes across 202 fully sequenced archaea and eubacteria. In addition to identifying the genetic basis of complex traits, our approach reveals the organization of these genes into generic preferentially co-inherited modules, many of which correspond directly to known enzymatic pathways, molecular complexes, signaling pathways, and molecular machines. PMID:16732191
Pirie, Christopher M; De Mey, Marjan; Jones Prather, Kristala L; Ajikumar, Parayil Kumaran
2013-04-19
Through microbial engineering, biosynthesis has the potential to produce thousands of chemicals used in everyday life. Metabolic engineering and synthetic biology are fields driven by the manipulation of genes, genetic regulatory systems, and enzymatic pathways for developing highly productive microbial strains. Fundamentally, it is the biochemical characteristics of the enzymes themselves that dictate flux through a biosynthetic pathway toward the product of interest. As metabolic engineers target sophisticated secondary metabolites, there has been little recognition of the reduced catalytic activity and increased substrate/product promiscuity of the corresponding enzymes compared to those of central metabolism. Thus, fine-tuning these enzymatic characteristics through protein engineering is paramount for developing high-productivity microbial strains for secondary metabolites. Here, we describe the importance of protein engineering for advancing metabolic engineering of secondary metabolism pathways. This pathway integrated enzyme optimization can enhance the collective toolkit of microbial engineering to shape the future of chemical manufacturing.
Cadena, Santiago; García-Maldonado, José Q; López-Lozano, Nguyen E; Cervantes, Francisco J
2018-05-01
Methanogenesis and sulfate reduction are important microbial processes in hypersaline environments. However, key aspects determining substrate competition between these microbial processes have not been well documented. We evaluated competitive and non-competitive substrates for stimulation of both processes through microcosm experiments of hypersaline microbial mat samples from Guerrero Negro, Baja California Sur, Mexico, and we assessed the effect of these substrates on the microbial community composition. Methylotrophic methanogenesis evidenced by sequences belonging to methanogens of the family Methanosarcinaceae was found as the dominant methanogenic pathway in the studied hypersaline microbial mat. Nevertheless, our results showed that incubations supplemented with acetate and lactate, performed in absence of sulfate, also produced methane after 40 days of incubation, apparently driven by hydrogenotrophic methanogens affiliated to the family Methanomicrobiaceae. Sulfate reduction was mainly stimulated by addition of acetate and lactate; however, after 40 days of incubation, an increase of the H 2 S concentrations in microcosms amended with trimethylamine and methanol was also observed, suggesting that these substrates are putatively used for sulfate reduction. Moreover, 16S rRNA gene sequencing analysis showed remarkable differences in the microbial community composition among experimental treatments. In the analyzed sample amended with acetate, sulfate-reducing bacteria (SRB) belonging to the family Desulfobacteraceae were dominant, while members of Desulfohalobiaceae, Desulfomicrobiaceae, and Desulfovibrionaceae were found in the incubation with lactate. Additionally, we detected an unexpected high abundance of unclassified Hydrogenedentes (near 25%) in almost all the experimental treatments. This study contributes to better understand methanogenic and sulfate-reducing activities, which play an important role in the functioning of hypersaline environments.
Urich, Tim; Lanzén, Anders; Stokke, Runar; Pedersen, Rolf B; Bayer, Christoph; Thorseth, Ingunn H; Schleper, Christa; Steen, Ida H; Ovreas, Lise
2014-09-01
Deep-sea hydrothermal vents are unique environments on Earth, as they host chemosynthetic ecosystems fuelled by geochemical energy with chemolithoautotrophic microorganisms at the basis of the food webs. Whereas discrete high-temperature venting systems have been studied extensively, the microbiotas associated with low-temperature diffuse venting are not well understood. We analysed the structure and functioning of microbial communities in two diffuse venting sediments from the Jan Mayen vent fields in the Norwegian-Greenland Sea, applying an integrated 'omics' approach combining metatranscriptomics, metaproteomics and metagenomics. Polymerase chain reaction-independent three-domain community profiling showed that the two sediments hosted highly similar communities dominated by Epsilonproteobacteria, Deltaproteobacteria and Gammaproteobacteria, besides ciliates, nematodes and various archaeal taxa. Active metabolic pathways were identified through transcripts and peptides, with genes of sulphur and methane oxidation, and carbon fixation pathways highly expressed, in addition to genes of aerobic and anaerobic (nitrate and sulphate) respiratory chains. High expression of chemotaxis and flagella genes reflected a lifestyle in a dynamic habitat rich in physico-chemical gradients. The major metabolic pathways could be assigned to distinct taxonomic groups, thus enabling hypotheses about the function of the different prokaryotic and eukaryotic taxa. This study advances our understanding of the functioning of microbial communities in diffuse hydrothermal venting sediments. © 2013 Society for Applied Microbiology and John Wiley & Sons Ltd.
Ruvindy, Rendy; White III, Richard Allen; Neilan, Brett Anthony; Burns, Brendan Paul
2016-01-01
Modern microbial mats are potential analogues of some of Earth's earliest ecosystems. Excellent examples can be found in Shark Bay, Australia, with mats of various morphologies. To further our understanding of the functional genetic potential of these complex microbial ecosystems, we conducted for the first time shotgun metagenomic analyses. We assembled metagenomic next-generation sequencing data to classify the taxonomic and metabolic potential across diverse morphologies of marine mats in Shark Bay. The microbial community across taxonomic classifications using protein-coding and small subunit rRNA genes directly extracted from the metagenomes suggests that three phyla Proteobacteria, Cyanobacteria and Bacteriodetes dominate all marine mats. However, the microbial community structure between Shark Bay and Highbourne Cay (Bahamas) marine systems appears to be distinct from each other. The metabolic potential (based on SEED subsystem classifications) of the Shark Bay and Highbourne Cay microbial communities were also distinct. Shark Bay metagenomes have a metabolic pathway profile consisting of both heterotrophic and photosynthetic pathways, whereas Highbourne Cay appears to be dominated almost exclusively by photosynthetic pathways. Alternative non-rubisco-based carbon metabolism including reductive TCA cycle and 3-hydroxypropionate/4-hydroxybutyrate pathways is highly represented in Shark Bay metagenomes while not represented in Highbourne Cay microbial mats or any other mat forming ecosystems investigated to date. Potentially novel aspects of nitrogen cycling were also observed, as well as putative heavy metal cycling (arsenic, mercury, copper and cadmium). Finally, archaea are highly represented in Shark Bay and may have critical roles in overall ecosystem function in these modern microbial mats. PMID:26023869
Bridging the Gap between Gut Microbial Dysbiosis and Cardiovascular Diseases.
Lau, Kimberley; Srivatsav, Varun; Rizwan, Ayesha; Nashed, Andrew; Liu, Rui; Shen, Rui; Akhtar, Mahmood
2017-08-10
The human gut is heavily colonized by a community of microbiota, primarily bacteria, that exists in a symbiotic relationship with the host and plays a critical role in maintaining host homeostasis. The consumption of a high-fat (HF) diet has been shown to induce gut dysbiosis and reduce intestinal integrity. Recent studies have revealed that dysbiosis contributes to the progression of cardiovascular diseases (CVDs) by promoting two major CVD risk factors-atherosclerosis and hypertension. Imbalances in host-microbial interaction impair homeostatic mechanisms that regulate health and can activate multiple pathways leading to CVD risk factor progression. Dysbiosis has been implicated in the development of atherosclerosis through metabolism-independent and metabolite-dependent pathways. This review will illustrate how these pathways contribute to the various stages of atherosclerotic plaque progression. In addition, dysbiosis can promote hypertension through vascular fibrosis and an alteration of vascular tone. As CVD is the number one cause of death globally, investigating the gut microbiota as a locus of intervention presents a novel and clinically relevant avenue for future research, with vast therapeutic potential.
Bridging the Gap between Gut Microbial Dysbiosis and Cardiovascular Diseases
Lau, Kimberley; Srivatsav, Varun; Rizwan, Ayesha; Nashed, Andrew; Liu, Rui; Shen, Rui; Akhtar, Mahmood
2017-01-01
The human gut is heavily colonized by a community of microbiota, primarily bacteria, that exists in a symbiotic relationship with the host and plays a critical role in maintaining host homeostasis. The consumption of a high-fat (HF) diet has been shown to induce gut dysbiosis and reduce intestinal integrity. Recent studies have revealed that dysbiosis contributes to the progression of cardiovascular diseases (CVDs) by promoting two major CVD risk factors—atherosclerosis and hypertension. Imbalances in host–microbial interaction impair homeostatic mechanisms that regulate health and can activate multiple pathways leading to CVD risk factor progression. Dysbiosis has been implicated in the development of atherosclerosis through metabolism-independent and metabolite-dependent pathways. This review will illustrate how these pathways contribute to the various stages of atherosclerotic plaque progression. In addition, dysbiosis can promote hypertension through vascular fibrosis and an alteration of vascular tone. As CVD is the number one cause of death globally, investigating the gut microbiota as a locus of intervention presents a novel and clinically relevant avenue for future research, with vast therapeutic potential. PMID:28796176
Rath, Eva; Haller, Dirk
2011-06-01
Multiple cellular stress responses have been implicated in chronic diseases such as obesity, diabetes, cardiovascular, and inflammatory bowel diseases. Even though phenotypically different, chronic diseases share cellular stress signaling pathways, in particular endoplasmic reticulum (ER) unfolded protein response (UPR). The purpose of the ER UPR is to restore ER homeostasis after challenges of the ER function. Among the triggers of ER UPR are changes in the redox status, elevated protein synthesis, accumulation of unfolded or misfolded proteins, energy deficiency and glucose deprivation, cholesterol depletion, and microbial signals. Numerous mouse models have been used to characterize the contribution of ER UPR to several pathologies, and ER UPR-associated signaling has also been demonstrated to be relevant in humans. Additionally, recent evidence suggests that the ER UPR is interrelated with metabolic and inflammatory pathways, autophagy, apoptosis, and mitochondrial stress signaling. Furthermore, microbial as well as nutrient sensing is integrated into the ER-associated signaling network. The data discussed in the present review highlight the interaction of ER UPR with inflammatory pathways, metabolic processes and mitochondrial function, and their interrelation in the context of chronic diseases.
NASA Astrophysics Data System (ADS)
Apostel, C.; Bore, E. K.; Halicki, S.; Kuzyakov, Y.; Dippold, M.
2015-12-01
Metabolic pathway activities at low temperature are not well understood, despite the fact that the processes are relevant for many soils globally and seasonally. To analyze soil metabolism at low temperature, isotopomeres of position-specifically 13C labeled glucose were applied at three temperature levels; +5, -5 -20 oC. In additon, one sterilization treatment with sodium azide at +5 oC was also performed. Soils were incubated for 1, 3 and 10 days while soil samples at -20 oC were additionally sampled after 30 days. The 13C from individual molecule position in respired CO2 was quantifed. Incorporation of 13C in bulk soil, extractable microbial biomass by chloroform fumigation extraction (CFE) and cell membranes of different microbial communities classified by 13C phospholipid fatty acid analysis (PLFA) was carried out. Our 13CO2 data showed a dominance of C-1 respiration at +5 °C for treatments with and without sodium azide, but total respiration for sodium azide inhibited treatments increased by 14%. In contrast, at -5 and -20 oC metabolic behavior showed intermingling of preferential respiration of the glucose C-4 and C-1 positions. Therefore, at +5 °C, pentose phosphate pathway activity is a dominant metabolic pathway used by microorganisms to metabolize glucose. The respiration increase due to NaN3 inhibition was attributed to endoenzymes released from dead organisms that are stabilized at the soil matrix and have access to suitable substrate and co-factors to permit their funtions. Our PLFA analysis showed that incorporation of glucose 13C was higher in Gram negative bacteria than other microbial groups as they are most competitive for LMWOS. Only a limited amount of microbial groups maintained their glucose utilizing activity at -5 and -20 °C and they strongly shifted towards a metabolization of glucose via both glycolysis and pentose phosphate pathways indicating both growth and cellular maintenance. This study revealed a remarkable microbial acitivity at low temperatures which differs significantly from our observations at ambient temperature, which could be unraveled based on position-specific labeling.
Hagen, Live H.; Frank, Jeremy A.; Zamanzadeh, Mirzaman; Eijsink, Vincent G. H.; Pope, Phillip B.; Arntzen, Magnus Ø.
2016-01-01
ABSTRACT In this study, we used multiple meta-omic approaches to characterize the microbial community and the active metabolic pathways of a stable industrial biogas reactor with food waste as the dominant feedstock, operating at thermophilic temperatures (60°C) and elevated levels of free ammonia (367 mg/liter NH3-N). The microbial community was strongly dominated (76% of all 16S rRNA amplicon sequences) by populations closely related to the proteolytic bacterium Coprothermobacter proteolyticus. Multiple Coprothermobacter-affiliated strains were detected, introducing an additional level of complexity seldom explored in biogas studies. Genome reconstructions provided metabolic insight into the microbes that performed biomass deconstruction and fermentation, including the deeply branching phyla Dictyoglomi and Planctomycetes and the candidate phylum “Atribacteria.” These biomass degraders were complemented by a synergistic network of microorganisms that convert key fermentation intermediates (fatty acids) via syntrophic interactions with hydrogenotrophic methanogens to ultimately produce methane. Interpretation of the proteomics data also suggested activity of a Methanosaeta phylotype acclimatized to high ammonia levels. In particular, we report multiple novel phylotypes proposed as syntrophic acetate oxidizers, which also exert expression of enzymes needed for both the Wood-Ljungdahl pathway and β-oxidation of fatty acids to acetyl coenzyme A. Such an arrangement differs from known syntrophic oxidizing bacteria and presents an interesting hypothesis for future studies. Collectively, these findings provide increased insight into active metabolic roles of uncultured phylotypes and presents new synergistic relationships, both of which may contribute to the stability of the biogas reactor. IMPORTANCE Biogas production through anaerobic digestion of organic waste provides an attractive source of renewable energy and a sustainable waste management strategy. A comprehensive understanding of the microbial community that drives anaerobic digesters is essential to ensure stable and efficient energy production. Here, we characterize the intricate microbial networks and metabolic pathways in a thermophilic biogas reactor. We discuss the impact of frequently encountered microbial populations as well as the metabolism of newly discovered novel phylotypes that seem to play distinct roles within key microbial stages of anaerobic digestion in this stable high-temperature system. In particular, we draft a metabolic scenario whereby multiple uncultured syntrophic acetate-oxidizing bacteria are capable of syntrophically oxidizing acetate as well as longer-chain fatty acids (via the β-oxidation and Wood-Ljundahl pathways) to hydrogen and carbon dioxide, which methanogens subsequently convert to methane. PMID:27815274
Effects of spaceflight and simulated microgravity on microbial growth and secondary metabolism.
Huang, Bing; Li, Dian-Geng; Huang, Ying; Liu, Chang-Ting
2018-05-14
Spaceflight and ground-based microgravity analog experiments have suggested that microgravity can affect microbial growth and metabolism. Although the effects of microgravity and its analogs on microorganisms have been studied for more than 50 years, plausible conflicting and diverse results have frequently been reported in different experiments, especially regarding microbial growth and secondary metabolism. Until now, only the responses of a few typical microbes to microgravity have been investigated; systematic studies of the genetic and phenotypic responses of these microorganisms to microgravity in space are still insufficient due to technological and logistical hurdles. The use of different test strains and secondary metabolites in these studies appears to have caused diverse and conflicting results. Moreover, subtle changes in the extracellular microenvironments around microbial cells play a key role in the diverse responses of microbial growth and secondary metabolisms. Therefore, "indirect" effects represent a reasonable pathway to explain the occurrence of these phenomena in microorganisms. This review summarizes current knowledge on the changes in microbial growth and secondary metabolism in response to spaceflight and its analogs and discusses the diverse and conflicting results. In addition, recommendations are given for future studies on the effects of microgravity in space on microbial growth and secondary metabolism.
Jiang, Yue; Xiong, Xuejian; Danska, Jayne; Parkinson, John
2016-01-12
Metatranscriptomics is emerging as a powerful technology for the functional characterization of complex microbial communities (microbiomes). Use of unbiased RNA-sequencing can reveal both the taxonomic composition and active biochemical functions of a complex microbial community. However, the lack of established reference genomes, computational tools and pipelines make analysis and interpretation of these datasets challenging. Systematic studies that compare data across microbiomes are needed to demonstrate the ability of such pipelines to deliver biologically meaningful insights on microbiome function. Here, we apply a standardized analytical pipeline to perform a comparative analysis of metatranscriptomic data from diverse microbial communities derived from mouse large intestine, cow rumen, kimchi culture, deep-sea thermal vent and permafrost. Sequence similarity searches allowed annotation of 19 to 76% of putative messenger RNA (mRNA) reads, with the highest frequency in the kimchi dataset due to its relatively low complexity and availability of closely related reference genomes. Metatranscriptomic datasets exhibited distinct taxonomic and functional signatures. From a metabolic perspective, we identified a common core of enzymes involved in amino acid, energy and nucleotide metabolism and also identified microbiome-specific pathways such as phosphonate metabolism (deep sea) and glycan degradation pathways (cow rumen). Integrating taxonomic and functional annotations within a novel visualization framework revealed the contribution of different taxa to metabolic pathways, allowing the identification of taxa that contribute unique functions. The application of a single, standard pipeline confirms that the rich taxonomic and functional diversity observed across microbiomes is not simply an artefact of different analysis pipelines but instead reflects distinct environmental influences. At the same time, our findings show how microbiome complexity and availability of reference genomes can impact comprehensive annotation of metatranscriptomes. Consequently, beyond the application of standardized pipelines, additional caution must be taken when interpreting their output and performing downstream, microbiome-specific, analyses. The pipeline used in these analyses along with a tutorial has been made freely available for download from our project website: http://www.compsysbio.org/microbiome .
NASA Astrophysics Data System (ADS)
Dippold, Michaela; Kuzyakov, Yakov
2015-04-01
Understanding the soil organic matter (SOM) dynamics is one of the most important challenges in soil science. Transformation of low molecular weight organic substances (LMWOS) is a key step in biogeochemical cycles because 1) all high molecular substances pass this stage during their decomposition and 2) only LMWOS will be taken up by microorganisms. Previous studies on LMWOS were focused on determining net fluxes through the LMWOS pool, but they rarely identified transformations. As LMWOS are the preferred C and energy source for microorganisms, the transformations of LMWOS are dominated by biochemical pathways of the soil microorganisms. Thus, understanding fluxes and transformations in soils requires a detailed knowledge on the biochemical pathways and its controlling factors. Tracing C fate in soil by isotopes became on of the most applied and promising biogeochemistry tools. Up to now, studies on LMWOS were nearly exclusively based on uniformly labeled organic substances i.e. all C atoms in the molecules were labeled with 13C or 14C. However, this classical approach did not allow the differentiation between use of intact initial substances in any process, or whether they were transformed to metabolites. The novel tool of position-specific labeling enables to trace molecule atoms separately and thus to determine the cleavage of molecules - a prerequisite for metabolic tracing. Position-specific labeling of LMWOS and quantification of 13CO2 and 13C in bulk soil enabled following the basic metabolic pathways of soil microorganisms. However, only the combination of position-specific 13C labeling with compound-specific isotope analysis of microbial biomarkers and metabolites allowed 1) tracing specific anabolic pathways in diverse microbial communities in soils and 2) identification of specific pathways of individual functional microbial groups. So, these are the prerequisites for soil fluxomics. Our studies combining position-specific labeled glucose with amino sugar 13C analysis showed that oxidizing catabolic pathways and anabolic pathways, i.e. building-up new cellular compounds, occurred in soils simultaneously. This involved an intensive C recycling within the microorganisms that was observed not only for cytosolic compounds but also for cell wall polymers. Fungal metabolism and fluxes were slower than bacterial intracellular C recycling and turnover. Furthermore, position-specific labeling of glutamate and subsequent 13C analysis of microbial phospholipid fatty acids (PLFA) revealed starvation pathways, which were only active in specific microbial groups in soils. These studies revealed that position-specific labeling enables the reconstruction of metabolic pathways of LMWOS within diverse microbial communities in complex media such as soil. Processes occurring simultaneously in soil i.e. 1) within individual, reversible metabolic pathways and 2) in various microbial groups could be traced by position-specific labeling in soils in situ. Tracing these pathways and understanding their regulating factors are crucial for soil C fluxomics, the extremely complex network of transformations towards mineralization versus the formation of microbial biomass compounds. Quantitative models to assess microbial group specific metabolic networks can be generated and parameterized by this approach. The submolecular knowledge of transformation steps and biochemical pathways in soils and their regulating factors is essential for understanding C cycling and long-term C storage in soils.
NASA Astrophysics Data System (ADS)
Dippold, Michaela; Apostel, Carolin; Dijkstra, Paul; Kuzyakov, Yakov
2017-04-01
Understanding soil and sedimentary organic matter (SOM) dynamics is one of the most important challenges in biogeoscience. To disentangle the fluxes and transformations of C in soils a detailed knowledge on the biochemical pathways and its controlling factors is required. Biogeochemists' view on the C transformation of microorganisms in soil has rarely exceed a strongly simplified concept assuming that C gets either oxidized to CO2 via the microbial catabolism or incorporated into biomass via the microbial anabolism. Biochemists, however, thoroughly identified in the past decades the individual reactions of glycolysis, pentose-phosphate pathway and citric acid cycle underlying the microbial catabolism. At various points within that metabolic network the anabolic fluxes feeding biomass formation branch off. Recent studies on metabolic flux tracing by position-specific isotope labeling allowed tracing these C transformations in soils in situ, an approach which is qunatitatively complemented by metabolic flux modeling. This approach has reached new impact by the cutting-edge combination of position-specific 13C labeling with compound-specific isotope analysis of microbial biomarkers and metabolites which allows 1) tracing specific anabolic pathways in diverse microbial communities in soils and 2) identification of specific pathways of individual functional microbial groups. Thus, the combination of position-specific labeling, compound-specific isotope incorporation in biomarkers and quantitative metabolic flux modelling provide the toolbox for quantitative soil fluxomics. Our studies combining position-specific labeled glucose with amino sugar 13C analysis showed that up to 55% of glucose, incorporated into the glucose derivative glucosamine, first passed glycolysis before allocated back via gluconeogenesis. Similarly, glutamate-derived C is allocated via anaplerotic pathways towards fatty acid synthesis and in parallel to its oxidation in citric acid cycle. Thus, oxidizing catabolic pathways and anabolic pathways, i.e. building-up new cellular compounds, occurred in soils simultaneously, a combination unlikely to occur in pure cultures, where constant growth conditions under high C supply allow a straight unidirectional regulation of C metabolism. However, unstable environmental conditions, C scarcity and interactions between a still unknown diversity of microorganisms in soils are likely to induce the observed metabolic diversity. Coupling these results with the position-specific fingerprint of microbial biomarkers revealed that microbial groups show deviating adaptation strategies and that they react on environmental changes by activation or deactivation of specific metabolic pathways such as anaplerotic fluxes. To understand how microorganisms catalyze the biogeochemical fluxes in soil a profound understanding of their metabolic adaptation strategies such as recycling or switching between pathways is crucial. Metabolic flux models adapted to soil microbial communities and their regulatory strategies will not only deepen our understanding on the microorganims' reactions to environmental changes but also create the prerequisits for a quantitative prediction of biogeochemical fluxes based on the underlying microbial processes.
Widespread occurrence of secondary lipid biosynthesis potential in microbial lineages.
Shulse, Christine N; Allen, Eric E
2011-01-01
Bacterial production of long-chain omega-3 polyunsaturated fatty acids (PUFAs), such as eicosapentaenoic acid (EPA, 20:5n-3) and docosahexaenoic acid (DHA, 22:6n-3), is constrained to a narrow subset of marine γ-proteobacteria. The genes responsible for de novo bacterial PUFA biosynthesis, designated pfaEABCD, encode large, multi-domain protein complexes akin to type I iterative fatty acid and polyketide synthases, herein referred to as "Pfa synthases". In addition to the archetypal Pfa synthase gene products from marine bacteria, we have identified homologous type I FAS/PKS gene clusters in diverse microbial lineages spanning 45 genera representing 10 phyla, presumed to be involved in long-chain fatty acid biosynthesis. In total, 20 distinct types of gene clusters were identified. Collectively, we propose the designation of "secondary lipids" to describe these biosynthetic pathways and products, a proposition consistent with the "secondary metabolite" vernacular. Phylogenomic analysis reveals a high degree of functional conservation within distinct biosynthetic pathways. Incongruence between secondary lipid synthase functional clades and taxonomic group membership combined with the lack of orthologous gene clusters in closely related strains suggests horizontal gene transfer has contributed to the dissemination of specialized lipid biosynthetic activities across disparate microbial lineages.
Lin, Kuei -Han; Liao, Ben -Yang; Chang, Hao -Wei; ...
2015-12-03
Microbial diversity and community structures in acidic hot springs have been characterized by 16S rRNA gene-based diversity surveys. However, our understanding regarding the interactions among microbes, or between microbes and environmental factors, remains limited. In the present study, a metagenomic approach, followed by bioinformatics analyses, were used to predict interactions within the microbial ecosystem in Shi-Huang-Ping (SHP), an acidic hot spring in northern Taiwan. Characterizing environmental parameters and potential metabolic pathways highlighted the importance of carbon assimilatory pathways. Four distinct carbon assimilatory pathways were identified in five dominant genera of bacteria. Of those dominant carbon fixers, Hydrogenobaculum bacteria outcompeted othermore » carbon assimilators and dominated the SHP, presumably due to their ability to metabolize hydrogen and to withstand an anaerobic environment with fluctuating temperatures. Furthermore, most dominant microbes were capable of metabolizing inorganic sulfur-related compounds (abundant in SHP). However, Acidithiobacillus ferrooxidans was the only species among key rare microbes with the capability to fix nitrogen, suggesting a key role in nitrogen cycling. In addition to potential metabolic interactions, based on the 16S rRNAs gene sequence of Nanoarchaeum-related and its potential host Ignicoccus-related archaea, as well as sequences of viruses and CRISPR arrays, we inferred that there were complex microbe-microbe interactions. In conclusion, our study provided evidence that there were numerous microbe-microbe and microbe-environment interactions within the microbial community in an acidic hot spring. We proposed that Hydrogenobaculum bacteria were the dominant microbial genus, as they were able to metabolize hydrogen, assimilate carbon and live in an anaerobic environment with fluctuating temperatures.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Kuei -Han; Liao, Ben -Yang; Chang, Hao -Wei
Microbial diversity and community structures in acidic hot springs have been characterized by 16S rRNA gene-based diversity surveys. However, our understanding regarding the interactions among microbes, or between microbes and environmental factors, remains limited. In the present study, a metagenomic approach, followed by bioinformatics analyses, were used to predict interactions within the microbial ecosystem in Shi-Huang-Ping (SHP), an acidic hot spring in northern Taiwan. Characterizing environmental parameters and potential metabolic pathways highlighted the importance of carbon assimilatory pathways. Four distinct carbon assimilatory pathways were identified in five dominant genera of bacteria. Of those dominant carbon fixers, Hydrogenobaculum bacteria outcompeted othermore » carbon assimilators and dominated the SHP, presumably due to their ability to metabolize hydrogen and to withstand an anaerobic environment with fluctuating temperatures. Furthermore, most dominant microbes were capable of metabolizing inorganic sulfur-related compounds (abundant in SHP). However, Acidithiobacillus ferrooxidans was the only species among key rare microbes with the capability to fix nitrogen, suggesting a key role in nitrogen cycling. In addition to potential metabolic interactions, based on the 16S rRNAs gene sequence of Nanoarchaeum-related and its potential host Ignicoccus-related archaea, as well as sequences of viruses and CRISPR arrays, we inferred that there were complex microbe-microbe interactions. In conclusion, our study provided evidence that there were numerous microbe-microbe and microbe-environment interactions within the microbial community in an acidic hot spring. We proposed that Hydrogenobaculum bacteria were the dominant microbial genus, as they were able to metabolize hydrogen, assimilate carbon and live in an anaerobic environment with fluctuating temperatures.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ruvindy, Rendy; White III, Richard Allen; Neilan, Brett Anthony
Modern microbial mats are potential analogues of some of Earth’s earliest ecosystems. Excellent examples can be found in Shark Bay, Australia, with mats of various morphologies. To further our understanding of the functional genetic potential of these complex microbial ecosystems, we conducted for the first time shotgun metagenomic analyses. We assembled metagenomic nextgeneration sequencing data to classify the taxonomic and metabolic potential across diverse morphologies of marine mats in Shark Bay. The microbial community across taxonomic classifications using protein-coding and small subunit rRNA genes directly extracted from the metagenomes suggests that three phyla Proteobacteria, Cyanobacteria and Bacteriodetes dominate all marinemore » mats. However, the microbial community structure between Shark Bay and Highbourne Cay (Bahamas) marine systems appears to be distinct from each other. The metabolic potential (based on SEED subsystem classifications) of the Shark Bay and Highbourne Cay microbial communities were also distinct. Shark Bay metagenomes have a metabolic pathway profile consisting of both heterotrophic and photosynthetic pathways, whereas Highbourne Cay appears to be dominated almost exclusively by photosynthetic pathways. Alternative non-rubisco-based carbon metabolism including reductive TCA cycle and 3-hydroxypropionate/4-hydroxybutyrate pathways is highly represented in Shark Bay metagenomes while not represented in Highbourne Cay microbial mats or any other mat forming ecosystems investigated to date. Potentially novel aspects of nitrogen cycling were also observed, as well as putative heavy metal cycling (arsenic, mercury, copper and cadmium). Finally, archaea are highly represented in Shark Bay and may have critical roles in overall ecosystem function in these modern microbial mats.« less
Microbial responses to chitin and chitosan in oxic and anoxic agricultural soil slurries
NASA Astrophysics Data System (ADS)
Wieczorek, A. S.; Hetz, S. A.; Kolb, S.
2014-06-01
Microbial degradation of chitin in soil substantially contributes to carbon cycling in terrestrial ecosystems. Chitin is globally the second most abundant biopolymer after cellulose and can be deacetylated to chitosan or can be hydrolyzed to N,N'-diacetylchitobiose and oligomers of N-acetylglucosamine by aerobic and anaerobic microorganisms. Which pathway of chitin hydrolysis is preferred by soil microbial communities is unknown. Supplementation of chitin stimulated microbial activity under oxic and anoxic conditions in agricultural soil slurries, whereas chitosan had no effect. Thus, the soil microbial community likely was more adapted to chitin as a substrate. In addition, this finding suggested that direct hydrolysis of chitin was preferred to the pathway that starts with deacetylation. Chitin was apparently degraded by aerobic respiration, ammonification, and nitrification to carbon dioxide and nitrate under oxic conditions. When oxygen was absent, fermentation products (acetate, butyrate, propionate, hydrogen, and carbon dioxide) and ammonia were detected, suggesting that butyric and propionic acid fermentation, along with ammonification, were likely responsible for anaerobic chitin degradation. In total, 42 different chiA genotypes were detected of which twenty were novel at an amino acid sequence dissimilarity of less than 50%. Various chiA genotypes responded to chitin supplementation and affiliated with a novel deep-branching bacterial chiA genotype (anoxic conditions), genotypes of Beta- and Gammaproteobacteria (oxic and anoxic conditions), and Planctomycetes (oxic conditions). Thus, this study provides evidence that detected chitinolytic bacteria were catabolically diverse and occupied different ecological niches with regard to oxygen availability enabling chitin degradation under various redox conditions on community level.
Microbial responses to chitin and chitosan in oxic and anoxic agricultural soil slurries
NASA Astrophysics Data System (ADS)
Wieczorek, A. S.; Hetz, S. A.; Kolb, S.
2014-02-01
Chitin is the second most abundant biopolymer in terrestrial ecosystems and is subject to microbial degradation. Chitin can be deacetylated to chitosan or can be hydrolyzed to N,N'-diacetylchitobiose and oligomers of N-acetylglucosamine by aerobic and anaerobic microorganisms. Which pathway of chitin hydrolysis is preferred by soil microbial communities has previously been unknown. Supplementation of chitin stimulated microbial activity under oxic and anoxic conditions in agricultural soil slurries, whereas chitosan had no effect. Thus, the soil microbial community likely was more adapted to chitin as a substrate. In addition, this finding suggested that direct hydrolysis of chitin was preferred to the pathway that starts with deacetylation. Chitin was apparently degraded by aerobic respiration, ammonification, and nitrification to carbon dioxide and nitrate under oxic conditions. When oxygen was absent, fermentation products (acetate, butyrate, propionate, hydrogen, carbon dioxide) and ammonia were detected, suggesting that butyric and propionic acid fermentation were along with ammonification likely responsible for apparent anaerobic chitin degradation. In total, 42 different chiA genotypes were detected of which twenty were novel at an amino acid sequence dissimilarity of >50%. Various chiA genotypes responded to chitin supplementation and affiliated with a novel deep-branching bacterial chiA genotype (anoxic conditions), genotypes of Beta- and Gammaproteobacteria (oxic and anoxic conditions), and Planctomycetes (oxic conditions). Thus, this study provides evidence that detected chitinolytic bacteria were catabolically diverse and occupied different ecological niches with regard to oxygen availability enabling chitin degradation under various redox conditions at the level of the community.
Recent advances in reconstructing microbial secondary metabolites biosynthesis in Aspergillus spp.
He, Yi; Wang, Bin; Chen, Wanping; Cox, Russell J; He, Jingren; Chen, Fusheng
High throughput genome sequencing has revealed a multitude of potential secondary metabolites biosynthetic pathways that remain cryptic. Pathway reconstruction coupled with genetic engineering via heterologous expression enables discovery of novel compounds, elucidation of biosynthetic pathways, and optimization of product yields. Apart from Escherichia coli and yeast, fungi, especially Aspergillus spp., are well known and efficient heterologous hosts. This review summarizes recent advances in heterologous expression of microbial secondary metabolite biosynthesis in Aspergillus spp. We also discuss the technological challenges and successes in regard to heterologous host selection and DNA assembly behind the reconstruction of microbial secondary metabolite biosynthesis. Copyright © 2018 Elsevier Inc. All rights reserved.
Metabolic engineering of microbial competitive advantage for industrial fermentation processes.
Shaw, A Joe; Lam, Felix H; Hamilton, Maureen; Consiglio, Andrew; MacEwen, Kyle; Brevnova, Elena E; Greenhagen, Emily; LaTouf, W Greg; South, Colin R; van Dijken, Hans; Stephanopoulos, Gregory
2016-08-05
Microbial contamination is an obstacle to widespread production of advanced biofuels and chemicals. Current practices such as process sterilization or antibiotic dosage carry excess costs or encourage the development of antibiotic resistance. We engineered Escherichia coli to assimilate melamine, a xenobiotic compound containing nitrogen. After adaptive laboratory evolution to improve pathway efficiency, the engineered strain rapidly outcompeted a control strain when melamine was supplied as the nitrogen source. We additionally engineered the yeasts Saccharomyces cerevisiae and Yarrowia lipolytica to assimilate nitrogen from cyanamide and phosphorus from potassium phosphite, and they outcompeted contaminating strains in several low-cost feedstocks. Supplying essential growth nutrients through xenobiotic or ecologically rare chemicals provides microbial competitive advantage with minimal external risks, given that engineered biocatalysts only have improved fitness within the customized fermentation environment. Copyright © 2016, American Association for the Advancement of Science.
Functional Responses of Salt Marsh Microbial Communities to Long-Term Nutrient Enrichment
Graves, Christopher J.; Makrides, Elizabeth J.; Schmidt, Victor T.; Giblin, Anne E.; Cardon, Zoe G.
2016-01-01
ABSTRACT Environmental nutrient enrichment from human agricultural and waste runoff could cause changes to microbial communities that allow them to capitalize on newly available resources. Currently, the response of microbial communities to nutrient enrichment remains poorly understood, and, while some studies have shown no clear changes in community composition in response to heavy nutrient loading, others targeting specific genes have demonstrated clear impacts. In this study, we compared functional metagenomic profiles from sediment samples taken along two salt marsh creeks, one of which was exposed for more than 40 years to treated sewage effluent at its head. We identified strong and consistent increases in the relative abundance of microbial genes related to each of the biochemical steps in the denitrification pathway at enriched sites. Despite fine-scale local increases in the abundance of denitrification-related genes, the overall community structures based on broadly defined functional groups and taxonomic annotations were similar and varied with other environmental factors, such as salinity, which were common to both creeks. Homology-based taxonomic assignments of nitrous oxide reductase sequences in our data show that increases are spread over a broad taxonomic range, thus limiting detection from taxonomic data alone. Together, these results illustrate a functionally targeted yet taxonomically broad response of microbial communities to anthropogenic nutrient loading, indicating some resolution to the apparently conflicting results of existing studies on the impacts of nutrient loading in sediment communities. IMPORTANCE In this study, we used environmental metagenomics to assess the response of microbial communities in estuarine sediments to long-term, nutrient-rich sewage effluent exposure. Unlike previous studies, which have mainly characterized communities based on taxonomic data or primer-based amplification of specific target genes, our whole-genome metagenomics approach allowed an unbiased assessment of the abundance of denitrification-related genes across the entire community. We identified strong and consistent increases in the relative abundance of gene sequences related to denitrification pathways across a broad phylogenetic range at sites exposed to long-term nutrient addition. While further work is needed to determine the consequences of these community responses in regulating environmental nutrient cycles, the increased abundance of bacteria harboring denitrification genes suggests that such processes may be locally upregulated. In addition, our results illustrate how whole-genome metagenomics combined with targeted hypothesis testing can reveal fine-scale responses of microbial communities to environmental disturbance. PMID:26944843
Functional Responses of Salt Marsh Microbial Communities to Long-Term Nutrient Enrichment.
Graves, Christopher J; Makrides, Elizabeth J; Schmidt, Victor T; Giblin, Anne E; Cardon, Zoe G; Rand, David M
2016-05-01
Environmental nutrient enrichment from human agricultural and waste runoff could cause changes to microbial communities that allow them to capitalize on newly available resources. Currently, the response of microbial communities to nutrient enrichment remains poorly understood, and, while some studies have shown no clear changes in community composition in response to heavy nutrient loading, others targeting specific genes have demonstrated clear impacts. In this study, we compared functional metagenomic profiles from sediment samples taken along two salt marsh creeks, one of which was exposed for more than 40 years to treated sewage effluent at its head. We identified strong and consistent increases in the relative abundance of microbial genes related to each of the biochemical steps in the denitrification pathway at enriched sites. Despite fine-scale local increases in the abundance of denitrification-related genes, the overall community structures based on broadly defined functional groups and taxonomic annotations were similar and varied with other environmental factors, such as salinity, which were common to both creeks. Homology-based taxonomic assignments of nitrous oxide reductase sequences in our data show that increases are spread over a broad taxonomic range, thus limiting detection from taxonomic data alone. Together, these results illustrate a functionally targeted yet taxonomically broad response of microbial communities to anthropogenic nutrient loading, indicating some resolution to the apparently conflicting results of existing studies on the impacts of nutrient loading in sediment communities. In this study, we used environmental metagenomics to assess the response of microbial communities in estuarine sediments to long-term, nutrient-rich sewage effluent exposure. Unlike previous studies, which have mainly characterized communities based on taxonomic data or primer-based amplification of specific target genes, our whole-genome metagenomics approach allowed an unbiased assessment of the abundance of denitrification-related genes across the entire community. We identified strong and consistent increases in the relative abundance of gene sequences related to denitrification pathways across a broad phylogenetic range at sites exposed to long-term nutrient addition. While further work is needed to determine the consequences of these community responses in regulating environmental nutrient cycles, the increased abundance of bacteria harboring denitrification genes suggests that such processes may be locally upregulated. In addition, our results illustrate how whole-genome metagenomics combined with targeted hypothesis testing can reveal fine-scale responses of microbial communities to environmental disturbance. Copyright © 2016 Graves et al.
NASA Astrophysics Data System (ADS)
Throckmorton, H.; Dane, L.; Bird, J. A.; Firestone, M. K.; Horwath, W. R.
2010-12-01
Microorganisms represent an important intermediate along the pathway of plant litter decomposition to the formation of soil organic matter (SOM); yet little is known of the fate and stability of microbial C in soils and the importance of microbial biochemistry as a factor influencing SOM dynamics. This research investigates mechanisms controlling microbial C stabilization in a temperate forest in the Sierra Nevada of California (CA) and a tropical forest in Puerto Rico (PR). Biochemically diverse microbial groups (fungi, actinomycetes, bacteria gram (+), and bacteria gram (-)) were isolated from both sites, grown in the laboratory with C13 media, killed, and nonliving residues were added back to soils as a reciprocal transplant of microbial groups. The native microbial community in CA is dominated by fungi and in PR is dominated by bacteria, which provides an opportunity to asses the metabolic response of distinct microbial communities to the diverse microbial additions. CA and PR soils were sampled five times over a 3 and 2 year period, respectively. In CA there was no significant difference in the mean residence time (MRT) of diverse C13 microbial treatments; whereas in PR there were significant differences, whereby temperate fungi, temperate Gram (+) bacteria, and tropical actinomycetes exhibited a significantly longer MRT as compared with tropical fungi and temperate Gram (-). These results suggest that a bacterial dominated microbial community discriminates more amongst diverse substrates than a fungal-dominated community. MRT for labeled-C in CA was 5.21 ± 1.11 years, and in PR was 2.22 ± 0.45. Despite substantial differences in MRT between sites, physical fractionation of soils into light (LF), aggregated-occluded (OF), and mineral-associated (MF) fractions provided evidence that accelerated decomposition in PR (presumably due to climate) operated primarily on labeled-C unassociated with the mineral matrix (LF); labeled-C occluded within aggregates (OF) or bound to the mineral matrix (MF) exhibited similar turnover dynamics for the two sites. Py-GC-MS-IRMS examined the fate of labeled temperate fungal residues at the molecular level in CA (30 days) and in PR (17 days) in whole soils and soil fractions. Results showed notably high enrichment of two polysaccharide biomarkers at both sites (2-furancarboxaldehyde, 5-methyl; and levoglucosanone); as well as an enol compound. These compounds did not occur in high abundance in the original fungal residues, suggesting selective preservation or secondary formation of these compounds in both CA and PR soils. Two additional lipid biomarkers exhibited notably high enrichment in CA but not PR soils, suggesting some distinct pathways of humification may be occurring at each site. Physical fractionation combined with molecular analysis suggests that protection by aggregate-occlusion (OF) and chemical complexation with soil mineral surfaces (MF) represent distinct protection mechanisms that operate on different microbial compounds.
The BioCyc collection of microbial genomes and metabolic pathways.
Karp, Peter D; Billington, Richard; Caspi, Ron; Fulcher, Carol A; Latendresse, Mario; Kothari, Anamika; Keseler, Ingrid M; Krummenacker, Markus; Midford, Peter E; Ong, Quang; Ong, Wai Kit; Paley, Suzanne M; Subhraveti, Pallavi
2017-08-17
BioCyc.org is a microbial genome Web portal that combines thousands of genomes with additional information inferred by computer programs, imported from other databases and curated from the biomedical literature by biologist curators. BioCyc also provides an extensive range of query tools, visualization services and analysis software. Recent advances in BioCyc include an expansion in the content of BioCyc in terms of both the number of genomes and the types of information available for each genome; an expansion in the amount of curated content within BioCyc; and new developments in the BioCyc software tools including redesigned gene/protein pages and metabolite pages; new search tools; a new sequence-alignment tool; a new tool for visualizing groups of related metabolic pathways; and a facility called SmartTables, which enables biologists to perform analyses that previously would have required a programmer's assistance. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Hagen, Live H; Frank, Jeremy A; Zamanzadeh, Mirzaman; Eijsink, Vincent G H; Pope, Phillip B; Horn, Svein J; Arntzen, Magnus Ø
2017-01-15
In this study, we used multiple meta-omic approaches to characterize the microbial community and the active metabolic pathways of a stable industrial biogas reactor with food waste as the dominant feedstock, operating at thermophilic temperatures (60°C) and elevated levels of free ammonia (367 mg/liter NH 3 -N). The microbial community was strongly dominated (76% of all 16S rRNA amplicon sequences) by populations closely related to the proteolytic bacterium Coprothermobacter proteolyticus. Multiple Coprothermobacter-affiliated strains were detected, introducing an additional level of complexity seldom explored in biogas studies. Genome reconstructions provided metabolic insight into the microbes that performed biomass deconstruction and fermentation, including the deeply branching phyla Dictyoglomi and Planctomycetes and the candidate phylum "Atribacteria" These biomass degraders were complemented by a synergistic network of microorganisms that convert key fermentation intermediates (fatty acids) via syntrophic interactions with hydrogenotrophic methanogens to ultimately produce methane. Interpretation of the proteomics data also suggested activity of a Methanosaeta phylotype acclimatized to high ammonia levels. In particular, we report multiple novel phylotypes proposed as syntrophic acetate oxidizers, which also exert expression of enzymes needed for both the Wood-Ljungdahl pathway and β-oxidation of fatty acids to acetyl coenzyme A. Such an arrangement differs from known syntrophic oxidizing bacteria and presents an interesting hypothesis for future studies. Collectively, these findings provide increased insight into active metabolic roles of uncultured phylotypes and presents new synergistic relationships, both of which may contribute to the stability of the biogas reactor. Biogas production through anaerobic digestion of organic waste provides an attractive source of renewable energy and a sustainable waste management strategy. A comprehensive understanding of the microbial community that drives anaerobic digesters is essential to ensure stable and efficient energy production. Here, we characterize the intricate microbial networks and metabolic pathways in a thermophilic biogas reactor. We discuss the impact of frequently encountered microbial populations as well as the metabolism of newly discovered novel phylotypes that seem to play distinct roles within key microbial stages of anaerobic digestion in this stable high-temperature system. In particular, we draft a metabolic scenario whereby multiple uncultured syntrophic acetate-oxidizing bacteria are capable of syntrophically oxidizing acetate as well as longer-chain fatty acids (via the β-oxidation and Wood-Ljundahl pathways) to hydrogen and carbon dioxide, which methanogens subsequently convert to methane. Copyright © 2016 American Society for Microbiology.
Potential Research and Development Synergies between Life support and Planetary protection
NASA Astrophysics Data System (ADS)
Lasseur, Ch.; Kminek, G.; Mergeay, M.
Long term manned missions of our Russian colleagues have demonstrated the risks associated with microbial contamination These risks concern both crew health via the metabolic consumables contamination water air but and also the hardware degradation Over the last six years ESA and IBMP have developed a collaboration to elaborate and document these microbial contamination issues The collaboration involved the mutual exchanges of knowledge as well as microbial samples and leads up to the microbial survey of the Russian module of the ISS Based on these results and in addition to an external expert report commissioned by ESA the agency initiated the development of a rapid and automated microbial detection and identification tool for use in future space missions In parallel to these developments and via several international meetings planetary protection experts have agreed to place clear specification of the microbial quality of future hardware landing on virgin planets as well as elaborate the preliminary requirements of contamination for manned missions on surface For these activities its is necessary to have a better understanding of microbial activity to create culture collection and to develop on-line detection tools Within this paper we present more deeply the life support activities related to microbial issues we identify some potential synergies with Planetary protection developments and we propose some pathway for collaboration between these two communities
Guo, Lei; Chen, Xi; Li, Li-Na; Tang, Wei; Pan, Yi-Ting; Kong, Jian-Qiang
2016-02-04
(2S)-Pinocembrin is a chiral flavanone with versatile pharmacological and biological activities. Its health-promoting effects have spurred on research effects on the microbial production of (2S)-pinocembrin. However, an often-overlooked salient feature in the analysis of microbial (2S)-pinocembrin is its chirality. Here, we presented a full characterization of absolute configuration of microbial (2S)-pinocembrin from engineered Escherichia coli. Specifically, a transcriptome-wide search for genes related to (2S)-pinocembrin biosynthesis from Ornithogalum caudatum, a plant rich in flavonoids, was first performed in the present study. A total of 104,180 unigenes were finally generated with an average length of 520 bp. The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway mapping assigned 26 unigenes, representing three enzyme families of 4-coumarate:coenzyme A ligase (4CL), chalcone synthase (CHS) and chalcone isomerase(CHI), onto (2S)-pinocembrin biosynthetic pathway. A total of seven, three and one full-length candidates encoding 4CL, CHS and CHI were then verified by reverse transcription polymerase chain reaction, respectively. These candidates were screened by functional expression in E. coli individual or coupled multienzyme reaction systems based on metabolic engineering processes. Oc4CL1, OcCHS2 and OcCHI were identified to be bona fide genes encoding respective pathway enzymes of (2S)-pinocembrin biosynthesis. Then Oc4CL1, OcCHS2 and MsCHI from Medicago sativa, assembled as artificial gene clusters in different organizations, were used for fermentation production of (2S)-pinocembrin in E. coli. The absolute configuration of the resulting microbial pinocembrin at C-2 was assigned to be 2S-configured by combination of retention time, UV spectrum, LC-MS, NMR, optical rotation and circular dichroism spectroscopy. Improvement of (2S)-pinocembrin titres was then achieved by optimization of gene organizations, using of codon-optimized pathway enzymes and addition of cerulenin for increasing intracellular malonyl CoA pools. Overall, the optimized strain can produce (2S)-pinocembrin of 36.92 ± 4.1 mg/L. High titre of (2S)-pinocembrin can be obtained from engineered E. coli by an efficient method. The fermentative production of microbial (2S)-pinocembrin in E. coli paved the way for yield improvement and further pharmacological testing.
Microbial and endogenous metabolic conversions of rye phytochemicals.
Koistinen, Ville M; Hanhineva, Kati
2017-07-01
Rye is one of the main cereals produced and consumed in the hemiboreal climate region. Due to its use primarily as wholegrain products, rye provides a rich source of dietary fibre as well as several classes of phytochemicals, bioactive compounds with potentially positive health implications. Here, we review the current knowledge of the metabolic pathways of phytochemical classes abundant in rye, starting from the microbial transformations occurring during the sourdough process and colonic fermentation and continuing with the endogenous metabolism. Additionally, we discuss the detection of specific metabolites by MS in different phases of their journey from the cereal to the target organs and excretion. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Anaerobic Biodegradation of Ethylene Glycol within Hydraulic Fracturing Fluid
NASA Astrophysics Data System (ADS)
Heyob, K. M.; Mouser, P. J.
2014-12-01
Ethylene glycol (EG) is a commonly used organic additive in hydraulic fracturing fluids used for shale gas recovery. Under aerobic conditions, this compound readily biodegrades to acetate and CO2 or is oxidized through the glycerate pathway. In the absence of oxygen, organisms within genera Desulfovibrio, Acetobacterium, and others can transform EG to acetaldehyde, a flammable and suspected carcinogenic compound. Acetaldehyde can then be enzymatically degraded to ethanol or acetate and CO2. However, little is known on how EG degrades in the presence of other organic additives, particularly under anaerobic conditions representative of deep groundwater aquifers. To better understand the fate and attenuation of glycols within hydraulic fracturing fluids we are assessing their biodegradation potential and pathways in batch anaerobic microcosm treatments. Crushed Berea sandstone was inoculated with groundwater and incubated with either EG or a synthetic fracturing fluid (SFF) containing EG formulations. We tracked changes in dissolved organic carbon (DOC), EG, and its transformation products over several months. Approximately 41% of bulk DOC in SFF is degraded within 21 days, with 58% DOC still remaining after 63 days. By comparison, this same SFF degrades by 70% within 25 days when inoculated with sediment-groundwater microbial communities, suggesting that bulk DOC degradation occurs at a slower rate and to a lesser extent with bedrock. Aerobic biodegradation of EG occurs rapidly (3-7 days); however anaerobic degradation of EG is much slower, requiring several weeks for substantial DOC loss to be observed. Ongoing experiments are tracking the degradation pathways of EG alone and in the presence of SFF, with preliminary data showing incomplete glycol transformation within the complex hydraulic fracturing fluid mixture. This research will help to elucidate rates, processes, and pathways for EG biodegradation and identify key microbial taxa involved in its degradation.
Koistinen, Ville M; Nordlund, Emilia; Katina, Kati; Mattila, Ismo; Poutanen, Kaisa; Hanhineva, Kati; Aura, Anna-Marja
2017-03-08
Cereal bran is an important source of dietary fiber and bioactive compounds, such as phenolic acids. We aimed to study the phenolic acid metabolism of native and bioprocessed rye bran fortified refined wheat bread and to elucidate the microbial metabolic route of phenolic acids. After incubation in an in vitro colon model, the metabolites were analyzed using two different methods applying mass spectrometry. While phenolic acids were released more extensively from the bioprocessed bran bread and ferulic acid had consistently higher concentrations in the bread type during fermentation, there were only minor differences in the appearance of microbial metabolites, including the diminished levels of certain phenylacetic acids in the bioprocessed bran. This may be due to rye matrix properties, saturation of ferulic acid metabolism, or a rapid formation of intermediary metabolites left undetected. In addition, we provide expansion to the known metabolic pathways of phenolic acids.
New Hydrocarbon Degradation Pathways in the Microbial Metagenome from Brazilian Petroleum Reservoirs
Sierra-García, Isabel Natalia; Correa Alvarez, Javier; Pantaroto de Vasconcellos, Suzan; Pereira de Souza, Anete; dos Santos Neto, Eugenio Vaz; de Oliveira, Valéria Maia
2014-01-01
Current knowledge of the microbial diversity and metabolic pathways involved in hydrocarbon degradation in petroleum reservoirs is still limited, mostly due to the difficulty in recovering the complex community from such an extreme environment. Metagenomics is a valuable tool to investigate the genetic and functional diversity of previously uncultured microorganisms in natural environments. Using a function-driven metagenomic approach, we investigated the metabolic abilities of microbial communities in oil reservoirs. Here, we describe novel functional metabolic pathways involved in the biodegradation of aromatic compounds in a metagenomic library obtained from an oil reservoir. Although many of the deduced proteins shared homology with known enzymes of different well-described aerobic and anaerobic catabolic pathways, the metagenomic fragments did not contain the complete clusters known to be involved in hydrocarbon degradation. Instead, the metagenomic fragments comprised genes belonging to different pathways, showing novel gene arrangements. These results reinforce the potential of the metagenomic approach for the identification and elucidation of new genes and pathways in poorly studied environments and contribute to a broader perspective on the hydrocarbon degradation processes in petroleum reservoirs. PMID:24587220
Marfil-Santana, Miguel David; O'Connor-Sánchez, Aileen; Ramírez-Prado, Jorge Humberto; De Los Santos-Briones, Cesar; López-Aguiar; Lluvia, Korynthia; Rojas-Herrera, Rafael; Lago-Lestón, Asunción; Prieto-Davó, Alejandra
2016-11-01
The need for new antibiotics has sparked a search for the microbes that might potentially produce them. Current sequencing technologies allow us to explore the biotechnological potential of microbial communities in diverse environments without the need for cultivation, benefitting natural product discovery in diverse ways. A relatively recent method to search for the possible production of novel compounds includes studying the diverse genes belonging to polyketide synthase pathways (PKS), as these complex enzymes are an important source of novel therapeutics. In order to explore the biotechnological potential of the microbial community from the largest underground aquifer in the world located in the Yucatan, we used a polyphasic approach in which a simple, non-computationally intensive method was coupled with direct amplification of environmental DNA to assess the diversity and novelty of PKS type I ketosynthase (KS) domains. Our results suggest that the bioinformatic method proposed can indeed be used to assess the novelty of KS enzymes; nevertheless, this in silico study did not identify some of the KS diversity due to primer bias and stringency criteria outlined by the metagenomics pipeline. Therefore, additionally implementing a method involving the direct cloning of KS domains enhanced our results. Compared to other freshwater environments, the aquifer was characterized by considerably less diversity in relation to known ketosynthase domains; however, the metagenome included a family of KS type I domains phylogenetically related, but not identical, to those found in the curamycin pathway, as well as an outstanding number of thiolases. Over all, this first look into the microbial community found in this large Yucatan aquifer and other fresh water free living microbial communities highlights the potential of these previously overlooked environments as a source of novel natural products.
Engineering strategies for the fermentative production of plant alkaloids in yeast
Trenchard, Isis J.; Smolke, Christina D.
2015-01-01
Microbial hosts engineered for the biosynthesis of plant natural products offer enormous potential as powerful discovery and production platforms. However, the reconstruction of these complex biosynthetic schemes faces numerous challenges due to the number of enzymatic steps and challenging enzyme classes associated with these pathways, which can lead to issues in metabolic load, pathway specificity, and maintaining flux to desired products. Cytochrome P450 enzymes are prevalent in plant specialized metabolism and are particularly difficult to express heterologously. Here, we describe the reconstruction of the sanguinarine branch of the benzylisoquinoline alkaloid pathway in Saccharomyces cerevisiae, resulting in microbial biosynthesis of protoberberine, protopine, and benzophenanthridine alkaloids through to the end-product sanguinarine, which we demonstrate can be efficiently produced in yeast in the absence of the associated biosynthetic enzyme. We achieved titers of 676 µg/L stylopine, 548 µg/L cis-N-methylstylopine, 252 µg/L protopine, and 80 µg/L sanguinarine from the engineered yeast strains. Through our optimization efforts, we describe genetic and culture strategies supporting the functional expression of multiple plant cytochrome P450 enzymes in the context of a large multi-step pathway. Our results also provided insight into relationships between cytochrome P450 activity and yeast ER physiology. We were able to improve the production of critical intermediates by 32-fold through genetic techniques and an additional 45-fold through culture optimization. PMID:25981946
Pathways and mechanisms for removal of dissolved organic carbon from leaf leachate in streams
Clifford N. Dahm
1981-01-01
Removal of dissolved organic carbon (DOC) from water resulting from adsorption and microbial uptake was examined to determine the importance of biotic and abiotic pathways. Physicalâchemical adsorption to components of the stream sediment or water and biotic assimilation associated with the microbial population was determined in recirculating chambers utilizing...
Cofactor engineering for advancing chemical biotechnology.
Wang, Yipeng; San, Ka-Yiu; Bennett, George N
2013-12-01
Cofactors provide redox carriers for biosynthetic reactions, catabolic reactions and act as important agents in transfer of energy for the cell. Recent advances in manipulating cofactors include culture conditions or additive alterations, genetic modification of host pathways for increased availability of desired cofactor, changes in enzyme cofactor specificity, and introduction of novel redox partners to form effective circuits for biochemical processes and biocatalysts. Genetic strategies to employ ferredoxin, NADH and NADPH most effectively in natural or novel pathways have improved yield and efficiency of large-scale processes for fuels and chemicals and have been demonstrated with a variety of microbial organisms. Copyright © 2013 Elsevier Ltd. All rights reserved.
Estimating phosphorus availability for microbial growth in an emerging landscape
Schmidt, S.K.; Cleveland, C.C.; Nemergut, D.R.; Reed, S.C.; King, A.J.; Sowell, P.
2011-01-01
Estimating phosphorus (P) availability is difficult—particularly in infertile soils such as those exposed after glacial recession—because standard P extraction methods may not mimic biological acquisition pathways. We developed an approach, based on microbial CO2 production kinetics and conserved carbon:phosphorus (C:P) ratios, to estimate the amount of P available for microbial growth in soils and compared this method to traditional, operationally-defined indicators of P availability. Along a primary succession gradient in the High Andes of Perú, P additions stimulated the growth-related (logistic) kinetics of glutamate mineralization in soils that had been deglaciated from 0 to 5 years suggesting that microbial growth was limited by soil P availability. We then used a logistic model to estimate the amount of C incorporated into biomass in P-limited soils, allowing us to estimate total microbial P uptake based on a conservative C:P ratio of 28:1 (mass:mass). Using this approach, we estimated that there was < 1 μg/g of microbial-available P in recently de-glaciated soils in both years of this study. These estimates fell well below estimates of available soil P obtained using traditional extraction procedures. Our results give both theoretical and practical insights into the kinetics of C and P utilization in young soils, as well as show changes in microbial P availability during early stages of soil development.
Environmental Controls of Microbial Resource Partitioning in Soils
NASA Astrophysics Data System (ADS)
Kandeler, Ellen; Poll, Christian; Kramer, Susanne; Mueller, Karolin; Marhan, Sven
2015-04-01
The mineralization and flow of plant-derived carbon in soils is relevant to global carbon cycling. Current models of organismic carbon fluxes in soil assume that separate bacterial and fungal energy channels exist in soil. Recent studies disentangle the herbivore and detritivore pathways of microbial resource use, identify the key players contributing to these two different pathways, and determine to what extent microbial substrate use is affected by environmental controls. To follow the kinetics of litter and root decomposition and to quantify the contribution of key players, it is necessary to use isotopic approaches like PLFA-SIP and ergosterol-SIP. It was shown that bacteria and sugar consuming fungi initiated litter decomposition in an incubation experiment during the first two weeks, whereas higher fungi started to grow after the depletion of low molecular weight substrates. Analyses of PLFA-SIP revealed, for example, that fungi assimilated C directly from the litter, whereas bacteria took up substrates in the soil and therefore depended more on external transport processes than fungi. In addition, we will present data from a field experiment showing the incorporation of root and shoot litter C into organic and microbial C pools under field conditions over a period of two years. Similar amounts of C derived from the two resources differing in substrate quality and amount were incorporated into microbial C and ergosterol pools over time, indicating the importance of root-derived C for the soil food web. High incorporation of maize C (up to 76%) into ergosterol suggests fast and high assimilation of maize C into fungal biomass. Nevertheless, there is still a debate whether bacteria, archaea and fungi start feeding on new substrates at the same time or if their activity occurs at different successional stages. This presentation gives a summery of current knowledge on microbial resource partitioning under lab and field conditions.
Natural Microbial Assemblages Reflect Distinct Organismal and Functional Partitioning
NASA Astrophysics Data System (ADS)
Wilmes, P.; Andersson, A.; Kalnejais, L. H.; Verberkmoes, N. C.; Lefsrud, M. G.; Wexler, M.; Singer, S. W.; Shah, M.; Bond, P. L.; Thelen, M. P.; Hettich, R. L.; Banfield, J. F.
2007-12-01
The ability to link microbial community structure to function has long been a primary focus of environmental microbiology. With the advent of community genomic and proteomic techniques, along with advances in microscopic imaging techniques, it is now possible to gain insights into the organismal and functional makeup of microbial communities. Biofilms growing within highly acidic solutions inside the Richmond Mine (Iron Mountain, Redding, California) exhibit distinct macro- and microscopic morphologies. They are composed of microorganisms belonging to the three domains of life, including archaea, bacteria and eukarya. The proportion of each organismal type depends on sampling location and developmental stage. For example, mature biofilms floating on top of acid mine drainage (AMD) pools exhibit layers consisting of a densely packed bottom layer of the chemoautolithotroph Leptospirillum group II, a less dense top layer composed mainly of archaea, and fungal filaments spanning across the entire biofilm. The expression of cytochrome 579 (the most highly abundant protein in the biofilm, believed to be central to iron oxidation and encoded by Leptospirillum group II) is localized at the interface of the biofilm with the AMD solution, highlighting that biofilm architecture is reflected at the functional gene expression level. Distinct functional partitioning is also apparent in a biological wastewater treatment system that selects for distinct polyphosphate accumulating organisms. Community genomic data from " Candidatus Accumulibacter phosphatis" dominated activated sludge has enabled high mass-accuracy shotgun proteomics for identification of key metabolic pathways. Comprehensive genome-wide alignment of orthologous proteins suggests distinct partitioning of protein variants involved in both core-metabolism and specific metabolic pathways among the dominant population and closely related species. In addition, strain- resolved proteogenomic analysis of the AMD biofilms also highlights the importance of strain heterogeneity for the maintenance of community structure and function. These findings explain the importance of genetic diversity in facilitating the stable performance of complex microbial processes. Furthermore, although very different in terms of habitat, both microbial communities exhibit distinct functional compartmentalization and demonstrate its role in sustaining microbial community structure.
Huang, Qiuyuan; Briggs, Brandon R; Dong, Hailiang; Jiang, Hongchen; Wu, Geng; Edwardson, Christian; De Vlaminck, Iwijn; Quake, Stephen
2014-01-01
Microbe-mediated biogeochemical cycles contribute to the global climate system and have sensitive responses and feedbacks to environmental stress caused by climate change. Yet, little is known about the effects of microbial biodiversity (i.e., taxonmic and functional diversity) on biogeochemical cycles in ecosytems that are highly sensitive to climate change. One such sensitive ecosystem is Qinghai Lake, a high-elevation (3196 m) saline (1.4%) lake located on the Tibetan Plateau, China. This study provides baseline information on the microbial taxonomic and functional diversity as well as the associated stress response genes. Illumina metagenomic and metatranscriptomic datasets were generated from lake water samples collected at two sites (B and E). Autotrophic Cyanobacteria dominated the DNA samples, while heterotrophic Proteobacteria dominated the RNA samples at both sites. Photoheterotrophic Loktanella was also present at both sites. Photosystem II was the most active pathway at site B; while, oxidative phosphorylation was most active at site E. Organisms that expressed photosystem II or oxidative phosphorylation also expressed genes involved in photoprotection and oxidative stress, respectively. Assimilatory pathways associated with the nitrogen cycle were dominant at both sites. Results also indicate a positive relationship between functional diversity and the number of stress response genes. This study provides insight into the stress resilience of microbial metabolic pathways supported by greater taxonomic diversity, which may affect the microbial community response to climate change.
Dong, Hailiang; Jiang, Hongchen; Wu, Geng; Edwardson, Christian; De Vlaminck, Iwijn; Quake, Stephen
2014-01-01
Microbe-mediated biogeochemical cycles contribute to the global climate system and have sensitive responses and feedbacks to environmental stress caused by climate change. Yet, little is known about the effects of microbial biodiversity (i.e., taxonmic and functional diversity) on biogeochemical cycles in ecosytems that are highly sensitive to climate change. One such sensitive ecosystem is Qinghai Lake, a high-elevation (3196 m) saline (1.4%) lake located on the Tibetan Plateau, China. This study provides baseline information on the microbial taxonomic and functional diversity as well as the associated stress response genes. Illumina metagenomic and metatranscriptomic datasets were generated from lake water samples collected at two sites (B and E). Autotrophic Cyanobacteria dominated the DNA samples, while heterotrophic Proteobacteria dominated the RNA samples at both sites. Photoheterotrophic Loktanella was also present at both sites. Photosystem II was the most active pathway at site B; while, oxidative phosphorylation was most active at site E. Organisms that expressed photosystem II or oxidative phosphorylation also expressed genes involved in photoprotection and oxidative stress, respectively. Assimilatory pathways associated with the nitrogen cycle were dominant at both sites. Results also indicate a positive relationship between functional diversity and the number of stress response genes. This study provides insight into the stress resilience of microbial metabolic pathways supported by greater taxonomic diversity, which may affect the microbial community response to climate change. PMID:25365331
Carlson, Ross P; Beck, Ashley E; Phalak, Poonam; Fields, Matthew W; Gedeon, Tomas; Hanley, Luke; Harcombe, William R; Henson, Michael A; Heys, Jeffrey J
2018-04-17
Resource scarcity is a common stress in nature and has a major impact on microbial physiology. This review highlights microbial acclimations to resource scarcity, focusing on resource investment strategies for chemoheterotrophs from the molecular level to the pathway level. Competitive resource allocation strategies often lead to a phenotype known as overflow metabolism; the resulting overflow byproducts can stabilize cooperative interactions in microbial communities and can lead to cross-feeding consortia. These consortia can exhibit emergent properties such as enhanced resource usage and biomass productivity. The literature distilled here draws parallels between in silico and laboratory studies and ties them together with ecological theories to better understand microbial stress responses and mutualistic consortia functioning. © 2018 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.
Strategies for microbial synthesis of high-value phytochemicals
NASA Astrophysics Data System (ADS)
Li, Sijin; Li, Yanran; Smolke, Christina D.
2018-03-01
Phytochemicals are of great pharmaceutical and agricultural importance, but often exhibit low abundance in nature. Recent demonstrations of industrial-scale production of phytochemicals in yeast have shown that microbial production of these high-value chemicals is a promising alternative to sourcing these molecules from native plant hosts. However, a number of challenges remain in the broader application of this approach, including the limited knowledge of plant secondary metabolism and the inefficient reconstitution of plant metabolic pathways in microbial hosts. In this Review, we discuss recent strategies to achieve microbial biosynthesis of complex phytochemicals, including strategies to: (1) reconstruct plant biosynthetic pathways that have not been fully elucidated by mining enzymes from native and non-native hosts or by enzyme engineering; (2) enhance plant enzyme activity, specifically cytochrome P450 activity, by improving efficiency, selectivity, expression or electron transfer; and (3) enhance overall reaction efficiency of multi-enzyme pathways by dynamic control, compartmentalization or optimization with the host's metabolism. We also highlight remaining challenges to — and future opportunities of — this approach.
Huang, Yolanda Y; Martínez-Del Campo, Ana; Balskus, Emily P
2018-02-06
The discovery of enzymes responsible for previously unappreciated microbial metabolic pathways furthers our understanding of host-microbe and microbe-microbe interactions. We recently identified and characterized a new gut microbial glycyl radical enzyme (GRE) responsible for anaerobic metabolism of trans-4-hydroxy-l-proline (Hyp). Hyp dehydratase (HypD) catalyzes the removal of water from Hyp to generate Δ 1 -pyrroline-5-carboxylate (P5C). This enzyme is encoded in the genomes of a diverse set of gut anaerobes and is prevalent and abundant in healthy human stool metagenomes. Here, we discuss the roles HypD may play in different microbial metabolic pathways as well as the potential implications of this activity for colonization resistance and pathogenesis within the human gut. Finally, we present evidence of anaerobic Hyp metabolism in sediments through enrichment culturing of Hyp-degrading bacteria, highlighting the wide distribution of this pathway in anoxic environments beyond the human gut.
Xia, Yu; Wang, Yubo; Fang, Herbert H. P.; Jin, Tao; Zhong, Huanzi; Zhang, Tong
2014-01-01
The metatranscriptomic recharacterization in the present study captured microbial enzymes at the unprecedented scale of 40,000 active genes belonged to 2,269 KEGG functions were identified. The novel information obtained herein revealed interesting patterns and provides an initial transcriptional insight into the thermophilic cellulose methanization process. Synergistic beta-sugar consumption by Thermotogales is crucial for cellulose hydrolysis in the thermophilic cellulose-degrading consortium because the primary cellulose degraders Clostridiales showed metabolic incompetence in subsequent beta-sugar pathways. Additionally, comparable transcription of putative Sus-like polysaccharide utilization loci (PULs) was observed in an unclassified order of Bacteroidetes suggesting the importance of PULs mechanism for polysaccharides breakdown in thermophilic systems. Despite the abundance of acetate as a fermentation product, the acetate-utilizing Methanosarcinales were less prevalent by 60% than the hydrogenotrophic Methanobacteriales. Whereas the aceticlastic methanogenesis pathway was markedly more active in terms of transcriptional activities in key genes, indicating that the less dominant Methanosarcinales are more active than their hydrogenotrophic counterparts in methane metabolism. These findings suggest that the minority of aceticlastic methanogens are not necessarily associated with repressed metabolism, in a pattern that was commonly observed in the cellulose-based methanization consortium, and thus challenge the causal likelihood proposed by previous studies. PMID:25330991
Microbial catabolic activities are naturally selected by metabolic energy harvest rate.
González-Cabaleiro, Rebeca; Ofiţeru, Irina D; Lema, Juan M; Rodríguez, Jorge
2015-12-01
The fundamental trade-off between yield and rate of energy harvest per unit of substrate has been largely discussed as a main characteristic for microbial established cooperation or competition. In this study, this point is addressed by developing a generalized model that simulates competition between existing and not experimentally reported microbial catabolic activities defined only based on well-known biochemical pathways. No specific microbial physiological adaptations are considered, growth yield is calculated coupled to catabolism energetics and a common maximum biomass-specific catabolism rate (expressed as electron transfer rate) is assumed for all microbial groups. Under this approach, successful microbial metabolisms are predicted in line with experimental observations under the hypothesis of maximum energy harvest rate. Two microbial ecosystems, typically found in wastewater treatment plants, are simulated, namely: (i) the anaerobic fermentation of glucose and (ii) the oxidation and reduction of nitrogen under aerobic autotrophic (nitrification) and anoxic heterotrophic and autotrophic (denitrification) conditions. The experimentally observed cross feeding in glucose fermentation, through multiple intermediate fermentation pathways, towards ultimately methane and carbon dioxide is predicted. Analogously, two-stage nitrification (by ammonium and nitrite oxidizers) is predicted as prevailing over nitrification in one stage. Conversely, denitrification is predicted in one stage (by denitrifiers) as well as anammox (anaerobic ammonium oxidation). The model results suggest that these observations are a direct consequence of the different energy yields per electron transferred at the different steps of the pathways. Overall, our results theoretically support the hypothesis that successful microbial catabolic activities are selected by an overall maximum energy harvest rate.
NF-κB/Rel Proteins and the Humoral Immune Responses of Drosophila melanogaster
Ganesan, Sandhya; Aggarwal, Kamna; Paquette, Nicholas; Silverman, Neal
2011-01-01
Nuclear Factor-κB (NF-κB)/Rel transcription factors form an integral part of innate immune defenses and are conserved throughout the animal kingdom. Studying the function, mechanism of activation and regulation of these factors is crucial for understanding host responses to microbial infections. The fruit fly Drosophila melanogaster has proved to be a valuable model system to study these evolutionarily conserved NF-κB mediated immune responses. Drosophila combats pathogens through humoral and cellular immune responses. These humoral responses are well characterized and are marked by the robust production of a battery of anti-microbial peptides. Two NF-κB signaling pathways, the Toll and the IMD pathways, are responsible for the induction of these antimicrobial peptides. Signal transduction in these pathways is strikingly similar to that in mammalian TLR pathways. In this chapter, we discuss in detail the molecular mechanisms of microbial recognition, signal transduction and NF-κB regulation, in both the Toll and the IMD pathways. Similarities and differences relative to their mammalian counterparts are discussed, and recent advances in our understanding of the intricate regulatory networks in these NF-κB signaling pathways are also highlighted. PMID:20852987
Dziggel, Clarissa; Schäfer, Holger; Wink, Michael
2017-01-01
Plant secondary metabolites exhibit a variety of biological activities and therefore serve as valuable therapeutics or flavoring compounds. However, the small amounts isolated from plants often cannot meet market demands. This led to the exploration of other, more profitable methods for their production, including plant cell culture systems, chemical synthesis and biotechnological production in microbial hosts. The biotechnological production can be pursued by reconstructing metabolic pathways in selected microbial systems. But due to their complexity, most of these pathways are not completely understood and require the expression of a multitude of genes in a foreign organism. Recently, next generation sequencing data and advances in gene silencing in plants allowed the elucidation of some biosynthetic pathways in more detail. Thus, the de novo production of some natural products, including morphine, strictosidine, artemisinin, taxol ® and resveratrol, in extensively engineered microbial hosts has become feasible. This review highlights the reconstruction of these pathways, missing pieces and novel techniques employed. Copyright © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Modeling central metabolism and energy biosynthesis across microbial life
Edirisinghe, Janaka N.; Weisenhorn, Pamela; Conrad, Neal; ...
2016-08-08
Here, automatically generated bacterial metabolic models, and even some curated models, lack accuracy in predicting energy yields due to poor representation of key pathways in energy biosynthesis and the electron transport chain (ETC). Further compounding the problem, complex interlinking pathways in genome-scale metabolic models, and the need for extensive gapfilling to support complex biomass reactions, often results in predicting unrealistic yields or unrealistic physiological flux profiles. As a result, to overcome this challenge, we developed methods and tools to build high quality core metabolic models (CMM) representing accurate energy biosynthesis based on a well studied, phylogenetically diverse set of modelmore » organisms. We compare these models to explore the variability of core pathways across all microbial life, and by analyzing the ability of our core models to synthesize ATP and essential biomass precursors, we evaluate the extent to which the core metabolic pathways and functional ETCs are known for all microbes. 6,600 (80 %) of our models were found to have some type of aerobic ETC, whereas 5,100 (62 %) have an anaerobic ETC, and 1,279 (15 %) do not have any ETC. Using our manually curated ETC and energy biosynthesis pathways with no gapfilling at all, we predict accurate ATP yields for nearly 5586 (70 %) of the models under aerobic and anaerobic growth conditions. This study revealed gaps in our knowledge of the central pathways that result in 2,495 (30 %) CMMs being unable to produce ATP under any of the tested conditions. We then established a methodology for the systematic identification and correction of inconsistent annotations using core metabolic models coupled with phylogenetic analysis. In conclusion, we predict accurate energy yields based on our improved annotations in energy biosynthesis pathways and the implementation of diverse ETC reactions across the microbial tree of life. We highlighted missing annotations that were essential to energy biosynthesis in our models. We examine the diversity of these pathways across all microbial life and enable the scientific community to explore the analyses generated from this large-scale analysis of over 8000 microbial genomes.« less
Modeling central metabolism and energy biosynthesis across microbial life
DOE Office of Scientific and Technical Information (OSTI.GOV)
Edirisinghe, Janaka N.; Weisenhorn, Pamela; Conrad, Neal
Here, automatically generated bacterial metabolic models, and even some curated models, lack accuracy in predicting energy yields due to poor representation of key pathways in energy biosynthesis and the electron transport chain (ETC). Further compounding the problem, complex interlinking pathways in genome-scale metabolic models, and the need for extensive gapfilling to support complex biomass reactions, often results in predicting unrealistic yields or unrealistic physiological flux profiles. As a result, to overcome this challenge, we developed methods and tools to build high quality core metabolic models (CMM) representing accurate energy biosynthesis based on a well studied, phylogenetically diverse set of modelmore » organisms. We compare these models to explore the variability of core pathways across all microbial life, and by analyzing the ability of our core models to synthesize ATP and essential biomass precursors, we evaluate the extent to which the core metabolic pathways and functional ETCs are known for all microbes. 6,600 (80 %) of our models were found to have some type of aerobic ETC, whereas 5,100 (62 %) have an anaerobic ETC, and 1,279 (15 %) do not have any ETC. Using our manually curated ETC and energy biosynthesis pathways with no gapfilling at all, we predict accurate ATP yields for nearly 5586 (70 %) of the models under aerobic and anaerobic growth conditions. This study revealed gaps in our knowledge of the central pathways that result in 2,495 (30 %) CMMs being unable to produce ATP under any of the tested conditions. We then established a methodology for the systematic identification and correction of inconsistent annotations using core metabolic models coupled with phylogenetic analysis. In conclusion, we predict accurate energy yields based on our improved annotations in energy biosynthesis pathways and the implementation of diverse ETC reactions across the microbial tree of life. We highlighted missing annotations that were essential to energy biosynthesis in our models. We examine the diversity of these pathways across all microbial life and enable the scientific community to explore the analyses generated from this large-scale analysis of over 8000 microbial genomes.« less
Modeling central metabolism and energy biosynthesis across microbial life.
Edirisinghe, Janaka N; Weisenhorn, Pamela; Conrad, Neal; Xia, Fangfang; Overbeek, Ross; Stevens, Rick L; Henry, Christopher S
2016-08-08
Automatically generated bacterial metabolic models, and even some curated models, lack accuracy in predicting energy yields due to poor representation of key pathways in energy biosynthesis and the electron transport chain (ETC). Further compounding the problem, complex interlinking pathways in genome-scale metabolic models, and the need for extensive gapfilling to support complex biomass reactions, often results in predicting unrealistic yields or unrealistic physiological flux profiles. To overcome this challenge, we developed methods and tools ( http://coremodels.mcs.anl.gov ) to build high quality core metabolic models (CMM) representing accurate energy biosynthesis based on a well studied, phylogenetically diverse set of model organisms. We compare these models to explore the variability of core pathways across all microbial life, and by analyzing the ability of our core models to synthesize ATP and essential biomass precursors, we evaluate the extent to which the core metabolic pathways and functional ETCs are known for all microbes. 6,600 (80 %) of our models were found to have some type of aerobic ETC, whereas 5,100 (62 %) have an anaerobic ETC, and 1,279 (15 %) do not have any ETC. Using our manually curated ETC and energy biosynthesis pathways with no gapfilling at all, we predict accurate ATP yields for nearly 5586 (70 %) of the models under aerobic and anaerobic growth conditions. This study revealed gaps in our knowledge of the central pathways that result in 2,495 (30 %) CMMs being unable to produce ATP under any of the tested conditions. We then established a methodology for the systematic identification and correction of inconsistent annotations using core metabolic models coupled with phylogenetic analysis. We predict accurate energy yields based on our improved annotations in energy biosynthesis pathways and the implementation of diverse ETC reactions across the microbial tree of life. We highlighted missing annotations that were essential to energy biosynthesis in our models. We examine the diversity of these pathways across all microbial life and enable the scientific community to explore the analyses generated from this large-scale analysis of over 8000 microbial genomes.
Improving Microbial Genome Annotations in an Integrated Database Context
Chen, I-Min A.; Markowitz, Victor M.; Chu, Ken; Anderson, Iain; Mavromatis, Konstantinos; Kyrpides, Nikos C.; Ivanova, Natalia N.
2013-01-01
Effective comparative analysis of microbial genomes requires a consistent and complete view of biological data. Consistency regards the biological coherence of annotations, while completeness regards the extent and coverage of functional characterization for genomes. We have developed tools that allow scientists to assess and improve the consistency and completeness of microbial genome annotations in the context of the Integrated Microbial Genomes (IMG) family of systems. All publicly available microbial genomes are characterized in IMG using different functional annotation and pathway resources, thus providing a comprehensive framework for identifying and resolving annotation discrepancies. A rule based system for predicting phenotypes in IMG provides a powerful mechanism for validating functional annotations, whereby the phenotypic traits of an organism are inferred based on the presence of certain metabolic reactions and pathways and compared to experimentally observed phenotypes. The IMG family of systems are available at http://img.jgi.doe.gov/. PMID:23424620
Deep-Sea Hydrothermal Vent Viruses Compensate for Microbial Metabolism in Virus-Host Interactions.
He, Tianliang; Li, Hongyun; Zhang, Xiaobo
2017-07-11
Viruses are believed to be responsible for the mortality of host organisms. However, some recent investigations reveal that viruses may be essential for host survival. To date, it remains unclear whether viruses are beneficial or harmful to their hosts. To reveal the roles of viruses in the virus-host interactions, viromes and microbiomes of sediment samples from three deep-sea hydrothermal vents were explored in this study. To exclude the influence of exogenous DNAs on viromes, the virus particles were purified with nuclease (DNase I and RNase A) treatments and cesium chloride density gradient centrifugation. The metagenomic analysis of viromes without exogenous DNA contamination and microbiomes of vent samples indicated that viruses had compensation effects on the metabolisms of their host microorganisms. Viral genes not only participated in most of the microbial metabolic pathways but also formed branched pathways in microbial metabolisms, including pyrimidine metabolism; alanine, aspartate, and glutamate metabolism; nitrogen metabolism and assimilation pathways of the two-component system; selenocompound metabolism; aminoacyl-tRNA biosynthesis; and amino sugar and nucleotide sugar metabolism. As is well known, deep-sea hydrothermal vent ecosystems exist in relatively isolated environments which are barely influenced by other ecosystems. The metabolic compensation of hosts mediated by viruses might represent a very important aspect of virus-host interactions. IMPORTANCE Viruses are the most abundant biological entities in the oceans and have very important roles in regulating microbial community structure and biogeochemical cycles. The relationship between virus and host microbes is broadly thought to be that of predator and prey. Viruses can lyse host cells to control microbial population sizes and affect community structures of hosts by killing specific microbes. However, viruses also influence their hosts through manipulation of bacterial metabolism. We found that viral genes not only participated in most microbial metabolic pathways but also formed branched pathways in microbial metabolisms. The metabolic compensation of hosts mediated by viruses may help hosts to adapt to extreme environments and may be essential for host survival. Copyright © 2017 He et al.
Alegado, Rosanna A; Campbell, Marianne C; Chen, Will C; Slutz, Sandra S; Tan, Man-Wah
2003-07-01
The soil-borne nematode, Caenorhabditis elegans, is emerging as a versatile model in which to study host-pathogen interactions. The worm model has shown to be particularly effective in elucidating both microbial and animal genes involved in toxin-mediated killing. In addition, recent work on worm infection by a variety of bacterial pathogens has shown that a number of virulence regulatory genes mediate worm susceptibility. Many of these regulatory genes, including the PhoP/Q two-component regulators in Salmonella and LasR in Pseudomonas aeruginosa, have also been implicated in mammalian models suggesting that findings in the worm model will be relevant to other systems. In keeping with this concept, experiments aimed at identifying host innate immunity genes have also implicated pathways that have been suggested to play a role in plants and animals, such as the p38 MAP kinase pathway. Despite rapid forward progress using this model, much work remains to be done including the design of more sensitive methods to find effector molecules and further characterization of the exact interaction between invading pathogens and C. elegans' cellular components.
FMAP: Functional Mapping and Analysis Pipeline for metagenomics and metatranscriptomics studies.
Kim, Jiwoong; Kim, Min Soo; Koh, Andrew Y; Xie, Yang; Zhan, Xiaowei
2016-10-10
Given the lack of a complete and comprehensive library of microbial reference genomes, determining the functional profile of diverse microbial communities is challenging. The available functional analysis pipelines lack several key features: (i) an integrated alignment tool, (ii) operon-level analysis, and (iii) the ability to process large datasets. Here we introduce our open-sourced, stand-alone functional analysis pipeline for analyzing whole metagenomic and metatranscriptomic sequencing data, FMAP (Functional Mapping and Analysis Pipeline). FMAP performs alignment, gene family abundance calculations, and statistical analysis (three levels of analyses are provided: differentially-abundant genes, operons and pathways). The resulting output can be easily visualized with heatmaps and functional pathway diagrams. FMAP functional predictions are consistent with currently available functional analysis pipelines. FMAP is a comprehensive tool for providing functional analysis of metagenomic/metatranscriptomic sequencing data. With the added features of integrated alignment, operon-level analysis, and the ability to process large datasets, FMAP will be a valuable addition to the currently available functional analysis toolbox. We believe that this software will be of great value to the wider biology and bioinformatics communities.
Alford, Susan E.; Alt, Jeffrey C.; Shanks, Wayne C.
2011-01-01
Sulfide petrography plus whole rock contents and isotope ratios of sulfur were measured in a 1.5 km section of oceanic gabbros in order to understand the geochemistry of sulfur cycling during low-temperature seawater alteration of the lower oceanic crust, and to test whether microbial effects may be present. Most samples have low SO4/ΣS values (≤ 0.15), have retained igneous globules of pyrrhotite ± chalcopyrite ± pentlandite, and host secondary aggregates of pyrrhotite and pyrite laths in smectite ± iron-oxyhydroxide ± magnetite ± calcite pseudomorphs of olivine and clinopyroxene. Compared to fresh gabbro containing 100–1800 ppm sulfur our data indicate an overall addition of sulfide to the lower crust. Selection of samples altered only at temperatures ≤ 110 °C constrains microbial sulfate reduction as the only viable mechanism for the observed sulfide addition, which may have been enabled by the production of H2 from oxidation of associated olivine and pyroxene. The wide range in δ34Ssulfide values (− 1.5 to + 16.3‰) and variable additions of sulfide are explained by variable εsulfate-sulfide under open system pathways, with a possible progression into closed system pathways. Some samples underwent oxidation related to seawater penetration along permeable fault horizons and have lost sulfur, have high SO4/ΣS (≥ 0.46) and variable δ34Ssulfide (0.7 to 16.9‰). Negative δ34Ssulfate–δ34Ssulfide values for the majority of samples indicate kinetic isotope fractionation during oxidation of sulfide minerals. Depth trends in sulfide–sulfur contents and sulfide mineral assemblages indicate a late-stage downward penetration of seawater into the lower 1 km of Hole 735B. Our results show that under appropriate temperature conditions, a subsurface biosphere can persist in the lower oceanic crust and alter its geochemistry.
Global microbialization of coral reefs.
Haas, Andreas F; Fairoz, Mohamed F M; Kelly, Linda W; Nelson, Craig E; Dinsdale, Elizabeth A; Edwards, Robert A; Giles, Steve; Hatay, Mark; Hisakawa, Nao; Knowles, Ben; Lim, Yan Wei; Maughan, Heather; Pantos, Olga; Roach, Ty N F; Sanchez, Savannah E; Silveira, Cynthia B; Sandin, Stuart; Smith, Jennifer E; Rohwer, Forest
2016-04-25
Microbialization refers to the observed shift in ecosystem trophic structure towards higher microbial biomass and energy use. On coral reefs, the proximal causes of microbialization are overfishing and eutrophication, both of which facilitate enhanced growth of fleshy algae, conferring a competitive advantage over calcifying corals and coralline algae. The proposed mechanism for this competitive advantage is the DDAM positive feedback loop (dissolved organic carbon (DOC), disease, algae, microorganism), where DOC released by ungrazed fleshy algae supports copiotrophic, potentially pathogenic bacterial communities, ultimately harming corals and maintaining algal competitive dominance. Using an unprecedented data set of >400 samples from 60 coral reef sites, we show that the central DDAM predictions are consistent across three ocean basins. Reef algal cover is positively correlated with lower concentrations of DOC and higher microbial abundances. On turf and fleshy macroalgal-rich reefs, higher relative abundances of copiotrophic microbial taxa were identified. These microbial communities shift their metabolic potential for carbohydrate degradation from the more energy efficient Embden-Meyerhof-Parnas pathway on coral-dominated reefs to the less efficient Entner-Doudoroff and pentose phosphate pathways on algal-dominated reefs. This 'yield-to-power' switch by microorganism directly threatens reefs via increased hypoxia and greater CO2 release from the microbial respiration of DOC.
Microbial biosynthesis and secretion of l-malic acid and its applications.
Chi, Zhe; Wang, Zhi-Peng; Wang, Guang-Yuan; Khan, Ibrar; Chi, Zhen-Ming
2016-01-01
l-Malic acid has many uses in food, beverage, pharmaceutical, chemical and medical industries. It can be produced by one-step fermentation, enzymatic transformation of fumaric acid to l-malate and acid hydrolysis of polymalic acid. However, the process for one-step fermentation is preferred as it has many advantages over any other process. The pathways of l-malic acid biosynthesis in microorganisms are partially clear and three metabolic pathways including non-oxidative pathway, oxidative pathway and glyoxylate cycle for the production of l-malic acid from glucose have been identified. Usually, high levels of l-malate are produced under the nitrogen starvation conditions, l-malate, as a calcium salt, is secreted from microbial cells and CaCO3 can play an important role in calcium malate biosynthesis and regulation. However, it is still unclear how it is secreted into the medium. To enhance l-malate biosynthesis and secretion by microbial cells, it is very important to study the mechanisms of l-malic acid biosynthesis and secretion at enzymatic and molecular levels.
Following Carbon Isotopes from Methane to Molecules
NASA Astrophysics Data System (ADS)
Freeman, K. H.
2017-12-01
Continuous-flow methods introduced by Hayes (Matthews and Hayes, 1978; Freeman et al., 1990; Hayes et al., 1990) for compound-specific isotope analyses (CSIA) transformed how we study the origins and fates of organic compounds. This analytical revolution launched several decades of research in which researchers connect individual molecular structures to diverse environmental and climate processes affecting their isotopic profiles. Among the first applications, and one of the more dramatic isotopically, was tracing the flow of natural methane into cellular carbon and cellular biochemical constituents. Microbial oxidation of methane can be tracked by strongly 13C-depleted organic carbon in early Earth sedimentary environments, in marine and lake-derived biomarkers in oils, and in modern organisms and their environments. These signatures constrain microbial carbon cycling and inform our understanding of ocean redox. The measurement of molecular isotopes has jumped forward once again, and it is now possible to determine isotope abundances at specific positions within increasingly complex organic structures. In addition, recent analytical developments have lowered sample sensitivity limits of CSIA to picomole levels. These new tools have opened new ways to measure methane carbon in the natural environment and within biochemical pathways. This talk will highlight how molecular isotope methods enable us to follow the fate of methane carbon in complex environments and along diverse metabolic pathways, from trace fluids to specific carbon positions within microbial biomarkers.
Using pyrosequencing to shed light on deep mine microbial ecology
Edwards, Robert A; Rodriguez-Brito, Beltran; Wegley, Linda; Haynes, Matthew; Breitbart, Mya; Peterson, Dean M; Saar, Martin O; Alexander, Scott; Alexander, E Calvin; Rohwer, Forest
2006-01-01
Background Contrasting biological, chemical and hydrogeological analyses highlights the fundamental processes that shape different environments. Generating and interpreting the biological sequence data was a costly and time-consuming process in defining an environment. Here we have used pyrosequencing, a rapid and relatively inexpensive sequencing technology, to generate environmental genome sequences from two sites in the Soudan Mine, Minnesota, USA. These sites were adjacent to each other, but differed significantly in chemistry and hydrogeology. Results Comparisons of the microbes and the subsystems identified in the two samples highlighted important differences in metabolic potential in each environment. The microbes were performing distinct biochemistry on the available substrates, and subsystems such as carbon utilization, iron acquisition mechanisms, nitrogen assimilation, and respiratory pathways separated the two communities. Although the correlation between much of the microbial metabolism occurring and the geochemical conditions from which the samples were isolated could be explained, the reason for the presence of many pathways in these environments remains to be determined. Despite being physically close, these two communities were markedly different from each other. In addition, the communities were also completely different from other microbial communities sequenced to date. Conclusion We anticipate that pyrosequencing will be widely used to sequence environmental samples because of the speed, cost, and technical advantages. Furthermore, subsystem comparisons rapidly identify the important metabolisms employed by the microbes in different environments. PMID:16549033
Fungal-to-bacterial dominance of soil detrital food-webs: Consequences for biogeochemistry
NASA Astrophysics Data System (ADS)
Rousk, Johannes; Frey, Serita
2015-04-01
Resolving fungal and bacterial groups within the microbial decomposer community is thought to capture disparate microbial life strategies, associating bacteria with an r-selected strategy for carbon (C) and nutrient use, and fungi with a K-selected strategy. Additionally, food-web models have established a widely held belief that the bacterial decomposer pathway in soil supports high turnover rates of easily available substrates, while the slower fungal pathway supports the decomposition of more complex organic material, thus characterising the biogeochemistry of the ecosystem. Three field-experiments to generate gradients of SOC-quality were assessed. (1) the Detritus Input, Removal, and Trenching - DIRT - experiment in a temperate forest in mixed hardwood stands at Harvard Forest LTER, US. There, experimentally adjusted litter input and root input had affected the SOC quality during 23 years. (2) field-application of 14-C labelled glucose to grassland soils, sampled over the course of 13 months to generate an age-gradient of SOM (1 day - 13 months). (3) The Park Grass Experiment at Rothamsted, UK, where 150-years continuous N-fertilisation (0, 50, 100, 150 kg N ha-1 y-1) has affected the quality of SOM in grassland soils. A combination of carbon stable and radio isotope studies, fungal and bacterial growth and biomass measurements, and C and N mineralisation (15N pool dilution) assays were used to investigate how SOC-quality influenced fungal and bacterial food-web pathways and the implications this had for C and nutrient turnover. There was no support that decomposer food-webs dominated by bacteria support high turnover rates of easily available substrates, while slower fungal-dominated decomposition pathways support the decomposition of more complex organic material. Rather, an association between high quality SOC and fungi emerges from the results. This suggests that we need to revise our basic understanding for soil microbial communities and the processes they regulate in soil.
Yan, Jinyong; Yan, Yunjun; Madzak, Catherine; Han, Bingnan
2017-02-01
Microbial production routes, notably whole-cell lipase-mediated biotransformation and fatty-acids-derived biosynthesis, offer new opportunities for synthesizing biodiesel. They compare favorably to immobilized lipase and chemically catalyzed processes. Genetically modified whole-cell lipase-mediated in vitro route, together with in vivo and ex vivo microbial biosynthesis routes, constitutes emerging and rapidly developing research areas for effective production of biodiesel. This review presents recent advances in customizing microorganisms for producing biodiesel, via genetic engineering of lipases and metabolic engineering (including system regulation) of fatty-acids-derived pathways. Microbial hosts used include Escherichia coli, Saccharomyces cerevisiae, Pichia pastoris and Aspergillus oryzae. These microbial cells can be genetically modified to produce lipases under different forms: intracellularly expressed, secreted or surface-displayed. They can be metabolically redesigned and systematically regulated to obtain balanced biodiesel-producing cells, as highlighted in this study. Such genetically or metabolically modified microbial cells can support not only in vitro biotransformation of various common oil feedstocks to biodiesel, but also de novo biosynthesis of biodiesel from glucose, glycerol or even cellulosic biomass. We believe that the genetically tractable oleaginous yeast Yarrowia lipolytica could be developed to an effective biodiesel-producing microbial cell factory. For this purpose, we propose several engineered pathways, based on lipase and wax ester synthase, in this promising oleaginous host.
Functional ecology of an Antarctic Dry Valley
Chan, Yuki; Van Nostrand, Joy D.; Zhou, Jizhong; Pointing, Stephen B.
2013-01-01
The McMurdo Dry Valleys are the largest ice-free region in Antarctica and are critically at risk from climate change. The terrestrial landscape is dominated by oligotrophic mineral soils and extensive exposed rocky surfaces where biota are largely restricted to microbial communities, although their ability to perform the majority of geobiological processes has remained largely uncharacterized. Here, we identified functional traits that drive microbial survival and community assembly, using a metagenomic approach with GeoChip-based functional gene arrays to establish metabolic capabilities in communities inhabiting soil and rock surface niches in McKelvey Valley. Major pathways in primary metabolism were identified, indicating significant plasticity in autotrophic, heterotrophic, and diazotrophic strategies supporting microbial communities. This represents a major advance beyond biodiversity surveys in that we have now identified how putative functional ecology drives microbial community assembly. Significant differences were apparent between open soil, hypolithic, chasmoendolithic, and cryptoendolithic communities. A suite of previously unappreciated Antarctic microbial stress response pathways, thermal, osmotic, and nutrient limitation responses were identified and related to environmental stressors, offering tangible clues to the mechanisms behind the enduring success of microorganisms in this seemingly inhospitable terrain. Rocky substrates exposed to larger fluctuations in environmental stress supported greater functional diversity in stress-response pathways than soils. Soils comprised a unique reservoir of genes involved in transformation of organic hydrocarbons and lignin-like degradative pathways. This has major implications for the evolutionary origin of the organisms, turnover of recalcitrant substrates in Antarctic soils, and predicting future responses to anthropogenic pollution. PMID:23671121
Functional ecology of an Antarctic Dry Valley.
Chan, Yuki; Van Nostrand, Joy D; Zhou, Jizhong; Pointing, Stephen B; Farrell, Roberta L
2013-05-28
The McMurdo Dry Valleys are the largest ice-free region in Antarctica and are critically at risk from climate change. The terrestrial landscape is dominated by oligotrophic mineral soils and extensive exposed rocky surfaces where biota are largely restricted to microbial communities, although their ability to perform the majority of geobiological processes has remained largely uncharacterized. Here, we identified functional traits that drive microbial survival and community assembly, using a metagenomic approach with GeoChip-based functional gene arrays to establish metabolic capabilities in communities inhabiting soil and rock surface niches in McKelvey Valley. Major pathways in primary metabolism were identified, indicating significant plasticity in autotrophic, heterotrophic, and diazotrophic strategies supporting microbial communities. This represents a major advance beyond biodiversity surveys in that we have now identified how putative functional ecology drives microbial community assembly. Significant differences were apparent between open soil, hypolithic, chasmoendolithic, and cryptoendolithic communities. A suite of previously unappreciated Antarctic microbial stress response pathways, thermal, osmotic, and nutrient limitation responses were identified and related to environmental stressors, offering tangible clues to the mechanisms behind the enduring success of microorganisms in this seemingly inhospitable terrain. Rocky substrates exposed to larger fluctuations in environmental stress supported greater functional diversity in stress-response pathways than soils. Soils comprised a unique reservoir of genes involved in transformation of organic hydrocarbons and lignin-like degradative pathways. This has major implications for the evolutionary origin of the organisms, turnover of recalcitrant substrates in Antarctic soils, and predicting future responses to anthropogenic pollution.
Dialogue between E. coli free radical pathways and the mitochondria of C. elegans.
Govindan, J Amaranath; Jayamani, Elamparithi; Zhang, Xinrui; Mylonakis, Eleftherios; Ruvkun, Gary
2015-10-06
The microbial world presents a complex palette of opportunities and dangers to animals, which have developed surveillance and response strategies to hints of microbial intent. We show here that the mitochondrial homeostatic response pathway of the nematode Caenorhabditis elegans responds to Escherichia coli mutations that activate free radical detoxification pathways. Activation of C. elegans mitochondrial responses could be suppressed by additional mutations in E. coli, suggesting that C. elegans responds to products of E. coli to anticipate challenges to its mitochondrion. Out of 50 C. elegans gene inactivations known to mediate mitochondrial defense, we found that 7 genes were required for C. elegans response to a free radical producing E. coli mutant, including the bZip transcription factor atfs-1 (activating transcription factor associated with stress). An atfs-1 loss-of-function mutant was partially resistant to the effects of free radical-producing E. coli mutant, but a constitutively active atfs-1 mutant growing on wild-type E. coli inappropriately activated the pattern of mitochondrial responses normally induced by an E. coli free radical pathway mutant. Carbonylated proteins from free radical-producing E. coli mutant may directly activate the ATFS-1/bZIP transcription factor to induce mitochondrial stress response: feeding C. elegans with H2O2-treated E. coli induces the mitochondrial unfolded protein response, and inhibition of a gut peptide transporter partially suppressed C. elegans response to free radical damaged E. coli.
NASA Astrophysics Data System (ADS)
Glass, J. B.; Stanton, C. L.; Ochoa, H.; Haslun, J. A.; Gandhi, H.; Taillefert, M.; Dichristina, T. J.; Stewart, F. J.; Klotz, M. G.; Ostrom, N. E.
2016-02-01
Marine emissions of nitrous oxide (N2O), a potent greenhouse gas, comprise approximately a third of global sources. Recent evidence suggests that the dominant source of N2O in seawater is the activity of ammonia-oxidizing Thaumarchaeota that lack characterized N2O-generating enzymes. Nitrous oxide may arise from a novel enzyme and/or abiotic reactions between nitrification intermediates, hydroxylamine (NH2OH) and nitric oxide (NO), and redox-active metals in seawater. Isotopic site preference, or difference in δ15N between the two nitrogen atoms in N2O, has been used as tracer for microbial N2O production pathways (-10 to 0‰ for nitrifier-denitrification and denitrification vs. 30-37‰ for nitrification via NH2OH oxidation). Seawater N2O site preference falls in between these two characterized end members, suggesting simultaneous production via a combination of both microbial pathways or via a novel mechanism with intermediate site preference. Here we show significant N2O production in abiotic experiments after addition of iron to seawater containing NH2OH and NO. The N2O produced from chemical reduction of NO by Fe(II) had a site preference of 16‰ whereas N2O produced from abiotic NH2OH oxidation had a site preference of 31‰. We propose that coupled biotic-abiotic N2O production pathways could contribute significant sources of N2O at marine oxic-anoxic interfaces.
Engineering strategies for the fermentative production of plant alkaloids in yeast.
Trenchard, Isis J; Smolke, Christina D
2015-07-01
Microbial hosts engineered for the biosynthesis of plant natural products offer enormous potential as powerful discovery and production platforms. However, the reconstruction of these complex biosynthetic schemes faces numerous challenges due to the number of enzymatic steps and challenging enzyme classes associated with these pathways, which can lead to issues in metabolic load, pathway specificity, and maintaining flux to desired products. Cytochrome P450 enzymes are prevalent in plant specialized metabolism and are particularly difficult to express heterologously. Here, we describe the reconstruction of the sanguinarine branch of the benzylisoquinoline alkaloid pathway in Saccharomyces cerevisiae, resulting in microbial biosynthesis of protoberberine, protopine, and benzophenanthridine alkaloids through to the end-product sanguinarine, which we demonstrate can be efficiently produced in yeast in the absence of the associated biosynthetic enzyme. We achieved titers of 676 μg/L stylopine, 548 μg/L cis-N-methylstylopine, 252 μg/L protopine, and 80 μg/L sanguinarine from the engineered yeast strains. Through our optimization efforts, we describe genetic and culture strategies supporting the functional expression of multiple plant cytochrome P450 enzymes in the context of a large multi-step pathway. Our results also provided insight into relationships between cytochrome P450 activity and yeast ER physiology. We were able to improve the production of critical intermediates by 32-fold through genetic techniques and an additional 45-fold through culture optimization. Copyright © 2015 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.
George, Kevin W; Chen, Amy; Jain, Aakriti; Batth, Tanveer S; Baidoo, Edward E K; Wang, George; Adams, Paul D; Petzold, Christopher J; Keasling, Jay D; Lee, Taek Soon
2014-08-01
The ability to rapidly assess and optimize heterologous pathway function is critical for effective metabolic engineering. Here, we develop a systematic approach to pathway analysis based on correlations between targeted proteins and metabolites and apply it to the microbial production of isopentenol, a promising biofuel. Starting with a seven-gene pathway, we performed a correlation analysis to reduce pathway complexity and identified two pathway proteins as the primary determinants of efficient isopentenol production. Aided by the targeted quantification of relevant pathway intermediates, we constructed and subsequently validated a conceptual model of isopentenol pathway function. Informed by our analysis, we assembled a strain which produced isopentenol at a titer 1.5 g/L, or 46% of theoretical yield. Our engineering approach allowed us to accurately identify bottlenecks and determine appropriate pathway balance. Paired with high-throughput cloning techniques and analytics, this strategy should prove useful for the analysis and optimization of increasingly complex heterologous pathways. © 2014 Wiley Periodicals, Inc.
Kondo, Katsuhito; Okamoto, Akihiro; Hashimoto, Kazuhito; Nakamura, Ryuhei
2015-07-07
In addition to serving as an energy source for microbial growth, iron sulfides are proposed to act as naturally occurring electrical wires that mediate long-distance extracellular electron transfer (EET) and bridge spatially discrete redox environments. These hypothetical EET reactions stand on the abilities of microbes to use the interfacial electrochemistry of metallic/semiconductive iron sulfides to maintain metabolisms; however, the mechanisms of these phenomena remain unexplored. To obtain insight into EET to iron sulfides, we monitored EET at the interface between Shewanella oneidensis MR-1 cells and biomineralized iron sulfides in an electrochemical cell. Respiratory current steeply increased with the concomitant formation of poorly crystalline mackinawite (FeS) minerals, indicating that S. oneidensis has the ability to exploit extracellularly formed metallic FeS for long-distance EET. Deletion of major proteins of the metal-reduction (Mtr) pathway (OmcA, MtrC, CymA, and PilD) caused only subtle effects on the EET efficiency, a finding that sharply contrasts the majority of studies that report that the Mtr pathway is indispensable for the reduction of metal oxides and electrodes. The gene expression analyses of polysulfide and thiosulfate reductase suggest the existence of a sulfur-mediated electron-shuttling mechanism by which HS(-) ions and water-soluble polysulfides (HS(n)(-), where n ≥ 2) generated in the periplasmic space deliver electrons from cellular metabolic processes to cell surface-associated FeS. The finding of this Mtr-independent pathway indicates that polysulfide reductases complement the function of outer-membrane cytochromes in EET reactions and, thus, significantly expand the number of microbial species potentially capable of long-distance EET in sulfur-rich anoxic environments.
Lade, Harshad; Govindwar, Sanjay; Paul, Diby
2015-06-16
A microbial consortium that is able to grow in wheat bran (WB) medium and decolorize the carcinogenic azo dye Congo red (CR) was developed. The microbial consortium was immobilized on polyurethane foam (PUF). Batch studies with the PUF-immobilized microbial consortium showed complete removal of CR dye (100 mg·L-1) within 12 h at pH 7.5 and temperature 30 ± 0.2 °C under microaerophilic conditions. Additionally, 92% American Dye Manufactureing Institute (ADMI) removal for real textile effluent (RTE, 50%) was also observed within 20 h under the same conditions. An upflow column reactor containing PUF-immobilized microbial consortium achieved 99% CR dye (100 mg·L-1) and 92% ADMI removal of RTE (50%) at 35 and 20 mL·h-l flow rates, respectively. Consequent reduction in TOC (83 and 79%), COD (85 and 83%) and BOD (79 and 78%) of CR dye and RTE were also observed, which suggested mineralization. The decolorization process was traced to be enzymatic as treated samples showed significant induction of oxidoreductive enzymes. The proposed biodegradation pathway of the dye revealed the formation of lower molecular weight compounds. Toxicity studies with a plant bioassay and acute tests indicated that the PUF-immobilized microbial consortium favors detoxification of the dye and textile effluents.
Lade, Harshad; Govindwar, Sanjay; Paul, Diby
2015-01-01
A microbial consortium that is able to grow in wheat bran (WB) medium and decolorize the carcinogenic azo dye Congo red (CR) was developed. The microbial consortium was immobilized on polyurethane foam (PUF). Batch studies with the PUF-immobilized microbial consortium showed complete removal of CR dye (100 mg·L−1) within 12 h at pH 7.5 and temperature 30 ± 0.2 °C under microaerophilic conditions. Additionally, 92% American Dye Manufactureing Institute (ADMI) removal for real textile effluent (RTE, 50%) was also observed within 20 h under the same conditions. An upflow column reactor containing PUF-immobilized microbial consortium achieved 99% CR dye (100 mg·L−1) and 92% ADMI removal of RTE (50%) at 35 and 20 mL·h−l flow rates, respectively. Consequent reduction in TOC (83 and 79%), COD (85 and 83%) and BOD (79 and 78%) of CR dye and RTE were also observed, which suggested mineralization. The decolorization process was traced to be enzymatic as treated samples showed significant induction of oxidoreductive enzymes. The proposed biodegradation pathway of the dye revealed the formation of lower molecular weight compounds. Toxicity studies with a plant bioassay and acute tests indicated that the PUF-immobilized microbial consortium favors detoxification of the dye and textile effluents. PMID:26086710
Lu, Xiao-Ming; Chen, Chang; Zheng, Tian-Ling
2017-05-01
Pyrosequencing and metagenomic profiling were used to assess the phylogenetic and functional characteristics of microbial communities residing in sediments collected from the estuaries of Rivers Oujiang (OS) and Jiaojiang (JS) in the western region of the East China Sea. Another sediment sample was obtained from near the shore far from estuaries, used for contrast (CS). Characterization of estuary sediment bacterial communities showed that toxic chemicals potentially reduced the natural variability in microbial communities, while they increased the microbial metabolic enzymes and pathways. Polycyclic aromatic hydrocarbons (PAHs) and nitrobenzene were negatively correlated with the bacterial community variation. The dominant class in the sediments was Gammaproteobacteria. According to Kyoto Encyclopedia of Genes and Genomes (KEGG) enzyme profiles, dominant enzymes were found in estuarine sediments, which increased greatly, such as 2-oxoglutarate synthase, acetolactate synthase, inorganic diphosphatase, and aconitate hydratase. In KEGG pathway profiles, most of the pathways were also dominated by specific metabolism in these sediments and showed a marked increase, for instance alanine, aspartate, and glutamate metabolism, carbon fixation pathways in prokaryotes, and aminoacyl-tRNA biosynthesis. The estuarine sediment bacterial diversity varied with the polluted river water inputs. In the estuary receiving river water from the more seriously polluted River Oujiang, the sediment bacterial community function was more severely affected.
Physiology, biochemistry and possible applications of microbial caffeine degradation.
Gummadi, Sathyanarayana N; Bhavya, B; Ashok, Nandhini
2012-01-01
Caffeine, a purine alkaloid is a constituent of widely consumed beverages. The scientific evidence which has proved the harm of this alkaloid has paved the way for innumerable research in the area of caffeine degradation. In addition to this, the fact that the by-products of the coffee and tea industry pollute the environment has called for the need of decaffeinating coffee and tea industry's by-products. Though physical and chemical methods for decaffeination are available, the lack of specificity for removal of caffeine in these techniques and their non-eco-friendly nature has opened the area of microbial and enzymatic degradation of caffeine. Another important application of microbial caffeine degradation apart from its advantages like specificity, eco-friendliness and cost-effectiveness is the fact that this process will enable the production of industrially and medically useful components of the caffeine degradation pathway like theobromine and theophylline. This is a comprehensive review which mainly focuses on caffeine degradation, large-scale degradation of the same and its applications in the industrial world.
Park, Se-Jeong; Lee, Mi-Young; Son, Bu-Soon; Youn, Hyung-Sun
2009-07-01
Toll-like receptors (TLRs) are primary sensors that detect a wide variety of microbial components involving induction of innate immune responses. After recognition of microbial components, TLRs trigger the activation of myeloid differential factor 88 (MyD88) and Toll-interleukin-1 (IL-1) receptor domain-containing adapter inducing interferon-beta (TRIF)-dependent downstream signaling pathways. 6-Shoagol, an active ingredient of ginger, inhibits the MyD88-dependent signaling pathway by inhibiting inhibitor-kappaB kinase activity. Inhibitor-kappaB kinase is a key kinase in nuclear factor kappaB (NF-kappaB) activation. However, it is not known whether 6-shogaol inhibits the TRIF-dependent signaling pathway. Our goal was to identify the molecular target of 6-shogaol in the TRIF-dependent pathway of TLRs. 6-Shogaol inhibited the activation of interferon-regulatory factor 3 (IRF3) induced by lipopolysaccharide (LPS) and by polyriboinosinic polyribocytidylic acid (poly[I:C]), overexpression of TRIF, TANK-binding kinase1 (TBK1), and IRF3. Furthermore, 6-shogaol inhibited TBK1 activity in vitro. Together, these results suggest that 6-shogaol inhibits the TRIF-dependent signaling pathway of TLRs by targeting TBK1, and, they imply that 6-shogaol can modulate TLR-derived immune/inflammatory target gene expression induced by microbial infection.
Dysfunction of the intestinal microbiome in inflammatory bowel disease and treatment
2012-01-01
Background The inflammatory bowel diseases (IBD) Crohn's disease and ulcerative colitis result from alterations in intestinal microbes and the immune system. However, the precise dysfunctions of microbial metabolism in the gastrointestinal microbiome during IBD remain unclear. We analyzed the microbiota of intestinal biopsies and stool samples from 231 IBD and healthy subjects by 16S gene pyrosequencing and followed up a subset using shotgun metagenomics. Gene and pathway composition were assessed, based on 16S data from phylogenetically-related reference genomes, and associated using sparse multivariate linear modeling with medications, environmental factors, and IBD status. Results Firmicutes and Enterobacteriaceae abundances were associated with disease status as expected, but also with treatment and subject characteristics. Microbial function, though, was more consistently perturbed than composition, with 12% of analyzed pathways changed compared with 2% of genera. We identified major shifts in oxidative stress pathways, as well as decreased carbohydrate metabolism and amino acid biosynthesis in favor of nutrient transport and uptake. The microbiome of ileal Crohn's disease was notable for increases in virulence and secretion pathways. Conclusions This inferred functional metagenomic information provides the first insights into community-wide microbial processes and pathways that underpin IBD pathogenesis. PMID:23013615
Kuroda, Kouichi; Ueda, Mitsuyoshi
2016-02-01
Butanol is an attractive alternative energy fuel owing to several advantages over ethanol. Among the microbial hosts for biobutanol production, yeast Saccharomyces cerevisiae has a great potential as a microbial host due to its powerful genetic tools, a history of successful industrial use, and its inherent tolerance to higher alcohols. Butanol production by S. cerevisiae was first attempted by transferring the 1-butanol-producing metabolic pathway from native microorganisms or using the endogenous Ehrlich pathway for isobutanol synthesis. Utilizing alternative enzymes with higher activity, eliminating competitive pathways, and maintaining cofactor balance achieved significant improvements in butanol production. Meeting future challenges, such as enhancing butanol tolerance and implementing a comprehensive strategy by high-throughput screening, would further elevate the biobutanol-producing ability of S. cerevisiae toward an ideal microbial cell factory exhibiting high productivity of biobutanol. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Melo, Justine A.; Ruvkun, Gary
2012-01-01
Summary The nematode C. elegans consumes benign bacteria such as E. coli and is repelled by pathogens and toxins. Here we show that RNAi and toxin-mediated disruption of core cellular activities, including translation, respiration, and protein turnover, stimulates behavioral avoidance of attractive E. coli. RNAi of such essential processes also induces expression of detoxification and innate immune response genes in the absence of toxins or pathogens. Disruption of core processes in non-neuronal tissues can stimulate aversion behavior, revealing a neuroendocrine axis of control. Microbial avoidance requires serotonergic and Jnk kinase signaling. We propose that surveillance pathways oversee critical cellular activities to detect pathogens, many of which deploy toxins and virulence factors to disrupt these same host pathways. Variation in cellular surveillance and endocrine pathways controlling behavior, detoxification and immunity selected by past toxin or microbial interactions could underlie aberrant responses to foods, medicines, and microbes. PMID:22500807
Fernández-Martínez, Miguel A; Pointing, Stephen B; Pérez-Ortega, Sergio; Arróniz-Crespo, María; Green, T G Allan; Rozzi, Ricardo; Sancho, Leopoldo G; de Los Ríos, Asunción
2016-09-01
A previously established chronosequence from Pia Glacier forefield in Tierra del Fuego (Chile) containing soils of different ages (from bare soils to forest ones) is analyzed. We used this chronosequence as framework to postulate that microbial successional development would be accompanied by changes in functionality. To test this, the GeoChip functional microarray was used to identify diversity of genes involved in microbial carbon and nitrogen metabolism, as well as other genes related to microbial stress response and biotic interactions. Changes in putative functionality generally reflected succession-related taxonomic composition of soil microbiota. Major shifts in carbon fixation and catabolism were observed, as well as major changes in nitrogen metabolism. At initial microbial dominated succession stages, microorganisms could be mainly involved in pathways that help to increase nutrient availability, while more complex microbial transformations such as denitrification and methanogenesis, and later degradation of complex organic substrates, could be more prevalent at vegetated successional states. Shifts in virus populations broadly reflected changes in microbial diversity. Conversely, stress response pathways appeared relatively well conserved for communities along the entire chronosequence. We conclude that nutrient utilization is likely the major driver of microbial succession in these soils. [Int Microbiol 19(3):161-173 (2016)]. Copyright© by the Spanish Society for Microbiology and Institute for Catalan Studies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Jizhong; He, Zhili
2010-02-28
Project Title: Deduction and Analysis of the Interacting Stress Response Pathways of Metal/Radionuclide-reducing Bacteria DOE Grant Number: DE-FG02-06ER64205 Principal Investigator: Jizhong (Joe) Zhou (University of Oklahoma) Key members: Zhili He, Aifen Zhou, Christopher Hemme, Joy Van Nostrand, Ye Deng, and Qichao Tu Collaborators: Terry Hazen, Judy Wall, Adam Arkin, Matthew Fields, Aindrila Mukhopadhyay, and David Stahl Summary Three major objectives have been conducted in the Zhou group at the University of Oklahoma (OU): (i) understanding of gene function, regulation, network and evolution of Desulfovibrio vugaris Hildenborough in response to environmental stresses, (ii) development of metagenomics technologies for microbial community analysis,more » and (iii) functional characterization of microbial communities with metagenomic approaches. In the past a few years, we characterized four CRP/FNR regulators, sequenced ancestor and evolved D. vulgaris strains, and functionally analyzed those mutated genes identified in salt-adapted strains. Also, a new version of GeoChip 4.0 has been developed, which also includes stress response genes (StressChip), and a random matrix theory-based conceptual framework for identifying functional molecular ecological networks has been developed with the high throughput functional gene array hybridization data as well as pyrosequencing data from 16S rRNA genes. In addition, GeoChip and sequencing technologies as well as network analysis approaches have been used to analyze microbial communities from different habitats. Those studies provide a comprehensive understanding of gene function, regulation, network, and evolution in D. vulgaris, and microbial community diversity, composition and structure as well as their linkages with environmental factors and ecosystem functioning, which has resulted in more than 60 publications.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Henard, Calvin A.; Smith, Holly K.; Guarnieri, Michael T.
Microbial conversion of methane to high-value bio-based chemicals and materials offers a path to mitigate GHG emissions and valorize this abundant-yet -underutilized carbon source. In addition to fermentation optimization strategies, rational methanotrophic bacterial strain engineering offers a means to reach industrially relevant titers, carbon yields, and productivities of target products. The phosphoketolase pathway functions in heterofermentative bacteria where carbon flux through two sugar catabolic pathways to mixed acids (lactic acid and acetic acid) increases cellular ATP production. Importantly, this pathway also serves as an alternative route to produce acetyl-CoA that bypasses the CO 2 lost through pyruvate decarboxylation in themore » Embden-Meyerhof-Parnas pathway. Thus, the phosphoketolase pathway can be leveraged for carbon efficient biocatalysis to acetyl-CoA-derived intermediates and products. Here, we show that the industrially promising methane biocatalyst, Methylomicrobium buryatense, encodes two phosphoketolase isoforms that are expressed in methanol- and methane-grown cells. Overexpression of the PktB isoform led to a 2-fold increase in intracellular acetyl-CoA concentration, and a 2.6-fold yield enhancement from methane to microbial biomass and lipids compared to wild-type, increasing the potential for methanotroph lipid-based fuel production. Off-gas analysis and metabolite profiling indicated that global metabolic rearrangements, including significant increases in post-translational protein acetylation and gene expression of the tetrahydromethanopterin-linked pathway, along with decreases in several excreted products, coincided with the superior biomass and lipid yield observed in the engineered strain. Further, these data suggest that phosphoketolase may play a key regulatory role in methanotrophic bacterial metabolism. As a result, given that acetyl-CoA is a key intermediate in several biosynthetic pathways, phosphoketolase overexpression offers a viable strategy to enhance the economics of an array of biological methane conversion processes.« less
Henard, Calvin A; Smith, Holly K; Guarnieri, Michael T
2017-05-01
Microbial conversion of methane to high-value bio-based fuels, chemicals, and materials offers a path to mitigate GHG emissions and valorize this abundant-yet -underutilized carbon source. In addition to fermentation optimization strategies, rational methanotrophic bacterial strain engineering offers a means to reach industrially relevant titers, carbon yields, and productivities of target products. The phosphoketolase pathway functions in heterofermentative bacteria where carbon flux through two sugar catabolic pathways to mixed acids (lactic acid and acetic acid) increases cellular ATP production. Importantly, this pathway also serves as an alternative route to produce acetyl-CoA that bypasses the CO 2 lost through pyruvate decarboxylation in the Embden-Meyerhof-Parnas pathway. Thus, the phosphoketolase pathway can be leveraged for carbon efficient biocatalysis to acetyl-CoA-derived intermediates and products. Here, we show that the industrially promising methane biocatalyst, Methylomicrobium buryatense, encodes two phosphoketolase isoforms that are expressed in methanol- and methane-grown cells. Overexpression of the PktB isoform led to a 2-fold increase in intracellular acetyl-CoA concentration, and a 2.6-fold yield enhancement from methane to microbial biomass and lipids compared to wild-type, increasing the potential for methanotroph lipid-based fuel production. Off-gas analysis and metabolite profiling indicated that global metabolic rearrangements, including significant increases in post-translational protein acetylation and gene expression of the tetrahydromethanopterin-linked pathway, along with decreases in several excreted products, coincided with the superior biomass and lipid yield observed in the engineered strain. Further, these data suggest that phosphoketolase may play a key regulatory role in methanotrophic bacterial metabolism. Given that acetyl-CoA is a key intermediate in several biosynthetic pathways, phosphoketolase overexpression offers a viable strategy to enhance the economics of an array of biological methane conversion processes. Copyright © 2017. Published by Elsevier Inc.
Henard, Calvin A.; Smith, Holly K.; Guarnieri, Michael T.
2017-04-02
Microbial conversion of methane to high-value bio-based chemicals and materials offers a path to mitigate GHG emissions and valorize this abundant-yet -underutilized carbon source. In addition to fermentation optimization strategies, rational methanotrophic bacterial strain engineering offers a means to reach industrially relevant titers, carbon yields, and productivities of target products. The phosphoketolase pathway functions in heterofermentative bacteria where carbon flux through two sugar catabolic pathways to mixed acids (lactic acid and acetic acid) increases cellular ATP production. Importantly, this pathway also serves as an alternative route to produce acetyl-CoA that bypasses the CO 2 lost through pyruvate decarboxylation in themore » Embden-Meyerhof-Parnas pathway. Thus, the phosphoketolase pathway can be leveraged for carbon efficient biocatalysis to acetyl-CoA-derived intermediates and products. Here, we show that the industrially promising methane biocatalyst, Methylomicrobium buryatense, encodes two phosphoketolase isoforms that are expressed in methanol- and methane-grown cells. Overexpression of the PktB isoform led to a 2-fold increase in intracellular acetyl-CoA concentration, and a 2.6-fold yield enhancement from methane to microbial biomass and lipids compared to wild-type, increasing the potential for methanotroph lipid-based fuel production. Off-gas analysis and metabolite profiling indicated that global metabolic rearrangements, including significant increases in post-translational protein acetylation and gene expression of the tetrahydromethanopterin-linked pathway, along with decreases in several excreted products, coincided with the superior biomass and lipid yield observed in the engineered strain. Further, these data suggest that phosphoketolase may play a key regulatory role in methanotrophic bacterial metabolism. As a result, given that acetyl-CoA is a key intermediate in several biosynthetic pathways, phosphoketolase overexpression offers a viable strategy to enhance the economics of an array of biological methane conversion processes.« less
Rab7: roles in membrane trafficking and disease.
Zhang, Ming; Chen, Li; Wang, Shicong; Wang, Tuanlao
2009-06-01
The endocytosis pathway controls multiple cellular and physiological events. The lysosome is the destination of newly synthesized lysosomal hydrolytic enzymes. Internalized molecules or particles are delivered to the lysosome for degradation through sequential transport along the endocytic pathway. The endocytic pathway is also emerging as a signalling platform, in addition to the well-known role of the plasma membrane for signalling. Rab7 is a late endosome-/lysosome-associated small GTPase, perhaps the only lysosomal Rab protein identified to date. Rab7 plays critical roles in the endocytic processes. Through interaction with its partners (including upstream regulators and downstream effectors), Rab7 participates in multiple regulation mechanisms in endosomal sorting, biogenesis of lysosome [or LRO (lysosome-related organelle)] and phagocytosis. These processes are closely related to substrates degradation, antigen presentation, cell signalling, cell survival and microbial pathogen infection. Consistently, mutations or dysfunctions of Rab7 result in traffic disorders, which cause various diseases, such as neuropathy, cancer and lipid metabolism disease. Rab7 also plays important roles in microbial pathogen infection and survival, as well as in participating in the life cycle of viruses. Here, we give a brief review on the central role of Rab7 in endosomal traffic and summarize the studies focusing on the participation of Rab7 in disease pathogenesis. The underlying mechanism governed by Rab7 and its partners will also be discussed.
Prevalence of the Ancient Wood-Ljungdahl Pathway in a Subseafloor Olivine Community
NASA Astrophysics Data System (ADS)
Smith, A. R.; Mueller, R.; Fisk, M. R.; Mason, O. U.; Popa, R.; Kieft, B.; Colwell, F. S.
2018-05-01
The ancient Wood-Ljungdahl pathway used for biosynthesis and energy generation was found to be the predominant metabolic pathway in a microbial community from olivine grains incubated in the Juan de Fuca subseafloor aquifer.
Perturbation Experiments: Approaches for Metabolic Pathway Analysis in Bioreactors.
Weiner, Michael; Tröndle, Julia; Albermann, Christoph; Sprenger, Georg A; Weuster-Botz, Dirk
2016-01-01
In the last decades, targeted metabolic engineering of microbial cells has become one of the major tools in bioprocess design and optimization. For successful application, a detailed knowledge is necessary about the relevant metabolic pathways and their regulation inside the cells. Since in vitro experiments cannot display process conditions and behavior properly, process data about the cells' metabolic state have to be collected in vivo. For this purpose, special techniques and methods are necessary. Therefore, most techniques enabling in vivo characterization of metabolic pathways rely on perturbation experiments, which can be divided into dynamic and steady-state approaches. To avoid any process disturbance, approaches which enable perturbation of cell metabolism in parallel to the continuing production process are reasonable. Furthermore, the fast dynamics of microbial production processes amplifies the need of parallelized data generation. These points motivate the development of a parallelized approach for multiple metabolic perturbation experiments outside the operating production reactor. An appropriate approach for in vivo characterization of metabolic pathways is presented and applied exemplarily to a microbial L-phenylalanine production process on a 15 L-scale.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Tao; Kukkadapu, Ravi K.; Griffin, Aron M.
Fe(III)-oxides and Fe(III)-bearing phyllosilicates are the two major iron sources utilized as electron acceptors by dissimilatory iron-reducing bacteria (DIRB) in anoxic soils and sediments. Although there have been many studies of microbial Fe(III)-oxide and Fe(III)-phyllosilicate reduction with both natural and specimen materials, no controlled experimental information is available on the interaction between these two phases when both are available for microbial reduction. In this study, the model DIRB Geobacter sulfurreducens was used to examine the pathways of Fe(III) reduction in Fe(III)-oxide stripped subsurface sediment that was coated with different amounts of synthetic high surface area goethite. Cryogenic (12K) 57Fe Mössbauermore » spectroscopy was used to determine changes in the relative abundances of Fe(III)-oxide, Fe(III)-phyllosilicate, and phyllosilicate-associated Fe(II) (Fe(II)-phyllosilicate) in bioreduced samples. Analogous Mössbauer analyses were performed on samples from abiotic Fe(II) sorption experiments in which sediments were exposed to a quantity of exogenous soluble Fe(II) (FeCl22H2O) comparable to the amount of Fe(II) produced during microbial reduction. A Fe partitioning model was developed to analyze the fate of Fe(II) and assess the potential for abiotic Fe(II)-catalyzed reduction of Fe(III)-phyllosilicatesilicates. The microbial reduction experiments indicated that although reduction of Fe(III)-oxide accounted for virtually all of the observed bulk Fe(III) reduction activity, there was no significant abiotic electron transfer between oxide-derived Fe(II) and Fe(III)-phyllosilicatesilicates, with 26-87% of biogenic Fe(II) appearing as sorbed Fe(II) in the Fe(II)-phyllosilicate pool. In contrast, the abiotic Fe(II) sorption experiments showed that 41 and 24% of the added Fe(II) engaged in electron transfer to Fe(III)-phyllosilicate surfaces in synthetic goethite-coated and uncoated sediment. Differences in the rate of Fe(II) addition and system redox potential may account for the microbial and abiotic reaction systems. Our experiments provide new insight into pathways for Fe(III) reduction in mixed Fe(III)-oxide/Fe(III)-phyllosilicate assemblages, and provide key mechanistic insight for interpreting microbial reduction experiments and field data from complex natural soils and sediments.« less
Predicting Biological Information Flow in a Model Oxygen Minimum Zone
NASA Astrophysics Data System (ADS)
Louca, S.; Hawley, A. K.; Katsev, S.; Beltran, M. T.; Bhatia, M. P.; Michiels, C.; Capelle, D.; Lavik, G.; Doebeli, M.; Crowe, S.; Hallam, S. J.
2016-02-01
Microbial activity drives marine biochemical fluxes and nutrient cycling at global scales. Geochemical measurements as well as molecular techniques such as metagenomics, metatranscriptomics and metaproteomics provide great insight into microbial activity. However, an integration of molecular and geochemical data into mechanistic biogeochemical models is still lacking. Recent work suggests that microbial metabolic pathways are, at the ecosystem level, strongly shaped by stoichiometric and energetic constraints. Hence, models rooted in fluxes of matter and energy may yield a holistic understanding of biogeochemistry. Furthermore, such pathway-centric models would allow a direct consolidation with meta'omic data. Here we present a pathway-centric biogeochemical model for the seasonal oxygen minimum zone in Saanich Inlet, a fjord off the coast of Vancouver Island. The model considers key dissimilatory nitrogen and sulfur fluxes, as well as the population dynamics of the genes that mediate them. By assuming a direct translation of biocatalyzed energy fluxes to biosynthesis rates, we make predictions about the distribution and activity of the corresponding genes. A comparison of the model to molecular measurements indicates that the model explains observed DNA, RNA, protein and cell depth profiles. This suggests that microbial activity in marine ecosystems such as oxygen minimum zones is well described by DNA abundance, which, in conjunction with geochemical constraints, determines pathway expression and process rates. Our work further demonstrates how meta'omic data can be mechanistically linked to environmental redox conditions and biogeochemical processes.
Chen, Guang-Lan; Zhang, Ye; Wang, Wang-Yue; Ji, Xue-Liang; Meng, Fei; Xu, Pei-Song; Yang, Ning-Min; Ye, Fu-Qiang; Bo, Xiao-Chen
2017-07-07
To investigate alterations in the fecal microbiome using 16S rRNA amplicon sequencing in couples in the same cohabitation environment. Fecal samples were collected from eight ulcerative colitis (UC) patients and their healthy partners at Lishui People's Hospital, Zhejiang Province, China. DNA was extracted and the variable regions V3 and V4 of the 16S rRNA genes were PCR amplified using a two-step protocol. Clear reads were clustered into operational taxonomic units (OTUs) at the 97% sequence similarity level using UCLUST v1.2.22. The Wilcoxon rank-sum test (R v3.1.2) was used to compare inter-individual differences. Differences with a P value < 0.05 were considered statistically significant. Fecal microbial communities were more similar among UC patients than their healthy partners ( P = 0.024). UC individuals had a lower relative abundance of bacteria belonging to the Firmicutes , especially Blautia , Clostridium , Coprococcus and Roseburia ( P < 0.05). Microbiota dysbiosis was detected in UC patients and their healthy partners. Relevant genera included Akkermansiam , Bacteroides , Escherichia , Lactobacillales , Klebsiella and Parabacteroides . The enriched pathways in fecal samples of UC patients were related to lipid and nucleotide metabolism. Additionally, the pathways involved in membrane transport and metabolism of cofactors and vitamins were more abundant in the healthy partners. Our results suggested that the microbial composition might be affected in healthy partners cohabiting with UC patients, especially in terms of microbiota dysbiosis.
Pagès, A; Grice, K; Ertefai, T; Skrzypek, G; Jahnert, R; Greenwood, P
2014-09-01
The present study investigated the influence of abiotic conditions on microbial mat communities from Shark Bay, a World Heritage area well known for a diverse range of extant mats presenting structural similarities with ancient stromatolites. The distributions and stable carbon isotopic values of lipid biomarkers [aliphatic hydrocarbons and polar lipid fatty acids (PLFAs)] and bulk carbon and nitrogen isotope values of biomass were analysed in four different types of mats along a tidal flat gradient to characterize the microbial communities and systematically investigate the relationship of the above parameters with water depth. Cyanobacteria were dominant in all mats, as demonstrated by the presence of diagnostic hydrocarbons (e.g. n-C17 and n-C17:1). Several subtle but important differences in lipid composition across the littoral gradient were, however, evident. For instance, the shallower mats contained a higher diatom contribution, concordant with previous mat studies from other locations (e.g. Antarctica). Conversely, the organic matter (OM) of the deeper mats showed evidence for a higher seagrass contribution [high C/N, 13C-depleted long-chain n-alkanes]. The morphological structure of the mats may have influenced CO2 diffusion leading to more 13C-enriched lipids in the shallow mats. Alternatively, changes in CO2 fixation pathways, such as increase in the acetyl COA-pathway by sulphate-reducing bacteria, could have also caused the observed shifts in δ13C values of the mats. In addition, three smooth mats from different Shark Bay sites were analysed to investigate potential functional relationship of the microbial communities with differing salinity levels. The C25:1 HBI was identified in the high salinity mat only and a lower abundance of PLFAs associated with diatoms was observed in the less saline mats, suggesting a higher abundance of diatoms at the most saline site. Furthermore, it appeared that the most and least saline mats were dominated by autotrophic biomass using different CO2 fixation pathways. © 2014 John Wiley & Sons Ltd.
Zhang, Xian; Niu, Jiaojiao; Liang, Yili; Liu, Xueduan; Yin, Huaqun
2016-01-19
Metagenomics allows us to acquire the potential resources from both cultivatable and uncultivable microorganisms in the environment. Here, shotgun metagenome sequencing was used to investigate microbial communities from the surface layer of low grade copper tailings that were industrially bioleached at the Dexing Copper Mine, China. A bioinformatics analysis was further performed to elucidate structural and functional properties of the microbial communities in a copper bioleaching heap. Taxonomic analysis revealed unexpectedly high microbial biodiversity of this extremely acidic environment, as most sequences were phylogenetically assigned to Proteobacteria, while Euryarchaeota-related sequences occupied little proportion in this system, assuming that Archaea probably played little role in the bioleaching systems. At the genus level, the microbial community in mineral surface-layer was dominated by the sulfur- and iron-oxidizing acidophiles such as Acidithiobacillus-like populations, most of which were A. ferrivorans-like and A. ferrooxidans-like groups. In addition, Caudovirales were the dominant viral type observed in this extremely environment. Functional analysis illustrated that the principal participants related to the key metabolic pathways (carbon fixation, nitrogen metabolism, Fe(II) oxidation and sulfur metabolism) were mainly identified to be Acidithiobacillus-like, Thiobacillus-like and Leptospirillum-like microorganisms, indicating their vital roles. Also, microbial community harbored certain adaptive mechanisms (heavy metal resistance, low pH adaption, organic solvents tolerance and detoxification of hydroxyl radicals) as they performed their functions in the bioleaching system. Our study provides several valuable datasets for understanding the microbial community composition and function in the surface-layer of copper bioleaching heap.
Modeling of Dolichol Mass Spectra Isotopic Envelopes as a Tool to Monitor Isoprenoid Biosynthesis.
Jozwiak, Adam; Lipko, Agata; Kania, Magdalena; Danikiewicz, Witold; Surmacz, Liliana; Witek, Agnieszka; Wojcik, Jacek; Zdanowski, Konrad; Pączkowski, Cezary; Chojnacki, Tadeusz; Poznanski, Jaroslaw; Swiezewska, Ewa
2017-06-01
The cooperation of the mevalonate (MVA) and methylerythritol phosphate (MEP) pathways, operating in parallel in plants to generate isoprenoid precursors, has been studied extensively. Elucidation of the isoprenoid metabolic pathways is indispensable for the rational design of plant and microbial systems for the production of industrially valuable terpenoids. Here, we describe a new method, based on numerical modeling of mass spectra of metabolically labeled dolichols (Dols), designed to quantitatively follow the cooperation of MVA and MEP reprogrammed upon osmotic stress (sorbitol treatment) in Arabidopsis ( Arabidopsis thaliana ). The contribution of the MEP pathway increased significantly (reaching 100%) exclusively for the dominating Dols, while for long-chain Dols, the relative input of the MEP and MVA pathways remained unchanged, suggesting divergent sites of synthesis for dominating and long-chain Dols. The analysis of numerically modeled Dol mass spectra is a novel method to follow modulation of the concomitant activity of isoprenoid-generating pathways in plant cells; additionally, it suggests an exchange of isoprenoid intermediates between plastids and peroxisomes. © 2017 American Society of Plant Biologists. All Rights Reserved.
Kania, Magdalena; Witek, Agnieszka; Wojcik, Jacek; Zdanowski, Konrad; Pączkowski, Cezary; Chojnacki, Tadeusz; Poznanski, Jaroslaw
2017-01-01
The cooperation of the mevalonate (MVA) and methylerythritol phosphate (MEP) pathways, operating in parallel in plants to generate isoprenoid precursors, has been studied extensively. Elucidation of the isoprenoid metabolic pathways is indispensable for the rational design of plant and microbial systems for the production of industrially valuable terpenoids. Here, we describe a new method, based on numerical modeling of mass spectra of metabolically labeled dolichols (Dols), designed to quantitatively follow the cooperation of MVA and MEP reprogrammed upon osmotic stress (sorbitol treatment) in Arabidopsis (Arabidopsis thaliana). The contribution of the MEP pathway increased significantly (reaching 100%) exclusively for the dominating Dols, while for long-chain Dols, the relative input of the MEP and MVA pathways remained unchanged, suggesting divergent sites of synthesis for dominating and long-chain Dols. The analysis of numerically modeled Dol mass spectra is a novel method to follow modulation of the concomitant activity of isoprenoid-generating pathways in plant cells; additionally, it suggests an exchange of isoprenoid intermediates between plastids and peroxisomes. PMID:28385729
Zhao, Yunpo; Cocco, Claudia; Domenichini, Severine; Samson, Marie-Laure; Rabinow, Leonard
2015-11-15
The IMD pathway induces the innate immune response to infection by gram-negative bacteria. We demonstrate strong female-to-male sex transformations in double mutants of the IMD pathway in combination with Doa alleles. Doa encodes a protein kinase playing a central role in somatic sex determination through its regulation of alternative splicing of dsx transcripts. Transcripts encoding two specific Doa isoforms are reduced in Rel null mutant females, supporting our genetic observations. A role for the IMD pathway in somatic sex determination is further supported by the induction of female-to-male sex transformations by Dredd mutations in sensitized genetic backgrounds. In contrast, mutations in either dorsal or Dif, the two other NF-κB paralogues of Drosophila, display no effects on sex determination, demonstrating the specificity of IMD signaling. Our results reveal a novel role for the innate immune IMD signaling pathway in the regulation of somatic sex determination in addition to its role in response to microbial infection, demonstrating its effects on alternative splicing through induction of a crucial protein kinase. Copyright © 2015 Elsevier Inc. All rights reserved.
On the Functional Overlap between Complement and Anti-Microbial Peptides.
Zimmer, Jana; Hobkirk, James; Mohamed, Fatima; Browning, Michael J; Stover, Cordula M
2014-01-01
Intriguingly, activated complement and anti-microbial peptides share certain functionalities; lytic, phagocytic, and chemo-attractant activities and each may, in addition, exert cell instructive roles. Each has been shown to have distinct LPS detoxifying activity and may play a role in the development of endotoxin tolerance. In search of the origin of complement, a functional homolog of complement C3 involved in opsonization has been identified in horseshoe crabs. Horseshoe crabs possess anti-microbial peptides able to bind to acyl chains or phosphate groups/saccharides of endotoxin, LPS. Complement activity as a whole is detectable in marine invertebrates. These are also a source of anti-microbial peptides with potential pharmaceutical applicability. Investigating the locality for the production of complement pathway proteins and their role in modulating cellular immune responses are emerging fields. The significance of local synthesis of complement components is becoming clearer from in vivo studies of parenchymatous disease involving specifically generated, complement-deficient mouse lines. Complement C3 is a central component of complement activation. Its provision by cells of the myeloid lineage varies. Their effector functions in turn are increased in the presence of anti-microbial peptides. This may point to a potentiating range of activities, which should serve the maintenance of health but may also cause disease. Because of the therapeutic implications, this review will consider closely studies dealing with complement activation and anti-microbial peptide activity in acute inflammation (e.g., dialysis-related peritonitis, appendicitis, and ischemia).
Valentín-Vargas, Alexis; Root, Robert A; Neilson, Julia W; Chorover, Jon; Maier, Raina M
2014-12-01
Compost-assisted phytostabilization has recently emerged as a robust alternative for reclamation of metalliferous mine tailings. Previous studies suggest that root-associated microbes may be important for facilitating plant establishment on the tailings, yet little is known about the long-term dynamics of microbial communities during reclamation. A mechanistic understanding of microbial community dynamics in tailings ecosystems undergoing remediation is critical because these dynamics profoundly influence both the biogeochemical weathering of tailings and the sustainability of a plant cover. Here we monitor the dynamics of soil microbial communities (i.e. bacteria, fungi, archaea) during a 12-month mesocosm study that included 4 treatments: 2 unplanted controls (unamended and compost-amended tailings) and 2 compost-amended seeded tailings treatments. Bacterial, fungal and archaeal communities responded distinctively to the revegetation process and concurrent changes in environmental conditions and pore water chemistry. Compost addition significantly increased microbial diversity and had an immediate and relatively long-lasting buffering-effect on pH, allowing plants to germinate and thrive during the early stages of the experiment. However, the compost buffering capacity diminished after six months and acidification took over as the major factor affecting plant survival and microbial community structure. Immediate changes in bacterial communities were observed following plant establishment, whereas fungal communities showed a delayed response that apparently correlated with the pH decline. Fluctuations in cobalt pore water concentrations, in particular, had a significant effect on the structure of all three microbial groups, which may be linked to the role of cobalt in metal detoxification pathways. The present study represents, to our knowledge, the first documentation of the dynamics of the three major microbial groups during revegetation of compost-amended, metalliferous mine tailings. Copyright © 2014 Elsevier B.V. All rights reserved.
UCHIHASHI, M.; BERGIN, I. L.; BASSIS, C. M.; HASHWAY, S. A.; CHAI, D.; BELL, J. D.
2015-01-01
The vaginal microbiome is believed to influence host health by providing protection from pathogens and influencing reproductive outcomes such as fertility and gestational length. In humans, age-associated declines in diversity of the vaginal microbiome occur in puberty and persist into adulthood. Additionally, menstruation has been associated with decreased microbial community stability. Adult female baboons, like other non-human primates (NHPs), have a different and highly diverse vaginal microbiome compared to that of humans, which is most commonly dominated by Lactobacillus spp. We evaluated the influence of age, reproductive cycling status (cycling vs. non-cycling) and menstruation on the vaginal microbiome of 38 wild-caught, captive female olive baboons (Papio anubis) by culture-independent sequencing of the V3–V5 region of the bacterial 16S rRNA gene. All baboons had highly diverse vaginal microbial communities. Adult baboons had significantly lower microbial diversity in comparison to subadult baboons, which was attributable to decreased relative abundance of minor taxa. No significant differences were detected based on cycling state or menstruation. Predictive metagenomic analysis showed uniformity in relative abundance of metabolic pathways regardless of age, cycle stage, or menstruation, indicating conservation of microbial community functions. This study suggests that selection of an optimal vaginal microbial community occurs at puberty. Since decreased diversity occurs in both baboons and humans at puberty, this may reflect a general strategy for selection of adult vaginal microbial communities. Comparative evaluation of vaginal microbial community development and composition may elucidate mechanisms of community formation and function that are conserved across host species or across microbial community types. These findings have implications for host health, evolutionary biology, and microbe-host ecosystems. PMID:25676781
INDIGO – INtegrated Data Warehouse of MIcrobial GenOmes with Examples from the Red Sea Extremophiles
Alam, Intikhab; Antunes, André; Kamau, Allan Anthony; Ba alawi, Wail; Kalkatawi, Manal; Stingl, Ulrich; Bajic, Vladimir B.
2013-01-01
Background The next generation sequencing technologies substantially increased the throughput of microbial genome sequencing. To functionally annotate newly sequenced microbial genomes, a variety of experimental and computational methods are used. Integration of information from different sources is a powerful approach to enhance such annotation. Functional analysis of microbial genomes, necessary for downstream experiments, crucially depends on this annotation but it is hampered by the current lack of suitable information integration and exploration systems for microbial genomes. Results We developed a data warehouse system (INDIGO) that enables the integration of annotations for exploration and analysis of newly sequenced microbial genomes. INDIGO offers an opportunity to construct complex queries and combine annotations from multiple sources starting from genomic sequence to protein domain, gene ontology and pathway levels. This data warehouse is aimed at being populated with information from genomes of pure cultures and uncultured single cells of Red Sea bacteria and Archaea. Currently, INDIGO contains information from Salinisphaera shabanensis, Haloplasma contractile, and Halorhabdus tiamatea - extremophiles isolated from deep-sea anoxic brine lakes of the Red Sea. We provide examples of utilizing the system to gain new insights into specific aspects on the unique lifestyle and adaptations of these organisms to extreme environments. Conclusions We developed a data warehouse system, INDIGO, which enables comprehensive integration of information from various resources to be used for annotation, exploration and analysis of microbial genomes. It will be regularly updated and extended with new genomes. It is aimed to serve as a resource dedicated to the Red Sea microbes. In addition, through INDIGO, we provide our Automatic Annotation of Microbial Genomes (AAMG) pipeline. The INDIGO web server is freely available at http://www.cbrc.kaust.edu.sa/indigo. PMID:24324765
Uchihashi, M; Bergin, I L; Bassis, C M; Hashway, S A; Chai, D; Bell, J D
2015-05-01
The vaginal microbiome is believed to influence host health by providing protection from pathogens and influencing reproductive outcomes such as fertility and gestational length. In humans, age-associated declines in diversity of the vaginal microbiome occur in puberty and persist into adulthood. Additionally, menstruation has been associated with decreased microbial community stability. Adult female baboons, like other non-human primates (NHPs), have a different and highly diverse vaginal microbiome compared to that of humans, which is most commonly dominated by Lactobacillus spp. We evaluated the influence of age, reproductive cycling status (cycling vs. non-cycling) and menstruation on the vaginal microbiome of 38 wild-caught, captive female olive baboons (Papio anubis) by culture-independent sequencing of the V3-V5 region of the bacterial 16S rRNA gene. All baboons had highly diverse vaginal microbial communities. Adult baboons had significantly lower microbial diversity in comparison to subadult baboons, which was attributable to decreased relative abundance of minor taxa. No significant differences were detected based on cycling state or menstruation. Predictive metagenomic analysis showed uniformity in relative abundance of metabolic pathways regardless of age, cycle stage, or menstruation, indicating conservation of microbial community functions. This study suggests that selection of an optimal vaginal microbial community occurs at puberty. Since decreased diversity occurs in both baboons and humans at puberty, this may reflect a general strategy for selection of adult vaginal microbial communities. Comparative evaluation of vaginal microbial community development and composition may elucidate mechanisms of community formation and function that are conserved across host species or across microbial community types. These findings have implications for host health, evolutionary biology, and microbe-host ecosystems. © 2015 Wiley Periodicals, Inc.
Alam, Intikhab; Antunes, André; Kamau, Allan Anthony; Ba Alawi, Wail; Kalkatawi, Manal; Stingl, Ulrich; Bajic, Vladimir B
2013-01-01
The next generation sequencing technologies substantially increased the throughput of microbial genome sequencing. To functionally annotate newly sequenced microbial genomes, a variety of experimental and computational methods are used. Integration of information from different sources is a powerful approach to enhance such annotation. Functional analysis of microbial genomes, necessary for downstream experiments, crucially depends on this annotation but it is hampered by the current lack of suitable information integration and exploration systems for microbial genomes. We developed a data warehouse system (INDIGO) that enables the integration of annotations for exploration and analysis of newly sequenced microbial genomes. INDIGO offers an opportunity to construct complex queries and combine annotations from multiple sources starting from genomic sequence to protein domain, gene ontology and pathway levels. This data warehouse is aimed at being populated with information from genomes of pure cultures and uncultured single cells of Red Sea bacteria and Archaea. Currently, INDIGO contains information from Salinisphaera shabanensis, Haloplasma contractile, and Halorhabdus tiamatea - extremophiles isolated from deep-sea anoxic brine lakes of the Red Sea. We provide examples of utilizing the system to gain new insights into specific aspects on the unique lifestyle and adaptations of these organisms to extreme environments. We developed a data warehouse system, INDIGO, which enables comprehensive integration of information from various resources to be used for annotation, exploration and analysis of microbial genomes. It will be regularly updated and extended with new genomes. It is aimed to serve as a resource dedicated to the Red Sea microbes. In addition, through INDIGO, we provide our Automatic Annotation of Microbial Genomes (AAMG) pipeline. The INDIGO web server is freely available at http://www.cbrc.kaust.edu.sa/indigo.
Valentín-Vargas, Alexis; Root, Robert A.; Neilson, Julia W; Chorover, Jon; Maier, Raina M.
2014-01-01
Compost-assisted phytostabilization has recently emerged as a robust alternative for reclamation of metalliferous mine tailings. Previous studies suggest that root-associated microbes may be important for facilitating plant establishment on the tailings, yet little is known about the long-term dynamics of microbial communities during reclamation. A mechanistic understanding of microbial community dynamics in tailings ecosystems undergoing remediation is critical because these dynamics profoundly influence both the biogeochemical weathering of tailings and the sustainability of a plant cover. Here we monitor the dynamics of soil microbial communities (i.e. bacteria, fungi, archaea) during a 12-month mesocosm study that included 4 treatments: 2 unplanted controls (unamended and compost-amended tailings) and 2 compost-amended seeded tailings treatments. Bacterial, fungal and archaeal communities responded distinctively to the revegetation process and concurrent changes in environmental conditions and pore water chemistry. Compost addition significantly increased microbial diversity and had an immediate and relatively long-lasting buffering-effect on pH, allowing plants to germinate and thrive during the early stages of the experiment. However, the compost buffering capacity diminished after six months and acidification took over as the major factor affecting plant survival and microbial community structure. Immediate changes in bacterial communities were observed following plant establishment, whereas fungal communities showed a delayed response that apparently correlated with the pH decline. Fluctuations in cobalt pore water concentrations, in particular, had a significant effect on the structure of all three microbial groups, which may be linked to the role of cobalt in metal detoxification pathways. The present study represents, to our knowledge, the first documentation of the dynamics of the three major microbial groups during revegetation of compost-amended, metalliferous mine tailings. PMID:25237788
Liu, Fei; Xu, Meiying; Chen, Xingjuan; Yang, Yonggang; Wang, Haiji; Sun, Guoping
2015-10-06
Direct visualization evidence is important for understanding the microbial degradation mechanisms. To track the microbial degradation pathways of azo dyes with different polar characterizations, sensors based on the fluorescence resonance energy transfer (FRET) from 1,8-naphthalimide to azo dyes were synthesized, in which the quenched fluorescence will recover when the azo bond was cleaved. In living cells, the sensor-tracking experiment showed that the low polarity and hydrophobic azo dye can be taken up into the cells and reduced inside the cells, whereas the high polarity and hydrophilic azo dye can be reduced only outside the cells because of the selective permeability of the cell membranes. These results indicated that there were two different bacterial degradation pathways available for different polarity azo dyes. To our knowledge, no fluorescent sensor has yet been designed for illuminating the microbial degradation mechanisms of organic pollutants with different characteristics.
Tripathi, Charu; Mahato, Nitish K; Rani, Pooja; Singh, Yogendra; Kamra, Komal; Lal, Rup
2016-01-01
Lampropedia cohaerens strain CT6(T), a non-motile, aerobic and coccoid strain was isolated from arsenic rich microbial mats (temperature ~45 °C) of a hot water spring located atop the Himalayan ranges at Manikaran, India. The present study reports the first genome sequence of type strain CT6(T) of genus Lampropedia cohaerens. Sequencing data was generated using the Illumina HiSeq 2000 platform and assembled with ABySS v 1.3.5. The 3,158,922 bp genome was assembled into 41 contigs with a mean GC content of 63.5 % and 2823 coding sequences. Strain CT6(T) was found to harbour genes involved in both the Entner-Duodoroff pathway and non-phosphorylated ED pathway. Strain CT6(T) also contained genes responsible for imparting resistance to arsenic, copper, cobalt, zinc, cadmium and magnesium, providing survival advantages at a thermal location. Additionally, the presence of genes associated with biofilm formation, pyrroloquinoline-quinone production, isoquinoline degradation and mineral phosphate solubilisation in the genome demonstrate the diverse genetic potential for survival at stressed niches.
Potential for reduction of odorous compounds in swine manure through diet modification.
Sutton, A L; Kephart, K B; Verstegen, M W; Canh, T T; Hobbs, P J
1999-02-01
Recent public concern about air pollution from pork production units has prompted more research to develop methods to reduce and control odors. Masking agents, enzymes and bacterial preparations, feed additives, chemicals, oxidation processes, air scrubbers, biofilters, and new ventilation systems have been studied. Research relating the effects of the swine diet on manure odors has been scarce. Introducing feed additives to bind ammonia, change digesta pH, affect specific enzyme activity, and mask odors has been either costly or not consistently successful. Recent research emphasis has focused on manipulating the diet 1) to increase the nutrient utilization of the diet to reduce excretion products, 2) to enhance microbial metabolism in the lower digestive tract to reduce excretion of odor-causing compounds, and 3) to change the physical characteristics of urine and feces to reduce odor emissions. Primary odor-causing compounds evolve from excess degradable proteins and lack of specific fermentable carbohydrates during microbial fermentation. Reductions in ammonia emissions by 28 to 79% through diet modifications have been reported. Limited research on reduction of other odorous volatile organic compounds through diet modifications is promising. Use of synthetic amino acids with reduced intact protein levels in diets significantly reduces nitrogen excretions and odor production. Addition of nonstarch polysaccharides and specific oligosaccharides further alters the pathway of nitrogen excretion and reduces odor emission. Continued nutritional and microbial research to incorporate protein degradation products, especially sulfur-containing organics, with fermentable carbohydrates in the lower gastrointestinal tract of pigs will further control odors from manure.
Exploring a microbial ecosystem approach to modeling deep ocean biogeochemical cycles
NASA Astrophysics Data System (ADS)
Zakem, E.; Follows, M. J.
2014-12-01
Though microbial respiration of organic matter in the deep ocean governs ocean and atmosphere biogeochemistry, it is not represented mechanistically in current global biogeochemical models. We seek approaches that are feasible for a global resolution, yet still reflect the enormous biodiversity of the deep microbial community and its associated metabolic pathways. We present a modeling framework grounded in thermodynamics and redox reaction stoichiometry that represents diverse microbial metabolisms explicitly. We describe a bacterial/archaeal functional type with two parameters: a growth efficiency representing the chemistry underlying a bacterial metabolism, and a rate limitation given by the rate of uptake of each of the necessary substrates for that metabolism. We then apply this approach to answer questions about microbial ecology. As a start, we resolve two dominant heterotrophic respiratory pathways- reduction of oxygen and nitrate- and associated microbial functional types. We combine these into an ecological model and a two-dimensional ocean circulation model to explore the organization, biogeochemistry, and ecology of oxygen minimum zones. Intensified upwelling and lateral transport conspire to produce an oxygen minimum at mid-depth, populated by anaerobic denitrifiers. This modeling approach should ultimately allow for the emergence of bacterial biogeography from competition of metabolisms and for the incorporation of microbial feedbacks to the climate system.
NASA Astrophysics Data System (ADS)
Dijkstra, P.; van Groenigen, K.; Hagerty, S.; Salpas, E.; Fairbanks, D. E.; Hungate, B. A.; KOCH, G. W.; Schwartz, E.
2012-12-01
The production of energy and metabolic precursors occurs in well-known processes such as glycolysis and Krebs cycle. We use position-specific 13C-labeled metabolic tracers, combined with models of microbial metabolic organization, to analyze the response of microbial community energy production, biosynthesis, and C use efficiency (CUE) in soils, decomposing litter, and aquatic communities. The method consists of adding position-specific 13C -labeled metabolic tracers to parallel soil incubations, in this case 1-13C and 2,3-13C pyruvate and 1-13C and U-13C glucose. The measurement of CO2 released from the labeled tracers is used to calculate the C flux rates through the various metabolic pathways. A simplified metabolic model consisting of 23 reactions is solved using results of the metabolic tracer experiments and assumptions of microbial precursor demand. This new method enables direct estimation of fundamental aspects of microbial energy production, CUE, and soil organic matter formation in relatively undisturbed microbial communities. We will present results showing the range of metabolic patterns observed in these communities and discuss results from testing metabolic models.
[Synthetic biology toward microbial secondary metabolites and pharmaceuticals].
Wu, Lin-Zhuan; Hong, Bin
2013-02-01
Microbial secondary metabolites are one of the major sources of anti-bacterial, anti-fungal, antitumor, anti-virus and immunosuppressive agents for clinical use. Present challenges in microbial pharmaceutical development are the discovery of novel secondary metabolites with significant biological activities, improving the fermentation titers of industrial microbial strains, and production of natural product drugs by re-establishing their biosynthetic pathways in suitable microbial hosts. Synthetic biology, which is developed from systematic biology and metabolic engineering, provides a significant driving force for microbial pharmaceutical development. The review describes the major applications of synthetic biology in novel microbial secondary metabolite discovery, improved production of known secondary metabolites and the production of some natural drugs in genetically modified or reconstructed model microorganisms.
Toward Engineering Synthetic Microbial Metabolism
McArthur, George H.; Fong, Stephen S.
2010-01-01
The generation of well-characterized parts and the formulation of biological design principles in synthetic biology are laying the foundation for more complex and advanced microbial metabolic engineering. Improvements in de novo DNA synthesis and codon-optimization alone are already contributing to the manufacturing of pathway enzymes with improved or novel function. Further development of analytical and computer-aided design tools should accelerate the forward engineering of precisely regulated synthetic pathways by providing a standard framework for the predictable design of biological systems from well-characterized parts. In this review we discuss the current state of synthetic biology within a four-stage framework (design, modeling, synthesis, analysis) and highlight areas requiring further advancement to facilitate true engineering of synthetic microbial metabolism. PMID:20037734
Dong, Weiliang; Liu, Kuan; Wang, Fei; Xin, Fengxue; Zhang, Wenming; Zhang, Min; Wu, Hao; Ma, Jiangfeng; Jiang, Min
2017-06-01
Metamifop is universally used in agriculture as a post-emergence aryloxyphenoxy propionate herbicide (AOPP), however its microbial degradation mechanism remains unclear. Consortium ME-1 isolated from AOPP-contaminated soil can degrade metamifop completely after 6 days and utilize it as the carbon source for bacterial growth. Meanwhile, consortium ME-1 possessed the ability to degrade metamifop stably under a wide range of pH (6.0-10.0) or temperature (20-42 °C). HPLC-MS analysis shows that N-(2-fluorophenyl)-2-(4-hydroxyphenoxy)-N-methyl propionamide, 2-(4-hydroxyphenoxy)-propionic acid, 6-chloro-2-benzoxazolinone and N-methyl-2-fluoroaniline, were detected and identified as four intermediate metabolites. Based on the metabolites identified, a putative metabolic pathway of metamifop was proposed for the first time. In addition, the consortium ME-1 was also able to transform or degrade other AOPP such as fenoxaprop-p-ethyl, clodinafop-propargyl, quizalofop-p-ethyl and cyhalofop-butyl. Moreover, the community structure of ME-1 with lower microbial diversity compared with the initial soil sample was investigated by high throughput sequencing. β-Proteobacteria and Sphingobacteria were the largest class with sequence percentages of 46.6% and 27.55% at the class level. In addition, 50 genera were classified in consortium ME-1, of which Methylobacillus, Sphingobacterium, Bordetella and Flavobacterium were the dominant genera with sequence percentages of 25.79, 25.61, 14.68 and 9.55%, respectively.
Ehrenworth, Amy M; Claiborne, Tauris; Peralta-Yahya, Pamela
2017-10-17
Chemical biosensors, for which chemical detection triggers a fluorescent signal, have the potential to accelerate the screening of noncolorimetric chemicals produced by microbes, enabling the high-throughput engineering of enzymes and metabolic pathways. Here, we engineer a G-protein-coupled receptor (GPCR)-based sensor to detect serotonin produced by a producer microbe in the producer microbe's supernatant. Detecting a chemical in the producer microbe's supernatant is nontrivial because of the number of other metabolites and proteins present that could interfere with sensor performance. We validate the two-cell screening system for medium-throughput applications, opening the door to the rapid engineering of microbes for the increased production of serotonin. We focus on serotonin detection as serotonin levels limit the microbial production of hydroxystrictosidine, a modified alkaloid that could accelerate the semisynthesis of camptothecin-derived anticancer pharmaceuticals. This work shows the ease of generating GPCR-based chemical sensors and their ability to detect specific chemicals in complex aqueous solutions, such as microbial spent medium. In addition, this work sets the stage for the rapid engineering of serotonin-producing microbes.
NASA Astrophysics Data System (ADS)
Pan, Keliang; Zhou, Peijiang
2015-10-01
A hermetic noble-metal-free membrane-less microbial solar cell (MSC) is established. The substances decomposition and regeneration in this MSC are carried out only by Chlorella vulgaris simultaneously. The conversion of metabolism types of C. vulgaris is controlled only by illumination. By using a pleiotropic redox mediator and a cupric hexacyanoferrate modified cathode, a two-phase three-stage charge transfer chain is formed. Through this pathway, the one microorganism self-sustained system gets a long-term power output up to 0.04773 mW/cm2 at 0.423 V without any material exchange with external, which is 50 times higher than that obtained from the original system. Benefiting from this electron buffer system, the battery will achieve an electricity generation in both light and dark conditions. There is almost no consumption of any substrates throughout the stabilized process, and no more additions are required. This maintenance-free and extremely inexpensive reactor with a simple structure and a long service life demonstrates the possibility of combining the microbial, chemical and photo cells.
Zou, Xiang Hui; Chen, Guo-Qiang
2007-02-12
Poly(hydroxyalkanoate)s (PHAs) are a class of microbially synthesized polyesters that combine biological properties, such as biocompatibility and biodegradability, and non-bioproperties such as thermoprocessability, piezoelectricity, and nonlinear optical activity. PHA monomer structures and their contents strongly affect the PHA properties. Using metabolic engineering approaches, PHA structures and contents can be manipulated to achieve controllable monomer and PHA cellular contents. This paper focuses on metabolic engineering methods to produce PHA consisting of 3-hydroxybutyrate (3HB) and medium-chain-length 3-hydroxyalkanoates (3HA) in recombinant microbial systems. This type of copolyester has mechanical and thermal properties similar to conventional plastics such as poly(propylene) and poly(ethylene terephthalate) (PET). In addition, pathways containing engineered PHA synthases have proven to be useful for enhanced PHA production with adjustable PHA monomers and contents. The applications of PHA as implant biomaterials are briefly discussed here. In the very near term, metabolic engineering will help solve many problems in promoting PHA as a new type of plastic material for many applications.
Data Analysis of Sequences and qPCR for Microbial Communities during Algal Blooms
A training opportunity is open to a highly microbial-research-motivated student to conduct sequence analysis, explore novel genes and metabolic pathways, validate resultant findings using qPCR/RT-qPCR and summarize the findings
Recent Advances in the Recombinant Biosynthesis of Polyphenols
Chouhan, Sonam; Sharma, Kanika; Zha, Jian; Guleria, Sanjay; Koffas, Mattheos A. G.
2017-01-01
Plants are the source of various natural compounds with pharmaceutical and nutraceutical importance which have shown numerous health benefits with relatively fewer side effects. However, extraction of these compounds from native producers cannot meet the ever-increasing demands of the growing population due to, among other things, the limited production of the active compound(s). Their production depends upon the metabolic demands of the plant and is also subjected to environmental conditions, abundance of crop species and seasonal variations. Moreover, their extraction from plants requires complex downstream processing and can also lead to the extinction of many useful plant varieties. Microbial engineering is one of the alternative approaches which can meet the global demand for natural products in an eco-friendly manner. Metabolic engineering of microbes or pathway reconstruction using synthetic biology tools and novel enzymes lead to the generation of a diversity of compounds (like flavonoids, stilbenes, anthocyanins etc.) and their natural and non-natural derivatives. Strain and pathway optimization, pathway regulation and tolerance engineering have produced microbial cell factories into which the metabolic pathway of plants can be introduced for the production of compounds of interest on an industrial scale in an economical and eco-friendly way. While microbial production of phytochemicals needs to further increase product titer if it is ever to become a commercial success. The present review covers the advancements made for the improvement of microbial cell factories in order to increase the product titer of recombinant polyphenolic compounds. PMID:29201020
NASA Astrophysics Data System (ADS)
Wright, J.; Hallam, S.; Merzouk, A.; Tortell, P.
2008-12-01
Oxygen minimum zones (OMZs) are areas of low dissolved oxygen concentrations that play a major role in biogeochemical cycling within the world's oceans. They are major sinks for nitrogen and sources for the greenhouse gases carbon dioxide and nitrous oxide. Therefore, microbial mediated biological activity associated with these systems directly impacts ocean productivity and global climate balance. There is increasing evidence that ocean warming trends will decrease dissolved oxygen concentrations within the coastal and interior regions of the subarctic Pacific, causing an expansion of the hypoxic boundary layer. This expansion will have a direct effect on coastal benthic ecosystems and the productivity of marine fisheries due to habitat loss and changes in nutrient cycling. In order to understand the potential implications of these transitions, we are performing environmental genomic analyses of indigenous microbial communities found in coastal and open ocean OMZs in the subarctic Pacific Ocean in relation to dissolved gas and nutrient concentrations. In addition to identifying and describing the key microbial players and biochemical pathways contributing to carbon, nitrogen and sulfur metabolism within the subarctic Pacific Ocean, this work provides a solid comparative genomic foundation for understanding the biogeochemical processes at work in marine OMZs around the globe.
Taxonomical and functional microbial community selection in soybean rhizosphere
Mendes, Lucas W; Kuramae, Eiko E; Navarrete, Acácio A; van Veen, Johannes A; Tsai, Siu M
2014-01-01
This study addressed the selection of the rhizospheric microbial community from the bulk soil reservoir under agricultural management of soybean in Amazon forest soils. We used a shotgun metagenomics approach to investigate the taxonomic and functional diversities of microbial communities in the bulk soil and in the rhizosphere of soybean plants and tested the validity of neutral and niche theories to explain the rhizosphere community assembly processes. Our results showed a clear selection at both taxonomic and functional levels operating in the assembly of the soybean rhizosphere community. The taxonomic analysis revealed that the rhizosphere community is a subset of the bulk soil community. Species abundance in rhizosphere fits the log-normal distribution model, which is an indicator of the occurrence of niche-based processes. In addition, the data indicate that the rhizosphere community is selected based on functional cores related to the metabolisms of nitrogen, iron, phosphorus and potassium, which are related to benefits to the plant, such as growth promotion and nutrition. The network analysis including bacterial groups and functions was less complex in rhizosphere, suggesting the specialization of some specific metabolic pathways. We conclude that the assembly of the microbial community in the rhizosphere is based on niche-based processes as a result of the selection power of the plant and other environmental factors. PMID:24553468
Alsouleman, Khulud; Linke, Bernd; Klang, Johanna; Klocke, Michael; Krakat, Niclas; Theuerl, Susanne
2016-05-01
An anaerobic digestion experiment was investigated to evaluate the impact of increasing amounts of ammonium nitrogen due to poultry manure addition on the reactor performance, especially on the microbiome response. The microbial community structure was assessed by using a 16S rRNA gene approach, which was further correlated with the prevalent environmental conditions by using statistical analyses. The addition of 50% poultry manure led to a process disturbance indicated by a high VFA content (almost 10 g(HAc-Eq) L(-1)) in combination with elevated concentrations of ammonium nitrogen (5.9 g NH4(+)-N kg(FM)(-1)) and free ammonia (0.5 g NH3 kg(FM)(-1)). Simultaneously the microbiome, changed from a Bacteroidetes-dominated to a Clostridiales-dominated community accompanied by a shift from the acetoclastic to the hydrogenotrophic pathway. The "new" microbial community was functional redundant as the overall process rates were similar to the former one. A further increase of poultry manure resulted in a complete process failure. Copyright © 2016 Elsevier Ltd. All rights reserved.
Hu, Hang-Wei; Chen, Deli; He, Ji-Zheng
2015-09-01
The continuous increase of the greenhouse gas nitrous oxide (N2O) in the atmosphere due to increasing anthropogenic nitrogen input in agriculture has become a global concern. In recent years, identification of the microbial assemblages responsible for soil N2O production has substantially advanced with the development of molecular technologies and the discoveries of novel functional guilds and new types of metabolism. However, few practical tools are available to effectively reduce in situ soil N2O flux. Combating the negative impacts of increasing N2O fluxes poses considerable challenges and will be ineffective without successfully incorporating microbially regulated N2O processes into ecosystem modeling and mitigation strategies. Here, we synthesize the latest knowledge of (i) the key microbial pathways regulating N2O production and consumption processes in terrestrial ecosystems and the critical environmental factors influencing their occurrence, and (ii) the relative contributions of major biological pathways to soil N2O emissions by analyzing available natural isotopic signatures of N2O and by using stable isotope enrichment and inhibition techniques. We argue that it is urgently necessary to incorporate microbial traits into biogeochemical ecosystem modeling in order to increase the estimation reliability of N2O emissions. We further propose a molecular methodology oriented framework from gene to ecosystem scales for more robust prediction and mitigation of future N2O emissions. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Freude, Christoph
2016-01-01
Homoacetogenic bacteria are versatile microbes that use the acetyl coenzyme A (acetyl-CoA) pathway to synthesize acetate from CO2 and hydrogen. Likewise, the acetyl-CoA pathway may be used to incorporate other 1-carbon substrates (e.g., methanol or formate) into acetate or to homoferment monosaccharides completely to acetate. In this study, we analyzed the fractionation of pure acetogenic cultures grown on different carbon substrates. While the fractionation of Sporomusa sphaeroides grown on C1 compounds was strong (εC1, −49‰ to −64‰), the fractionation of Moorella thermoacetica and Thermoanaerobacter kivui using glucose (εGlu = −14.1‰) was roughly one-third as strong, suggesting a contribution of less-depleted acetate from fermentative processes. For M. thermoacetica, this could indeed be validated by the addition of nitrate, which inhibited the acetyl-CoA pathway, resulting in fractionation during fermentation (εferm = −0.4‰). In addition, we determined the fractionation into microbial biomass of T. kivui grown on H2/CO2 (εanabol. = −28.6‰) as well as on glucose (εanabol. = +2.9‰). PMID:26921422
Freude, Christoph; Blaser, Martin
2016-05-01
Homoacetogenic bacteria are versatile microbes that use the acetyl coenzyme A (acetyl-CoA) pathway to synthesize acetate from CO2 and hydrogen. Likewise, the acetyl-CoA pathway may be used to incorporate other 1-carbon substrates (e.g., methanol or formate) into acetate or to homoferment monosaccharides completely to acetate. In this study, we analyzed the fractionation of pure acetogenic cultures grown on different carbon substrates. While the fractionation of Sporomusa sphaeroides grown on C1 compounds was strong (εC1, -49‰ to -64‰), the fractionation of Moorella thermoacetica and Thermoanaerobacter kivui using glucose (εGlu= -14.1‰) was roughly one-third as strong, suggesting a contribution of less-depleted acetate from fermentative processes. ForM. thermoacetica, this could indeed be validated by the addition of nitrate, which inhibited the acetyl-CoA pathway, resulting in fractionation during fermentation (εferm= -0.4‰). In addition, we determined the fractionation into microbial biomass of T. kivui grown on H2/CO2(εanabol.= -28.6‰) as well as on glucose (εanabol.= +2.9‰). Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Microbial Fe biomineralization in mafic and ultramafic rocks
NASA Astrophysics Data System (ADS)
Templeton, A. S.; Mayhew, L.; McCollom, T.; Trainor, T.
2011-12-01
Fluid-filled microfractures within mafic and ultramafic rocks, such as basalt and peridotite, may be one of the most ubiquitous microbial habitats on the modern and ancient earth. In seafloor and subseafloor systems, one of the dominant energy sources is the oxidation of Fe by numerous potential oxidants under aerobic to anaerobic conditions. In particular, the oxidation of Fe may be directly catalyzed by microbial organisms, or result in the production of molecular hydrogen which can then fuel diverse lithotrophic metabolisms. However, it remains challenging to identify the dominant metabolic activities and unravel the microscale biogeochemical processes occuring within such rock-hosted systems. We are investigating the mechanisms of solid-state Fe-oxidation and biomineralization in basalt, olivine, pyroxenes and basalts, in the presence and absence of microbial organisms that can thrive across the full stability range of water. In this talk we will present synchrotron-based x-ray scattering and spectroscopic analyses of Fe speciation within secondary minerals formed during microbially-mediated vs. abiotic water-rock interactions. Determining the valence state and mineralogy of Fe-bearing phases is critical for determining the water-rock reaction pathways and identifying potential biominerals that may form; therefore, we will highlight new approaches for identifying key Fe transformations within complex geological media. In addition, many of our experimental studies involve the growth of lithotrophic biofilms on well-characterized mineral surfaces in order to determine the chemistry of the microbe-mineral interface during progressive electron-transfer reactions. By coupling x-ray spectroscopy, x-ray diffraction, and electron-microscopy measurements, we will also contrast the evolution of mineral surfaces that undergo microbially-mediated oxidative alteration against minerals surfaces that produce H2 to sustain anaerobic microbial communities.
NASA Astrophysics Data System (ADS)
Zeglin, L. H.; David, M.; Bottomley, P.; Hettich, R. L.; Jansson, J.; Jumpponen, A.; Rice, C. W.; Tringe, S.; VerBerkmoes, N. C.; Myrold, D.
2011-12-01
A significant amount of carbon (C) is processed and stored in prairie soils: grasslands cover 6.1-7.4% of the earth's land surface and hold 7.3-11.4% of global soil C. Global change models predict that the future precipitation regime across the North American Great Plains will entail less frequent but larger rainfall events. The response of prairie soil microbial C processing and allocation to this scenario of higher hydrologic variability is not known, but will be a key determiner of the future capacity for prairie soil C sequestration. We are approaching this problem by assessing soil microbial function (respiration, C utilization efficiency, extracellular enzyme activity) and molecular indicators of dominant C allocation pathways (soil transcriptome, proteome and metabolome) under ambient and experimentally modified precipitation regimes. The rainfall manipulation plots (RaMPs) at the Konza Prairie Long-Term Ecological Research (LTER) site in eastern Kansas, USA is a replicated field manipulation of the magnitude and frequency of natural precipitation that was established in 1998. We collected soil before, during and after a rainfall event in both ambient and modified precipitation treatments and measured the microbial response. Microbial respiration doubled in both treatments during the water addition, and cellobiohydrolase enzyme potential activity (a catalyst of cellulose hydrolysis) increased slightly, but no significant effect of altered precipitation treatment has emerged. The fungal and bacterial ribosomal gene composition was also similar between precipitation treatments. Although pools of genes and extracellular enzymes may be relatively static during short-term dynamic conditions, transcript and intracellular protein abundances may be more indicative of the active microbial metabolic response to rapid shifts in soil moisture. Thus, analysis of transcript and protein composition is underway. In addition, we have implemented a series of lab experiments to optimize and link transcript and protein recovery and analysis procedures using the model soil bacterium Arthrobacter chlorophenicolus strain A6 (ArtchA6). Konza prairie soil was inoculated with ArchA6 and incubated for 72 h with no supplemental C, with acetate or with 4-chlorophenol (a xenobiotic compound that ArtchA6 can utilize as its sole C source), then RNA and protein were extracted from the soil. Quantitatively representative recovery of ArtchA6 genes, rRNA, mRNA and protein was successful. The ratio of ArtchA6 isocitrate lyase (icl, indicative of 2-C metabolism) to succinyl CoA synthetase (suCAB, indicative of total respiratory activity) transcript was highest in soils amended with acetate. Proteomic signatures were distinct in soils with different supplemental C sources. This experiment confirms our capability of recovering transcript and protein from the study soil and of identifying the functional molecules representative of distinct C metabolism pathways.
New Targets and Inhibitors of Mycobacterial Sulfur Metabolism§
Paritala, Hanumantharao; Carroll, Kate S.
2015-01-01
The identification of new antibacterial targets is urgently needed to address multidrug resistant and latent tuberculosis infection. Sulfur metabolic pathways are essential for survival and the expression of virulence in many pathogenic bacteria, including Mycobacterium tuberculosis. In addition, microbial sulfur metabolic pathways are largely absent in humans and therefore, represent unique targets for therapeutic intervention. In this review, we summarize our current understanding of the enzymes associated with the production of sulfated and reduced sulfur-containing metabolites in Mycobacteria. Small molecule inhibitors of these catalysts represent valuable chemical tools that can be used to investigate the role of sulfur metabolism throughout the Mycobacterial lifecycle and may also represent new leads for drug development. In this light, we also summarize recent progress made in the development of inhibitors of sulfur metabolism enzymes. PMID:23808874
Production of hydroxycinnamoyl anthranilates from glucose in Escherichia coli
2013-01-01
Background Oats contain hydroxycinnamoyl anthranilates, also named avenanthramides (Avn), which have beneficial health properties because of their antioxidant, anti-inflammatory, and antiproliferative effects. The microbial production of hydroxycinnamoyl anthranilates is an eco-friendly alternative to chemical synthesis or purification from plant sources. We recently demonstrated in yeast (Saccharomyces cerevisiae) that coexpression of 4-coumarate: CoA ligase (4CL) from Arabidopsis thaliana and hydroxycinnamoyl/benzoyl-CoA/anthranilate N-hydroxycinnamoyl/benzoyltransferase (HCBT) from Dianthus caryophyllusenabled the biological production of several cinnamoyl anthranilates upon feeding with anthranilate and various cinnamates. Using engineering strategies to overproduce anthranilate and hydroxycinnamates, we describe here an entire pathway for the microbial synthesis of two Avns from glucose in Escherichia coli. Results We first showed that coexpression of HCBT and Nt4CL1 from tobacco in the E. coli anthranilate-accumulating strain W3110 trpD9923 allowed the production of Avn D [N-(4′-hydroxycinnamoyl)-anthranilic acid] and Avn F [N-(3′,4′-dihydroxycinnamoyl)-anthranilic acid] upon feeding with p-coumarate and caffeate, respectively. Moreover, additional expression in this strain of a tyrosine ammonia-lyase from Rhodotorula glutinis (RgTAL) led to the conversion of endogenous tyrosine into p-coumarate and resulted in the production of Avn D from glucose. Second, a 135-fold improvement in Avn D titer was achieved by boosting tyrosine production using two plasmids that express the eleven genes necessary for tyrosine synthesis from erythrose 4-phosphate and phosphoenolpyruvate. Finally, expression of either the p-coumarate 3-hydroxylase Sam5 from Saccharothrix espanensis or the hydroxylase complex HpaBC from E. coli resulted in the endogenous production of caffeate and biosynthesis of Avn F. Conclusion We established a biosynthetic pathway for the microbial production of valuable hydroxycinnamoyl anthranilates from an inexpensive carbon source. The proposed pathway will serve as a platform for further engineering toward economical and sustainable bioproduction of these pharmaceuticals and other related aromatic compounds. PMID:23806124
Bacci, Giovanni; Fiscarelli, Ersilia; Taccetti, Giovanni; Dolce, Daniela; Paganin, Patrizia; Morelli, Patrizia; Tuccio, Vanessa; De Alessandri, Alessandra; Lucidi, Vincenzina
2017-01-01
In recent years, next-generation sequencing (NGS) was employed to decipher the structure and composition of the microbiota of the airways in cystic fibrosis (CF) patients. However, little is still known about the overall gene functions harbored by the resident microbial populations and which specific genes are associated with various stages of CF lung disease. In the present study, we aimed to identify the microbial gene repertoire of CF microbiota in twelve patients with severe and normal/mild lung disease by performing sputum shotgun metagenome sequencing. The abundance of metabolic pathways encoded by microbes inhabiting CF airways was reconstructed from the metagenome. We identified a set of metabolic pathways differently distributed in patients with different pulmonary function; namely, pathways related to bacterial chemotaxis and flagellar assembly, as well as genes encoding efflux-mediated antibiotic resistance mechanisms and virulence-related genes. The results indicated that the microbiome of CF patients with low pulmonary function is enriched in virulence-related genes and in genes encoding efflux-mediated antibiotic resistance mechanisms. Overall, the microbiome of severely affected adults with CF seems to encode different mechanisms for the facilitation of microbial colonization and persistence in the lung, consistent with the characteristics of multidrug-resistant microbial communities that are commonly observed in patients with severe lung disease. PMID:28758937
High Carbon Use Efficiency is Not Explained by Production of Storage Compounds
NASA Astrophysics Data System (ADS)
Dijkstra, Paul; van Groenigen, Kees-Jan
2015-04-01
The efficiency with which microbes use substrate to make new microbial biomass (Carbon Use Efficiency or CUE; mol C / mol C) is an important variable in soil and ecosystem C cycling models. Estimates of CUE in soil microbial communities vary widely. It has been hypothesized that high values of CUE are associated with production of storage compounds following a sudden increases in substrate availability during CUE measurements. In that case, these high CUE values would not be representative for balanced microbial growth (i.e. the production of all compounds needed to make new microbial cells). To test this hypothesis, we added position-specific 13C-labeled glucose isotopomers in parallel incubations of a ponderosa pine and piñon-juniper soil. We compared the measured pattern of CO2 release for the six glucose C atoms with patterns of CO2 production expected for balanced growth with a low, medium, or high CUE, and with CO2 production patterns associated with production of storage compounds (glycogen, lipids, or polyhydroxybutyrate). The measured position-specific CO2 production did not match that for production of glycogen, lipids, or polyhydroxybutyrate, but agreed closely with that expected for balanced growth at high CUE and high pentose phosphate pathway activity. We conclude that soil microbial communities utilize glucose substrate for biomass growth with high CUE, and that addition of small amounts of 13C-labeled glucose tracers do not affect CUE or induce storage compounds production. We submit that the measurement of position-specific CO2 production offers a quick and easy way to test biochemically explicit hypotheses concerning microbial growth metabolism.
Mineral stimulation of subsurface microorganisms: release of limiting nutrients from silicates
Roger, Jennifer Roberts; Bennett, Philip C.
2004-01-01
Microorganisms play an important role in the weathering of silicate minerals in many subsurface environments, but an unanswered question is whether the mineral plays an important role in the microbial ecology. Silicate minerals often contain nutrients necessary for microbial growth, but whether the microbial community benefits from their release during weathering is unclear. In this study, we used field and laboratory approaches to investigate microbial interactions with minerals and glasses containing beneficial nutrients and metals. Field experiments from a petroleum-contaminated aquifer, where silicate weathering is substantially accelerated in the contaminated zone, revealed that phosphorus (P) and iron (Fe)-bearing silicate glasses were preferentially colonized and weathered, while glasses without these elements were typically barren of colonizing microorganisms, corroborating previous studies using feldspars. In laboratory studies, we investigated microbial weathering of silicates and the release of nutrients using a model ligand-promoted pathway. A metal-chelating organic ligand 3,4 dihydroxybenzoic acid (3,4 DHBA) was used as a source of chelated ferric iron, and a carbon source, to investigate mineral weathering rate and microbial metabolism.In the investigated aquifer, we hypothesize that microbes produce organic ligands to chelate metals, particularly Fe, for metabolic processes and also form stable complexes with Al and occasionally with Si. Further, the concentration of these ligands is apparently sufficient near an attached microorganism to destroy the silicate framework while releasing the nutrient of interest. In microcosms containing silicates and glasses with trace phosphate mineral inclusions, microbial biomass increased, indicating that the microbial community can use silicate-bound phosphate inclusions. The addition of a native microbial consortium to microcosms containing silicates or glasses with iron oxide inclusions correlated to accelerated weathering and release of Si into solution as well as the accelerated degradation of the model substrate 3,4 DHBA. We propose that silicate-bound P and Fe inclusions are bioavailable, and microorganisms may use organic ligands to dissolve the silicate matrix and access these otherwise limiting nutrients.
Diel Metagenomics and Metatranscriptomics of Elkhorn Slough Hypersaline Microbial Mat
NASA Astrophysics Data System (ADS)
Lee, J.; Detweiler, A. M.; Everroad, R. C.; Bebout, L. E.; Weber, P. K.; Pett-Ridge, J.; Bebout, B.
2014-12-01
To understand the variation in gene expression associated with the daytime oxygenic phototrophic and nighttime fermentation regimes seen in hypersaline microbial mats, a contiguous mat piece was subjected to sampling at regular intervals over a 24-hour diel period. Additionally, to understand the impact of sulfate reduction on biohydrogen consumption, molybdate was added to a parallel experiment in the same run. 4 metagenome and 12 metatranscriptome Illumina HiSeq lanes were completed over day / night, and control / molybdate experiments. Preliminary comparative examination of noon and midnight metatranscriptomic samples mapped using bowtie2 to reference genomes has revealed several notable results about the dominant mat-building cyanobacterium Microcoleus chthonoplastes PCC 7420. Dominant cyanobacterium M. chthonoplastes PCC 7420 shows expression in several pathways for nitrogen scavenging, including nitrogen fixation. Reads mapped to M. chthonoplastes PCC 7420 shows expression of two starch storage and utilization pathways, one as a starch-trehalose-maltose-glucose pathway, another through UDP-glucose-cellulose-β-1,4 glucan-glucose pathway. The overall trend of gene expression was primarily light driven up-regulation followed by down-regulation in dark, while much of the remaining expression profile appears to be constitutive. Co-assembly of quality-controlled reads from 4 metagenomes was performed using Ray Meta with progressively smaller K-mer sizes, with bins identified and filtered using principal component analysis of coverages from all libraries and a %GC filter, followed by reassembly of the remaining co-assembly reads and binned reads. Despite having relatively similar abundance profiles in each metagenome, this binning approach was able to distinctly resolve bins from dominant taxa, but also sulfate reducing bacteria that are desired for understanding molybdate inhibition. Bins generated from this iterative assembly process will be used for downstream mapping of transcriptomic reads as well as isolation efforts for Cyanobacteria-associated bacteria.
[Advances in metabolic engineering of Escherichia coli for isoprene biosynthesis].
Guo, Jing; Cao, Yujin; Xian, Mo; Liu, Huizhou
2016-08-25
As an important industrial chemical, isoprene is mainly used as a precursor for synthetic rubbers. In addition, it also has wide applications in the field of pharmaceutical and chemical intermediates, food, adhesives and aviation fuel. Compared with conventional petrochemical routes, production of isoprene in microbial systems has been the research focus considering environment friendly and sustainable development features. This article summarizes the metabolic pathways and key enzymes of isoprene biosynthesis, reviews current methods and strategies in improving isoprene production of Escherichia coli, and also gives some basic ideas and expectation.
2012-01-01
Microorganisms are ubiquitous on earth and have diverse metabolic transformative capabilities important for environmental biodegradation of chemicals that helps maintain ecosystem and human health. Microbial biodegradative metabolism is the main focus of the University of Minnesota Biocatalysis/Biodegradation Database (UM-BBD). UM-BBD data has also been used to develop a computational metabolic pathway prediction system that can be applied to chemicals for which biodegradation data is currently lacking. The UM-Pathway Prediction System (UM-PPS) relies on metabolic rules that are based on organic functional groups and predicts plausible biodegradative metabolism. The predictions are useful to environmental chemists that look for metabolic intermediates, for regulators looking for potential toxic products, for microbiologists seeking to understand microbial biodegradation, and others with a wide-range of interests. PMID:22587916
Koyama, Hiroaki; Kato, Daiki; Minakuchi, Chieka; Tanaka, Toshiharu; Yokoi, Kakeru; Miura, Ken
2015-11-01
We have previously demonstrated that the functional Toll and IMD innate immune pathways indeed exist in the model beetle, Tribolium castaneum while the beetle's pathways have broader specificity in terms of microbial activation than that of Drosophila. To elucidate the molecular basis of this broad microbial activation, we here focused on potential upstream sensors of the T. castaneum innate immune pathways, peptidoglycan recognition proteins (PGRPs). Our phenotype analyses utilizing RNA interference-based comprehensive gene knockdown followed by bacterial challenge suggested: PGRP-LA functions as a pivotal sensor of the IMD pathway for both Gram-negative and Gram-positive bacteria; PGRP-LC acts as an IMD pathway-associated sensor mainly for Gram-negative bacteria; PGRP-LE also has some roles in Gram-negative bacterial recognition of the IMD pathway. On the other hand, we did not obtain clear phenotype changes by gene knockdown of short-type PGRP genes, probably because of highly inducible nature of these genes. Our results may collectively account for the promiscuous bacterial activation of the T. castaneum innate immune pathways at least in part. Copyright © 2015 Elsevier Inc. All rights reserved.
Ketol-acid reductoisomerase enzymes and methods of use
Govindarajan, Sridhar; Li, Yougen; Liao, Der-Ing; O'Keefe, Daniel P.; Minshull, Jeremy Stephen; Rothman, Steven Cary; Tobias, Alexander Vincent
2015-10-27
Provided herein are polypeptides having ketol-aid reductoisomerase activity as well as microbial host cells comprising such polypeptides. Polypeptides provided herein may be used in biosynthetic pathways, including, but not limited to, isobutanol biosynthetic pathways.
Rust preventive oil additives based on microbial fats
DOE Office of Scientific and Technical Information (OSTI.GOV)
Salenko, V.I.; Fedorov, V.V.; Kazantsev, Yu.E.
1983-03-01
This article investigates the composition and lubricating properties of microbial fats obtained from microorganisms grown on various hydrocarbon substrates (n-paraffins, alcohols, natural gas, petroleum distillates, etc.). Focuses on the protective functions of the 4 main fractions (unsaponifiables, free fatty acids, glycerides, and phospholipids) which comprise the microbial fat from a yeast grown on purified liquid n-paraffins. Concludes that neutralized microbial fats can be used as preservative additives; that the principal components of the microbial fats have the properties necessary for oil-soluble corrosion inhibitors; that the phospholipids of the microbial fat can fulfill the functions of not only preservative additives, butmore » also highly effective operational/ preservative additives; and that fats of microbial origin can be used in the development of multipurpose polyfunctional additives.« less
Guo, Chengyuan; Wang, Renzhong; Xiao, Chunwang
2012-01-01
Background Global climatic change is generally expected to stimulate net primary production, and consequently increase soil carbon (C) input. The enhanced C input together with potentially increased precipitation may affect soil microbial processes and plant growth. Methodology/Principal Findings To examine the effects of C and water additions on soil microbial properties and plant growth, we conducted an experiment lasting two years in a temperate steppe of northeastern China. We found that soil C and water additions significantly affected microbial properties and stimulated plant growth. Carbon addition significantly increased soil microbial biomass and activity but had a limited effect on microbial community structure. Water addition significantly increased soil microbial activity in the first year but the response to water decreased in the second year. The water-induced changes of microbial activity could be ascribed to decreased soil nitrogen (N) availability and to the shift in soil microbial community structure. However, no water effect on soil microbial activity was visible under C addition during the two years, likely because C addition alleviated nutrient limitation of soil microbes. In addition, C and water additions interacted to affect plant functional group composition. Water addition significantly increased the ratio of grass to forb biomass in C addition plots but showed only minor effects under ambient C levels. Our results suggest that soil microbial activity and plant growth are limited by nutrient (C and N) and water availability, and highlight the importance of nutrient availability in modulating the responses of soil microbes and plants to potentially increased precipitation in the temperate steppe. Conclusions/Significance Increased soil C input and precipitation would show significant effects on soil microbial properties and plant growth in the temperate steppe. These findings will improve our understanding of the responses of soil microbes and plants to the indirect and direct climate change effects. PMID:22496905
NASA Astrophysics Data System (ADS)
Van Groenigen, K.; Forristal, D.; Jones, M. B.; Schwartz, E.; Hungate, B. A.; Dijkstra, P.
2013-12-01
By decomposing soil organic matter, microbes gain energy and building blocks for biosynthesis and release CO2 to the atmosphere. Therefore, insight into the effect of management practices on microbial metabolic pathways and C use efficiency (CUE; microbial C produced per substrate C utilized) may help to predict long term changes in soil C stocks. We studied the effects of reduced (RT) and conventional tillage (CT) on the microbial central C metabolic network, using soil samples from a 12-year-old field experiment in an Irish winter wheat cropping system. Each year after harvest, straw was removed from half of the RT and CT plots or incorporated into the soil in the other half, resulting in four treatment combinations. We added 1-13C and 2,3-13C pyruvate and 1-13C and U-13C glucose as metabolic tracer isotopomers to composite soil samples taken at two depths (0-15 cm and 15-30 cm) from each treatment and used the rate of position-specific respired 13CO2 to parameterize a metabolic model. Model outcomes were then used to calculate CUE of the microbial community. We found that the composite samples differed in CUE, but the changes were small, with values ranging between 0.757-0.783 across treatments and soil depth. Increases in CUE were associated with a decrease in tricarboxylic acid cycle and reductive pentose phosphate pathway activity and increased consumption of metabolic intermediates for biosynthesis. Our results indicate that RT and straw incorporation promote soil C storage without substantially changing CUE or any of the microbial metabolic pathways. This suggests that at our site, RT and straw incorporation promote soil C storage mostly through direct effects such as increased soil C input and physical protection from decomposition, rather than by feedback responses of the microbial community.
Menendez-Bravo, Simón; Comba, Santiago; Sabatini, Martín; Arabolaza, Ana; Gramajo, Hugo
2014-07-01
Microbial fatty acid (FA)-derived molecules have emerged as promising alternatives to petroleum-based chemicals for reducing dependence on fossil hydrocarbons. However, native FA biosynthetic pathways often yield limited structural diversity, and therefore restricted physicochemical properties, of the end products by providing only a limited variety of usually linear hydrocarbons. Here we have engineered into Escherichia coli a mycocerosic polyketide synthase-based biosynthetic pathway from Mycobacterium tuberculosis and redefined its biological role towards the production of multi-methyl-branched-esters (MBEs) with novel chemical structures. Expression of FadD28, Mas and PapA5 enzymes enabled the biosynthesis of multi-methyl-branched-FA and their further esterification to an alcohol. The high substrate tolerance of these enzymes towards different FA and alcohol moieties resulted in the biosynthesis of a broad range of MBE. Further metabolic engineering of the MBE producer strain coupled this system to long-chain-alcohol biosynthetic pathways resulting in de novo production of branched wax esters following addition of only propionate. Copyright © 2014 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.
Jones, Elizabeth J.P.; Voytek, Mary A.; Corum, Margo D.; Orem, William H.
2010-01-01
Biogenic formation of methane from coal is of great interest as an underexploited source of clean energy. The goal of some coal bed producers is to extend coal bed methane productivity and to utilize hydrocarbon wastes such as coal slurry to generate new methane. However, the process and factors controlling the process, and thus ways to stimulate it, are poorly understood. Subbituminous coal from a nonproductive well in south Texas was stimulated to produce methane in microcosms when the native population was supplemented with nutrients (biostimulation) or when nutrients and a consortium of bacteria and methanogens enriched from wetland sediment were added (bioaugmentation). The native population enriched by nutrient addition included Pseudomonas spp., Veillonellaceae, and Methanosarcina barkeri. The bioaugmented microcosm generated methane more rapidly and to a higher concentration than the biostimulated microcosm. Dissolved organics, including long-chain fatty acids, single-ring aromatics, and long-chain alkanes accumulated in the first 39 days of the bioaugmented microcosm and were then degraded, accompanied by generation of methane. The bioaugmented microcosm was dominated by Geobacter sp., and most of the methane generation was associated with growth of Methanosaeta concilii. The ability of the bioaugmentation culture to produce methane from coal intermediates was confirmed in incubations of culture with representative organic compounds. This study indicates that methane production could be stimulated at the nonproductive field site and that low microbial biomass may be limiting in situ methane generation. In addition, the microcosm study suggests that the pathway for generating methane from coal involves complex microbial partnerships.
Auffret, Marc D.; Stewart, Robert; Dewhurst, Richard J.; Duthie, Carol-Anne; Rooke, John A.; Wallace, Robert J.; Freeman, Tom C.; Snelling, Timothy J.; Watson, Mick; Roehe, Rainer
2018-01-01
Previous shotgun metagenomic analyses of ruminal digesta identified some microbial information that might be useful as biomarkers to select cattle that emit less methane (CH4), which is a potent greenhouse gas. It is known that methane production (g/kgDMI) and to an extent the microbial community is heritable and therefore biomarkers can offer a method of selecting cattle for low methane emitting phenotypes. In this study a wider range of Bos Taurus cattle, varying in breed and diet, was investigated to determine microbial communities and genetic markers associated with high/low CH4 emissions. Digesta samples were taken from 50 beef cattle, comprising four cattle breeds, receiving two basal diets containing different proportions of concentrate and also including feed additives (nitrate or lipid), that may influence methane emissions. A combination of partial least square analysis and network analysis enabled the identification of the most significant and robust biomarkers of CH4 emissions (VIP > 0.8) across diets and breeds when comparing all potential biomarkers together. Genes associated with the hydrogenotrophic methanogenesis pathway converting carbon dioxide to methane, provided the dominant biomarkers of CH4 emissions and methanogens were the microbial populations most closely correlated with CH4 emissions and identified by metagenomics. Moreover, these genes grouped together as confirmed by network analysis for each independent experiment and when combined. Finally, the genes involved in the methane synthesis pathway explained a higher proportion of variation in CH4 emissions by PLS analysis compared to phylogenetic parameters or functional genes. These results confirmed the reproducibility of the analysis and the advantage to use these genes as robust biomarkers of CH4 emissions. Volatile fatty acid concentrations and ratios were significantly correlated with CH4, but these factors were not identified as robust enough for predictive purposes. Moreover, the methanotrophic Methylomonas genus was found to be negatively correlated with CH4. Finally, this study confirmed the importance of using robust and applicable biomarkers from the microbiome as a proxy of CH4 emissions across diverse production systems and environments. PMID:29375511
Auffret, Marc D; Stewart, Robert; Dewhurst, Richard J; Duthie, Carol-Anne; Rooke, John A; Wallace, Robert J; Freeman, Tom C; Snelling, Timothy J; Watson, Mick; Roehe, Rainer
2017-01-01
Previous shotgun metagenomic analyses of ruminal digesta identified some microbial information that might be useful as biomarkers to select cattle that emit less methane (CH 4 ), which is a potent greenhouse gas. It is known that methane production (g/kgDMI) and to an extent the microbial community is heritable and therefore biomarkers can offer a method of selecting cattle for low methane emitting phenotypes. In this study a wider range of Bos Taurus cattle, varying in breed and diet, was investigated to determine microbial communities and genetic markers associated with high/low CH 4 emissions. Digesta samples were taken from 50 beef cattle, comprising four cattle breeds, receiving two basal diets containing different proportions of concentrate and also including feed additives (nitrate or lipid), that may influence methane emissions. A combination of partial least square analysis and network analysis enabled the identification of the most significant and robust biomarkers of CH 4 emissions (VIP > 0.8) across diets and breeds when comparing all potential biomarkers together. Genes associated with the hydrogenotrophic methanogenesis pathway converting carbon dioxide to methane, provided the dominant biomarkers of CH 4 emissions and methanogens were the microbial populations most closely correlated with CH 4 emissions and identified by metagenomics. Moreover, these genes grouped together as confirmed by network analysis for each independent experiment and when combined. Finally, the genes involved in the methane synthesis pathway explained a higher proportion of variation in CH 4 emissions by PLS analysis compared to phylogenetic parameters or functional genes. These results confirmed the reproducibility of the analysis and the advantage to use these genes as robust biomarkers of CH 4 emissions. Volatile fatty acid concentrations and ratios were significantly correlated with CH 4 , but these factors were not identified as robust enough for predictive purposes. Moreover, the methanotrophic Methylomonas genus was found to be negatively correlated with CH 4 . Finally, this study confirmed the importance of using robust and applicable biomarkers from the microbiome as a proxy of CH 4 emissions across diverse production systems and environments.
Katsuyama, Yohei; Ohnishi, Yasuo; Horinouchi, Sueharu
2010-09-24
Gingerol derivatives are bioactive compounds isolated from the rhizome of ginger. They possess various beneficial activities, such as anticancer and hepatoprotective activities, and are therefore attractive targets of bioengineering. However, the microbial production of gingerol derivatives has not yet been established, primarily because the biosynthetic pathway of gingerol is unknown. Here, we report the production of several dehydrogingerdione (a gingerol derivative) analogues from a recombinant Escherichia coli strain that has an "artificial" biosynthesis pathway for dehydrogingerdione that was not based on the original biosynthesis pathway of gingerol derivatives in plants. The system consists of a 4-coumarate:CoA ligase from Lithospermum erythrorhizon, a fatty acid CoA ligase from Oryza sativa, a β-oxidation system from Saccharomyces cerevisiae, and a curcuminoid synthase from O. sativa. To our knowledge, this is the first report of the microbial production of a plant metabolite the biosynthetic pathway of which has not yet been identified.
Formate Assimilation: The Metabolic Architecture of Natural and Synthetic Pathways.
Bar-Even, Arren
2016-07-19
Formate may become an ideal mediator between the physicochemical and biological realms, as it can be produced efficiently from multiple available sources, such as electricity and biomass, and serve as one of the simplest organic compounds for providing both carbon and energy to living cells. However, limiting the realization of formate as a microbial feedstock is the low diversity of formate-fixing enzymes and thereby the small number of naturally occurring formate-assimilation pathways. Here, the natural enzymes and pathways supporting formate assimilation are presented and discussed together with proposed synthetic routes that could permit growth on formate via existing as well as novel formate-fixing reactions. By considering such synthetic routes, the diversity of metabolic solutions for formate assimilation can be expanded dramatically, such that different host organisms, cultivation conditions, and desired products could be matched with the most suitable pathway. Astute application of old and new formate-assimilation pathways may thus become a cornerstone in the development of sustainable strategies for microbial production of value-added chemicals.
Isoprenoid drugs, biofuels, and chemicals--artemisinin, farnesene, and beyond.
George, Kevin W; Alonso-Gutierrez, Jorge; Keasling, Jay D; Lee, Taek Soon
2015-01-01
Isoprenoids have been identified and used as natural pharmaceuticals, fragrances, solvents, and, more recently, advanced biofuels. Although isoprenoids are most commonly found in plants, researchers have successfully engineered both the eukaryotic and prokaryotic isoprenoid biosynthetic pathways to produce these valuable chemicals in microorganisms at high yields. The microbial synthesis of the precursor to artemisinin--an important antimalarial drug produced from the sweet wormwood Artemisia annua--serves as perhaps the most successful example of this approach. Through advances in synthetic biology and metabolic engineering, microbial-derived semisynthetic artemisinin may soon replace plant-derived artemisinin as the primary source of this valuable pharmaceutical. The richness and diversity of isoprenoid structures also make them ideal candidates for advanced biofuels that may act as "drop-in" replacements for gasoline, diesel, and jet fuel. Indeed, the sesquiterpenes farnesene and bisabolene, monoterpenes pinene and limonene, and hemiterpenes isopentenol and isopentanol have been evaluated as fuels or fuel precursors. As in the artemisinin project, these isoprenoids have been produced microbially through synthetic biology and metabolic engineering efforts. Here, we provide a brief review of the numerous isoprenoid compounds that have found use as pharmaceuticals, flavors, commodity chemicals, and, most importantly, advanced biofuels. In each case, we highlight the metabolic engineering strategies that were used to produce these compounds successfully in microbial hosts. In addition, we present a current outlook on microbial isoprenoid production, with an eye towards the many challenges that must be addressed to achieve higher yields and industrial-scale production.
Variations in microbial carbon sources and cycling in the deep continental subsurface
NASA Astrophysics Data System (ADS)
Simkus, Danielle N.; Slater, Greg F.; Lollar, Barbara Sherwood; Wilkie, Kenna; Kieft, Thomas L.; Magnabosco, Cara; Lau, Maggie C. Y.; Pullin, Michael J.; Hendrickson, Sarah B.; Wommack, K. Eric; Sakowski, Eric G.; van Heerden, Esta; Kuloyo, Olukayode; Linage, Borja; Borgonie, Gaetan; Onstott, Tullis C.
2016-01-01
Deep continental subsurface fracture water systems, ranging from 1.1 to 3.3 km below land surface (kmbls), were investigated to characterize the indigenous microorganisms and elucidate microbial carbon sources and their cycling. Analysis of phospholipid fatty acid (PLFA) abundances and direct cell counts detected varying biomass that was not correlated with depth. Compound-specific carbon isotope analyses (δ13C and Δ14C) of the phospholipid fatty acids (PLFAs) and carbon substrates combined with genomic analyses did identify, however, distinct carbon sources and cycles between the two depth ranges studied. In the shallower boreholes at circa 1 kmbls, isotopic evidence indicated microbial incorporation of biogenic CH4 by the in situ microbial community. At the shallowest site, 1.05 kmbls in Driefontein mine, this process clearly dominated the isotopic signal. At slightly deeper depths, 1.34 kmbls in Beatrix mine, the isotopic data indicated the incorporation of both biogenic CH4 and dissolved inorganic carbon (DIC) derived from CH4 oxidation. In both of these cases, molecular genetic analysis indicated that methanogenic and methanotrophic organisms together comprised a small component (<5%) of the microbial community. Thus, it appears that a relatively minor component of the prokaryotic community is supporting a much larger overall bacterial community in these samples. In the samples collected from >3 kmbls in Tau Tona mine (TT107, TT109 Bh2), the CH4 had an isotopic signature suggesting a predominantly abiogenic origin with minor inputs from microbial methanogenesis. In these samples, the isotopic enrichments (δ13C and Δ14C) of the PLFAs relative to CH4 were consistent with little incorporation of CH4 into the biomass. The most 13C-enriched PLFAs were observed in TT107 where the dominant CO2-fixation pathway was the acetyl-CoA pathway by non-acetogenic bacteria. The differences in the δ13C of the PLFAs and the DIC and DOC for TT109 Bh2 were ∼-24‰ and 0‰, respectively. The dominant CO2-fixation pathways were 3-HP/4-HB cycle > acetyl-CoA pathway > reductive pentose phosphate cycle.
The emerging relevance of the gut microbiome in cardiometabolic health
USDA-ARS?s Scientific Manuscript database
Host metabolic pathways and physiological responses are regulated by signals linking the host to the gut microbial community or microbiome. Here, we draw a spotlight on lipid and bile acid metabolism and inflammatory response as they pertain to cardiometabolic dysfunction. Gut microbial dysbiosis al...
Xie, Wei; Wang, Fengping; Guo, Lei; Chen, Zeling; Sievert, Stefan M; Meng, Jun; Huang, Guangrui; Li, Yuxin; Yan, Qingyu; Wu, Shan; Wang, Xin; Chen, Shangwu; He, Guangyuan; Xiao, Xiang; Xu, Anlong
2011-01-01
Deep-sea hydrothermal vent chimneys harbor a high diversity of largely unknown microorganisms. Although the phylogenetic diversity of these microorganisms has been described previously, the adaptation and metabolic potential of the microbial communities is only beginning to be revealed. A pyrosequencing approach was used to directly obtain sequences from a fosmid library constructed from a black smoker chimney 4143-1 in the Mothra hydrothermal vent field at the Juan de Fuca Ridge. A total of 308 034 reads with an average sequence length of 227 bp were generated. Comparative genomic analyses of metagenomes from a variety of environments by two-way clustering of samples and functional gene categories demonstrated that the 4143-1 metagenome clustered most closely with that from a carbonate chimney from Lost City. Both are highly enriched in genes for mismatch repair and homologous recombination, suggesting that the microbial communities have evolved extensive DNA repair systems to cope with the extreme conditions that have potential deleterious effects on the genomes. As previously reported for the Lost City microbiome, the metagenome of chimney 4143-1 exhibited a high proportion of transposases, implying that horizontal gene transfer may be a common occurrence in the deep-sea vent chimney biosphere. In addition, genes for chemotaxis and flagellar assembly were highly enriched in the chimney metagenomes, reflecting the adaptation of the organisms to the highly dynamic conditions present within the chimney walls. Reconstruction of the metabolic pathways revealed that the microbial community in the wall of chimney 4143-1 was mainly fueled by sulfur oxidation, putatively coupled to nitrate reduction to perform inorganic carbon fixation through the Calvin–Benson–Bassham cycle. On the basis of the genomic organization of the key genes of the carbon fixation and sulfur oxidation pathways contained in the large genomic fragments, both obligate and facultative autotrophs appear to be present and contribute to biomass production. PMID:20927138
Linear relations in microbial reaction systems: a general overview of their origin, form, and use.
Noorman, H J; Heijnen, J J; Ch A M Luyben, K
1991-09-01
In microbial reaction systems, there are a number of linear relations among net conversion rates. These can be very useful in the analysis of experimental data. This article provides a general approach for the formation and application of the linear relations. Two type of system descriptions, one considering the biomass as a black box and the other based on metabolic pathways, are encountered. These are defined in a linear vector and matrix algebra framework. A correct a priori description can be obtained by three useful tests: the independency, consistency, and observability tests. The independency are different. The black box approach provides only conservations relations. They are derived from element, electrical charge, energy, and Gibbs energy balances. The metabolic approach provides, in addition to the conservation relations, metabolic and reaction relations. These result from component, energy, and Gibbs energy balances. Thus it is more attractive to use the metabolic description than the black box approach. A number of different types of linear relations given in the literature are reviewed. They are classified according to the different categories that result from the black box or the metabolic system description. Validation of hypotheses related to metabolic pathways can be supported by experimental validation of the linear metabolic relations. However, definite proof from biochemical evidence remains indispensable.
Huang, Li-Fen; Lin, Ji-Yu; Pan, Kui-You; Huang, Chun-Kai; Chu, Ying-Kai
2015-01-01
Ferredoxins (FDX) are final electron carrier proteins in the plant photosynthetic pathway, and function as major electron donors in diverse redox-driven metabolic pathways. We previously showed that overexpression of a major constitutively expressed ferredoxin gene PETF in Chlamydomonas decreased the reactive oxygen species (ROS) level and enhanced tolerance to heat stress. In addition to PETF, an endogenous anaerobic induced FDX5 was overexpressed in transgenic Chlamydomonas lines here to address the possible functions of FDX5. All the independent FDX transgenic lines showed decreased cellular ROS levels and enhanced tolerance to heat and salt stresses. The transgenic Chlamydomonas lines accumulated more starch than the wild-type line and this effect increased almost three-fold in conditions of nitrogen depletion. Furthermore, the lipid content was higher in the transgenic lines than in the wild-type line, both with and without nitrogen depletion. Two FDX-overexpressing Chlamydomonas lines were assessed in a photo microbial fuel cell (PMFC); power density production by the transgenic lines was higher than that of the wild-type cells. These findings suggest that overexpression of either PETF or FDX5 can confer tolerance against heat and salt stresses, increase starch and oil production, and raise electric power density in a PMFC. PMID:26287179
Gut microbiota functions: metabolism of nutrients and other food components.
Rowland, Ian; Gibson, Glenn; Heinken, Almut; Scott, Karen; Swann, Jonathan; Thiele, Ines; Tuohy, Kieran
2018-02-01
The diverse microbial community that inhabits the human gut has an extensive metabolic repertoire that is distinct from, but complements the activity of mammalian enzymes in the liver and gut mucosa and includes functions essential for host digestion. As such, the gut microbiota is a key factor in shaping the biochemical profile of the diet and, therefore, its impact on host health and disease. The important role that the gut microbiota appears to play in human metabolism and health has stimulated research into the identification of specific microorganisms involved in different processes, and the elucidation of metabolic pathways, particularly those associated with metabolism of dietary components and some host-generated substances. In the first part of the review, we discuss the main gut microorganisms, particularly bacteria, and microbial pathways associated with the metabolism of dietary carbohydrates (to short chain fatty acids and gases), proteins, plant polyphenols, bile acids, and vitamins. The second part of the review focuses on the methodologies, existing and novel, that can be employed to explore gut microbial pathways of metabolism. These include mathematical models, omics techniques, isolated microbes, and enzyme assays.
Transforming exoelectrogens for biotechnology using synthetic biology.
TerAvest, Michaela A; Ajo-Franklin, Caroline M
2016-04-01
Extracellular electron transfer pathways allow certain bacteria to transfer energy between intracellular chemical energy stores and extracellular solids through redox reactions. Microorganisms containing these pathways, exoelectrogens, are a critical part of microbial electrochemical technologies that aim to impact applications in bioenergy, biosensing, and biocomputing. However, there are not yet any examples of economically viable microbial electrochemical technologies due to the limitations of naturally occurring exoelectrogens. Here we first briefly summarize recent discoveries in understanding extracellular electron transfer pathways, then review in-depth the creation of customized and novel exoelectrogens for biotechnological applications. We analyze engineering efforts to increase current production in native exoelectrogens, which reveals that modulating certain processes within extracellular electron transfer are more effective than others. We also review efforts to create new exoelectrogens and highlight common challenges in this work. Lastly, we summarize work utilizing engineered exoelectrogens for biotechnological applications and the key obstacles to their future development. Fueled by the development of genetic tools, these approaches will continue to expand and genetically modified organisms will continue to improve the outlook for microbial electrochemical technologies. © 2015 Wiley Periodicals, Inc.
Klatt, Christian G; Bryant, Donald A; Ward, David M
2007-08-01
Stable carbon isotope signatures of diagnostic lipid biomarkers have suggested that Roseiflexus spp., the dominant filamentous anoxygenic phototrophic bacteria inhabiting microbial mats of alkaline siliceous hot springs, may be capable of fixing bicarbonate via the 3-hydroxypropionate pathway, which has been characterized in their distant relative, Chloroflexus aurantiacus. The genomes of three filamentous anoxygenic phototrophic Chloroflexi isolates (Roseiflexus sp. RS-1, Roseiflexus castenholzii and Chloroflexus aggregans), but not that of a non-photosynthetic Chloroflexi isolate (Herpetosiphon aurantiacus), were found to contain open reading frames that show a high degree of sequence similarity to genes encoding enzymes in the C. aurantiacus pathway. Metagenomic DNA sequences from the microbial mats of alkaline siliceous hot springs also contain homologues of these genes that are highly similar to genes in both Roseiflexus spp. and Chloroflexus spp. Thus, Roseiflexus spp. appear to have the genetic capacity for carbon dioxide reduction via the 3-hydroxypropionate pathway. This may contribute to heavier carbon isotopic signatures of the cell components of native Roseiflexus populations in mats compared with the signatures of cyanobacterial cell components, as a similar isotopic signature would be expected if Roseiflexus spp. were participating in photoheterotrophic uptake of cyanobacterial photosynthate produced by the reductive pentose phosphate cycle.
Kaiser, Christina; Kilburn, Matt R; Clode, Peta L; Fuchslueger, Lucia; Koranda, Marianne; Cliff, John B; Solaiman, Zakaria M; Murphy, Daniel V
2015-01-01
Plants rapidly release photoassimilated carbon (C) to the soil via direct root exudation and associated mycorrhizal fungi, with both pathways promoting plant nutrient availability. This study aimed to explore these pathways from the root's vascular bundle to soil microbial communities. Using nanoscale secondary ion mass spectrometry (NanoSIMS) imaging and 13C-phospho- and neutral lipid fatty acids, we traced in-situ flows of recently photoassimilated C of 13CO2-exposed wheat (Triticum aestivum) through arbuscular mycorrhiza (AM) into root- and hyphae-associated soil microbial communities. Intraradical hyphae of AM fungi were significantly 13C-enriched compared to other root-cortex areas after 8 h of labelling. Immature fine root areas close to the root tip, where AM features were absent, showed signs of passive C loss and co-location of photoassimilates with nitrogen taken up from the soil solution. A significant and exclusively fresh proportion of 13C-photosynthates was delivered through the AM pathway and was utilised by different microbial groups compared to C directly released by roots. Our results indicate that a major release of recent photosynthates into soil leave plant roots via AM intraradical hyphae already upstream of passive root exudations. AM fungi may act as a rapid hub for translocating fresh plant C to soil microbes. PMID:25382456
Microalgae-microbial fuel cell: A mini review.
Lee, Duu-Jong; Chang, Jo-Shu; Lai, Juin-Yih
2015-12-01
Microalgae-microbial fuel cells (mMFCs) are a device that can convert solar energy to electrical energy via biological pathways. This mini-review lists new research and development works on microalgae processes, microbial fuel cell (MFC) processes, and their combined version, mMFC. The substantial improvement and technological advancement are highlighted, with a discussion on the challenges and prospects for possible commercialization of mMFC technologies. Copyright © 2015 Elsevier Ltd. All rights reserved.
[Promoting efficiency of microbial extracellular electron transfer by synthetic biology].
Li, Feng; Song, Hao
2017-03-25
Electroactive bacteria, including electrigenic bacteria (exoelectrogens) and electroautotrophic bacteria, implement microbial bioelectrocatalysis processes via bi-directional exchange of electrons and energy with environments, enabling a wide array of applications in environmental and energy fields, including microbial fuel cells (MFC), microbial electrolysis cells (MEC), microbial electrosynthesis (MES) to produce electricity and bulk fine chemicals. However, the low efficiency in the extracellular electron transfer (EET) of exoelectrogens and electrotrophic microbes limited their industrial applications. Here, we reviewed synthetic biology approaches to engineer electroactive microorganisms to break the bottleneck of their EET pathways, to achieve higher efficiency of EET of a number of electroactive microorganisms. Such efforts will lead to a breakthrough in the applications of these electroactive microorganisms and microbial electrocatalysis systems.
NASA Astrophysics Data System (ADS)
Hines, David E.; Lisa, Jessica A.; Song, Bongkeun; Tobias, Craig R.; Borrett, Stuart R.
2012-06-01
Estuaries serve important ecological and economic functions including habitat provision and the removal of nutrients. Eutrophication can overwhelm the nutrient removal capacity of estuaries and poses a widely recognized threat to the health and function of these ecosystems. Denitrification and anaerobic ammonium oxidation (anammox) are microbial processes responsible for the removal of fixed nitrogen and diminish the effects of eutrophication. Both of these microbial removal processes can be influenced by direct inputs of dissolved inorganic nitrogen substrates or supported by microbial interactions with other nitrogen transforming pathways such as nitrification and dissimilatory nitrate reduction to ammonium (DNRA). The coupling of nitrogen removal pathways to other transformation pathways facilitates the removal of some forms of inorganic nitrogen; however, differentiating between direct and coupled nitrogen removal is difficult. Network modeling provides a tool to examine interactions among microbial nitrogen cycling processes and to determine the within-system history of nitrogen involved in denitrification and anammox. To examine the coupling of nitrogen cycling processes, we built a nitrogen budget mass balance network model in two adjacent 1 cm3 sections of bottom water and sediment in the oligohaline portion of the Cape Fear River Estuary, NC, USA. Pathway, flow, and environ ecological network analyses were conducted to characterize the organization of nitrogen flow in the estuary and to estimate the coupling of nitrification to denitrification and of nitrification and DNRA to anammox. Centrality analysis indicated NH4+ is the most important form of nitrogen involved in removal processes. The model analysis further suggested that direct denitrification and coupled nitrification-denitrification had similar contributions to nitrogen removal while direct anammox was dominant to coupled forms of anammox. Finally, results also indicated that partial nitrification-anammox may play an important role in anammox nitrogen removal in the Cape Fear River Estuary.
Recent trends in metabolic engineering of microorganisms for the production of advanced biofuels.
Cheon, Seungwoo; Kim, Hye Mi; Gustavsson, Martin; Lee, Sang Yup
2016-12-01
As climate change has become one of the major global risks, our heavy dependence on petroleum-derived fuels has received much public attention. To solve such problems, production of sustainable fuels has been intensively studied over the past years. Thanks to recent advances in synthetic biology and metabolic engineering technologies, bio-based platforms for advanced biofuels production have been developed using various microorganisms. The strategies for production of advanced biofuels have converged upon four major metabolic routes: the 2-ketoacid pathway, the fatty acid synthesis (FAS) pathway, the isoprenoid pathway, and the reverse β-oxidation pathway. Additionally, the polyketide synthesis pathway has recently been attracting interest as a promising alternative biofuel production route. In this article, recent trends in advanced biofuels production are reviewed by categorizing them into three types of advanced biofuels: alcohols, biodiesel and jet fuel, and gasoline. Focus is given on the strategies of employing synthetic biology and metabolic engineering for the development of microbial strains producing advanced fuels. Finally, the prospects for future advances needed to achieve much more efficient bio-based production of advanced biofuels are discussed, focusing on designing advanced biofuel production pathways coupled with screening, modifying, and creating novel enzymes. Copyright © 2016 Elsevier Ltd. All rights reserved.
Cho, Chul-Woong; Pham, Thi Phuong Thuy; Kim, Sok; Song, Myung-Hee; Chung, Yun-Jo; Yun, Yeoung-Sang
2016-03-01
The biodegradability and degradation pathways of 1-octyl-3-methylimidazolium cation [OMIM](+) by microbial community of wastewater treatment plant in Jeonju city, Korea were investigated. It was found that [OMIM](+) could be easily degraded by the microbial community. New degradation products and pathways of [OMIM](+) were identified, which are partially different from previous results (Green Chem. 2008, 10, 214-224). For the analysis of the degradation pathways and intermediates, the mass peaks observed in the range m/z of 50-300 were screened by using a tandem mass spectrometer (MS), and their fragmentation patterns were investigated by MS/MS. Surprisingly, we found three different degradation pathways of [OMIM](+), which were separated according to the initially oxidized position i.e. middle of the long alkyl chain, end of the long alkyl chain, and end of the short alkyl chain. The degradation pathways showed that the long and short alkyl chains of [OMIM](+) gradually degraded by repeating oxidation and carbon release. The results presented here shows that [OMIM](+) can be easily biodegraded through three different degradation pathways in wastewater treatment plants. Copyright © 2015 Elsevier Ltd. All rights reserved.
Biogeochemical models predict microbial mediated pathways but generally do not account for microorganisms. This study was undertaken to better understand relationships among microbial communities and N, S, Fe and C cycling in three lakes. Jackson Lakes formed from abandoned sand...
NASA Astrophysics Data System (ADS)
Connors, D. E.; Bradfish, J.; DeBruyn, R. P.; Zemetra, J.; Mitchell, H.
2017-12-01
In subsurface oil bearing formations, microbial growth and metabolism is restricted due to a lack of elements other than carbon, hydrogen, and oxygen required for cell structure and as cofactors. A chemical treatment that adds these elements back into the formation was deployed into an oil reservoir in Northern Montana, with the intent of increasing biogenic methane generation. Samples of water from producing wells in the reservoir were collected anaerobically, and analyzed for geochemical content, and cells from the water were collected and analyzed via 16S rRNA gene DNA sequencing to determine the makeup of the microbial community over the course of twelve months of treatment, and for two years after. Prior to chemical treatment, this reservoir was depleted in elements required for enzyme co-factors in the methanogenesis metabolic pathway (Co, Mo, Ni, W, Zn) as well as nitrogen and phosphorus. Most the microbial community was composed of chemoheterotrophic bacteria associated with the biodegradation of large carbon molecules, with a small community of acetoclastic methanogens. During and after additions of the depleted elements, the metabolism of the community in the reservoir shifted towards chemoautotrophs and hydrogenotrophic methanogens, and the cell density increased. After treatment was ended, cell counts stabilized at a new equilibrium concentration, and the autotrophic metabolism was maintained. The pre-treatment community was dependent on energy input from solubilized oil molecules, whereas the post-treatment community more effectively utilized dissolved organics and carbon dioxide as carbon sources for fixation and respiration. This study demonstrates the capability of microbial communities to rapidly reorganize in the environment when provided with an influx of the elements required for growth and metabolism.
NASA Astrophysics Data System (ADS)
Gu, B.; Yang, Z.; Lu, X.; Liang, L.; Graham, D. E.; Wullschleger, S. D.
2016-12-01
Climate warming increases microbial activity and stimulates the degradation of stored soil organic carbon (SOC) in Arctic tundra. Studies have shown that the rates of SOC degradation are affected by the substrate quality or chemical composition of SOC, but it remains unclear which pools of SOC are the most vulnerable to rapid breakdown and what mechanisms are involved. Additionally, little is known concerning the effects of warming on microbial mercury methylation and how it is coupled to SOC degradation. Using a suite of analytical techniques, we examined the dynamic consumption and production of labile SOC compounds, including reducing sugars, alcohols, and low-molecular-weight organic acids during an 8-month anoxic incubation with a high-centered polygon trough tundra soil from Barrow, Alaska. We show that reducing sugars and alcohols in thawed permafrost largely account for the initial rapid release of CO2 and CH4 through anaerobic fermentation, whereas the fermentation products such as acetate and formate are subsequently utilized as primary substrates for methanogenesis. Degradation of labile SOC is also found to rapidly fueling the biosynthesis of methylmercury, a potent neurotoxin in tundra soil. Mercury methylation is positively correlated to the production of CH4 and ferrous ion, suggesting the linkages among microbial pathways of methanogenesis, iron reduction, and mercury methylation. Additionally, we found that freshly amended mercury is more bioavailable and susceptible to microbial methylation than preexisting Hg, particularly in the deep mineral soil. These observations suggest that climate warming and permafrost thaw not only impact on the decomposition of stored SOC and emission of greenhouse gases but also increase production of toxic methylmercury in Arctic tundra.
Microbially induced and microbially catalysed precipitation: two different carbonate factories
NASA Astrophysics Data System (ADS)
Meister, Patrick
2016-04-01
The landmark paper by Schlager (2003) has revealed three types of benthic carbonate production referred to as "carbonate factories", operative at different locations at different times in Earth history. The tropical or T-factory comprises the classical platforms and fringing reefs and is dominated by carbonate precipitation by autotrophic calcifying metazoans ("biotically controlled" precipitation). The cool or C-factory is also biotically controlled but via heterotrophic, calcifying metazoans in cold and deep waters at the continental margins. A further type is the mud-mound or M-factory, where carbonate precipitation is supported by microorganisms but not controlled by a specific enzymatic pathway ("biotically induced" precipitation). How exactly the microbes influence precipitation is still poorly understood. Based on recent experimental and field studies, the microbial influence on modern mud mound and microbialite growth includes two fundamentally different processes: (1) Metabolic activity of microbes may increase the saturation state with respect to a particular mineral phase, thereby indirectly driving the precipitation of the mineral phase: microbially induced precipitation. (2) In a situation, where a solution is already supersaturated but precipitation of the mineral is inhibited by a kinetic barrier, microbes may act as a catalyser, i.e. they lower the kinetic barrier: microbially catalysed precipitation. Such a catalytic effect can occur e.g. via secreted polymeric substances or specific chemical groups on the cell surface, at which the minerals nucleate or which facilitate mechanistically the bonding of new ions to the mineral surface. Based on these latest developments in microbialite formation, I propose to extend the scheme of benthic carbonate factories of Schlager et al. (2003) by introducing an additional branch distinguishing microbially induced from microbially catalysed precipitation. Although both mechanisms could be operative in a M-factory, and it is difficult to distinguish their products, their cause is very different. A Mi-factory ("i" for induced) is predominant under low carbonate saturation in normal seawater; a Mc-factory ("c" for catalysed) is operative in higher-alkalinity waters. The latter conditions may not only occur in shallow seas restricted from open sea water but may also have occurred in the aftermath of catastrophic events (e.g. P/T boundary) or during the Precambrian, before the onset of metazoan calcifiers. Thus, adding the additional distinction between microbially induced and microbially catalysed precipitation would allow the application of Schlager's concept of benthic carbonate factories beyond the Phanerozoic and probably over the entire Earth history.
Pandey, Ramesh Prasad; Parajuli, Prakash; Koffas, Mattheos A G; Sohng, Jae Kyung
2016-01-01
In this review, we address recent advances made in pathway engineering, directed evolution, and systems/synthetic biology approaches employed in the production and modification of flavonoids from microbial cells. The review is divided into two major parts. In the first, various metabolic engineering and system/synthetic biology approaches used for production of flavonoids and derivatives are discussed broadly. All the manipulations/engineering accomplished on the microorganisms since 2000 are described in detail along with the biosynthetic pathway enzymes, their sources, structures of the compounds, and yield of each product. In the second part of the review, post-modifications of flavonoids by four major reactions, namely glycosylations, methylations, hydroxylations and prenylations using recombinant strains are described. Copyright © 2016 Elsevier Inc. All rights reserved.
Genome-scale biological models for industrial microbial systems.
Xu, Nan; Ye, Chao; Liu, Liming
2018-04-01
The primary aims and challenges associated with microbial fermentation include achieving faster cell growth, higher productivity, and more robust production processes. Genome-scale biological models, predicting the formation of an interaction among genetic materials, enzymes, and metabolites, constitute a systematic and comprehensive platform to analyze and optimize the microbial growth and production of biological products. Genome-scale biological models can help optimize microbial growth-associated traits by simulating biomass formation, predicting growth rates, and identifying the requirements for cell growth. With regard to microbial product biosynthesis, genome-scale biological models can be used to design product biosynthetic pathways, accelerate production efficiency, and reduce metabolic side effects, leading to improved production performance. The present review discusses the development of microbial genome-scale biological models since their emergence and emphasizes their pertinent application in improving industrial microbial fermentation of biological products.
An ancient Chinese wisdom for metabolic engineering: Yin-Yang
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Stephen G.; He, Lian; Wang, Qingzhao
In ancient Chinese philosophy, Yin-Yang describes two contrary forces that are interconnected and interdependent. This concept also holds true in microbial cell factories, where Yin represents energy metabolism in the form of ATP, and Yang represents carbon metabolism. Current biotechnology can effectively edit the microbial genome or introduce novel enzymes to redirect carbon fluxes. On the other hand, microbial metabolism loses significant free energy as heat when converting sugar into ATP; while maintenance energy expenditures further aggravate ATP shortage. The limitation of cell “powerhouse” prevents hosts from achieving high carbon yields and rates. Via an Escherichia coli flux balance analysismore » model, we further demonstrate the penalty of ATP cost on biofuel synthesis. To ensure cell powerhouse being sufficient in microbial cell factories, we propose five principles: 1. Take advantage of native pathways for product synthesis. 2. Pursue biosynthesis relying only on pathways or genetic parts without significant ATP burden. 3. Combine microbial production with chemical conversions (semi-biosynthesis) to reduce biosynthesis steps. 4. Create “minimal cells” or use non-model microbial hosts with higher energy fitness. 5. Develop a photosynthesis chassis that can utilize light energy and cheap carbon feedstocks. Meanwhile, metabolic flux analysis can be used to quantify both carbon and energy metabolisms. The fluxomics results are essential to evaluate the industrial potential of laboratory strains, avoiding false starts and dead ends during metabolic engineering« less
Lim, Joon Seo; Lim, Mi Young; Choi, Yongbin; Ko, GwangPyo
2017-04-20
Autism spectrum disorder (ASD) is a range of neurodevelopmental conditions that are sharply increasing in prevalence worldwide. Intriguingly, ASD is often accompanied by an array of systemic aberrations including (1) increased serotonin, (2) various modes of gastrointestinal disorders, and (3) inflammatory bowel disease (IBD), albeit the underlying cause for such comorbidities remains uncertain. Also, accumulating number of studies report that the gut microbial composition is significantly altered in children with ASD or patients with IBD. Surprisingly, when we analyzed the gut microbiota of poly I:C and VPA-induced mouse models of ASD, we found a distinct pattern of microbial dysbiosis that highly recapitulated those reported in clinical cases of ASD and IBD. Moreover, we report that such microbial dysbiosis led to notable perturbations in microbial metabolic pathways that are known to negatively affect the host, especially with regards to the pathogenesis of ASD and IBD. Lastly, we found that serum level of serotonin is significantly increased in both poly I:C and VPA mice, and that it correlates with increases of a bacterial genus and a metabolic pathway that are implicated in stimulation of host serotonin production. Our results using animal model identify prenatal environmental risk factors of autism as possible causative agents of IBD-related gut microbial dysbiosis in ASD, and suggest a multifaceted role of gut microbiota in the systemic pathogenesis of ASD and hyperserotonemia.
Toulza, Eve; Tagliabue, Alessandro; Blain, Stéphane; Piganeau, Gwenael
2012-01-01
Microbial metagenomes are DNA samples of the most abundant, and therefore most successful organisms at the sampling time and location for a given cell size range. The study of microbial communities via their DNA content has revolutionized our understanding of microbial ecology and evolution. Iron availability is a critical resource that limits microbial communities' growth in many oceanic areas. Here, we built a database of 2319 sequences, corresponding to 140 gene families of iron metabolism with a large phylogenetic spread, to explore the microbial strategies of iron acquisition in the ocean's bacterial community. We estimate iron metabolism strategies from metagenome gene content and investigate whether their prevalence varies with dissolved iron concentrations obtained from a biogeochemical model. We show significant quantitative and qualitative variations in iron metabolism pathways, with a higher proportion of iron metabolism genes in low iron environments. We found a striking difference between coastal and open ocean sites regarding Fe(2+) versus Fe(3+) uptake gene prevalence. We also show that non-specific siderophore uptake increases in low iron open ocean environments, suggesting bacteria may acquire iron from natural siderophore-like organic complexes. Despite the lack of knowledge of iron uptake mechanisms in most marine microorganisms, our approach provides insights into how the iron metabolic pathways of microbial communities may vary with seawater iron concentrations.
An ancient Chinese wisdom for metabolic engineering: Yin-Yang
Wu, Stephen G.; He, Lian; Wang, Qingzhao; ...
2015-03-20
In ancient Chinese philosophy, Yin-Yang describes two contrary forces that are interconnected and interdependent. This concept also holds true in microbial cell factories, where Yin represents energy metabolism in the form of ATP, and Yang represents carbon metabolism. Current biotechnology can effectively edit the microbial genome or introduce novel enzymes to redirect carbon fluxes. On the other hand, microbial metabolism loses significant free energy as heat when converting sugar into ATP; while maintenance energy expenditures further aggravate ATP shortage. The limitation of cell “powerhouse” prevents hosts from achieving high carbon yields and rates. Via an Escherichia coli flux balance analysismore » model, we further demonstrate the penalty of ATP cost on biofuel synthesis. To ensure cell powerhouse being sufficient in microbial cell factories, we propose five principles: 1. Take advantage of native pathways for product synthesis. 2. Pursue biosynthesis relying only on pathways or genetic parts without significant ATP burden. 3. Combine microbial production with chemical conversions (semi-biosynthesis) to reduce biosynthesis steps. 4. Create “minimal cells” or use non-model microbial hosts with higher energy fitness. 5. Develop a photosynthesis chassis that can utilize light energy and cheap carbon feedstocks. Meanwhile, metabolic flux analysis can be used to quantify both carbon and energy metabolisms. The fluxomics results are essential to evaluate the industrial potential of laboratory strains, avoiding false starts and dead ends during metabolic engineering« less
The metabolism and biotechnological application of betaine in microorganism.
Zou, Huibin; Chen, Ningning; Shi, Mengxun; Xian, Mo; Song, Yimin; Liu, Junhong
2016-05-01
Glycine betaine (betaine) is widely distributed in nature and can be found in many microorganisms, including bacteria, archaea, and fungi. Due to its particular functions, many microorganisms utilize betaine as a functional chemical and have evolved different metabolic pathways for the biosynthesis and catabolism of betaine. As in animals and plants, the principle role of betaine is to protect microbial cells against drought, osmotic stress, and temperature stress. In addition, the role of betaine in methyl group metabolism has been observed in a variety of microorganisms. Recent studies have shown that betaine supplementation can improve the performance of microbial strains used for the fermentation of lactate, ethanol, lysine, pyruvate, and vitamin B12, during which betaine can act as stress protectant or methyl donor for the biosynthesis of structurally complex compounds. In this review, we summarize the transport, synthesis, catabolism, and functions of betaine in microorganisms and discuss potential engineering strategies that employ betaine as a methyl donor for the biosynthesis of complex secondary metabolites such as a variety of vitamins, coenzymes, and antibiotics. In conclusion, the biocompatibility, C/N ratio, abundance, and comprehensive metabolic information of betaine collectively indicate that this molecule has great potential for broad applications in microbial biotechnology.
Acetylenotrophy: A hidden but ubiquitous microbial metabolism?
Akob, Denise M.; Sutton, John M.; Fierst, Janna L.; Haase, Karl B.; Baesman, Shaun; Luther, George; Miller, Laurence G.; Oremland, Ronald S.
2018-01-01
Acetylene (IUPAC name: ethyne) is a colorless, gaseous hydrocarbon, composed of two triple bonded carbon atoms attached to hydrogens (C2H2). When microbiologists and biogeochemists think of acetylene, they immediately think of its use as an inhibitory compound of certain microbial processes and a tracer for nitrogen fixation. However, what is less widely known is that anaerobic and aerobic microorganisms can degrade acetylene, using it as a sole carbon and energy source and providing the basis of a microbial food web. Here, we review what is known about acetylene degrading organisms and introduce the term 'acetylenotrophs' to refer to the microorganisms that carry out this metabolic pathway. In addition, we review the known environmental sources of acetylene and postulate the presence of an hidden acetylene cycle. The abundance of bacteria capable of using acetylene and other alkynes as an energy and carbon source suggests that there are energy cycles present in the environment that are driven by acetylene and alkyne production and consumption that are isolated from atmospheric exchange. Acetylenotrophs may have developed to leverage the relatively high concentrations of acetylene in the pre-Cambrian atmosphere, evolving later to survive in specialized niches where acetylene and other alkynes were produced.
2015-01-01
In recent years attention has been focused on the utilization of microorganisms as alternatives for industrial and nutritional applications. Considerable research has been devoted to techniques for growth, extraction, and purification of high-value lipids for their use as biofuels and biosurfactants as well as high-value metabolites for nutrition and health. These successes argue that the elucidation of the mechanisms underlying the microbial biosynthesis of such molecules, which are far from being completely understood, now will yield spectacular opportunities for industrial scale biomolecular production. There are important additional questions to be solved to optimize the processing strategies to take advantage of the assets of microbial lipids. The present review describes the current state of knowledge regarding lipid biosynthesis, accumulation, and transport mechanisms present in single-cell organisms, specifically yeasts, microalgae, bacteria, and archaea. Similarities and differences in biochemical pathways and strategies of different microorganisms provide a diverse toolset to the expansion of biotechnologies for lipid production. This paper is intended to inspire a generation of lipid scientists to insights that will drive the biotechnologies of microbial production as uniquely enabling players of lipid biotherapeutics, biofuels, biomaterials, and other opportunity areas into the 21st century. PMID:24628496
Microorganisms under high pressure--adaptation, growth and biotechnological potential.
Mota, Maria J; Lopes, Rita P; Delgadillo, Ivonne; Saraiva, Jorge A
2013-12-01
Hydrostatic pressure is a well-known physical parameter which is now considered an important variable of life, since organisms have the ability to adapt to pressure changes, by the development of resistance against this variable. In the past decades a huge interest in high hydrostatic pressure (HHP) technology is increasingly emerging among food and biosciences researchers. Microbial specific stress responses to HHP are currently being investigated, through the evaluation of pressure effects on biomolecules, cell structure, metabolic behavior, growth and viability. The knowledge development in this field allows a better comprehension of pressure resistance mechanisms acquired at sub-lethal pressures. In addition, new applications of HHP could arise from these studies, particularly in what concerns to biotechnology. For instance, the modulation of microbial metabolic pathways, as a response to different pressure conditions, may lead to the production of novel compounds with potential biotechnological and industrial applications. Considering pressure as an extreme life condition, this review intends to present the main findings so far reported in the scientific literature, focusing on microorganisms with the ability to withstand and to grow in high pressure conditions, whether they have innated or acquired resistance, and show the potential of the application of HHP technology for microbial biotechnology. © 2013.
Garay, Luis A; Boundy-Mills, Kyria L; German, J Bruce
2014-04-02
In recent years attention has been focused on the utilization of microorganisms as alternatives for industrial and nutritional applications. Considerable research has been devoted to techniques for growth, extraction, and purification of high-value lipids for their use as biofuels and biosurfactants as well as high-value metabolites for nutrition and health. These successes argue that the elucidation of the mechanisms underlying the microbial biosynthesis of such molecules, which are far from being completely understood, now will yield spectacular opportunities for industrial scale biomolecular production. There are important additional questions to be solved to optimize the processing strategies to take advantage of the assets of microbial lipids. The present review describes the current state of knowledge regarding lipid biosynthesis, accumulation, and transport mechanisms present in single-cell organisms, specifically yeasts, microalgae, bacteria, and archaea. Similarities and differences in biochemical pathways and strategies of different microorganisms provide a diverse toolset to the expansion of biotechnologies for lipid production. This paper is intended to inspire a generation of lipid scientists to insights that will drive the biotechnologies of microbial production as uniquely enabling players of lipid biotherapeutics, biofuels, biomaterials, and other opportunity areas into the 21st century.
Halbfeld, Christoph; Ebert, Birgitta E.; Blank, Lars M.
2014-01-01
Volatile organic compounds (VOCs) produced during microbial fermentations determine the flavor of fermented food and are of interest for the production of fragrances or food additives. However, the microbial synthesis of these compounds from simple carbon sources has not been well investigated so far. Here, we analyzed the headspace over glucose minimal salt medium cultures of Saccharomyces cerevisiae using multi-capillary column-ion mobility spectrometry (MCC-IMS). The high sensitivity and fast data acquisition of the MCC-IMS enabled online analysis of the fermentation off-gas and 19 specific signals were determined. To four of these volatile compounds, we could assign the metabolites ethanol, 2-pentanone, isobutyric acid, and 2,3-hexanedione by MCC-IMS measurements of pure standards and cross validation with thermal desorption–gas chromatography-mass spectrometry measurements. Despite the huge biochemical knowledge of the biochemistry of the model organism S. cerevisiae, only the biosynthetic pathways for ethanol and isobutyric acid are fully understood, demonstrating the considerable lack of research of volatile metabolites. As monitoring of VOCs produced during microbial fermentations can give valuable insight into the metabolic state of the organism, fast and non-invasive MCC-IMS analyses provide valuable data for process control. PMID:25197771
Comparative genome analysis in the integrated microbial genomes (IMG) system.
Markowitz, Victor M; Kyrpides, Nikos C
2007-01-01
Comparative genome analysis is critical for the effective exploration of a rapidly growing number of complete and draft sequences for microbial genomes. The Integrated Microbial Genomes (IMG) system (img.jgi.doe.gov) has been developed as a community resource that provides support for comparative analysis of microbial genomes in an integrated context. IMG allows users to navigate the multidimensional microbial genome data space and focus their analysis on a subset of genes, genomes, and functions of interest. IMG provides graphical viewers, summaries, and occurrence profile tools for comparing genes, pathways, and functions (terms) across specific genomes. Genes can be further examined using gene neighborhoods and compared with sequence alignment tools.
Pang, Yaru; Hu, Zhihui; Xiao, Dongguang; Yu, Aiqun
2018-01-25
Limonene (C₁₀H₁₆) and bisabolene (C₁₅H₂₄) are both naturally occurring terpenes in plants. Depending on the number of C₅ units, limonene and bisabolene are recognized as representative monoterpenes and sesquiterpenes, respectively. Limonene and bisabolene are important pharmaceutical and nutraceutical products used in the prevention and treatment of cancer and many other diseases. In addition, they can be used as starting materials to produce a range of commercially valuable products, such as pharmaceuticals, nutraceuticals, cosmetics, and biofuels. The low abundance or yield of limonene and bisabolene in plants renders their isolation from plant sources non-economically viable. Isolation of limonene and bisabolene from plants also suffers from low efficiency and often requires harsh reaction conditions, prolonged reaction times, and expensive equipment cost. Recently, the rapid developments in metabolic engineering of microbes provide a promising alternative route for producing these plant natural products. Therefore, producing limonene and bisabolene by engineering microbial cells into microbial factories is becoming an attractive alternative approach that can overcome the bottlenecks, making it more sustainable, environmentally friendly and economically competitive. Here, we reviewed the status of metabolic engineering of microbes that produce limonene and bisabolene including microbial hosts, key enzymes, metabolic pathways and engineering of limonene/bisabolene biosynthesis. Furthermore, key challenges and future perspectives were discussed.
Forehead, Hugh I; Kendrick, Gary A; Thompson, Peter A
2012-04-01
The interactions between physical disturbances and biogeochemical cycling are fundamental to ecology. The benthic microbial community controls the major pathway of nutrient recycling in most shallow-water ecosystems. This community is strongly influenced by physical forcing and nutrient inputs. Our study tests the hypotheses that benthic microbial communities respond to shelter and enrichment with (1) increased biomass, (2) change in community composition and (3) increased uptake of inorganic nutrients from the water column. Replicate in situ plots were sheltered from physical disturbance and enriched with inorganic nutrients or left without additional nutrients. At t(0) and after 10 days, sediment-water fluxes of nutrients, O(2) and N(2) , were measured, the community was characterized with biomarkers. Autochthonous benthic microalgal (BMA) biomass increased 30% with shelter and a natural fivefold increase in nutrient concentration; biomass did not increase with greater enrichment. Diatoms remained the dominant taxon of BMA, suggesting that the sediments were not N or Si limited. Bacteria and other heterotrophic organisms increased with enrichment and shelter. Daily exchanges of inorganic nutrients between sediments and the water column did not change in response to shelter or nutrient enrichment. In these sediments, physical disturbance, perhaps in conjunction with nutrient enrichment, was the primary determinant of microbial biomass. © 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.
Phytohormones and Beneficial Microbes: Essential Components for Plants to Balance Stress and Fitness
Egamberdieva, Dilfuza; Wirth, Stephan J.; Alqarawi, Abdulaziz A.; Abd_Allah, Elsayed F.; Hashem, Abeer
2017-01-01
Plants are subjected to various abiotic stresses, such as drought, extreme temperature, salinity, and heavy metals. Abiotic stresses have negative impact on the physiology and morphology of plants through defects in the genetic regulation of cellular pathways. Plants employ several tolerance mechanisms and pathways to avert the effects of stresses that are triggered whenever alterations in metabolism are encountered. Phytohormones are among the most important growth regulators; they are known for having a prominent impact on plant metabolism, and additionally, they play a vital role in the stimulation of plant defense response mechanisms against stresses. Exogenous phytohormone supplementation has been adopted to improve growth and metabolism under stress conditions. Recent investigations have shown that phytohormones produced by root-associated microbes may prove to be important metabolic engineering targets for inducing host tolerance to abiotic stresses. Phytohormone biosynthetic pathways have been identified using several genetic and biochemical methods, and numerous reviews are currently available on this topic. Here, we review current knowledge on the function of phytohormones involved in the improvement of abiotic stress tolerance and defense response in plants exposed to different stressors. We focus on recent successes in identifying the roles of microbial phytohormones that induce stress tolerance, especially in crop plants. In doing so, this review highlights important plant morpho-physiological traits that can be exploited to identify the positive effects of phytohormones on stress tolerance. This review will therefore be helpful to plant physiologists and agricultural microbiologists in designing strategies and tools for the development of broad spectrum microbial inoculants supporting sustainable crop production under hostile environments. PMID:29163398
Saxena, Rituja; Dhakan, Darshan B; Mittal, Parul; Waiker, Prashant; Chowdhury, Anirban; Ghatak, Arundhuti; Sharma, Vineet K
2016-01-01
Extreme ecosystems such as hot springs are of great interest as a source of novel extremophilic species, enzymes, metabolic functions for survival and biotechnological products. India harbors hundreds of hot springs, the majority of which are not yet explored and require comprehensive studies to unravel their unknown and untapped phylogenetic and functional diversity. The aim of this study was to perform a large-scale metagenomic analysis of three major hot springs located in central India namely, Badi Anhoni, Chhoti Anhoni, and Tattapani at two geographically distinct regions (Anhoni and Tattapani), to uncover the resident microbial community and their metabolic traits. Samples were collected from seven distinct sites of the three hot spring locations with temperature ranging from 43.5 to 98°C. The 16S rRNA gene amplicon sequencing of V3 hypervariable region and shotgun metagenome sequencing uncovered a unique taxonomic and metabolic diversity of the resident thermophilic microbial community in these hot springs. Genes associated with hydrocarbon degradation pathways, such as benzoate, xylene, toluene, and benzene were observed to be abundant in the Anhoni hot springs (43.5-55°C), dominated by Pseudomonas stutzeri and Acidovorax sp., suggesting the presence of chemoorganotrophic thermophilic community with the ability to utilize complex hydrocarbons as a source of energy. A high abundance of genes belonging to methane metabolism pathway was observed at Chhoti Anhoni hot spring, where methane is reported to constitute >80% of all the emitted gases, which was marked by the high abundance of Methylococcus capsulatus . The Tattapani hot spring, with a high-temperature range (61.5-98°C), displayed a lower microbial diversity and was primarily dominated by a nitrate-reducing archaeal species Pyrobaculum aerophilum . A higher abundance of cell metabolism pathways essential for the microbial survival in extreme conditions was observed at Tattapani. Taken together, the results of this study reveal a novel consortium of microbes, genes, and pathways associated with the hot spring environment.
Metabolic Reconstruction for Metagenomic Data and Its Application to the Human Microbiome
Abubucker, Sahar; Segata, Nicola; Goll, Johannes; Schubert, Alyxandria M.; Izard, Jacques; Cantarel, Brandi L.; Rodriguez-Mueller, Beltran; Zucker, Jeremy; Thiagarajan, Mathangi; Henrissat, Bernard; White, Owen; Kelley, Scott T.; Methé, Barbara; Schloss, Patrick D.; Gevers, Dirk; Mitreva, Makedonka; Huttenhower, Curtis
2012-01-01
Microbial communities carry out the majority of the biochemical activity on the planet, and they play integral roles in processes including metabolism and immune homeostasis in the human microbiome. Shotgun sequencing of such communities' metagenomes provides information complementary to organismal abundances from taxonomic markers, but the resulting data typically comprise short reads from hundreds of different organisms and are at best challenging to assemble comparably to single-organism genomes. Here, we describe an alternative approach to infer the functional and metabolic potential of a microbial community metagenome. We determined the gene families and pathways present or absent within a community, as well as their relative abundances, directly from short sequence reads. We validated this methodology using a collection of synthetic metagenomes, recovering the presence and abundance both of large pathways and of small functional modules with high accuracy. We subsequently applied this method, HUMAnN, to the microbial communities of 649 metagenomes drawn from seven primary body sites on 102 individuals as part of the Human Microbiome Project (HMP). This provided a means to compare functional diversity and organismal ecology in the human microbiome, and we determined a core of 24 ubiquitously present modules. Core pathways were often implemented by different enzyme families within different body sites, and 168 functional modules and 196 metabolic pathways varied in metagenomic abundance specifically to one or more niches within the microbiome. These included glycosaminoglycan degradation in the gut, as well as phosphate and amino acid transport linked to host phenotype (vaginal pH) in the posterior fornix. An implementation of our methodology is available at http://huttenhower.sph.harvard.edu/humann. This provides a means to accurately and efficiently characterize microbial metabolic pathways and functional modules directly from high-throughput sequencing reads, enabling the determination of community roles in the HMP cohort and in future metagenomic studies. PMID:22719234
Cao, Yingxiu; Li, Xiaofei; Li, Feng; Song, Hao
2017-09-15
Extracellular electron transfer (EET) in Shewanella oneidensis MR-1, which is one of the most well-studied exoelectrogens, underlies many microbial electrocatalysis processes, including microbial fuel cells, microbial electrolysis cells, and microbial electrosynthesis. However, regulating the efficiency of EET remains challenging due to the lack of efficient genome regulation tools that regulate gene expression levels in S. oneidensis. Here, we systematically established a transcriptional regulation technology, i.e., clustered regularly interspaced short palindromic repeats interference (CRISPRi), in S. oneidensis MR-1 using green fluorescent protein (GFP) as a reporter. We used this CRISPRi technology to repress the expression levels of target genes, individually and in combination, in the EET pathways (e.g., the MtrCAB pathway and genes affecting the formation of electroactive biofilms in S. oneidensis), which in turn enabled the efficient regulation of EET efficiency. We then established a translational regulation technology, i.e., Hfq-dependent small regulatory RNA (sRNA), in S. oneidensis by repressing the GFP reporter and mtrA, which is a critical gene in the EET pathways in S. oneidensis. To achieve coordinated transcriptional and translational regulation at the genomic level, the CRISPRi and Hfq-dependent sRNA systems were incorporated into a single plasmid harbored in a recombinant S. oneidensis strain, which enabled an even higher efficiency of mtrA gene repression in the EET pathways than that achieved by the CRISPRi and Hfq-dependent sRNA system alone, as exhibited by the reduced electricity output. Overall, we developed a combined CRISPRi-sRNA method that enabled the synergistic transcriptional and translational regulation of target genes in S. oneidensis. This technology involving CRISPRi-sRNA transcriptional-translational regulation of gene expression at the genomic level could be applied to other microorganisms.
NASA Astrophysics Data System (ADS)
Moore, E. K.; Jelen, B. I.; Giovannelli, D.; Prabhu, A.; Raanan, H.; Falkowski, P. G.
2017-12-01
Deep time changes in Earth surface redox conditions, particularly due to global oxygenation, has impacted the availability of different metals and substrates that are central in biology. Oxidoreductase proteins are molecular nanomachines responsible for all biological electron transfer processes across the tree of life. These enzymes largely contain transition metals in their active sites. Microbial metabolic pathways form a global network of electron transfer, which expanded throughout the Archean eon. Older metabolisms (sulfur reduction, methanogenesis, anoxygenic photosynthesis) accessed negative redox potentials, while later evolving metabolisms (oxygenic photosynthesis, nitrification/denitrification, aerobic respiration) accessed positive redox potentials. The incorporation of different transition metals facilitated biological innovation and the expansion of the network of microbial metabolism. Network analysis was used to examine the connections between microbial taxa, metabolic pathways, crucial metallocofactors, and substrates in deep time by incorporating biosignatures preserved in the geologic record. Nitrogen fixation and aerobic respiration have the highest level of betweenness among metabolisms in the network, indicating that the oldest metabolisms are not the most central. Fe has by far the highest betweenness among metals. Clustering analysis largely separates High Metal Bacteria (HMB), Low Metal Bacteria (LMB), and Archaea showing that simple un-weighted links between taxa, metabolism, and metals have phylogenetic relevance. On average HMB have the highest betweenness among taxa, followed by Archaea and LMB. There is a correlation between the number of metallocofactors and metabolic pathways in representative bacterial taxa, but Archaea do not follow this trend. In many cases older and more recently evolved metabolisms were clustered together supporting previous findings that proliferation of metabolic pathways is not necessarily chronological.
Révész, K. M.; Breen, K.J.; Baldassare, A.J.; Burruss, R.C.
2010-01-01
The origin of the combustible gases in groundwater from glacial-outwash and fractured-bedrock aquifers was investigated in northern Tioga County, Pennsylvania. Thermogenic methane (CH4) and ethane (C2H6) and microbial CH4 were found. Microbial CH4 is from natural in situ processes in the shale bedrock and occurs chiefly in the bedrock aquifer. The δ13C values of CH4 and C2H6 for the majority of thermogenic gases from water wells either matched or were between values for the samples of non-native storage-field gas from injection wells and the samples of gas from storage-field observation wells. Traces of C2H6 with microbial CH4 and a range of C and H isotopic compositions of CH4 indicate gases of different origins are mixing in sub-surface pathways; gas mixtures are present in groundwater. Pathways for gas migration and a specific source of the gases were not identified. Processes responsible for the presence of microbial gases in groundwater could be elucidated with further geochemical study.
Ellis, L B; Hershberger, C D; Wackett, L P
1999-01-01
The University of Minnesota Biocatalysis/Biodegradation Database (UM-BBD, http://www.labmed.umn.edu/umbbd/i nde x.html) first became available on the web in 1995 to provide information on microbial biocatalytic reactions of, and biodegradation pathways for, organic chemical compounds, especially those produced by man. Its goal is to become a representative database of biodegradation, spanning the diversity of known microbial metabolic routes, organic functional groups, and environmental conditions under which biodegradation occurs. The database can be used to enhance understanding of basic biochemistry, biocatalysis leading to speciality chemical manufacture, and biodegradation of environmental pollutants. It is also a resource for functional genomics, since it contains information on enzymes and genes involved in specialized metabolism not found in intermediary metabolism databases, and thus can assist in assigning functions to genes homologous to such less common genes. With information on >400 reactions and compounds, it is poised to become a resource for prediction of microbial biodegradation pathways for compounds it does not contain, a process complementary to predicting the functions of new classes of microbial genes. PMID:9847233
Simonin, Marie; Nunan, Naoise; Bloor, Juliette M G; Pouteau, Valérie; Niboyet, Audrey
2017-05-01
Nitrogen (N) addition is known to affect soil microbial communities, but the interactive effects of N addition with other drivers of global change remain unclear. The impacts of multiple global changes on the structure of microbial communities may be mediated by specific microbial groups with different life-history strategies. Here, we investigated the combined effects of elevated CO2 and N addition on soil microbial communities using PLFA profiling in a short-term grassland mesocosm experiment. We also examined the linkages between the relative abundance of r- and K-strategist microorganisms and resistance of the microbial community structure to experimental treatments. N addition had a significant effect on microbial community structure, likely driven by concurrent increases in plant biomass and in soil labile C and N. In contrast, microbial community structure did not change under elevated CO2 or show significant CO2 × N interactions. Resistance of soil microbial community structure decreased with increasing fungal/bacterial ratio, but showed a positive relationship with the Gram-positive/Gram-negative bacterial ratio. Our findings suggest that the Gram-positive/Gram-negative bacteria ratio may be a useful indicator of microbial community resistance and that K-strategist abundance may play a role in the short-term stability of microbial communities under global change. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Martinson, Guntars; Brandt, Franziska; Conrad, Ralf
2016-04-01
Several thousands of tank bromeliads per hectare of neotropical forest create a unique wetland ecosystem that harbors diverse communities of archaea and bacteria and emit substantial amounts of methane. We studied spatial distribution of archaeal and bacterial communities, microbial methane cycling and their environmental drivers in tank bromeliad wetlands. We selected tank bromeliads of different species and functional types (terrestrial and canopy bromeliads) in a neotropical montane forest of Southern Ecuador and sampled the organic tank slurry. Archaeal and bacterial communities were characterized using terminal-restriction fragment length polymorphism (T-RFLP) and Illumina MiSeq sequencing, respectively, and linked with physico-chemical tank-slurry properties. Additionally, we performed tank-slurry incubations to measure methane production potential, stable carbon isotope fractionation and pathway of methane formation. Archaeal and bacterial community composition in bromeliad wetlands was dominated by methanogens and by Alphaproteobacteria, respectively, and did not differ between species but between functional types. Hydrogenotrophic Methanomicrobiales were the dominant methanogens among all bromeliads but the relative abundance of aceticlastic Methanosaetaceae increased in terrestrial bromeliads. Complementary, hydrogenotrophic methanogenesis was the dominant pathway of methane formation but the relative contribution of aceticlastic methanogenesis increased in terrestrial bromeliads and led to a concomitant increase in total methane production. Rhodospirillales were characteristic for canopy bromeliads, Planctomycetales and Actinomycetalis for terrestrial bromeliads. While nitrogen concentration and pH explained 32% of the archaeal community variability, 29% of the bacterial community variability was explained by nitrogen, acetate and propionate concentrations. Our study demonstrates that bromeliad functional types, associated with different forest strata, and their constrained environmental characteristics shape the spatial structure of archaeal and bacterial communities and microbial methane cycling in neotropical bromeliad wetlands.
Reconstruction of metabolic pathways for the cattle genome
Seo, Seongwon; Lewin, Harris A
2009-01-01
Background Metabolic reconstruction of microbial, plant and animal genomes is a necessary step toward understanding the evolutionary origins of metabolism and species-specific adaptive traits. The aims of this study were to reconstruct conserved metabolic pathways in the cattle genome and to identify metabolic pathways with missing genes and proteins. The MetaCyc database and PathwayTools software suite were chosen for this work because they are widely used and easy to implement. Results An amalgamated cattle genome database was created using the NCBI and Ensembl cattle genome databases (based on build 3.1) as data sources. PathwayTools was used to create a cattle-specific pathway genome database, which was followed by comprehensive manual curation for the reconstruction of metabolic pathways. The curated database, CattleCyc 1.0, consists of 217 metabolic pathways. A total of 64 mammalian-specific metabolic pathways were modified from the reference pathways in MetaCyc, and two pathways previously identified but missing from MetaCyc were added. Comparative analysis of metabolic pathways revealed the absence of mammalian genes for 22 metabolic enzymes whose activity was reported in the literature. We also identified six human metabolic protein-coding genes for which the cattle ortholog is missing from the sequence assembly. Conclusion CattleCyc is a powerful tool for understanding the biology of ruminants and other cetartiodactyl species. In addition, the approach used to develop CattleCyc provides a framework for the metabolic reconstruction of other newly sequenced mammalian genomes. It is clear that metabolic pathway analysis strongly reflects the quality of the underlying genome annotations. Thus, having well-annotated genomes from many mammalian species hosted in BioCyc will facilitate the comparative analysis of metabolic pathways among different species and a systems approach to comparative physiology. PMID:19284618
Exploring the microbial biodegradation and biotransformation gene pool.
Galvão, Teca Calcagno; Mohn, William W; de Lorenzo, Víctor
2005-10-01
Similar to the New World explorers of the 16th and 17th century, microbiologists today find themselves at the edge of unknown territory. It is estimated that only 0.1-1% of microorganisms can be cultivated using current techniques; the vastness of microbial lifestyles remains to be explored. Because the microbial metagenome is the largest reservoir of genes that determine enzymatic reactions, new techniques are being developed to identify the genes that underlie many valuable chemical biotransformations carried out by microbes, particularly in pathways for biodegradation of recalcitrant and xenobiotic molecules. Our knowledge of catabolic routes built on research during the past 40 years is a solid basis from which to venture on to the little-explored pathways that might exist in nature. However, it is clear that the vastness of information to be obtained requires astute experimental strategies for finding novel reactions.
An Analysis of Microbial Pollution in the Sinclair-Dyes Inlet Watershed
DOE Office of Scientific and Technical Information (OSTI.GOV)
May, Christopher W.; Cullinan, Valerie I.
2005-09-21
This assessment of fecal coliform sources and pathways in Sinclair and Dyes Inlets is part of the Project ENVironmental InVESTment (ENVVEST) being conducted by the Navy's Puget Sound Naval Shipyard and Intermediate Maintenance Facility in cooperation with the US Environmental Protection Agency, Washington State Department of Ecology, the Suquamish Tribe, Kitsap County, the City of Bremerton, the City of Port Orchard, and other local stakeholders. The goal of this study was to identify microbial pollution problems within the Sinclair-Dyes Inlet watershed and to provide a comprehensive assessment of fecal coliform (FC) contamination from all identifiable sources in the watershed. Thismore » study quantifies levels of contamination and estimated loadings from known sources within the watersheds and describes pollutant transport mechanisms found in the study area. In addition, the effectiveness of pollution prevention and mitigation measures currently in place within the Sinclair-Dyes Inlet watershed are discussed. This comprehensive study relies on historical data collected by several cooperating agencies, in addition to data collected during the study period from spring 2001 through summer 2005. This report is intended to provide the technical information needed to continue current water quality cleanup efforts and to help implement future efforts.« less
Decho, Alan W.; Luoma, Samuel N.
1991-01-01
Time courses for ingestion, retention and release via feces of microbial food was investigated using 2 bivalves with different feeding strategies, Potamocorbula amurensis and Macoma balthica. The results showed 2 pathways for the uptake of food material in these clams. The first is represented by an initial label pulse in the feces. The second pathway operates over longer time periods. Inert 51Cr-labeled beads were used to determine time frames for these pathways. The first pathway, involving extracellular digestion and intestinal uptake, is relatively inefficient in the digestion of bacterial cells by P. amurensis but more efficient in M. balthica. The second pathway, involving intracellular digestion within the digestive gland of both clams, was highly efficient in absorbing bacterial carbon, and was responsible for most chromium uptake. Differences in the overall retention of microbial 51Cr and 14C relate not to gut-passage times but to the processing and release strategies of the food material by these 2 clams..
NASA Astrophysics Data System (ADS)
Maranger, Roxane; Vaqué, Dolors; Nguyen, Dan; Hébert, Marie-Pier; Lara, Elena
2015-12-01
The Arctic Ocean is rapidly changing where increasing water temperatures and rapid loss of summer sea-ice will likely influence the structure and functioning of the entire ecosystem. The aim of this study was to synthesize the current state of knowledge on microbial abundances and processes from a regional Pan-Arctic perspective, characterize regulating factors and attempt to predict how patterns may change under a warming scenario. Here we identify some generalized patterns of different microbial variables between the Pacific-fed and the Atlantic-fed sectors of the Arctic Ocean. Bacterial production (BP), abundance and grazing rates by protists (GT) were all higher in the Atlantic-fed region. Bacterial loss by viral lyses (VL) was proportionally more important in the Pacific-fed sector, suggesting a reduced C transfer efficiency within the microbial loop of that region. Using a cross-comparative approach and all available data to build Arrhenius plots, we found a differential response to warming temperatures among various microbial processes. BP and GT responded similarly and more strongly to increases in temperature than VL did, suggesting a shift in the overall influence of viral mortality under a warming scenario. However, together with temperature, resource-related factors also exerted an influence in regulating these rates. We identified large information gaps for more classically studied microbial variable from several Arctic seas. Furthermore, there is limited information on less conventional pathways such as grazing by mixotrophic species, which may be playing a significant role in Arctic microbial trophodynamics. Although generalized patterns could be elucidated, more information is needed to predict and understand how a changing Arctic will alter microbial C pathways and major biogeochemical cycles on regional and seasonal scales.
Enhancing solubility of deoxyxylulose phosphate pathway enzymes for microbial isoprenoid production
2012-01-01
Background Recombinant proteins are routinely overexpressed in metabolic engineering. It is well known that some over-expressed heterologous recombinant enzymes are insoluble with little or no enzymatic activity. This study examined the solubility of over-expressed homologous enzymes of the deoxyxylulose phosphate pathway (DXP) and the impact of inclusion body formation on metabolic engineering of microbes. Results Four enzymes of this pathway (DXS, ISPG, ISPH and ISPA), but not all, were highly insoluble, regardless of the expression systems used. Insoluble dxs (the committed enzyme of DXP pathway) was found to be inactive. Expressions of fusion tags did not significantly improve the solubility of dxs. However, hypertonic media containing sorbitol, an osmolyte, successfully doubled the solubility of dxs, with the concomitant improvement in microbial production of the metabolite, DXP. Similarly, sorbitol significantly improved the production of soluble and functional ERG12, the committed enzyme in the mevalonate pathway. Conclusion This study demonstrated the unanticipated findings that some over-expressed homologous enzymes of the DXP pathway were highly insoluble, forming inclusion bodies, which affected metabolite formation. Sorbitol was found to increase both the solubility and function of some of these over-expressed enzymes, a strategy to increase the production of secondary metabolites. PMID:23148661
NASA Astrophysics Data System (ADS)
King, E.; Brodie, E.; Anantharaman, K.; Karaoz, U.; Bouskill, N.; Banfield, J. F.; Steefel, C. I.; Molins, S.
2016-12-01
Characterizing and predicting the microbial and chemical compositions of subsurface aquatic systems necessitates an understanding of the metabolism and physiology of organisms that are often uncultured or studied under conditions not relevant for one's environment of interest. Cultivation-independent approaches are therefore important and have greatly enhanced our ability to characterize functional microbial diversity. The capability to reconstruct genomes representing thousands of populations from microbial communities using metagenomic techniques provides a foundation for development of predictive models for community structure and function. Here, we discuss a genome-informed stochastic trait-based model incorporated into a reactive transport framework to represent the activities of coupled guilds of hypothetical microorganisms. Metabolic pathways for each microbe within a functional guild are parameterized from metagenomic data with a unique combination of traits governing organism fitness under dynamic environmental conditions. We simulate the thermodynamics of coupled electron donor and acceptor reactions to predict the energy available for cellular maintenance, respiration, biomass development, and enzyme production. While `omics analyses can now characterize the metabolic potential of microbial communities, it is functionally redundant as well as computationally prohibitive to explicitly include the thousands of recovered organisms into biogeochemical models. However, one can derive potential metabolic pathways from genomes along with trait-linkages to build probability distributions of traits. These distributions are used to assemble groups of microbes that couple one or more of these pathways. From the initial ensemble of microbes, only a subset will persist based on the interaction of their physiological and metabolic traits with environmental conditions, competing organisms, etc. Here, we analyze the predicted niches of these hypothetical microbes and assess the ability of a stochastically assembled community of organisms to predict subsurface biogeochemical dynamics.
Microbial Endocrinology in the Pathogenesis of Infectious Disease.
Lyte, Mark
2016-04-01
Microbial endocrinology represents the intersection of two seemingly disparate fields, microbiology and neurobiology, and is based on the shared presence of neurochemicals that are exactly the same in host as well as in the microorganism. The ability of microorganisms to not only respond to, but also produce, many of the same neurochemicals that are produced by the host, such as during periods of stress, has led to the introduction of this evolutionary-based mechanism which has a role in the pathogenesis of infectious disease. The consideration of microbial endocrinology-based mechanisms has demonstrated, for example, that the prevalent use of catecholamine-based synthetic drugs in the clinical setting contributes to the formation of biofilms in indwelling medical devices. Production of neurochemicals by microorganisms most often employs the same biosynthetic pathways as those utilized by the host, indicating that acquisition of host neurochemical-based signaling system in the host may have been acquired due to lateral gene transfer from microorganisms. That both host and microorganism produce and respond to the very same neurochemicals means that there is bidirectionality contained with the theoretical underpinnings of microbial endocrinology. This can be seen in the role of microbial endocrinology in the microbiota-gut-brain axis and its relevance to infectious disease. Such shared pathways argue for a role of microorganism-neurochemical interactions in infectious disease.
Hiessl, Sebastian; Schuldes, Jörg; Thürmer, Andrea; Halbsguth, Tobias; Bröker, Daniel; Angelov, Angel; Liebl, Wolfgang; Daniel, Rolf
2012-01-01
The increasing production of synthetic and natural poly(cis-1,4-isoprene) rubber leads to huge challenges in waste management. Only a few bacteria are known to degrade rubber, and little is known about the mechanism of microbial rubber degradation. The genome of Gordonia polyisoprenivorans strain VH2, which is one of the most effective rubber-degrading bacteria, was sequenced and annotated to elucidate the degradation pathway and other features of this actinomycete. The genome consists of a circular chromosome of 5,669,805 bp and a circular plasmid of 174,494 bp with average GC contents of 67.0% and 65.7%, respectively. It contains 5,110 putative protein-coding sequences, including many candidate genes responsible for rubber degradation and other biotechnically relevant pathways. Furthermore, we detected two homologues of a latex-clearing protein, which is supposed to be a key enzyme in rubber degradation. The deletion of these two genes for the first time revealed clear evidence that latex-clearing protein is essential for the microbial utilization of rubber. Based on the genome sequence, we predict a pathway for the microbial degradation of rubber which is supported by previous and current data on transposon mutagenesis, deletion mutants, applied comparative genomics, and literature search. PMID:22327575
Martínez-Lavanchy, P M; Chen, Z; Lünsmann, V; Marin-Cevada, V; Vilchez-Vargas, R; Pieper, D H; Reiche, N; Kappelmeyer, U; Imparato, V; Junca, H; Nijenhuis, I; Müller, J A; Kuschk, P; Heipieper, H J
2015-09-01
In the present study, microbial toluene degradation in controlled constructed wetland model systems, planted fixed-bed reactors (PFRs), was queried with DNA-based methods in combination with stable isotope fractionation analysis and characterization of toluene-degrading microbial isolates. Two PFR replicates were operated with toluene as the sole external carbon and electron source for 2 years. The bulk redox conditions in these systems were hypoxic to anoxic. The autochthonous bacterial communities, as analyzed by Illumina sequencing of 16S rRNA gene amplicons, were mainly comprised of the families Xanthomonadaceae, Comamonadaceae, and Burkholderiaceae, plus Rhodospirillaceae in one of the PFR replicates. DNA microarray analyses of the catabolic potentials for aromatic compound degradation suggested the presence of the ring monooxygenation pathway in both systems, as well as the anaerobic toluene pathway in the PFR replicate with a high abundance of Rhodospirillaceae. The presence of catabolic genes encoding the ring monooxygenation pathway was verified by quantitative PCR analysis, utilizing the obtained toluene-degrading isolates as references. Stable isotope fractionation analysis showed low-level of carbon fractionation and only minimal hydrogen fractionation in both PFRs, which matches the fractionation signatures of monooxygenation and dioxygenation. In combination with the results of the DNA-based analyses, this suggests that toluene degradation occurs predominantly via ring monooxygenation in the PFRs. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Jones, Elizabeth; Voytek, Mary; Lorah, Michelle
2004-01-01
1,1,2,2-Tetrachloroethane (TeCA) contaminated groundwater at the Aberdeen Proving Ground discharges through an anaerobic wetland in West Branch Canal Creek (MD), where dechlorination occurs. Two microbially mediated pathways, dichloroelimination and hydrogenolysis, account for most of the TeCA degradation at this site. The dichloroelimination pathways lead to the formation of vinyl chloride (VC), a recalcitrant carcinogen of great concern. The goal of this investigation was to determine whether microbially-available Fe(III) in the wetland surface sediment influenced the fate of TeCA and its daughter products. Differences were identified in the TeCA degradation pathway between microcosms treated with amorphous ferric oxyhydroxide (AFO-treated) and untreated (no AFO) microcosms. TeCA degradation was accompanied by a lower accumulation of VC in AFO-treated microcosms than untreated microcosms. The microcosm incubations and subsequent experiments with the microcosm materials showed that AFO treatment resulted in lower production of VC by (1) shifting TeCA degradation from dichloroelimination pathways to production of a greater proportion of chlorinated ethane products, and (2) decreasing the microbial capability to produce VC from 1,2-dichloroethene (DCE). VC degradation was not stimulated in the presence of Fe(III). Rather, VC degradation occurred readily under methanogenic conditions and was inhibited under Fe(III)-reducing conditions.
Microbial mercury methylation in Antarctic sea ice.
Gionfriddo, Caitlin M; Tate, Michael T; Wick, Ryan R; Schultz, Mark B; Zemla, Adam; Thelen, Michael P; Schofield, Robyn; Krabbenhoft, David P; Holt, Kathryn E; Moreau, John W
2016-08-01
Atmospheric deposition of mercury onto sea ice and circumpolar sea water provides mercury for microbial methylation, and contributes to the bioaccumulation of the potent neurotoxin methylmercury in the marine food web. Little is known about the abiotic and biotic controls on microbial mercury methylation in polar marine systems. However, mercury methylation is known to occur alongside photochemical and microbial mercury reduction and subsequent volatilization. Here, we combine mercury speciation measurements of total and methylated mercury with metagenomic analysis of whole-community microbial DNA from Antarctic snow, brine, sea ice and sea water to elucidate potential microbially mediated mercury methylation and volatilization pathways in polar marine environments. Our results identify the marine microaerophilic bacterium Nitrospina as a potential mercury methylator within sea ice. Anaerobic bacteria known to methylate mercury were notably absent from sea-ice metagenomes. We propose that Antarctic sea ice can harbour a microbial source of methylmercury in the Southern Ocean.
Lin, Qiang; De Vrieze, Jo; He, Guihua; Li, Xiangzhen; Li, Jiabao
2016-09-01
Temperature is crucial for the performance of anaerobic digestion process. In this study of anaerobic digestion of swine manure, the relationship between the microbial gene expression and methane production at different temperatures (25-55°C) was revealed through metatranscriptomic analysis. Daily methane production and total biogas production increased with temperature up to 50°C, but decreased at 55°C. The functional gene expression showed great variation at different temperatures. The function centralization (opposite to alpha-diversity), assessed by the least proportions of functional pathways contributing for at least 50% of total reads positively correlated to methane production. Temperature regulated methane production probably through reducing the diversity of functional pathways, but enhancing central functional pathways, so that most of cellular activities and resource were invested in methanogenesis and related pathways, enhancing the efficiency of conversion of substrates to methane. This research demonstrated the importance of function centralization for efficient system functioning. Copyright © 2016 Elsevier Ltd. All rights reserved.
Induction of Direct Antimicrobial Activity Through Mammalian Toll-Like Receptors
NASA Astrophysics Data System (ADS)
Thoma-Uszynski, Sybille; Stenger, Steffen; Takeuchi, Osamu; Ochoa, Maria Teresa; Engele, Matthias; Sieling, Peter A.; Barnes, Peter F.; Röllinghoff, Martin; Bölcskei, Pal L.; Wagner, Manfred; Akira, Shizuo; Norgard, Michael V.; Belisle, John T.; Godowski, Paul J.; Bloom, Barry R.; Modlin, Robert L.
2001-02-01
The mammalian innate immune system retains from Drosophila a family of homologous Toll-like receptors (TLRs) that mediate responses to microbial ligands. Here, we show that TLR2 activation leads to killing of intracellular Mycobacterium tuberculosis in both mouse and human macrophages, through distinct mechanisms. In mouse macrophages, bacterial lipoprotein activation of TLR2 leads to a nitric oxide-dependent killing of intracellular tubercle bacilli, but in human monocytes and alveolar macrophages, this pathway was nitric oxide-independent. Thus, mammalian TLRs respond (as Drosophila Toll receptors do) to microbial ligands and also have the ability to activate antimicrobial effector pathways at the site of infection.
Gupta, Rupali; Singh, Akanksha; Srivastava, Madhumita; Singh, Vivek; Gupta, M M; Pandey, Rakesh
2017-02-03
Plant-associated beneficial microbes have been explored to fulfill the imperative function for plant health. However, their impact on the host secondary metabolite production and nematode disease management remains elusive. Our present work has shown that chitinolytic microbes viz., Chitiniphilus sp. MTN22 and Streptomyces sp. MTN14 singly as well as in combination modulated the biosynthetic pathway of bacoside A and systemic defense mechanism against Meloidogyne incognita in Bacopa monnieri. Interestingly, expression of bacoside biosynthetic pathway genes (3-Hydroxy-3-methylglutaryl coenzyme A reductase, mevalonate diphosphate decarboxylase, and squalene synthase) were upregulated in plants treated with the microbial combination in the presence as well as in absence of M. incognita stress. These microbes not only augmented bacoside A production (1.5 fold) but also strengthened host resistance via enhancement in chlorophyll a, defense enzymes and phenolic compounds like gallic acid, syringic acid, ferulic acid and cinnamic acid. Furthermore, elevated lignification and callose deposition in the microbial combination treated plants corroborate well with the above findings. Overall, the results provide novel insights into the underlying mechanisms of priming by beneficial microbes and underscore their capacity to trigger bacoside A production in B. monnieri under biotic stress.
Arsenic metabolism in high altitude modern stromatolites revealed by metagenomic analysis.
Kurth, Daniel; Amadio, Ariel; Ordoñez, Omar F; Albarracín, Virginia H; Gärtner, Wolfgang; Farías, María E
2017-04-21
Modern stromatolites thrive only in selected locations in the world. Socompa Lake, located in the Andean plateau at 3570 masl, is one of the numerous extreme Andean microbial ecosystems described over recent years. Extreme environmental conditions include hypersalinity, high UV incidence, and high arsenic content, among others. After Socompa's stromatolite microbial communities were analysed by metagenomic DNA sequencing, taxonomic classification showed dominance of Proteobacteria, Bacteroidetes and Firmicutes, and a remarkably high number of unclassified sequences. A functional analysis indicated that carbon fixation might occur not only by the Calvin-Benson cycle, but also through alternative pathways such as the reverse TCA cycle, and the reductive acetyl-CoA pathway. Deltaproteobacteria were involved both in sulfate reduction and nitrogen fixation. Significant differences were found when comparing the Socompa stromatolite metagenome to the Shark Bay (Australia) smooth mat metagenome: namely, those involving stress related processes, particularly, arsenic resistance. An in-depth analysis revealed a surprisingly diverse metabolism comprising all known types of As resistance and energy generating pathways. While the ars operon was the main mechanism, an important abundance of arsM genes was observed in selected phyla. The data resulting from this work will prove a cornerstone for further studies on this rare microbial community.
Biosynthesis and engineering of kaempferol in Saccharomyces cerevisiae.
Duan, Lijin; Ding, Wentao; Liu, Xiaonan; Cheng, Xiaozhi; Cai, Jing; Hua, Erbing; Jiang, Huifeng
2017-09-26
Kaempferol is a flavonol with broad bioactivity of anti-oxidant, anti-cancer, anti-diabetic, anti-microbial, cardio-protective and anti-asthma. Microbial synthesis of kaempferol is a promising strategy because of the low content in primary plant source. In this study, the biosynthesis pathway of kaempferol was constructed in the budding yeast Saccharomyces cerevisiae to produce kaempferol de novo, and several biological measures were taken for high production. Firstly, a high efficient flavonol synthases (FLS) from Populus deltoides was introduced into the biosynthetic pathway of kaempferol. Secondly, a S. cerevisiae recombinant was constructed for de novo synthesis of kaempferol, which generated about 6.97 mg/L kaempferol from glucose. To further promote kaempferol production, the acetyl-CoA biosynthetic pathway was overexpressed and p-coumarate was supplied as substrate, which improved kaempferol titer by about 23 and 120%, respectively. Finally, a fed-batch process was developed for better kaempferol fermentation performance, and the production reached 66.29 mg/L in 40 h. The titer of kaempferol in our engineered yeast is 2.5 times of the highest reported titer. Our study provides a possible strategy to produce kaempferol using microbial cell factory.
Isoprenoid-Based Biofuels: Homologous Expression and Heterologous Expression in Prokaryotes.
Phulara, Suresh Chandra; Chaturvedi, Preeti; Gupta, Pratima
2016-10-01
Enthusiasm for mining advanced biofuels from microbial hosts has increased remarkably in recent years. Isoprenoids are one of the highly diverse groups of secondary metabolites and are foreseen as an alternative to petroleum-based fuels. Most of the prokaryotes synthesize their isoprenoid backbone via the deoxyxylulose-5-phosphate pathway from glyceraldehyde-3-phosphate and pyruvate, whereas eukaryotes synthesize isoprenoids via the mevalonate pathway from acetyl coenzyme A (acetyl-CoA). Microorganisms do not accumulate isoprenoids in large quantities naturally, which restricts their application for fuel purposes. Various metabolic engineering efforts have been utilized to overcome the limitations associated with their natural and nonnatural production. The introduction of heterologous pathways/genes and overexpression of endogenous/homologous genes have shown a remarkable increase in isoprenoid yield and substrate utilization in microbial hosts. Such modifications in the hosts' genomes have enabled researchers to develop commercially competent microbial strains for isoprenoid-based biofuel production utilizing a vast array of substrates. The present minireview briefly discusses the recent advancement in metabolic engineering efforts in prokaryotic hosts for the production of isoprenoid-based biofuels, with an emphasis on endogenous, homologous, and heterologous expression strategies. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Isoprenoid-Based Biofuels: Homologous Expression and Heterologous Expression in Prokaryotes
Phulara, Suresh Chandra; Chaturvedi, Preeti
2016-01-01
Enthusiasm for mining advanced biofuels from microbial hosts has increased remarkably in recent years. Isoprenoids are one of the highly diverse groups of secondary metabolites and are foreseen as an alternative to petroleum-based fuels. Most of the prokaryotes synthesize their isoprenoid backbone via the deoxyxylulose-5-phosphate pathway from glyceraldehyde-3-phosphate and pyruvate, whereas eukaryotes synthesize isoprenoids via the mevalonate pathway from acetyl coenzyme A (acetyl-CoA). Microorganisms do not accumulate isoprenoids in large quantities naturally, which restricts their application for fuel purposes. Various metabolic engineering efforts have been utilized to overcome the limitations associated with their natural and nonnatural production. The introduction of heterologous pathways/genes and overexpression of endogenous/homologous genes have shown a remarkable increase in isoprenoid yield and substrate utilization in microbial hosts. Such modifications in the hosts' genomes have enabled researchers to develop commercially competent microbial strains for isoprenoid-based biofuel production utilizing a vast array of substrates. The present minireview briefly discusses the recent advancement in metabolic engineering efforts in prokaryotic hosts for the production of isoprenoid-based biofuels, with an emphasis on endogenous, homologous, and heterologous expression strategies. PMID:27422837
Levar, Caleb E; Hoffman, Colleen L; Dunshee, Aubrey J; Toner, Brandy M; Bond, Daniel R
2017-01-01
Geobacter sulfurreducens uses at least two different pathways to transport electrons out of the inner membrane quinone pool before reducing acceptors beyond the outer membrane. When growing on electrodes poised at oxidizing potentials, the CbcL-dependent pathway operates at or below redox potentials of –0.10 V vs the standard hydrogen electrode, whereas the ImcH-dependent pathway operates only above this value. Here, we provide evidence that G. sulfurreducens also requires different electron transfer proteins for reduction of a wide range of Fe(III)- and Mn(IV)-(oxyhydr)oxides, and must transition from a high- to low-potential pathway during reduction of commonly studied soluble and insoluble metal electron acceptors. Freshly precipitated Fe(III)-(oxyhydr)oxides could not be reduced by mutants lacking the high-potential pathway. Aging these minerals by autoclaving did not change their powder X-ray diffraction pattern, but restored reduction by mutants lacking the high-potential pathway. Mutants lacking the low-potential, CbcL-dependent pathway had higher growth yields with both soluble and insoluble Fe(III). Together, these data suggest that the ImcH-dependent pathway exists to harvest additional energy when conditions permit, and CbcL switches on to allow respiration closer to thermodynamic equilibrium conditions. With evidence of multiple pathways within a single organism, the study of extracellular respiration should consider not only the crystal structure or solubility of a mineral electron acceptor, but rather the redox potential, as this variable determines the energetic reward affecting reduction rates, extents, and final microbial growth yields in the environment. PMID:28045456
Trace Elements Induce Predominance among Methanogenic Activity in Anaerobic Digestion
Wintsche, Babett; Glaser, Karin; Sträuber, Heike; Centler, Florian; Liebetrau, Jan; Harms, Hauke; Kleinsteuber, Sabine
2016-01-01
Trace elements (TE) play an essential role in all organisms due to their functions in enzyme complexes. In anaerobic digesters, control, and supplementation of TEs lead to stable and more efficient methane production processes while TE deficits cause process imbalances. However, the underlying metabolic mechanisms and the adaptation of the affected microbial communities to such deficits are not yet fully understood. Here, we investigated the microbial community dynamics and resulting process changes induced by TE deprivation. Two identical lab-scale continuous stirred tank reactors fed with distiller’s grains and supplemented with TEs (cobalt, molybdenum, nickel, tungsten) and a commercial iron additive were operated in parallel. After 72 weeks of identical operation, the feeding regime of one reactor was changed by omitting TE supplements and reducing the amount of iron additive. Both reactors were operated for further 21 weeks. Various process parameters (biogas production and composition, total solids and volatile solids, TE concentration, volatile fatty acids, total ammonium nitrogen, total organic acids/alkalinity ratio, and pH) and the composition and activity of the microbial communities were monitored over the total experimental time. While the methane yield remained stable, the concentrations of hydrogen sulfide, total ammonia nitrogen, and acetate increased in the TE-depleted reactor compared to the well-supplied control reactor. Methanosarcina and Methanoculleus dominated the methanogenic communities in both reactors. However, the activity ratio of these two genera was shown to depend on TE supplementation explainable by different TE requirements of their energy conservation systems. Methanosarcina dominated the well-supplied anaerobic digester, pointing to acetoclastic methanogenesis as the dominant methanogenic pathway. Under TE deprivation, Methanoculleus and thus hydrogenotrophic methanogenesis was favored although Methanosarcina was not overgrown by Methanoculleus. Multivariate statistics revealed that the decline of nickel, cobalt, molybdenum, tungsten, and manganese most strongly influenced the balance of mcrA transcripts from both genera. Hydrogenotrophic methanogens seem to be favored under nickel- and cobalt-deficient conditions as their metabolism requires less nickel-dependent enzymes and corrinoid cofactors than the acetoclastic and methylotrophic pathways. Thus, TE supply is critical to sustain the activity of the versatile high-performance methanogen Methanosarcina. PMID:28018337
Miceli, Joseph F; Garcia-Peña, Ines; Parameswaran, Prathap; Torres, César I; Krajmalnik-Brown, Rosa
2014-10-01
Butyrate is an important product of anaerobic fermentation; however, it is not directly used by characterized strains of the highly efficient anode respiring bacteria (ARB) Geobacter sulfurreducens in microbial electrochemical cells. By combining a butyrate-oxidizing community with a Geobacter rich culture, we generated a microbial community which outperformed many naturally derived communities found in the literature for current production from butyrate and rivaled the highest performing natural cultures in terms of current density (∼ 11A/m(2)) and Coulombic efficiency (∼ 70%). Microbial community analyses support the shift in the microbial community from one lacking efficient ARB in the marine hydrothermal vent community to a community consisting of ∼ 80% Geobacter in the anode biofilm. This demonstrates the successful production and adaptation of a novel microbial culture for generating electrical current from butyrate with high current density and high Coulombic efficiency, by combining two mixed microbial cultures containing complementing biochemical pathways. Copyright © 2014 Elsevier Ltd. All rights reserved.
Wang, Chongyang; Huang, Yong; Zhang, Zuotao; Wang, Hui
2018-04-25
With the close relationship between saline environments and industry, polycyclic aromatic hydrocarbons (PAHs) accumulate in saline/hypersaline environments. Therefore, PAHs degradation by halotolerant/halophilic bacteria has received increasing attention. In this study, the metabolic pathway of phenanthrene degradation by halophilic consortium CY-1 was first studied which showed a single upstream pathway initiated by dioxygenation at the C1 and C2 positions, and at several downstream pathways, including the catechol pathway, gentisic acid pathway and protocatechuic acid pathway. The effects of salinity on the community structure and expression of catabolic genes were further studied by a combination of high-throughput sequencing, catabolic gene clone library and real-time PCR. Pure cultures were also isolated from consortium CY-1 to investigate the contribution made by different microbes in the PAH-degrading process. Marinobacter is the dominant genus that contributed to the upstream degradation of phenanthrene especially in high salt content. Genus Halomonas made a great contribution in transforming intermediates in the subsequent degradation of catechol by using catechol 1,2-dioxygenase (C12O). Other microbes were predicted to be mediating bacteria that were able to utilize intermediates via different downstream pathways. Salinity was investigated to have negative effects on both microbial diversity and activity of consortium CY-1 and consortium CY-1 was found with a high degree of functional redundancy in saline environments.
Intestinal transport and metabolism of bile acids
Dawson, Paul A.; Karpen, Saul J.
2015-01-01
In addition to their classical roles as detergents to aid in the process of digestion, bile acids have been identified as important signaling molecules that function through various nuclear and G protein-coupled receptors to regulate a myriad of cellular and molecular functions across both metabolic and nonmetabolic pathways. Signaling via these pathways will vary depending on the tissue and the concentration and chemical structure of the bile acid species. Important determinants of the size and composition of the bile acid pool are their efficient enterohepatic recirculation, their host and microbial metabolism, and the homeostatic feedback mechanisms connecting hepatocytes, enterocytes, and the luminal microbiota. This review focuses on the mammalian intestine, discussing the physiology of bile acid transport, the metabolism of bile acids in the gut, and new developments in our understanding of how intestinal metabolism, particularly by the gut microbiota, affects bile acid signaling. PMID:25210150
Diversity and origins of anaerobic metabolism in mitochondria and related organelles
Stairs, Courtney W.; Leger, Michelle M.; Roger, Andrew J.
2015-01-01
Across the diversity of life, organisms have evolved different strategies to thrive in hypoxic environments, and microbial eukaryotes (protists) are no exception. Protists that experience hypoxia often possess metabolically distinct mitochondria called mitochondrion-related organelles (MROs). While there are some common metabolic features shared between the MROs of distantly related protists, these organelles have evolved independently multiple times across the breadth of eukaryotic diversity. Until recently, much of our knowledge regarding the metabolic potential of different MROs was limited to studies in parasitic lineages. Over the past decade, deep-sequencing studies of free-living anaerobic protists have revealed novel configurations of metabolic pathways that have been co-opted for life in low oxygen environments. Here, we provide recent examples of anaerobic metabolism in the MROs of free-living protists and their parasitic relatives. Additionally, we outline evolutionary scenarios to explain the origins of these anaerobic pathways in eukaryotes. PMID:26323757
Metal ions in macrophage antimicrobial pathways: emerging roles for zinc and copper
Stafford, Sian L.; Bokil, Nilesh J.; Achard, Maud E. S.; Kapetanovic, Ronan; Schembri, Mark A.; McEwan, Alastair G.; Sweet, Matthew J.
2013-01-01
The immunomodulatory and antimicrobial properties of zinc and copper have long been appreciated. In addition, these metal ions are also essential for microbial growth and survival. This presents opportunities for the host to either harness their antimicrobial properties or limit their availability as defence strategies. Recent studies have shed some light on mechanisms by which copper and zinc regulation contribute to host defence, but there remain many unanswered questions at the cellular and molecular levels. Here we review the roles of these two metal ions in providing protection against infectious diseases in vivo, and in regulating innate immune responses. In particular, we focus on studies implicating zinc and copper in macrophage antimicrobial pathways, as well as the specific host genes encoding zinc transporters (SLC30A, SLC39A family members) and CTRs (copper transporters, ATP7 family members) that may contribute to pathogen control by these cells. PMID:23738776
Wang, Xueliang; Wang, Xin; Jiang, Hao; Cai, Chao; Li, Guoyun; Hao, Jiejie; Yu, Guangli
2018-09-01
Marine polysaccharides (MPs), including plant, animal, and microbial-derived polysaccharides, can alleviate metabolic syndrome (MetS) by different regulation mechanisms. MPs and their derivatives can attenuate MetS by vary cellular signal pathways, such as peroxisome proliferator-activated receptor, 5' adenosine monophosphate-activated protein kinase, and CCAAT/enhancer binding protein-α. Also, most of MPs cannot be degraded by human innate enzymes, but they can be degraded and fermented by human gut microbiota. The final metabolic products of these polysaccharides are usually short-chain fatty acids (SCFAs), which can change the gut microbiota ecology by altering the existing percentage of special microorganisms. In addition, the SCFAs and changed gut microbiota can regulate enteroendocrine hormone secretion, blood glucose, lipid metabolism levels, and other MetS symptoms. Here, we summarize the up-to-date findings on the effects of MPs, particularly marine microbial-derived polysaccharides, and their metabolites on attenuating MetS. Copyright © 2018 Elsevier Ltd. All rights reserved.
Saravana Kumar, P; Yuvaraj, P; Gabrial Paulraj, M; Ignacimuthu, S; Abdullah Al-Dhabi, N
2018-06-05
The present study was aimed to isolate bioactive actinomycetes with antifungal properties. Twenty-seven distinct soil derived actinomycetes were investigated for their antifungal activities. Among these, one isolate exhibited significant antifungal activity. Phenotypic and 16s rRNA gene sequence analysis strongly suggested that the active isolate BG4 belonged to the genus Streptomyces. Further, the chemical investigation of the active extract resulted in the isolation of a major compound and it was structurally elucidated as phenyl acetic acid (PAA). PAA exhibited promising antifungal activity with 100% inhibition, ranging from 31.25 to 25μg/mL. It is to be noted that PAA is naturally occurring and biologically active auxin. In addition, it has also been hypothesized that phytohormone endorsing the source of soil-symbionts has similar pathways for synthesizing compounds and its congeners of host due to horizontal gene transfer. These findings demonstrate that microbially derived phytohormone can be used to treat fungal infections. Copyright © 2018 Elsevier Masson SAS. All rights reserved.
Biological technologies for the remediation of co-contaminated soil.
Ye, Shujing; Zeng, Guangming; Wu, Haipeng; Zhang, Chang; Dai, Juan; Liang, Jie; Yu, Jiangfang; Ren, Xiaoya; Yi, Huan; Cheng, Min; Zhang, Chen
2017-12-01
Compound contamination in soil, caused by unreasonable waste disposal, has attracted increasing attention on a global scale, particularly since multiple heavy metals and/or organic pollutants are entering natural ecosystem through human activities, causing an enormous threat. The remediation of co-contaminated soil is more complicated and difficult than that of single contamination, due to the disparate remediation pathways utilized for different types of pollutants. Several modern remediation technologies have been developed for the treatment of co-contaminated soil. Biological remediation technologies, as the eco-friendly methods, have received widespread concern due to soil improvement besides remediation. This review summarizes the application of biological technologies, which contains microbial technologies (function microbial remediation and composting or compost addition), biochar, phytoremediation technologies, genetic engineering technologies and biochemical technologies, for the remediation of co-contaminated soil with heavy metals and organic pollutants. Mechanisms of these technologies and their remediation efficiencies are also reviewed. Based on this study, this review also identifies the future research required in this field.
Deeply-sourced formate fuels sulfate reducers but not methanogens at Lost City hydrothermal field.
Lang, Susan Q; Früh-Green, Gretchen L; Bernasconi, Stefano M; Brazelton, William J; Schrenk, Matthew O; McGonigle, Julia M
2018-01-15
Hydrogen produced during water-rock serpentinization reactions can drive the synthesis of organic compounds both biotically and abiotically. We investigated abiotic carbon production and microbial metabolic pathways at the high energy but low diversity serpentinite-hosted Lost City hydrothermal field. Compound-specific 14 C data demonstrates that formate is mantle-derived and abiotic in some locations and has an additional, seawater-derived component in others. Lipids produced by the dominant member of the archaeal community, the Lost City Methanosarcinales, largely lack 14 C, but metagenomic evidence suggests they cannot use formate for methanogenesis. Instead, sulfate-reducing bacteria may be the primary consumers of formate in Lost City chimneys. Paradoxically, the archaeal phylotype that numerically dominates the chimney microbial communities appears ill suited to live in pure hydrothermal fluids without the co-occurrence of organisms that can liberate CO 2 . Considering the lack of dissolved inorganic carbon in such systems, the ability to utilize formate may be a key trait for survival in pristine serpentinite-hosted environments.
Gill, Aman S; Lee, Angela; McGuire, Krista L
2017-08-15
New York City (NYC) is pioneering green infrastructure with the use of bioswales and other engineered soil-based habitats to provide stormwater infiltration and other ecosystem functions. In addition to avoiding the environmental and financial costs of expanding traditional built infrastructure, green infrastructure is thought to generate cobenefits in the form of diverse ecological processes performed by its plant and microbial communities. Yet, although plant communities in these habitats are closely managed, we lack basic knowledge about how engineered ecosystems impact the distribution and functioning of soil bacteria. We sequenced amplicons of the 16S ribosomal subunit, as well as seven genes associated with functional pathways, generated from both total (DNA-based) and expressed (RNA) soil communities in the Bronx, NYC, NY, in order to test whether bioswale soils host characteristic bacterial communities with evidence for enriched microbial functioning, compared to nonengineered soils in park lawns and tree pits. Bioswales had distinct, phylogenetically diverse bacterial communities, including taxa associated with nutrient cycling and metabolism of hydrocarbons and other pollutants. Bioswale soils also had a significantly greater diversity of genes involved in several functional pathways, including carbon fixation ( cbbL-R [ cbbL gene, red-like subunit] and apsA ), nitrogen cycling ( noxZ and amoA ), and contaminant degradation ( bphA ); conversely, no functional genes were significantly more abundant in nonengineered soils. These results provide preliminary evidence that urban land management can shape the diversity and activity of soil communities, with positive consequences for genetic resources underlying valuable ecological functions, including biogeochemical cycling and degradation of common urban pollutants. IMPORTANCE Management of urban soil biodiversity by favoring taxa associated with decontamination or other microbial metabolic processes is a powerful prospect, but it first requires an understanding of how engineered soil habitats shape patterns of microbial diversity. This research adds to our understanding of urban microbial biogeography by providing data on soil bacteria in bioswales, which had relatively diverse and compositionally distinct communities compared to park and tree pit soils. Bioswales also contained comparatively diverse pools of genes related to carbon sequestration, nitrogen cycling, and contaminant degradation, suggesting that engineered soils may serve as effective reservoirs of functional microbial biodiversity. We also examined both total (DNA-based) and expressed (RNA) communities, revealing that total bacterial communities (the exclusive targets in the vast majority of soil studies) were poor predictors of expressed community diversity, pointing to the value of quantifying RNA, especially when ecological functioning is considered. Copyright © 2017 American Society for Microbiology.
Lee, Angela; McGuire, Krista L.
2017-01-01
ABSTRACT New York City (NYC) is pioneering green infrastructure with the use of bioswales and other engineered soil-based habitats to provide stormwater infiltration and other ecosystem functions. In addition to avoiding the environmental and financial costs of expanding traditional built infrastructure, green infrastructure is thought to generate cobenefits in the form of diverse ecological processes performed by its plant and microbial communities. Yet, although plant communities in these habitats are closely managed, we lack basic knowledge about how engineered ecosystems impact the distribution and functioning of soil bacteria. We sequenced amplicons of the 16S ribosomal subunit, as well as seven genes associated with functional pathways, generated from both total (DNA-based) and expressed (RNA) soil communities in the Bronx, NYC, NY, in order to test whether bioswale soils host characteristic bacterial communities with evidence for enriched microbial functioning, compared to nonengineered soils in park lawns and tree pits. Bioswales had distinct, phylogenetically diverse bacterial communities, including taxa associated with nutrient cycling and metabolism of hydrocarbons and other pollutants. Bioswale soils also had a significantly greater diversity of genes involved in several functional pathways, including carbon fixation (cbbL-R [cbbL gene, red-like subunit] and apsA), nitrogen cycling (noxZ and amoA), and contaminant degradation (bphA); conversely, no functional genes were significantly more abundant in nonengineered soils. These results provide preliminary evidence that urban land management can shape the diversity and activity of soil communities, with positive consequences for genetic resources underlying valuable ecological functions, including biogeochemical cycling and degradation of common urban pollutants. IMPORTANCE Management of urban soil biodiversity by favoring taxa associated with decontamination or other microbial metabolic processes is a powerful prospect, but it first requires an understanding of how engineered soil habitats shape patterns of microbial diversity. This research adds to our understanding of urban microbial biogeography by providing data on soil bacteria in bioswales, which had relatively diverse and compositionally distinct communities compared to park and tree pit soils. Bioswales also contained comparatively diverse pools of genes related to carbon sequestration, nitrogen cycling, and contaminant degradation, suggesting that engineered soils may serve as effective reservoirs of functional microbial biodiversity. We also examined both total (DNA-based) and expressed (RNA) communities, revealing that total bacterial communities (the exclusive targets in the vast majority of soil studies) were poor predictors of expressed community diversity, pointing to the value of quantifying RNA, especially when ecological functioning is considered. PMID:28576763
Cai, Yun; Gu, Hong; Kenney, Toby
2017-08-31
Learning the structure of microbial communities is critical in understanding the different community structures and functions of microbes in distinct individuals. We view microbial communities as consisting of many subcommunities which are formed by certain groups of microbes functionally dependent on each other. The focus of this paper is on methods for extracting the subcommunities from the data, in particular Non-Negative Matrix Factorization (NMF). Our methods can be applied to both OTU data and functional metagenomic data. We apply the existing unsupervised NMF method and also develop a new supervised NMF method for extracting interpretable information from classification problems. The relevance of the subcommunities identified by NMF is demonstrated by their excellent performance for classification. Through three data examples, we demonstrate how to interpret the features identified by NMF to draw meaningful biological conclusions and discover hitherto unidentified patterns in the data. Comparing whole metagenomes of various mammals, (Muegge et al., Science 332:970-974, 2011), the biosynthesis of macrolides pathway is found in hindgut-fermenting herbivores, but not carnivores. This is consistent with results in veterinary science that macrolides should not be given to non-ruminant herbivores. For time series microbiome data from various body sites (Caporaso et al., Genome Biol 12:50, 2011), a shift in the microbial communities is identified for one individual. The shift occurs at around the same time in the tongue and gut microbiomes, indicating that the shift is a genuine biological trait, rather than an artefact of the method. For whole metagenome data from IBD patients and healthy controls (Qin et al., Nature 464:59-65, 2010), we identify differences in a number of pathways (some known, others new). NMF is a powerful tool for identifying the key features of microbial communities. These identified features can not only be used to perform difficult classification problems with a high degree of accuracy, they are also very interpretable and can lead to important biological insights into the structure of the communities. In addition, NMF is a dimension-reduction method (similar to PCA) in that it reduces the extremely complex microbial data into a low-dimensional representation, allowing a number of analyses to be performed more easily-for example, searching for temporal patterns in the microbiome. When we are interested in the differences between the structures of two groups of communities, supervised NMF provides a better way to do this, while retaining all the advantages of NMF-e.g. interpretability and a simple biological intuition.
Ross, Daniel E.; Gulliver, Djuna
2016-10-06
The draft genome sequence ofPseudomonas stutzeristrain K35 was separated from a metagenome derived from a produced water microbial community of a coalbed methane well. The genome encodes a complete nitrogen fixation pathway and the upper and lower naphthalene degradation pathways.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ross, Daniel E.; Gulliver, Djuna
The draft genome sequence ofPseudomonas stutzeristrain K35 was separated from a metagenome derived from a produced water microbial community of a coalbed methane well. The genome encodes a complete nitrogen fixation pathway and the upper and lower naphthalene degradation pathways.
Halim, Amalia Yunita; Pedersen, Dorthe Skou; Nielsen, Sidsel Marie; Lantz, Anna Eliasson
2015-06-01
Anaerobic incubations using crude oil and brine from a North Sea reservoir were conducted to gain increased understanding of indigenous microbial community development, metabolite production, and the effects on the oil-brine system after addition of a complex carbon source, molasses, with or without nitrate to boost microbial growth. Growth of the indigenous microbes was stimulated by addition of molasses. Pyrosequencing showed that specifically Anaerobaculum, Petrotoga, and Methanothermococcus were enriched. Addition of nitrate favored the growth of Petrotoga over Anaerobaculum. The microbial growth caused changes in the crude oil-brine system: formation of oil emulsions, and reduction of interfacial tension (IFT). Reduction in IFT was associated with microbes being present at the oil-brine interphase. These findings suggest that stimulation of indigenous microbial growth by addition of molasses has potential as microbial enhanced oil recovery (MEOR) strategy in North Sea oil reservoirs.
NASA Astrophysics Data System (ADS)
Sanaullah, Muhammad; Baumann, Karen; Chabbi, Abad; Dignac, Marie-France; Maron, Pierre-Alain; Kuzyakov, Yakov; Rumpel, Cornelia
2014-05-01
Soil organic matter turnover depends on substrate quality and microbial activity in soil but little is known about how addition of freshly added organic material modifies the diversity of soil microbial communities with in a soil profile. We took advantage of a decomposition experiment, which was carried out at different soil depths under field conditions and sampled litterbags with 13C-labelled wheat roots, incubated in subsoil horizons at 30, 60 and 90 cm depth for up to 36 months. The effect of root litter addition on microbial community structure, diversity and activity was studied by determining total microbial biomass, PLFA signatures, molecular tools (DNA genotyping and pyrosequencing of 16S and 18S rDNAs) and extracellular enzyme activities. Automated ribosomal intergenic spacer analysis (ARISA) was also carried out to determine the differences in microbial community structure. We found that with the addition of root litter, total microbial biomass as well as microbial community composition and structure changed at different soil depths and change was significantly higher at top 30cm soil layer. Moreover, in the topsoil, population of both gram-positive and gram-negative bacteria increased with root litter addition over time, while subsoil horizons were relatively dominated by fungal community. Extra-cellular enzyme activities confirmed relatively higher fungal community at subsoil horizons compared with surface soil layer with bacteria dominant microbial population. Bacterial-ARISA profiling illustrated that the addition of root litter enhanced the abundance of Actinobacteria and Proteobacteria, at all three soil depths. These bacteria correspond to copiotrophic attributes, which can preferentially consume of labile soil organic C pools. While disappearance of oligotrophic Acidobacteria confirmed the shifting of microbial communities due to the addition of readily available substrate. We concluded that root litter mixing altered microbial community development which was soil horizon specific and its effects on soil microbial activity may impact on nutrient cycling.
Revealing the Bacterial Butyrate Synthesis Pathways by Analyzing (Meta)genomic Data
Vital, Marius; Howe, Adina Chuang
2014-01-01
ABSTRACT Butyrate-producing bacteria have recently gained attention, since they are important for a healthy colon and when altered contribute to emerging diseases, such as ulcerative colitis and type II diabetes. This guild is polyphyletic and cannot be accurately detected by 16S rRNA gene sequencing. Consequently, approaches targeting the terminal genes of the main butyrate-producing pathway have been developed. However, since additional pathways exist and alternative, newly recognized enzymes catalyzing the terminal reaction have been described, previous investigations are often incomplete. We undertook a broad analysis of butyrate-producing pathways and individual genes by screening 3,184 sequenced bacterial genomes from the Integrated Microbial Genome database. Genomes of 225 bacteria with a potential to produce butyrate were identified, including many previously unknown candidates. The majority of candidates belong to distinct families within the Firmicutes, but members of nine other phyla, especially from Actinobacteria, Bacteroidetes, Fusobacteria, Proteobacteria, Spirochaetes, and Thermotogae, were also identified as potential butyrate producers. The established gene catalogue (3,055 entries) was used to screen for butyrate synthesis pathways in 15 metagenomes derived from stool samples of healthy individuals provided by the HMP (Human Microbiome Project) consortium. A high percentage of total genomes exhibited a butyrate-producing pathway (mean, 19.1%; range, 3.2% to 39.4%), where the acetyl-coenzyme A (CoA) pathway was the most prevalent (mean, 79.7% of all pathways), followed by the lysine pathway (mean, 11.2%). Diversity analysis for the acetyl-CoA pathway showed that the same few firmicute groups associated with several Lachnospiraceae and Ruminococcaceae were dominating in most individuals, whereas the other pathways were associated primarily with Bacteroidetes. PMID:24757212
Inhibition of homodimerization of toll-like receptor 4 by 6-shogaol.
Ahn, Sang-Il; Lee, Jun-Kyung; Youn, Hyung-Sun
2009-02-28
Toll-like receptors (TLRs) play a critical role in sensing microbial components and inducing innate immune and inflammatory responses by recognizing invading microbial pathogens. Lipopolysaccharide-induced dimerization of TLR4 is required for the activation of downstream signaling pathways including nuclear factor-kappa B (NF-kappaB). Therefore, TLR4 dimerization may be an early regulatory event in activating ligand-induced signaling pathways and induction of subsequent immune responses. Here, we report biochemical evidence that 6-shogaol, the most bioactive component of ginger, inhibits lipopolysaccharide-induced dimerization of TLR4 resulting in the inhibition of NF-kappaB activation and the expression of cyclooxygenase-2. Furthermore, we demonstrate that 6-shogaol can directly inhibit TLR-mediated signaling pathways at the receptor level. These results suggest that 6-shogaol can modulate TLR-mediated inflammatory responses, which may influence the risk of chronic inflammatory diseases.
pH-dependent ammonia removal pathways in microbial fuel cell system.
Kim, Taeyoung; An, Junyeong; Lee, Hyeryeong; Jang, Jae Kyung; Chang, In Seop
2016-09-01
In this work, ammonia removal paths in microbial fuel cells (MFCs) under different initial pH conditions (pH 7.0, 8.0, and 8.6) were investigated. At a neutral pH condition (pH 7.0), MFC used an electrical energy of 27.4% and removed 23.3% of total ammonia by electrochemical pathway for 192h. At the identical pH condition, 36.1% of the total ammonia was also removed by the biological path suspected to be biological ammonia oxidation process (e.g., Anammox). With the initial pH increased, the electrochemical removal efficiency decreased to less than 5.0%, while the biological removal efficiency highly increased to 61.8%. In this study, a neutral pH should be maintained in the anode to utilize MFCs for ammonia recovery via electrochemical pathways from wastewater stream. Copyright © 2016 Elsevier Ltd. All rights reserved.
Centler, Florian; Heße, Falk; Thullner, Martin
2013-09-01
At field sites with varying redox conditions, different redox-specific microbial degradation pathways contribute to total contaminant degradation. The identification of pathway-specific contributions to total contaminant removal is of high practical relevance, yet difficult to achieve with current methods. Current stable-isotope-fractionation-based techniques focus on the identification of dominant biodegradation pathways under constant environmental conditions. We present an approach based on dual stable isotope data to estimate the individual contributions of two redox-specific pathways. We apply this approach to carbon and hydrogen isotope data obtained from reactive transport simulations of an organic contaminant plume in a two-dimensional aquifer cross section to test the applicability of the method. To take aspects typically encountered at field sites into account, additional simulations addressed the effects of transverse mixing, diffusion-induced stable-isotope fractionation, heterogeneities in the flow field, and mixing in sampling wells on isotope-based estimates for aerobic and anaerobic pathway contributions to total contaminant biodegradation. Results confirm the general applicability of the presented estimation method which is most accurate along the plume core and less accurate towards the fringe where flow paths receive contaminant mass and associated isotope signatures from the core by transverse dispersion. The presented method complements the stable-isotope-fractionation-based analysis toolbox. At field sites with varying redox conditions, it provides a means to identify the relative importance of individual, redox-specific degradation pathways. © 2013.
Delineation of Steroid-Degrading Microorganisms through Comparative Genomic Analysis
Bergstrand, Lee H.; Cardenas, Erick; Holert, Johannes; Van Hamme, Jonathan D.
2016-01-01
ABSTRACT Steroids are ubiquitous in natural environments and are a significant growth substrate for microorganisms. Microbial steroid metabolism is also important for some pathogens and for biotechnical applications. This study delineated the distribution of aerobic steroid catabolism pathways among over 8,000 microorganisms whose genomes are available in the NCBI RefSeq database. Combined analysis of bacterial, archaeal, and fungal genomes with both hidden Markov models and reciprocal BLAST identified 265 putative steroid degraders within only Actinobacteria and Proteobacteria, which mainly originated from soil, eukaryotic host, and aquatic environments. These bacteria include members of 17 genera not previously known to contain steroid degraders. A pathway for cholesterol degradation was conserved in many actinobacterial genera, particularly in members of the Corynebacterineae, and a pathway for cholate degradation was conserved in members of the genus Rhodococcus. A pathway for testosterone and, sometimes, cholate degradation had a patchy distribution among Proteobacteria. The steroid degradation genes tended to occur within large gene clusters. Growth experiments confirmed bioinformatic predictions of steroid metabolism capacity in nine bacterial strains. The results indicate there was a single ancestral 9,10-seco-steroid degradation pathway. Gene duplication, likely in a progenitor of Rhodococcus, later gave rise to a cholate degradation pathway. Proteobacteria and additional Actinobacteria subsequently obtained a cholate degradation pathway via horizontal gene transfer, in some cases facilitated by plasmids. Catabolism of steroids appears to be an important component of the ecological niches of broad groups of Actinobacteria and individual species of Proteobacteria. PMID:26956583
[Microbial degradation of 3-phenoxybenzoic acid--A review].
Deng, Weiqin; Liu, Shuliang; Yao, Kai
2015-09-04
3-phenoxybenzoic acid (3-PBA) with estrogen toxicity is one of the intermediate products of most pyrethroid pesticides. 3-PBA is difficult to degrade in the natural environment, and threatens food safety and human health. Microbial degradation of pyrethroids and their intermediate product (3-PBA) has become a hot topic in recent years. Here, we reviewed microbial species, degrading enzymes and degradation genes, degradation pathways of 3-PBA degrading and the application of 3-PBA degradation strains. This article provides references for the study of 3-PBA degradation by microorganisms.
Microbial oceanography and the Hawaii Ocean Time-series programme.
Karl, David M; Church, Matthew J
2014-10-01
The Hawaii Ocean Time-series (HOT) programme has been tracking microbial and biogeochemical processes in the North Pacific Subtropical Gyre since October 1988. The near-monthly time series observations have revealed previously undocumented phenomena within a temporally dynamic ecosystem that is vulnerable to climate change. Novel microorganisms, genes and unexpected metabolic pathways have been discovered and are being integrated into our evolving ecological paradigms. Continued research, including higher-frequency observations and at-sea experimentation, will help to provide a comprehensive scientific understanding of microbial processes in the largest biome on Earth.
Lv, Fenglian; Xue, Sha; Wang, Guoliang; Zhang, Chao
2017-01-01
Atmospheric nitrogen (N) deposition profoundly alters the soil microbial communities and will thus affect nutrient cycles. The effects of N availability on microbial community, however, are not clear. We used PLFA analysis to evaluate the effects of a gradient of N addition (0, 2.8, 5.6, 11.2, and 22.4 g N m-2 y-1) for three years on the rhizospheric microbial community of Pinus tabuliformis seedlings. The main factors influencing the community were quantified using structural equation modelling and redundancy analysis. At the microbial-community level, N addition increased the total phospholipid fatty acids content by increasing the dissolved organic carbon (DOC) and root biomass. Increases in soil microbial biomass carbon and N, however, was attributed to the increased DOC, N content and decreased pH. At the microbial-groups level, Fungal, arbuscular mycorrhizal fungal (AMF), gram-positive bacterial (GP) abundances and the GP:GN ratio first increased and then decreased with N addition. Nitrogen addition increased the abundances of bacteria, fungi, and actinomycetes mainly by increasing the DOC content and decreasing root biomass. Additionally, the decrease of pH and ammonium N caused by N addition increased the fungal abundances and reduced actinomycete abundances, respectively. Nitrogen addition shifted the rhizospheric microbial community mainly by altering the DOC content and root biomass. The current rate of N deposition (2.5 g N m-2 y-1) benefits plant growth and increases the abundances of fungi, arbuscular mycorrhizal fungi, GP, actinomycetes and the GP:GN ratio. PMID:28234932
Layton, Alice C.; Chauhan, Archana; Williams, Daniel E.; Mailloux, Brian; Knappett, Peter S. K.; Ferguson, Andrew S.; McKay, Larry D.; Alam, M. Jahangir; Matin Ahmed, Kazi; van Geen, Alexander
2014-01-01
The contamination of drinking water from both arsenic and microbial pathogens occurs in Bangladesh. A general metagenomic survey of well water and surface water provided information on the types of pathogens present and may help elucidate arsenic metabolic pathways and potential assay targets for monitoring surface-to-ground water pathogen transport. PMID:25414497
Environmental proteomics reveals taxonomic and functional changes in an enriched aquatic ecosystem.
Northrop, Amanda C; Brooks, Rachel; Ellison, Aaron M; Gotelli, Nicholas J; Ballif, Bryan A
2017-10-01
Aquatic ecosystem enrichment can lead to distinct and irreversible changes to undesirable states. Understanding changes in active microbial community function and composition following organic-matter loading in enriched ecosystems can help identify biomarkers of such state changes. In a field experiment, we enriched replicate aquatic ecosystems in the pitchers of the northern pitcher plant, Sarracenia purpurea . Shotgun metaproteomics using a custom metagenomic database identified proteins, molecular pathways, and contributing microbial taxa that differentiated control ecosystems from those that were enriched. The number of microbial taxa contributing to protein expression was comparable between treatments; however, taxonomic evenness was higher in controls. Functionally active bacterial composition differed significantly among treatments and was more divergent in control pitchers than enriched pitchers. Aerobic and facultative anaerobic bacteria contributed most to identified proteins in control and enriched ecosystems, respectively. The molecular pathways and contributing taxa in enriched pitcher ecosystems were similar to those found in larger enriched aquatic ecosystems and are consistent with microbial processes occurring at the base of detrital food webs. Detectable differences between protein profiles of enriched and control ecosystems suggest that a time series of environmental proteomics data may identify protein biomarkers of impending state changes to enriched states.
Uranium isotopes fingerprint biotic reduction.
Stylo, Malgorzata; Neubert, Nadja; Wang, Yuheng; Monga, Nikhil; Romaniello, Stephen J; Weyer, Stefan; Bernier-Latmani, Rizlan
2015-05-05
Knowledge of paleo-redox conditions in the Earth's history provides a window into events that shaped the evolution of life on our planet. The role of microbial activity in paleo-redox processes remains unexplored due to the inability to discriminate biotic from abiotic redox transformations in the rock record. The ability to deconvolute these two processes would provide a means to identify environmental niches in which microbial activity was prevalent at a specific time in paleo-history and to correlate specific biogeochemical events with the corresponding microbial metabolism. Here, we demonstrate that the isotopic signature associated with microbial reduction of hexavalent uranium (U), i.e., the accumulation of the heavy isotope in the U(IV) phase, is readily distinguishable from that generated by abiotic uranium reduction in laboratory experiments. Thus, isotope signatures preserved in the geologic record through the reductive precipitation of uranium may provide the sought-after tool to probe for biotic processes. Because uranium is a common element in the Earth's crust and a wide variety of metabolic groups of microorganisms catalyze the biological reduction of U(VI), this tool is applicable to a multiplicity of geological epochs and terrestrial environments. The findings of this study indicate that biological activity contributed to the formation of many authigenic U deposits, including sandstone U deposits of various ages, as well as modern, Cretaceous, and Archean black shales. Additionally, engineered bioremediation activities also exhibit a biotic signature, suggesting that, although multiple pathways may be involved in the reduction, direct enzymatic reduction contributes substantially to the immobilization of uranium.
Serrano, Rachel; González-Menéndez, Víctor; Rodríguez, Lorena; Martín, Jesús; Tormo, José R; Genilloud, Olga
2017-01-01
New fungal SMs (SMs) have been successfully described to be produced by means of in vitro -simulated microbial community interactions. Co-culturing of fungi has proved to be an efficient way to induce cell-cell interactions that can promote the activation of cryptic pathways, frequently silent when the strains are grown in laboratory conditions. Filamentous fungi represent one of the most diverse microbial groups known to produce bioactive natural products. Triggering the production of novel antifungal compounds in fungi could respond to the current needs to fight health compromising pathogens and provide new therapeutic solutions. In this study, we have selected the fungus Botrytis cinerea as a model to establish microbial interactions with a large set of fungal strains related to ecosystems where they can coexist with this phytopathogen, and to generate a collection of extracts, obtained from their antagonic microbial interactions and potentially containing new bioactive compounds. The antifungal specificity of the extracts containing compounds induced after B. cinerea interaction was determined against two human fungal pathogens ( Candida albicans and Aspergillus fumigatus ) and three phytopathogens ( Colletotrichum acutatum , Fusarium proliferatum , and Magnaporthe grisea ). In addition, their cytotoxicity was also evaluated against the human hepatocellular carcinoma cell line (HepG2). We have identified by LC-MS the production of a wide variety of known compounds induced from these fungal interactions, as well as novel molecules that support the potential of this approach to generate new chemical diversity and possible new therapeutic agents.
A Graph-Centric Approach for Metagenome-Guided Peptide and Protein Identification in Metaproteomics
Tang, Haixu; Li, Sujun; Ye, Yuzhen
2016-01-01
Metaproteomic studies adopt the common bottom-up proteomics approach to investigate the protein composition and the dynamics of protein expression in microbial communities. When matched metagenomic and/or metatranscriptomic data of the microbial communities are available, metaproteomic data analyses often employ a metagenome-guided approach, in which complete or fragmental protein-coding genes are first directly predicted from metagenomic (and/or metatranscriptomic) sequences or from their assemblies, and the resulting protein sequences are then used as the reference database for peptide/protein identification from MS/MS spectra. This approach is often limited because protein coding genes predicted from metagenomes are incomplete and fragmental. In this paper, we present a graph-centric approach to improving metagenome-guided peptide and protein identification in metaproteomics. Our method exploits the de Bruijn graph structure reported by metagenome assembly algorithms to generate a comprehensive database of protein sequences encoded in the community. We tested our method using several public metaproteomic datasets with matched metagenomic and metatranscriptomic sequencing data acquired from complex microbial communities in a biological wastewater treatment plant. The results showed that many more peptides and proteins can be identified when assembly graphs were utilized, improving the characterization of the proteins expressed in the microbial communities. The additional proteins we identified contribute to the characterization of important pathways such as those involved in degradation of chemical hazards. Our tools are released as open-source software on github at https://github.com/COL-IU/Graph2Pro. PMID:27918579
Interactions between gut bacteria and bile in health and disease.
Long, Sarah L; Gahan, Cormac G M; Joyce, Susan A
2017-08-01
Bile acids are synthesized from cholesterol in the liver and released into the intestine to aid the digestion of dietary lipids. The host enzymes that contribute to bile acid synthesis in the liver and the regulatory pathways that influence the composition of the total bile acid pool in the host have been well established. In addition, the gut microbiota provides unique contributions to the diversity of bile acids in the bile acid pool. Gut microbial enzymes contribute significantly to bile acid metabolism through deconjugation and dehydroxylation reactions to generate unconjugated bile acids and secondary bile acids. These microbial enzymes (which include bile salt hydrolase (BSH) and bile acid-inducible (BAI) enzymes) are essential for bile acid homeostasis in the host and represent a vital contribution of the gut microbiome to host health. Perturbation of the gut microbiota in disease states may therefore significantly influence bile acid signatures in the host, especially in the context of gastrointestinal or systemic disease. Given that bile acids are ligands for host cell receptors (including the FXR, TGR5 and Vitamin D Receptor) alterations to microbial enzymes and associated changes to bile acid signatures have significant consequences for the host. In this review we examine the contribution of microbial enzymes to the process of bile acid metabolism in the host and discuss the implications for microbe-host signalling in the context of C. difficile infection, inflammatory bowel disease and other disease states. Copyright © 2017 Elsevier Ltd. All rights reserved.
Flat laminated microbial mat communities
NASA Astrophysics Data System (ADS)
Franks, Jonathan; Stolz, John F.
2009-10-01
Flat laminated microbial mats are complex microbial ecosystems that inhabit a wide range of environments (e.g., caves, iron springs, thermal springs and pools, salt marshes, hypersaline ponds and lagoons, methane and petroleum seeps, sea mounts, deep sea vents, arctic dry valleys). Their community structure is defined by physical (e.g., light quantity and quality, temperature, density and pressure) and chemical (e.g., oxygen, oxidation/reduction potential, salinity, pH, available electron acceptors and donors, chemical species) parameters as well as species interactions. The main primary producers may be photoautotrophs (e.g., cyanobacteria, purple phototrophs, green phototrophs) or chemolithoautophs (e.g., colorless sulfur oxidizing bacteria). Anaerobic phototrophy may predominate in organic rich environments that support high rates of respiration. These communities are dynamic systems exhibiting both spatial and temporal heterogeneity. They are characterized by steep gradients with microenvironments on the submillimeter scale. Diel oscillations in the physical-chemical profile (e.g., oxygen, hydrogen sulfide, pH) and species distribution are typical for phototroph-dominated communities. Flat laminated microbial mats are often sites of robust biogeochemical cycling. In addition to well-established modes of metabolism for phototrophy (oxygenic and non-oxygenic), respiration (both aerobic and anaerobic), and fermentation, novel energetic pathways have been discovered (e.g., nitrate reduction couple to the oxidation of ammonia, sulfur, or arsenite). The application of culture-independent techniques (e.g., 16S rRNA clonal libraries, metagenomics), continue to expand our understanding of species composition and metabolic functions of these complex ecosystems.
Microbial Metabolic Response to Carbon Sources in a Uranium Contaminated Floodplain
NASA Astrophysics Data System (ADS)
Barragan, L.; Boye, K.; Bargar, J.; Fendorf, S. E.
2016-12-01
In Riverton, Wyoming, uranium (U) from a former ore processing plant, contaminated the groundwater and accumulated in Naturally Reduced Zones (NRZs). The NRZs have now become a secondary source of U and are releasing U into the ground water due to seasonal water table fluctuations. Microorganisms that mediate the mobilization and retention of U are likely to reside in these zones enriched with organic matter that comprises their energy source of carbon (C) for respiration. In this study, we are measuring microbial respiration (basal and substrate induced) by the MicroRespTM system, which is a quick screening method for respiratory activity in natural samples. This can provide information about the microbial community composition at certain depths and insight into their metabolic pathways which may explain U behavior in the ground water. In addition, we are determining elemental composition in the sediments by X-ray fluorescence spectroscopy (XRF) and elemental analysis (EA). Water soluble cations, anions and organic C is determined by inductively coupled plasma (ICP), mass spectrometry, ion chromatography (IC) and non-purgeable organic carbon (NPOC) analyses, respectively. If the behavior of the microbial community in the NRZ environment (enriched in both U and C) differs from that in unsaturated sediments, this can provide crucial clues to understand what causes U to be retained or released from the NRZs. This information will be used to develop and improve models aimed at predicting U mobility in the floodplain groundwater systems.
NASA Astrophysics Data System (ADS)
Wang, P. L.; Hsiao, K. T.; Lin, L. H.
2017-12-01
Amino acids represent one of the most important categories of biomolecule. Their abundance and isotopic patterns have been broadly used to address issues related to biochemical processes and elemental cycling in natural environments. Previous studies have shown that various carbon assimilative pathways of microorganisms (e.g. autotrophy, heterotrophy and acetotrophy) could be distinguished by carbon isotopic patterns of amino acids. However, the taxonomic and catabolic coverage are limited in previous examination. This study aims to uncover the carbon isotopic patterns of amino acids for microorganisms remaining uncharacterized but bearing biogeochemical and ecological significance in anoxic environments. To fulfill the purpose, two anaerobic strains were isolated from riverine wetland and mud volcano in Taiwan. One strain is a sulfate reducing bacterium (related to Desulfovibrio marrakechensis), which is capable of utilizing either H2 or lactate, and the other is a methanogen (related to Methanolobus profundi), which grows solely with methyl-group compounds. Carbon isotope analyses of amino acids were performed on cells grown in exponential and stationary phase. The isotopic patterns were similar for all examined cultures, showing successive 13C depletion along synthetic pathways. No significant difference was observed for the methanogen and lactate-utilizing sulfate reducer harvested in exponential and stationary phases. In contrast, the H2-utilizing sulfate reducer harvested in stationary phase depleted and enriched 13C in aspartic acid and glycine, respectively when compared with that harvested in exponential phase. Such variations might infer the change of carbon flux during synthesis of these two amino acids in the reverse TCA cycle. In addition, the discriminant function analysis for all available data from culture studies further attests the capability of using carbon isotope patterns of amino acids in identifying microbial metabolisms.
Brown, Dustin G.; Borresen, Erica C.; Brown, Regina J.; Ryan, Elizabeth P.
2017-01-01
Rice bran (RB) consumption has been shown to reduce colorectal cancer (CRC) growth in mice and modify the human stool microbiome. Changes in host and microbial metabolism induced by RB consumption was hypothesised to modulate the stool metabolite profile in favour of promoting gut health and inhibiting CRC growth. The objective was to integrate gut microbial metabolite profiles and identify metabolic pathway networks for CRC chemoprevention using non-targeted metabolomics. In all, nineteen CRC survivors participated in a parallel randomised controlled dietary intervention trial that included daily consumption of study-provided foods with heat-stabilised RB (30 g/d) or no additional ingredient (control). Stool samples were collected at baseline and 4 weeks and analysed using GC-MS and ultra-performance liquid chromatography-MS. Stool metabolomics revealed 93 significantly different metabolites in individuals consuming RB. A 264-fold increase in β-hydroxyisovaleroylcarnitine and 18-fold increase in β-hydroxyisovalerate exemplified changes in leucine, isoleucine and valine metabolism in the RB group. A total of thirty-nine stool metabolites were significantly different between RB and control groups, including increased hesperidin (28-fold) and narirutin (14-fold). Metabolic pathways impacted in the RB group over time included advanced glycation end products, steroids and bile acids. Fatty acid, leucine/valine and vitamin B6 metabolic pathways were increased in RB compared with control. There were 453 metabolites identified in the RB food metabolome, thirty-nine of which were identified in stool from RB consumers. RB consumption favourably modulated the stool metabolome of CRC survivors and these findings suggest the need for continued dietary CRC chemoprevention efforts. PMID:28643618
Brown, Dustin G; Borresen, Erica C; Brown, Regina J; Ryan, Elizabeth P
2017-05-01
Rice bran (RB) consumption has been shown to reduce colorectal cancer (CRC) growth in mice and modify the human stool microbiome. Changes in host and microbial metabolism induced by RB consumption was hypothesised to modulate the stool metabolite profile in favour of promoting gut health and inhibiting CRC growth. The objective was to integrate gut microbial metabolite profiles and identify metabolic pathway networks for CRC chemoprevention using non-targeted metabolomics. In all, nineteen CRC survivors participated in a parallel randomised controlled dietary intervention trial that included daily consumption of study-provided foods with heat-stabilised RB (30 g/d) or no additional ingredient (control). Stool samples were collected at baseline and 4 weeks and analysed using GC-MS and ultra-performance liquid chromatography-MS. Stool metabolomics revealed 93 significantly different metabolites in individuals consuming RB. A 264-fold increase in β-hydroxyisovaleroylcarnitine and 18-fold increase in β-hydroxyisovalerate exemplified changes in leucine, isoleucine and valine metabolism in the RB group. A total of thirty-nine stool metabolites were significantly different between RB and control groups, including increased hesperidin (28-fold) and narirutin (14-fold). Metabolic pathways impacted in the RB group over time included advanced glycation end products, steroids and bile acids. Fatty acid, leucine/valine and vitamin B6 metabolic pathways were increased in RB compared with control. There were 453 metabolites identified in the RB food metabolome, thirty-nine of which were identified in stool from RB consumers. RB consumption favourably modulated the stool metabolome of CRC survivors and these findings suggest the need for continued dietary CRC chemoprevention efforts.
Strategies for enhancing microbial tolerance to inhibitors for biofuel production: A review.
Wang, Shizeng; Sun, Xinxiao; Yuan, Qipeng
2018-06-01
Using lignocellulosic biomass for the production of renewable biofuel provides a sustainable and promising solution to the crisis of energy and environment. However, the processes of biomass pretreatment and biofuel fermentation bring a variety of inhibitors to microbial strains. These inhibitors repress microbial growth, decrease biofuel yields and increase fermentation costs. The production of biofuels from renewable lignocellulosic biomass relies on the development of tolerant and robust microbial strains. In recent years, the advancement of tolerance engineering and evolutionary engineering provides powerful platform for obtaining host strains with desired tolerance for further metabolic engineering of biofuel pathways. In this review, we summarized the inhibitors derived from biomass pretreatment and biofuel fermentation, the mechanisms of inhibitor toxicity, and the strategies for enhancing microbial tolerance. Copyright © 2018 Elsevier Ltd. All rights reserved.
Wang, Ya Fen; Zhu, Hao Wen; Wang, Ying; Zhang, Xiang Ling; Tam, Nora Fung Yee
2018-01-01
Little is known about the diversity and succession of indigenous microbial community during debromination of polybrominated diphenyl ethers (PBDEs). This study examined the diversity and dynamics of microbial community structure in eight saline (mangrove and marine) and freshwater sediment microcosms exhibiting different debrominating capabilities for hexa-BDE 153, a common congener in sediments, using terminal restriction fragment length polymorphism (T-RFLP) and clone library analyses. The results showed that microbial community structure greatly differed between the saline and freshwater microcosms, likely leading to distinct variations in their debrominating capabilities and pathways. Higher relative abundances of Chloroflexi and Deltaproteobacteria succeed by Alphaproteobacteria and Betaproteobacteria were detected in the two mangrove microcosms with the fastest debrominating capabilities mainly via para pathway, respectively; the dominance of Alphaproteobacteria resulted in less accumulation of tetra-BDEs and more complete debromination of lower brominated congeners (from di- to tetra-BDEs). Meanwhile, the shifts in both microbial community structure and PBDE profiles were relatively small in the less efficient freshwater microcosms, with relatively more ortho and meta brominated products of BDE-153 resulted. Coincidently, one of the freshwater microcosms showed sudden increases of Chloroflexi and Deltaproteobacteria by the end of incubation, which synchronized with the increase in the removal rate of BDE-153. The significant relationship between microbial community structure and PBDEs was confirmed by redundancy analysis (18.7% of total variance explained, P = 0.002). However, the relative abundance of the well-known dechlorinator Dehalococcoides showed no clear correlation with the debrominating capability across different microcosms. These findings shed light in the significance of microbial community network in different saline environments on enhancement of PBDE intrinsic debromination. PMID:29867858
Wang, Ya Fen; Zhu, Hao Wen; Wang, Ying; Zhang, Xiang Ling; Tam, Nora Fung Yee
2018-01-01
Little is known about the diversity and succession of indigenous microbial community during debromination of polybrominated diphenyl ethers (PBDEs). This study examined the diversity and dynamics of microbial community structure in eight saline (mangrove and marine) and freshwater sediment microcosms exhibiting different debrominating capabilities for hexa-BDE 153, a common congener in sediments, using terminal restriction fragment length polymorphism (T-RFLP) and clone library analyses. The results showed that microbial community structure greatly differed between the saline and freshwater microcosms, likely leading to distinct variations in their debrominating capabilities and pathways. Higher relative abundances of Chloroflexi and Deltaproteobacteria succeed by Alphaproteobacteria and Betaproteobacteria were detected in the two mangrove microcosms with the fastest debrominating capabilities mainly via para pathway, respectively; the dominance of Alphaproteobacteria resulted in less accumulation of tetra-BDEs and more complete debromination of lower brominated congeners (from di- to tetra-BDEs). Meanwhile, the shifts in both microbial community structure and PBDE profiles were relatively small in the less efficient freshwater microcosms, with relatively more ortho and meta brominated products of BDE-153 resulted. Coincidently, one of the freshwater microcosms showed sudden increases of Chloroflexi and Deltaproteobacteria by the end of incubation, which synchronized with the increase in the removal rate of BDE-153. The significant relationship between microbial community structure and PBDEs was confirmed by redundancy analysis (18.7% of total variance explained, P = 0.002). However, the relative abundance of the well-known dechlorinator Dehalococcoides showed no clear correlation with the debrominating capability across different microcosms. These findings shed light in the significance of microbial community network in different saline environments on enhancement of PBDE intrinsic debromination.
NASA Astrophysics Data System (ADS)
Dippold, M. A.; Apostel, C.; Kuzyakov, Y.
2016-12-01
Biogeochemists' view on microbial C transformation in soil has rarely exceed a strongly simplified concept assuming that C gets either oxidized to CO2 via the microbial catabolism or incorporated into biomass via the anabolism. However, life in a C limited environment as challenging as soil requires microbial adaptation strategies at all levels of metabolism. By coupling of position-specific labeling of core metabolites with compound-specific isotope analysis we demonstrated that catabolic oxidation of these metabolites exists in parallel to reductive, energy consuming pathways, reducing them for anabolic purposes. Up to 55% of glucose, incorporated into the glucose derivative glucosamine, first passed glycolysis before allocated back via gluconeogenesis. Similarly, glutamate-derived C is allocated via anaplerotic pathways towards fatty acid synthesis and in parallel to its oxidation in the citric acid cycle. Furthermore, position-specific labeling of rather `cost-intensive' biomass compounds such as fatty acids revealed that intact recycling of metabolites is a crucial microbial adaptation to C scarcity in soils. Both processes are unlikely to occur in pure cultures, where constant growth conditions under high C supply allow a straight unidirectional regulation of C metabolism. However, unstable environmental conditions, C scarcity and interactions between a still unknown diversity of microorganisms in soils are likely to induce the observed metabolic diversity. To understand how microorganisms catalyze the biogeochemical fluxes in soil, a profound understanding of their metabolic adaptation strategies such as recycling or switching between bidirectional fluxes is crucial. Metabolic flux models adapted to soil microbial communities and their regulatory strategies will not only deepen our understanding on the microorganims' reactions to environmental changes but also create the prerequisits for a quantitative prediction of biogeochemical fluxes based on the underlying microbial processes.
Islam, M M Majedul; Iqbal, Muhammad Shahid; Leemans, Rik; Hofstra, Nynke
2018-03-01
Microbial surface water quality is important, as it is related to health risk when the population is exposed through drinking, recreation or consumption of irrigated vegetables. The microbial surface water quality is expected to change with socio-economic development and climate change. This study explores the combined impacts of future socio-economic and climate change scenarios on microbial water quality using a coupled hydrodynamic and water quality model (MIKE21FM-ECOLab). The model was applied to simulate the baseline (2014-2015) and future (2040s and 2090s) faecal indicator bacteria (FIB: E. coli and enterococci) concentrations in the Betna river in Bangladesh. The scenarios comprise changes in socio-economic variables (e.g. population, urbanization, land use, sanitation and sewage treatment) and climate variables (temperature, precipitation and sea-level rise). Scenarios have been developed building on the most recent Shared Socio-economic Pathways: SSP1 and SSP3 and Representative Concentration Pathways: RCP4.5 and RCP8.5 in a matrix. An uncontrolled future results in a deterioration of the microbial water quality (+75% by the 2090s) due to socio-economic changes, such as higher population growth, and changes in rainfall patterns. However, microbial water quality improves under a sustainable scenario with improved sewage treatment (-98% by the 2090s). Contaminant loads were more influenced by changes in socio-economic factors than by climatic change. To our knowledge, this is the first study that combines climate change and socio-economic development scenarios to simulate the future microbial water quality of a river. This approach can also be used to assess future consequences for health risks. Copyright © 2017 The Authors. Published by Elsevier GmbH.. All rights reserved.
NASA Astrophysics Data System (ADS)
Wang, Hai-liang; Sun, Li
2018-04-01
In this study, metagenomic analysis was performed to investigate the taxonomic compositions and metabolic profiles of the microbial communities inhabiting the sediments in the surroundings of Iheya North and Iheya Ridge hydrothermal fields. The microbial communities in four different samples were found to be dominated by bacteria and, to a much lesser extent, archaea belonging to the phyla Proteobacteria, Actinobacteria, Planctomycetes, Firmicutes, Deinococcus-Thermus, and Nitrospirae, which play important roles in the cycling of carbon, nitrogen, and sulfur. All four microbial communities (i) contained chemoautotrophs and heterotrophs, the former probably fixed CO2 via various carbon fixation pathways, and the latter may degrade organic matters using nitrate and sulfate as electron acceptors, (ii) exhibited an abundance of DNA repair genes and bacterial sulfur oxidation mediated by reverse sulfate reduction, and (iii) harbored bacteria and archaea involved in anaerobic methane oxidation via intra-aerobic denitrification and reverse methanogenesis, which were found for the first time in hydrothermal areas. Furthermore, genes involved in DNA repair, reductive acetyl-CoA pathway, and ammonia metabolism were possibly affected by distance to the vent fields. These findings facilitate our understanding of the strategies of the microbial communities to adapt to the environments in deep sea areas associated with hydrothermal vents.
de Voogd, Nicole J; Cleary, Daniel F R; Polónia, Ana R M; Gomes, Newton C M
2015-04-01
In the present study, we assessed the composition of Bacteria in four biotopes namely sediment, seawater and two sponge species (Stylissa massa and Xestospongia testudinaria) at four different reef sites in a coral reef ecosystem in West Java, Indonesia. In addition to this, we used a predictive metagenomic approach to estimate to what extent nitrogen metabolic pathways differed among bacterial communities from different biotopes. We observed marked differences in bacterial composition of the most abundant bacterial phyla, classes and orders among sponge species, water and sediment. Proteobacteria were by far the most abundant phylum in terms of both sequences and Operational Taxonomic Units (OTUs). Predicted counts for genes associated with the nitrogen metabolism suggested that several genes involved in the nitrogen cycle were enriched in sponge samples, including nosZ, nifD, nirK, norB and nrfA genes. Our data show that a combined barcoded pyrosequencing and predictive metagenomic approach can provide novel insights into the potential ecological functions of the microbial communities. Not only is this approach useful for our understanding of the vast microbial diversity found in sponges but also to understand the potential response of microbial communities to environmental change. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilkins, Michael J.; Wrighton, Kelly C.; Nicora, Carrie D.
2013-03-05
While microbial activities in environmental systems play a key role in the utilization and cycling of essential elements and compounds, microbial activity and growth frequently fluctuates in response to environmental stimuli and perturbations. To investigate these fluctuations within a saturated aquifer system, we monitored a carbon-stimulated in situ Geobacter population while iron reduction was occurring, using 16S rRNA abundances and high-resolution tandem mass spectrometry proteome measurements. Following carbon amendment, 16S rRNA analysis of temporally separated samples revealed the rapid enrichment of Geobacter-like environmental strains with strong similarity to G. bemidjiensis. Tandem mass spectrometry proteomics measurements suggest high carbon flux throughmore » Geobacter respiratory pathways, and the synthesis of anapleurotic four carbon compounds from acetyl-CoA via pyruvate ferredoxin oxidoreductase activity. Across a 40-day period where Fe(III) reduction was occurring, fluctuations in protein expression reflected changes in anabolic versus catabolic reactions, with increased levels of biosynthesis occurring soon after acetate arrival in the aquifer. In addition, localized shifts in nutrient limitation were inferred based on expression of nitrogenase enzymes and phosphate uptake proteins. These temporal data offer the first example of differing microbial protein expression associated with changing geochemical conditions in a subsurface environment.« less
Ortseifen, Vera; Stolze, Yvonne; Maus, Irena; Sczyrba, Alexander; Bremges, Andreas; Albaum, Stefan P; Jaenicke, Sebastian; Fracowiak, Jochen; Pühler, Alfred; Schlüter, Andreas
2016-08-10
To study the metaproteome of a biogas-producing microbial community, fermentation samples were taken from an agricultural biogas plant for microbial cell and protein extraction and corresponding metagenome analyses. Based on metagenome sequence data, taxonomic community profiling was performed to elucidate the composition of bacterial and archaeal sub-communities. The community's cytosolic metaproteome was represented in a 2D-PAGE approach. Metaproteome databases for protein identification were compiled based on the assembled metagenome sequence dataset for the biogas plant analyzed and non-corresponding biogas metagenomes. Protein identification results revealed that the corresponding biogas protein database facilitated the highest identification rate followed by other biogas-specific databases, whereas common public databases yielded insufficient identification rates. Proteins of the biogas microbiome identified as highly abundant were assigned to the pathways involved in methanogenesis, transport and carbon metabolism. Moreover, the integrated metagenome/-proteome approach enabled the examination of genetic-context information for genes encoding identified proteins by studying neighboring genes on the corresponding contig. Exemplarily, this approach led to the identification of a Methanoculleus sp. contig encoding 16 methanogenesis-related gene products, three of which were also detected as abundant proteins within the community's metaproteome. Thus, metagenome contigs provide additional information on the genetic environment of identified abundant proteins. Copyright © 2016 Elsevier B.V. All rights reserved.
Wu, R C-C; Cho, W-L
2014-10-01
Protein kinases are known to be involved in a number of signal transduction cascades. Both the stress-activated Jun N-terminal kinase (JNK) and mitogen-activated protein kinase (MAPK) p38 pathways have been shown to correlate with the insect immune response to microbial infection. MAP kinase kinase 4 (MEK4) is an upstream kinase of JNK and p38 kinase. The cDNA of AaMEK4 was cloned and characterized. AaMEK4 was activated by microbial lysates of Gram-positive, Gram-negative bacteria and yeast. The conserved lysine (K112 ) and the putative phosphorylation sites (S238 and T242 ) were shown to be important for kinase activity by site-directed mutagenesis. A common MAPK docking site (MAPK_dsA) was found and in addition, a new nearby docking site, MAPK_dsB, was identified in the N-terminal noncatalytic domain of AaMEK4. MAPK_dsB was shown to be a unique element in the MEK4 family. In this study, both MAPK_dsA and _dsB were demonstrated to be important to AaMEK4 enzymatic activity for the downstream protein kinase, Aap38. © 2014 The Royal Entomological Society.
Assessment of anti-oxidant activity of plant extracts using microbial test systems.
Oktyabrsky, O; Vysochina, G; Muzyka, N; Samoilova, Z; Kukushkina, T; Smirnova, G
2009-04-01
To evaluate the anti-oxidant properties of extracts from 20 medicinal herbs growing in western Siberia using microbial test systems and different in vitro methods. In vivo anti-oxidant activity of extracts was evaluated for their capacity to protect bacteria, Escherichia coli, against bacteriostatic and bactericidal effects of H(2)O(2) and menadione, and action on anti-oxidant gene expression. In vitro anti-oxidant activity has been examined by a number of methods including: the 1,1-diphenyl-2-picrylhydrazyl radical (DPPH(*))-scavenging assay, chelating activity and capacity to protect plasmid DNA against oxidative damage. In addition, total polyphenol content was determined. The extracts of Fragaria vesca, Rosa majalis, Pentaphylloides fruticosa, Alchemilla vulgaris and Pulmonaria mollis possessed the highest levels of anti-oxidant activity in vivo and in vitro. The protective properties were more closely related to the DPPH(*) radical-scavenging activity, tannin content and action on anti-oxidant gene expression than to other parameters. The extracts of medicinal plants may have anti-oxidant effects on bacteria simultaneously through several different pathways, including direct inhibition of reactive oxygen species, iron chelation and anti-oxidant genes induction. Using microbial test systems, we revealed herbs that may be used as potential sources of natural anti-oxidants.
He, Jing; Wang, Xing; Yin, Xiao-Bo; Li, Qiang; Li, Xia; Zhang, Yun-Fei; Deng, Yu
2018-06-01
High content of lipids in food waste could restrict digestion rate and give rise to the accumulation of long chain fatty acids in anaerobic digester. In the present study, using waste cooking oil skimmed from food waste as the sole carbon source, the effect of organic loading rate (OLR) on the methane production and microbial community dynamics were well investigated. Results showed that stable biomethane production was obtained at an organic loading rate of 0.5-1.5 g VS L -1 days -1 . The specific biogas/methane yield values at OLR of 1.0 were 1.44 ± 0.15 and 0.98 ± 0.11 L g VS -1 , respectively. The amplicon pyrosequencing revealed the distinct microbial succession in waste cooking oil AD reactors. Acetoclastic methanogens belonging to the genus Methanosaeta were the most dominant archaea, while the genera Syntrophomona, Anaerovibrio and Synergistaceae were the most common bacteria during AD process. Furthermore, redundancy analysis indicated that OLR showed more significant effect on the bacterial communities than that of archaeal communities. Additionally, whether the OLR of lipids increased had slight influence on the acetate fermentation pathway.
What is microbial community ecology?
Konopka, Allan
2009-11-01
The activities of complex communities of microbes affect biogeochemical transformations in natural, managed and engineered ecosystems. Meaningfully defining what constitutes a community of interacting microbial populations is not trivial, but is important for rigorous progress in the field. Important elements of research in microbial community ecology include the analysis of functional pathways for nutrient resource and energy flows, mechanistic understanding of interactions between microbial populations and their environment, and the emergent properties of the complex community. Some emergent properties mirror those analyzed by community ecologists who study plants and animals: biological diversity, functional redundancy and system stability. However, because microbes possess mechanisms for the horizontal transfer of genetic information, the metagenome may also be considered as a community property.
Zhou, Wen-jie; Zhang, Peng; Qin, Si-jun; Lyu, De-guo
2015-11-01
One-year-old potted sweet cheery trees were treated with 4 g · kg(-1) exogenous glucose or starch and with non-addition of exogenous carbon as the control for up to 60 days. Soil of root zone was sampled to analyze soil microbial biomass carbon, activities of invertase and amylase and microbial community functional diversity during the 60-day treatment, and roots were sampled for analysis of root respiratory rate, respiratory pathways and root viability after treatment for 30 days. Results showed that the invertase activity and the microbial biomass carbon initially increased and decreased subsequently, with the maxima which were 14.0% and 13.1% higher in the glucose treatment than in the control treatment appeared after 15 and 7 days of treatments, respectively. Soil organic matter content increased first then decreased and finally moderately increased again. Amylase activity was 7.5-fold higher in the starch treatment than in the control treatment after 15-day treatment. Soil microbial biomass carbon was higher in the starch treatment than in the control treatment except after 7-day treatment. Soil organic matter content initially increased and then decreased, but it was still 19.8% higher than in the control after 60-day treatment. BIOLOG results showed that the maximum average well color development (AWCD) value and microbial activity appeared after 15-day treatment in the following order: starch>glucose>control. After 30-day treatment, glucose treatment resulted in a significant increase in the soil microbial utilization of carbohydrates, carboxylic acid, amino acids, phenolic acids and amines, and starch treatment significantly increased the soil microbial utilization of carbohydrates, carboxylic acid, polymers and phenolic acids. After 30-day treatment, the total root respiratory rate and root viability were 21.4%, 19.4% and 65.5%, 37.0% higher in glucose treatment than in the control and starch treatments, respectively. These results indicated exogenous glucose and starch affected soil carbon metabolism and enhanced soil microbial activity, the root respiratory rate and root viability.
Saxena, Rituja; Dhakan, Darshan B.; Mittal, Parul; Waiker, Prashant; Chowdhury, Anirban; Ghatak, Arundhuti; Sharma, Vineet K.
2017-01-01
Extreme ecosystems such as hot springs are of great interest as a source of novel extremophilic species, enzymes, metabolic functions for survival and biotechnological products. India harbors hundreds of hot springs, the majority of which are not yet explored and require comprehensive studies to unravel their unknown and untapped phylogenetic and functional diversity. The aim of this study was to perform a large-scale metagenomic analysis of three major hot springs located in central India namely, Badi Anhoni, Chhoti Anhoni, and Tattapani at two geographically distinct regions (Anhoni and Tattapani), to uncover the resident microbial community and their metabolic traits. Samples were collected from seven distinct sites of the three hot spring locations with temperature ranging from 43.5 to 98°C. The 16S rRNA gene amplicon sequencing of V3 hypervariable region and shotgun metagenome sequencing uncovered a unique taxonomic and metabolic diversity of the resident thermophilic microbial community in these hot springs. Genes associated with hydrocarbon degradation pathways, such as benzoate, xylene, toluene, and benzene were observed to be abundant in the Anhoni hot springs (43.5–55°C), dominated by Pseudomonas stutzeri and Acidovorax sp., suggesting the presence of chemoorganotrophic thermophilic community with the ability to utilize complex hydrocarbons as a source of energy. A high abundance of genes belonging to methane metabolism pathway was observed at Chhoti Anhoni hot spring, where methane is reported to constitute >80% of all the emitted gases, which was marked by the high abundance of Methylococcus capsulatus. The Tattapani hot spring, with a high-temperature range (61.5–98°C), displayed a lower microbial diversity and was primarily dominated by a nitrate-reducing archaeal species Pyrobaculum aerophilum. A higher abundance of cell metabolism pathways essential for the microbial survival in extreme conditions was observed at Tattapani. Taken together, the results of this study reveal a novel consortium of microbes, genes, and pathways associated with the hot spring environment. PMID:28105025
Nature of phosphorus limitation in the ultraoligotrophic eastern Mediterranean.
Thingstad, T F; Krom, M D; Mantoura, R F C; Flaten, G A F; Groom, S; Herut, B; Kress, N; Law, C S; Pasternak, A; Pitta, P; Psarra, S; Rassoulzadegan, F; Tanaka, T; Tselepides, A; Wassmann, P; Woodward, E M S; Riser, C Wexels; Zodiatis, G; Zohary, T
2005-08-12
Phosphate addition to surface waters of the ultraoligotrophic, phosphorus-starved eastern Mediterranean in a Lagrangian experiment caused unexpected ecosystem responses. The system exhibited a decline in chlorophyll and an increase in bacterial production and copepod egg abundance. Although nitrogen and phosphorus colimitation hindered phytoplankton growth, phosphorous may have been transferred through the microbial food web to copepods via two, not mutually exclusive, pathways: (i) bypass of the phytoplankton compartment by phosphorus uptake in heterotrophic bacteria and (ii) tunnelling, whereby phosphate luxury consumption rapidly shifts the stoichiometric composition of copepod prey. Copepods may thus be coupled to lower trophic levels through interactions not usually considered.
Nature of Phosphorus Limitation in the Ultraoligotrophic Eastern Mediterranean
NASA Astrophysics Data System (ADS)
Thingstad, T. F.; Krom, M. D.; Mantoura, R. F. C.; Flaten, G. A. F.; Groom, S.; Herut, B.; Kress, N.; Law, C. S.; Pasternak, A.; Pitta, P.; Psarra, S.; Rassoulzadegan, F.; Tanaka, T.; Tselepides, A.; Wassmann, P.; Woodward, E. M. S.; Riser, C. Wexels; Zodiatis, G.; Zohary, T.
2005-08-01
Phosphate addition to surface waters of the ultraoligotrophic, phosphorus-starved eastern Mediterranean in a Lagrangian experiment caused unexpected ecosystem responses. The system exhibited a decline in chlorophyll and an increase in bacterial production and copepod egg abundance. Although nitrogen and phosphorus colimitation hindered phytoplankton growth, phosphorous may have been transferred through the microbial food web to copepods via two, not mutually exclusive, pathways: (i) bypass of the phytoplankton compartment by phosphorus uptake in heterotrophic bacteria and (ii) tunnelling, whereby phosphate luxury consumption rapidly shifts the stoichiometric composition of copepod prey. Copepods may thus be coupled to lower trophic levels through interactions not usually considered.
Linking the Human Gut Microbiome to Inflammatory Cytokine Production Capacity.
Schirmer, Melanie; Smeekens, Sanne P; Vlamakis, Hera; Jaeger, Martin; Oosting, Marije; Franzosa, Eric A; Ter Horst, Rob; Jansen, Trees; Jacobs, Liesbeth; Bonder, Marc Jan; Kurilshikov, Alexander; Fu, Jingyuan; Joosten, Leo A B; Zhernakova, Alexandra; Huttenhower, Curtis; Wijmenga, Cisca; Netea, Mihai G; Xavier, Ramnik J
2016-11-03
Gut microbial dysbioses are linked to aberrant immune responses, which are often accompanied by abnormal production of inflammatory cytokines. As part of the Human Functional Genomics Project (HFGP), we investigate how differences in composition and function of gut microbial communities may contribute to inter-individual variation in cytokine responses to microbial stimulations in healthy humans. We observe microbiome-cytokine interaction patterns that are stimulus specific, cytokine specific, and cytokine and stimulus specific. Validation of two predicted host-microbial interactions reveal that TNFα and IFNγ production are associated with specific microbial metabolic pathways: palmitoleic acid metabolism and tryptophan degradation to tryptophol. Besides providing a resource of predicted microbially derived mediators that influence immune phenotypes in response to common microorganisms, these data can help to define principles for understanding disease susceptibility. The three HFGP studies presented in this issue lay the groundwork for further studies aimed at understanding the interplay between microbial, genetic, and environmental factors in the regulation of the immune response in humans. PAPERCLIP. Copyright © 2016 Elsevier Inc. All rights reserved.
Bhattacharyya, P; Roy, K S; Das, M; Ray, S; Balachandar, D; Karthikeyan, S; Nayak, A K; Mohapatra, T
2016-01-15
Carbon (C) and nitrogen (N) mineralization is one of the key processes of biogeochemical cycling in terrestrial ecosystem in general and rice ecology in particular. Rice rhizosphere is a rich niche of microbial diversity influenced by change in atmospheric temperature and concentration of carbon dioxide (CO2). Structural changes in microbial communities in rhizosphere influence the nutrient cycling. In the present study, the bacterial diversity and population dynamics were studied under ambient CO2 (a-CO2) and elevated CO2+temperature (e-CO2T) in lowland rice rhizosphere using whole genome metagenomic approach. The whole genome metagenomic sequence data of lowland rice exhibited the dominance of bacterial communities including Proteobacteria, Firmicutes, Acidobacteria, Actinobacteria and Planctomycetes. Interestingly, four genera related to methane production namely, Methanobacterium, Methanosphaera, Methanothermus and Methanothermococcus were absent in a-CO2 but noticed under e-CO2T. The acetoclastic pathway was found as the predominant pathway for methanogenesis, whereas, the serine pathway was found as the principal metabolic pathway for CH4 oxidation in lowland rice. The abundances of reads of enzymes in the acetoclastic methanogenesis pathway and serine pathways of methanotrophy were much higher in e-CO2T (328 and 182, respectively) as compared with a-CO2 (118 and 98, respectively). Rice rhizosphere showed higher structural diversities and functional activities in relation to N metabolism involving nitrogen fixation, assimilatory and dissimilatory nitrate reduction and denitrification under e-CO2T than that of a-CO2. Among the three pathways of N metabolism, dissimilarity pathways were predominant in lowland rice rhizosphere and more so under e-CO2T. Consequently, under e-CO2T, CH4 emission, microbial biomass nitrogen (MBN) and dehydrogenase activities were 45%, 20% and 35% higher than a-CO2, respectively. Holistically, a high bacterial diversity and abundances of C and N decomposing bacteria in lowland rice rhizosphere were found under e-CO2T, which could be explored further for their specific role in nutrient cycling, sustainable agriculture and environment management. Copyright © 2015 Elsevier B.V. All rights reserved.
Toner, Brandy M; Rouxel, Olivier J; Santelli, Cara M; Bach, Wolfgang; Edwards, Katrina J
2016-01-01
Hydrothermal sulfide chimneys located along the global system of oceanic spreading centers are habitats for microbial life during active venting. Hydrothermally extinct, or inactive, sulfide deposits also host microbial communities at globally distributed sites. The main goal of this study is to describe Fe transformation pathways, through precipitation and oxidation-reduction (redox) reactions, and examine transformation products for signatures of biological activity using Fe mineralogy and stable isotope approaches. The study includes active and inactive sulfides from the East Pacific Rise 9°50'N vent field. First, the mineralogy of Fe(III)-bearing precipitates is investigated using microprobe X-ray absorption spectroscopy (μXAS) and X-ray diffraction (μXRD). Second, laser-ablation (LA) and micro-drilling (MD) are used to obtain spatially-resolved Fe stable isotope analysis by multicollector-inductively coupled plasma-mass spectrometry (MC-ICP-MS). Eight Fe-bearing minerals representing three mineralogical classes are present in the samples: oxyhydroxides, secondary phyllosilicates, and sulfides. For Fe oxyhydroxides within chimney walls and layers of Si-rich material, enrichments in both heavy and light Fe isotopes relative to pyrite are observed, yielding a range of δ(57)Fe values up to 6‰. Overall, several pathways for Fe transformation are observed. Pathway 1 is characterized by precipitation of primary sulfide minerals from Fe(II)aq-rich fluids in zones of mixing between vent fluids and seawater. Pathway 2 is also consistent with zones of mixing but involves precipitation of sulfide minerals from Fe(II)aq generated by Fe(III) reduction. Pathway 3 is direct oxidation of Fe(II) aq from hydrothermal fluids to form Fe(III) precipitates. Finally, Pathway 4 involves oxidative alteration of pre-existing sulfide minerals to form Fe(III). The Fe mineralogy and isotope data do not support or refute a unique biological role in sulfide alteration. The findings reveal a dynamic range of Fe transformation pathways consistent with a continuum of micro-environments having variable redox conditions. These micro-environments likely support redox cycling of Fe and S and are consistent with culture-dependent and -independent assessments of microbial physiology and genetic diversity of hydrothermal sulfide deposits.
Research advances on microbial genetics in China in 2015.
Xie, Jian-ping; Han, Yu-bo; Liu, Gang; Bai, Lin-quan
2016-09-01
In 2015, there are significant progresses in many aspects of the microbial genetics in China. To showcase the contribution of Chinese scientists in microbial genetics, this review surveys several notable progresses in microbial genetics made largely by Chinese scientists, and some key findings are highlighted. For the basic microbial genetics, the components, structures and functions of many macromolecule complexes involved in gene expression regulation have been elucidated. Moreover, the molecular basis underlying the recognition of foreign nucleic acids by microbial immune systems was unveiled. We also illustrated the biosynthetic pathways and regulators of multiple microbial compounds, novel enzyme reactions, and new mechanisms regulating microbial gene expression. And new findings were obtained in the microbial development, evolution and population genetics. For the industrial microbiology, more understanding on the molecular basis of the microbial factory has been gained. For the pathogenic microbiology, the genetic circuits of several pathogens were depicted, and significant progresses were achieved for understanding the pathogen-host interaction and revealing the genetic mechanisms underlying antimicrobial resistance, emerging pathogens and environmental microorganisms at the genomic level. In future, the genetic diversity of microbes can be used to obtain specific products, while gut microbiome is gathering momentum.
Improved Release and Metabolism of Flavonoids by Steered Fermentation Processes: A Review
Nguyen Thai, Huynh; Van Camp, John; Smagghe, Guy; Raes, Katleen
2014-01-01
This paper provides an overview on steered fermentation processes to release phenolic compounds from plant-based matrices, as well as on their potential application to convert phenolic compounds into unique metabolites. The ability of fermentation to improve the yield and to change the profile of phenolic compounds is mainly due to the release of bound phenolic compounds, as a consequence of the degradation of the cell wall structure by microbial enzymes produced during fermentation. Moreover, the microbial metabolism of phenolic compounds results in a large array of new metabolites through different bioconversion pathways such as glycosylation, deglycosylation, ring cleavage, methylation, glucuronidation and sulfate conjugation, depending on the microbial strains and substrates used. A whole range of metabolites is produced, however metabolic pathways related to the formation and bioactivities, and often quantification of the metabolites are highly underinvestigated. This strategy could have potential to produce extracts with a high-added value from plant-based matrices. PMID:25347275
Towards Targeting the Aryl Hydrocarbon Receptor in Cystic Fibrosis
Paolicelli, Giuseppe; De Luca, Antonella; Renga, Giorgia; Borghi, Monica; Pariano, Marilena; Stincardini, Claudia; Scaringi, Lucia; Ricci, Maurizio; Romani, Luigina
2018-01-01
Tryptophan (trp) metabolism is an important regulatory component of gut mucosal homeostasis and the microbiome. Metabolic pathways targeting the trp can lead to a myriad of metabolites, of both host and microbial origins, some of which act as endogenous low-affinity ligands for the aryl hydrocarbon receptor (AhR), a cytosolic, ligand-operated transcription factor that is involved in many biological processes, including development, cellular differentiation and proliferation, xenobiotic metabolism, and the immune response. Low-level activation of AhR by endogenous ligands is beneficial in the maintenance of immune health and intestinal homeostasis. We have defined a functional node whereby certain bacteria species contribute to host/microbial symbiosis and mucosal homeostasis. A microbial trp metabolic pathway leading to the production of indole-3-aldehyde (3-IAld) by lactobacilli provided epithelial protection while inducing antifungal resistance via the AhR/IL-22 axis. In this review, we highlight the role of AhR in inflammatory lung diseases and discuss the possible therapeutic use of AhR ligands in cystic fibrosis. PMID:29670460
Gut Microbiota in Cardiovascular Health and Disease
Tang, W.H. Wilson; Kitai, Takeshi; Hazen, Stanley L
2017-01-01
Significant interest in recent years has focused on gut microbiota-host interaction because accumulating evidence has revealed that intestinal microbiota play an important role in human health and disease, including cardiovascular diseases. Changes in the composition of gut microbiota associated with disease, referred to as dysbiosis, have been linked to pathologies such as atherosclerosis, hypertension, heart failure, chronic kidney disease, obesity and type 2 diabetes mellitus. In addition to alterations in gut microbiota composition, the metabolic potential of gut microbiota has been identified as a contributing factor in the development of diseases. Recent studies revealed that gut microbiota can elicit a variety of effects on the host. Indeed, the gut microbiome functions like an endocrine organ, generating bioactive metabolites, that can impact host physiology. Microbiota interact with the host through a number of pathways, including the trimethylamine (TMA)/ trimethylamine N-oxide (TMAO) pathway, short-chain fatty acids pathway, and primary and secondary bile acids pathways. In addition to these “metabolism dependent” pathways, metabolism independent processes are suggested to also potentially contribute to CVD pathogenesis. For example, heart failure associated splanchnic circulation congestion, bowel wall edema and impaired intestinal barrier function are thought to result in bacterial translocation, the presence of bacterial products in the systemic circulation and heightened inflammatory state. These are believed to also contribute to further progression of heart failure and atherosclerosis. The purpose of the current review is to highlight the complex interplay between microbiota, their metabolites and the development and progression of cardiovascular diseases. We will also discuss the roles of gut microbiota in normal physiology and the potential of modulating intestinal microbial inhabitants as novel therapeutic targets. PMID:28360349
Gut Microbiota in Cardiovascular Health and Disease.
Tang, W H Wilson; Kitai, Takeshi; Hazen, Stanley L
2017-03-31
Significant interest in recent years has focused on gut microbiota-host interaction because accumulating evidence has revealed that intestinal microbiota play an important role in human health and disease, including cardiovascular diseases. Changes in the composition of gut microbiota associated with disease, referred to as dysbiosis, have been linked to pathologies such as atherosclerosis, hypertension, heart failure, chronic kidney disease, obesity, and type 2 diabetes mellitus. In addition to alterations in gut microbiota composition, the metabolic potential of gut microbiota has been identified as a contributing factor in the development of diseases. Recent studies revealed that gut microbiota can elicit a variety of effects on the host. Indeed, the gut microbiome functions like an endocrine organ, generating bioactive metabolites, that can impact host physiology. Microbiota interact with the host through many pathways, including the trimethylamine/trimethylamine N -oxide pathway, short-chain fatty acids pathway, and primary and secondary bile acids pathways. In addition to these metabolism-dependent pathways, metabolism-independent processes are suggested to also potentially contribute to cardiovascular disease pathogenesis. For example, heart failure-associated splanchnic circulation congestion, bowel wall edema, and impaired intestinal barrier function are thought to result in bacterial translocation, the presence of bacterial products in the systemic circulation and heightened inflammatory state. These are thought to also contribute to further progression of heart failure and atherosclerosis. The purpose of the current review is to highlight the complex interplay between microbiota, their metabolites, and the development and progression of cardiovascular diseases. We will also discuss the roles of gut microbiota in normal physiology and the potential of modulating intestinal microbial inhabitants as novel therapeutic targets. © 2017 American Heart Association, Inc.
NASA Astrophysics Data System (ADS)
Ebrahimi, Ali N.; Or, Dani
2014-09-01
The dispersal rates of self-propelled microorganisms affect their spatial interactions and the ecological functioning of microbial communities. Microbial dispersal rates affect risk of contamination of water resources by soil-borne pathogens, the inoculation of plant roots, or the rates of spoilage of food products. In contrast with the wealth of information on microbial dispersal in water replete systems, very little is known about their dispersal rates in unsaturated porous media. The fragmented aqueous phase occupying complex soil pore spaces suppress motility and limits dispersal ranges in unsaturated soil. The primary objective of this study was to systematically evaluate key factors that shape microbial dispersal in model unsaturated porous media to quantify effects of saturation, pore space geometry, and chemotaxis on characteristics of principles that govern motile microbial dispersion in unsaturated soil. We constructed a novel 3-D angular pore network model (PNM) to mimic aqueous pathways in soil for different hydration conditions; within the PNM, we employed an individual-based model that considers physiological and biophysical properties of motile and chemotactic bacteria. The effects of hydration conditions on first passage times in different pore networks were studied showing that fragmentation of aquatic habitats under dry conditions sharply suppresses nutrient transport and microbial dispersal rates in good agreement with limited experimental data. Chemotactically biased mean travel speed of microbial cells across 9 mm saturated PNM was ˜3 mm/h decreasing exponentially to 0.45 mm/h for the PNM at matric potential of -15 kPa (for -35 kPa, dispersal practically ceases and the mean travel time to traverse the 9 mm PNM exceeds 1 year). Results indicate that chemotaxis enhances dispersal rates by orders of magnitude relative to random (diffusive) motions. Model predictions considering microbial cell sizes relative to available liquid pathways sizes were in good agreement with experimental results for unsaturated soils. The new modeling platform enables quantitative consideration of key biophysical factors (e.g., pore space heterogeneities and hydration conditions) governing microbial interactions in 3-D soil pore spaces.
NASA Astrophysics Data System (ADS)
Jansson, J.; Tas, N.; Wu, Y.; Ulrich, C.; Kneafsey, T. J.; Torn, M. S.; Hubbard, S. S.; Chakraborty, R.; Graham, D. E.; Wullschleger, S. D.
2013-12-01
The Arctic is one of the most climatically sensitive regions on Earth and current surveys show that permafrost degradation is widespread in arctic soils. Biogeochemical feedbacks of permafrost thaw are expected to be dominated by the release of currently stored carbon back into the atmosphere as CO2 and CH4. Understanding the dynamics of C release from permafrost requires assessment of microbial functions from different soil compartments. To this end, as part of the Next Generation Ecosystem Experiment in the Arctic, we collected two replicate permafrost cores (1m and 3m deep) from a transitional polygon near Barrow, AK. At this location, permafrost starts from 0.5m in depth and is characterized by variable ice content and higher pH than surface soils. Prior to sectioning, the cores were CT-scanned to determine the physical heterogeneity throughout the cores. In addition to detailed geochemical characterization, we used Illumina MiSeq technology to sequence 16SrRNA genes throughout the depths of the cores at 1 cm intervals. Selected depths were also chosen for metagenome sequencing of total DNA (including phylogenetic and functional genes) using the Illumina HiSeq platform. The 16S rRNA gene sequence data revealed that the microbial community composition and diversity changed dramatically with depth. The microbial diversity decreased sharply below the first few centimeters of the permafrost and then gradually increased in deeper layers. Based on the metagenome sequence data, the permafrost microbial communities were found to contain members with a large metabolic potential for carbon processing, including pathways for fermentation and methanogenesis. The surface active layers had more representatives of Verrucomicrobia (potential methane oxidizers) whereas the deep permafrost layers were dominated by several different species of Actinobacteria. The latter are known to have a diverse metabolic capability and are able to adapt to stress by entering a dormant yet viable state. In addition, several isolates were obtained from different depths throughout the cores, including methanogens from some of the deeper layers. Together these data present a new view of potential geochemical cycles carried out by microorganisms in permafrost and reveal how community members and functions are distributed with depth.
Tremblay, Pier-Luc; Höglund, Daniel; Koza, Anna; Bonde, Ida; Zhang, Tian
2015-11-04
Acetogens are efficient microbial catalysts for bioprocesses converting C1 compounds into organic products. Here, an adaptive laboratory evolution approach was implemented to adapt Sporomusa ovata for faster autotrophic metabolism and CO2 conversion to organic chemicals. S. ovata was first adapted to grow quicker autotrophically with methanol, a toxic C1 compound, as the sole substrate. Better growth on different concentrations of methanol and with H2-CO2 indicated the adapted strain had a more efficient autotrophic metabolism and a higher tolerance to solvent. The growth rate on methanol was increased 5-fold. Furthermore, acetate production rate from CO2 with an electrode serving as the electron donor was increased 6.5-fold confirming that the acceleration of the autotrophic metabolism of the adapted strain is independent of the electron donor provided. Whole-genome sequencing, transcriptomic, and biochemical studies revealed that the molecular mechanisms responsible for the novel characteristics of the adapted strain were associated with the methanol oxidation pathway and the Wood-Ljungdahl pathway of acetogens along with biosynthetic pathways, cell wall components, and protein chaperones. The results demonstrate that an efficient strategy to increase rates of CO2 conversion in bioprocesses like microbial electrosynthesis is to evolve the microbial catalyst by adaptive laboratory evolution to optimize its autotrophic metabolism.
Gupta, Rupali; Singh, Akanksha; Srivastava, Madhumita; Singh, Vivek; Gupta, M. M.; Pandey, Rakesh
2017-01-01
Plant-associated beneficial microbes have been explored to fulfill the imperative function for plant health. However, their impact on the host secondary metabolite production and nematode disease management remains elusive. Our present work has shown that chitinolytic microbes viz., Chitiniphilus sp. MTN22 and Streptomyces sp. MTN14 singly as well as in combination modulated the biosynthetic pathway of bacoside A and systemic defense mechanism against Meloidogyne incognita in Bacopa monnieri. Interestingly, expression of bacoside biosynthetic pathway genes (3-Hydroxy-3-methylglutaryl coenzyme A reductase, mevalonate diphosphate decarboxylase, and squalene synthase) were upregulated in plants treated with the microbial combination in the presence as well as in absence of M. incognita stress. These microbes not only augmented bacoside A production (1.5 fold) but also strengthened host resistance via enhancement in chlorophyll a, defense enzymes and phenolic compounds like gallic acid, syringic acid, ferulic acid and cinnamic acid. Furthermore, elevated lignification and callose deposition in the microbial combination treated plants corroborate well with the above findings. Overall, the results provide novel insights into the underlying mechanisms of priming by beneficial microbes and underscore their capacity to trigger bacoside A production in B. monnieri under biotic stress. PMID:28157221
Zheng, Weiwei; Zhang, Ze; Liu, Cuihua; Qiao, Yuanyuan; Zhou, Dianrong; Qu, Jia; An, Huaijie; Xiong, Ming; Zhu, Zhiming; Zhao, Xiaohang
2015-01-01
Seafaring is a difficult occupation, and sailors face higher health risks than individuals on land. Commensal microbiota participates in the host immune system and metabolism, reflecting the host's health condition. However, the interaction mechanisms between the microbiota and the host's health condition remain unclear. This study reports the influence of long sea voyages on human health by utilising a metagenomic analysis of variation in the microbiota of the buccal mucosa. Paired samples collected before and after a sea-voyage were analysed. After more than 120 days of ocean sailing, the oral microbial diversity of sailors was reduced by approximately 5 fold, and the levels of several pathogens (e.g., Streptococcus pneumonia) increased. Moreover, 69.46% of the identified microbial sequences were unclassified microbiota. Notably, several metabolic pathways were dramatically decreased, including folate biosynthesis, carbohydrate, lipid and amino acid pathways. Clinical examination of the hosts confirmed the identified metabolic changes, as demonstrated by decreased serum levels of haemoglobin and folic acid, a decreased neutrophil-to-lymphocyte ratio, and increased levels of triglycerides, cholesterol and homocysteine, which are consistent with the observed microbial variation. Our study suggests that oral mucosal bacteria may reflect host health conditions and could provide approaches for improving the health of sailors. PMID:26154405
Deep-Sea Hydrothermal Vent Viruses Compensate for Microbial Metabolism in Virus-Host Interactions
He, Tianliang; Li, Hongyun
2017-01-01
ABSTRACT Viruses are believed to be responsible for the mortality of host organisms. However, some recent investigations reveal that viruses may be essential for host survival. To date, it remains unclear whether viruses are beneficial or harmful to their hosts. To reveal the roles of viruses in the virus-host interactions, viromes and microbiomes of sediment samples from three deep-sea hydrothermal vents were explored in this study. To exclude the influence of exogenous DNAs on viromes, the virus particles were purified with nuclease (DNase I and RNase A) treatments and cesium chloride density gradient centrifugation. The metagenomic analysis of viromes without exogenous DNA contamination and microbiomes of vent samples indicated that viruses had compensation effects on the metabolisms of their host microorganisms. Viral genes not only participated in most of the microbial metabolic pathways but also formed branched pathways in microbial metabolisms, including pyrimidine metabolism; alanine, aspartate, and glutamate metabolism; nitrogen metabolism and assimilation pathways of the two-component system; selenocompound metabolism; aminoacyl-tRNA biosynthesis; and amino sugar and nucleotide sugar metabolism. As is well known, deep-sea hydrothermal vent ecosystems exist in relatively isolated environments which are barely influenced by other ecosystems. The metabolic compensation of hosts mediated by viruses might represent a very important aspect of virus-host interactions. PMID:28698277
NASA Astrophysics Data System (ADS)
Davis, R.; Tebo, B. M.
2013-12-01
Microbial activity has long been recognized as being important to the fate of manganese (Mn) in hydrothermal systems, yet we know very little about the organisms that catalyze Mn oxidation, the mechanisms by which Mn is oxidized or the physiological function that Mn oxidation serves in these hydrothermal systems. Hydrothermal vents with thick ferromanganese microbial mats and Mn oxide-coated rocks observed throughout the Pacific Ring of Fire are ideal models to study the mechanisms of microbial Mn oxidation, as well as primary productivity in these metal-cycling ecosystems. We sampled ferromanganese microbial mats from Vai Lili Vent Field (Tmax=43°C) located on the Eastern Lau Spreading Center and Mn oxide-encrusted rhyolytic pumice (4°C) from Niua South Seamount on the Tonga Volcanic Arc. Metagenomic libraries were constructed and assembled from these samples and key genes known to be involved in Mn oxidation and carbon fixation pathways were identified in the reconstructed genomes. The Vai Lili metagenome assembled to form 121,157 contiguous sequences (contigs) greater than 1000bp in length, with an N50 of 8,261bp and a total metagenome size of 593 Mbp. Contigs were binned using an emergent self-organizing map of tetranucleotide frequencies. Putative homologs of the multicopper Mn-oxidase MnxG were found in the metagenome that were related to both the Pseudomonas-like and Bacillus-like forms of the enzyme. The bins containing the Pseudomonas-like mnxG genes are most closely related to uncultured Deltaproteobacteria and Chloroflexi. The Deltaproteobacteria bin appears to be an obligate anaerobe with possible chemoautotrophic metabolisms, while the Chloroflexi appears to be a heterotrophic organism. The metagenome from the Mn-stained pumice was assembled into 122,092 contigs greater than 1000bp in length with an N50 of 7635 and a metagenome size of 385 Mbp. Both forms of mnxG genes are present in this metagenome as well as the genes encoding the putative Mn oxidases McoA and MopA. The greater diversity of Mn oxidase pathways in this metagenome suggests a more diverse Mn oxidizing microbial community in the cold pumice sample. Key enzymes for four of the six known carbon fixation pathways (the Calvin Cycle, the reductive TCA cycle, the Wood-Ljungdahl pathway, and the 3-hydroxypropionate/4-hydroxybutyrate Cycle) were also identified in both samples indicating primary production occurs via a diverse community of carbon fixing organisms. Together, these samples contain active, diverse populations of Mn oxidizing bacteria living in association with microbial communities supported by chemoautotrophic carbon fixation.
Addition of Rubber to soil damages the functional diversity of soil.
Goswami, Madhurankhi; Bhattacharyya, Purnita; Tribedi, Prosun
2017-07-01
Rubber is a polymer of isoprene, consisting mainly of cis-1,4-polyisoprene units. The unmanageable production and its irresponsible disposal pose severe threats to environmental ecology. Therefore, the current study focuses extensively on the ill-effects of Rubber disposal on soil microbial functional diversity as it reflects the health of ecosystem by acting as a key component in ecosystem productivity. To investigate the effect of Rubber on soil microbial functional diversity, soil samples were collected from landfill sites and three different soil microcosms (Rubber treated, untreated, and sterile soil) were prepared. The soil enzymatic activity was determined by fluorescein diacetate hydrolysis followed by the determination of the microbial metabolic potential and functional diversity by average well color development and Shannon-Weaver index (H), respectively. BiOLOG ECO plates were used for determining the microbial functional diversity of the soil microcosms. Higher heterotrophic microbial count as well as higher soil microbial activity was observed in Rubber untreated soil than Rubber treated soil microcosm. The result indicated that the addition of Rubber to soil reduced soil heterotrophic microbial count and soil microbial activity considerably. Similarly, soil microbial metabolic potential as well as microbial functional diversity of soil had been decreased by the addition of Rubber gloves in it. Variation in soil microbial metabolic spectrum between Rubber treated and untreated microcosm was confirmed by multivariate analysis. Collectively, all the results demonstrated that the addition of Rubber to soil reduced the soil microbial functional diversity considerably. Therefore, it is necessary for the commission of serious steps regarding Rubber disposal and protection of the environment from serious environmental issues.
Invited review: Essential oils as modifiers of rumen microbial fermentation.
Calsamiglia, S; Busquet, M; Cardozo, P W; Castillejos, L; Ferret, A
2007-06-01
Microorganisms in the rumen degrade nutrients to produce volatile fatty acids and synthesize microbial protein as an energy and protein supply for the ruminant, respectively. However, this fermentation process has energy (losses of methane) and protein (losses of ammonia N) inefficiencies that may limit production performance and contribute to the release of pollutants to the environment. Antibiotic ionophores have been very successful in reducing these energy and protein losses in the rumen, but the use of antibiotics in animal feeds is facing reduced social acceptance, and their use has been banned in the European Union since January 2006. For this reason, scientists have become interested in evaluating other alternatives to control specific microbial populations to modulate rumen fermentation. Essential oils can interact with microbial cell membranes and inhibit the growth of some gram-positive and gram-negative bacteria. As a result of such inhibition, the addition of some plant extracts to the rumen results in an inhibition of deamination and methanogenesis, resulting in lower ammonia N, methane, and acetate, and in higher propionate and butyrate concentrations. Results have indicated that garlic oil, cinnamaldehyde (the main active component of cinnamon oil), eugenol (the main active component of the clove bud), capsaicin (the active component of hot peppers), and anise oil, among others, may increase propionate production, reduce acetate or methane production, and modify proteolysis, peptidolysis, or deamination in the rumen. However, the effects of some of these essential oils are pH and diet dependent, and their use may be beneficial only under specific conditions and production systems. For example, capsaicin appears to have small effects in high-forage diets, whereas the changes observed in high-concentrate diets (increases in dry matter intake and total VFA, and reduction in the acetateto-propionate ratio and ammonia N concentration) may be beneficial. Because plant extracts may act at different levels in the carbohydrate and protein degradation pathways, their careful selection and combination may provide a useful tool to manipulate rumen microbial fermentation effectively. However, additional research is required to establish the optimal dose in vivo in units of the active component, to consider the potential adaptation of microbial populations to their activities, to examine the presence of residues in the products (milk or meat), and to demonstrate improvements in animal performance.
Microbial Production of Xylitol from L-arabinose by Metabolically Engineered Escherichia coli
USDA-ARS?s Scientific Manuscript database
An Escherichia coli strain, ZUC99(pATX210), which can produce xylitol from L-arabinose at a high yield has been created by introducing a new bioconversion pathway into cells. This pathway consists of three enzymes: L-arabinose isomerase, which converts L-arabinose to L-ribulose; D-psicose 3-epimer...
Besner, Marie-Claude; Prévost, Michèle; Regli, Stig
2011-01-01
Low and negative pressure events in drinking water distribution systems have the potential to result in intrusion of pathogenic microorganisms if an external source of contamination is present (e.g., nearby leaking sewer main) and there is a pathway for contaminant entry (e.g., leaks in drinking water main). While the public health risk associated with such events is not well understood, quantitative microbial risk assessment can be used to estimate such risk. A conceptual model is provided and the state of knowledge, current assumptions, and challenges associated with the conceptual model parameters are presented. This review provides a characterization of the causes, magnitudes, durations and frequencies of low/negative pressure events; pathways for pathogen entry; pathogen occurrence in external sources of contamination; volumes of water that may enter through the different pathways; fate and transport of pathogens from the pathways of entry to customer taps; pathogen exposure to populations consuming the drinking water; and risk associated with pathogen exposure. Copyright © 2010 Elsevier Ltd. All rights reserved.
Interactive Effects of Nitrogen and Phosphorus on Soil Microbial Communities in a Tropical Forest
Liu, Lei; Zhang, Tao; Gilliam, Frank S.; Gundersen, Per; Zhang, Wei; Chen, Hao; Mo, Jiangming
2013-01-01
Elevated nitrogen (N) deposition in humid tropical regions may exacerbate phosphorus (P) deficiency in forests on highly weathered soils. However, it is not clear how P availability affects soil microbes and soil carbon (C), or how P processes interact with N deposition in tropical forests. We examined the effects of N and P additions on soil microbes and soil C pools in a N-saturated old-growth tropical forest in southern China to test the hypotheses that (1) N and P addition will have opposing effects on soil microbial biomass and activity, (2) N and P addition will alter the composition of the microbial community, (3) the addition of N and P will have interactive effects on soil microbes and (4) addition-mediated changes in microbial communities would feed back on soil C pools. Phospholipid fatty acid (PLFA) analysis was used to quantify the soil microbial community following four treatments: Control, N addition (15 g N m−2 yr−1), P addition (15 g P m−2 yr−1), and N&P addition (15 g N m−2 yr−1 plus 15 g P m−2 yr−1). These were applied from 2007 to 2011. Whereas additions of P increased soil microbial biomass, additions of N reduced soil microbial biomass. These effects, however, were transient, disappearing over longer periods. Moreover, N additions significantly increased relative abundance of fungal PLFAs and P additions significantly increased relative abundance of arbuscular mycorrhizal (AM) fungi PLFAs. Nitrogen addition had a negative effect on light fraction C, but no effect on heavy fraction C and total soil C. In contrast, P addition significantly decreased both light fraction C and total soil C. However, there were no interactions between N addition and P addition on soil microbes. Our results suggest that these nutrients are not co-limiting, and that P rather than N is limiting in this tropical forest. PMID:23593427
Human iNKT cells induce IL-1β secretion by peripheral blood monocytes via a P2X7-independent pathway
Felley, Laura E.; Sharma, Akshat; Theisen, Erin; Romero-Masters, James C.; Sauer, John-Demian; Gumperz, Jenny E.
2016-01-01
The cytokine IL-1β plays a central role in inflammatory responses that are initiated by microbial challenges, as well as in those that are due to endogenous processes (often called “sterile” inflammation). IL-1β secretion that occurs independently of microbial stimulation is typically associated with the presence of endogenous alarmins, such as extracellular ATP (an indicator of cytopathic damage). Here we show that IL-2 activated human iNKT cells stimulate the secretion of IL-1β protein by human peripheral blood monocytes in a manner that requires neither the presence of microbial compounds nor signaling through the extracellular ATP receptor P2X7. Monocyte IL-1β production was specifically induced by iNKT cells, since similarly activated polyclonal autologous T cells did not have this effect. Secretion of IL-1β protein occurred rapidly (within 3-4 hours), and required cell contact between the iNKT cells and monocytes. Similar to IL-1β production induced by TLR stimulation, the iNKT-induced pathway appeared to entail a two-step process involving NFκB signaling and IL1B gene transcription, as well as assembly of the NLRP3 inflammasome and activation of caspase 1. However, in contrast to the classical inflammasome-mediated pathway of IL-1β production, activation of monocytes via P2X7 was dispensable for iNKT-induced IL-1β secretion and potassium efflux was not required. Moreover, the iNKT-induced effect involved caspase 8 activity, yet induced little monocyte death. These results suggest that IL-2 activated human iNKT cells induce monocytes to produce IL-1β through a distinctive pathway that does not require the presence of microbial danger signals or alarmins associated with cytopathic damage. PMID:27534556
NASA Astrophysics Data System (ADS)
Oh, Sung Taek
A microbial fuel cell (MFC) is a device to use for bio electrochemical energy production. Electrophilic bacteria produce electrons in their metabolic pathway and the electrons can be extracted and concentrated on electrode by the electric potential difference (i.e. Galvanic cell). The bio-electrode may provide new opportunities for the renewable energy in waste water/swage treatment plants.
Bacterial diversity in goat milk from the Guanzhong area of China.
Zhang, Fuxin; Wang, Zhaoxia; Lei, Feiyan; Wang, Bini; Jiang, Shuaiming; Peng, Qiannan; Zhang, Jiachao; Shao, Yuyu
2017-10-01
In this study, the V3 and V4 regions of the 16S rRNA gene from metagenomic DNA were sequenced to identify differences in microbial diversity in raw milk of Saanen and Guanzhong goats from the Guanzhong area of China. The results showed that Proteobacteria was the predominant phylum, accounting for 71.31% of all phyla identified in milk from the 2 breeds, and Enterobacter was the predominant genus (24.69%) within the microbial community. Microbial alpha diversity from Saanen goat milk was significantly higher than that of Guanzhong goat milk based on bioinformatic analysis of indices of Chao1, Shannon, Simpson, observed species, and the abundance-based coverage estimator. Functional genes and their likely metabolic pathways were predicted, which demonstrated that the functional genes present in the bacteria in goat milk were enriched in pathways for amino acid metabolism and carbohydrate metabolism, which represented 11.93 and 11.23% of functional genes, respectively. Physicochemical properties such as pH, protein, fat, and AA levels were also determined and correlations made with microbial diversity. We detected a significant difference in the content of lactose and 6 AA, which were higher in Saanen milk than in Guanzhong milk, and positively correlated with microbial carbohydrate metabolism and AA metabolism. Lactococcus, Lactobacillus, Bifidobacterium, Enterococcus, and Streptococcus, which are lactose-utilizing genera, were more abundant in Saanen milk than in Guanzhong milk. Higher levels of lactose in Saanen goat milk may explain its greater microbial diversity. We also demonstrated that most of the AA metabolism-related bacterial genera (e.g., Massilia, Bacteroides, Lysobacter) were enriched in Saanen goat milk. In this research, both probiotic and pathogenic bacteria were identified in goat milk, which provided the microbial information necessary to direct the utilization of beneficial microbial resources and prevent the development of harmful organisms in goat milk. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Developing Model Benchtop Systems for Microbial Experimental Evolution
NASA Astrophysics Data System (ADS)
Gentry, D.; Wang, J.; Arismendi, D.; Alvarez, J.; Ouandji, C.; Blaich, J.
2017-12-01
Understanding how microbes impact an ecosystem has improved through advances of molecular and genetic tools, but creating complex systems that emulate natural biology goes beyond current technology. In fact, many chemical, biological, and metabolic pathways of even model organisms are still poorly characterized. Even then, standard laboratory techniques for testing microbial impact on environmental change can have many drawbacks; they are time-consuming, labor intensive, and are at risk of contamination. By having an automated process, many of these problems can be reduced or even eliminated. We are developing a benchtop system that can run for long periods of time without the need for human intervention, involve multiple environmental stressors at once, perform real-time adjustments of stressor exposure based on current state of the population, and minimize contamination risks. Our prototype device allows operators to generate an analogue of real world micro-scale ecosystems that can be used to model the effects of disruptive environmental change on microbial ecosystems. It comprises of electronics, mechatronics, and fluidics based systems to control, measure, and evaluate the before and after state of microbial cultures from exposure to environmental stressors. Currently, it uses four parallel growth chambers to perform tests on liquid cultures. To measure the population state, optical sensors (LED/photodiode) are used. Its primary selection pressure is UV-C radiation, a well-studied stressor known for its cell- and DNA- damaging effects and as a mutagen. Future work will involve improving the current growth chambers, as well as implementing additional sensors and environmental stressors into the system. Full integration of multiple culture testing will allow inter-culture comparisons. Besides the temperature and OD sensors, other types of sensors can be integrated such as conductivity, biomass, pH, and dissolved gasses such as CO2 and O2. Additional environmental stressor systems like temperature (extreme heat or cold), metal toxicity, and other forms of radiation will increase the scale and testing range.
Developing Model Benchtop Systems for Microbial Experimental Evolution
NASA Technical Reports Server (NTRS)
Wang, Jonathan; Arismendi, Dillon; Alvarez, Jennifer; Ouandji, Cynthia; Blaich, Justin; Gentry, Diana
2017-01-01
Understanding how microbes impact an ecosystem has improved through advances of molecular and genetic tools, but creating complex systems that emulate natural biology goes beyond current technology. In fact, many chemical, biological, and metabolic pathways of even model organisms are still poorly characterized. Even then, standard laboratory techniques for testing microbial impact on environmental change can have many drawbacks; they are time-consuming, labor intensive, and are at risk of contamination. By having an automated process, many of these problems can be reduced or even eliminated. We are developing a benchtop system that can run for long periods of time without the need for human intervention, involve multiple environmental stressors at once, perform real-time adjustments of stressor exposure based on current state of the population, and minimize contamination risks. Our prototype device allows operators to generate an analogue of real world micro-scale ecosystems that can be used to model the effects of disruptive environmental change on microbial ecosystems. It comprises of electronics, mechatronics, and fluidics based systems to control, measure, and evaluate the before and after state of microbial cultures from exposure to environmental stressors. Currently, it uses four parallel growth chambers to perform tests on liquid cultures. To measure the population state, optical sensors (LED/photodiode) are used. Its primary selection pressure is UV-C radiation, a well-studied stressor known for its cell- and DNA-damaging effects and as a mutagen. Future work will involve improving the current growth chambers, as well as implementing additional sensors and environmental stressors into the system. Full integration of multiple culture testing will allow inter-culture comparisons. Besides the temperature and OD sensors, other types of sensors can be integrated such as conductivity, biomass, pH, and dissolved gasses such as CO and O. Additional environmental stressor systems like temperature (extreme heat or cold), metal toxicity, and other forms of radiation will increase the scale and testing range.
Responses of microbial respiration in grazed and ungrazed grasslands to glucose addition
NASA Astrophysics Data System (ADS)
Xu, Xingliang; Liu, Qianyuan; Pang, Rui
2017-04-01
Grazing can change species composition, alter soil properties, and thus modify microbial activities, affecting biogeochemical processes in grasslands. However, it remains unclear how microbial respiration in grazed and ungrazed grasslands responds to glucose addition. Here we hypothesize that microbial respiration in grazed grasslands will respond more strongly to glucose addition than in ungrazed grasslands because moderate grazing can enhance microbial activity. To examine the hypothesis above, we collected the upper 10 cm soil from grazed and ungrazed grasslands at five sites of China. Three sites (Hulunbuir 1, Hulunbuir 2 and Xielingele) were located in Inner Mongolia and two in the Tibet Plateau) Soils were incubated with low glucose input (50% MBC), high glucose input (150% MBC), and water for 60 days in 21oC. CO2 released from soil was trapped with 1 M NaOH. The results showed that the effect of grazing on microbial respiration has two distinct patterns, depending on soil types and addition amount. After glucose addition, cumulative CO2 efflux from grazed soils was significantly higher than from ungrazed soils in two temperate grasslands (Hulunbuir 1 and Xielingele). This may be ascribed to that moderate grazing promoted microbial activity. On the contrary, microbial respirations from grazed soils were lower than ungrazed soils in two alpine meadows of Haibei and Dangxiong and in Hulunbuir 2. This effect of grazing was not obvious in Hulunbeier 2 soils at low carbon addition level. Grazing may decrease soil organic carbon, nitrogen availability and thus microbial activity in alpine grasslands. These findings indicate that soil microorganisms could have different adaptation mechanisms to grazing in temperate and alpine grasslands.
Biological Diversity Comprising Microbial Structures of Antarctic Ice Covered Lakes
NASA Astrophysics Data System (ADS)
Matys, E. D.
2015-12-01
Analysis of microbial membrane lipids is a rapid and non-selective method for evaluating the composition of microbial communities. To fully realise the diagnostic potential of these lipids, we must first understand their structural diversity, biological sources, physiological functions, and pathways of preservation. Particular environmental conditions likely prompt the production of different membrane lipid structures. Antarctica's McMurdo Dry Valleys host numerous ice-covered lakes with sharp chemical gradients that vary in illumination, geochemical structure, and benthic mat morphologies that are structured by nutrient availability and water chemistry. The lipid contents of these benthic mats have not received extensive study nor have the communities yet been thoroughly characterized. Accordingly, a combination of lipid biomarker and nucleic acid sequence data provides the means of assessing species diversity and environmental controls on the composition and diversity of membrane lipid assemblages. We investigated the richness and diversity of benthic microbial communities and accumulated organic matter in Lake Vanda of the McMurdo Dry Valleys. We have identified diverse glycolipids, aminolipids, and phospholipids in addition to many unknown compounds that may be specific to these particular environments. Light levels fluctuate seasonally, favoring low-light-tolerant cyanobacteria and specific lipid assemblages. Adaptations to nutrient limitations are reflected in contrasting intact polar lipid assemblages. For example, under P-limiting conditions, phospholipids are subsidiary to membrane-forming lipids that do not contain P (i.e. ornithine, betaine, and sulfolipids). The bacteriohopanepolyol (BHP) composition is dominated by bacteriohopanetetrol (BHT), a ubiquitous BHP, and 2-methylhopanoids. The relative abundance of 2-methylhopanoids is unprecedented and may reflect the unusual seasonal light regime of this polar environment. By establishing correlations between environmental conditions, microbial community composition and the lipid assemblages of microbial structures in ice-covered lakes of Antarctica's McMurdo Dry Valleys, our data provides important ecological and evolutionary insights into these unusual environments.
15N indicates an active N-cycling microbial community in low carbon, freshwater sediments.
NASA Astrophysics Data System (ADS)
Sheik, C.
2017-12-01
Earth's large lakes are unique aquatic ecosystems, but we know little of the microbial life driving sedimentary biogeochemical cycles and ultimately the isotopic record. In several of these large lakes, water column productivity is constrained by element limitation, such as phosphorus and iron, creating oligotrophic water column conditions that drive low organic matter content in sediments. Yet, these sediments are biogeochemically active and have been shown to have oxygen consumption rates akin to pelagic ocean sediments and complex sulfur cycling dynamics. Thus, large oligotrophic lakes provide unique and interesting biogeochemical contrast to highly productive freshwater and coastal marine systems. Using Lake Superior as our study site, we found microbial community structure followed patterns in bulk sediment carbon and nitrogen concentrations. These observed patterns were loosely driven by land proximity, as some stations are more coastal and have higher rates of sedimentation, allochthonous carbon inputs and productivity than pelagic sites. Interestingly, upper sediment carbon and nitrogen stable isotopes were quite different from water column. Sediment carbon and nitrogen isotopes correlated significantly with microbial community structure. However, 15N showed much stronger correlation than 13C, and became heavier with core depth. Coinciding with the increase in 15N values, we see evidence of both denitrification and anammox processes in 16S rRNA gene libraries and metagenome assembled genomes. Given that microorganisms prefer light isotopes and that these N-cycling processes both contribute to N2 production and efflux from the sediment, the increase in 15N with sediment depth suggests microbial turnover. Abundance of these genomes also varies with depth suggesting these novel microorganisms are partitioning into specific sediment geochemical zones. Additionally, several of these genomes contain genes involved in sulphur cycling, suggesting a dual biogeochemical role and potential for a cryptic sulfur cycle. Together, Lake Superior sediments offer a glimpse into microbial metabolism in carbon limited environments. Further the pervasiveness of co-metabolic pathways suggests interpretation of isotopic records may be messier than previously thought.
Zhang, Xiaoying; Hu, Bill X; Ren, Hejun; Zhang, Jin
2018-08-15
The gradient distribution of microbial communities has been detected in profiles along many natural environments. In a mangrove seedlings inhabited mudflat, the microbes drive a variety of biogeochemical processes and are associated with a dramatically changed environment across the tidal zones of mudflat. A better understanding of microbial composition, diversity and associated functional profiles in relation to physicochemical influences could provide more insights into the ecological functions of microbes in a coastal mangrove ecosystem. In this study, the variation of microbial community along successive tidal flats inhabited by mangrove seedlings were characterized based on the 16S rDNA gene sequences, and then the factors that shape the bacterial and archaeal communities were determined. Results showed that the tidal cycles strongly influence the distribution of bacterial and archaeal communities. Dissimilarity and gradient distribution of microbial communities were found among high tidal flat, mid-low tidal flat and seawater. Discrepancies were also as well observed from the surface to subsurface layers specifically in the high tidal flat. For example, Alphaproteobacteria displayed an increasing trend from low tidal to high tidal flat and vice versa for Deltaproteobacteria; Cyanobacteria and Thaumarchaeota were more dominant in the surface layer than the subsurface. In addition, by classifying the microorganisms into metabolic functional groups, we were able to identify the biogeochemical pathway that was dominant in each zone. The (oxygenic) photoautotrophy and nitrate reduction were enhanced in the mangrove inhabited mid tidal flat. It revealed the ability of xenobiotic metabolism microbes to degrade, transform, or accumulate environmental hydrocarbon pollutants in seawater, increasing sulfur-related respiration from high tidal to low tidal flat. An opposite distribution was found for major nitrogen cycling processes. The shift of both composition and function of microbial communities were significantly related to light, oxygen availability and total dissolved nitrogen instead of sediment types or salinity. Copyright © 2018 Elsevier B.V. All rights reserved.
Current Status on Biochemistry and Molecular Biology of Microbial Degradation of Nicotine
Gurusamy, Raman; Natarajan, Sakthivel
2013-01-01
Bioremediation is one of the most promising methods to clean up polluted environments using highly efficient potent microbes. Microbes with specific enzymes and biochemical pathways are capable of degrading the tobacco alkaloids including highly toxic heterocyclic compound, nicotine. After the metabolic conversion, these nicotinophilic microbes use nicotine as the sole carbon, nitrogen, and energy source for their growth. Various nicotine degradation pathways such as demethylation pathway in fungi, pyridine pathway in Gram-positive bacteria, pyrrolidine pathway, and variant of pyridine and pyrrolidine pathways in Gram-negative bacteria have been reported. In this review, we discussed the nicotine-degrading pathways of microbes and their enzymes and biotechnological applications of nicotine intermediate metabolites. PMID:24470788
He, Tongxin; Wang, Qingkui; Wang, Silong; Zhang, Fangyue
2016-01-01
The availabilities of carbon (C) and nitrogen (N) in soil play an important role in soil carbon dioxide (CO2) emission. However, the variation in the soil respiration (Rs) and response of microbial community to the combined changes in belowground C and N inputs in forest ecosystems are not yet fully understood. Stem girdling and N addition were performed in this study to evaluate the effects of C supply and N availability on Rs and soil microbial community in a subtropical forest. The trees were girdled on 1 July 2012. Rs was monitored from July 2012 to November 2013, and soil microbial community composition was also examined by phospholipid fatty acids (PLFAs) 1 year after girdling. Results showed that Rs decreased by 40.5% with girdling alone, but N addition only did not change Rs. Interestingly, Rs decreased by 62.7% under the girdling with N addition treatment. The reducing effect of girdling and N addition on Rs differed between dormant and growing seasons. Girdling alone reduced Rs by 33.9% in the dormant season and 54.8% in the growing season compared with the control. By contrast, girdling with N addition decreased Rs by 59.5% in the dormant season and 65.4% in the growing season. Girdling and N addition significantly decreased the total and bacterial PLFAs. Moreover, the effect of N addition was greater than girdling. Both girdling and N addition treatments separated the microbial groups on the basis of the first principal component through principal component analysis compared with control. This indicated that girdling and N addition changed the soil microbial community composition. However, the effect of girdling with N addition treatment separated the microbial groups on the basis of the second principal component compared to N addition treatment, which suggested N addition altered the effect of girdling on soil microbial community composition. These results suggest that the increase in soil N availability by N deposition alters the effect of belowground C allocation on the decomposition of soil organic matter by altering the composition of the soil microbial community. PMID:27213934
KIM, JAE-SUNG; PARK, MI-RA; LEE, SOOK-YOUNG; KIM, DO KYOUNG; MOON, SUNG-MIN; KIM, CHUN SUNG; CHO, SEUNG SIK; YOON, GOO; IM, HEE-JEONG; YOU, JAE-SEEK; OH, JI-SU; KIM, SU-GWAN
2014-01-01
Licochalcone A (Lico-A) is a natural phenol licorice compound with multiple bioactivities, including anti-inflammatory, anti-microbial, anti-fungal and osteogenesis-inducing properties. In the present study, we investigated the Lico-A-induced apoptotic effects and examined the associated apoptosis pathway in KB human oral cancer cells. Lico-A decreased the number of viable KB oral cancer cells. However, Lico-A did not have an effect on primary normal human oral keratinocytes. In addition, the IC50 value of Lico-A was determined to be ~50 μM following dose-dependent stimulation. KB oral cancer cells stimulated with Lico-A for 24 h showed chromatin condensation by DAPI staining, genomic DNA fragmentation by agarose gel electrophoresis and a gradually increased apoptotic cell population by FACS analysis. These data suggest that Lico-A induces apoptosis in KB oral cancer cells. Additionally, Lico-A-induced apoptosis in KB oral cancer cells was mediated by the expression of factor associated suicide ligand (FasL) and activated caspase-8 and −3 and poly(ADP-ribose) polymerase (PARP). Furthermore, in the KB oral cancer cells co-stimulation with a caspase inhibitor (Z-VAD-fmk) and Lico-A significantly abolished the apoptotic phenomena. Our findings demonstrated that Lico-A-induced apoptosis in KB oral cancer cells involves the extrinsic apoptotic signaling pathway, which involves a caspase-dependent FasL-mediated death receptor pathway. Our data suggest that Lico-A be developed as a chemotherapeutic agent for the management of oral cancer. PMID:24337492
NASA Astrophysics Data System (ADS)
Yanardaǧ, Ibrahim H.; Zornoza, Raúl; Bastida, Felipe; Büyükkiliç-Yanardaǧ, Asuman; Acosta, Jose A.; García, Carlos; Faz, Ángel; Mermut, Ahmet R.
2017-04-01
The response of soil microbial communities from soils with different soil organic matter (SOM) content to organic inputs with different stability is still poorly understood. Thus, an incubation experiment was designed to study how the addition of pig slurry (PS), its manure (M) and its biochar (BC) affect soil microbial community and activity in three soils differing in SOM content (Regosol, Luvisol and Kastanozem). The evolution of different C and N fractions, microbial biomass C and N, enzyme activities and microbial community structure by the use of phospholipid fatty acid (PLFA) analysis was assessed for 60 days. Results showed that the different amendments had different effect on microbial properties depending on the soil type. The addition of M caused the highest increase in all microbial properties in the three soils, followed by PS. These changes were more intense in the soil with the lowest SOM (Regosol). The addition of M and PS caused changes in the microbial community structure in all soils, which were more related to the presence of available sources of N than to the labile fractions of C. The addition of BC was followed by increases in the proportions of fungi and Gram positive bacteria in the Regosol, while enhanced the proportion of actinobacteria in all soil types, related to increments in pH and soil C recalcitrance. Thus, native SOM determined the response of microbial communities to external inputs with different stability, soils with low SOM being more prone to increase microbial biomass and activity and change microbial community structure.
Villarino, María; Mendizabal, Gorka; Garzia, Aitor; Ugalde, Unai
2017-01-01
Microbial cells interact with the environment by adapting to external changes. Signal transduction pathways participate in both sensing and responding in the form of modification of gene expression patterns, enabling cell survival. The filamentous fungal-specific SltA pathway regulates tolerance to alkalinity, elevated cation concentrations and, as shown in this work, also stress conditions induced by borates. Growth of sltA− mutants is inhibited by increasing millimolar concentrations of boric acid or borax (sodium tetraborate). In an attempt to identify genes required for boron-stress response, we determined the boric acid or borax-dependent expression of sbtA and sbtB, orthologs of Saccharomyces cerevisiae bor1, and a reduction in their transcript levels in a ΔsltA mutant. Deletion of sbtA, but mainly that of sbtB, decreased the tolerance to boric acid or borax. In contrast, null mutants of genes coding for additional transporters of the Solute Carrier (SLC) family, sB, sbtD or sbtE, showed an unaltered growth pattern under the same stress conditions. Taken together, our results suggest that the SltA pathway induces, through SbtA and SbtB, the export of toxic concentrations of borates, which have largely recognized antimicrobial properties. PMID:28753996
Karthikeyan, Rengasamy; Cheng, Ka Yu; Selvam, Ammaiyappan; Bose, Arpita; Wong, Jonathan W C
2017-11-01
Microbial electrolysis cells (MECs) are a promising technology for biological hydrogen production. Compared to abiotic water electrolysis, a much lower electrical voltage (~0.2V) is required for hydrogen production in MECs. It is also an attractive waste treatment technology as a variety of biodegradable substances can be used as the process feedstock. Underpinning this technology is a recently discovered bioelectrochemical pathway known as "bioelectrohydrogenesis". However, little is known about the mechanism of this pathway, and numerous hurdles are yet to be addressed to maximize hydrogen yield and purity. Here, we review various aspects including reactor configurations, microorganisms, substrates, electrode materials, and inhibitors of methanogenesis in order to improve hydrogen generation in MECs. Copyright © 2017 Elsevier Inc. All rights reserved.
Methanogenic burst in the end-Permian carbon cycle.
Rothman, Daniel H; Fournier, Gregory P; French, Katherine L; Alm, Eric J; Boyle, Edward A; Cao, Changqun; Summons, Roger E
2014-04-15
The end-Permian extinction is associated with a mysterious disruption to Earth's carbon cycle. Here we identify causal mechanisms via three observations. First, we show that geochemical signals indicate superexponential growth of the marine inorganic carbon reservoir, coincident with the extinction and consistent with the expansion of a new microbial metabolic pathway. Second, we show that the efficient acetoclastic pathway in Methanosarcina emerged at a time statistically indistinguishable from the extinction. Finally, we show that nickel concentrations in South China sediments increased sharply at the extinction, probably as a consequence of massive Siberian volcanism, enabling a methanogenic expansion by removal of nickel limitation. Collectively, these results are consistent with the instigation of Earth's greatest mass extinction by a specific microbial innovation.
Kemper, Katarina; Hirte, Max; Reinbold, Markus; Fuchs, Monika; Brück, Thomas
2017-01-01
With over 50.000 identified compounds terpenes are the largest and most structurally diverse group of natural products. They are ubiquitous in bacteria, plants, animals and fungi, conducting several biological functions such as cell wall components or defense mechanisms. Industrial applications entail among others pharmaceuticals, food additives, vitamins, fragrances, fuels and fuel additives. Central building blocks of all terpenes are the isoprenoid compounds isopentenyl diphosphate and dimethylallyl diphosphate. Bacteria like Escherichia coli harbor a native metabolic pathway for these isoprenoids that is quite amenable for genetic engineering. Together with recombinant terpene biosynthesis modules, they are very suitable hosts for heterologous production of high value terpenes. Yet, in contrast to the number of extracted and characterized terpenes, little is known about the specific biosynthetic enzymes that are involved especially in the formation of highly functionalized compounds. Novel approaches discussed in this review include metabolic engineering as well as site-directed mutagenesis to expand the natural terpene landscape. Focusing mainly on the validation of successful integration of engineered biosynthetic pathways into optimized terpene producing Escherichia coli , this review shall give an insight in recent progresses regarding manipulation of mostly diterpene synthases.
Huang, Gang; Cao, Yan Feng; Wang, Bin; Li, Yan
2015-05-15
Nitrogen (N) deposition can influence carbon cycling of terrestrial ecosystems. However, a general recognition of how soil microorganisms respond to increasing N deposition is not yet reached. We explored soil microbial responses to two levels of N addition (2.5 and 5 gN m(-2) yr(-1)) in interplant soil and beneath shrubs of Haloxylon ammodendron and their consequences to soil respiration in the Gurbantunggut Desert, northwestern China from 2011 to 2013. Microbial biomass and respiration were significantly higher beneath H. ammodendron than in interplant soil. The responses of microbial biomass carbon (MBC) and microbial respiration (MR) showed opposite responses to N addition in interplant and beneath H. ammodendron. N addition slightly increased MBC and MR in interplant soil and decreased them beneath H. ammodendron, with a significant inhibition only in 2012. N addition had no impacts on the total microbial physiological activity, but N addition decreased the labile carbon substrate utilization beneath H. ammodendron when N addition level was high. Phospholipid fatty acid (PLFA) analysis showed that N addition did not alter the soil microbial community structure as evidenced by the similar ratios of fungal to bacterial PLFAs and gram-negative to gram-positive bacterial PLFAs. Microbial biomass and respiration showed close correlations with soil water content and dissolved carbon, and they were independent of soil inorganic nitrogen across three years. Our study suggests that N addition effects on soil microorganisms and carbon emission are dependent on the respiratory substrates and water availability in the desert ecosystem. Copyright © 2015 Elsevier B.V. All rights reserved.
Parkinson’s Disease and PD Medications Have Distinct Signatures of the Gut Microbiome
Hill-Burns, Erin M.; Debelius, Justine W.; Morton, James T.; Wissemann, William T.; Lewis, Matthew R.; Wallen, Zachary D.; Peddada, Shyamal D.; Factor, Stewart A.; Molho, Eric; Zabetian, Cyrus P.; Knight, Rob; Payami, Haydeh
2017-01-01
Background There is mounting evidence for a connection between the gut and Parkinson’s disease (PD). Dysbiosis of gut microbiota could explain several features of PD. Objective To determine if PD involves dysbiosis of gut microbiome, disentangle effects of confounders, and identify candidate taxa and functional pathways to guide research. Methods 197 PD cases and 130 controls were studied. Microbial composition was determined by 16S rRNA gene sequencing of DNA extracted from stool. Metadata were collected on 39 potential confounders including medications, diet, gastrointestinal symptoms, and demographics. Statistical analyses were conducted while controlling for potential confounders and correcting for multiple testing. We tested differences in the overall microbial composition, taxa abundance, and functional pathways. Results Independent microbial signatures were detected for PD (P=4E-5), subjects’ region of residence within the United States (P=3E-3), age (P=0.03), sex (P=1E-3) and dietary fruits/vegetables (P=0.01). Among patients, independent signals were detected for catechol-O-methyltransferase-inhibitors (P=4E-4), anticholinergics (P=5E-3), and possibly carbidopa/levodopa (P=0.05). We found significantly altered abundance of Bifidobacteriaceae, Christensenellaceae, [Tissierellaceae], Lachnospiraceae, Lactobacillaceae, Pasteurellaceae and Verrucomicrobiaceae families. Functional predictions revealed changes in numerous pathways including metabolism of plant-derived compounds and xenobiotics degradation. Conclusion PD is accompanied by dysbiosis of gut microbiome. Results coalesce divergent findings of prior studies, reveal altered abundance of several taxa, nominate functional pathways, and demonstrate independent effects of PD medications on the microbiome. The findings provide new leads and testable hypotheses on the pathophysiology and treatment of PD. PMID:28195358
Metatranscriptome analysis of the microbial fermentation of dietary milk proteins in the murine gut.
Hugenholtz, Floor; Davids, Mark; Schwarz, Jessica; Müller, Michael; Tomé, Daniel; Schaap, Peter; Hooiveld, Guido J E J; Smidt, Hauke; Kleerebezem, Michiel
2018-01-01
Undigestible food ingredients are converted by the microbiota into a large range of metabolites, predominated by short chain fatty acids (SCFA). These microbial metabolites are subsequently available for absorption by the host mucosa and can serve as an energy source. Amino acids fermentation by the microbiota expands the spectrum of fermentation end-products beyond acetate, propionate and butyrate, to include in particular branched-SCFA. Here the long-term effects of high protein-diets on microbial community composition and functionality in mice were analyzed. Determinations of the microbiota composition using phylogenetic microarray (MITChip) technology were complemented with metatranscriptome and SCFA analyses to obtain insight in in situ expression of protein fermentation pathways and the phylogenetic groups involved. High protein diets led to increased luminal concentrations of branched-SCFA, in accordance with protein fermentation in the gut. Bacteria dominantly participating in protein catabolism belonged to the Lachnospiraceae, Erysipelotrichaceae and Clostridiaceae families in both normal- and high- protein diet regimes. This study identifies the microbial groups involved in protein catabolism in the intestine and underpins the value of in situ metatranscriptome analyses as an approach to decipher locally active metabolic networks and pathways as a function of the dietary regime, as well as the phylogeny of the microorganisms executing them.
Microbiome-Metabolome Responses in the Cecum and Colon of Pig to a High Resistant Starch Diet.
Sun, Yue; Su, Yong; Zhu, Weiyun
2016-01-01
Currently, knowledge about the impact of long-term intake of high resistant starch diet on pig hindgut microbiota and metabolite profile is limited. In this study, a combination of the pyrosequencing and the mass spectrometry (MS)-based metabolomics techniques were used to investigate the effects of a raw potato starch (RPS, high in resistant starch) diet on microbial composition and microbial metabolites in the hindgut of pig. The results showed that Coprococcus, Ruminococcus, and Turicibacter increased significantly, while Sarcina and Clostridium decreased in relative abundances in the hindgut of pigs fed RPS. The metabolimic analysis revealed that RPS significantly affected starch and sucrose metabolites, amino acid turnover or protein biosynthesis, lipid metabolites, glycolysis, the pentose phosphate pathway, inositol phosphate metabolism, and nucleotide metabolism. Furthermore, a Pearson's correlation analysis showed that Ruminococcus and Coprococcus were positively correlated with glucose-6-phosphate, maltose, arachidonic acid, 9, 12-octadecadienoic acid, oleic acid, phosphate, but negatively correlated with α-aminobutyric acid. However, the correlation of Clostridium and Sarcina with these compounds was in the opposite direction. The results suggest that RPS not only alters the composition of the gut microbial community but also modulates the metabolic pathway of microbial metabolism, which may further affect the hindgut health of the host.
Microbiome-Metabolome Responses in the Cecum and Colon of Pig to a High Resistant Starch Diet
Sun, Yue; Su, Yong; Zhu, Weiyun
2016-01-01
Currently, knowledge about the impact of long-term intake of high resistant starch diet on pig hindgut microbiota and metabolite profile is limited. In this study, a combination of the pyrosequencing and the mass spectrometry (MS)-based metabolomics techniques were used to investigate the effects of a raw potato starch (RPS, high in resistant starch) diet on microbial composition and microbial metabolites in the hindgut of pig. The results showed that Coprococcus, Ruminococcus, and Turicibacter increased significantly, while Sarcina and Clostridium decreased in relative abundances in the hindgut of pigs fed RPS. The metabolimic analysis revealed that RPS significantly affected starch and sucrose metabolites, amino acid turnover or protein biosynthesis, lipid metabolites, glycolysis, the pentose phosphate pathway, inositol phosphate metabolism, and nucleotide metabolism. Furthermore, a Pearson's correlation analysis showed that Ruminococcus and Coprococcus were positively correlated with glucose-6-phosphate, maltose, arachidonic acid, 9, 12-octadecadienoic acid, oleic acid, phosphate, but negatively correlated with α-aminobutyric acid. However, the correlation of Clostridium and Sarcina with these compounds was in the opposite direction. The results suggest that RPS not only alters the composition of the gut microbial community but also modulates the metabolic pathway of microbial metabolism, which may further affect the hindgut health of the host. PMID:27303373
NASA Astrophysics Data System (ADS)
Bomberg, Malin; Lamminmäki, Tiina; Itävaara, Merja
2016-11-01
The microbial diversity in oligotrophic isolated crystalline Fennoscandian Shield bedrock fracture groundwaters is high, but the core community has not been identified. Here we characterized the bacterial and archaeal communities in 12 water conductive fractures situated at depths between 296 and 798 m by high throughput amplicon sequencing using the Illumina HiSeq platform. Between 1.7 × 104 and 1.2 × 106 bacterial or archaeal sequence reads per sample were obtained. These sequences revealed that up to 95 and 99 % of the bacterial and archaeal sequences obtained from the 12 samples, respectively, belonged to only a few common species, i.e. the core microbiome. However, the remaining rare microbiome contained over 3- and 6-fold more bacterial and archaeal taxa. The metabolic properties of the microbial communities were predicted using PICRUSt. The approximate estimation showed that the metabolic pathways commonly included fermentation, fatty acid oxidation, glycolysis/gluconeogenesis, oxidative phosphorylation, and methanogenesis/anaerobic methane oxidation, but carbon fixation through the Calvin cycle, reductive TCA cycle, and the Wood-Ljungdahl pathway was also predicted. The rare microbiome is an unlimited source of genomic functionality in all ecosystems. It may consist of remnants of microbial communities prevailing in earlier environmental conditions, but could also be induced again if changes in their living conditions occur.
Sasaki, Daisuke; Hori, Tomoyuki; Haruta, Shin; Ueno, Yoshiyuki; Ishii, Masaharu; Igarashi, Yasuo
2011-01-01
The methanogenic pathway and microbial community in a thermophilic anaerobic digestion process of organic solid waste were investigated in a continuous-flow stirred-tank reactor using artificial garbage slurry as a feedstock. The decomposition pathway of acetate, a significant precursor of CH(4) and a key intermediate metabolite in the anaerobic digestion process, was analyzed by using stable isotopes. A tracer experiment using (13)C-labeled acetate revealed that approximately 80% of the acetate was decomposed via a non-aceticlastic oxidative pathway, whereas the remainder was converted to methane via an aceticlastic pathway. Archaeal 16S rRNA analyses demonstrated that the hydrogenotrophic methanogens Methanoculleus spp. accounted for >90% of detected methanogens, and the aceticlastic methanogens Methanosarcina spp. were the minor constituents. The clone library targeting bacterial 16S rRNA indicated the predominance of the novel Thermotogales bacterium (relative abundance: ~53%), which is related to anaerobic acetate oxidizer Thermotoga lettingae TMO, although the sequence similarity was low. Uncultured bacteria that phylogenetically belong to municipal solid waste cluster I were also predominant in the microflora (~30%). These results imply that the microbial community in the thermophilic degrading process of organic solid waste consists exclusively of unidentified bacteria, which efficiently remove acetate through a non-aceticlastic oxidative pathway. Copyright © 2010 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
Ren, Ze; Wang, Fang; Qu, Xiaodong; Elser, James J.; Liu, Yang; Chu, Limin
2017-01-01
Understanding microbial communities in terms of taxon and function is essential to decipher the biogeochemical cycling in aquatic ecosystems. Lakes and their input streams are highly linked. However, the differences between microbial assemblages in streams and lakes are still unclear. In this study, we conducted an intensive field sampling of microbial communities from lake water and stream biofilms in the Qinghai Lake watershed, the largest lake in China. We determined bacterial communities using high-throughput 16S rRNA gene sequencing and predicted functional profiles using PICRUSt to determine the taxonomic and functional differences between microbial communities in stream biofilms and lake water. The results showed that stream biofilms and lake water harbored distinct microbial communities. The microbial communities were different taxonomically and functionally between stream and lake. Moreover, streams biofilms had a microbial network with higher connectivity and modularity than lake water. Functional beta diversity was strongly correlated with taxonomic beta diversity in both the stream and lake microbial communities. Lake microbial assemblages displayed greater predicted metabolic potentials of many metabolism pathways while the microbial assemblages in stream biofilms were more abundant in xenobiotic biodegradation and metabolism and lipid metabolism. Furthermore, lake microbial assemblages had stronger predicted metabolic potentials in amino acid metabolism, carbon fixation, and photosynthesis while stream microbial assemblages were higher in carbohydrate metabolism, oxidative phosphorylation, and nitrogen metabolism. This study adds to our knowledge of stream-lake linkages from the functional and taxonomic composition of microbial assemblages. PMID:29213266
Osthoff, Michael; Brown, Karl D; Kong, David C M; Daniell, Mark; Eisen, Damon P
2014-01-01
Pseudomonas aeruginosa (P. aeruginosa) microbial keratitis (MK) is a sight-threatening disease. Previous animal studies have identified an important contribution of the complement system to the clearance of P. aeruginosa infection of the cornea. Mannose-binding lectin (MBL), a pattern recognition receptor of the lectin pathway of complement, has been implicated in the host defense against P. aeruginosa. However, studies addressing the role of the lectin pathway in P. aeruginosa MK are lacking. Hence, we sought to determine the activity of the lectin pathway in human MK caused by P. aeruginosa. Primary human corneal epithelial cells (HCECs) from cadaveric donors were exposed to two different P. aeruginosa strains. Gene expression of interleukin (IL)-6, IL-8, MBL, and other complement proteins was determined by reverse transcription-polymerase chain reaction (RT-PCR) and MBL synthesis by enzyme-linked immunosorbent assay and intracellular flow cytometry. MBL gene expression was not detected in unchallenged HCECs. Exposure of HCECs to P. aeruginosa resulted in rapid induction of the transcriptional expression of MBL, IL-6, and IL-8. In addition, expression of several complement proteins of the classical and lectin pathways, but not the alternative pathway, were upregulated after 5 h of challenge, including MBL-associated serine protease 1. However, MBL protein secretion was not detectable 18 h after challenge with P. aeruginosa. MK due to P. aeruginosa triggers activation of MBL and the lectin pathway of complement. However, the physiologic relevance of this finding is unclear, as corresponding MBL oligomer production was not observed.
Osthoff, Michael; Brown, Karl D.; Kong, David C.M.; Daniell, Mark
2014-01-01
Purpose Pseudomonas aeruginosa (P. aeruginosa) microbial keratitis (MK) is a sight-threatening disease. Previous animal studies have identified an important contribution of the complement system to the clearance of P. aeruginosa infection of the cornea. Mannose-binding lectin (MBL), a pattern recognition receptor of the lectin pathway of complement, has been implicated in the host defense against P. aeruginosa. However, studies addressing the role of the lectin pathway in P. aeruginosa MK are lacking. Hence, we sought to determine the activity of the lectin pathway in human MK caused by P. aeruginosa. Methods Primary human corneal epithelial cells (HCECs) from cadaveric donors were exposed to two different P. aeruginosa strains. Gene expression of interleukin (IL)-6, IL-8, MBL, and other complement proteins was determined by reverse transcription-polymerase chain reaction (RT–PCR) and MBL synthesis by enzyme-linked immunosorbent assay and intracellular flow cytometry. Results MBL gene expression was not detected in unchallenged HCECs. Exposure of HCECs to P. aeruginosa resulted in rapid induction of the transcriptional expression of MBL, IL-6, and IL-8. In addition, expression of several complement proteins of the classical and lectin pathways, but not the alternative pathway, were upregulated after 5 h of challenge, including MBL-associated serine protease 1. However, MBL protein secretion was not detectable 18 h after challenge with P. aeruginosa. Conclusions MK due to P. aeruginosa triggers activation of MBL and the lectin pathway of complement. However, the physiologic relevance of this finding is unclear, as corresponding MBL oligomer production was not observed. PMID:24426774
DOE Office of Scientific and Technical Information (OSTI.GOV)
Toner, Brandy M.; Rouxel, Olivier J.; Santelli, Cara M.
Hydrothermal sulfide chimneys located along the global system of oceanic spreading centers are habitats for microbial life during active venting. Hydrothermally extinct, or inactive, sulfide deposits also host microbial communities at globally distributed sites. The main goal of this study is to describe Fe transformation pathways, through precipitation and oxidation-reduction (redox) reactions, and examine transformation products for signatures of biological activity using Fe mineralogy and stable isotope approaches. The study includes active and inactive sulfides from the East Pacific Rise 9°50'N vent field. First, the mineralogy of Fe(III)-bearing precipitates is investigated using microprobe X-ray absorption spectroscopy (μXAS) and X-ray diffractionmore » (μXRD). Second, laser-ablation (LA) and micro-drilling (MD) are used to obtain spatially-resolved Fe stable isotope analysis by multicollector-inductively coupled plasma-mass spectrometry (MC-ICP-MS). Eight Fe-bearing minerals representing three mineralogical classes are present in the samples: oxyhydroxides, secondary phyllosilicates, and sulfides. For Fe oxyhydroxides within chimney walls and layers of Si-rich material, enrichments in both heavy and light Fe isotopes relative to pyrite are observed, yielding a range of δ 57Fe values up to 6‰. Overall, several pathways for Fe transformation are observed. Pathway 1 is characterized by precipitation of primary sulfide minerals from Fe(II)aq-rich fluids in zones of mixing between vent fluids and seawater. Pathway 2 is also consistent with zones of mixing but involves precipitation of sulfide minerals from Fe(II)aq generated by Fe(III) reduction. Pathway 3 is direct oxidation of Fe(II) aq from hydrothermal fluids to form Fe(III) precipitates. Finally, Pathway 4 involves oxidative alteration of pre-existing sulfide minerals to form Fe(III). The Fe mineralogy and isotope data do not support or refute a unique biological role in sulfide alteration. The findings reveal a dynamic range of Fe transformation pathways consistent with a continuum of micro-environments having variable redox conditions. Lastly, these micro-environments likely support redox cycling of Fe and S and are consistent with culture-dependent and -independent assessments of microbial physiology and genetic diversity of hydrothermal sulfide deposits.« less
Rosa, Rafael D; Capelli-Peixoto, Janaína; Mesquita, Rafael D; Kalil, Sandra P; Pohl, Paula C; Braz, Glória R; Fogaça, Andrea C; Daffre, Sirlei
2016-06-01
In dipteran insects, invading pathogens are selectively recognized by four major pathways, namely Toll, IMD, JNK, and JAK/STAT, and trigger the activation of several immune effectors. Although substantial advances have been made in understanding the immunity of model insects such as Drosophila melanogaster, knowledge on the activation of immune responses in other arthropods such as ticks remains limited. Herein, we have deepened our understanding of the intracellular signalling pathways likely to be involved in tick immunity by combining a large-scale in silico approach with high-throughput gene expression analysis. Data from in silico analysis revealed that although both the Toll and JAK/STAT signalling pathways are evolutionarily conserved across arthropods, ticks lack central components of the D. melanogaster IMD pathway. Moreover, we show that tick immune signalling-associated genes are constitutively transcribed in BME26 cells (a cell lineage derived from embryos of the cattle tick Rhipicephalus microplus) and exhibit different transcriptional patterns in response to microbial challenge. Interestingly, Anaplasma marginale, a pathogen that is naturally transmitted by R. microplus, causes downregulation of immune-related genes, suggesting that this pathogen may manipulate the tick immune system, favouring its survival and vector colonization. Copyright © 2015 Elsevier Ltd. All rights reserved.
Serrano, Rachel; González-Menéndez, Víctor; Rodríguez, Lorena; Martín, Jesús; Tormo, José R.; Genilloud, Olga
2017-01-01
New fungal SMs (SMs) have been successfully described to be produced by means of in vitro-simulated microbial community interactions. Co-culturing of fungi has proved to be an efficient way to induce cell–cell interactions that can promote the activation of cryptic pathways, frequently silent when the strains are grown in laboratory conditions. Filamentous fungi represent one of the most diverse microbial groups known to produce bioactive natural products. Triggering the production of novel antifungal compounds in fungi could respond to the current needs to fight health compromising pathogens and provide new therapeutic solutions. In this study, we have selected the fungus Botrytis cinerea as a model to establish microbial interactions with a large set of fungal strains related to ecosystems where they can coexist with this phytopathogen, and to generate a collection of extracts, obtained from their antagonic microbial interactions and potentially containing new bioactive compounds. The antifungal specificity of the extracts containing compounds induced after B. cinerea interaction was determined against two human fungal pathogens (Candida albicans and Aspergillus fumigatus) and three phytopathogens (Colletotrichum acutatum, Fusarium proliferatum, and Magnaporthe grisea). In addition, their cytotoxicity was also evaluated against the human hepatocellular carcinoma cell line (HepG2). We have identified by LC-MS the production of a wide variety of known compounds induced from these fungal interactions, as well as novel molecules that support the potential of this approach to generate new chemical diversity and possible new therapeutic agents. PMID:28469610
Uranium isotopes fingerprint biotic reduction
Stylo, Malgorzata; Neubert, Nadja; Wang, Yuheng; ...
2015-04-20
Knowledge of paleo-redox conditions in the Earth’s history provides a window into events that shaped the evolution of life on our planet. The role of microbial activity in paleo-redox processes remains unexplored due to the inability to discriminate biotic from abiotic redox transformations in the rock record. The ability to deconvolute these two processes would provide a means to identify environmental niches in which microbial activity was prevalent at a specific time in paleo-history and to correlate specific biogeochemical events with the corresponding microbial metabolism. Here, we demonstrate that the isotopic signature associated with microbial reduction of hexavalent uranium (U),more » i.e., the accumulation of the heavy isotope in the U(IV) phase, is readily distinguishable from that generated by abiotic uranium reduction in laboratory experiments. Thus, isotope signatures preserved in the geologic record through the reductive precipitation of uranium may provide the sought-after tool to probe for biotic processes. Because uranium is a common element in the Earth’s crust and a wide variety of metabolic groups of microorganisms catalyze the biological reduction of U(VI), this tool is applicable to a multiplicity of geological epochs and terrestrial environments. The findings of this study indicate that biological activity contributed to the formation of many authigenic U deposits, including sandstone U deposits of various ages, as well as modern, Cretaceous, and Archean black shales. In addition, engineered bioremediation activities also exhibit a biotic signature, suggesting that, although multiple pathways may be involved in the reduction, direct enzymatic reduction contributes substantially to the immobilization of uranium.« less
NASA Astrophysics Data System (ADS)
Dijkstra, P.; Fairbanks, D.; Miller, E.; Salpas, E.; Hagerty, S.
2013-12-01
Understanding the mechanisms regulating C cycling is hindered by our inability to directly observe and measure the biochemical processes of glycolysis, pentose phosphate pathway, and TCA cycle in intact and complex microbial communities. Position-specific 13C labeled metabolic tracer probing is proposed as a new way to study microbial community energy production, biosynthesis, C use efficiency (the proportion of substrate incorporated into microbial biomass), and enables the quantification of C fluxes through the central C metabolic network processes (Dijkstra et al 2011a,b). We determined the 13CO2 production from U-13C, 1-13C, 2-13C, 3-13C, 4-13C, 5-13C, and 6-13C labeled glucose and 1-13C and 2,3-13C pyruvate in parallel incubations in three soils along an elevation gradient. Qualitative and quantitative interpretation of the results indicate a high pentose phosphate pathway activity in soils. Agreement between modeled and measured CO2 production rates for the six C-atoms of 13C-labeled glucose indicate that the metabolic model used is appropriate for soil community processes, but that improvements can be made. These labeling and modeling techniques may improve our ability to analyze the biochemistry and (eco)physiology of intact microbial communities. Dijkstra, P., Blankinship, J.C., Selmants, P.C., Hart, S.C., Koch, G.W., Schwartz, E., Hungate, B.A., 2011a. Probing C flux patterns of soil microbial metabolic networks using parallel position-specific tracer labeling. Soil Biology & Biochemistry 43, 126-132. Dijkstra, P., Dalder, J.J., Selmants, P.C., Hart, S.C., Koch, G.W., Schwartz, E., Hungate, B.A., 2011b. Modeling soil metabolic processes using isotopologue pairs of position-specific 13C-labeled glucose and pyruvate. Soil Biology & Biochemistry 43, 1848-1857.
Shen, Yanwen; Jarboe, Laura; Brown, Robert; Wen, Zhiyou
2015-12-01
Thermochemical-biological hybrid processing uses thermochemical decomposition of lignocellulosic biomass to produce a variety of intermediate compounds that can be converted into fuels and chemicals through microbial fermentation. It represents a unique opportunity for biomass conversion as it mitigates some of the deficiencies of conventional biochemical (pretreatment-hydrolysis-fermentation) and thermochemical (pyrolysis or gasification) processing. Thermochemical-biological hybrid processing includes two pathways: (i) pyrolysis/pyrolytic substrate fermentation, and (ii) gasification/syngas fermentation. This paper provides a comprehensive review of these two hybrid processing pathways, including the characteristics of fermentative substrates produced in the thermochemical stage and microbial utilization of these compounds in the fermentation stage. The current challenges of these two biomass conversion pathways include toxicity of the crude pyrolytic substrates, the inhibition of raw syngas contaminants, and the mass-transfer limitations in syngas fermentation. Possible approaches for mitigating substrate toxicities are discussed. The review also provides a summary of the current efforts to commercialize hybrid processing. Copyright © 2015 Elsevier Inc. All rights reserved.
Genomic Prospecting for Microbial Biodiesel Production
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lykidis, Athanasios; Lykidis, Athanasios; Ivanova, Natalia
2008-03-20
Biodiesel is defined as fatty acid mono-alkylesters and is produced from triacylglycerols. In the current article we provide an overview of the structure, diversity and regulation of the metabolic pathways leading to intracellular fatty acid and triacylglycerol accumulation in three types of organisms (bacteria, algae and fungi) of potential biotechnological interest and discuss possible intervention points to increase the cellular lipid content. The key steps that regulate carbon allocation and distribution in lipids include the formation of malonyl-CoA, the synthesis of fatty acids and their attachment onto the glycerol backbone, and the formation of triacylglycerols. The lipid biosynthetic genes andmore » pathways are largely known for select model organisms. Comparative genomics allows the examination of these pathways in organisms of biotechnological interest and reveals the evolution of divergent and yet uncharacterized regulatory mechanisms. Utilization of microbial systems for triacylglycerol and fatty acid production is in its infancy; however, genomic information and technologies combined with synthetic biology concepts provide the opportunity to further exploit microbes for the competitive production of biodiesel.« less
Zhang, Baogang; Tian, Caixing; Liu, Ying; Hao, Liting; Liu, Ye; Feng, Chuanping; Liu, Yuqian; Wang, Zhongli
2015-03-01
Simultaneous microbial and electrochemical reductions of vanadium (V) with bioelectricity generation were realized in microbial fuel cells (MFCs). With initial V(V) concentrations of 75 mg/l and 150 mg/l in anolyte and catholyte, respectively, stable power output of 419±11 mW/m(2) was achieved. After 12h operation, V(V) concentration in the catholyte decreased to the value similar to that of the initial one in the anolyte, meanwhile it was nearly reduced completely in the anolyte. V(IV) was the main reduction product, which subsequently precipitated, acquiring total vanadium removal efficiencies of 76.8±2.9%. Microbial community analysis revealed the emergence of the new species of Deltaproteobacteria and Bacteroidetes as well as the enhanced Spirochaetes mainly functioned in the anode. This study opens new pathways to successful remediation of vanadium contamination. Copyright © 2014 Elsevier Ltd. All rights reserved.
Calibration and analysis of genome-based models for microbial ecology.
Louca, Stilianos; Doebeli, Michael
2015-10-16
Microbial ecosystem modeling is complicated by the large number of unknown parameters and the lack of appropriate calibration tools. Here we present a novel computational framework for modeling microbial ecosystems, which combines genome-based model construction with statistical analysis and calibration to experimental data. Using this framework, we examined the dynamics of a community of Escherichia coli strains that emerged in laboratory evolution experiments, during which an ancestral strain diversified into two coexisting ecotypes. We constructed a microbial community model comprising the ancestral and the evolved strains, which we calibrated using separate monoculture experiments. Simulations reproduced the successional dynamics in the evolution experiments, and pathway activation patterns observed in microarray transcript profiles. Our approach yielded detailed insights into the metabolic processes that drove bacterial diversification, involving acetate cross-feeding and competition for organic carbon and oxygen. Our framework provides a missing link towards a data-driven mechanistic microbial ecology.
Microbial diversity arising from thermodynamic constraints
Großkopf, Tobias; Soyer, Orkun S
2016-01-01
The microbial world displays an immense taxonomic diversity. This diversity is manifested also in a multitude of metabolic pathways that can utilise different substrates and produce different products. Here, we propose that these observations directly link to thermodynamic constraints that inherently arise from the metabolic basis of microbial growth. We show that thermodynamic constraints can enable coexistence of microbes that utilise the same substrate but produce different end products. We find that this thermodynamics-driven emergence of diversity is most relevant for metabolic conversions with low free energy as seen for example under anaerobic conditions, where population dynamics is governed by thermodynamic effects rather than kinetic factors such as substrate uptake rates. These findings provide a general understanding of the microbial diversity based on the first principles of thermodynamics. As such they provide a thermodynamics-based framework for explaining the observed microbial diversity in different natural and synthetic environments. PMID:27035705
Pérez Rodríguez, Nathalie; Langella, Francesca; Rodushkin, Ilia; Engström, Emma; Kothe, Erika; Alakangas, Lena; Öhlander, Björn
2014-01-01
Copper and iron isotope fractionation by plant uptake and translocation is a matter of current research. As a way to apply the use of Cu and Fe stable isotopes in the phytoremediation of contaminated sites, the effects of organic amendment and microbial addition in a mine-spoiled soil seeded with Helianthus annuus in pot experiments and field trials were studied. Results show that the addition of a microbial consortium of ten bacterial strains has an influence on Cu and Fe isotope fractionation by the uptake and translocation in pot experiments, with an increase in average of 0.99 ‰ for the δ(65)Cu values from soil to roots. In the field trial, the amendment with the addition of bacteria and mycorrhiza as single and double inoculation enriches the leaves in (65)Cu compared to the soil. As a result of the same trial, the δ(56)Fe values in the leaves are lower than those from the bulk soil, although some differences are seen according to the amendment used. Siderophores, possibly released by the bacterial consortium, can be responsible for this change in the Cu and Fe fractionation. The overall isotopic fractionation trend for Cu and Fe does not vary for pot and field experiments with or without bacteria. However, variations in specific metabolic pathways related to metal-organic complexation and weathering can modify particular isotopic signatures.
Reichardt, Nicole; Duncan, Sylvia H; Young, Pauline; Belenguer, Alvaro; McWilliam Leitch, Carol; Scott, Karen P; Flint, Harry J; Louis, Petra
2014-01-01
Propionate is produced in the human large intestine by microbial fermentation and may help maintain human health. We have examined the distribution of three different pathways used by bacteria for propionate formation using genomic and metagenomic analysis of the human gut microbiota and by designing degenerate primer sets for the detection of diagnostic genes for these pathways. Degenerate primers for the acrylate pathway (detecting the lcdA gene, encoding lactoyl-CoA dehydratase) together with metagenomic mining revealed that this pathway is restricted to only a few human colonic species within the Lachnospiraceae and Negativicutes. The operation of this pathway for lactate utilisation in Coprococcus catus (Lachnospiraceae) was confirmed using stable isotope labelling. The propanediol pathway that processes deoxy sugars such as fucose and rhamnose was more abundant within the Lachnospiraceae (based on the pduP gene, which encodes propionaldehyde dehydrogenase), occurring in relatives of Ruminococcus obeum and in Roseburia inulinivorans. The dominant source of propionate from hexose sugars, however, was concluded to be the succinate pathway, as indicated by the widespread distribution of the mmdA gene that encodes methylmalonyl-CoA decarboxylase in the Bacteroidetes and in many Negativicutes. In general, the capacity to produce propionate or butyrate from hexose sugars resided in different species, although two species of Lachnospiraceae (C. catus and R. inulinivorans) are now known to be able to switch from butyrate to propionate production on different substrates. A better understanding of the microbial ecology of short-chain fatty acid formation may allow modulation of propionate formation by the human gut microbiota. PMID:24553467
NASA Astrophysics Data System (ADS)
Dutton, Kirsten E.; Paul, Andreas; Lessa Andrade, Luiza; Sherry, Angela; Lokier, Stephen; Head, Ian M.; van der Land, Cees
2017-04-01
Microbial mats and their lithified counterparts are some of the earliest evidence of life on Earth. The coastal sabkha in Abu Dhabi, United Arab Emirates, is a modern setting where microbial mats flourish in a hypersaline and arid environment. These microbial communities are composed of microbes such as cyanobacteria, thermoplasmata and sulphate-reducing bacteria. The mats thrive as they are protected from predators, which are excluded by the extreme environmental conditions. Microbial mats are highly reactive to change, with their microbial communities and geochemistry varying on a millimetre scale, likely controlling mineralisation processes. Exact carbonate mineralisation rates within coastal sabkha microbial mats have not to date been quantified. Defining the mineralisation pathways and knowledge of precise mineralisation rates will help to explain how these organosedimentary structures are retained in the rock record. A fundamental understanding of the role of microbial mats in the formation of different carbonate phases is important, yet there are also other practical implications. For example, structures observed in core from the oil-bearing Arab Formation have been likened to modern microbial mats in terms of structure and mineralogy. The depositional configuration and primary mineralogy generated by microbial mats may control syndepositional lithification and later diagenesis thereby influencing reservoir porosity and permeability. In order to constrain factors effecting mineralisation and early lithification, experimentation in a controlled laboratory environment is required. Parameters for experimentation have been established during fieldwork and were applied to a tank-based laboratory simulation of sabkha microbial mats. These parameters include light, salinity and cation and anion water chemistry, gas production chemistry and vertical mat growth. Parameters were measured weekly with sampling for mineralogical and microbial community analysis on a biweekly basis. In addition to these parameter measurements already in place in current experiments, temperature and tidal cycle were monitored in the field. Over the course of the first three months, the microbial mat, which was submerged in an artificial seawater medium, grew vertically and developed a green surface at the top and sides. Thermogravimetric analysis has established that the top 1 mm surface mat biomass contains carbonate minerals, leading to an initial inferred carbonate mineralisation rate of approximately 0.5 g per 1 cm2 per year (approx. per 10 g surface mat material). This rate of mineralisation will become more accurate as more analysis is completed particularly comparing samples of mat, initially before they went in to the tank experiment and after incremental time periods, 3 months, 6 months etc. Further analysis of mat growth will establish the extent to which the precipitated carbonate minerals result from microbial activity and the types of minerals precipitated. The rate of mineralisation can be scaled-up to the km scale with the potential to isolate mineralisation rates promoted by different communities and in different types of microbial mat.
Prajapati, Bhumika; Rajput, Parth; Jena, Prasant Kumar; Seshadri, Sriram
2015-01-01
Sugar rich diet induces inflammation and insulin resistance mainly through gut microbiota alteration. Gut microflora dysbiosis increases plasma lipopolysaccharide and reduces short chain fatty acids to impair the insulin signaling cascades by different molecular pathways to progress into diabetes. Chitosan based formulations have major significance in insulin delivery system due to their ability to protect the insulin from enzymatic degradation and its efficient inter-epithelial transport. This study was designed to investigate the effect of chitosan administration on gut microflora mediated signaling pathways to prevent the diet induced diabetes. Male wistar rats were divided into non-diabetic group with a normal diet (CD), diabetic group with high sucrose diet (HSD) and treatment group with HSD and chitosan (60 mg/kg). After 8 weeks of the study, significant alterations in two major gut dominant microbial phyla i.e Firmicutes and Bacteroides and four dominant microbial species i.e. Lactobacilli, Bifidobacteria, Escherichia and Clostridia were observed in HSD group compared to CD. This microbial dysbiosis in dominant phyla was significantly prevented in chitosan administrated HSD group. Chitosan administration had also reduced the HSD induced activation of Toll like receptors and Nod like receptors signaling pathways compared to HSD control group to reduce the inflammation. These suggest that chitosan can prevent the progression of Type 2 Diabetes through gut microbiota alteration, reducing endotoxin and microbes mediated inflammation.
Scoma, Alberto; Barbato, Marta; Hernandez-Sanabria, Emma; Mapelli, Francesca; Daffonchio, Daniele; Borin, Sara; Boon, Nico
2016-01-01
Oil spills represent an overwhelming carbon input to the marine environment that immediately impacts the sea surface ecosystem. Microbial communities degrading the oil fraction that eventually sinks to the seafloor must also deal with hydrostatic pressure, which linearly increases with depth. Piezosensitive hydrocarbonoclastic bacteria are ideal candidates to elucidate impaired pathways following oil spills at low depth. In the present paper, we tested two strains of the ubiquitous Alcanivorax genus, namely A. jadensis KS_339 and A. dieselolei KS_293, which is known to rapidly grow after oil spills. Strains were subjected to atmospheric and mild pressure (0.1, 5 and 10 MPa, corresponding to a depth of 0, 500 and 1000 m, respectively) providing n-dodecane as sole carbon source. Pressures equal to 5 and 10 MPa significantly lowered growth yields of both strains. However, in strain KS_293 grown at 10 MPa CO2 production per cell was not affected, cell integrity was preserved and PO43− uptake increased. Analysis of its transcriptome revealed that 95% of its genes were downregulated. Increased transcription involved protein synthesis, energy generation and respiration pathways. Interplay between these factors may play a key role in shaping the structure of microbial communities developed after oil spills at low depth and limit their bioremediation potential. PMID:27020120
Han, Li; Peng, Yanfeng; Zhang, Yuangyuan; Chen, Wujiu; Lin, Yuping; Wang, Qinhong
2017-01-01
Medium-chain (C8–C14) α, ω-dicarboxylic acids (α, ω-DCAs), which have numerous applications as raw materials for producing various commodities and polymers in chemical industry, are mainly produced from chemical or microbial conversion of petroleum-derived alkanes or plant-derived fatty acids at present. Recently, significant attention has been gained to microbial production of medium-chain α, ω-DCAs from simple renewable sugars. Here, we designed and created a synthetic omega oxidation pathway in Saccharomyces cerevisiae to produce C10 and C12 α, ω-DCAs from renewable sugars and fatty acids by introducing a heterogeneous cytochrome P450 CYP94C1 and cytochrome reductase ATR1. Furthermore, the deletion of fatty acyl-CoA synthetase genes FAA1 and FAA4 increased the production of medium-chain α, ω-DCAs from 4.690 ± 0.088 mg/L to 12.177 ± 0.420 mg/L and enabled the production of C14 and C16 α, ω-DCAs at low percentage. But blocking β-oxidation pathway by deleting fatty-acyl coenzyme A oxidase gene POX1 and overexpressing different thioesterase genes had no significant impact on the production and the composition of α, ω-dicarboxylic acids. Overall, our study indicated the potential of microbial production of medium-chain α, ω-DCAs from renewable feedstocks using engineered yeast. PMID:29163455
NASA Astrophysics Data System (ADS)
Scoma, Alberto; Barbato, Marta; Hernandez-Sanabria, Emma; Mapelli, Francesca; Daffonchio, Daniele; Borin, Sara; Boon, Nico
2016-03-01
Oil spills represent an overwhelming carbon input to the marine environment that immediately impacts the sea surface ecosystem. Microbial communities degrading the oil fraction that eventually sinks to the seafloor must also deal with hydrostatic pressure, which linearly increases with depth. Piezosensitive hydrocarbonoclastic bacteria are ideal candidates to elucidate impaired pathways following oil spills at low depth. In the present paper, we tested two strains of the ubiquitous Alcanivorax genus, namely A. jadensis KS_339 and A. dieselolei KS_293, which is known to rapidly grow after oil spills. Strains were subjected to atmospheric and mild pressure (0.1, 5 and 10 MPa, corresponding to a depth of 0, 500 and 1000 m, respectively) providing n-dodecane as sole carbon source. Pressures equal to 5 and 10 MPa significantly lowered growth yields of both strains. However, in strain KS_293 grown at 10 MPa CO2 production per cell was not affected, cell integrity was preserved and PO43- uptake increased. Analysis of its transcriptome revealed that 95% of its genes were downregulated. Increased transcription involved protein synthesis, energy generation and respiration pathways. Interplay between these factors may play a key role in shaping the structure of microbial communities developed after oil spills at low depth and limit their bioremediation potential.
Tremblay, Pier-Luc; Höglund, Daniel; Koza, Anna; Bonde, Ida; Zhang, Tian
2015-01-01
Acetogens are efficient microbial catalysts for bioprocesses converting C1 compounds into organic products. Here, an adaptive laboratory evolution approach was implemented to adapt Sporomusa ovata for faster autotrophic metabolism and CO2 conversion to organic chemicals. S. ovata was first adapted to grow quicker autotrophically with methanol, a toxic C1 compound, as the sole substrate. Better growth on different concentrations of methanol and with H2-CO2 indicated the adapted strain had a more efficient autotrophic metabolism and a higher tolerance to solvent. The growth rate on methanol was increased 5-fold. Furthermore, acetate production rate from CO2 with an electrode serving as the electron donor was increased 6.5-fold confirming that the acceleration of the autotrophic metabolism of the adapted strain is independent of the electron donor provided. Whole-genome sequencing, transcriptomic, and biochemical studies revealed that the molecular mechanisms responsible for the novel characteristics of the adapted strain were associated with the methanol oxidation pathway and the Wood-Ljungdahl pathway of acetogens along with biosynthetic pathways, cell wall components, and protein chaperones. The results demonstrate that an efficient strategy to increase rates of CO2 conversion in bioprocesses like microbial electrosynthesis is to evolve the microbial catalyst by adaptive laboratory evolution to optimize its autotrophic metabolism. PMID:26530351
Burns, Michael B; Montassier, Emmanuel; Abrahante, Juan; Priya, Sambhawa; Niccum, David E; Khoruts, Alexander; Starr, Timothy K; Knights, Dan; Blekhman, Ran
2018-06-20
Variation in the gut microbiome has been linked to colorectal cancer (CRC), as well as to host genetic variation. However, we do not know whether, in addition to baseline host genetics, somatic mutational profiles in CRC tumors interact with the surrounding tumor microbiome, and if so, whether these changes can be used to understand microbe-host interactions with potential functional biological relevance. Here, we characterized the association between CRC microbial communities and tumor mutations using microbiome profiling and whole-exome sequencing in 44 pairs of tumors and matched normal tissues. We found statistically significant associations between loss-of-function mutations in tumor genes and shifts in the abundances of specific sets of bacterial taxa, suggestive of potential functional interaction. This correlation allows us to statistically predict interactions between loss-of-function tumor mutations in cancer-related genes and pathways, including MAPK and Wnt signaling, solely based on the composition of the microbiome. In conclusion, our study shows that CRC microbiomes are correlated with tumor mutational profiles, pointing towards possible mechanisms of molecular interaction.
NASA Astrophysics Data System (ADS)
Yang, Tingting; Wang, Zhong; Li, Kexun; Liu, Yi; Liu, Di; Wang, Junjie
2017-09-01
Herein, we report a simplistic method to fabricate the surface-oxidized cobalt phosphide (CoP) nanocrystals (NCs), which is used as electrocatalyst for oxygen reduction reaction (ORR) in microbial fuel cell (MFC) for the first time. The corallite-like CoP NCs are successfully prepared by a hydrothermal reaction following a phosphating treatment in N2 atmosphere. When used as an ORR catalyst, cobalt phosphide shows comparable onset potential, inferior resistance, as well as a small Tafel slope with long-term stability in neutral media. The maximum power density of MFC embellished with 10% CoP reached 1914.4 ± 59.7 mW m-2, which is 108.5% higher than the control. The four-electron pathway, observed by the RDE, plays a crucial role in electrochemical catalytic activity. In addition, material characterizations indicate that the surface oxide layer (CoOx) around the metallic CoP core is important and beneficial for ORR. Accordingly, it can be expected that the as-synthesized CoP will be a promising candidate of the non-precious metal ORR electrocatalysts for electrochemical energy applications.
Zink, Steven D; Van Slyke, Greta A; Palumbo, Michael J; Kramer, Laura D; Ciota, Alexander T
2015-10-27
Complex interactions between microbial residents of mosquitoes and arboviruses are likely to influence many aspects of vectorial capacity and could potentially have profound effects on patterns of arbovirus transmission. Such interactions have not been well studied for West Nile virus (WNV; Flaviviridae, Flavivirus) and Culex spp. mosquitoes. We utilized next-generation sequencing of 16S ribosomal RNA bacterial genes derived from Culex pipiens Linnaeus following WNV exposure and/or infection and compared bacterial populations and broad immune responses to unexposed mosquitoes. Our results demonstrate that WNV infection increases the diversity of bacterial populations and is associated with up-regulation of classical invertebrate immune pathways including RNA interference (RNAi), Toll, and Jak-STAT (Janus kinase-Signal Transducer and Activator of Transcription). In addition, WNV exposure alone, without the establishment of infection, results in similar alterations to microbial and immune signatures, although to a lesser extent. Multiple bacterial genera were found in greater abundance inWNV-exposed and/or infected mosquitoes, yet the most consistent and notable was the genus Serratia.
Perspective for Aquaponic Systems: "Omic" Technologies for Microbial Community Analysis.
Munguia-Fragozo, Perla; Alatorre-Jacome, Oscar; Rico-Garcia, Enrique; Torres-Pacheco, Irineo; Cruz-Hernandez, Andres; Ocampo-Velazquez, Rosalia V; Garcia-Trejo, Juan F; Guevara-Gonzalez, Ramon G
2015-01-01
Aquaponics is the combined production of aquaculture and hydroponics, connected by a water recirculation system. In this productive system, the microbial community is responsible for carrying out the nutrient dynamics between the components. The nutrimental transformations mainly consist in the transformation of chemical species from toxic compounds into available nutrients. In this particular field, the microbial research, the "Omic" technologies will allow a broader scope of studies about a current microbial profile inside aquaponics community, even in those species that currently are unculturable. This approach can also be useful to understand complex interactions of living components in the system. Until now, the analog studies were made to set up the microbial characterization on recirculation aquaculture systems (RAS). However, microbial community composition of aquaponics is still unknown. "Omic" technologies like metagenomic can help to reveal taxonomic diversity. The perspectives are also to begin the first attempts to sketch the functional diversity inside aquaponic systems and its ecological relationships. The knowledge of the emergent properties inside the microbial community, as well as the understanding of the biosynthesis pathways, can derive in future biotechnological applications. Thus, the aim of this review is to show potential applications of current "Omic" tools to characterize the microbial community in aquaponic systems.
Degradation of Chloronitrobenzenes by a Coculture of Pseudomonas putida and a Rhodococcus sp.
Park, Hee-Sung; Lim, Sung-Jin; Chang, Young Keun; Livingston, Andrew G.; Kim, Hak-Sung
1999-01-01
A single microorganism able to mineralize chloronitrobenzenes (CNBs) has not been reported, and degradation of CNBs by coculture of two microbial strains was attempted. Pseudomonas putida HS12 was first isolated by analogue enrichment culture using nitrobenzene (NB) as the substrate, and this strain was observed to possess a partial reductive pathway for the degradation of NB. From high-performance liquid chromatography-mass spectrometry and 1H nuclear magnetic resonance analyses, NB-grown cells of P. putida HS12 were found to convert 3- and 4-CNBs to the corresponding 5- and 4-chloro-2-hydroxyacetanilides, respectively, by partial reduction and subsequent acetylation. For the degradation of CNBs, Rhodococcus sp. strain HS51, which degrades 4- and 5-chloro-2-hydroxyacetanilides, was isolated and combined with P. putida HS12 to give a coculture. This coculture was confirmed to mineralize 3- and 4-CNBs in the presence of an additional carbon source. A degradation pathway for 3- and 4-CNBs by the two isolated strains was also proposed. PMID:10049867
Khanna, Namita; Ghosh, Ananta Kumar; Huntemann, Marcel; Deshpande, Shweta; Han, James; Chen, Amy; Kyrpides, Nikos; Mavrommatis, Kostas; Szeto, Ernest; Markowitz, Victor; Ivanova, Natalia; Pagani, Ioanna; Pati, Amrita; Pitluck, Sam; Nolan, Matt; Woyke, Tanja; Teshima, Hazuki; Chertkov, Olga; Daligault, Hajnalka; Davenport, Karen; Gu, Wei; Munk, Christine; Zhang, Xiaojing; Bruce, David; Detter, Chris; Xu, Yan; Quintana, Beverly; Reitenga, Krista; Kunde, Yulia; Green, Lance; Erkkila, Tracy; Han, Cliff; Brambilla, Evelyne-Marie; Lang, Elke; Klenk, Hans-Peter; Goodwin, Lynne; Chain, Patrick; Das, Debabrata
2013-12-20
Enterobacter sp. IIT-BT 08 belongs to Phylum: Proteobacteria, Class: Gammaproteobacteria, Order: Enterobacteriales, Family: Enterobacteriaceae. The organism was isolated from the leaves of a local plant near the Kharagpur railway station, Kharagpur, West Bengal, India. It has been extensively studied for fermentative hydrogen production because of its high hydrogen yield. For further enhancement of hydrogen production by strain development, complete genome sequence analysis was carried out. Sequence analysis revealed that the genome was linear, 4.67 Mbp long and had a GC content of 56.01%. The genome properties encode 4,393 protein-coding and 179 RNA genes. Additionally, a putative pathway of hydrogen production was suggested based on the presence of formate hydrogen lyase complex and other related genes identified in the genome. Thus, in the present study we describe the specific properties of the organism and the generation, annotation and analysis of its genome sequence as well as discuss the putative pathway of hydrogen production by this organism.
Updates on industrial production of amino acids using Corynebacterium glutamicum.
Wendisch, Volker F; Jorge, João M P; Pérez-García, Fernando; Sgobba, Elvira
2016-06-01
L-Amino acids find various applications in biotechnology. L-Glutamic acid and its salts are used as flavor enhancers. Other L-amino acids are used as food or feed additives, in parenteral nutrition or as building blocks for the chemical and pharmaceutical industries. L-amino acids are synthesized from precursors of central carbon metabolism. Based on the knowledge of the biochemical pathways microbial fermentation processes of food, feed and pharma amino acids have been developed. Production strains of Corynebacterium glutamicum, which has been used safely for more than 50 years in food biotechnology, and Escherichia coli are constantly improved using metabolic engineering approaches. Research towards new processes is ongoing. Fermentative production of L-amino acids in the million-ton-scale has shaped modern biotechnology and its markets continue to grow steadily. This review focusses on recent achievements in strain development for amino acid production including the use of CRISPRi/dCas9, genome-reduced strains, biosensors and synthetic pathways to enable utilization of alternative carbon sources.
Kynurenine pathway metabolism and the microbiota-gut-brain axis.
Kennedy, P J; Cryan, J F; Dinan, T G; Clarke, G
2017-01-01
It has become increasingly clear that the gut microbiota influences not only gastrointestinal physiology but also central nervous system (CNS) function by modulating signalling pathways of the microbiota-gut-brain axis. Understanding the neurobiological mechanisms underpinning the influence exerted by the gut microbiota on brain function and behaviour has become a key research priority. Microbial regulation of tryptophan metabolism has become a focal point in this regard, with dual emphasis on the regulation of serotonin synthesis and the control of kynurenine pathway metabolism. Here, we focus in detail on the latter pathway and begin by outlining the structural and functional dynamics of the gut microbiota and the signalling pathways of the brain-gut axis. We summarise preclinical and clinical investigations demonstrating that the gut microbiota influences CNS physiology, anxiety, depression, social behaviour, cognition and visceral pain. Pertinent studies are drawn from neurogastroenterology demonstrating the importance of tryptophan and its metabolites in CNS and gastrointestinal function. We outline how kynurenine pathway metabolism may be regulated by microbial control of neuroendocrine function and components of the immune system. Finally, preclinical evidence demonstrating direct and indirect mechanisms by which the gut microbiota can regulate tryptophan availability for kynurenine pathway metabolism, with downstream effects on CNS function, is reviewed. Targeting the gut microbiota represents a tractable target to modulate kynurenine pathway metabolism. Efforts to develop this approach will markedly increase our understanding of how the gut microbiota shapes brain and behaviour and provide new insights towards successful translation of microbiota-gut-brain axis research from bench to bedside. This article is part of the Special Issue entitled 'The Kynurenine Pathway in Health and Disease'. Copyright © 2016 Elsevier Ltd. All rights reserved.
Solanesol Biosynthesis in Plants.
Yan, Ning; Liu, Yanhua; Zhang, Hongbo; Du, Yongmei; Liu, Xinmin; Zhang, Zhongfeng
2017-03-23
Solanesol is a non-cyclic terpene alcohol composed of nine isoprene units that mainly accumulates in solanaceous plants. Solanesol plays an important role in the interactions between plants and environmental factors such as pathogen infections and moderate-to-high temperatures. Additionally, it is a key intermediate for the pharmaceutical synthesis of ubiquinone-based drugs such as coenzyme Q10 and vitamin K2, and anti-cancer agent synergizers such as N-solanesyl-N,N'-bis(3,4-dimethoxybenzyl) ethylenediamine (SDB). In plants, solanesol is formed by the 2- C -methyl-d-erythritol 4-phosphate (MEP) pathway within plastids. Solanesol's biosynthetic pathway involves the generation of C5 precursors, followed by the generation of direct precursors, and then the biosynthesis and modification of terpenoids; the first two stages of this pathway are well understood. Based on the current understanding of solanesol biosynthesis, we here review the key enzymes involved, including 1-deoxy-d-xylulose 5-phosphate synthase (DXS), 1-deoxy-d-xylulose 5-phosphate reductoisomerase (DXR), isopentenyl diphosphate isomerase (IPI), geranyl geranyl diphosphate synthase (GGPPS), and solanesyl diphosphate synthase (SPS), as well as their biological functions. Notably, studies on microbial heterologous expression and overexpression of key enzymatic genes in tobacco solanesol biosynthesis are of significant importance for medical uses of tobacco.
Employing metabolic engineered lipolytic microbial platform for 1-alkene one-step conversion.
Wang, Juli; Yu, Haiying; Zhu, Kun
2018-05-01
1-Alkenes are traditionally used as basic chemicals with great importance. Biosynthetic 1-alkenes also have the potential to serve as biofuels. In this study, we engineered a Pseudomonas lipolytic microbial platform for 1-alkene production using hydrophobic substrate as sole carbon source. Fatty acid decarboxylase UndA and UndB were cloned and expressed, which successfully produced 1-alkenes. Optimal culturing temperature and the interruption of competitive pathway were proven to be beneficial to 1-alkene synthesis. Chromosomal integration of UndB conferred 177.8 mg/L 1-alkenes (mainly 1-undecene) in lauric acid medium and 128.9 mg/L 1-alkenes (mainly 1-pentadecene) in palm oil medium. Thioesterase expression, adjustments of fatty acid degradation pathway and a second copy of UndB improved 1-alkene titer to 1102.6 mg/L using lauric acid and 778.4 mg/L using palm oil. All in all, this study offers the first demonstration of lipolytic microbial 1-alkene producing platform with highest reported 1-alkene product titer up to date. Copyright © 2018 Elsevier Ltd. All rights reserved.
Microbiome-host systems interactions: protective effects of propionate upon the blood-brain barrier.
Hoyles, Lesley; Snelling, Tom; Umlai, Umm-Kulthum; Nicholson, Jeremy K; Carding, Simon R; Glen, Robert C; McArthur, Simon
2018-03-21
Gut microbiota composition and function are symbiotically linked with host health and altered in metabolic, inflammatory and neurodegenerative disorders. Three recognised mechanisms exist by which the microbiome influences the gut-brain axis: modification of autonomic/sensorimotor connections, immune activation, and neuroendocrine pathway regulation. We hypothesised interactions between circulating gut-derived microbial metabolites, and the blood-brain barrier (BBB) also contribute to the gut-brain axis. Propionate, produced from dietary substrates by colonic bacteria, stimulates intestinal gluconeogenesis and is associated with reduced stress behaviours, but its potential endocrine role has not been addressed. After demonstrating expression of the propionate receptor FFAR3 on human brain endothelium, we examined the impact of a physiologically relevant propionate concentration (1 μM) on BBB properties in vitro. Propionate inhibited pathways associated with non-specific microbial infections via a CD14-dependent mechanism, suppressed expression of LRP-1 and protected the BBB from oxidative stress via NRF2 (NFE2L2) signalling. Together, these results suggest gut-derived microbial metabolites interact with the BBB, representing a fourth facet of the gut-brain axis that warrants further attention.
Zhang, Qinghua; Zhang, Yanyan; Li, Daping
2017-04-01
The performance of a microbial fuel cell (MFC) in terms of degradation of chloramphenicol (CAP) was investigated. Approximately 84% of 50mg/L CAP was degraded within 12h in the MFC. A significant interaction of pH, temperature, and initial CAP concentration was found on removal of CAP, and a maximum degradation rate of 96.53% could theoretically be achieved at 31.48°C, a pH of 7.12, and an initial CAP concentration of 106.37mg/L. Moreover, CAP was further degraded through a ring-cleavage pathway. The antibacterial activity of CAP towards Escherichia coli ATCC 25922 and Shewanella oneidensis MR-1 was largely eliminated by MFC treatment. High-throughput sequencing analysis indicated that Azonexus, Comamonas, Nitrososphaera, Chryseobacterium, Azoarcus, Rhodococcus, and Dysgonomonas were the predominant genera in the MFC anode biofilm. In conclusion, the MFC shows potential for the treatment of antibiotic residue-containing wastewater due to its high rates of CAP removal and energy recovery. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Marañón-Jiménez, Sara; Soong, Jenniffer L.; Leblans, Niki I. W.; Sigurdsson, Bjarni D.; Dauwe, Steven; Fransen, Erik; Janssens, Ivan A.
2017-04-01
Increasing temperatures can accelerate soil organic matter (SOM) decomposition and release large amounts of CO2 to the atmosphere, potentially inducing climate change feedbacks. Alterations to the temperature sensitivity and metabolic pathways of soil microorganisms in response to soil warming can play a key role in these soil carbon (C) losses. Here, we present results of an incubation experiment using soils from a geothermal gradient in Iceland that have been subjected to different intensities of soil warming (+0, +1, +3, +5, +10 and +20 °C above ambient) over seven years. We hypothesized that 7 years of soil warming would led to a depletion of labile organic substrates, with a subsequent decrease of the "apparent" temperature sensitivity of soil respiration. Associated to this C limitation and more sub-optimal conditions for microbial growth, we also hypothesized increased microbial metabolic quotients (soil respiration per unit of microbial biomass), which is associated with increases in the relative amount of C invested into catabolic pathways along the warming gradient. Soil respiration and basal respiration rates decreased with soil warming intensity, in parallel with a decline in soil C availability. Contrasting to our first hypothesis, we did not detect changes in the temperature sensitivity of soil respiration with soil warming or on the availability of nutrients and of labile C substrates at the time of incubation. However, in agreement to our second hypothesis, microbial metabolic quotients (soil respiration per unit of microbial biomass) increased at warmer temperatures, while the C retained in biomass decreased as substrate became limiting. Long-term (7 years) temperature increases thus triggered a change in the metabolic functioning of the soil microbial communities towards increasing energy costs for maintenance or resource acquisition, thereby lowering the capacity of C retention and stabilization of warmed soils. These results highlight the need to incorporate the potential changes in microbial physiological functioning into models, in order to accurately predict future changes in soil C stocks in response to global warming.
Geobiology of Marine Magnetotactic Bacteria
2006-06-01
acids (e.g. lactate, acetate, oxalate , succinate, fumarate, malate, and citrate) which are continually transported into the soil, in part due to the...microbial mats, and hydrothermal vent waters. J Environ Monit 3: 61-66. 177 Lyons TW (1997) Sulfur isotopic trends and pathways of iron sulfide formation in...case in sediments, microbial mats, and hydrothermal vent waters. J Environ Monit 3: 61-66. 200 O’Sullivan DW, Hanson Jr AK, Kester DR (1997) The
USDA-ARS?s Scientific Manuscript database
A study was conducted to evaluate the influence of purification of yeast cell wall (YCW) preparations on broiler performance, and immunogenic and metabolic pathways under microbial challenge. A total of 240 day-of-hatch chicks were distributed among two battery brooder units (48 pens; 5 birds/pen; ...
Engineering microbial consortia to enhance biomining and bioremediation.
Brune, Karl D; Bayer, Travis S
2012-01-01
In natural environments microorganisms commonly exist as communities of multiple species that are capable of performing more varied and complicated tasks than clonal populations. Synthetic biologists have engineered clonal populations with characteristics such as differentiation, memory, and pattern formation, which are usually associated with more complex multicellular organisms. The prospect of designing microbial communities has alluring possibilities for environmental, biomedical, and energy applications, and is likely to reveal insight into how natural microbial consortia function. Cell signaling and communication pathways between different species are likely to be key processes for designing novel functions in synthetic and natural consortia. Recent efforts to engineer synthetic microbial interactions will be reviewed here, with particular emphasis given to research with significance for industrial applications in the field of biomining and bioremediation of acid mine drainage.
Engineering microbial consortia to enhance biomining and bioremediation
Brune, Karl D.; Bayer, Travis S.
2012-01-01
In natural environments microorganisms commonly exist as communities of multiple species that are capable of performing more varied and complicated tasks than clonal populations. Synthetic biologists have engineered clonal populations with characteristics such as differentiation, memory, and pattern formation, which are usually associated with more complex multicellular organisms. The prospect of designing microbial communities has alluring possibilities for environmental, biomedical, and energy applications, and is likely to reveal insight into how natural microbial consortia function. Cell signaling and communication pathways between different species are likely to be key processes for designing novel functions in synthetic and natural consortia. Recent efforts to engineer synthetic microbial interactions will be reviewed here, with particular emphasis given to research with significance for industrial applications in the field of biomining and bioremediation of acid mine drainage. PMID:22679443
Gibson, Andrew; Malek, Lada; Dekker, Robert F H; Ross, Brian
2015-05-01
Selected Ion Flow Tube Mass Spectrometry (SIFT-MS) was used to quantify methanol and other volatile compounds in the headspace of one bacterial and 12 fungal lignin-degrading microbial cultures. Cultures were grown in 250 mL Erlenmeyer flasks capped with aluminum foil containing 40 mL of nutrient media using Kraft lignin (0.3% w/v) as the sole carbon source. Analysis was done using SIFT-MS with H3O(+) and NO(+) precursors. Product ions were identified with multiple ion mode (MIM). Full scan (FS) mode was used to identify other compounds of interest. Absidia cylindrospora, Ischnoderma resinosum and Pholiota aurivella increased headspace methanol concentration by 136 ppb, 1196 ppb and 278 ppb, respectively, while Flammulina velutipes and Laetiporus sulphureus decreased concentration below ambient levels. F. velutipes and L. sulphureus were found to produce products of methanol oxidation (formaldehyde and formic acid) and were likely metabolizing methanol. Some additional unidentified compounds generated by the fungal cultures are intriguing and will require further study. SIFT-MS can be used to quantify methanol and other volatile compounds in the headspace of microbial cultures and has the potential to be a rapid, sensitive, non-invasive tool useful in elucidating the mechanisms of lignin degradative pathways. Copyright © 2015 Elsevier B.V. All rights reserved.
Interindividual Variability in Metabolism of [6]-Shogaol by Gut Microbiota.
Wang, Pei; Wang, Ronghui; Zhu, Yingdong; Sang, Shengmin
2017-11-08
[6]-Shogaol (6S), one of the major bioactive components in dry ginger, is attracting considerable attention because of its wide spectrum of biological activities, but its metabolic fate is still not fully understood. In the present study, the microbial metabolism of 6S was examined for the first time in in vitro batch fecal fermentation system and in mice. Two major microbial metabolites were detected and identified as 1-(4'-hydroxy-3'-methoxyphenyl)-decan-3-ol (M9) and 1-(4'-hydroxy-3'-methoxyphenyl)-decan-3-one (M11). Our results indicated that reductions of the double bond and the ketone group are the major metabolic pathways of 6S by the human gut microbiota. We also observed the interindividual variability in the metabolism of M11 to M9 by human gut microbiota. In addition, we demonstrated that the glucuronidated form of 6S and its metabolites could be rapidly deconjugated by human gut microbiota and in mice, which can be regarded as a reactive process taking place in the intestinal tract. To our knowledge, this is the first report involving the identification of the microbial metabolites of 6S in an in vitro fermentation system, and the first demonstration of the critical role of gut microbiota in producing the bioactive free form of 6S and its metabolites in the intestinal tract in mice.
Advances in antimicrobial photodynamic inactivation at the nanoscale
Kashef, Nasim; Huang, Ying-Ying; Hamblin, Michael R.
2017-01-01
The alarming worldwide increase in antibiotic resistance amongst microbial pathogens necessitates a search for new antimicrobial techniques, which will not be affected by, or indeed cause resistance themselves. Light-mediated photoinactivation is one such technique that takes advantage of the whole spectrum of light to destroy a broad spectrum of pathogens. Many of these photoinactivation techniques rely on the participation of a diverse range of nanoparticles and nanostructures that have dimensions very similar to the wavelength of light. Photodynamic inactivation relies on the photochemical production of singlet oxygen from photosensitizing dyes (type II pathway) that can benefit remarkably from formulation in nanoparticle-based drug delivery vehicles. Fullerenes are a closed-cage carbon allotrope nanoparticle with a high absorption coefficient and triplet yield. Their photochemistry is highly dependent on microenvironment, and can be type II in organic solvents and type I (hydroxyl radicals) in a biological milieu. Titanium dioxide nanoparticles act as a large band-gap semiconductor that can carry out photo-induced electron transfer under ultraviolet A light and can also produce reactive oxygen species that kill microbial cells. We discuss some recent studies in which quite remarkable potentiation of microbial killing (up to six logs) can be obtained by the addition of simple inorganic salts such as the non-toxic sodium/potassium iodide, bromide, nitrite, and even the toxic sodium azide. Interesting mechanistic insights were obtained to explain this increased killing. PMID:29226063
Advances in antimicrobial photodynamic inactivation at the nanoscale
NASA Astrophysics Data System (ADS)
Kashef, Nasim; Huang, Ying-Ying; Hamblin, Michael R.
2017-08-01
The alarming worldwide increase in antibiotic resistance amongst microbial pathogens necessitates a search for new antimicrobial techniques, which will not be affected by, or indeed cause resistance themselves. Light-mediated photoinactivation is one such technique that takes advantage of the whole spectrum of light to destroy a broad spectrum of pathogens. Many of these photoinactivation techniques rely on the participation of a diverse range of nanoparticles and nanostructures that have dimensions very similar to the wavelength of light. Photodynamic inactivation relies on the photochemical production of singlet oxygen from photosensitizing dyes (type II pathway) that can benefit remarkably from formulation in nanoparticle-based drug delivery vehicles. Fullerenes are a closed-cage carbon allotrope nanoparticle with a high absorption coefficient and triplet yield. Their photochemistry is highly dependent on microenvironment, and can be type II in organic solvents and type I (hydroxyl radicals) in a biological milieu. Titanium dioxide nanoparticles act as a large band-gap semiconductor that can carry out photo-induced electron transfer under ultraviolet A light and can also produce reactive oxygen species that kill microbial cells. We discuss some recent studies in which quite remarkable potentiation of microbial killing (up to six logs) can be obtained by the addition of simple inorganic salts such as the non-toxic sodium/potassium iodide, bromide, nitrite, and even the toxic sodium azide. Interesting mechanistic insights were obtained to explain this increased killing.
Brazelton, William J.; Nelson, Bridget; Schrenk, Matthew O.
2012-01-01
Ultramafic rocks in the Earth’s mantle represent a tremendous reservoir of carbon and reducing power. Upon tectonic uplift and exposure to fluid flow, serpentinization of these materials generates copious energy, sustains abiogenic synthesis of organic molecules, and releases hydrogen gas (H2). In order to assess the potential for microbial H2 utilization fueled by serpentinization, we conducted metagenomic surveys of a marine serpentinite-hosted hydrothermal chimney (at the Lost City hydrothermal field) and two continental serpentinite-hosted alkaline seeps (at the Tablelands Ophiolite, Newfoundland). Novel [NiFe]-hydrogenase sequences were identified at both the marine and continental sites, and in both cases, phylogenetic analyses indicated aerobic, potentially autotrophic Betaproteobacteria belonging to order Burkholderiales as the most likely H2-oxidizers. Both sites also yielded metagenomic evidence for microbial H2 production catalyzed by [FeFe]-hydrogenases in anaerobic Gram-positive bacteria belonging to order Clostridiales. In addition, we present metagenomic evidence at both sites for aerobic carbon monoxide utilization and anaerobic carbon fixation via the Wood–Ljungdahl pathway. In general, our results point to H2-oxidizing Betaproteobacteria thriving in shallow, oxic–anoxic transition zones and the anaerobic Clostridia thriving in anoxic, deep subsurface habitats. These data demonstrate the feasibility of metagenomic investigations into novel subsurface habitats via surface-exposed seeps and indicate the potential for H2-powered primary production in serpentinite-hosted subsurface habitats. PMID:22232619
Brazelton, William J; Nelson, Bridget; Schrenk, Matthew O
2012-01-01
Ultramafic rocks in the Earth's mantle represent a tremendous reservoir of carbon and reducing power. Upon tectonic uplift and exposure to fluid flow, serpentinization of these materials generates copious energy, sustains abiogenic synthesis of organic molecules, and releases hydrogen gas (H(2)). In order to assess the potential for microbial H(2) utilization fueled by serpentinization, we conducted metagenomic surveys of a marine serpentinite-hosted hydrothermal chimney (at the Lost City hydrothermal field) and two continental serpentinite-hosted alkaline seeps (at the Tablelands Ophiolite, Newfoundland). Novel [NiFe]-hydrogenase sequences were identified at both the marine and continental sites, and in both cases, phylogenetic analyses indicated aerobic, potentially autotrophic Betaproteobacteria belonging to order Burkholderiales as the most likely H(2)-oxidizers. Both sites also yielded metagenomic evidence for microbial H(2) production catalyzed by [FeFe]-hydrogenases in anaerobic Gram-positive bacteria belonging to order Clostridiales. In addition, we present metagenomic evidence at both sites for aerobic carbon monoxide utilization and anaerobic carbon fixation via the Wood-Ljungdahl pathway. In general, our results point to H(2)-oxidizing Betaproteobacteria thriving in shallow, oxic-anoxic transition zones and the anaerobic Clostridia thriving in anoxic, deep subsurface habitats. These data demonstrate the feasibility of metagenomic investigations into novel subsurface habitats via surface-exposed seeps and indicate the potential for H(2)-powered primary production in serpentinite-hosted subsurface habitats.
Toner, Brandy M.; Rouxel, Olivier J.; Santelli, Cara M.; Bach, Wolfgang; Edwards, Katrina J.
2016-01-01
Hydrothermal sulfide chimneys located along the global system of oceanic spreading centers are habitats for microbial life during active venting. Hydrothermally extinct, or inactive, sulfide deposits also host microbial communities at globally distributed sites. The main goal of this study is to describe Fe transformation pathways, through precipitation and oxidation-reduction (redox) reactions, and examine transformation products for signatures of biological activity using Fe mineralogy and stable isotope approaches. The study includes active and inactive sulfides from the East Pacific Rise 9°50′N vent field. First, the mineralogy of Fe(III)-bearing precipitates is investigated using microprobe X-ray absorption spectroscopy (μXAS) and X-ray diffraction (μXRD). Second, laser-ablation (LA) and micro-drilling (MD) are used to obtain spatially-resolved Fe stable isotope analysis by multicollector-inductively coupled plasma-mass spectrometry (MC-ICP-MS). Eight Fe-bearing minerals representing three mineralogical classes are present in the samples: oxyhydroxides, secondary phyllosilicates, and sulfides. For Fe oxyhydroxides within chimney walls and layers of Si-rich material, enrichments in both heavy and light Fe isotopes relative to pyrite are observed, yielding a range of δ57Fe values up to 6‰. Overall, several pathways for Fe transformation are observed. Pathway 1 is characterized by precipitation of primary sulfide minerals from Fe(II)aq-rich fluids in zones of mixing between vent fluids and seawater. Pathway 2 is also consistent with zones of mixing but involves precipitation of sulfide minerals from Fe(II)aq generated by Fe(III) reduction. Pathway 3 is direct oxidation of Fe(II) aq from hydrothermal fluids to form Fe(III) precipitates. Finally, Pathway 4 involves oxidative alteration of pre-existing sulfide minerals to form Fe(III). The Fe mineralogy and isotope data do not support or refute a unique biological role in sulfide alteration. The findings reveal a dynamic range of Fe transformation pathways consistent with a continuum of micro-environments having variable redox conditions. These micro-environments likely support redox cycling of Fe and S and are consistent with culture-dependent and -independent assessments of microbial physiology and genetic diversity of hydrothermal sulfide deposits. PMID:27242685
Toner, Brandy M.; Rouxel, Olivier J.; Santelli, Cara M.; ...
2016-05-10
Hydrothermal sulfide chimneys located along the global system of oceanic spreading centers are habitats for microbial life during active venting. Hydrothermally extinct, or inactive, sulfide deposits also host microbial communities at globally distributed sites. The main goal of this study is to describe Fe transformation pathways, through precipitation and oxidation-reduction (redox) reactions, and examine transformation products for signatures of biological activity using Fe mineralogy and stable isotope approaches. The study includes active and inactive sulfides from the East Pacific Rise 9°50'N vent field. First, the mineralogy of Fe(III)-bearing precipitates is investigated using microprobe X-ray absorption spectroscopy (μXAS) and X-ray diffractionmore » (μXRD). Second, laser-ablation (LA) and micro-drilling (MD) are used to obtain spatially-resolved Fe stable isotope analysis by multicollector-inductively coupled plasma-mass spectrometry (MC-ICP-MS). Eight Fe-bearing minerals representing three mineralogical classes are present in the samples: oxyhydroxides, secondary phyllosilicates, and sulfides. For Fe oxyhydroxides within chimney walls and layers of Si-rich material, enrichments in both heavy and light Fe isotopes relative to pyrite are observed, yielding a range of δ 57Fe values up to 6‰. Overall, several pathways for Fe transformation are observed. Pathway 1 is characterized by precipitation of primary sulfide minerals from Fe(II)aq-rich fluids in zones of mixing between vent fluids and seawater. Pathway 2 is also consistent with zones of mixing but involves precipitation of sulfide minerals from Fe(II)aq generated by Fe(III) reduction. Pathway 3 is direct oxidation of Fe(II) aq from hydrothermal fluids to form Fe(III) precipitates. Finally, Pathway 4 involves oxidative alteration of pre-existing sulfide minerals to form Fe(III). The Fe mineralogy and isotope data do not support or refute a unique biological role in sulfide alteration. The findings reveal a dynamic range of Fe transformation pathways consistent with a continuum of micro-environments having variable redox conditions. Lastly, these micro-environments likely support redox cycling of Fe and S and are consistent with culture-dependent and -independent assessments of microbial physiology and genetic diversity of hydrothermal sulfide deposits.« less
Patel, Vrutika; Sharma, Anukriti; Lal, Rup; Al-Dhabi, Naif Abdullah; Madamwar, Datta
2016-03-22
Gauging the microbial community structures and functions become imperative to understand the ecological processes. To understand the impact of long-term oil contamination on microbial community structure soil samples were taken from oil fields located in different industrial regions across Kadi, near Ahmedabad, India. Soil collected was hence used for metagenomic DNA extraction to study the capabilities of intrinsic microbial community in tolerating the oil perturbation. Taxonomic profiling was carried out by two different complementary approaches i.e. 16S rDNA and lowest common ancestor. The community profiling revealed the enrichment of phylum "Proteobacteria" and genus "Chromobacterium," respectively for polluted soil sample. Our results indicated that soil microbial diversity (Shannon diversity index) decreased significantly with contamination. Further, assignment of obtained metagenome reads to Clusters of Orthologous Groups (COG) of protein and Kyoto Encyclopedia of Genes and Genomes (KEGG) hits revealed metabolic potential of indigenous microbial community. Enzymes were mapped on fatty acid biosynthesis pathway to elucidate their roles in possible catalytic reactions. To the best of our knowledge this is first study for influence of edible oil on soil microbial communities via shotgun sequencing. The results indicated that long-term oil contamination significantly affects soil microbial community structure by acting as an environmental filter to decrease the regional differences distinguishing soil microbial communities.
Ward, Collin P; Nalven, Sarah G; Crump, Byron C; Kling, George W; Cory, Rose M
2017-10-03
In sunlit waters, photochemical alteration of dissolved organic carbon (DOC) impacts the microbial respiration of DOC to CO 2 . This coupled photochemical and biological degradation of DOC is especially critical for carbon budgets in the Arctic, where thawing permafrost soils increase opportunities for DOC oxidation to CO 2 in surface waters, thereby reinforcing global warming. Here we show how and why sunlight exposure impacts microbial respiration of DOC draining permafrost soils. Sunlight significantly increases or decreases microbial respiration of DOC depending on whether photo-alteration produces or removes molecules that native microbial communities used prior to light exposure. Using high-resolution chemical and microbial approaches, we show that rates of DOC processing by microbes are likely governed by a combination of the abundance and lability of DOC exported from land to water and produced by photochemical processes, and the capacity and timescale that microbial communities have to adapt to metabolize photo-altered DOC.The role of dissolved organic carbon (DOC) photo-alteration in the microbial respiration of DOC to CO 2 is unclear. Here, the authors show that the impact of this mechanism depends on whether photo-alteration of DOC produces or removes molecules used by native microbial communities prior to light exposure.
Cusack, Daniela F; Silver, Whendee L; Torn, Margaret S; Burton, Sarah D; Firestone, Mary K
2011-03-01
Microbial communities and their associated enzyme activities affect the amount and chemical quality of carbon (C) in soils. Increasing nitrogen (N) deposition, particularly in N-rich tropical forests, is likely to change the composition and behavior of microbial communities and feed back on ecosystem structure and function. This study presents a novel assessment of mechanistic links between microbial responses to N deposition and shifts in soil organic matter (SOM) quality and quantity. We used phospholipid fatty acid (PLFA) analysis and microbial enzyme assays in soils to assess microbial community responses to long-term N additions in two distinct tropical rain forests. We used soil density fractionation and 13C nuclear magnetic resonance (NMR) spectroscopy to measure related changes in SOM pool sizes and chemical quality. Microbial biomass increased in response to N fertilization in both tropical forests and corresponded to declines in pools of low-density SOM. The chemical quality of this soil C pool reflected ecosystem-specific changes in microbial community composition. In the lower-elevation forest, there was an increase in gram-negative bacteria PLFA biomass, and there were significant losses of labile C chemical groups (O-alkyls). In contrast, the upper-elevation tropical forest had an increase in fungal PLFAs with N additions and declines in C groups associated with increased soil C storage (alkyls). The dynamics of microbial enzymatic activities with N addition provided a functional link between changes in microbial community structure and SOM chemistry. Ecosystem-specific changes in microbial community composition are likely to have far-reaching effects on soil carbon storage and cycling. This study indicates that microbial communities in N-rich tropical forests can be sensitive to added N, but we can expect significant variability in how ecosystem structure and function respond to N deposition among tropical forest types.
NASA Astrophysics Data System (ADS)
Ferreira, M.; Creveling, J.; Hilburn, I.; Karlsson, E.; Pepe-Ranney, C.; Spear, J.; Dawson, S.; Geobio2008, I.
2008-12-01
Silicified structures that exhibit a putative biologic component in their formation permeate the rock record as stromatolites. We have studied a silicified microbial structure from a hot spring in Yellowstone National Park using phenotypic, phylogenetic, and metagenomic analyses to determine microbial carbon metabolic pathways and the phylogenetic affiliations of microbes present in this unique structure. In this multi-faceted approach, dominant physiologies, specifically with regards to anaerobic and aerobic metabolisms, were inferred from 16S rRNA gene sequences and 454 sequencing data from bulk DNA samples of the structure. Carbon utilization as indicated by ECO Biolog plates showed abundant heterotrophy and heterotrophic diversity throughout the microbial structure. Microbes within the structure are able to utilize all tested sources of carbohydrates, lipids/fatty acids, and protein/amino acids as carbon sources. ECO plate testing of the hot spring water yielded considerable less carbohydrate consumption (only 4 out of 13 tested carbohydrates) and similar lipids/fatty acids and protein/amino acids consumption (2 out of 3 and 5 out of 5 tested sources respectively). Full length 16S rRNA gene sequences and metagenomic 454 pyrosequencing of community DNA showed limited diversity among primary producers. From the 16S data, the majority of the autotrophs are inferred to utilize the Calvin cycle for CO2 fixation, followed by 3-hydroxypropionate/4- hydroxybutyrate CO2 fixation. However, an analysis of the metagenomic data compared to the KEGG database does not show genes directly involved with Calvin cycle carbon fixation. Further BLAST searches of our data failed to find significant matches within our 6514 metagenomic sequences to known RuBisCo sequences taken from the NCBI database. This is likely due to a far under-sampled dataset of metagenomic sequences, and the low number (958) that had matches to the KEGG pathways database. Anaerobic versus aerobic physiology also can be estimated from the 16S clone libraries. Phylogenetic analysis of recovered 16S sequences suggests that 15% of the 16S sequences can be attributed to anaerobic microbes while 42% likely come from aerobes. The remaining 43% of 16S rRNA gene sequences belong to metabolically unassigned phyla both known and novel. This preliminary study demonstrates that the small spatially stratified silicified microbial structure present on the margins of a hot spring contains a rich and complex microbial community with different trophic levels and enzymatic pathways.
Phosphorus cycling in natural and low input soil/plant systems: the role of soil microorganisms
NASA Astrophysics Data System (ADS)
Tamburini, F.; Bünemann, E. K.; Oberson, A.; Bernasconi, S. M.; Frossard, E.
2011-12-01
Availability of phosphorus (as orthophosphate, Pi) limits biological production in many terrestrial ecosystems. During the first phase of soil development, weathering of minerals and leaching of Pi are the processes controlling Pi concentrations in the soil solution, while in mature soils, Pi is made available by desorption of mineral Pi and mineralization of organic compounds. In agricultural soils additional Pi is supplied by fertilization, either with mineral P and/or organic inputs (animal manure or plant residues). Soil microorganisms (bacteria and fungi) mediate several processes, which are central to the availability of Pi to plants. They play a role in the initial release of Pi from the mineral phase, and through extracellular phosphatase enzymes, they decompose and mineralize organic compounds, releasing Pi. On the other hand, microbial immobilization and internal turnover of Pi can decrease the soil available Pi pool, competing in this way with plants. Using radio- and stable isotopic approaches, we show evidence from different soil/plant systems which points to the central role of the microbial activity. In the presented case studies, P contained in the soil microbial biomass is a larger pool than available Pi. In a soil chronosequence after deglaciation, stable isotopes of oxygen associated to phosphate showed that even in the youngest soils microbial activity highly impacted the isotopic signature of available Pi. These results suggested that microorganisms were rapidly taking up and cycling Pi, using it to sustain their community. Microbial P turnover time was faster in the young (about 20 days) than in older soils (about 120 days), reflecting a different functioning of the microbial community. Microbial community crashes, caused by drying/rewetting and freezing/thawing cycles, were most likely responsible for microbial P release to the available P pool. In grassland fertilization experiments with mineral NK and NPK amendments, microbial P turnover was faster in the P-free treatment. Laboratory incubation also showed a more rapid P uptake by microbial biomass in the NK than in the NPK treatment (37% and 6% of added 33P recovered in microbial P after 100 minutes in NK and NPK, respectively). The seasonal microbial P flux in both treatments was 1.5-4 times larger than the annual plant P uptake. In field studies carried out on highly weathered low P soils in Colombia, the comparison between grass-legume and grass-only pastures showed that the presence of legumes had an impact on the overall biological activity. In fact, microbial biomass and phosphatase activity were significantly larger in grass-legume pastures than in the legume-free experiments. Larger release of Pi from the organic P pool improved P availability to plants and pointed at a modified C:N:P stoichiometry along pathways of the nutrient cycle in the soil/plant system. All these data are evidence of a highly dynamic microbial P pool, which controls Pi concentration and, hence, availability for plants in natural and low input agricultural ecosystems.
Microbes mediate carbon and nitrogen retention in shallow photic sediments
NASA Astrophysics Data System (ADS)
Hardison, A.; Anderson, I.; Canuel, E. A.; Tobias, C.; Veuger, B.
2009-12-01
Sediments in shallow coastal bays are sites of intense biogeochemical cycling facilitated by a complex microbial consortium. Unlike deeper coastal environments, much of the benthos is illuminated by sunlight in these bays. As a result, benthic autotrophs such as benthic microalgae (BMA) and macroalgae play an integral role in nutrient cycling. Investigating pathways of carbon (C) and nitrogen (N) flow through individual compartments within the sediment microbial community has previously proved challenging due to methodological difficulties. However, it is now possible using stable isotopes and microbial biomarkers such as fatty acids and amino acids to track C and N flow through individual microbial pools. We investigated the uptake and retention of C and N by bacteria and BMA in a shallow subtidal system. Using bulk and compound specific isotopic analysis, we traced the pathways of dissolved inorganic 13C and 15N under various treatments: 1) in ambient light or dark, 2) from porewater or water column sources, and 3) in the presence or absence of bloom forming nuisance macroalgae. Excess 13C and 15N in THAAs and excess 13C in total PLFAs showed a strong dependence on light. Enrichment of these pools represents uptake by the microbial community, which can include both autotrophic and heterotrophic components. Higher excess 13C in benthic microalgal fatty acids (C20, C22 PUFAs) provides evidence that benthic microalgae were fixing 13C. Aditionally, the ratio of excess 13C in branched fatty acids to microbial fatty acids (BAR) and excess 13C and 15N in D-Ala to L-Ala (D/L-Ala) were low, suggesting dominance by benthic microalgae over bacteria to total label incorporation. Our results support uptake and retention of C and N by the sediment microbial community and indicate a tight coupling between BMA and bacteria in shallow illuminated systems. This uptake is diminished in the presence of macroalgae, likely due to shading and/or nutrient competition. Therefore, macroalgae reduce the retention of C and N within surface sediments, diminishing the role of the microbial community in nutrient cycling processes.
Metagenomic analysis of a permafrost microbial community reveals a rapid response to thaw
MacKelprang, R.; Waldrop, M.P.; Deangelis, K.M.; David, M.M.; Chavarria, K.L.; Blazewicz, S.J.; Rubin, E.M.; Jansson, J.K.
2011-01-01
Permafrost contains an estimated 1672????????Pg carbon (C), an amount roughly equivalent to the total currently contained within land plants and the atmosphere. This reservoir of C is vulnerable to decomposition as rising global temperatures cause the permafrost to thaw. During thaw, trapped organic matter may become more accessible for microbial degradation and result in greenhouse gas emissions. Despite recent advances in the use of molecular tools to study permafrost microbial communities, their response to thaw remains unclear. Here we use deep metagenomic sequencing to determine the impact of thaw on microbial phylogenetic and functional genes, and relate these data to measurements of methane emissions. Metagenomics, the direct sequencing of DNA from the environment, allows the examination of whole biochemical pathways and associated processes, as opposed to individual pieces of the metabolic puzzle. Our metagenome analyses reveal that during transition from a frozen to a thawed state there are rapid shifts in many microbial, phylogenetic and functional gene abundances and pathways. After one week of incubation at 5 ??C, permafrost metagenomes converge to be more similar to each other than while they are frozen. We find that multiple genes involved in cycling of C and nitrogen shift rapidly during thaw. We also construct the first draft genome from a complex soil metagenome, which corresponds to a novel methanogen. Methane previously accumulated in permafrost is released during thaw and subsequently consumed by methanotrophic bacteria. Together these data point towards the importance of rapid cycling of methane and nitrogen in thawing permafrost. ?? 2011 Macmillan Publishers Limited. All rights reserved.
Sibony, Michal; Abdullah, Majd; Greenfield, Laura; Raju, Deepa; Wu, Ted; Rodrigues, David M; Galindo-Mata, Esther; Mascarenhas, Heidi; Philpott, Dana J; Silverberg, Mark S; Jones, Nicola L
2015-12-01
Autophagy is implicated in Crohn's disease (CD) pathogenesis. Recent evidence suggests autophagy regulates the microRNA (miRNA)-induced silencing complex (miRISC). Therefore, autophagy may play a novel role in CD by regulating expression of miRISC, thereby altering miRNA silencing. As microbes associated with CD can alter autophagy, we hypothesized that microbial disruption of autophagy affects the critical miRISC component AGO2. AGO2 expression was assessed in epithelial and immune cells, and intestinal organoids with disrupted autophagy. Microarray technology was used to determine the expression of downstream miRNAs in cells with defective autophagy. Increased AGO2 was detected in autophagy-deficient ATG5-/- and ATG16-/- mouse embryonic fibroblast cells (MEFs) in comparison with wild-type MEFs. Chemical agents and VacA toxin, which disrupt autophagy, increased AGO2 expression in MEFs, epithelial cells lines, and human monocytes, respectively. Increased AGO2 was also detected in ATG7-/- intestinal organoids, in comparison with wild-type organoids. Five miRNAs were differentially expressed in autophagy-deficient MEFs. Pathway enrichment analysis of the differentially expressed miRNAs implicated signaling pathways previously associated with CD. Taken together, our results suggest that autophagy is involved in the regulation of the critical miRISC component AGO2 in epithelial and immune cells and primary intestinal epithelial cells. We propose a mechanism by which autophagy alters miRNA expression, which likely impacts the regulation of CD-associated pathways. Furthermore, as enteric microbial products can manipulate autophagy and AGO2, our findings suggest a novel mechanism by which enteric microbes could influence miRNA to promote disease.
Hill-Burns, Erin M; Debelius, Justine W; Morton, James T; Wissemann, William T; Lewis, Matthew R; Wallen, Zachary D; Peddada, Shyamal D; Factor, Stewart A; Molho, Eric; Zabetian, Cyrus P; Knight, Rob; Payami, Haydeh
2017-05-01
There is mounting evidence for a connection between the gut and Parkinson's disease (PD). Dysbiosis of gut microbiota could explain several features of PD. The objective of this study was to determine if PD involves dysbiosis of gut microbiome, disentangle effects of confounders, and identify candidate taxa and functional pathways to guide research. A total of 197 PD cases and 130 controls were studied. Microbial composition was determined by 16S rRNA gene sequencing of DNA extracted from stool. Metadata were collected on 39 potential confounders including medications, diet, gastrointestinal symptoms, and demographics. Statistical analyses were conducted while controlling for potential confounders and correcting for multiple testing. We tested differences in the overall microbial composition, taxa abundance, and functional pathways. Independent microbial signatures were detected for PD (P = 4E-5), participants' region of residence within the United States (P = 3E-3), age (P = 0.03), sex (P = 1E-3), and dietary fruits/vegetables (P = 0.01). Among patients, independent signals were detected for catechol-O-methyltransferase-inhibitors (P = 4E-4), anticholinergics (P = 5E-3), and possibly carbidopa/levodopa (P = 0.05). We found significantly altered abundances of the Bifidobacteriaceae, Christensenellaceae, [Tissierellaceae], Lachnospiraceae, Lactobacillaceae, Pasteurellaceae, and Verrucomicrobiaceae families. Functional predictions revealed changes in numerous pathways, including the metabolism of plant-derived compounds and xenobiotics degradation. PD is accompanied by dysbiosis of gut microbiome. Results coalesce divergent findings of prior studies, reveal altered abundance of several taxa, nominate functional pathways, and demonstrate independent effects of PD medications on the microbiome. The findings provide new leads and testable hypotheses on the pathophysiology and treatment of PD. © 2017 International Parkinson and Movement Disorder Society. © 2017 International Parkinson and Movement Disorder Society.
2012-01-01
Background With the increasing stress from oil price and environmental pollution, aroused attention has been paid to the microbial production of chemicals from renewable sources. The C12/14 and C16/18 alcohols are important feedstocks for the production of surfactants and detergents, which are widely used in the most respected consumer detergents, cleaning products and personal care products worldwide. Though bioproduction of fatty alcohols has been carried out in engineered E. coli, several key problems have not been solved in earlier studies, such as the quite low production of C16/18 alcohol, the lack of optimization of the fatty alcohol biosynthesis pathway, and the uncharacterized performance of the engineered strains in scaled-up system. Results We improved the fatty alcohol production by systematically optimizing the fatty alcohol biosynthesis pathway, mainly targeting three key steps from fatty acyl-acyl carrier proteins (ACPs) to fatty alcohols, which are sequentially catalyzed by thioesterase, acyl-coenzyme A (CoA) synthase and fatty acyl-CoA reductase. By coexpression of thioesterase gene BTE, acyl-CoA synthase gene fadD and fatty acyl-CoA reductase gene acr1, 210.1 mg/L C12/14 alcohol was obtained. A further optimization of expression level of BTE, fadD and acr1 increased the C12/14 alcohol production to 449.2 mg/L, accounting for 75.0% of the total fatty alcohol production (598.6 mg/L). In addition, by coexpression of thioesterase gene ‘tesA, acyl-CoA synthase gene fadD and fatty acyl-CoA reductase gene FAR, 101.5 mg/L C16/18 alcohol was obtained, with C16/18 alcohol accounting for 89.2% of the total fatty alcohol production. Conclusions To our knowledge, this is the first report on selective production of C12/14 and C16/18 alcohols by microbial fermentation. This work achieved high-specificity production of both C12/14 and C16/18 alcohols. The encouraging 598.6 mg/L of fatty alcohols represents the highest titer reported so far. In addition, the 101.5 mg/L 89.2% C16/18 alcohol suggests an important breakthrough in C16/18 alcohol production. A more detailed optimization of the expression level of fatty alcohol biosynthesis pathway may contribute to a further improvement of fatty alcohol production. PMID:22607313
Blasco, R.; Mallavarapu, M.; Wittich, R.; Timmis, K. N.; Pieper, D. H.
1997-01-01
A rapid decline in cell viability of different PCB-metabolizing organisms was observed in soil microcosms amended with 4-chlorobiphenyl. The toxic effect could not be attributed to 4-chlorobiphenyl but was due to a compound formed from the transformation of 4-chlorobiphenyl by the natural microflora. Potential metabolites of 4-chlorobiphenyl, 4-chlorobenzoate and 4-chlorocatechol, caused similar toxic effects. We tested the hypothesis that the toxic effects are due to the formation of protoanemonin, a plant-derived antibiotic, which is toxic to microorganisms and which has been shown to be formed from 4-chlorocatechol by enzymes of the 3-oxoadipate pathway. Consistent with our hypothesis, addition to soil microcosms of strains able to reroute intermediary 4-chlorocatechol from the 3-oxoadipate pathway and into the meta-cleavage pathway or able to mineralize 4-chlorocatechol by a modified ortho-cleavage pathway resulted in reversal of this toxic effect. Surprisingly, while direct addition of protoanemonin influenced both the viability of fungi and the microbial activity of the soil microcosm, there was little effect on bacterial viability due to its rapid degradation. This rapid degradation accounts for our inability to detect this compound in soils amended with 4-chlorocatechol. However, significant accumulation of protoanemonin was observed by a mixed bacterial community enriched with benzoate or a mixture of benzoate and 4-methylbenzoate, providing the metabolic potential of the soil to form protoanemonin. The effects of soil heterogeneity and microcosm interactions are discussed in relation to the different effects of protoanemonin when applied as a shock load and when it is produced in small amounts from precursors over long periods. PMID:16535507
Yang, Jiangang; Zhu, Yueming; Li, Jitao; Men, Yan; Sun, Yuanxia; Ma, Yanhe
2015-01-01
Rare sugars have various known biological functions and potential for applications in pharmaceutical, cosmetics, and food industries. Here we designed and constructed a recombination pathway in Corynebacterium glutamicum, in which dihydroxyacetone phosphate (DHAP), an intermediate of the glycolytic pathway, and a variety of aldehydes were condensed to synthesize rare ketoses sequentially by rhamnulose-1-phosphate aldolase (RhaD) and fructose-1-phosphatase (YqaB) obtained from Escherichia coli. A wild-type strain harboring this artificial pathway had the ability to produce D-sorbose and D-psicose using D-glyceraldehyde and glucose as the substrates. The tpi gene, encoding triose phosphate isomerase was further deleted, and the concentration of DHAP increased to nearly 20-fold relative to that of the wild-type. After additional optimization of expression levels from rhaD and yqaB genes and of the fermentation conditions, the engineered strain SY6(pVRTY) exhibited preferable performance for rare ketoses production. Its yield increased to 0.59 mol/mol D-glyceraldehyde from 0.33 mol/mol D-glyceraldehyde and productivity to 2.35 g/L h from 0.58 g/L h. Moreover, this strain accumulated 19.5 g/L of D-sorbose and 13.4 g/L of D-psicose using a fed-batch culture mode under the optimal conditions. In addition, it was verified that the strain SY6(pVRTY) meanwhile had the ability to synthesize C4, C5, C6, and C7 rare ketoses when a range of representative achiral and homochiral aldehydes were applied as the substrates. Therefore, the platform strain exhibited the potential for microbial production of rare ketoses and deoxysugars. © 2014 Wiley Periodicals, Inc.
Integrins and small GTPases as modulators of phagocytosis.
Sayedyahossein, Samar; Dagnino, Lina
2013-01-01
Phagocytosis is the mechanism whereby cells engulf large particles. This process has long been recognized as a critical component of the innate immune response, which constitutes the organism's defense against microorganisms. In addition, phagocytic internalization of apoptotic cells or cell fragments plays important roles in tissue homeostasis and remodeling. Phagocytosis requires target interactions with receptors on the plasma membrane of the phagocytic cell. Integrins have been identified as important mediators of particle clearance, in addition to their well-established roles in cell adhesion, migration and mechanotransduction. Indeed, these ubiquitously expressed proteins impart phagocytic capacity to epithelial, endothelial and mesenchymal cell types. The importance of integrins in particle internalization is emphasized by the ability of microbial and viral pathogens to exploit their signaling pathways to invade host cells, and by the wide variety of disorders that arise from abnormalities in integrin-dependent phagocytic uptake. Copyright © 2013 Elsevier Inc. All rights reserved.
McKenna, Rebekah; Pugh, Shawn; Thompson, Brian; Nielsen, David R
2013-12-01
(S)-Styrene oxide and (R)-1,2-phenylethanediol are chiral aromatic molecular building blocks used commonly as precursors to pharmaceuticals and other specialty chemicals. Two pathways have been engineered in Escherichia coli for their individual biosynthesis directly from glucose. The novel pathways each constitute extensions of the previously engineered styrene pathway, developed by co-expressing either styrene monooxygenase (SMO) or styrene dioxygenase (SDO) to convert styrene to (S)-styrene oxide and (R)-1,2-phenylethanediol, respectively. StyAB from Pseudomonas putida S12 was determined to be the most effective SMO. SDO activity was achieved using NahAaAbAcAd of Pseudomonas sp. NCIB 9816-4, a naphthalene dioxygenase with known broad substrate specificity. Production of phenylalanine, the precursor to both pathways, was systematically enhanced through a number of mutations, most notably via deletion of tyrA and over-expression of tktA. As a result, (R)-1,2-phenylethanediol reached titers as high as 1.23 g/L, and at 1.32 g/L (S)-styrene oxide titers already approach their toxicity limit. As with other aromatics, product toxicity was strongly correlated with a model of membrane accumulation and disruption. This study additionally demonstrates that greater flux through the styrene pathway can be achieved if its toxicity is addressed, as achieved in this case by reacting styrene to less toxic products. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
The Lectin Pathway of Complement and Rheumatic Heart Disease
Beltrame, Marcia Holsbach; Catarino, Sandra Jeremias; Goeldner, Isabela; Boldt, Angelica Beate Winter; de Messias-Reason, Iara José
2014-01-01
The innate immune system is the first line of host defense against infection and is comprised of humoral and cellular mechanisms that recognize potential pathogens within minutes or hours of entry. The effector components of innate immunity include epithelial barriers, phagocytes, and natural killer cells, as well as cytokines and the complement system. Complement plays an important role in the immediate response against microorganisms, including Streptococcus sp. The lectin pathway is one of three pathways by which the complement system can be activated. This pathway is initiated by the binding of mannose-binding lectin (MBL), collectin 11 (CL-K1), and ficolins (Ficolin-1, Ficolin-2, and Ficolin-3) to microbial surface oligosaccharides and acetylated residues, respectively. Upon binding to target molecules, MBL, CL-K1, and ficolins form complexes with MBL-associated serine proteases 1 and 2 (MASP-1 and MASP-2), which cleave C4 and C2 forming the C3 convertase (C4b2a). Subsequent activation of complement cascade leads to opsonization, phagocytosis, and lysis of target microorganisms through the formation of the membrane-attack complex. In addition, activation of complement may induce several inflammatory effects, such as expression of adhesion molecules, chemotaxis and activation of leukocytes, release of reactive oxygen species, and secretion of cytokines and chemokines. In this chapter, we review the general aspects of the structure, function, and genetic polymorphism of lectin-pathway components and discuss most recent understanding on the role of the lectin pathway in the predisposition and clinical progression of Rheumatic Fever. PMID:25654073
Lin, Yuheng; Sun, Xinxiao; Yuan, Qipeng; Yan, Yajun
2014-05-01
cis,cis-Muconic acid (MA) and salicylic acid (SA) are naturally-occurring organic acids having great commercial value. MA is a potential platform chemical for the manufacture of several widely-used consumer plastics; while SA is mainly used for producing pharmaceuticals (for example, aspirin and lamivudine) and skincare and haircare products. At present, MA and SA are commercially produced by organic chemical synthesis using petro-derived aromatic chemicals, such as benzene, as starting materials, which is not environmentally friendly. Here, we report a novel approach for efficient microbial production of MA via extending shikimate pathway by introducing the hybrid of an SA biosynthetic pathway with its partial degradation pathway. First, we engineered a well-developed phenylalanine producing Escherichia coli strain into an SA overproducer by introducing isochorismate synthase and isochorismate pyruvate lyase. The engineered strain is able to produce 1.2g/L of SA from simple carbon sources, which is the highest titer reported so far. Further, the partial SA degradation pathway involving salicylate 1-monoxygenase and catechol 1,2-dioxygenase is established to achieve the conversion of SA to MA. Finally, a de novo MA biosynthetic pathway is assembled by integrating the established SA biosynthesis and degradation modules. Modular optimization enables the production of up to 1.5g/L MA within 48h in shake flasks. This study not only establishes an efficient microbial platform for the production of SA and MA, but also demonstrates a generalizable pathway design strategy for the de novo biosynthesis of valuable degradation metabolites. Copyright © 2014. Published by Elsevier Inc.
Microbial examination of anaerobic sludge adaptation to animal slurry.
Moset, V; Cerisuelo, A; Ferrer, P; Jimenez, A; Bertolini, E; Cambra-López, M
2014-01-01
The objective of this study was to evaluate changes in the microbial population of anaerobic sludge digesters during the adaptation to pig slurry (PS) using quantitative real-time polymerase chain reaction (qPCR) and qualitative scanning electron microscopy (SEM). Additionally, the relationship between microbial parameters and sludge physicochemical composition and methane yield was examined. Results showed that the addition of PS to an unadapted thermophilic anaerobic digester caused an increase in volatile fatty acids (VFA) concentration, a decrease in removal efficiency and CH4 yield. Additionally, increases in total bacteria and total archaea were observed using qPCR. Scanning electron micrographs provided a general overview of the sludge's cell morphology, morphological diversity and degree of organic matter degradation. A change in microbial morphotypes from homogeneous cell morphologies to a higher morphological diversity, similar to that observed in PS, was observed with the addition of PS by SEM. Therefore, the combination of qPCR and SEM allowed expanding the knowledge about the microbial adaptation to animal slurry in thermophilic anaerobic digesters.
Development of Antibacterials Targeting the MEP Pathway of Select Agents
2013-02-01
based assays for lead inhibitor discovery, evaluation of lead inhibitors in microbial growth assays, determining X- ray crystal structures of MEP pathway...inhibitors. • On-demand production and delivery of recombinant proteins to WRAIR for X- ray crystallography. Reportable Outcomes...characterization and phosphoregulation. PLoS ONE 6: e20884. doi:10.1371/journal.pone.0020884. 3. Zhang JH, Chung TD, Oldenburg KR (1999) A Simple
Pathway Design, Engineering, and Optimization.
Garcia-Ruiz, Eva; HamediRad, Mohammad; Zhao, Huimin
The microbial metabolic versatility found in nature has inspired scientists to create microorganisms capable of producing value-added compounds. Many endeavors have been made to transfer and/or combine pathways, existing or even engineered enzymes with new function to tractable microorganisms to generate new metabolic routes for drug, biofuel, and specialty chemical production. However, the success of these pathways can be impeded by different complications from an inherent failure of the pathway to cell perturbations. Pursuing ways to overcome these shortcomings, a wide variety of strategies have been developed. This chapter will review the computational algorithms and experimental tools used to design efficient metabolic routes, and construct and optimize biochemical pathways to produce chemicals of high interest.
Improving microbial biogasoline production in Escherichia coli using tolerance engineering.
Foo, Jee Loon; Jensen, Heather M; Dahl, Robert H; George, Kevin; Keasling, Jay D; Lee, Taek Soon; Leong, Susanna; Mukhopadhyay, Aindrila
2014-11-04
Engineering microbial hosts for the production of fungible fuels requires mitigation of limitations posed on the production capacity. One such limitation arises from the inherent toxicity of solvent-like biofuel compounds to production strains, such as Escherichia coli. Here we show the importance of host engineering for the production of short-chain alcohols by studying the overexpression of genes upregulated in response to exogenous isopentenol. Using systems biology data, we selected 40 genes that were upregulated following isopentenol exposure and subsequently overexpressed them in E. coli. Overexpression of several of these candidates improved tolerance to exogenously added isopentenol. Genes conferring isopentenol tolerance phenotypes belonged to diverse functional groups, such as oxidative stress response (soxS, fpr, and nrdH), general stress response (metR, yqhD, and gidB), heat shock-related response (ibpA), and transport (mdlB). To determine if these genes could also improve isopentenol production, we coexpressed the tolerance-enhancing genes individually with an isopentenol production pathway. Our data show that expression of 6 of the 8 candidates improved the production of isopentenol in E. coli, with the methionine biosynthesis regulator MetR improving the titer for isopentenol production by 55%. Additionally, expression of MdlB, an ABC transporter, facilitated a 12% improvement in isopentenol production. To our knowledge, MdlB is the first example of a transporter that can be used to improve production of a short-chain alcohol and provides a valuable new avenue for host engineering in biogasoline production. The use of microbial host platforms for the production of bulk commodities, such as chemicals and fuels, is now a focus of many biotechnology efforts. Many of these compounds are inherently toxic to the host microbe, which in turn places a limit on production despite efforts to optimize the bioconversion pathways. In order to achieve economically viable production levels, it is also necessary to engineer production strains with improved tolerance to these compounds. We demonstrate that microbial tolerance engineering using transcriptomics data can also identify targets that improve production. Our results include an exporter and a methionine biosynthesis regulator that improve isopentenol production, providing a starting point to further engineer the host for biogasoline production. Copyright © 2014 Foo et al.
Improving microbial biogasoline production in Escherichia coli using tolerance engineering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Foo, Jee Loon; Jensen, Heather M.; Dahl, Robert H.
Engineering microbial hosts for the production of fungible fuels requires mitigation of limitations posed on the production capacity. One such limitation arises from the inherent toxicity of solvent-like biofuel compounds to production strains, such as Escherichia coli. Here we show the importance of host engineering for the production of short-chain alcohols by studying the overexpression of genes upregulated in response to exogenous isopentenol. Using systems biology data, we selected 40 genes that were upregulated following isopentenol exposure and subsequently overexpressed them in E. coli. Overexpression of several of these candidates improved tolerance to exogenously added isopentenol. Genes conferring isopentenol tolerancemore » phenotypes belonged to diverse functional groups, such as oxidative stress response ( soxS, fpr, and nrdH), general stress response ( metR, yqhD, and gidB), heat shock-related response ( ibpA), and transport ( mdlB). To determine if these genes could also improve isopentenol production, we coexpressed the tolerance-enhancing genes individually with an isopentenol production pathway. Our data show that expression of 6 of the 8 candidates improved the production of isopentenol in E. coli, with the methionine biosynthesis regulator MetR improving the titer for isopentenol production by 55%. Additionally, expression of MdlB, an ABC transporter, facilitated a 12% improvement in isopentenol production. To our knowledge, MdlB is the first example of a transporter that can be used to improve production of a short-chain alcohol and provides a valuable new avenue for host engineering in biogasoline production.The use of microbial host platforms for the production of bulk commodities, such as chemicals and fuels, is now a focus of many biotechnology efforts. Many of these compounds are inherently toxic to the host microbe, which in turn places a limit on production despite efforts to optimize the bioconversion pathways. In order to achieve economically viable production levels, it is also necessary to engineer production strains with improved tolerance to these compounds. We demonstrate that microbial tolerance engineering using transcriptomics data can also identify targets that improve production. Our results include an exporter and a methionine biosynthesis regulator that improve isopentenol production, providing a starting point to further engineer the host for biogasoline production.« less
Improving microbial biogasoline production in Escherichia coli using tolerance engineering
Foo, Jee Loon; Jensen, Heather M.; Dahl, Robert H.; ...
2014-11-04
Engineering microbial hosts for the production of fungible fuels requires mitigation of limitations posed on the production capacity. One such limitation arises from the inherent toxicity of solvent-like biofuel compounds to production strains, such as Escherichia coli. Here we show the importance of host engineering for the production of short-chain alcohols by studying the overexpression of genes upregulated in response to exogenous isopentenol. Using systems biology data, we selected 40 genes that were upregulated following isopentenol exposure and subsequently overexpressed them in E. coli. Overexpression of several of these candidates improved tolerance to exogenously added isopentenol. Genes conferring isopentenol tolerancemore » phenotypes belonged to diverse functional groups, such as oxidative stress response ( soxS, fpr, and nrdH), general stress response ( metR, yqhD, and gidB), heat shock-related response ( ibpA), and transport ( mdlB). To determine if these genes could also improve isopentenol production, we coexpressed the tolerance-enhancing genes individually with an isopentenol production pathway. Our data show that expression of 6 of the 8 candidates improved the production of isopentenol in E. coli, with the methionine biosynthesis regulator MetR improving the titer for isopentenol production by 55%. Additionally, expression of MdlB, an ABC transporter, facilitated a 12% improvement in isopentenol production. To our knowledge, MdlB is the first example of a transporter that can be used to improve production of a short-chain alcohol and provides a valuable new avenue for host engineering in biogasoline production.The use of microbial host platforms for the production of bulk commodities, such as chemicals and fuels, is now a focus of many biotechnology efforts. Many of these compounds are inherently toxic to the host microbe, which in turn places a limit on production despite efforts to optimize the bioconversion pathways. In order to achieve economically viable production levels, it is also necessary to engineer production strains with improved tolerance to these compounds. We demonstrate that microbial tolerance engineering using transcriptomics data can also identify targets that improve production. Our results include an exporter and a methionine biosynthesis regulator that improve isopentenol production, providing a starting point to further engineer the host for biogasoline production.« less
Xu, Jun; Guo, Baohua; Zhang, Zengmin; Wu, Qiong; Zhou, Quan; Chen, Jinchun; Chen, Guoqiang; Li, Guodong
2005-06-30
A mathematical model is proposed for predicting the copolymer composition of the microbially synthesized polyhydroxyalkanoate (PHA) copolymers. Based on the biochemical reactions involved in the precursor formation and polymerization pathways, the model correlates the copolymer composition with the cultivation conditions, the enzyme levels and selectivity, and the metabolic pathways. It suggests the following points: (1) in the case of a sole carbon source, the copolymer composition depends mainly on the topology of the metabolic pathways and the selectivity of both the enzymes involved in the precursor formation and the polymerization route; (2) the copolymer composition can be varied in a wide range via alteration of the flux ratio of different types of monomers channeled from two or more independent and simultaneous pathways; (3) the enzymes which should be over-expressed or inhibited to obtain the desired copolymer composition can be predicted. For example, inhibition of the beta-oxidation pathway will increase the content of the monomer units with longer chain length. To test the model, various experiments were envisaged by varying cultivation time, concentration and chain length of the sole carbon source, and molar ratio of the cosubstrates. The predictions from the model agree well with the experimental results. Therefore, the proposed model will be useful in predicting the PHA copolymer composition under different biochemical reaction conditions. In other words, it can provide a guide for the synthesis of desired PHA copolymers.
Retinoid production using metabolically engineered Escherichia coli with a two-phase culture system.
Jang, Hui-Jeong; Yoon, Sang-Hwal; Ryu, Hee-Kyung; Kim, Jung-Hun; Wang, Chong-Long; Kim, Jae-Yean; Oh, Deok-Kun; Kim, Seon-Won
2011-07-29
Retinoids are lipophilic isoprenoids composed of a cyclic group and a linear chain with a hydrophilic end group. These compounds include retinol, retinal, retinoic acid, retinyl esters, and various derivatives of these structures. Retinoids are used as cosmetic agents and effective pharmaceuticals for skin diseases. Retinal, an immediate precursor of retinoids, is derived by β-carotene 15,15'-mono(di)oxygenase (BCM(D)O) from β-carotene, which is synthesized from the isoprenoid building blocks isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP). Retinoids are chemically unstable and biologically degraded via retinoic acid. Although extensive studies have been performed on the microbial production of carotenoids, retinoid production using microbial metabolic engineering has not been reported. Here, we report retinoid production using engineered Escherichia coli that express exogenous BCM(D)O and the mevalonate (MVA) pathway for the building blocks synthesis in combination with a two-phase culture system using a dodecane overlay. Among the BCM(D)O tested in E. coli, the synthetic retinoid synthesis protein (SR), based on bacteriorhodopsin-related protein-like homolog (Blh) of the uncultured marine bacteria 66A03, showed the highest β-carotene cleavage activity with no residual intracellular β-carotene. By introducing the exogenous MVA pathway, 8.7 mg/L of retinal was produced, which is 4-fold higher production than that of augmenting the MEP pathway (dxs overexpression). There was a large gap between retinal production and β-carotene consumption using the exogenous MVA pathway; therefore, the retinal derivatives were analyzed. The derivatives, except for retinoic acid, that formed were identified, and the levels of retinal, retinol, and retinyl acetate were measured. Amounts as high as 95 mg/L retinoids were obtained from engineered E. coli DH5α harboring the synthetic SR gene and the exogenous MVA pathway in addition to dxs overexpression, which were cultured at 29°C for 72 hours with 2YT medium containing 2.0% (w/v) glycerol as the main carbon source. However, a significant level of intracellular degradation of the retinoids was also observed in the culture. To prevent degradation of the intracellular retinoids through in situ extraction from the cells, a two-phase culture system with dodecane was used. The highest level of retinoid production (136 mg/L) was obtained after 72 hours with 5 mL of dodecane overlaid on a 5 mL culture. In this study, we successfully produced 136 mg/L retinoids, which were composed of 67 mg/L retinal, 54 mg/L retinol, and 15 mg/L retinyl acetate, using a two-phase culture system with dodecane, which produced 68-fold more retinoids than the initial level of production (2.2 mg/L). Our results demonstrate the potential use of E. coli as a promising microbial cell factory for retinoid production.
Detman, Anna; Mielecki, Damian; Pleśniak, Łukasz; Bucha, Michał; Janiga, Marek; Matyasik, Irena; Chojnacka, Aleksandra; Jędrysek, Mariusz-Orion; Błaszczyk, Mieczysław K; Sikora, Anna
2018-01-01
Anaerobic digestion, whose final products are methane and carbon dioxide, ensures energy flow and circulation of matter in ecosystems. This naturally occurring process is used for the production of renewable energy from biomass. Lactate, a common product of acidic fermentation, is a key intermediate in anaerobic digestion of biomass in the environment and biogas plants. Effective utilization of lactate has been observed in many experimental approaches used to study anaerobic digestion. Interestingly, anaerobic lactate oxidation and lactate oxidizers as a physiological group in methane-yielding microbial communities have not received enough attention in the context of the acetogenic step of anaerobic digestion. This study focuses on metabolic transformation of lactate during the acetogenic and methanogenic steps of anaerobic digestion in methane-yielding bioreactors. Methane-yielding microbial communities instead of pure cultures of acetate producers were used to process artificial lactate-rich media to methane and carbon dioxide in up-flow anaerobic sludge blanket reactors. The media imitated the mixture of acidic products found in anaerobic environments/digesters where lactate fermentation dominates in acidogenesis. Effective utilization of lactate and biogas production was observed. 16S rRNA profiling was used to examine the selected methane-yielding communities. Among Archaea present in the bioreactors, the order Methanosarcinales predominated. The acetoclastic pathway of methane formation was further confirmed by analysis of the stable carbon isotope composition of methane and carbon dioxide. The domain Bacteria was represented by Bacteroidetes , Firmicutes , Proteobacteria , Synergistetes , Actinobacteria , Spirochaetes , Tenericutes , Caldithrix , Verrucomicrobia , Thermotogae , Chloroflexi , Nitrospirae, and Cyanobacteria. Available genome sequences of species and/or genera identified in the microbial communities were searched for genes encoding the lactate-oxidizing metabolic machinery homologous to those of Acetobacterium woodii and Desulfovibrio vulgaris . Furthermore, genes for enzymes of the reductive acetyl-CoA pathway were present in the microbial communities. The results indicate that lactate is oxidized mainly to acetate during the acetogenic step of AD and this comprises the acetotrophic pathway of methanogenesis. The genes for lactate utilization under anaerobic conditions are widespread in the domain Bacteria. Lactate oxidation to the substrates for methanogens is the most energetically attractive process in comparison to butyrate, propionate, or ethanol oxidation.
NASA Astrophysics Data System (ADS)
Fairbanks, D. E.; Hungate, B. A.; KOCH, G. W.; Schwartz, E.; Dijkstra, P.
2012-12-01
Soils represent one of the largest carbon pools in the terrestrial biosphere and fluxes into or out of this pool may feedback to current climate change. Understanding the mechanisms behind microbial processes regulating C cycling, microbial turnover, and soil organic matter stabilization is hindered by our lack of understanding of the details of microbial physiology in soils. Position-specific 13C labeled metabolic tracers are proposed as a new way to probe microbial community energy production, biosynthesis, C use efficiency (the proportion of substrate incorporated into microbial biomass), and enables the determination of C fluxes through the various C metabolic pathways. We determined the 13CO2 production from microbial communities within a one hour time frame by adding six isotopomers (1-13C, 2-13C, 3-13C, 4-13C, 5-13C, 6-13C) of glucose in parallel incubations using a young volcanic soil (Pinyon-juniper wood, near Sunset Crater, Flagstaff, Arizona). We compared the measured rates of position-specific 13CO2 production with modeled results based on glucose (1-13C and U-13C) and pyruvate (1-13C and 2,3-13C) incubations. These labeling and modeling techniques may improve our ability to analyze the biochemistry and ecophysiology of intact soil microbial communities.
Perspective for Aquaponic Systems: “Omic” Technologies for Microbial Community Analysis
Munguia-Fragozo, Perla; Alatorre-Jacome, Oscar; Rico-Garcia, Enrique; Cruz-Hernandez, Andres; Ocampo-Velazquez, Rosalia V.; Garcia-Trejo, Juan F.; Guevara-Gonzalez, Ramon G.
2015-01-01
Aquaponics is the combined production of aquaculture and hydroponics, connected by a water recirculation system. In this productive system, the microbial community is responsible for carrying out the nutrient dynamics between the components. The nutrimental transformations mainly consist in the transformation of chemical species from toxic compounds into available nutrients. In this particular field, the microbial research, the “Omic” technologies will allow a broader scope of studies about a current microbial profile inside aquaponics community, even in those species that currently are unculturable. This approach can also be useful to understand complex interactions of living components in the system. Until now, the analog studies were made to set up the microbial characterization on recirculation aquaculture systems (RAS). However, microbial community composition of aquaponics is still unknown. “Omic” technologies like metagenomic can help to reveal taxonomic diversity. The perspectives are also to begin the first attempts to sketch the functional diversity inside aquaponic systems and its ecological relationships. The knowledge of the emergent properties inside the microbial community, as well as the understanding of the biosynthesis pathways, can derive in future biotechnological applications. Thus, the aim of this review is to show potential applications of current “Omic” tools to characterize the microbial community in aquaponic systems. PMID:26509157
Xiao, Yunhua; Xu, YongDong; Dong, Weiling; Liang, Yili; Fan, Fenliang; Zhang, Xiaoxia; Zhang, Xian; Niu, Jiaojiao; Ma, Liyuan; She, Siyuan; He, Zhili; Liu, Xueduan; Yin, Huaqun
2015-12-01
This study used an artificial enrichment microbial consortium to examine the effects of different substrate conditions on microbial diversity, composition, and function (e.g., zinc leaching efficiency) through adding pyrite (SP group), chalcopyrite (SC group), or both (SPC group) in sphalerite bioleaching systems. 16S rRNA gene sequencing analysis showed that microbial community structures and compositions dramatically changed with additions of pyrite or chalcopyrite during the sphalerite bioleaching process. Shannon diversity index showed a significantly increase in the SP (1.460), SC (1.476), and SPC (1.341) groups compared with control (sphalerite group, 0.624) on day 30, meanwhile, zinc leaching efficiencies were enhanced by about 13.4, 2.9, and 13.2%, respectively. Also, additions of pyrite or chalcopyrite could increase electric potential (ORP) and the concentrations of Fe3+ and H+, which were the main factors shaping microbial community structures by Mantel test analysis. Linear regression analysis showed that ORP, Fe3+ concentration, and pH were significantly correlated to zinc leaching efficiency and microbial diversity. In addition, we found that leaching efficiency showed a positive and significant relationship with microbial diversity. In conclusion, our results showed that the complicated substrates could significantly enhance microbial diversity and activity of function.
Siddique, Tariq; Kuznetsov, Petr; Kuznetsova, Alsu; Arkell, Nicholas; Young, Rozlyn; Li, Carmen; Guigard, Selma; Underwood, Eleisha; Foght, Julia M.
2014-01-01
Dispersed clay particles in mine tailings and soft sediments remain suspended for decades, hindering consolidation and challenging effective management of these aqueous slurries. Current geotechnical engineering models of self-weight consolidation of tailings do not consider microbial contribution to sediment behavior, however, here we show that microorganisms indigenous to oil sands tailings change the porewater chemistry and accelerate consolidation of oil sands tailings. A companion paper describes the role of microbes in alteration of clay chemistry in tailings. Microbial metabolism in mature fine tailings (MFT) amended with an organic substrate (hydrolyzed canola meal) produced methane (CH4) and carbon dioxide (CO2). Dissolution of biogenic CO2 lowered the pH of amended MFT to pH 6.4 vs. unamended MFT (pH 7.7). About 12% more porewater was recovered from amended than unamended MFT during 2 months of active microbial metabolism, concomitant with consolidation of tailings. The lower pH in amended MFT dissolved carbonate minerals, thereby releasing divalent cations including calcium (Ca2+) and magnesium (Mg2+) and increasing bicarbonate (HCO−3) in porewater. The higher concentrations increased the ionic strength of the porewater, in turn reducing the thickness of the diffuse double layer (DDL) of clay particles by reducing the surface charge potential (repulsive forces) of the clay particles. The combination of these processes accelerated consolidation of oil sands tailings. In addition, ebullition of biogenic gases created transient physical channels for release of porewater. In contrast, saturating the MFT with non-biogenic CO2 had little effect on consolidation. These results have significant implications for management and reclamation of oil sands tailings ponds and broad importance in anaerobic environments such as contaminated harbors and estuaries containing soft sediments rich in clays and organics. PMID:24711805
Siddique, Tariq; Kuznetsov, Petr; Kuznetsova, Alsu; Arkell, Nicholas; Young, Rozlyn; Li, Carmen; Guigard, Selma; Underwood, Eleisha; Foght, Julia M
2014-01-01
Dispersed clay particles in mine tailings and soft sediments remain suspended for decades, hindering consolidation and challenging effective management of these aqueous slurries. Current geotechnical engineering models of self-weight consolidation of tailings do not consider microbial contribution to sediment behavior, however, here we show that microorganisms indigenous to oil sands tailings change the porewater chemistry and accelerate consolidation of oil sands tailings. A companion paper describes the role of microbes in alteration of clay chemistry in tailings. Microbial metabolism in mature fine tailings (MFT) amended with an organic substrate (hydrolyzed canola meal) produced methane (CH4) and carbon dioxide (CO2). Dissolution of biogenic CO2 lowered the pH of amended MFT to pH 6.4 vs. unamended MFT (pH 7.7). About 12% more porewater was recovered from amended than unamended MFT during 2 months of active microbial metabolism, concomitant with consolidation of tailings. The lower pH in amended MFT dissolved carbonate minerals, thereby releasing divalent cations including calcium (Ca(2+)) and magnesium (Mg(2+)) and increasing bicarbonate (HCO(-) 3) in porewater. The higher concentrations increased the ionic strength of the porewater, in turn reducing the thickness of the diffuse double layer (DDL) of clay particles by reducing the surface charge potential (repulsive forces) of the clay particles. The combination of these processes accelerated consolidation of oil sands tailings. In addition, ebullition of biogenic gases created transient physical channels for release of porewater. In contrast, saturating the MFT with non-biogenic CO2 had little effect on consolidation. These results have significant implications for management and reclamation of oil sands tailings ponds and broad importance in anaerobic environments such as contaminated harbors and estuaries containing soft sediments rich in clays and organics.
Soil Microbial Community Responses to a Decade of Warming as Revealed by Comparative Metagenomics
Luo, Chengwei; Rodriguez-R, Luis M.; Johnston, Eric R.; Wu, Liyou; Cheng, Lei; Xue, Kai; Tu, Qichao; Deng, Ye; He, Zhili; Shi, Jason Zhou; Yuan, Mengting Maggie; Sherry, Rebecca A.; Li, Dejun; Luo, Yiqi; Schuur, Edward A. G.; Chain, Patrick; Tiedje, James M.
2014-01-01
Soil microbial communities are extremely complex, being composed of thousands of low-abundance species (<0.1% of total). How such complex communities respond to natural or human-induced fluctuations, including major perturbations such as global climate change, remains poorly understood, severely limiting our predictive ability for soil ecosystem functioning and resilience. In this study, we compared 12 whole-community shotgun metagenomic data sets from a grassland soil in the Midwestern United States, half representing soil that had undergone infrared warming by 2°C for 10 years, which simulated the effects of climate change, and the other half representing the adjacent soil that received no warming and thus, served as controls. Our analyses revealed that the heated communities showed significant shifts in composition and predicted metabolism, and these shifts were community wide as opposed to being attributable to a few taxa. Key metabolic pathways related to carbon turnover, such as cellulose degradation (∼13%) and CO2 production (∼10%), and to nitrogen cycling, including denitrification (∼12%), were enriched under warming, which was consistent with independent physicochemical measurements. These community shifts were interlinked, in part, with higher primary productivity of the aboveground plant communities stimulated by warming, revealing that most of the additional, plant-derived soil carbon was likely respired by microbial activity. Warming also enriched for a higher abundance of sporulation genes and genomes with higher G+C content. Collectively, our results indicate that microbial communities of temperate grassland soils play important roles in mediating feedback responses to climate change and advance the understanding of the molecular mechanisms of community adaptation to environmental perturbations. PMID:24375144
Production of plant-derived polyphenols in microorganisms: current state and perspectives.
Milke, Lars; Aschenbrenner, Jennifer; Marienhagen, Jan; Kallscheuer, Nicolai
2018-02-01
Plants synthesize several thousand different polyphenols of which many have the potential to aid in preventing or treating cancer, cardiovascular, and neurodegenerative diseases. However, plants usually contain complex polyphenol mixtures impeding access to individual compounds in larger quantities. In contrast, functional integration of biosynthetic plant polyphenol pathways into microorganisms allows for the production of individual polyphenols as chemically distinct compounds, which can be synthesized in large amounts and can be more easily isolated. Over the last decade, microbial synthesis of many plant polyphenols could be achieved, and along the way, many decisive bottlenecks in the endogenous microbial host metabolism as well as in the heterologous plant pathways could be identified. In this review, we present recent advancements in metabolic engineering of microorganisms for the production of plant polyphenols and discuss how current challenges could be addressed in the future.
Production of Cinnamic and p-Hydroxycinnamic Acids in Engineered Microbes.
Vargas-Tah, Alejandra; Gosset, Guillermo
2015-01-01
The aromatic compounds cinnamic and p-hydroxycinnamic acids (pHCAs) are phenylpropanoids having applications as precursors for the synthesis of thermoplastics, flavoring, cosmetic, and health products. These two aromatic acids can be obtained by chemical synthesis or extraction from plant tissues. However, both manufacturing processes have shortcomings, such as the generation of toxic subproducts or a low concentration in plant material. Alternative production methods are being developed to enable the biotechnological production of cinnamic and (pHCAs) by genetically engineering various microbial hosts, including Escherichia coli, Saccharomyces cerevisiae, Pseudomonas putida, and Streptomyces lividans. The natural capacity to synthesize these aromatic acids is not existent in these microbial species. Therefore, genetic modification have been performed that include the heterologous expression of genes encoding phenylalanine ammonia-lyase and tyrosine ammonia-lyase activities, which catalyze the conversion of l-phenylalanine (l-Phe) and l-tyrosine (l-Tyr) to cinnamic acid and (pHCA), respectively. Additional host modifications include the metabolic engineering to increase carbon flow from central metabolism to the l-Phe or l-Tyr biosynthetic pathways. These strategies include the expression of feedback insensitive mutant versions of enzymes from the aromatic pathways, as well as genetic modifications to central carbon metabolism to increase biosynthetic availability of precursors phosphoenolpyruvate and erythrose-4-phosphate. These efforts have been complemented with strain optimization for the utilization of raw material, including various simple carbon sources, as well as sugar polymers and sugar mixtures derived from plant biomass. A systems biology approach to production strains characterization has been limited so far and should yield important data for future strain improvement.
Production of Cinnamic and p-Hydroxycinnamic Acids in Engineered Microbes
Vargas-Tah, Alejandra; Gosset, Guillermo
2015-01-01
The aromatic compounds cinnamic and p-hydroxycinnamic acids (pHCAs) are phenylpropanoids having applications as precursors for the synthesis of thermoplastics, flavoring, cosmetic, and health products. These two aromatic acids can be obtained by chemical synthesis or extraction from plant tissues. However, both manufacturing processes have shortcomings, such as the generation of toxic subproducts or a low concentration in plant material. Alternative production methods are being developed to enable the biotechnological production of cinnamic and (pHCAs) by genetically engineering various microbial hosts, including Escherichia coli, Saccharomyces cerevisiae, Pseudomonas putida, and Streptomyces lividans. The natural capacity to synthesize these aromatic acids is not existent in these microbial species. Therefore, genetic modification have been performed that include the heterologous expression of genes encoding phenylalanine ammonia-lyase and tyrosine ammonia-lyase activities, which catalyze the conversion of l-phenylalanine (l-Phe) and l-tyrosine (l-Tyr) to cinnamic acid and (pHCA), respectively. Additional host modifications include the metabolic engineering to increase carbon flow from central metabolism to the l-Phe or l-Tyr biosynthetic pathways. These strategies include the expression of feedback insensitive mutant versions of enzymes from the aromatic pathways, as well as genetic modifications to central carbon metabolism to increase biosynthetic availability of precursors phosphoenolpyruvate and erythrose-4-phosphate. These efforts have been complemented with strain optimization for the utilization of raw material, including various simple carbon sources, as well as sugar polymers and sugar mixtures derived from plant biomass. A systems biology approach to production strains characterization has been limited so far and should yield important data for future strain improvement. PMID:26347861
Serotonin, tryptophan metabolism and the brain-gut-microbiome axis.
O'Mahony, S M; Clarke, G; Borre, Y E; Dinan, T G; Cryan, J F
2015-01-15
The brain-gut axis is a bidirectional communication system between the central nervous system and the gastrointestinal tract. Serotonin functions as a key neurotransmitter at both terminals of this network. Accumulating evidence points to a critical role for the gut microbiome in regulating normal functioning of this axis. In particular, it is becoming clear that the microbial influence on tryptophan metabolism and the serotonergic system may be an important node in such regulation. There is also substantial overlap between behaviours influenced by the gut microbiota and those which rely on intact serotonergic neurotransmission. The developing serotonergic system may be vulnerable to differential microbial colonisation patterns prior to the emergence of a stable adult-like gut microbiota. At the other extreme of life, the decreased diversity and stability of the gut microbiota may dictate serotonin-related health problems in the elderly. The mechanisms underpinning this crosstalk require further elaboration but may be related to the ability of the gut microbiota to control host tryptophan metabolism along the kynurenine pathway, thereby simultaneously reducing the fraction available for serotonin synthesis and increasing the production of neuroactive metabolites. The enzymes of this pathway are immune and stress-responsive, both systems which buttress the brain-gut axis. In addition, there are neural processes in the gastrointestinal tract which can be influenced by local alterations in serotonin concentrations with subsequent relay of signals along the scaffolding of the brain-gut axis to influence CNS neurotransmission. Therapeutic targeting of the gut microbiota might be a viable treatment strategy for serotonin-related brain-gut axis disorders. Copyright © 2014 Elsevier B.V. All rights reserved.
New insights about antibiotic production by Pseudomonas aeruginosa: a gene expression analysis
NASA Astrophysics Data System (ADS)
Gionco, Bárbara; Tavares, Eliandro R.; de Oliveira, Admilton G.; Yamada-Ogatta, Sueli F.; do Carmo, Anderson O.; Pereira, Ulisses de Pádua; Chideroli, Roberta T.; Simionato, Ane S.; Navarro, Miguel O. P.; Chryssafidis, Andreas L.; Andrade, Galdino
2017-09-01
The bacterial resistance for antibiotics is one of the most important problems in public health and only a small number of new products are in development. Antagonistic microorganisms from soil are a promising source of new candidate molecules. Products of secondary metabolism confer adaptive advantages for their producer, in the competition for nutrients in the microbial community. The biosynthesis process of compounds with antibiotic activity is the key to optimize their production and the transcriptomic study of microorganisms is of great benefit for the discovery of these metabolic pathways. Pseudomonas aeruginosa LV strain growing in the presence of copper chloride produces a bioactive organometallic compound, which has a potent antimicrobial activity against various microorganisms. The objective of this study was to verify overexpressed genes and evaluate their relation to the organometallic biosynthesis in this microorganism. P. aeruginosa LV strain was cultured in presence and absence of copper chloride. Two methods were used for transcriptomic analysis, genome reference-guided assembly and de novo assembly. The genome referenced analysis identified nine upregulated genes when bacteria were exposed to copper chloride, while the De Novo Assembly identified twelve upregulated genes. Nineteen genes can be related to an increased microbial metabolism for the extrusion process of exceeding intracellular copper. Two important genes are related to the biosynthesis of phenazine and tetrapyrroles compounds, which can be involved in the bioremediation of intracellular copper and biosynthesis of the organometallic compound. Additional studies are being carried out to further prove the function of the described genes and relate them to the biosynthetic pathway of the organometallic compound.
NASA Astrophysics Data System (ADS)
Probst, A. J.; Jerett, J.; Castelle, C. J.; Thomas, B. C.; Sharon, I.; Brown, C. T.; Anantharaman, K.; Emerson, J. B.; Hernsdorf, A. W.; Amano, Y.; Suzuki, Y.; Tringe, S. G.; Woyke, T.; Banfield, J. F.
2015-12-01
Subsurface environments span the planet but remain little understood from the perspective of the capacity of the resident organisms to fix CO2. Here we investigated the autotrophic capacity of microbial communities in range of a high-CO2 subsurface environments via analysis of 250 near-complete microbial genomes (151 of them from distinct species) that represent the most abundant organisms over a subsurface depth transect. More than one third of the genomes belonged to the so-called candidate phyla radiation (CPR), which have limited metabolic capabilities. Approximately 30% of the community members are autotrophs that comprise 70% of the microbiome with metabolism likely supported by sulfur and nitrogen respiration. Of the carbon fixation pathways, the Calvin Benson Basham Cycle was most common, but the Wood-Ljungdhal pathway was present in the greatest phylogenetic diversity of organisms. Unexpectedly, one organism from a novel phylum sibling to the CPR is predicted to fix carbon by the reverse TCA cycle. The genome of the most abundant organism, an archaeon designated "Candidatus Altiarchaeum hamiconexum", was also found in subsurface samples from other continents including Europe and Asia. The archaeon was proven to be a carbon fixer using a novel reductive acetyl-CoA pathway. These results provide evidence that carbon dioxide is the major carbon source in these environments and suggest that autotrophy in the subsurface represents a substantial carbon dioxide sink affecting the global carbon cycle.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Konopka, Allan
The activities of complex communities of microbes affect biogeochemical transformations in natural, managed and engineered ecosystems. Meaningfully defining what constitutes a community of interacting microbial populations is not trivial, but is important for rigorous progress in the field. Important elements of research in microbial community ecology include the analysis of functional pathways for nutrient resource and energy flows, mechanistic understanding of interactions between microbial populations and their environment, and the emergent properties of the complex community. Some emergent properties mirror those analyzed by community ecologists who study plants and animals: biological diversity, functional redundancy and system stability. However, because microbesmore » possess mechanisms for the horizontal transfer of genetic information, the metagenome may also be considered a community property.« less
Zhang, Qinghua; Zhang, Lei; Wang, Han; Jiang, Qinrui; Zhu, Xiaoyu
2018-02-01
The performance of a microbial fuel cell (MFC) to degrade oxyfluorfen was investigated. Approximately 77% of 50 mg/L oxyfluorfen was degraded within 24 h by anodic biofilm. The temperature, pH, and initial oxyfluorfen concentration had a significant effect on oxyfluorfen degrading, and a maximum degradation rate of 94.95% could theoretically be achieved at 31.96 °C, a pH of 7.65, and an initial oxyfluorfen concentration of 120.05 mg/L. Oxyfluorfen was further catabolized through various microbial metabolism pathways. Moreover, the anodic biofilm exhibited multiple catabolic capacities to 4-nitrophenol, chloramphenicol, pyraclostrobin, and sulfamethoxazole. Microbial community analysis indicated that functional bacteria Arcobacter, Acinetobacter, Azospirillum, Azonexus, and Comamonas were the predominant genera in the anodic biofilm. In terms of the efficient removal of various organic compounds and energy recovery, the MFC seemed to be a promising approach for the treatment of environmental contaminants. Copyright © 2017 Elsevier Ltd. All rights reserved.
Li, Xu; Upadhyaya, Giridhar; Yuen, Wangki; Brown, Jess; Morgenroth, Eberhard; Raskin, Lutgarde
2010-01-01
Phosphorus was added as a nutrient to bench-scale and pilot-scale biologically active carbon (BAC) reactors operated for perchlorate and nitrate removal from contaminated groundwater. The two bioreactors responded similarly to phosphorus addition in terms of microbial community function (i.e., reactor performance), while drastically different responses in microbial community structure were detected. Improvement in reactor performance with respect to perchlorate and nitrate removal started within a few days after phosphorus addition for both reactors. Microbial community structures were evaluated using molecular techniques targeting 16S rRNA genes. Clone library results showed that the relative abundance of perchlorate-reducing bacteria (PRB) Dechloromonas and Azospira in the bench-scale reactor increased from 15.2% and 0.6% to 54.2% and 11.7% after phosphorus addition, respectively. Real-time quantitative PCR (qPCR) experiments revealed that these increases started within a few days after phosphorus addition. In contrast, after phosphorus addition, the relative abundance of Dechloromonas in the pilot-scale reactor decreased from 7.1 to 0.6%, while Zoogloea increased from 17.9 to 52.0%. The results of this study demonstrated that similar operating conditions for bench-scale and pilot-scale reactors resulted in similar contaminant removal performances, despite dramatically different responses from microbial communities. These findings suggest that it is important to evaluate the microbial community compositions inside bioreactors used for drinking water treatment, as they determine the microbial composition in the effluent and impact downstream treatment requirements for drinking water production. This information could be particularly relevant to drinking water safety, if pathogens or disinfectant-resistant bacteria are detected in the bioreactors. PMID:20889793
Sharpton, Thomas; Lyalina, Svetlana; Luong, Julie; Pham, Joey; Deal, Emily M; Armour, Courtney; Gaulke, Christopher; Sanjabi, Shomyseh; Pollard, Katherine S
2017-01-01
The gut microbiome is linked to inflammatory bowel disease (IBD) severity and altered in late-stage disease. However, it is unclear how gut microbial communities change over the course of IBD development, especially in regard to function. To investigate microbiome-mediated disease mechanisms and discover early biomarkers of IBD, we conducted a longitudinal metagenomic investigation in an established mouse model of IBD, where damped transforming growth factor β (TGF-β) signaling in T cells leads to peripheral immune activation, weight loss, and severe colitis. IBD development is associated with abnormal gut microbiome temporal dynamics, including damped acquisition of functional diversity and significant differences in abundance trajectories for KEGG modules such as glycosaminoglycan degradation, cellular chemotaxis, and type III and IV secretion systems. Most differences between sick and control mice emerge when mice begin to lose weight and heightened T cell activation is detected in peripheral blood. However, levels of lipooligosaccharide transporter abundance diverge prior to immune activation, indicating that it could be a predisease indicator or microbiome-mediated disease mechanism. Taxonomic structure of the gut microbiome also significantly changes in association with IBD development, and the abundances of particular taxa, including several species of Bacteroides , correlate with immune activation. These discoveries were enabled by our use of generalized linear mixed-effects models to test for differences in longitudinal profiles between healthy and diseased mice while accounting for the distributions of taxon and gene counts in metagenomic data. These findings demonstrate that longitudinal metagenomics is useful for discovering the potential mechanisms through which the gut microbiome becomes altered in IBD. IMPORTANCE IBD patients harbor distinct microbial communities with functional capabilities different from those seen with healthy people. But is this cause or effect? Answering this question requires data on changes in gut microbial communities leading to disease onset. By performing weekly metagenomic sequencing and mixed-effects modeling on an established mouse model of IBD, we identified several functional pathways encoded by the gut microbiome that covary with host immune status. These pathways are novel early biomarkers that may either enable microbes to live inside an inflamed gut or contribute to immune activation in IBD mice. Future work will validate the potential roles of these microbial pathways in host-microbe interactions and human disease. This study was novel in its longitudinal design and focus on microbial pathways, which provided new mechanistic insights into the role of gut microbes in IBD development.
Sharpton, Thomas; Lyalina, Svetlana; Luong, Julie; Pham, Joey; Deal, Emily M.; Armour, Courtney; Gaulke, Christopher; Sanjabi, Shomyseh
2017-01-01
ABSTRACT The gut microbiome is linked to inflammatory bowel disease (IBD) severity and altered in late-stage disease. However, it is unclear how gut microbial communities change over the course of IBD development, especially in regard to function. To investigate microbiome-mediated disease mechanisms and discover early biomarkers of IBD, we conducted a longitudinal metagenomic investigation in an established mouse model of IBD, where damped transforming growth factor β (TGF-β) signaling in T cells leads to peripheral immune activation, weight loss, and severe colitis. IBD development is associated with abnormal gut microbiome temporal dynamics, including damped acquisition of functional diversity and significant differences in abundance trajectories for KEGG modules such as glycosaminoglycan degradation, cellular chemotaxis, and type III and IV secretion systems. Most differences between sick and control mice emerge when mice begin to lose weight and heightened T cell activation is detected in peripheral blood. However, levels of lipooligosaccharide transporter abundance diverge prior to immune activation, indicating that it could be a predisease indicator or microbiome-mediated disease mechanism. Taxonomic structure of the gut microbiome also significantly changes in association with IBD development, and the abundances of particular taxa, including several species of Bacteroides, correlate with immune activation. These discoveries were enabled by our use of generalized linear mixed-effects models to test for differences in longitudinal profiles between healthy and diseased mice while accounting for the distributions of taxon and gene counts in metagenomic data. These findings demonstrate that longitudinal metagenomics is useful for discovering the potential mechanisms through which the gut microbiome becomes altered in IBD. IMPORTANCE IBD patients harbor distinct microbial communities with functional capabilities different from those seen with healthy people. But is this cause or effect? Answering this question requires data on changes in gut microbial communities leading to disease onset. By performing weekly metagenomic sequencing and mixed-effects modeling on an established mouse model of IBD, we identified several functional pathways encoded by the gut microbiome that covary with host immune status. These pathways are novel early biomarkers that may either enable microbes to live inside an inflamed gut or contribute to immune activation in IBD mice. Future work will validate the potential roles of these microbial pathways in host-microbe interactions and human disease. This study was novel in its longitudinal design and focus on microbial pathways, which provided new mechanistic insights into the role of gut microbes in IBD development. PMID:28904997
Park, Se-Keun; Kim, Yeong-Kwan; Choi, Sung-Chan
2008-07-01
Consequences of orthophosphate addition for corrosion control in water distribution pipes with respect to microbial growth were investigated using batch and dynamic tests. Batch tests showed that the release of copper in either low or high organic carbon content water was decreased by 69% and 56% with addition 206 microg PO(4)-P, respectively. Dosing of orthophosphate against corrosion did not increase microbial growth potential in the water and in the biofilm in both corroded and uncorroded systems receiving tap water with a low content of organic carbon and of biodegradable organic fraction. However, in tap water having a high concentration of organic carbon from acetate addition, orthophosphate addition promoted the growth of bacteria, allowed more bacteria to assemble on corroded and uncorroded surfaces, and increased the consumption of organic carbon. Orthophosphate consumption did not exceed 1% of the amount of easily biodegradable organic carbon required for microbial growth, and the orthophosphate demand for corrosion control greatly exceeded the nutritional requirement of microbial growth. The results of the dynamic tests demonstrated that there was a significant effect of interaction between biodegradable organic carbon and orthophosphate on biofilm growth, whereby the effect of orthophosphate flux on microbial growth was dependent on the levels of biodegradable organic carbon. Controlling an easily biodegradable organic carbon would be therefore necessary to minimize the microbial growth potential induced by orthophosphate-based anticorrosion treatment.
Paoletti, Iole; Buommino, Elisabetta; Fusco, Alessandra; Baudouin, Caroline; Msika, Philippe; Tufano, Maria Antonietta; Baroni, Adone; Donnarumma, Giovanna
2012-10-01
Keratinocytes stimulated by microbial organisms secrete not only a variety of cytokines, chemokines and growth factors, but also antimicrobial peptides such as beta-defensins (HBDs) such as HBD-2 and HBD-3. AV119, a patented blend of avocado sugar, triggers the up-regulation of HBD-2 in skin epithelia upon contact with AV119, but the signalling mechanisms involved are not completely understood. The purpose of this study was to determine if AV119 was able to induce also the expression of HBD-3 in human keratinocytes. In addition, the receptor and intracellular pathways involved in the AV119 up-regulation of HBD-2 and HBD-3 were investigated. Our results demonstrated that AV119 induces a significantly increase of the expression of HBD-3. In addition, the HBD-2 and HBD-3 AV119-induced gene expression and release are TLR-2 dependent. Finally, we demonstrated that AV119 induced ERK/MAPK phosphorylation in human keratinocytes, thus providing evidence that HBD-2 and HBD-3 secretion is through the same transductional pathway. The ability of AV119 to induce also HBD-3 may amplify its therapeutic potential against a broader spectrum of bacterial and yeast strains responsible for human skin disorders.
NASA Astrophysics Data System (ADS)
Morrill, P. L.; Miles, S.; Kohl, L.; Kavanagh, H.; Ziegler, S. E.; Brazelton, W. J.; Schrenk, M. O.
2013-12-01
Ultra-basic reducing springs at continental sites of serpentinization act as windows into the biogeochemistry of this subsurface exothermic environment rich in H2 and CH4 gases. Biogeochemical carbon transformations in these systems are of interest because serpentinization creates conditions that are amenable to abiotic and biotic reduction of carbon. However, little is known about the metabolic capabilities of the microorganisms that live in this environment. To determine the potential for autotrophic metabolisms, bicarbonate and CO substrate addition microcosm experiments were performed using water and sediment from an ultra-basic reducing spring in the Tablelands, Newfoundland, Canada, a site of present-day continental serpentinization. CO was consistently observed to be utilized in the Live but not the Killed controlled replicates amended with 10% 13C labelled CO and non-labelled (natural C isotope abundance) CO. In the Live CO microcosms with natural C isotope abundance, the residual CO became enriched in 13C (~10 ‰) consistent with a decrease in the fraction of CO remaining. In the Killed CO controlled replicates with natural C isotope abundance the CO showed little 13C enrichment (~1.3 ‰). The data from the Live CO microcosms were well described by a Rayleigh isotopic distillation model, yielding an isotopic enrichment factor for microbial CO uptake of 15.7 ×0.5 ‰ n=2. These data suggest that there was microbial CO utilization in these experiments. The sediment and water from the 13C-labelled and non-labelled, Live and Killed microcosms were extracted for phospholipid fatty acids (PLFAs) to determine changes in community composition between treatments as well as to determine the microbial uptake of CO. The difference in community composition between the Live and Killed microcosms was not readily resolvable based on PLFA distributions. Additionally, the microbial uptake of 13CO had minimal to no affect on the δ13C of the cellular biomarkers, with the exception of C16 saturated and a C16 monounsaturated PLFAs in one live microcosm which showed >2 ‰ and >10 ‰ enrichment, respectively, compared to the average δ13C values of the same PLFA in the 13C Killed controlled replicates. Therefore the uptake of CO had minimal effect on the overall biomass and community composition in the system. The 13C labelled bicarbonate anaerobic microcosm experiments showed little to no methane production. The methane detected in the 13C labelled Live experiments were not isotopically enriched in 13C compared to the CH4 in the labelled Killed controlled replicates. Therefore bicarbonate was not used as a substrate for microbial methanogenesis via the CO2 reduction pathway. These results are generally consistent with genomic and metagenomic data, which discovered the potential for a carbon fixation pathway involving carbon monoxide, but little evidence for archaea or methanogenesis in the ultra-basic springs in the Tablelands (Brazelton et al., 2012). Reference: Brazelton WJ, Nelson B, & Schrenk MO (2012) Frontiers in Microbiology 2:1-16.
Engineering Robustness of Microbial Cell Factories.
Gong, Zhiwei; Nielsen, Jens; Zhou, Yongjin J
2017-10-01
Metabolic engineering and synthetic biology offer great prospects in developing microbial cell factories capable of converting renewable feedstocks into fuels, chemicals, food ingredients, and pharmaceuticals. However, prohibitively low production rate and mass concentration remain the major hurdles in industrial processes even though the biosynthetic pathways are comprehensively optimized. These limitations are caused by a variety of factors unamenable for host cell survival, such as harsh industrial conditions, fermentation inhibitors from biomass hydrolysates, and toxic compounds including metabolic intermediates and valuable target products. Therefore, engineered microbes with robust phenotypes is essential for achieving higher yield and productivity. In this review, the recent advances in engineering robustness and tolerance of cell factories is described to cope with these issues and briefly introduce novel strategies with great potential to enhance the robustness of cell factories, including metabolic pathway balancing, transporter engineering, and adaptive laboratory evolution. This review also highlights the integration of advanced systems and synthetic biology principles toward engineering the harmony of overall cell function, more than the specific pathways or enzymes. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Figueroa, Israel A; Barnum, Tyler P; Somasekhar, Pranav Y; Carlström, Charlotte I; Engelbrektson, Anna L; Coates, John D
2018-01-02
Dissimilatory phosphite oxidation (DPO), a microbial metabolism by which phosphite (HPO 3 2- ) is oxidized to phosphate (PO 4 3- ), is the most energetically favorable chemotrophic electron-donating process known. Only one DPO organism has been described to date, and little is known about the environmental relevance of this metabolism. In this study, we used 16S rRNA gene community analysis and genome-resolved metagenomics to characterize anaerobic wastewater treatment sludge enrichments performing DPO coupled to CO 2 reduction. We identified an uncultivated DPO bacterium, Candidatus Phosphitivorax ( Ca. P.) anaerolimi strain Phox-21, that belongs to candidate order GW-28 within the Deltaproteobacteria , which has no known cultured isolates. Genes for phosphite oxidation and for CO 2 reduction to formate were found in the genome of Ca. P. anaerolimi, but it appears to lack any of the known natural carbon fixation pathways. These observations led us to propose a metabolic model for autotrophic growth by Ca. P. anaerolimi whereby DPO drives CO 2 reduction to formate, which is then assimilated into biomass via the reductive glycine pathway.
Bioinformatic perspectives on NRPS/PKS megasynthases: advances and challenges.
Jenke-Kodama, Holger; Dittmann, Elke
2009-07-01
The increased understanding of both fundamental principles and mechanistic variations of NRPS/PKS megasynthases along with the unprecedented availability of microbial sequences has inspired a number of in silico studies of both enzyme families. The insights that can be extracted from these analyses go far beyond a rough classification of data and have turned bioinformatics into a frontier field of natural products research. As databases are flooded with NRPS/PKS gene sequence of microbial genomes and metagenomes, increasingly reliable structural prediction methods can help to uncover hidden treasures. Already, phylogenetic analyses have revealed that NRPS/PKS pathways should not simply be regarded as enzyme complexes, specifically evolved to product a selected natural product. Rather, they represent a collection of genetic opinions, allowing biosynthetic pathways to be shuffled in a process of perpetual chemical innovations and pathways diversification in nature can give impulses for specificities, protein interactions and genetic engineering of libraries of novel peptides and polyketides. The successful translation of the knowledge obtained from bioinformatic dissection of NRPS/PKS megasynthases into new techniques for drug discovery and design remain challenges for the future.
2012 Gordon Research Conference on Mutagenesis - Formal Schedule and Speaker/Poster Program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Demple, Bruce
2012-08-24
The delicate balance among cellular pathways that control mutagenic changes in DNA will be the focus of the 2012 Mutagenesis Gordon Research Conference. Mutagenesis is essential for evolution, while genetic stability maintains cellular functions in all organisms from microbes to metazoans. Different systems handle DNA lesions at various times of the cell cycle and in different places within the nucleus, and inappropriate actions can lead to mutations. While mutation in humans is closely linked to disease, notably cancers, mutational systems can also be beneficial. The conference will highlight topics of beneficial mutagenesis, including full establishment of the immune system, cellmore » survival mechanisms, and evolution and adaptation in microbial systems. Equal prominence will be given to detrimental mutation processes, especially those involved in driving cancer, neurological diseases, premature aging, and other threats to human health. Provisional session titles include Branching Pathways in Mutagenesis; Oxidative Stress and Endogenous DNA Damage; DNA Maintenance Pathways; Recombination, Good and Bad; Problematic DNA Structures; Localized Mutagenesis; Hypermutation in the Microbial World; and Mutation and Disease.« less
MBGD update 2013: the microbial genome database for exploring the diversity of microbial world.
Uchiyama, Ikuo; Mihara, Motohiro; Nishide, Hiroyo; Chiba, Hirokazu
2013-01-01
The microbial genome database for comparative analysis (MBGD, available at http://mbgd.genome.ad.jp/) is a platform for microbial genome comparison based on orthology analysis. As its unique feature, MBGD allows users to conduct orthology analysis among any specified set of organisms; this flexibility allows MBGD to adapt to a variety of microbial genomic study. Reflecting the huge diversity of microbial world, the number of microbial genome projects now becomes several thousands. To efficiently explore the diversity of the entire microbial genomic data, MBGD now provides summary pages for pre-calculated ortholog tables among various taxonomic groups. For some closely related taxa, MBGD also provides the conserved synteny information (core genome alignment) pre-calculated using the CoreAligner program. In addition, efficient incremental updating procedure can create extended ortholog table by adding additional genomes to the default ortholog table generated from the representative set of genomes. Combining with the functionalities of the dynamic orthology calculation of any specified set of organisms, MBGD is an efficient and flexible tool for exploring the microbial genome diversity.
Molecular mechanism and genetic determinants of buprofezin degradation.
Chen, Xueting; Ji, Junbin; Zhao, Leizhen; Qiu, Jiguo; Dai, Chen; Wang, Weiwu; He, Jian; Jiang, Jiandong; Hong, Qing; Yan, Xin
2017-07-14
Buprofezin is a widely used insect growth regulator whose residue has been frequently detected in the environment, posing a threat to aquatic organisms and non-target insects. Microorganisms play an important role in the degradation of buprofezin in the natural environment. However, the relevant catabolic pathway has not been fully characterized, and the molecular mechanism of catabolism is still completely unknown. Rhodococcus qingshengii YL-1 can utilize buprofezin as a sole source of carbon and energy for growth. In this study, the upstream catabolic pathway in strain YL-1 was identified using tandem mass spectrometry. Buprofezin is composed of a benzene ring and a heterocyclic ring. The degradation is initiated by the dihydroxylation of the benzene ring and continues via dehydrogenation, aromatic ring cleavage, breaking of an amide bond and the release of the heterocyclic ring 2- tert -butylimino-3-isopropyl-1,3,5-thiadiazinan-4-one (2-BI). A buprofezin degradation-deficient mutant strain YL-0 was isolated. Comparative genomic analysis combined with gene deletion and complementation experiments revealed that the gene cluster bfzBA3A4A1A2C is responsible for the upstream catabolic pathway of buprofezin. bfzA3A4A1A2 encodes a novel Rieske non-heme iron oxygenase (RHO) system that is responsible for the dihydroxylation of buprofezin at the benzene ring; bfzB is involved in dehydrogenation, and bfzC is in charge of benzene ring cleavage. Furthermore, the products of bfzBA3A4A1A2C can also catalyze dihydroxylation, dehydrogenation and aromatic ring cleavage of biphenyl, flavanone, flavone and bifenthrin. In addition, a transcriptional study revealed that bfzBA3A4A1A2C is organized in one transcriptional unit that is constitutively expressed in strain YL-1. Importance There is an increasing concern about the residue and environmental fate of buprofezin. Microbial metabolism is an important mechanism responsible for the buprofezin degradation in natural environment. However, the molecular mechanism and genetic determinants of microbial degradation of buprofezin has not been well identified. This work revealed that gene cluster bfzBA3A4A1A2C is responsible for the upstream catabolic pathway of buprofezin in R. qingshengii YL-1. The products of bfzBA3A4A1A2C could also degrade bifenthrin, a widely used pyrethroid insecticide. These findings enhance our understanding of the microbial degradation mechanism of buprofezin and benefit the application of strain YL-1 and bfzBA3A4A1A2C in the bioremediation of buprofezin contamination. Copyright © 2017 American Society for Microbiology.
Molecular Mechanism and Genetic Determinants of Buprofezin Degradation
Chen, Xueting; Ji, Junbin; Zhao, Leizhen; Qiu, Jiguo; Dai, Chen; Wang, Weiwu; He, Jian; Jiang, Jiandong; Hong, Qing
2017-01-01
ABSTRACT Buprofezin is a widely used insect growth regulator whose residue has been frequently detected in the environment, posing a threat to aquatic organisms and nontarget insects. Microorganisms play an important role in the degradation of buprofezin in the natural environment. However, the relevant catabolic pathway has not been fully characterized, and the molecular mechanism of catabolism is still completely unknown. Rhodococcus qingshengii YL-1 can utilize buprofezin as a sole source of carbon and energy for growth. In this study, the upstream catabolic pathway in strain YL-1 was identified using tandem mass spectrometry. Buprofezin is composed of a benzene ring and a heterocyclic ring. The degradation is initiated by the dihydroxylation of the benzene ring and continues via dehydrogenation, aromatic ring cleavage, breaking of an amide bond, and the release of the heterocyclic ring 2-tert-butylimino-3-isopropyl-1,3,5-thiadiazinan-4-one (2-BI). A buprofezin degradation-deficient mutant strain YL-0 was isolated. A comparative genomic analysis combined with gene deletion and complementation experiments revealed that the gene cluster bfzBA3A4A1A2C is responsible for the upstream catabolic pathway of buprofezin. The bfzA3A4A1A2 cluster encodes a novel Rieske nonheme iron oxygenase (RHO) system that is responsible for the dihydroxylation of buprofezin at the benzene ring; bfzB is involved in dehydrogenation, and bfzC is in charge of benzene ring cleavage. Furthermore, the products of bfzBA3A4A1A2C can also catalyze dihydroxylation, dehydrogenation, and aromatic ring cleavage of biphenyl, flavanone, flavone, and bifenthrin. In addition, a transcriptional study revealed that bfzBA3A4A1A2C is organized in one transcriptional unit that is constitutively expressed in strain YL-1. IMPORTANCE There is an increasing concern about the residue and environmental fate of buprofezin. Microbial metabolism is an important mechanism responsible for the buprofezin degradation in the natural environment. However, the molecular mechanism and genetic determinants of microbial degradation of buprofezin have not been well identified. This work revealed that gene cluster bfzBA3A4A1A2C is responsible for the upstream catabolic pathway of buprofezin in Rhodococcus qingshengii YL-1. The products of bfzBA3A4A1A2C could also degrade bifenthrin, a widely used pyrethroid insecticide. These findings enhance our understanding of the microbial degradation mechanism of buprofezin and benefit the application of strain YL-1 and bfzBA3A4A1A2C in the bioremediation of buprofezin contamination. PMID:28710269
Orellana, Luis H; Chee-Sanford, Joanne C; Sanford, Robert A; Löffler, Frank E; Konstantinidis, Konstantinos T
2017-11-03
The dynamics of individual microbial populations and their gene functions in agricultural soils, especially after major activities such as nitrogen (N) fertilization, remain elusive but are important for better understanding nutrient cycling. Here, we analyzed 20 short-read metagenomes collected at four time points across one year from two depths (0-5 and 20-30 cm) in two Midwestern agricultural sites representing contrasting soil textures (sandy versus silty-loam), with similar cropping histories. Although microbial community taxonomic and functional compositions differed between the two locations and depths, they were more stable within a depth/site throughout the year than communities in natural water-based ecosystems. For example, among the 69 population genomes assembled from the metagenomes, 75% showed less than 2-fold change in abundance between any two sampling points. Interestingly, six deep-branching Thaumarchaeota and three complete ammonia oxidizer (comammox) Nitrospira populations increased up to 5-fold in abundance upon the addition of N fertilizer. These results indicated that indigenous archaeal ammonia oxidizers may respond faster (more copiotrophic) to N fertilization than previously thought. None of 29 recovered putative denitrifier genomes encoded the complete denitrification pathway, suggesting that denitrification is carried out by a collection of different populations. Altogether, our study identified novel microbial populations and genes responding to seasonal and human-induced perturbations in agricultural soils that should facilitate future monitoring efforts and N-related studies. Importance Even though the impact of agricultural management on the microbial community structure has already been recognized, understanding of the dynamics of individual microbial populations and what functions each population encodes are limited. Yet, this information is important for better understanding nutrient cycling, with potentially important implications for preserving nitrogen in soils and sustainability. Here we show that reconstructed metagenome-assembled genomes (MAGs) are relatively stable in their abundance and functional gene content year-round, and seasonal nitrogen fertilization has selected for novel Thaumarchaeota and comammox Nitrospira nitrifiers that are potentially less oligotrophic compared to their marine counterparts previously studied. Copyright © 2017 American Society for Microbiology.
Microbial Fe(III) Oxide Reduction in Chocolate Pots Hot Springs, Yellowstone National Park
NASA Astrophysics Data System (ADS)
Fortney, N. W.; Roden, E. E.; Boyd, E. S.; Converse, B. J.
2014-12-01
Previous work on dissimilatory iron reduction (DIR) in Yellowstone National Park (YNP) has focused on high temperature, low pH environments where soluble Fe(III) is utilized as an electron acceptor for respiration. Much less attention has been paid to DIR in lower temperature, circumneutral pH environments, where solid phase Fe(III) oxides are the dominant forms of Fe(III). This study explored the potential for DIR in the warm (ca. 40-50°C), circumneutral pH Chocolate Pots hot springs (CP) in YNP. Most probable number (MPN) enumerations and enrichment culture studies confirmed the presence of endogenous microbial communities that reduced native CP Fe(III) oxides. Enrichment cultures demonstrated sustained DIR coupled to acetate and lactate oxidation through repeated transfers over ca. 450 days. Pyrosequencing of 16S rRNA genes indicated that the dominant organisms in the enrichments were closely affiliated with the well known Fe(III) reducer Geobacter metallireducens. Additional taxa included relatives of sulfate reducing bacterial genera Desulfohalobium and Thermodesulfovibrio; however, amendment of enrichments with molybdate, an inhibitor of sulfate reduction, suggested that sulfate reduction was not a primary metabolic pathway involved in DIR in the cultures. A metagenomic analysis of enrichment cultures is underway in anticipation of identifying genes involved in DIR in the less well-characterized dominant organisms. Current studies are aimed at interrogating the in situ microbial community at CP. Core samples were collected along the flow path (Fig. 1) and subdivided into 1 cm depth intervals for geochemical and microbiological analysis. The presence of significant quantities of Fe(II) in the solids indicated that DIR is active in situ. A parallel study investigated in vitro microbial DIR in sediments collected from three of the coring sites. DNA was extracted from samples from both studies for 16S rRNA gene and metagenomic sequencing in order to obtain a detailed understanding of the vertical and longitudinal distribution of microbial taxa throughout CP. These studies will provide insight into the operation of the microbial Fe redox cycle, demonstrating how genomic properties relate to and control geochemical conditions with depth and distance in a Fe-rich, neutral pH geothermal environment.
Lorah, Michelle M.; Voytek, Mary A.; Kirshtein, Julie D.; Jones, Elizabeth J.
2003-01-01
Defining biodegradation rates and processes is a critical part of assessing the feasibility of monitored natural attenuation as a remediation method for ground water containing organic contaminants. During 1998?2001, the U.S. Geological Survey conducted a microbial study at a freshwater tidal wetland along the West Branch Canal Creek, Aberdeen Proving Ground, Maryland, as part of an investigation of natural attenuation of chlorinated volatile organic compounds (VOCs) in the wetland sediments. Geochemical analyses and molecular biology techniques were used to investigate factors controlling anaerobic degradation of 1,1,2,2-tetrachloroethane (TeCA), and to characterize the microbial communities that potentially are important in its degradation. Rapid TeCA and daughter product degradation observed in laboratory experiments and estimated with field data confirm that natural attenuation is a feasible remediation method at this site. The diverse microbial community that seems to be involved in TeCA degradation in the wetland sediments varies with changing spatial and seasonal conditions, allowing continued effective natural attenuation throughout the year. Rates of TeCA degradation in anaerobic microcosm experiments conducted with wetland sediment collected from two different sites (WB23 and WB30) and during three different seasons (March?April 1999, July?August 1999, and October?November 2000) showed little spatial variability but high seasonal variability. Initial first-order degradation rate constants for TeCA ranged from 0.10?0.01 to 0.16?0.05 per day (half-lives of 4.3 to 6.9 days) for March?April 1999 and October?November 2000 microcosms incubated at 19 degrees Celsius, whereas lower rate constants of 0 ? 0.03 and 0.06 ? 0.03 per day were obtained in July?August 1999 microcosms incubated at 19 degrees Celsius. Microbial community profiles showed that low microbial biomass and microbial diversity in the summer, possibly due to competition for nutrients by the wetland vegetation, could account for these unexpectedly low degradation rates. In microcosms incubated at 5 degrees Celsius, about 50 percent of the initial TeCA in solution was converted to daughter products within a 35-day incubation period, indicating that biodegradation in the wetland sediments can continue during cold winter temperatures. Initial pathways of TeCA degradation were the same in the wetland sediment microcosms regardless of the season or sediment collection site, the reduction-oxidation conditions, and the previous exposure of the sediment to contamination. Immediate and simultaneous dichloroelimination and hydrogenolysis, producing 1,2-dichloro-ethene (12DCE) and 1,1,2-trichloroethane (112TCA), respectively, were the initial TeCA degradation pathways in all live microcosm experiments. The production and degradation of vinyl chloride (VC), which is the most toxic of the TeCA daughter compounds, was affected by spatial and seasonal variability, reduction-oxidation condition, and pre-exposure of the wetland sediment. TeCA-amended microcosms constructed with WB30 sediment showed approximately twice as much VC production as those constructed with WB23 sediment. Results of 112TCA-amended microcosms indicated that the greater production of VC in the WB30 sediment resulted from a greater predominance of the 112TCA dichloro-elimination pathway in these sediments. VC degradation also was substantially higher in microcosms constructed with WB30 sediment than those constructed with WB23 sediment, resulting in lower VC concentrations at the end of WB30 microcosms. Enrichment experiments in which microcosm slurry was amended with high initial VC concentrations showed that the spatial difference in VC degradation was negligible after prolonged incubation under methanogenic conditions. Inhibition of methanogenic activity in microcosms by addition of sulfate or of 2-bromoethanesulfonic acid inhibited production and degradation of VC. Inhibition of methanogenesis b
Stimulation of 3,4-dichloroaniline mineralization by aniline.
You, I S; Bartha, R
1982-01-01
Mineralization of free and of humus-bound 3,4-dichloroaniline (DCA) by a Pseudomonas putida strain isolated by analog enrichment was greatly enhanced in the presence of aniline. The addition of aniline to soil that contained 0.2 to 100 micrograms of DCA per g in free or in humus-bound form increased the mineralization rates of DCA severalfold. Within the concentration ranges tested, absolute mineralization of DCA per unit time was positively correlated with both increasing DCA and increasing aniline concentrations. The specific enrichment of microbial populations and the induction of pathways that can co-metabolize DCA are the most plausible explanations for the effect of aniline. The observed phenomenon points to a potential approach for eliminating xenobiotic pollutants from contaminated soils. PMID:7138005
Development of Antibacterials Targeting the MEP Pathway of Select Agents
2014-05-01
discovery, evaluation of lead inhibitors in microbial growth assays, determining X- ray crystal structures of the MEP pathway enzymes MEP synthase and...recombinant proteins to WRAIR for X- ray crystallography. Reportable Outcomes • A manuscript detailing the characterization of the Y. pestis MEP...characterization and phosphoregulation. PLoS ONE 6: e20884. doi:10.1371/journal.pone.0020884. 3. Zhang, Chung, Oldenburg (1999) A Simple Statistical
Development of Antibacterials Targeting the MEP Pathway of Select Agents
2015-03-01
inhibitor discovery, evaluation of lead inhibitors in microbial growth assays, determining X- ray crystal structures of the MEP pathway enzymes MEP...recombinant proteins to WRAIR for X- ray crystallography. Reportable Outcomes Haymond A, Johny C, Dowdy T, Schweibenz B, Villarroel K, Young R, Mantooth...journal.pone.0020884. 9 3. Zhang, Chung, Oldenburg (1999) A Simple Statistical Parameter for Use in Evaluation and Validation of High Throughput Screening
Jones, E.J.P.; Voytek, M.A.; Lorah, M.M.
2004-01-01
1,1,2,2-Tetrachloroethane (TeCA) contaminated groundwater at the Aberdeen Proving Ground discharges through an anaerobic wetland in West Branch Canal Creek, MD, where dechlorination occurred. Two microbially mediated pathways, dichloroelimination and hydrogenolysis, account for most of the TeCA degradation at this site. The dichloroelimination pathways led to the formation of vinyl chloride (VC), a recalcitrant carcinogen of great concern. The effect of adding Fe(III) to TeCA-amended microcosms of wetland sediment was studied. Differences were identified in the TeCA degradation pathway between microcosms treated with amorphous ferric oxyhydroxide (AFO-treated) and untreated (no AFO) microcosms. TeCA degradation was accompanied by a lower accumulation of VC in AFO-treated microcosms than no AFO microcosms. The microcosm incubations and subsequent experiments with the microcosm materials showed that AFO treatment resulted in lower production of VC by shifting TeCA degradation from dichloroelimination pathways to production of a greater proportion of chlorinated ethane products, and decreasing the microbial capability to produce VC from 1,2-dichloroethylene. VC degradation was not stimulated in the presence of Fe(III). Rather, VC degradation occurred readily under methanogenic conditions and was inhibited under Fe(III)-reducing conditions.
Dostálová, Anna; Rommelaere, Samuel; Poidevin, Mickael; Lemaitre, Bruno
2017-09-05
Members of the thioester-containing protein (TEP) family contribute to host defence in both insects and mammals. However, their role in the immune response of Drosophila is elusive. In this study, we address the role of TEPs in Drosophila immunity by generating a mutant fly line, referred to as TEPq Δ , lacking the four immune-inducible TEPs, TEP1, 2, 3 and 4. Survival analyses with TEPq Δ flies reveal the importance of these proteins in defence against entomopathogenic fungi, Gram-positive bacteria and parasitoid wasps. Our results confirm that TEPs are required for efficient phagocytosis of bacteria, notably for the two Gram-positive species tested, Staphylococcus aureus and Enterococcus faecalis. Furthermore, we show that TEPq Δ flies have reduced Toll pathway activation upon microbial infection, resulting in lower expression of antimicrobial peptide genes. Epistatic analyses suggest that TEPs function upstream or independently of the serine protease ModSP at an initial stage of Toll pathway activation. Collectively, our study brings new insights into the role of TEPs in insect immunity. It reveals that TEPs participate in both humoral and cellular arms of immune response in Drosophila. In particular, it shows the importance of TEPs in defence against Gram-positive bacteria and entomopathogenic fungi, notably by promoting Toll pathway activation.
Sun, Meng-Fei; Zhu, Ying-Li; Zhou, Zhi-Lan; Jia, Xue-Bing; Xu, Yi-Da; Yang, Qin; Cui, Chun; Shen, Yan-Qin
2018-05-01
Parkinson's disease (PD) patients display alterations in gut microbiota composition. However, mechanism between gut microbial dysbiosis and pathogenesis of PD remains unexplored, and no recognized therapies are available to halt or slow progression of PD. Here we identified that gut microbiota from PD mice induced motor impairment and striatal neurotransmitter decrease on normal mice. Sequencing of 16S rRNA revealed that phylum Firmicutes and order Clostridiales decreased, while phylum Proteobacteria, order Turicibacterales and Enterobacteriales increased in fecal samples of PD mice, along with increased fecal short-chain fatty acids (SCFAs). Remarkably, fecal microbiota transplantation (FMT) reduced gut microbial dysbiosis, decreased fecal SCFAs, alleviated physical impairment, and increased striatal DA and 5-HT content of PD mice. Further, FMT reduced the activation of microglia and astrocytes in the substantia nigra, and reduced expression of TLR4/TNF-α signaling pathway components in gut and brain. Our study demonstrates that gut microbial dysbiosis is involved in PD pathogenesis, and FMT can protect PD mice by suppressing neuroinflammation and reducing TLR4/TNF-α signaling. Copyright © 2018 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Lian, Yingli; Yang, Yonggang; Guo, Jun; Wang, Yan; Li, Xiaojing; Fang, Yun; Gan, Lixia; Xu, Meiying
2016-08-01
Electron acceptor redox potential (EARP) was presumed to be a determining factor for microbial metabolism in many natural and engineered processes. However, little is known about the potentially global effects of EARP on bacteria. In this study, we compared the physiological and transcriptomic properties of Shewanella decolorationis S12 respiring with different EARPs in microbial electrochemical systems to avoid the effects caused by the other physicochemical properties of real electron acceptor. Results showed that the metabolic activities of strain S12 were nonlinear responses to EARP. The tricarboxylic acid cycle for central carbon metabolism was down-regulated while glyoxylate shunt was up-regulated at 0.8 V compared to 0.2 and -0.2 V, which suggested that EARP is an important but not the only determinant for metabolic pathways of strain S12. Moreover, few cytochrome c genes were differentially expressed at different EARPs. The energy intensive flagella assembly and assimilatory sulfur metabolism pathways were significantly enriched at 0.8 V, which suggested strain S12 had stronger electrokinesis behavior and oxidative stress-response at high EARP. This study provides the first global information of EARP regulations on microbial metabolism, which will be helpful for understanding microorganism respiration.
Kersten, Roland D; Ziemert, Nadine; Gonzalez, David J; Duggan, Brendan M; Nizet, Victor; Dorrestein, Pieter C; Moore, Bradley S
2013-11-19
Glycosyl groups are an essential mediator of molecular interactions in cells and on cellular surfaces. There are very few methods that directly relate sugar-containing molecules to their biosynthetic machineries. Here, we introduce glycogenomics as an experiment-guided genome-mining approach for fast characterization of glycosylated natural products (GNPs) and their biosynthetic pathways from genome-sequenced microbes by targeting glycosyl groups in microbial metabolomes. Microbial GNPs consist of aglycone and glycosyl structure groups in which the sugar unit(s) are often critical for the GNP's bioactivity, e.g., by promoting binding to a target biomolecule. GNPs are a structurally diverse class of molecules with important pharmaceutical and agrochemical applications. Herein, O- and N-glycosyl groups are characterized in their sugar monomers by tandem mass spectrometry (MS) and matched to corresponding glycosylation genes in secondary metabolic pathways by a MS-glycogenetic code. The associated aglycone biosynthetic genes of the GNP genotype then classify the natural product to further guide structure elucidation. We highlight the glycogenomic strategy by the characterization of several bioactive glycosylated molecules and their gene clusters, including the anticancer agent cinerubin B from Streptomyces sp. SPB74 and an antibiotic, arenimycin B, from Salinispora arenicola CNB-527.
Metagenomics reveals flavour metabolic network of cereal vinegar microbiota.
Wu, Lin-Huan; Lu, Zhen-Ming; Zhang, Xiao-Juan; Wang, Zong-Min; Yu, Yong-Jian; Shi, Jin-Song; Xu, Zheng-Hong
2017-04-01
Multispecies microbial community formed through centuries of repeated batch acetic acid fermentation (AAF) is crucial for the flavour quality of traditional vinegar produced from cereals. However, the metabolism to generate and/or formulate the essential flavours by the multispecies microbial community is hardly understood. Here we used metagenomic approach to clarify in situ metabolic network of key microbes responsible for flavour synthesis of a typical cereal vinegar, Zhenjiang aromatic vinegar, produced by solid-state fermentation. First, we identified 3 organic acids, 7 amino acids, and 20 volatiles as dominant vinegar metabolites. Second, we revealed taxonomic and functional composition of the microbiota by metagenomic shotgun sequencing. A total of 86 201 predicted protein-coding genes from 35 phyla (951 genera) were involved in Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways of Metabolism (42.3%), Genetic Information Processing (28.3%), and Environmental Information Processing (10.1%). Furthermore, a metabolic network for substrate breakdown and dominant flavour formation in vinegar microbiota was constructed, and microbial distribution discrepancy in different metabolic pathways was charted. This study helps elucidating different metabolic roles of microbes during flavour formation in vinegar microbiota. Copyright © 2016 Elsevier Ltd. All rights reserved.
Engineering a microbial platform for de novo biosynthesis of diverse methylxanthines
McKeague, Maureen; Wang, Yen-Hsiang; Cravens, Aaron; Win, Maung Nyan; Smolke, Christina D.
2016-01-01
Engineered microbial biosynthesis of plant natural products can support manufacturing of complex bioactive molecules and enable discovery of non-naturally occurring derivatives. Purine alkaloids, including caffeine (coffee), theophylline (antiasthma drug), theobromine (chocolate), and other methylxanthines, play a significant role in pharmacology and food chemistry. Here, we engineered the eukaryotic microbial host Saccharomyces cerevisiae for the de novo biosynthesis of methylxanthines. We constructed a xanthine-to-xanthosine conversion pathway in native yeast central metabolism to increase endogenous purine flux for the production of 7-methylxanthine, a key intermediate in caffeine biosynthesis. Yeast strains were further engineered to produce caffeine through expression of several enzymes from the coffee plant. By expressing combinations of different N-methyltransferases, we were able to demonstrate re-direction of flux to an alternate pathway and develop strains that support the production of diverse methylxanthines. We achieved production of 270 μg/L, 61 μg/L, and 3700 μg/L of caffeine, theophylline, and 3-methylxanthine, respectively, in 0.3-L bench-scale batch fermentations. The constructed strains provide an early platform for de novo production of methylxanthines and with further development will advance the discovery and synthesis of xanthine derivatives. PMID:27519552
Design and development of synthetic microbial platform cells for bioenergy
Lee, Sang Jun; Lee, Sang-Jae; Lee, Dong-Woo
2013-01-01
The finite reservation of fossil fuels accelerates the necessity of development of renewable energy sources. Recent advances in synthetic biology encompassing systems biology and metabolic engineering enable us to engineer and/or create tailor made microorganisms to produce alternative biofuels for the future bio-era. For the efficient transformation of biomass to bioenergy, microbial cells need to be designed and engineered to maximize the performance of cellular metabolisms for the production of biofuels during energy flow. Toward this end, two different conceptual approaches have been applied for the development of platform cell factories: forward minimization and reverse engineering. From the context of naturally minimized genomes,non-essential energy-consuming pathways and/or related gene clusters could be progressively deleted to optimize cellular energy status for bioenergy production. Alternatively, incorporation of non-indigenous parts and/or modules including biomass-degrading enzymes, carbon uptake transporters, photosynthesis, CO2 fixation, and etc. into chassis microorganisms allows the platform cells to gain novel metabolic functions for bioenergy. This review focuses on the current progress in synthetic biology-aided pathway engineering in microbial cells and discusses its impact on the production of sustainable bioenergy. PMID:23626588
NASA Astrophysics Data System (ADS)
Bebout, B.; Bebout, L. E.; Detweiler, A. M.; Everroad, R. C.; Lee, J.; Pett-Ridge, J.; Weber, P. K.
2014-12-01
Microbial mats are famously amongst the most diverse microbial ecosystems on Earth, inhabiting some of the most inclement environments known, including hypersaline, dry, hot, cold, nutrient poor, and high UV environments. The high microbial diversity of microbial mats makes studies of microbial ecology notably difficult. To address this challenge, we have been using a combination of metagenomics, metatranscriptomics, iTags and culture-based simplified microbial mats to study biogeochemical cycling (H2 production, N2 fixation, and fermentation) in microbial mats collected from Elkhorn Slough, Monterey Bay, California. Metatranscriptomes of microbial mats incubated over a diel cycle have revealed that a number of gene systems activate only during the day in Cyanobacteria, while the remaining appear to be constitutive. The dominant cyanobacterium in the mat (Microcoleus chthonoplastes) expresses several pathways for nitrogen scavenging undocumented in cultured strains, as well as the expression of two starch storage and utilization cycles. Community composition shifts in response to long term manipulations of mats were assessed using iTags. Changes in community diversity were observed as hydrogen fluxes increased in response to a lowering of sulfate concentrations. To produce simplified microbial mats, we have isolated members of 13 of the 15 top taxa from our iTag libraries into culture. Simplified microbial mats and simple co-cultures and consortia constructed from these isolates reproduce many of the natural patterns of biogeochemical cycling in the parent natural microbial mats, but against a background of far lower overall diversity, simplifying studies of changes in gene expression (over the short term), interactions between community members, and community composition changes (over the longer term), in response to environmental forcing.
Tian, Jing; Wang, Jingyuan; Dippold, Michaela; Gao, Yang; Blagodatskaya, Evgenia; Kuzyakov, Yakov
2016-06-15
The application of biochar (BC) in conjunction with mineral fertilizers is one of the most promising management practices recommended to improve soil quality. However, the interactive mechanisms of BC and mineral fertilizer addition affecting microbial communities and functions associated with soil organic matter (SOM) cycling are poorly understood. We investigated the SOM in physical and chemical fractions, microbial community structure (using phospholipid fatty acid analysis, PLFA) and functions (by analyzing enzymes involved in C and N cycling and Biolog) in a 6-year field experiment with BC and NPK amendment. BC application increased total soil C and particulate organic C for 47.4-50.4% and 63.7-74.6%, respectively. The effects of BC on the microbial community and C-cycling enzymes were dependent on fertilization. Addition of BC alone did not change the microbial community compared with the control, but altered the microbial community structure in conjunction with NPK fertilization. SOM fractions accounted for 55% of the variance in the PLFA-related microbial community structure. The particulate organic N explained the largest variation in the microbial community structure. Microbial metabolic activity strongly increased after BC addition, particularly the utilization of amino acids and amines due to an increase in the activity of proteolytic (l-leucine aminopeptidase) enzymes. These results indicate that microorganisms start to mine N from the SOM to compensate for high C:N ratios after BC application, which consequently accelerate cycling of stable N. Concluding, BC in combination with NPK fertilizer application strongly affected microbial community composition and functions, which consequently influenced SOM cycling. Copyright © 2016 Elsevier B.V. All rights reserved.
Wang, Ou; McAllister, Tim A; Plastow, Graham; Stanford, Kim; Selinger, Brent; Guan, Le Luo
2018-01-01
Cattle are the primary carrier of Escherichia coli O157:H7, a foodborne human pathogen, and those shedding >10 4 CFU/gram of feces of E. coli O157:H7 are defined as supershedders (SS). This study investigated the rectoanal junction (RAJ) mucosa-associated microbiota and its relationship with host gene expression in SS and in cattle from which E. coli O157:H7 was not detected (nonshedders [NS]), aiming to elucidate the mechanisms involved in supershedding. In total, 14 phyla, 66 families, and 101 genera of RAJ mucosa-associated bacteria were identified and Firmicutes (61.5 ± 7.5%), Bacteroidetes (27.9 ± 6.4%), and Proteobacteria (5.5 ± 2.1%) were the predominant phyla. Differential abundance analysis of operational taxonomic units (OTUs) identified 2 OTUs unique to SS which were members of Bacteroides and Clostridium and 7 OTUs unique to NS which were members of Coprococcus , Prevotella , Clostridium , and Paludibacter Differential abundance analysis of predicted microbial functions (using PICRUSt [phylogenetic investigation of communities by reconstruction of unobserved states]) revealed that 3 pathways had higher abundance (log 2 fold change, 0.10 to 0.23) whereas 12 pathways had lower abundance (log 2 fold change, -0.36 to -0.20) in SS. In addition, we identified significant correlations between expression of 19 differentially expressed genes and the relative abundance of predicted microbial functions, including nucleic acid polymerization and carbohydrate and amino acid metabolism. Our findings suggest that differences in RAJ microbiota at both the compositional and functional levels may be associated with E. coli O157:H7 supershedding and that certain microbial groups and microbial functions may influence RAJ physiology of SS by affecting host gene expression. IMPORTANCE Cattle with fecal E. coli O157:H7 at >10 4 CFU per gram of feces have been defined as the supershedders, and they are responsible for the most of the E. coli O157:H7 spread into farm environment. Currently, no method is available for beef producers to eliminate shedding of E. coli O157:H7 in cattle, and the lack of information about the mechanisms of supershedding greatly impedes the development of effective methods. This study investigated the role of the rectoanal junction (RAJ) mucosa-associated microbiome in E. coli O157:H7 shedding, and our results indicated that the compositions and functions of RAJ microbiota differed between supershedders and nonshedders. The identified relationship between the differentially abundant microbes and 19 previously identified differentially expressed genes suggests the role of host-microbial interactions involved in E. coli O157:H7 supershedding. Our findings provide a fundamental understanding of the supershedding phenomenon which is essential for the development of strategies, such as the use of directly fed microbials, to reduce E. coli O157:H7 shedding in cattle. Copyright © 2017 American Society for Microbiology.
Septic tank additive impacts on microbial populations.
Pradhan, S; Hoover, M T; Clark, G H; Gumpertz, M; Wollum, A G; Cobb, C; Strock, J
2008-01-01
Environmental health specialists, other onsite wastewater professionals, scientists, and homeowners have questioned the effectiveness of septic tank additives. This paper describes an independent, third-party, field scale, research study of the effects of three liquid bacterial septic tank additives and a control (no additive) on septic tank microbial populations. Microbial populations were measured quarterly in a field study for 12 months in 48 full-size, functioning septic tanks. Bacterial populations in the 48 septic tanks were statistically analyzed with a mixed linear model. Additive effects were assessed for three septic tank maintenance levels (low, intermediate, and high). Dunnett's t-test for tank bacteria (alpha = .05) indicated that none of the treatments were significantly different, overall, from the control at the statistical level tested. In addition, the additives had no significant effects on septic tank bacterial populations at any of the septic tank maintenance levels. Additional controlled, field-based research iswarranted, however, to address additional additives and experimental conditions.
Tírez lake as a terrestrial analog of Europa.
Prieto-Ballesteros, Olga; Rodríguez, Nuria; Kargel, Jeffrey S; Kessler, Carola González; Amils, Ricardo; Remolar, David Fernández
2003-01-01
Tírez Lake (La Mancha, central Spain) is proposed as a terrestrial analogue of Europa's ocean. The proposal is based on the comparison of the hydrogeochemistry of Tírez Lake with the geochemical features of the alteration mineralogy of meteoritic precursors and with Galileo's Near Infrared Mapping Spectrometer data on Europa's surface. To validate the astrobiological potential of Tírez Lake as an analog of Europa, different hydrogeochemical, mineral, and microbial analyses were performed. Experimental and theoretical modeling helped to understand the crystallization pathways that may occur in Europa's crust. Calculations about the oxidation state of the hypothetical Europan ocean were estimated to support the sulfate-rich neutral liquid model as the origin of Europa's observed hydrated minerals and to facilitate their comparison with Tírez's hydrogeochemistry. Hydrogeochemical and mineralogical analyses showed that Tírez waters corresponded to Mg-Na-SO(4)-Cl brines with epsomite, hexahydrite, and halite as end members. A preliminary microbial ecology characterization identified two different microbial domains: a photosynthetically sustained community represented by planktonic/benthonic forms and microbial mat communities, and a subsurficial anaerobic realm in which chemolithotrophy predominates. Fluorescence in situ hybridization has been used to characterize the prokaryotic diversity of the system. The subsurficial community seemed to be dominated by sulfate-reducing bacteria and methanogens. Frozen Tírez brines were analyzed by Fourier-transform infrared techniques providing spectra similar to those reported previously using pure components and to the Galileo spectral data. Calorimetric measurements of Tírez brines showed pathways and phase metastability for magnesium sulfate and sodium chloride crystallization that may aid in understanding the processes involved in the formation of Europa's icy crust. The use of fluorescence hybridization techniques for microbial detection and characterization in hypersaline environments makes this methodology strongly advisable for future Europa astrobiological missions.
Kwon, Man Jae; O’Loughlin, Edward J.; Boyanov, Maxim I.; ...
2016-01-22
Although iron- and sulfate-reducing bacteria in subsurface environments have crucial roles in biogeochemical cycling of C, Fe, and S, how specific electron donors impact the compositional structure and activity of native iron- and/or sulfate-reducing communities is largely unknown. To understand this better, we created bicarbonate-buffered batch systems in duplicate with three different electron donors (acetate, lactate, or glucose) paired with ferrihydrite and sulfate as the electron acceptors and inoculated them with subsurface sediment as the microbial inoculum. Sulfate and ferrihydrite reduction occurred simultaneously and were faster with lactate than with acetate. 16S rRNA-based sequence analysis of the communities over timemore » revealed that Desulfotomaculum was the major driver for sulfate reduction coupled with propionate oxidation in lactate-amended incubations. The reduction of sulfate resulted in sulfide production and subsequent abiotic reduction of ferrihydrite. In contrast, glucose promoted faster reduction of ferrihydrite, but without reduction of sulfate. Interestingly, the glucose-amended incubations led to two different biogeochemical trajectories among replicate bottles that resulted in distinct coloration (white and brown). The two outcomes in geochemical evolution might be due to the stochastic evolution of the microbial communities or subtle differences in the initial composition of the fermenting microbial community and its development via the use of different glucose fermentation pathways available within the community. Synchrotron-based x-ray analysis indicated that siderite and amorphous Fe(II) were formed in the replicate bottles with glucose, while ferrous sulfide and vivianite were formed with lactate or acetate. As a result, these data sets reveal that use of different C utilization pathways projects significant changes in microbial community composition over time that uniquely impact both the geochemistry and mineralogy of subsurface environments.« less
Gutarowska, Beata; Celikkol-Aydin, Sukriye; Bonifay, Vincent; Otlewska, Anna; Aydin, Egemen; Oldham, Athenia L; Brauer, Jonathan I; Duncan, Kathleen E; Adamiak, Justyna; Sunner, Jan A; Beech, Iwona B
2015-01-01
Preservation of cultural heritage is of paramount importance worldwide. Microbial colonization of construction materials, such as wood, brick, mortar, and stone in historic buildings can lead to severe deterioration. The aim of the present study was to give modern insight into the phylogenetic diversity and activated metabolic pathways of microbial communities colonized historic objects located in the former Auschwitz II-Birkenau concentration and extermination camp in Oświecim, Poland. For this purpose we combined molecular, microscopic and chemical methods. Selected specimens were examined using Field Emission Scanning Electron Microscopy (FESEM), metabolomic analysis and high-throughput Illumina sequencing. FESEM imaging revealed the presence of complex microbial communities comprising diatoms, fungi and bacteria, mainly cyanobacteria and actinobacteria, on sample surfaces. Microbial diversity of brick specimens appeared higher than that of the wood and was dominated by algae and cyanobacteria, while wood was mainly colonized by fungi. DNA sequences documented the presence of 15 bacterial phyla representing 99 genera including Halomonas, Halorhodospira, Salinisphaera, Salinibacterium, Rubrobacter, Streptomyces, Arthrobacter and nine fungal classes represented by 113 genera including Cladosporium, Acremonium, Alternaria, Engyodontium, Penicillium, Rhizopus, and Aureobasidium. Most of the identified sequences were characteristic of organisms implicated in deterioration of wood and brick. Metabolomic data indicated the activation of numerous metabolic pathways, including those regulating the production of primary and secondary metabolites, for example, metabolites associated with the production of antibiotics, organic acids and deterioration of organic compounds. The study demonstrated that a combination of electron microscopy imaging with metabolomic and genomic techniques allows to link the phylogenetic information and metabolic profiles of microbial communities and to shed new light on biodeterioration processes.
Gutarowska, Beata; Celikkol-Aydin, Sukriye; Bonifay, Vincent; Otlewska, Anna; Aydin, Egemen; Oldham, Athenia L.; Brauer, Jonathan I.; Duncan, Kathleen E.; Adamiak, Justyna; Sunner, Jan A.; Beech, Iwona B.
2015-01-01
Preservation of cultural heritage is of paramount importance worldwide. Microbial colonization of construction materials, such as wood, brick, mortar, and stone in historic buildings can lead to severe deterioration. The aim of the present study was to give modern insight into the phylogenetic diversity and activated metabolic pathways of microbial communities colonized historic objects located in the former Auschwitz II–Birkenau concentration and extermination camp in Oświecim, Poland. For this purpose we combined molecular, microscopic and chemical methods. Selected specimens were examined using Field Emission Scanning Electron Microscopy (FESEM), metabolomic analysis and high-throughput Illumina sequencing. FESEM imaging revealed the presence of complex microbial communities comprising diatoms, fungi and bacteria, mainly cyanobacteria and actinobacteria, on sample surfaces. Microbial diversity of brick specimens appeared higher than that of the wood and was dominated by algae and cyanobacteria, while wood was mainly colonized by fungi. DNA sequences documented the presence of 15 bacterial phyla representing 99 genera including Halomonas, Halorhodospira, Salinisphaera, Salinibacterium, Rubrobacter, Streptomyces, Arthrobacter and nine fungal classes represented by 113 genera including Cladosporium, Acremonium, Alternaria, Engyodontium, Penicillium, Rhizopus, and Aureobasidium. Most of the identified sequences were characteristic of organisms implicated in deterioration of wood and brick. Metabolomic data indicated the activation of numerous metabolic pathways, including those regulating the production of primary and secondary metabolites, for example, metabolites associated with the production of antibiotics, organic acids and deterioration of organic compounds. The study demonstrated that a combination of electron microscopy imaging with metabolomic and genomic techniques allows to link the phylogenetic information and metabolic profiles of microbial communities and to shed new light on biodeterioration processes. PMID:26483760
The Soil Microbial Response to a Massive Natural Gas Leak
NASA Astrophysics Data System (ADS)
Tavormina, P. L.; Newman, S.; Shen, L.; Connon, S. A.; Okumura, M.; Orphan, V. J.
2016-12-01
The 2015/2016 gas leak in the Porter Ranch community (Southern California) was the largest natural gas leak in US history. While considerable attention has focused on the amount of methane released to the atmosphere and the effects of other gas components on human well-being, less attention has been given to the response of soil microbes to this event. These microbes represent natural pathways for utilization of C1 compounds in soils and, possibly, untapped potential to remediate natural and anthropogenic gas emissions. We monitored onsite and background soil methane concentrations and microbial communities during and following the Porter Ranch gas leak. Soil core samples (25cm depth, collected twice monthly beginning in January 2016) were preserved for DNA, RNA, microscopic, stable isotope probing, and chromatographic methods. Simultaneously to coring, gas from soil pore spaces was collected for cavity ringdown spectroscopy to measure carbon dioxide, methane and ethane concentrations, and estimate corresponding isotopic values in carbon dioxide and methane. By pairing these measurements with high throughput sequencing, transcript analysis, and cultivation, we demonstrate discrete shifts in the total microbial community in surface (0 - 5 cm) and deep (20 - 25 cm) soils. Importantly, we find that methane consumption likely occurred in surface soils during and following the leak. The lineages most significantly correlated with elevated methane from the leak event were five orders of magnitude more abundant near the leak event in space and time, indicating a microbial bloom. These lineages are previously unrecognized members of Sphingomonadaceae, and they encode at least two biochemical pathways for methane oxidation. Cultivation of the first representative of this group now allows more detailed investigation into its capacity for microbially-mediated soil methane oxidation and mitigation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kwon, Man Jae; O’Loughlin, Edward J.; Boyanov, Maxim I.
Although iron- and sulfate-reducing bacteria in subsurface environments have crucial roles in biogeochemical cycling of C, Fe, and S, how specific electron donors impact the compositional structure and activity of native iron- and/or sulfate-reducing communities is largely unknown. To understand this better, we created bicarbonate-buffered batch systems in duplicate with three different electron donors (acetate, lactate, or glucose) paired with ferrihydrite and sulfate as the electron acceptors and inoculated them with subsurface sediment as the microbial inoculum. Sulfate and ferrihydrite reduction occurred simultaneously and were faster with lactate than with acetate. 16S rRNA-based sequence analysis of the communities over timemore » revealed that Desulfotomaculum was the major driver for sulfate reduction coupled with propionate oxidation in lactate-amended incubations. The reduction of sulfate resulted in sulfide production and subsequent abiotic reduction of ferrihydrite. In contrast, glucose promoted faster reduction of ferrihydrite, but without reduction of sulfate. Interestingly, the glucose-amended incubations led to two different biogeochemical trajectories among replicate bottles that resulted in distinct coloration (white and brown). The two outcomes in geochemical evolution might be due to the stochastic evolution of the microbial communities or subtle differences in the initial composition of the fermenting microbial community and its development via the use of different glucose fermentation pathways available within the community. Synchrotron-based x-ray analysis indicated that siderite and amorphous Fe(II) were formed in the replicate bottles with glucose, while ferrous sulfide and vivianite were formed with lactate or acetate. As a result, these data sets reveal that use of different C utilization pathways projects significant changes in microbial community composition over time that uniquely impact both the geochemistry and mineralogy of subsurface environments.« less
NASA Astrophysics Data System (ADS)
Bomberg, M.; Lamminmäki, T.; Itävaara, M.
2015-08-01
The microbial diversity in oligotrophic isolated crystalline Fennoscandian Shield bedrock fracture groundwaters is great but the core community has not been identified. Here we characterized the bacterial and archaeal communities in 12 water conductive fractures situated at depths between 296 and 798 m by high throughput amplicon sequencing using the Illumina HiSeq platform. The great sequencing depth revealed that up to 95 and 99 % of the bacterial and archaeal communities, respectively, were composed of only a few common species, i.e. the core microbiome. However, the remaining rare microbiome contained over 3 and 6 fold more bacterial and archaeal taxa. Several clusters of co-occurring rare taxa were identified, which correlated significantly with physicochemical parameters, such as salinity, concentration of inorganic or organic carbon, sulphur, pH and depth. The metabolic properties of the microbial communities were predicted using PICRUSt. The rough prediction showed that the metabolic pathways included commonly fermentation, fatty acid oxidation, glycolysis/gluconeogenesis, oxidative phosphorylation and methanogenesis/anaerobic methane oxidation, but carbon fixation through the Calvin cycle, reductive TCA cycle and the Wood-Ljungdahl pathway was also predicted. The rare microbiome is an unlimited source of genomic functionality in all ecosystems. It may consist of remnants of microbial communities prevailing in earlier conditions on Earth, but could also be induced again if changes in their living conditions occur. In this study only the rare taxa correlated with any physicochemical parameters. Thus these microorganisms can respond to environmental change caused by physical or biological factors that may lead to alterations in the diversity and function of the microbial communities in crystalline bedrock environments.
Kwon, Man Jae; O'Loughlin, Edward J; Boyanov, Maxim I; Brulc, Jennifer M; Johnston, Eric R; Kemner, Kenneth M; Antonopoulos, Dionysios A
2016-01-01
Although iron- and sulfate-reducing bacteria in subsurface environments have crucial roles in biogeochemical cycling of C, Fe, and S, how specific electron donors impact the compositional structure and activity of native iron- and/or sulfate-reducing communities is largely unknown. To understand this better, we created bicarbonate-buffered batch systems in duplicate with three different electron donors (acetate, lactate, or glucose) paired with ferrihydrite and sulfate as the electron acceptors and inoculated them with subsurface sediment as the microbial inoculum. Sulfate and ferrihydrite reduction occurred simultaneously and were faster with lactate than with acetate. 16S rRNA-based sequence analysis of the communities over time revealed that Desulfotomaculum was the major driver for sulfate reduction coupled with propionate oxidation in lactate-amended incubations. The reduction of sulfate resulted in sulfide production and subsequent abiotic reduction of ferrihydrite. In contrast, glucose promoted faster reduction of ferrihydrite, but without reduction of sulfate. Interestingly, the glucose-amended incubations led to two different biogeochemical trajectories among replicate bottles that resulted in distinct coloration (white and brown). The two outcomes in geochemical evolution might be due to the stochastic evolution of the microbial communities or subtle differences in the initial composition of the fermenting microbial community and its development via the use of different glucose fermentation pathways available within the community. Synchrotron-based x-ray analysis indicated that siderite and amorphous Fe(II) were formed in the replicate bottles with glucose, while ferrous sulfide and vivianite were formed with lactate or acetate. These data sets reveal that use of different C utilization pathways projects significant changes in microbial community composition over time that uniquely impact both the geochemistry and mineralogy of subsurface environments.
Kennedy, Jonathan; Marchesi, Julian R; Dobson, Alan DW
2008-01-01
Metagenomic based strategies have previously been successfully employed as powerful tools to isolate and identify enzymes with novel biocatalytic activities from the unculturable component of microbial communities from various terrestrial environmental niches. Both sequence based and function based screening approaches have been employed to identify genes encoding novel biocatalytic activities and metabolic pathways from metagenomic libraries. While much of the focus to date has centred on terrestrial based microbial ecosystems, it is clear that the marine environment has enormous microbial biodiversity that remains largely unstudied. Marine microbes are both extremely abundant and diverse; the environments they occupy likewise consist of very diverse niches. As culture-dependent methods have thus far resulted in the isolation of only a tiny percentage of the marine microbiota the application of metagenomic strategies holds great potential to study and exploit the enormous microbial biodiversity which is present within these marine environments. PMID:18717988
The Role of Synthetic Biology in the Design of Microbial Cell Factories for Biofuel Production
Colin, Verónica Leticia; Rodríguez, Analía; Cristóbal, Héctor Antonio
2011-01-01
Insecurity in the supply of fossil fuels, volatile fuel prices, and major concerns regarding climate change have sparked renewed interest in the production of fuels from renewable resources. Because of this, the use of biodiesel has grown dramatically during the last few years and is expected to increase even further in the future. Biodiesel production through the use of microbial systems has marked a turning point in the field of biofuels since it is emerging as an attractive alternative to conventional technology. Recent progress in synthetic biology has accelerated the ability to analyze, construct, and/or redesign microbial metabolic pathways with unprecedented precision, in order to permit biofuel production that is amenable to industrial applications. The review presented here focuses specifically on the role of synthetic biology in the design of microbial cell factories for efficient production of biodiesel. PMID:22028591
Rapid fucosylation of intestinal epithelium sustains host-commensal symbiosis in sickness
Pickard, Joseph M.; Maurice, Corinne F.; Kinnebrew, Melissa A.; Abt, Michael C.; Schenten, Dominik; Golovkina, Tatyana; Bogatyrev, Said R.; Ismagilov, Rustem F.; Pamer, Eric G.; Turnbaugh, Peter J.; Chervonsky, Alexander V.
2014-01-01
Systemic infection induces conserved physiological responses that include both resistance and ‘tolerance of infection’ mechanisms1. Temporary anorexia associated with an infection is often beneficial2,3 reallocating energy from food foraging towards resistance to infection4 or depriving pathogens of nutrients 5. It imposes, however, a stress on intestinal commensals, as they also experience reduced substrate availability and impacting host fitness due to the loss of caloric intake and colonization resistance (protection from additional infections)6. We hypothesized that the host might utilize internal resources to support the gut microbiota during the acute phase of the disease. Here we show that systemic exposure to Toll-like receptor (TLR) ligands causes rapid α1,2-fucosylation of the small intestine epithelial cells (IEC), which requires sensing of TLR agonists and production of IL-23 by dendritic cells, activation of innate lymphoid cells and expression of α1,2-Fucosyltransferase-2 (Fut2) by IL-22-stimulated IECs. Fucosylated proteins are shed into the lumen and fucose is liberated and metabolized by the gut microbiota, as shown by reporter bacteria and community-wide analysis of microbial gene expression. Fucose affects the expression of microbial metabolic pathways and reduces the expression of bacterial virulence genes. It also improves host tolerance of the mild pathogen Citrobacter rodentium. Thus, rapid IEC fucosylation appears to be a protective mechanism that utilizes the host's resources to maintain host-microbial interactions during pathogen-induced stress. PMID:25274297
Taxonomic and Functional Microbial Signatures of the Endemic Marine Sponge Arenosclera brasiliensis
Trindade-Silva, Amaro E.; Rua, Cintia; Silva, Genivaldo G. Z.; Dutilh, Bas E.; Moreira, Ana Paula B.; Edwards, Robert A.; Hajdu, Eduardo; Lobo-Hajdu, Gisele; Vasconcelos, Ana Tereza; Berlinck, Roberto G. S.; Thompson, Fabiano L.
2012-01-01
The endemic marine sponge Arenosclera brasiliensis (Porifera, Demospongiae, Haplosclerida) is a known source of secondary metabolites such as arenosclerins A-C. In the present study, we established the composition of the A. brasiliensis microbiome and the metabolic pathways associated with this community. We used 454 shotgun pyrosequencing to generate approximately 640,000 high-quality sponge-derived sequences (∼150 Mb). Clustering analysis including sponge, seawater and twenty-three other metagenomes derived from marine animal microbiomes shows that A. brasiliensis contains a specific microbiome. Fourteen bacterial phyla (including Proteobacteria, Cyanobacteria, Actinobacteria, Bacteroidetes, Firmicutes and Cloroflexi) were consistently found in the A. brasiliensis metagenomes. The A. brasiliensis microbiome is enriched for Betaproteobacteria (e.g., Burkholderia) and Gammaproteobacteria (e.g., Pseudomonas and Alteromonas) compared with the surrounding planktonic microbial communities. Functional analysis based on Rapid Annotation using Subsystem Technology (RAST) indicated that the A. brasiliensis microbiome is enriched for sequences associated with membrane transport and one-carbon metabolism. In addition, there was an overrepresentation of sequences associated with aerobic and anaerobic metabolism as well as the synthesis and degradation of secondary metabolites. This study represents the first analysis of sponge-associated microbial communities via shotgun pyrosequencing, a strategy commonly applied in similar analyses in other marine invertebrate hosts, such as corals and algae. We demonstrate that A. brasiliensis has a unique microbiome that is distinct from that of the surrounding planktonic microbes and from other marine organisms, indicating a species-specific microbiome. PMID:22768320
NASA Astrophysics Data System (ADS)
Wun, S. R.; Huang, T. Y.; Hsu, B. M.; Fan, C. W.
2017-12-01
We aimed to study the effects of physical factors on the relative abundance of bacteria and their preferential admissions of autotrophic CO2 fixation pathways after subjected to environmental long-term influence. The Narrow-Sky located in upper part of Takangshan is a small gulch of Pleistocene coralline limestone formation in southern Taiwan. The physical parameters such as illumination, humidity, and temperature were varied largely in habitats around the gulch, namely on the limestone wall at the opening of gulch, on the coordinate ground soil, on the wall inside the gulch, and the water drip from limestone wall. The total organic carbon was measured in solid samples to evaluate the biomass of the habitats. A metagenomic approach was carried out to reveal their microbial community structure. After the metagenomic library of operational taxonomic units (OTUs) was constructed, a BLAST search by "nomenclature of bacteria" instead of sequences between the OTU libraries and KEGG database was carried out to generate libraries of "model microbial communities", which the complete genomes of the entire bacterial populations were available. Our results showed the biomass of habitats in the opening of gulch was twice higher than the inside, suggesting the illumination played an important role in biosynthesis. In quantitative comparison in key enzymes of CO2 fixation pathways by model communities, 70% to 90% of bacteria possessed key enzymes of Fuchs-Holo cycle, while only 5% to 20% of bacteria contained key enzymes of Calvin-Benson cycle. The key enzymes for hydroxypropionate/ hydroxybutyrate and dicarboxylate/ 4-hydroxybutyrate cycles were not found in this study. In the water sample, approximate 10% of bacteria consisted of the key enzyme for Arnon-Buchanan cycle. Less than 2% of bacteria in all habitats take the reductive acetyl-CoA cycle for CO2 fixation. This study provides a novel method to study biosynthetic process of microbial communities in natural habitats.
Kirui, Wesley K; Wu, Shubiao; Kizito, Simon; Carvalho, Pedro N; Dong, Renjie
2016-01-15
Intermittent aeration and addition of glucose were applied to horizontal subsurface flow constructed wetlands in order to investigate the effect on pathways of nitrobenzene (NB) degradation and interactions with microbial nitrogen and sulphur transformations. The experiment was carried out in three phases A, B and C consisting of different NB loading and glucose dosing. For each phase, the effect of aeration was assessed by intermittently aerating one wetland and leaving one unaerated. Regardless of whether or not the wetland was aerated, at an influent NB concentration of 140 mg/L, both wetlands significantly reduced NB to less than 2 mg/L, a reduction efficiency of 98%. However, once the influent NB concentration was increased to 280 mg/L, the aerated wetland had a higher removal performance 82% compared to that of the unaerated wetland 71%. Addition of glucose further intensified the NB removal to 95% in the aerated wetlands and 92% in the unaerated. Aeration of wetlands enhanced NB degradation, but also resulted in higher NB volatilization of 6 mg m(-2) d(-1). The detected high concentration of sulphide 20-60 mg/L in the unaerated wetland gave a strong indication that NB may act as an electron donor to sulphate-reducing bacteria, but this should be further investigated. Aeration positively improved NB removal in constructed wetlands, but resulted in higher NB volatilization. Glucose addition induced co-metabolism to enhance NB degradation. Copyright © 2015 Elsevier Ltd. All rights reserved.
Azo dye degradation pathway and bacterial community structure in biofilm electrode reactors.
Cao, Xian; Wang, Hui; Zhang, Shuai; Nishimura, Osamu; Li, Xianning
2018-05-31
In this study, the degradation pathway of the azo dye X-3B was explored in biofilm electrode reactors (BERs). The X-3B and chemical oxygen demand (COD) removal efficiencies were evaluated under different voltages, salinities, and temperatures. The removal efficiencies increased with increasing voltage. Additionally, the BER achieved maximum X-3B removal efficiencies of 66.26% and 75.27% at a NaCl concentration of 0.33 g L -1 and temperature of 32 °C, respectively; it achieved a COD removal efficiency of 75.64% at a NaCl concentration of 0.330 g L -1 . Fourier transform infrared spectrometry and gas chromatography-mass spectrometry analysis indicated that the X-3B biodegradation process first involved the interruption of the conjugated double-bond, resulting in aniline, benzodiazepine substance, triazine, and naphthalene ring formation. These compounds were further degraded into lower-molecular-weight products. From this, the degradation pathway of the azo dye X-3B was proposed in BERs. The relative abundances of the microbial community at the phylum and genus levels were affected by temperature, the presence of electrons, and an anaerobic environment in the BERs. To achieve better removal efficiencies, further studies on the functions of the microorganisms are needed. Copyright © 2018. Published by Elsevier Ltd.
Colonization-Induced Host-Gut Microbial Metabolic Interaction
Claus, Sandrine P.; Ellero, Sandrine L.; Berger, Bernard; Krause, Lutz; Bruttin, Anne; Molina, Jérôme; Paris, Alain; Want, Elizabeth J.; de Waziers, Isabelle; Cloarec, Olivier; Richards, Selena E.; Wang, Yulan; Dumas, Marc-Emmanuel; Ross, Alastair; Rezzi, Serge; Kochhar, Sunil; Van Bladeren, Peter; Lindon, John C.; Holmes, Elaine; Nicholson, Jeremy K.
2011-01-01
The gut microbiota enhances the host’s metabolic capacity for processing nutrients and drugs and modulate the activities of multiple pathways in a variety of organ systems. We have probed the systemic metabolic adaptation to gut colonization for 20 days following exposure of axenic mice (n = 35) to a typical environmental microbial background using high-resolution 1H nuclear magnetic resonance (NMR) spectroscopy to analyze urine, plasma, liver, kidney, and colon (5 time points) metabolic profiles. Acquisition of the gut microbiota was associated with rapid increase in body weight (4%) over the first 5 days of colonization with parallel changes in multiple pathways in all compartments analyzed. The colonization process stimulated glycogenesis in the liver prior to triggering increases in hepatic triglyceride synthesis. These changes were associated with modifications of hepatic Cyp8b1 expression and the subsequent alteration of bile acid metabolites, including taurocholate and tauromuricholate, which are essential regulators of lipid absorption. Expression and activity of major drug-metabolizing enzymes (Cyp3a11 and Cyp2c29) were also significantly stimulated. Remarkably, statistical modeling of the interactions between hepatic metabolic profiles and microbial composition analyzed by 16S rRNA gene pyrosequencing revealed strong associations of the Coriobacteriaceae family with both the hepatic triglyceride, glucose, and glycogen levels and the metabolism of xenobiotics. These data demonstrate the importance of microbial activity in metabolic phenotype development, indicating that microbiota manipulation is a useful tool for beneficially modulating xenobiotic metabolism and pharmacokinetics in personalized health care. PMID:21363910
Gene-centric approach to integrating environmental genomics and biogeochemical models.
Reed, Daniel C; Algar, Christopher K; Huber, Julie A; Dick, Gregory J
2014-02-04
Rapid advances in molecular microbial ecology have yielded an unprecedented amount of data about the evolutionary relationships and functional traits of microbial communities that regulate global geochemical cycles. Biogeochemical models, however, are trailing in the wake of the environmental genomics revolution, and such models rarely incorporate explicit representations of bacteria and archaea, nor are they compatible with nucleic acid or protein sequence data. Here, we present a functional gene-based framework for describing microbial communities in biogeochemical models by incorporating genomics data to provide predictions that are readily testable. To demonstrate the approach in practice, nitrogen cycling in the Arabian Sea oxygen minimum zone (OMZ) was modeled to examine key questions about cryptic sulfur cycling and dinitrogen production pathways in OMZs. Simulations support previous assertions that denitrification dominates over anammox in the central Arabian Sea, which has important implications for the loss of fixed nitrogen from the oceans. Furthermore, cryptic sulfur cycling was shown to attenuate the secondary nitrite maximum often observed in OMZs owing to changes in the composition of the chemolithoautotrophic community and dominant metabolic pathways. Results underscore the need to explicitly integrate microbes into biogeochemical models rather than just the metabolisms they mediate. By directly linking geochemical dynamics to the genetic composition of microbial communities, the method provides a framework for achieving mechanistic insights into patterns and biogeochemical consequences of marine microbes. Such an approach is critical for informing our understanding of the key role microbes play in modulating Earth's biogeochemistry.
Younge, Noelle; Yang, Qing; Seed, Patrick C.
2016-01-01
Objective To determine the effect of enteral fish oil and safflower oil supplementation on the intestinal microbiome in premature infants with an enterostomy. Study design Premature infants with an enterostomy were randomized to receive early enteral supplementation with a high fat-polyunsaturated fatty acid (HF-PUFA) blend of fish oil and safflower oil versus standard nutritional therapy. We used 16S rRNA gene sequencing for longitudinal profiling of the microbiome from the time of study entry until bowel reanastomosis. We used weighted gene co-expression network analysis to identify microbial community modules that differed between study groups over time. We performed imputed metagenomic analysis to determine metabolic pathways associated with the microbial genes. Results Sixteen infants were randomized to receive enteral HF-PUFA supplementation and 16 infants received standard care. The intestinal microbiota of infants in the treatment group differed from those in the control group, with greater bacterial diversity and lower abundance of Streptococcus, Clostridium, and many pathogenic genera within the Enterobacteriaceae family. We identified four microbial community modules with significant differences between groups over time. Imputed metagenomic analysis of the microbial genes revealed metabolic pathways that differed between groups, including metabolism of amino acids, carbohydrates, fatty acids, and secondary bile acid synthesis. Conclusion Enteral HF-PUFA supplementation was associated with decreased abundance of pathogenic bacteria, greater bacterial diversity, and shifts in the potential metabolic functions of intestinal microbiota. Trial registration ClinicalTrials.gov: NCT01306838 PMID:27856001
Younge, Noelle; Yang, Qing; Seed, Patrick C
2017-02-01
To determine the effect of enteral fish oil and safflower oil supplementation on the intestinal microbiome in infants with an enterostomy born premature. Infants with an enterostomy born premature were randomized to receive early enteral supplementation with a high-fat polyunsaturated fatty acid (HF-PUFA) blend of fish oil and safflower oil vs standard nutritional therapy. We used 16S rRNA gene sequencing for longitudinal profiling of the microbiome from the time of study entry until bowel reanastomosis. We used weighted gene coexpression network analysis to identify microbial community modules that differed between study groups over time. We performed imputed metagenomic analysis to determine metabolic pathways associated with the microbial genes. Sixteen infants were randomized to receive enteral HF-PUFA supplementation, and 16 infants received standard care. The intestinal microbiota of infants in the treatment group differed from those in the control group, with greater bacterial diversity and lower abundance of Streptococcus, Clostridium, and many pathogenic genera within the Enterobacteriaceae family. We identified 4 microbial community modules with significant differences between groups over time. Imputed metagenomic analysis of the microbial genes revealed metabolic pathways that differed between groups, including metabolism of amino acids, carbohydrates, fatty acids, and secondary bile acid synthesis. Enteral HF-PUFA supplementation was associated with decreased abundance of pathogenic bacteria, greater bacterial diversity, and shifts in the potential metabolic functions of intestinal microbiota. ClinicalTrials.gov:NCT01306838. Copyright © 2016 Elsevier Inc. All rights reserved.
Hong, Xutao; Chen, Jing; Liu, Lin; Wu, Huan; Tan, Haiqin; Xie, Guangfa; Xu, Qian; Zou, Huijun; Yu, Wenjing; Wang, Lan; Qin, Nan
2016-01-01
Chinese Rice Wine (CRW) is a common alcoholic beverage in China. To investigate the influence of microbial composition on the quality of CRW, high throughput sequencing was performed for 110 wine samples on bacterial 16S rRNA gene and fungal Internal Transcribed Spacer II (ITS2). Bioinformatic analyses demonstrated that the quality of yeast starter and final wine correlated with microbial taxonomic composition, which was exemplified by our finding that wine spoilage resulted from a high proportion of genus Lactobacillus. Subsequently, based on Lactobacillus abundance of an early stage, a model was constructed to predict final wine quality. In addition, three batches of 20 representative wine samples selected from a pool of 110 samples were further analyzed in metagenomics. The results revealed that wine spoilage was due to rapid growth of Lactobacillus brevis at the early stage of fermentation. Gene functional analysis indicated the importance of some pathways such as synthesis of biotin, malolactic fermentation and production of short-chain fatty acid. These results led to a conclusion that metabolisms of microbes influence the wine quality. Thus, nurturing of beneficial microbes and inhibition of undesired ones are both important for the mechanized brewery. PMID:27241862
Hong, Xutao; Chen, Jing; Liu, Lin; Wu, Huan; Tan, Haiqin; Xie, Guangfa; Xu, Qian; Zou, Huijun; Yu, Wenjing; Wang, Lan; Qin, Nan
2016-05-31
Chinese Rice Wine (CRW) is a common alcoholic beverage in China. To investigate the influence of microbial composition on the quality of CRW, high throughput sequencing was performed for 110 wine samples on bacterial 16S rRNA gene and fungal Internal Transcribed Spacer II (ITS2). Bioinformatic analyses demonstrated that the quality of yeast starter and final wine correlated with microbial taxonomic composition, which was exemplified by our finding that wine spoilage resulted from a high proportion of genus Lactobacillus. Subsequently, based on Lactobacillus abundance of an early stage, a model was constructed to predict final wine quality. In addition, three batches of 20 representative wine samples selected from a pool of 110 samples were further analyzed in metagenomics. The results revealed that wine spoilage was due to rapid growth of Lactobacillus brevis at the early stage of fermentation. Gene functional analysis indicated the importance of some pathways such as synthesis of biotin, malolactic fermentation and production of short-chain fatty acid. These results led to a conclusion that metabolisms of microbes influence the wine quality. Thus, nurturing of beneficial microbes and inhibition of undesired ones are both important for the mechanized brewery.
Aerobic Microbial Respiration In Oceanic Oxygen Minimum Zones.
Kalvelage, Tim; Lavik, Gaute; Jensen, Marlene M; Revsbech, Niels Peter; Löscher, Carolin; Schunck, Harald; Desai, Dhwani K; Hauss, Helena; Kiko, Rainer; Holtappels, Moritz; LaRoche, Julie; Schmitz, Ruth A; Graco, Michelle I; Kuypers, Marcel M M
2015-01-01
Oxygen minimum zones are major sites of fixed nitrogen loss in the ocean. Recent studies have highlighted the importance of anaerobic ammonium oxidation, anammox, in pelagic nitrogen removal. Sources of ammonium for the anammox reaction, however, remain controversial, as heterotrophic denitrification and alternative anaerobic pathways of organic matter remineralization cannot account for the ammonium requirements of reported anammox rates. Here, we explore the significance of microaerobic respiration as a source of ammonium during organic matter degradation in the oxygen-deficient waters off Namibia and Peru. Experiments with additions of double-labelled oxygen revealed high aerobic activity in the upper OMZs, likely controlled by surface organic matter export. Consistently observed oxygen consumption in samples retrieved throughout the lower OMZs hints at efficient exploitation of vertically and laterally advected, oxygenated waters in this zone by aerobic microorganisms. In accordance, metagenomic and metatranscriptomic analyses identified genes encoding for aerobic terminal oxidases and demonstrated their expression by diverse microbial communities, even in virtually anoxic waters. Our results suggest that microaerobic respiration is a major mode of organic matter remineralization and source of ammonium (~45-100%) in the upper oxygen minimum zones, and reconcile hitherto observed mismatches between ammonium producing and consuming processes therein.