Science.gov

Sample records for addition microbial pathways

  1. Microbial biosurfactants as additives for food industries.

    PubMed

    Campos, Jenyffer Medeiros; Stamford, Tânia Lúcia Montenegro; Sarubbo, Leonie Asfora; de Luna, Juliana Moura; Rufino, Raquel Diniz; Banat, Ibrahim M

    2013-01-01

    Microbial biosurfactants with high ability to reduce surface and interfacial surface tension and conferring important properties such as emulsification, detergency, solubilization, lubrication and phase dispersion have a wide range of potential applications in many industries. Significant interest in these compounds has been demonstrated by environmental, bioremediation, oil, petroleum, food, beverage, cosmetic and pharmaceutical industries attracted by their low toxicity, biodegradability and sustainable production technologies. Despite having significant potentials associated with emulsion formation, stabilization, antiadhesive and antimicrobial activities, significantly less output and applications have been reported in food industry. This has been exacerbated by uneconomical or uncompetitive costing issues for their production when compared to plant or chemical counterparts. In this review, biosurfactants properties, present uses and potential future applications as food additives acting as thickening, emulsifying, dispersing or stabilising agents in addition to the use of sustainable economic processes utilising agro-industrial wastes as alternative substrates for their production are discussed.

  2. Nutrient addition dramatically accelerates microbial community succession.

    PubMed

    Knelman, Joseph E; Schmidt, Steven K; Lynch, Ryan C; Darcy, John L; Castle, Sarah C; Cleveland, Cory C; Nemergut, Diana R

    2014-01-01

    The ecological mechanisms driving community succession are widely debated, particularly for microorganisms. While successional soil microbial communities are known to undergo predictable changes in structure concomitant with shifts in a variety of edaphic properties, the causal mechanisms underlying these patterns are poorly understood. Thus, to specifically isolate how nutrients--important drivers of plant succession--affect soil microbial succession, we established a full factorial nitrogen (N) and phosphorus (P) fertilization plot experiment in recently deglaciated (∼3 years since exposure), unvegetated soils of the Puca Glacier forefield in Southeastern Peru. We evaluated soil properties and examined bacterial community composition in plots before and one year after fertilization. Fertilized soils were then compared to samples from three reference successional transects representing advancing stages of soil development ranging from 5 years to 85 years since exposure. We found that a single application of +NP fertilizer caused the soil bacterial community structure of the three-year old soils to most resemble the 85-year old soils after one year. Despite differences in a variety of soil edaphic properties between fertilizer plots and late successional soils, bacterial community composition of +NP plots converged with late successional communities. Thus, our work suggests a mechanism for microbial succession whereby changes in resource availability drive shifts in community composition, supporting a role for nutrient colimitation in primary succession. These results suggest that nutrients alone, independent of other edaphic factors that change with succession, act as an important control over soil microbial community development, greatly accelerating the rate of succession.

  3. Biochar addition impacts soil microbial community in tropical soils

    NASA Astrophysics Data System (ADS)

    Paz-Ferreiro, Jorge; Fu, Shenglei; Méndez, Ana; Gascó, Gabriel

    2014-05-01

    Studies on the effect of biochar on soil microbial activity and community structure in tropical areas are scarce. In this study we report the effect of several types of biochar (sewage sludge biochar, paper mill waste biochar, miscanthus biochar and pinewood biochar) in the soil microbial community of two tropical soils, an Acrisol and an Oxisol. In addition we study the effect of the presence or absence of earthworms in soil microbial community. Soil microbial community was more strongly affected by biochar than by the presence or absence of macrofauna.

  4. Expanding the product profile of a microbial alkane biosynthetic pathway.

    PubMed

    Harger, Matthew; Zheng, Lei; Moon, Austin; Ager, Casey; An, Ju Hye; Choe, Chris; Lai, Yi-Ling; Mo, Benjamin; Zong, David; Smith, Matthew D; Egbert, Robert G; Mills, Jeremy H; Baker, David; Pultz, Ingrid Swanson; Siegel, Justin B

    2013-01-18

    Microbially produced alkanes are a new class of biofuels that closely match the chemical composition of petroleum-based fuels. Alkanes can be generated from the fatty acid biosynthetic pathway by the reduction of acyl-ACPs followed by decarbonylation of the resulting aldehydes. A current limitation of this pathway is the restricted product profile, which consists of n-alkanes of 13, 15, and 17 carbons in length. To expand the product profile, we incorporated a new part, FabH2 from Bacillus subtilis , an enzyme known to have a broader specificity profile for fatty acid initiation than the native FabH of Escherichia coli . When provided with the appropriate substrate, the addition of FabH2 resulted in an altered alkane product profile in which significant levels of n-alkanes of 14 and 16 carbons in length are produced. The production of even chain length alkanes represents initial steps toward the expansion of this recently discovered microbial alkane production pathway to synthesize complex fuels. This work was conceived and performed as part of the 2011 University of Washington international Genetically Engineered Machines (iGEM) project.

  5. Microbial Community Responses to Glycine Addition in Kansas Prairie Soils

    NASA Astrophysics Data System (ADS)

    Bottos, E.; Roy Chowdhury, T.; White, R. A., III; Brislawn, C.; Fansler, S.; Kim, Y. M.; Metz, T. O.; McCue, L. A.; Jansson, J.

    2015-12-01

    Advances in sequencing technologies are rapidly expanding our abilities to unravel aspects of microbial community structure and function in complex systems like soil; however, characterizing the highly diverse communities is problematic, due primarily to challenges in data analysis. To tackle this problem, we aimed to constrain the microbial diversity in a soil by enriching for particular functional groups within a community through addition of "trigger substrates". Such trigger substrates, characterized by low molecular weight, readily soluble and diffusible in soil solution, representative of soil organic matter derivatives, would also be rapidly degradable. A relatively small energy investment to maintain the cell in a state of metabolic alertness for such substrates would be a better evolutionary strategy and presumably select for a cohort of microorganisms with the energetics and cellular machinery for utilization and growth. We chose glycine, a free amino acid (AA) known to have short turnover times (in the range of hours) in soil. As such, AAs are a good source of nitrogen and easily degradable, and can serve as building blocks for microbial proteins and other biomass components. We hypothesized that the addition of glycine as a trigger substrate will decrease microbial diversity and evenness, as taxa capable of metabolizing it are enriched in relation to those that are not. We tested this hypothesis by incubating three Kansas native prairie soils with glycine for 24 hours at 21 degree Celsius, and measured community level responses by 16S rRNA gene sequencing, metagenomics, and metatranscriptomics. Preliminary evaluation of 16S rRNA gene sequences revealed minor changes in bacterial community composition in response to glycine addition. We will also present data on functional gene abundance and expression. The results of these analyses will be useful in designing sequencing strategies aimed at dissecting and deciphering complex microbial communities.

  6. A Microbial Feed Additive Abates Intestinal Inflammation in Atlantic Salmon

    PubMed Central

    Vasanth, Ghana; Kiron, Viswanath; Kulkarni, Amod; Dahle, Dalia; Lokesh, Jep; Kitani, Yoichiro

    2015-01-01

    The efficacy of a microbial feed additive (Bactocell®) in countering intestinal inflammation in Atlantic salmon was examined in this study. Fish were fed either the additive-coated feed (probiotic) or feed without it (control). After an initial 3-week feeding, an inflammatory condition was induced by anally intubating all the fish with oxazolone. The fish were offered the feeds for 3 more weeks. Distal intestine from the groups was obtained at 4 h, 24 h, and 3 weeks, after oxazolone treatment. Inflammatory responses were prominent in both groups at 24 h, documented by changes in intestinal micromorphology, expression of inflammation-related genes, and intestinal proteome. The control group was characterized by edema, widening of intestinal villi and lamina propria, infiltration of granulocytes and lymphocytes, and higher expression of genes related to inflammatory responses, mul1b, il1b, tnfa, ifng, compared to the probiotic group or other time points of the control group. Further, the protein expression in the probiotic group at 24 h after inducing inflammation revealed five differentially regulated proteins – Calr, Psma5, Trp1, Ctsb, and Naga. At 3 weeks after intubation, the inflammatory responses subsided in the probiotic group. The findings provide evidence that the microbial additive contributes to intestinal homeostasis in Atlantic salmon. PMID:26347738

  7. Kinetic analysis of microbial respiratory response to substrate addition

    NASA Astrophysics Data System (ADS)

    Blagodatskaya, Evgenia; Blagodatsky, Sergey; Yuyukina, Tatayna; Kuzyakov, Yakov

    2010-05-01

    Heterotrophic component of CO2 emitted from soil is mainly due to the respiratory activity of soil microorganisms. Field measurements of microbial respiration can be used for estimation of C-budget in soil, while laboratory estimation of respiration kinetics allows the elucidation of mechanisms of soil C sequestration. Physiological approaches based on 1) time-dependent or 2) substrate-dependent respiratory response of soil microorganisms decomposing the organic substrates allow to relate the functional properties of soil microbial community with decomposition rates of soil organic matter. We used a novel methodology combining (i) microbial growth kinetics and (ii) enzymes affinity to the substrate to show the shift in functional properties of the soil microbial community after amendments with substrates of contrasting availability. We combined the application of 14C labeled glucose as easily available C source to soil with natural isotope labeling of old and young soil SOM. The possible contribution of two processes: isotopic fractionation and preferential substrate utilization to the shifts in δ13C during SOM decomposition in soil after C3-C4 vegetation change was evaluated. Specific growth rate (µ) of soil microorganisms was estimated by fitting the parameters of the equation v(t) = A + B * exp(µ*t), to the measured CO2 evolution rate (v(t)) after glucose addition, and where A is the initial rate of non-growth respiration, B - initial rate of the growing fraction of total respiration. Maximal mineralization rate (Vmax), substrate affinity of microbial enzymes (Ks) and substrate availability (Sn) were determined by Michaelis-Menten kinetics. To study the effect of plant originated C on δ13C signature of SOM we compared the changes in isotopic composition of different C pools in C3 soil under grassland with C3-C4 soil where C4 plant Miscanthus giganteus was grown for 12 years on the plot after grassland. The shift in 13δ C caused by planting of M. giganteus

  8. Soil microbial responses to nitrogen addition in arid ecosystems.

    PubMed

    Sinsabaugh, Robert L; Belnap, Jayne; Rudgers, Jennifer; Kuske, Cheryl R; Martinez, Noelle; Sandquist, Darren

    2015-01-01

    The N cycle of arid ecosystems is influenced by low soil organic matter, high soil pH, and extremes in water potential and temperature that lead to open canopies and development of biological soil crusts (biocrusts). We investigated the effects of N amendment on soil microbial dynamics in a Larrea tridentata-Ambrosia dumosa shrubland site in southern Nevada USA. Sites were fertilized with a NO3-NH4 mix at 0, 7, and 15 kg N ha(-1) y(-1) from March 2012 to March 2013. In March 2013, biocrust (0-0.5 cm) and bulk soils (0-10 cm) were collected beneath Ambrosia canopies and in the interspaces between plants. Biomass responses were assessed as bacterial and fungal SSU rRNA gene copy number and chlorophyll a concentration. Metabolic responses were measured by five ecoenzyme activities and rates of N transformation. By most measures, nutrient availability, microbial biomass, and process rates were greater in soils beneath the shrub canopy compared to the interspace between plants, and greater in the surface biocrust horizon compared to the deeper 10 cm soil profile. Most measures responded positively to experimental N addition. Effect sizes were generally greater for bulk soil than biocrust. Results were incorporated into a meta-analysis of arid ecosystem responses to N amendment that included data from 14 other studies. Effect sizes were calculated for biomass and metabolic responses. Regressions of effect sizes, calculated for biomass, and metabolic responses, showed similar trends in relation to N application rate and N load (rate × duration). The critical points separating positive from negative treatment effects were 88 kg ha(-1) y(-1) and 159 kg ha(-1), respectively, for biomass, and 70 kg ha(-1) y(-1) and 114 kg ha(-1), respectively, for metabolism. These critical values are comparable to those for microbial biomass, decomposition rates and respiration reported in broader meta-analyses of N amendment effects in mesic ecosystems. However, large effect sizes at low N

  9. Soil microbial responses to nitrogen addition in arid ecosystems

    PubMed Central

    Sinsabaugh, Robert L.; Belnap, Jayne; Rudgers, Jennifer; Kuske, Cheryl R.; Martinez, Noelle; Sandquist, Darren

    2015-01-01

    The N cycle of arid ecosystems is influenced by low soil organic matter, high soil pH, and extremes in water potential and temperature that lead to open canopies and development of biological soil crusts (biocrusts). We investigated the effects of N amendment on soil microbial dynamics in a Larrea tridentata-Ambrosia dumosa shrubland site in southern Nevada USA. Sites were fertilized with a NO3-NH4 mix at 0, 7, and 15 kg N ha-1 y-1 from March 2012 to March 2013. In March 2013, biocrust (0–0.5 cm) and bulk soils (0–10 cm) were collected beneath Ambrosia canopies and in the interspaces between plants. Biomass responses were assessed as bacterial and fungal SSU rRNA gene copy number and chlorophyll a concentration. Metabolic responses were measured by five ecoenzyme activities and rates of N transformation. By most measures, nutrient availability, microbial biomass, and process rates were greater in soils beneath the shrub canopy compared to the interspace between plants, and greater in the surface biocrust horizon compared to the deeper 10 cm soil profile. Most measures responded positively to experimental N addition. Effect sizes were generally greater for bulk soil than biocrust. Results were incorporated into a meta-analysis of arid ecosystem responses to N amendment that included data from 14 other studies. Effect sizes were calculated for biomass and metabolic responses. Regressions of effect sizes, calculated for biomass, and metabolic responses, showed similar trends in relation to N application rate and N load (rate × duration). The critical points separating positive from negative treatment effects were 88 kg ha-1 y-1 and 159 kg ha-1, respectively, for biomass, and 70 kg ha-1 y-1 and 114 kg ha-1, respectively, for metabolism. These critical values are comparable to those for microbial biomass, decomposition rates and respiration reported in broader meta-analyses of N amendment effects in mesic ecosystems. However, large effect sizes at low N addition

  10. Soil microbial responses to nitrogen addition in arid ecosystems

    SciTech Connect

    Sinsabaugh, Robert L.; Belnap, Jayne; Rudgers, Jennifer; Kuske, Cheryl R.; Martinez, Noelle; Sandquist, Darren

    2015-08-14

    The N cycle of arid ecosystems is influenced by low soil organic matter, high soil pH, and extremes in water potential and temperature that lead to open canopies and development of biological soil crusts (biocrusts). We investigated the effects of N amendment on soil microbial dynamics in a Larrea tridentata-Ambrosia dumosa shrubland site in southern Nevada USA. Sites were fertilized with a NO3-NH4 mix at 0, 7, and 15 kg N ha-1 y-1 from March 2012 to March 2013. In March 2013, biocrust (0–0.5 cm) and bulk soils (0–10 cm) were collected beneath Ambrosia canopies and in the interspaces between plants. Biomass responses were assessed as bacterial and fungal SSU rRNA gene copy number and chlorophyll a concentration. Metabolic responses were measured by five ecoenzyme activities and rates of N transformation. With most measures, nutrient availability, microbial biomass, and process rates were greater in soils beneath the shrub canopy compared to the interspace between plants, and greater in the surface biocrust horizon compared to the deeper 10 cm soil profile. Most measures responded positively to experimental N addition. Effect sizes were generally greater for bulk soil than biocrust. Results were incorporated into a meta-analysis of arid ecosystem responses to N amendment that included data from 14 other studies. Effect sizes were calculated for biomass and metabolic responses. Regressions of effect sizes, calculated for biomass, and metabolic responses, showed similar trends in relation to N application rate and N load (rate × duration). The critical points separating positive from negative treatment effects were 88 kg ha-1 y-1 and 159 kg ha-1, respectively, for biomass, and 70 kg ha-1 y-1 and 114 kg ha-1, respectively, for metabolism. These critical values are comparable to those for microbial biomass, decomposition rates and respiration

  11. Soil microbial responses to nitrogen addition in arid ecosystems

    DOE PAGES

    Sinsabaugh, Robert L.; Belnap, Jayne; Rudgers, Jennifer; ...

    2015-08-14

    The N cycle of arid ecosystems is influenced by low soil organic matter, high soil pH, and extremes in water potential and temperature that lead to open canopies and development of biological soil crusts (biocrusts). We investigated the effects of N amendment on soil microbial dynamics in a Larrea tridentata-Ambrosia dumosa shrubland site in southern Nevada USA. Sites were fertilized with a NO3-NH4 mix at 0, 7, and 15 kg N ha-1 y-1 from March 2012 to March 2013. In March 2013, biocrust (0–0.5 cm) and bulk soils (0–10 cm) were collected beneath Ambrosia canopies and in the interspaces betweenmore » plants. Biomass responses were assessed as bacterial and fungal SSU rRNA gene copy number and chlorophyll a concentration. Metabolic responses were measured by five ecoenzyme activities and rates of N transformation. With most measures, nutrient availability, microbial biomass, and process rates were greater in soils beneath the shrub canopy compared to the interspace between plants, and greater in the surface biocrust horizon compared to the deeper 10 cm soil profile. Most measures responded positively to experimental N addition. Effect sizes were generally greater for bulk soil than biocrust. Results were incorporated into a meta-analysis of arid ecosystem responses to N amendment that included data from 14 other studies. Effect sizes were calculated for biomass and metabolic responses. Regressions of effect sizes, calculated for biomass, and metabolic responses, showed similar trends in relation to N application rate and N load (rate × duration). The critical points separating positive from negative treatment effects were 88 kg ha-1 y-1 and 159 kg ha-1, respectively, for biomass, and 70 kg ha-1 y-1 and 114 kg ha-1, respectively, for metabolism. These critical values are comparable to those for microbial biomass, decomposition rates and respiration reported in broader meta-analyses of N amendment effects in mesic ecosystems. The large effect sizes at low N

  12. Dispersed oil disrupts microbial pathways in pelagic food webs.

    PubMed

    Ortmann, Alice C; Anders, Jennifer; Shelton, Naomi; Gong, Limin; Moss, Anthony G; Condon, Robert H

    2012-01-01

    Most of the studies of microbial processes in response to the Deepwater Horizon oil spill focused on the deep water plume, and not on the surface communities. The effects of the crude oil and the application of dispersants on the coastal microbial food web in the northern Gulf of Mexico have not been well characterized even though these regions support much of the fisheries production in the Gulf. A mesocosm experiment was carried out to determine how the microbial community off the coast of Alabama may have responded to the influx of surface oil and dispersants. While the addition of glucose or oil alone resulted in an increase in the biomass of ciliates, suggesting transfer of carbon to higher trophic levels was likely; a different effect was seen in the presence of dispersant. The addition of dispersant or dispersed oil resulted in an increase in the biomass of heterotrophic prokaryotes, but a significant inhibition of ciliates, suggesting a reduction in grazing and decrease in transfer of carbon to higher trophic levels. Similar patterns were observed in two separate experiments with different starting nutrient regimes and microbial communities suggesting that the addition of dispersant and dispersed oil to the northern Gulf of Mexico waters in 2010 may have reduced the flow of carbon to higher trophic levels, leading to a decrease in the production of zooplankton and fish on the Alabama shelf.

  13. Soil microbial responses to forest floor litter manipulation and nitrogen addition in a mixed-wood forest of northern China.

    PubMed

    Sun, Xiao-Lu; Zhao, Jing; You, Ye-Ming; Jianxin Sun, Osbert

    2016-01-14

    Changes in litterfall dynamics and soil properties due to anthropogenic or natural perturbations have important implications to soil carbon (C) and nutrient cycling via microbial pathway. Here we determine soil microbial responses to contrasting types of litter inputs (leaf vs. fine woody litter) and nitrogen (N) deposition by conducting a multi-year litter manipulation and N addition experiment in a mixed-wood forest. We found significantly higher soil organic C, total N, microbial biomass C (MBC) and N (MBN), microbial activity (MR), and activities of four soil extracellular enzymes, including β-glucosidase (BG), N-acetyl-β-glucosaminidase (NAG), phenol oxidase (PO), and peroxidase (PER), as well as greater total bacteria biomass and relative abundance of gram-negative bacteria (G-) community, in top soils of plots with presence of leaf litter than of those without litter or with presence of only fine woody litter. No apparent additive or interactive effects of N addition were observed in this study. The occurrence of more labile leaf litter stimulated G-, which may facilitate microbial community growth and soil C stabilization as inferred by findings in literature. A continued treatment with contrasting types of litter inputs is likely to result in divergence in soil microbial community structure and function.

  14. Soil microbial responses to forest floor litter manipulation and nitrogen addition in a mixed-wood forest of northern China

    PubMed Central

    Sun, Xiao-Lu; Zhao, Jing; You, Ye-Ming; Jianxin Sun, Osbert

    2016-01-01

    Changes in litterfall dynamics and soil properties due to anthropogenic or natural perturbations have important implications to soil carbon (C) and nutrient cycling via microbial pathway. Here we determine soil microbial responses to contrasting types of litter inputs (leaf vs. fine woody litter) and nitrogen (N) deposition by conducting a multi-year litter manipulation and N addition experiment in a mixed-wood forest. We found significantly higher soil organic C, total N, microbial biomass C (MBC) and N (MBN), microbial activity (MR), and activities of four soil extracellular enzymes, including β-glucosidase (BG), N-acetyl-β-glucosaminidase (NAG), phenol oxidase (PO), and peroxidase (PER), as well as greater total bacteria biomass and relative abundance of gram-negative bacteria (G-) community, in top soils of plots with presence of leaf litter than of those without litter or with presence of only fine woody litter. No apparent additive or interactive effects of N addition were observed in this study. The occurrence of more labile leaf litter stimulated G-, which may facilitate microbial community growth and soil C stabilization as inferred by findings in literature. A continued treatment with contrasting types of litter inputs is likely to result in divergence in soil microbial community structure and function. PMID:26762490

  15. 78 FR 41703 - Regulation of Fuels and Fuel Additives: Additional Qualifying Renewable Fuel Pathways Under the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-11

    ... unfarmed land in other countries into cropland for energy grass-based renewable fuel production... AGENCY 40 CFR Part 80 RIN 2060-AR85 Regulation of Fuels and Fuel Additives: Additional Qualifying Renewable Fuel Pathways Under the Renewable Fuel Standard Program; Final Rule Approving Renewable...

  16. Stimulation of methane generation from nonproductive coal by addition of nutrients or a microbial consortium.

    PubMed

    Jones, Elizabeth J P; Voytek, Mary A; Corum, Margo D; Orem, William H

    2010-11-01

    Biogenic formation of methane from coal is of great interest as an underexploited source of clean energy. The goal of some coal bed producers is to extend coal bed methane productivity and to utilize hydrocarbon wastes such as coal slurry to generate new methane. However, the process and factors controlling the process, and thus ways to stimulate it, are poorly understood. Subbituminous coal from a nonproductive well in south Texas was stimulated to produce methane in microcosms when the native population was supplemented with nutrients (biostimulation) or when nutrients and a consortium of bacteria and methanogens enriched from wetland sediment were added (bioaugmentation). The native population enriched by nutrient addition included Pseudomonas spp., Veillonellaceae, and Methanosarcina barkeri. The bioaugmented microcosm generated methane more rapidly and to a higher concentration than the biostimulated microcosm. Dissolved organics, including long-chain fatty acids, single-ring aromatics, and long-chain alkanes accumulated in the first 39 days of the bioaugmented microcosm and were then degraded, accompanied by generation of methane. The bioaugmented microcosm was dominated by Geobacter sp., and most of the methane generation was associated with growth of Methanosaeta concilii. The ability of the bioaugmentation culture to produce methane from coal intermediates was confirmed in incubations of culture with representative organic compounds. This study indicates that methane production could be stimulated at the nonproductive field site and that low microbial biomass may be limiting in situ methane generation. In addition, the microcosm study suggests that the pathway for generating methane from coal involves complex microbial partnerships.

  17. Stimulation of methane generation from nonproductive coal by addition of nutrients or a microbial consortium

    USGS Publications Warehouse

    Jones, Elizabeth J.P.; Voytek, Mary A.; Corum, Margo D.; Orem, William H.

    2010-01-01

    Biogenic formation of methane from coal is of great interest as an underexploited source of clean energy. The goal of some coal bed producers is to extend coal bed methane productivity and to utilize hydrocarbon wastes such as coal slurry to generate new methane. However, the process and factors controlling the process, and thus ways to stimulate it, are poorly understood. Subbituminous coal from a nonproductive well in south Texas was stimulated to produce methane in microcosms when the native population was supplemented with nutrients (biostimulation) or when nutrients and a consortium of bacteria and methanogens enriched from wetland sediment were added (bioaugmentation). The native population enriched by nutrient addition included Pseudomonas spp., Veillonellaceae, and Methanosarcina barkeri. The bioaugmented microcosm generated methane more rapidly and to a higher concentration than the biostimulated microcosm. Dissolved organics, including long-chain fatty acids, single-ring aromatics, and long-chain alkanes accumulated in the first 39 days of the bioaugmented microcosm and were then degraded, accompanied by generation of methane. The bioaugmented microcosm was dominated by Geobacter sp., and most of the methane generation was associated with growth of Methanosaeta concilii. The ability of the bioaugmentation culture to produce methane from coal intermediates was confirmed in incubations of culture with representative organic compounds. This study indicates that methane production could be stimulated at the nonproductive field site and that low microbial biomass may be limiting in situ methane generation. In addition, the microcosm study suggests that the pathway for generating methane from coal involves complex microbial partnerships.

  18. Genomic markers of ancient anaerobic microbial pathways: sulfate reduction, methanogenesis, and methane oxidation.

    PubMed

    Teske, Andreas; Dhillon, Ashita; Sogin, Mitchell L

    2003-04-01

    Genomic markers for anaerobic microbial processes in marine sediments-sulfate reduction, methanogenesis, and anaerobic methane oxidation-reveal the structure of sulfate-reducing, methanogenic, and methane-oxidizing microbial communities (including uncultured members); they allow inferences about the evolution of these ancient microbial pathways; and they open genomic windows into extreme microbial habitats, such as deep subsurface sediments and hydrothermal vents, that are analogs for the early Earth and for extraterrestrial microbiota.

  19. Microbial chemical factories: recent advances in pathway engineering for synthesis of value added chemicals.

    PubMed

    Dhamankar, Himanshu; Prather, Kristala L J

    2011-08-01

    The dwindling nature of petroleum and other fossil reserves has provided impetus towards microbial synthesis of fuels and value added chemicals from biomass-derived sugars as a renewable resource. Microbes have naturally evolved enzymes and pathways that can convert biomass into hundreds of unique chemical structures, a property that can be effectively exploited for their engineering into Microbial Chemical Factories (MCFs). De novo pathway engineering facilitates expansion of the repertoire of microbially synthesized compounds beyond natural products. In this review, we visit some recent successes in such novel pathway engineering and optimization, with particular emphasis on the selection and engineering of pathway enzymes and balancing of their accessory cofactors.

  20. The STING controlled cytosolic-DNA activated innate immune pathway and microbial disease.

    PubMed

    Konno, Hiroyasu; Barber, Glen N

    2014-12-01

    The innate immune system is critically important for the primary sensing of invading pathogens. Over the past decade, the cellular sensors important for recognizing microbial entry into the host cell have been largely elucidated. These sensors, some of which are evolutionarily conserved, include the Toll-like receptor (TLR) and RIG-I-like helicase family (RLH) pathway that can recognize bacterial and viral non-self nucleic acid. In addition, a cellular sensor referred to as STING (for stimulator of interferon genes) has been shown to be critical for triggering host defense countermeasures, including stimulation of the adaptive immune response, following the detection of cytosolic DNA species. The STING pathway has now been shown to be critical for activating innate immune gene transcription in response to infection by DNA pathogens such as herpes simplex virus 1 (HSV1) as well as retroviruses. In addition, it is clear that chronic STING activation can also cause autoinflammatory disease manifested by self-DNA. Here we review recent developments in our understanding of STING function, including importance in the control of microbial disease.

  1. Changes in microbial community characteristics and soil organic matter with nitrogen additions in two tropical forests

    SciTech Connect

    Cusack, Daniela F.; Silver, Whendee; Torn, Margaret S.; Burton, Sarah D.; Firestone, Mary

    2011-03-01

    Microbial communities and their associated enzyme activities affect the amount and chemical quality of carbon (C) in soils. Increasing nitrogen (N) deposition, particularly in N-rich tropical forests, is likely to change the composition and behavior of microbial communities and feed back on ecosystem structure and function. This study presents a novel assessment of mechanistic links between microbial responses to N deposition and shifts in soil organic matter (SOM) quality and quantity. We used phospholipid fatty acid (PLFA) analysis and microbial enzyme assays in soils to assess microbial community responses to long-term N additions in two distinct tropical rain forests. We used soil density fractionation and 13C nuclear magnetic resonance (NMR) spectroscopy to measure related changes in SOM pool sizes and chemical quality. Microbial biomass increased in response to N fertilization in both tropical forests and corresponded to declines in pools of low-density SOM. The chemical quality of this soil C pool reflected ecosystem-specific changes in microbial community composition. In the lower-elevation forest, there was an increase in gram-negative bacteria PLFA biomass, and there were significant losses of labile C chemical groups (O-alkyls). In contrast, the upper-elevation tropical forest had an increase in fungal PLFAs with N additions and declines in C groups associated with increased soil C storage (alkyls). The dynamics of microbial enzymatic activities with N addition provided a functional link between changes in microbial community structure and SOM chemistry. Ecosystem-specific changes in microbial community composition are likely to have far-reaching effects on soil carbon storage and cycling. This study indicates that microbial communities in N-rich tropical forests can be sensitive to added N, but we can expect significant variability in how ecosystem structure and function respond to N deposition among tropical forest types.

  2. Changes in microbial community characteristics and soil organic matter with nitrogen additions in two tropical forests.

    PubMed

    Cusack, Daniela F; Silver, Whendee L; Torn, Margaret S; Burton, Sarah D; Firestone, Mary K

    2011-03-01

    Microbial communities and their associated enzyme activities affect the amount and chemical quality of carbon (C) in soils. Increasing nitrogen (N) deposition, particularly in N-rich tropical forests, is likely to change the composition and behavior of microbial communities and feed back on ecosystem structure and function. This study presents a novel assessment of mechanistic links between microbial responses to N deposition and shifts in soil organic matter (SOM) quality and quantity. We used phospholipid fatty acid (PLFA) analysis and microbial enzyme assays in soils to assess microbial community responses to long-term N additions in two distinct tropical rain forests. We used soil density fractionation and 13C nuclear magnetic resonance (NMR) spectroscopy to measure related changes in SOM pool sizes and chemical quality. Microbial biomass increased in response to N fertilization in both tropical forests and corresponded to declines in pools of low-density SOM. The chemical quality of this soil C pool reflected ecosystem-specific changes in microbial community composition. In the lower-elevation forest, there was an increase in gram-negative bacteria PLFA biomass, and there were significant losses of labile C chemical groups (O-alkyls). In contrast, the upper-elevation tropical forest had an increase in fungal PLFAs with N additions and declines in C groups associated with increased soil C storage (alkyls). The dynamics of microbial enzymatic activities with N addition provided a functional link between changes in microbial community structure and SOM chemistry. Ecosystem-specific changes in microbial community composition are likely to have far-reaching effects on soil carbon storage and cycling. This study indicates that microbial communities in N-rich tropical forests can be sensitive to added N, but we can expect significant variability in how ecosystem structure and function respond to N deposition among tropical forest types.

  3. Stimulation of Methane Generation from Nonproductive Coal by Addition of Nutrients or a Microbial Consortium▿

    PubMed Central

    Jones, Elizabeth J. P.; Voytek, Mary A.; Corum, Margo D.; Orem, William H.

    2010-01-01

    Biogenic formation of methane from coal is of great interest as an underexploited source of clean energy. The goal of some coal bed producers is to extend coal bed methane productivity and to utilize hydrocarbon wastes such as coal slurry to generate new methane. However, the process and factors controlling the process, and thus ways to stimulate it, are poorly understood. Subbituminous coal from a nonproductive well in south Texas was stimulated to produce methane in microcosms when the native population was supplemented with nutrients (biostimulation) or when nutrients and a consortium of bacteria and methanogens enriched from wetland sediment were added (bioaugmentation). The native population enriched by nutrient addition included Pseudomonas spp., Veillonellaceae, and Methanosarcina barkeri. The bioaugmented microcosm generated methane more rapidly and to a higher concentration than the biostimulated microcosm. Dissolved organics, including long-chain fatty acids, single-ring aromatics, and long-chain alkanes accumulated in the first 39 days of the bioaugmented microcosm and were then degraded, accompanied by generation of methane. The bioaugmented microcosm was dominated by Geobacter sp., and most of the methane generation was associated with growth of Methanosaeta concilii. The ability of the bioaugmentation culture to produce methane from coal intermediates was confirmed in incubations of culture with representative organic compounds. This study indicates that methane production could be stimulated at the nonproductive field site and that low microbial biomass may be limiting in situ methane generation. In addition, the microcosm study suggests that the pathway for generating methane from coal involves complex microbial partnerships. PMID:20817801

  4. Marine Microbial Secondary Metabolites: Pathways, Evolution and Physiological Roles.

    PubMed

    Giordano, Daniela; Coppola, Daniela; Russo, Roberta; Denaro, Renata; Giuliano, Laura; Lauro, Federico M; di Prisco, Guido; Verde, Cinzia

    2015-01-01

    Microbes produce a huge array of secondary metabolites endowed with important ecological functions. These molecules, which can be catalogued as natural products, have long been exploited in medical fields as antibiotics, anticancer and anti-infective agents. Recent years have seen considerable advances in elucidating natural-product biosynthesis and many drugs used today are natural products or natural-product derivatives. The major contribution to recent knowledge came from application of genomics to secondary metabolism and was facilitated by all relevant genes being organised in a contiguous DNA segment known as gene cluster. Clustering of genes regulating biosynthesis in bacteria is virtually universal. Modular gene clusters can be mixed and matched during evolution to generate structural diversity in natural products. Biosynthesis of many natural products requires the participation of complex molecular machines known as polyketide synthases and non-ribosomal peptide synthetases. Discovery of new evolutionary links between the polyketide synthase and fatty acid synthase pathways may help to understand the selective advantages that led to evolution of secondary-metabolite biosynthesis within bacteria. Secondary metabolites confer selective advantages, either as antibiotics or by providing a chemical language that allows communication among species, with other organisms and their environment. Herewith, we discuss these aspects focusing on the most clinically relevant bioactive molecules, the thiotemplated modular systems that include polyketide synthases, non-ribosomal peptide synthetases and fatty acid synthases. We begin by describing the evolutionary and physiological role of marine natural products, their structural/functional features, mechanisms of action and biosynthesis, then turn to genomic and metagenomic approaches, highlighting how the growing body of information on microbial natural products can be used to address fundamental problems in

  5. Final report - Microbial pathways for the reduction of mercury in saturated subsurface sediments

    SciTech Connect

    Tamar barkay; Lily Young; Gerben Zylstra

    2009-08-25

    Mercury is a component of mixed wastes that have contaminated vast areas of the deep subsurface as a result of nuclear weapon and energy production. While this mercury is mostly bound to soil constituents episodes of groundwater contamination are known in some cases resulting in potable water super saturated with Hg(0). Microbial processes that reduce Hg(II) to the elemental form Hg(0) in the saturated subsurface sediments may contribute to this problem. When we started the project, only one microbial pathway for the reduction of Hg(II), the one mediated by the mer operon in mercury resistant bacteria was known. As we had previously demonstrated that the mer mediated process occurred in highly contaminated environments (Schaefer et al., 2004), and mercury concentrations in the subsurface were reported to be low (Krabbenhoft and Babiarz, 1992), we hypothesized that other microbial processes might be active in reducing Hg(II) to Hg(0) in saturated subsurface environments. The specific goals of our projects were: (1) Investigating the potential for Hg(II) reduction under varying electron accepting conditions in subsurface sediments and relating these potential to mer gene distribution; and (2) Examining the physiological and biochemical characteristics of the interactions of anaerobic bacteria with mercury. The results are briefly summarized with references to published papers and manuscripts in preparation where details about our research can be found. Additional information may be found in copies of our published manuscripts and conference proceedings, and our yearly reports that were submitted through the RIMS system.

  6. Engineering and comparison of non-natural pathways for microbial phenol production.

    PubMed

    Thompson, Brian; Machas, Michael; Nielsen, David R

    2016-08-01

    The non-renewable petrochemical phenol is used as a precursor to produce numerous fine and commodity chemicals, including various pharmaceuticals and phenolic resins. Microbial phenol biosynthesis has previously been established, stemming from endogenous tyrosine via tyrosine phenol lyase (TPL). TPL, however, suffers from feedback inhibition and equilibrium limitations, both of which contribute to reduced flux through the overall pathway. To address these limitations, two novel and non-natural phenol biosynthesis pathways, both stemming instead from chorismate, were constructed and comparatively evaluated. The first proceeds to phenol in one heterologous step via the intermediate p-hydroxybenzoic acid, while the second involves two heterologous steps and the associated intermediates isochorismate and salicylate. Maximum phenol titers achieved via these two alternative pathways reached as high as 377 ± 14 and 259 ± 31 mg/L in batch shake flask cultures, respectively. In contrast, under analogous conditions, phenol production via the established TPL-dependent route reached 377 ± 23 mg/L, which approaches the maximum achievable output reported to date under batch conditions. Additional strain development and optimization of relevant culture conditions with respect to each individual pathway is ultimately expected to result in further improved phenol production. Biotechnol. Bioeng. 2016;113: 1745-1754. © 2016 Wiley Periodicals, Inc.

  7. Nitrogen addition shifts the microbial community in the rhizosphere of Pinus tabuliformis in Northwestern China

    PubMed Central

    Lv, Fenglian; Xue, Sha; Wang, Guoliang; Zhang, Chao

    2017-01-01

    Atmospheric nitrogen (N) deposition profoundly alters the soil microbial communities and will thus affect nutrient cycles. The effects of N availability on microbial community, however, are not clear. We used PLFA analysis to evaluate the effects of a gradient of N addition (0, 2.8, 5.6, 11.2, and 22.4 g N m-2 y-1) for three years on the rhizospheric microbial community of Pinus tabuliformis seedlings. The main factors influencing the community were quantified using structural equation modelling and redundancy analysis. At the microbial-community level, N addition increased the total phospholipid fatty acids content by increasing the dissolved organic carbon (DOC) and root biomass. Increases in soil microbial biomass carbon and N, however, was attributed to the increased DOC, N content and decreased pH. At the microbial-groups level, Fungal, arbuscular mycorrhizal fungal (AMF), gram-positive bacterial (GP) abundances and the GP:GN ratio first increased and then decreased with N addition. Nitrogen addition increased the abundances of bacteria, fungi, and actinomycetes mainly by increasing the DOC content and decreasing root biomass. Additionally, the decrease of pH and ammonium N caused by N addition increased the fungal abundances and reduced actinomycete abundances, respectively. Nitrogen addition shifted the rhizospheric microbial community mainly by altering the DOC content and root biomass. The current rate of N deposition (2.5 g N m-2 y-1) benefits plant growth and increases the abundances of fungi, arbuscular mycorrhizal fungi, GP, actinomycetes and the GP:GN ratio. PMID:28234932

  8. Poly iron sulfate flocculant as an effective additive for improving the performance of microbial fuel cells.

    PubMed

    Miyahara, Morio; Sakamoto, Akihiro; Kouzuma, Atsushi; Watanabe, Kazuya

    2016-12-01

    Laboratory microbial fuel cells were supplied with artificial wastewater and used to examine how supplementation with poly iron sulfate, an inorganic polymer flocculant widely used in wastewater-treatment plants, affects electricity generation and anode microbiomes. It is shown that poly iron sulfate substantially increases electric outputs from microbial fuel cells. Microbiological analyses show that iron and sulfate separately affect anode microbiomes, and the increase in power output is associated with the increases in bacteria affiliated with the families Geobacteraceae and/or Desulfuromonadaceae. We suggest that poly iron sulfate is an effective additive for increasing the electric output from microbial fuel cells. Other utilities of poly iron sulfate in microbial fuel cells are also discussed.

  9. SOP for pathway inference in Integrated Microbial Genomes (IMG).

    PubMed

    Anderson, Iain; Chen, Amy; Markowitz, Victor; Kyrpides, Nikos; Ivanova, Natalia

    2011-12-31

    One of the most important aspects of genomic analysis is the prediction of which pathways, both metabolic and non-metabolic, are present in an organism. In IMG, this is carried out by the assignment of IMG terms, which are organized into IMG pathways. Based on manual and automatic assignment of IMG terms, the presence or absence of IMG pathways is automatically inferred. The three categories of pathway assertion are asserted (likely present), not asserted (likely absent), and unknown. In the unknown category, at least one term necessary for the pathway is missing, but an ortholog in another organism has the corresponding term assigned to it. Automatic pathway inference is an important initial step in genome analysis.

  10. Microbial oils as food additives: recent approaches for improving microbial oil production and its polyunsaturated fatty acid content.

    PubMed

    Bellou, Stamatia; Triantaphyllidou, Irene-Eva; Aggeli, Dimitra; Elazzazy, Ahmed Mohammed; Baeshen, Mohammed Nabih; Aggelis, George

    2016-02-01

    In this short review, we summarize the latest research in the production of polyunsaturated microbial oils that are of interest in food technology. The current research targets the productivity of oleaginous microorganisms, as well as the biosynthesis of particular polyunsaturated fatty acids (PUFAs). The most important efforts target the efficiency of the oleaginous machinery, via overexpression of key-enzymes involved in lipid biosynthesis, as well as the minimization of lipid degradation, by repressing genes involved in the β-oxidation pathway. The production of specific PUFAs is approached by homologous or heterologous expression of specific desaturases and elongases involved in PUFA biosynthesis in oleaginous microorganisms. New perspectives, such as the production of triacylglycerols of specific structure and the employment of adaptive experimental evolution for creating robust oleaginous strains able to produce PUFAs are also discussed.

  11. RESPONSE OF SOIL MICROBIAL BIOMASS AND COMMUNITY COMPOSITION TO CHRONIC NITROGEN ADDITIONS AT HARVARD FOREST

    EPA Science Inventory

    Soil microbial communities may respond to anthropogenic increases in ecosystem nitrogen (N) availability, and their response may ultimately feedback on ecosystem carbon and N dynamics. We examined the long-term effects of chronic N additions on soil microbes by measuring soil mi...

  12. A new microbial degradation pathway of steroid alkaloids.

    PubMed

    Gaberc-Porekar, V; Gottlieb, H E; Mervic, M

    1983-10-01

    In the degradation pathway of the steroid alkaloid tomatidine by Gymnoascus reesii the A-ring of tomatidine is opened with the formation of the 4-hydroxy-3,4-secotomatidine-3-oic acid, which was identified in the form of N-acetyl-3,4-tomatidine-carbolactone by mass, IR and 1H NMR spectra. Cleavage of the A-ring in the starting reaction indicates that an alternative pathway must be operating, instead of the general oxidative one.

  13. Thermodynamic network model for predicting effects of substrate addition and other perturbations on subsurface microbial communities

    SciTech Connect

    Jack Istok; Melora Park; James McKinley; Chongxuan Liu; Lee Krumholz; Anne Spain; Aaron Peacock; Brett Baldwin

    2007-04-19

    The overall goal of this project is to develop and test a thermodynamic network model for predicting the effects of substrate additions and environmental perturbations on microbial growth, community composition and system geochemistry. The hypothesis is that a thermodynamic analysis of the energy-yielding growth reactions performed by defined groups of microorganisms can be used to make quantitative and testable predictions of the change in microbial community composition that will occur when a substrate is added to the subsurface or when environmental conditions change.

  14. Thermophilic microbial cellulose decomposition and methanogenesis pathways recharacterized by metatranscriptomic and metagenomic analysis.

    PubMed

    Xia, Yu; Wang, Yubo; Fang, Herbert H P; Jin, Tao; Zhong, Huanzi; Zhang, Tong

    2014-10-21

    The metatranscriptomic recharacterization in the present study captured microbial enzymes at the unprecedented scale of 40,000 active genes belonged to 2,269 KEGG functions were identified. The novel information obtained herein revealed interesting patterns and provides an initial transcriptional insight into the thermophilic cellulose methanization process. Synergistic beta-sugar consumption by Thermotogales is crucial for cellulose hydrolysis in the thermophilic cellulose-degrading consortium because the primary cellulose degraders Clostridiales showed metabolic incompetence in subsequent beta-sugar pathways. Additionally, comparable transcription of putative Sus-like polysaccharide utilization loci (PULs) was observed in an unclassified order of Bacteroidetes suggesting the importance of PULs mechanism for polysaccharides breakdown in thermophilic systems. Despite the abundance of acetate as a fermentation product, the acetate-utilizing Methanosarcinales were less prevalent by 60% than the hydrogenotrophic Methanobacteriales. Whereas the aceticlastic methanogenesis pathway was markedly more active in terms of transcriptional activities in key genes, indicating that the less dominant Methanosarcinales are more active than their hydrogenotrophic counterparts in methane metabolism. These findings suggest that the minority of aceticlastic methanogens are not necessarily associated with repressed metabolism, in a pattern that was commonly observed in the cellulose-based methanization consortium, and thus challenge the causal likelihood proposed by previous studies.

  15. Thermophilic microbial cellulose decomposition and methanogenesis pathways recharacterized by metatranscriptomic and metagenomic analysis

    PubMed Central

    Xia, Yu; Wang, Yubo; Fang, Herbert H. P.; Jin, Tao; Zhong, Huanzi; Zhang, Tong

    2014-01-01

    The metatranscriptomic recharacterization in the present study captured microbial enzymes at the unprecedented scale of 40,000 active genes belonged to 2,269 KEGG functions were identified. The novel information obtained herein revealed interesting patterns and provides an initial transcriptional insight into the thermophilic cellulose methanization process. Synergistic beta-sugar consumption by Thermotogales is crucial for cellulose hydrolysis in the thermophilic cellulose-degrading consortium because the primary cellulose degraders Clostridiales showed metabolic incompetence in subsequent beta-sugar pathways. Additionally, comparable transcription of putative Sus-like polysaccharide utilization loci (PULs) was observed in an unclassified order of Bacteroidetes suggesting the importance of PULs mechanism for polysaccharides breakdown in thermophilic systems. Despite the abundance of acetate as a fermentation product, the acetate-utilizing Methanosarcinales were less prevalent by 60% than the hydrogenotrophic Methanobacteriales. Whereas the aceticlastic methanogenesis pathway was markedly more active in terms of transcriptional activities in key genes, indicating that the less dominant Methanosarcinales are more active than their hydrogenotrophic counterparts in methane metabolism. These findings suggest that the minority of aceticlastic methanogens are not necessarily associated with repressed metabolism, in a pattern that was commonly observed in the cellulose-based methanization consortium, and thus challenge the causal likelihood proposed by previous studies. PMID:25330991

  16. Substrates and pathway of electricity generation in a nitrification-based microbial fuel cell.

    PubMed

    Chen, Hui; Zheng, Ping; Zhang, Jiqiang; Xie, Zuofu; Ji, Junyuan; Ghulam, Abbas

    2014-06-01

    Nitrification-based microbial fuel cell (N-MFC) is a novel inorganic microbial fuel cell based on nitrification in the anode compartment. So far, little information is available on the substrates and pathway of N-MFC. The results of this study indicated that apart from the primary nitrification substrate (ammonium), the intermediates (hydroxylamine and nitrite) could also serve as anodic fuel to generate current, and the end product nitrate showed an inhibitory effect on electricity generation. Based on the research, a pathway of electricity generation was proposed for N-MFC: ammonium was oxidized first to nitrite by ammonia-oxidizing bacteria (AOB), then the nitrite in anolyte and the potassium permanganate in catholyte constituted a chemical cell to generate current. In other words, the electricity generation in N-MFC was not only supported by microbial reaction as we expected, but both biological and electrochemical reactions contributed.

  17. Regulation of Soil Microbial Carbon-use Efficiency by Soil Moisture, Substrate Addition, and Incubation Time

    NASA Astrophysics Data System (ADS)

    Stark, J.

    2015-12-01

    Microbial carbon-use efficiency (CUE) is a key variable in biogeochemical cycling that regulates soil C sequestration, greenhouse gas emissions, and retention of inorganic nutrients. Microbial CUE is the fraction of C converted to biomass rather than respired as CO2. Biogeochemical models have been shown to be highly sensitive to variation in CUE; however, we currently have a poor understanding of how CUE responds to environmental variables such as soil moisture and nutrient limitations. We examined the effect of soil moisture and C supply on CUE in soil from a western hemlock / sitka spruce forest in Oregon, USA, using a novel technique which supplies 13C and 15N substrates through the gas phase so that water addition is not necessary. Soil samples (28 g oven-dry equiv. wt) at two water potentials (-0.03 and -3.55 MPa) were exposed to 13C-acetic acid vapor for either 6 or 30 sec to provide two different concentrations of acetate to soil microbial communities. The soils were also injected with small amounts of 15NH3 gas to allow quantification of microbial N assimilation rates and to provide an alternate method of calculating CUE. Rates of 13CO2 respiration were measured continuously during a 48-h incubation using cavity ring-down spectroscopy. Soil samples were extracted at seven time intervals (0, 0.5, 1.5, 4.5, 12, 24, and 48 h) in 0.5 M K2SO4 and analyzed for DO13C, microbial 13C, DO15N, inorganic 15N, and microbial 15N to calculate how gross rates of C and N assimilation and microbial CUE change with incubation time. As expected, microbial C and N assimilation rates and CUE increased with soil moisture and the quantity of acetate added; however, C:N assimilated was higher at lower soil moisture, suggesting that either C-storage compounds were being created, or that fungal communities were responsible for a greater proportion of the assimilation in drier soils. Assimilation rates and CUE also changed with incubation time, demonstrating that estimates of CUE

  18. Forming microbial anodes with acetate addition decreases their capability to treat raw paper mill effluent.

    PubMed

    Ketep, Stéphanie F; Bergel, Alain; Bertrand, Marie; Barakat, Mohamed; Achouak, Wafa; Fourest, Eric

    2014-07-01

    Microbial anodes were formed under polarization at -0.3 V/SCE on graphite plates in effluents from a pulp and paper mill. The bioanodes formed with the addition of acetate led to the highest current densities (up to 6A/m(2)) but were then unable to oxidize the raw effluent efficiently (0.5A/m(2)). In contrast, the bioanodes formed without acetate addition were fully able to oxidize the organic matter contained in the effluent, giving up to 4.5A/m(2) in continuous mode. Bacterial communities showed less bacterial diversity for the acetate-fed bioanodes compared to those formed in raw effluents. Deltaproteobacteria were the most abundant taxonomic group, with a high diversity for bioanodes formed without acetate addition but with almost 100% Desulfuromonas for the acetate-fed bioanodes. The addition of acetate to form the microbial anodes induced microbial selection, which was detrimental to the treatment of the raw effluent.

  19. Soil microbial community structure and nitrogen cycling responses to agroecosystem management and carbon substrate addition

    NASA Astrophysics Data System (ADS)

    Berthrong, S. T.; Buckley, D. H.; Drinkwater, L. E.

    2011-12-01

    Fertilizer application in conventional agriculture leads to N saturation and decoupled soil C and N cycling, whereas organic practices, e.g. complex rotations and legume incorporation, often results in increased SOM and tightly coupled cycles of C and N. These legacy effects of management on soils likely affect microbial community composition and microbial process rates. This project tested if agricultural management practices led to distinct microbial communities and if those communities differed in ability to utilize labile plant carbon substrates and to produce more plant available N. We addressed several specific questions in this project. 1) Do organic and conventional management legacies on similar soils produce distinct soil bacterial and fungal community structures and abundances? 2) How do these microbial community structures change in response to carbon substrate addition? 3) How do the responses of the microbial communities influence N cycling? To address these questions we conducted a laboratory incubation of organically and conventionally managed soils. We added C-13 labelled glucose either in one large dose or several smaller pulses. We extracted genomic DNA from soils before and after incubation for TRFLP community fingerprinting. We measured C in soil pools and respiration and N in soil extracts and leachates. Management led to different compositions of bacteria and fungi driven by distinct components in organic soils. Biomass did not differ across treatments indicating that differences in cycling were due to composition rather than abundance. C substrate addition led to convergence in bacterial communities; however management still strongly influenced the difference in communities. Fungal communities were very distinct between managements and plots with substrate addition not altering this pattern. Organic soils respired 3 times more of the glucose in the first week than conventional soils (1.1% vs 0.4%). Organic soils produced twice as much

  20. Soil Carbon Dynamics Along the Pathway From Diverse Microbial Carbon to Humus in a Temperate and Tropical Forest

    NASA Astrophysics Data System (ADS)

    Throckmorton, H. M.; Bird, J. A.; Firestone, M. K.; Horwath, W. R.

    2008-12-01

    This research investigates the importance of microbial biochemistry to humification pathways in two climatically different forest ecosystems; Blodgett forest (BF), a temperate forest in the Sierra Nevada and Luquillo forest (LF), a tropical forest in Puerto Rico. Non-living 13C enriched temperate and tropical microorganisms from four biochemically contrasting microbial groups (fungi, actinomycetes, bacteria gram (+), and bacteria gram (-)) were separately added to soil at both sites in a reciprocal transplant experiment. Decomposition rates were substantially greater at LF than BF for all microbial inputs. Although there were initial differences in microbial C turnover and recovery within the soil microbial biomass and dissolved organic carbon pools for unique microbial C inputs at both sites, over time treatment differences converge within each site and the quality of input microbial C becomes less important to C remaining and maintained within these soil C pools. Physical soil fractionation revealed important trends which illustrate the role of the soil mineral matrix to protect and stabilize C in soil. Results indicate different C turnover rates associated with the light, aggregate- occluded, and mineral-associated soil fractions at both sites. At BF input C recovered within the light and mineral-associated fractions decreased substantially over time (1 to 13 months), while C occluded within aggregates only slightly decreased. Similarly, LF soils exhibit only a slight decrease in aggregate-occluded C over time (0.5 to 3.5 months), while C recovered within the light fraction decreased substantially; however, unlike BF, LF soils exhibited only a slight decrease in C recovered within the mineral fraction. The distribution of total C among these physical soil pools differs substantially for either site, suggesting differences in the relative importance of the mineral matrix to protect and stabilize C. Preliminary compound-specific isotope analyses employing

  1. [Electricity generation of surplus sludge microbial fuel cells enhanced by additional enzyme].

    PubMed

    Yang, Hui; Liu, Zhi-Hu; Li, Xiao-Ming; Yang, Qi; Fang, Li; Huang, Hua-Jun; Zeng, Guang-Ming; Li, Shuo

    2012-01-01

    In this paper the feasibility of enhanced electricity generation of microbial fuel cell fed surplus sludge by additional enzymes (neutral protease and alpha-amylase) was discussed. The effect of dosage of additional enzyme on characteristics of electricity generation of the surplus sludge microbial fuel cell (SSMFC) and the reduction of surplus sludge were investigated. The results indicated that the maximum output power destiny of the group of experiment was higher than that of control under the same condition. Moreover, the maximum output power density, coulomb efficiency, efficiency of reducing TCOD, efficiency of reducing TSS and efficiency of reducing VSS reached up to 507 W x m(-2) (700 mW x m(-2)), 3.98% (5.11%), 88.31% (94.09%), 83.18% (98.02%) and 89.03% (98.80%) respectively for protease (alpha-amylase) at the dosage of 10 mg x g(-1). This study demonstrated that additional enzyme greatly enhanced the electricity generation of MFC with simultaneous accomplishments of sludge treatment, providing a novel approach for the practical application of microbial fuel cell.

  2. Microbial properties explain temporal variation in soil respiration in a grassland subjected to nitrogen addition.

    PubMed

    Li, Yue; Liu, Yinghui; Wu, Shanmei; Niu, Lei; Tian, Yuqiang

    2015-12-18

    The role of soil microbial variables in shaping the temporal variability of soil respiration has been well acknowledged but is poorly understood, particularly under elevated nitrogen (N) deposition conditions. We measured soil respiration along with soil microbial properties during the early, middle, and late growing seasons in temperate grassland plots that had been treated with N additions of 0, 2, 4, 8, 16, or 32 g N m(-2) yr(-1) for 10 years. Representing the averages over three observation periods, total (Rs) and heterotrophic (Rh) respiration were highest with 4 g N m(-2) yr(-1), but autotrophic respiration (Ra) was highest with 8 to 16 g N m(-2) yr(-1). Also, the responses of Rh and Ra were unsynchronized considering the periods separately. N addition had no significant impact on the temperature sensitivity (Q10) for Rs but inhibited the Q10 for Rh. Significant interactions between observation period and N level occurred in soil respiration components, and the temporal variations in soil respiration components were mostly associated with changes in microbial biomass carbon (MBC) and phospholipid fatty acids (PLFAs). Further observation on soil organic carbon and root biomass is needed to reveal the long-term effect of N deposition on soil C sequestration.

  3. Microbial properties explain temporal variation in soil respiration in a grassland subjected to nitrogen addition

    PubMed Central

    Li, Yue; Liu, Yinghui; Wu, Shanmei; Niu, Lei; Tian, Yuqiang

    2015-01-01

    The role of soil microbial variables in shaping the temporal variability of soil respiration has been well acknowledged but is poorly understood, particularly under elevated nitrogen (N) deposition conditions. We measured soil respiration along with soil microbial properties during the early, middle, and late growing seasons in temperate grassland plots that had been treated with N additions of 0, 2, 4, 8, 16, or 32 g N m−2 yr−1 for 10 years. Representing the averages over three observation periods, total (Rs) and heterotrophic (Rh) respiration were highest with 4 g N m−2 yr−1, but autotrophic respiration (Ra) was highest with 8 to 16 g N m−2 yr−1. Also, the responses of Rh and Ra were unsynchronized considering the periods separately. N addition had no significant impact on the temperature sensitivity (Q10) for Rs but inhibited the Q10 for Rh. Significant interactions between observation period and N level occurred in soil respiration components, and the temporal variations in soil respiration components were mostly associated with changes in microbial biomass carbon (MBC) and phospholipid fatty acids (PLFAs). Further observation on soil organic carbon and root biomass is needed to reveal the long-term effect of N deposition on soil C sequestration. PMID:26678303

  4. Biotransformation of selected iodinated X-ray contrast media and characterization of microbial transformation pathways.

    PubMed

    Kormos, Jennifer Lynne; Schulz, Manoj; Kohler, Hans-Peter E; Ternes, Thomas A

    2010-07-01

    Iodinated X-ray contrast media (ICM) are commonly detected in the aquatic environment at concentrations up to the low microgram per liter range. In this study, the biotransformation of selected ICM (diatrizoate, iohexol, iomeprol, and iopamidol) in aerobic soil-water and river sediment-water batch systems was investigated. In addition, microbial transformation pathways were proposed. Diatrizoate, an ionic ICM, was not biotransformed, while three nonionic ICM were transformed into several biotransformation products (TPs) at neutral pH. Iohexol and iomeprol were biotransformed to eleven TPs and fifteen TPs, respectively, while eight TPs were detected for iopamidol. Since seven of the TPs detected during biotransformation had not been previously identified, mass fragmentation experiments were completed to elucidate the chemical structures. Oxidation of primary alcoholic moieties, cleavage of the N-C bonds (i.e., deacetylation and removal of hydroxylated propanoic acids), and decarboxylation are potential reactions that can explain the formation of the identified TPs. Iohexol and iomeprol had similar biotransformation rates, while iopamidol was biotransformed slower and to a lesser extent. A LC tandem MS method confirmed the presence of ICM TPs in aqueous environmental samples. Fifteen of the ICM TPs were even detected in drinking water with concentrations up to 120 ng/L.

  5. Metabolites and biodegradation pathways of fatty alcohol ethoxylates in microbial biocenoses of sewage treatment plants.

    PubMed Central

    Steber, J; Wierich, P

    1985-01-01

    The biodegradation of fatty alcohol polyglycol ethers was studied by analyzing the 14C-labeled intermediates isolated from the effluent of a model continuous-flow sewage treatment plant after dosage of either alkyl- or heptaglycol-labeled stearyl alcohol ethoxylate (SA-7EO). In each case, uncharged and carboxylated (mainly dicarboxylated) polyethylene glycols constituted the most prominent metabolites. The results indicate that there is a faster degradation of the alkyl than the polyethylene glycol moiety and that there are two distinct primary degradation mechanisms acting simultaneously in microbial biocenoses: intramolecular scission of the surfactant as well as omega- and beta-oxidation of the alkyl chain. Characterization of the bulk of 14C-labeled metabolites as a homologous series of neutral and acidic polyglycol units and identification of several C2-fragments accounted for the depolymerization of the hydrophilic part of the surfactant by stepwise cleavage of ether-bound EO units; from additional degradation studies employing either neutral or carboxylated 14C-labeled polyethylene glycols as model metabolites, it was concluded that hydrolytic as well as oxidative cleavage of C2-units is involved. Most of the identified low-molecular-weight 14C-labeled acids suggest an ultimate degradation of EO monomers by the oxidative dicarbonic acid cycle or the glycerate pathway or both. In addition, the finding of considerable amounts of oxalic and formic acids allow consideration of an additional mineralization route via glyoxylic, oxalic, and formic acids. The simultaneous action of different degradation mechanisms indicates the involvement of several distinct bacterial groups in the biodegradation of fatty alcohol ethoxylates under environmental conditions. PMID:3994363

  6. Effects of Nutrient Addition on Belowground Stoichiometry and Microbial Activity in an Ombrotrophic Bog

    NASA Astrophysics Data System (ADS)

    Pinsonneault, A. J.; Moore, T. R.; Roulet, N. T.

    2015-12-01

    Ombrotrophic bogs are both nutrient-poor systems and important carbon (C) sinks yet there remains a dearth of information on the stoichiometry of C, nitrogen (N), phosphorus (P), and potassium (K), an important determinant of substrate quality for microorganisms, in these systems. In this study, we quantified the C, N, P, and K concentrations and stoichiometric ratios of both soil organic matter (SOM) and dissolved organic matter (DOM) as well as microbial extracellular enzyme activity from 0 - 10cm depth in a long-term fertilization experiment at Mer Bleue bog, Ontario, Canada. Though trends in C:N, C:P, and C:K between SOM and DOM seem to follow one another, preliminary results indicate that the stoichiometric ratios of DOM were at least an order of magnitude smaller than those of DOM suggesting that nutrient fertilization impacts the quality of DOM as a microbial substrate to a greater degree than SOM. C:N decreased with greater nitrogen addition but C:P and C:K increased; the magnitude of that increase being smaller in NPK treatments relative to N-only treatments suggesting co-limitation by P and/or K. This is further supported by the increase in activity of both the C-cycling enzyme, β-D-glucosidase (bdG), and the P-cycling enzyme, phosphatase (Phos), with greater nitrogen addition; particularly in NPK-treatments for bdG and N-only treatments for Phos. The activity of the N-cycling enzyme, N-acetyl-β-D-glucosaminidase, and the C-cycling enzyme, phenol oxidase, with greater N-addition suggests a decreased need to breakdown organic nitrogen to meet microbial N-requirements in the former and N-inhibition in the latter consistent with findings in the literature. Taken together, these results suggest that higher levels of nutrients impact both microbial substrate quality as well as the activity of microbial enzymes that are key in the decomposition process which may ultimately decrease the ability of peatlands to sequester carbon.

  7. Sensitive cells: enabling tools for static and dynamic control of microbial metabolic pathways.

    PubMed

    Cress, Brady F; Trantas, Emmanouil A; Ververidis, Filippos; Linhardt, Robert J; Koffas, Mattheos Ag

    2015-12-01

    Natural metabolic pathways are dynamically regulated at the transcriptional, translational, and protein levels. Despite this, traditional pathway engineering has relied on static control strategies to engender changes in metabolism, most likely due to ease of implementation and perceived predictability of design outcome. Increasingly in recent years, however, metabolic engineers have drawn inspiration from natural systems and have begun to harness dynamically controlled regulatory machinery to improve design of engineered microorganisms for production of specialty and commodity chemicals. Here, we review recent enabling technologies for engineering static control over pathway expression levels, and we discuss state-of-the-art dynamic control strategies that have yielded improved outcomes in the field of microbial metabolic engineering. Furthermore, we emphasize design of a novel class of genetically encoded controllers that will facilitate automatic, transient tuning of synthetic and endogenous pathways.

  8. Plant and microbial responses to nitrogen and phosphorus addition across an elevational gradient in subarctic tundra.

    PubMed

    Sundqvist, Maja K; Liu, Zhanfeng; Giesler, Reiner; Wardle, David A

    2014-07-01

    Temperature and nutrients are major limiting factors in subarctic tundra. Experimental manipulation of nutrient availability along elevational gradients (and thus temperature) can improve our understanding of ecological responses to climate change. However, no study to date has explored impacts of nutrient addition along a tundra elevational gradient, or across contrasting vegetation types along any elevational gradient. We set up a full factorial nitrogen (N) and phosphorus (P) fertilization experiment in each of two vegetation types (heath and meadow) at 500 m, 800 m, and 1000 m elevation in northern Swedish tundra. We predicted that plant and microbial communities in heath or at lower elevations would be more responsive to N addition while communities in meadow or at higher elevations would be more responsive to P addition, and that fertilizer effects would vary more with elevation for the heath than for the meadow. Although our results provided little support for these predictions, the relationship between nutrient limitation and elevation differed between vegetation types. Most plant and microbial properties were responsive to N and/or P fertilization, but responses often varied with elevation and/or vegetation type. For instance, vegetation density significantly increased with N + P fertilization relative to the other fertilizer treatments, and this increase was greatest at the lowest elevation for the heath but at the highest elevation for the meadow. Arbuscular mycorrhizae decreased with P fertilization at 500 m for the meadow, but with all fertilizer treatments in both vegetation types at 800 m. Fungal to bacterial ratios were enhanced by N+ P fertilization for the two highest elevations in the meadow only. Additionally, microbial responses to fertilization were primarily direct rather than indirect via plant responses, pointing to a decoupled response of plant and microbial communities to nutrient addition and elevation. Because our study shows how two

  9. New hydrocarbon degradation pathways in the microbial metagenome from Brazilian petroleum reservoirs.

    PubMed

    Sierra-García, Isabel Natalia; Correa Alvarez, Javier; de Vasconcellos, Suzan Pantaroto; Pereira de Souza, Anete; dos Santos Neto, Eugenio Vaz; de Oliveira, Valéria Maia

    2014-01-01

    Current knowledge of the microbial diversity and metabolic pathways involved in hydrocarbon degradation in petroleum reservoirs is still limited, mostly due to the difficulty in recovering the complex community from such an extreme environment. Metagenomics is a valuable tool to investigate the genetic and functional diversity of previously uncultured microorganisms in natural environments. Using a function-driven metagenomic approach, we investigated the metabolic abilities of microbial communities in oil reservoirs. Here, we describe novel functional metabolic pathways involved in the biodegradation of aromatic compounds in a metagenomic library obtained from an oil reservoir. Although many of the deduced proteins shared homology with known enzymes of different well-described aerobic and anaerobic catabolic pathways, the metagenomic fragments did not contain the complete clusters known to be involved in hydrocarbon degradation. Instead, the metagenomic fragments comprised genes belonging to different pathways, showing novel gene arrangements. These results reinforce the potential of the metagenomic approach for the identification and elucidation of new genes and pathways in poorly studied environments and contribute to a broader perspective on the hydrocarbon degradation processes in petroleum reservoirs.

  10. New Hydrocarbon Degradation Pathways in the Microbial Metagenome from Brazilian Petroleum Reservoirs

    PubMed Central

    Sierra-García, Isabel Natalia; Correa Alvarez, Javier; Pantaroto de Vasconcellos, Suzan; Pereira de Souza, Anete; dos Santos Neto, Eugenio Vaz; de Oliveira, Valéria Maia

    2014-01-01

    Current knowledge of the microbial diversity and metabolic pathways involved in hydrocarbon degradation in petroleum reservoirs is still limited, mostly due to the difficulty in recovering the complex community from such an extreme environment. Metagenomics is a valuable tool to investigate the genetic and functional diversity of previously uncultured microorganisms in natural environments. Using a function-driven metagenomic approach, we investigated the metabolic abilities of microbial communities in oil reservoirs. Here, we describe novel functional metabolic pathways involved in the biodegradation of aromatic compounds in a metagenomic library obtained from an oil reservoir. Although many of the deduced proteins shared homology with known enzymes of different well-described aerobic and anaerobic catabolic pathways, the metagenomic fragments did not contain the complete clusters known to be involved in hydrocarbon degradation. Instead, the metagenomic fragments comprised genes belonging to different pathways, showing novel gene arrangements. These results reinforce the potential of the metagenomic approach for the identification and elucidation of new genes and pathways in poorly studied environments and contribute to a broader perspective on the hydrocarbon degradation processes in petroleum reservoirs. PMID:24587220

  11. Presence of chemical additives and microbial inhibition capacity in grapefruit seed extracts used in apiculture.

    PubMed

    Spinosi, Valerio; Semprini, Primula; Langella, Vincenzo; Scortichini, Giampiero; Calvarese, Silvano

    2007-01-01

    American foulbrood, caused by Paenibacillus larvae subsp. larvae (White 1906) is one of the most serious diseases of honey bees, causing beekeepers and health workers to make difficult, complex decisions and leading to the development of 'organic' treatments, such as grapefruit seed extract, with minor residue problems in the end product. This study evaluates the chemical composition of grapefruit seed extracts using gas chromatography/mass spectrometry for the detection of benzethonium chloride, cetrimonium bromide and decyltrimethylammonium chloride. The results obtained suggest a close correlation between the microbial effect and the presence of chemical additives in the samples analysed.

  12. Enhanced Microbial Pathways for Methane Production from Oil Shale

    SciTech Connect

    Paul Fallgren

    2009-02-15

    Methane from oil shale can potentially provide a significant contribution to natural gas industry, and it may be possible to increase and continue methane production by artificially enhancing methanogenic activity through the addition of various substrate and nutrient treatments. Western Research Institute in conjunction with Pick & Shovel Inc. and the U.S. Department of Energy conducted microcosm and scaled-up reactor studies to investigate the feasibility and optimization of biogenic methane production from oil shale. The microcosm study involving crushed oil shale showed the highest yield of methane was produced from oil shale pretreated with a basic solution and treated with nutrients. Incubation at 30 C, which is the estimated temperature in the subsurface where the oil shale originated, caused and increase in methane production. The methane production eventually decreased when pH of the system was above 9.00. In the scaled-up reactor study, pretreatment of the oil shale with a basic solution, nutrient enhancements, incubation at 30 C, and maintaining pH at circumneutral levels yielded the highest rate of biogenic methane production. From this study, the annual biogenic methane production rate was determined to be as high as 6042 cu. ft/ton oil shale.

  13. Nitric oxide and nitrous oxide turnover in natural and engineered microbial communities: biological pathways, chemical reactions, and novel technologies

    PubMed Central

    Schreiber, Frank; Wunderlin, Pascal; Udert, Kai M.; Wells, George F.

    2012-01-01

    Nitrous oxide (N2O) is an environmentally important atmospheric trace gas because it is an effective greenhouse gas and it leads to ozone depletion through photo-chemical nitric oxide (NO) production in the stratosphere. Mitigating its steady increase in atmospheric concentration requires an understanding of the mechanisms that lead to its formation in natural and engineered microbial communities. N2O is formed biologically from the oxidation of hydroxylamine (NH2OH) or the reduction of nitrite (NO−2) to NO and further to N2O. Our review of the biological pathways for N2O production shows that apparently all organisms and pathways known to be involved in the catabolic branch of microbial N-cycle have the potential to catalyze the reduction of NO−2 to NO and the further reduction of NO to N2O, while N2O formation from NH2OH is only performed by ammonia oxidizing bacteria (AOB). In addition to biological pathways, we review important chemical reactions that can lead to NO and N2O formation due to the reactivity of NO−2, NH2OH, and nitroxyl (HNO). Moreover, biological N2O formation is highly dynamic in response to N-imbalance imposed on a system. Thus, understanding NO formation and capturing the dynamics of NO and N2O build-up are key to understand mechanisms of N2O release. Here, we discuss novel technologies that allow experiments on NO and N2O formation at high temporal resolution, namely NO and N2O microelectrodes and the dynamic analysis of the isotopic signature of N2O with quantum cascade laser absorption spectroscopy (QCLAS). In addition, we introduce other techniques that use the isotopic composition of N2O to distinguish production pathways and findings that were made with emerging molecular techniques in complex environments. Finally, we discuss how a combination of the presented tools might help to address important open questions on pathways and controls of nitrogen flow through complex microbial communities that eventually lead to N2O build

  14. Effect of Additions on Ensiling and Microbial Community of Senesced Wheat Straw

    SciTech Connect

    David N. Thompson; Joni M. Barnes; Tracy P. Houghton

    2005-04-01

    Crop residues collected during or after grain harvest are available once per year and must be stored for extended periods. The combination of air, high moisture, and high microbial loads leads to shrinkage during storage and risk of spontaneous ignition. Ensiling is a wet preservation method that could be used to store these residues stably. To economically adapt ensiling to biomass that is harvested after it has senesced, the need for nutrient, moisture, and microbial additions must be determined. We tested the ensiling of senesced wheat straw in sealed columns for 83 d. The straw was inoculated with Lactobacillus plantarum and amended with several levels of water and free sugars. The ability to stabilize the straw polysaccharides was strongly influenced by both moisture and free sugars. Without the addition of sugar, the pH increased from 5.2 to as much as 9.1, depending on moisture level, and losses of 22% of the cellulose and 21% of the hemicellulose were observed. By contrast, when sufficient sugars were added and interstitial water was maintained, a final pH of 4.0 was attainable, with correspondingly low (<5%) losses of cellulose and hemicellulose. The results show that ensiling should be considered a promising method for stable storage of wet biorefinery feedstocks.

  15. Microbial community response to addition of polylactate compounds to stimulate hexavalent chromium reduction in groundwater.

    PubMed

    Brodie, Eoin L; Joyner, Dominique C; Faybishenko, Boris; Conrad, Mark E; Rios-Velazquez, Carlos; Malave, Josue; Martinez, Ramon; Mork, Benjamin; Willett, Anna; Koenigsberg, Steven; Herman, Donald J; Firestone, Mary K; Hazen, Terry C

    2011-10-01

    To evaluate the efficacy of bioimmobilization of Cr(VI) in groundwater at the Department of Energy Hanford site, we conducted a series of microcosm experiments using a range of commercial electron donors with varying degrees of lactate polymerization (polylactate). These experiments were conducted using Hanford Formation sediments (coarse sand and gravel) immersed in Hanford groundwater, which were amended with Cr(VI) and several types of lactate-based electron donors (Hydrogen Release Compound, HRC; primer-HRC, pHRC; extended release HRC) and the polylactate-cysteine form (Metal Remediation Compound, MRC). The results showed that polylactate compounds stimulated an increase in bacterial biomass and activity to a greater extent than sodium lactate when applied at equivalent carbon concentrations. At the same time, concentrations of headspace hydrogen and methane increased and correlated with changes in the microbial community structure. Enrichment of Pseudomonas spp. occurred with all lactate additions, and enrichment of sulfate-reducing Desulfosporosinus spp. occurred with almost complete sulfate reduction. The results of these experiments demonstrate that amendment with the pHRC and MRC forms result in effective removal of Cr(VI) from solution most likely by both direct (enzymatic) and indirect (microbially generated reductant) mechanisms.

  16. Microbial pathways in colonic sulfur metabolism and links with health and disease

    PubMed Central

    Carbonero, Franck; Benefiel, Ann C.; Alizadeh-Ghamsari, Amir H.; Gaskins, H. Rex

    2012-01-01

    Sulfur is both crucial to life and a potential threat to health. While colonic sulfur metabolism mediated by eukaryotic cells is relatively well studied, much less is known about sulfur metabolism within gastrointestinal microbes. Sulfated compounds in the colon are either of inorganic (e.g., sulfates, sulfites) or organic (e.g., dietary amino acids and host mucins) origin. The most extensively studied of the microbes involved in colonic sulfur metabolism are the sulfate-reducing bacteria (SRB), which are common colonic inhabitants. Many other microbial pathways are likely to shape colonic sulfur metabolism as well as the composition and availability of sulfated compounds, and these interactions need to be examined in more detail. Hydrogen sulfide is the sulfur derivative that has attracted the most attention in the context of colonic health, and the extent to which it is detrimental or beneficial remains in debate. Several lines of evidence point to SRB or exogenous hydrogen sulfide as potential players in the etiology of intestinal disorders, inflammatory bowel diseases (IBDs) and colorectal cancer in particular. Generation of hydrogen sulfide via pathways other than dissimilatory sulfate reduction may be as, or more, important than those involving the SRB. We suggest here that a novel axis of research is to assess the effects of hydrogen sulfide in shaping colonic microbiome structure. Clearly, in-depth characterization of the microbial pathways involved in colonic sulfur metabolism is necessary for a better understanding of its contribution to colonic disorders and development of therapeutic strategies. PMID:23226130

  17. Microbial Toluene Removal in Hypoxic Model Constructed Wetlands Occurs Predominantly via the Ring Monooxygenation Pathway

    PubMed Central

    Martínez-Lavanchy, P. M.; Chen, Z.; Lünsmann, V.; Marin-Cevada, V.; Vilchez-Vargas, R.; Pieper, D. H.; Reiche, N.; Kappelmeyer, U.; Imparato, V.; Junca, H.; Nijenhuis, I.; Müller, J. A.; Kuschk, P.

    2015-01-01

    In the present study, microbial toluene degradation in controlled constructed wetland model systems, planted fixed-bed reactors (PFRs), was queried with DNA-based methods in combination with stable isotope fractionation analysis and characterization of toluene-degrading microbial isolates. Two PFR replicates were operated with toluene as the sole external carbon and electron source for 2 years. The bulk redox conditions in these systems were hypoxic to anoxic. The autochthonous bacterial communities, as analyzed by Illumina sequencing of 16S rRNA gene amplicons, were mainly comprised of the families Xanthomonadaceae, Comamonadaceae, and Burkholderiaceae, plus Rhodospirillaceae in one of the PFR replicates. DNA microarray analyses of the catabolic potentials for aromatic compound degradation suggested the presence of the ring monooxygenation pathway in both systems, as well as the anaerobic toluene pathway in the PFR replicate with a high abundance of Rhodospirillaceae. The presence of catabolic genes encoding the ring monooxygenation pathway was verified by quantitative PCR analysis, utilizing the obtained toluene-degrading isolates as references. Stable isotope fractionation analysis showed low-level of carbon fractionation and only minimal hydrogen fractionation in both PFRs, which matches the fractionation signatures of monooxygenation and dioxygenation. In combination with the results of the DNA-based analyses, this suggests that toluene degradation occurs predominantly via ring monooxygenation in the PFRs. PMID:26150458

  18. Pathways of acetate, propionate, and butyrate formation by the human fecal microbial flora.

    PubMed

    Miller, T L; Wolin, M J

    1996-05-01

    The pathways of short-chain fatty acid (SCFA; acetate, propionate, and butyrate) formation from glucose were determined for the human fecal microbial communities of two subjects. The pathways were identified by radioisotope analysis of the SCFA and CO2 obtained after incubation of fecal suspensions with glucose under 20% CO2 with [1-14C]glucose, [3,4-14C]glucose, or 14CO2. Acetate was chemically degraded to learn the labeling of the methyl and carboxyl carbons. The labeling of CO2 and acetate showed that the major route of glucose catabolism was the Embden-Meyerhof-Parnas pathway, with production of CO2 from pyruvate carboxyl carbon. Labeling of the methyl and carboxyl carbons of acetate by 14CO2 or [3,4-14C]glucose proved that acetate was formed from CO2 by the Wood-Ljungdahl pathway. CO2 reduction accounted for about one-third of the acetate formed by suspensions from subject 1 and about one-fourth of the acetate formed by suspensions from subject 2. Propionate was formed by a CO2 fixation pathway, and butyrate was formed by classical routes of acetyl-S coenzyme A condensation. The amount of CO2 formed from [1-14C] glucose and acetate labeling patterns obtained with the other 14C precursors indicated that the Entner-Doudoroff, transketolase-transaldolase, and heterolactic pathways were not significant. Fermentation of cabbage cellulose by subject 1 followed the same pathways as were used for glucose. The results with suspensions from subject 2 suggested that some radioactive acetate was formed from the C-3 of glucose by the Bifidobacterium pathway.

  19. Improved performance of air-cathode microbial fuel cell through additional Tween 80

    NASA Astrophysics Data System (ADS)

    Wen, Qing; Kong, Fanying; Ma, Fang; Ren, Yueming; Pan, Zhongcheng

    The ability of electron transfer from microbe cell to anode electrode plays a key role in microbial fuel cell (MFC). This study explores a new approach to improve the MFC performance and electron transfer rate through addition of Tween 80. Results demonstrate that, for an air-cathode MFC operating on 1 g L -1 glucose, when the addition of Tween 80 increases from 0 to 80 mg L -1, the maximum power density increases from 21.5 to 187 W m -3 (0.6-5.2 W m -2), the corresponding current density increases from 1.8 to 17 A m -2, and the resistance of MFC decreases from 27.0 to 5.7 Ω. Electrochemical impedance spectroscopy (EIS) analysis suggests that the improvement of overall performance of the MFC can be attributed to the addition of Tween 80. The high power density achieved here may be due to the increase of permeability of cell membranes by addition of Tween 80, which reduces the electron transfer resistance through the cell membrane and increases the electron transfer rate and number, consequently enhances the current and power output. A promising way of utilizing surfactant to improve energy generation of MFC is demonstrated.

  20. Additive Manufacturing of a Microbial Fuel Cell—A detailed study

    PubMed Central

    Calignano, Flaviana; Tommasi, Tonia; Manfredi, Diego; Chiolerio, Alessandro

    2015-01-01

    In contemporary society we observe an everlasting permeation of electron devices, smartphones, portable computing tools. The tiniest living organisms on Earth could become the key to address this challenge: energy generation by bacterial processes from renewable stocks/waste through devices such as microbial fuel cells (MFCs). However, the application of this solution was limited by a moderately low efficiency. We explored the limits, if any, of additive manufacturing (AM) technology to fabricate a fully AM-based powering device, exploiting low density, open porosities able to host the microbes, systems easy to fuel continuously and to run safely. We obtained an optimal energy recovery close to 3 kWh m−3 per day that can power sensors and low-power appliances, allowing data processing and transmission from remote/harsh environments. PMID:26611142

  1. Additive Manufacturing of a Microbial Fuel Cell--A detailed study.

    PubMed

    Calignano, Flaviana; Tommasi, Tonia; Manfredi, Diego; Chiolerio, Alessandro

    2015-11-27

    In contemporary society we observe an everlasting permeation of electron devices, smartphones, portable computing tools. The tiniest living organisms on Earth could become the key to address this challenge: energy generation by bacterial processes from renewable stocks/waste through devices such as microbial fuel cells (MFCs). However, the application of this solution was limited by a moderately low efficiency. We explored the limits, if any, of additive manufacturing (AM) technology to fabricate a fully AM-based powering device, exploiting low density, open porosities able to host the microbes, systems easy to fuel continuously and to run safely. We obtained an optimal energy recovery close to 3 kWh m(-3) per day that can power sensors and low-power appliances, allowing data processing and transmission from remote/harsh environments.

  2. Additive Manufacturing of a Microbial Fuel Cell—A detailed study

    NASA Astrophysics Data System (ADS)

    Calignano, Flaviana; Tommasi, Tonia; Manfredi, Diego; Chiolerio, Alessandro

    2015-11-01

    In contemporary society we observe an everlasting permeation of electron devices, smartphones, portable computing tools. The tiniest living organisms on Earth could become the key to address this challenge: energy generation by bacterial processes from renewable stocks/waste through devices such as microbial fuel cells (MFCs). However, the application of this solution was limited by a moderately low efficiency. We explored the limits, if any, of additive manufacturing (AM) technology to fabricate a fully AM-based powering device, exploiting low density, open porosities able to host the microbes, systems easy to fuel continuously and to run safely. We obtained an optimal energy recovery close to 3 kWh m-3 per day that can power sensors and low-power appliances, allowing data processing and transmission from remote/harsh environments.

  3. Deregulation of intestinal anti-microbial defense by the dietary additive, maltodextrin.

    PubMed

    Nickerson, Kourtney P; Chanin, Rachael; McDonald, Christine

    2015-01-01

    Inflammatory bowel disease (IBD) is a complex, multi-factorial disease thought to arise from an inappropriate immune response to commensal bacteria in a genetically susceptible person that results in chronic, cyclical, intestinal inflammation. Dietary and environmental factors are implicated in the initiation and perpetuation of IBD; however, a singular causative agent has not been identified. As of now, the role of environmental priming or triggers in IBD onset and pathogenesis are not well understood, but these factors appear to synergize with other disease susceptibility factors. In previous work, we determined that the polysaccharide dietary additive, maltodextrin (MDX), impairs cellular anti-bacterial responses and suppresses intestinal anti-microbial defense mechanisms. In this addendum, we review potential mechanisms for dietary deregulation of intestinal homeostasis, postulate how dietary and genetic risk factors may combine to result in disease pathogenesis, and discuss these ideas in the context of recent findings related to dietary interventions for IBD.

  4. Control of hydrogen sulfide production in oil fields by managing microbial communities through nitrate or nitrite addition

    NASA Astrophysics Data System (ADS)

    Hubert, Casey R. J.

    Nitrate or nitrite injection into oil reservoirs during water flooding has the potential to control biological souring, the production of hydrogen sulfide (H2S) by sulfate-reducing bacteria (SRB). Souring control is essential because sulfide is toxic, sulfide precipitates can plug reservoir formations, souring lowers crude oil value, and SRB induce corrosion. Nitrate and nitrite can stimulate heterotrophic nitrate- or nitrite-reducing bacteria (hNRB) and nitrate- or nitrite-reducing, sulfide oxidizing bacteria (NRSOB). Nitrite also inhibits SRB activity by blocking the sulfate reduction pathway. Continuous up-flow packed-bed bioreactors were inoculated with produced water from the Coleville oil field to establish sulfide-producing biofilms similar to those found in sour reservoirs. Nitrate or nitrite addition to bioreactors indicated that the dose required for hNRB or NR-SOB to control souring depended on the concentration of oil organics. Either mechanism mediates the net removal of oil organics (lactate) with nitrate or nitrite, with lower doses of nitrate required due to its greater oxidative power. Microbial community analysis by reverse sample genome probing (RSGP) revealed that NR-SOB mediated sulfide removal at low nitrate or nitrite concentrations when lactate was still available to SRB and the redox potential was low. At high nitrate doses hNRB oxidized lactate directly, produced nitrite and maintained a high redox potential, thus excluding SRB activity. Facultatively chemolithotrophic Campylobacter sp. strains were isolated from the bioreactors and incorporated into RSGP analyses, revealing their dominance in both NR-SOB- and hNRB-containing communities. The metabolic flexibility of these strains may confer a competitive advantage over obligate chemolithotrophs like Thiomicrospira sp. strain CVO or hNRB that do not have NR-SOB activity like newly isolated Thauera sp. and Rhodobacter sp. strains. A single high dose of nitrite resulted in immediate

  5. Investigations of potential microbial methanogenic and carbon monoxide utilization pathways in ultra-basic reducing springs associated with present-day continental serpentinization: the Tablelands, NL, CAN

    PubMed Central

    Morrill, Penny L.; Brazelton, William J.; Kohl, Lukas; Rietze, Amanda; Miles, Sarah M.; Kavanagh, Heidi; Schrenk, Matthew O.; Ziegler, Susan E.; Lang, Susan Q.

    2014-01-01

    Ultra-basic reducing springs at continental sites of serpentinization act as portals into the biogeochemistry of a subsurface environment with H2 and CH4 present. Very little, however, is known about the carbon substrate utilization, energy sources, and metabolic pathways of the microorganisms that live in this ultra-basic environment. The potential for microbial methanogenesis with bicarbonate, formate, acetate, and propionate precursors and carbon monoxide (CO) utilization pathways were tested in laboratory experiments by adding substrates to water and sediment from the Tablelands, NL, CAD, a site of present-day continental serpentinization. Microbial methanogenesis was not observed after bicarbonate, formate, acetate, or propionate addition. CO was consumed in the live experiments but not in the killed controls and the residual CO in the live experiments became enriched in 13C. The average isotopic enrichment factor resulting from this microbial utilization of CO was estimated to be 11.2 ± 0.2‰. Phospholipid fatty acid concentrations and δ13C values suggest limited incorporation of carbon from CO into microbial lipids. This indicates that in our experiments, CO was used primarily as an energy source, but not for biomass growth. Environmental DNA sequencing of spring fluids collected at the same time as the addition experiments yielded a large proportion of Hydrogenophaga-related sequences, which is consistent with previous metagenomic data indicating the potential for these taxa to utilize CO. PMID:25431571

  6. pH-dependent ammonia removal pathways in microbial fuel cell system.

    PubMed

    Kim, Taeyoung; An, Junyeong; Lee, Hyeryeong; Jang, Jae Kyung; Chang, In Seop

    2016-09-01

    In this work, ammonia removal paths in microbial fuel cells (MFCs) under different initial pH conditions (pH 7.0, 8.0, and 8.6) were investigated. At a neutral pH condition (pH 7.0), MFC used an electrical energy of 27.4% and removed 23.3% of total ammonia by electrochemical pathway for 192h. At the identical pH condition, 36.1% of the total ammonia was also removed by the biological path suspected to be biological ammonia oxidation process (e.g., Anammox). With the initial pH increased, the electrochemical removal efficiency decreased to less than 5.0%, while the biological removal efficiency highly increased to 61.8%. In this study, a neutral pH should be maintained in the anode to utilize MFCs for ammonia recovery via electrochemical pathways from wastewater stream.

  7. Cometabolic degradation of chloramphenicol via a meta-cleavage pathway in a microbial fuel cell and its microbial community.

    PubMed

    Zhang, Qinghua; Zhang, Yanyan; Li, Daping

    2017-04-01

    The performance of a microbial fuel cell (MFC) in terms of degradation of chloramphenicol (CAP) was investigated. Approximately 84% of 50mg/L CAP was degraded within 12h in the MFC. A significant interaction of pH, temperature, and initial CAP concentration was found on removal of CAP, and a maximum degradation rate of 96.53% could theoretically be achieved at 31.48°C, a pH of 7.12, and an initial CAP concentration of 106.37mg/L. Moreover, CAP was further degraded through a ring-cleavage pathway. The antibacterial activity of CAP towards Escherichia coli ATCC 25922 and Shewanella oneidensis MR-1 was largely eliminated by MFC treatment. High-throughput sequencing analysis indicated that Azonexus, Comamonas, Nitrososphaera, Chryseobacterium, Azoarcus, Rhodococcus, and Dysgonomonas were the predominant genera in the MFC anode biofilm. In conclusion, the MFC shows potential for the treatment of antibiotic residue-containing wastewater due to its high rates of CAP removal and energy recovery.

  8. Microbial nitrogen removal pathways in integrated vertical-flow constructed wetland systems.

    PubMed

    Hu, Yun; He, Feng; Ma, Lin; Zhang, Yi; Wu, Zhenbin

    2016-05-01

    Microbial nitrogen (N) removal pathways in planted (Canna indica L.) and unplanted integrated vertical-flow constructed wetland systems (IVCWs) were investigated. Results of, molecular biological and isotope pairing experiments showed that nitrifying, anammox, and denitrifying bacteria were distributed in both down-flow and up-flow columns of the IVCWs. Further, the N transforming bacteria in the planted IVCWs were significantly higher than that in the unplanted ones (p<0.05). Moreover, the potential nitrification, anammox, and denitrification rates were highest (18.90, 11.75, and 7.84nmolNg(-1)h(-1), respectively) in the down-flow column of the planted IVCWs. Significant correlations between these potential rates and the absolute abundance of N transformation genes further confirmed the existence of simultaneous nitrification, anammox, and denitrification (SNAD) processes in the IVCWs. The anammox process was the major N removal pathway (55.6-60.0%) in the IVCWs. The results will further our understanding of the microbial N removal mechanisms in IVCWs.

  9. Effects of feed additives and mixed eimeria species infection on intestinal microbial ecology of broilers.

    PubMed

    Hume, M E; Clemente-Hernández, S; Oviedo-Rondón, E O

    2006-12-01

    Evaluation of digestive microbial ecology is necessary to understand effects of growth-promoting feed. In the current study, the dynamics of intestinal microbial communities (MC) were examined in broilers fed diets supplemented with a combination of antibiotic (bacitracin methylene disalicylate) and ionophore (Coban 60), and diets containing 1 of 2 essential oil (EO) blends, Crina Poultry (CP) and Crina Alternate (CA). Five treatments were analyzed: 1) unmedicated uninfected control; 2) unmedicated infected control; 3) feed additives monensin (bacitracin methylene disalicylate) + monensin (Coban 60; AI); 4) EO blend CP; and 5) EO blend CA. Additives were mixed into a basal feed mixture, and EO were adjusted to 100 ppm. Chicks were infected by oral gavage at 19 d of age with Eimeria acervulina, Eimeria maxima, and Eimeria tenella. Duodenal, ileal, and cecal samples were taken from 12 birds per treatment just before and 7 d after challenge; 2 samples each were pooled to give a final number of 6 samples total; and all pooled samples were frozen until used for DNA extraction. Denaturing gradient gel electrophoresis was used to examine PCR-amplified fragments of the bacterial 16S ribosomal DNA variable region. Results are presented as percentages of similarity coefficients (SC). Dendrograms of PCR amplicon or band patterns indicated MC differences due to intestinal location, feed additives, and cocci challenge. Essential oil blends CP and CA affected MC in all gut sections. Each EO had different effects over MC, and they differed in most instances from the AI group. The cocci challenge caused drastic MC population shifts in duodenal, ileal, and cecal sections (36.7, 55.4, and 36.2% SC, respectively). Diets supplemented with CP supported higher SC between pre- and postchallenge MC (89.9, 83.3, and 76.4%) than AI (81.8., 57.4, and 60.0%). We concluded that mixed coccidia challenge caused drastic shifts in MC. These EO blends modulated MC better than AI, avoiding drastic

  10. Microbially-accelerated consolidation of oil sands tailings. Pathway II: solid phase biogeochemistry

    PubMed Central

    Siddique, Tariq; Kuznetsov, Petr; Kuznetsova, Alsu; Li, Carmen; Young, Rozlyn; Arocena, Joselito M.; Foght, Julia M.

    2014-01-01

    Consolidation of clay particles in aqueous tailings suspensions is a major obstacle to effective management of oil sands tailings ponds in northern Alberta, Canada. We have observed that microorganisms indigenous to the tailings ponds accelerate consolidation of mature fine tailings (MFT) during active metabolism by using two biogeochemical pathways. In Pathway I, microbes alter porewater chemistry to indirectly increase consolidation of MFT. Here, we describe Pathway II comprising significant, direct and complementary biogeochemical reactions with MFT mineral surfaces. An anaerobic microbial community comprising Bacteria (predominantly Clostridiales, Synergistaceae, and Desulfobulbaceae) and Archaea (Methanolinea/Methanoregula and Methanosaeta) transformed FeIII minerals in MFT to amorphous FeII minerals during methanogenic metabolism of an added organic substrate. Synchrotron analyses suggested that ferrihydrite (5Fe2O3. 9H2O) and goethite (α-FeOOH) were the dominant FeIII minerals in MFT. The formation of amorphous iron sulfide (FeS) and possibly green rust entrapped and masked electronegative clay surfaces in amended MFT. Both Pathways I and II reduced the surface charge potential (repulsive forces) of the clay particles in MFT, which aided aggregation of clays and formation of networks of pores, as visualized using cryo-scanning electron microscopy (SEM). These reactions facilitated the egress of porewater from MFT and increased consolidation of tailings solids. These results have large-scale implications for management and reclamation of oil sands tailings ponds, a burgeoning environmental issue for the public and government regulators. PMID:24711806

  11. Microbial structures, functions, and metabolic pathways in wastewater treatment bioreactors revealed using high-throughput sequencing.

    PubMed

    Ye, Lin; Zhang, Tong; Wang, Taitao; Fang, Zhiwei

    2012-12-18

    The objective of this study was to explore microbial community structures, functional profiles, and metabolic pathways in a lab-scale and a full-scale wastewater treatment bioreactors. In order to do this, over 12 gigabases of metagenomic sequence data and 600,000 paired-end sequences of bacterial 16S rRNA gene were generated with the Illumina HiSeq 2000 platform, using DNA extracted from activated sludge in the two bioreactors. Three kinds of sequences (16S rRNA gene amplicons, 16S rRNA gene sequences obtained from metagenomic sequencing, and predicted proteins) were used to conduct taxonomic assignments. Specially, relative abundances of ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) were analyzed. Compared with quantitative real-time PCR (qPCR), metagenomic sequencing was demonstrated to be a better approach to quantify AOA and AOB in activated sludge samples. It was found that AOB were more abundant than AOA in both reactors. Furthermore, the analysis of the metabolic profiles indicated that the overall patterns of metabolic pathways in the two reactors were quite similar (73.3% of functions shared). However, for some pathways (such as carbohydrate metabolism and membrane transport), the two reactors differed in the number of pathway-specific genes.

  12. Responses of soil microbial communities and enzyme activities to nitrogen and phosphorus additions in Chinese fir plantations of subtropical China

    NASA Astrophysics Data System (ADS)

    Dong, W. Y.; Zhang, X. Y.; Liu, X. Y.; Fu, X. L.; Chen, F. S.; Wang, H. M.; Sun, X. M.; Wen, X. F.

    2015-07-01

    Nitrogen (N) and phosphorus (P) additions to forest ecosystems are known to influence various above-ground properties, such as plant productivity and composition, and below-ground properties, such as soil nutrient cycling. However, our understanding of how soil microbial communities and their functions respond to nutrient additions in subtropical plantations is still not complete. In this study, we added N and P to Chinese fir plantations in subtropical China to examine how nutrient additions influenced soil microbial community composition and enzyme activities. The results showed that most soil microbial properties were responsive to N and/or P additions, but responses often varied depending on the nutrient added and the quantity added. For instance, there were more than 30 % greater increases in the activities of β-Glucosidase (βG) and N-acetyl-β-D-glucosaminidase (NAG) in the treatments that received nutrient additions compared to the control plot, whereas acid phosphatase (aP) activity was always higher (57 and 71 %, respectively) in the P treatment. N and P additions greatly enhanced the PLFA abundanceespecially in the N2P treatment, the bacterial PLFAs (bacPLFAs), fungal PLFAs (funPLFAs) and actinomycic PLFAs (actPLFAs) were about 2.5, 3 and 4 times higher, respectively, than in the CK. Soil enzyme activities were noticeably higher in November than in July, mainly due to seasonal differences in soil moisture content (SMC). βG or NAG activities were significantly and positively correlated with microbial PLFAs. There were also significant relationships between gram-positive (G+) bacteria and all three soil enzymes. These findings indicate that G+ bacteria is the most important microbial community in C, N, and P transformations in Chinese fir plantations, and that βG and NAG would be useful tools for assessing the biogeochemical transformation and metabolic activity of soil microbes. We recommend combined additions of N and P fertilizer to promote soil

  13. Effect of the addition of rice straw on microbial community in a sewage sludge digester.

    PubMed

    Nakakihara, E; Ikemoto-Yamamoto, R; Honda, R; Ohtsuki, S; Takano, M; Suetsugu, Y; Watanabe, H

    2014-01-01

    Rice straw was added to a sewage sludge digester and its effects on methane production, dewatering characteristics, and microbial communities in the digested sludge were examined by a continuous digestion experiment under mesophilic conditions (35 °C). Stable gas generation was monitored in all digestion experiments. Methane yield from raw sludge, chopped rice straw and softened rice straw were estimated to be 0.27, 0.18 and 0.26 NL/g total solids load, respectively. The capillary suction time of digested sludge was decreased by the addition of rice straw. Archaeal and bacterial communities in the sludge were elucidated by PCR-DGGE (polymerase chain reaction--denaturing gradient gel electrophoresis) targeting 16S rRNA genes. The Shannon index of DGGE profiles indicated that bacterial diversity increased with the addition of softened rice straw. DNA sequences of significant bands of the digested sludge were most closely related to Methanosaeta concilii (97.4% identity) and Methanoculleus bourgensis (100% identity). Meanwhile, those in the co-digested sludge with rice straw were most closely related to Methanosarcina barkeri (98.4% identity) and Methanoculleus bourgensis (99.3% identity). Although both Methanosaeta spp. and Methanosarcina spp. metabolize acetate to methane, Methanosarcina spp. have a competitive advantage at acetate concentrations of >70 mg/L. Results suggested that the quantity of acetate produced during rice straw degradation may change the archaeal community.

  14. Changes in the structure and function of microbial communities in drinking water treatment bioreactors upon addition of phosphorus.

    PubMed

    Li, Xu; Upadhyaya, Giridhar; Yuen, Wangki; Brown, Jess; Morgenroth, Eberhard; Raskin, Lutgarde

    2010-11-01

    Phosphorus was added as a nutrient to bench-scale and pilot-scale biologically active carbon (BAC) reactors operated for perchlorate and nitrate removal from contaminated groundwater. The two bioreactors responded similarly to phosphorus addition in terms of microbial community function (i.e., reactor performance), while drastically different responses in microbial community structure were detected. Improvement in reactor performance with respect to perchlorate and nitrate removal started within a few days after phosphorus addition for both reactors. Microbial community structures were evaluated using molecular techniques targeting 16S rRNA genes. Clone library results showed that the relative abundance of perchlorate-reducing bacteria (PRB) Dechloromonas and Azospira in the bench-scale reactor increased from 15.2% and 0.6% to 54.2% and 11.7% after phosphorus addition, respectively. Real-time quantitative PCR (qPCR) experiments revealed that these increases started within a few days after phosphorus addition. In contrast, after phosphorus addition, the relative abundance of Dechloromonas in the pilot-scale reactor decreased from 7.1 to 0.6%, while Zoogloea increased from 17.9 to 52.0%. The results of this study demonstrated that similar operating conditions for bench-scale and pilot-scale reactors resulted in similar contaminant removal performances, despite dramatically different responses from microbial communities. These findings suggest that it is important to evaluate the microbial community compositions inside bioreactors used for drinking water treatment, as they determine the microbial composition in the effluent and impact downstream treatment requirements for drinking water production. This information could be particularly relevant to drinking water safety, if pathogens or disinfectant-resistant bacteria are detected in the bioreactors.

  15. Nutrient addition effects on tropical dry forests: a mini-review from microbial to ecosystem scales

    NASA Astrophysics Data System (ADS)

    Powers, Jennifer; Becklund, Kristen; Gei, Maria; Iyengar, Siddarth; Meyer, Rebecca; O'Connell, Christine; Schilling, Erik; Smith, Christina; Waring, Bonnie; Werden, Leland

    2015-06-01

    Humans have more than doubled inputs of reactive nitrogen globally and greatly accelerated the biogeochemical cycles of phosphorus and metals. However, the impacts of increased element mobility on tropical ecosystems remain poorly quantified, particularly for the vast tropical dry forest biome. Tropical dry forests are characterized by marked seasonality, relatively little precipitation, and high heterogeneity in plant functional diversity and soil chemistry. For these reasons, increased nutrient deposition may affect tropical dry forests differently than wet tropical or temperate forests. Here we review studies that investigated how nutrient availability affects ecosystem and community processes from the microsite to ecosystem scales in tropical dry forests. The effects of N and P addition on ecosystem carbon cycling and plant and microbial dynamics depend on forest successional stage, soil parent material and rainfall regime. Responses may depend on whether overall productivity is N- versus P-limited, although data to test this hypothesis are limited. These results highlight the many important gaps in our understanding of tropical dry forest responses to global change. Large-scale experiments are required to resolve these uncertainties.

  16. Pathways of nitrobenzene degradation in horizontal subsurface flow constructed wetlands: Effect of intermittent aeration and glucose addition.

    PubMed

    Kirui, Wesley K; Wu, Shubiao; Kizito, Simon; Carvalho, Pedro N; Dong, Renjie

    2016-01-15

    Intermittent aeration and addition of glucose were applied to horizontal subsurface flow constructed wetlands in order to investigate the effect on pathways of nitrobenzene (NB) degradation and interactions with microbial nitrogen and sulphur transformations. The experiment was carried out in three phases A, B and C consisting of different NB loading and glucose dosing. For each phase, the effect of aeration was assessed by intermittently aerating one wetland and leaving one unaerated. Regardless of whether or not the wetland was aerated, at an influent NB concentration of 140 mg/L, both wetlands significantly reduced NB to less than 2 mg/L, a reduction efficiency of 98%. However, once the influent NB concentration was increased to 280 mg/L, the aerated wetland had a higher removal performance 82% compared to that of the unaerated wetland 71%. Addition of glucose further intensified the NB removal to 95% in the aerated wetlands and 92% in the unaerated. Aeration of wetlands enhanced NB degradation, but also resulted in higher NB volatilization of 6 mg m(-2) d(-1). The detected high concentration of sulphide 20-60 mg/L in the unaerated wetland gave a strong indication that NB may act as an electron donor to sulphate-reducing bacteria, but this should be further investigated. Aeration positively improved NB removal in constructed wetlands, but resulted in higher NB volatilization. Glucose addition induced co-metabolism to enhance NB degradation.

  17. Responses of soil microbial communities and enzyme activities to nitrogen and phosphorus additions in Chinese fir plantations of subtropical China

    NASA Astrophysics Data System (ADS)

    Dong, W. Y.; Zhang, X. Y.; Liu, X. Y.; Fu, X. L.; Chen, F. S.; Wang, H. M.; Sun, X. M.; Wen, X. F.

    2015-09-01

    Nitrogen (N) and phosphorus (P) additions to forest ecosystems are known to influence various above-ground properties, such as plant productivity and composition, and below-ground properties, such as soil nutrient cycling. However, our understanding of how soil microbial communities and their functions respond to nutrient additions in subtropical plantations is still not complete. In this study, we added N and P to Chinese fir plantations in subtropical China to examine how nutrient additions influenced soil microbial community composition and enzyme activities. The results showed that most soil microbial properties were responsive to N and/or P additions, but responses often varied depending on the nutrient added and the quantity added. For instance, there were more than 30 % greater increases in the activities of β-glucosidase (βG) and N-acetyl-β-D-glucosaminidase (NAG) in the treatments that received nutrient additions compared to the control plot, whereas acid phosphatase (aP) activity was always higher (57 and 71 %, respectively) in the P treatment. N and P additions greatly enhanced the phospholipid fatty acids (PLFAs) abundance especially in the N2P (100 kg ha-1 yr-1 of N +50 kg ha-1 yr-1 of P) treatment; the bacterial PLFAs (bacPLFAs), fungal PLFAs (funPLFAs) and actinomycic PLFAs (actPLFAs) were about 2.5, 3 and 4 times higher, respectively, than in the CK (control). Soil enzyme activities were noticeably higher in November than in July, mainly due to seasonal differences in soil moisture content (SMC). βG or NAG activities were significantly and positively correlated with microbial PLFAs. These findings indicate that βG and NAG would be useful tools for assessing the biogeochemical transformation and metabolic activity of soil microbes. We recommend combined additions of N and P fertilizer to promote soil fertility and microbial activity in this kind of plantation.

  18. Dimethyl sulphide and methanethiol formation in microbial mats: potential pathways for biogenic signatures.

    PubMed

    Visscher, Pieter T; Baumgartner, Laura K; Buckley, Daniel H; Rogers, Daniel R; Hogan, Mary E; Raleigh, Christopher D; Turk, Kendra A; Des Marais, David J

    2003-04-01

    Mechanisms of dimethyl sulphide (DMS) and methanethiol (MT) production and consumption were determined in moderately hypersaline mats, Guerrero Negro, Mexico. Biological pathways regulated the net flux of DMS and MT as revealed by increases in flux resulting from decreased salinity, increased temperature and the removal of oxygen. Dimethylsulphoniopropionate (DMSP) was not present in these microbial mats and DMS and MT are probably formed by the reaction of photosynthetically produced low-molecular weight organic carbon and biogenic hydrogen sulphide derived from sulphate reduction. These observations provide an alternative to the notion that DMSP or S-containing amino acids are the dominant precursors of DMS in intertidal sediment systems. The major sink for DMS in the microbial mats was biological consumption, whereas photochemical oxidation to dimethylsulphoxide was the major sink for DMS in the overlying water column. Diel flux measurements demonstrated that significantly more DMS is released from the system during the night than during the day. The major consumers of DMS in the presence of oxygen were monooxygenase-utilizing bacteria, whereas under anoxic conditions, DMS was predominantly consumed by sulphate-reducing bacteria and methanethiol was consumed by methanogenic bacteria. Aerobic and anaerobic consumption rates of DMS were nearly identical. Mass balance estimates suggest that the consumption in the water column is likely to be smaller than net the flux from the mats. Volatile organic sulphur compounds are thus indicators of high rates of carbon fixation and sulphate reduction in these laminated sediment ecosystems, and atmospheric sulphur can be generated as a biogenic signature of the microbial mat community.

  19. Oxidation of cobalt and manganese in seawater via a common microbially catalyzed pathway

    NASA Astrophysics Data System (ADS)

    Moffett, James W.; Ho, Jackson

    1996-09-01

    Cobalt and manganese uptake onto suspended particles was studied in waters collected from Waquoit Bay, Massachusetts and the upper water column of the Sargasso Sea using radiotracers, coupled with protocols used previously for Mn and Ce to distinguish biological and redox processes. Cobalt uptake onto suspended particles in Waquiot Bay was dominated by microbial oxidation. Moreover, there was a close relationship between Mn(II) and Co(II) oxidation, with Mn(II) specific rates approximately 7-10x faster. Oxidation of each element obeys Michaelis Menten kinetics, with identifical values of K m in a given sample and values of V max are 7× higher for Mn. Lineweaver-Burk plots, generated from saturation plots for Co and Mn oxidation at different Mn and Co concentrations, demonstrated competitive inhibition between Co and Mn. The results indicate that both elements are co-oxidized via the same microbial catalytic pathway, and that this is probably an important mechanism for the incorporation of Co into marine Mn oxides. In the Sargasso Sea, by contrast, Mn and Co uptake onto suspended particles were completely decoupled. Cobalt uptake was nonoxidative, biologically mediated, and enhanced by low to moderate levels of light. It is probably due primarily to uptake by phytoplankton. Manganese uptake was almost exclusively oxidative and was inhibited by light even at low intensities. The differences probably reflect a higher biological demand for Co in the Sargasso Sea (Co is a biologically essential element), where Co concentrations are low, and lower activity of Mn oxidizing bacteria. Results suggest that higher specific uptake rates of Co than Mn by phytoplankton in oceanic regimes could result in Co having a geochemistry intermediate between Mn and a more nutrient-type element, such as Zn. Nevertheless, Co and Mn cycling are expected to be closely coupled in regions of high microbial Mn oxidizing activity.

  20. On the relative preference of enamine/iminium pathways in an organocatalytic Michael addition reaction.

    PubMed

    Patil, Mahendra P; Sunoj, Raghavan B

    2009-05-04

    The mechanism of the organocatalyzed Michael addition between propanal and methyl vinyl ketone is investigated using the density functional and ab intio methods. Different modes of substrate activation offered by a secondary amine (pyrrolidine) organocatalyst are reported. The electrophilic activation of enone (P-I) through the formation of an iminium ion, and nucleophilic activation of propanal (P-II) in the form of enamine have been examined by identifying the corresponding transition states. The kinetic preference for the formation of key intermediates is established in an effort to identify the competing pathways associated with the title reaction. A comparison of barriers associated with different pathways as well as intermediate formation allows us to provide a suitable mechanistic rationale for Michael addition reactions catalyzed by a secondary amine. The overall barriers for the C-C bond formation pathways involving enol or iminium intermediates are identified as higher than the enamine pathway. Additionally, the generation of iminium is found to be less favored as compared to enamine formation. The effect of co-catalyst/protic solvent on the energetics of the overall reaction is also studied using the cluster continuum approach. Significant reduction in the activation energies for each step of the reaction is predicted for the solvent-assisted models. The co-catalyst assisted addition of propanal-enamine to methyl vinyl ketone is identified as the most preferred pathway (P-IV) for the Michael addition reaction. The results are in concurrence with the available experimental reports on the rate acceleration by the use of a co-catalyst in this reaction.

  1. Effect of biodiesel addition on microbial community structure in a simulated fuel storage system.

    PubMed

    Restrepo-Flórez, Juan-Manuel; Bassi, Amarjeet; Rehmann, Lars; Thompson, Michael R

    2013-11-01

    Understanding changes in microbial structure due to biodiesel storage is important both for protecting integrity of storage systems and fuel quality management. In this work a simulated storage system was used to study the effect of biodiesel (0%, 25%, 50%, 75% and 100%) on a microbial population, which was followed by community level physiological profiling (CLPP), 16s rDNA analysis and plating in selective media. Results proved that structure and functionality were affected by biodiesel. CLPP showed at least three populations: one corresponding to diesel, one to biodiesel and one to blends of diesel and biodiesel. Analysis of 16s rDNA revealed that microbial composition was different for populations growing in diesel and biodiesel. Genera identified are known for degradation of hydrocarbons and emulsifier production. Maximum growth was obtained in biodiesel; however, microbial counts in standard media were lower for this samples. Acidification of culture media was observed at high biodiesel concentration.

  2. Microbial pathways for the mobilization of mercury as Hg(O) in anoxic subsurface environments

    SciTech Connect

    Barkay, Tamar

    2005-06-01

    The goal of our project which was initiated in June 2005 is focused on the presence of merA in microbial communities of anoxic environments and the effect of anaerobic respiratory pathways on MR expression and activities. The following progress has been made to date: PCR primers were designed to span the known phylogenetic range of merA genes of Gram-negative bacteria. In control experiments, these primers successfully amplified a 288 bp region at the 3? end of previously characterized merA genes from Shewanella putrefaciens pMERPH, Acidithiobacillus ferrooxidans, Pseudomonas stutzeri pPB, Tn5041, Pseudomonas sp. K-62, and Serratia marcescens pDU1358.

  3. Bactericidal activity of the food color additive Phloxine B against Staphylococcus aureus and other food borne microbial pathogens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The spread of antibiotic resistance among Staphylococcus aureus strains requires the development of new anti S. aureus agents. The objective of this study was evaluating the antimicrobial activity of the food color additive Phloxine B against S. aureus and other food microbial pathogens. Our result ...

  4. Genome-Centric Analysis of Microbial Populations Enriched by Hydraulic Fracture Fluid Additives in a Coal Bed Methane Production Well.

    PubMed

    Robbins, Steven J; Evans, Paul N; Parks, Donovan H; Golding, Suzanne D; Tyson, Gene W

    2016-01-01

    Coal bed methane (CBM) is generated primarily through the microbial degradation of coal. Despite a limited understanding of the microorganisms responsible for this process, there is significant interest in developing methods to stimulate additional methane production from CBM wells. Physical techniques including hydraulic fracture stimulation are commonly applied to CBM wells, however the effects of specific additives contained in hydraulic fracture fluids on native CBM microbial communities are poorly understood. Here, metagenomic sequencing was applied to the formation waters of a hydraulically fractured and several non-fractured CBM production wells to determine the effect of this stimulation technique on the in-situ microbial community. The hydraulically fractured well was dominated by two microbial populations belonging to the class Phycisphaerae (within phylum Planctomycetes) and candidate phylum Aminicenantes. Populations from these phyla were absent or present at extremely low abundance in non-fractured CBM wells. Detailed metabolic reconstruction of near-complete genomes from these populations showed that their high relative abundance in the hydraulically fractured CBM well could be explained by the introduction of additional carbon sources, electron acceptors, and biocides contained in the hydraulic fracture fluid.

  5. Genome-Centric Analysis of Microbial Populations Enriched by Hydraulic Fracture Fluid Additives in a Coal Bed Methane Production Well

    PubMed Central

    Robbins, Steven J.; Evans, Paul N.; Parks, Donovan H.; Golding, Suzanne D.; Tyson, Gene W.

    2016-01-01

    Coal bed methane (CBM) is generated primarily through the microbial degradation of coal. Despite a limited understanding of the microorganisms responsible for this process, there is significant interest in developing methods to stimulate additional methane production from CBM wells. Physical techniques including hydraulic fracture stimulation are commonly applied to CBM wells, however the effects of specific additives contained in hydraulic fracture fluids on native CBM microbial communities are poorly understood. Here, metagenomic sequencing was applied to the formation waters of a hydraulically fractured and several non-fractured CBM production wells to determine the effect of this stimulation technique on the in-situ microbial community. The hydraulically fractured well was dominated by two microbial populations belonging to the class Phycisphaerae (within phylum Planctomycetes) and candidate phylum Aminicenantes. Populations from these phyla were absent or present at extremely low abundance in non-fractured CBM wells. Detailed metabolic reconstruction of near-complete genomes from these populations showed that their high relative abundance in the hydraulically fractured CBM well could be explained by the introduction of additional carbon sources, electron acceptors, and biocides contained in the hydraulic fracture fluid. PMID:27375557

  6. Effects of nitrogen and phosphorus additions on soil microbial biomass and community structure in two reforested tropical forests

    NASA Astrophysics Data System (ADS)

    Liu, Lei; Gundersen, Per; Zhang, Wei; Zhang, Tao; Chen, Hao; Mo, Jiangming

    2015-09-01

    Elevated nitrogen (N) deposition may aggravate phosphorus (P) deficiency in forests in the warm humid regions of China. To our knowledge, the interactive effects of long-term N deposition and P availability on soil microorganisms in tropical replanted forests remain unclear. We conducted an N and P manipulation experiment with four treatments: control, N addition (15 g N m-2·yr-1), P addition (15 g P m-2·yr-1), and N and P addition (15 + 15 g N and P m-2·yr-1, respectively) in disturbed (planted pine forest with recent harvests of understory vegetation and litter) and rehabilitated (planted with pine, but mixed with broadleaf returning by natural succession) forests in southern China. Nitrogen addition did not significantly affect soil microbial biomass, but significantly decreased the abundance of gram-negative bacteria PLFAs in both forest types. Microbial biomass increased significantly after P addition in the disturbed forest but not in the rehabilitated forest. No interactions between N and P additions on soil microorganisms were observed in either forest type. Our results suggest that microbial growth in replanted forests of southern China may be limited by P rather than by N, and this P limitation may be greater in disturbed forests.

  7. Effects of nitrogen and phosphorus additions on soil microbial biomass and community structure in two reforested tropical forests.

    PubMed

    Liu, Lei; Gundersen, Per; Zhang, Wei; Zhang, Tao; Chen, Hao; Mo, Jiangming

    2015-09-23

    Elevated nitrogen (N) deposition may aggravate phosphorus (P) deficiency in forests in the warm humid regions of China. To our knowledge, the interactive effects of long-term N deposition and P availability on soil microorganisms in tropical replanted forests remain unclear. We conducted an N and P manipulation experiment with four treatments: control, N addition (15 g N m(-2)·yr(-1)), P addition (15 g P m(-2)·yr(-1)), and N and P addition (15 + 15 g N and P m(-2)·yr(-1), respectively) in disturbed (planted pine forest with recent harvests of understory vegetation and litter) and rehabilitated (planted with pine, but mixed with broadleaf returning by natural succession) forests in southern China. Nitrogen addition did not significantly affect soil microbial biomass, but significantly decreased the abundance of gram-negative bacteria PLFAs in both forest types. Microbial biomass increased significantly after P addition in the disturbed forest but not in the rehabilitated forest. No interactions between N and P additions on soil microorganisms were observed in either forest type. Our results suggest that microbial growth in replanted forests of southern China may be limited by P rather than by N, and this P limitation may be greater in disturbed forests.

  8. Effects of nitrogen and phosphorus additions on soil microbial biomass and community structure in two reforested tropical forests

    PubMed Central

    Liu, Lei; Gundersen, Per; Zhang, Wei; Zhang, Tao; Chen, Hao; Mo, Jiangming

    2015-01-01

    Elevated nitrogen (N) deposition may aggravate phosphorus (P) deficiency in forests in the warm humid regions of China. To our knowledge, the interactive effects of long-term N deposition and P availability on soil microorganisms in tropical replanted forests remain unclear. We conducted an N and P manipulation experiment with four treatments: control, N addition (15 g N m−2·yr−1), P addition (15 g P m−2·yr−1), and N and P addition (15 + 15 g N and P m−2·yr−1, respectively) in disturbed (planted pine forest with recent harvests of understory vegetation and litter) and rehabilitated (planted with pine, but mixed with broadleaf returning by natural succession) forests in southern China. Nitrogen addition did not significantly affect soil microbial biomass, but significantly decreased the abundance of gram-negative bacteria PLFAs in both forest types. Microbial biomass increased significantly after P addition in the disturbed forest but not in the rehabilitated forest. No interactions between N and P additions on soil microorganisms were observed in either forest type. Our results suggest that microbial growth in replanted forests of southern China may be limited by P rather than by N, and this P limitation may be greater in disturbed forests. PMID:26395406

  9. Consistent effects of canopy vs. understory nitrogen addition on the soil exchangeable cations and microbial community in two contrasting forests.

    PubMed

    Shi, Leilei; Zhang, Hongzhi; Liu, Tao; Zhang, Weixin; Shao, Yuanhu; Ha, Denglong; Li, Yuanqiu; Zhang, Chuangmao; Cai, Xi-an; Rao, Xingquan; Lin, Yongbiao; Zhou, Lixia; Zhao, Ping; Ye, Qing; Zou, Xiaoming; Fu, Shenglei

    2016-05-15

    Anthropogenic N deposition has been well documented to cause substantial impacts on the chemical and biological properties of forest soils. In most studies, however, atmospheric N deposition has been simulated by directly adding N to the forest floor. Such studies thus ignored the potentially significant effect of some key processes occurring in forest canopy (i.e., nitrogen retention) and may therefore have incorrectly assessed the effects of N deposition on soils. Here, we conducted an experiment that included both understory addition of N (UAN) and canopy addition of N (CAN) in two contrasting forests (temperate deciduous forest vs. subtropical evergreen forest). The goal was to determine whether the effects on soil exchangeable cations and microbial biomass differed between CAN and UAN. We found that N addition reduced pH, BS (base saturation) and exchangeable Ca and increased exchangeable Al significantly only at the temperate JGS site, and reduced the biomass of most soil microbial groups only at the subtropical SMT site. Except for soil exchangeable Mn, however, effects on soil chemical properties and soil microbial community did not significantly differ between CAN and UAN. Although biotic and abiotic soil characteristics differ significantly and the responses of both soil exchangeable cations and microbial biomass were different between the two study sites, we found no significant interactive effects between study site and N treatment approach on almost all soil properties involved in this study. In addition, N addition rate (25 vs. 50 kg N ha(-1) yr(-1)) did not show different effects on soil properties under both N addition approaches. These findings did not support previous prediction which expected that, by bypassing canopy effects (i.e., canopy retention and foliage fertilization), understory addition of N would overestimate the effects of N deposition on forest soil properties, at least for short time scale.

  10. Phosphorus applications improved the soil microbial responses under nitrogen additions in Chinese fir plantations of subtropical China

    NASA Astrophysics Data System (ADS)

    Zhang, Xinyu; Li, Dandan; Yang, Yang; Tang, Yuqian; Wang, Huimin; Chen, Fusheng; Sun, Xiaomin

    2016-04-01

    Nitrogen (N) deposition and low soil phosphorus (P) content aggravate the P limitation in subtropical forest soils. However, the responses of soil microbial communities, enzyme kinetics, and N cycling genes to P additions in subtropical plantations are still not clear. The hypothesis that P application can alleviate the limitation and improve the soil microbial properties was tested by long term field experiment in the Chinese fir plantations in subtropical China. Thirty 20m×20m plots were established in November 2011 and six different treatments were randomly distributed with five replicates. The treatments are control (CK, no N and P application), low N addition (N1: 50 kg N ha-1 yr-1), high N addition (N2: 100 kg N ha-1 yr-1), P addition (P: 50 kg P ha-1 yr-1), low N and P addition (N1P: 50 kg N ha-1 yr-1 and 50 kg P ha-1 yr-1) and high N and P addition (N2P: 100 kg N ha-1 yr-1 and 50 kg P ha-1 yr-1). A suite of responses of soil microorganism across four years (2012-2015) during three seasons (spring, summer and autumn) were measured. Following 4 years of N amendments, fertilized soils were more acidic and had lower soil microbial biomass carbon contents than CK. However, P alleviated the soil acidification and increased the soil microbial biomass carbon contents. Increases in microbial PLFA biomarkers and exoenzyme kinetics in N fertilized plots were observed in the initial year (2013) but reduced since then (2014 and 2015). Whereas P amendments increased the soil PLFA biomarkers and exoenzyme kinetics through the four years except that the acid phosphatase activities declined after 3 years applications. P applications enhanced the soil N cycling by increases the abundances of nitrifiers (ammonia-oxidizing archea) and denitrifiers (nos Z, norG, and nirK). The bacterial and fungal residue carbons (calculated by amino sugar indicators) were higher under NP fertilizations than the other treatments. Our results suggest that P application could improve the soil

  11. 13C Pathway Analysis for the Role of Formate in Electricity Generation by Shewanella Oneidensis MR-1 Using Lactate in Microbial Fuel Cells

    PubMed Central

    Luo, Shuai; Guo, Weihua; H. Nealson, Kenneth; Feng, Xueyang; He, Zhen

    2016-01-01

    Microbial fuel cell (MFC) is a promising technology for direct electricity generation from organics by microorganisms. The type of electron donors fed into MFCs affects the electrical performance, and mechanistic understanding of such effects is important to optimize the MFC performance. In this study, we used a model organism in MFCs, Shewanella oneidensis MR-1, and 13C pathway analysis to investigate the role of formate in electricity generation and the related microbial metabolism. Our results indicated a synergistic effect of formate and lactate on electricity generation, and extra formate addition on the original lactate resulted in more electrical output than using formate or lactate as a sole electron donor. Based on the 13C tracer analysis, we discovered decoupled cell growth and electricity generation in S. oneidensis MR-1 during co-utilization of lactate and formate (i.e., while the lactate was mainly metabolized to support the cell growth, the formate was oxidized to release electrons for higher electricity generation). To our best knowledge, this is the first time that 13C tracer analysis was applied to study microbial metabolism in MFCs and it was demonstrated to be a valuable tool to understand the metabolic pathways affected by electron donors in the selected electrochemically-active microorganisms. PMID:26868848

  12. ¹³C Pathway Analysis for the Role of Formate in Electricity Generation by Shewanella Oneidensis MR-1 Using Lactate in Microbial Fuel Cells.

    PubMed

    Luo, Shuai; Guo, Weihua; Nealson, Kenneth H; Feng, Xueyang; He, Zhen

    2016-02-12

    Microbial fuel cell (MFC) is a promising technology for direct electricity generation from organics by microorganisms. The type of electron donors fed into MFCs affects the electrical performance, and mechanistic understanding of such effects is important to optimize the MFC performance. In this study, we used a model organism in MFCs, Shewanella oneidensis MR-1, and (13)C pathway analysis to investigate the role of formate in electricity generation and the related microbial metabolism. Our results indicated a synergistic effect of formate and lactate on electricity generation, and extra formate addition on the original lactate resulted in more electrical output than using formate or lactate as a sole electron donor. Based on the (13)C tracer analysis, we discovered decoupled cell growth and electricity generation in S. oneidensis MR-1 during co-utilization of lactate and formate (i.e., while the lactate was mainly metabolized to support the cell growth, the formate was oxidized to release electrons for higher electricity generation). To our best knowledge, this is the first time that (13)C tracer analysis was applied to study microbial metabolism in MFCs and it was demonstrated to be a valuable tool to understand the metabolic pathways affected by electron donors in the selected electrochemically-active microorganisms.

  13. 13C Pathway Analysis for the Role of Formate in Electricity Generation by Shewanella Oneidensis MR-1 Using Lactate in Microbial Fuel Cells

    NASA Astrophysics Data System (ADS)

    Luo, Shuai; Guo, Weihua; H. Nealson, Kenneth; Feng, Xueyang; He, Zhen

    2016-02-01

    Microbial fuel cell (MFC) is a promising technology for direct electricity generation from organics by microorganisms. The type of electron donors fed into MFCs affects the electrical performance, and mechanistic understanding of such effects is important to optimize the MFC performance. In this study, we used a model organism in MFCs, Shewanella oneidensis MR-1, and 13C pathway analysis to investigate the role of formate in electricity generation and the related microbial metabolism. Our results indicated a synergistic effect of formate and lactate on electricity generation, and extra formate addition on the original lactate resulted in more electrical output than using formate or lactate as a sole electron donor. Based on the 13C tracer analysis, we discovered decoupled cell growth and electricity generation in S. oneidensis MR-1 during co-utilization of lactate and formate (i.e., while the lactate was mainly metabolized to support the cell growth, the formate was oxidized to release electrons for higher electricity generation). To our best knowledge, this is the first time that 13C tracer analysis was applied to study microbial metabolism in MFCs and it was demonstrated to be a valuable tool to understand the metabolic pathways affected by electron donors in the selected electrochemically-active microorganisms.

  14. A comparison of additional treatment processes to limit particle accumulation and microbial growth during drinking water distribution.

    PubMed

    Liu, G; Lut, M C; Verberk, J Q J C; Van Dijk, J C

    2013-05-15

    Water quality changes, particle accumulation and microbial growth occurring in pilot-scale water distribution systems fed with normally treated and additional treated groundwater were monitored over a period of almost one year. The treatment processes were ranked in the following order: nanofiltration (NF) > (better than) ultrafiltration (UF) > ion exchange (IEX) for limiting particle accumulation. A different order was found for limiting overall microbial growth: NF > IEX > UF. There were strong correlations between particle load and particle accumulation, and between nutrient load and microbial growth. It was concluded that particle accumulation can be controlled by reducing the particle load in water treatment plants; and the microbial growth can be better controlled by limiting organic nutrients rather than removing biomass in water treatment plants. The major focus of this study was on microbial growth. The results demonstrated that growth occurred in all types of treated water, including the phases of bulk water, biofilm and loose deposits. Considering the growth in different phases, similar growth in bulk water was observed for all treatments; NF strongly reduced growth both in loose deposits and in biofilm; UF promoted growth in biofilm, while strongly limiting growth in loose deposits. IEX had good efficiency in between UF and NF, limiting both growths in loose deposits and in biofilm. Significant growth was found in loose deposits, suggesting that loose deposit biomass should be taken into account for growth evaluation and/or prediction. Strong correlations were found between microbial growth and pressure drop in a membrane fouling simulator which proved that a membrane fouling simulator can be a fast growth predictor (within a week). Different results obtained by adenosine triphosphate and flow cytometry cell counts revealed that ATP can accurately describe both suspended and particle-associated biomass, and flow cytometry files of TCC measurements needs

  15. T-cell activation by transitory neo-antigens derived from distinct microbial pathways.

    PubMed

    Corbett, Alexandra J; Eckle, Sidonia B G; Birkinshaw, Richard W; Liu, Ligong; Patel, Onisha; Mahony, Jennifer; Chen, Zhenjun; Reantragoon, Rangsima; Meehan, Bronwyn; Cao, Hanwei; Williamson, Nicholas A; Strugnell, Richard A; Van Sinderen, Douwe; Mak, Jeffrey Y W; Fairlie, David P; Kjer-Nielsen, Lars; Rossjohn, Jamie; McCluskey, James

    2014-05-15

    T cells discriminate between foreign and host molecules by recognizing distinct microbial molecules, predominantly peptides and lipids. Riboflavin precursors found in many bacteria and yeast also selectively activate mucosal-associated invariant T (MAIT) cells, an abundant population of innate-like T cells in humans. However, the genesis of these small organic molecules and their mode of presentation to MAIT cells by the major histocompatibility complex (MHC)-related protein MR1 (ref. 8) are not well understood. Here we show that MAIT-cell activation requires key genes encoding enzymes that form 5-amino-6-d-ribitylaminouracil (5-A-RU), an early intermediate in bacterial riboflavin synthesis. Although 5-A-RU does not bind MR1 or activate MAIT cells directly, it does form potent MAIT-activating antigens via non-enzymatic reactions with small molecules, such as glyoxal and methylglyoxal, which are derived from other metabolic pathways. The MAIT antigens formed by the reactions between 5-A-RU and glyoxal/methylglyoxal were simple adducts, 5-(2-oxoethylideneamino)-6-D-ribitylaminouracil (5-OE-RU) and 5-(2-oxopropylideneamino)-6-D-ribitylaminouracil (5-OP-RU), respectively, which bound to MR1 as shown by crystal structures of MAIT TCR ternary complexes. Although 5-OP-RU and 5-OE-RU are unstable intermediates, they became trapped by MR1 as reversible covalent Schiff base complexes. Mass spectra supported the capture by MR1 of 5-OP-RU and 5-OE-RU from bacterial cultures that activate MAIT cells, but not from non-activating bacteria, indicating that these MAIT antigens are present in a range of microbes. Thus, MR1 is able to capture, stabilize and present chemically unstable pyrimidine intermediates, which otherwise convert to lumazines, as potent antigens to MAIT cells. These pyrimidine adducts are microbial signatures for MAIT-cell immunosurveillance.

  16. Taxonomic and functional diversity provides insight into microbial pathways and stress responses in the saline Qinghai Lake, China.

    PubMed

    Huang, Qiuyuan; Briggs, Brandon R; Dong, Hailiang; Jiang, Hongchen; Wu, Geng; Edwardson, Christian; De Vlaminck, Iwijn; Quake, Stephen

    2014-01-01

    Microbe-mediated biogeochemical cycles contribute to the global climate system and have sensitive responses and feedbacks to environmental stress caused by climate change. Yet, little is known about the effects of microbial biodiversity (i.e., taxonmic and functional diversity) on biogeochemical cycles in ecosytems that are highly sensitive to climate change. One such sensitive ecosystem is Qinghai Lake, a high-elevation (3196 m) saline (1.4%) lake located on the Tibetan Plateau, China. This study provides baseline information on the microbial taxonomic and functional diversity as well as the associated stress response genes. Illumina metagenomic and metatranscriptomic datasets were generated from lake water samples collected at two sites (B and E). Autotrophic Cyanobacteria dominated the DNA samples, while heterotrophic Proteobacteria dominated the RNA samples at both sites. Photoheterotrophic Loktanella was also present at both sites. Photosystem II was the most active pathway at site B; while, oxidative phosphorylation was most active at site E. Organisms that expressed photosystem II or oxidative phosphorylation also expressed genes involved in photoprotection and oxidative stress, respectively. Assimilatory pathways associated with the nitrogen cycle were dominant at both sites. Results also indicate a positive relationship between functional diversity and the number of stress response genes. This study provides insight into the stress resilience of microbial metabolic pathways supported by greater taxonomic diversity, which may affect the microbial community response to climate change.

  17. Taxonomic and Functional Diversity Provides Insight into Microbial Pathways and Stress Responses in the Saline Qinghai Lake, China

    PubMed Central

    Dong, Hailiang; Jiang, Hongchen; Wu, Geng; Edwardson, Christian; De Vlaminck, Iwijn; Quake, Stephen

    2014-01-01

    Microbe-mediated biogeochemical cycles contribute to the global climate system and have sensitive responses and feedbacks to environmental stress caused by climate change. Yet, little is known about the effects of microbial biodiversity (i.e., taxonmic and functional diversity) on biogeochemical cycles in ecosytems that are highly sensitive to climate change. One such sensitive ecosystem is Qinghai Lake, a high-elevation (3196 m) saline (1.4%) lake located on the Tibetan Plateau, China. This study provides baseline information on the microbial taxonomic and functional diversity as well as the associated stress response genes. Illumina metagenomic and metatranscriptomic datasets were generated from lake water samples collected at two sites (B and E). Autotrophic Cyanobacteria dominated the DNA samples, while heterotrophic Proteobacteria dominated the RNA samples at both sites. Photoheterotrophic Loktanella was also present at both sites. Photosystem II was the most active pathway at site B; while, oxidative phosphorylation was most active at site E. Organisms that expressed photosystem II or oxidative phosphorylation also expressed genes involved in photoprotection and oxidative stress, respectively. Assimilatory pathways associated with the nitrogen cycle were dominant at both sites. Results also indicate a positive relationship between functional diversity and the number of stress response genes. This study provides insight into the stress resilience of microbial metabolic pathways supported by greater taxonomic diversity, which may affect the microbial community response to climate change. PMID:25365331

  18. Microbially-accelerated consolidation of oil sands tailings. Pathway I: changes in porewater chemistry

    PubMed Central

    Siddique, Tariq; Kuznetsov, Petr; Kuznetsova, Alsu; Arkell, Nicholas; Young, Rozlyn; Li, Carmen; Guigard, Selma; Underwood, Eleisha; Foght, Julia M.

    2014-01-01

    Dispersed clay particles in mine tailings and soft sediments remain suspended for decades, hindering consolidation and challenging effective management of these aqueous slurries. Current geotechnical engineering models of self-weight consolidation of tailings do not consider microbial contribution to sediment behavior, however, here we show that microorganisms indigenous to oil sands tailings change the porewater chemistry and accelerate consolidation of oil sands tailings. A companion paper describes the role of microbes in alteration of clay chemistry in tailings. Microbial metabolism in mature fine tailings (MFT) amended with an organic substrate (hydrolyzed canola meal) produced methane (CH4) and carbon dioxide (CO2). Dissolution of biogenic CO2 lowered the pH of amended MFT to pH 6.4 vs. unamended MFT (pH 7.7). About 12% more porewater was recovered from amended than unamended MFT during 2 months of active microbial metabolism, concomitant with consolidation of tailings. The lower pH in amended MFT dissolved carbonate minerals, thereby releasing divalent cations including calcium (Ca2+) and magnesium (Mg2+) and increasing bicarbonate (HCO−3) in porewater. The higher concentrations increased the ionic strength of the porewater, in turn reducing the thickness of the diffuse double layer (DDL) of clay particles by reducing the surface charge potential (repulsive forces) of the clay particles. The combination of these processes accelerated consolidation of oil sands tailings. In addition, ebullition of biogenic gases created transient physical channels for release of porewater. In contrast, saturating the MFT with non-biogenic CO2 had little effect on consolidation. These results have significant implications for management and reclamation of oil sands tailings ponds and broad importance in anaerobic environments such as contaminated harbors and estuaries containing soft sediments rich in clays and organics. PMID:24711805

  19. Agricultural management and labile carbon additions affect soil microbial community structure and interact with carbon and nitrogen cycling.

    PubMed

    Berthrong, Sean T; Buckley, Daniel H; Drinkwater, Laurie E

    2013-07-01

    We investigated how conversion from conventional agriculture to organic management affected the structure and biogeochemical function of soil microbial communities. We hypothesized the following. (1) Changing agricultural management practices will alter soil microbial community structure driven by increasing microbial diversity in organic management. (2) Organically managed soil microbial communities will mineralize more N and will also mineralize more N in response to substrate addition than conventionally managed soil communities. (3) Microbial communities under organic management will be more efficient and respire less added C. Soils from organically and conventionally managed agroecosystems were incubated with and without glucose ((13)C) additions at constant soil moisture. We extracted soil genomic DNA before and after incubation for TRFLP community fingerprinting of soil bacteria and fungi. We measured soil C and N pools before and after incubation, and we tracked total C respired and N mineralized at several points during the incubation. Twenty years of organic management altered soil bacterial and fungal community structure compared to continuous conventional management with the bacterial differences caused primarily by a large increase in diversity. Organically managed soils mineralized twice as much NO3 (-) as conventionally managed ones (44 vs. 23 μg N/g soil, respectively) and increased mineralization when labile C was added. There was no difference in respiration, but organically managed soils had larger pools of C suggesting greater efficiency in terms of respiration per unit soil C. These results indicate that the organic management induced a change in community composition resulting in a more diverse community with enhanced activity towards labile substrates and greater capacity to mineralize N.

  20. Response of Functional Structure of Soil Microbial Community to Multi-level Nitrogen Additions on the Central Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Zhang, G.; Yuan, Y.

    2015-12-01

    The use of fossil fuels and fertilizers has increased the amount of biologically reactive nitrogen in the atmosphere over the past century. Tibet is the one of the most threatened regions by nitrogen deposition, thus understanding how its microbial communities function maybe of high importance to predicting microbial responses to nitrogen deposition. Here we describe a short-time nitrogen addition conducted in an alpine steppe ecosystem to investigate the response of functional structure of soil microbial community to multi-level nitrogen addition. Using a GeoChip 4.0, we showed that functional diversities and richness of functional genes were unchanged at low level of nitrogen fertilizer inputs (<20 kg N ha-1 yr-1), but significantly decreased at higher nitrogen fertilizer inputs (>=40 kg N ha-1 yr-1). Detrended correspondence analysis indicated that the functional structure of microbial communities was markedly different across the nitrogen gradients. Most C degradation genes whose abundances significantly increased under elevated N fertilizer were those involved in the degradation of relatively labile C (starch, hemicellulose, cellulose), whereas the abundance of certain genes involved in the degradation of recalcitrant C (i.e. lignin) was largely decreased (such as manganese peroxidase, mnp). The results suggest that the elevated N fertilization rates might significantly accelerate the labile C degradation, but might not spur recalcitrant C degradation. The combined effect of gdh and ureC genes involved in N cycling appeared to shift the balance between ammonia and organic N toward organic N ammonification and hence increased the N mineralization potential. Moreover, Urease directly involved in urea mineralization significantly increased. Lastly, Canonical correspondence analysis showed that soil (TOC+NH4++NO3-+NO2-+pH) and plant (Aboveground plant productivity + Shannon Diversity) variables could explain 38.9% of the variation of soil microbial community

  1. Biodegradation of organic matter and anodic microbial communities analysis in sediment microbial fuel cells with/without Fe(III) oxide addition.

    PubMed

    Xu, Xun; Zhao, Qingliang; Wu, Mingsong; Ding, Jing; Zhang, Weixian

    2017-02-01

    To enhance the biodegradation of organic matter in sediment microbial fuel cell (SMFC), Fe(III) oxide, as an alternative electron acceptor, was added into the sediment. Results showed that the SMFC with Fe(III) oxide addition obtained higher removal efficiencies for organics than the SMFC without Fe(III) oxide addition and open circuit bioreactor, and produced a maximum power density (Pmax) of 87.85mW/m(2) with a corresponding maximum voltage (Vmax) of 0.664V. The alteration of UV-254 and specific ultraviolet absorbance (SUVA) also demonstrated the organic matter in sediments can be effectively removed. High-throughput sequencing of anodic microbial communities indicated that bacteria from the genus Geobacter were predominantly detected (21.23%) in the biofilm formed on the anode of SMFCs, while Pseudomonas was the most predominant genus (18.12%) in the presence of Fe(III) oxide. Additionally, compared with the open circuit bioreactor, more electrogenic bacteria attached to the biofilm of anode in SMFCs.

  2. Biological activities of thermo-tolerant microbes from fermented rice bran as an alternative microbial feed additive.

    PubMed

    Koh, J H; Suh, H J

    2009-06-01

    To evaluate the commercial potential of new microbial feed additive, Issatchenkia orientalis Y266 and Bacillus subtilis B266 from commercial fermented rice bran were tested for their tolerance or resistance to pH, bile, oxgall, and temperature. It was found that the strains grew very well up to pH 3.0 and resistant to relatively high concentrations of bile salt and oxgall. I. orientalis and B. subtilis are extremely tolerant in range of 70-90 degrees C in solid medium. B. subtilis B266 also has excellent tolerant property up to 90 degrees C in liquid medium. The health indexes (the microflora in the small intestines and the antibody titer to Newcastle disease virus) of chicks were significantly improved in the fermented rice bran with these strains (0.25% addition to diet) in comparison with the Avilamycin (20 mg/kg diet)-fed group (p < 0.05). The fermented rice bran-fed group showed a better microbial flora in the small intestines. Accordingly, it would appear that the fermented rice bran with these strains may be a potential candidate for an alternative microbial feed additive.

  3. Formate-Dependent Microbial Conversion of CO2 and the Dominant Pathways of Methanogenesis in Production Water of High-temperature Oil Reservoirs Amended with Bicarbonate

    PubMed Central

    Yang, Guang-Chao; Zhou, Lei; Mbadinga, Serge M.; Liu, Jin-Feng; Yang, Shi-Zhong; Gu, Ji-Dong; Mu, Bo-Zhong

    2016-01-01

    CO2 sequestration in deep-subsurface formations including oil reservoirs is a potential measure to reduce the CO2 concentration in the atmosphere. However, the fate of the CO2 and the ecological influences in carbon dioxide capture and storage (CDCS) facilities is not understood clearly. In the current study, the fate of CO2 (in bicarbonate form; 0∼90 mM) with 10 mM of formate as electron donor and carbon source was investigated with high-temperature production water from oilfield in China. The isotope data showed that bicarbonate could be reduced to methane by methanogens and major pathway of methanogenesis could be syntrophic formate oxidation coupled with CO2 reduction and formate methanogenesis under the anaerobic conditions. The bicarbonate addition induced the shift of microbial community. Addition of bicarbonate and formate was associated with a decrease of Methanosarcinales, but promotion of Methanobacteriales in all treatments. Thermodesulfovibrio was the major group in all the samples and Thermacetogenium dominated in the high bicarbonate treatments. The results indicated that CO2 from CDCS could be transformed to methane and the possibility of microbial CO2 conversion for enhanced microbial energy recovery in oil reservoirs. PMID:27047478

  4. Formate-Dependent Microbial Conversion of CO2 and the Dominant Pathways of Methanogenesis in Production Water of High-temperature Oil Reservoirs Amended with Bicarbonate.

    PubMed

    Yang, Guang-Chao; Zhou, Lei; Mbadinga, Serge M; Liu, Jin-Feng; Yang, Shi-Zhong; Gu, Ji-Dong; Mu, Bo-Zhong

    2016-01-01

    CO2 sequestration in deep-subsurface formations including oil reservoirs is a potential measure to reduce the CO2 concentration in the atmosphere. However, the fate of the CO2 and the ecological influences in carbon dioxide capture and storage (CDCS) facilities is not understood clearly. In the current study, the fate of CO2 (in bicarbonate form; 0∼90 mM) with 10 mM of formate as electron donor and carbon source was investigated with high-temperature production water from oilfield in China. The isotope data showed that bicarbonate could be reduced to methane by methanogens and major pathway of methanogenesis could be syntrophic formate oxidation coupled with CO2 reduction and formate methanogenesis under the anaerobic conditions. The bicarbonate addition induced the shift of microbial community. Addition of bicarbonate and formate was associated with a decrease of Methanosarcinales, but promotion of Methanobacteriales in all treatments. Thermodesulfovibrio was the major group in all the samples and Thermacetogenium dominated in the high bicarbonate treatments. The results indicated that CO2 from CDCS could be transformed to methane and the possibility of microbial CO2 conversion for enhanced microbial energy recovery in oil reservoirs.

  5. A Novel Synthetic Pathway Enables Microbial Production of Polyphenols Independent from the Endogenous Aromatic Amino Acid Metabolism.

    PubMed

    Kallscheuer, Nicolai; Vogt, Michael; Marienhagen, Jan

    2016-12-14

    Numerous plant polyphenols have potential applications as pharmaceuticals or nutraceuticals. Stilbenes and flavonoids as most abundant polyphenols are synthesized from phenylpropanoids, which are exclusively derived from aromatic amino acids in nature. Several microorganisms were engineered for the synthesis of biotechnologically interesting plant polyphenols; however, low activity of heterologous ammonia lyases, linking endogenous microbial aromatic amino acid biosynthesis to phenylpropanoid synthesis, turned out to be the limiting step during microbial synthesis. We here developed an alternative strategy for polyphenol production from cheap benzoic acids by reversal of a β-oxidative phenylpropanoid degradation pathway avoiding any ammonia lyase activity. The synthetic pathway running in the non-natural direction is feasible with respect to thermodynamics and involved reaction mechanisms. Instantly, product titers of 5 mg/L resveratrol could be achieved in recombinant Corynebacterium glutamicum strains indicating that phenylpropanoid synthesis from 4-hydroxybenzoic acid can in principle be implemented independently from aromatic amino acids and ammonia lyase activity.

  6. Microbial community and metabolic pathway succession driven by changed nutrient inputs in tailings: effects of different nutrients on tailing remediation.

    PubMed

    Zhang, Mingjiang; Liu, Xingyu; Li, Yibin; Wang, Guangyuan; Wang, Zining; Wen, Jiankang

    2017-03-28

    To solve the competition problem of acidophilic bacteria and sulfate-reducing bacteria in the practical application of mine tailing bioremediation, research into the mechanisms of using different nutrients to adjust the microbial community was conducted. Competition experiments involving acidophilic bacteria and sulfate-reducing bacteria were performed by supplementing the media with yeast extract, tryptone, lactate, and glucose. The physiochemical properties were determined, and the microbial community structure and biomass were investigated using MiSeq sequencing and qRT-PCR, respectively. Four nutrients had different remediation mechanisms and yielded different remediation effects. Yeast extract and tryptone (more than 1.6 g/L) promoted sulfate-reducing bacteria and inhibited acidophilic bacteria. Lactate inhibited both sulfate-reducing and acidophilic bacteria. Glucose promoted acidophilic bacteria more than sulfate-reducing bacteria. Yeast extract was the best choice for adjusting the microbial community and bioremediation, followed by tryptone. Lactate kept the physiochemical properties stable or made slight improvements; however, glucose was not suitable for mine tailing remediation. Different nutrients had significant effects on the abundance of the second enzyme of the sulfate-reducing pathway (p < 0.05), which is the rate-limiting step of sulfate-reducing pathways. Nutrients changed the remediation effects effectively by adjusting the microbial community and the abundance of the sulfate-reducing rate-limiting enzyme.

  7. Microbial pathways and palaeoenvironmental conditions involved in the formation of phosphorite grains, Safaga District, Egypt

    NASA Astrophysics Data System (ADS)

    Salama, Walid; El-Kammar, Ahmed; Saunders, Martin; Morsy, Rania; Kong, Charlie

    2015-07-01

    Phosphatic grains of the shallow marine phosphorite deposits of Egypt are classified as either phosphatic bioclasts preserving biological structure (e.g. skeletal fragments such as fish bones and teeth) or phosphatic peloids and intraclasts. This study describes the destructive and constructive microbial pathways represented by bioerosion of bones by endolithic cyanobacteria and accretion of phosphatic peloids by bacteria. The palaeoenvironmental conditions and post-depositional/diagenetic history of these grains have also been considered. Scanning and transmission electron microscopy showed that the phosphatic peloids under transmitted light microscopy are composed mainly of microspheres (0.5 to 2.5 μm) similar in shape and size to coccoid-like bacteria. Chemical mapping showed that these microspheres are composed of carbonate-fluorapatite (CFA) and surrounded by degraded carbonaceous matrix. These grains are suggested to be reworked from pre-existing microbial mats during transgressive-regressive cycles affecting the southern Tethyan Campanian-Maastrichtian shallow continental shelf. The bioerosion of phosphatic bones is characterized by a network of meandering microborings that penetrated inward from the bone surface by endolithic cyanobacteria. The bioerosion of bones resulted in a gradual centripetal digestion and conversion of bones into micritic phosphate peloids. The bioerosion mechanism is probably started in the acidic sheath surrounding cyanobacteria followed by supersaturation of PO4 and reprecipitation of crystalline CFA as electron dense remineralized rims. Electron microprobe microanalyses showed that the remineralized microbored areas are higher in CaO, P2O5, and F and depleted in Cl, relative to unaltered bones. A gradual demineralization of remineralized rims followed by dissolution of cyanobacterial cells is probably occurred during diagenesis and meteoric water alteration leaving behind empty microborings. Bone exposed to meteoric water

  8. Additives

    NASA Technical Reports Server (NTRS)

    Smalheer, C. V.

    1973-01-01

    The chemistry of lubricant additives is discussed to show what the additives are chemically and what functions they perform in the lubrication of various kinds of equipment. Current theories regarding the mode of action of lubricant additives are presented. The additive groups discussed include the following: (1) detergents and dispersants, (2) corrosion inhibitors, (3) antioxidants, (4) viscosity index improvers, (5) pour point depressants, and (6) antifouling agents.

  9. Effects of feeding corn silage inoculated with microbial additives on the ruminal fermentation, microbial protein yield, and growth performance of lambs.

    PubMed

    Basso, F C; Adesogan, A T; Lara, E C; Rabelo, C H S; Berchielli, T T; Teixeira, I A M A; Siqueira, G R; Reis, R A

    2014-12-01

    This study aimed to examine the effects of feeding corn silage inoculated without or with either Lactobacillus buchneri (LB) alone or a combination of LB and Lactobacillus plantarum (LBLP) on the apparent digestibility, ruminal fermentation, microbial protein synthesis, and growth performance of lambs. Thirty Santa Inês×Dorper crossbred intact males lambs weighing 20.4±3.8 kg were blocked by weight into 10 groups. Lambs in each group were randomly assigned to 1 of the following 3 dietary treatments: untreated (Control), LB, and LBLP silage. Lambs were fed experimental diets for 61 d. The apparent digestibility was indirectly estimated from indigestible NDF measured on d 57 to 59. Spot urine samples were collected from all animals on d 59 to estimate microbial protein synthesis. Lambs were slaughtered for carcass evaluation on d 61 when they weighed 32.4±5.2 kg. Six additional ruminally cannulated Santa Inês×Dorper crossbred wethers weighing 40.5±1.8 kg were used to examine dietary effects on ruminal fermentation. Average daily gain was increased when lambs were fed LBLP silage (P<0.05) but not LB silage. The LBLP silage had the highest (P<0.05) lactic acid concentration and both inoculated silages had greater acetic acid concentrations than the Control silage (P<0.05). Inoculation of corn silage increased intakes of DM, OM, CP, NDF, total carbohydrate (CHO), and GE by the lambs but decreased digestibility of DM, OM, CP, total and nonstructural carbohydrates, and concentration of GE and ME. (P<0.05). Nevertheless, lambs fed inoculated silages had greater microbial N supply than those on the Control treatment (P<0.05). The acetate to propionate ratio was lower in ruminal fluid of wethers in LBLP treatment than LB and Control treatment (P<0.05) and ruminal pH tended to be greater in LB lambs than in LBLP and Control wethers (P<0.10). Finally, the inoculation with both bacteria combined enhanced the silage fermentation. The intakes of DM, OM, CP, NDF, and GE

  10. An enhanced anaerobic membrane bioreactor treating bamboo industry wastewater by bamboo charcoal addition: Performance and microbial community analysis.

    PubMed

    Xia, Tian; Gao, Xinyi; Wang, Caiqin; Xu, Xiangyang; Zhu, Liang

    2016-11-01

    In this study, two anaerobic membrane bioreactors (AnMBRs) were operated for 150days to treat bamboo industry wastewater (BIWW), and one of them was enhanced with bamboo charcoal (B-AnMBR). During the steady period, average chemical oxygen demand (COD) removal efficiencies of 94.5±2.9% and 89.1±3.1% were achieved in B-AnMBR and AnMBR, respectively. The addition of bamboo charcoal (BC) increased the amount of biomass and improved the performance of the systems. A higher biogas production and methane yield were also observed in B-AnMBR. Regarding the issue of membrane fouling, BC lowered the soluble microbial product (SMP) content by approximately 62.73mg/L and decreased the membrane resistance, thereby mitigating membrane fouling. Analysis of the microbial communities demonstrated that BC increased the microbial diversity and promoted the activity of Methanosaeta, Methanospirillum, and Methanobacterium, which are dominant in methane production.

  11. Microbial biomass and carbon mineralization in agricultural soils as affected by pesticide addition.

    PubMed

    Kumar, Anjani; Nayak, A K; Shukla, Arvind K; Panda, B B; Raja, R; Shahid, Mohammad; Tripathi, Rahul; Mohanty, Sangita; Rath, P C

    2012-04-01

    A laboratory study was conducted with four pesticides, viz. a fungicide (carbendazim), two insecticides (chlorpyrifos and cartap hydrochloride) and an herbicide (pretilachlor) applied to a sandy clay loam soil at a field rate to determine their effect on microbial biomass carbon (MBC) and carbon mineralization (C(min)). The MBC content of soil increased with time up to 30 days in cartap hydrochloride as well as chlorpyrifos treated soil. Thereafter, it decreased and reached close to the initial level by 90th day. However, in carbendazim treated soil, the MBC showed a decreasing trend up to 45 days and subsequently increased up to 90 days. In pretilachlor treated soil, MBC increased through the first 15 days, and thereafter decreased to the initial level. Application of carbendazim, chlorpyrifos and cartap hydrochloride decreased C(min) for the first 30 days and then increased afterwards, while pretilachlor treated soil showed an increasing trend.

  12. Metagenomic approach reveals microbial diversity and predictive microbial metabolic pathways in Yucha, a traditional Li fermented food

    PubMed Central

    Zhang, Jiachao; Wang, Xiaoru; Huo, Dongxue; Li, Wu; Hu, Qisong; Xu, Chuanbiao; Liu, Sixin; Li, Congfa

    2016-01-01

    Yucha is a typical traditional fermented food of the Li population in the Hainan province of China, and it is made up of cooked rice and fresh fish. In the present study, metagenomic approach and culture-dependent technology were applied to describe the diversity of microbiota and identify beneficial microbes in the Yucha. At the genus level, Lactobacillus was the most abundant genus (43.82% of the total reads), followed by Lactococcus, Enterococcus, Vibrio, Weissella, Pediococcus, Enterobacter, Salinivibrio, Acinetobacter, Macrococcus, Kluyvera and Clostridium; this result was confirmed by q-PCR. PCoA based on Weighted UniFrac distances showed an apparent clustering pattern for Yucha samples from different locations, and Lactobacillus sakei, Lactobacillus saniviri and Staphylococcus sciuri represented OTUs according to the major identified markers. At the microbial functional level, it was observed that there was an enrichment of metabolic functional features, including amino acid and carbohydrate metabolism, which implied that the microbial metabolism in the Yucha samples tended to be vigorous. Accordingly, we further investigated the correlation between the predominant microbes and metabolic functional features. Thirteen species of Lactobacillus (147 strains) were isolated, and Lactobacillus plantarum (60 isolates) and Lactobacillus pentosus (34 isolates) were isolated from every sample. PMID:27578483

  13. Metagenomic approach reveals microbial diversity and predictive microbial metabolic pathways in Yucha, a traditional Li fermented food.

    PubMed

    Zhang, Jiachao; Wang, Xiaoru; Huo, Dongxue; Li, Wu; Hu, Qisong; Xu, Chuanbiao; Liu, Sixin; Li, Congfa

    2016-08-31

    Yucha is a typical traditional fermented food of the Li population in the Hainan province of China, and it is made up of cooked rice and fresh fish. In the present study, metagenomic approach and culture-dependent technology were applied to describe the diversity of microbiota and identify beneficial microbes in the Yucha. At the genus level, Lactobacillus was the most abundant genus (43.82% of the total reads), followed by Lactococcus, Enterococcus, Vibrio, Weissella, Pediococcus, Enterobacter, Salinivibrio, Acinetobacter, Macrococcus, Kluyvera and Clostridium; this result was confirmed by q-PCR. PCoA based on Weighted UniFrac distances showed an apparent clustering pattern for Yucha samples from different locations, and Lactobacillus sakei, Lactobacillus saniviri and Staphylococcus sciuri represented OTUs according to the major identified markers. At the microbial functional level, it was observed that there was an enrichment of metabolic functional features, including amino acid and carbohydrate metabolism, which implied that the microbial metabolism in the Yucha samples tended to be vigorous. Accordingly, we further investigated the correlation between the predominant microbes and metabolic functional features. Thirteen species of Lactobacillus (147 strains) were isolated, and Lactobacillus plantarum (60 isolates) and Lactobacillus pentosus (34 isolates) were isolated from every sample.

  14. Fertilizer addition lessens the flux of microbial carbon to higher trophic levels in soil food webs of grassland.

    PubMed

    Lemanski, Kathleen; Scheu, Stefan

    2014-10-01

    Roots and root-derived C compounds are increasingly recognised as important resources for soil animal food webs. We used (13)C-labelled glucose as a model C compound representing root exudates to follow the incorporation of root-derived C into the soil animal food web of a temperate grassland over a period of 52 weeks. We investigated variations in glucose C incorporation with fertilizer addition and sward composition, i.e. variations in plant functional groups. The approach allowed the differentiation of trophic chains based on primary decomposers feeding on litter and phytophagous species feeding on roots (i.e. not incorporating glucose C) from those based on secondary decomposers feeding on microorganisms (thereby assimilating glucose C). Each of the studied soil animal species incorporated glucose C, indicating that the majority of grassland soil animal species rely on microorganisms as food resources with microorganisms being fuelled by root exudates. However, incorporation of glucose C into soil animal species varied markedly with species identity, suggesting that detritivorous microarthropods complement each other in channelling microbial C through soil food webs. Fertilizer addition markedly reduced the concentration of glucose C in most soil animal species as well as the absolute transfer of glucose C into oribatid mites as major secondary decomposers. The results suggest that fertilizer addition shifts the basis of the decomposer food web towards the use of unlabelled resources, presumably roots, i.e. towards a herbivore system, thereby lessening the link between microorganisms and microbial grazers and hampering the propagation of microbial C to higher trophic levels.

  15. Effect of Microbial and Chemical Combo Additives on Nutritive Value and Fermentation Characteristic of Whole Crop Barley Silage

    PubMed Central

    Kim, Dong Hyeon; Amanullah, Sardar M.; Lee, Hyuk Jun; Joo, Young Ho; Kim, Sam Churl

    2015-01-01

    This study was conducted to assess the effects of microbial and chemical combo additives on nutritive values, fermentation indices and aerobic stability of whole crop barley silage. Barley forage (Youngyang) was harvested at about 30% dry matter (DM) by treatments, chopped to 5 cm length and treated with distilled water only (CON), Lactobacillus plantarum (INO), propionic acid (PRO) or an equal mixture of INO and PRO (MIX). Barley forages were ensiled in 4 replications for 0, 2, 7, and 100 days. On 100 days of ensiling, MIX silage had higher (p<0.05) in vitro DM digestibility than CON silage, but lower (p<0.05) acid detergent fiber concentration. The pH in all treated silages was lower (p<0.05) than CON silage. The MIX silage had higher (p<0.05) lactate concentration and lactate to acetate ratio than in CON, but lower (p<0.05) yeast count. Aerobic stability in CON, PRO, and MIX silages were higher (p<0.05) than in INO silage. It is concluded that microbial and chemical combo additives using L. plantarum and propionic acid could efficiently improve nutritive values of barley silage in terms of increased in vitro DM digestibility compared to other treatments. In addition, all treatments except CON reduced yeast count which is the initiate microorganism of aerobic spoilage. PMID:26323517

  16. Additional chain-branching pathways in the low-temperature oxidation of branched alkanes

    DOE PAGES

    Wang, Zhandong; Zhang, Lidong; Moshammer, Kai; ...

    2015-12-31

    Chain-branching reactions represent a general motif in chemistry, encountered in atmospheric chemistry, combustion, polymerization, and photochemistry; the nature and amount of radicals generated by chain-branching are decisive for the reaction progress, its energy signature, and the time towards its completion. In this study, experimental evidence for two new types of chain-branching reactions is presented, based upon detection of highly oxidized multifunctional molecules (HOM) formed during the gas-phase low-temperature oxidation of a branched alkane under conditions relevant to combustion. The oxidation of 2,5-dimethylhexane (DMH) in a jet-stirred reactor (JSR) was studied using synchrotron vacuum ultra-violet photoionization molecular beam mass spectrometry (SVUV-PI-MBMS).more » Specifically, species with four and five oxygen atoms were probed, having molecular formulas of C8H14O4 (e.g., diketo-hydroperoxide/keto-hydroperoxy cyclic ether) and C8H16O5 (e.g., keto-dihydroperoxide/dihydroperoxy cyclic ether), respectively. The formation of C8H16O5 species involves alternative isomerization of OOQOOH radicals via intramolecular H-atom migration, followed by third O2 addition, intramolecular isomerization, and OH release; C8H14O4 species are proposed to result from subsequent reactions of C8H16O5 species. The mechanistic pathways involving these species are related to those proposed as a source of low-volatility highly oxygenated species in Earth's troposphere. At the higher temperatures relevant to auto-ignition, they can result in a net increase of hydroxyl radical production, so these are additional radical chain-branching pathways for ignition. Furthermore, the results presented herein extend the conceptual basis of reaction mechanisms used to predict the reaction behavior of ignition, and have implications on atmospheric gas-phase chemistry and the oxidative stability of organic substances.« less

  17. Effects of microbial additives on chemical composition and fermentation characteristics of barley silage.

    PubMed

    Amanullah, S M; Kim, D H; Lee, H J; Joo, Y H; Kim, S B; Kim, S C

    2014-04-01

    This study examined the effects of bacterial inoculants on chemical composition and fermentation indices of barley silage. Barley forage (Youngyang) was harvested at 24% dry matter (DM) and wilted to 47.9% DM. The wilted barley forage was chopped to 3-5 cm length and applied with no inoculant (CON), L. plantarum (1×10(10) cfu/g, LP) or Effective Microorganisms (0.5×10(9) cfu/g, EM). Then the forages were ensiled in four replications for each treatment in 20 L mini silos and stored for 100 days. The contents of crude protein and ether extract were higher in CON silage ensiled for 100-d, while the contents of DM and crude ash were higher in EM silage (p<0.05). The contents of ADF, NDF and hemicellulose as well as the in vitro DM digestibility were not affected by microbial inoculation (p>0.05). The pH, ammonia-N concentration and lactate to acetate ratio were higher (p<0.05) in CON silage, while lactate concentrations were higher (p<0.05) in CON and LP silage. Acetate concentration and lactic acid bacteria was increased (p<0.05) by both inoculants (LP and EM), but propionate concentration and yeast was increased (p<0.05) by EM and LP, respectively. These results indicated that the fermentation quality of barley silage was improved by the application of bacterial inoculants.

  18. Effects of Microbial Additives on Chemical Composition and Fermentation Characteristics of Barley Silage

    PubMed Central

    Amanullah, S. M.; Kim, D. H.; Lee, H. J.; Joo, Y. H.; Kim, S. B.; Kim, S. C.

    2014-01-01

    This study examined the effects of bacterial inoculants on chemical composition and fermentation indices of barley silage. Barley forage (Youngyang) was harvested at 24% dry matter (DM) and wilted to 47.9% DM. The wilted barley forage was chopped to 3–5 cm length and applied with no inoculant (CON), L. plantarum (1×1010 cfu/g, LP) or Effective Microorganisms (0.5×109 cfu/g, EM). Then the forages were ensiled in four replications for each treatment in 20 L mini silos and stored for 100 days. The contents of crude protein and ether extract were higher in CON silage ensiled for 100-d, while the contents of DM and crude ash were higher in EM silage (p<0.05). The contents of ADF, NDF and hemicellulose as well as the in vitro DM digestibility were not affected by microbial inoculation (p>0.05). The pH, ammonia-N concentration and lactate to acetate ratio were higher (p<0.05) in CON silage, while lactate concentrations were higher (p<0.05) in CON and LP silage. Acetate concentration and lactic acid bacteria was increased (p<0.05) by both inoculants (LP and EM), but propionate concentration and yeast was increased (p<0.05) by EM and LP, respectively. These results indicated that the fermentation quality of barley silage was improved by the application of bacterial inoculants. PMID:25049981

  19. A Gut Microbial Metabolite of Linoleic Acid, 10-Hydroxy-cis-12-octadecenoic Acid, Ameliorates Intestinal Epithelial Barrier Impairment Partially via GPR40-MEK-ERK Pathway*

    PubMed Central

    Miyamoto, Junki; Mizukure, Taichi; Park, Si-Bum; Kishino, Shigenobu; Kimura, Ikuo; Hirano, Kanako; Bergamo, Paolo; Rossi, Mauro; Suzuki, Takuya; Arita, Makoto; Ogawa, Jun; Tanabe, Soichi

    2015-01-01

    Gut microbial metabolites of polyunsaturated fatty acids have attracted much attention because of their various physiological properties. Dysfunction of tight junction (TJ) in the intestine contributes to the pathogenesis of many disorders such as inflammatory bowel disease. We evaluated the effects of five novel gut microbial metabolites on tumor necrosis factor (TNF)-α-induced barrier impairment in Caco-2 cells and dextran sulfate sodium-induced colitis in mice. 10-Hydroxy-cis-12-octadecenoic acid (HYA), a gut microbial metabolite of linoleic acid, suppressed TNF-α and dextran sulfate sodium-induced changes in the expression of TJ-related molecules, occludin, zonula occludens-1, and myosin light chain kinase. HYA also suppressed the expression of TNF receptor 2 (TNFR2) mRNA and protein expression in Caco-2 cells and colonic tissue. In addition, HYA suppressed the protein expression of TNFR2 in murine intestinal epithelial cells. Furthermore, HYA significantly up-regulated G protein-coupled receptor (GPR) 40 expression in Caco-2 cells. It also induced [Ca2+]i responses in HEK293 cells expressing human GPR40 with higher sensitivity than linoleic acid, its metabolic precursor. The barrier-recovering effects of HYA were abrogated by a GPR40 antagonist and MEK inhibitor in Caco-2 cells. Conversely, 10-hydroxyoctadacanoic acid, which is a gut microbial metabolite of oleic acid and lacks a carbon-carbon double bond at Δ12 position, did not show these TJ-restoring activities and down-regulated GPR40 expression. Therefore, HYA modulates TNFR2 expression, at least partially, via the GPR40-MEK-ERK pathway and may be useful in the treatment of TJ-related disorders such as inflammatory bowel disease. PMID:25505251

  20. Multiple Pathways Suppress Telomere Addition to DNA Breaks in the Drosophila Germline

    PubMed Central

    Beaucher, Michelle; Zheng, Xiao-Feng; Amariei, Flavia; Rong, Yikang S.

    2012-01-01

    Telomeres protect chromosome ends from being repaired as double-strand breaks (DSBs). Just as DSB repair is suppressed at telomeres, de novo telomere addition is suppressed at the site of DSBs. To identify factors responsible for this suppression, we developed an assay to monitor de novo telomere formation in Drosophila, an organism in which telomeres can be established on chromosome ends with essentially any sequence. Germline expression of the I-SceI endonuclease resulted in precise telomere formation at its cut site with high efficiency. Using this assay, we quantified the frequency of telomere formation in different genetic backgrounds with known or possible defects in DNA damage repair. We showed that disruption of DSB repair factors (Rad51 or DNA ligase IV) or DSB sensing factors (ATRIP or MDC1) resulted in more efficient telomere formation. Interestingly, partial disruption of factors that normally regulate telomere protection (ATM or NBS) also led to higher frequencies of telomere formation, suggesting that these proteins have opposing roles in telomere maintenance vs. establishment. In the ku70 mutant background, telomere establishment was preceded by excessive degradation of DSB ends, which were stabilized upon telomere formation. Most strikingly, the removal of ATRIP caused a dramatic increase in telomeric retrotransposon attachment to broken ends. Our study identifies several pathways thatsuppress telomere addition at DSBs, paving the way for future mechanistic studies. PMID:22446318

  1. Composting of waste paint sludge containing melamine resin as affected by nutrients and gypsum addition and microbial inoculation.

    PubMed

    Tian, Yongqiang; Chen, Liming; Gao, Lihong; Michel, Frederick C; Wan, Caixia; Li, Yebo; Dick, Warren A

    2012-03-01

    Melamine formaldehyde resins have hard and durable properties and are found in many products, including automobile paints. These resins contain high concentrations of nitrogen and, if properly composted, can yield valuable products. We evaluated the effects of starter compost, nutrients, gypsum and microbial inoculation on composting of paint sludge containing melamine resin. A bench-scale composting experiment was conducted at 55 °C for 91 days and then at 30 °C for an additional 56 days. After 91 days, the composts were inoculated with a mixed population of melamine-degrading microorganisms. Melamine resin degradation after the entire 147 days of composting varied between 73 and 95% for the treatments with inoculation of microorganisms compared to 55-74% for the treatments without inoculation. Degradation was also enhanced by nutrients and gypsum additions. Our results infer that large scale composting of melamine resins in paint sludge is possible.

  2. Effects of biochar addition on greenhouse gas emissions and microbial responses in a short-term laboratory experiment.

    PubMed

    Yoo, Gayoung; Kang, Hojeong

    2012-01-01

    Biochar application to soil has drawn much attention as a strategy to sequester atmospheric carbon in soil ecosystems. The applicability of this strategy as a climate change mitigation option is limited by our understanding of the mechanisms responsible for the observed changes in greenhouse gas emissions from soils, microbial responses, and soil fertility changes. We conducted an 8-wk laboratory incubation using soils from PASTURE (silt loam) and RICE PADDY (silt loam) sites with and without two types of biochar (biochar from swine manure [CHAR-M] and from barley stover [CHAR-B]). Responses to addition of the different biochars varied with the soil source. Addition of CHAR-B did not change CO and CH evolution from the PASTURE or the RICE PADDY soils, but there was a decrease in NO emissions from the PASTURE soil. The effects of CHAR-M addition on greenhouse gas emissions were different for the soils. The most substantial change was an increase in NO emissions from the RICE PADDY soil. This result was attributed to a combination of abundant denitrifiers in this soil and increased net nitrogen mineralization. Soil phosphatase and N-acetylglucosaminidase activity in the CHAR-B-treated soils was enhanced compared with the controls for both soils. Fungal biomass was higher in the CHAR-B-treated RICE PADDY soil. From our results, we suggest CHAR-B to be an appropriate amendment for the PASTURE and RICE PADDY soils because it provides increased nitrogen availability and microbial activity with no net increase in greenhouse gas emissions. Application of CHAR-M to RICE PADDY soils could result in excess nitrogen availability, which may increase NO emissions and possible NO leaching problems. Thus, this study confirms that the ability of environmentally sound biochar additions to sequester carbon in soils depends on the characteristics of the receiving soil as well as the nature of the biochar.

  3. Additional chain-branching pathways in the low-temperature oxidation of branched alkanes

    SciTech Connect

    Wang, Zhandong; Zhang, Lidong; Moshammer, Kai; Popolan-Vaida, Denisia M.; Shankar, Vijai Shankar Bhavani; Lucassen, Arnas; Hemken, Christian; Taatjes, Craig A.; Leone, Stephen R.; Kohse-Hoinghaus, Katharina; Hansen, Nils; Dagaut, Philippe; Sarathy, S. Mani

    2015-12-31

    Chain-branching reactions represent a general motif in chemistry, encountered in atmospheric chemistry, combustion, polymerization, and photochemistry; the nature and amount of radicals generated by chain-branching are decisive for the reaction progress, its energy signature, and the time towards its completion. In this study, experimental evidence for two new types of chain-branching reactions is presented, based upon detection of highly oxidized multifunctional molecules (HOM) formed during the gas-phase low-temperature oxidation of a branched alkane under conditions relevant to combustion. The oxidation of 2,5-dimethylhexane (DMH) in a jet-stirred reactor (JSR) was studied using synchrotron vacuum ultra-violet photoionization molecular beam mass spectrometry (SVUV-PI-MBMS). Specifically, species with four and five oxygen atoms were probed, having molecular formulas of C8H14O4 (e.g., diketo-hydroperoxide/keto-hydroperoxy cyclic ether) and C8H16O5 (e.g., keto-dihydroperoxide/dihydroperoxy cyclic ether), respectively. The formation of C8H16O5 species involves alternative isomerization of OOQOOH radicals via intramolecular H-atom migration, followed by third O2 addition, intramolecular isomerization, and OH release; C8H14O4 species are proposed to result from subsequent reactions of C8H16O5 species. The mechanistic pathways involving these species are related to those proposed as a source of low-volatility highly oxygenated species in Earth's troposphere. At the higher temperatures relevant to auto-ignition, they can result in a net increase of hydroxyl radical production, so these are additional radical chain-branching pathways for ignition. Furthermore, the results presented herein extend the conceptual basis of reaction mechanisms used to predict the reaction behavior of ignition, and have

  4. Anaerobic digestion of swine manure under natural zeolite addition: VFA evolution, cation variation, and related microbial diversity.

    PubMed

    Lin, Lin; Wan, Chunli; Liu, Xiang; Lei, Zhongfang; Lee, Duu-Jong; Zhang, Yi; Tay, Joo Hwa; Zhang, Zhenya

    2013-12-01

    Batch experiments were carried out on anaerobic digestion of swine manure under 10 % of total solids and 60 g/L of zeolite addition at 35 °C. Four distinctive volatile fatty acid (VFAs) evolution stages were observed during the anaerobic process, i.e., VFA accumulation, acetic acid (HAc) and butyric acid (HBu) utilization, propionic acid (HPr) and valeric acid (HVa) degradation, and VFA depletion. Large decreases in HAc/HBu and HPr/HVa occurred respectively at the first and second biogas peaks. Biogas yield increased by 20 % after zeolite addition, about 356 mL/g VSadded with accelerated soluble chemical oxygen demand degradation and VFA (especially HPr and HBu) consumption in addition to a shortened lag phase between the two biogas peaks. Compared with Ca(2+) and Mg(2+) (100-300 mg/L) released from zeolite, simultaneous K(+) and NH4 (+) (580-600 mg/L) adsorptions onto zeolite particles contributed more to the enhanced biogasification, resulting in alleviated inhibition effects of ammonium on acidogenesis and methanogenesis, respectively. All the identified anaerobes could be grouped into Bacteroidetes and Firmicutes, and zeolite addition had no significant influence on the microbial biodiversity in this study.

  5. Microbial stimulation of different Toll-like receptor signalling pathways induces diverse metabolic programmes in human monocytes.

    PubMed

    Lachmandas, Ekta; Boutens, Lily; Ratter, Jacqueline M; Hijmans, Anneke; Hooiveld, Guido J; Joosten, Leo A B; Rodenburg, Richard J; Fransen, Jack A M; Houtkooper, Riekelt H; van Crevel, Reinout; Netea, Mihai G; Stienstra, Rinke

    2016-12-19

    Microbial stimuli such as lipopolysaccharide (LPS) induce robust metabolic rewiring in immune cells known as the Warburg effect. It is unknown whether this increase in glycolysis and decrease in oxidative phosphorylation (OXPHOS) is a general characteristic of monocytes that have encountered a pathogen. Using CD14(+) monocytes from healthy donors, we demonstrated that most microbial stimuli increased glycolysis, but that only stimulation of Toll-like receptor (TLR) 4 with LPS led to a decrease in OXPHOS. Instead, activation of other TLRs, such as TLR2 activation by Pam3CysSK4 (P3C), increased oxygen consumption and mitochondrial enzyme activity. Transcriptome and metabolome analysis of monocytes stimulated with P3C versus LPS confirmed the divergent metabolic responses between both stimuli, and revealed significant differences in the tricarboxylic acid cycle, OXPHOS and lipid metabolism pathways following stimulation of monocytes with P3C versus LPS. At a functional level, pharmacological inhibition of complex I of the mitochondrial electron transport chain diminished cytokine production and phagocytosis in P3C- but not LPS-stimulated monocytes. Thus, unlike LPS, complex microbial stimuli and the TLR2 ligand P3C induce a specific pattern of metabolic rewiring that involves upregulation of both glycolysis and OXPHOS, which enables activation of host defence mechanisms such as cytokine production and phagocytosis.

  6. Detection of additional genes of the patulin biosynthetic pathway in Penicillium griseofulvum

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Genes in the patulin biosynthetic pathway are likely to be arranged in a cluster as has been found for biosynthetic pathways of other mycotoxins. The mycotoxin patulin, common in apples and apple juice, is most often associated with Penicillium expansum. However, of 15 fungal species capable of sy...

  7. Microbial modulation of bacoside A biosynthetic pathway and systemic defense mechanism in Bacopa monnieri under Meloidogyne incognita stress

    PubMed Central

    Gupta, Rupali; Singh, Akanksha; Srivastava, Madhumita; Singh, Vivek; Gupta, M. M.; Pandey, Rakesh

    2017-01-01

    Plant-associated beneficial microbes have been explored to fulfill the imperative function for plant health. However, their impact on the host secondary metabolite production and nematode disease management remains elusive. Our present work has shown that chitinolytic microbes viz., Chitiniphilus sp. MTN22 and Streptomyces sp. MTN14 singly as well as in combination modulated the biosynthetic pathway of bacoside A and systemic defense mechanism against Meloidogyne incognita in Bacopa monnieri. Interestingly, expression of bacoside biosynthetic pathway genes (3-Hydroxy-3-methylglutaryl coenzyme A reductase, mevalonate diphosphate decarboxylase, and squalene synthase) were upregulated in plants treated with the microbial combination in the presence as well as in absence of M. incognita stress. These microbes not only augmented bacoside A production (1.5 fold) but also strengthened host resistance via enhancement in chlorophyll a, defense enzymes and phenolic compounds like gallic acid, syringic acid, ferulic acid and cinnamic acid. Furthermore, elevated lignification and callose deposition in the microbial combination treated plants corroborate well with the above findings. Overall, the results provide novel insights into the underlying mechanisms of priming by beneficial microbes and underscore their capacity to trigger bacoside A production in B. monnieri under biotic stress. PMID:28157221

  8. Microbial oil-degradation under mild hydrostatic pressure (10 MPa): which pathways are impacted in piezosensitive hydrocarbonoclastic bacteria?

    NASA Astrophysics Data System (ADS)

    Scoma, Alberto; Barbato, Marta; Hernandez-Sanabria, Emma; Mapelli, Francesca; Daffonchio, Daniele; Borin, Sara; Boon, Nico

    2016-03-01

    Oil spills represent an overwhelming carbon input to the marine environment that immediately impacts the sea surface ecosystem. Microbial communities degrading the oil fraction that eventually sinks to the seafloor must also deal with hydrostatic pressure, which linearly increases with depth. Piezosensitive hydrocarbonoclastic bacteria are ideal candidates to elucidate impaired pathways following oil spills at low depth. In the present paper, we tested two strains of the ubiquitous Alcanivorax genus, namely A. jadensis KS_339 and A. dieselolei KS_293, which is known to rapidly grow after oil spills. Strains were subjected to atmospheric and mild pressure (0.1, 5 and 10 MPa, corresponding to a depth of 0, 500 and 1000 m, respectively) providing n-dodecane as sole carbon source. Pressures equal to 5 and 10 MPa significantly lowered growth yields of both strains. However, in strain KS_293 grown at 10 MPa CO2 production per cell was not affected, cell integrity was preserved and PO43‑ uptake increased. Analysis of its transcriptome revealed that 95% of its genes were downregulated. Increased transcription involved protein synthesis, energy generation and respiration pathways. Interplay between these factors may play a key role in shaping the structure of microbial communities developed after oil spills at low depth and limit their bioremediation potential.

  9. Microbial modulation of bacoside A biosynthetic pathway and systemic defense mechanism in Bacopa monnieri under Meloidogyne incognita stress.

    PubMed

    Gupta, Rupali; Singh, Akanksha; Srivastava, Madhumita; Singh, Vivek; Gupta, M M; Pandey, Rakesh

    2017-02-03

    Plant-associated beneficial microbes have been explored to fulfill the imperative function for plant health. However, their impact on the host secondary metabolite production and nematode disease management remains elusive. Our present work has shown that chitinolytic microbes viz., Chitiniphilus sp. MTN22 and Streptomyces sp. MTN14 singly as well as in combination modulated the biosynthetic pathway of bacoside A and systemic defense mechanism against Meloidogyne incognita in Bacopa monnieri. Interestingly, expression of bacoside biosynthetic pathway genes (3-Hydroxy-3-methylglutaryl coenzyme A reductase, mevalonate diphosphate decarboxylase, and squalene synthase) were upregulated in plants treated with the microbial combination in the presence as well as in absence of M. incognita stress. These microbes not only augmented bacoside A production (1.5 fold) but also strengthened host resistance via enhancement in chlorophyll a, defense enzymes and phenolic compounds like gallic acid, syringic acid, ferulic acid and cinnamic acid. Furthermore, elevated lignification and callose deposition in the microbial combination treated plants corroborate well with the above findings. Overall, the results provide novel insights into the underlying mechanisms of priming by beneficial microbes and underscore their capacity to trigger bacoside A production in B. monnieri under biotic stress.

  10. Microbial oil-degradation under mild hydrostatic pressure (10 MPa): which pathways are impacted in piezosensitive hydrocarbonoclastic bacteria?

    PubMed

    Scoma, Alberto; Barbato, Marta; Hernandez-Sanabria, Emma; Mapelli, Francesca; Daffonchio, Daniele; Borin, Sara; Boon, Nico

    2016-03-29

    Oil spills represent an overwhelming carbon input to the marine environment that immediately impacts the sea surface ecosystem. Microbial communities degrading the oil fraction that eventually sinks to the seafloor must also deal with hydrostatic pressure, which linearly increases with depth. Piezosensitive hydrocarbonoclastic bacteria are ideal candidates to elucidate impaired pathways following oil spills at low depth. In the present paper, we tested two strains of the ubiquitous Alcanivorax genus, namely A. jadensis KS_339 and A. dieselolei KS_293, which is known to rapidly grow after oil spills. Strains were subjected to atmospheric and mild pressure (0.1, 5 and 10 MPa, corresponding to a depth of 0, 500 and 1000 m, respectively) providing n-dodecane as sole carbon source. Pressures equal to 5 and 10 MPa significantly lowered growth yields of both strains. However, in strain KS_293 grown at 10 MPa CO2 production per cell was not affected, cell integrity was preserved and PO4(3-) uptake increased. Analysis of its transcriptome revealed that 95% of its genes were downregulated. Increased transcription involved protein synthesis, energy generation and respiration pathways. Interplay between these factors may play a key role in shaping the structure of microbial communities developed after oil spills at low depth and limit their bioremediation potential.

  11. Microbial oil-degradation under mild hydrostatic pressure (10 MPa): which pathways are impacted in piezosensitive hydrocarbonoclastic bacteria?

    PubMed Central

    Scoma, Alberto; Barbato, Marta; Hernandez-Sanabria, Emma; Mapelli, Francesca; Daffonchio, Daniele; Borin, Sara; Boon, Nico

    2016-01-01

    Oil spills represent an overwhelming carbon input to the marine environment that immediately impacts the sea surface ecosystem. Microbial communities degrading the oil fraction that eventually sinks to the seafloor must also deal with hydrostatic pressure, which linearly increases with depth. Piezosensitive hydrocarbonoclastic bacteria are ideal candidates to elucidate impaired pathways following oil spills at low depth. In the present paper, we tested two strains of the ubiquitous Alcanivorax genus, namely A. jadensis KS_339 and A. dieselolei KS_293, which is known to rapidly grow after oil spills. Strains were subjected to atmospheric and mild pressure (0.1, 5 and 10 MPa, corresponding to a depth of 0, 500 and 1000 m, respectively) providing n-dodecane as sole carbon source. Pressures equal to 5 and 10 MPa significantly lowered growth yields of both strains. However, in strain KS_293 grown at 10 MPa CO2 production per cell was not affected, cell integrity was preserved and PO43− uptake increased. Analysis of its transcriptome revealed that 95% of its genes were downregulated. Increased transcription involved protein synthesis, energy generation and respiration pathways. Interplay between these factors may play a key role in shaping the structure of microbial communities developed after oil spills at low depth and limit their bioremediation potential. PMID:27020120

  12. Effect of addition of Versagel on microbial, chemical, and physical properties of low-fat yogurt.

    PubMed

    Ramchandran, L; Shah, N P

    2008-09-01

    The objective of this study was to examine the effect of Versagel on the growth and proteolytic activity of Streptococcus thermophilus 1275 and Lactobacillus delbrueckii ssp. bulgaricus 1368 and angiotensin-I converting enzyme inhibitory activity of the peptides generated thereby as well as on the physical properties of low-fat yogurt during a storage period of 28 d at 4 degrees C. Three different types of low-fat yogurts, YV0, YV1, and YV2, were prepared using Versagel as a fat replacer. The fermentation time of the low-fat yogurts containing Versagel was less than that of the control yogurt (YV0). The starter cultures maintained their viability (8.68 to 8.81 log CFU/g of S. thermophilus and 8.51 to 8.81 log CFU/g of L. delbrueckii ssp. bulgaricus) in all the yogurts throughout the storage period. There was some decrease in the pH of the yogurts during storage and an increase in the concentration of lactic acid. However, the proteolytic and ACE-inhibitory potential of the starter cultures was suppressed in the presence of Versagel. On the other hand, the addition of Versagel had a positive impact on the physical properties of the low-fat yogurt, namely, spontaneous whey separation, firmness, and pseudoplastic properties.

  13. Effect of dissolved oxygen on elemental sulfur generation in sulfide and nitrate removal process: characterization, pathway, and microbial community analysis.

    PubMed

    Wang, Xiaowei; Zhang, Yu; Zhang, Tingting; Zhou, Jiti

    2016-03-01

    Microaerobic bioreactor treatment for enriched sulfide and nitrate has been demonstrated as an effective strategy to improve the efficiencies of elemental sulfur (S(0)) generation, sulfide oxidation, and nitrate reduction. However, there is little detailed information for the effect and mechanism of dissolved oxygen (DO) on the variations of microbial community in sulfur generation, sulfide oxidation, and nitrate reduction systems. Polymerase chain reaction denaturing gradient gel electrophoresis (PCR-DGGE) was employed to evaluate the variations of microbial community structures in a sulfide oxidation and nitrate reduction reactor under different DO conditions (DO 0-0.7 mg · L(-1)). Experimental results revealed that the activity of sulfide-oxidizing bacteria (SOB) and nitrate-reducing bacteria (NRB) could be greatly stimulated in 0.1-0.3 mg-DO · L(-1). However, when the DO concentration was further elevated to more than 0.5 mg · L(-1), the abundance of NRB was markedly decreased, while the heterotrophic microorganisms, especially carbon degradation species, were enriched. The reaction pathways for sulfide and nitrate removal under microaerobic conditions were also deduced by combining batch experiments with functional species analysis. It was likely that the oxidation of sulfide to sulfur could be performed by both aerobic heterotrophic SOB and sulfur-based autotrophic denitrification bacteria with oxygen and nitrate as terminal electron acceptor, respectively. The nitrate could be reduced to nitrite by both autotrophic and heterotrophic denitrification, and then the generated nitrite could be completely converted to nitrogen gas via heterotrophic denitrification. This study provides new insights into the impacts of microaerobic conditions on the microbial community functional structures of sulfide-oxidizing, nitrate-reducing, and sulfur-producing bioreactors, which revealing the potential linkage between functional microbial communities and

  14. Constraining pathways of microbial mediation for carbonate concretions of the Miocene Monterey Formation using carbonate-associated sulfate

    NASA Astrophysics Data System (ADS)

    Loyd, Sean J.; Berelson, William M.; Lyons, Timothy W.; Hammond, Douglas E.; Corsetti, Frank A.

    2012-02-01

    Carbonate concretions can form as a result of organic matter degradation within sediments. However, the ability to determine specific processes and timing relationships to particular concretions has remained elusive. Previously employed proxies (e.g., carbon and oxygen isotopes) cannot uniquely distinguish among diagenetic alkalinity sources generated by microbial oxidation of organic matter using oxygen, nitrate, metal oxides, and sulfate as electron acceptors, in addition to degradation by thermal decarboxylation. Here, we employ concentrations of carbonate-associated sulfate (CAS) and δ 34S CAS (along with more traditional approaches) to determine the specific nature of concretion authigenesis within the Miocene Monterey Formation. Integrated geochemical analyses reveal that at least three specific organo-diagenetic reaction pathways can be tied to concretion formation and that these reactions are largely sample-site specific. One calcitic concretion from the Phosphatic Shale Member at Naples Beach yields δ 34S CAS values near Miocene seawater sulfate (˜+22‰ VCDT), abundant CAS (ca. 1000 ppm), depleted δ 13C carb (˜-11‰ VPDB), and very low concentrations of Fe (ca. 700 ppm) and Mn (ca. 15 ppm)—characteristics most consistent with shallow formation in association with organic matter degradation by nitrate, iron-oxides and/or minor sulfate reduction. Cemented concretionary layers of the Phosphatic Shale Member at Shell Beach display elevated δ 34S CAS (up to ˜+37‰), CAS concentrations of ˜600 ppm, mildly depleted δ 13C carb (˜-6‰), moderate amounts of Mn (ca. 250 ppm), and relatively low Fe (ca. 1700 ppm), indicative of formation in sediments dominated by sulfate reduction. Finally, concretions within a siliceous host at Montaña de Oro and Naples Beach show minimal CAS concentrations, positive δ 13C values, and the highest concentrations of Fe (ca. 11,300 ppm) and Mn (ca. 440 ppm), consistent with formation in sediments experiencing

  15. Enhanced photo-fermentative H2 production using Rhodobacter sphaeroides by ethanol addition and analysis of soluble microbial products

    PubMed Central

    2014-01-01

    Background Biological fermentation routes can provide an environmentally friendly way of producing H2 since they use renewable biomass as feedstock and proceed under ambient temperature and pressure. In particular, photo-fermentation has superior properties in terms of achieving high H2 yield through complete degradation of substrates. However, long-term H2 production data with stable performance is limited, and this data is essential for practical applications. In the present work, continuous photo-fermentative H2 production from lactate was attempted using the purple non-sulfur bacterium, Rhodobacter sphaeroides KD131. As a gradual drop in H2 production was observed, we attempted to add ethanol (0.2% v/v) to the medium. Results As continuous operation went on, H2 production was not sustained and showed a negligible H2 yield (< 0.5 mol H2/mol lactateadded) within two weeks. Electron balance analysis showed that the reason for the gradual drop in H2 production was ascribed to the increase in production of soluble microbial products (SMPs). To see the possible effect of ethanol addition, a batch test was first conducted. The presence of ethanol significantly increased the H2 yield from 1.15 to 2.20 mol H2/mol lactateadded, by suppressing the production of SMPs. The analysis of SMPs by size exclusion chromatography showed that, in the later period of fermentation, more than half of the low molecular weight SMPs (< 1 kDa) were consumed and used for H2 production when ethanol had been added, while the concentration of SMPs continuously increased in the absence of ethanol. It was found that the addition of ethanol facilitated the utilization of reducing power, resulting in an increase in the cellular levels of NAD+ and NADP+. In continuous operation, ethanol addition was effective, such that stable H2 production was attained with an H2 yield of 2.5 mol H2/mol lactateadded. Less than 15% of substrate electrons were used for SMP production, whereas 35% were used in

  16. Distributing a metabolic pathway among a microbial consortium enhances production of natural products.

    PubMed

    Zhou, Kang; Qiao, Kangjian; Edgar, Steven; Stephanopoulos, Gregory

    2015-04-01

    Metabolic engineering of microorganisms such as Escherichia coli and Saccharomyces cerevisiae to produce high-value natural metabolites is often done through functional reconstitution of long metabolic pathways. Problems arise when parts of pathways require specialized environments or compartments for optimal function. Here we solve this problem through co-culture of engineered organisms, each of which contains the part of the pathway that it is best suited to hosting. In one example, we divided the synthetic pathway for the acetylated diol paclitaxel precursor into two modules, expressed in either S. cerevisiae or E. coli, neither of which can produce the paclitaxel precursor on their own. Stable co-culture in the same bioreactor was achieved by designing a mutualistic relationship between the two species in which a metabolic intermediate produced by E. coli was used and functionalized by yeast. This synthetic consortium produced 33 mg/L oxygenated taxanes, including a monoacetylated dioxygenated taxane. The same method was also used to produce tanshinone precursors and functionalized sesquiterpenes.

  17. Distributing a metabolic pathway among a microbial consortium enhances production of natural products

    PubMed Central

    Zhou, Kang; Qiao, Kangjian; Edgar, Steven; Stephanopoulos, Gregory

    2016-01-01

    Metabolic engineering of microorganisms such as Escherichia coli and Saccharomyces cerevisiae to produce high-value natural metabolites is often done through functional reconstitution of long metabolic pathways. Problems arise when parts of pathways require specialized environments or compartments for optimal function. Here we solve this problem through co-culture of engineered organisms, each of which contains the part of the pathway that it is best suited to hosting. In one example, we divided the synthetic pathway for the acetylated diol paclitaxel precursor into two modules, expressed in either S. cerevisiae or E. coli, neither of which can produce the paclitaxel precursor on their own. Stable co-culture in the same bioreactor was achieved by designing a mutualistic relationship between the two species in which a metabolic intermediate produced by E. coli was used and functionalized by yeast. This synthetic consortium produced 33 mg/L oxygenated taxanes, including a monoacetylated dioxygenated taxane. The same method was also used to produce tanshinone precursors and functionalized sesquiterpenes. PMID:25558867

  18. First Evidence of an Important Organic Matter Trophic Pathway between Temperate Corals and Pelagic Microbial Communities

    PubMed Central

    Fonvielle, J. A.; Reynaud, S.; Jacquet, S.; LeBerre, B.; Ferrier-Pages, C.

    2015-01-01

    Mucus, i.e., particulate and dissolved organic matter (POM, DOM) released by corals, acts as an important energy carrier in tropical ecosystems, but little is known on its ecological role in temperate environments. This study assessed POM and DOM production by the temperate coral Cladocora caespitosa under different environmental conditions. The subsequent enzymatic degradation, growth of prokaryotes and virus-like particles (VLPs) as well as changes in the structure of the prokaryotic communities were also monitored. C. caespitosa produced an important quantity of mucus, which varied according to the environmental conditions (from 37.8 to 67.75 nmol carbon h-1 cm-2), but remained higher or comparable to productions observed in tropical corals. It has an important nutritional value, as highlighted by the high content in dissolved nitrogen (50% to 90% of the organic matter released). Organic matter was rapidly degraded by prokaryotes’ enzymatic activities, and due to its nitrogen content, aminopeptidase activity was 500 fold higher than the α-glucosidase activity. Prokaryotes, as well as VLPs, presented a rapid growth in the mucus, with prokaryote production rates as high as 0.31 μg h-1 L-1. Changes in bacterial and archaeal communities were observed in the ageing mucus and between mucus and the water column, suggesting a clear impact of mucus on microorganism diversity. Overall, our results show that the organic matter released by temperate corals, such as C. caespitosa, which can form reef structures in the Mediterranean Sea, stimulates microbial activity and thereby functions as a significant carbon and nitrogen supplier to the microbial loop. PMID:26466126

  19. First Evidence of an Important Organic Matter Trophic Pathway between Temperate Corals and Pelagic Microbial Communities.

    PubMed

    Fonvielle, J A; Reynaud, S; Jacquet, S; LeBerre, B; Ferrier-Pages, C

    2015-01-01

    Mucus, i.e., particulate and dissolved organic matter (POM, DOM) released by corals, acts as an important energy carrier in tropical ecosystems, but little is known on its ecological role in temperate environments. This study assessed POM and DOM production by the temperate coral Cladocora caespitosa under different environmental conditions. The subsequent enzymatic degradation, growth of prokaryotes and virus-like particles (VLPs) as well as changes in the structure of the prokaryotic communities were also monitored. C. caespitosa produced an important quantity of mucus, which varied according to the environmental conditions (from 37.8 to 67.75 nmol carbon h-1 cm-2), but remained higher or comparable to productions observed in tropical corals. It has an important nutritional value, as highlighted by the high content in dissolved nitrogen (50% to 90% of the organic matter released). Organic matter was rapidly degraded by prokaryotes' enzymatic activities, and due to its nitrogen content, aminopeptidase activity was 500 fold higher than the α-glucosidase activity. Prokaryotes, as well as VLPs, presented a rapid growth in the mucus, with prokaryote production rates as high as 0.31 μg h-1 L-1. Changes in bacterial and archaeal communities were observed in the ageing mucus and between mucus and the water column, suggesting a clear impact of mucus on microorganism diversity. Overall, our results show that the organic matter released by temperate corals, such as C. caespitosa, which can form reef structures in the Mediterranean Sea, stimulates microbial activity and thereby functions as a significant carbon and nitrogen supplier to the microbial loop.

  20. [Engineering of the xylose metabolic pathway for microbial production of bio-based chemicals].

    PubMed

    Liu, Weixi; Fu, Jing; Zhang, Bo; Chen, Tao

    2013-08-01

    As the rapid development of economy necessitates a large number of oil, the contradiction between energy supply and demand is further exacerbated by the dwindling reserves of petroleum resource. Therefore, the research of the renewable cellulosic biomass resources is gaining unprecedented momentum. Because xylose is the second most abundant monosaccharide after glucose in lignocellulose hydrolyzes, high-efficiency bioconversion of xylose becomes one of the vital factors that affect the industrial prospects of lignocellulose application. According to the research progresses in recent years, this review summarized the advances in bioconversion of xylose, which included identification and redesign of the xylose metabolic pathway, engineering the xylose transport pathway and bio-based chemicals production. In order to solve the energy crisis and environmental pollution issues, the development of advanced bio-fuel technology, especially engineering the microbe able to metabolize xylose and produce ethanol by synthetic biology, is environmentally benign and sustainable.

  1. The Effects of Trimethylamine and Organic Matter Additions on the Stable Carbon Isotopic Composition of Methane Produced in Hypersaline Microbial Mat Environments

    NASA Astrophysics Data System (ADS)

    Kelley, C. A.; Nicholson, B. E.; Beaudoin, C. S.; Detweiler, A. M.; Bebout, B.

    2014-12-01

    Methane production has been observed in a number of hypersaline environments, and it is generally thought that this methane is produced through the use of non-competitive substrates, such as the methylamines, methanol and dimethylsulfide. The stable carbon isotopic composition of the produced methane has suggested that the methanogens are operating under conditions of substrate limitation. We investigated substrate limitation in gypsum-hosted endoevaporite and soft mat hypersaline environments by the additions of trimethylamine, a non-competitive substrate for methanogenesis, and dried microbial mat, a source of natural organic matter. The δ13C values of the methane produced after amendments were compared to those in unamended control vials. At all hypersaline sites investigated, the δ13C values of the methane produced in the amended vials were statistically lower (by 10 to 71 ‰) than the unamended controls, supporting the hypothesis of substrate limitation at these sites. When substrates were added to the incubation vials, the methanogens within the vials fractionated carbon isotopes to a greater degree, resulting in the production of more 13C-depleted methane. Trimethylamine-amended samples produced lower methane δ13C values than the mat-amended samples. This difference in the δ13C values between the two types of amendments could be due to differences in isotope fractionation associated with the dominant methane production pathway (or substrate used) within the vials, with trimethylamine being the main substrate used in the trimethylamine-amended vials. We hypothesize that increased natural organic matter in the mat-amended vials would increase fermentation rates, leading to higher H2 concentrations and increased CO2/H2 methanogenesis.

  2. Trimethylamine and Organic Matter Additions Reverse Substrate Limitation Effects on the δ13C Values of Methane Produced in Hypersaline Microbial Mats

    PubMed Central

    Nicholson, Brooke E.; Beaudoin, Claire S.; Detweiler, Angela M.; Bebout, Brad M.

    2014-01-01

    Methane production has been observed in a number of hypersaline environments, and it is generally thought that this methane is produced through the use of noncompetitive substrates, such as the methylamines, dimethylsulfide and methanol. Stable isotope measurements of the produced methane have also suggested that the methanogens are operating under conditions of substrate limitation. Here, substrate limitation in gypsum-hosted endoevaporite and soft-mat hypersaline environments was investigated by the addition of trimethylamine, a noncompetitive substrate for methanogenesis, and dried microbial mat, a source of natural organic matter. The δ13C values of the methane produced after amendments were compared to those in unamended control vials. At all hypersaline sites investigated, the δ13C values of the methane produced in the amended vials were statistically lower (by 10 to 71‰) than the unamended controls, supporting the hypothesis of substrate limitation at these sites. When substrates were added to the incubation vials, the methanogens within the vials fractionated carbon isotopes to a greater degree, resulting in the production of more 13C-depleted methane. Trimethylamine-amended samples produced lower methane δ13C values than the mat-amended samples. This difference in the δ13C values between the two types of amendments could be due to differences in isotope fractionation associated with the dominant methane production pathway (or substrate used) within the vials, with trimethylamine being the main substrate used in the trimethylamine-amended vials. It is hypothesized that increased natural organic matter in the mat-amended vials would increase fermentation rates, leading to higher H2 concentrations and increased CO2/H2 methanogenesis. PMID:25239903

  3. Trimethylamine and Organic Matter Additions Reverse Substrate Limitation Effects on the δ13C Values of Methane Produced in Hypersaline Microbial Mats.

    PubMed

    Kelley, Cheryl A; Nicholson, Brooke E; Beaudoin, Claire S; Detweiler, Angela M; Bebout, Brad M

    2014-12-01

    Methane production has been observed in a number of hypersaline environments, and it is generally thought that this methane is produced through the use of noncompetitive substrates, such as the methylamines, dimethylsulfide and methanol. Stable isotope measurements of the produced methane have also suggested that the methanogens are operating under conditions of substrate limitation. Here, substrate limitation in gypsum-hosted endoevaporite and soft-mat hypersaline environments was investigated by the addition of trimethylamine, a noncompetitive substrate for methanogenesis, and dried microbial mat, a source of natural organic matter. The δ(13)C values of the methane produced after amendments were compared to those in unamended control vials. At all hypersaline sites investigated, the δ(13)C values of the methane produced in the amended vials were statistically lower (by 10 to 71‰) than the unamended controls, supporting the hypothesis of substrate limitation at these sites. When substrates were added to the incubation vials, the methanogens within the vials fractionated carbon isotopes to a greater degree, resulting in the production of more (13)C-depleted methane. Trimethylamine-amended samples produced lower methane δ(13)C values than the mat-amended samples. This difference in the δ(13)C values between the two types of amendments could be due to differences in isotope fractionation associated with the dominant methane production pathway (or substrate used) within the vials, with trimethylamine being the main substrate used in the trimethylamine-amended vials. It is hypothesized that increased natural organic matter in the mat-amended vials would increase fermentation rates, leading to higher H2 concentrations and increased CO2/H2 methanogenesis.

  4. Atmospheric transport and deposition, an additional input pathway for triazine herbicides to surface waters

    SciTech Connect

    Muir, D.C.G.; Rawn, D.F.

    1996-10-01

    Although surface runoff from treated fields is regarded as the major route of entry of triazine herbicides to surface waters, other pathways such as deposition via precipitation, gas absorption and dryfall may also be important. Triazine herbicides have been detected in precipitation but there has been only a very limited amount of work on gas phase and aerosols. To examine the importance of atmospheric inputs concentrations of atrazine, cyanazine and terbuthylazine in gas phase/aerosols, precipitation, and surface waters were determined (along with other herbicides) using selected ion GC-MS. Atrazine was detected at low ng/L concentrations in surface waters (<0.04-5.3 ng/L) and precipitation (0.1-53 ng/L), and at 0.02-0.1 ng/m{sup 3} in air. Cyanazine and terbuthylazine were detected in air and infrequently in water. Highest atrazine concentrations in air were found during June each year on both gas phase and particles. Concentrations of atrazine in surface waters at both locations increased during June, even in the absence of precipitation or overland flow, presumably due to inputs from dryfall and to gas areas and boreal forest lakes due to transport and deposition. Ecological risk assessment of triazines, especially for pristine aquatic environments should include consideration of this atmospheric pathway.

  5. Resilience of Soil Microbial Communities to Metals and Additional Stressors: DNA-Based Approaches for Assessing “Stress-on-Stress” Responses

    PubMed Central

    Azarbad, Hamed; van Gestel, Cornelis A. M.; Niklińska, Maria; Laskowski, Ryszard; Röling, Wilfred F. M.; van Straalen, Nico M.

    2016-01-01

    Many microbial ecology studies have demonstrated profound changes in community composition caused by environmental pollution, as well as adaptation processes allowing survival of microbes in polluted ecosystems. Soil microbial communities in polluted areas with a long-term history of contamination have been shown to maintain their function by developing metal-tolerance mechanisms. In the present work, we review recent experiments, with specific emphasis on studies that have been conducted in polluted areas with a long-term history of contamination that also applied DNA-based approaches. We evaluate how the “costs” of adaptation to metals affect the responses of metal-tolerant communities to other stress factors (“stress-on-stress”). We discuss recent studies on the stability of microbial communities, in terms of resistance and resilience to additional stressors, focusing on metal pollution as the initial stress, and discuss possible factors influencing the functional and structural stability of microbial communities towards secondary stressors. There is increasing evidence that the history of environmental conditions and disturbance regimes play central roles in responses of microbial communities towards secondary stressors. PMID:27314330

  6. Suitability of the microbial community composition and function in a semiarid mine soil for assessing phytomanagement practices based on mycorrhizal inoculation and amendment addition.

    PubMed

    Kohler, J; Caravaca, F; Azcón, R; Díaz, G; Roldán, A

    2016-03-15

    The recovery of species composition and functions of soil microbial community of degraded lands is crucial in order to guarantee the long-term self-sustainability of the ecosystems. A field experiment was carried out to test the influence of combining fermented sugar beet residue (SBR) addition and inoculation with the arbuscular mycorrhizal (AM) fungus Funneliformis mosseae on the plant growth parameters and microbial community composition and function in the rhizosphere of two autochthonous plant species (Dorycnium pentaphyllum L. and Asteriscus maritimus L.) growing in a semiarid soil contaminated by heavy metals. We analysed the phospholipid fatty acids (PLFAs), neutral lipids fatty acids (NLFAs) and enzyme activities to study the soil microbial community composition and function, respectively. The combined treatment was not effective for increasing plant growth. The SBR promoted the growth of both plant species, whilst the AM fungus was effective only for D. pentaphyllum. The effect of the treatments on plant growth was linked to shifts in the rhizosphere microbial community composition and function. The highest increase in dehydrogenase and β-glucosidase activities was recorded in SBR-amended soil. The SBR increased the abundance of marker PLFAs for saprophytic fungi, Gram+ and Gram- bacteria and actinobacteria, whereas the AM fungus enhanced the abundance of AM fungi-related NLFA and marker PLFAs for Gram- bacteria. Measurement of the soil microbial community composition and function was useful to assess the success of phytomanagement technologies in a semiarid, contaminated soil.

  7. Resilience of Soil Microbial Communities to Metals and Additional Stressors: DNA-Based Approaches for Assessing "Stress-on-Stress" Responses.

    PubMed

    Azarbad, Hamed; van Gestel, Cornelis A M; Niklińska, Maria; Laskowski, Ryszard; Röling, Wilfred F M; van Straalen, Nico M

    2016-06-14

    Many microbial ecology studies have demonstrated profound changes in community composition caused by environmental pollution, as well as adaptation processes allowing survival of microbes in polluted ecosystems. Soil microbial communities in polluted areas with a long-term history of contamination have been shown to maintain their function by developing metal-tolerance mechanisms. In the present work, we review recent experiments, with specific emphasis on studies that have been conducted in polluted areas with a long-term history of contamination that also applied DNA-based approaches. We evaluate how the "costs" of adaptation to metals affect the responses of metal-tolerant communities to other stress factors ("stress-on-stress"). We discuss recent studies on the stability of microbial communities, in terms of resistance and resilience to additional stressors, focusing on metal pollution as the initial stress, and discuss possible factors influencing the functional and structural stability of microbial communities towards secondary stressors. There is increasing evidence that the history of environmental conditions and disturbance regimes play central roles in responses of microbial communities towards secondary stressors.

  8. Microbial degradation of fluorinated drugs: biochemical pathways, impacts on the environment and potential applications.

    PubMed

    Murphy, Cormac D

    2016-03-01

    Since the discovery over 60 years ago of fluorocortisone's biological properties (9-α-Fluoro derivatives of cortisone and hydrocortisone; Fried J and Sabo EF, J Am Chem Soc 76: 1455-1456, 1954), the number of fluorinated drugs has steadily increased. With the improvement in synthetic methodologies, this trend is likely to continue and will lead to the introduction of new fluorinated substituents into pharmaceutical compounds. Although the biotransformation of organofluorine compounds by microorganisms has been well studied, specific investigations on fluorinated drugs are relatively few, despite the increase in the number and variety of fluorinated drugs that are available. The strength of the carbon-fluorine bond conveys stability to fluorinated drugs; thus, they are likely to be recalcitrant in the environment or may be partially metabolized to a more toxic metabolite. This review examines the research done on microbial biotransformation and biodegradation of fluorinated drugs and highlights the importance of understanding how microorganisms interact with this class of compound from environmental, clinical and biotechnological perspectives.

  9. Genomic organisation, activity and distribution analysis of the microbial putrescine oxidase degradation pathway.

    PubMed

    Foster, Alexander; Barnes, Nicole; Speight, Robert; Keane, Mark A

    2013-10-01

    The catalytic action of putrescine specific amine oxidases acting in tandem with 4-aminobutyraldehyde dehydrogenase is explored as a degradative pathway in Rhodococcus opacus. By limiting the nitrogen source, increased catalytic activity was induced leading to a coordinated response in the oxidative deamination of putrescine to 4-aminobutyraldehyde and subsequent dehydrogenation to 4-aminobutyrate. Isolating the dehydrogenase by ion exchange chromatography and gel filtration revealed that the enzyme acts principally on linear aliphatic aldehydes possessing an amino moiety. Michaelis-Menten kinetic analysis delivered a Michaelis constant (K(M)=0.014 mM) and maximum rate (Vmax=11.2 μmol/min/mg) for the conversion of 4-aminobutyraldehyde to 4-aminobutyrate. The dehydrogenase identified by MALDI-TOF mass spectrometric analysis (E value=0.031, 23% coverage) belongs to a functionally related genomic cluster that includes the amine oxidase, suggesting their association in a directed cell response. Key regulatory, stress and transport encoding genes have been identified, along with candidate dehydrogenases and transaminases for the further conversion of 4-aminobutyrate to succinate. Genomic analysis has revealed highly similar metabolic gene clustering among members of Actinobacteria, providing insight into putrescine degradation notably among Micrococcaceae, Rhodococci and Corynebacterium by a pathway that was previously uncharacterised in bacteria.

  10. Carbon stabilization and microbial growth in acidic mine soils after addition of different amendments for soil reclamation

    NASA Astrophysics Data System (ADS)

    Zornoza, Raúl; Acosta, Jose; Ángeles Muñoz, María; Martínez-Martínez, Silvia; Faz, Ángel; Bååth, Erland

    2016-04-01

    The extreme soil conditions in metalliferous mine soils have a negative influence on soil biological activity and therefore on soil carbon estabilization. Therefore, amendments are used to increase organic carbon content and activate microbial communities. In order to elucidate some of the factors controlling soil organic carbon stabilization in reclaimed acidic mine soils and its interrelationship with microbial growth and community structure, we performed an incubation experiment with four amendments: pig slurry (PS), pig manure (PM) and biochar (BC), applied with and without marble waste (MW; CaCO3). Results showed that PM and BC (alone or together with MW) contributed to an important increment in recalcitrant organic C, C/N ratio and aggregate stability. Bacterial and fungal growths were highly dependent on pH and labile organic C. PS supported the highest microbial growth; applied alone it stimulated fungal growth, and applied with MW it stimulated bacterial growth. BC promoted the lowest microbial growth, especially for fungi, with no significant increase in fungal biomass. MW+BC increased bacterial growth up to values similar to PM and MW+PM, suggesting that part of the biochar was degraded, at least in short-term mainly by bacteria rather than fungi. PM, MW+PS and MW+PM supported the highest microbial biomass and a similar community structure, related with the presence of high organic C and high pH, with immobilization of metals and increased soil quality. BC contributed to improved soil structure, increased recalcitrant organic C, and decreased metal mobility, with low stimulation of microbial growth.

  11. Modeling the flux of metabolites in the juvenile hormone biosynthesis pathway using generalized additive models and ordinary differential equations.

    PubMed

    Martínez-Rincón, Raúl O; Rivera-Pérez, Crisalejandra; Diambra, Luis; Noriega, Fernando G

    2017-01-01

    Juvenile hormone (JH) regulates development and reproductive maturation in insects. The corpora allata (CA) from female adult mosquitoes synthesize fluctuating levels of JH, which have been linked to the ovarian development and are influenced by nutritional signals. The rate of JH biosynthesis is controlled by the rate of flux of isoprenoids in the pathway, which is the outcome of a complex interplay of changes in precursor pools and enzyme levels. A comprehensive study of the changes in enzymatic activities and precursor pool sizes have been previously reported for the mosquito Aedes aegypti JH biosynthesis pathway. In the present studies, we used two different quantitative approaches to describe and predict how changes in the individual metabolic reactions in the pathway affect JH synthesis. First, we constructed generalized additive models (GAMs) that described the association between changes in specific metabolite concentrations with changes in enzymatic activities and substrate concentrations. Changes in substrate concentrations explained 50% or more of the model deviances in 7 of the 13 metabolic steps analyzed. Addition of information on enzymatic activities almost always improved the fitness of GAMs built solely based on substrate concentrations. GAMs were validated using experimental data that were not included when the model was built. In addition, a system of ordinary differential equations (ODE) was developed to describe the instantaneous changes in metabolites as a function of the levels of enzymatic catalytic activities. The results demonstrated the ability of the models to predict changes in the flux of metabolites in the JH pathway, and can be used in the future to design and validate experimental manipulations of JH synthesis.

  12. Modeling the flux of metabolites in the juvenile hormone biosynthesis pathway using generalized additive models and ordinary differential equations

    PubMed Central

    Martínez-Rincón, Raúl O.; Rivera-Pérez, Crisalejandra; Diambra, Luis; Noriega, Fernando G.

    2017-01-01

    Juvenile hormone (JH) regulates development and reproductive maturation in insects. The corpora allata (CA) from female adult mosquitoes synthesize fluctuating levels of JH, which have been linked to the ovarian development and are influenced by nutritional signals. The rate of JH biosynthesis is controlled by the rate of flux of isoprenoids in the pathway, which is the outcome of a complex interplay of changes in precursor pools and enzyme levels. A comprehensive study of the changes in enzymatic activities and precursor pool sizes have been previously reported for the mosquito Aedes aegypti JH biosynthesis pathway. In the present studies, we used two different quantitative approaches to describe and predict how changes in the individual metabolic reactions in the pathway affect JH synthesis. First, we constructed generalized additive models (GAMs) that described the association between changes in specific metabolite concentrations with changes in enzymatic activities and substrate concentrations. Changes in substrate concentrations explained 50% or more of the model deviances in 7 of the 13 metabolic steps analyzed. Addition of information on enzymatic activities almost always improved the fitness of GAMs built solely based on substrate concentrations. GAMs were validated using experimental data that were not included when the model was built. In addition, a system of ordinary differential equations (ODE) was developed to describe the instantaneous changes in metabolites as a function of the levels of enzymatic catalytic activities. The results demonstrated the ability of the models to predict changes in the flux of metabolites in the JH pathway, and can be used in the future to design and validate experimental manipulations of JH synthesis. PMID:28158248

  13. Additive Manufacturing: Building the Pathway Towards Process and Material Qualification”

    DOE PAGES

    Carpenter, John S.; Beese, Allison M.; Bourell, David L.; ...

    2016-06-14

    The potential benefits of metal additive manufacturing, as compared with more traditional, subtractive-only approaches, has created excitement within design circles seeking to take advantage of the ability to build and repair complex shapes, to integrate or consolidate multiple parts and minimize joining concerns, and to locally tailor material properties to increase functionality. Tempering the excitement of designers, however, has been concerns with the material deposited by the process. It is not enough for a part to ‘look’ right from a geometric perspective. Rather, the metallurgical aspects associated with the material being deposited must ‘look’ and ‘behave’ correctly along with themore » aforementioned geometric accuracy. Finally, without elucidation of the connections between processing, microstructure, properties, and performance from a materials science perspective, metal additive manufacturing will not realize its potential to change the manufacturing world for property and performance-critical engineering applications.« less

  14. Additive Manufacturing: Building the Pathway Towards Process and Material Qualification”

    SciTech Connect

    Carpenter, John S.; Beese, Allison M.; Bourell, David L.; Hamilton, Reginald F.; Herderick, Edward; Mishra, Rajiv S.; Sears, James

    2016-06-14

    The potential benefits of metal additive manufacturing, as compared with more traditional, subtractive-only approaches, has created excitement within design circles seeking to take advantage of the ability to build and repair complex shapes, to integrate or consolidate multiple parts and minimize joining concerns, and to locally tailor material properties to increase functionality. Tempering the excitement of designers, however, has been concerns with the material deposited by the process. It is not enough for a part to ‘look’ right from a geometric perspective. Rather, the metallurgical aspects associated with the material being deposited must ‘look’ and ‘behave’ correctly along with the aforementioned geometric accuracy. Finally, without elucidation of the connections between processing, microstructure, properties, and performance from a materials science perspective, metal additive manufacturing will not realize its potential to change the manufacturing world for property and performance-critical engineering applications.

  15. Single-Amino Acid Modifications Reveal Additional Controls on the Proton Pathway of [FeFe]-Hydrogenase

    SciTech Connect

    Cornish, Adam J.; Ginovska, Bojana; Thelen, Adam; da Silva, Julio C. S.; Soares, Thereza A.; Raugei, Simone; Dupuis, Michel; Shaw, Wendy J.; Hegg, Eric L.

    2016-06-07

    The proton pathway of [FeFe]-hydrogenase is essential for enzymatic H2 production and oxidation and is composed of four residues and a modeled water molecule. Recently, a computational analysis of this pathway revealed that the solvent-exposed residue of the pathway (Glu282) could form hydrogen bonds to two residues outside of the pathway (Arg286 and Ser320), implicating that these residues could function in regulating proton transfer. Substituting Arg286 with leucine eliminates hydrogen bonding with Glu282 and results in a 2.5-fold enhancement in H2 production activity, suggesting that Arg286 serves an important role in controlling the rate of proton delivery. In contrast, substitution of Ser320 with alanine reduces the rate approximately 5-fold, implying that it either acts as a member of the pathway or influences Glu282 to enable proton transfer. Interestingly, QM/MM and molecular dynamics calculations indicate that Ser320 does not play an electronic or structural role. QM calculations also estimate that including Ser320 in the pathway does not significantly change the barrier to proton movement, providing further support for its role as a member of the proton pathway. While further studies are needed to quantify the role of Ser320, collectively, these data provide evidence that the enzyme scaffold plays a significant role in modulating the activity of the enzyme, demonstrating that the rate of intraprotein proton transfer can be accelerated, particularly in a non-biological context. This work was supported by the DOE Great Lakes Bioenergy Research Center (DOE BER Office of Science, DE-FC02-07ER64494). In addition, support from the DOE Office of Science Early Career Research Program through the Office of Basic Energy Sciences (WJS, BGP, SR) is gratefully acknowledged. Computational resources were provided at W. R. Wiley Environmental Molecular Science Laboratory (EMSL), a national scientific user facility sponsored by the Department of Energy’s Office of

  16. Microbial degradation of dimethylsulphide and related C1-sulphur compounds: organisms and pathways controlling fluxes of sulphur in the biosphere.

    PubMed

    Schäfer, Hendrik; Myronova, Natalia; Boden, Rich

    2010-01-01

    Dimethylsulphide (DMS) plays a major role in the global sulphur cycle. It has important implications for atmospheric chemistry, climate regulation, and sulphur transport from the marine to the atmospheric and terrestrial environments. In addition, DMS acts as an info-chemical for a wide range of organisms ranging from micro-organisms to mammals. Micro-organisms that cycle DMS are widely distributed in a range of environments, for instance, oxic and anoxic marine, freshwater and terrestrial habitats. Despite the importance of DMS that has been unearthed by many studies since the early 1970s, the understanding of the biochemistry, genetics, and ecology of DMS-degrading micro-organisms is still limited. This review examines current knowledge on the microbial cycling of DMS and points out areas for future research that should shed more light on the role of organisms degrading DMS and related compounds in the biosphere.

  17. Ammonium removal pathways and microbial community in GAC-sand dual media filter in drinking water treatment.

    PubMed

    Feng, Shuo; Xie, Shuguang; Zhang, Xiaojian; Yang, Zhiyu; Ding, Wei; Liao, Xiaobin; Liu, Yuanyuan; Chen, Chao

    2012-01-01

    A GAC-sand dual media filter (GSF) was devised as an alternative solution for drinking water treatment plant to tackle the raw water polluted by ammonium in place of expensive ozone-GAC processes or bio-pretreatments. The ammonium removal pathways and microbial community in the GSFs were investigated. The concentrations of ammonium, nitrite and nitrate nitrogen were monitored along the filter. Total inorganic nitrogen (TIN) loss occurred during the filtration. For 1 mg ammonium removal, the TIN loss was as high as 0.35 mg, DO consumption was 3.06 mg, and alkalinity consumption was 5.55 mg. It was assumed that both nitrification and denitrification processes occur in the filters to fit the TIN loss and low DO consumption. During the filtration, nitritation, nitrification and nitritation-anaerobic ammonium oxidation processes probably occur, while traditional nitrification and denitrification and simultaneous nitrification and denitrification processes may occur. In the GSFs, Nitrosomonas and Nitrospira are likely to be involved in nitrification processes, while Novosphingobium, Comamonadaceae and Oxalobacteraceae may be involved in denitrification processes.

  18. Microbial ecology and performance of ammonia oxidizing bacteria (AOB) in biological processes treating petrochemical wastewater with high strength of ammonia: effect of Na(2)CO(3) addition.

    PubMed

    Whang, L M; Yang, K H; Yang, Y F; Han, Y L; Chen, Y J; Cheng, S S

    2009-01-01

    This study evaluated nitrification performance and microbial ecology of AOB in a full-scale biological process, powder activated carbon treatment (PACT), and a pilot-scale biological process, moving bed biofilm reactor (MBBR), treating wastewater collected from a petrochemical industry park. The petrochemical influent wastewater characteristics showed a relative low carbon to nitrogen ratio around 1 with average COD and ammonia concentrations of 310 mg/L and 325 mg-N/L, respectively. The average nitrification efficiency of the full-scale PACT process was around 11% during this study. For the pilot-scale MBBR, the average nitrification efficiency was 24% during the Run I operation mode, which provided a slightly better performance in nitrification than that of the PACT process. During the Run II operation, the pH control mode was switched from addition of NaOH to Na(2)CO(3), leading to a significant improvement in nitrification efficiency of 51%. In addition to a dramatic change in nitrification performance, the microbial ecology of AOB, monitored with the terminal restriction fragment length polymorphism (T-RFLP) molecular methodology, was found to be different between Runs I and II. The amoA-based TRFLP results indicated that Nitrosomonas europaea lineage was the dominant AOB population during Run I operation, while Nitrosospira-like AOB was dominant during Run II operation. To confirm the effects of Na(2)CO(3) addition on the nitrification performance and AOB microbial ecology observed in the MBBR process, batch experiments were conducted. The results suggest that addition of Na(2)CO(3) as a pH control strategy can improve nitrification performance and also influence AOB microbial ecology as well. Although the exact mechanisms are not clear at this time, the results showing the effects of adding different buffering chemicals such as NaOH or Na(2)CO(3) on AOB populations have never been demonstrated until this study.

  19. How do Elevated CO2 and Nitrogen Addition Affect Functional Microbial Community Involved in Greenhouse Gas Flux in Salt Marsh System.

    PubMed

    Lee, Seung-Hoon; Megonigal, Patrick J; Kang, Hojeong

    2017-03-22

    Salt marshes are unique ecosystem of which a microbial community is expected to be affected by global climate change. In this study, by using T-RFLP analysis, quantitative PCR, and pyrosequencing, we comprehensively analyzed the microbial community structure responding to elevated CO2 (eCO2) and N addition in a salt marsh ecosystem subjected to CO2 manipulation and N addition for about 3 years. We focused on the genes of microbes relevant to N-cycling (denitrification and nitrification), CH4-flux (methanogens and methanotrophs), and S-cycling (sulfate reduction) considering that they are key functional groups involved in the nutrient cycle of salt marsh system. Overall, this study suggests that (1) eCO2 and N addition affect functional microbial community involved in greenhouse gas flux in salt marsh system. Specifically, the denitrification process may be facilitated, while the methanogenesis may be impeded due to the outcompeting of sulfate reduction by eCO2 and N. This implies that future global change may cause a probable change in GHGs flux and positive feedback to global climate change in salt marsh; (2) the effect of eCO2 and N on functional group seems specific and to contrast with each other, but the effect of single factor would not be compromised but complemented by combination of two factors. (3) The response of functional groups to eCO2 and/or N may be directly or indirectly related to the plant community and its response to eCO2 and/or N. This study provides new insights into our understanding of functional microbial community responses to eCO2 and/or N addition in a C3/C4 plant mixed salt marsh system.

  20. Evaluation of the effect of an additional fertilizer on the dynamics of microbial community and the decomposition of organic matter in soil

    NASA Astrophysics Data System (ADS)

    Fabiola, B.; Olivier, M.; Houdusse, F.; Fuentes, M.; Garcia, M. J. M.; Lévêque, J.; Yvin, J. C.; Maron, P. A.; Lemenager, D.

    2012-04-01

    Organic matter (OM) influences many of the soil functions and occupies a central position in the global carbon cycle. At the scale of the agro-ecosystem, primary productivity is dependent on the recycling of soil organic matter (SOM) by the action of decomposers (mainly bacteria and fungi), which mineralize organic compounds, releasing the nutrients needed for plant growth. At a global scale, the recycling of the SOM determines the carbon flux between soil and atmosphere, with major consequences in terms of environmental quality. In this context, the management of SOM stocks in agro-ecosystems is a major issue from which depend the maintenance of the productivity and sustainability of agricultural practices. The use of additional fertilizer appears to be a promising way to achieve such management. These products have been proven effectives in many field trials. However, their mode of action, particularly in terms of impact on soil microbial component, is still nearly unknown. In this context, this study aims to test the influence of an additional fertilizer on (i) soil microbial communities (total biomass, density of bacteria and fungi), and (ii) soil functioning in terms of dynamics of organic matter. It is based on experiments in soil microcosms which follow in parallel the kinetics of mineralization of different organic carbon compartments (endogenous compartment: soil organic matter; exogenous compartment: wheat residue provided) and the dynamics of microbial communities after the addition of wheat residues in soil. Two different soils were used to evaluate the influence of soil physicochemical characteristics on the effect induced by the addition in terms of fertilization. The first results show a significant effect of the input of additional fertilizer on the dynamics of soil organic matter. They also show that soil pH as well as the dose at which the additional fertilizer is applied are important for modulating the observed effect. Characterization of

  1. [Effects of forest floor litter and nitrogen addition on soil microbial biomass C and N and microbial activity in a mixed Pinus tabulaeformis and Quercus liaotungensis forest stand in Shanxi Province of China].

    PubMed

    Tu, Yu; You, Ye-Ming; Sun, Jian-Xin

    2012-09-01

    From September 2010 to October 2011, a field experiment with randomized block design was conducted in a mixed Pinus tabulaeformis and Quercus liaotungensis forest stand in Lingkong Mountain of Shanxi Province to study the effects of forest floor litter and nitrogen addition on the soil microbial carbon (MBC) and nitrogen (MBN) and microbial activity (MR). The litter treatments included complete litter removal, doubling of leaf litter (L), doubling of woody litter (B), and doubling of mixed leaf and woody litter (LB), and the nitrogen addition rates were 0 (N0), 5 g x m(-2) x yr(-1) (N1), and 10 g x m(-2) x yr(-1) (N2). Except that the treatment of complete litter removal without nitrogen addition decreased the soil organic carbon content significantly, all the other treatments had no significant differences in the effects on soil organic carbon. The soil MBC, MBN, and MR varied in the ranges of 262.42-873.16 mg x kg(-1), 73.55-173.85 mg x kg(-1), and 2.38-3.68 mg x kg(-1) x d(-1), respectively, and the MBC and MBN had significant positive correlations with the MR. Nitrogen addition did not show any effect on the MBC, MBN, and MR, whereas litter treatments affected the MR significantly, with the highest MR in treatment LB, followed by treatments L and B, and the lowest in treatment of complete litter removal. There were no interactive effects between litter and nitrogen addition treatments on any of the variables studied. It was suggested that short-term nitrogen addition and forest floor litter change could have limited effects on soil microbial processes.

  2. Monitoring Subsurface Microbial Biomass, Community Composition and Physiological Status during Biological Uranium Reduction with Acetate Addition using Lipid Analysis, DNA Arrays and q-PCR

    NASA Astrophysics Data System (ADS)

    Peacock, A. D.; Long, P. E.; N'Guessan, L.; Williams, K. H.; Chandler, D.

    2011-12-01

    Our objectives for this effort were to investigate microbial community dynamics during each of the distinct terminal electron accepting phases that occur during long-term acetate addition for the immobilization of Uranium. Groundwater was collected from four wells (one up gradient and three down gradient) at three different depths and at four different times (pre-acetate injection, peak iron reduction, iron/sulfate reduction transition and during heavy sulfate reduction). Phospholipid fatty acid analysis (PLFA) results from ground water showed that microbial biomass was highest during Iron reduction and then lower during the transition from Iron reduction to Sulfate reduction and lowest during Sulfate reduction. Microbial community composition parameters as measured by PLFA showed distinct differences with terminal electron accepting status. Monounsaturated PLFA that have been shown to correspond with Gram-negative bacteria and Geobacteracea increased markedly with Iron reduction and then decreased with the onset of sulfate reduction. Bacterial physiological stress levels as measured by PLFA fluctuated with terminal electron acceptor status. Low bacterial stress levels coincided with pre-donor addition and Iron reduction but were much higher during Iron to Sulfate transition and during Sulfate reduction. Microarray results showed the expected progression of microbial signatures from Iron to Sulfate -reducers with changes in acetate amendment and in situ field conditions. The microarray response for Geobacter was highly correlated with qPCR for the same target gene (R2 = 0.84). Probes targeting Desulfobacter and Desulfitobacterium were the most reactive during the Iron to Sulfate transition and into Sulfate reduction, with a consistent Desulfotomaculum signature throughout the field experiment and a general decrease in Geobacter signal to noise ratios during the onset of Sulfate reducing conditions. Nitrate reducers represented by Dechloromonas and Dechlorosoma

  3. Measuring and modeling C flux rates through the central metabolic pathways in microbial communities using position-specific 13C-labeled tracers

    NASA Astrophysics Data System (ADS)

    Dijkstra, P.; van Groenigen, K.; Hagerty, S.; Salpas, E.; Fairbanks, D. E.; Hungate, B. A.; KOCH, G. W.; Schwartz, E.

    2012-12-01

    The production of energy and metabolic precursors occurs in well-known processes such as glycolysis and Krebs cycle. We use position-specific 13C-labeled metabolic tracers, combined with models of microbial metabolic organization, to analyze the response of microbial community energy production, biosynthesis, and C use efficiency (CUE) in soils, decomposing litter, and aquatic communities. The method consists of adding position-specific 13C -labeled metabolic tracers to parallel soil incubations, in this case 1-13C and 2,3-13C pyruvate and 1-13C and U-13C glucose. The measurement of CO2 released from the labeled tracers is used to calculate the C flux rates through the various metabolic pathways. A simplified metabolic model consisting of 23 reactions is solved using results of the metabolic tracer experiments and assumptions of microbial precursor demand. This new method enables direct estimation of fundamental aspects of microbial energy production, CUE, and soil organic matter formation in relatively undisturbed microbial communities. We will present results showing the range of metabolic patterns observed in these communities and discuss results from testing metabolic models.

  4. Soil Mineral Composition Matters: Response of Microbial Communities to Phenanthrene and Plant Litter Addition in Long-Term Matured Artificial Soils

    PubMed Central

    Babin, Doreen; Vogel, Cordula; Zühlke, Sebastian; Schloter, Michael; Pronk, Geertje Johanna; Heister, Katja; Spiteller, Michael; Kögel-Knabner, Ingrid; Smalla, Kornelia

    2014-01-01

    The fate of polycyclic aromatic hydrocarbons (PAHs) in soil is determined by a suite of biotic and abiotic factors, and disentangling their role in the complex soil interaction network remains challenging. Here, we investigate the influence of soil composition on the microbial community structure and its response to the spiked model PAH compound phenanthrene and plant litter. We used long-term matured artificial soils differing in type of clay mineral (illite, montmorillonite) and presence of charcoal or ferrihydrite. The soils received an identical soil microbial fraction and were incubated for more than two years with two sterile manure additions. The matured artificial soils and a natural soil were subjected to the following spiking treatments: (I) phenanthrene, (II) litter, (III) litter + phenanthrene, (IV) unspiked control. Total community DNA was extracted from soil sampled on the day of spiking, 7, 21, and 63 days after spiking. Bacterial 16S rRNA gene and fungal internal transcribed spacer amplicons were quantified by qPCR and subjected to denaturing gradient gel electrophoresis (DGGE). DGGE analysis revealed that the bacterial community composition, which was strongly shaped by clay minerals after more than two years of incubation, changed in response to spiked phenanthrene and added litter. DGGE and qPCR showed that soil composition significantly influenced the microbial response to spiking. While fungal communities responded only in presence of litter to phenanthrene spiking, the response of the bacterial communities to phenanthrene was less pronounced when litter was present. Interestingly, microbial communities in all artificial soils were more strongly affected by spiking than in the natural soil, which might indicate the importance of higher microbial diversity to compensate perturbations. This study showed the influence of soil composition on the microbiota and their response to phenanthrene and litter, which may increase our understanding of

  5. Soil mineral composition matters: response of microbial communities to phenanthrene and plant litter addition in long-term matured artificial soils.

    PubMed

    Babin, Doreen; Vogel, Cordula; Zühlke, Sebastian; Schloter, Michael; Pronk, Geertje Johanna; Heister, Katja; Spiteller, Michael; Kögel-Knabner, Ingrid; Smalla, Kornelia

    2014-01-01

    The fate of polycyclic aromatic hydrocarbons (PAHs) in soil is determined by a suite of biotic and abiotic factors, and disentangling their role in the complex soil interaction network remains challenging. Here, we investigate the influence of soil composition on the microbial community structure and its response to the spiked model PAH compound phenanthrene and plant litter. We used long-term matured artificial soils differing in type of clay mineral (illite, montmorillonite) and presence of charcoal or ferrihydrite. The soils received an identical soil microbial fraction and were incubated for more than two years with two sterile manure additions. The matured artificial soils and a natural soil were subjected to the following spiking treatments: (I) phenanthrene, (II) litter, (III) litter + phenanthrene, (IV) unspiked control. Total community DNA was extracted from soil sampled on the day of spiking, 7, 21, and 63 days after spiking. Bacterial 16S rRNA gene and fungal internal transcribed spacer amplicons were quantified by qPCR and subjected to denaturing gradient gel electrophoresis (DGGE). DGGE analysis revealed that the bacterial community composition, which was strongly shaped by clay minerals after more than two years of incubation, changed in response to spiked phenanthrene and added litter. DGGE and qPCR showed that soil composition significantly influenced the microbial response to spiking. While fungal communities responded only in presence of litter to phenanthrene spiking, the response of the bacterial communities to phenanthrene was less pronounced when litter was present. Interestingly, microbial communities in all artificial soils were more strongly affected by spiking than in the natural soil, which might indicate the importance of higher microbial diversity to compensate perturbations. This study showed the influence of soil composition on the microbiota and their response to phenanthrene and litter, which may increase our understanding of

  6. Well-to-Wheels analysis of landfill gas-based pathways and their addition to the GREET model.

    SciTech Connect

    Mintz, M.; Han, J.; Wang, M.; Saricks, C.; Energy Systems

    2010-06-30

    Today, approximately 300 million standard cubic ft/day (mmscfd) of natural gas and 1600 MW of electricity are produced from the decomposition of organic waste at 519 U.S. landfills (EPA 2010a). Since landfill gas (LFG) is a renewable resource, this energy is considered renewable. When used as a vehicle fuel, compressed natural gas (CNG) produced from LFG consumes up to 185,000 Btu of fossil fuel and generates from 1.5 to 18.4 kg of carbon dioxide-equivalent (CO{sub 2}e) emissions per million Btu of fuel on a 'well-to-wheel' (WTW) basis. This compares with approximately 1.1 million Btu and 78.2 kg of CO{sub 2}e per million Btu for CNG from fossil natural gas and 1.2 million Btu and 97.5 kg of CO{sub 2}e per million Btu for petroleum gasoline. Because of the additional energy required for liquefaction, LFG-based liquefied natural gas (LNG) requires more fossil fuel (222,000-227,000 Btu/million Btu WTW) and generates more GHG emissions (approximately 22 kg CO{sub 2}e /MM Btu WTW) if grid electricity is used for the liquefaction process. However, if some of the LFG is used to generate electricity for gas cleanup and liquefaction (or compression, in the case of CNG), vehicle fuel produced from LFG can have no fossil fuel input and only minimal GHG emissions (1.5-7.7 kg CO{sub 2}e /MM Btu) on a WTW basis. Thus, LFG-based natural gas can be one of the lowest GHG-emitting fuels for light- or heavy-duty vehicles. This report discusses the size and scope of biomethane resources from landfills and the pathways by which those resources can be turned into and utilized as vehicle fuel. It includes characterizations of the LFG stream and the processes used to convert low-Btu LFG into high-Btu renewable natural gas (RNG); documents the conversion efficiencies and losses of those processes, the choice of processes modeled in GREET, and other assumptions used to construct GREET pathways; and presents GREET results by pathway stage. GREET estimates of well-to-pump (WTP), pump

  7. Automated microbial metabolism laboratory. [design of advanced labeled release experiment based on single addition of soil and multiple sequential additions of media into test chambers

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The design and rationale of an advanced labeled release experiment based on single addition of soil and multiple sequential additions of media into each of four test chambers are outlined. The feasibility for multiple addition tests was established and various details of the methodology were studied. The four chamber battery of tests include: (1) determination of the effect of various atmospheric gases and selection of that gas which produces an optimum response; (2) determination of the effect of incubation temperature and selection of the optimum temperature for performing Martian biochemical tests; (3) sterile soil is dosed with a battery of C-14 labeled substrates and subjected to experimental temperature range; and (4) determination of the possible inhibitory effects of water on Martian organisms is performed initially by dosing with 0.01 ml and 0.5 ml of medium, respectively. A series of specifically labeled substrates are then added to obtain patterns in metabolic 14CO2 (C-14)O2 evolution.

  8. Changing Feeding Regimes To Demonstrate Flexible Biogas Production: Effects on Process Performance, Microbial Community Structure, and Methanogenesis Pathways

    PubMed Central

    Mulat, Daniel Girma; Jacobi, H. Fabian; Feilberg, Anders; Adamsen, Anders Peter S.; Richnow, Hans-Hermann

    2015-01-01

    Flexible biogas production that adapts biogas output to energy demand can be regulated by changing feeding regimes. In this study, the effect of changes in feeding intervals on process performance, microbial community structure, and the methanogenesis pathway was investigated. Three different feeding regimes (once daily, every second day, and every 2 h) at the same organic loading rate were studied in continuously stirred tank reactors treating distiller's dried grains with solubles. A larger amount of biogas was produced after feeding in the reactors fed less frequently (once per day and every second day), whereas the amount remained constant in the reactor fed more frequently (every 2 h), indicating the suitability of the former for the flexible production of biogas. Compared to the conventional more frequent feeding regimes, a methane yield that was up to 14% higher and an improved stability of the process against organic overloading were achieved by employing less frequent feeding regimes. The community structures of bacteria and methanogenic archaea were monitored by terminal restriction fragment length polymorphism (T-RFLP) analysis of 16S rRNA and mcrA genes, respectively. The results showed that the composition of the bacterial community varied under the different feeding regimes, and the observed T-RFLP patterns were best explained by the differences in the total ammonia nitrogen concentrations, H2 levels, and pH values. However, the methanogenic community remained stable under all feeding regimes, with the dominance of the Methanosarcina genus followed by that of the Methanobacterium genus. Stable isotope analysis showed that the average amount of methane produced during each feeding event by acetoclastic and hydrogenotrophic methanogenesis was not influenced by the three different feeding regimes. PMID:26497462

  9. Analysis of the metatranscriptome of microbial communities of an alkaline hot sulfur spring revealed different gene encoding pathway enzymes associated with energy metabolism.

    PubMed

    Tripathy, Swetaleena; Padhi, Soumesh Kumar; Mohanty, Sriprakash; Samanta, Mrinal; Maiti, Nikhil Kumar

    2016-07-01

    Alkaline sulfur hot springs notable for their specialized and complex ecosystem powered by geothermal energy are abundantly rich in different chemotrophic and phototrophic thermophilic microorganisms. Survival and adaptation of these organisms in the extreme environment is specifically related to energy metabolism. To gain a better understanding of survival mechanism of the organisms in these ecosystems, we determined the different gene encoding enzymes associated with anaerobic pathways of energy metabolism by applying the metatranscriptomics approach. The analysis of the microbial population of hot sulfur spring revealed the presence of both aerobic and anaerobic organisms indicating dual mode of lifestyle of the community members. Proteobacteria (28.1 %) was the most dominant community. A total of 988 reads were associated with energy metabolism, out of which 33.7 % of the reads were assigned to nitrogen, sulfur, and methane metabolism based on KEGG classification. The major lineages of hot spring communities were linked with the anaerobic pathways. Different gene encoding enzymes (hao, nir, nar, cysH, cysI, acs) showed the involvement of microbial members in nitrification, denitrification, dissimilatory sulfate reduction, and methane generation. This study enhances our understanding of important gene encoding enzymes involved in energy metabolism, required for the survival and adaptation of microbial communities in the hot spring.

  10. Microbial biotransformation as a tool for drug development based on natural products from mevalonic acid pathway: A review

    PubMed Central

    Hegazy, Mohamed-Elamir F.; Mohamed, Tarik A.; ElShamy, Abdelsamed I.; Mohamed, Abou-El-Hamd H.; Mahalel, Usama A.; Reda, Eman H.; Shaheen, Alaa M.; Tawfik, Wafaa A.; Shahat, Abdelaaty A.; Shams, Khalid A.; Abdel-Azim, Nahla S.; Hammouda, Fayza M.

    2014-01-01

    Natural products are structurally and biologically interesting metabolites, but they have been isolated in minute amounts. The syntheses of such natural products help in obtaining them in bulk amounts. The recognition of microbial biotransformation as important manufacturing tool has increased in chemical and pharmaceutical industries. In recent years, microbial transformation is increasing significantly from limited interest into highly active area in green chemistry including preparation of pharmaceutical products. This is the first review published on the usage of microbial biocatalysts for some natural product classes and natural product drugs. PMID:25685541

  11. The effects of buffered propionic acid-based additives alone or combined with microbial inoculation on the fermentation of high moisture corn and whole-crop barley.

    PubMed

    Kung, L; Myers, C L; Neylon, J M; Taylor, C C; Lazartic, J; Mills, J A; Whiter, A G

    2004-05-01

    Buffered propionic acid-based additives (BP) alone or in combination with a microbial inoculant containing lactic acid bacteria (MI) were mixed with ground, high moisture corn or whole-crop barley and ensiled in triplicate laboratory silos to investigate their effects on silage fermentation and aerobic stability. The inoculant and chemicals were applied separately for treatments that included both additives. The addition of MI alone had no effect on DM recovery, fermentation end products, or aerobic stability of high moisture corn. However, treatments with 0.1 and 0.2% BP (alone and the combination) had more than 10- and 100-fold fewer yeasts, respectively, and they also had greater concentrations of propionic acid than did untreated corn. Corn treated with only 0.1 (161 h) and 0.2% (218 h) BP tended to be more stable when exposed to air than untreated corn (122 h). Treatment with MI + 0.2% BP markedly improved the aerobic stability (>400 h) of high moisture corn. With whole-crop barley, the addition of MI alone, BP alone, and combinations of MI and BP prevented the production of butyric acid that was found in untreated silage (0.48%). All barley silages that had MI in their treatments underwent a more efficient fermentation than treatments without MI, as evident by a greater ratio of lactic:acetic acid and more DM recovery than in untreated silage. Increasing levels (0.1 to 0.2%) of BP added together with MI improved the aerobic stability of barley (190 and 429 h) over the addition of MI alone (50 h). These data show that buffered propionic acid-based products are compatible with microbial inoculants and, in some circumstances when used together, they can improve the fermentation and aerobic stability of silages.

  12. Effects of the addition of direct-fed microbials and glycerol to the diet of lactating dairy cows on milk yield and apparent efficiency of yield.

    PubMed

    Boyd, J; West, J W; Bernard, J K

    2011-09-01

    A study was conducted to evaluate the effects of a direct-fed microbial (M) and dietary glycerol (G) on milk yield, efficiency of yield, and nutrient digestibility during hot weather. Sixty Holstein cows averaging 120 d in milk (DIM) and 36.2 kg/d of milk were used in a 12-wk 2×2 factorial design trial from June through September 2008. Cows were fed a common diet during the 2-wk standardization period and were blocked by milk yield, DIM, parity, and dry matter intake. Diets were based on corn and ryegrass silages and balanced to be isocaloric and isonitrogenous. Treatments included a negative control (M- or G-), 4 × 10(9) cfu/head of a combination of Lactobacillus acidophilus NP51 and Propionibacterium freudenreichii NP24 (M+), control plus 400 g/h per day of 99% pure food-grade glycerol (G+), and 4×10(9) cfu/h per day of a combination of Lactobacillus acidophilus NP51 and Propionibacterium freudenreichii NP24 plus 400 g/h per day of 99% pure food-grade glycerol (MG++). No interactions were observed between direct-fed microbials and dietary glycerol in the study except on apparent nutrient digestibility. No differences were observed in dry matter intake, which averaged 22.7, 23.1, 23.4, and 22.9 for M-, G-, M+, and G+, respectively. Milk yield was increased for M+ compared with M- at 34.1 and 31.7 kg/d, but G+ had no effect on yield. No treatment effect was noted for milk fat percentage or milk protein percentage among diets. Milk protein yield was higher for M+ compared with M- at 0.93 versus 0.87 kg/d. Energy-corrected milk was improved for the M+ versus M- groups at 33.5 and 31.6 kg/d, respectively. No differences in respiratory rate, skin temperature, body temperature, or concentrations of serum glucose or urea N were observed among treatments. Improvement in apparent digestibility was observed with M+ and G+ compared with M-/G- in this experiment. The addition of a direct-fed microbial alone improved milk and protein yield, energy-corrected milk, and

  13. Differential responses of needle and branch order-based root decay to nitrogen addition: dominant effects of acid-unhydrolyzable residue and microbial enzymes

    NASA Astrophysics Data System (ADS)

    Kou, Liang; Chen, Weiwei; Zhang, Xinyu; Gao, Wenlong; Yang, Hao; Li, Dandan; Li, Shenggong

    2016-04-01

    Both chemical differences between foliage and different orders of fine roots and their contrasting decomposing microenvironments may affect their decomposition. However, little is known about how foliage and branch order-based root decomposition responds to increased N availability and the response mechanisms behind. The effects of different doses of N addition on the decomposition of needles and order-based roots of Pinus elliottii (slash pine) were monitored using the litterbag method for 524 days in a subtropical slash pine plantation in south China. The acid-unhydrolyzable residue (AUR) concentration and microbial extracellular enzymatic activities (EEA) in decomposing needles and roots were also determined. Our results indicate that the responses of needle and order-based root decomposition were N-dose-specific. The decomposition of both needles and lower-order roots was inhibited under the high N dose rate. The retarded decomposition of lower-order roots could be explained more by the increased binding of AUR to inorganic N ions, while the retarded decomposition of needles could be explained more by the reduced microbial EEA. Further, in contrast to lower-order roots, N addition had no effect on the decomposition of higher-order roots. We conclude that the decomposition of foliage and fine roots may fail to mirror each other at ambient conditions or in response to N deposition due to their contrasting decomposition microenvironments and tissue chemistry. Given the differential effects of N addition on order-based roots, our findings highlight the need to consider the tissue chemistry heterogeneity within branching fine root systems when predicting the responses of root decomposition to N loading.

  14. Influence of powdered activated carbon addition on water quality, sludge properties, and microbial characteristics in the biological treatment of commingled industrial wastewater.

    PubMed

    Hu, Qing-Yuan; Li, Meng; Wang, Can; Ji, Min

    2015-09-15

    A powdered activated carbon-activated sludge (PAC-AS) system, a traditional activated sludge (AS) system, and a powdered activated carbon (PAC) system were operated to examine the insights into the influence of PAC addition on biological treatment. The average COD removal efficiencies of the PAC-AS system (39%) were nearly double that of the AS system (20%). Compared with the average efficiencies of the PAC system (7%), COD removal by biodegradation in the PAC-AS system was remarkably higher than that in the AS system. The analysis of the influence of PAC on water quality and sludge properties showed that PAC facilitated the removal of hydrophobic matter and metabolic acidic products, and also enhanced the biomass accumulation, sludge settleability, and specific oxygen uptake rate inside the biological system. The microbial community structures in the PAC-AS and AS systems were monitored. The results showed that the average well color development in the PAC-AS system was higher than that in the AS system. The utilization of various substrates by microorganisms in the two systems did not differ. The dissimilarity index was far less than one; thus, showing that the microbial community structures of the two systems were the same.

  15. Potential of the waste from beer fermentation broth for bio-ethanol production without any additional enzyme, microbial cells and carbohydrates.

    PubMed

    Ha, Jung Hwan; Shah, Nasrullah; Ul-Islam, Mazhar; Park, Joong Kon

    2011-08-10

    The potential of the waste from beer fermentation broth (WBFB) for the production of bio-ethanol using a simultaneous saccharification and fermentation process without any extra additions of saccharification enzymes, microbial cells or carbohydrate was tested. The major microbial cells in WBFB were isolated and identified. The variations in compositions of WBFB with stock time were investigated. There was residual activity of starch hydrolyzing enzymes in WBFB. The effects of reaction modes e.g. static and shaking on bio-ethanol production were studied. After 7 days of cultivation using the supernatant of WBFB at 30 °C the ethanol concentration reached 103.8 g/L in shaking culture and 91.5 g/L in static culture. Agitation experiments conducted at a temperature-profile process in which temperature was increased from 25 to 67 °C shortened the simultaneous process time. The original WBFB was more useful than the supernatant of WBFB in getting the higher concentration of ethanol and reducing the fermentation time. From this whole study it was found that WBFB is a cheap and suitable source for bio-ethanol production.

  16. Simulating the response to phosphate additions in the oligotrophic eastern Mediterranean using an idealized four-member microbial food web model

    NASA Astrophysics Data System (ADS)

    Thingstad, T.

    2005-11-01

    Elsewhere in this volume, observations of the natural microbial food web in the Cyprus Gyre, eastern Mediterranean, and its transient responses both to phosphate additions in situ and to phosphate and ammonium additions when enclosed in microcosm bottles, are reported. We here explore an idealized four-population model of the microbial part of the food web, containing features suggested in these reports to be essential for the observed responses. Such features include a steady state with P-limited growth heterotrophic bacteria and P-limited or N/P co-limited growth of phytoplankton a mechanism for luxury consumption and nutrient storage in the osmotrophs (phytoplankton and bacteria), a supply of labile organic carbon substrates in excess of bacterial carbon demand, a relatively small excess of bio-available nitrogen, and an assumption that heterotrophic bacteria are superior to phytoplankton in competing for dissolved organic nitrogen. From a P-limited steady-state dominated by heterotrophic organisms, the model responds to the in situ phosphate addition of the Lagrangian experiment with a decrease in chlorophyll, an increase in bacterial production and in bacterial biomass, and a decrease in uptake potential for phosphate. These modeled responses at the osmotroph level are qualitatively and quantitatively comparable to those observed, while detailed comparison of model and observations at the predator level appears more difficult. The model is also able to explain main traits of the dynamic patterns observed in microcosm experiments, both when different concentrations of phosphate were added to previously unperturbed water, and when water collected inside the patch of the Lagrangian experiment was enclosed and supplied with ammonia. We conclude that the idealized model contains sufficient elements to capture a useful first-order approximation to a presumably quite complex microbial food web. In this model, predator growth responds not only to food quantity, but

  17. Responses of soil enzyme activity and microbial community compositions to nitrogen addition in bulk and microaggregate soil in the temperate steppe of Inner Mongolia

    NASA Astrophysics Data System (ADS)

    Shi, Yao; Sheng, Lianxi; Wang, Zhongqiang; Zhang, Xinyu; He, Nianpeng; Yu, Qiang

    2016-10-01

    In order to explore the responses of soil enzyme activities and microbial community compositions to long-term nitrogen (N) addition in both bulk soil and microaggregate of chestnut soil, we conducted a 7-year urea addition experiment with N treatments at 6 levels (0, 56, 112, 224, 392 and 560 kg N ha-1 yr-1) in a temperate steppe of Inner Mongolia in China. Soil properties and the activities of four enzymes involved in carbon (C), nitrogen (N) and phosphorus (P) cycling were measured in both bulk soil and microaggregate, and phospholipid fatty acids (PLFAs) were measured in bulk soil. The results indicated that: 1) in bulk soil, N addition significantly decreased β-1,4-glucosidase (BG) and leucine aminopeptidase (LAP) activities at the treatment amounts of 224, 392 and 560 kg N ha-1 yr-1, and obviously suppressed β-1,4-N-acetylglucosaminidase (NAG) activity at the treatment amount of 560 kg N ha-1 yr-1. N addition enhanced total PLFAs (totPLFAs) and bacterial PLFAs (bacPLFAs) at the treatment amounts of 392 and 560 kg N ha-1 yr-1, respectively, but fungal PLFAs showed no response to N addition. The activities of BG, NAG and LAP were positively correlated with soil pH, but negatively correlated with the concentration of NH 4 + -N; 2) in microaggregate (53-250 μm), the activities of BG, NAG and AP showed no response to increased addition of N, but the significantly decreased LAP activity was observed at the treatment amount of 392 kg N ha-1 yr-1. These results suggested that enzyme activities were more sensitive to N addition than PLFA biomarkers in soil, and LAP activity in microaggregate may be a good indicator for evaluating N cycle response to long-term N addition.

  18. Microbial translocation and microbiome dsybiosis in HIV-associated immune activation

    PubMed Central

    Zevin, Alexander S.; McKinnon, Lyle; Burgener, Adam; Klatt, Nichole R.

    2016-01-01

    Purpose of Review To describe the mechanisms and consequences of both microbial translocation and microbial dysbiosis in HIV infection. Recent Findings Microbes in HIV are likely playing a large role in contributing to HIV pathogenesis, morbidities and mortality. Two major disruptions to microbial systems in HIV infection include microbial translocation and microbiome dysbiosis. Microbial translocation occurs when the bacteria (or bacterial products) that should be in the lumen of the intestine translocate across the tight epithelial barrier into systemic circulation, where they contribute to inflammation and pathogenesis. This is associated with poorer health outcomes in HIV infected individuals. In addition, microbial populations in the GI tract are also altered after HIV infection, resulting in microbiome dysbiosis, which further exacerbates microbial translocation, epithelial barrier disruption, inflammation, and mucosal immune functioning. Summary Altered microbial regulation in HIV infection can lead to poor health outcomes, and understanding the mechanisms underlying microbial dysbiosis and translocation may result in novel pathways for therapeutic interventions. PMID:26679414

  19. A pathway-based analysis provides additional support for an immune-related genetic susceptibility to Parkinson's disease.

    PubMed

    Holmans, Peter; Moskvina, Valentina; Jones, Lesley; Sharma, Manu; Vedernikov, Alexey; Buchel, Finja; Saad, Mohamad; Sadd, Mohamad; Bras, Jose M; Bettella, Francesco; Nicolaou, Nayia; Simón-Sánchez, Javier; Mittag, Florian; Gibbs, J Raphael; Schulte, Claudia; Durr, Alexandra; Guerreiro, Rita; Hernandez, Dena; Brice, Alexis; Stefánsson, Hreinn; Majamaa, Kari; Gasser, Thomas; Heutink, Peter; Wood, Nicholas W; Martinez, Maria; Singleton, Andrew B; Nalls, Michael A; Hardy, John; Morris, Huw R; Williams, Nigel M

    2013-03-01

    Parkinson's disease (PD) is the second most common neurodegenerative disease affecting 1-2% in people >60 and 3-4% in people >80. Genome-wide association (GWA) studies have now implicated significant evidence for association in at least 18 genomic regions. We have studied a large PD-meta analysis and identified a significant excess of SNPs (P < 1 × 10(-16)) that are associated with PD but fall short of the genome-wide significance threshold. This result was independent of variants at the 18 previously implicated regions and implies the presence of additional polygenic risk alleles. To understand how these loci increase risk of PD, we applied a pathway-based analysis, testing for biological functions that were significantly enriched for genes containing variants associated with PD. Analysing two independent GWA studies, we identified that both had a significant excess in the number of functional categories enriched for PD-associated genes (minimum P = 0.014 and P = 0.006, respectively). Moreover, 58 categories were significantly enriched for associated genes in both GWA studies (P < 0.001), implicating genes involved in the 'regulation of leucocyte/lymphocyte activity' and also 'cytokine-mediated signalling' as conferring an increased susceptibility to PD. These results were unaltered by the exclusion of all 178 genes that were present at the 18 genomic regions previously reported to be strongly associated with PD (including the HLA locus). Our findings, therefore, provide independent support to the strong association signal at the HLA locus and imply that the immune-related genetic susceptibility to PD is likely to be more widespread in the genome than previously appreciated.

  20. Protein design and engineering of a de novo pathway for microbial production of 1,3-propanediol from glucose.

    PubMed

    Chen, Zhen; Geng, Feng; Zeng, An-Ping

    2015-02-01

    Protein engineering to expand the substrate spectrum of native enzymes opens new possibilities for bioproduction of valuable chemicals from non-natural pathways. No natural microorganism can directly use sugars to produce 1,3-propanediol (PDO). Here, we present a de novo route for the biosynthesis of PDO from sugar, which may overcome the mentioned limitations by expanding the homoserine synthesis pathway. The accomplishment of pathway from homoserine to PDO is achieved by protein engineering of glutamate dehydrogenase (GDH) and pyruvate decarboxylase to sequentially convert homoserine to 4-hydroxy-2-ketobutyrate and 3-hydroxypropionaldehyde. The latter is finally converted to PDO by using a native alcohol dehydrogenase. In this work, we report on experimental accomplishment of this non-natural pathway, especially by protein engineering of GDH for the key step of converting homoserine to 4-hydroxy-2-ketobutyrate. These results show the feasibility and significance of protein engineering for de novo pathway design and overproduction of desired industrial products.

  1. Soil microbial biomass and community structure affected by repeated additions of sewage sludge in four Swedish long-term field experiments

    NASA Astrophysics Data System (ADS)

    Börjesson, G.; Kätterer, T.; Kirchmann, H.

    2012-04-01

    Soil organic matter is a key attribute of soil fertility. The pool of soil organic C can be increased, either by mineral fertilisers or by adding organic amendments such as sewage sludge. Sewage sludge has positive effects on agricultural soils through the supply of organic matter and essential plant nutrients, but sludge may also contain unwanted heavy metals, xenobiotic substances and pathogens. One obvious effect of long-term sewage sludge addition is a decrease in soil pH, caused by N mineralisation followed by nitrification, sulphate formation and presence of organic acids with the organic matter added. The objective of this study was to investigate the effect of sewage sludge on the microbial biomass and community structure. Materials and methods We analysed soil samples from four sites where sewage sludge has been repeatedly applied in long-term field experiments situated in different parts of Sweden; Ultuna (59°49'N, 17°39'E, started 1956), Lanna (58°21'N, 13°06'E, started 1997-98), Petersborg (55°32'N, 13°00'E, started 1981) and Igelösa (55°45'N, 13°18'E, started 1981). In these four experiments, at least one sewage sludge treatment is included in the experimental design. In the Ultuna experiment, all organic fertilisers, including sewage sludge, are applied every second year, corresponding to 4 ton C ha-1. The Lanna experiment has a similar design, with 8 ton dry matter ha-1 applied every second year. Lanna also has an additional treatment in which metal salts (Cd, Cu, Ni and Zn) are added together with sewage sludge. At Petersborg and Igelösa, two levels of sewage sludge (4 or 12 ton dry matter ha-1 every 4th year) are compared with three levels of NPK fertiliser (0 N, ½ normal N and normal N). Topsoil samples (0-20 cm depth) from the four sites were analysed for total C, total N, pH and PLFAs (phospholipid fatty acids). In addition, crop yields were recorded. Results At all four sites, sewage sludge has had a positive effect on crop yields

  2. Brazilian propolis extract used as an additive to decrease methane emissions from the rumen microbial population in vitro.

    PubMed

    Santos, Nadine Woruby; Zeoula, Lucia Maria; Yoshimura, Emerson Henri; Machado, Erica; Macheboeuf, Didier; Cornu, Agnès

    2016-06-01

    Propolis is a product that is rich in phenolic compounds and can be utilized in animal nutrition as a dietary additive. In this study, the effects of a Brazilian green propolis extract on rumen fermentation and gas production were determined. The fate of propolis phenolic compounds in the rumen medium was also investigated. Fermentation was done in 24-h batches over three periods. Inoculates were obtained from cows fed on grassland hay and concentrate. Propolis extract in a hydroalcoholic solution was applied at increasing doses to the substrate (1 to 56 g/kg). The fermentation substrate consisted on a mixture of alfalfa hay, soybean meal, and wheat grain mixture in dry matter. After 24 h of fermentation, seven new compounds were observed in the medium in amounts that correlated to the propolis dose. The dose of propolis extract linearly decreased the pH of the medium and linearly increased propionate production, which reduced the acetate-to-propionate ratio and influenced the total production of short-chain fatty acids. Propolis also linearly reduced methane production and increased the carbon dioxide-to-methane ratio. Ammonia nitrogen levels and in vitro digestibility of organic matter were similar among the treatments. The combination of increased propionate production and decreased methane production suggests better energy utilization from the feed.

  3. Addition of Bacillus sp. inoculums in bedding for swine on a pilot scale: effect on microbial population and bedding temperature.

    PubMed

    Corrêa, E K; Ulguim, R R; Corrêa, L B; Castilhos, D D; Bianchi, I; Gil-Turnes, C; Lucia, T

    2012-10-01

    Thermal and microbiological characteristics of beddings for swine were compared according to their depth and of addition of inoculums. Bedding was added to boxes at 0.25 (25D) and 0.50 m (50D), with three treatments: control (no inoculums); T1, with 250 g of Bacillus cereus var. toyoii at 8.4 × 10(7) CFU; and T2, with 250 g of a pool of B. subtilis, Bacillus licheniformis and Bacillus polymyxa at 8.4 × 10(7) CFU (250 g for 25D and 500 g for 50D). Mean temperatures were 28.5 ± 3.9 at the surface and 35.2 ± 8.9 inside the beddings. The most probable number (MPN) of thermophilic bacteria was higher for T1 and T2 than for the control (P<0.05). The MPN of thermophilic bacteria and fungi was greater for D50 than for D25 (P<0.05). The use of 25D without inoculums is recommended due to the reduction of thermophilic microbiota.

  4. The Fate of Carbon Draining Permafrost Soils is Controlled by Photochemical Reactions in Addition to Microbial Degradation in Arctic Surface Waters

    NASA Astrophysics Data System (ADS)

    Kling, G. W.; Dobkowski, J.; Ward, C. P.; Crump, B. C.; Neilson, B. T.; Cory, R. M.

    2013-12-01

    Perhaps the unknown of greatest potential consequence in determining the arc of climate change in this century is the role of thawing permafrost carbon. Arctic soil temperatures are increasing and large areas of permafrost have thawed, but not all soils will thaw quietly in place. Destabilization from melting ice has caused an increase in thermokarst failures that expose buried C and release dissolved organic C (DOC) to surface waters. We found that this exposure to sunlight and surface conditions increases the reactivity of permafrost C to microbial attack by 40% compared to soil DOC held in the dark. The range of lability to microbes depends on microbial community composition and especially on prior light exposure, implying that sunlight may act as an amplification factor in converting frozen C to gases in the atmosphere. We also found that photochemical degradation accounted for the majority (up to 80%) of the degradation of DOC in the water column of lakes and streams. This was based on concurrent measurements of (1) respiration of DOM to CO2 by bacteria in the dark, (2) O2 consumed in DOM photo-oxidation, (3) CO2 produced by DOM photo-mineralization, and (4) photo-stimulated bacterial respiration. Using in-situ UV light profiles and surveys of ~70 surface waters on the North Slope of Alaska, we found that depth-integrated water column rates of photochemical DOM degradation equaled or exceeded dark bacterial respiration, by up to 7x depending on the mean depth of the water column. The total dark and light processing of DOM in these waters was estimated to be roughly 20% of the DOM exported from major rivers on the North Slope of Alaska to the Arctic Ocean. The dominant degradation pathway was the partial photo-oxidation of DOC, which was at least 2x greater than complete photo-mineralization of DOC to CO2 or than bacterial respiration to CO2. This means that the dominant fate of permafrost C released as DOC is to be partially degraded and transported through

  5. 78 FR 36041 - Regulation of Fuels and Fuel Additives: RFS Pathways II and Technical Amendments to the RFS 2...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-14

    ... Renewable Fuel and That are Registered for RIN Generation 3. Changes Applicable to all Biogas Related Pathways for RIN Generation 4. Changes Applicable To Process Electricity Production Requirement for the... feedstock. The first involved food waste or yard waste that was kept separate, from generation,...

  6. Collagen-binding Microbial Surface Components Recognizing Adhesive Matrix Molecule (MSCRAMM) of Gram-positive Bacteria Inhibit Complement Activation via the Classical Pathway*

    PubMed Central

    Kang, Mingsong; Ko, Ya-Ping; Liang, Xiaowen; Ross, Caná L.; Liu, Qing; Murray, Barbara E.; Höök, Magnus

    2013-01-01

    Members of a family of collagen-binding microbial surface components recognizing adhesive matrix molecules (MSCRAMMs) from Gram-positive bacteria are established virulence factors in several infectious diseases models. Here, we report that these adhesins also can bind C1q and act as inhibitors of the classical complement pathway. Molecular analyses of Cna from Staphylococcus aureus suggested that this prototype MSCRAMM bound to the collagenous domain of C1q and interfered with the interactions of C1r with C1q. As a result, C1r2C1s2 was displaced from C1q, and the C1 complex was deactivated. This novel function of the Cna-like MSCRAMMs represents a potential immune evasion strategy that could be used by numerous Gram-positive pathogens. PMID:23720782

  7. Microbial phenolic metabolites improve glucose-stimulated insulin secretion and protect pancreatic beta cells against tert-butyl hydroperoxide-induced toxicity via ERKs and PKC pathways.

    PubMed

    Fernández-Millán, Elisa; Ramos, Sonia; Alvarez, Carmen; Bravo, Laura; Goya, Luis; Martín, María Ángeles

    2014-04-01

    Oxidative stress is accepted as one of the causes of beta cell failure in type 2 diabetes. Therefore, identification of natural antioxidant agents that preserve beta cell mass and function is considered an interesting strategy to prevent or treat diabetes. Recent evidences indicated that colonic metabolites derived from flavonoids could possess beneficial effects on various tissues. The aim of this work was to establish the potential anti-diabetic properties of the microbial-derived flavonoid metabolites 3,4-dihydroxyphenylacetic acid (DHPAA), 2,3-dihydroxybenzoic acid (DHBA) and 3-hydroxyphenylpropionic acid (HPPA). To this end, we tested their ability to influence beta cell function and to protect against tert-butyl hydroperoxide-induced beta cell toxicity. DHPAA and HPPA were able to potentiate glucose-stimulated insulin secretion (GSIS) in a beta cell line INS-1E and in rat pancreatic islets. Moreover, pre-treatment of cells with both compounds protected against beta cell dysfunction and death induced by the pro-oxidant. Finally, experiments with pharmacological inhibitors indicate that these effects were mediated by the activation of protein kinase C and the extracellular regulated kinases pathways. Altogether, these findings strongly suggest that the microbial-derived flavonoid metabolites DHPAA and HPPA may have anti-diabetic potential by promoting survival and function of pancreatic beta cells.

  8. In vitro inhibition of the classical pathway of human complement by a natural microbial product, colistin sulphate.

    PubMed

    Asghar, S S; de Koster, A; van der Helm, H J

    1986-09-01

    Colistin sulphate was found to be an inhibitor of the classical pathway of the complement system. The main sites of inhibition were the interaction of EAC14 with C2 and EAC142 with C3. It also inhibited EAC14 formation from EA and C2-deficient serum, EAC1-7 formation from EAC1-3, C5, C6 and C7 and the interaction of EAC1-7 with C8 and C9, though less efficiently. It did not inhibit formation of C3/C5 convertase of the alternative pathway. The inhibition of the classical pathway was reversible since hemolytic activity was completely restored after dialysis.

  9. Single and combined effects of deoxynivalenol mycotoxin and a microbial feed additive on lymphocyte DNA damage and oxidative stress in broiler chickens.

    PubMed

    Awad, Wageha A; Ghareeb, Khaled; Dadak, Agnes; Hess, Michael; Böhm, Josef

    2014-01-01

    The immune and intestinal epithelial cells are particularly sensitive to the toxic effects of deoxynivalenol (DON). The aim of this experiment was to study the effects of DON and/or a microbial feed additive on the DNA damage of blood lymphocytes and on the level of thiobarbituric acid reactive substance (TBARS) as an indicator of lipid peroxidation and oxidative stress in broilers. A total of forty 1-d-old broiler chicks were randomly assigned to 1 of 4 dietary treatments (10 birds per group) for 5 wk. The dietary treatments were 1) basal diet; 2) basal diet contaminated with 10 mg DON/kg feed; 3) basal diet contaminated with 10 mg DON/kg feed and supplemented with 2.5 kg/ton of feed of Mycofix Select; 4) basal diet supplemented with Mycofix Select (2.5 kg/ton of feed). At the end of the feeding trial, blood were collected for measuring the level of lymphocyte DNA damage of blood and the TBARS level was measured in plasma, heart, kidney, duodenum and jejunum. The dietary exposure of DON caused a significant increase (P = 0.001) of DNA damage in blood lymphocytes (31.99 ± 0.89%) as indicated in the tail of comet assay. Interestingly addition of Mycofix Select to DON contaminated diet decreased (P = 0.001) the DNA damage (19.82 ± 1.75%) induced by DON. In order to clarify the involvement of lipid peroxidation in the DNA damage of DON, TBARS levels was measured. A significant increase (P = 0.001) in the level of TBARS (23 ± 2 nmol/mg) was observed in the jejunal tissue suggesting that the lipid peroxidation might be involved in the DNA damage. The results indicate that DON is cytotoxic and genotoxic to the chicken intestinal and immune cells and the feed additive have potential ability to prevent DNA damage induced by DON.

  10. Single and Combined Effects of Deoxynivalenol Mycotoxin and a Microbial Feed Additive on Lymphocyte DNA Damage and Oxidative Stress in Broiler Chickens

    PubMed Central

    Awad, Wageha A.; Ghareeb, Khaled; Dadak, Agnes; Hess, Michael; Böhm, Josef

    2014-01-01

    The immune and intestinal epithelial cells are particularly sensitive to the toxic effects of deoxynivalenol (DON). The aim of this experiment was to study the effects of DON and/or a microbial feed additive on the DNA damage of blood lymphocytes and on the level of thiobarbituric acid reactive substance (TBARS) as an indicator of lipid peroxidation and oxidative stress in broilers. A total of forty 1-d-old broiler chicks were randomly assigned to 1 of 4 dietary treatments (10 birds per group) for 5 wk. The dietary treatments were 1) basal diet; 2) basal diet contaminated with 10 mg DON/kg feed; 3) basal diet contaminated with 10 mg DON/kg feed and supplemented with 2.5 kg/ton of feed of Mycofix Select; 4) basal diet supplemented with Mycofix Select (2.5 kg/ton of feed). At the end of the feeding trial, blood were collected for measuring the level of lymphocyte DNA damage of blood and the TBARS level was measured in plasma, heart, kidney, duodenum and jejunum. The dietary exposure of DON caused a significant increase (P = 0.001) of DNA damage in blood lymphocytes (31.99±0.89%) as indicated in the tail of comet assay. Interestingly addition of Mycofix Select to DON contaminated diet decreased (P = 0.001) the DNA damage (19.82±1.75%) induced by DON. In order to clarify the involvement of lipid peroxidation in the DNA damage of DON, TBARS levels was measured. A significant increase (P = 0.001) in the level of TBARS (23±2 nmol/mg) was observed in the jejunal tissue suggesting that the lipid peroxidation might be involved in the DNA damage. The results indicate that DON is cytotoxic and genotoxic to the chicken intestinal and immune cells and the feed additive have potential ability to prevent DNA damage induced by DON. PMID:24498242

  11. Virtual Institute of Microbial Stress and Survival: Deduction of Stress Response Pathways in Metal and Radionuclide Reducing Microorganisms

    SciTech Connect

    2004-04-17

    The projects application goals are to: (1) To understand bacterial stress-response to the unique stressors in metal/radionuclide contamination sites; (2) To turn this understanding into a quantitative, data-driven model for exploring policies for natural and biostimulatory bioremediation; (3) To implement proposed policies in the field and compare results to model predictions; and (4) Close the experimental/computation cycle by using discrepancies between models and predictions to drive new measurements and construction of new models. The projects science goals are to: (1) Compare physiological and molecular response of three target microorganisms to environmental perturbation; (2) Deduce the underlying regulatory pathways that control these responses through analysis of phenotype, functional genomic, and molecular interaction data; (3) Use differences in the cellular responses among the target organisms to understand niche specific adaptations of the stress and metal reduction pathways; (4) From this analysis derive an understanding of the mechanisms of pathway evolution in the environment; and (5) Ultimately, derive dynamical models for the control of these pathways to predict how natural stimulation can optimize growth and metal reduction efficiency at field sites.

  12. Isotope Effects Associated with N2O Production By Fungal and Bacterial Nitric Oxide Reductases: Implications for Tracing Microbial Production Pathways

    NASA Astrophysics Data System (ADS)

    Ostrom, N. E.; Yang, H.; Gandhi, H.; Hegg, E. L.

    2014-12-01

    Site preference (SP), the difference in δ15N between the central (α) and outer (β) N atoms in N2O, has emerged as a conservative tracer of microbial N2O production. The key advantages of SP relative to bulk isotopes are (1) that it is independent of the isotope composition of the substrates of nitrification and denitrification and (2) has not been shown to exhibit fractionation during production. In pure microbial culture distinct SP values for N2O production from bacterial denitrification, including nitrifier-denitrification (-10 to 0 ‰), relative to hydroxylamine oxidation and fungal denitrification (33-37 ‰) provide a promising basis to resolve production pathways. In this study, we determined the δ15N, δ18O, δ15Nα, and δ15Nβ of N2O generated by purified fungal (P450nor) and bacterial nitric oxide reductases. The isotope values were used to calculate SP values, enrichment factors (e), and kinetic isotope effects (KIEs). Both O and Nα displayed normal isotope effects during enzymatic NO reduction by the P450nor with e values of -25.7‰ (KIE = 1.0264) and -12.6‰ (KIE = 1.0127), respectively. However, bulk nitrogen (average δ15N of Nα and Nβ) and Nβ exhibited inverse isotope effects with e values of 14.0‰ (KIE = 0.9862) and 36.1‰ (KIE = 0.9651), respectively. The observed inverse isotope effect in δ15Nβ is consistent with reversible binding of the first NO in the P450nor reaction mechanism. Experiments with bacterial nitric oxide reductase are ongoing, however, preliminary data indicates a inverse isotope effect in the α and β positions and a normal isotope effect in δ18O. In contrast to the constant SP observed during N2O production observed in microbial cultures, the SP measured for purified P450nor was not constant, increasing from ~15‰ to ~29‰ during the course of the reaction. Our results clearly indicate that fractionation of SP during N2O production by P450nor is not zero, and that SP values higher and lower than the

  13. Transcriptome Analysis and Discovery of Genes Involved in Immune Pathways from Hepatopancreas of Microbial Challenged Mitten Crab Eriocheir sinensis

    PubMed Central

    Li, Xihong; Cui, Zhaoxia; Liu, Yuan; Song, Chengwen; Shi, Guohui

    2013-01-01

    Background The Chinese mitten crab Eriocheir sinensis is an important economic crustacean and has been seriously attacked by various diseases, which requires more and more information for immune relevant genes on genome background. Recently, high-throughput RNA sequencing (RNA-seq) technology provides a powerful and efficient method for transcript analysis and immune gene discovery. Methods/Principal Findings A cDNA library from hepatopancreas of E. sinensis challenged by a mixture of three pathogen strains (Gram-positive bacteria Micrococcus luteus, Gram-negative bacteria Vibrio alginolyticus and fungi Pichia pastoris; 108 cfu·mL−1) was constructed and randomly sequenced using Illumina technique. Totally 39.76 million clean reads were assembled to 70,300 unigenes. After ruling out short-length and low-quality sequences, 52,074 non-redundant unigenes were compared to public databases for homology searching and 17,617 of them showed high similarity to sequences in NCBI non-redundant protein (Nr) database. For function classification and pathway assignment, 18,734 (36.00%) unigenes were categorized to three Gene Ontology (GO) categories, 12,243 (23.51%) were classified to 25 Clusters of Orthologous Groups (COG), and 8,983 (17.25%) were assigned to six Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. Potentially, 24, 14, 47 and 132 unigenes were characterized to be involved in Toll, IMD, JAK-STAT and MAPK pathways, respectively. Conclusions/Significance This is the first systematical transcriptome analysis of components relating to innate immune pathways in E. sinensis. Functional genes and putative pathways identified here will contribute to better understand immune system and prevent various diseases in crab. PMID:23874555

  14. Toward Additive-Free Small-Molecule Organic Solar Cells: Roles of the Donor Crystallization Pathway and Dynamics.

    PubMed

    Abdelsamie, Maged; Treat, Neil D; Zhao, Kui; McDowell, Caitlin; Burgers, Mark A; Li, Ruipeng; Smilgies, Detlef-M; Stingelin, Natalie; Bazan, Guillermo C; Amassian, Aram

    2015-12-02

    The ease with which small-molecule donors crystallize during solution processing is directly linked to the need for solvent additives. Donor molecules that get trapped in disordered (H1) or liquid crystalline (T1) mesophases require additive processing to promote crystallization, phase separation, and efficient light harvesting. A donor material (X2) that crystallizes directly from solution yields additive-free solar cells with an efficiency of 7.6%.

  15. Carbon dioxide addition to microbial fuel cell cathodes maintains sustainable catholyte pH and improves anolyte pH, alkalinity, and conductivity.

    PubMed

    Fornero, Jeffrey J; Rosenbaum, Miriam; Cotta, Michael A; Angenent, Largus T

    2010-04-01

    Bioelectrochemical system (BES) pH imbalances develop due to anodic proton-generating oxidation reactions and cathodic hydroxide-ion-generating reduction reactions. Until now, workers added unsustainable buffers to reduce the pH difference between the anode and cathode because the pH imbalance contributes to BES potential losses and, therefore, power losses. Here, we report that adding carbon dioxide (CO(2)) gas to the cathode, which creates a CO(2)/bicarbonate buffered catholyte system, can diminish microbial fuel cell (MFC) pH imbalances in contrast to the CO(2)/carbonate buffered catholyte system by Torres, Lee, and Rittmann [Environ. Sci. Technol. 2008, 42, 8773]. We operated an air-cathode and liquid-cathode MFC side-by-side. For the air-cathode MFC, CO(2) addition resulted in a stable catholyte film pH of 6.61 +/- 0.12 and a 152% increase in steady-state power density. By adding CO(2) to the liquid-cathode system, we sustained a steady catholyte pH (pH = 5.94 +/- 0.02) and a low pH imbalance (DeltapH = 0.65 +/- 0.18) over a 2-week period without external salt buffer addition. By migrating bicarbonate ions from the cathode to the anode (with an anion-exchange membrane), we increased the anolyte pH (DeltapH = 0.39 +/- 0.31), total alkalinity (494 +/- 6 to 582 +/- 6 as mg CaCO(3)/L), and conductivity (1.53 +/- 0.49 to 2.16 +/- 0.03 mS/cm) relative to the feed properties. We also verified with a phosphate-buffered MFC that our reaction rates were limited mainly by the reactor configuration rather than limitations due to the bicarbonate buffer.

  16. Orally Administered Berberine Modulates Hepatic Lipid Metabolism by Altering Microbial Bile Acid Metabolism and the Intestinal FXR Signaling Pathway.

    PubMed

    Sun, Runbin; Yang, Na; Kong, Bo; Cao, Bei; Feng, Dong; Yu, Xiaoyi; Ge, Chun; Huang, Jingqiu; Shen, Jianliang; Wang, Pei; Feng, Siqi; Fei, Fei; Guo, Jiahua; He, Jun; Aa, Nan; Chen, Qiang; Pan, Yang; Schumacher, Justin D; Yang, Chung S; Guo, Grace L; Aa, Jiye; Wang, Guangji

    2017-02-01

    Previous studies suggest that the lipid-lowering effect of berberine (BBR) involves actions on the low-density lipoprotein receptor and the AMP-activated protein kinase signaling pathways. However, the implication of these mechanisms is unclear because of the low bioavailability of BBR. Because the main action site of BBR is the gut and intestinal farnesoid X receptor (FXR) plays a pivotal role in the regulation of lipid metabolism, we hypothesized that the effects of BBR on intestinal FXR signaling pathway might account for its pharmacological effectiveness. Using wild type (WT) and intestine-specific FXR knockout (FXR(int-/-)) mice, we found that BBR prevented the development of high-fat-diet-induced obesity and ameliorated triglyceride accumulation in livers of WT, but not FXR(int-/-) mice. BBR increased conjugated bile acids in serum and their excretion in feces. Furthermore, BBR inhibited bile salt hydrolase (BSH) activity in gut microbiota, and significantly increased the levels of tauro-conjugated bile acids, especially tauro-cholic acid(TCA), in the intestine. Both BBR and TCA treatment activated the intestinal FXR pathway and reduced the expression of fatty-acid translocase Cd36 in the liver. These results indicate that BBR may exert its lipid-lowering effect primarily in the gut by modulating the turnover of bile acids and subsequently the ileal FXR signaling pathway. In summary, we provide the first evidence to suggest a new mechanism of BBR action in the intestine that involves, sequentially, inhibiting BSH, elevating TCA, and activating FXR, which lead to the suppression of hepatic expression of Cd36 that results in reduced uptake of long-chain fatty acids in the liver.

  17. Metaproteomics of a gutless marine worm and its symbiotic microbial community reveal unusual pathways for carbon and energy use

    SciTech Connect

    Kleiner, Manuel; Wentrop, C.; Lott, C.; Teeling, Hanno; Wetzel, Silke; Young, Jacque C; Chang, Y.; Shah, Manesh B; Verberkmoes, Nathan C; Zarzycki, Jan; Fuchs, Georg; Markert, Stephanie; Hempel, Kristina

    2012-01-01

    Low nutrient and energy availability has led to the evolution of numerous strategies for overcoming these limitations, of which symbiotic associations represent a key mechanism. Particularly striking are the associations between chemosynthetic bacteria and marine animals that thrive in nutrient-poor environments such as the deep-sea because the symbionts allow their hosts to grow on inorganic energy and carbon sources such as sulfide and CO2. Remarkably little is known about the physiological strategies that enable chemosynthetic symbioses to colonize oligotrophic environments. In this study, we used metaproteomics and metabolomics to investigate the intricate network of metabolic interactions in the chemosynthetic association between Olavius algarvensis, a gutless marine worm, and its bacterial symbionts. We propose novel pathways for coping with energy and nutrient limitation, some of which may be widespread in both free-living and symbiotic bacteria. These include (i) a pathway for symbiont assimilation of the host waste products acetate, propionate, succinate and malate, (ii) the potential use of carbon monoxide as an energy source, a substrate previously not known to play a role in marine invertebrate symbioses, (iii) the potential use of hydrogen as an energy source, (iv) the strong expression of high affinity uptake transporters, and (v) novel energy efficient steps in CO2 fixation and sulfate reduction. The high expression of proteins involved in pathways for energy and carbon uptake and conservation in the O. algarvensis symbiosis indicates that the oligotrophic nature of its environment exerted a strong selective pressure in shaping these associations.

  18. The Addition of N-Hexanoyl-Homoserine Lactone to Improve the Microbial Flocculant Production of Agrobacterium tumefaciens Strain F2, an Exopolysaccharide Bioflocculant-Producing Bacterium.

    PubMed

    Yang, Jixian; Wu, Dan; Li, Ang; Guo, Haijuan; Chen, Han; Pi, Shanshan; Wei, Wei; Ma, Fang

    2016-07-01

    In this study, N-hexanoyl-homoserine lactone (C6-HSL), a member of the N-acyl-homoserine lactone class of microbial quorum sensing (QS) signaling molecules, was used to improve microbial flocculant production. After exogenous C6-HSL was added, exopolysaccharide concentration of microbial flocculants was improved by 1.6-fold and flocculation rate of microbial flocculants was increased by 10 %. Fermentation conditions with added C6-HSL were further optimized through response surface methodology. The obtained optimal fermentation conditions were as follows: added C6-HSL concentration of 0.45 μM, fermentation temperature of 30.4 °C, and initial fermentation pH of 7.25. Under these optimal fermentation conditions, the resulting exopolysaccharide concentration was improved by 1.75-fold and flocculation rate was increased by 10 % compared with that of the control group. The yield of microbial flocculants was also improved by 1.75-fold. Results demonstrated that the existence of QS system in Agrobacterium tumefaciens strain F2 played the important roles in the microbial flocculant production.

  19. Using chemical, microbial and fluorescence techniques to understand contaminant sources and pathways to wetlands in a conservation site.

    PubMed

    Rhymes, J; Jones, L; Lapworth, D J; White, D; Fenner, N; McDonald, J E; Perkins, T L

    2015-04-01

    Nutrients and faecal contaminants can enter wetland systems in a number of ways, with both biological and potentially human-health implications. In this study we used a combination of inorganic chemistry, dissolved organic matter (DOM) fluorescence and Escherichia coli and total coliform (TC) count techniques to study the sources and multiple pathways of contamination affecting a designated sand dune site of international conservation importance, surrounded by agricultural land. Analysis of stream samples, groundwater and dune slack wetlands revealed multiple input pathways. These included riverbank seepage, runoff events and percolation of nutrients from adjacent pasture into the groundwater, as well as some on-site sources. The combined techniques showed that off-site nutrient inputs into the sand dune system were primarily from fertilisers, revealed by high nitrate concentrations, and relatively low tryptophan-like fulvic-like ratios<0.4Ramanunits (R.U.). The E. coli and TC counts recorded across the site confirm a relatively minor source of bacterial and nutrient inputs from on-site grazers. Attenuation of the nutrient concentrations in streams, in groundwater and in run-off inputs occurs within the site, restoring healthier groundwater nutrient concentrations showing that contaminant filtration by the sand dunes provides a valuable ecosystem service. However, previous studies show that this input of nutrients has a clear adverse ecological impact.

  20. Recent Advances in Microbial Electrocatalysis

    DTIC Science & Technology

    2014-01-01

    Microbial electrocatalysis is a relatively new field of research in which the intrinsic metabolic capacities of various microbes are coupled with...inorganic electrodes to carryout interesting chemical conversions. Given the great diversity in microbial metabolic pathways, a wide variety of processes...past decade. A relatively new development is electrosynthesis, the electrically driven fixation of CO2 into various chemicals. Moreover, microbial

  1. Topical application of the anti-microbial chemical triclosan induces immunomodulatory responses through the S100A8/A9-TLR4 pathway.

    PubMed

    Marshall, Nikki B; Lukomska, Ewa; Nayak, Ajay P; Long, Carrie M; Hettick, Justin M; Anderson, Stacey E

    2017-12-01

    The anti-microbial compound triclosan is incorporated into numerous consumer products and is detectable in the urine of 75% of the general United States population. Recent epidemiological studies report positive associations with urinary triclosan levels and allergic disease. Although not sensitizing, earlier studies previously found that repeated topical application of triclosan augments the allergic response to ovalbumin (OVA) though a thymic stromal lymphopoietin (TSLP) pathway in mice. In the present study, early immunological effects following triclosan exposure were further evaluated following topical application in a murine model. These investigations revealed abundant expression of S100A8/A9, which reportedly acts as an endogenous ligand for Toll-like Receptor 4 (TLR4), in skin tissues and in infiltrating leukocytes during topical application of 0.75-3.0% triclosan. Expression of Tlr4 along with Tlr1, Tlr2 and Tlr6 increased in skin tissues over time with triclosan exposure; high levels of TLR4 were expressed on skin-infiltrating leukocytes. In vivo antibody blockade of the TLR4/MD-2 receptor complex impaired local inflammatory responses after four days, as evidenced by decreased Il6, Tnfα, S100a8, S100a9, Tlr1, Tlr2, Tlr4 and Tlr6 expression in the skin and decreased lymph node cellularity and production of IL-4 and IL-13 by lymph node T-cells. After nine days of triclosan exposure with TLR4/MD-2 blockade, impaired T-helper cell type 2 (TH2) cytokine responses were sustained, but other early effects on skin and lymph node cellularity were lost; this suggested alternative ligands/receptors compensated for the loss of TLR4 signaling. Taken together, these data suggest the S100A8/A9-TLR4 pathway plays an early role in augmenting immunomodulatory responses with triclosan exposure and support a role for the innate immune system in chemical adjuvancy.

  2. Investigation of the O+allyl addition/elimination reaction pathways from the OCH2CHCH2 radical intermediate

    NASA Astrophysics Data System (ADS)

    Fitzpatrick, Benjamin L.; Lau, Kai-Chung; Butler, Laurie J.; Lee, Shih-Huang; Lin, Jim-Min, Jr.

    2008-08-01

    These experiments study the preparation of and product channels resulting from OCH2CHCH2, a key radical intermediate in the O+allyl bimolecular reaction. The data include velocity map imaging and molecular beam scattering results to probe the photolytic generation of the radical intermediate and the subsequent pathways by which the radicals access the energetically allowed product channels of the bimolecular reaction. The photodissociation of epichlorohydrin at 193.3 nm produces chlorine atoms and c-OCH2CHCH2 radicals; these undergo a facile ring opening to the OCH2CHCH2 radical intermediate. State-selective resonance-enhanced multiphoton ionization (REMPI) detection resolves the velocity distributions of ground and spin-orbit excited state chlorine independently, allowing for a more accurate determination of the internal energy distribution of the nascent radicals. We obtain good agreement detecting the velocity distributions of the Cl atoms with REMPI, vacuum ultraviolet (VUV) photoionization at 13.8 eV, and electron bombardment ionization; all show a bimodal distribution of recoil kinetic energies. The dominant high recoil kinetic energy feature peaks near 33 kcal/mol. To elucidate the product channels resulting from the OCH2CHCH2 radical intermediate, the crossed laser-molecular beam experiment uses VUV photoionization and detects the velocity distribution of the possible products. The data identify the three dominant product channels as C3H4O (acrolein)+H, C2H4+HCO (formyl radical), and H2CO (formaldehyde)+C2H3. A small signal from C2H2O (ketene) product is also detected. The measured velocity distributions and relative signal intensities at m/e=27, 28, and 29 at two photoionization energies show that the most exothermic product channel, C2H5+CO, does not contribute significantly to the product branching. The higher internal energy onset of the acrolein+H product channel is consistent with the relative barriers en route to each of these product channels

  3. Novel Anti-Microbial Peptide SR-0379 Accelerates Wound Healing via the PI3 Kinase/Akt/mTOR Pathway

    PubMed Central

    Tomioka, Hideki; Nakagami, Hironori; Tenma, Akiko; Saito, Yoshimi; Kaga, Toshihiro; Kanamori, Toshihide; Tamura, Nao; Tomono, Kazunori; Kaneda, Yasufumi; Morishita, Ryuichi

    2014-01-01

    We developed a novel cationic antimicrobial peptide, AG30/5C, which demonstrates angiogenic properties similar to those of LL-37 or PR39. However, improvement of its stability and cost efficacy are required for clinical application. Therefore, we examined the metabolites of AG30/5C, which provided the further optimized compound, SR-0379. SR-0379 enhanced the proliferation of human dermal fibroblast cells (NHDFs) via the PI3 kinase-Akt-mTOR pathway through integrin-mediated interactions. Furthermore SR-0379 promoted the tube formation of human umbilical vein endothelial cells (HUVECs) in co-culture with NHDFs. This compound also displays antimicrobial activities against a number of bacteria, including drug-resistant microbes and fungi. We evaluated the effect of SR-0379 in two different would-healing models in rats, the full-thickness defects under a diabetic condition and an acutely infected wound with full-thickness defects and inoculation with Staphylococcus aureus. Treatment with SR-0379 significantly accelerated wound healing when compared to fibroblast growth factor 2 (FGF2). The beneficial effects of SR-0379 on wound healing can be explained by enhanced angiogenesis, granulation tissue formation, proliferation of endothelial cells and fibroblasts and antimicrobial activity. These results indicate that SR-0379 may have the potential for drug development in wound repair, even under especially critical colonization conditions. PMID:24675668

  4. Microbial metabolism of the pyridine ring. Metabolism of 2- and 3-hydroxypyridines by the maleamate pathway in Achromobacter sp

    PubMed Central

    Cain, Ronald B.; Houghton, Charles; Wright, Keith A.

    1974-01-01

    1. Washed suspensions of two Achromobacter species (G2 and 2L), capable of growth upon 2- and 3-hydroxypyridine respectively as sources of C and N, rapidly oxidized their growth substrate pyridine-2,5-diol (2,5-dihydroxypyridine) and the putative ring-cleavage product maleamate without a lag. Suspensions derived from fumarate plus (NH4)2SO4 cultures were unable to do so. 2. Extracts of both bacteria oxidized pyridine-2,5-diol with the stoicheiometry of an oxygenase forming 1mol of NH3/mol of substrate. 3. Heat-treated extracts, however, formed maleamate and formate with little free NH3. 4. The conversion of maleamate into maleate plus NH3 by extracts of strain 2L, fractionated with (NH4)2SO4, and the metabolism of maleamate and maleate to fumarate by extracts of both strains demonstrated the existence of the enzymes catalysing each reaction of the maleamate pathway in these bacteria. 5. The pyridine-2,5-diol dioxygenase (mol.wt. approx. 340000) in extracts of these Achromobacter species required Fe2+ (1.7μm) to restore full activity after dialysis or treatment with chelating agents; the enzyme from strain 2L also had a specific requirement for l-cysteine (6.7mm), which could not be replaced by GSH or dithiothreitol. 6. The oxygenase was strongly inhibited in a competitive manner by the isomeric pyridine-2,3- and -3,4-diols. PMID:4455192

  5. Modulation of the arginase pathway in the context of microbial pathogenesis: a metabolic enzyme moonlighting as an immune modulator.

    PubMed

    Das, Priyanka; Lahiri, Amit; Lahiri, Ayan; Chakravortty, Dipshikha

    2010-06-17

    Arginine is a crucial amino acid that serves to modulate the cellular immune response during infection. Arginine is also a common substrate for both inducible nitric oxide synthase (iNOS) and arginase. The generation of nitric oxide from arginine is responsible for efficient immune response and cytotoxicity of host cells to kill the invading pathogens. On the other hand, the conversion of arginine to ornithine and urea via the arginase pathway can support the growth of bacterial and parasitic pathogens. The competition between iNOS and arginase for arginine can thus contribute to the outcome of several parasitic and bacterial infections. There are two isoforms of vertebrate arginase, both of which catalyze the conversion of arginine to ornithine and urea, but they differ with regard to tissue distribution and subcellular localization. In the case of infection with Mycobacterium, Leishmania, Trypanosoma, Helicobacter, Schistosoma, and Salmonella spp., arginase isoforms have been shown to modulate the pathology of infection by various means. Despite the existence of a considerable body of evidence about mammalian arginine metabolism and its role in immunology, the critical choice to divert the host arginine pool by pathogenic organisms as a survival strategy is still a mystery in infection biology.

  6. Metagenomic assessment of the potential microbial nitrogen pathways in the rhizosphere of a mediterranean forest after a wildfire.

    PubMed

    Cobo-Díaz, José F; Fernández-González, Antonio J; Villadas, Pablo J; Robles, Ana B; Toro, Nicolás; Fernández-López, Manuel

    2015-05-01

    Wildfires are frequent in the forests of the Mediterranean Basin and have greatly influenced this ecosystem. Changes to the physical and chemical properties of the soil, due to fire and post-fire conditions, result in alterations of both the bacterial communities and the nitrogen cycle. We explored the effects of a holm oak forest wildfire on the rhizospheric bacterial communities involved in the nitrogen cycle. Metagenomic data of the genes involved in the nitrogen cycle showed that both the undisturbed and burned rhizospheres had a conservative nitrogen cycle with a larger number of sequences related to the nitrogen incorporation pathways and a lower number for nitrogen output. However, the burned rhizosphere showed a statistically significant increase in the number of sequences for nitrogen incorporation (allantoin utilization and nitrogen fixation) and a significantly lower number of sequences for denitrification and dissimilatory nitrite reductase subsystems, possibly in order to compensate for nitrogen loss from the soil after burning. The genetic potential for nitrogen incorporation into the ecosystem was assessed through the diversity of the nitrogenase reductase enzyme, which is encoded by the nifH gene. We found that nifH gene diversity and richness were lower in burned than in undisturbed rhizospheric soils. The structure of the bacterial communities involved in the nitrogen cycle showed a statistically significant increase of Actinobacteria and Firmicutes phyla after the wildfire. Both approaches showed the important role of gram-positive bacteria in the ecosystem after a wildfire.

  7. Adult neuron addition to the zebra finch song motor pathway correlates with the rate and extent of recovery from botox-induced paralysis of the vocal muscles.

    PubMed

    Pytte, Carolyn; Yu, Yi-Lo; Wildstein, Sara; George, Shanu; Kirn, John R

    2011-11-23

    In adult songbirds, neurons are continually incorporated into the telencephalic nucleus HVC (used as a proper name), a premotor region necessary for the production of learned vocalizations. Previous studies have demonstrated that neuron addition to HVC is highest when song is most variable: in juveniles during song learning, in seasonally singing adults during peaks in plasticity that precede the production of new song components, or during seasonal reestablishment of a previously learned song. These findings suggest that neuron addition provides motor flexibility for the transition from a variable song to a target song. Here we test the association between the quality of song structure and HVC neuron addition by experimentally manipulating syringeal muscle control with Botox, which produces a transient partial paralysis. We show that the quality of song structure covaries with new neuron addition to HVC. Both the magnitude of song distortion and the rate of song recovery after syringeal Botox injections were correlated with the number of new neurons incorporated into HVC. We suggest that the quality of song structure is either a cause or consequence of the number of new neurons added to HVC. Birds with naturally high rates of neuron addition may have had the greatest success in recovering song. Alternatively, or in addition, new neuron survival in the song motor pathway may be regulated by the quality of song-generated feedback as song regains its original stereotyped structure. Present results are the first to show a relationship between peripheral muscle control and adult neuron addition to cortical premotor circuits.

  8. Impact of trace element addition on degradation efficiency of volatile fatty acids, oleic acid and phenyl acetate and on microbial populations in a biogas digester.

    PubMed

    Karlsson, Anna; Einarsson, Peter; Schnürer, Anna; Sundberg, Carina; Ejlertsson, Jörgen; Svensson, Bo H

    2012-10-01

    The effect of trace element addition on anaerobic digestion of food industry- and household waste was studied using two semi-continuous lab-scale reactors, one (R30+) was supplied with Fe, Co and Ni, while the other (R30) acted as a control. Tracer analysis illustrated that methane production from acetate proceeded through syntrophic acetate oxidation (SAO) in both digesters. The effect of the trace elements was also evaluated in batch assays to determine the capacity of the microorganisms of the two digesters to degrade acetate, phenyl acetate, oleic acid or propionate, butyrate and valerate provided as a cocktail. The trace elements addition improved the performance of the process giving higher methane yields during start-up and early operation and lower levels of mainly acetate and propionate in the R30+ reactor. The batch assay showed that material from R30+ gave effects on methane production from all substrates tested. Phenyl acetate was observed to inhibit methane formation in the R30 but not in the R30+ assay. A real-time PCR analysis targeting methanogens on the order level as well as three SAO bacteria showed an increase in Methanosarcinales in the R30+ reactor over time, even though SAO continuously was the dominating pathway for methane production. Possibly, this increase explains the low VFA-levels and higher degradation rates observed in the R30+ batch incubations. These results show that the added trace elements affected the ability of the microflora to degrade VFAs as well as oleic acid and phenyl acetate in a community, where acetate utilization is dominated by SAO.

  9. Fate of Escherichia coli O157:H7 and bacterial diversity in corn silage contaminated with the pathogen and treated with chemical or microbial additives.

    PubMed

    Ogunade, I M; Jiang, Y; Kim, D H; Cervantes, A A Pech; Arriola, K G; Vyas, D; Weinberg, Z G; Jeong, K C; Adesogan, A T

    2017-03-01

    Inhibiting the growth of Escherichia coli O157:H7 (EC) in feeds may prevent the transmission or cycling of the pathogen on farms. The first objective of this study was to examine if addition of propionic acid or microbial inoculants would inhibit the growth of EC during ensiling, at silo opening, or after aerobic exposure. The second objective was to examine how additives affected the bacterial community composition in corn silage. Corn forage was harvested at approximately 35% dry matter, chopped to a theoretical length of cut of 10 mm, and ensiled after treatment with one of the following: (1) distilled water (control); (2) 1 × 10(5) cfu/g of EC (ECCH); (3) EC and 1 × 10(6) cfu/g of Lactobacillus plantarum (ECLP); (4) EC and 1 × 10(6) cfu/g of Lactobacillus buchneri (ECLB); and (5) EC and 2.2 g/kg (fresh weight basis) of propionic acid, containing 99.5% of the acid (ECA). Each treatment was ensiled in quadruplicate in laboratory silos for 0, 3, 7, and 120 d and analyzed for EC, pH, and organic acids. Samples from d 0 and 120 were also analyzed for chemical composition. Furthermore, samples from d 120 were analyzed for ammonia N, yeasts and molds, lactic acid bacteria, bacterial community composition, and aerobic stability. The pH of silages from all treatments decreased below 4 within 3 d of ensiling. Escherichia coli O157:H7 counts were below the detection limit in all silages after 7 d of ensiling. Treatment with L. buchneri and propionic acid resulted in fewer yeasts and greater aerobic stability compared with control, ECCH, and ECLP silages. Compared with the control, the diversity analysis revealed a less diverse bacterial community in the ECLP silage and greater abundance of Lactobacillus in the ECLP and ECA silages. The ECLB silage also contained greater abundance of Acinetobacter and Weissella than other silages. Subsamples of silages were reinoculated with 5 × 10(5) cfu/g of EC either immediately after silo opening or after 168 h of aerobic exposure

  10. Antifungal hydroxy fatty acids produced during sourdough fermentation: microbial and enzymatic pathways, and antifungal activity in bread.

    PubMed

    Black, Brenna A; Zannini, Emanuele; Curtis, Jonathan M; Gänzle, Michael G

    2013-03-01

    Lactobacilli convert linoleic acid to hydroxy fatty acids; however, this conversion has not been demonstrated in food fermentations and it remains unknown whether hydroxy fatty acids produced by lactobacilli have antifungal activity. This study aimed to determine whether lactobacilli convert linoleic acid to metabolites with antifungal activity and to assess whether this conversion can be employed to delay fungal growth on bread. Aqueous and organic extracts from seven strains of lactobacilli grown in modified De Man Rogosa Sharpe medium or sourdough were assayed for antifungal activity. Lactobacillus hammesii exhibited increased antifungal activity upon the addition of linoleic acid as a substrate. Bioassay-guided fractionation attributed the antifungal activity of L. hammesii to a monohydroxy C(18:1) fatty acid. Comparison of its antifungal activity to those of other hydroxy fatty acids revealed that the monohydroxy fraction from L. hammesii and coriolic (13-hydroxy-9,11-octadecadienoic) acid were the most active, with MICs of 0.1 to 0.7 g liter(-1). Ricinoleic (12-hydroxy-9-octadecenoic) acid was active at a MIC of 2.4 g liter(-1). L. hammesii accumulated the monohydroxy C(18:1) fatty acid in sourdough to a concentration of 0.73 ± 0.03 g liter(-1) (mean ± standard deviation). Generation of hydroxy fatty acids in sourdough also occurred through enzymatic oxidation of linoleic acid to coriolic acid. The use of 20% sourdough fermented with L. hammesii or the use of 0.15% coriolic acid in bread making increased the mold-free shelf life by 2 to 3 days or from 2 to more than 6 days, respectively. In conclusion, L. hammesii converts linoleic acid in sourdough and the resulting monohydroxy octadecenoic acid exerts antifungal activity in bread.

  11. Microfluidics and microbial engineering.

    PubMed

    Kou, Songzi; Cheng, Danhui; Sun, Fei; Hsing, I-Ming

    2016-02-07

    The combination of microbial engineering and microfluidics is synergistic in nature. For example, microfluidics is benefiting from the outcome of microbial engineering and many reported point-of-care microfluidic devices employ engineered microbes as functional parts for the microsystems. In addition, microbial engineering is facilitated by various microfluidic techniques, due to their inherent strength in high-throughput screening and miniaturization. In this review article, we firstly examine the applications of engineered microbes for toxicity detection, biosensing, and motion generation in microfluidic platforms. Secondly, we look into how microfluidic technologies facilitate the upstream and downstream processes of microbial engineering, including DNA recombination, transformation, target microbe selection, mutant characterization, and microbial function analysis. Thirdly, we highlight an emerging concept in microbial engineering, namely, microbial consortium engineering, where the behavior of a multicultural microbial community rather than that of a single cell/species is delineated. Integrating the disciplines of microfluidics and microbial engineering opens up many new opportunities, for example in diagnostics, engineering of microbial motors, development of portable devices for genetics, high throughput characterization of genetic mutants, isolation and identification of rare/unculturable microbial species, single-cell analysis with high spatio-temporal resolution, and exploration of natural microbial communities.

  12. Pressure-dependent competition among reaction pathways from first- and second-O2 additions in the low-temperature oxidation of tetrahydrofuran

    SciTech Connect

    Antonov, Ivan O.; Zador, Judit; Rotavera, Brandon; Papajak, Ewa; Osborn, David L.; Taatjes, Craig A.; Sheps, Leonid

    2016-07-21

    Here, we report a combined experimental and quantum chemistry study of the initial reactions in low-temperature oxidation of tetrahydrofuran (THF). Using synchrotron-based time-resolved VUV photoionization mass spectrometry, we probe numerous transient intermediates and products at P = 10–2000 Torr and T = 400–700 K. A key reaction sequence, revealed by our experiments, is the conversion of THF-yl peroxy to hydroperoxy-THF-yl radicals (QOOH), followed by a second O2 addition and subsequent decomposition to dihydrofuranyl hydroperoxide + HO2 or to γ-butyrolactone hydroperoxide + OH. The competition between these two pathways affects the degree of radical chain-branching and is likely of central importance in modeling the autoignition of THF. We interpret our data with the aid of quantum chemical calculations of the THF-yl + O2 and QOOH + O2 potential energy surfaces. On the basis of our results, we propose a simplified THF oxidation mechanism below 700 K, which involves the competition among unimolecular decomposition and oxidation pathways of QOOH.

  13. Pressure-dependent competition among reaction pathways from first- and second-O2 additions in the low-temperature oxidation of tetrahydrofuran

    DOE PAGES

    Antonov, Ivan O.; Zador, Judit; Rotavera, Brandon; ...

    2016-07-21

    Here, we report a combined experimental and quantum chemistry study of the initial reactions in low-temperature oxidation of tetrahydrofuran (THF). Using synchrotron-based time-resolved VUV photoionization mass spectrometry, we probe numerous transient intermediates and products at P = 10–2000 Torr and T = 400–700 K. A key reaction sequence, revealed by our experiments, is the conversion of THF-yl peroxy to hydroperoxy-THF-yl radicals (QOOH), followed by a second O2 addition and subsequent decomposition to dihydrofuranyl hydroperoxide + HO2 or to γ-butyrolactone hydroperoxide + OH. The competition between these two pathways affects the degree of radical chain-branching and is likely of central importancemore » in modeling the autoignition of THF. We interpret our data with the aid of quantum chemical calculations of the THF-yl + O2 and QOOH + O2 potential energy surfaces. On the basis of our results, we propose a simplified THF oxidation mechanism below 700 K, which involves the competition among unimolecular decomposition and oxidation pathways of QOOH.« less

  14. Pressure-Dependent Competition among Reaction Pathways from First- and Second-O2 Additions in the Low-Temperature Oxidation of Tetrahydrofuran.

    PubMed

    Antonov, Ivan O; Zádor, Judit; Rotavera, Brandon; Papajak, Ewa; Osborn, David L; Taatjes, Craig A; Sheps, Leonid

    2016-08-25

    We report a combined experimental and quantum chemistry study of the initial reactions in low-temperature oxidation of tetrahydrofuran (THF). Using synchrotron-based time-resolved VUV photoionization mass spectrometry, we probe numerous transient intermediates and products at P = 10-2000 Torr and T = 400-700 K. A key reaction sequence, revealed by our experiments, is the conversion of THF-yl peroxy to hydroperoxy-THF-yl radicals (QOOH), followed by a second O2 addition and subsequent decomposition to dihydrofuranyl hydroperoxide + HO2 or to γ-butyrolactone hydroperoxide + OH. The competition between these two pathways affects the degree of radical chain-branching and is likely of central importance in modeling the autoignition of THF. We interpret our data with the aid of quantum chemical calculations of the THF-yl + O2 and QOOH + O2 potential energy surfaces. On the basis of our results, we propose a simplified THF oxidation mechanism below 700 K, which involves the competition among unimolecular decomposition and oxidation pathways of QOOH.

  15. Reciprocal influences of microbial community and hydrogeomorphology in sandy streambeds

    NASA Astrophysics Data System (ADS)

    Mendoza-Lera, C.; Federlein, L. L.; Frossard, A.; Gessner, M. O.; Knie, M.; Mutz, M.

    2015-12-01

    Stream hydrogeomorphology is a strong determinant of streambed microbial community activity, which in turn influences stream biogeochemistry. Whether this influence is unidirectional or whether microbial communities can also modulate biogeochemical processes by affecting hydrogeomorphology is an emerging question in research on sediment-water interfaces. Using experimental flumes simulating sandy streams, we tested whether such influences can occur through altered water exchange across the sediment-water interface. Results show that microbial communities in sandy streambeds can indeed affect hydrogeomorphology by producing gas bubbles. Specifically, gas bubbles accumulating in microbial biofilms can alter the water exchange by (i) reducing sediment pore space or (ii) provoking the detachment of the microbial biofilm detachment and thus altering streambed topography. Additionally, results indicate that water exchange is the major for the structure and activity of the microbial community. Our data also indicate that the potential of microbial communities to influence water exchange can be modulated by factors such as light intensity and discharge fluctuations. These biological-physical interactions and their effects on the influence of microbial communities on hydrogeomorphology is a source of spatiotemporal variability in water exchange across the sediment-water interface. Heterogeneity in water exchange is known to increase biogeochemical pathways and, thus, ecosystem functions. These results suggest that a holistic understanding of vertical connectivity in running waters requires consideration of biological-physical interactions at the water-sediment interface.

  16. Microbially induced and microbially catalysed precipitation: two different carbonate factories

    NASA Astrophysics Data System (ADS)

    Meister, Patrick

    2016-04-01

    The landmark paper by Schlager (2003) has revealed three types of benthic carbonate production referred to as "carbonate factories", operative at different locations at different times in Earth history. The tropical or T-factory comprises the classical platforms and fringing reefs and is dominated by carbonate precipitation by autotrophic calcifying metazoans ("biotically controlled" precipitation). The cool or C-factory is also biotically controlled but via heterotrophic, calcifying metazoans in cold and deep waters at the continental margins. A further type is the mud-mound or M-factory, where carbonate precipitation is supported by microorganisms but not controlled by a specific enzymatic pathway ("biotically induced" precipitation). How exactly the microbes influence precipitation is still poorly understood. Based on recent experimental and field studies, the microbial influence on modern mud mound and microbialite growth includes two fundamentally different processes: (1) Metabolic activity of microbes may increase the saturation state with respect to a particular mineral phase, thereby indirectly driving the precipitation of the mineral phase: microbially induced precipitation. (2) In a situation, where a solution is already supersaturated but precipitation of the mineral is inhibited by a kinetic barrier, microbes may act as a catalyser, i.e. they lower the kinetic barrier: microbially catalysed precipitation. Such a catalytic effect can occur e.g. via secreted polymeric substances or specific chemical groups on the cell surface, at which the minerals nucleate or which facilitate mechanistically the bonding of new ions to the mineral surface. Based on these latest developments in microbialite formation, I propose to extend the scheme of benthic carbonate factories of Schlager et al. (2003) by introducing an additional branch distinguishing microbially induced from microbially catalysed precipitation. Although both mechanisms could be operative in a M

  17. Additive effects of nicotine and high-fat diet on hepatocellular apoptosis in mice: Involvement of caspase 2 and inducible nitric oxide synthase-mediated intrinsic pathway signaling

    PubMed Central

    Ivey, R.; Desai, M.; Green, K.; Sinha-Hikim, I.; Friedman, T. C.; Sinha-Hikim, A. P.

    2015-01-01

    Smoking is a major risk factor for diabetes and cardiovascular disease and may contribute to non-alcoholic fatty liver disease (NAFLD). The health risk associated with smoking is exaggerated by obesity and is the leading causes of morbidity and mortality worldwide. We recently demonstrated that combined treatment with nicotine and a high-fat diet (HFD) triggers greater oxidative stress, activates hepatocellular apoptosis, and exacerbates HFD-induced hepatic steatosis. Given that hepatocellular apoptosis plays a pivotal role in the pathogenesis of NAFLD, using this model of exacerbated hepatic steatosis, we elucidated the signal transduction pathways involved in HFD plus nicotine-induced liver cell death. Adult C57BL6 male mice were fed a normal chow diet or HFD with 60% of calories derived from fat and received twice daily IP injections of 0.75 mg/kg BW of nicotine or saline for 10 weeks. High resolution light microscopy revealed markedly higher lipid accumulation in hepatocytes from mice received HFD plus nicotine, compared to mice on HFD alone. Addition of nicotine to HFD further resulted in an increase in the incidence of hepatocellular apoptosis and was associated with activation of caspase 2, induction of inducible nitric oxide synthase (iNOS), and perturbation of the BAX/BCL-2 ratio. Together, our data indicate the involvement of caspase 2 and iNOS –mediated apoptotic signaling in nicotine plus HFD-induced hepatocellular apoptosis. Targeting the caspase 2-mediated death pathway may have a protective role in development and progression of NAFLD. PMID:24830635

  18. The addition of ortho-hexagon nano spinel Co3O4 to improve the performance of activated carbon air cathode microbial fuel cell.

    PubMed

    Ge, Baochao; Li, Kexun; Fu, Zhou; Pu, Liangtao; Zhang, Xi

    2015-11-01

    Commercial Co3O4 and ortho-hexagon spinel nano-Co3O4 (OHSNC) were doped in the AC at a different percentage (5%, 10% and 15%) to enhance the performance of microbial fuel cell (MFC). The maximum power density of MFC with 10% OHSNC doped cathode was 1500±14 mW m(-2), which was 97.36% and 41.24% higher than that with the bare AC air cathode and commercial Co3O4 respectively. The electrocatalytic behavior for their better performance was discussed in detail with the help of various structural and electrochemical techniques. The OHSNC was characterized via X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM). The results showed that the improved performance owed to the enhancement of both kinetics activity and the number of electron transfer in the ORR, and the internal resistance was largely reduced. Therefore, OHSNC was proved to be an excellent cathodic catalyst in AC air cathode MFC.

  19. Nitrogen Cycling Potential of a Grassland Litter Microbial Community.

    PubMed

    Nelson, Michaeline B; Berlemont, Renaud; Martiny, Adam C; Martiny, Jennifer B H

    2015-10-01

    Because microorganisms have different abilities to utilize nitrogen (N) through various assimilatory and dissimilatory pathways, microbial composition and diversity likely influence N cycling in an ecosystem. Terrestrial plant litter decomposition is often limited by N availability; however, little is known about the microorganisms involved in litter N cycling. In this study, we used metagenomics to characterize the potential N utilization of microbial communities in grassland plant litter. The frequencies of sequences associated with eight N cycling pathways differed by several orders of magnitude. Within a pathway, the distributions of these sequences among bacterial orders differed greatly. Many orders within the Actinobacteria and Proteobacteria appeared to be N cycling generalists, carrying genes from most (five or six) of the pathways. In contrast, orders from the Bacteroidetes were more specialized and carried genes for fewer (two or three) pathways. We also investigated how the abundance and composition of microbial N cycling genes differed over time and in response to two global change manipulations (drought and N addition). For many pathways, the abundance and composition of N cycling taxa differed over time, apparently reflecting precipitation patterns. In contrast to temporal variability, simulated global change had minor effects on N cycling potential. Overall, this study provides a blueprint for the genetic potential of N cycle processes in plant litter and a baseline for comparisons to other ecosystems.

  20. Evaluation of microbial triglyceride oil purification requirements for the CelTherm process: an efficient biochemical pathway to renewable fuels and chemicals.

    PubMed

    Linnen, Michael; Seames, Wayne; Kubatova, Alena; Menon, Suresh; Alisala, Kashinatham; Hash, Sara

    2014-10-01

    CelTherm is a biochemical process to produce renewable fuels and chemicals from lignocellulosic biomass. The present study's objective was to determine the level of treatment/purity of the microbial triacylglyceride oil (TAG) necessary to facilitate fuel production. After a unique microbe aerobically synthesizes TAG from biomass-derived sugars, the microbes were harvested and dried then crude TAG was chemically extracted from the residual biomass. Some TAGs were further purified to hydrotreating process requirements. Both grades were then noncatalytically cracked into a petroleum-like intermediate characterized by gas chromatography. Experiments were repeated using refined soybean oil for comparison to previous studies. The products from crude microbial TAG cracking were then further refined into a jet fuel product. Fuel tests indicate that this jet fuel corresponds to specifications for JP-8 military turbine fuel. It was thus concluded that the crude microbial TAG is a suitable feedstock with no further purification required, demonstrating CelTherm's commercial potential.

  1. Microbial biodegradation of polyaromatic hydrocarbons.

    PubMed

    Peng, Ri-He; Xiong, Ai-Sheng; Xue, Yong; Fu, Xiao-Yan; Gao, Feng; Zhao, Wei; Tian, Yong-Sheng; Yao, Quan-Hong

    2008-11-01

    Polycyclic aromatic hydrocarbons (PAHs) are widespread in various ecosystems and are pollutants of great concern due to their potential toxicity, mutagenicity and carcinogenicity. Because of their hydrophobic nature, most PAHs bind to particulates in soil and sediments, rendering them less available for biological uptake. Microbial degradation represents the major mechanism responsible for the ecological recovery of PAH-contaminated sites. The goal of this review is to provide an outline of the current knowledge of microbial PAH catabolism. In the past decade, the genetic regulation of the pathway involved in naphthalene degradation by different gram-negative and gram-positive bacteria was studied in great detail. Based on both genomic and proteomic data, a deeper understanding of some high-molecular-weight PAH degradation pathways in bacteria was provided. The ability of nonligninolytic and ligninolytic fungi to transform or metabolize PAH pollutants has received considerable attention, and the biochemical principles underlying the degradation of PAHs were examined. In addition, this review summarizes the information known about the biochemical processes that determine the fate of the individual components of PAH mixtures in polluted ecosystems. A deeper understanding of the microorganism-mediated mechanisms of catalysis of PAHs will facilitate the development of new methods to enhance the bioremediation of PAH-contaminated sites.

  2. Effect of red mud addition on tetracycline and copper resistance genes and microbial community during the full scale swine manure composting.

    PubMed

    Wang, Rui; Zhang, Junya; Sui, Qianwen; Wan, Hefeng; Tong, Juan; Chen, Meixue; Wei, Yuansong; Wei, Dongbin

    2016-09-01

    Swine manure has been considered as the reservoir of antibiotic resistance genes (ARGs). Composting is one of the most suitable technologies for treating livestock manures, and red mud was proved to have a positive effect on nitrogen conservation during composting. This study investigated the abundance of eight tetracycline and three copper resistance genes, the bacterial community during the full scale swine manure composting with or without addition of red mud. The results showed that ARGs in swine manure could be effectively removed through composting (reduced by 2.4log copies/g TS), especially during the thermophilic phase (reduced by 1.5log copies/g TS), which the main contributor might be temperature. Additionally, evolution of bacterial community could also have a great influence on ARGs. Although addition of red mud could enhance nitrogen conservation, it obviously hindered removal of ARGs (reduced by 1.7log copies/g TS) and affected shaping of bacterial community during composting.

  3. Effectiveness of Phytogenic Feed Additive as Alternative to Bacitracin Methylene Disalicylate on Hematological Parameters, Intestinal Histomorphology and Microbial Population and Production Performance of Japanese Quails

    PubMed Central

    Manafi, M.; Hedayati, M.; Khalaji, S.

    2016-01-01

    This study was conducted to evaluate the effects of phytogenic additive and antibiotic growth promoter in laying Japanese quails. One hundred and sixty five quails were divided into three groups of 5 replicates and 11 quails (8 females and 3 males) in each replicate. Treatment 1 was fed control diet, treatment 2 was fed control diet supplemented with 0.05% bacitracin methylene disalicylate as antibiotic growth promoter and treatment 3 was fed control diet supplemented with 0.1% phytogenic feed additive (PFA) for two periods of 3 weeks each from 37 to 42 weeks of age. Results showed that egg production, eggshell strength, eggshell weight, villus height and villus height to crypt depth ratio were significantly (p≤0.05) increased and feed consumption, feed conversion ratio, albumen, Haugh unit, cholesterol, low-density lipoprotein, alanine transaminase, gamma glutamyltransferase, alkaline phosphatase, high-density lipoprotein, triglyceride, number of goblet cell, crypt depth and intestinal bacterial population of Coliforms, Salmonella and E. coli were significantly (p≤0.05) decreased in PFA fed group. It is concluded that addition of PFA containing phytomolecules and organic acids as main ingredients could significantly improve the production parameters and the general health of laying quails as an alternative to antibiotic growth promoters. PMID:27189636

  4. Microbial Aldicarb Transformation in Aquifer, Lake, and Salt Marsh Sediments

    PubMed Central

    Kazumi, J.; Capone, D. G.

    1995-01-01

    The microbial transformation of [N-methyl-(sup14)C]aldicarb, a carbamate pesticide, occurred in aquifer, lake, and salt marsh sediments. Microbial degradation of aldicarb took place within 21 days in aquifer sediments from sites previously exposed to aldicarb (Jamesport, Long Island, N.Y.) but did not occur in sediments which were not previously exposed (Connetquot State Park, Long Island, N.Y.). At the Jamesport sites, higher aldicarb transformation rates occurred in deep, anoxic sediments than in shallow, oxic sediments. There was a significant negative relationship (P < 0.05) between transformation rates and ambient dissolved O(inf2) levels. Aldicarb hydrolysis rates in Jamesport sediments were 10- to 1,000-fold lower than rates previously reported for soils. In addition, aldicarb degradation rates were not significantly correlated with measurements of bacterial activity and density previously determined in the same sediments. Substantially higher aldicarb degradation rates were found in anoxic lake and salt marsh than in aquifer sediments. Furthermore, we investigated the anaerobic microbial processes involved in aldicarb transformation by adding organic substrates (acetate, glucose), an alternative electron acceptor (nitrate), and microbial inhibitors (molybdate, 2-bromoethanesulfonic acid) to anoxic aquifer, lake, and salt marsh sediments. The results suggest that a methanogenic consortium was important in aldicarb transformation or in the use of aldicarb-derived products such as methylamine. In addition, microbial aldicarb transformation proceeded via different pathways under oxic and anoxic conditions. In the presence of O(inf2), aldicarb transformation was mainly via an oxidation pathway, while in the absence of O(inf2), degradation took place through a hydrolytic pathway (including the formation of methylamine precursors). Under anoxic conditions, therefore, aldicarb can be transformed by microbial consortia to yield products which can be of direct

  5. Rumen microbial and fermentation characteristics are affected differently by acarbose addition during two nutritional types of simulated severe subacute ruminal acidosis in vitro.

    PubMed

    Wang, Yue; Liu, Junhua; Yin, Yuyang; Zhu, Weiyun; Mao, Shengyong

    2017-04-06

    Little information is available on whether or not the effect of an alpha-glucosidase inhibitor on the prevention of ruminal acidosis is influenced by the type of diet during ruminant feeding. This study was conducted to explore the effect of acarbose addition on the prevention of severe subacute ruminal acidosis induced by either cracked wheat or beet pulp in vitro. Cracked wheat and beet pulp were fermented in vitro by rumen microorganisms obtained from three dairy cows. When cracked wheat was used as the substrate and fermented for 24 h, compared with the control, acarbose addition decreased the concentrations of acetate, propionate, butyrate, total volatile fatty acids, and lactate (P < 0.05), while linearly increasing the ratio of acetate to propionate, pH value and, the ammonia-nitrogen level (P < 0.05). Applying Illumina MiSeq sequencing of a fragment of the 16S rRNA gene revealed that the relative abundance of Firmicutes and Bacteroidetes as well as the ACE (abundance-based coverage estimator) value, Chao 1 value, and Shannon index increased significantly (P < 0.05), while there was a significant reduction (P < 0.05) in the relative abundance of Tenericutes as well as Proteobacteria after adding acarbose compared to the control. On the other hand, when beet pulp was used as the substrate, acarbose addition had no significant effects (P > 0.05) on the fermentation parameters and the Chao 1 value, the Shannon index, and the proportion of Firmicutes and Bacteroidetes. In general, these findings indicate that acarbose had more effects on ruminal fermentation when wheat was used as the substrate, whereas it exhibited little effect on ruminal fermentation when beet pulp was used as the substrate.

  6. Microbial Anti-Inflammatory Molecule (MAM) from Faecalibacterium prausnitzii Shows a Protective Effect on DNBS and DSS-Induced Colitis Model in Mice through Inhibition of NF-κB Pathway

    PubMed Central

    Breyner, Natalia M.; Michon, Cristophe; de Sousa, Cassiana S.; Vilas Boas, Priscilla B.; Chain, Florian; Azevedo, Vasco A.; Langella, Philippe; Chatel, Jean M.

    2017-01-01

    Faecalibacterium prausnitzii and its supernatant showed protective effects in different chemically-induced colitis models in mice. Recently, we described 7 peptides found in the F. prausnitzii supernatant, all belonging to a protein called Microbial Anti-inflammatory Molecule (MAM). These peptides were able to inhibit NF-κB pathway in vitro and showed anti-inflammatory properties in vivo in a DiNitroBenzene Sulfate (DNBS)-induced colitis model. In this current proof we tested MAM effect on NF-κB pathway in vivo, using a transgenic model of mice producing luciferase under the control of NF-κB promoter. Moreover, we tested this protein on Dextran Sodium Sulfate (DSS)-induced colitis in mice. To study the effect of MAM we orally administered to the mice a Lactococcus lactis strain carrying a plasmid containing the cDNA of MAM under the control of a eukaryotic promoter. L. lactis delivered plasmids in epithelial cells of the intestinal membrane allowing thus the production of MAM directly by host. We showed that MAM administration inhibits NF-κB pathway in vivo. We confirmed the anti-inflammatory properties of MAM in DNBS-induced colitis but also in DSS model. In DSS model MAM was able to inhibit Th1 and Th17 immune response while in DNBS model MAM reduced Th1, Th2, and Th17 immune response and increased TGFβ production. PMID:28203226

  7. Microbial Anti-Inflammatory Molecule (MAM) from Faecalibacterium prausnitzii Shows a Protective Effect on DNBS and DSS-Induced Colitis Model in Mice through Inhibition of NF-κB Pathway.

    PubMed

    Breyner, Natalia M; Michon, Cristophe; de Sousa, Cassiana S; Vilas Boas, Priscilla B; Chain, Florian; Azevedo, Vasco A; Langella, Philippe; Chatel, Jean M

    2017-01-01

    Faecalibacterium prausnitzii and its supernatant showed protective effects in different chemically-induced colitis models in mice. Recently, we described 7 peptides found in the F. prausnitzii supernatant, all belonging to a protein called Microbial Anti-inflammatory Molecule (MAM). These peptides were able to inhibit NF-κB pathway in vitro and showed anti-inflammatory properties in vivo in a DiNitroBenzene Sulfate (DNBS)-induced colitis model. In this current proof we tested MAM effect on NF-κB pathway in vivo, using a transgenic model of mice producing luciferase under the control of NF-κB promoter. Moreover, we tested this protein on Dextran Sodium Sulfate (DSS)-induced colitis in mice. To study the effect of MAM we orally administered to the mice a Lactococcus lactis strain carrying a plasmid containing the cDNA of MAM under the control of a eukaryotic promoter. L. lactis delivered plasmids in epithelial cells of the intestinal membrane allowing thus the production of MAM directly by host. We showed that MAM administration inhibits NF-κB pathway in vivo. We confirmed the anti-inflammatory properties of MAM in DNBS-induced colitis but also in DSS model. In DSS model MAM was able to inhibit Th1 and Th17 immune response while in DNBS model MAM reduced Th1, Th2, and Th17 immune response and increased TGFβ production.

  8. Addition of microbially-treated sugar beet residue and a native bacterium increases structural stability in heavy metal-contaminated Mediterranean soils.

    PubMed

    Carrasco, L; Caravaca, F; Azcón, R; Kohler, J; Roldán, A

    2009-10-15

    A mesocosm experiment was conducted to investigate the effect of the addition of Aspergillus niger-treated sugar beet waste, in the presence of rock phosphate, and inoculation with a native, metal-tolerant bacterium, Bacillus thuringiensis, on the stabilisation of soil aggregates of two mine tailings, with differing pH values, from a semiarid Mediterranean area and on the stimulation of growth of Piptatherum miliaceum. Bacterium combined with organic amendment enhanced structural stability (38% in acidic soil and 106% in neutral soil compared with their corresponding controls). Only the organic amendment increased pH, electrical conductivity, water-soluble C, water-soluble carbohydrates and plant growth, in both soils. While in neutral soil both organic amendment and bacterium increased dehydrogenase activity, only organic amendment had a significant effect in acidic soil. This study demonstrates that the use of P. miliaceum in combination with organic amendment and bacterium is a suitable tool for the stabilisation of the soil structure of degraded mine tailings, although its effectiveness is dependent on soil pH.

  9. Overview of differences between microbial feed additives and probiotics for food regarding regulation, growth promotion effects and health properties and consequences for extrapolation of farm animal results to humans.

    PubMed

    Bernardeau, M; Vernoux, J-P

    2013-04-01

    For many years, microbial adjuncts have been used to supplement the diets of farm animals and humans. They have evolved since the 1990s to become known as probiotics, i.e. functional food with health benefits. After the discovery of a possible link between manipulation of gut microflora in mice and obesity, a focus on the use of these beneficial microbes that act on gut microflora in animal farming was undertaken and compared with the use of probiotics for food. Beneficial microbes added to feed are classified at a regulatory level as zootechnical additives, in the category of gut flora stabilizers for healthy animals and are regulated up to strain level in Europe. Intended effects are improvement of performance characteristics, which are strain dependent and growth enhancement is not a prerequisite. In fact, increase of body weight is not commonly reported and its frequency is around 25% of the published data examined here. However, when a Body Weight Gain (BWG) was found in the literature, it was generally moderate (lower than or close to 10%) and this over a reduced period of their short industrial life. When it was higher than 10%, it could be explained as an indirect consequence of the alleviation of the weight losses linked to stressful intensive rearing conditions or health deficiency. However, regulations on feed do not consider the health effects because animals are supposed to be healthy, so there is no requirement for reporting healthy effects in the standard European dossier. The regulations governing the addition of beneficial microorganisms to food are less stringent than for feed and no dossier is required if a species has a Qualified Presumption of Safety status. The microbial strain marketed is not submitted to any regulation and its properties (including BWG) do not need to be studied. Only claims for functional or healthy properties are regulated and again growth effect is not included. However, recent studies on probiotic effects showed that BWG

  10. Estimating phosphorus availability for microbial growth in an emerging landscape

    USGS Publications Warehouse

    Schmidt, S.K.; Cleveland, C.C.; Nemergut, D.R.; Reed, S.C.; King, A.J.; Sowell, P.

    2011-01-01

    Estimating phosphorus (P) availability is difficult—particularly in infertile soils such as those exposed after glacial recession—because standard P extraction methods may not mimic biological acquisition pathways. We developed an approach, based on microbial CO2 production kinetics and conserved carbon:phosphorus (C:P) ratios, to estimate the amount of P available for microbial growth in soils and compared this method to traditional, operationally-defined indicators of P availability. Along a primary succession gradient in the High Andes of Perú, P additions stimulated the growth-related (logistic) kinetics of glutamate mineralization in soils that had been deglaciated from 0 to 5 years suggesting that microbial growth was limited by soil P availability. We then used a logistic model to estimate the amount of C incorporated into biomass in P-limited soils, allowing us to estimate total microbial P uptake based on a conservative C:P ratio of 28:1 (mass:mass). Using this approach, we estimated that there was < 1 μg/g of microbial-available P in recently de-glaciated soils in both years of this study. These estimates fell well below estimates of available soil P obtained using traditional extraction procedures. Our results give both theoretical and practical insights into the kinetics of C and P utilization in young soils, as well as show changes in microbial P availability during early stages of soil development.

  11. The effect of addition of olive oil and "Aceto balsamico di Modena" wine vinegar in conjunction with active atmosphere packaging on the microbial and sensory quality of "Lollo Verde" lettuce and rocket salad.

    PubMed

    Arvanitoyannis, Ioannis S; Bouletis, Achilleas D; Papa, Eirini A; Gkagtzis, Dimitrios C; Hadjichristodoulou, Christos; Papaloucas, C

    2011-12-01

    Fresh rocket "Eruca Sativa" and lettuce "Lollo Verde" leaves were stored with the addition of olive oil and wine vinegar "Aceto balsamico di Modena" under modified atmosphere packaging (MAP) (5% O(2)/10% CO(2)/85% N(2) for MAP A and 2% O(2)/5% CO(2)/93% N(2) for MAP B). The microbial (mesophilic, psychrotrophic bacteria and Enterobacteriacae), physical (color and firmness) and sensory parameters of samples were studied in relation to storage time (up to 10 days at 5 ± 1 °C). The effect of wine vinegar and the application of both MAP treatments reduced the growth of all bacteria populations (p < 0.05). Samples with olive oil stored under MAP A gave the best score for overall impression (3 and 2.1 for MAP A and B respectively at the 9th day of storage) while the addition of vinegar limited sensory shelf-life to 3 days (p < 0.05). Firmness was negatively affected by wine vinegar while samples with olive oil stored under MAP A maintained firmness close to normal. Color attributes were maintained better under both MAP treatments (p < 0.05).

  12. Effects of nitrate addition to a diet on fermentation and microbial populations in the rumen of goats, with special reference to Selenomonas ruminantium having the ability to reduce nitrate and nitrite.

    PubMed

    Asanuma, Narito; Yokoyama, Shota; Hino, Tsuneo

    2015-04-01

    This study investigated the effects of dietary nitrate addition on ruminal fermentation characteristics and microbial populations in goats. The involvement of Selenomonas ruminantium in nitrate and nitrite reduction in the rumen was also examined. As the result of nitrate feeding, the total concentration of ruminal volatile fatty acids decreased, whereas the acetate : propionate ratio and the concentrations of ammonia and lactate increased. Populations of methanogens, protozoa and fungi, as estimated by real-time PCR, were greatly decreased as a result of nitrate inclusion in the diet. There was modest or little impact of nitrate on the populations of prevailing species or genus of bacteria in the rumen, whereas Streptococcus bovis and S. ruminantium significantly increased. Both the activities of nitrate reductase (NaR) and nitrite reductase (NiR) per total mass of ruminal bacteria were increased by nitrate feeding. Quantification of the genes encoding NaR and NiR by real-time PCR with primers specific for S. ruminantium showed that these genes were increased by feeding nitrate, suggesting that the growth of nitrate- and nitrite-reducing S. ruminantium is stimulated by nitrate addition. Thus, S. ruminantium is likely to play a major role in nitrate and nitrite reduction in the rumen.

  13. Microbial safety in space

    NASA Astrophysics Data System (ADS)

    Krooneman, Janneke; Harmsen, Hermie; Landini, Paolo; Zinn, Manfred; Munaut, Françoise; van der Meer, Walter; Beimfohr, Claudia; Reichert, Bas; Preuß, Andrea

    2005-10-01

    Microbial hygiene is important in our daily lives; preventing and combating microbial infections is increasingly important in society. In hospitals, strict monitoring and control is exercised for people and infrastructure alike. In modern buildings, air-conditioning system are screened for harmful bacteria such as Legionella. More recently, concerns about SARS (virus) and anthrax (bacteria) have added pressure on the scientific community to come up with adequate monitoring and control techniques to assure microbial hygiene. Additionally, the use of biotechnological recycling and cleaning processes for sustainability brings the need for reliable monitoring tools and preventive or riks-reducing strategies. In the manned space environment, similar problems need to be solved and efforts have already been made to study the behaviour of micro-organisms and microbial hygiene onboard space stations.

  14. Biofuel alternatives to ethanol: pumping the microbial well

    SciTech Connect

    Fortman, J.L.; Chhabra, Swapnil; Mukhopadhyay, Aindrila; Chou, Howard; Lee, Taek Soon; Steen, Eric; Keasling, Jay D.

    2009-08-19

    Engineered microorganisms are currently used for the production of food products, pharmaceuticals, ethanol fuel and more. Even so, the enormous potential of this technology has yet to be fully exploited. The need for sustainable sources of transportation fuels has generated a tremendous interest in technologies that enable biofuel production. Decades of work have produced a considerable knowledge-base for the physiology and pathway engineering of microbes, making microbial engineering an ideal strategy for producing biofuel. Although ethanol currently dominates the biofuel market, some of its inherent physical properties make it a less than ideal product. To highlight additional options, we review advances in microbial engineering for the production of other potential fuel molecules, using a variety of biosynthetic pathways.

  15. Biofuel alternatives to ethanol: pumping the microbial well

    SciTech Connect

    Fortman, J. L.; Chhabra, Swapnil; Mukhopadhyay, Aindrila; Chou, Howard; Lee, Taek Soon; Steen, Eric; Keasling, Jay D.

    2009-12-02

    Engineered microorganisms are currently used for the production of food products, pharmaceuticals, ethanol fuel and more. Even so, the enormous potential of this technology has yet to be fully exploited. The need for sustainable sources of transportation fuels has gener-ated a tremendous interest in technologies that enable biofuel production. Decades of work have produced a considerable knowledge-base for the physiology and pathway engineering of microbes, making microbial engineering an ideal strategy for producing biofuel. Although ethanol currently dominates the biofuel mar-ket, some of its inherent physical properties make it a less than ideal product. To highlight additional options, we review advances in microbial engineering for the production of other potential fuel molecules, using a variety of biosynthetic pathways.

  16. Flat laminated microbial mat communities

    NASA Astrophysics Data System (ADS)

    Franks, Jonathan; Stolz, John F.

    2009-10-01

    Flat laminated microbial mats are complex microbial ecosystems that inhabit a wide range of environments (e.g., caves, iron springs, thermal springs and pools, salt marshes, hypersaline ponds and lagoons, methane and petroleum seeps, sea mounts, deep sea vents, arctic dry valleys). Their community structure is defined by physical (e.g., light quantity and quality, temperature, density and pressure) and chemical (e.g., oxygen, oxidation/reduction potential, salinity, pH, available electron acceptors and donors, chemical species) parameters as well as species interactions. The main primary producers may be photoautotrophs (e.g., cyanobacteria, purple phototrophs, green phototrophs) or chemolithoautophs (e.g., colorless sulfur oxidizing bacteria). Anaerobic phototrophy may predominate in organic rich environments that support high rates of respiration. These communities are dynamic systems exhibiting both spatial and temporal heterogeneity. They are characterized by steep gradients with microenvironments on the submillimeter scale. Diel oscillations in the physical-chemical profile (e.g., oxygen, hydrogen sulfide, pH) and species distribution are typical for phototroph-dominated communities. Flat laminated microbial mats are often sites of robust biogeochemical cycling. In addition to well-established modes of metabolism for phototrophy (oxygenic and non-oxygenic), respiration (both aerobic and anaerobic), and fermentation, novel energetic pathways have been discovered (e.g., nitrate reduction couple to the oxidation of ammonia, sulfur, or arsenite). The application of culture-independent techniques (e.g., 16S rRNA clonal libraries, metagenomics), continue to expand our understanding of species composition and metabolic functions of these complex ecosystems.

  17. Process Recovery after CaO Addition Due to Granule Formation in a CSTR Co-Digester-A Tool to Influence the Composition of the Microbial Community and Stabilize the Process?

    PubMed

    Liebrich, Marietta; Kleyböcker, Anne; Kasina, Monika; Miethling-Graff, Rona; Kassahun, Andrea; Würdemann, Hilke

    2016-03-17

    The composition, structure and function of granules formed during process recovery with calcium oxide in a laboratory-scale fermenter fed with sewage sludge and rapeseed oil were studied. In the course of over-acidification and successful process recovery, only minor changes were observed in the bacterial community of the digestate, while granules appeared during recovery. Fluorescence microscopic analysis of the granules showed a close spatial relationship between calcium and oil and/or long chain fatty acids. This finding further substantiated the hypothesis that calcium precipitated with carbon of organic origin and reduced the negative effects of overloading with oil. Furthermore, the enrichment of phosphate minerals in the granules was shown, and molecular biological analyses detected polyphosphate-accumulating organisms as well as methanogenic archaea in the core. Organisms related to Methanoculleus receptaculi were detected in the inner zones of a granule, whereas they were present in the digestate only after process recovery. This finding indicated more favorable microhabitats inside the granules that supported process recovery. Thus, the granule formation triggered by calcium oxide addition served as a tool to influence the composition of the microbial community and to stabilize the process after overloading with oil.

  18. Process Recovery after CaO Addition Due to Granule Formation in a CSTR Co-Digester—A Tool to Influence the Composition of the Microbial Community and Stabilize the Process?

    PubMed Central

    Liebrich, Marietta; Kleyböcker, Anne; Kasina, Monika; Miethling-Graff, Rona; Kassahun, Andrea; Würdemann, Hilke

    2016-01-01

    The composition, structure and function of granules formed during process recovery with calcium oxide in a laboratory-scale fermenter fed with sewage sludge and rapeseed oil were studied. In the course of over-acidification and successful process recovery, only minor changes were observed in the bacterial community of the digestate, while granules appeared during recovery. Fluorescence microscopic analysis of the granules showed a close spatial relationship between calcium and oil and/or long chain fatty acids. This finding further substantiated the hypothesis that calcium precipitated with carbon of organic origin and reduced the negative effects of overloading with oil. Furthermore, the enrichment of phosphate minerals in the granules was shown, and molecular biological analyses detected polyphosphate-accumulating organisms as well as methanogenic archaea in the core. Organisms related to Methanoculleus receptaculi were detected in the inner zones of a granule, whereas they were present in the digestate only after process recovery. This finding indicated more favorable microhabitats inside the granules that supported process recovery. Thus, the granule formation triggered by calcium oxide addition served as a tool to influence the composition of the microbial community and to stabilize the process after overloading with oil. PMID:27681911

  19. Targeting glutamine metabolism and the focal adhesion kinase additively inhibits the mammalian target of the rapamycin pathway in spheroid cancer stem-like properties of ovarian clear cell carcinoma in vitro.

    PubMed

    Sato, Masakazu; Kawana, Kei; Adachi, Katsuyuki; Fujimoto, Asaha; Yoshida, Mitsuyo; Nakamura, Hiroe; Nishida, Haruka; Inoue, Tomoko; Taguchi, Ayumi; Ogishima, Juri; Eguchi, Satoko; Yamashita, Aki; Tomio, Kensuke; Wada-Hiraike, Osamu; Oda, Katsutoshi; Nagamatsu, Takeshi; Osuga, Yutaka; Fujii, Tomoyuki

    2017-04-01

    Ovarian cancer is one of the leading causes of death in the world, which is linked to its resistance to chemotherapy. Strategies to overcome chemoresistance have been keenly investigated. Culturing cancer cells in suspension, which results in formation of spheroids, is a more accurate reflection of clinical cancer behavior in vitro than conventional adherent cultures. By performing RNA-seq analysis, we found that the focal adhesion pathway was essential in spheroids. The phosphorylation of focal adhesion kinase (FAK) was increased in spheroids compared to adherent cells, and inhibition of FAK in spheroids resulted in inhibition of the downstream mammalian target of the rapamycin (mTOR) pathway in ovarian clear cell carcinomas. This result also suggested that only using a FAK inhibitor might have limitations because the phosphorylation level of FAK could not be reduced to the level in adherent cells, and it appeared that some combination therapies might be necessary. We previously reported that glutamine and glutamate concentrations were higher in spheroids than adherent cells, and we investigated a synergistic effect targeting glutamine metabolism with FAK inhibition on the mTOR pathway. The combination of AOA, a pan-transaminase inhibitor, and PF 573228, a FAK inhibitor, additively inhibited the mTOR pathway in spheroids from ovarian clear cell carcinomas. Our in vitro study proposed a rationale for the positive and negative effects of using FAK inhibitors in ovarian clear cell carcinomas and suggested that targeting glutamine metabolism could overcome the limitation of FAK inhibitors by additively inhibiting the mTOR pathway.

  20. Rhodium/chiral diene-catalyzed asymmetric 1,4-addition of arylboronic acids to chromones: a highly enantioselective pathway for accessing chiral flavanones.

    PubMed

    He, Qijie; So, Chau Ming; Bian, Zhaoxiang; Hayashi, Tamio; Wang, Jun

    2015-03-01

    Chromone has been noted to be one of the most challenging substrates in the asymmetric 1,4-addition of α,β-unsaturated carbonyl compounds. By employing the rhodium complex associated with a chiral diene ligand, (R,R)-Ph-bod*, the 1,4-addition of a variety of arylboronic acids was realized to give high yields of the corresponding flavanones with excellent enantioselectivities (≥97% ee, 99% ee for most substrates). Ring-opening side products, which would lead to erosion of product enantioselectivity, were not observed under the stated reaction conditions.

  1. Biotechnological Aspects of Microbial Extracellular Electron Transfer

    PubMed Central

    Kato, Souichiro

    2015-01-01

    Extracellular electron transfer (EET) is a type of microbial respiration that enables electron transfer between microbial cells and extracellular solid materials, including naturally-occurring metal compounds and artificial electrodes. Microorganisms harboring EET abilities have received considerable attention for their various biotechnological applications, in addition to their contribution to global energy and material cycles. In this review, current knowledge on microbial EET and its application to diverse biotechnologies, including the bioremediation of toxic metals, recovery of useful metals, biocorrosion, and microbial electrochemical systems (microbial fuel cells and microbial electrosynthesis), were introduced. Two potential biotechnologies based on microbial EET, namely the electrochemical control of microbial metabolism and electrochemical stimulation of microbial symbiotic reactions (electric syntrophy), were also discussed. PMID:26004795

  2. Microbial co-occurrence patterns in deep Precambrian bedrock fracture fluids

    NASA Astrophysics Data System (ADS)

    Purkamo, Lotta; Bomberg, Malin; Kietäväinen, Riikka; Salavirta, Heikki; Nyyssönen, Mari; Nuppunen-Puputti, Maija; Ahonen, Lasse; Kukkonen, Ilmo; Itävaara, Merja

    2016-05-01

    The bacterial and archaeal community composition and the possible carbon assimilation processes and energy sources of microbial communities in oligotrophic, deep, crystalline bedrock fractures is yet to be resolved. In this study, intrinsic microbial communities from groundwater of six fracture zones from 180 to 2300 m depths in Outokumpu bedrock were characterized using high-throughput amplicon sequencing and metagenomic prediction. Comamonadaceae-, Anaerobrancaceae- and Pseudomonadaceae-related operational taxonomic units (OTUs) form the core community in deep crystalline bedrock fractures in Outokumpu. Archaeal communities were mainly composed of Methanobacteriaceae-affiliating OTUs. The predicted bacterial metagenomes showed that pathways involved in fatty acid and amino sugar metabolism were common. In addition, relative abundance of genes coding the enzymes of autotrophic carbon fixation pathways in predicted metagenomes was low. This indicates that heterotrophic carbon assimilation is more important for microbial communities of the fracture zones. Network analysis based on co-occurrence of OTUs revealed possible "keystone" genera of the microbial communities belonging to Burkholderiales and Clostridiales. Bacterial communities in fractures resemble those found in oligotrophic, hydrogen-enriched environments. Serpentinization reactions of ophiolitic rocks in Outokumpu assemblage may provide a source of energy and organic carbon compounds for the microbial communities in the fractures. Sulfate reducers and methanogens form a minority of the total microbial communities, but OTUs forming these minor groups are similar to those found in other deep Precambrian terrestrial bedrock environments.

  3. Microbial Community Functional Potential and Composition Are Shaped by Hydrologic Connectivity in Riverine Floodplain Soils.

    PubMed

    Argiroff, William A; Zak, Donald R; Lanser, Christine M; Wiley, Michael J

    2017-04-01

    Riverine floodplains are ecologically and economically valuable ecosystems that are heavily threatened by anthropogenic stressors. Microbial communities in floodplain soils mediate critical biogeochemical processes, yet we understand little about the relationship between these communities and variation in hydrologic connectivity related to land management or topography. Here, we present metagenomic evidence that differences among microbial communities in three floodplain soils correspond to a long-term gradient of hydrologic connectivity. Specifically, all strictly anaerobic taxa and metabolic pathways were positively associated with increased hydrologic connectivity and flooding frequency. In contrast, most aerobic taxa and all strictly aerobic pathways were negatively related to hydrologic connectivity and flooding frequency. Furthermore, the genetic potential to metabolize organic compounds tended to decrease as hydrologic connectivity increased, which may reflect either the observed concomitant decline of soil organic matter or the parallel increase in both anaerobic taxa and pathways. A decline in soil N, accompanied by an increased genetic potential for oligotrophic N acquisition subsystems, suggests that soil nutrients also shape microbial communities in these soils. We conclude that differences among floodplain soil microbial communities can be conceptualized along a gradient of hydrologic connectivity. Additionally, we show that these differences are likely due to connectivity-related variation in flooding frequency, soil organic matter, and soil N. Our findings are particularly relevant to the restoration and management of microbially mediated biogeochemical processes in riverine floodplain wetlands.

  4. Microbial volatile emissions as insect semiochemicals

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We provide a synthesis of the literature describing biochemical interactions between microorganisms and arthropods by way of microbial volatile organic compound (MVOC) production. We explored important metabolic pathways involved in MVOC production and evaluated the functionality, generality, and e...

  5. C and Cl isotope fractionation of 1,2-dichloroethane displays unique δ¹³C/δ³⁷Cl patterns for pathway identification and reveals surprising C-Cl bond involvement in microbial oxidation.

    PubMed

    Palau, Jordi; Cretnik, Stefan; Shouakar-Stash, Orfan; Höche, Martina; Elsner, Martin; Hunkeler, Daniel

    2014-08-19

    This study investigates dual element isotope fractionation during aerobic biodegradation of 1,2-dichloroethane (1,2-DCA) via oxidative cleavage of a C-H bond (Pseudomonas sp. strain DCA1) versus C-Cl bond cleavage by S(N)2 reaction (Xanthobacter autotrophicus GJ10 and Ancylobacter aquaticus AD20). Compound-specific chlorine isotope analysis of 1,2-DCA was performed for the first time, and isotope fractionation (ε(bulk)(Cl)) was determined by measurements of the same samples in three different laboratories using two gas chromatography-isotope ratio mass spectrometry systems and one gas chromatography-quadrupole mass spectrometry system. Strongly pathway-dependent slopes (Δδ13C/Δδ37Cl), 0.78 ± 0.03 (oxidation) and 7.7 ± 0.2 (S(N)2), delineate the potential of the dual isotope approach to identify 1,2-DCA degradation pathways in the field. In contrast to different ε(bulk)(C) values [-3.5 ± 0.1‰ (oxidation) and -31.9 ± 0.7 and -32.0 ± 0.9‰ (S(N)2)], the obtained ε(bulk)(Cl) values were surprisingly similar for the two pathways: -3.8 ± 0.2‰ (oxidation) and -4.2 ± 0.1 and -4.4 ± 0.2‰ (S(N)2). Apparent kinetic isotope effects (AKIEs) of 1.0070 ± 0.0002 (13C-AKIE, oxidation), 1.068 ± 0.001 (13C-AKIE, S(N)2), and 1.0087 ± 0.0002 (37Cl-AKIE, S(N)2) fell within expected ranges. In contrast, an unexpectedly large secondary 37Cl-AKIE of 1.0038 ± 0.0002 reveals a hitherto unrecognized involvement of C-Cl bonds in microbial C-H bond oxidation. Our two-dimensional isotope fractionation patterns allow for the first time reliable 1,2-DCA degradation pathway identification in the field, which unlocks the full potential of isotope applications for this important groundwater contaminant.

  6. Actin-Based Motility of Intracellular Microbial Pathogens

    PubMed Central

    Goldberg, Marcia B.

    2001-01-01

    A diverse group of intracellular microorganisms, including Listeria monocytogenes, Shigella spp., Rickettsia spp., and vaccinia virus, utilize actin-based motility to move within and spread between mammalian host cells. These organisms have in common a pathogenic life cycle that involves a stage within the cytoplasm of mammalian host cells. Within the cytoplasm of host cells, these organisms activate components of the cellular actin assembly machinery to induce the formation of actin tails on the microbial surface. The assembly of these actin tails provides force that propels the organisms through the cell cytoplasm to the cell periphery or into adjacent cells. Each of these organisms utilizes preexisting mammalian pathways of actin rearrangement to induce its own actin-based motility. Particularly remarkable is that while all of these microbes use the same or overlapping pathways, each intercepts the pathway at a different step. In addition, the microbial molecules involved are each distinctly different from the others. Taken together, these observations suggest that each of these microbes separately and convergently evolved a mechanism to utilize the cellular actin assembly machinery. The current understanding of the molecular mechanisms of microbial actin-based motility is the subject of this review. PMID:11729265

  7. The inability of phosphatidylinositol 3-kinase activation to stimulate GLUT4 translocation indicates additional signaling pathways are required for insulin-stimulated glucose uptake.

    PubMed

    Isakoff, S J; Taha, C; Rose, E; Marcusohn, J; Klip, A; Skolnik, E Y

    1995-10-24

    Recent experimental evidence has focused attention to the role of two molecules, insulin receptor substrate 1 (IRS-1) and phosphatidylinositol 3-kinase (PI3-kinase), in linking the insulin receptor to glucose uptake; IRS-1 knockout mice are insulin resistant, and pharmacological inhibitors of PI3-kinase block insulin-stimulated glucose uptake. To investigate the role of PI3-kinase and IRS-1 in insulin-stimulated glucose uptake we examined whether stimulation of insulin-sensitive cells with platelet-derived growth factor (PDGF) or with interleukin 4 (IL-4) stimulates glucose uptake; the activated PDGF receptor (PDGFR) directly binds and activates PI3-kinase, whereas the IL-4 receptor (IL-4R) activates PI3-kinase via IRS-1 or the IRS-1-related molecule 4PS. We found that stimulation of 3T3-L1 adipocytes with PDGF resulted in tyrosine phosphorylation of the PDGFR and activation of PI3-kinase in these cells. To examine whether IL-4 stimulates glucose uptake, L6 myoblasts were engineered to overexpress GLUT4 as well as both chains of the IL-4R (L6/IL-4R/GLUT4); when these L6/IL-4R/GLUT4 myoblasts were stimulated with IL-4, IRS-1 became tyrosine phosphorylated and associated with PI3-kinase. Although PDGF and IL-4 can activate PI3-kinase in the respective cell lines, they do not possess insulin's ability to stimulate glucose uptake and GLUT4 translocation to the plasma membrane. These findings indicate that activation of PI3-kinase is not sufficient to stimulate GLUT4 translocation to the plasma membrane. We postulate that activation of a second signaling pathway by insulin, distinct from PI3-kinase, is necessary for the stimulation of glucose uptake in insulin-sensitive cells.

  8. Microbial Weathering of Olivine

    NASA Technical Reports Server (NTRS)

    McKay, D. S.; Longazo, T. G.; Wentworth, S. J.; Southam, G.

    2002-01-01

    Controlled microbial weathering of olivine experiments displays a unique style of nanoetching caused by biofilm attachment to mineral surfaces. We are investigating whether the morphology of biotic nanoetching can be used as a biosignature. Additional information is contained in the original extended abstract.

  9. Investigation of the O+allyl addition/elimination reaction pathways from the OCH{sub 2}CHCH{sub 2} radical intermediate

    SciTech Connect

    FitzPatrick, Benjamin L.; Lau, K.-C.; Butler, Laurie J.; Lee, S.-H.; Lin, Jim Jr-Min

    2008-08-28

    These experiments study the preparation of and product channels resulting from OCH{sub 2}CHCH{sub 2}, a key radical intermediate in the O+allyl bimolecular reaction. The data include velocity map imaging and molecular beam scattering results to probe the photolytic generation of the radical intermediate and the subsequent pathways by which the radicals access the energetically allowed product channels of the bimolecular reaction. The photodissociation of epichlorohydrin at 193.3 nm produces chlorine atoms and c-OCH{sub 2}CHCH{sub 2} radicals; these undergo a facile ring opening to the OCH{sub 2}CHCH{sub 2} radical intermediate. State-selective resonance-enhanced multiphoton ionization (REMPI) detection resolves the velocity distributions of ground and spin-orbit excited state chlorine independently, allowing for a more accurate determination of the internal energy distribution of the nascent radicals. We obtain good agreement detecting the velocity distributions of the Cl atoms with REMPI, vacuum ultraviolet (VUV) photoionization at 13.8 eV, and electron bombardment ionization; all show a bimodal distribution of recoil kinetic energies. The dominant high recoil kinetic energy feature peaks near 33 kcal/mol. To elucidate the product channels resulting from the OCH{sub 2}CHCH{sub 2} radical intermediate, the crossed laser-molecular beam experiment uses VUV photoionization and detects the velocity distribution of the possible products. The data identify the three dominant product channels as C{sub 3}H{sub 4}O (acrolein)+H, C{sub 2}H{sub 4}+HCO (formyl radical), and H{sub 2}CO (formaldehyde)+C{sub 2}H{sub 3}. A small signal from C{sub 2}H{sub 2}O (ketene) product is also detected. The measured velocity distributions and relative signal intensities at m/e=27, 28, and 29 at two photoionization energies show that the most exothermic product channel, C{sub 2}H{sub 5}+CO, does not contribute significantly to the product branching. The higher internal energy onset of the

  10. Microbial-Catalyzed Reductive Dechlorination of Polychlorinated Biphenyls in Hudson and Grasse River Sediment Microcosms: Determination of Dechlorination Preferences and Identification of Rare Ortho Removal Pathways.

    PubMed

    Xu, Yan; Gregory, Kelvin B; VanBriesen, Jeanne M

    2016-12-06

    Biodegradation of polychlorinated biphenyls (PCBs) is an important transformation and detoxification route in the environment. To better understand the influence of PCB congener compositions on dechlorination, sediments from two rivers, Hudson and Grasse, and two PCB mixtures (PCB 5/12, 64/71, 105/114, and 149/153/170 in Mixture 1 and PCB 5/12, 64/71, 82/97/99, and 144/170 in Mixture 2) were used for this microcosm study. The Grasse River sediment microcosms exhibited more extensive dechlorination than the Hudson River sediment microcosms. The extent of dechlorination was predominantly controlled by sediment itself, not by the PCB compositions. Rare ortho dechlorination, targeting mono-ortho PCB congeners was observed in Grasse sediment, indicating a potential for full dechlorination of some PCBs in this sediment. The identified ortho dechlorination pathways were PCB 28 (24-4-CB) to PCB 15 (4-4-CB) and PCB 25 (24-3-CB) to PCB 13(3-4-CB). The relative abundances of Dehalococcoides were much higher in both sediments spiked with PCBs. An apparent increase of Dehalococcoides 16S rRNA genes coincided with the commencement of dechlorination. The dechlorination preferences were identified using a modified data analysis approach focusing on chlorine neighboring conditions. In both sediments, the overall dechlorination preferred meta > para > ortho. Specially, ortho-/double-flanked meta-chlorines were primarily targeted followed by single-/double-flanked para-chlorines.

  11. Microbial Load Monitor

    NASA Technical Reports Server (NTRS)

    Gibson, S. F.; Royer, E. R.

    1979-01-01

    The Microbial Load Monitor (MLM) is an automated and computerized system for detection and identification of microorganisms. Additionally, the system is designed to enumerate and provide antimicrobic susceptibility profiles for medically significant bacteria. The system is designed to accomplish these tasks in a time of 13 hours or less versus the traditional time of 24 hours for negatives and 72 hours or more for positives usually required for standard microbiological analysis. The MLM concept differs from other methods of microbial detection in that the system is designed to accept raw untreated clinical samples and to selectively identify each group or species that may be present in a polymicrobic sample.

  12. Multicomponent reactions of phosphines, enynedioates and benzylidene malononitriles generated highly substituted cyclopentenes through an unexpected phosphine α-addition-δ-evolvement of an anion pathway.

    PubMed

    Chuang, Shih-Ching; Sung, Shih-Ping; Deng, Jie-Cheng; Chiou, Mong-Feng; Hsu, Day-Shin

    2016-02-21

    Multicomponent reactions of phosphines, enynedioates and benzylidene malononitriles provide highly substituted syn-selective cyclopentenes appending the phosphorus ylide moiety in good yield with a diastereoselectivity of up to 100% through resonance-derived 1,5-dipolar species as the key intermediates, via the nucleophilic α(δ')-attack of phosphines toward enynedioates followed by addition to benzylidene malononitriles and 5-exo-dig cyclization. Through computational analyses, the overall reactions for the formation of syn- and anti-diastereomers are both exothermic with 65.6 and 66.3 kcal mol(-1) at the B3LYP-D3/6-31G(d) level of theory and were found to be kinetically controlled, which favours the formation of syn-diastereomers.

  13. Microbial Baeyer-Villiger oxidation of 5α-steroids using Beauveria bassiana. A stereochemical requirement for the 11α-hydroxylation and the lactonization pathway.

    PubMed

    Świzdor, Alina; Panek, Anna; Milecka-Tronina, Natalia

    2014-04-01

    Beauveria bassiana KCH 1065, as was recently demonstrated, is unusual amongst fungal biocatalysts in that it converts C19 3-oxo-4-ene and 3β-hydroxy-5-ene as well as 3β-hydroxy-5α-saturated steroids to 11α-hydroxy ring-D lactones. The Baeyer-Villiger monooxygenase (BVMO) of this strain is distinguished from other enzymes catalyzing BVO of steroidal ketones by the fact that it oxidizes solely substrates with 11α-hydroxyl group. The current study using a series of 5α-saturated steroids (androsterone, 3α-androstanediol and androstanedione) has highlighted that a small change of the steroid structure can result in significant differences of the metabolic fate. It was found that the 3α-stereochemistry of hydroxyl group restricted "normal" binding orientation of the substrate within 11α-hydroxylase and, as a result, androsterone and 3α-androstanediol were converted into a mixture of 7β-, 11α- and 7α-hydroxy derivatives. Hydroxylation of androstanedione occurred only at the 11α-position, indicating that the 3-oxo group limits the alternative binding orientation of the substrate within the hydroxylase. Only androstanedione and 3α-androstanediol were metabolized to hydroxylactones. The study uniquely demonstrated preference for oxidation of equatorial (11α-, 7β-) hydroxyketones by BVMO from B. bassiana. The time course experiments suggested that the activity of 17β-HSD is a factor determining the amount of produced ring-D lactones. The obtained 11α-hydroxylactones underwent further transformations (oxy-red reactions) at C-3. During conversion of androstanedione, a minor dehydrogenation pathway was observed with generation of 11α,17β-dihydroxy-5α-androst-1-en-3-one. The introduction of C1C2 double bond has been recorded in B. bassiana for the first time.

  14. Additive effect of heat on the UVB-induced tyrosinase activation and melanogenesis via ERK/p38/MITF pathway in human epidermal melanocytes.

    PubMed

    Gu, Wei-Jie; Ma, Hui-Jun; Zhao, Guang; Yuan, Xiao-Ying; Zhang, Ping; Liu, Wen; Ma, Li-Juan; Lei, Xiao-Bing

    2014-08-01

    Heat is known as an environmental factor that causes significant skin pigmentation, but its effects on melanogenesis have been poorly studied. It has been shown that mitogen-activated protein kinase (MAPK) is involved in ultraviolet B (UVB) and stress-induced melanogenesis in melanocytes. In this study, we investigated the effects of heat and UVB, on melanocyte melanogenesis, differentiation, and MAPK phosphorylation. The results showed that heat (1 h at 40 °C for 5 days) increased cell dendrites, enlarged cell bodies, and induced extracellular signal-regulated kinases (ERK)/p38/MITF activation but did not influence melanogenesis of human epidermal melanocytes from skin phototype III. UVB irradiation (20 mJ/cm(2) for 5 days) induced melanogenesis and c-jun N-terminal kinases (JNK)/p38/MITF/tyrosinase activation in melanocytes from skin phototype III. UVB combined with heat resulted in much more significant tyrosinase activation and melanogenesis as compared with UVB alone in melanocytes from skin phototype III. Furthermore, heat treatment and UVB irradiation induced JNK, ERK, and p38 activation but not melanogenic and morphological changes in melanocytes from skin phototype I. These findings suggested that heat promoted melanocyte differentiation, probably via heat-induced ERK/p38/MITF/activation. Furthermore, heat had an additive effect on the UVB-induced tyrosinase activation and melanogenesis. These results provide a new clue for dermatologists for the treatment of hypopigmented skin disease with heat combined with UVB irradiation.

  15. Microbial phytase addition resulted in a greater increase in phosphorus digestibility in dry-fed compared with liquid-fed non-heat-treated wheat-barley-maize diets for pigs.

    PubMed

    Blaabjerg, K; Thomassen, A-M; Poulsen, H D

    2015-02-01

    The objective was to evaluate the effect of microbial phytase (1250 FTU/kg diet with 88% dry matter (DM)) on apparent total tract digestibility (ATTD) of phosphorus (P) in pigs fed a dry or soaked diet. Twenty-four pigs (65±3 kg) from six litters were used. Pigs were housed in metabolism crates and fed one of four diets for 12 days; 5 days for adaptation and 7 days for total, but separate collection of feces and urine. The basal diet was composed of wheat, barley, maize, soybean meal and no mineral phosphate. Dietary treatments were: basal dry-fed diet (BDD), BDD with microbial phytase (BDD+phy), BDD soaked for 24 h at 20°C before feeding (BDS) and BDS with microbial phytase (BDS+phy). Supplementation of microbial phytase increased ATTD of DM and crude protein (N×6.25) by 2 and 3 percentage units (P<0.0001; P<0.001), respectively. The ATTD of P was affected by the interaction between microbial phytase and soaking (P=0.02). This was due to a greater increase in ATTD of P by soaking of the diet containing solely plant phytase compared with the diet supplemented with microbial phytase: 35%, 65%, 44% and 68% for BDD, BDD+phy, BSD and BSD+phy, respectively. As such, supplementation of microbial phytase increased ATTD of P in the dry-fed diet, but not in the soaked diet. The higher ATTD of P for BDS compared with BDD resulted from the degradation of 54% of the phytate in BDS by wheat and barley phytases during soaking. On the other hand, soaking of BDS+phy did not increase ATTD of P significantly compared with BDD+phy despite that 76% of the phytate in BDS+phy was degraded before feeding. In conclusion, soaking of BDS containing solely plant phytase provided a great potential for increasing ATTD of P. However, this potential was not present when microbial phytase (1250 FTU/kg diet) was supplemented, most likely because soaking of BDS+phy for 24 h at 20°C did not result in a complete degradation of phytate before feeding.

  16. Microbial metabolism in soil at low temperatures: Mechanisms unraveled by position-specific 13C labeling

    NASA Astrophysics Data System (ADS)

    Bore, Ezekiel

    2016-04-01

    Microbial transformation of organic substances in soil is the most important process of the C cycle. Most of the current studies base their information about transformation of organic substances on incubation studies under laboratory conditions and thus, we have a profound knowledge on SOM transformations at ambient temperatures. However, metabolic pathway activities at low temperature are not well understood, despite the fact that the processes are relevant for many soils globally and seasonally. To analyze microbial metabolism at low soil temperatures, isotopomeres of position-specifically 13C labeled glucose were incubated at three temperature; 5, -5 -20 oC. Soils were sampled after 1, 3 and 10 days and additionally after 30 days for samples at -20 °C. The 13C from individual molecule position was quantifed in respired CO2, bulk soil, extractable organic C and extractable microbial biomass by chloroform fumigation extraction (CFE) and cell membranes of microbial communities classified by 13C phospholipid fatty acid (PLFA) analysis. 13CO2 released showed a dominance of the flux from C-1 position at 5 °C. Consequently, at 5 °C, pentose phosphate pathway activity is a dominant metabolic pathway of glucose metabolization. In contrast to -5 °C and -20 oC, metabolic behaviors completely switched towards a preferential respiration of the glucose C-4 position. With decreasing temperature, microorganism strongly shifted towards metabolization of glucose via glycolysis which indicates a switch to cellular maintenance. High recoveries of 13C in extractable microbial biomass at -5 °C indicates optimal growth condition for the microorganisms. PLFA analysis showed high incorporation of 13C into Gram negative bacteria at 5 °C but decreased with temperature. Gram positive bacteria out-competed Gram negatives with decreasing temperature. This study revealed a remarkable microbial activity at temperatures below 0 °C, differing significantly from that at ambient

  17. High-fat diet modifies the PPAR-γ pathway leading to disruption of microbial and physiological ecosystem in murine small intestine

    PubMed Central

    Tomas, Julie; Mulet, Céline; Saffarian, Azadeh; Cavin, Jean-Baptiste; Ducroc, Robert; Regnault, Béatrice; Kun Tan, Chek; Duszka, Kalina; Burcelin, Rémy; Wahli, Walter; Sansonetti, Philippe J.; Pédron, Thierry

    2016-01-01

    Diet is among the most important factors contributing to intestinal homeostasis, and basic functions performed by the small intestine need to be tightly preserved to maintain health. Little is known about the direct impact of high-fat (HF) diet on small-intestinal mucosal defenses and spatial distribution of the microbiota during the early phase of its administration. We observed that only 30 d after HF diet initiation, the intervillous zone of the ileum—which is usually described as free of bacteria—became occupied by a dense microbiota. In addition to affecting its spatial distribution, HF diet also drastically affected microbiota composition with a profile characterized by the expansion of Firmicutes (appearance of Erysipelotrichi), Proteobacteria (Desulfovibrionales) and Verrucomicrobia, and decrease of Bacteroidetes (family S24-7) and Candidatus arthromitus. A decrease in antimicrobial peptide expression was predominantly observed in the ileum where bacterial density appeared highest. In addition, HF diet increased intestinal permeability and decreased cystic fibrosis transmembrane conductance regulator (Cftr) and the Na-K-2Cl cotransporter 1 (Nkcc1) gene and protein expressions, leading to a decrease in ileal secretion of chloride, likely responsible for massive alteration in mucus phenotype. This complex phenotype triggered by HF diet at the interface between the microbiota and the mucosal surface was reversed when the diet was switched back to standard composition or when mice were treated for 1 wk with rosiglitazone, a specific agonist of peroxisome proliferator-activated receptor-γ (PPAR-γ). Moreover, weaker expression of antimicrobial peptide-encoding genes and intervillous bacterial colonization were observed in Ppar-γ–deficient mice, highlighting the major role of lipids in modulation of mucosal immune defenses. PMID:27638207

  18. Environmental Controls of Microbial Resource Partitioning in Soils

    NASA Astrophysics Data System (ADS)

    Kandeler, Ellen; Poll, Christian; Kramer, Susanne; Mueller, Karolin; Marhan, Sven

    2015-04-01

    The mineralization and flow of plant-derived carbon in soils is relevant to global carbon cycling. Current models of organismic carbon fluxes in soil assume that separate bacterial and fungal energy channels exist in soil. Recent studies disentangle the herbivore and detritivore pathways of microbial resource use, identify the key players contributing to these two different pathways, and determine to what extent microbial substrate use is affected by environmental controls. To follow the kinetics of litter and root decomposition and to quantify the contribution of key players, it is necessary to use isotopic approaches like PLFA-SIP and ergosterol-SIP. It was shown that bacteria and sugar consuming fungi initiated litter decomposition in an incubation experiment during the first two weeks, whereas higher fungi started to grow after the depletion of low molecular weight substrates. Analyses of PLFA-SIP revealed, for example, that fungi assimilated C directly from the litter, whereas bacteria took up substrates in the soil and therefore depended more on external transport processes than fungi. In addition, we will present data from a field experiment showing the incorporation of root and shoot litter C into organic and microbial C pools under field conditions over a period of two years. Similar amounts of C derived from the two resources differing in substrate quality and amount were incorporated into microbial C and ergosterol pools over time, indicating the importance of root-derived C for the soil food web. High incorporation of maize C (up to 76%) into ergosterol suggests fast and high assimilation of maize C into fungal biomass. Nevertheless, there is still a debate whether bacteria, archaea and fungi start feeding on new substrates at the same time or if their activity occurs at different successional stages. This presentation gives a summery of current knowledge on microbial resource partitioning under lab and field conditions.

  19. Microbial mercury methylation in Antarctic sea ice.

    PubMed

    Gionfriddo, Caitlin M; Tate, Michael T; Wick, Ryan R; Schultz, Mark B; Zemla, Adam; Thelen, Michael P; Schofield, Robyn; Krabbenhoft, David P; Holt, Kathryn E; Moreau, John W

    2016-08-01

    Atmospheric deposition of mercury onto sea ice and circumpolar sea water provides mercury for microbial methylation, and contributes to the bioaccumulation of the potent neurotoxin methylmercury in the marine food web. Little is known about the abiotic and biotic controls on microbial mercury methylation in polar marine systems. However, mercury methylation is known to occur alongside photochemical and microbial mercury reduction and subsequent volatilization. Here, we combine mercury speciation measurements of total and methylated mercury with metagenomic analysis of whole-community microbial DNA from Antarctic snow, brine, sea ice and sea water to elucidate potential microbially mediated mercury methylation and volatilization pathways in polar marine environments. Our results identify the marine microaerophilic bacterium Nitrospina as a potential mercury methylator within sea ice. Anaerobic bacteria known to methylate mercury were notably absent from sea-ice metagenomes. We propose that Antarctic sea ice can harbour a microbial source of methylmercury in the Southern Ocean.

  20. Ecology, Microbial

    SciTech Connect

    Konopka, Allan

    2009-03-19

    Microbial ecology is a relatively young discipline within the field of microbiology. Its modern history spans just the past 60 years, and the field is defined by its emphasis on understanding the interactions of microbes with their environment, rather than their behavior under artificial laboratory conditions. Because microbes are ubiquitous, microbial ecologists study a broad diversity of habitats that range from aquatic to terrestrial to plant- or animal-associated. This has made it a challenge to identify unifying principles within the field. One approach is to recognize that although the activity of microbes in nature have effects at the macroscale, they interact with their physical, chemical and biological milieu at a scale of micrometers. At this scale, several different microbial ecosystems can be defined, based upon association with particles, the presence of environmental gradients and the continuous availability of water. Principles applicable to microbial ecology reflect not only their population ecology and physiological ecology, but also their broad versatility and quantitative importance in the biosphere as biogeochemical catalysts and capacity for rapid physiological and evolutionary responses.

  1. Ecology, Microbial

    SciTech Connect

    Konopka, Allan

    2009-05-15

    Microbial ecology is a relatively young discipline within the field of microbiology. Its modern history spans just the past 60 years, and the field is defined by its emphasis on understanding the interactions of microbes with their environment, rather than their behavior under artificial laboratory conditions. Because microbes are ubiquitous, microbial ecologists study a broad diversity of habitats that range from aquatic to terrestrial to plant- or animal-associated. This has made it a challenge to identify unifying principles within the field. One approach is to recognize that although the activity of microbes in nature have effects at the macroscale, they interact with their physical, chemical and biological milieu at a scale of micrometers. At this scale, several different microbial ecosystems can be defined, based upon association with particles, the presence of environmental gradients and the continuous availability of water. Principles applicable to microbial ecology reflect not only their population ecology and physiological ecology, but also their broad versatility and quantitative importance in the biosphere as biogeochemical catalysts and capacity for rapid physiological and evolutionary responses.

  2. Microbial naphthenic Acid degradation.

    PubMed

    Whitby, Corinne

    2010-01-01

    Naphthenic acids (NAs) are an important group of trace organic pollutants predominantly comprising saturated aliphatic and alicyclic carboxylic acids. NAs are ubiquitous; occurring naturally in hydrocarbon deposits (petroleum, oil sands, bitumen, and crude oils) and also have widespread industrial uses. Consequently, NAs can enter the environment from both natural and anthropogenic processes. NAs are highly toxic, recalcitrant compounds that persist in the environment for many years, and it is important to develop efficient bioremediation strategies to decrease both their abundance and toxicity in the environment. However, the diversity of microbial communities involved in NA-degradation, and the mechanisms by which NAs are biodegraded, are poorly understood. This lack of knowledge is mainly due to the difficulties in identifying and purifying individual carboxylic acid compounds from complex NA mixtures found in the environment, for microbial biodegradation studies. This paper will present an overview of NAs, their origin and fate in the environment, and their toxicity to the biota. The review describes the microbial degradation of both naturally occurring and chemically synthesized NAs. Proposed pathways for aerobic NA biodegradation, factors affecting NA biodegradation rates, and possible bioremediation strategies are also discussed.

  3. Metabolic engineering of microbial competitive advantage for industrial fermentation processes.

    PubMed

    Shaw, A Joe; Lam, Felix H; Hamilton, Maureen; Consiglio, Andrew; MacEwen, Kyle; Brevnova, Elena E; Greenhagen, Emily; LaTouf, W Greg; South, Colin R; van Dijken, Hans; Stephanopoulos, Gregory

    2016-08-05

    Microbial contamination is an obstacle to widespread production of advanced biofuels and chemicals. Current practices such as process sterilization or antibiotic dosage carry excess costs or encourage the development of antibiotic resistance. We engineered Escherichia coli to assimilate melamine, a xenobiotic compound containing nitrogen. After adaptive laboratory evolution to improve pathway efficiency, the engineered strain rapidly outcompeted a control strain when melamine was supplied as the nitrogen source. We additionally engineered the yeasts Saccharomyces cerevisiae and Yarrowia lipolytica to assimilate nitrogen from cyanamide and phosphorus from potassium phosphite, and they outcompeted contaminating strains in several low-cost feedstocks. Supplying essential growth nutrients through xenobiotic or ecologically rare chemicals provides microbial competitive advantage with minimal external risks, given that engineered biocatalysts only have improved fitness within the customized fermentation environment.

  4. Microbial Fe biomineralization in mafic and ultramafic rocks

    NASA Astrophysics Data System (ADS)

    Templeton, A. S.; Mayhew, L.; McCollom, T.; Trainor, T.

    2011-12-01

    Fluid-filled microfractures within mafic and ultramafic rocks, such as basalt and peridotite, may be one of the most ubiquitous microbial habitats on the modern and ancient earth. In seafloor and subseafloor systems, one of the dominant energy sources is the oxidation of Fe by numerous potential oxidants under aerobic to anaerobic conditions. In particular, the oxidation of Fe may be directly catalyzed by microbial organisms, or result in the production of molecular hydrogen which can then fuel diverse lithotrophic metabolisms. However, it remains challenging to identify the dominant metabolic activities and unravel the microscale biogeochemical processes occuring within such rock-hosted systems. We are investigating the mechanisms of solid-state Fe-oxidation and biomineralization in basalt, olivine, pyroxenes and basalts, in the presence and absence of microbial organisms that can thrive across the full stability range of water. In this talk we will present synchrotron-based x-ray scattering and spectroscopic analyses of Fe speciation within secondary minerals formed during microbially-mediated vs. abiotic water-rock interactions. Determining the valence state and mineralogy of Fe-bearing phases is critical for determining the water-rock reaction pathways and identifying potential biominerals that may form; therefore, we will highlight new approaches for identifying key Fe transformations within complex geological media. In addition, many of our experimental studies involve the growth of lithotrophic biofilms on well-characterized mineral surfaces in order to determine the chemistry of the microbe-mineral interface during progressive electron-transfer reactions. By coupling x-ray spectroscopy, x-ray diffraction, and electron-microscopy measurements, we will also contrast the evolution of mineral surfaces that undergo microbially-mediated oxidative alteration against minerals surfaces that produce H2 to sustain anaerobic microbial communities.

  5. Enhanced microbial coalbed methane generation: A review of research, commercial activity, and remaining challenges

    USGS Publications Warehouse

    Ritter, Daniel J.; Vinson, David S.; Barnhart, Elliott P.; Akob, Denise M.; Fields, Matthew W.; Cunningham, Al B.; Orem, William H.; McIntosh, Jennifer C.

    2015-01-01

    Coalbed methane (CBM) makes up a significant portion of the world’s natural gas resources. The discovery that approximately 20% of natural gas is microbial in origin has led to interest in microbially enhanced CBM (MECoM), which involves stimulating microorganisms to produce additional CBM from existing production wells. This paper reviews current laboratory and field research on understanding processes and reservoir conditions which are essential for microbial CBM generation, the progress of efforts to stimulate microbial methane generation in coal beds, and key remaining knowledge gaps. Research has been primarily focused on identifying microbial communities present in areas of CBM generation and attempting to determine their function, in-situ reservoir conditions that are most favorable for microbial CBM generation, and geochemical indicators of metabolic pathways of methanogenesis (i.e., acetoclastic or hydrogenotrophic methanogenesis). Meanwhile, researchers at universities, government agencies, and companies have focused on four primary MECoM strategies: 1) microbial stimulation (i.e., addition of nutrients to stimulate native microbes); 2) microbial augmentation (i.e., addition of microbes not native to or abundant in the reservoir of interest); 3) physically increasing microbial access to coal and distribution of amendments; and 4) chemically increasing the bioavailability of coal organics. Most companies interested in MECoM have pursued microbial stimulation: Luca Technologies, Inc., successfully completed a pilot scale field test of their stimulation strategy, while two others, Ciris Energy and Next Fuel, Inc., have undertaken smaller scale field tests. Several key knowledge gaps remain that need to be addressed before MECoM strategies can be implemented commercially. Little is known about the bacterial community responsible for coal biodegradation and how these microorganisms may be stimulated to enhance microbial methanogenesis. In addition, research

  6. Multistep hopping and extracellular charge transfer in microbial redox chains.

    PubMed

    Pirbadian, Sahand; El-Naggar, Mohamed Y

    2012-10-28

    Dissimilatory metal-reducing bacteria are microorganisms that gain energy by transferring respiratory electrons to extracellular solid-phase electron acceptors. In addition to its importance for physiology and natural environmental processes, this form of metabolism is being investigated for energy conversion and fuel production in bioelectrochemical systems, where microbes are used as biocatalysts at electrodes. One proposed strategy to accomplish this extracellular charge transfer involves forming a conductive pathway to electrodes by incorporating redox components on outer cell membranes and along extracellular appendages known as microbial nanowires within biofilms. To describe extracellular charge transfer in microbial redox chains, we employed a model based on incoherent hopping between sites in the chain and an interfacial treatment of electrochemical interactions with the surrounding electrodes. Based on this model, we calculated the current-voltage (I-V) characteristics and found the results to be in good agreement with I-V measurements across and along individual microbial nanowires produced by the bacterium Shewanella oneidensis MR-1. Based on our analysis, we propose that multistep hopping in redox chains constitutes a viable strategy for extracellular charge transfer in microbial biofilms.

  7. Biogeochemical Processes in Microbial Ecosystems

    NASA Technical Reports Server (NTRS)

    DesMarais, David J.

    2001-01-01

    The hierarchical organization of microbial ecosystems determines process rates that shape Earth's environment, create the biomarker sedimentary and atmospheric signatures of life, and define the stage upon which major evolutionary events occurred. In order to understand how microorganisms have shaped the global environment of Earth and, potentially, other worlds, we must develop an experimental paradigm that links biogeochemical processes with ever-changing temporal and spatial distributions of microbial populations and their metabolic properties. Additional information is contained in the original extended abstract.

  8. Microbial Signatures in Ooids from the Bahamas

    NASA Astrophysics Data System (ADS)

    Diaz, M. R.; Swart, P. K.; Devlin, Q.; Oehlert, A. M.; Saied, A.; Eberli, G. P.; Klaus, J. S.; Altabet, M.

    2013-12-01

    Microbes are abundant in sedimentary systems where their metabolic capabilities can exert a profound impact on carbonate precipitation processes by altering the alkalinity of their immediate surrounding. Using a combination of clone analysis of 16SrRNA, functional gene analysis and both inorganic and organic stable isotopic analyses, we characterized the microbial community structure of ooids and their potential functional capabilities that could lead to precipitation of carbonates. Oolitic bacterial communities were highly diverse, representing 12 different prokaryotic lineages, among which Alphaproteobacteria, Gammaproteobacteria, Actinobacteria/Bacteroidetes and Deltaproteobacteria were the most abundant. Based on functional gene analysis, a large number of genes were associated with redox dependent microbial communities with putative functional capability for mineral precipitation such as aerobic/anoxygenic photosynthesis, denitrification, ammonification, and sulfate reduction. In addition, a broad diversity of genes related to organic carbon degradation and nitrogen fixation were present, implying metabolic plasticity that enables survival under oligotrophic conditions. Carbon and nitrogen isotopic analyses, which were conducted on both bulk and intracrystalline organic matter as well as in leachate sediments, identified geochemical signatures of microbial activity. δ13C values for organic C in the bulk (-11.94 to -16.71) and intracrystalline organic matter (-12.37 to -17.66), were similar and within the range of fractionation patterns associated with cyanobacteria, algae and photosynthesizers that employ the C4 carbon fixation pathway. Nitrogen isotopic values for both bulk (δ15N: -0.314 to - 0.706) and intracrystalline organic matter (δ15N: -0.343 -1.70) also showed fractionation patterns consistent with nitrogen fixation. In addition, positive δ15N and δ18O values of the NO3- leached from the ooids provided evidence of denitrification. These findings

  9. Microbially-driven strategies for bioremediation of bauxite residue.

    PubMed

    Santini, Talitha C; Kerr, Janice L; Warren, Lesley A

    2015-08-15

    Globally, 3 Gt of bauxite residue is currently in storage, with an additional 120 Mt generated every year. Bauxite residue is an alkaline, saline, sodic, massive, and fine grained material with little organic carbon or plant nutrients. To date, remediation of bauxite residue has focused on the use of chemical and physical amendments to address high pH, high salinity, and poor drainage and aeration. No studies to date have evaluated the potential for microbial communities to contribute to remediation as part of a combined approach integrating chemical, physical, and biological amendments. This review considers natural alkaline, saline environments that present similar challenges for microbial survival and evaluates candidate microorganisms that are both adapted for survival in these environments and have the capacity to carry out beneficial metabolisms in bauxite residue. Fermentation, sulfur oxidation, and extracellular polymeric substance production emerge as promising pathways for bioremediation whether employed individually or in combination. A combination of bioaugmentation (addition of inocula from other alkaline, saline environments) and biostimulation (addition of nutrients to promote microbial growth and activity) of the native community in bauxite residue is recommended as the approach most likely to be successful in promoting bioremediation of bauxite residue.

  10. MOLECULAR MECHANISM OF MICROBIAL TECHNETIUM REDUCTION FINAL REPORT

    SciTech Connect

    DiChristina, Thomas J.

    2013-04-30

    Microbial Tc(VII) reduction is an attractive alternative strategy for bioremediation of technetium-contaminated subsurface environments. Traditional ex situ remediation processes (e.g., adsorption or ion exchange) are often limited by poor extraction efficiency, inhibition by competing ions and production of large volumes of produced waste. Microbial Tc(VII) reduction provides an attractive alternative in situ remediation strategy since the reduced end-product Tc(IV) precipitates as TcO2, a highly insoluble hydrous oxide. Despite its potential benefits, the molecular mechanism of microbial Tc(VII) reduction remains poorly understood. The main goal of the proposed DOENABIR research project is to determine the molecular mechanism of microbial Tc(VII) reduction. Random mutagenesis studies in our lab have resulted in generation of a set of six Tc(VII) reduction-deficient mutants of Shewanella oneidensis. The anaerobic respiratory deficiencies of each Tc(VII) reduction-deficient mutant was determined by anaerobic growth on various combinations of three electron donors and 14 terminal electron acceptors. Results indicated that the electron transport pathways to Tc(VII), NO3 -, Mn(III) and U(VI) share common structural or regulatory components. In addition, we have recently found that wild-type Shewanella are also able to reduce Tc(IV) as electron acceptor, producing Tc(III) as an end-product. The recent genome sequencing of a variety of technetium-reducing bacteria and the anticipated release of several additional genome sequences in the coming year, provides us with an unprecedented opportunity to determine the mechanism of microbial technetium reduction across species and genus lines.

  11. Effects of experimental lead pollution on the microbial communities associated with Sphagnum fallax (Bryophyta).

    PubMed

    Nguyen-Viet, H; Gilbert, D; Mitchell, E A D; Badot, P-M; Bernard, N

    2007-08-01

    Ecotoxicological studies usually focus on single microbial species under controlled conditions. As a result, little is known about the responses of different microbial functional groups or individual species to stresses. In an aim to assess the response of complex microbial communities to pollution in their natural habitat, we studied the effect of a simulated lead pollution on the microbial community (bacteria, cyanobacteria, protists, fungi, and micrometazoa) living on Sphagnum fallax. Mosses were grown in the laboratory with 0 (control), 625, and 2,500 microg L(-1) of Pb(2+) diluted in a standard nutrient solution and were sampled after 0, 6, 12, and 20 weeks. The biomasses of bacteria, microalgae, testate amoebae, and ciliates were dramatically and significantly decreased in both Pb addition treatments after 6, 12, and 20 weeks in comparison with the control. The biomass of cyanobacteria declined after 6 and 12 weeks in the highest Pb treatment. The biomasses of fungi, rotifers, and nematodes decreased along the duration of the experiment but were not significantly affected by lead addition. Consequently, the total microbial biomass was lower for both Pb addition treatments after 12 and 20 weeks than in the controls. The community structure was strongly modified due to changes in the densities of testate amoebae and ciliates, whereas the relative contribution of bacteria to the microbial biomass was stable. Differences in responses among the microbial groups suggest changes in the trophic links among them. The correlation between the biomass of bacteria and that of ciliates or testate amoebae increased with increasing Pb loading. We interpret this result as an effect on the grazing pathways of these predators and by the Pb effect on other potential prey (i.e., smaller protists). The community approach used here complements classical ecotoxicological studies by providing clues to the complex effect of pollutant-affecting organisms both directly and indirectly

  12. Toward Engineering Synthetic Microbial Metabolism

    PubMed Central

    McArthur, George H.; Fong, Stephen S.

    2010-01-01

    The generation of well-characterized parts and the formulation of biological design principles in synthetic biology are laying the foundation for more complex and advanced microbial metabolic engineering. Improvements in de novo DNA synthesis and codon-optimization alone are already contributing to the manufacturing of pathway enzymes with improved or novel function. Further development of analytical and computer-aided design tools should accelerate the forward engineering of precisely regulated synthetic pathways by providing a standard framework for the predictable design of biological systems from well-characterized parts. In this review we discuss the current state of synthetic biology within a four-stage framework (design, modeling, synthesis, analysis) and highlight areas requiring further advancement to facilitate true engineering of synthetic microbial metabolism. PMID:20037734

  13. Combining microbial cultures for efficient production of electricity from butyrate in a microbial electrochemical cell.

    PubMed

    Miceli, Joseph F; Garcia-Peña, Ines; Parameswaran, Prathap; Torres, César I; Krajmalnik-Brown, Rosa

    2014-10-01

    Butyrate is an important product of anaerobic fermentation; however, it is not directly used by characterized strains of the highly efficient anode respiring bacteria (ARB) Geobacter sulfurreducens in microbial electrochemical cells. By combining a butyrate-oxidizing community with a Geobacter rich culture, we generated a microbial community which outperformed many naturally derived communities found in the literature for current production from butyrate and rivaled the highest performing natural cultures in terms of current density (∼ 11A/m(2)) and Coulombic efficiency (∼ 70%). Microbial community analyses support the shift in the microbial community from one lacking efficient ARB in the marine hydrothermal vent community to a community consisting of ∼ 80% Geobacter in the anode biofilm. This demonstrates the successful production and adaptation of a novel microbial culture for generating electrical current from butyrate with high current density and high Coulombic efficiency, by combining two mixed microbial cultures containing complementing biochemical pathways.

  14. Microbial methanogenesis in subsurface oil and coal.

    PubMed

    Meslé, Margaux; Dromart, Gilles; Oger, Philippe

    2013-11-01

    It is now clear that active methanogens are present in the deep-subsurface. This paper reviews microbial population structures and the biodegradation of organic compounds to methane in situ within oil reservoirs and coal deposits. It summarizes our current knowledge of methanogenes and methanogenesis, fermenters, synthrophs and microbial metabolism of complex organic compounds in these two widely occurring organic-rich subsurface environments. This review is not intended to be an exhaustive report of microbial diversity. Rather, it illustrates the similarities and differences between the two environments with specific examples, from the nature of the organic molecules to the methanogenic metabolic pathways and the structure of the microbial populations to demonstrate that widely diverging microbial populations show surprisingly similar metabolic capabilities.

  15. Microbial Metalloproteomics

    PubMed Central

    Hagedoorn, Peter-Leon

    2015-01-01

    Metalloproteomics is a rapidly developing field of science that involves the comprehensive analysis of all metal-containing or metal-binding proteins in a biological sample. The purpose of this review is to offer a comprehensive overview of the research involving approaches that can be categorized as inductively coupled plasma (ICP)-MS based methods, X-ray absorption/fluorescence, radionuclide based methods and bioinformatics. Important discoveries in microbial proteomics will be reviewed, as well as the outlook to new emerging approaches and research areas. PMID:28248278

  16. Microbial Metabolomics

    PubMed Central

    Tang, Jane

    2011-01-01

    Microbial metabolomics constitutes an integrated component of systems biology. By studying the complete set of metabolites within a microorganism and monitoring the global outcome of interactions between its development processes and the environment, metabolomics can potentially provide a more accurate snap shot of the actual physiological state of the cell. Recent advancement of technologies and post-genomic developments enable the study and analysis of metabolome. This unique contribution resulted in many scientific disciplines incorporating metabolomics as one of their “omics” platforms. This review focuses on metabolomics in microorganisms and utilizes selected topics to illustrate its impact on the understanding of systems microbiology. PMID:22379393

  17. Farm management, not soil microbial diversity, controls nutrient loss from smallholder tropical agriculture

    PubMed Central

    Wood, Stephen A.; Almaraz, Maya; Bradford, Mark A.; McGuire, Krista L.; Naeem, Shahid; Neill, Christopher; Palm, Cheryl A.; Tully, Katherine L.; Zhou, Jizhong

    2015-01-01

    Tropical smallholder agriculture is undergoing rapid transformation in nutrient cycling pathways as international development efforts strongly promote greater use of mineral fertilizers to increase crop yields. These changes in nutrient availability may alter the composition of microbial communities with consequences for rates of biogeochemical processes that control nutrient losses to the environment. Ecological theory suggests that altered microbial diversity will strongly influence processes performed by relatively few microbial taxa, such as denitrification and hence nitrogen losses as nitrous oxide, a powerful greenhouse gas. Whether this theory helps predict nutrient losses from agriculture depends on the relative effects of microbial community change and increased nutrient availability on ecosystem processes. We find that mineral and organic nutrient addition to smallholder farms in Kenya alters the taxonomic and functional diversity of soil microbes. However, we find that the direct effects of farm management on both denitrification and carbon mineralization are greater than indirect effects through changes in the taxonomic and functional diversity of microbial communities. Changes in functional diversity are strongly coupled to changes in specific functional genes involved in denitrification, suggesting that it is the expression, rather than abundance, of key functional genes that can serve as an indicator of ecosystem process rates. Our results thus suggest that widely used broad summary statistics of microbial diversity based on DNA may be inappropriate for linking microbial communities to ecosystem processes in certain applied settings. Our results also raise doubts about the relative control of microbial composition compared to direct effects of management on nutrient losses in applied settings such as tropical agriculture. PMID:25926815

  18. Use of Metabolic Inhibitors to Characterize Ecological Interactions in an Estuarine Microbial Food Web.

    PubMed

    DeLorenzo, M.E.; Lewitus, A.J.; Scott, G.I.; Ross, P.E.

    2001-10-01

    Understanding microbial food web dynamics is complicated by the multitude of competitive or interdependent trophic interactions involved in material and energy flow. Metabolic inhibitors can be used to gain information on the relative importance of trophic pathways by uncoupling selected microbial components and examining the net effect on ecosystem structure and function. A eukaryotic growth inhibitor (cycloheximide), a prokaryotic growth inhibitor (antibiotic mixture), and an inhibitor of photosynthesis (DCMU) were used to examine the trophodynamics of microbial communities from the tidal creek in North Inlet, a salt marsh estuary near Georgetown, South Carolina. Natural microbial communities were collected in the spring, summer, and fall after colonization onto polyurethane foam substrates deployed in the tidal creek. Bacterial abundance and productivity, heterotrophic ciliate and flagellate abundance, and phototrophic productivity, biomass, and biovolume were measured at five time points after inhibitor additions. The trophic responses of the estuarine microbial food web to metabolic inhibitors varied with season. In the summer, a close interdependency among phototrophs, bacteria, and protozoa was indicated, and the important influence of microzooplanktonic nutrient recycling was evident (i.e., a positive feedback loop). In the fall, phototroph and bacteria interactions were competitive rather than interdependent, and grazer nutrient regeneration did not appear to be an important regulatory factor for bacterial or phototrophic activities. The results indicate a seasonal shift in microbial food web structure and function in North Inlet, from a summer community characterized by microbial loop dynamics to a more linear trophic system in the fall. This study stresses the important role of microbial loops in driving primary and secondary production in estuaries such as North Inlet that are tidally dominated by fluctuations in nutrient supply and a summer

  19. Microbial production of propanol.

    PubMed

    Walther, Thomas; François, Jean Marie

    2016-01-01

    Both, n-propanol and isopropanol are industrially attractive value-added molecules that can be produced by microbes from renewable resources. The development of cost-effective fermentation processes may allow using these alcohols as a biofuel component, or as a precursor for the chemical synthesis of propylene. This review reports and discusses the recent progress which has been made in the biochemical production of propanol. Several synthetic propanol-producing pathways were developed that vary with respect to stoichiometry and metabolic entry point. These pathways were expressed in different host organisms and enabled propanol production from various renewable feedstocks. Furthermore, it was shown that the optimization of fermentation conditions greatly improved process performance, in particular, when continuous product removal prevented accumulation of toxic propanol levels. Although these advanced metabolic engineering and fermentation strategies have facilitated significant progress in the biochemical production of propanol, the currently achieved propanol yields and productivities appear to be insufficient to compete with chemical propanol synthesis. The development of biosynthetic pathways with improved propanol yields, the breeding or identification of microorganisms with higher propanol tolerance, and the engineering of propanol producer strains that efficiently utilize low-cost feedstocks are the major challenges on the way to industrially relevant microbial propanol production processes.

  20. Microbial Succession and Flavor Production in the Fermented Dairy Beverage Kefir.

    PubMed

    Walsh, Aaron M; Crispie, Fiona; Kilcawley, Kieran; O'Sullivan, Orla; O'Sullivan, Maurice G; Claesson, Marcus J; Cotter, Paul D

    2016-01-01

    Kefir is a putatively health-promoting dairy beverage that is produced when a kefir grain, consisting of a consortium of microorganisms, is added to milk to initiate a natural fermentation. Here, a detailed analysis was carried out to determine how the microbial population, gene content, and flavor of three kefirs from distinct geographic locations change over the course of 24-h fermentations. Metagenomic sequencing revealed that Lactobacillus kefiranofaciens was the dominant bacterial species in kefir during early stages of fermentations but that Leuconostoc mesenteroides became more prevalent in later stages. This pattern is consistent with an observation that genes involved in aromatic amino acid biosynthesis were absent from L. kefiranofaciens but were present in L. mesenteroides. Additionally, these shifts in the microbial community structure, and associated pathways, corresponded to changes in the levels of volatile compounds. Specifically, Acetobacter spp. correlated with acetic acid; Lactobacillus spp. correlated with carboxylic acids, esters and ketones; Leuconostoc spp. correlated with acetic acid and 2,3-butanedione; and Saccharomyces spp. correlated with esters. The correlation data suggest a causal relationship between microbial taxa and flavor that is supported by observations that addition of L. kefiranofaciens NCFB 2797 increased the levels of esters and ketones whereas addition of L. mesenteroides 213M0 increased the levels of acetic acid and 2,3-butanedione. Finally, we detected genes associated with probiotic functionalities in the kefir microbiome. Our results illustrate the dynamic nature of kefir fermentations and microbial succession patterns therein and can be applied to optimize the fermentation processes, flavors, and health-related attributes of this and other fermented foods. IMPORTANCE Traditional fermented foods represent relatively low-complexity microbial environments that can be used as model microbial communities to understand

  1. Microbial Succession and Flavor Production in the Fermented Dairy Beverage Kefir

    PubMed Central

    Walsh, Aaron M.; Crispie, Fiona; Kilcawley, Kieran; O’Sullivan, Orla; O’Sullivan, Maurice G.; Claesson, Marcus J.

    2016-01-01

    ABSTRACT Kefir is a putatively health-promoting dairy beverage that is produced when a kefir grain, consisting of a consortium of microorganisms, is added to milk to initiate a natural fermentation. Here, a detailed analysis was carried out to determine how the microbial population, gene content, and flavor of three kefirs from distinct geographic locations change over the course of 24-h fermentations. Metagenomic sequencing revealed that Lactobacillus kefiranofaciens was the dominant bacterial species in kefir during early stages of fermentations but that Leuconostoc mesenteroides became more prevalent in later stages. This pattern is consistent with an observation that genes involved in aromatic amino acid biosynthesis were absent from L. kefiranofaciens but were present in L. mesenteroides. Additionally, these shifts in the microbial community structure, and associated pathways, corresponded to changes in the levels of volatile compounds. Specifically, Acetobacter spp. correlated with acetic acid; Lactobacillus spp. correlated with carboxylic acids, esters and ketones; Leuconostoc spp. correlated with acetic acid and 2,3-butanedione; and Saccharomyces spp. correlated with esters. The correlation data suggest a causal relationship between microbial taxa and flavor that is supported by observations that addition of L. kefiranofaciens NCFB 2797 increased the levels of esters and ketones whereas addition of L. mesenteroides 213M0 increased the levels of acetic acid and 2,3-butanedione. Finally, we detected genes associated with probiotic functionalities in the kefir microbiome. Our results illustrate the dynamic nature of kefir fermentations and microbial succession patterns therein and can be applied to optimize the fermentation processes, flavors, and health-related attributes of this and other fermented foods. IMPORTANCE Traditional fermented foods represent relatively low-complexity microbial environments that can be used as model microbial communities to

  2. Food additives

    PubMed Central

    Spencer, Michael

    1974-01-01

    Food additives are discussed from the food technology point of view. The reasons for their use are summarized: (1) to protect food from chemical and microbiological attack; (2) to even out seasonal supplies; (3) to improve their eating quality; (4) to improve their nutritional value. The various types of food additives are considered, e.g. colours, flavours, emulsifiers, bread and flour additives, preservatives, and nutritional additives. The paper concludes with consideration of those circumstances in which the use of additives is (a) justified and (b) unjustified. PMID:4467857

  3. The Fate of Microbial Groups in Tropical and Temperate Forest Soils

    NASA Astrophysics Data System (ADS)

    Throckmorton, H. M.; Bird, J. A.; Firestone, M. K.; Horwath, W. R.

    2007-12-01

    This research investigates the importance of microbial biochemistry to carbon (C) humification pathways in two climatically different forested ecosystems, Blodgett forest (BF), a temperate forest in the Sierra Nevada and Luquillo forest (LF), a tropical forest in Puerto Rico. 13C enriched tropical and temperate species from four microbial groups (fungi, actinomycetes, bacteria gram (+), and bacteria gram (-)) were separately added to soil at both sites. Substrate decomposition rates were substantially greater in LF than BF, as were overall respiration rates. After several months most new C was retained in the top 7.5cm at both sites, indicating insignificant loss due to leaching. While there were no significant differences in decomposition rates between temperate and tropical microbial additions at either site, there were treatment differences in C recovery within the microbial biomass C (MBC) pools, the dissolved organic C (DOC) pools, and recovery as CO2-C for both sites. Recovery as MBC at BF was initially greater for tropical additions than for temperate; at LF recovery as MBC was initially greater for temperate fungi and bacteria gram (+) than for tropical, and greater for tropical actinomycetes than for temperate. After several months, the trends at BF reversed, and there were little to no treatment effects at LF. Treatment recovery as DOC initially showed similar patterns to MBC-recovery at both sites, but after several months DOC-recovery drastically declined for all treatments, amounting to <0.05% of input C. Both soils respired more tropical fungi C than temperate, and more temperate actinomycetes C than tropical. These results demonstrate potentially different stabilization mechanisms associated with microbial groups and are most likely associated with differences in microbial biochemistry. The soil microbial community plays a key role in SOM dynamics, and this research provides important insight into these relationships and the biogeochemical processes

  4. Biological Diversity Comprising Microbial Structures of Antarctic Ice Covered Lakes

    NASA Astrophysics Data System (ADS)

    Matys, E. D.

    2015-12-01

    Analysis of microbial membrane lipids is a rapid and non-selective method for evaluating the composition of microbial communities. To fully realise the diagnostic potential of these lipids, we must first understand their structural diversity, biological sources, physiological functions, and pathways of preservation. Particular environmental conditions likely prompt the production of different membrane lipid structures. Antarctica's McMurdo Dry Valleys host numerous ice-covered lakes with sharp chemical gradients that vary in illumination, geochemical structure, and benthic mat morphologies that are structured by nutrient availability and water chemistry. The lipid contents of these benthic mats have not received extensive study nor have the communities yet been thoroughly characterized. Accordingly, a combination of lipid biomarker and nucleic acid sequence data provides the means of assessing species diversity and environmental controls on the composition and diversity of membrane lipid assemblages. We investigated the richness and diversity of benthic microbial communities and accumulated organic matter in Lake Vanda of the McMurdo Dry Valleys. We have identified diverse glycolipids, aminolipids, and phospholipids in addition to many unknown compounds that may be specific to these particular environments. Light levels fluctuate seasonally, favoring low-light-tolerant cyanobacteria and specific lipid assemblages. Adaptations to nutrient limitations are reflected in contrasting intact polar lipid assemblages. For example, under P-limiting conditions, phospholipids are subsidiary to membrane-forming lipids that do not contain P (i.e. ornithine, betaine, and sulfolipids). The bacteriohopanepolyol (BHP) composition is dominated by bacteriohopanetetrol (BHT), a ubiquitous BHP, and 2-methylhopanoids. The relative abundance of 2-methylhopanoids is unprecedented and may reflect the unusual seasonal light regime of this polar environment. By establishing correlations

  5. Secondary Metabolic Pathway-Targeted Metabolomics

    PubMed Central

    Vizcaino, Maria I.; Crawford, Jason M.

    2016-01-01

    This chapter provides step-by-step methods for building secondary metabolic pathway-targeted molecular networks to assess microbial natural product biosynthesis at a systems level and to aid in downstream natural product discovery efforts. Methods described include high-resolution mass spectrometry (HRMS)-based comparative metabolomics, pathway-targeted tandem MS (MS/MS) molecular networking, and isotopic labeling for the elucidation of natural products encoded by orphan biosynthetic pathways. The metabolomics network workflow covers the following six points: (1) method development, (2) bacterial culture growth and organic extraction, (3) HRMS data acquisition and analysis, (4) pathway-targeted MS/MS data acquisition, (5) mass spectral network building, and (6) network enhancement. This chapter opens with a discussion on the practical considerations of natural product extraction, chromatographic processing, and enhanced detection of the analytes of interest within complex organic mixtures using liquid chromatography (LC)-HRMS. Next, we discuss the utilization of a chemometric platform, focusing on Agilent Mass Profiler Professional software, to run MS-based differential analysis between sample groups and controls to acquire a unique set of molecular features that are dependent on the presence of a secondary metabolic pathway. Using this unique list of molecular features, the chapter then details targeted MS/MS acquisition for subsequent pathway-dependent network clustering through the online Global Natural Products Social Molecular Networking (GnPS) platform. Genetic information, ionization intensities, isotopic labeling, and additional experimental data can be mapped onto the pathway-dependent network, facilitating systems biosynthesis analyses. The finished product will provide a working molecular network to assess experimental perturbations and guide novel natural product discoveries. PMID:26831709

  6. Microbial fuel cells

    SciTech Connect

    Nealson, Kenneth H; Pirbazari, Massoud; Hsu, Lewis

    2013-04-09

    A microbial fuel cell includes an anode compartment with an anode and an anode biocatalyst and a cathode compartment with a cathode and a cathode biocatalyst, with a membrane positioned between the anode compartment and the cathode compartment, and an electrical pathway between the anode and the cathode. The anode biocatalyst is capable of catalyzing oxidation of an organic substance, and the cathode biocatalyst is capable of catalyzing reduction of an inorganic substance. The reduced organic substance can form a precipitate, thereby removing the inorganic substance from solution. In some cases, the anode biocatalyst is capable of catalyzing oxidation of an inorganic substance, and the cathode biocatalyst is capable of catalyzing reduction of an organic or inorganic substance.

  7. In-Drift Microbial Communities

    SciTech Connect

    D. Jolley

    2000-11-09

    As directed by written work direction (CRWMS M and O 1999f), Performance Assessment (PA) developed a model for microbial communities in the engineered barrier system (EBS) as documented here. The purpose of this model is to assist Performance Assessment and its Engineered Barrier Performance Section in modeling the geochemical environment within a potential repository drift for TSPA-SR/LA, thus allowing PA to provide a more detailed and complete near-field geochemical model and to answer the key technical issues (KTI) raised in the NRC Issue Resolution Status Report (IRSR) for the Evolution of the Near Field Environment (NFE) Revision 2 (NRC 1999). This model and its predecessor (the in-drift microbial communities model as documented in Chapter 4 of the TSPA-VA Technical Basis Document, CRWMS M and O 1998a) was developed to respond to the applicable KTIs. Additionally, because of the previous development of the in-drift microbial communities model as documented in Chapter 4 of the TSPA-VA Technical Basis Document (CRWMS M and O 1998a), the M and O was effectively able to resolve a previous KTI concern regarding the effects of microbial processes on seepage and flow (NRC 1998). This document supercedes the in-drift microbial communities model as documented in Chapter 4 of the TSPA-VA Technical Basis Document (CRWMS M and O 1998a). This document provides the conceptual framework of the revised in-drift microbial communities model to be used in subsequent performance assessment (PA) analyses.

  8. Pathogenesis of microbial keratitis.

    PubMed

    Lakhundi, Sahreena; Siddiqui, Ruqaiyyah; Khan, Naveed Ahmed

    2017-03-01

    Microbial keratitis is a sight-threatening ocular infection caused by bacteria, fungi, and protist pathogens. Epithelial defects and injuries are key predisposing factors making the eye susceptible to corneal pathogens. Among bacterial pathogens, the most common agents responsible for keratitis include Staphylococcus aureus, Pseudomonas aeruginosa, Streptococcus pneumonia and Serratia species. Fungal agents of corneal infections include both filamentous as well as yeast, including Fusarium, Aspergillus, Phaeohyphomycetes, Curvularia, Paecilomyces, Scedosporium and Candida species, while in protists, Acanthamoeba spp. are responsible for causing ocular disease. Clinical features include redness, pain, tearing, blur vision and inflammation but symptoms vary depending on the causative agent. The underlying molecular mechanisms associated with microbial pathogenesis include virulence factors as well as the host factors that aid in the progression of keratitis, resulting in damage to the ocular tissue. The treatment therefore should focus not only on the elimination of the culprit but also on the neutralization of virulence factors to minimize the damage, in addition to repairing the damaged tissue. A complete understanding of the pathogenesis of microbial keratitis will lead to the rational development of therapeutic interventions. This is a timely review of our current understanding of the advances made in this field in a comprehensible manner. Coupled with the recently available genome sequence information and high throughput genomics technology, and the availability of innovative approaches, this will stimulate interest in this field.

  9. Microbial Risk Assessment

    NASA Technical Reports Server (NTRS)

    Ott, C. M.; Mena, K. D.; Nickerson, C.A.; Pierson, D. L.

    2009-01-01

    Historically, microbiological spaceflight requirements have been established in a subjective manner based upon expert opinion of both environmental and clinical monitoring results and the incidence of disease. The limited amount of data, especially from long-duration missions, has created very conservative requirements based primarily on the concentration of microorganisms. Periodic reevaluations of new data from later missions have allowed some relaxation of these stringent requirements. However, the requirements remain very conservative and subjective in nature, and the risk of crew illness due to infectious microorganisms is not well defined. The use of modeling techniques for microbial risk has been applied in the food and potable water industries and has exceptional potential for spaceflight applications. From a productivity standpoint, this type of modeling can (1) decrease unnecessary costs and resource usage and (2) prevent inadequate or inappropriate data for health assessment. In addition, a quantitative model has several advantages for risk management and communication. By identifying the variable components of the model and the knowledge associated with each component, this type of modeling can: (1) Systematically identify and close knowledge gaps, (2) Systematically identify acceptable and unacceptable risks, (3) Improve communication with stakeholders as to the reasons for resource use, and (4) Facilitate external scientific approval of the NASA requirements. The modeling of microbial risk involves the evaluation of several key factors including hazard identification, crew exposure assessment, dose-response assessment, and risk characterization. Many of these factors are similar to conditions found on Earth; however, the spaceflight environment is very specialized as the inhabitants live in a small, semi-closed environment that is often dependent on regenerative life support systems. To further complicate modeling efforts, microbial dose

  10. Microbial field pilot study

    SciTech Connect

    Knapp, R.M.; McInerney, M.J.; Menzie, D.E.; Chisholm, J.L.

    1992-03-01

    The objective of this project is to perform a microbial enhanced oil recovery field pilot in the Southeast Vassar Vertz Sand Unit (SEVVSU) in Payne County, Oklahoma. Indigenous, anaerobic, nitrate reducing bacteria will be stimulated to selectively plug flow paths which have been referentially swept by a prior waterflood. This will force future flood water to invade bypassed regions of the reservoir and increase sweep efficiency. This report covers progress made during the second year, January 1, 1990 to December 31, 1990, of the Microbial Field Pilot Study project. Information on reservoir ecology, surface facilities design, operation of the unit, core experiments, modeling of microbial processes, and reservoir characterization and simulation are presented in the report. To better understand the ecology of the target reservoir, additional analyses of the fluids which support bacteriological growth and the microbiology of the reservoir were performed. The results of the produced and injected water analysis show increasing sulfide concentrations with respect to time. In March of 1990 Mesa Limited Partnership sold their interest in the SEVVSU to Sullivan and Company. In April, Sullivan and Company assumed operation of the field. The facilities for the field operation of the pilot were refined and implementation was begun. Core flood experiments conducted during the last year were used to help define possible mechanisms involved in microbial enhanced oil recovery. The experiments were performed at SEVVSU temperature using fluids and inoculum from the unit. The model described in last year's report was further validated using results from a core flood experiment. The model was able to simulate the results of one of the core flood experiments with good quality.

  11. Microbial field pilot study

    SciTech Connect

    Knapp, R.M.; McInerney, M.J.; Menzie, D.E.; Chisholm, J.L.

    1992-03-01

    The objective of this project is to perform a microbial enhanced oil recovery field pilot in the Southeast Vassar Vertz Sand Unit (SEVVSU) in Payne County, Oklahoma. Indigenous, anaerobic, nitrate reducing bacteria will be stimulated to selectively plug flow paths which have been referentially swept by a prior waterflood. This will force future flood water to invade bypassed regions of the reservoir and increase sweep efficiency. This report covers progress made during the second year, January 1, 1990 to December 31, 1990, of the Microbial Field Pilot Study project. Information on reservoir ecology, surface facilities design, operation of the unit, core experiments, modeling of microbial processes, and reservoir characterization and simulation are presented in the report. To better understand the ecology of the target reservoir, additional analyses of the fluids which support bacteriological growth and the microbiology of the reservoir were performed. The results of the produced and injected water analysis show increasing sulfide concentrations with respect to time. In March of 1990 Mesa Limited Partnership sold their interest in the SEVVSU to Sullivan and Company. In April, Sullivan and Company assumed operation of the field. The facilities for the field operation of the pilot were refined and implementation was begun. Core flood experiments conducted during the last year were used to help define possible mechanisms involved in microbial enhanced oil recovery. The experiments were performed at SEVVSU temperature using fluids and inoculum from the unit. The model described in last year`s report was further validated using results from a core flood experiment. The model was able to simulate the results of one of the core flood experiments with good quality.

  12. Microbial field pilot study

    SciTech Connect

    Knapp, R.M.; McInerney, M.J.; Menzie, D.E.

    1991-12-06

    The objective of this project is to perform a microbial enhanced oil recovery field pilot test in the Southeast Vassar Vertz Sand Unit (SEVVSU) in Payne County, Oklahoma. Indigenous, anaerobic, nitrate-reducing bacteria will be stimulated to selectively plug flow paths which have been preferentially swept by a prior waterflood. This will force future flood water to invade bypassed regions of the reservoir and increase sweep efficiency. During this quarter an additional tracer study was performed in the field to determine pre-treatment flow paths and the first nutrients were injected. 2 figs.

  13. On the Functional Overlap between Complement and Anti-Microbial Peptides

    PubMed Central

    Zimmer, Jana; Hobkirk, James; Mohamed, Fatima; Browning, Michael J.; Stover, Cordula M.

    2015-01-01

    Intriguingly, activated complement and anti-microbial peptides share certain functionalities; lytic, phagocytic, and chemo-attractant activities and each may, in addition, exert cell instructive roles. Each has been shown to have distinct LPS detoxifying activity and may play a role in the development of endotoxin tolerance. In search of the origin of complement, a functional homolog of complement C3 involved in opsonization has been identified in horseshoe crabs. Horseshoe crabs possess anti-microbial peptides able to bind to acyl chains or phosphate groups/saccharides of endotoxin, LPS. Complement activity as a whole is detectable in marine invertebrates. These are also a source of anti-microbial peptides with potential pharmaceutical applicability. Investigating the locality for the production of complement pathway proteins and their role in modulating cellular immune responses are emerging fields. The significance of local synthesis of complement components is becoming clearer from in vivo studies of parenchymatous disease involving specifically generated, complement-deficient mouse lines. Complement C3 is a central component of complement activation. Its provision by cells of the myeloid lineage varies. Their effector functions in turn are increased in the presence of anti-microbial peptides. This may point to a potentiating range of activities, which should serve the maintenance of health but may also cause disease. Because of the therapeutic implications, this review will consider closely studies dealing with complement activation and anti-microbial peptide activity in acute inflammation (e.g., dialysis-related peritonitis, appendicitis, and ischemia). PMID:25646095

  14. Food additives

    MedlinePlus

    ... or natural. Natural food additives include: Herbs or spices to add flavor to foods Vinegar for pickling ... Certain colors improve the appearance of foods. Many spices, as well as natural and man-made flavors, ...

  15. In Vivo Addition of Poly(A) Tail and AU-Rich Sequences to the 3′ Terminus of the Sindbis Virus RNA Genome: a Novel 3′-End Repair Pathway

    PubMed Central

    Raju, Ramaswamy; Hajjou, Mustapha; Hill, Kristie R.; Botta, Vandana; Botta, Sisir

    1999-01-01

    Alphaviruses are mosquito-transmitted RNA viruses that cause important diseases in both humans and livestock. Sindbis virus (SIN), the type species of the alphavirus genus, carries a 11.7-kb positive-sense RNA genome which is capped at its 5′ end and polyadenylated at its 3′ end. The 3′ nontranslated region (3′NTR) of the SIN genome carries many AU-rich motifs, including a 19-nucleotide (nt) conserved element (3′CSE) and a poly(A) tail. This 3′CSE and the adjoining poly(A) tail are believed to regulate the synthesis of negative-sense RNA and genome replication in vivo. We have recently demonstrated that the SIN genome lacking the poly(A) tail was infectious and that de novo polyadenylation could occur in vivo (K. R. Hill, M. Hajjou, J. Hu, and R. Raju, J. Virol. 71:2693–2704, 1997). Here, we demonstrate that the 3′-terminal 29-nt region of the SIN genome carries a signal for possible cytoplasmic polyadenylation. To further investigate the polyadenylation signals within the 3′NTR, we generated a battery of mutant genomes with mutations in the 3′NTR and tested their ability to generate infectious virus and undergo 3′ polyadenylation in vivo. Engineered SIN genomes with terminal deletions within the 19-nt 3′CSE were infectious and regained their poly(A) tail. Also, a SIN genome carrying the poly(A) tail but lacking a part or the entire 19-nt 3′CSE was also infectious. Sequence analysis of viruses generated from these engineered SIN genomes demonstrated the addition of a variety of AU-rich sequence motifs just adjacent to the poly(A) tail. The addition of AU-rich motifs to the mutant SIN genomes appears to require the presence of a significant portion of the 3′NTR. These results indicate the ability of alphavirus RNAs to undergo 3′ repair and the existence of a pathway for the addition of AU-rich sequences and a poly(A) tail to their 3′ end in the infected host cell. Most importantly, these results indicate the ability of alphavirus

  16. Hypersaline Microbial Mat Lipid Biomarkers

    NASA Technical Reports Server (NTRS)

    Jahnke, Linda L.; Embaye, Tsegereda; Turk, Kendra A.; Summons, Roger E.

    2002-01-01

    Lipid biomarkers and compound specific isotopic abundances are powerful tools for studies of contemporary microbial ecosystems. Knowledge of the relationship of biomarkers to microbial physiology and community structure creates important links for understanding the nature of early organisms and paleoenvironments. Our recent work has focused on the hypersaline microbial mats in evaporation ponds at Guerrero Negro, Baja California Sur, Mexico. Specific biomarkers for diatoms, cyanobacteria, archaea, green nonsulfur (GNS), sulfate reducing, sulfur oxidizing and methanotrophic bacteria have been identified. Analyses of the ester-bound fatty acids indicate a highly diverse microbial community, dominated by photosynthetic organisms at the surface. The delta C-13 of cyanobacterial biomarkers such as the monomethylalkanes and hopanoids are consistent with the delta C-13 measured for bulk mat (-10%o), while a GNS biomarker, wax esters (WXE), suggests a more depleted delta C-13 for GNS biomass (-16%o). This isotopic relationship is different than that observed in mats at Octopus Spring, Yellowstone National Park (YSNP) where GNS appear to grow photoheterotrophic ally. WXE abundance, while relatively low, is most pronounced in an anaerobic zone just below the cyanobacterial layer. The WXE isotope composition at GN suggests that these bacteria utilize photoautotrophy incorporating dissolved inorganic carbon (DIC) via the 3-hydroxypropionate pathway using H2S or H2.

  17. Microbial field pilot study

    SciTech Connect

    Knapp, R.M.; McInerney, M.J.; Menzie, D.E.; Coates, J.D.; Chisholm, J.L.

    1993-05-01

    A multi-well microbially enhanced oil recovery field pilot has been performed in the Southeast Vassar Vertz Sand Unit in Payne County, Oklahoma. The primary emphasis of the experiment was preferential plugging of high permeability zones for the purpose of improving waterflood sweep efficiency. Studies were performed to determine reservoir chemistry, ecology, and indigenous bacteria populations. Growth experiments were used to select a nutrient system compatible with the reservoir that encouraged growth of a group of indigenous nitrate-using bacteria and inhibit growth of sulfate-reducing bacteria. A specific field pilot area behind an active line drive waterflood was selected. Surface facilities were designed and installed. Injection protocols of bulk nutrient materials were prepared to facilitate uniform distribution of nutrients within the pilot area. By the end of December, 1991, 82.5 tons (75.0 tonnes) of nutrients had been injected in the field. A tracer test identified significant heterogeneity in the SEVVSU and made it necessary to monitor additional production wells in the field. The tracer tests and changes in production behavior indicate the additional production wells monitored during the field trial were also affected. Eighty two and one half barrels (13.1 m[sup 3]) of tertiary oil have been recovered. Microbial activity has increased CO[sub 2] content as indicated by increased alkalinity. A temporary rise in sulfide concentration was experienced. These indicate an active microbial community was generated in the field by the nutrient injection. Pilot area interwell pressure interference test results showed that significant permeability reduction occurred. The interwell permeabilities in the pilot area between the injector and the three pilot production wells were made more uniform which indicates a successful preferential plugging enhanced oil recovery project.

  18. Microbial fuel cells: novel microbial physiologies and engineering approaches.

    PubMed

    Lovley, Derek R

    2006-06-01

    The possibility of generating electricity with microbial fuel cells has been recognized for some time, but practical applications have been slow to develop. The recent development of a microbial fuel cell that can harvest electricity from the organic matter stored in marine sediments has demonstrated the feasibility of producing useful amounts of electricity in remote environments. Further study of these systems has led to the discovery of microorganisms that conserve energy to support their growth by completely oxidizing organic compounds to carbon dioxide with direct electron transfer to electrodes. This suggests that self-sustaining microbial fuel cells that can effectively convert a diverse range of waste organic matter or renewable biomass to electricity are feasible. Significant progress has recently been made to increase the power output of systems designed to convert organic wastes to electricity, but substantial additional optimization will be required for large-scale electricity production.

  19. IMGMD: A platform for the integration and standardisation of In silico Microbial Genome-scale Metabolic Models.

    PubMed

    Ye, Chao; Xu, Nan; Dong, Chuan; Ye, Yuannong; Zou, Xuan; Chen, Xiulai; Guo, Fengbiao; Liu, Liming

    2017-04-07

    Genome-scale metabolic models (GSMMs) constitute a platform that combines genome sequences and detailed biochemical information to quantify microbial physiology at the system level. To improve the unity, integrity, correctness, and format of data in published GSMMs, a consensus IMGMD database was built in the LAMP (Linux + Apache + MySQL + PHP) system by integrating and standardizing 328 GSMMs constructed for 139 microorganisms. The IMGMD database can help microbial researchers download manually curated GSMMs, rapidly reconstruct standard GSMMs, design pathways, and identify metabolic targets for strategies on strain improvement. Moreover, the IMGMD database facilitates the integration of wet-lab and in silico data to gain an additional insight into microbial physiology. The IMGMD database is freely available, without any registration requirements, at http://imgmd.jiangnan.edu.cn/database.

  20. Widespread Occurrence of Secondary Lipid Biosynthesis Potential in Microbial Lineages

    PubMed Central

    Shulse, Christine N.; Allen, Eric E.

    2011-01-01

    Bacterial production of long-chain omega-3 polyunsaturated fatty acids (PUFAs), such as eicosapentaenoic acid (EPA, 20:5n-3) and docosahexaenoic acid (DHA, 22:6n-3), is constrained to a narrow subset of marine γ-proteobacteria. The genes responsible for de novo bacterial PUFA biosynthesis, designated pfaEABCD, encode large, multi-domain protein complexes akin to type I iterative fatty acid and polyketide synthases, herein referred to as “Pfa synthases”. In addition to the archetypal Pfa synthase gene products from marine bacteria, we have identified homologous type I FAS/PKS gene clusters in diverse microbial lineages spanning 45 genera representing 10 phyla, presumed to be involved in long-chain fatty acid biosynthesis. In total, 20 distinct types of gene clusters were identified. Collectively, we propose the designation of “secondary lipids” to describe these biosynthetic pathways and products, a proposition consistent with the “secondary metabolite” vernacular. Phylogenomic analysis reveals a high degree of functional conservation within distinct biosynthetic pathways. Incongruence between secondary lipid synthase functional clades and taxonomic group membership combined with the lack of orthologous gene clusters in closely related strains suggests horizontal gene transfer has contributed to the dissemination of specialized lipid biosynthetic activities across disparate microbial lineages. PMID:21629834

  1. Microbial diversity arising from thermodynamic constraints

    PubMed Central

    Großkopf, Tobias; Soyer, Orkun S

    2016-01-01

    The microbial world displays an immense taxonomic diversity. This diversity is manifested also in a multitude of metabolic pathways that can utilise different substrates and produce different products. Here, we propose that these observations directly link to thermodynamic constraints that inherently arise from the metabolic basis of microbial growth. We show that thermodynamic constraints can enable coexistence of microbes that utilise the same substrate but produce different end products. We find that this thermodynamics-driven emergence of diversity is most relevant for metabolic conversions with low free energy as seen for example under anaerobic conditions, where population dynamics is governed by thermodynamic effects rather than kinetic factors such as substrate uptake rates. These findings provide a general understanding of the microbial diversity based on the first principles of thermodynamics. As such they provide a thermodynamics-based framework for explaining the observed microbial diversity in different natural and synthetic environments. PMID:27035705

  2. Microbial synthetic biology for human therapeutics.

    PubMed

    Jain, Aastha; Bhatia, Pooja; Chugh, Archana

    2012-06-01

    The emerging field of synthetic biology holds tremendous potential for developing novel drugs to treat various human conditions. The current study discusses the scope of synthetic biology for human therapeutics via microbial approach. In this context, synthetic biology aims at designing, engineering and building new microbial synthetic cells that do not pre-exist in nature as well as re-engineer existing microbes for synthesis of therapeutic products. It is expected that the construction of novel microbial genetic circuitry for human therapeutics will greatly benefit from the data generated by 'omics' approaches and multidisciplinary nature of synthetic biology. Development of novel antimicrobial drugs and vaccines by engineering microbial systems are a promising area of research in the field of synthetic biology for human theragnostics. Expression of plant based medicinal compounds in the microbial system using synthetic biology tools is another avenue dealt in the present study. Additionally, the study suggest that the traditional medicinal knowledge can do value addition for developing novel drugs in the microbial systems using synthetic biology tools. The presented work envisions the success of synthetic biology for human therapeutics via microbial approach in a holistic manner. Keeping this in view, various legal and socio-ethical concerns emerging from the use of synthetic biology via microbial approach such as patenting, biosafety and biosecurity issues have been touched upon in the later sections.

  3. Potlining Additives

    SciTech Connect

    Rudolf Keller

    2004-08-10

    In this project, a concept to improve the performance of aluminum production cells by introducing potlining additives was examined and tested. Boron oxide was added to cathode blocks, and titanium was dissolved in the metal pool; this resulted in the formation of titanium diboride and caused the molten aluminum to wet the carbonaceous cathode surface. Such wetting reportedly leads to operational improvements and extended cell life. In addition, boron oxide suppresses cyanide formation. This final report presents and discusses the results of this project. Substantial economic benefits for the practical implementation of the technology are projected, especially for modern cells with graphitized blocks. For example, with an energy savings of about 5% and an increase in pot life from 1500 to 2500 days, a cost savings of $ 0.023 per pound of aluminum produced is projected for a 200 kA pot.

  4. Phosphazene additives

    DOEpatents

    Harrup, Mason K; Rollins, Harry W

    2013-11-26

    An additive comprising a phosphazene compound that has at least two reactive functional groups and at least one capping functional group bonded to phosphorus atoms of the phosphazene compound. One of the at least two reactive functional groups is configured to react with cellulose and the other of the at least two reactive functional groups is configured to react with a resin, such as an amine resin of a polycarboxylic acid resin. The at least one capping functional group is selected from the group consisting of a short chain ether group, an alkoxy group, or an aryloxy group. Also disclosed are an additive-resin admixture, a method of treating a wood product, and a wood product.

  5. Non-proteolytic functions of microbial proteases increase pathological complexity.

    PubMed

    Jarocki, Veronica M; Tacchi, Jessica L; Djordjevic, Steven P

    2015-03-01

    Proteases are enzymes that catalyse hydrolysis of peptide bonds thereby controlling the shape, size, function, composition, turnover and degradation of other proteins. In microbes, proteases are often identified as important virulence factors and as such have been targets for novel drug design. It is emerging that some proteases possess additional non-proteolytic functions that play important roles in host epithelia adhesion, tissue invasion and in modulating immune responses. These additional "moonlighting" functions have the potential to obfuscate data interpretation and have implications for therapeutic design. Moonlighting enzymes comprise a subcategory of multifunctional proteins that possess at least two distinct biological functions on a single polypeptide chain. Presently, identifying moonlighting proteins relies heavily on serendipitous empirical data with clues arising from proteins lacking signal peptides that are localised to the cell surface. Here, we describe examples of microbial proteases with additional non-proteolytic functions, including streptococcal pyrogenic exotoxin B, PepO and C5a peptidases, mycoplasmal aminopeptidases, mycobacterial chaperones and viral papain-like proteases. We explore how these non-proteolytic functions contribute to host cell adhesion, modulate the coagulation pathway, assist in non-covalent folding of proteins, participate in cell signalling, and increase substrate repertoire. We conclude by describing how proteomics has aided in moonlighting protein discovery, focusing attention on potential moonlighters in microbial exoproteomes.

  6. Determination of microbial carbon sources and cycling during remediation of petroleum hydrocarbon impacted soil using natural abundance (14)C analysis of PLFA.

    PubMed

    Cowie, Benjamin R; Greenberg, Bruce M; Slater, Gregory F

    2010-04-01

    In a petroleum impacted land-farm soil in Sarnia, Ontario, compound-specific natural abundance radiocarbon analysis identified biodegradation by the soil microbial community as a major pathway for hydrocarbon removal in a novel remediation system. During remediation of contaminated soils by a plant growth promoting rhizobacteria enhanced phytoremediation system (PEPS), the measured Delta(14)C of phospholipid fatty acid (PLFA) biomarkers ranged from -793 per thousand to -897 per thousand, directly demonstrating microbial uptake and utilization of petroleum hydrocarbons (Delta(14)C(PHC) = -1000 per thousand). Isotopic mass balance indicated that more than 80% of microbial PLFA carbon was derived from petroleum hydrocarbons (PHC) and a maximum of 20% was obtained from metabolism of more modern carbon sources. These PLFA from the contaminated soils were the most (14)C-depleted biomarkers ever measured for an in situ environmental system, and this study demonstrated that the microbial community in this soil was subsisting primarily on petroleum hydrocarbons. In contrast, the microbial community in a nearby uncontaminated control soil maintained a more modern Delta(14)C signature than total organic carbon (Delta(14)C(PLFA) = +36 per thousand to -147 per thousand, Delta(14)C(TOC) = -148 per thousand), indicating preferential consumption of the most modern plant-derived fraction of soil organic carbon. Measurements of delta(13)C and Delta(14)C of soil CO(2) additionally demonstrated that mineralization of PHC contributed to soil CO(2) at the contaminated site. The CO(2) in the uncontaminated control soil exhibited substantially more modern Delta(14)C values, and lower soil CO(2) concentrations than the contaminated soils, suggesting increased rates of soil respiration in the contaminated soils. In combination, these results demonstrated that biodegradation in the soil microbial community was a primary pathway of petroleum hydrocarbon removal in the PEPS system. This study

  7. Growing Rocks: Implications of Lithification for Microbial Communities and Nutrient Cycling

    NASA Astrophysics Data System (ADS)

    Corman, J. R.; Poret-Peterson, A. T.; Elser, J. J.

    2014-12-01

    Lithifying microbial communities ("microbialites") have left their signature on Earth's rock record for over 3.4 billion years and are regarded as important players in paleo-biogeochemical cycles. In this project, we study extant microbialites to understand the interactions between lithification and resource availability. All microbes need nutrients and energy for growth; indeed, nutrients are often a factor limiting microbial growth. We hypothesize that calcium carbonate deposition can sequester bioavailable phosphorus (P) and expect the growth of microbialites to be P-limited. To test our hypothesis, we first compared nutrient limitation in lithifying and non-lithifying microbial communities in Río Mesquites, Cuatro Ciénegas. Then, we experimentally manipulated calcification rates in the Río Mesquites microbialites. Our results suggest that lithifying microbialites are indeed P-limited, while non-lithifying, benthic microbial communities tend towards co-limitation by nitrogen (N) and P. Indeed, in microbialites, photosynthesis and aerobic respiration responded positively to P additions (P<0.05). Organic carbon (OC) additions caused shifts in bacterial community composition based on analysis of 16S rRNA genes. Unexpectedly, calcification rates increased with OC additions (P<0.05), but not with P additions, suggesting that sulfate reduction may be an important pathway for calcification. Experimental reductions in calcification rates caused changes to microbial biomass OC and P concentrations (P<0.01 and P<0.001, respectively), although shifts depended on whether calcification was decreased abiotically or biotically. These results show that resource availability does influence microbialite formation and that lithification may promote phosphorus limitation; however, further investigation is required to understand the mechanism by which the later occurs.

  8. Natural Microbial Assemblages Reflect Distinct Organismal and Functional Partitioning

    NASA Astrophysics Data System (ADS)

    Wilmes, P.; Andersson, A.; Kalnejais, L. H.; Verberkmoes, N. C.; Lefsrud, M. G.; Wexler, M.; Singer, S. W.; Shah, M.; Bond, P. L.; Thelen, M. P.; Hettich, R. L.; Banfield, J. F.

    2007-12-01

    The ability to link microbial community structure to function has long been a primary focus of environmental microbiology. With the advent of community genomic and proteomic techniques, along with advances in microscopic imaging techniques, it is now possible to gain insights into the organismal and functional makeup of microbial communities. Biofilms growing within highly acidic solutions inside the Richmond Mine (Iron Mountain, Redding, California) exhibit distinct macro- and microscopic morphologies. They are composed of microorganisms belonging to the three domains of life, including archaea, bacteria and eukarya. The proportion of each organismal type depends on sampling location and developmental stage. For example, mature biofilms floating on top of acid mine drainage (AMD) pools exhibit layers consisting of a densely packed bottom layer of the chemoautolithotroph Leptospirillum group II, a less dense top layer composed mainly of archaea, and fungal filaments spanning across the entire biofilm. The expression of cytochrome 579 (the most highly abundant protein in the biofilm, believed to be central to iron oxidation and encoded by Leptospirillum group II) is localized at the interface of the biofilm with the AMD solution, highlighting that biofilm architecture is reflected at the functional gene expression level. Distinct functional partitioning is also apparent in a biological wastewater treatment system that selects for distinct polyphosphate accumulating organisms. Community genomic data from " Candidatus Accumulibacter phosphatis" dominated activated sludge has enabled high mass-accuracy shotgun proteomics for identification of key metabolic pathways. Comprehensive genome-wide alignment of orthologous proteins suggests distinct partitioning of protein variants involved in both core-metabolism and specific metabolic pathways among the dominant population and closely related species. In addition, strain- resolved proteogenomic analysis of the AMD biofilms

  9. (Micro)morphological, inorganic-organic isotope geochemisty and microbial populations in endostromatolites (cf. fissure calcretes), Haughton impact structure, Devon Island, Canada: The influence of geochemical pathways on the preservation of isotope biomarkers

    NASA Astrophysics Data System (ADS)

    Lacelle, Denis; Pellerin, André; Clark, Ian D.; Lauriol, Bernard; Fortin, Danielle

    2009-05-01

    Endostromatolites (cf. fissure calcretes), which possess microbial evidence for a biogenic origin, are also thought to preserve isotopic biosignatures. In this study, a multi-proxy approach combining (micro)morphological, geochemical and isotopic analyses of middle Holocene age endostromatolites within sub-horizontal fissures in dolomitic limestone outcrops in the Haughton impact crater region (Devon Island, NU) was used to determine their origin (abiotic versus biogenic) and to identify potential isotope biosignatures. The micro-morphologies of the endostromatolites revealed some structures typical of a physico-chemical origin, whereas the presence of rod-shape particles and filamentous structures was more reminiscent of biologically-induced forms. The endostromatolites have δ13C and δ18O compositions reaching maximum values of 7.2‰ and - 11.2‰, respectively. Positive relations between the elemental (Mg, Sr) and isotopic ( δ18O and δ13C) composition of the endostromatolites are indicative of an evaporative enrichment process of the meteoric water infiltrating the fissures prior to calcite precipitation. However, the positive δ13C TOC- δ13C CaCO3 relation in the endostromatolites is strongly indicative that they were microbially-mediated. In support of a microbial origin, mostly aerobic heterotrophic bacteria that have been linked to both carbonate dissolution and mineralization were observed in the microbial diversity of the endostromatolites. However, the results are inconclusive to attribute the formation of the endostromatolites solely to a biologically-induced mineralization, but instead, favor a more complex origin that involved abiotic (evaporation), and to some extent, biological processes prior to and during calcite precipitation. Considering that the endostromatolites result from microbially-influenced mineralization, the effects of physico-chemical processes on the geochemical and isotopic composition of the endostromatolites were much greater

  10. Repeated Anaerobic Microbial Redox Cycling of Iron▿†

    PubMed Central

    Coby, Aaron J.; Picardal, Flynn; Shelobolina, Evgenya; Xu, Huifang; Roden, Eric E.

    2011-01-01

    Some nitrate- and Fe(III)-reducing microorganisms are capable of oxidizing Fe(II) with nitrate as the electron acceptor. This enzymatic pathway may facilitate the development of anaerobic microbial communities that take advantage of the energy available during Fe-N redox oscillations. We examined this phenomenon in synthetic Fe(III) oxide (nanocrystalline goethite) suspensions inoculated with microflora from freshwater river floodplain sediments. Nitrate and acetate were added at alternate intervals in order to induce repeated cycles of microbial Fe(III) reduction and nitrate-dependent Fe(II) oxidation. Addition of nitrate to reduced, acetate-depleted suspensions resulted in rapid Fe(II) oxidation and accumulation of ammonium. High-resolution transmission electron microscopic analysis of material from Fe redox cycling reactors showed amorphous coatings on the goethite nanocrystals that were not observed in reactors operated under strictly nitrate- or Fe(III)-reducing conditions. Microbial communities associated with N and Fe redox metabolism were assessed using a combination of most-probable-number enumerations and 16S rRNA gene analysis. The nitrate-reducing and Fe(III)-reducing cultures were dominated by denitrifying Betaproteobacteria (e.g., Dechloromonas) and Fe(III)-reducing Deltaproteobacteria (Geobacter), respectively; these same taxa were dominant in the Fe cycling cultures. The combined chemical and microbiological data suggest that both Geobacter and various Betaproteobacteria participated in nitrate-dependent Fe(II) oxidation in the cycling cultures. Microbially driven Fe-N redox cycling may have important consequences for both the fate of N and the abundance and reactivity of Fe(III) oxides in sediments. PMID:21742920

  11. Microbial inoculant carrier for pesticide degradation

    SciTech Connect

    Zhixing, Y.; Velagaleti, R.; Gorman, M.

    1995-12-31

    Biological degradation of pesticides may be enhanced by using a suitable carrier that sustains microbial growth. The char matrix (TRB Char) was evaluated as a biocarrier, and is produced by three sequential cocurrent gasifications of coal. The nature of TRB Char and the large pores provides an ideal matrix for mixing, drying, and retaining liquid wastes. The macropore structure of TRB Char is also ideal for microbial growth. Plate counts were conducted to monitor the extent of microbial growth following 20 and 504 hours of growth. Additionally, electron micrograph scans showed location of microbial growth on the char particle. By 21 days 10{sup 8} colony forming units per gram of bacteria had grown. The electron micrographs showed that the macropore structure of TRB Char is an ideal shelter for microbial growth throughout the char particle. TRB Char could serve as a biocarrier for pesticide degradation.

  12. Microbial biofilms: biosurfactants as antibiofilm agents.

    PubMed

    Banat, Ibrahim M; De Rienzo, Mayri A Díaz; Quinn, Gerry A

    2014-12-01

    Current microbial inhibition strategies based on planktonic bacterial physiology have been known to have limited efficacy on the growth of biofilm communities. This problem can be exacerbated by the emergence of increasingly resistant clinical strains. All aspects of biofilm measurement, monitoring, dispersal, control, and inhibition are becoming issues of increasing importance. Biosurfactants have merited renewed interest in both clinical and hygienic sectors due to their potential to disperse microbial biofilms in addition to many other advantages. The dispersal properties of biosurfactants have been shown to rival those of conventional inhibitory agents against bacterial and yeast biofilms. This makes them suitable candidates for use in new generations of microbial dispersal agents and for use as adjuvants for existing microbial suppression or eradication strategies. In this review, we explore aspects of biofilm characteristics and examine the contribution of biologically derived surface-active agents (biosurfactants) to the disruption or inhibition of microbial biofilms.

  13. Microbial oxidation of dimethylnaphthalene isomers

    SciTech Connect

    Miyachi, Nobuya; Tanaka, Tohru; Suzuki, Takaya; Hotta, Yasushi ); Omori, Toshio )

    1993-05-01

    Few studies have focused on the microbial oxidation and metabolism of dimethylnaphthalenes (DMNs), which are supplied from the light oil fraction of crude oil. This report describes the isolation of 2,6-DMN-utilizing bacteria, the identification of the isolates (Alcaligenes sp. strain D-59, Pseudomonas sp. strains D-87 and D-186), the accumulation of 2,6-naphthalene dicarboxylic acid (NDCA) from 2,6-DMN, the identification of some metabolic intermediates of 2,6-DMN, and a proposal of a metabolic pathway of 2,6-DMN. 11 refs., 2 figs.

  14. Microbial Synthesis of Alka(e)nes

    PubMed Central

    Wang, Weihua; Lu, Xuefeng

    2013-01-01

    Alka(e)nes are the predominant constituents of gasoline, diesel, and jet fuels. They can be produced naturally by a wide range of microorganisms. Bio-alka(e)nes can be used as drop-in biofuels. To date, five microbial pathways that convert free fatty acids or fatty acid derivatives into alka(e)nes have been identified or reconstituted. The discoveries open a door to achieve microbial production of alka(e)nes with high efficiency. The modules derived from these alka(e)ne biosynthetic pathways can be assembled as biological parts and synthetic biology strategies can be employed to optimize the metabolic pathways and improve alka(e)ne production. PMID:25023719

  15. Why should cell biologists study microbial pathogens?

    PubMed

    Welch, Matthew D

    2015-12-01

    One quarter of all deaths worldwide each year result from infectious diseases caused by microbial pathogens. Pathogens infect and cause disease by producing virulence factors that target host cell molecules. Studying how virulence factors target host cells has revealed fundamental principles of cell biology. These include important advances in our understanding of the cytoskeleton, organelles and membrane-trafficking intermediates, signal transduction pathways, cell cycle regulators, the organelle/protein recycling machinery, and cell-death pathways. Such studies have also revealed cellular pathways crucial for the immune response. Discoveries from basic research on the cell biology of pathogenesis are actively being translated into the development of host-targeted therapies to treat infectious diseases. Thus there are many reasons for cell biologists to incorporate the study of microbial pathogens into their research programs.

  16. Harnessing Yeast Peroxisomes for Biosynthesis of Fatty-Acid-Derived Biofuels and Chemicals with Relieved Side-Pathway Competition.

    PubMed

    Zhou, Yongjin J; Buijs, Nicolaas A; Zhu, Zhiwei; Gómez, Diego Orol; Boonsombuti, Akarin; Siewers, Verena; Nielsen, Jens

    2016-11-30

    Establishing efficient synthetic pathways for microbial production of biochemicals is often hampered by competing pathways and/or insufficient precursor supply. Compartmentalization in cellular organelles can isolate synthetic pathways from competing pathways, and provide a compact and suitable environment for biosynthesis. Peroxisomes are cellular organelles where fatty acids are degraded, a process that is inhibited under typical fermentation conditions making them an interesting workhouse for production of fatty-acid-derived molecules. Here, we show that targeting synthetic pathways to peroxisomes can increase the production of fatty-acid-derived fatty alcohols, alkanes and olefins up to 700%. In addition, we demonstrate that biosynthesis of these chemicals in the peroxisomes results in significantly decreased accumulation of byproducts formed by competing enzymes. We further demonstrate that production can be enhanced up to 3-fold by increasing the peroxisome population. The strategies described here could be used for production of other chemicals, especially acyl-CoA-derived molecules.

  17. Microbial response to triepthylphosphate

    SciTech Connect

    Hazen, T.C.; Santo Domingo, J.W.; Berry, C.J.

    1997-05-01

    The effect of triethylphosphate (TEP) on the activity of a landfill aquifer microbial community was evaluated using standard techniques and in situ hybridizations with phylogenetic probes. Benzene was used as an external carbon source to monitor degradation of an aromatic compound in TEP amended microcosms. Microscopical and viable counts were higher in TEP containing microcosms when compared to unamended controls. A significant increase in metabolic activity was also observed for TEP amended samples as determined by the number of cells hybridizing to an eubacterial probe. In addition, the number of beta and gamma Proteobacteria increased from undetectable levels prior to the study to 15-29% of the total bacteria in microcosms containing TEP and benzene. In these microcosms, nearly 40% of the benzene was degraded during the incubation period compared to less than 5% in unamended microcosms. While TEP has previously been used as an alternate phosphate source in the bioremediation of chlorinated aliphatics, this study shows that it can also stimulate the microbial degradation of aromatics in phosphate limited aquifers.

  18. Shotgun metagenomic analysis of metabolic diversity and microbial community structure in experimental vernal pools subjected to nitrate pulse

    PubMed Central

    2013-01-01

    Background Human activities have greatly increased nitrogen (N) levels in natural habitats through atmospheric N deposition and nutrient leaching, which can have large effects on N cycling and other ecosystem processes. Because of the significant role microorganisms play in N cycling, high inputs of nitrogenous compounds, such as nitrate (NO3-), into natural ecosystems could have cascading effects on microbial community structure and the metabolic processes that microbes perform. To investigate the multiple effects of NO3- pollution on microbial communities, we created two shotgun metagenomes from vernal pool microcosms that were either enriched with a solution of 10 mg NO3--N (+NO3-) or received distilled water as a control (−N). Results After only 20 hours of exposure to NO3-, the initial microbial community had shifted toward one containing a higher proportional abundance of stress tolerance and fermentation environmental gene tags (EGTs). Surprisingly, we found no changes to N metabolism EGTs, even though large shifts in denitrification rates were seen between the +NO3- and –N microcosms. Thus, in the absence of NO3- addition, it is plausible that the microbes used other respiratory pathways for energy. Respiratory pathways involving iron may have been particularly important in our –N microcosms, since iron acquisition EGTs were proportionally higher in the –N metagenome. Additionally, we noted a proportional increase in Acidobacteria and Alphaproteobacteria EGTs in response to NO3- addition. These community shifts in were not evident with TRFLP, suggesting that metagenomic analyses may detect fine-scale changes not possible with community profiling techniques. Conclusions Our results suggest that the vernal pool microbial communities profiled here may rely on their metabolic plasticity for growth and survival when certain resources are limiting. The creation of these metagenomes also highlights how little is known about the effects of NO3

  19. Microbial Engineering for Aldehyde Synthesis

    PubMed Central

    Kunjapur, Aditya M.

    2015-01-01

    Aldehydes are a class of chemicals with many industrial uses. Several aldehydes are responsible for flavors and fragrances present in plants, but aldehydes are not known to accumulate in most natural microorganisms. In many cases, microbial production of aldehydes presents an attractive alternative to extraction from plants or chemical synthesis. During the past 2 decades, a variety of aldehyde biosynthetic enzymes have undergone detailed characterization. Although metabolic pathways that result in alcohol synthesis via aldehyde intermediates were long known, only recent investigations in model microbes such as Escherichia coli have succeeded in minimizing the rapid endogenous conversion of aldehydes into their corresponding alcohols. Such efforts have provided a foundation for microbial aldehyde synthesis and broader utilization of aldehydes as intermediates for other synthetically challenging biochemical classes. However, aldehyde toxicity imposes a practical limit on achievable aldehyde titers and remains an issue of academic and commercial interest. In this minireview, we summarize published efforts of microbial engineering for aldehyde synthesis, with an emphasis on de novo synthesis, engineered aldehyde accumulation in E. coli, and the challenge of aldehyde toxicity. PMID:25576610

  20. Diet and Gut Microbial Function in Metabolic and Cardiovascular Disease Risk

    PubMed Central

    Meyer, Katie A.; Bennett, Brian J.

    2017-01-01

    Over the past decade, the gut microbiome has emerged as a novel and largely untapped source of variability for metabolic and cardiovascular disease risk, including diabetes. Animal and human studies support several possible pathways through which the gut microbiome may impact health, including the production of health-related metabolites from dietary sources. Diet is considered important to shaping the gut microbiota; in addition, gut microbiota influence the metabolism of many dietary components. In the present paper, we address the distinction between compositional and functional analysis of the gut microbiota. We focus on literature that highlights the value of moving beyond surveys of microbial composition to measuring gut microbial functioning to delineate mechanisms related to the interplay between diet and gut microbiota in cardiometabolic health. PMID:27541295

  1. Diet and Gut Microbial Function in Metabolic and Cardiovascular Disease Risk.

    PubMed

    Meyer, Katie A; Bennett, Brian J

    2016-10-01

    Over the past decade, the gut microbiome has emerged as a novel and largely unexplored source of variability for metabolic and cardiovascular disease risk, including diabetes. Animal and human studies support several possible pathways through which the gut microbiome may impact health, including the production of health-related metabolites from dietary sources. Diet is considered important to shaping the gut microbiota; in addition, gut microbiota influence the metabolism of many dietary components. In the present paper, we address the distinction between compositional and functional analysis of the gut microbiota. We focus on literature that highlights the value of moving beyond surveys of microbial composition to measuring gut microbial functioning to delineate mechanisms related to the interplay between diet and gut microbiota in cardiometabolic health.

  2. Microbial carbon mineralization in tropical lowland and montane forest soils of Peru

    PubMed Central

    Whitaker, Jeanette; Ostle, Nicholas; McNamara, Niall P.; Nottingham, Andrew T.; Stott, Andrew W.; Bardgett, Richard D.; Salinas, Norma; Ccahuana, Adan J. Q.; Meir, Patrick

    2014-01-01

    Climate change is affecting the amount and complexity of plant inputs to tropical forest soils. This is likely to influence the carbon (C) balance of these ecosystems by altering decomposition processes e.g., “positive priming effects” that accelerate soil organic matter mineralization. However, the mechanisms determining the magnitude of priming effects are poorly understood. We investigated potential mechanisms by adding 13C labeled substrates, as surrogates of plant inputs, to soils from an elevation gradient of tropical lowland and montane forests. We hypothesized that priming effects would increase with elevation due to increasing microbial nitrogen limitation, and that microbial community composition would strongly influence the magnitude of priming effects. Quantifying the sources of respired C (substrate or soil organic matter) in response to substrate addition revealed no consistent patterns in priming effects with elevation. Instead we found that substrate quality (complexity and nitrogen content) was the dominant factor controlling priming effects. For example a nitrogenous substrate induced a large increase in soil organic matter mineralization whilst a complex C substrate caused negligible change. Differences in the functional capacity of specific microbial groups, rather than microbial community composition per se, were responsible for these substrate-driven differences in priming effects. Our findings suggest that the microbial pathways by which plant inputs and soil organic matter are mineralized are determined primarily by the quality of plant inputs and the functional capacity of microbial taxa, rather than the abiotic properties of the soil. Changes in the complexity and stoichiometry of plant inputs to soil in response to climate change may therefore be important in regulating soil C dynamics in tropical forest soils. PMID:25566230

  3. Microbial carbon mineralization in tropical lowland and montane forest soils of Peru.

    PubMed

    Whitaker, Jeanette; Ostle, Nicholas; McNamara, Niall P; Nottingham, Andrew T; Stott, Andrew W; Bardgett, Richard D; Salinas, Norma; Ccahuana, Adan J Q; Meir, Patrick

    2014-01-01

    Climate change is affecting the amount and complexity of plant inputs to tropical forest soils. This is likely to influence the carbon (C) balance of these ecosystems by altering decomposition processes e.g., "positive priming effects" that accelerate soil organic matter mineralization. However, the mechanisms determining the magnitude of priming effects are poorly understood. We investigated potential mechanisms by adding (13)C labeled substrates, as surrogates of plant inputs, to soils from an elevation gradient of tropical lowland and montane forests. We hypothesized that priming effects would increase with elevation due to increasing microbial nitrogen limitation, and that microbial community composition would strongly influence the magnitude of priming effects. Quantifying the sources of respired C (substrate or soil organic matter) in response to substrate addition revealed no consistent patterns in priming effects with elevation. Instead we found that substrate quality (complexity and nitrogen content) was the dominant factor controlling priming effects. For example a nitrogenous substrate induced a large increase in soil organic matter mineralization whilst a complex C substrate caused negligible change. Differences in the functional capacity of specific microbial groups, rather than microbial community composition per se, were responsible for these substrate-driven differences in priming effects. Our findings suggest that the microbial pathways by which plant inputs and soil organic matter are mineralized are determined primarily by the quality of plant inputs and the functional capacity of microbial taxa, rather than the abiotic properties of the soil. Changes in the complexity and stoichiometry of plant inputs to soil in response to climate change may therefore be important in regulating soil C dynamics in tropical forest soils.

  4. Pyrogenic organic matter can alter microbial communication

    NASA Astrophysics Data System (ADS)

    Masiello, Caroline; Gao, Xiaodong; Cheng, Hsiao-Ying; Silberg, Jonathan

    2016-04-01

    Soil microbes communicate with each other to manage a large range of processes that occur more efficiently when microbes are able to act simultaneously. This coordination occurs through the continuous production of signaling compounds that are easily diffused into and out of cells. As the number of microbes in a localized environment increases, the internal cellular concentration of these signaling compounds increases, and when a threshold concentration is reached, gene expression shifts, leading to altered (and coordinated) microbial behaviors. Many of these coordinated behaviors have biogeochemically important outcomes. For example, methanogenesis, denitrification, biofilm formation, and the development of plant-rhizobial symbioses are all regulated by a simple class of cell-cell signaling molecules known as acyl homoserine lactones (AHLs). Pyrogenic organic matter in soils can act to disrupt microbial communication through multiple pathways. In the case of AHLs, charcoal's very high surface area can sorb these signaling compounds, preventing microbes from detecting each others' presence (Masiello et al., 2014). In addition, the lactone ring in AHLs is vulnerable to pH increases accompanying PyOM inputs, with soil pH values higher than 7-8 leading to ring opening and compound destabilization. Different microbes use different classes of signaling compounds, and not all microbial signaling compounds are pH-vulnerable. This implies that PyOM-driven pH increases may trigger differential outcomes for Gram negative bacteria vs fungi, for example. A charcoal-driven reduction in microbes' ability to detect cell-cell communication compounds may lead to a shift in the ability of microbes to participate in key steps of C and N cycling. For example, an increase in an archaeon-specific AHL has been shown to lead to a cascade of metabolic processes that eventually results in the upregulation of CH4 production (Zhang et al., 2012). Alterations in similar AHL compounds leads to

  5. Understanding Microbial Divisions of Labor

    PubMed Central

    Zhang, Zheren; Claessen, Dennis; Rozen, Daniel E.

    2016-01-01

    Divisions of labor are ubiquitous in nature and can be found at nearly every level of biological organization, from the individuals of a shared society to the cells of a single multicellular organism. Many different types of microbes have also evolved a division of labor among its colony members. Here we review several examples of microbial divisions of labor, including cases from both multicellular and unicellular microbes. We first discuss evolutionary arguments, derived from kin selection, that allow divisions of labor to be maintained in the face of non-cooperative cheater cells. Next we examine the widespread natural variation within species in their expression of divisions of labor and compare this to the idea of optimal caste ratios in social insects. We highlight gaps in our understanding of microbial caste ratios and argue for a shift in emphasis from understanding the maintenance of divisions of labor, generally, to instead focusing on its specific ecological benefits for microbial genotypes and colonies. Thus, in addition to the canonical divisions of labor between, e.g., reproductive and vegetative tasks, we may also anticipate divisions of labor to evolve to reduce the costly production of secondary metabolites or secreted enzymes, ideas we consider in the context of streptomycetes. The study of microbial divisions of labor offers opportunities for new experimental and molecular insights across both well-studied and novel model systems. PMID:28066387

  6. Towards a Microbial Thermoelectric Cell

    PubMed Central

    Rodríguez-Barreiro, Raúl; Abendroth, Christian; Vilanova, Cristina; Moya, Andrés; Porcar, Manuel

    2013-01-01

    Microbial growth is an exothermic process. Biotechnological industries produce large amounts of heat, usually considered an undesirable by-product. In this work, we report the construction and characterization of the first microbial thermoelectric cell (MTC), in which the metabolic heat produced by a thermally insulated microbial culture is partially converted into electricity through a thermoelectric device optimized for low ΔT values. A temperature of 41°C and net electric voltage of around 250–600 mV was achieved with 1.7 L baker’s yeast culture. This is the first time microbial metabolic energy has been converted into electricity with an ad hoc thermoelectric device. These results might contribute towards developing a novel strategy to harvest excess heat in the biotechnology industry, in processes such as ethanol fermentation, auto thermal aerobic digestion (ATAD) or bioremediation, which could be coupled with MTCs in a single unit to produce electricity as a valuable by-product of the primary biotechnological product. Additionally, we propose that small portable MTCs could be conceived and inoculated with suitable thermophilic of hyperthermophilic starter cultures and used for powering small electric devices. PMID:23468862

  7. Microbial metabolic engineering for L-threonine production.

    PubMed

    Dong, Xunyan; Quinn, Peter J; Wang, Xiaoyuan

    2012-01-01

    L-threonine, one of the three major amino acids produced throughout the world, has a wide application in industry, as an additive or as a precursor for the biosynthesis of other chemicals. It is predominantly produced through microbial fermentation the efficiency of which largely depends on the quality of strains. Metabolic engineering based on a cogent understanding of the metabolic pathways of L-threonine biosynthesis and regulation provides an effective alternative to the traditional breeding for strain development. Continuing efforts have been made in revealing the mechanisms and regulation of L-threonine producing strains, as well as in metabolic engineering of suitable organisms whereby genetically-defined, industrially competitive L-threonine producing strains have been successfully constructed. This review focuses on the global metabolic and regulatory networks responsible for L-threonine biosynthesis, the molecular mechanisms of regulation, and the strategies employed in strain engineering.

  8. Microbial conversion of glycerol to 1,3-propanediol

    SciTech Connect

    Zeng, A.P.; Biebl, H.; Deckwer, W.D.

    1996-10-01

    Glycerol is a byproduct from the soap and detergent industry and possibly from future biodiesel plants. The conversion of glycerol to 1,3-propanediol (PD) is of industrial interest due to the potential use of PD for the synthesis of polyesters. We have been studying the microbial conversion of glycerol to PD with work ranging from strain isolation, medium optimization, pathway analysis, product formation kinetics and growth modeling, downstream processing and reactor scale-up (up to 2000 1). PD yields of nearly 100% of the theoretical maximum (0.72 mol/mol glycerol) and final product concentrations of about 65 g/l were achieved with both Klebsiella pneumoniae and Clostridium butyricum. In addition to summarizing our experimental results the advances of bioconversion of glycerol will be reviewed in this presentation, with emphasis on discussing further research and development needs in this area. Results of process engineering and cost analysis will also be presented.

  9. Key Concepts in Microbial Oceanography

    NASA Astrophysics Data System (ADS)

    Bruno, B. C.; Achilles, K.; Walker, G.; Weersing, K.; Team, A

    2008-12-01

    The Center for Microbial Oceanography: Research and Education (C-MORE) is a multi-institution Science and Technology Center, established by the National Science Foundation in 2006. C-MORE's research mission is to facilitate a more comprehensive understanding of the diverse assemblages of microorganisms in the sea, ranging from the genetic basis of marine microbial biogeochemistry including the metabolic regulation and environmental controls of gene expression, to the processes that underpin the fluxes of carbon, related bioelements, and energy in the marine environment. The C-MORE education and outreach program is focused on increasing scientific literacy in microbial oceanography among students, educators, and the general public. A first step toward this goal is defining the key concepts that constitute microbial oceanography. After lengthy discussions with scientists and educators, both within and outside C-MORE, we have arrived at six key concepts: 1) Marine microbes are very small and have been around for a long time; 2) Life on Earth could not exist without microbes; 3) Most marine microbes are beneficial; 4) Microbes are everywhere: they are extremely abundant and diverse; 5) Microbes significantly impact our global climate; and 6) There are new discoveries every day in the field of microbial oceanography. A C-MORE-produced brochure on these six key concepts will be distributed at the meeting. Advanced copies may be requested by email or downloaded from the C-MORE web site(http://cmore.soest.hawaii.edu/downloads/MO_key_concepts_hi-res.pdf). This brochure also includes information on career pathways in microbial oceanography, with the aim of broadening participation in the field. C-MORE is eager to work in partnership to incorporate these key concepts into other science literacy publications, particularly those involving ocean and climate literacy. We thank the following contributors and reviewers: P Chisholm, A Dolberry, and A Thompson (MIT); N Lawrence

  10. Carbon isotope discrepancy between precambrian stromatolites and their modern analogs: Inferences from hypersaline microbial mats of the sinai coast

    NASA Astrophysics Data System (ADS)

    Schidlowski, Manfred

    1985-12-01

    The isotopic composition of organic carbon from extant stromatolite-type microbial ecosystems is commonly slanted toward heavy δ13 C values as compared to respective compositions of average organic matter (including that from Precambrian stromatolites). This seems the more enigmatic as the bulk of primary producers from benthic microbial communities are known to fix carbon via the C3 pathway normally entailing the sizable fractionations of the RuBP carboxylase reaction. There is reason to believe that the small fractionations displayed by aquatic microorganisms result from the limitations of a diffusion-controlled assimilatory pathway in which the isotope effect of the enzymatic reaction is largely suppressed. Apart from the diffusion-control exercised by the aqueous environment, transport of CO2 to the photosynthetically active sites will be further impeded by the protective slime (polysaccharide) coatings commonly covering microbial mats in which gas diffusivities are extremely low. Ineffective discrimination against13C becomes, however, most pronounced in hypersaline environments where substantially reduced CO2 solubilities tend to push carbon into the role of a limiting nutrient (brine habitats constitute preferential sanctuaries of mat-forming microbenthos since the emergence of Metazoan grazers ˜ 0.7 Ga ago). As the same microbial communities had been free to colonize normal marine environments during the Precambrian, the CO2 concentration effect was irrelevant to the carbon-fixing pathway of these ancient forms. Therefore, it might not surprise that organic matter from Precambrian stromatolites displays the large fractionations commonly associated with C3 photosynthesis. Increased mixing ratios of CO2 in the Precambrian atmosphere may have additionally contributed to the elimination of the diffusion barrier in the carbon-fixing pathways of ancient mat-forming microbiota.

  11. Oxidation state, bioavailability & biochemical pathway define the fate of carbon in soil

    NASA Astrophysics Data System (ADS)

    Kuzyakov, Yakov; Apostel, Carolin; Gunina, Anna; Herrmann, Anke M.; Dippold, Michaela

    2015-04-01

    Numerous experiments under laboratory and field conditions analyzed microbial utilization and mean residence time (MRT) of carbon (C) from plant and microbial residues as well as root exudates in soil. Most of these studies tested the effects of various environmental factors, such as temperature, soil moisture, texture etc. on these parameters. However, only a few studies compared the properties of the substances themselves and there is no conceptual framework based on biochemical pathways. We hypothesize that the fate of C from organic substances in soil strongly depends on the first step of their microbial utilization, specifically, on biochemical pathway and initial C oxidation state, as well as its bioavailability in soils, defined by its hydrophobicity and molecular weight. Here we introduce and evaluate a new conceptual framework based on the following parameters: 1) C oxidation state, 2) molecular weight and hydrophobicity, 3) initial biochemical pathway of a substance class in microbial cells. To assess these parameters, two databases were prepared based on the literature and own studies. The first database included only the studies with 14C or 13C position specific labeled sugars, amino acids, carboxylic acids, phenols and lipids in soil. This database allowed us to analyze microbial utilization and mineralization of organics to CO2 depending on their C oxidation state (OS) and on functional groups. Additionally, we calculated data on the bond electronegativity of all compounds investigated in these studies. The second data base included the results of 14C and 13C studies with uniformly labeled substances of various classes. This database considered the free enthalpie (Delta H) per C unit from a variety of substrates differing in their aromaticity, hydrophobicity/electronegativity and location of the substance on the van Krevelen diagram. In addition, we calculated the hydrophobicity from the electronegativity of the individual bonds and recorded their

  12. Trace Metal Requirements for Microbial Enzymes Involved in the Production and Consumption of Methane and Nitrous Oxide

    PubMed Central

    Glass, Jennifer B.; Orphan, Victoria J.

    2011-01-01

    Fluxes of greenhouse gases to the atmosphere are heavily influenced by microbiological activity. Microbial enzymes involved in the production and consumption of greenhouse gases often contain metal cofactors. While extensive research has examined the influence of Fe bioavailability on microbial CO2 cycling, fewer studies have explored metal requirements for microbial production and consumption of the second- and third-most abundant greenhouse gases, methane (CH4), and nitrous oxide (N2O). Here we review the current state of biochemical, physiological, and environmental research on transition metal requirements for microbial CH4 and N2O cycling. Methanogenic archaea require large amounts of Fe, Ni, and Co (and some Mo/W and Zn). Low bioavailability of Fe, Ni, and Co limits methanogenesis in pure and mixed cultures and environmental studies. Anaerobic methane oxidation by anaerobic methanotrophic archaea (ANME) likely occurs via reverse methanogenesis since ANME possess most of the enzymes in the methanogenic pathway. Aerobic CH4 oxidation uses Cu or Fe for the first step depending on Cu availability, and additional Fe, Cu, and Mo for later steps. N2O production via classical anaerobic denitrification is primarily Fe-based, whereas aerobic pathways (nitrifier denitrification and archaeal ammonia oxidation) require Cu in addition to, or possibly in place of, Fe. Genes encoding the Cu-containing N2O reductase, the only known enzyme capable of microbial N2O conversion to N2, have only been found in classical denitrifiers. Accumulation of N2O due to low Cu has been observed in pure cultures and a lake ecosystem, but not in marine systems. Future research is needed on metalloenzymes involved in the production of N2O by enrichment cultures of ammonia oxidizing archaea, biological mechanisms for scavenging scarce metals, and possible links between metal bioavailability and greenhouse gas fluxes in anaerobic environments where metals may be limiting due to sulfide

  13. Mechanisms Controlling Carbon Turnover from Diverse Microbial Groups in Temperate and Tropical Forest Soils

    NASA Astrophysics Data System (ADS)

    Throckmorton, H.; Dane, L.; Bird, J. A.; Firestone, M. K.; Horwath, W. R.

    2010-12-01

    Microorganisms represent an important intermediate along the pathway of plant litter decomposition to the formation of soil organic matter (SOM); yet little is known of the fate and stability of microbial C in soils and the importance of microbial biochemistry as a factor influencing SOM dynamics. This research investigates mechanisms controlling microbial C stabilization in a temperate forest in the Sierra Nevada of California (CA) and a tropical forest in Puerto Rico (PR). Biochemically diverse microbial groups (fungi, actinomycetes, bacteria gram (+), and bacteria gram (-)) were isolated from both sites, grown in the laboratory with C13 media, killed, and nonliving residues were added back to soils as a reciprocal transplant of microbial groups. The native microbial community in CA is dominated by fungi and in PR is dominated by bacteria, which provides an opportunity to asses the metabolic response of distinct microbial communities to the diverse microbial additions. CA and PR soils were sampled five times over a 3 and 2 year period, respectively. In CA there was no significant difference in the mean residence time (MRT) of diverse C13 microbial treatments; whereas in PR there were significant differences, whereby temperate fungi, temperate Gram (+) bacteria, and tropical actinomycetes exhibited a significantly longer MRT as compared with tropical fungi and temperate Gram (-). These results suggest that a bacterial dominated microbial community discriminates more amongst diverse substrates than a fungal-dominated community. MRT for labeled-C in CA was 5.21 ± 1.11 years, and in PR was 2.22 ± 0.45. Despite substantial differences in MRT between sites, physical fractionation of soils into light (LF), aggregated-occluded (OF), and mineral-associated (MF) fractions provided evidence that accelerated decomposition in PR (presumably due to climate) operated primarily on labeled-C unassociated with the mineral matrix (LF); labeled-C occluded within aggregates (OF) or

  14. Pathway Design, Engineering, and Optimization.

    PubMed

    Garcia-Ruiz, Eva; HamediRad, Mohammad; Zhao, Huimin

    2016-09-16

    The microbial metabolic versatility found in nature has inspired scientists to create microorganisms capable of producing value-added compounds. Many endeavors have been made to transfer and/or combine pathways, existing or even engineered enzymes with new function to tractable microorganisms to generate new metabolic routes for drug, biofuel, and specialty chemical production. However, the success of these pathways can be impeded by different complications from an inherent failure of the pathway to cell perturbations. Pursuing ways to overcome these shortcomings, a wide variety of strategies have been developed. This chapter will review the computational algorithms and experimental tools used to design efficient metabolic routes, and construct and optimize biochemical pathways to produce chemicals of high interest.

  15. Linking microbial carbon utilization with microbially-derived soil organic matter

    NASA Astrophysics Data System (ADS)

    Kallenbach, Cynthia M.; Grandy, A. Stuart

    2014-05-01

    Soil microbial communities are fundamental to plant C turnover, as all C inputs eventually pass through the microbial biomass. In turn, there is increasing evidence that this biomass accumulates as a significant portion of stable soil organic matter (SOM) via physiochemical interactions with the soil matrix. However, when exploring SOM dynamics, these two processes are often regarded as discrete from one another, despite potentially important linkages between microbial C utilization and the fate of that biomass C as SOM. Specifically, if stable SOM is largely comprised of microbial products, we need to better understand the soil C inputs that influence microbial biomass production and microbial C allocation. Microbial physiology, such as microbial growth efficiency (MGE), growth rate and turnover have direct influences on microbial biomass production and are highly sensitive to resource quality. Therefore, the importance of resource quality on SOM accumulation may not necessarily be a function of resistance to decay but the degree to which it optimizes microbial biomass production. To examine the relationship between microbial C utilization and microbial contributions to SOM, an ongoing 15-mo incubation experiment was set up using artificial, initially C- and microbial-free soils. Soil microcosms were constructed by mixing sand with either kaolinite or montmorillonite clays followed with a natural soil microbial inoculum. For both soil mineral treatments, weekly additions of glucose, cellobiose, or syringol are carried out, with an additional treatment of plant leachate to serve as a reference. This simplified system allows us to determine 1) if, in absence of plant-derived C, chemically complex SOM similar to natural soils can accumulate through the production of microbial residues and 2) how differences in C utilization of simple substrates, varying in energy yields, influence the quantity and chemistry of newly formed SOM. Over the course of the incubation, MGE

  16. Microbial Field Pilot Study

    SciTech Connect

    Knapp, R.M.; McInerney, M.J.; Menzie, D.E.; Chisholm, J.L.

    1990-11-01

    This report covers progress made during the first year of the Microbial Field Pilot Study project. Information on reservoir ecology and characterization, facility and treatment design, core experiments, bacterial mobility, and mathematical modeling are addressed. To facilitate an understanding of the ecology of the target reservoir analyses of the fluids which support bacteriological growth and the microbiology of the reservoir were performed. A preliminary design of facilities for the operation of the field pilot test was prepared. In addition, procedures for facilities installation and for injection treatments are described. The Southeast Vassar Vertz Sand Unit (SEVVSU), the site of the proposed field pilot study, is described physically, historically, and geologically. The fields current status is presented and the ongoing reservoir simulation is discussed. Core flood experiments conducted during the last year were used to help define possible mechanisms involved in microbial enhanced oil recovery. Two possible mechanisms, relative permeability effects and changes in the capillary number, are discussed and related to four Berea core experiments' results. The experiments were conducted at reservoir temperature using SEVVSU oil, brine, and bacteria. The movement and activity of bacteria in porous media were investigated by monitoring the growth of bacteria in sandpack cores under no flow conditions. The rate of bacteria advancement through the cores was determined. A mathematical model of the MEOR process has been developed. The model is a three phase, seven species, one dimensional model. Finite difference methods are used for solution. Advection terms in balance equations are represented with a third- order upwind differencing scheme to reduce numerical dispersion and oscillations. The model is applied to a batch fermentation example. 52 refs., 26 figs., 21 tabs.

  17. Research advances on microbial genetics in China in 2015.

    PubMed

    Jianping, Xie; Yubo, Han; Gang, Liu; Linquan, Bai

    2016-09-01

    In 2015, there are significant progresses in many aspects of the microbial genetics in China. To showcase the contribution of Chinese scientists in microbial genetics, this review surveys several notable progresses in microbial genetics made largely by Chinese scientists, and some key findings are highlighted. For the basic microbial genetics, the components, structures and functions of many macromolecule complexes involved in gene expression regulation have been elucidated. Moreover, the molecular basis underlying the recognition of foreign nucleic acids by microbial immune systems was unveiled. We also illustrated the biosynthetic pathways and regulators of multiple microbial compounds, novel enzyme reactions, and new mechanisms regulating microbial gene expression. And new findings were obtained in the microbial development, evolution and population genetics. For the industrial microbiology, more understanding on the molecular basis of the microbial factory has been gained. For the pathogenic microbiology, the genetic circuits of several pathogens were depicted, and significant progresses were achieved for understanding the pathogen-host interaction and revealing the genetic mechanisms underlying antimicrobial resistance, emerging pathogens and environmental microorganisms at the genomic level. In future, the genetic diversity of microbes can be used to obtain specific products, while gut microbiome is gathering momentum.

  18. Microbial Properties Database Editor Tutorial

    EPA Science Inventory

    A Microbial Properties Database Editor (MPDBE) has been developed to help consolidate microbial-relevant data to populate a microbial database and support a database editor by which an authorized user can modify physico-microbial properties related to microbial indicators and pat...

  19. Why Microbial Communities?

    ScienceCinema

    Fredrickson, Jim (PNNL)

    2016-07-12

    The Microbial Communities Initiative is a 5-year investment by Pacific Northwest National Laboratory that integrates biological/ecological experimentation, analytical chemistry, and simulation modeling. The objective is to create transforming technologies, elucidate mechanistic forces, and develop theoretical frameworks for the analysis and predictive understanding of microbial communities. Dr. Fredrickson introduces the symposium by defining microbial communities and describing their scientific relevance as they relate to solving problems in energy, climate, and sustainability.

  20. Pyrosequencing for Microbial Identification and Characterization

    PubMed Central

    Cummings, Patrick J.; Ahmed, Ray; Durocher, Jeffrey A.; Jessen, Adam; Vardi, Tamar; Obom, Kristina M.

    2013-01-01

    Pyrosequencing is a versatile technique that facilitates microbial genome sequencing that can be used to identify bacterial species, discriminate bacterial strains and detect genetic mutations that confer resistance to anti-microbial agents. The advantages of pyrosequencing for microbiology applications include rapid and reliable high-throughput screening and accurate identification of microbes and microbial genome mutations. Pyrosequencing involves sequencing of DNA by synthesizing the complementary strand a single base at a time, while determining the specific nucleotide being incorporated during the synthesis reaction. The reaction occurs on immobilized single stranded template DNA where the four deoxyribonucleotides (dNTP) are added sequentially and the unincorporated dNTPs are enzymatically degraded before addition of the next dNTP to the synthesis reaction. Detection of the specific base incorporated into the template is monitored by generation of chemiluminescent signals. The order of dNTPs that produce the chemiluminescent signals determines the DNA sequence of the template. The real-time sequencing capability of pyrosequencing technology enables rapid microbial identification in a single assay. In addition, the pyrosequencing instrument, can analyze the full genetic diversity of anti-microbial drug resistance, including typing of SNPs, point mutations, insertions, and deletions, as well as quantification of multiple gene copies that may occur in some anti-microbial resistance patterns. PMID:23995536

  1. Functional Responses of Salt Marsh Microbial Communities to Long-Term Nutrient Enrichment

    PubMed Central

    Graves, Christopher J.; Makrides, Elizabeth J.; Schmidt, Victor T.; Giblin, Anne E.; Cardon, Zoe G.

    2016-01-01

    -genome metagenomics approach allowed an unbiased assessment of the abundance of denitrification-related genes across the entire community. We identified strong and consistent increases in the relative abundance of gene sequences related to denitrification pathways across a broad phylogenetic range at sites exposed to long-term nutrient addition. While further work is needed to determine the consequences of these community responses in regulating environmental nutrient cycles, the increased abundance of bacteria harboring denitrification genes suggests that such processes may be locally upregulated. In addition, our results illustrate how whole-genome metagenomics combined with targeted hypothesis testing can reveal fine-scale responses of microbial communities to environmental disturbance. PMID:26944843

  2. Surface reflectance degradation by microbial communities

    DOE PAGES

    Cheng, Meng -Dawn; Allman, Steve L.; Graham, David E.; ...

    2015-11-05

    Building envelope, such as a roof, is the interface between a building structure and the environment. Understanding of the physics of microbial interactions with the building envelope is limited. In addition to the natural weathering, microorganisms and airborne particulate matter that attach to a cool roof tend to reduce the roof reflectance over time, compromising the energy efficiency advantages of the reflective coating designs. We applied microbial ecology analysis to identify the natural communities present on the exposed coatings and investigated the reduction kinetics of the surface reflectance upon the introduction of a defined mixture of both photoautotrophic and heterotrophicmore » microorganisms representing the natural communities. The result are (1) reflectance degradation by microbial communities follows a first-order kinetic relationship and (2) more than 50% of degradation from the initial reflectance value can be caused by microbial species alone in much less time than 3 years required by the current standard ENERGY STAR® test methods.« less

  3. Surface reflectance degradation by microbial communities

    SciTech Connect

    Cheng, Meng -Dawn; Allman, Steve L.; Graham, David E.; Cheng, Karen R.; Pfiffner, Susan Marie; Vishnivetskaya, Tatiana A.; Desjarlais, Andre Omer

    2015-11-05

    Building envelope, such as a roof, is the interface between a building structure and the environment. Understanding of the physics of microbial interactions with the building envelope is limited. In addition to the natural weathering, microorganisms and airborne particulate matter that attach to a cool roof tend to reduce the roof reflectance over time, compromising the energy efficiency advantages of the reflective coating designs. We applied microbial ecology analysis to identify the natural communities present on the exposed coatings and investigated the reduction kinetics of the surface reflectance upon the introduction of a defined mixture of both photoautotrophic and heterotrophic microorganisms representing the natural communities. The result are (1) reflectance degradation by microbial communities follows a first-order kinetic relationship and (2) more than 50% of degradation from the initial reflectance value can be caused by microbial species alone in much less time than 3 years required by the current standard ENERGY STAR® test methods.

  4. Microalgae-microbial fuel cell: A mini review.

    PubMed

    Lee, Duu-Jong; Chang, Jo-Shu; Lai, Juin-Yih

    2015-12-01

    Microalgae-microbial fuel cells (mMFCs) are a device that can convert solar energy to electrical energy via biological pathways. This mini-review lists new research and development works on microalgae processes, microbial fuel cell (MFC) processes, and their combined version, mMFC. The substantial improvement and technological advancement are highlighted, with a discussion on the challenges and prospects for possible commercialization of mMFC technologies.

  5. Microbial iron-redox cycling in subsurface environments.

    PubMed

    Roden, Eric E

    2012-12-01

    In addition to its central role in mediating electron-transfer reactions within all living cells, iron undergoes extracellular redox transformations linked to microbial energy generation through utilization of Fe(II) as a source of chemical energy or Fe(III) as an electron acceptor for anaerobic respiration. These processes permit microbial populations and communities to engage in cyclic coupled iron oxidation and reduction within redox transition zones in subsurface environments. In the present paper, I review and synthesize a few case studies of iron-redox cycling in subsurface environments, highlighting key biochemical aspects of the extracellular iron-redox metabolisms involved. Of specific interest are the coupling of iron oxidation and reduction in field and experimental systems that model redox gradients and fluctuations in the subsurface, and novel pathways and organisms involved in the redox cycling of insoluble iron-bearing minerals. These findings set the stage for rapid expansion in our knowledge of the range of extracellular electron-transfer mechanisms utilized by subsurface micro-organisms. The observation that closely coupled oxidation and reduction of iron can take place under conditions common to the subsurface motivates this expansion in pursuit of molecular tools for studying iron-redox cycling communities in situ.

  6. Physiology, biochemistry and possible applications of microbial caffeine degradation.

    PubMed

    Gummadi, Sathyanarayana N; Bhavya, B; Ashok, Nandhini

    2012-01-01

    Caffeine, a purine alkaloid is a constituent of widely consumed beverages. The scientific evidence which has proved the harm of this alkaloid has paved the way for innumerable research in the area of caffeine degradation. In addition to this, the fact that the by-products of the coffee and tea industry pollute the environment has called for the need of decaffeinating coffee and tea industry's by-products. Though physical and chemical methods for decaffeination are available, the lack of specificity for removal of caffeine in these techniques and their non-eco-friendly nature has opened the area of microbial and enzymatic degradation of caffeine. Another important application of microbial caffeine degradation apart from its advantages like specificity, eco-friendliness and cost-effectiveness is the fact that this process will enable the production of industrially and medically useful components of the caffeine degradation pathway like theobromine and theophylline. This is a comprehensive review which mainly focuses on caffeine degradation, large-scale degradation of the same and its applications in the industrial world.

  7. Pathway-based network modeling finds hidden genes in shRNA screen for regulators of acute lymphoblastic leukemia† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c6ib00040a Click here for additional data file. Click here for additional data file.

    PubMed Central

    Wilson, Jennifer L.; Dalin, Simona; Gosline, Sara; Hemann, Michael

    2016-01-01

    Data integration stands to improve interpretation of RNAi screens which, as a result of off-target effects, typically yield numerous gene hits of which only a few validate. These off-target effects can result from seed matches to unintended gene targets (reagent-based) or cellular pathways, which can compensate for gene perturbations (biology-based). We focus on the biology-based effects and use network modeling tools to discover pathways de novo around RNAi hits. By looking at hits in a functional context, we can uncover novel biology not identified from any individual ‘omics measurement. We leverage multiple ‘omic measurements using the Simultaneous Analysis of Multiple Networks (SAMNet) computational framework to model a genome scale shRNA screen investigating Acute Lymphoblastic Leukemia (ALL) progression in vivo. Our network model is enriched for cellular processes associated with hematopoietic differentiation and homeostasis even though none of the individual ‘omic sets showed this enrichment. The model identifies genes associated with the TGF-beta pathway and predicts a role in ALL progression for many genes without this functional annotation. We further experimentally validate the hidden genes – Wwp1, a ubiquitin ligase, and Hgs, a multi-vesicular body associated protein – for their role in ALL progression. Our ALL pathway model includes genes with roles in multiple types of leukemia and roles in hematological development. We identify a tumor suppressor role for Wwp1 in ALL progression. This work demonstrates that network integration approaches can compensate for off-target effects, and that these methods can uncover novel biology retroactively on existing screening data. We anticipate that this framework will be valuable to multiple functional genomic technologies – siRNA, shRNA, and CRISPR – generally, and will improve the utility of functional genomic studies. PMID:27315426

  8. Subsurface microbial habitats on Mars

    NASA Technical Reports Server (NTRS)

    Boston, P. J.; Mckay, C. P.

    1991-01-01

    We developed scenarios for shallow and deep subsurface cryptic niches for microbial life on Mars. Such habitats could have considerably prolonged the persistence of life on Mars as surface conditions became increasingly inhospitable. The scenarios rely on geothermal hot spots existing below the near or deep subsurface of Mars. Recent advances in the comparatively new field of deep subsurface microbiology have revealed previously unsuspected rich aerobic and anaerobic microbal communities far below the surface of the Earth. Such habitats, protected from the grim surface conditions on Mars, could receive warmth from below and maintain water in its liquid state. In addition, geothermally or volcanically reduced gases percolating from below through a microbiologically active zone could provide the reducing power needed for a closed or semi-closed microbial ecosystem to thrive.

  9. Global biogeography of microbial nitrogen-cycling traits in soil

    PubMed Central

    Nelson, Michaeline B.; Martiny, Jennifer B. H.

    2016-01-01

    Microorganisms drive much of the Earth’s nitrogen (N) cycle, but we still lack a global overview of the abundance and composition of the microorganisms carrying out soil N processes. To address this gap, we characterized the biogeography of microbial N traits, defined as eight N-cycling pathways, using publically available soil metagenomes. The relative frequency of N pathways varied consistently across soils, such that the frequencies of the individual N pathways were positively correlated across the soil samples. Habitat type, soil carbon, and soil N largely explained the total N pathway frequency in a sample. In contrast, we could not identify major drivers of the taxonomic composition of the N functional groups. Further, the dominant genera encoding a pathway were generally similar among habitat types. The soil samples also revealed an unexpectedly high frequency of bacteria carrying the pathways required for dissimilatory nitrate reduction to ammonium, a little-studied N process in soil. Finally, phylogenetic analysis showed that some microbial groups seem to be N-cycling specialists or generalists. For instance, taxa within the Deltaproteobacteria encoded all eight N pathways, whereas those within the Cyanobacteria primarily encoded three pathways. Overall, this trait-based approach provides a baseline for investigating the relationship between microbial diversity and N cycling across global soils. PMID:27432978

  10. Microbial syntrophy: interaction for the common good.

    PubMed

    Morris, Brandon E L; Henneberger, Ruth; Huber, Harald; Moissl-Eichinger, Christine

    2013-05-01

    Classical definitions of syntrophy focus on a process, performed through metabolic interaction between dependent microbial partners, such as the degradation of complex organic compounds under anoxic conditions. However, examples from past and current scientific discoveries suggest that a new, simple but wider definition is necessary to cover all aspects of microbial syntrophy. We suggest the term 'obligately mutualistic metabolism', which still focuses on microbial metabolic cooperation but also includes an ecological aspect: the benefit for both partners. By the combined metabolic activity of microorganisms, endergonic reactions can become exergonic through the efficient removal of products and therefore enable a microbial community to survive with minimal energy resources. Here, we explain the principles of classical and non-classical syntrophy and illustrate the concepts with various examples. We present biochemical fundamentals that allow microorganism to survive under a range of environmental conditions and to drive important biogeochemical processes. Novel technologies have contributed to the understanding of syntrophic relationships in cultured and uncultured systems. Recent research highlights that obligately mutualistic metabolism is not limited to certain metabolic pathways nor to certain environments or microorganisms. This beneficial microbial interaction is not restricted to the transfer of reducing agents such as hydrogen or formate, but can also involve the exchange of organic, sulfurous- and nitrogenous compounds or the removal of toxic compounds.

  11. Microbial limitation in a changing world: A stoichiometric approach for predicting microbial resource limitation and fluxes

    NASA Astrophysics Data System (ADS)

    Midgley, M.; Phillips, R.

    2014-12-01

    Microbes mediate fluxes of carbon (C), nitrogen (N), and phosphorus (P) in soils depending on ratios of available C, N, and P relative to microbial demand. Hence, characterizing microbial C and nutrient limitation in soils is critical for predicting how ecosystems will respond to human alterations of climate and nutrient availability. Here, we take a stoichiometric approach to assessing microbial C, N, and P limitation by using threshold element ratios (TERs). TERs enable shifting resource limitation to be assessed by matching C, N and P ratios from microbial biomass, extracellular enzyme activities, and soil nutrient concentrations. We assessed microbial nutrient limitation in temperate forests dominated by trees that associate with one of two mycorrhizal symbionts: arbsucular mycorrhizal (AM) or ectomycorrhizal (ECM) fungi. We found that both ECM and AM microbial communities were co-limited by C and N, supporting conventional wisdom that microbes are C-limited and temperate forests are N-limited. However, AM microbial communities were relatively more C-limited than ECM communities (P=0.001). In response to chronic field N fertilization, both AM and ECM communities became relatively more P-limited (P=0.011), but they remained N- and C-limited overall. Thus, realistic levels of N deposition may not dampen microbial N limitation. Reflecting differences in relative limitation, N mineralization rates were higher in AM soils than in ECM soils (P=0.004) while C mineralization rates were higher in ECM soils than in AM soils (P=0.023). There were no significant differences in P flux between AM and ECM soils or detectable mineralization responses to N addition, indicating that mineralization rates are closely tied to C and nutrient limitation. Overall, we found that 1) microbial resource limitation can be detected without resource addition; and 2) TERs and ratios of labile resources are viable tools for predicting mineralization responses to resource additions.

  12. MBGD update 2013: the microbial genome database for exploring the diversity of microbial world

    PubMed Central

    Uchiyama, Ikuo; Mihara, Motohiro; Nishide, Hiroyo; Chiba, Hirokazu

    2013-01-01

    The microbial genome database for comparative analysis (MBGD, available at http://mbgd.genome.ad.jp/) is a platform for microbial genome comparison based on orthology analysis. As its unique feature, MBGD allows users to conduct orthology analysis among any specified set of organisms; this flexibility allows MBGD to adapt to a variety of microbial genomic study. Reflecting the huge diversity of microbial world, the number of microbial genome projects now becomes several thousands. To efficiently explore the diversity of the entire microbial genomic data, MBGD now provides summary pages for pre-calculated ortholog tables among various taxonomic groups. For some closely related taxa, MBGD also provides the conserved synteny information (core genome alignment) pre-calculated using the CoreAligner program. In addition, efficient incremental updating procedure can create extended ortholog table by adding additional genomes to the default ortholog table generated from the representative set of genomes. Combining with the functionalities of the dynamic orthology calculation of any specified set of organisms, MBGD is an efficient and flexible tool for exploring the microbial genome diversity. PMID:23118485

  13. Microbial responses to chitin and chitosan in oxic and anoxic agricultural soil slurries

    NASA Astrophysics Data System (ADS)

    Wieczorek, A. S.; Hetz, S. A.; Kolb, S.

    2014-02-01

    Chitin is the second most abundant biopolymer in terrestrial ecosystems and is subject to microbial degradation. Chitin can be deacetylated to chitosan or can be hydrolyzed to N,N'-diacetylchitobiose and oligomers of N-acetylglucosamine by aerobic and anaerobic microorganisms. Which pathway of chitin hydrolysis is preferred by soil microbial communities has previously been unknown. Supplementation of chitin stimulated microbial activity under oxic and anoxic conditions in agricultural soil slurries, whereas chitosan had no effect. Thus, the soil microbial community likely was more adapted to chitin as a substrate. In addition, this finding suggested that direct hydrolysis of chitin was preferred to the pathway that starts with deacetylation. Chitin was apparently degraded by aerobic respiration, ammonification, and nitrification to carbon dioxide and nitrate under oxic conditions. When oxygen was absent, fermentation products (acetate, butyrate, propionate, hydrogen, carbon dioxide) and ammonia were detected, suggesting that butyric and propionic acid fermentation were along with ammonification likely responsible for apparent anaerobic chitin degradation. In total, 42 different chiA genotypes were detected of which twenty were novel at an amino acid sequence dissimilarity of >50%. Various chiA genotypes responded to chitin supplementation and affiliated with a novel deep-branching bacterial chiA genotype (anoxic conditions), genotypes of Beta- and Gammaproteobacteria (oxic and anoxic conditions), and Planctomycetes (oxic conditions). Thus, this study provides evidence that detected chitinolytic bacteria were catabolically diverse and occupied different ecological niches with regard to oxygen availability enabling chitin degradation under various redox conditions at the level of the community.

  14. Microbial responses to chitin and chitosan in oxic and anoxic agricultural soil slurries

    NASA Astrophysics Data System (ADS)

    Wieczorek, A. S.; Hetz, S. A.; Kolb, S.

    2014-06-01

    Microbial degradation of chitin in soil substantially contributes to carbon cycling in terrestrial ecosystems. Chitin is globally the second most abundant biopolymer after cellulose and can be deacetylated to chitosan or can be hydrolyzed to N,N'-diacetylchitobiose and oligomers of N-acetylglucosamine by aerobic and anaerobic microorganisms. Which pathway of chitin hydrolysis is preferred by soil microbial communities is unknown. Supplementation of chitin stimulated microbial activity under oxic and anoxic conditions in agricultural soil slurries, whereas chitosan had no effect. Thus, the soil microbial community likely was more adapted to chitin as a substrate. In addition, this finding suggested that direct hydrolysis of chitin was preferred to the pathway that starts with deacetylation. Chitin was apparently degraded by aerobic respiration, ammonification, and nitrification to carbon dioxide and nitrate under oxic conditions. When oxygen was absent, fermentation products (acetate, butyrate, propionate, hydrogen, and carbon dioxide) and ammonia were detected, suggesting that butyric and propionic acid fermentation, along with ammonification, were likely responsible for anaerobic chitin degradation. In total, 42 different chiA genotypes were detected of which twenty were novel at an amino acid sequence dissimilarity of less than 50%. Various chiA genotypes responded to chitin supplementation and affiliated with a novel deep-branching bacterial chiA genotype (anoxic conditions), genotypes of Beta- and Gammaproteobacteria (oxic and anoxic conditions), and Planctomycetes (oxic conditions). Thus, this study provides evidence that detected chitinolytic bacteria were catabolically diverse and occupied different ecological niches with regard to oxygen availability enabling chitin degradation under various redox conditions on community level.

  15. Heterologous expression of mitochondria-targeted microbial nitrilase enzymes increases cyanide tolerance in Arabidopsis.

    PubMed

    Molojwane, E; Adams, N; Sweetlove, L J; Ingle, R A

    2015-07-01

    Anthropogenic activities have resulted in cyanide (CN) contamination of both soil and water in many areas of the globe. While plants possess a detoxification pathway that serves to degrade endogenously generated CN, this system is readily overwhelmed, limiting the use of plants in bioremediation. Genetic engineering of additional CN degradation pathways in plants is one potential strategy to increase their tolerance to CN. Here we show that heterologous expression of microbial nitrilase enzymes targeted to the mitochondria increases CN tolerance in Arabidopsis. Root length in seedlings expressing either a CN dihydratase from Bacillus pumilis or a CN hydratase from Neurospora crassa was increased by 45% relative in wild-type plants in the presence of 50 μm KCN. We also demonstrate that in contrast to its strong inhibitory effects on seedling establishment, seed germination of the Col-0 ecotype of Arabidopsis is unaffected by CN.

  16. Biofilms: A microbial home

    PubMed Central

    Chandki, Rita; Banthia, Priyank; Banthia, Ruchi

    2011-01-01

    Microbial biofilms are mainly implicated in etiopathogenesis of caries and periodontal disease. Owing to its properties, these pose great challenges. Continuous and regular disruption of these biofilms is imperative for prevention and management of oral diseases. This essay provides a detailed insight into properties, mechanisms of etiopathogenesis, detection and removal of these microbial biofilms. PMID:21976832

  17. Inflight microbial analysis technology

    NASA Technical Reports Server (NTRS)

    Pierson, Duane L.; Brown, Harlan D.

    1987-01-01

    This paper provides an assessment of functional characteristics needed in the microbial water analysis system being developed for Space Station. Available technology is reviewed with respect to performing microbial monitoring, isolation, or identification functions. An integrated system composed of three different technologies is presented.

  18. Multicomponent reactions of phosphines, diynedioates, and aryl aldehydes generated furans appending reactive phosphorus ylides through cumulated trienoates as key intermediates: a phosphine α-addition-δ-evolvement of an anion pathway.

    PubMed

    Deng, Jie-Cheng; Chuang, Shih-Ching

    2014-11-07

    Multicomponent reactions of phosphines, diynedioates, and aryl aldehydes have been demonstrated, providing trisubstituted furans appending reactive phosphorus ylides, through cumulated trienoates as key intermediates. The proposed trienoate intermediates, 1,5-dipolar species formed via nucleophilic α-attack of phosphines toward diynedioates (α-addition-δ-evolvement of an anion, abbreviated αAδE), undergo addition to aryl aldehydes followed by 5-endo-dig cyclization, proton transfer, and resonance to give trisubstituted furans. Furthermore, the phosphorus ylides are oxidized to α-keto ester furans and utilized as Wittig reagents.

  19. Characterization of Microbial Mat Microbiomes in the Modern Thrombolite Ecosystem of Lake Clifton, Western Australia Using Shotgun Metagenomics

    PubMed Central

    Warden, John G.; Casaburi, Giorgio; Omelon, Christopher R.; Bennett, Philip C.; Breecker, Daniel O.; Foster, Jamie S.

    2016-01-01

    Microbialite-forming communities interact with the environment and influence the precipitation of calcium carbonate through their metabolic activity. The functional genes associated with these metabolic processes and their environmental interactions are therefore critical to microbialite formation. The microbiomes associated with microbialite-forming ecosystems are just now being elucidated and the extent of shared pathways and taxa across different environments is not fully known. In this study, we profiled the microbiome of microbial communities associated with lacustrine thrombolites located in Lake Clifton, Western Australia using metagenomic sequencing and compared it to the non-lithifying mats associated with surrounding sediments to determine whether differences in the mat microbiomes, particularly with respect to metabolic pathways and environmental interactions, may potentially contribute to thrombolite formation. Additionally, we used stable isotope biosignatures to delineate the dominant metabolism associated with calcium carbonate precipitation in the thrombolite build-ups. Results indicated that the microbial community associated with the Lake Clifton thrombolites was predominantly bacterial (98.4%) with Proteobacteria, Cyanobacteria, Bacteroidetes, and Actinobacteria comprising the majority of annotated reads. Thrombolite-associated mats were enriched in photoautotrophic taxa and functional genes associated with photosynthesis. Observed δ13C values of thrombolite CaCO3 were enriched by at least 3.5‰ compared to theoretical values in equilibrium with lake water DIC, which is consistent with the occurrence of photoautotrophic activity in thrombolite-associated microbial mats. In contrast, the microbiomes of microbial communities found on the sandy non-lithifying sediments of Lake Clifton represented distinct microbial communities that varied in taxa and functional capability and were enriched in heterotrophic taxa compared to the thrombolite

  20. Microbial community response to seawater amendment in low-salinity tidal sediments.

    PubMed

    Edmonds, Jennifer W; Weston, Nathaniel B; Joye, Samantha B; Mou, Xiaozhen; Moran, Mary Ann

    2009-10-01

    Rising sea levels and excessive water withdrawals upstream are making previously freshwater coastal ecosystems saline. Plant and animal responses to variation in the freshwater-saline interface have been well studied in the coastal zone; however, microbial community structure and functional response to seawater intrusion remains relatively unexplored. Here, we used molecular approaches to evaluate the response of the prokaryotic community to controlled changes in porewater salinity levels in freshwater sediments from the Altamaha River, Georgia, USA. This work is a companion to a previously published study describing results from an experiment using laboratory flow-through sediment core bioreactors to document biogeochemical changes as porewater salinity was increased from 0 to 10 over 35 days. As reported in Weston et al. (Biogeochemistry, 77:375-408, 62), porewater chemistry was monitored, and cores were sacrificed at 0, 9, 15, and 35 days, at which time we completed terminal restriction fragment length polymorphism and 16S rRNA clone library analyses of sediment microbial communities. The biogeochemical study documented changes in mineralization pathways in response to artificial seawater additions, with a decline in methanogenesis, a transient increase in iron reduction, and finally a dominance of sulfate reduction. Here, we report that, despite these dramatic and significant changes in microbial activity at the biogeochemical level, no significant differences were found between microbial community composition of control vs. seawater-amended treatments for either Bacterial or Archaeal members. Further, taxa in the seawater-amended treatment community did not become more "marine-like" through time. Our experiment suggests that, as seawater intrudes into freshwater sediments, observed changes in metabolic activity and carbon mineralization on the time scale of weeks are driven more by shifts in gene expression and regulation than by changes in the composition of

  1. Microbial astronauts: assembling microbial communities for advanced life support systems

    NASA Technical Reports Server (NTRS)

    Roberts, M. S.; Garland, J. L.; Mills, A. L.

    2004-01-01

    Extension of human habitation into space requires that humans carry with them many of the microorganisms with which they coexist on Earth. The ubiquity of microorganisms in close association with all living things and biogeochemical processes on Earth predicates that they must also play a critical role in maintaining the viability of human life in space. Even though bacterial populations exist as locally adapted ecotypes, the abundance of individuals in microbial species is so large that dispersal is unlikely to be limited by geographical barriers on Earth (i.e., for most environments "everything is everywhere" given enough time). This will not be true for microbial communities in space where local species richness will be relatively low because of sterilization protocols prior to launch and physical barriers between Earth and spacecraft after launch. Although community diversity will be sufficient to sustain ecosystem function at the onset, richness and evenness may decline over time such that biological systems either lose functional potential (e.g., bioreactors may fail to reduce BOD or nitrogen load) or become susceptible to invasion by human-associated microorganisms (pathogens) over time. Research at the John F. Kennedy Space Center has evaluated fundamental properties of microbial diversity and community assembly in prototype bioregenerative systems for NASA Advanced Life Support. Successional trends related to increased niche specialization, including an apparent increase in the proportion of nonculturable types of organisms, have been consistently observed. In addition, the stability of the microbial communities, as defined by their resistance to invasion by human-associated microorganisms, has been correlated to their diversity. Overall, these results reflect the significant challenges ahead for the assembly of stable, functional communities using gnotobiotic approaches, and the need to better define the basic biological principles that define ecosystem

  2. Wetting and cavitation pathways on nanodecorated surfaces† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c5sm02794b Click here for additional data file.

    PubMed Central

    Amabili, Matteo; Lisi, Emanuele; Casciola, Carlo Massimo

    2016-01-01

    In this contribution we study the wetting and nucleation of vapor bubbles on nanodecorated surfaces via free energy molecular dynamics simulations. The results shed light on the stability of superhydrophobicity in submerged surfaces with nanoscale corrugations. The re-entrant geometry of the cavities under investigation is capable of sustaining a confined vapor phase within the surface roughness (Cassie state) both for hydrophobic and hydrophilic combinations of liquid and solid. The atomistic system is of nanometric size; on this scale thermally activated events can play an important role ultimately determining the lifetime of the Cassie state. Such a superhydrophobic state can break down by full wetting of the texture at large pressures (Cassie–Wenzel transition) or by nucleating a vapor bubble at negative pressures (cavitation). Specialized rare event techniques show that several pathways for wetting and cavitation are possible, due to the complex surface geometry. The related free energy barriers are of the order of 100k B T and vary with pressure. The atomistic results are found to be in semi-quantitative accord with macroscopic capillarity theory. However, the latter is not capable of capturing the density fluctuations, which determine the destabilization of the confined liquid phase at negative pressures (liquid spinodal). PMID:26905783

  3. Anoxic carbon flux in photosynthetic microbial mats as revealed by metatranscriptomics.

    PubMed

    Burow, Luke C; Woebken, Dagmar; Marshall, Ian P G; Lindquist, Erika A; Bebout, Brad M; Prufert-Bebout, Leslie; Hoehler, Tori M; Tringe, Susannah G; Pett-Ridge, Jennifer; Weber, Peter K; Spormann, Alfred M; Singer, Steven W

    2013-04-01

    Photosynthetic microbial mats possess extraordinary phylogenetic and functional diversity that makes linking specific pathways with individual microbial populations a daunting task. Close metabolic and spatial relationships between Cyanobacteria and Chloroflexi have previously been observed in diverse microbial mats. Here, we report that an expressed metabolic pathway for the anoxic catabolism of photosynthate involving Cyanobacteria and Chloroflexi in microbial mats can be reconstructed through metatranscriptomic sequencing of mats collected at Elkhorn Slough, Monterey Bay, CA, USA. In this reconstruction, Microcoleus spp., the most abundant cyanobacterial group in the mats, ferment photosynthate to organic acids, CO2 and H2 through multiple pathways, and an uncultivated lineage of the Chloroflexi take up these organic acids to store carbon as polyhydroxyalkanoates. The metabolic reconstruction is consistent with metabolite measurements and single cell microbial imaging with fluorescence in situ hybridization and NanoSIMS.

  4. Updating the Wnt pathways

    PubMed Central

    Yu, Jia; Virshup, David M.

    2014-01-01

    In the three decades since the discovery of the Wnt1 proto-oncogene in virus-induced mouse mammary tumours, our understanding of the signalling pathways that are regulated by the Wnt proteins has progressively expanded. Wnts are involved in an complex signalling network that governs multiple biological processes and cross-talk with multiple additional signalling cascades, including the Notch, FGF (fibroblast growth factor), SHH (Sonic hedgehog), EGF (epidermal growth factor) and Hippo pathways. The Wnt signalling pathway also illustrates the link between abnormal regulation of the developmental processes and disease manifestation. Here we provide an overview of Wnt-regulated signalling cascades and highlight recent advances. We focus on new findings regarding the dedicated Wnt production and secretion pathway with potential therapeutic targets that might be beneficial for patients with Wnt-related diseases. PMID:25208913

  5. Diel Metagenomics and Metatranscriptomics of Elkhorn Slough Hypersaline Microbial Mat

    NASA Astrophysics Data System (ADS)

    Lee, J.; Detweiler, A. M.; Everroad, R. C.; Bebout, L. E.; Weber, P. K.; Pett-Ridge, J.; Bebout, B.

    2014-12-01

    To understand the variation in gene expression associated with the daytime oxygenic phototrophic and nighttime fermentation regimes seen in hypersaline microbial mats, a contiguous mat piece was subjected to sampling at regular intervals over a 24-hour diel period. Additionally, to understand the impact of sulfate reduction on biohydrogen consumption, molybdate was added to a parallel experiment in the same run. 4 metagenome and 12 metatranscriptome Illumina HiSeq lanes were completed over day / night, and control / molybdate experiments. Preliminary comparative examination of noon and midnight metatranscriptomic samples mapped using bowtie2 to reference genomes has revealed several notable results about the dominant mat-building cyanobacterium Microcoleus chthonoplastes PCC 7420. Dominant cyanobacterium M. chthonoplastes PCC 7420 shows expression in several pathways for nitrogen scavenging, including nitrogen fixation. Reads mapped to M. chthonoplastes PCC 7420 shows expression of two starch storage and utilization pathways, one as a starch-trehalose-maltose-glucose pathway, another through UDP-glucose-cellulose-β-1,4 glucan-glucose pathway. The overall trend of gene expression was primarily light driven up-regulation followed by down-regulation in dark, while much of the remaining expression profile appears to be constitutive. Co-assembly of quality-controlled reads from 4 metagenomes was performed using Ray Meta with progressively smaller K-mer sizes, with bins identified and filtered using principal component analysis of coverages from all libraries and a %GC filter, followed by reassembly of the remaining co-assembly reads and binned reads. Despite having relatively similar abundance profiles in each metagenome, this binning approach was able to distinctly resolve bins from dominant taxa, but also sulfate reducing bacteria that are desired for understanding molybdate inhibition. Bins generated from this iterative assembly process will be used for downstream

  6. Microbial Changes during Pregnancy, Birth, and Infancy

    PubMed Central

    Nuriel-Ohayon, Meital; Neuman, Hadar; Koren, Omry

    2016-01-01

    Several healthy developmental processes such as pregnancy, fetal development, and infant development include a multitude of physiological changes: weight gain, hormonal, and metabolic changes, as well as immune changes. In this review, we present an additional important factor which both influences and is affected by these physiological processes—the microbiome. We summarize the known changes in microbiota composition at a variety of body sites including gut, vagina, oral cavity, and placenta, throughout pregnancy, fetal development, and early childhood. There is still a lot to be discovered; yet several pieces of research point to the healthy desired microbial changes. Future research is likely to unravel precise roles and mechanisms of the microbiota in gestation; perhaps linking the metabolic, hormonal, and immune changes together. Although some research has started to link microbial dysbiosis and specific microbial populations with unhealthy pregnancy complications, it is important to first understand the context of the natural healthy microbial changes occurring. Until recently the placenta and developing fetus were considered to be germ free, containing no apparent microbiome. We present multiple study results showing distinct microbiota compositions in the placenta and meconium, alluding to early microbial colonization. These results may change dogmas and our overall understanding of the importance and roles of microbiota from the beginning of life. We further review the main factors shaping the infant microbiome—modes of delivery, feeding, weaning, and exposure to antibiotics. Taken together, we are starting to build a broader understanding of healthy vs. abnormal microbial alterations throughout major developmental time-points. PMID:27471494

  7. Microbial solubilization of coals

    SciTech Connect

    Campbell, J.A.; Fredrickson, J.K.; Stewart, D.L.; Thomas, B.L.; McCulloch, M.; Wilson, B.W.; Bean, R.M.

    1988-11-01

    Microbial solubilization of coal may serve as a first step in a process to convert low-rank coals or coal-derived products to other fuels or products. For solubilization of coal to be an economically viable technology, a mechanistic understanding of the process is essential. Leonardite, a highly oxidized, low-rank coal, has been solubilized by the intact microorganism, cell-free filtrate, and cell-free enzyme of /ital Coriolus versicolor/. A spectrophotometric conversion assay was developed to quantify the amount of biosolubilized coal. In addition, a bituminous coal, Illinois No. 6, was solubilized by a species of /ital Penicillium/, but only after the coal had been preoxidized in air. Model compounds containing coal-related functionalities have been incubated with the leonardite-degrading fungus, its cell-free filtrate, and purified enzyme. The amount of degradation was determined by gas chromatography and the degradation products were identified by gas chromatography/mass spectrometry. We have also separated the cell-free filtrate of /ital C. versicolor/ into a <10,000 MW and >10,000 MW fraction by ultrafiltration techniques. Most of the coal biosolubilization activity is contained in the <10,000 MW fraction while the model compound degradation occurs in the >10,000 MW fraction. The >10,000 MW fraction appears to contain an enzyme with laccase-like activity. 10 refs., 8 figs., 5 tabs.

  8. Relating nanomaterial properties and microbial toxicity

    SciTech Connect

    Suresh, Anil K; Pelletier, Dale A; Doktycz, Mitchel John

    2013-01-01

    Nanomaterials are meeting diverse needs in consumer and industrial products. Metal and metal oxide nanoparticles are among the most commonly used materials and their potential for adversely affecting environmental systems raises concern. Complex microbial consortia underlie environmental processes, and the potential toxicity of nanoparticles to microbial systems, and the consequent impacts on trophic balances, is particularly worrisome. The diverse array of metal and metal oxides, the different sizes and shapes that can be prepared and the variety of possible surface coatings complicate toxicity assessments. Further complicating toxicity interpretations are the diversity of microbial systems and their metabolic capabilities. Here, we review various studies focused on nanoparticle-microbial interactions in an effort to correlate the physical-chemical properties of engineered metal and metal oxide nanoparticles to their biological response. Gaining a predictive understanding of nanoparticle toxicity, based on the physical-chemical properties of the material, will be key to the design and responsible use of nanotechnologies. General conclusions regarding the parent material of the nanoparticle and nanoparticle s size and shape on potential toxicity can be made. However, the surface coating of the material, which can be altered significantly by environmental conditions, can ameliorate or promote microbial toxicity. Understanding nanoparticle transformations and how the nanoparticle surface can be designed to control toxicity represents a key area for further study. Additionally, the vast array of microbial species and their intrinsic metabolic capabilities complicates extrapolations of nanoparticle toxicity. A molecular-based understanding of the various microbial responses to nanoparticle-induced stress is needed. Ultimately, to interpret the effect and eventual fate of engineered materials in the environment, an understanding of the relationship between nanoparticle

  9. Controls on Microbial Transport in Subsurface Sediments

    NASA Astrophysics Data System (ADS)

    Szecsody, J. E.

    2005-12-01

    Laboratory-scale measurements of microbial transport indicate that most microbes attach to subsurface sediments. Given this attachment, it is unclear how microbes are transported significant distances in deep aquifers. It was hypothesized that attachment/detachment mechanisms are dynamic responses to nutrient availability, so that transport is dependent upon the presence/absence of electron donors and acceptors. For one microbial isolate of the Shewanella strain CN-32 there was high attachment in the presence of both electron donor and acceptor, and very little attachment if no donor or acceptor were present. In addition, CN-32 exhibited chemotatic movement through electron donor/acceptor gradients. A series of batch, 1-D homogeneous, 1-D heterogeneous, and 2-D heterogeneous experiments were conducted to quantify CN-32 Monod parameters and to assess the relative importance of simple attachment/detachment steps, dynamic growth/detachment steps, and chemotaxis. Three models included dual Monod kinetics for a single electron donor (lactate), two electron acceptors (dissolved oxygen and nitrate), and either: a) constant microbial attachment (adsorption), b) attachment linked to the presence of electron donor/acceptor, or c) chemotaxis. Simulations of batch experiments using quantified Monod parameters could not predict 1-D experimental results without accounting for microbial attachment. With constant input of electron donor/acceptors, microbial attachment could be well approximated assuming constant microbial adsorption. However, advection of input pulses of electron donor/acceptors resulted in much further downgradient migration, which could be simulated assuming an empirical growth/detachment reaction. The 2-D experimental system with microbes that received input pulses of electron donor/acceptors (idealized representation of an aquifer) showed that that both chemotaxis and the dynamic growth/detachment mechanisms were needed to approximate microbial movement over

  10. Recent advances in amino acid production by microbial cells.

    PubMed

    Hirasawa, Takashi; Shimizu, Hiroshi

    2016-12-01

    Amino acids have been utilized for the production of foods, animal feeds and pharmaceuticals. After the discovery of the glutamic acid-producing bacterium Corynebacterium glutamicum by Japanese researchers, the production of amino acids, which are primary metabolites, has been achieved using various microbial cells as hosts. Recently, metabolic engineering studies on the rational design of amino acid-producing microbial cells have been successfully conducted. Moreover, the technology of systems biology has been applied to metabolic engineering for the creation of amino acid-producing microbial cells. Currently, new technologies including synthetic biology, single-cell analysis, and evolutionary engineering have been utilized to create amino acid-producing microbial cells. In addition, useful compounds from amino acids have been produced by microbial cells. Here, current researches into the metabolic engineering of microbial cells toward production of amino acids and amino acid-related compounds are reviewed.

  11. Methyl Jasmonate Regulates Podophyllotoxin Accumulation in Podophyllum hexandrum by Altering the ROS-Responsive Podophyllotoxin Pathway Gene Expression Additionally through the Down Regulation of Few Interfering miRNAs.

    PubMed

    Hazra, Saptarshi; Bhattacharyya, Dipto; Chattopadhyay, Sharmila

    2017-01-01

    Podophylloxin (ptox), primarily obtained from Podophyllum hexandrum, is the precursor for semi-synthetic anticancer drugs viz. etoposide, etopophos, and teniposide. Previous studies established that methyl jasmonate (MeJA) treated cell culture of P. hexandrum accumulate ptox significantly. However, the molecular mechanism of MeJA induced ptox accumulation is yet to be explored. Here, we demonstrate that MeJA induces reactive oxygen species (ROS) production, which stimulates ptox accumulation significantly and up regulates three ROS-responsive ptox biosynthetic genes, namely, PhCAD3, PhCAD4 (cinnamyl alcohol dehydrogenase), and NAC3 by increasing their mRNA stability. Classic uncoupler of oxidative phosphorylation, carbonylcyanide m-chlorophenylhydrazone, as well as H2O2 treatment induced the ROS generation and consequently, enhanced the ptox production. However, when the ROS was inhibited with NADPH oxidase inhibitor diphenylene iodonium and Superoxide dismutase inhibitor diethyldithio-carbamic acid, the ROS inhibiting agent, the ptox production was decreased significantly. We also noted that, MeJA up regulated other ptox biosynthetic pathway genes which are not affected by the MeJA induced ROS. Further, these ROS non-responsive genes were controlled by MeJA through the down regulation of five secondary metabolites biosynthesis specific miRNAs viz. miR172i, miR035, miR1438, miR2275, and miR8291. Finally, this study suggested two possible mechanisms through which MeJA modulates the ptox biosynthesis: primarily by increasing the mRNA stability of ROS-responsive genes and secondly, by the up regulation of ROS non-responsive genes through the down regulation of some ROS non-responsive miRNAs.

  12. Methyl Jasmonate Regulates Podophyllotoxin Accumulation in Podophyllum hexandrum by Altering the ROS-Responsive Podophyllotoxin Pathway Gene Expression Additionally through the Down Regulation of Few Interfering miRNAs

    PubMed Central

    Hazra, Saptarshi; Bhattacharyya, Dipto; Chattopadhyay, Sharmila

    2017-01-01

    Podophylloxin (ptox), primarily obtained from Podophyllum hexandrum, is the precursor for semi-synthetic anticancer drugs viz. etoposide, etopophos, and teniposide. Previous studies established that methyl jasmonate (MeJA) treated cell culture of P. hexandrum accumulate ptox significantly. However, the molecular mechanism of MeJA induced ptox accumulation is yet to be explored. Here, we demonstrate that MeJA induces reactive oxygen species (ROS) production, which stimulates ptox accumulation significantly and up regulates three ROS-responsive ptox biosynthetic genes, namely, PhCAD3, PhCAD4 (cinnamyl alcohol dehydrogenase), and NAC3 by increasing their mRNA stability. Classic uncoupler of oxidative phosphorylation, carbonylcyanide m-chlorophenylhydrazone, as well as H2O2 treatment induced the ROS generation and consequently, enhanced the ptox production. However, when the ROS was inhibited with NADPH oxidase inhibitor diphenylene iodonium and Superoxide dismutase inhibitor diethyldithio-carbamic acid, the ROS inhibiting agent, the ptox production was decreased significantly. We also noted that, MeJA up regulated other ptox biosynthetic pathway genes which are not affected by the MeJA induced ROS. Further, these ROS non-responsive genes were controlled by MeJA through the down regulation of five secondary metabolites biosynthesis specific miRNAs viz. miR172i, miR035, miR1438, miR2275, and miR8291. Finally, this study suggested two possible mechanisms through which MeJA modulates the ptox biosynthesis: primarily by increasing the mRNA stability of ROS-responsive genes and secondly, by the up regulation of ROS non-responsive genes through the down regulation of some ROS non-responsive miRNAs. PMID:28261233

  13. Methanogenic pathways of coal-bed gas in the Powder River Basin, United States: The geologic factor

    USGS Publications Warehouse

    Flores, R.M.; Rice, C.A.; Stricker, G.D.; Warden, A.; Ellis, M.S.

    2008-01-01

    Coal-bed gas of the Tertiary Fort Union and Wasatch Formations in the Powder River Basin in Wyoming and Montana, U.S. was interpreted as microbial in origin by previous studies based on limited data on the gas and water composition and isotopes associated with the coal beds. To fully evaluate the microbial origin of the gas and mechanisms of methane generation, additional data for 165 gas and water samples from 7 different coal-bed methane-bearing coal-bed reservoirs were collected basinwide and correlated to the coal geology and stratigraphy. The C1/(C2 + C3) ratio and vitrinite reflectance of coal and organic shale permitted differentiation between microbial gas and transitional thermogenic gas in the central part of the basin. Analyses of methane ??13C and ??D, carbon dioxide ??13C, and water ??D values indicate gas was generated primarily from microbial CO2 reduction, but with significant gas generated by microbial methyl-type fermentation (aceticlastic) in some areas of the basin. Microbial CO2 reduction occurs basinwide, but is generally dominant in Paleocene Fort Union Formation coals in the central part of the basin, whereas microbial methyl-type fermentation is common along the northwest and east margins. Isotopically light methane ??13C is distributed along the basin margins where ??D is also depleted, indicating that both CO2-reduction and methyl-type fermentation pathways played major roles in gas generation, but gas from the latter pathway overprinted gas from the former pathway. More specifically, along the northwest basin margin gas generation by methyl-type fermentation may have been stimulated by late-stage infiltration of groundwater recharge from clinker areas, which flowed through highly fractured and faulted coal aquifers. Also, groundwater recharge controlled a change in gas composition in the shallow Eocene Wasatch Formation with the increase of nitrogen and decrease of methane composition of the coal-bed gas. Other geologic factors, such as

  14. Simultaneous microbial and electrochemical reductions of vanadium (V) with bioelectricity generation in microbial fuel cells.

    PubMed

    Zhang, Baogang; Tian, Caixing; Liu, Ying; Hao, Liting; Liu, Ye; Feng, Chuanping; Liu, Yuqian; Wang, Zhongli

    2015-03-01

    Simultaneous microbial and electrochemical reductions of vanadium (V) with bioelectricity generation were realized in microbial fuel cells (MFCs). With initial V(V) concentrations of 75 mg/l and 150 mg/l in anolyte and catholyte, respectively, stable power output of 419±11 mW/m(2) was achieved. After 12h operation, V(V) concentration in the catholyte decreased to the value similar to that of the initial one in the anolyte, meanwhile it was nearly reduced completely in the anolyte. V(IV) was the main reduction product, which subsequently precipitated, acquiring total vanadium removal efficiencies of 76.8±2.9%. Microbial community analysis revealed the emergence of the new species of Deltaproteobacteria and Bacteroidetes as well as the enhanced Spirochaetes mainly functioned in the anode. This study opens new pathways to successful remediation of vanadium contamination.

  15. The beta-ketoadipate pathway and the biology of self-identity.

    PubMed

    Harwood, C S; Parales, R E

    1996-01-01

    The beta-ketoadipate pathway is a chromosomally encoded convergent pathway for aromatic compound degradation that is widely distributed in soil bacteria and fungi. One branch converts protocatechuate, derived from phenolic compounds including p-cresol, 4-hydroxybenzoate and numerous lignin monomers, to beta-ketoadipate. The other branch converts catechol, generated from various aromatic hydrocarbons, amino aromatics, and lignin monomers, also to beta-ketoadipate. Two additional steps accomplish the conversion of beta-ketoadipate to tricarboxylic acid cycle intermediates. Enzyme studies and amino acid sequence data indicate that the pathway is highly conserved in diverse bacteria, including Pseudomonas putida, Acinetobacter calcoaceticus, Agrobacterium tumefaciens, Rhodococcus erythropolis, and many others. The catechol branch of the beta-ketoadipate pathway appears to be the evolutionary precursor for portions of the plasmid-borne ortho-pathways for chlorocatechol degradation. However, accumulating evidence points to an independent and convergent evolutionary origin for the eukaryotic beta-ketoadipate pathway. In the face of enzyme conservation, the beta-ketoadipate pathway exhibits many permutations in different bacterial groups with respect to enzyme distribution (isozymes, points of branch convergence), regulation (inducing metabolites, regulatory proteins), and gene organization. Diversity is also evident in the behavioral responses of different bacteria to beta-ketoadipate pathway-associated aromatic compounds. The presence and versatility of transport systems encoded by beta-ketoadipate pathway regulons is just beginning to be explored in various microbial groups. It appears that in the course of evolution, natural selection has caused the beta-ketoadipate pathway to assume a characteristic set of features or identity in different bacteria. Presumably such identities have been shaped to optimally serve the diverse lifestyles of bacteria.

  16. Data Analysis of Transcriptomic Sequences and qPCR Validations for Microbial Communities during Algal Blooms

    EPA Pesticide Factsheets

    A training opportunity is open to a highly microbial-research-motivated student to conduct sequence analysis, explore novel genes and metabolic pathways, validate resultant findings using qPCR/RT-qPCR and summarize the findings

  17. Transcriptional feedback in the insulin signalling pathway modulates ageing in both Caenorhabditis elegans and Drosophila melanogaster † †Electronic supplementary information (ESI) available. See DOI: 10.1039/c3mb25485bClick here for additional data file.

    PubMed Central

    Papatheodorou, Irene; Ziehm, Matthias; Thornton, Janet M.

    2013-01-01

    Several components have been previously identified, that modulate longevity in several species, including the target of rapamycin (TOR) and the Insulin/IGF-1 (IIS) signalling pathways. In order to infer paths and transcriptional feedback loops that are likely to modulate ageing, we manually built a comprehensive and computationally efficient signalling network model of the IIS and TOR pathways in worms. The core insulin transduction is signalling from the sole insulin receptor daf-2 to ultimately inhibit the translocation of the transcription factor daf-16 into the nucleus. Reduction in this core signalling is thought to increase longevity in several species. In addition to this core insulin signalling, we have also recorded in our worm model the transcription factors skn-1 and hif-1, those are also thought to modulate ageing in a daf-16 independent manner. Several paths that are likely to modulate ageing were inferred via a web-based service NetEffects, by utilising perturbed components (rheb-1, let-363, aak-2, daf-2;daf-16 and InR;foxo in worms and flies respectively) from freely available gene expression microarrays. These included “routes” from TOR pathway to transcription factors daf-16, skn-1, hif-1 and daf-16 independent paths via skn-1/hif-1. Paths that could be tested by experimental hypotheses, with respect to relative contribution to longevity, are also discussed. Direct comparison of the IIS and TOR pathways in both worm and fly suggest a remarkable similarity. While similarities in the paths that could modulate ageing in both organisms were noted, differences are also discussed. This approach can also be extended to other pathways and processes. PMID:23624434

  18. Unravelling core microbial metabolisms in the hypersaline microbial mats of Shark Bay using high-throughput metagenomics

    SciTech Connect

    Ruvindy, Rendy; White III, Richard Allen; Neilan, Brett Anthony; Burns, Brendan Paul

    2015-05-29

    Modern microbial mats are potential analogues of some of Earth’s earliest ecosystems. Excellent examples can be found in Shark Bay, Australia, with mats of various morphologies. To further our understanding of the functional genetic potential of these complex microbial ecosystems, we conducted for the first time shotgun metagenomic analyses. We assembled metagenomic nextgeneration sequencing data to classify the taxonomic and metabolic potential across diverse morphologies of marine mats in Shark Bay. The microbial community across taxonomic classifications using protein-coding and small subunit rRNA genes directly extracted from the metagenomes suggests that three phyla Proteobacteria, Cyanobacteria and Bacteriodetes dominate all marine mats. However, the microbial community structure between Shark Bay and Highbourne Cay (Bahamas) marine systems appears to be distinct from each other. The metabolic potential (based on SEED subsystem classifications) of the Shark Bay and Highbourne Cay microbial communities were also distinct. Shark Bay metagenomes have a metabolic pathway profile consisting of both heterotrophic and photosynthetic pathways, whereas Highbourne Cay appears to be dominated almost exclusively by photosynthetic pathways. Alternative non-rubisco-based carbon metabolism including reductive TCA cycle and 3-hydroxypropionate/4-hydroxybutyrate pathways is highly represented in Shark Bay metagenomes while not represented in Highbourne Cay microbial mats or any other mat forming ecosystems investigated to date. Potentially novel aspects of nitrogen cycling were also observed, as well as putative heavy metal cycling (arsenic, mercury, copper and cadmium). Finally, archaea are highly represented in Shark Bay and may have critical roles in overall ecosystem function in these modern microbial mats.

  19. Unravelling core microbial metabolisms in the hypersaline microbial mats of Shark Bay using high-throughput metagenomics

    PubMed Central

    Ruvindy, Rendy; White III, Richard Allen; Neilan, Brett Anthony; Burns, Brendan Paul

    2016-01-01

    Modern microbial mats are potential analogues of some of Earth's earliest ecosystems. Excellent examples can be found in Shark Bay, Australia, with mats of various morphologies. To further our understanding of the functional genetic potential of these complex microbial ecosystems, we conducted for the first time shotgun metagenomic analyses. We assembled metagenomic next-generation sequencing data to classify the taxonomic and metabolic potential across diverse morphologies of marine mats in Shark Bay. The microbial community across taxonomic classifications using protein-coding and small subunit rRNA genes directly extracted from the metagenomes suggests that three phyla Proteobacteria, Cyanobacteria and Bacteriodetes dominate all marine mats. However, the microbial community structure between Shark Bay and Highbourne Cay (Bahamas) marine systems appears to be distinct from each other. The metabolic potential (based on SEED subsystem classifications) of the Shark Bay and Highbourne Cay microbial communities were also distinct. Shark Bay metagenomes have a metabolic pathway profile consisting of both heterotrophic and photosynthetic pathways, whereas Highbourne Cay appears to be dominated almost exclusively by photosynthetic pathways. Alternative non-rubisco-based carbon metabolism including reductive TCA cycle and 3-hydroxypropionate/4-hydroxybutyrate pathways is highly represented in Shark Bay metagenomes while not represented in Highbourne Cay microbial mats or any other mat forming ecosystems investigated to date. Potentially novel aspects of nitrogen cycling were also observed, as well as putative heavy metal cycling (arsenic, mercury, copper and cadmium). Finally, archaea are highly represented in Shark Bay and may have critical roles in overall ecosystem function in these modern microbial mats. PMID:26023869

  20. Expansion of Microbial Forensics

    PubMed Central

    Schmedes, Sarah E.; Sajantila, Antti

    2016-01-01

    Microbial forensics has been defined as the discipline of applying scientific methods to the analysis of evidence related to bioterrorism, biocrimes, hoaxes, or the accidental release of a biological agent or toxin for attribution purposes. Over the past 15 years, technology, particularly massively parallel sequencing, and bioinformatics advances now allow the characterization of microorganisms for a variety of human forensic applications, such as human identification, body fluid characterization, postmortem interval estimation, and biocrimes involving tracking of infectious agents. Thus, microbial forensics should be more broadly described as the discipline of applying scientific methods to the analysis of microbial evidence in criminal and civil cases for investigative purposes. PMID:26912746

  1. Microbial Cell Imaging

    SciTech Connect

    Doktycz, Mitchel John; Sullivan, Claretta; Mortensen, Ninell P; Allison, David P

    2011-01-01

    Atomic force microscopy (AFM) is finding increasing application in a variety of fields including microbiology. Until the emergence of AFM, techniques for ivnestigating processes in single microbes were limited. From a biologist's perspective, the fact that AFM can be used to generate high-resolution images in buffers or media is its most appealing feature as live-cell imaging can be pursued. Imaging living cells by AFM allows dynamic biological events to be studied, at the nanoscale, in real time. Few areas of biological research have as much to gain as microbiology from the application of AFM. Whereas the scale of microbes places them near the limit of resolution for light microscopy. AFM is well suited for the study of structures on the order of a micron or less. Although electron microscopy techniques have been the standard for high-resolution imaging of microbes, AFM is quickly gaining favor for several reasons. First, fixatives that impair biological activity are not required. Second, AFM is capable of detecting forces in the pN range, and precise control of the force applied to the cantilever can be maintained. This combination facilitates the evaluation of physical characteristics of microbes. Third, rather than yielding the composite, statistical average of cell populations, as is the case with many biochemical assays, the behavior of single cells can be monitored. Despite the potential of AFM in microbiology, there are several limitations that must be considered. For example, the time required to record an image allows for the study of gross events such as cell division or membrane degradation from an antibiotic but precludes the evaluation of biological reactions and events that happen in just fractions of a second. Additionally, the AFM is a topographical tool and is restricted to imaging surfaces. Therefore, it cannot be used to look inside cells as with opticla and transmission electron microscopes. other practical considerations are the limitation on

  2. Systems Biology of Microbial Exopolysaccharides Production

    PubMed Central

    Ates, Ozlem

    2015-01-01

    Exopolysaccharides (EPSs) produced by diverse group of microbial systems are rapidly emerging as new and industrially important biomaterials. Due to their unique and complex chemical structures and many interesting physicochemical and rheological properties with novel functionality, the microbial EPSs find wide range of commercial applications in various fields of the economy such as food, feed, packaging, chemical, textile, cosmetics and pharmaceutical industry, agriculture, and medicine. EPSs are mainly associated with high-value applications, and they have received considerable research attention over recent decades with their biocompatibility, biodegradability, and both environmental and human compatibility. However, only a few microbial EPSs have achieved to be used commercially due to their high production costs. The emerging need to overcome economic hurdles and the increasing significance of microbial EPSs in industrial and medical biotechnology call for the elucidation of the interrelations between metabolic pathways and EPS biosynthesis mechanism in order to control and hence enhance its microbial productivity. Moreover, a better understanding of biosynthesis mechanism is a significant issue for improvement of product quality and properties and also for the design of novel strains. Therefore, a systems-based approach constitutes an important step toward understanding the interplay between metabolism and EPS biosynthesis and further enhances its metabolic performance for industrial application. In this review, primarily the microbial EPSs, their biosynthesis mechanism, and important factors for their production will be discussed. After this brief introduction, recent literature on the application of omics technologies and systems biology tools for the improvement of production yields will be critically evaluated. Special focus will be given to EPSs with high market value such as xanthan, levan, pullulan, and dextran. PMID:26734603

  3. Gene expression profiling of microbial activities and interactions in sediments under haloclines of E. Mediterranean deep hypersaline anoxic basins.

    PubMed

    Edgcomb, Virginia P; Pachiadaki, Maria G; Mara, Paraskevi; Kormas, Konstantinos A; Leadbetter, Edward R; Bernhard, Joan M

    2016-11-01

    Deep-sea hypersaline anoxic basins (DHABs) in the Eastern Mediterranean Sea are considered some of the most polyextreme habitats on Earth. In comparison to microbial activities occurring within the haloclines and brines of these unusual water column habitats near the Mediterranean seafloor, relatively little is known about microbial metabolic activities in the underlying sediments. In addition, it is not known whether activities are shaped by the unique chemistries of the different DHAB brines and whether evidence exists for active microbial eukaryotes in those sediments. Metatranscriptome analysis was applied to sediment samples collected using ROV Jason from underneath the haloclines of Urania, Discovery and L'Atalante DHABs and a control site. We report on expression of genes associated with sulfur and nitrogen cycling, putative osmolyte biosynthetic pathways and ion transporters, trace metal detoxification, selected eukaryotic activities (particularly of fungi), microbe-microbe interactions, and motility in sediments underlying the haloclines of three DHABs. Relative to our control sediment sample collected outside of Urania Basin, microbial communities (including eukaryotes) in the Urania and Discovery DHAB sediments showed upregulation of expressed genes associated with nitrogen transformations, osmolyte biosynthesis, heavy metals resistance and metabolism, eukaryotic organelle functions, and cell-cell interactions. Sediments underlying DHAB haloclines that have cumulative physico-chemical stressors within the limits of tolerance for microoorganisms can therefore be hotspots of activity in the deep Mediterranean Sea.

  4. WikiPathways: capturing the full diversity of pathway knowledge.

    PubMed

    Kutmon, Martina; Riutta, Anders; Nunes, Nuno; Hanspers, Kristina; Willighagen, Egon L; Bohler, Anwesha; Mélius, Jonathan; Waagmeester, Andra; Sinha, Sravanthi R; Miller, Ryan; Coort, Susan L; Cirillo, Elisa; Smeets, Bart; Evelo, Chris T; Pico, Alexander R

    2016-01-04

    WikiPathways (http://www.wikipathways.org) is an open, collaborative platform for capturing and disseminating models of biological pathways for data visualization and analysis. Since our last NAR update, 4 years ago, WikiPathways has experienced massive growth in content, which continues to be contributed by hundreds of individuals each year. New aspects of the diversity and depth of the collected pathways are described from the perspective of researchers interested in using pathway information in their studies. We provide updates on extensions and services to support pathway analysis and visualization via popular standalone tools, i.e. PathVisio and Cytoscape, web applications and common programming environments. We introduce the Quick Edit feature for pathway authors and curators, in addition to new means of publishing pathways and maintaining custom pathway collections to serve specific research topics and communities. In addition to the latest milestones in our pathway collection and curation effort, we also highlight the latest means to access the content as publishable figures, as standard data files, and as linked data, including bulk and programmatic access.

  5. WikiPathways: capturing the full diversity of pathway knowledge

    PubMed Central

    Kutmon, Martina; Riutta, Anders; Nunes, Nuno; Hanspers, Kristina; Willighagen, Egon L.; Bohler, Anwesha; Mélius, Jonathan; Waagmeester, Andra; Sinha, Sravanthi R.; Miller, Ryan; Coort, Susan L.; Cirillo, Elisa; Smeets, Bart; Evelo, Chris T.; Pico, Alexander R.

    2016-01-01

    WikiPathways (http://www.wikipathways.org) is an open, collaborative platform for capturing and disseminating models of biological pathways for data visualization and analysis. Since our last NAR update, 4 years ago, WikiPathways has experienced massive growth in content, which continues to be contributed by hundreds of individuals each year. New aspects of the diversity and depth of the collected pathways are described from the perspective of researchers interested in using pathway information in their studies. We provide updates on extensions and services to support pathway analysis and visualization via popular standalone tools, i.e. PathVisio and Cytoscape, web applications and common programming environments. We introduce the Quick Edit feature for pathway authors and curators, in addition to new means of publishing pathways and maintaining custom pathway collections to serve specific research topics and communities. In addition to the latest milestones in our pathway collection and curation effort, we also highlight the latest means to access the content as publishable figures, as standard data files, and as linked data, including bulk and programmatic access. PMID:26481357

  6. Mineralization and Detoxification of the Carcinogenic Azo Dye Congo Red and Real Textile Effluent by a Polyurethane Foam Immobilized Microbial Consortium in an Upflow Column Bioreactor

    PubMed Central

    Lade, Harshad; Govindwar, Sanjay; Paul, Diby

    2015-01-01

    A microbial consortium that is able to grow in wheat bran (WB) medium and decolorize the carcinogenic azo dye Congo red (CR) was developed. The microbial consortium was immobilized on polyurethane foam (PUF). Batch studies with the PUF-immobilized microbial consortium showed complete removal of CR dye (100 mg·L−1) within 12 h at pH 7.5 and temperature 30 ± 0.2 °C under microaerophilic conditions. Additionally, 92% American Dye Manufactureing Institute (ADMI) removal for real textile effluent (RTE, 50%) was also observed within 20 h under the same conditions. An upflow column reactor containing PUF-immobilized microbial consortium achieved 99% CR dye (100 mg·L−1) and 92% ADMI removal of RTE (50%) at 35 and 20 mL·h−l flow rates, respectively. Consequent reduction in TOC (83 and 79%), COD (85 and 83%) and BOD (79 and 78%) of CR dye and RTE were also observed, which suggested mineralization. The decolorization process was traced to be enzymatic as treated samples showed significant induction of oxidoreductive enzymes. The proposed biodegradation pathway of the dye revealed the formation of lower molecular weight compounds. Toxicity studies with a plant bioassay and acute tests indicated that the PUF-immobilized microbial consortium favors detoxification of the dye and textile effluents. PMID:26086710

  7. Mineralization and Detoxification of the Carcinogenic Azo Dye Congo Red and Real Textile Effluent by a Polyurethane Foam Immobilized Microbial Consortium in an Upflow Column Bioreactor.

    PubMed

    Lade, Harshad; Govindwar, Sanjay; Paul, Diby

    2015-06-16

    A microbial consortium that is able to grow in wheat bran (WB) medium and decolorize the carcinogenic azo dye Congo red (CR) was developed. The microbial consortium was immobilized on polyurethane foam (PUF). Batch studies with the PUF-immobilized microbial consortium showed complete removal of CR dye (100 mg·L-1) within 12 h at pH 7.5 and temperature 30 ± 0.2 °C under microaerophilic conditions. Additionally, 92% American Dye Manufactureing Institute (ADMI) removal for real textile effluent (RTE, 50%) was also observed within 20 h under the same conditions. An upflow column reactor containing PUF-immobilized microbial consortium achieved 99% CR dye (100 mg·L-1) and 92% ADMI removal of RTE (50%) at 35 and 20 mL·h-l flow rates, respectively. Consequent reduction in TOC (83 and 79%), COD (85 and 83%) and BOD (79 and 78%) of CR dye and RTE were also observed, which suggested mineralization. The decolorization process was traced to be enzymatic as treated samples showed significant induction of oxidoreductive enzymes. The proposed biodegradation pathway of the dye revealed the formation of lower molecular weight compounds. Toxicity studies with a plant bioassay and acute tests indicated that the PUF-immobilized microbial consortium favors detoxification of the dye and textile effluents.

  8. Interval scanning photomicrography of microbial cell populations.

    NASA Technical Reports Server (NTRS)

    Casida, L. E., Jr.

    1972-01-01

    A single reproducible area of the preparation in a fixed focal plane is photographically scanned at intervals during incubation. The procedure can be used for evaluating the aerobic or anaerobic growth of many microbial cells simultaneously within a population. In addition, the microscope is not restricted to the viewing of any one microculture preparation, since the slide cultures are incubated separately from the microscope.

  9. Fracture Sealing with Microbially-Induced Calcium Carbonate Precipitation: A Field Study.

    PubMed

    Phillips, Adrienne J; Cunningham, Alfred B; Gerlach, Robin; Hiebert, Randy; Hwang, Chiachi; Lomans, Bartholomeus P; Westrich, Joseph; Mantilla, Cesar; Kirksey, Jim; Esposito, Richard; Spangler, Lee

    2016-04-05

    A primary environmental risk from unconventional oil and gas development or carbon sequestration is subsurface fluid leakage in the near wellbore environment. A potential solution to remediate leakage pathways is to promote microbially induced calcium carbonate precipitation (MICP) to plug fractures and reduce permeability in porous materials. The advantage of microbially induced calcium carbonate precipitation (MICP) over cement-based sealants is that the solutions used to promote MICP are aqueous. MICP solutions have low viscosities compared to cement, facilitating fluid transport into the formation. In this study, MICP was promoted in a fractured sandstone layer within the Fayette Sandstone Formation 340.8 m below ground surface using conventional oil field subsurface fluid delivery technologies (packer and bailer). After 24 urea/calcium solution and 6 microbial (Sporosarcina pasteurii) suspension injections, the injectivity was decreased (flow rate decreased from 1.9 to 0.47 L/min) and a reduction in the in-well pressure falloff (>30% before and 7% after treatment) was observed. In addition, during refracturing an increase in the fracture extension pressure was measured as compared to before MICP treatment. This study suggests MICP is a promising tool for sealing subsurface fractures in the near wellbore environment.

  10. Microbial Source Tracking

    EPA Science Inventory

    Bacterial indicators of fecal contamination provide the basis for assessing the microbial quality of environmental waters. While the indicator concept has overall helped reduce waterborne outbreaks in recreational waters, the public health value of currently used indicator bacter...

  11. Anode Biofilms of Geoalkalibacter ferrihydriticus Exhibit Electrochemical Signatures of Multiple Electron Transport Pathways.

    PubMed

    Yoho, Rachel A; Popat, Sudeep C; Rago, Laura; Guisasola, Albert; Torres, César I

    2015-11-17

    Thriving under alkaliphilic conditions, Geoalkalibacter ferrihydriticus (Glk. ferrihydriticus) provides new applications in treating alkaline waste streams as well as a possible new model organism for microbial electrochemistry. We investigated the electrochemical response of biofilms of the alkaliphilic anode-respiring bacterium (ARB) Glk. ferrihydriticus voltammetry (CV), electrochemical impedance spectroscopy (EIS), and chronoamperometry. We observed there to be at least four dominant electron transfer pathways, with their contribution to the overall current produced dependent on the set anode potential. These pathways appear to be manifested at midpoint potentials of approximately -0.14 V, -0.2 V, -0.24 V, and -0.27 V vs standard hydrogen electrode. The individual contributions of the pathways change upon equilibration from a set anode potential to another anode potential. Additionally, the contribution of each pathway to the overall current produced is reversible when the anode potential is changed back to the original set potential. The pathways involved in anode respiration in Glk. ferrihydriticus biofilms follow a similar, but more complicated, pattern as compared to those in the model ARB, Geobacter sulfurreducens. This greater diversity of electron transport pathways in Glk. ferrihydriticus could be related to its wider metabolic capability (e.g., higher pH and larger set of possible substrates, among others).

  12. Syntrophic exchange in synthetic microbial communities

    PubMed Central

    Mee, Michael T.; Collins, James J.; Church, George M.; Wang, Harris H.

    2014-01-01

    Metabolic crossfeeding is an important process that can broadly shape microbial communities. However, little is known about specific crossfeeding principles that drive the formation and maintenance of individuals within a mixed population. Here, we devised a series of synthetic syntrophic communities to probe the complex interactions underlying metabolic exchange of amino acids. We experimentally analyzed multimember, multidimensional communities of Escherichia coli of increasing sophistication to assess the outcomes of synergistic crossfeeding. We find that biosynthetically costly amino acids including methionine, lysine, isoleucine, arginine, and aromatics, tend to promote stronger cooperative interactions than amino acids that are cheaper to produce. Furthermore, cells that share common intermediates along branching pathways yielded more synergistic growth, but exhibited many instances of both positive and negative epistasis when these interactions scaled to higher dimensions. In more complex communities, we find certain members exhibiting keystone species-like behavior that drastically impact the community dynamics. Based on comparative genomic analysis of >6,000 sequenced bacteria from diverse environments, we present evidence suggesting that amino acid biosynthesis has been broadly optimized to reduce individual metabolic burden in favor of enhanced crossfeeding to support synergistic growth across the biosphere. These results improve our basic understanding of microbial syntrophy while also highlighting the utility and limitations of current modeling approaches to describe the dynamic complexities underlying microbial ecosystems. This work sets the foundation for future endeavors to resolve key questions in microbial ecology and evolution, and presents a platform to develop better and more robust engineered synthetic communities for industrial biotechnology. PMID:24778240

  13. Autism: many genes, common pathways?

    PubMed

    Geschwind, Daniel H

    2008-10-31

    Autism is a heterogeneous neurodevelopmental syndrome with a complex genetic etiology. It is still not clear whether autism comprises a vast collection of different disorders akin to intellectual disability or a few disorders sharing common aberrant pathways. Unifying principles among cases of autism are likely to be at the level of brain circuitry in addition to molecular pathways.

  14. Environmental Factors Influencing the Structural Dynamics of Soil Microbial Communities During Assisted Phytostabilization of Acid-Generating Mine Tailings: a Mesocosm Experiment

    PubMed Central

    Valentín-Vargas, Alexis; Root, Robert A.; Neilson, Julia W; Chorover, Jon; Maier, Raina M.

    2014-01-01

    Compost-assisted phytostabilization has recently emerged as a robust alternative for reclamation of metalliferous mine tailings. Previous studies suggest that root-associated microbes may be important for facilitating plant establishment on the tailings, yet little is known about the long-term dynamics of microbial communities during reclamation. A mechanistic understanding of microbial community dynamics in tailings ecosystems undergoing remediation is critical because these dynamics profoundly influence both the biogeochemical weathering of tailings and the sustainability of a plant cover. Here we monitor the dynamics of soil microbial communities (i.e. bacteria, fungi, archaea) during a 12-month mesocosm study that included 4 treatments: 2 unplanted controls (unamended and compost-amended tailings) and 2 compost-amended seeded tailings treatments. Bacterial, fungal and archaeal communities responded distinctively to the revegetation process and concurrent changes in environmental conditions and pore water chemistry. Compost addition significantly increased microbial diversity and had an immediate and relatively long-lasting buffering-effect on pH, allowing plants to germinate and thrive during the early stages of the experiment. However, the compost buffering capacity diminished after six months and acidification took over as the major factor affecting plant survival and microbial community structure. Immediate changes in bacterial communities were observed following plant establishment, whereas fungal communities showed a delayed response that apparently correlated with the pH decline. Fluctuations in cobalt pore water concentrations, in particular, had a significant effect on the structure of all three microbial groups, which may be linked to the role of cobalt in metal detoxification pathways. The present study represents, to our knowledge, the first documentation of the dynamics of the three major microbial groups during revegetation of compost

  15. Microbial Production of Isoprenoids Enabled by Synthetic Biology

    PubMed Central

    Immethun, Cheryl M.; Hoynes-O’Connor, Allison G.; Balassy, Andrea; Moon, Tae Seok

    2013-01-01

    Microorganisms transform inexpensive carbon sources into highly functionalized compounds without toxic by-product generation or significant energy consumption. By redesigning the natural biosynthetic pathways in an industrially suited host, microbial cell factories can produce complex compounds for a variety of industries. Isoprenoids include many medically important compounds such as antioxidants and anticancer and antimalarial drugs, all of which have been produced microbially. While a biosynthetic pathway could be simply transferred to the production host, the titers would become economically feasible when it is rationally designed, built, and optimized through synthetic biology tools. These tools have been implemented by a number of research groups, with new tools pledging further improvements in yields and expansion to new medically relevant compounds. This review focuses on the microbial production of isoprenoids for the health industry and the advancements though synthetic biology. PMID:23577007

  16. Microbial Sulfur Cycling in an Acid Mine Lake

    NASA Astrophysics Data System (ADS)

    Bernier, L.; Warren, L. A.

    2004-12-01

    Geochemical dynamics of a tailings impacted lake in Northern Ontario were investigated over a three-year period, in which active pyrrhotite slurry disposal was initiated in year two. A strong seasonal trend of decreasing epilimnetic pH with significant diurnal acid production, pre-, during and post slurry deposition was observed with high rates observed compared to pre-slurry. Slurry deposition occurred at the surface of the lake and acted as a reaction stimulant for acid generation. Over the diurnal timescale investigated, the highest rates of acid production occurred not at the lake surface but within the metaliminetic region of the lake. This region was exemplified by strong decreasing oxygen gradients, and thus observed high rates of acid generation are more consistent with microbial pathways of sulfur oxidation than with abiotic, oxygen catalyzed pathways. Consistent with microbial catalysis, metalimnetic rates of acid generation were highest during June and July when microbial populations and metabolic rates were maximal. These results indicate that microbial oxidation of sulfur species play a major role in acid generation in this system. Further, observed rates of acid generation exceed those predicted by published abiotic rates of pyrrhotite oxidation, but are consistent with literature estimates of acid generation catalyzed by microbial activity. Acidithiobacilli accounted for up to 50% of the microbial community pre slurry, but were absent post slurry deposition. These results are the first to demonstrate quantitatively that microbial sulfur oxidation can play a predominant role in acid generation within mine tailings impacted systems. They further highlight the need to evaluate the more complex pathways by which microorganisms process sulfur as the conditions, controls and process rates differ from those observed for abiotic reactions.

  17. Microbial Production of Isoprene

    SciTech Connect

    Ray Fall

    2007-07-29

    Isoprene is a volatile hydrocarbon of unknown function, produced by certain bacteria, plants and animals, sometimes in huge amounts—the Earth’s forests are estimated to emit >500 x 106 tons of isoprene per year. With funding from this program we explored the biochemistry and regulation of isoprene formation in the model bacterial system, Bacillus subtilis, with the goals of explaining the biological rationale for isoprene biogenesis and constructing an isoprene-overproducing microbial system. Although the role for isoprene formation in B. subtilis is still uncertain, our current model for regulation of this hydrocarbon’s synthesis is that isoprene production in B. subtilis is controlled by a combination of i) rapid regulation of isoprene synthase activity and ii) supply of the substrate for isoprene synthase, dimethyallyl diphosphate (DMAPP). This model parallels our current thinking about the control of isoprene formation in plant chloroplasts. In this reporting period we have been working to test part ii) of this model; this work has produced new results using genetic and analytical approaches. For examples, we have developed an analytical method to resolve DMAPP and its isomer, isopentenyl diphosphate, from each other in bacteria and plants. We have also shown that the IPP isomerase (type 2) of B. subtilis is not the source of “isoprene synthase” activity, and discovered that B. subtilis releases C5 isoprenoid alcohols to the medium, suggesting that isoprene plus other C5 isoprenoids may be common by-products of metabolism. In addition, we have continued to work on our discovery that wild type B. subtilis strains form prolific biofilms, are normal components of plant root microflora, and are testing the idea that B. subtilis growing in biofilms uses isoprene to induce plant root exudation.

  18. Introducing a new bioengineered bug: Methylobacterium extorquens tuned as a microbial bioplastic factory.

    PubMed

    Höfer, Philipp; Vermette, Patrick; Groleau, Denis

    2011-01-01

    Discussion on and use of methanol as chemical feedstock and as alternative fuel has gained momentum during the past years. Consequently, microorganism and product design based on ''methylotrophism'' is in vogue as reflected by increasing research and development activities in methanol-related areas. A recent example of microorganism and product development is the use of recombinant Methylobacterium extorquens ATCC 55366 strains in the production of second generation biopolyesters. Feeding n-alkenoic acids in addition to methanol yielded functionalized polyhydroxyalkanoates (PHAs) and uncovered how M. extorquens copes with fatty acids. While some parts of the degradation pathway remain unclear, possible metabolic routes are suggested that may explain the significant loss of double bonds prior to polymerization of PHA precursors and occurrence of odd-numbered monomers derived from even-numbered n-alkenoic acids. In addition, microbial discoloration upon fatty acid feeding is discussed and future directions for further genetic modification of M. extorquens are provided. 

  19. A contemporary microbially maintained subglacial ferrous "ocean".

    PubMed

    Mikucki, Jill A; Pearson, Ann; Johnston, David T; Turchyn, Alexandra V; Farquhar, James; Schrag, Daniel P; Anbar, Ariel D; Priscu, John C; Lee, Peter A

    2009-04-17

    An active microbial assemblage cycles sulfur in a sulfate-rich, ancient marine brine beneath Taylor Glacier, an outlet glacier of the East Antarctic Ice Sheet, with Fe(III) serving as the terminal electron acceptor. Isotopic measurements of sulfate, water, carbonate, and ferrous iron and functional gene analyses of adenosine 5'-phosphosulfate reductase imply that a microbial consortium facilitates a catalytic sulfur cycle. These metabolic pathways result from a limited organic carbon supply because of the absence of contemporary photosynthesis, yielding a subglacial ferrous brine that is anoxic but not sulfidic. Coupled biogeochemical processes below the glacier enable subglacial microbes to grow in extended isolation, demonstrating how analogous organic-starved systems, such as Neoproterozoic oceans, accumulated Fe(II) despite the presence of an active sulfur cycle.

  20. New microbial fuels: a biotech perspective.

    PubMed

    Rude, Mathew A; Schirmer, Andreas

    2009-06-01

    Bioethanol and plant oil-derived biodiesel are generally considered first generation biofuels. Recognizing their apparent disadvantages, scientists and engineers are developing more sustainable and economically feasible second generation biofuels. The new microbial fuels summarized here have great potential to become viable replacements or at least supplements of petroleum-derived liquid transportation fuels. Yields and efficiencies of the four metabolic pathways leading to these microbial fuels-mostly designed and optimized in Escherichia coli and Saccharomyces cerevisiae using modern tools of metabolic engineering and synthetic biology-and the robustness of the biocatalysts that convert the metabolic intermediates to, in some cases, finished and engine-ready fuels, will determine if they can be commercially successful and contribute to alleviating our dependence on fossil fuels.

  1. Ileal and cecal microbial populations in broilers given specific essential oil blends and probiotics in two consecutive grow-outs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Digestive microbial populations (MP) are key components for sustained healthy broiler production. Specific essential oil (EO) blends and probiotics used as feed additives have shown to promote healthy digestive microbials, resulting in improved poultry production. Two consecutive experiments were ...

  2. Redox potential as a master variable controlling pathways of metal reduction by Geobacter sulfurreducens

    PubMed Central

    Levar, Caleb E; Hoffman, Colleen L; Dunshee, Aubrey J; Toner, Brandy M; Bond, Daniel R

    2017-01-01

    Geobacter sulfurreducens uses at least two different pathways to transport electrons out of the inner membrane quinone pool before reducing acceptors beyond the outer membrane. When growing on electrodes poised at oxidizing potentials, the CbcL-dependent pathway operates at or below redox potentials of –0.10 V vs the standard hydrogen electrode, whereas the ImcH-dependent pathway operates only above this value. Here, we provide evidence that G. sulfurreducens also requires different electron transfer proteins for reduction of a wide range of Fe(III)- and Mn(IV)-(oxyhydr)oxides, and must transition from a high- to low-potential pathway during reduction of commonly studied soluble and insoluble metal electron acceptors. Freshly precipitated Fe(III)-(oxyhydr)oxides could not be reduced by mutants lacking the high-potential pathway. Aging these minerals by autoclaving did not change their powder X-ray diffraction pattern, but restored reduction by mutants lacking the high-potential pathway. Mutants lacking the low-potential, CbcL-dependent pathway had higher growth yields with both soluble and insoluble Fe(III). Together, these data suggest that the ImcH-dependent pathway exists to harvest additional energy when conditions permit, and CbcL switches on to allow respiration closer to thermodynamic equilibrium conditions. With evidence of multiple pathways within a single organism, the study of extracellular respiration should consider not only the crystal structure or solubility of a mineral electron acceptor, but rather the redox potential, as this variable determines the energetic reward affecting reduction rates, extents, and final microbial growth yields in the environment. PMID:28045456

  3. Redox potential as a master variable controlling pathways of metal reduction by Geobacter sulfurreducens.

    PubMed

    Levar, Caleb E; Hoffman, Colleen L; Dunshee, Aubrey J; Toner, Brandy M; Bond, Daniel R

    2017-03-01

    Geobacter sulfurreducens uses at least two different pathways to transport electrons out of the inner membrane quinone pool before reducing acceptors beyond the outer membrane. When growing on electrodes poised at oxidizing potentials, the CbcL-dependent pathway operates at or below redox potentials of -0.10 V vs the standard hydrogen electrode, whereas the ImcH-dependent pathway operates only above this value. Here, we provide evidence that G. sulfurreducens also requires different electron transfer proteins for reduction of a wide range of Fe(III)- and Mn(IV)-(oxyhydr)oxides, and must transition from a high- to low-potential pathway during reduction of commonly studied soluble and insoluble metal electron acceptors. Freshly precipitated Fe(III)-(oxyhydr)oxides could not be reduced by mutants lacking the high-potential pathway. Aging these minerals by autoclaving did not change their powder X-ray diffraction pattern, but restored reduction by mutants lacking the high-potential pathway. Mutants lacking the low-potential, CbcL-dependent pathway had higher growth yields with both soluble and insoluble Fe(III). Together, these data suggest that the ImcH-dependent pathway exists to harvest additional energy when conditions permit, and CbcL switches on to allow respiration closer to thermodynamic equilibrium conditions. With evidence of multiple pathways within a single organism, the study of extracellular respiration should consider not only the crystal structure or solubility of a mineral electron acceptor, but rather the redox potential, as this variable determines the energetic reward affecting reduction rates, extents, and final microbial growth yields in the environment.

  4. Microbial community transitions across the deep sediment-basement interface

    NASA Astrophysics Data System (ADS)

    Labonté, J.; Lever, M. A.; Orcutt, B.

    2015-12-01

    Previous studies of microbial abundance and geochemistry in deep marine sediments indicate a stimulation of microbial activity near the sediment-basement interface; yet, the extent to which microbial communities in bottom sediments and underlying crustal habitats interact is unclear. We conducted tag pyrosequencing on DNA extracted from a spectrum of deep sediment-basement samples to try to identify patterns in microbial community shifts across sediment-basement interfaces, focusing on samples from the subsurface of the Juan de Fuca Ridge flank (IODP Expedition 327). Our results demonstrate that sediment and the basaltic crust harbor microbial communities that are phylogenetically connected, but the eveness is characteristic of the environment. We will discuss the microbial community transitions that occur horizontally along fluid flow pathways and vertically across the sediment basement interface, as well as the possible implications regarding the controls of microbial community composition along deep sediment-basement interfaces in hydrothermal systems. We will also highlight efforts to overcome sample contamination in crustal subsurface samples.

  5. Perspective for Aquaponic Systems: "Omic" Technologies for Microbial Community Analysis.

    PubMed

    Munguia-Fragozo, Perla; Alatorre-Jacome, Oscar; Rico-Garcia, Enrique; Torres-Pacheco, Irineo; Cruz-Hernandez, Andres; Ocampo-Velazquez, Rosalia V; Garcia-Trejo, Juan F; Guevara-Gonzalez, Ramon G

    2015-01-01

    Aquaponics is the combined production of aquaculture and hydroponics, connected by a water recirculation system. In this productive system, the microbial community is responsible for carrying out the nutrient dynamics between the components. The nutrimental transformations mainly consist in the transformation of chemical species from toxic compounds into available nutrients. In this particular field, the microbial research, the "Omic" technologies will allow a broader scope of studies about a current microbial profile inside aquaponics community, even in those species that currently are unculturable. This approach can also be useful to understand complex interactions of living components in the system. Until now, the analog studies were made to set up the microbial characterization on recirculation aquaculture systems (RAS). However, microbial community composition of aquaponics is still unknown. "Omic" technologies like metagenomic can help to reveal taxonomic diversity. The perspectives are also to begin the first attempts to sketch the functional diversity inside aquaponic systems and its ecological relationships. The knowledge of the emergent properties inside the microbial community, as well as the understanding of the biosynthesis pathways, can derive in future biotechnological applications. Thus, the aim of this review is to show potential applications of current "Omic" tools to characterize the microbial community in aquaponic systems.

  6. Deep subsurface microbial processes

    USGS Publications Warehouse

    Lovley, D.R.; Chapelle, F.H.

    1995-01-01

    Information on the microbiology of the deep subsurface is necessary in order to understand the factors controlling the rate and extent of the microbially catalyzed redox reactions that influence the geophysical properties of these environments. Furthermore, there is an increasing threat that deep aquifers, an important drinking water resource, may be contaminated by man's activities, and there is a need to predict the extent to which microbial activity may remediate such contamination. Metabolically active microorganisms can be recovered from a diversity of deep subsurface environments. The available evidence suggests that these microorganisms are responsible for catalyzing the oxidation of organic matter coupled to a variety of electron acceptors just as microorganisms do in surface sediments, but at much slower rates. The technical difficulties in aseptically sampling deep subsurface sediments and the fact that microbial processes in laboratory incubations of deep subsurface material often do not mimic in situ processes frequently necessitate that microbial activity in the deep subsurface be inferred through nonmicrobiological analyses of ground water. These approaches include measurements of dissolved H2, which can predict the predominant microbially catalyzed redox reactions in aquifers, as well as geochemical and groundwater flow modeling, which can be used to estimate the rates of microbial processes. Microorganisms recovered from the deep subsurface have the potential to affect the fate of toxic organics and inorganic contaminants in groundwater. Microbial activity also greatly influences 1 the chemistry of many pristine groundwaters and contributes to such phenomena as porosity development in carbonate aquifers, accumulation of undesirably high concentrations of dissolved iron, and production of methane and hydrogen sulfide. Although the last decade has seen a dramatic increase in interest in deep subsurface microbiology, in comparison with the study of

  7. The roles of unfolded protein response pathways in Chlamydia pathogenesis.

    PubMed

    George, Zenas; Omosun, Yusuf; Azenabor, Anthony A; Partin, James; Joseph, Kahaliah; Ellerson, Debra; He, Qing; Eko, Francis; Bandea, Claudiu; Svoboda, Pavel; Pohl, Jan; Black, Carolyn M; Igietseme, Joseph U

    2016-12-08

    Chlamydia is an obligate intracellular bacterium that relies on host cell for essential nutrients and ATP for a productive infection. Although the unfolded protein response (UPR) plays a major role in certain microbial infectivity, its role in chlamydial pathogenesis is unknown. We hypothesized that Chlamydia induces UPR and exploits it to upregulate host cell uptake and metabolism of glucose, production of ATP, phospholipids and other molecules required for its replicative development and host survival. Using a combination of biochemical and pathway inhibition assays, we showed that the three UPR pathway transducers: Protein kinase RNA-activated (PKR)-like ER kinase (PERK), Inositol-requiring enzyme-1α (IRE1α), and Activating transcription factor-6α (ATF6α) were activated during Chlamydia infection. The kinase activity of PERK and RNase of IRE1α mediated the upregulation of Hexokinase II and production of ATP via substrate level phosphorylation. In addition, the activation of PERK and IRE1α promoted autophagy formation and apoptosis resistance or host survival. Moreover, the activation of IRE1α resulted in the generation of spliced XBP1 and upregulation of lipid production. The vital role of UPR pathways in Chlamydia development and pathogenesis could lead to the identification of potential molecular targets for therapeutics against Chlamydia.

  8. Humans differ in their personal microbial cloud

    PubMed Central

    Altrichter, Adam E.; Bateman, Ashley C.; Stenson, Jason; Brown, GZ; Green, Jessica L.; Bohannan, Brendan J.M.

    2015-01-01

    Dispersal of microbes between humans and the built environment can occur through direct contact with surfaces or through airborne release; the latter mechanism remains poorly understood. Humans emit upwards of 106 biological particles per hour, and have long been known to transmit pathogens to other individuals and to indoor surfaces. However it has not previously been demonstrated that humans emit a detectible microbial cloud into surrounding indoor air, nor whether such clouds are sufficiently differentiated to allow the identification of individual occupants. We used high-throughput sequencing of 16S rRNA genes to characterize the airborne bacterial contribution of a single person sitting in a sanitized custom experimental climate chamber. We compared that to air sampled in an adjacent, identical, unoccupied chamber, as well as to supply and exhaust air sources. Additionally, we assessed microbial communities in settled particles surrounding each occupant, to investigate the potential long-term fate of airborne microbial emissions. Most occupants could be clearly detected by their airborne bacterial emissions, as well as their contribution to settled particles, within 1.5–4 h. Bacterial clouds from the occupants were statistically distinct, allowing the identification of some individual occupants. Our results confirm that an occupied space is microbially distinct from an unoccupied one, and demonstrate for the first time that individuals release their own personalized microbial cloud. PMID:26417541

  9. Microbial life in a liquid asphalt desert.

    PubMed

    Schulze-Makuch, Dirk; Haque, Shirin; de Sousa Antonio, Marina Resendes; Ali, Denzil; Hosein, Riad; Song, Young C; Yang, Jinshu; Zaikova, Elena; Beckles, Denise M; Guinan, Edward; Lehto, Harry J; Hallam, Steven J

    2011-04-01

    Pitch Lake in Trinidad and Tobago is a natural asphalt reservoir nourished by pitch seepage, a form of petroleum that consists of mostly asphaltines, from the surrounding oil-rich region. During upward seepage, pitch mixes with mud and gases under high pressure, and the lighter portion evaporates or is volatilized, which produces a liquid asphalt residue characterized by low water activity, recalcitrant carbon substrates, and noxious chemical compounds. An active microbial community of archaea and bacteria, many of them novel strains (particularly from the new Tar ARC groups), totaling a biomass of up to 10(7) cells per gram, was found to inhabit the liquid hydrocarbon matrix of Pitch Lake. Geochemical and molecular taxonomic approaches revealed diverse, novel, and deeply branching microbial lineages with the potential to mediate anaerobic hydrocarbon degradation processes in different parts of the asphalt column. In addition, we found markers for archaeal methane metabolism and specific gene sequences affiliated with facultative and obligate anaerobic sulfur- and nitrite-oxidizing bacteria. The microbial diversity at Pitch Lake was found to be unique when compared to microbial communities analyzed at other hydrocarbon-rich environments, which included Rancho Le Brea, a natural asphalt environment in California, USA, and an oil well and a mud volcano in Trinidad and Tobago, among other sites. These results open a window into the microbial ecology and biogeochemistry of recalcitrant hydrocarbon matrices and establish the site as a terrestrial analogue for modeling the biotic potential of hydrocarbon lakes such as those found on Saturn's largest moon Titan.

  10. Microbial Life in a Liquid Asphalt Desert

    NASA Astrophysics Data System (ADS)

    Schulze-Makuch, Dirk; Haque, Shirin; de Sousa Antonio, Marina Resendes; Ali, Denzil; Hosein, Riad; Song, Young C.; Yang, Jinshu; Zaikova, Elena; Beckles, Denise M.; Guinan, Edward; Lehto, Harry J.; Hallam, Steven J.

    2011-04-01

    Pitch Lake in Trinidad and Tobago is a natural asphalt reservoir nourished by pitch seepage, a form of petroleum that consists of mostly asphaltines, from the surrounding oil-rich region. During upward seepage, pitch mixes with mud and gases under high pressure, and the lighter portion evaporates or is volatilized, which produces a liquid asphalt residue characterized by low water activity, recalcitrant carbon substrates, and noxious chemical compounds. An active microbial community of archaea and bacteria, many of them novel strains (particularly from the new Tar ARC groups), totaling a biomass of up to 107 cells per gram, was found to inhabit the liquid hydrocarbon matrix of Pitch Lake. Geochemical and molecular taxonomic approaches revealed diverse, novel, and deeply branching microbial lineages with the potential to mediate anaerobic hydrocarbon degradation processes in different parts of the asphalt column. In addition, we found markers for archaeal methane metabolism and specific gene sequences affiliated with facultative and obligate anaerobic sulfur- and nitrite-oxidizing bacteria. The microbial diversity at Pitch Lake was found to be unique when compared to microbial communities analyzed at other hydrocarbon-rich environments, which included Rancho Le Brea, a natural asphalt environment in California, USA, and an oil well and a mud volcano in Trinidad and Tobago, among other sites. These results open a window into the microbial ecology and biogeochemistry of recalcitrant hydrocarbon matrices and establish the site as a terrestrial analogue for modeling the biotic potential of hydrocarbon lakes such as those found on Saturn's largest moon Titan.

  11. Microbial interactions: ecology in a molecular perspective.

    PubMed

    Braga, Raíssa Mesquita; Dourado, Manuella Nóbrega; Araújo, Welington Luiz

    2016-12-01

    The microorganism-microorganism or microorganism-host interactions are the key strategy to colonize and establish in a variety of different environments. These interactions involve all ecological aspects, including physiochemical changes, metabolite exchange, metabolite conversion, signaling, chemotaxis and genetic exchange resulting in genotype selection. In addition, the establishment in the environment depends on the species diversity, since high functional redundancy in the microbial community increases the competitive ability of the community, decreasing the possibility of an invader to establish in this environment. Therefore, these associations are the result of a co-evolution process that leads to the adaptation and specialization, allowing the occupation of different niches, by reducing biotic and abiotic stress or exchanging growth factors and signaling. Microbial interactions occur by the transference of molecular and genetic information, and many mechanisms can be involved in this exchange, such as secondary metabolites, siderophores, quorum sensing system, biofilm formation, and cellular transduction signaling, among others. The ultimate unit of interaction is the gene expression of each organism in response to an environmental (biotic or abiotic) stimulus, which is responsible for the production of molecules involved in these interactions. Therefore, in the present review, we focused on some molecular mechanisms involved in the microbial interaction, not only in microbial-host interaction, which has been exploited by other reviews, but also in the molecular strategy used by different microorganisms in the environment that can modulate the establishment and structuration of the microbial community.

  12. Humans differ in their personal microbial cloud.

    PubMed

    Meadow, James F; Altrichter, Adam E; Bateman, Ashley C; Stenson, Jason; Brown, G Z; Green, Jessica L; Bohannan, Brendan J M

    2015-01-01

    Dispersal of microbes between humans and the built environment can occur through direct contact with surfaces or through airborne release; the latter mechanism remains poorly understood. Humans emit upwards of 10(6) biological particles per hour, and have long been known to transmit pathogens to other individuals and to indoor surfaces. However it has not previously been demonstrated that humans emit a detectible microbial cloud into surrounding indoor air, nor whether such clouds are sufficiently differentiated to allow the identification of individual occupants. We used high-throughput sequencing of 16S rRNA genes to characterize the airborne bacterial contribution of a single person sitting in a sanitized custom experimental climate chamber. We compared that to air sampled in an adjacent, identical, unoccupied chamber, as well as to supply and exhaust air sources. Additionally, we assessed microbial communities in settled particles surrounding each occupant, to investigate the potential long-term fate of airborne microbial emissions. Most occupants could be clearly detected by their airborne bacterial emissions, as well as their contribution to settled particles, within 1.5-4 h. Bacterial clouds from the occupants were statistically distinct, allowing the identification of some individual occupants. Our results confirm that an occupied space is microbially distinct from an unoccupied one, and demonstrate for the first time that individuals release their own personalized microbial cloud.

  13. Dialogue between E. coli free radical pathways and the mitochondria of C. elegans.

    PubMed

    Govindan, J Amaranath; Jayamani, Elamparithi; Zhang, Xinrui; Mylonakis, Eleftherios; Ruvkun, Gary

    2015-10-06

    The microbial world presents a complex palette of opportunities and dangers to animals, which have developed surveillance and response strategies to hints of microbial intent. We show here that the mitochondrial homeostatic response pathway of the nematode Caenorhabditis elegans responds to Escherichia coli mutations that activate free radical detoxification pathways. Activation of C. elegans mitochondrial responses could be suppressed by additional mutations in E. coli, suggesting that C. elegans responds to products of E. coli to anticipate challenges to its mitochondrion. Out of 50 C. elegans gene inactivations known to mediate mitochondrial defense, we found that 7 genes were required for C. elegans response to a free radical producing E. coli mutant, including the bZip transcription factor atfs-1 (activating transcription factor associated with stress). An atfs-1 loss-of-function mutant was partially resistant to the effects of free radical-producing E. coli mutant, but a constitutively active atfs-1 mutant growing on wild-type E. coli inappropriately activated the pattern of mitochondrial responses normally induced by an E. coli free radical pathway mutant. Carbonylated proteins from free radical-producing E. coli mutant may directly activate the ATFS-1/bZIP transcription factor to induce mitochondrial stress response: feeding C. elegans with H2O2-treated E. coli induces the mitochondrial unfolded protein response, and inhibition of a gut peptide transporter partially suppressed C. elegans response to free radical damaged E. coli.

  14. Dialogue between E. coli free radical pathways and the mitochondria of C. elegans

    PubMed Central

    Govindan, J. Amaranath; Jayamani, Elamparithi; Zhang, Xinrui; Mylonakis, Eleftherios; Ruvkun, Gary

    2015-01-01

    The microbial world presents a complex palette of opportunities and dangers to animals, which have developed surveillance and response strategies to hints of microbial intent. We show here that the mitochondrial homeostatic response pathway of the nematode Caenorhabditis elegans responds to Escherichia coli mutations that activate free radical detoxification pathways. Activation of C. elegans mitochondrial responses could be suppressed by additional mutations in E. coli, suggesting that C. elegans responds to products of E. coli to anticipate challenges to its mitochondrion. Out of 50 C. elegans gene inactivations known to mediate mitochondrial defense, we found that 7 genes were required for C. elegans response to a free radical producing E. coli mutant, including the bZip transcription factor atfs-1 (activating transcription factor associated with stress). An atfs-1 loss-of-function mutant was partially resistant to the effects of free radical-producing E. coli mutant, but a constitutively active atfs-1 mutant growing on wild-type E. coli inappropriately activated the pattern of mitochondrial responses normally induced by an E. coli free radical pathway mutant. Carbonylated proteins from free radical-producing E. coli mutant may directly activate the ATFS-1/bZIP transcription factor to induce mitochondrial stress response: feeding C. elegans with H2O2-treated E. coli induces the mitochondrial unfolded protein response, and inhibition of a gut peptide transporter partially suppressed C. elegans response to free radical damaged E. coli. PMID:26392561

  15. Methylerythritol Phosphate Pathway of Isoprenoid Biosynthesis

    PubMed Central

    Zhao, Lishan; Chang, Wei-chen; Xiao, Youli; Liu, Hung-wen; Liu, Pinghua

    2016-01-01

    Isoprenoids are a class of natural products with more than 50,000 members. All isoprenoids are constructed from two precursors, isopentenyl diphosphate (IPP) and its isomer dimethylallyl diphosphate (DMAPP). Two of the most important discoveries in isoprenoid biosynthetic studies in recent years are the elucidation of a second isoprenoid biosynthetic pathway (the methylerythritol phosphate (MEP) pathway) and a modified mevalonate (MVA) pathway. In this review, mechanistic insights on the MEP pathway enzymes are summarized. Since many isoprenoids have important biological activities, the need to produce them in sufficient quantities for downstream research efforts or commercial application is apparent. Recent advances in both the MVA and MEP pathway-based synthetic biology efforts are also illustrated by reviewing the landmark work of artemisinic acid and taxadien-5α-ol production through microbial fermentations. PMID:23746261

  16. Substrate-induced changes in microbial community-level physiological profiles and their application to discriminate soil microbial communities.

    PubMed

    Chen, Jian; Xie, Huijun; Zhuang, Xuliangli; Zhuang, Guoqiang; Bai, Zhihui; Zhang, Hongxun

    2008-01-01

    The addition of simple substrates could affect the microbial respiration in soils. This substrate-induced respiration is widely used to estimate the soil microbial biomass, but little attention has been paid to its influence on the changes of community-level physiological profiles. In this study, the process of microbial communities responding to the added substrate using sole-carbon-source utilization (BIOLOG) was investigated. BIOLOG is biased toward fast-growing bacteria; this advantage was taken to detect the prompt response of the active microbial communities to the added substrate. Four soil samples from agricultural fields adjacent to heavy metal mines were amended with L-arginine, citric acid, or D-glucose. Substrate amendments could, generally, not only increase the metabolic activity of the microbial communities, but also change the metabolic diverse patterns compared with no-substrate control. By tracking the process, it was found that the variance between substrate-induced treatment and control fluctuated greatly during the incubation course, and the influences of these three substrates were different. In addition, the application of these induced changes to discriminate soil microbial communities was tested. The distance among all samples was greatly increased, which further showed the functional variance among microbial communities in soils. This can be very useful in the discrimination of microbial communities even with high similarity.

  17. The Lectin Pathway of Complement and Rheumatic Heart Disease

    PubMed Central

    Beltrame, Marcia Holsbach; Catarino, Sandra Jeremias; Goeldner, Isabela; Boldt, Angelica Beate Winter; de Messias-Reason, Iara José

    2014-01-01

    The innate immune system is the first line of host defense against infection and is comprised of humoral and cellular mechanisms that recognize potential pathogens within minutes or hours of entry. The effector components of innate immunity include epithelial barriers, phagocytes, and natural killer cells, as well as cytokines and the complement system. Complement plays an important role in the immediate response against microorganisms, including Streptococcus sp. The lectin pathway is one of three pathways by which the complement system can be activated. This pathway is initiated by the binding of mannose-binding lectin (MBL), collectin 11 (CL-K1), and ficolins (Ficolin-1, Ficolin-2, and Ficolin-3) to microbial surface oligosaccharides and acetylated residues, respectively. Upon binding to target molecules, MBL, CL-K1, and ficolins form complexes with MBL-associated serine proteases 1 and 2 (MASP-1 and MASP-2), which cleave C4 and C2 forming the C3 convertase (C4b2a). Subsequent activation of complement cascade leads to opsonization, phagocytosis, and lysis of target microorganisms through the formation of the membrane-attack complex. In addition, activation of complement may induce several inflammatory effects, such as expression of adhesion molecules, chemotaxis and activation of leukocytes, release of reactive oxygen species, and secretion of cytokines and chemokines. In this chapter, we review the general aspects of the structure, function, and genetic polymorphism of lectin-pathway components and discuss most recent understanding on the role of the lectin pathway in the predisposition and clinical progression of Rheumatic Fever. PMID:25654073

  18. Microbial reduction of uranium

    USGS Publications Warehouse

    Lovley, D.R.; Phillips, E.J.P.; Gorby, Y.A.; Landa, E.R.

    1991-01-01

    REDUCTION of the soluble, oxidized form of uranium, U(VI), to insoluble U(IV) is an important mechanism for the immobilization of uranium in aquatic sediments and for the formation of some uranium ores1-10. U(VI) reduction has generally been regarded as an abiological reaction in which sulphide, molecular hydrogen or organic compounds function as the reductant1,2,5,11. Microbial involvement in U(VI) reduction has been considered to be limited to indirect effects, such as microbial metabolism providing the reduced compounds for abiological U(VI) reduction and microbial cell walls providing a surface to stimulate abiological U(VI) reduction1,12,13. We report here, however, that dissimilatory Fe(III)-reducing microorganisms can obtain energy for growth by electron transport to U(VI). This novel form of microbial metabolism can be much faster than commonly cited abiological mechanisms for U(VI) reduction. Not only do these findings expand the known potential terminal electron acceptors for microbial energy transduction, they offer a likely explanation for the deposition of uranium in aquatic sediments and aquifers, and suggest a method for biological remediation of environments contaminated with uranium.

  19. Microbial inoculants and their impact on soil microbial communities: a review.

    PubMed

    Trabelsi, Darine; Mhamdi, Ridha

    2013-01-01

    The knowledge of the survival of inoculated fungal and bacterial strains in field and the effects of their release on the indigenous microbial communities has been of great interest since the practical use of selected natural or genetically modified microorganisms has been developed. Soil inoculation or seed bacterization may lead to changes in the structure of the indigenous microbial communities, which is important with regard to the safety of introduction of microbes into the environment. Many reports indicate that application of microbial inoculants can influence, at least temporarily, the resident microbial communities. However, the major concern remains regarding how the impact on taxonomic groups can be related to effects on functional capabilities of the soil microbial communities. These changes could be the result of direct effects resulting from trophic competitions and antagonistic/synergic interactions with the resident microbial populations, or indirect effects mediated by enhanced root growth and exudation. Combination of inoculants will not necessarily produce an additive or synergic effect, but rather a competitive process. The extent of the inoculation impact on the subsequent crops in relation to the buffering capacity of the plant-soil-biota is still not well documented and should be the focus of future research.

  20. Microbial Inoculants and Their Impact on Soil Microbial Communities: A Review

    PubMed Central

    2013-01-01

    The knowledge of the survival of inoculated fungal and bacterial strains in field and the effects of their release on the indigenous microbial communities has been of great interest since the practical use of selected natural or genetically modified microorganisms has been developed. Soil inoculation or seed bacterization may lead to changes in the structure of the indigenous microbial communities, which is important with regard to the safety of introduction of microbes into the environment. Many reports indicate that application of microbial inoculants can influence, at least temporarily, the resident microbial communities. However, the major concern remains regarding how the impact on taxonomic groups can be related to effects on functional capabilities of the soil microbial communities. These changes could be the result of direct effects resulting from trophic competitions and antagonistic/synergic interactions with the resident microbial populations, or indirect effects mediated by enhanced root growth and exudation. Combination of inoculants will not necessarily produce an additive or synergic effect, but rather a competitive process. The extent of the inoculation impact on the subsequent crops in relation to the buffering capacity of the plant-soil-biota is still not well documented and should be the focus of future research. PMID:23957006

  1. Granular Microbial Habitats Built from Iron Sulfides: Alternative Microbial Lifestyles?

    NASA Astrophysics Data System (ADS)

    Schieber, J.

    2005-03-01

    Concentrically zoned pyrite grains grew as granular microbial colonies. They stayed in the surface layer during long history of reworking and accretion and consist of marcasite and pyrite cortices with sulfide mineralized microbial remains.

  2. Microbial toxicity and characterization of DNAN (bio)transformation product mixtures.

    PubMed

    Olivares, Christopher I; Sierra-Alvarez, Reyes; Alvarez-Nieto, Cristina; Abrell, Leif; Chorover, Jon; Field, Jim A

    2016-07-01

    2,4-Dinitroanisole (DNAN) is an emerging insensitive munitions compound. It undergoes rapid (bio)transformation in soils and anaerobic sludge. The primary transformation pathway catalyzed by a combination of biotic and abiotic factors is nitrogroup reduction followed by coupling of reactive intermediates to form azo-dimers. Additional pathways include N-acetylation and O-demethoxylation. Toxicity due to (bio)transformation products of DNAN has received little attention. In this study, the toxicity of DNAN (bio)transformation monomer products and azo-dimer and trimer surrogates to acetoclastic methanogens and the marine bioluminescent bacterium, Allivibrio fischeri, were evaluated. Methanogens were severely inhibited by 3-nitro-4-methoxyaniline (MENA), with a 50%-inhibiting concentration (IC50) of 25 μM, which is more toxic than DNAN with the same assay, but posed a lower toxicity to Allivibrio fischeri (IC50 = 219 μM). On the other hand, N-(5-amino-2-methoxyphenyl) acetamide (Ac-DAAN) was the least inhibitory test-compound for both microbial targets. Azo-dimer and trimer surrogates were very highly toxic to both microbial systems, with a toxicity similar or stronger than that of DNAN. A semi-quantitative LC-QTOF-MS method was employed to determine product mixture profiles at different stages of biotransformation, and compared with the microbial toxicity of the product-mixtures formed. Methanogenic toxicity increased due to putative reactive nitroso-intermediates as DNAN was reduced. However, the inhibition later attenuated as dimers became the predominant products in the mixtures. In contrast, A. fischeri tolerated the initial biotransformation products but were highly inhibited by the predominant azo-dimer products formed at longer incubation times, suggesting these ultimate products are more toxic than DNAN.

  3. Vikodak - A Modular Framework for Inferring Functional Potential of Microbial Communities from 16S Metagenomic Datasets

    PubMed Central

    Nagpal, Sunil; Haque, Mohammed Monzoorul; Mande, Sharmila S.

    2016-01-01

    Background The overall metabolic/functional potential of any given environmental niche is a function of the sum total of genes/proteins/enzymes that are encoded and expressed by various interacting microbes residing in that niche. Consequently, prior (collated) information pertaining to genes, enzymes encoded by the resident microbes can aid in indirectly (re)constructing/ inferring the metabolic/ functional potential of a given microbial community (given its taxonomic abundance profile). In this study, we present Vikodak—a multi-modular package that is based on the above assumption and automates inferring and/ or comparing the functional characteristics of an environment using taxonomic abundance generated from one or more environmental sample datasets. With the underlying assumptions of co-metabolism and independent contributions of different microbes in a community, a concerted effort has been made to accommodate microbial co-existence patterns in various modules incorporated in Vikodak. Results Validation experiments on over 1400 metagenomic samples have confirmed the utility of Vikodak in (a) deciphering enzyme abundance profiles of any KEGG metabolic pathway, (b) functional resolution of distinct metagenomic environments, (c) inferring patterns of functional interaction between resident microbes, and (d) automating statistical comparison of functional features of studied microbiomes. Novel features incorporated in Vikodak also facilitate automatic removal of false positives and spurious functional predictions. Conclusions With novel provisions for comprehensive functional analysis, inclusion of microbial co-existence pattern based algorithms, automated inter-environment comparisons; in-depth analysis of individual metabolic pathways and greater flexibilities at the user end, Vikodak is expected to be an important value addition to the family of existing tools for 16S based function prediction. Availability and Implementation A web implementation of Vikodak

  4. Linking Microbial Activity with Arsenic Fate during Cow Dung Disposal of Arsenic-Bearing Wastes

    NASA Astrophysics Data System (ADS)

    Clancy, T. M.; Reddy, R.; Tan, J.; Hayes, K. F.; Raskin, L.

    2014-12-01

    To address widespread arsenic contamination of drinking water sources numerous technologies have been developed to remove arsenic. All technologies result in the production of an arsenic-bearing waste that must be evaluated and disposed in a manner to limit the potential for environmental release and human exposure. One disposal option that is commonly recommended for areas without access to landfills is the mixing of arsenic-bearing wastes with cow dung. These recommendations are made based on the ability of microorganisms to create volatile arsenic species (including mono-, di-, and tri-methylarsine gases) to be diluted in the atmosphere. However, most studies of environmental microbial communities have found only a small fraction (<0.1 %) of the total arsenic present in soils or rice paddies is released via volatilization. Additionally, past studies often have not monitored arsenic release in the aqueous phase. Two main pathways for microbial arsenic volatilization are known and include methylation of arsenic during methanogenesis and methylation by arsenite S-adenosylmethionine methyltransferase. In this study, we compare the roles of these two pathways in arsenic volatilization and aqueous mobilization through mesocosm experiments with cow dung and arsenic-bearing wastes produced during drinking water treatment in West Bengal, India. Arsenic in gaseous, aqueous, and solid phases was measured. Consistent with previous reports, less than 0.02% of the total arsenic present was volatilized. A much higher amount (~5%) of the total arsenic was mobilized into the liquid phase. Through the application of molecular tools, including 16S rRNA sequencing and quantification of gene transcripts involved in methanogenesis, this study links microbial community activity with arsenic fate in potential disposal environments. These results illustrate that disposal of arsenic-bearing wastes by mixing with cow dung does not achieve its end goal of promoting arsenic volatilization

  5. qPCR analysis of carbon, nitrogen, and arsenic cycling in Zetaproteobacteria-dominated microbial mats

    NASA Astrophysics Data System (ADS)

    Jesser, K. J.; Fullerton, H.; Hilton, T. S.; Kimber, J.; Hager, K.; Moyer, C. L.

    2013-12-01

    The recently discovered Zetaproteobacteria represent a novel class of Proteobacteria which oxidize Fe(II) to Fe(III) to fix CO2 at hydrothermal vents. Zetaproteobacteria were first discovered at Lo'ihi Seamount, located 35 km southeast of the big island of Hawai'i and characterized by low-temperature diffuse hydrothermal vents. The hydrothermal vents at Lo'ihi are surrounded by luxuriant iron-rich microbial mats dominated by Zetaproteobacteria. We aim to use real-time quantitative PCR (qPCR) to quantify functional genes associated with the microbial carbon, nitrogen, and arsenic cycles in complex Zetaproteobacteria- dominated iron mat communities. Unique qPCR primer sets have been developed based on Illumina next-generation sequence data from an iron mat collected in 2009 at Lo'ihi. These primers target the sequences for arsenate reductase and nitrite reductase, genes associated with arsenic detoxification and denitrification, respectively. Additionally, we are utilizing published primer sets to quantify genes associated with autotrophic carbon and nitrogen fixation pathways. Genomic DNA was isolated from microbial mats at multiple vent sites with varying temperatures and fluid flow during our 2013 expedition to Lo'ihi. The qPCR data for these samples can be used to draw correlations among fine scale mat structures and nutrient cycling processes across diverse mat morphologies, as previous research has identified unique microbial communities and metabolic strategies associated with distinct mat morphologies. This work will enable us to better identify samples for further molecular analysis, and may provide insights into the evolutionary history and metabolic functionality of various mat morphotypes. We hypothesize that Zetaproteobacteria act as ecosystem engineers, driving the structure and function of iron mat ecosystems.

  6. The Microbial Olympics

    PubMed Central

    Youle, Merry; Rohwer, Forest; Stacy, Apollo; Whiteley, Marvin; Steel, Bradley C.; Delalez, Nicolas J.; Nord, Ashley L.; Berry, Richard M.; Armitage, Judith P.; Kamoun, Sophien; Hogenhout, Saskia; Diggle, Stephen P.; Gurney, James; Pollitt, Eric J. G.; Boetius, Antje; Cary, S. Craig

    2014-01-01

    Every four years, the Olympic Games plays host to competitors who have built on their natural talent by training for many years to become the best in their chosen discipline. Similar spirit and endeavour can be found throughout the microbial world, in which every day is a competition to survive and thrive. Microorganisms are trained through evolution to become the fittest and the best adapted to a particular environmental niche or lifestyle, and to innovate when the ‘rules of the game’ are changed by alterations to their natural habitats. In this Essay, we honour the best competitors in the microbial world by inviting them to take part in the inaugural Microbial Olympics. PMID:22796885

  7. Recent Food Applications of Microbial Surfactants.

    PubMed

    Nitschke, Marcia; Silva, Sumária Sousa E

    2016-07-20

    During last years the interest on microbial surfactants or biosurfactants has gained attention due to their natural origin and environmental compatibility. These characteristics fulfill the demand of regulatory agencies and society to use of more sustained and green chemicals. Microbial-derived surfactants can replace synthetic surfactants in a great variety of industrial applications as detergents, foaming, emulsifiers, solubilizers and wetting agents. Change in trend of consumers to natural from synthetic additives and also the increasing health and environmental concerns creating demand for new "green" additives in food. Apart from their inherent surface-active properties, BS have been shown antimicrobial and antibiofilm activity against food pathogens; therefore, BS can be versatile additives or ingredients for food processing. These interesting applications will be discussed in this review.

  8. Microbial hotspots and hot moments in soil

    NASA Astrophysics Data System (ADS)

    Kuzyakov, Yakov; Blagodatskaya, Evgenia

    2015-04-01

    increases in C stocks. Consequently, the intensification of fluxes is much stronger than the increase of pools. Maintenance of stoichiometric ratios by accelerated microbial growth in hotspots requires additional nutrients (e.g. N and P), causing their microbial mining from soil organic matter, i.e. priming effects. Consequently, priming effects are localized in microbial hotspots and are consequences of hot moments. Finally, we estimated the contribution of the hotspots to the whole soil profile and suggested that, irrespective of their volume, the hotspots are mainly responsible for the ecologically relevant processes in soil.

  9. Potential impact of synthetic biology on the development of microbial systems for the production of renewable fuels and chemicals.

    PubMed

    Picataggio, Stephen

    2009-06-01

    Synthetic biology leverages advances in computational biology, molecular biology, protein engineering, and systems biology to design, synthesize, and assemble genetic elements for manipulating cell phenotypes. This emerging field is founded on a vast amount of gene sequence data available in public databases and our ability to rapidly and inexpensively synthesize DNA fragments of sufficient length to encode full-length genes, enzymes, metabolic pathways, and even entire genomes. Several thousand genetic elements encoding enzymes, reporters, repressors, activators, promoters, terminators, ribosome binding sites, signaling devices, and measurement systems are now available for engineering microbes. In addition to facilitating rational design, these new tools allow us to create and harness genetic diversity in combinatorial approaches to rapidly optimize metabolic pathways. As such, synthetic biology holds great promise for accelerating the development of microbial systems for the production of renewable fuels and chemicals.

  10. Microbial Control News - November 2011

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This is the first of a column in the Society for Invertebrate Pathology Newsletter. Entitled "Microbial Control News" this article summarizes regulatory actions in the U.S. and Canada regarding microbial insect pest control agents....

  11. Priming and turnover of soil microbial biomass C and N

    NASA Astrophysics Data System (ADS)

    Voroney, Paul; Paul, Eldor

    2015-04-01

    Priming is the altered rate of mineralization of native soil organic matter (SOM) induced by an organic substrate and, depending on the nature of the amendment, can be either positive or negative. Coupled with the use of tracer (14C, 13C, 15N) techniques, measurements of the rates of CO2 evolution and organic N mineralization are typically used to assess priming effects. In this study priming was also assessed from measurements of soil microbial biomass. Soil was amended with 14C-glucose and 15N-nitrate and incubated for 42 d during which unlabelled and labelled microbial biomass C and N were measured using the chloroform-incubation method. All of the 14C-glucose was metabolized within 24-30 h at a C-use efficiency of ~60%, and resulted in a labelled biomass C:N of 9. After this period of rapid microbial growth, labelled microbial biomass C decayed at a rate of 19.3 x 10-3 d-1. Unlabelled microbial biomass C in the amended treatment decayed at 8.6 x 10-3 d-1 whereas in the unamended soil microbial biomass C decayed at half this rate (4.9 x 10-3 d-1). These data suggest that ~25% of the native microbial biomass C responded to the addition of glucose-C and when it was depleted the newly formed microbial biomass, comprised of both labelled and unlabelled- C, collapsed and subsequently was mineralized. The period of rapid microbial biomass decay coincided with an increased evolution of soil (unlabelled) CO2 and accumulation of (unlabelled) mineral N compared to that in the unamended soil. Thus, the apparent priming of soil C and N following addition of glucose can be attributed to biological recycling and increased turnover of native microbial biomass C and N. There was no evidence of priming of native soil organic matter during the first 21 days of the incubation.

  12. Microbial community functional change during vertebrate carrion decomposition.

    PubMed

    Pechal, Jennifer L; Crippen, Tawni L; Tarone, Aaron M; Lewis, Andrew J; Tomberlin, Jeffery K; Benbow, M Eric

    2013-01-01

    Microorganisms play a critical role in the decomposition of organic matter, which contributes to energy and nutrient transformation in every ecosystem. Yet, little is known about the functional activity of epinecrotic microbial communities associated with carrion. The objective of this study was to provide a description of the carrion associated microbial community functional activity using differential carbon source use throughout decomposition over seasons, between years and when microbial communities were isolated from eukaryotic colonizers (e.g., necrophagous insects). Additionally, microbial communities were identified at the phyletic level using high throughput sequencing during a single study. We hypothesized that carrion microbial community functional profiles would change over the duration of decomposition, and that this change would depend on season, year and presence of necrophagous insect colonization. Biolog EcoPlates™ were used to measure the variation in epinecrotic microbial community function by the differential use of 29 carbon sources throughout vertebrate carrion decomposition. Pyrosequencing was used to describe the bacterial community composition in one experiment to identify key phyla associated with community functional changes. Overall, microbial functional activity increased throughout decomposition in spring, summer and winter while it decreased in autumn. Additionally, microbial functional activity was higher in 2011 when necrophagous arthropod colonizer effects were tested. There were inconsistent trends in the microbial function of communities isolated from remains colonized by necrophagous insects between 2010 and 2011, suggesting a greater need for a mechanistic understanding of the process. These data indicate that functional analyses can be implemented in carrion studies and will be important in understanding the influence of microbial communities on an essential ecosystem process, carrion decomposition.

  13. Microbial Community Functional Change during Vertebrate Carrion Decomposition

    PubMed Central

    Pechal, Jennifer L.; Crippen, Tawni L.; Tarone, Aaron M.; Lewis, Andrew J.; Tomberlin, Jeffery K.; Benbow, M. Eric

    2013-01-01

    Microorganisms play a critical role in the decomposition of organic matter, which contributes to energy and nutrient transformation in every ecosystem. Yet, little is known about the functional activity of epinecrotic microbial communities associated with carrion. The objective of this study was to provide a description of the carrion associated microbial community functional activity using differential carbon source use throughout decomposition over seasons, between years and when microbial communities were isolated from eukaryotic colonizers (e.g., necrophagous insects). Additionally, microbial communities were identified at the phyletic level using high throughput sequencing during a single study. We hypothesized that carrion microbial community functional profiles would change over the duration of decomposition, and that this change would depend on season, year and presence of necrophagous insect colonization. Biolog EcoPlates™ were used to measure the variation in epinecrotic microbial community function by the differential use of 29 carbon sources throughout vertebrate carrion decomposition. Pyrosequencing was used to describe the bacterial community composition in one experiment to identify key phyla associated with community functional changes. Overall, microbial functional activity increased throughout decomposition in spring, summer and winter while it decreased in autumn. Additionally, microbial functional activity was higher in 2011 when necrophagous arthropod colonizer effects were tested. There were inconsistent trends in the microbial function of communities isolated from remains colonized by necrophagous insects between 2010 and 2011, suggesting a greater need for a mechanistic understanding of the process. These data indicate that functional analyses can be implemented in carrion studies and will be important in understanding the influence of microbial communities on an essential ecosystem process, carrion decomposition. PMID:24265741

  14. A Role for Programmed Cell Death in the Microbial Loop

    PubMed Central

    Durand, Pierre M.; Whitehead, Kenia; Baliga, Nitin S.

    2013-01-01

    The microbial loop is the conventional model by which nutrients and minerals are recycled in aquatic eco-systems. Biochemical pathways in different organisms become metabolically inter-connected such that nutrients are utilized, processed, released and re-utilized by others. The result is that unrelated individuals end up impacting each others' fitness directly through their metabolic activities. This study focused on the impact of programmed cell death (PCD) on a population's growth as well as its role in the exchange of carbon between two naturally co-occurring halophilic organisms. Flow cytometric, biochemical, 14C radioisotope tracing assays, and global transcriptomic analyses show that organic algal photosynthate released by Dunalliela salina cells undergoing PCD complements the nutritional needs of other non-PCD D. salina cells. This occurs in vitro in a carbon limited environment and enhances the growth of the population. In addition, a co-occurring heterotroph Halobacterium salinarum re-mineralizes the carbon providing elemental nutrients for the mixoheterotrophic chlorophyte. The significance of this is uncertain and the archaeon can also subsist entirely on the lysate of apoptotic algae. PCD is now well established in unicellular organisms; however its ecological relevance has been difficult to decipher. In this study we found that PCD in D. salina causes the release of organic nutrients such as glycerol, which can be used by others in the population as well as a co-occurring halophilic archaeon. H. salinarum also re-mineralizes the dissolved material promoting algal growth. PCD in D. salina was the mechanism for the flow of dissolved photosynthate between unrelated organisms. Ironically, programmed death plays a central role in an organism's own population growth and in the exchange of nutrients in the microbial loop. PMID:23667496

  15. Computational prediction of the human-microbial oral interactome

    PubMed Central

    2014-01-01

    Background The oral cavity is a complex ecosystem where human chemical compounds coexist with a particular microbiota. However, shifts in the normal composition of this microbiota may result in the onset of oral ailments, such as periodontitis and dental caries. In addition, it is known that the microbial colonization of the oral cavity is mediated by protein-protein interactions (PPIs) between the host and microorganisms. Nevertheless, this kind of PPIs is still largely undisclosed. To elucidate these interactions, we have created a computational prediction method that allows us to obtain a first model of the Human-Microbial oral interactome. Results We collected high-quality experimental PPIs from five major human databases. The obtained PPIs were used to create our positive dataset and, indirectly, our negative dataset. The positive and negative datasets were merged and used for training and validation of a naïve Bayes classifier. For the final prediction model, we used an ensemble methodology combining five distinct PPI prediction techniques, namely: literature mining, primary protein sequences, orthologous profiles, biological process similarity, and domain interactions. Performance evaluation of our method revealed an area under the ROC-curve (AUC) value greater than 0.926, supporting our primary hypothesis, as no single set of features reached an AUC greater than 0.877. After subjecting our dataset to the prediction model, the classified result was filtered for very high confidence PPIs (probability ≥ 1-10−7), leading to a set of 46,579 PPIs to be further explored. Conclusions We believe this dataset holds not only important pathways involved in the onset of infectious oral diseases, but also potential drug-targets and biomarkers. The dataset used for training and validation, the predictions obtained and the network final network are available at http://bioinformatics.ua.pt/software/oralint. PMID:24576332

  16. Metagenomic analysis of microbial community in uranium-contaminated soil.

    PubMed

    Yan, Xun; Luo, Xuegang; Zhao, Min

    2016-01-01

    Uranium tailing is a serious pollution challenge for the environment. Based on metagenomic sequencing analysis, we explored the functional and structural diversity of the microbial community in six soil samples taken at different soil depths from uranium-contaminated and uncontaminated areas. Kyoto Encyclopedia of Genes and Genomes Orthology (KO) groups were obtained using a Basic Local Alignment Search Tool search based on the universal protein resource database. The KO-pathway network was then constructed using the selected KOs. Finally, alpha and beta diversity analyses were performed to explore the differences in soil bacterial diversity between the radioactive soil and uncontaminated soil. In total, 30-68 million high-quality reads were obtained. Sequence assembly yielded 286,615 contigs; and these contigs mostly annotated to 1699 KOs. The KO distributions were similar among the six soil samples. Moreover, the proportion of the metabolism of other amino acids (e.g., beta-alanine, taurine, and hypotaurine) and signal transduction was significantly lower in radioactive soil than in uncontaminated soil, whereas the proportion of membrane transport and carbohydrate metabolism was higher. Additionally, KOs were mostly enriched in ATP-binding cassette transporters and two-component systems. According to diversity analyses, Actinobacteria and Proteobacteria were the dominant phyla in radioactive and uncontaminated soil, and Robiginitalea, Microlunatus, and Alicyclobacillus were the dominant genera in radioactive soil. Taken together, these results demonstrate that soil microbial community, structure, and functions show significant changes in uranium-contaminated soil. The dominant categories such as Actinobacteria and Proteobacteria may be applied in environmental governance for uranium-contaminated soil in southern China.

  17. Microbial Forensics: A Scientific Assessment

    SciTech Connect

    Keim, Paul

    2003-02-17

    meet these initial challenges so as minimize disturbance of the evidence. While epidemiology and forensics are similar sciences with similar goals when applied to biocrimes, forensics has additional and more stringent requirements. Maintaining a chain of custody on evidentiary samples is one example of an extra requirement imposed on an investigation of a biocrime. Another issue is the intent in microbial forensics to identify a bioattack organism in greatest detail. If possible, forensic investigations will strive to identify the precise strain and substrain, rather than just to the species level, which might be sufficient in an epidemiological investigation. Although multiple groups have developed lists of bioterrorism target pathogens, these lists are too narrow. An expansion of microorganisms relevant to food and water threats should be considered. Computerized networks should be established to track infectious disease outbreaks in real time. These systems could alert public health and agricultural officials to the existence of a potential bioattack earlier than simply waiting for a report of a suspicious cluster of similar patients. Once a biocrime is suspected, a wide variety of methods are available to identify the microorganism used in the bioattack and to analyze features that might lead to the source of the event. A multi-pronged approach to such an investigation may be preferable, using many available methods-ranging from genomics to sequencing to physiology to analysis of substances in the sample. Microbial forensics will be most effective if there is sufficient basic scientific information concerning microbial genetics, evolution, physiology, and ecology. Strain subtyping analysis will be difficult to interpret if we do not understand some of the basic evolutionary mechanisms and population diversity of pathogens. Phenotypic features associated with evidentiary pathogens also may provide investigative leads, but full exploitation of these features can only

  18. Successive DNA extractions improve characterization of soil microbial communities

    PubMed Central

    de Hollander, Mattias; Smidt, Hauke; van Veen, Johannes A.

    2017-01-01

    Currently, characterization of soil microbial communities relies heavily on the use of molecular approaches. Independently of the approach used, soil DNA extraction is a crucial step, and success of downstream procedures will depend on how well DNA extraction was performed. Often, studies describing and comparing soil microbial communities are based on a single DNA extraction, which may not lead to a representative recovery of DNA from all organisms present in the soil. The use of successive DNA extractions might improve soil microbial characterization, but the benefit of this approach has only been limitedly studied. To determine whether successive DNA extractions of the same soil sample would lead to different observations in terms of microbial abundance and community composition, we performed three successive extractions, with two widely used commercial kits, on a range of clay and sandy soils. Successive extractions increased DNA yield considerably (1–374%), as well as total bacterial and fungal abundances in most of the soil samples. Analysis of the 16S and 18S ribosomal RNA genes using 454-pyrosequencing, revealed that microbial community composition (taxonomic groups) observed in the successive DNA extractions were similar. However, successive DNA extractions did reveal several additional microbial groups. For some soil samples, shifts in microbial community composition were observed, mainly due to shifts in relative abundance of a number of microbial groups. Our results highlight that performing successive DNA extractions optimize DNA yield, and can lead to a better picture of overall community composition. PMID:28168105

  19. Antimicrobial Materials for Advanced Microbial Control in Spacecraft Water Systems

    NASA Technical Reports Server (NTRS)

    Birmele, Michele; Caro, Janicce; Newsham, Gerard; Roberts, Michael; Morford, Megan; Wheeler, Ray

    2012-01-01

    Microbial detection, identification, and control are essential for the maintenance and preservation of spacecraft water systems. Requirements set by NASA put limitations on the energy, mass, materials, noise, cost, and crew time that can be devoted to microbial control. Efforts are being made to attain real-time detection and ident