Science.gov

Sample records for addition microvessel density

  1. Microvessel and astroglial cell densities in the mouse hippocampus.

    PubMed Central

    Shimada, M; Akagi, N; Goto, H; Watanabe, H; Nakanishi, M; Hirose, Y; Watanabe, M

    1992-01-01

    In order to study the factors responsible for glucose uptake in the mouse hippocampus, microvessel and astroglial cell densities were measured and compared in each laminal region. Microvessel density was examined on histologically prepared sections after injection of Indian ink and measured by means of an image analyser. Astroglial cell density was determined after the cells were stained immunohistochemically. Microvessel and astroglial cell densities were determined in 10 different hippocampal structures. Microvessel and astroglial cell densities were strongly correlated in all layers except the pyramidal cell layers. The highest density of perfused microvessels was found in the stratum lacunosum-moleculare, compared with other regions, and the lowest values were found in the stratum lucidum and dentate granular cell layer. Among pyramidal cell layers, microvessel density in sector CA3a was significantly higher than that in CA1. Images Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 PMID:1452486

  2. Augmented mast cell infiltration and microvessel density in prostate cancer

    PubMed Central

    Wagrowska-Danilewicz, Małgorzata; Stasikowska-Kanicka, Olga; Tuka, Elżbieta; Danilewicz, Marian

    2013-01-01

    Aim of the study Recent investigations have taken into account the role of mast cells in prostate cancer formation, analyzing their dual functions (as tumour growth promoters and tumour growth inhibitors). The aim of our study was to compare mast cell infiltration and microvessel density in prostate cancer and in benign prostate hyperplasia. We also attempted to find possible relationships among mast cell infiltration and microvessel density, Gleason score, as well as serum levels of prostate-specific antigen (PSA). Material and methods The investigation was confined to evaluations of material from prostate needle biopsies, carried out in 26 patients with prostate cancer, and of 14 specimens diagnosed as benign hyperplasia. The numbers of tryptase positive mast cells and CD34 positive vessels were determined using a computer image analysis system. In the patients with prostate cancer, both mast cell infiltrates and microvessel density were significantly increased, as compared to the control patients. Results Significant positive correlations were identified between the mean numbers of mast cells and microvessel densities, both in the prostate cancer group and in the control group. Moreover, significant positive correlations were observed between Gleason score on one hand and the number of mast cells and microvessel density on the other. The correlations between PSA serum levels and both mast cell infiltration and microvessel density were positive, but not in a statistically significant way. Conclusions The reported investigations may support the assumption of mast cell promoter function in prostate cancer development, whereas no evidence was found for their opposite PMID:24592126

  3. Evaluation of microvessel density and p53 expression in pancreatic adenocarcinoma

    PubMed Central

    Jureidini, Ricardo; da Cunha, José Eduardo Monteiro; Takeda, Flavio; Namur, Guilherme Naccache; Ribeiro, Thiago Costa; Patzina, Rosely; Figueira, Estela RR; Ribeiro, Ulysses; Bacchella, Telesforo; Cecconello, Ivan

    2016-01-01

    OBJECTIVE: To evaluate the prognostic significance of microvessel density and p53 expression in pancreatic cancer. METHODS: Between 2008 and 2012, 49 patients with pancreatic adenocarcinoma underwent resection with curative intention. The resected specimens were immunohistochemically stained with anti-p53 and anti-CD34 antibodies. Microvessel density was assessed by counting vessels within ten areas of each tumoral section a highpower microscope. RESULTS: The microvessel density ranged from 21.2 to 54.2 vessels/mm2. Positive nuclear staining for p53 was found in 20 patients (40.6%). The overall median survival rate after resection was 24.1 months and there were no differences in survival rates related to microvessel density or p53 positivity. Microvessel density was associated with tumor diameter greater than 3.0 cm and with R0 resection failure. CONCLUSIONS: Microvessel density was associated with R1 resection and with larger tumors. p53 expression was not correlated with intratumoral microvessel density in pancreatic adenocarcinoma. PMID:27438564

  4. Reconsideration of the clinical and histopathological significance of angiogenesis in prostate cancer: Usefulness and limitations of microvessel density measurement.

    PubMed

    Miyata, Yasuyoshi; Sakai, Hideki

    2015-09-01

    Angiogenesis plays important roles in tumor growth and cancer cell dissemination in almost all cancers. In prostate cancer, there is general agreement that increased angiogenesis is an important factor in determining tumor development and prognosis in these patients. Microvessel density is recognized as a useful marker for evaluating the angiogenic status of cancer tissues. Many investigators have reported that microvessel density is significantly associated with pathological features and outcomes in prostate cancer patients; however, some researchers have expressed opposing opinions. As the reason for such discrepancy, previous reports have suggested differences in the methodologies of measuring microvessel density in cancer tissues. In the present review, we focus on the variation in such methods, including the selected area and the method used for (semi)quantification. In particular, we discuss the relationship between malignancy potential, tumor progression, and survival and differences in the antibodies used for detection of endothelial cells in detail. We briefly compare the pathological significance and prognostic roles of microvessel density measured using von Willebrand factor, CD31, CD34, and CD105. Based on these analyses, the advantages and limitations of microvessel density measurements in prostate cancer tissues are clarified. Improved "real" and "specific" markers of cancer-related angiogenesis are necessary for better predictions of prognoses and for discussion of treatment strategies for patients with prostate cancer. However, establishment of a satisfactory cancer-related endothelial marker could take a long time. Therefore, knowledge regarding the pathological significance of microvessel density - based on understanding of the advantages and limitations of microvessel density determination methods - is important.

  5. Bone marrow microvessel density and plasma angiogenic factors in myeloproliferative neoplasms: clinicopathological and molecular correlations.

    PubMed

    Lekovic, Danijela; Gotic, Mirjana; Skoda, Radek; Beleslin-Cokic, Bojana; Milic, Natasa; Mitrovic-Ajtic, Olivera; Nienhold, Ronny; Sefer, Dijana; Suboticki, Tijana; Buac, Marijana; Markovic, Dragana; Diklic, Milos; Cokic, Vladan P

    2017-03-01

    Increased angiogenesis in BCR-ABL1 negative myeloproliferative neoplasms (MPNs) has been recognized, but its connection with clinical and molecular markers needs to be defined. The aims of study were to (1) assess bone marrow (BM) angiogenesis measured by microvessel density (MVD) using CD34 and CD105 antibodies; (2) analyze correlation of MVD with plasma angiogenic factors including vascular endothelial growth factor, basic fibroblast growth factor, and interleukin-8; (3) examine the association of MVD with clinicopathological and molecular markers. We examined 90 de novo MPN patients (30 polycythemia vera (PV), primary myelofibrosis (PMF), essential thrombocythemia (ET)) and 10 age-matched controls. MVD was analyzed by immunohistochemistry "hot spot" method, angiogenic factors by immunoassay and JAK2V617F, and CALR mutations by DNA sequencing and allelic PCR. MVD was significantly increased in MPNs compared to controls (PMF > PV > ET). Correlation between MVD and plasma angiogenic factors was found in MPNs. MVD was significantly increased in patients with JAK2V617F mutation and correlated with JAK2 mutant allele burden (CD34-MVD: ρ = 0.491, p < 0.001; CD105-MVD: ρ = 0.276, p = 0.02) but not with CALR mutation. MVD correlated with leukocyte count, serum lactate dehydrogenase, hepatomegaly, and splenomegaly. BM fibrosis was significantly associated with CD34-MVD, CD105-MVD, interleukin-8, and JAK2 mutant allele burden. JAK2 homozygote status had positive predictive value (100%) for BM fibrosis. Patients with prefibrotic PMF had significantly higher MVD than patients with ET, and we could recommend MVD to be additional histopathological marker to distinguish these two entities. This study also highlights the strong correlation of MVD with plasma angiogenic factors, JAK2 mutant allele burden, and BM fibrosis in MPNs.

  6. Microvessel density and p53 mutations in advanced-stage epithelial ovarian cancer.

    PubMed

    Nadkarni, Niyati J; Geest, Koen De; Neff, Traci; Young, Barry De; Bender, David P; Ahmed, Amina; Smith, Brian J; Button, Anna; Goodheart, Michael J

    2013-04-30

    We planned to determine the relationship between angiogenesis and p53 mutational status in advanced-stage epithelial ovarian cancer. Using 190 tumor samples from patients with stage III and IV ovarian cancer we performed p53 sequencing, immunohistochemistry, and CD31 microvessel density (MVD) determination. MVD was elevated in tumors with p53 null mutations compared to p53 missense mutation or no mutation. Disease recurrence was increased with higher MVD in both unadjusted and adjusted analyses. In adjusted analysis, p53 null mutation was associated with increased recurrence and worse overall survival. Worse overall survival and increased recurrence risk were also associated with the combination of CD31 MVD values >25 vessels/HPF and any p53 mutation. P53 mutation status and MVD may have prognostic significance in patients with advanced-stage ovarian cancer. Tumors with p53 null mutations are likely to be more vascular, contributing to decreased survival and increased recurrence probability.

  7. Microvessel density and Ki-67 labeling index in esthesioneuroblastoma: is there a prognostic role?

    PubMed

    Singh, Lavleen; Ranjan, Richa; Madan, Renu; Arava, Sudheer K; Deepak, Rakesh K; Singh, Manoj Kumar

    2015-12-01

    Esthesioneuroblastoma (ENB) is a malignant neuroectodermal tumor. Hyams grading has an established role in its prognostication. The importance of microvessel density (MVD) and Ki-67 labeling index (Ki-67 LI) is well studied in various tumors, but the same remains understated in ENB. The aims of the study were to estimate proliferation index and MVD in ENB and to correlate them with Hyams grade. Twenty-six ENB cases diagnosed over a period of 5 years were included. Hyams grade, MVD, and Ki-67 LI were evaluated for each of them. The cases were categorized as low (Hyams grades 1 and 2) and high (Hyams grades 3 and 4) grades. Microvessel density and Ki-67 LI were correlated with grade. The treatment response was analyzed in different grades. The commonest histologic grade was 4 (42%). The mean Ki-67 LI was 2%, 8.2%, 30.8%, and 40.5% and mean MVD was 81.67/mm(2), 37/mm(2), 24/mm(2), and 25.2/mm(2) in grades 1, 2, 3, and 4, respectively. A statistically significant correlation of grade with Ki-67 LI (P < .001) and MVD (P < .007) was noted. Hyams grade in ENB correlates well with treatment response. Ki-67 LI is an important prognostic factor in ENB. We propose a cutoff of 25% for Ki-67 LI to differentiate low- vs high-grade ENB, but larger studies are needed for validation. Contrary to epithelial tumors, there is a decrease in MVD with increasing grade in ENB.

  8. Prognostic Significance of Microvessel Density Determining by Endoglin in Stage II Rectal Carcinoma: A Retrospective Analysis

    PubMed Central

    Martinovic, Zeljko; Kovac, Drazen; Martinovic, Mia

    2015-01-01

    Background. The role of endoglin in the Dukes B rectal cancer is still unexplored. The aim of this study was to examine the expression of endoglin (CD105) in resected rectal cancer and to evaluate the relationship between microvessels density (MVD), clinicopathological factors, and survival rates. Methods. The study included 95 primary rectal adenocarcinomas, corresponding to 67 adjacent and 73 distant normal mucosa specimens from surgical resection samples. Tumor specimens were paraffin-embedded and immunohistochemical staining for the CD105 endothelial antigen was performed to count CD105-MVD. For exact measurement of the CD105-MVD used a computer-integrated system Alphelys Spot Browser 2 was used. Results. The intratumoral CD105-MVD was significantly higher compared with corresponding adjacent mucosa (P < 0.0001) and distant mucosa specimens (P < 0.0001). There was no significant difference in the CD105-MVD according to patients age, gender, tumor location, grade of differentiation, histological type, depth of tumor invasion, and tumor size. The overall survival rate was significantly higher in the low CD105-MVD group of patients than in the high CD105-MVD group of patients (log-rank test, P = 0.0406). Conclusion. CD105-assessed MVD could help to identify patients with possibility of poor survival in the group of stage II RC. PMID:26089870

  9. VEGF, Flt-1, and microvessel density in primary tumors as predictive factors of colorectal cancer prognosis

    PubMed Central

    Zygoń, Justyna; Szajewski, Mariusz; Kruszewski, Wiesław Janusz; Rzepko, Robert

    2017-01-01

    Angiogenesis in the primary tumor is known to be necessary for tumor progression in adenocarcinomas of the colon. However, whether angiogenesis in the primary tumors of patients with colorectal cancer affects their prognosis has yet to be fully elucidated. The aim of the present study was to assess the association between selected pathoclinical parameters and overall survival of resectable colorectal cancer patients with the expression of angiogenesis-promoting factors, including vascular endothelial growth factor (VEGF) and Fms-like tyrosine kinase receptor (Flt-1), and microvessel density (MVD) in the primary tumor. VEGF and Flt-1 expression were assessed, as well as MVD (with anti-CD34) by immunohistochemistry in 139 archived primary colorectal cancer tissue samples. These results were compared with the overall survival of the patients and potential prognostic pathoclinical parameters. A higher MVD in the tumors expressing Flt-1 (P=0.04) was identified. However, there was no correlation between the pathoclinical parameters of colon cancer and Flt-1 expression, VEGF expression, or MVD in the tumor. Furthermore, the intensity of VEGF expression, Flt-1 expression and tumor MVD did not correlate with the overall survival of the patients. Therefore, although increased expression of VEGF and Flt-1 was correlated with an increased expression of MVD in the primary tumors of resectable colorectal cancer patients, these factors were not correlated with prognostic pathoclinical factors and overall survival. PMID:28357103

  10. Evaluation of mast cell counts and microvessel density in reactive lesions of the oral cavity

    PubMed Central

    Kouhsoltani, Maryam; Moradzadeh Khiavi, Monir; Tahamtan, Shabnam

    2016-01-01

    Background. Reliable immunohistochemical assays to assess the definitive role of mast cells (MCs) and angiogenesis in the pathogenesis of oral reactive lesions are generally not available. The aim of the present study was to evaluate mast cell counts (MCC) and microvessel density (MVD) in oral reactive lesions and determine the correlation between MCC and MVD. Methods. Seventy-five cases of reactive lesions of the oral cavity, including pyogenic granuloma, fibroma, peripheral giant cell granuloma, inflammatory fibrous hyperplasia, peripheral ossifying fibroma (15 for each category) were immunohisto-chemically stained with MC tryptase and CD31. Fifteen cases of normal gingival tissue were considered as the control group. The mean MCC and MVD in superficial and deep connective tissues were assessed and total MCC and MVD was computed for each lesion. Results. Statistically significant differences were observed in MCC and MVD between the study groups (P < 0.001). MC tryptase and CD31 expression increased in the superficial connective tissue of each lesion in comparison to the deep con-nective tissue. A significant negative correlation was not found between MCC and MVD in oral reactive lesions (P < 0.001, r = -0.458). Conclusion. Although MCs were present in the reactive lesions of the oral cavity, a direct correlation between MCC and MVD was not found in these lesions. Therefore, a significant interaction between MCs and endothelial cells and an active role for MCs in the growth of oral reactive lesions was not found in this study. PMID:28096950

  11. Development and Validation of a Histological Method to Measure Microvessel Density in Whole-Slide Images of Cancer Tissue

    PubMed Central

    Croons, Valerie; Waumans, Yannick; Sluydts, Ellen; De Schepper, Stefanie; Andries, Luc; Waelput, Wim; Fransen, Erik; Vermeulen, Peter B.; Kockx, Mark M.; De Meyer, Guido R. Y.

    2016-01-01

    Despite all efforts made to develop predictive biomarkers for antiangiogenic therapies, no unambiguous markers have been identified so far. This is due to among others the lack of standardized tests. This study presents an improved microvessel density quantification method in tumor tissue based on stereological principles and using whole-slide images. Vessels in tissue sections of different cancer types were stained for CD31 by an automated and validated immunohistochemical staining method. The stained slides were digitized with a digital slide scanner. Systematic, uniform, random sampling of the regions of interest on the whole-slide images was performed semi-automatically with the previously published applications AutoTag and AutoSnap. Subsequently, an unbiased counting grid was combined with the images generated with these scripts. Up to six independent observers counted microvessels in up to four cancer types: colorectal carcinoma, glioblastoma multiforme, ovarian carcinoma and renal cell carcinoma. At first, inter-observer variability was found to be unacceptable. However, after a series of consensus training sessions and interim statistical analysis, counting rules were modified and inter-observer concordance improved considerably. Every CD31-positive object was counted, with exclusion of suspected CD31-positive monocytes, macrophages and tumor cells. Furthermore, if interconnected, stained objects were considered a single vessel. Ten regions of interest were sufficient for accurate microvessel density measurements. Intra-observer and inter-observer variability were low (intraclass correlation coefficient > 0.7) if the observers were adequately trained. PMID:27583442

  12. Prognosis of invasive breast cancer after adjuvant therapy evaluated with VEGF microvessel density and microvascular imaging.

    PubMed

    Li, Ying; Wei, Xi; Zhang, Sheng; Zhang, Jin

    2015-11-01

    The aim of this study was to investigate the role of ultrasonographic microvascular imaging in the evaluation of prognosis of patients with invasive breast cancer treated by adjuvant therapies. A total of 121 patients with invasive breast cancer underwent ultrasonographic contrast-enhanced imaging, vascular endothelial growth factor (VEGF) staining, and microvessel density (MVD) counts. The parameters of microvascular imaging and the expression of VEGF and MVD in primary breast cancer were calculated. The correlation between these factors and the overall and progression-free survival rate were analyzed using the Kaplan-Meier method. Among 121 cases, the positive VEGF cases were 75 and negative ones were 46. The cut point of 52.3 was calculated by the regressive curve for MVD counts. The data showed the mean intensity (MI) was positively associated with both the MVD counts (r = .51, p < .001) and VEGF expression (r = .35, p < .001). For the prognosis of patients, high VEGF expression and MVD counts were associated with reduced progressive and survival times (PFS, p = .032 and p = .034; OS, p = .041 and p = .038, respectively). The correlation between parameters of microvascular imaging, VEGF expressive status, and the MVD counts were established. The cut point of mean intensity (MI = 40) was used to investigate as an independent predictor for PFS (p = .021) and OS (p = .025), respectively, due to a strong correlation between MVD counts and VEGF expression in patients with invasive breast cancer. The microvascular imaging could be a visual and helpful tool to predict the prognosis of patients with invasive breast cancer treated by adjuvant therapies.

  13. Adverse Prognostic Impact of Bone Marrow Microvessel Density in Multiple Myeloma

    PubMed Central

    Lee, Nuri; Lee, Hyewon; Moon, Soo Young; Sohn, Ji Yeon; Hwang, Sang Mee; Yoon, Ok Jin; Youn, Hye Sun

    2015-01-01

    Background Angiogenesis is important for the proliferation and survival of multiple myeloma (MM) cells. Bone marrow (BM) microvessel density (MVD) is a useful marker of angiogenesis and is determined by immunohistochemical staining with anti-CD34 antibody. This study investigated the prognostic impact of MVD and demonstrated the relationship between MVD and previously mentioned prognostic factors in patients with MM. Methods The study included 107 patients with MM. MVD was assessed at initial diagnosis in a blinded manner by two hematopathologists who examined three CD34-positive hot spots per patient and counted the number of vessels in BM samples. Patients were divided into three groups according to MVD tertiles. Cumulative progression-free survival (PFS) and overall survival (OS) curves, calculated by using Kaplan-Meier method, were compared among the three groups. Prognostic impact of MVD was assessed by calculating Cox proportional hazard ratio (HR). Results Median MVDs in the three groups were 16.8, 33.9, and 54.7. MVDs were correlated with other prognostic factors, including β2-microglobulin concentration, plasma cell percentage in the BM, and cancer stage according to the International Staging System. Multivariate Cox regression analysis showed that high MVD was an independent predictor of PFS (HR=2.57; 95% confidence interval, 1.22-5.42; P=0.013). PFS was significantly lower in the high MVD group than in the low MVD group (P=0.025). However, no difference was observed in the OS (P=0.428). Conclusions Increased BM MVD is a marker of poor prognosis in patients newly diagnosed with MM. BM MVD should be assessed at the initial diagnosis of MM. PMID:26354343

  14. Study of the Impact of Uterine Artery Embolization (UAE) on Endometrial Microvessel Density (MVD) and Angiogenesis

    SciTech Connect

    Tan Guosheng; Xiang Xianhong; Guo Wenbo; Zhang Bing; Chen Wei; Yang Jianyong

    2013-08-01

    PurposeTo investigate the influence of uterine artery embolization (UAE) on endometrial microvessel density (MVD) and angiogenesis.MethodsSixty female guinea pigs were divided into two groups, the control group (n = 15) and the UAE treatment group (n = 45). In the UAE group, tris-acryl gelatin microspheres were used to generate embolization. Animals were further divided into three subgroups, A1, A2, and A3 (n = 15 for each subgroup), with uterine specimens collected at 7-15, 16-30, and 31-45 days after UAE, respectively. Immunostaining for factor VIII and CD105 was performed to identify total endometrial MVD (MVD{sub FVIII}) and CD105-positive angiogenesis (MVD{sub CD105}) at the indicated time points after UAE.ResultsQuantitative analysis revealed that MVD{sub FVIII} significantly decreased in the A1 (11.40 {+-} 2.76, p < 0.05) and A2 (15.37 {+-} 3.06, p < 0.05) groups compared to the control group (19.40 {+-} 2.50), and was restored to normal in the A3 group (18.77 {+-} 2.69). UAE caused a temporal up-regulation of MVD{sub CD105}-positive angiogenesis in the A1 group (9.33 {+-} 2.37, p < 0.05) and the A2 group (11.63 {+-} 1.56, p < 0.05) compared to the control group (7.12 {+-} 1.67), and the MVD{sub CD105} value returned to normal in the A3 group (8.07 {+-} 1.97).ConclusionUAE caused a temporal decrease in endometrial MVD that reversed over time as a result of the increase of CD105-positive angiogenesis. Although the UAE-induced reduction of endometrial MVD was reversible, its long-term effect on endometrial receptivity still needs further study.

  15. Correlation between CT Perfusion Parameters and Microvessel Density and Vascular Endothelial Growth Factor in Adrenal Tumors

    PubMed Central

    Wang, Xifu; Bai, Renju; Li, Yajun; Zhao, Jinkun

    2013-01-01

    We evaluated the correlation between computed tomography (CT) perfusion parameters and markers of angiogenesis in adrenal adenomas and non-adenomas to determine if perfusion CT can be used to distinguish between them. Thirty-four patients with pathologically-confirmed adrenal tumors (17 adenomas, 17 non-adenomas) received CT perfusion imaging before surgery. CT perfusion parameters (blood flow [BF], blood volume [BV], mean transit time [MTT], and permeability surface area product [PS]) were calculated. Tumor tissue sections were examined with immunohistochemical methods for vascular endothelial growth factor (VEGF) expression and microvessel density (MVD). The mean age of the 34 patients was 43 years. The median BV was significantly higher in adenomas than in non-adenomas [12.3 ml/100 g, inter-quartile range (IQR): 10.4 to 16.5 ml/100 g vs. 8.8 ml/100 g, IQR: 3.3 to 9.4 ml/100 g, p = 0.001]. Differences in BF, MTT, and PS parameter values between adenomas and non-adenomas were not significant (p>0.05). The mean MVD was significantly higher in adenomas compared to non-adenomas (98.5±28.5 vs. 53.5±27.0, p<0.0001). Adenomas also expressed significantly higher median VEGF than non-adenomas (65%, IQR: 50 to 79% vs. 45%, IQR: 35 to 67%, p = 0.02). A moderately strong correlation between BF and VEGF (r = 0.53, p = 0.03) and between BV and MVD among adenomas (r = 0.57, p = 0.02) exist. Morphology, MVD, and VEGF expression in adenomas differ significantly from non-adenomas. Of the CT perfusion parameters examined, both BF and BV correlate with MVD, but only BF correlates with VEGF, and only in adenomas. The significant difference in BV suggests that BV may be used to differentiate adenomas from non-adenomas. However, the small difference in BV shows that it may only be possible to use BV to identify adenomas vs. non-adenomas at extreme BV values. PMID:24260316

  16. The effects of binge alcohol exposure in the 2nd trimester on the estimated density of cerebral microvessels in near-term fetal sheep.

    PubMed

    Simon, Katherine E; Mondares, Robin L; Born, Donald E; Gleason, Christine A

    2008-09-22

    Heavy fetal alcohol exposure is associated with a spectrum of neurological abnormalities, although the mechanism of injury is largely unknown. We previously reported attenuated cerebral blood flow response to hypoxia in fetal and newborn sheep which were exposed to alcohol earlier in pregnancy. One possible mechanism for this effect of alcohol on the developing cerebral vasculature is a decrease in cerebral microvessel density, similar to its effect on developing neurons. Therefore, we tested the hypothesis that prenatal alcohol exposure decreases cerebral microvessel density. Pregnant ewes received intravenous infusions of ethanol or saline during days 60-84 of gestation (term=150 days) and at 125 days of gestation we obtained the fetal brains for study. We immunohistochemically labeled vessels of the left cerebral forebrain hemispheres with antibody to endothelial nitric oxide synthase and then obtained unbiased stereological estimates of cerebral microvessel density using a modified optical fractionator method. We studied 20 fetal brains of which 9 were alcohol-exposed, 11 were saline-controls, and all were products of a twin gestation. Although brain and body weights were not different between groups, the alcohol-exposed group had significantly lower brain weight as a percentage of body weight. Estimates of cerebral microvessel density were not significantly different between alcohol-exposed and saline-control groups: 12.7+/-8.7 and 9.1+/-2.8 microvessels per mm(3), respectively (mean+/-SD, p=0.32). Since there is no change in estimated cerebral microvessel density after prenatal alcohol exposure, we conclude that decreased cerebral microvessel density is not a likely explanation for attenuated cerebral blood flow in response to hypoxia.

  17. Association between intratumoral lymphatic microvessel density (LMVD) and clinicopathologic features in endometrial cancer: a retrospective cohort study

    PubMed Central

    2010-01-01

    Background Lymph node metastasis in endometrial cancer significantly decreases survival rate. Few data on the influence of intratumoral lymphatic microvessel density (LMVD) on survival in endometrial cancer are available. Our aim was to assess the intratumoral LMVD of endometrial carcinomas and to investigate its association with classical pathological factors, lymph node metastasis and survival. Methods Fifty-seven patients with endometrial carcinoma diagnosed between 2000 and 2008 underwent complete surgical staging and evaluation of intratumoral LMVD and other histologic variables. Lymphatic microvessels were identified by immunohistochemical staining using monoclonal antibody against human podoplanin (clone D2-40) and evaluated by counting the number of immunostained lymphatic vessels in 10 hot spot areas at 400× magnification. The LMVD was expressed by the mean number of vessels in these 10 hot spot microscopic fields. We next investigated the association of LMVD with the clinicopathologic findings and prognosis. Results The mean number of lymphatic vessels counted in all cases ranged between 0 and 4.7. The median value of mean LMVD was 0.5, and defined the cut-off for low and high LMVD. We identified low intratumoral LMVD in 27 (47.4%) patients and high LMVD in 30 (52.6%) patients. High intratumoral LMVD was associated with lesser miometrial and adnaexal infiltration, lesser cervical and peritoneal involvement, and fewer fatal cases. Although there was lower lymph node involvement among cases with high LMVD, the difference did not reach significance. No association was seen between LMVD and FIGO staging, histological type, or vascular invasion. On the other hand, low intratumoral LMVD was associated with poor outcome. Seventy-five percent of deaths occurred in patients with low intratumoral LMVD. Conclusion Our results show association of high intratumoral LMVD with features related to more localized disease and better outcome. We discuss the role of

  18. Magnetic Resonance Q Mapping Reveals a Decrease in Microvessel Density in the arcAβ Mouse Model of Cerebral Amyloidosis

    PubMed Central

    Ielacqua, Giovanna D.; Schlegel, Felix; Füchtemeier, Martina; Xandry, Jael; Rudin, Markus; Klohs, Jan

    2016-01-01

    Alterations in density and morphology of the cerebral microvasculature have been reported to occur in Alzheimer's disease patients and animal models of the disease. In this study we compared magnetic resonance imaging (MRI) techniques for their utility to detect age-dependent changes of the cerebral vasculature in the arcAβ mouse model of cerebral amyloidosis. Dynamic susceptibility contrast (DSC)-MRI was performed by tracking the passage of a superparamagnetic iron oxide nanoparticle in the brain with dynamic gradient echo planar imaging (EPI). From this measurements relative cerebral blood volume [rCBV(DSC)] and relative cerebral blood flow (rCBF) were estimated. For the same animal maps of the relaxation shift index Q were computed from high resolution gradient echo and spin echo data that were acquired before and after superparamagnetic iron oxide (SPIO) nanoparticle injection. Q-values were used to derive estimates of microvessel density. The change in the relaxation rates ΔR2* obtained from pre- and post-contrast gradient echo data was used for the alternative determination of rCBV [rCBV(ΔR2*)]. Linear mixed effects modeling found no significant association between rCBV(DSC), rCBV(ΔR2*), rCBF, and Q with genotype in 13-month old mice [compared to age-matched non-transgenic littermates (NTLs)] for any of the evaluated brain regions. In 24-month old mice there was a significant association for rCBV(DSC) with genotype in the cerebral cortex, and for rCBV(ΔR2*) in the cerebral cortex and cerebellum. For rCBF there was a significant association in the cerebellum but not in other brain regions. Q-values in the olfactory bulb, cerebral cortex, striatum, hippocampus, and cerebellum in 24-month old mice were significantly associated with genotype. In those regions Q-values were reduced between 11 and 26% in arcAβ mice compared to age-matched NTLs. Vessel staining with CD31 immunohistochemistry confirmed a reduction of microvessel density in the old arcAβ mice

  19. Magnetic Resonance Q Mapping Reveals a Decrease in Microvessel Density in the arcAβ Mouse Model of Cerebral Amyloidosis.

    PubMed

    Ielacqua, Giovanna D; Schlegel, Felix; Füchtemeier, Martina; Xandry, Jael; Rudin, Markus; Klohs, Jan

    2015-01-01

    Alterations in density and morphology of the cerebral microvasculature have been reported to occur in Alzheimer's disease patients and animal models of the disease. In this study we compared magnetic resonance imaging (MRI) techniques for their utility to detect age-dependent changes of the cerebral vasculature in the arcAβ mouse model of cerebral amyloidosis. Dynamic susceptibility contrast (DSC)-MRI was performed by tracking the passage of a superparamagnetic iron oxide nanoparticle in the brain with dynamic gradient echo planar imaging (EPI). From this measurements relative cerebral blood volume [rCBV(DSC)] and relative cerebral blood flow (rCBF) were estimated. For the same animal maps of the relaxation shift index Q were computed from high resolution gradient echo and spin echo data that were acquired before and after superparamagnetic iron oxide (SPIO) nanoparticle injection. Q-values were used to derive estimates of microvessel density. The change in the relaxation rates [Formula: see text] obtained from pre- and post-contrast gradient echo data was used for the alternative determination of rCBV [rCBV([Formula: see text])]. Linear mixed effects modeling found no significant association between rCBV(DSC), rCBV([Formula: see text]), rCBF, and Q with genotype in 13-month old mice [compared to age-matched non-transgenic littermates (NTLs)] for any of the evaluated brain regions. In 24-month old mice there was a significant association for rCBV(DSC) with genotype in the cerebral cortex, and for rCBV([Formula: see text]) in the cerebral cortex and cerebellum. For rCBF there was a significant association in the cerebellum but not in other brain regions. Q-values in the olfactory bulb, cerebral cortex, striatum, hippocampus, and cerebellum in 24-month old mice were significantly associated with genotype. In those regions Q-values were reduced between 11 and 26% in arcAβ mice compared to age-matched NTLs. Vessel staining with CD31 immunohistochemistry confirmed a

  20. COX-2 expression correlates with microvessel density in non-melanoma skin cancer from renal transplant recipients and immunocompetent individuals.

    PubMed

    O'Grady, Anthony; O'Kelly, Patrick; Murphy, Gillian M; Leader, Mary; Kay, Elaine

    2004-12-01

    Angiogenesis, the generation of a new vascular network, is regulated in part by inducers of endothelial cell migration and proliferation, such as cyclooxygenase-2 (COX-2). Microvessel density (MVD) measurement is widely used to quantify angiogenesis in tissue sections of tumors, including cutaneous malignancies. The increasing number of successful renal transplantations worldwide is producing a progressive increase in patients at risk for non-melanoma skin cancers, such as squamous cell carcinoma (SCC), basal cell carcinoma (BCC), and Bowen's disease (BD), and at significantly increased risk for metastatic SCC. The aim of this study was to investigate whether there was any difference in angiogenesis between these tumor types in renal transplant recipients (RTRs) and immunocompetent individuals (ICIs) and whether angiogenesis in these tumors was related to COX-2 expression. The study measured angiogenesis and COX-2 expression in BD, SCC, BCC, and normal skin from both RTRs and ICIs. Vessel counts were performed, and COX-2 immunoexpression was assessed semiquantitatively. The MVD counts differed significantly between normal skin and all tumor types. Significant differences in MVD density were found between all SCCs and BCCs. BCCs from RTRs had significantly greater MVD at the invasive front of the tumor than BCCs from ICIs. Increased COX-2 expression correlated with increased MVD in all tumors examined. These findings indicate a difference in vascular profiles between RTRs and ICIs in BCCs and suggest a relationship between COX-2 and angiogenesis that may provide a possible treatment target for skin tumors in these 2 patient populations.

  1. Hypoxia-Related Marker GLUT-1, CAIX, Proliferative Index and Microvessel Density in Canine Oral Malignant Neoplasia

    PubMed Central

    Meier, Valeria; Guscetti, Franco; Roos, Malgorzata; Ohlerth, Stefanie; Pruschy, Martin; Rohrer Bley, Carla

    2016-01-01

    For various types of tumor therapy, it is suggested that co-targeting of tumor microenvironment, mainly tumor vasculature, mediates tumor response mechanisms. Immunohistochemistry for glucose transporter-1 (GLUT-1), carbonic anhydrase-IX (CAIX), Ki-67, and von Willebrand factor VIII for microvessel density (MVD) were performed on formalin-fixed paraffin-embedded samples of canine oral malignant neoplasms. Polarographic oxygen measurements (median pO2) and perfusion data via contrast-enhanced power Doppler ultrasound (median vascularity, median blood volume) provided additional information. Ninety-two samples were analyzed: sarcomas (n = 32), carcinomas (n = 30), and malignant melanomas (n = 30). Polarographic oxygen and perfusion data was available in 22.8% (sarcomas n = 9, carcinomas n = 7, melanomas n = 5), and 27.1% (sarcomas n = 10, carcinomas n = 8, melanomas n = 7) of cases, respectively. GLUT-1 expression was detected in 46.7% of all samples, and was generally weak. CAIX expression was found in 34.8% of all samples. Median Ki-67 score and MVD count was 19% and 17, respectively. The evaluation of the GLUT-1 score and continuous data showed significantly lower GLUT-1 levels in sarcomas (mean 5.1%, SD 6.2) versus carcinomas and melanomas (mean 16.5%/ 19.0%, SD 17.3/ 20.9, p = 0.001). The expression of CAIX correlated mildly positively with GLUT-1 (p = 0.018, rho = 0.250) as well as with Ki-67 (p = 0.014, rho = 0.295). MVD showed a significantly lower level in melanomas (mean 12.6, SD 7.7) versus sarcomas and carcinomas (mean 21.8/ 26.9, SD 13.0/20.4, p = 0.001). Median vascularity and blood volume were significantly lower in sarcomas (mean 10.4%, SD 11.0, and mean 6.3%, SD 6.5, respectively) versus carcinomas (mean 39.2%, SD 16.4 and mean 33.0%, SD 25.6, respectively) and melanomas (mean 36.0%, SD 18.3, and 31.5%, SD 24.5). Between the 3 histological groups, there was neither a significant difference in the GLUT-1 and CAIX score and continuous data, nor the Ki

  2. Hypoxia-Related Marker GLUT-1, CAIX, Proliferative Index and Microvessel Density in Canine Oral Malignant Neoplasia.

    PubMed

    Meier, Valeria; Guscetti, Franco; Roos, Malgorzata; Ohlerth, Stefanie; Pruschy, Martin; Rohrer Bley, Carla

    2016-01-01

    For various types of tumor therapy, it is suggested that co-targeting of tumor microenvironment, mainly tumor vasculature, mediates tumor response mechanisms. Immunohistochemistry for glucose transporter-1 (GLUT-1), carbonic anhydrase-IX (CAIX), Ki-67, and von Willebrand factor VIII for microvessel density (MVD) were performed on formalin-fixed paraffin-embedded samples of canine oral malignant neoplasms. Polarographic oxygen measurements (median pO2) and perfusion data via contrast-enhanced power Doppler ultrasound (median vascularity, median blood volume) provided additional information. Ninety-two samples were analyzed: sarcomas (n = 32), carcinomas (n = 30), and malignant melanomas (n = 30). Polarographic oxygen and perfusion data was available in 22.8% (sarcomas n = 9, carcinomas n = 7, melanomas n = 5), and 27.1% (sarcomas n = 10, carcinomas n = 8, melanomas n = 7) of cases, respectively. GLUT-1 expression was detected in 46.7% of all samples, and was generally weak. CAIX expression was found in 34.8% of all samples. Median Ki-67 score and MVD count was 19% and 17, respectively. The evaluation of the GLUT-1 score and continuous data showed significantly lower GLUT-1 levels in sarcomas (mean 5.1%, SD 6.2) versus carcinomas and melanomas (mean 16.5%/ 19.0%, SD 17.3/ 20.9, p = 0.001). The expression of CAIX correlated mildly positively with GLUT-1 (p = 0.018, rho = 0.250) as well as with Ki-67 (p = 0.014, rho = 0.295). MVD showed a significantly lower level in melanomas (mean 12.6, SD 7.7) versus sarcomas and carcinomas (mean 21.8/ 26.9, SD 13.0/20.4, p = 0.001). Median vascularity and blood volume were significantly lower in sarcomas (mean 10.4%, SD 11.0, and mean 6.3%, SD 6.5, respectively) versus carcinomas (mean 39.2%, SD 16.4 and mean 33.0%, SD 25.6, respectively) and melanomas (mean 36.0%, SD 18.3, and 31.5%, SD 24.5). Between the 3 histological groups, there was neither a significant difference in the GLUT-1 and CAIX score and continuous data, nor the Ki

  3. Identification of lymphatic vessels and prognostic value of lymphatic microvessel density in lesions of the uterine cervix.

    PubMed

    Saptefraţi, L; Cîmpean, Anca Maria; Ciornîi, A; Ceauşu, Raluca; Eşanu, N; Raica, M

    2009-01-01

    Incomplete characterization of the uterine cervix cancer from molecular point of view represents the main problem for the use of a proper therapy in this disease. Few data are available about D2-40 expression in lymphatic endothelial cells and also in tumor cells from uterine cervix cancer. The aim of the present work was to study the involvement of lymphatics in prognosis and tumor progression of the uterine cervix lesions. We used D2-40 immunostaining to highlight lymphatic vessels from squamous cell metaplasia (n=17), cervical intraepithelial neoplasia (n=11), carcinoma in situ (n=3), microinvasive carcinoma (n=4) and invasive carcinoma (n=19) using Avidin-Biotin technique (LSAB+). Type and distribution of lymphatics in different lesions of the cervix were analyzed. We found significant correlation between lymphatic microvessel density and tumor grade and particular distribution of the lymphatics linked to histopathologic type of the lesions. Also, differences was found in lymphovascular invasion interpretation between routine Hematoxylin and Eosin staining specimens and immunohistochemical ones. Our results showed differences in the distribution and D2-40 expression in lymphatic vessels and tumor cells from the cervix lesions linked to histopathology and tumor grade.

  4. Microvessel density and endothelial cell proliferation levels in colorectal liver metastases from patients given neo-adjuvant cytotoxic chemotherapy and bevacizumab.

    PubMed

    Eefsen, Rikke Løvendahl; Engelholm, Lars; Willemoe, Gro L; Van den Eynden, Gert G; Laerum, Ole Didrik; Christensen, Ib Jarle; Rolff, Hans Christian; Høyer-Hansen, Gunilla; Osterlind, Kell; Vainer, Ben; Illemann, Martin

    2016-04-01

    The treatment of patients with colorectal liver metastasis has improved significantly and first line therapy is often combined chemotherapy and bevacizumab, although it is unknown who responds to this regimen. Colorectal liver metastases grow in different histological growth patterns showing differences in angiogenesis. To identify possible response markers, histological markers of angiogenesis were assessed. Patients who underwent resection of colorectal liver metastasis at Rigshospitalet, Copenhagen, Denmark from 2007 to 2011 were included (n = 254) including untreated and patients treated with chemotherapy or chemotherapy plus bevacizumab. The resected liver metastases were characterised with respect to growth pattern, endothelial and tumour cell proliferation as well as microvessel density and tumour regression. Tumour regression grade of liver metastases differed significantly between untreated/chemotherapy treated patients in comparison to chemotherapy plus bevacizumab treated patients (both p < 0.0001). Microvessel density was decreased in liver metastases from patients treated with bevacizumab in comparison to those from untreated/chemotherapy-treated patients (p = 0.006/p = 0.002). Tumour cell proliferation assessed by Ki67 expression correlated to a shorter recurrence free survival in the total patient cohort. In conclusion, liver metastases from patients treated with neo-adjuvant chemotherapy and bevacizumab had significantly lower microvessel densities and tumour regression grades when compared to liver metastases from untreated or chemotherapy treated patients. This may indicate that bevacizumab treatment results in altered vascular biology and tumour viability, with possible tumour reducing effect.

  5. Prognostic value of microvessel density and p53 expression on the locoregional metastasis and survival of the patients with head and neck squamous cell carcinoma.

    PubMed

    de Oliveira, Marcos Vinícius M; Pereira Gomes, Erika P; Pereira, Camila S; de Souza, Ludmilla R; Barros, Lucas O; Mendes, Danilo C; Guimarães, André L S; De Paula, Alfredo M B

    2013-10-01

    Cancer cells need to develop microvessels in order to grow and to establish metastatic foci. A role for the p53 protein in the regulation of the angiogenic process is suggested. This study aimed to investigate the relationship between immunohistochemical expression of microvessel density (MVD), measured by CD31 staining, and p53 protein with clinicopathologic factors, and survival in head and neck squamous cell carcinoma (n=70). Tumor angiogenesis was estimated by determining MVD in areas with the highest number of stained microvessels (hot spots). Clinicopathologic factors and immunohistochemical data were evaluated by χ statistical test and were submitted to binary logistic regression to analyze the risk of presence of lymph node metastasis. Factors that might predict survival were investigated using Cox proportional hazards tests. Differences were considered statistically significant when P<0.05. The percentage of p53-positive cells showed no association with clinicopathologic parameters and MVD. Patients with locoregional metastasis presented statistically significant higher MVD (P=0.043). Individuals presenting head and neck squamous cell carcinoma in posterior sites (P=0.022; OR=3.644) and higher MVD (P=0.039; OR=3.247) had a significant increase in risk of metastasis occurrence. Multivariate analysis showed that presence of lymph node metastasis was statistically significant for overall survival of head and neck carcinoma patients (P=0.006; OR =2.917). The present data suggest that MVD represents a promising diagnostic tool to identify individuals with increased risk for the development of metastatic disease, which is very indicative of poor prognosis.

  6. Id-1 overexpression in invasive ductal carcinoma cells is significantly associated with intratumoral microvessel density in ER-negative/node-positive breast cancer.

    PubMed

    Jang, Ki-Seok; Han, Hong Xiu; Paik, Seung Sam; Brown, Powel H; Kong, Gu

    2006-12-08

    The aim of this study is to investigate the possible role of inhibitor of DNA binding (Id-1) overexpression in human breast cancer. We examined Id-1 expression by immunohistochemistry in 263 human breast cancers, 15 in situ lesions and 248 invasive cancers to investigate the relationship between its expression and various clinicopathological factors. Id-1 expression was significantly higher in invasive ductal carcinoma than in in situ ductal carcinoma or other invasive cancer subtypes (P=0.029 and 0.006, respectively). We also examined the association between Id-1 expression and tumor angiogenesis by measuring microvessel densities (MVD). Regarding the endothelial cells of microvessels showed negative or very weak Id-1 expression, Id-1 overexpression was found to be significantly related to MVD (P=0.014). Furthermore, Id-1 overexpression was found to be significantly associated with higher MVD in the ER-negative and node-involved subgroups of breast cancer (P=0.040 and 0.046, respectively). These data indicate that Id-1 overexpression is significantly associated with tumor angiogenesis, especially in the ER-negative and node-positive subtypes of invasive breast cancer. Thus, Id-1 presents a possible therapeutic antitumor target molecule in ER-negative and node-positive breast cancer.

  7. Expression and localization of the vascular endothelial growth factor and changes of microvessel density during hair follicle development of Liaoning cashmere goats.

    PubMed

    Zhang, Q L; Li, J P; Li, Y M; Chang, Q; Chen, Y; Jiang, H Z; Zhao, Z H; Guo, D

    2013-12-10

    Vascular endothelial growth factors (VEGFs) play important roles in neovascularization, tissue development, and angiogenesis. In this study, changes in VEGF expression patterns and microvessel density (MVD), and their correlations, were investigated during hair follicle development in epidermal appendages of Liaoning cashmere goats. Polyclonal antibodies to VEGF and microvessels were used for monthly immunohistochemical examinations of normal skin specimens from adult female goats for one year. VEGF was expressed in the hair bulb of primary and secondary hair follicles, the outer and inner root sheaths, sebaceous glands (ductal and secretory portions), eccrine sweat glands (ductal and secretory portions), and the epidermis. Abundant expression of VEGF was observed in the follicular basement membrane zone surrounding the bulb matrix and in ductal and secretory portions of eccrine sweat glands. The change in VEGFs in primary hair follicles showed a bimodal pattern, with the first peak observed from March to May, and the second in August. Maximal expression in secondary hair follicles occurred in May and August. Therefore, VEGF expression in primary and secondary hair follicles is synchronized throughout the year, and is correlated to hair development. In the later telogen and anagen phases, VEGF expression was higher in the secondary, compared to the primary, hair follicle. Changes in MVD also showed a bimodal pattern with peaks in May and August. VEGF expression and MVD showed moderate and strongly positive correlation in the primary and secondary hair follicles, respectively. Therefore, MVD and VEGF are closely related to the processes involved in hair cycle regulation.

  8. Synthesis of oxadiazole-morpholine derivatives and manifestation of the repressed CD31 Microvessel Density (MVD) as tumoral angiogenic parameters in Dalton's Lymphoma.

    PubMed

    Al-Ghorbani, Mohammed; Vigneshwaran, V; Ranganatha, V Lakshmi; Prabhakar, B T; Khanum, Shaukath Ara

    2015-06-01

    A series of oxadiazole derivatives possessing morpholine 6a-l were synthesized by nucleophilic substitution reaction of key intermediates [1,3,4]-oxadiazole-2-thiol derivatives 5a-l with 4-(2-chloroethyl) morpholine. Compounds 6a-l were evaluated for their in vitro and in vivo antitumor potential in Dalton's Lymphoma Ascites (DLA) tumor cells. Among 6a-l series, compound 6a with concentration ∼8.5μM have shown extensive cytotoxicity in vitro and 85% reduction in tumor volume in vivo, attributing an excellent anti-proliferative capability towards the cancer cells. Compound 6a has extensively inhibited the Microvessel Density (MVD) or tumoral neovasculature which was evident from the CD31 immuno staining and peritoneal H&E staining. The major reason for the antiproliferative activity of compound 6a was due to the repression of tumor vasculature.

  9. Effects of docetaxel plus three-dimensional conformal radiation therapy on microvessel density and apoptosis expression in local advanced squamous non-small-cell lung cancer.

    PubMed

    Zhai, X J; Cheng, H R; Long, H L; Mao, W K; Cao, L; Xiao, B R; Li, R Q

    2015-05-22

    We examined the effects of weekly single-agent docetaxel plus three-dimensional conformal radiation therapy (3D-CRT) on apoptotic index (AI) and microvessel density (MVD) in local advanced non-small-cell lung squamous cancer patients and analyzed the correlation of MVD, AI, and 50% tumor shrinkage time (T0.5) The molecular mechanism of docetaxel radiosensitization was investigated. Sixty untreated patients with stage IIIA or IIIB lung squamous cancer were enrolled and randomly divided into two groups: observation (N = 30; 3D-CRT + docetaxel + adjuvant chemotherapy) and control (N = 30; 3D-CRT + adjuvant chemotherapy). From day 1 radiotherapy, the observation group received intravenous docetaxel (36 mg/m(2)) once weekly for 6 weeks. Post-radiotherapy, chemotherapy of docetaxel combined with cisplatin lasted 4-6 cycles in both groups. Before radiotherapy and within 24 h after radiotherapy (20 Gy), bronchoscopic biopsy was performed twice at the same site. To analyze the MVD of tumor specimens with immunohistochemical staining . The AI of lung cancer cells was assessed with TUNEL assay, T0.5 values were calculated. The observation group had significantly lower MVD than the control group (P < 0.05). AI significantly increased before and after treatment in the observation group compared with the control group (P < 0.05). The decreased MVD values negatively correlated with T0.5 values (r = -0.624, P < 0.05), whereas the increased AI values did not correlate with the T0.5 values. Docetaxel radiosensitization may occur by decrease in MVD and increase in AI values. Weekly single-agent docetaxel plus 3D-CRT can improve prognosis and quality of life in local advanced non-small-cell lung squamous cancer patients.

  10. Prognostic significance of COX-2 expression and correlation with Bcl-2 and VEGF expression, microvessel density, and clinical variables in classical Hodgkin lymphoma.

    PubMed

    Koh, Young Wha; Park, Chansik; Yoon, Dok Hyun; Suh, Cheolwon; Huh, Jooryung

    2013-08-01

    Vascular endothelial growth factor (VEGF) and cyclooxygenase-2 (COX-2) play important roles in tumor angiogenesis. Recent reports found that COX-2 expression had prognostic value in classical Hodgkin lymphoma (cHL). The purpose of this study was to measure the expression of COX-2, B-cell lymphoma-2 (Bcl-2), VEGF, and CD31 and assess their prognostic significance and potential correlation with clinical variables in cHL. A total of 167 cHL specimens were evaluated retrospectively by immunohistochemical methods for COX-2, Bcl-2, and VEGF expression and for CD31 to measure the microvessel density (MVD). Correlations between COX-2, Bcl-2, VEGF, MVD, and clinicopathologic factors were assessed, and prognostic significance was determined. COX-2, Bcl-2, and VEGF were expressed in 27.5%, 8.3%, and 33.5% of the specimens, respectively. A positive correlation was found between COX-2 and VEGF expression (P<0.001). The MVD was significantly higher in tumors positive for both COX-2 and VEGF compared with that in tumors negative for both markers (P=0.047). COX-2 expression was associated with a lower overall survival rate (P=0.015). High MVD was associated with a lower event-free survival rate (P=0.014). COX-2 was an independent prognostic factor for overall survival on multivariate analysis (P=0.013). COX-2 and VEGF correlated with angiogenesis and tumor progression in cHL. The findings support targeting COX-2 as a potential new therapeutic approach in cHL.

  11. The Role of Lymphocyte to Monocyte Ratio, Microvessel Density and HiGH CD44 Tumor Cell Expression in Non Hodgkin Lymphomas.

    PubMed

    Jelicic, Jelena; Balint, Milena Todorovic; Jovanovic, Maja Perunicic; Boricic, Novica; Micev, Marjan; Stojsic, Jelena; Antic, Darko; Andjelic, Bosko; Bila, Jelena; Balint, Bela; Pavlovic, Sonja; Mihaljevic, Biljana

    2016-07-01

    Prognostic significance of immune microenvironment has been emphasized using the most advanced analysis, with consecutive attempts to reveal prognostic impact of this findings. The aim of this study was to compare and define prognostic significance of clinical parameters, microvessel density (MVD) in tumour tissue and expression of CD44s as adhesive molecule on tumour cells in diffuse large B cell lymphoma-DLBCL, primary central nervous system DLBCL-CNS DLBCL and follicular lymphoma-FL. A total of 202 histopathological samples (115 DLBCL/65 FL/22 CNS DLBCL) were evaluated. Overall response (complete/partial remission) was achieved in 81.3 % DLBCL patients, 81.8 % primary CNS DLBCL and 92.3 % FL. Absolute lymphocyte count-ALC/Absolute monocyte count-AMC >2.6 in DLBCL and ALC/AMC ≥ 4.7 in FL were associated with better event-free survival (EFS) and overall survival (OS) (p < 0.05). In DLBCL, MVD > 42 blood vessels/0.36 mm(2) correlated with primary resistant disease (p < 0.0001), poorer EFS and OS (p = 0.014). High CD44s expression in FL correlated with inferior EFS and OS (p < 0.01). In DLBCL, multivariate Cox regression analysis showed that ALC/AMC was independent parameter that affected OS (HR 3.27, 95 % CI 1.51-7.09, p = 0.003) along with the NCCN-IPI (HR 1.39, 95 % CI 1.08-1.79, p = 0.01). Furthermore, in FL, ALC/AMC mostly influenced OS (HR 5.21, 95 % CI 1.17-23.21, p = 0.03), followed with the FLIPI (HR 3.98, 95 % CI 1.06-14.95, p = 0.041). In DLBCL and FL, ALC/AMC is simple and robust tool that is, with current prognostic scores, able to define long-term survival and identify patients with inferior outcome. The introduction of immunochemotherapy might altered the prognostic significance of microenvionmental biomarkers (MVD and CD44s).

  12. AB112. Expression of brain-specific angiogenesis inhibitor 1 and association with p53, microvessel density and vascular endothelial growth factor in the tissue of human bladder transitional cell carcinoma

    PubMed Central

    Tian, Dawei; Hu, Hailong; Wu, Changli

    2016-01-01

    Objective Brain-specific angiogenesis inhibitor 1 (BAI1) was initially described in 1997, and there have since been a number of studies on its expression in different types of cancer. The aim of the present study was to investigate the expression levels of BAI1 in bladder transitional cell carcinoma (BTCC) at different stages and the mechanism by which it inhibits tumor endothelial cell proliferation. Methods Normal bladder mucosa biopsy specimens were obtained as the control group, and human BTCC biopsy specimens were used as the study group. Immunohistochemical assays were used to detect the expression levels of BAI1, vascular endothelial growth factor (VEGF) and mutant p53, in addition to microvessel density (MVD) in the tissues. Western blotting was used to analyze the differential expression of BAI1 in the two samples. Results Statistical analysis was performed, which indicated that BAI1 expression levels in the normal bladder mucosa group were significantly higher than those in the BTCC group and were associated with clinical staging. BAI1 levels in the T1 stage BTCC tissues were higher than those in the T2–4 stage BTCC tissues (P<0.05). BAI1 expression levels were negatively correlated with those of VEGF (r=−0.661, P<0.001), mutant p53 (r=−0.406, P=0.002) and with the MVD (r=−0.675, P<0.001). Conclusions BAI1 may be involved in the negative regulation of BTCC microvascular proliferation, and its expression may be associated with a reduction in p53 mutations.

  13. Adrenergic receptors on cerebral microvessels in control and Parkinsonian subjects

    SciTech Connect

    Cash, R.; Lasbennes, F.; Sercombe, R.; Seylaz, J.; Agid, Y.

    1985-08-12

    The binding of adrenergic ligands (/sup 3/H-prazosin, /sup 3/H-clonidine, /sup 3/H-dihydroalprenolol) was studied on a preparation of cerebral microvessels in the prefrontal cortex and putamen of control and Parkinsonian subjects. The adrenergic receptor density in microvessels of control patients was less than 0.5% and 3.3% respectively of the total binding. A significant decrease in the number of alpha-1 binding sites was observed on microvessels in the putamen of patients with Parkinson's disease. 22 references, 2 tables.

  14. The Local HIF-2α/EPO Pathway in the Bone Marrow is Associated with Excessive Erythrocytosis and the Increase in Bone Marrow Microvessel Density in Chronic Mountain Sickness

    PubMed Central

    Su, Juan; Cui, Sen; Ji, Linhua; Geng, Hui; Chai, Kexia; Ma, Xiaojing; Bai, Zhenzhong; Yang, Yingzhong; Wuren, Tana; Ge, Ri-Li; Rondina, Matthew T.

    2015-01-01

    Abstract Juan Su, Zhanquan Li, Sen Cui, Linhua Ji, Hui Geng, Kexia Chai, Xiaojing Ma, Zhenzhong Bai, Yingzhong Yang, Tana Wuren, Ri-Li Ge, and Matthew T. Rondina. The local HIF-2α/EPO pathway in the bone marrow is associated with excessive erythrocytosis and the increase in bone marrow microvessel density in chronic mountain sickness. High Alt Med Biol. 16:318–330, 2015.—Aim: Chronic mountain sickness (CMS) is characterized by excessive erythrocytosis, and angiogenesis may be involved in the pathogenesis of this disease. The bone marrow niche is the primary site of erythropoiesis and angiogenesis. This study was aimed at investigating the associations of the levels of hypoxia-inducible factors (HIFs), erythropoietin (EPO), and erythropoietin receptor (EPOR), as well as microvessel density (MVD) in the bone marrow with CMS. Results: A total of 34 patients with CMS and 30 control subjects residing in areas at altitudes of 3000–4500 m were recruited for this study. The mRNA and protein expression of HIF-2α and EPO in the bone marrow cells was significantly higher in the CMS patients than in the controls. Moreover, changes in HIF-2α expression in CMS patients were significantly correlated with EPO and hemoglobin levels. In contrast, the expression of mRNA and protein expression of HIF-1α and EPOR did not differ significantly between the CMS and control patients. Increased MVD was observed in the bone marrow of the patients with CMS and it was significantly correlated with hemoglobin. Conclusions: Bone marrow cells of CMS patients may show enhanced activity of the HIF-2α/EPO pathway, and EPO may regulate the erythropoiesis and vasculogenesis through autocrine or/and paracrine mechanisms in the bone marrow niche. The increased MVD in the bone marrow of CMS patients appears to be involved in the pathogenesis of this disease. PMID:26625252

  15. Fibroblast Growth Factor Receptor 1 (FGFR1), Partly Related to Vascular Endothelial Growth Factor Receptor 2 (VEGFR2) and Microvessel Density, is an Independent Prognostic Factor for Non-Small Cell Lung Cancer

    PubMed Central

    Pu, Dan; Liu, Jiewei; Li, Zhixi; Zhu, Jiang; Hou, Mei

    2017-01-01

    Background This study aimed to explore the correlation between FGFR1 and clinical features, including survival analysis and the promotion of angiogenesis by fibroblast growth factor receptor 1 (FGFR1) and vascular endothelial growth factor receptor 2 (VEGFR2). FGFR1 gene amplification has been found in non-small cell lung cancer (NSCLC). However, the prognostic value of FGFR1 and the correlation between FGFR1 and clinical features are still controversial. Material/Methods A total of 92 patients with NSCLC who underwent R0 resection between July 2006 and July 2008 were enrolled in the study. The expression of FGFR1, VEGFR2, and CD34 was detected by immunohistochemistry. The correlations between the aforementioned markers and the patients’ clinical features were analyzed by the chi-square test. The impact factors of prognosis were evaluated by Cox regression analyses. Results The expression ratios of FGFR1 and VEGFR2 were 26.1% and 43.4%, respectively. The intensity of FGFR1 expression was related to VEGFR2 and histopathology. To some extent, the average microvessel density (MVD) had correlation to the expression of FGFR1 and VGEFR2. The pathological stages III–IV and high expression of FGFR1 were found to be independent prognostic factors. Conclusions The expression intensity of FGFR1 and VEGFR2 was associated with MVD, and the expression of FGFR1 is one of the independent prognostic indicators for NSCLC. PMID:28088809

  16. Blood flow and permeability in microvessels

    NASA Astrophysics Data System (ADS)

    Sugihara-Seki, Masako; Fu, Bingmei M.

    2005-07-01

    The mechanics of blood flow in microvessels and microvessel permeability are reviewed. In the first part, characteristics of blood flow in vivo and in vitro are described from a fluid-mechanical point of view, and mathematical models for blood flow in microvessels are presented. Possible causes of the increased flow resistance obtained in vivo compared to in vitro are examined, including the effects of irregularities of vessel lumen, the presence of endothelial surface glycocalyx and white blood cells. In the second part, the ultrastructural pathways and mechanisms whereby endothelial cells and the clefts between the cells modulate microvessel permeability to water and solutes are introduced. Previous and current models for microvessel permeability to water and solutes are reviewed. These models examine the role of structural components of interendothelial cleft, such as junction strands and surface glycocalyx, in the determination of water and solute transport across the microvessel walls. Transport models in the tissue space surrounding the microvessel are also described.

  17. Microvessel basement membrane reduplication is not associated with repeated nerve fiber degeneration and regeneration.

    PubMed

    Baker, M K; Bourque, P; Dyck, P J

    1996-03-01

    To determine whether repeated nerve fiber degeneration and regeneration can induce reduplication of endoneurial microvessel basement membranes (BMs), typical of such conditions as diabetic polyneuropathy, electronmicrographs of endoneurial microvessels of rat peroneal and tibial nerves were studied in repeatedly crushed (10 x) sciatic nerves and compared to microvessels of sham-operated uncrushed nerves. On average, crushed nerves had 2.6, SE +/- 0.1 BMs, whereas control nerves had 2.7, SE +/- 0.1 (P > 0.05). Microvessel cellular components were significantly increased in both number and size in the crushed nerves. These nerves also demonstrated a trend to increased vessel numbers and density. These results are not in keeping with the hypothesis that BM reduplication of endoneurial microvessels is simply due to repeated fiber degeneration and regeneration.

  18. Reinforcing endothelial junctions prevents microvessel permeability increase and tumor cell adhesion in microvessels in vivo

    NASA Astrophysics Data System (ADS)

    Fu, Bingmei M.; Yang, Jinlin; Cai, Bin; Fan, Jie; Zhang, Lin; Zeng, Min

    2015-10-01

    Tumor cell adhesion to the microvessel wall is a critical step during tumor metastasis. Vascular endothelial growth factor (VEGF), a secretion of tumor cells, can increase microvessel permeability and tumor cell adhesion in the microvessel. To test the hypothesis that inhibiting permeability increase can reduce tumor cell adhesion, we used in vivo fluorescence microscopy to measure both microvessel permeability and adhesion rates of human mammary carcinoma MDA-MB-231 cells in post-capillary venules of rat mesentery under the treatment of VEGF and a cAMP analog, 8-bromo-cAMP, which can decrease microvessel permeability. By immunostaining adherens junction proteins between endothelial cells forming the microvessel wall, we further investigated the structural mechanism by which cAMP abolishes VEGF-induced increase in microvessel permeability and tumor cell adhesion. Our results demonstrate that 1) Pretreatment of microvessels with cAMP can abolish VEGF-enhanced microvessel permeability and tumor cell adhesion; 2) Tumor cells prefer to adhere to the endothelial cell junctions instead of cell bodies; 3) VEGF increases microvessel permeability and tumor cell adhesion by compromising endothelial junctions while cAMP abolishes these effects of VEGF by reinforcing the junctions. These results suggest that strengthening the microvessel wall integrity can be a potential approach to inhibiting hematogenous tumor metastasis.

  19. Reinforcing endothelial junctions prevents microvessel permeability increase and tumor cell adhesion in microvessels in vivo

    PubMed Central

    Fu, Bingmei M.; Yang, Jinlin; Cai, Bin; Fan, Jie; Zhang, Lin; Zeng, Min

    2015-01-01

    Tumor cell adhesion to the microvessel wall is a critical step during tumor metastasis. Vascular endothelial growth factor (VEGF), a secretion of tumor cells, can increase microvessel permeability and tumor cell adhesion in the microvessel. To test the hypothesis that inhibiting permeability increase can reduce tumor cell adhesion, we used in vivo fluorescence microscopy to measure both microvessel permeability and adhesion rates of human mammary carcinoma MDA-MB-231 cells in post-capillary venules of rat mesentery under the treatment of VEGF and a cAMP analog, 8-bromo-cAMP, which can decrease microvessel permeability. By immunostaining adherens junction proteins between endothelial cells forming the microvessel wall, we further investigated the structural mechanism by which cAMP abolishes VEGF-induced increase in microvessel permeability and tumor cell adhesion. Our results demonstrate that 1) Pretreatment of microvessels with cAMP can abolish VEGF-enhanced microvessel permeability and tumor cell adhesion; 2) Tumor cells prefer to adhere to the endothelial cell junctions instead of cell bodies; 3) VEGF increases microvessel permeability and tumor cell adhesion by compromising endothelial junctions while cAMP abolishes these effects of VEGF by reinforcing the junctions. These results suggest that strengthening the microvessel wall integrity can be a potential approach to inhibiting hematogenous tumor metastasis. PMID:26507779

  20. Endothelial cell shrinkage increases permeability through a Ca2+-dependent pathway in single frog mesenteric microvessels

    PubMed Central

    Kajimura, M; Curry, F E

    1999-01-01

    We tested whether calcium (Ca2+)-dependent mechanisms were essential for our previous observation that a change in the endothelial cell (EC)-extracellular matrix (ECM) attachment caused an increase in microvessel hydraulic permeability (Lp) after exposure to hypertonic solutions in single perfused mesenteric microvessels in pithed frogs (Rana pipiens). In microvessels where integrin-dependent EC-ECM attachments were disrupted by pretreatment with the peptide Gly-Arg-Gly-Asp-Thr-Pro (GRGDTP; 0·3 mmol l−1), we measured microvessel Lp after exposure to hypertonic solutions under experimental conditions that reduced Ca2+ influx into endothelial cells. High K+ solutions (59·7 and 100 mmol l−1 K+) were used to depolarize the endothelial membrane and therefore to reduce the electrochemical driving force for Ca2+ influx through conductive Ca2+ channels. These solutions abolished the increase in Lp caused by hypertonic solutions in the microvessels pretreated with GRGDTP. We previously suggested that the removal of albumin from the perfusate may reduce EC-ECM attachment because hypertonic solutions increased the Lp of microvessels above that due to removal of albumin alone. This additional increase in Lp was attenuated by the 59·7 mmol l−1 K+ solution and was completely abolished by the 100 mmol l−1 K+ solution. Bumetanide, an inhibitor of the Na+-K+-2Cl− co-transporter and one of the mechanisms of regulatory volume increase after exposure to hypertonic solutions in endothelial cells, did not change the response of microvessels to high K+ solutions. Our findings indicate that Ca2+ entry into endothelial cells via passive conductance channels is necessary to increase microvessel Lp after exposure to hypertonic solutions in microvessels where EC-ECM attachments are disrupted. PMID:10373704

  1. Prediction of crystal densities of organic explosives by group additivity

    SciTech Connect

    Stine, J R

    1981-08-01

    The molar volume of crystalline organic compound is assumed to be a linear combination of its constituent volumes. Compounds consisting only of the elements hydrogen, carbon, nitrogen, oxygen, and fluorine are considered. The constituent volumes are taken to be the volumes of atoms in particular bonding environments and are evaluated from a large set of crystallographic data. The predicted density has an expected error of about 3%. These results are applied to a large number of explosives compounds.

  2. Gender-specific protection from microvessel rarefaction in female hypertensive rats.

    PubMed

    Papanek, P E; Rieder, M J; Lombard, J H; Greene, A S

    1998-08-01

    Epidemiologic studies reveal that women have a significantly lower age-adjusted morbidity and mortality from cardiovascular disease than men, suggesting that gender is a cardiovascular disease risk factor. The mechanism of the "gender protection" is unknown. In this study, we investigated the microvascular remodeling in reduced renal mass plus a high salt (4.0% NaCl) diet model of hypertension (RRM + HS). We hypothesized that women would be protected from the increase in blood pressure and from the microvascular rarefaction associated with RRM + HS hypertension. Studies were designed to determine whether female rats were less susceptible to changes in microvessel density during RRM + HS. Microvessel density was measured in male and female low salt (0.4% LS) sham-operated controls (Sham + LS) and after 3 days or 4 weeks of RRM + HS hypertension. The microcirculation of hind limb (medial and lateral gastrocnemius, plantaris, soleus) muscles was visualized using rhodamine-labeled Griffonia simplicifolia I lectin. Tissue sections were examined by videomicroscopy and microvessel density was determined by quantitative stereology. As shown previously, mean arterial pressure increased to 160 +/- 8 mm Hg and microvessel density decreased (>30% decrease in all beds) in male RRM + HS. In contrast, mean arterial pressure of female RRM + HS rats was modestly increased from 101 +/- 2 to 118 +/- 4 mm Hg. Despite previous results showing a reduction in microvessel density of both normotensive and hypertensive male rats on a high salt diet, microvessel density of female RRM + HS rats was not reduced at either time. These results suggest that gender protection in the RRM rat extends beyond an attenuation of the increase in pressure to an immunity from microvascular rarefaction.

  3. Additivity, density fluctuations, and nonequilibrium thermodynamics for active Brownian particles

    NASA Astrophysics Data System (ADS)

    Chakraborti, Subhadip; Mishra, Shradha; Pradhan, Punyabrata

    2016-05-01

    Using an additivity property, we study particle-number fluctuations in a system of interacting self-propelled particles, called active Brownian particles (ABPs), which consists of repulsive disks with random self-propulsion velocities. From a fluctuation-response relation, a direct consequence of additivity, we formulate a thermodynamic theory which captures the previously observed features of nonequilibrium phase transition in the ABPs from a homogeneous fluid phase to an inhomogeneous phase of coexisting gas and liquid. We substantiate the predictions of additivity by analytically calculating the subsystem particle-number distributions in the homogeneous fluid phase away from criticality where analytically obtained distributions are compatible with simulations in the ABPs.

  4. Neurotransmitter Receptor Binding in Bovine Cerebral Microvessels

    NASA Astrophysics Data System (ADS)

    Peroutka, Stephen J.; Moskowitz, Michael A.; Reinhard, John F.; Synder, Solomon H.

    1980-05-01

    Purified preparations of microvessels from bovine cerebral cortex contain substantial levels of alpha-adrenergic, beta-adrenergic, and histamine 1 receptor binding sites but only negligible serotonin, muscarinic cholinergic, opiate, and benzodiazepine receptor binding. Norepinephrine and histamine may be endogenous regulators of the cerebral microcirculation at the observed receptors.

  5. Chronic ethanol treatment changes the number of beta-receptors in rat brain microvessels

    SciTech Connect

    Lucchi, L.; Cazzaniga, A.; Picotti, G.B.; Covelli, V.; Magnoni, M.S.; Borriero, L.; Spano, P.F.; Trabucchi, M.

    1984-01-01

    The effect of chronic ethanol consumption on the binding (125I)-iodohydroxybenzylpindolol to beta-adrenergic receptors in rat brain microvessels has been studied. The results show that chronic ethanol treatment increases the number of beta-receptors present in brain microvessels without changing the binding affinity of the binding site for the beta-adrenoceptor ligand. This effect is apparently not associated with changes in peripheral adrenergic tone, since no differences in platelet epinephrine or norepinephrine concentrations were found between ethanol-treated and control animals. An increase in beta-receptor density in brain microvessels might contribute to the alterations of cerebral blood flow and oxygen consumption reported during chronic ethanol intoxication.

  6. Structural and functional bases of laser-microvessels interaction

    NASA Astrophysics Data System (ADS)

    Kozlov, Valentine I.; Terman, Oleg A.; Builin, Vitalij; Lebedeva, Natalia A.; Samoilov, Nickolai

    1993-07-01

    Structural and functional microcirculatory changes in tissues and organs (muscles, liver, derma, epinephros, brain cortex) under various dosages and powers of laser irradiation in the red (633 nm) and near infrared (890 nm) spectrum regions have been studied in experiments and clinic. In case of nonsensitized tissues the `photoactivation' range of power densities and doses of laser irradiation has been established. We have identified a short-term reaction of microvessels and a long-term reaction (adaptation). The former consists of intensification of microcirculation and metabolism rise in parenchymatous cells; the latter is connected with neoangiogenesis acceleration. The intensification of the blood microcirculation includes a dilation of microvessels of all orders, an amplification of arteriolar vasomotions and an opening of `reserved' capillaries. Data on the structural reconstruction of myocytes and endotheliocytes have shown that the high differential parenchymatous cells and its membrane structures are sensitive to low energy laser irradiation and, on the other hand, under low energy laser irradiation there is an activation of synthetic processes in the cells. Thus, during the laser-tissue interaction in such complex system as human organism the microcirculation plays the key role among the other systems.

  7. Alpha-Adrenergic receptors in cerebral microvessels of normotensive and spontaneously hypertensive rats

    SciTech Connect

    Kobayashi, H.; Wada, A.; Izumi, F.; Magnoni, M.S.; Trabucchi, M.

    1985-03-01

    In rat cerebral microvessels, we characterized alpha 1- and alpha 2-adrenergic receptors, using (/sup 3/H)prazosin and (/sup 3/H)-p-amino-clonidine as radioligands. (/sup 3/H)Prazosin binding to the cerebral microvessels was saturable and of high affinity (dissociation constant of 78 pM), with a maximum binding of 48 fmol/mg protein. (/sup 3/H)Prazosin binding reached equilibrium within 15 minutes and was dissociated by the addition of 10 microM phentolamine. The inhibitory effects of isomers of norepinephrine and epinephrine on the binding showed that l-isomers were over 10 times more potent than d-isomers. (/sup 3/H)-p-Amino-clonidine binding to the cerebral microvessels was saturable and of high affinity (K/sub D/ . 0.61 nM) with a B/sub max/ of 73 fmol/mg protein. The binding reached equilibrium within 30 minutes, and was dissociated by the addition of 100 microM l-norepinephrine. l-Isomers of norepinephrine and epinephrine were over 10 times more potent than d-isomers in displacing the binding. Thus, both (/sup 3/H)prazosin and (/sup 3/H)-p-amino-clonidine bindings to the cerebral microvessels were characterized by saturability, high affinity, reversibility, and stereo-specificity. Furthermore, the specificity of both binding sites was pharmacologically evaluated by the inhibitory effects of various adrenergic agonists and antagonists on the bindings. These data indicate the existence of alpha-adrenergic receptors in the cerebral microvessels and are consistent with the hypothesis that the cerebral microcirculation is regulated by adrenergic innervation. Furthermore, the receptors were measured in cerebral microvessels of spontaneously hypertensive rats and Wistar-Kyoto controls.

  8. Non-additive response of larval ringed salamanders to intraspecific density.

    PubMed

    Ousterhout, Brittany H; Semlitsch, Raymond D

    2016-04-01

    Conditions experienced in early developmental stages can have long-term consequences for individual fitness. High intraspecific density during the natal period can affect juvenile and eventually adult growth rates, metabolism, immune function, survival, and fecundity. Despite the important ecological and evolutionary effects of early developmental density, the form of the relationship between natal density and resulting juvenile phenotype is poorly understood. To test competing hypotheses explaining responses to intraspecific density, we experimentally manipulated the initial larval density of ringed salamanders (Ambystoma annulatum), a pond-breeding amphibian, over 11 densities. We modeled the functional form of the relationship between natal density and juvenile traits, and compared the relative support for the various hypotheses based on their goodness of fit. These functional form models were then used to parameterize a simple simulation model of population growth. Our data support non-additive density dependence and presents an alternate hypothesis to additive density dependence, self-thinning and Allee effects in larval amphibians. We posit that ringed salamander larvae may be under selective pressure for tolerance to high density and increased efficiency in resource utilization. Additionally, we demonstrate that models of population dynamics are sensitive to assumptions of the functional form of density dependence.

  9. Implant-assisted magnetic drug targeting in permeable microvessels: Comparison of two-fluid statistical transport model with experiment

    NASA Astrophysics Data System (ADS)

    ChiBin, Zhang; XiaoHui, Lin; ZhaoMin, Wang; ChangBao, Wang

    2017-03-01

    In experiments and theoretical analyses, this study examines the capture efficiency (CE) of magnetic drug carrier particles (MDCPs) for implant-assisted magnetic drug targeting (IA-MDT) in microvessels. It also proposes a three-dimensional statistical transport model of MDCPs for IA-MDT in permeable microvessels, which describes blood flow by the two-fluid (Casson and Newtonian) model. The model accounts for the permeable effect of the microvessel wall and the coupling effect between the blood flow and tissue fluid flow. The MDCPs move randomly through the microvessel, and their transport state is described by the Boltzmann equation. The regulated changes and factors affecting the CE of the MDCPs in the assisted magnetic targeting were obtained by solving the theoretical model and by experimental testing. The CE was negatively correlated with the blood flow velocity, and positively correlated with the external magnetic field intensity and microvessel permeability. The predicted CEs of the MDCPs were consistent with the experimental results. Additionally, under the same external magnetic field, the predicted CE was 5-8% higher in the IA-MDT model than in the model ignoring the permeability effect of the microvessel wall.

  10. Glucose and fatty acid metabolism in normal and diabetic rabbit cerebral microvessels

    SciTech Connect

    Hingorani, V.; Brecher, P.

    1987-05-01

    Rabbit cerebral microvessels were used to study fatty acid metabolism and its utilization relative to glucose. Microvessels were incubated with either (6-/sup 14/C)glucose or (1-/sup 14/C)oleic acid and the incorporation of radioactivity into /sup 14/CO/sub 2/, lactate, triglyceride, cholesterol ester, and phospholipid was determined. The inclusion of 5.5 mM glucose in the incubation mixture reduced oleate oxidation by 50% and increased esterification into both phospholipid and triglyceride. Glucose oxidation to CO/sub 2/ was reduced by oleate addition, whereas lactate production was unaffected. 2'-Tetradecylglycidic acid, an inhibitor of carnitine acyltransferase I, blocked oleic acid oxidation in the presence and absence of glucose. It did not effect fatty acid esterification when glucose was absent and eliminated the inhibition of oleate on glucose oxidation. Glucose oxidation to /sup 14/CO/sub 2/ was markedly suppressed in microvessels from alloxan-treated diabetic rabbits but lactate formation was unchanged. Fatty acid oxidation to CO/sub 2/ and incorporation into triglyceride, phospholipid, and cholesterol ester remained unchanged in the diabetic state. The experiments show that both fatty acid and glucose can be used as a fuel source by the cerebral microvessels, and the interactions found between fatty acid and glucose metabolism are similar to the fatty acid-glucose cycle, described previously.

  11. Quantification of microvessels in canine lymph nodes.

    PubMed

    Tonar, Zbynĕk; Egger, Gunter F; Witter, Kirsti; Wolfesberger, Birgitt

    2008-10-01

    Quantification of microvessels in tumors is mostly based on counts of vessel profiles in tumor hot spots. Drawbacks of this method include low reproducibility and large interobserver variance, mainly as a result of individual differences in sampling of image fields for analysis. Our aim was to test an unbiased method for quantifying microvessels in healthy and tumorous lymph nodes of dogs. The endothelium of blood vessels was detected in paraffin sections by a combination of immunohistochemistry (von Willebrand factor) and lectin histochemistry (wheat germ agglutinin) in comparison with detection of basal laminae by laminin immunohistochemistry or silver impregnation. Systematic uniform random sampling of 50 image fields was performed during photo-documentation. An unbiased counting frame (area 113,600 microm(2)) was applied to each micrograph. The total area sampled from each node was 5.68 mm(2). Vessel profiles were counted according to stereological counting rules. Inter- and intraobserver variabilities were tested. The application of systematic uniform random sampling was compared with the counting of vessel profiles in hot spots. The unbiased estimate of the number of vessel profiles per unit area ranged from 100.5 +/- 44.0/mm(2) to 442.6 +/- 102.5/mm(2) in contrast to 264 +/- 72.2/mm(2) to 771.0 +/- 108.2/mm(2) in hot spots. The advantage of using systematic uniform random sampling is its reproducibility, with reasonable interobserver and low intraobserver variance. This method also allows for the possibility of using archival material, because staining quality is not limiting as it is for image analysis, and artifacts can easily be excluded. However, this method is comparatively time-consuming.

  12. Leukocyte margination in a model microvessel

    NASA Astrophysics Data System (ADS)

    Freund, Jonathan B.

    2007-02-01

    The physiological inflammation response depends upon the multibody interactions of blood cells in the microcirculation that bring leukocytes (white blood cells) to the vessel walls. We investigate the fluid mechanics of this using numerical simulations of 29 red blood cells and one leukocyte flowing in a two-dimensional microvessel, with the cells modeled as linearly elastic shell membranes. Despite its obvious simplifications, this model successfully reproduces the increasingly blunted velocity profiles and increased leukocyte margination observed at lower shear rates in actual microvessels. Red cell aggregation is shown to be unnecessary for margination. The relative stiffness of the red cells in our simulations is varied by over a factor of 10, but the margination is found to be much less correlated with this than it is to changes associated with the blunting of the mean velocity profile at lower shear rates. While velocity around the leukocyte when it is near the wall depends upon the red cell properties, it changes little for strongly versus weakly marginating cases. In the more strongly marginating cases, however, a red cell is frequently observed to be leaning on the upstream side of the leukocyte and appears to stabilize it, preventing other red cells from coming between it and the wall. A well-known feature of the microcirculation is a near-wall cell-free layer. In our simulations, it is observed that the leukocyte's most probable position is at the edge of this layer. This wall stand-off distance increases with velocity following a scaling that would be expected for a lubrication mechanism, assuming that there were a nearly constant force pushing the cells toward the wall. The leukocyte's near-wall position is observed to be less stable with increasing mean stand-off distance, but this distance would have potentially greater effect on adhesion since the range of the molecular binding is so short.

  13. Relative blood velocity measurement in individual microvessels using the self-mixing effect in a fiber-coupled helium-neon laser.

    PubMed

    Ren, T; Nuttall, A L; Miller, J M

    1995-03-01

    A system has been developed for the measurement of relative blood velocity in micro-vessels by using the self-mixing effect of a laser. A helium-neon laser was coupled to a single-mode optical fiber and the pulled fiber tip (approximately 30 microns diameter) was positioned on a single microvessel. The backscattered Doppler-shifted laser light from moving red blood cells enters the laser cavity and modulates the laser output by influencing internal laser parameters. The signal of the laser output intensity change was produced using a fiber-coupled photodiode and processed by a signal processor. This processor yields an output signal proportional to the first moment of the power spectral density, i.e., the mean frequency of the Doppler shift, corresponding to the blood flow velocity on an arbitrary instrument scale. Results of the in vitro experiment demonstrated that the current method can detect moving particles in fluid and moving red blood cells in a small plastic tube. Data from the in vivo study showed that this system is capable of measuring relative blood velocity in arterioles and venules and can easily follow the cardiac cycle up to 360 beats/min. Primary data suggest that, in addition to high sensitivity, good spatial and temporal resolution, and convenience of use, the self-mixing technique may have an even greater capacity for analysis of blood flow in microvessels than explored in this study, since information on the absolute velocity and velocity distribution of red blood cells is available in self-mixing signal. Further study on its hematocrit dependence and particle bias effect is needed.

  14. On the asymptotic improvement of supervised learning by utilizing additional unlabeled samples - Normal mixture density case

    NASA Technical Reports Server (NTRS)

    Shahshahani, Behzad M.; Landgrebe, David A.

    1992-01-01

    The effect of additional unlabeled samples in improving the supervised learning process is studied in this paper. Three learning processes. supervised, unsupervised, and combined supervised-unsupervised, are compared by studying the asymptotic behavior of the estimates obtained under each process. Upper and lower bounds on the asymptotic covariance matrices are derived. It is shown that under a normal mixture density assumption for the probability density function of the feature space, the combined supervised-unsupervised learning is always superior to the supervised learning in achieving better estimates. Experimental results are provided to verify the theoretical concepts.

  15. Measurement of powder bed density in powder bed fusion additive manufacturing processes

    NASA Astrophysics Data System (ADS)

    Jacob, G.; Donmez, A.; Slotwinski, J.; Moylan, S.

    2016-11-01

    Many factors influence the performance of additive manufacturing (AM) processes, resulting in a high degree of variation in process outcomes. Therefore, quantifying these factors and their correlations to process outcomes are important challenges to overcome to enable widespread adoption of emerging AM technologies. In the powder bed fusion AM process, the density of the powder layers in the powder bed is a key influencing factor. This paper introduces a method to determine the powder bed density (PBD) during the powder bed fusion (PBF) process. A complete uncertainty analysis associated with the measurement method was also described. The resulting expanded measurement uncertainty, U PBD (k  =  2), was determined as 0.004 g · cm-3. It was shown that this expanded measurement uncertainty is about three orders of magnitude smaller than the typical powder bed density. This method enables establishing correlations between the changes in PBD and the direction of motion of the powder recoating arm.

  16. Fabrication of pillared PLGA microvessel scaffold using femtosecond laser ablation

    PubMed Central

    Wang, Hsiao-Wei; Cheng, Chung-Wei; Li, Ching-Wen; Chang, Han-Wei; Wu, Ping-Han; Wang, Gou-Jen

    2012-01-01

    One of the persistent challenges confronting tissue engineering is the lack of intrinsic microvessels for the transportation of nutrients and metabolites. An artificial microvascular system could be a feasible solution to this problem. In this study, the femtosecond laser ablation technique was implemented for the fabrication of pillared microvessel scaffolds of polylactic-co-glycolic acid (PLGA). This novel scaffold facilitates implementation of the conventional cell seeding process. The progress of cell growth can be observed in vitro by optical microscopy. The problems of becoming milky or completely opaque with the conventional PLGA scaffold after cell seeding can be resolved. In this study, PLGA microvessel scaffolds consisting of 47 μm × 80 μm pillared branches were produced. Results of cell culturing of bovine endothelial cells demonstrate that the cells adhere well and grow to surround each branch of the proposed pillared microvessel networks. PMID:22605935

  17. Tapanuli Organoclay Addition Into Linear Low Density Polyethylene-Pineapple Fiber Composites

    SciTech Connect

    Adawiyah, Robiatul; Juwono, Ariadne L.; Roseno, Seto

    2010-12-23

    Linear low density polyethylene-Tapanuli organoclay-pineapple fiber composites were succesfully synthesized by a melt intercalation method. The clay was modified as an organoclay by a cation exchange reaction using hexadecyl trimethyl ammonium bromide (HDTMABr) surfactant. The X-ray diffraction results of the organoclay exhibited a higher basal spacing of 1.87 nm compared to the unmodified clay of 1.46 nm. The composite tensile strength was enhanced up to 46.4% with the 1 wt% organoclay addition. Both tensile and flexural moduli increased up to 150.6% and 43% with the 3 wt% organoclay addition to the composites. However, the flexural strength of the composites was not improved with the organoclay addition. The addition of organoclay has also decreased the heat deflection temperature of the composites.

  18. Tapanuli Organoclay Addition Into Linear Low Density Polyethylene-Pineapple Fiber Composites

    NASA Astrophysics Data System (ADS)

    Adawiyah, Robiatul; Juwono, Ariadne L.; Roseno, Seto

    2010-12-01

    Linear low density polyethylene-Tapanuli organoclay-pineapple fiber composites were succesfully synthesized by a melt intercalation method. The clay was modified as an organoclay by a cation exchange reaction using hexadecyl trimethyl ammonium bromide (HDTMABr) surfactant. The X-ray diffraction results of the organoclay exhibited a higher basal spacing of 1.87 nm compared to the unmodified clay of 1.46 nm. The composite tensile strength was enhanced up to 46.4% with the 1 wt% organoclay addition. Both tensile and flexural moduli increased up to 150.6% and 43% with the 3 wt% organoclay addition to the composites. However, the flexural strength of the composites was not improved with the organoclay addition. The addition of organoclay has also decreased the heat deflection temperature of the composites.

  19. High Energy Density Additives for Hybrid Fuel Rockets to Improve Performance and Enhance Safety

    NASA Technical Reports Server (NTRS)

    Jaffe, Richard L.

    2014-01-01

    We propose a conceptual study of prototype strained hydrocarbon molecules as high energy density additives for hybrid rocket fuels to boost the performance of these rockets without compromising safety and reliability. Use of these additives could extend the range of applications for which hybrid rockets become an attractive alternative to conventional solid or liquid fuel rockets. The objectives of the study were to confirm and quantify the high enthalpy of these strained molecules and to assess improvement in rocket performance that would be expected if these additives were blended with conventional fuels. We confirmed the chemical properties (including enthalpy) of these additives. However, the predicted improvement in rocket performance was too small to make this a useful strategy for boosting hybrid rocket performance.

  20. Leukocyte Margination in a Model Microvessel

    NASA Astrophysics Data System (ADS)

    Freund, Jonathan

    2006-11-01

    In the inflammation response, multi-body interactions of blood cells in the microcirculation bring leukocytes (white blood cells) to the vessel walls. We investigated the fluid mechanics of this using numerical simulations of 29 red blood cells and one leukocyte flowing in a two-dimensional microvessel. The cells are modeled as linearly elastic shell membranes. Though obviously simplified, this model reproduced the increasingly blunted velocity profiles and increased leukocyte margination observed at lower shear rates. To study its effect, we varied the relative stiffness of the red cells by over a factor of ten, but the margination was found to be much less correlated with this than to the bluntness of the mean velocity profile. The detailed velocity field around near-wall leukocyte was sensitive to the red cell stiffness, but it changed little for strongly versus weakly marginating cases. In the more strongly marginating cases, however, a red cell is typically leaning on the upstream side of the leukocyte and appears to stabilize it. A well-known feature of the microcirculation is a near-wall cell-free layer. We observed that the leukocyte's most probable position was at the edge of this layer, whose thickness increased following a lubrication scaling. The leukocyte's near-wall position is observed to be less stable with increasing mean stand-off distance, but this distance would have potentially greater effect on adhesion since the range of the molecular binding is so short.

  1. Local RBC aggregation disturbing blood fluidity and causing stasis in microvessels.

    PubMed

    McHedlishvili, George; Varazashvili, Manana; Gobejishvili, Leila

    2002-01-01

    Experiments in rat mesenterium were carried out under conditions when both pressure gradient in the chosen microvessels and their diameters were preserved constant. All details of the hemorheological events were directly visualized and documented by usage of appropriate microscopic video techniques. Intensified RBC aggregation locally produced in individual capillaries, immediately disturbs the normal blood flow structure inside their lumina and deranges the rheological properties of blood flow in the microvessels, which slows down till a full stop. The RBC aggregates gradually grow up due to addition of new cells, which become compressed and appear homogeneous. This usually interferes with restoration of blood flow in capillaries. Further the RBC aggregates can move slowly towards veins, while the flow accelerates immediately as soon as the aggregates reach the larger venules.

  2. Effect of osmolarity on potassium transport in isolated cerebral microvessels

    SciTech Connect

    Lin, J.D.

    1988-01-01

    Potassium transport in microvessels isolated from rat brain by a technique involving density gradient centrifugation was studied in HEPES buffer solutions of varying osmolarity from 200 to 420 mosmols, containing different concentration of sodium chloride, choline chloride, or sodium nitrate. The flux of /sup 86/Rb into and out of the endothelial cells was estimated. Potassium influx was very sensitive to the osmolarity of the medium. Ouabain-insensitive K-component was reduced in hypotonic medium and was increased in medium made hypertonic with sodium chloride or mannitol. Choline chloride replacement caused a large reduction in K influx. Potassium influx was significant decrease when nitrate is substituted for chloride ion in isotonic and hypertonic media, whereas a slight decrease was found in hypotonic medium. The decrease of K influx in the ion-replacement medium is due to a decrement of the ouabain-insensitive component. Potassium efflux was unchanged in hypotonic medium but was somewhat reduced in hypertonic medium. The marked effect of medium osmolarity of K fluxes suggests that these fluxes may be responsible for the volume regulatory K movements. The possible mechanism of changes of K flux under anisotonic media is also discussed.

  3. Influence of additive laser manufacturing parameters on surface using density of partially melted particles

    NASA Astrophysics Data System (ADS)

    Rosa, Benoit; Brient, Antoine; Samper, Serge; Hascoët, Jean-Yves

    2016-12-01

    Mastering the additive laser manufacturing surface is a real challenge and would allow functional surfaces to be obtained without finishing. Direct Metal Deposition (DMD) surfaces are composed by directional and chaotic textures that are directly linked to the process principles. The aim of this work is to obtain surface topographies by mastering the operating process parameters. Based on experimental investigation, the influence of operating parameters on the surface finish has been modeled. Topography parameters and multi-scale analysis have been used in order to characterize the DMD obtained surfaces. This study also proposes a methodology to characterize DMD chaotic texture through topography filtering and 3D image treatment. In parallel, a new parameter is proposed: density of particles (D p). Finally, this study proposes a regression modeling between process parameters and density of particles parameter.

  4. Dark Matter Haloes: an Additional Criterion for the Choice of Fitting Density Profiles

    NASA Astrophysics Data System (ADS)

    Caimmi, R.; Marmo, C.

    2004-12-01

    Simulated dark matter haloes are fitted by self-similar, universal density profiles, where the scaled parameters depend only on a scaled (truncation) radius, Xi=R/r0, which, in turn, is supposed to be independent of the mass and the formation redshift. The further assumption of a lognormal distribution (for a selected mass bin) of the scaled radius, or concentration, in agreement with the data from a large statistical sample of simulated haloes (Bullock et al. 2001), allows (at least to a first approximation) a normal or lognormal distribution for other scaled parameters, via the same procedure which leads to the propagation of the errors. A criterion is proposed for the choice of the best fitting density profile, with regard to a set of high-resolution simulations, where some averaging procedure on scaled density profiles has been performed, in connection with a number of fitting density profiles. To this aim, a minimum value of the ratio, | x\\overline{η}|/ σs,\\overline{η}= |\\overline{η}- η*|/σs,\\overline{η}, is required to yield the best fit, where \\overline{η} is the arithmetic mean over the whole set; η* is its counterpart related to the fitting density profile; σs,\\overline{η} is the standard deviation from the mean; and η is a selected, scaled i.e. dimensionless parameter. The above criterion is applied to a pair of sets each made of a dozen of high-resolution simulations, FM01 (Fukushige and Makino 2001) and KLA01 (Klypin et al. 2001), in connection with two currently used fitting density profiles, NFW (e.g. Navarro et al. 1997) and MOA (e.g. Moore et al. 1999), where the dependence of the scaled radius on the mass and the formation redshift may be neglected to a first extent. With regard to FM01 and KLA01 samples, the best fits turn out to be MOA and NFW, respectively. In addition, the above results also hold in dealing with rms errors derived via the propagation of the errors, with regard to the distributions of scaled parameters. The

  5. Additives

    NASA Technical Reports Server (NTRS)

    Smalheer, C. V.

    1973-01-01

    The chemistry of lubricant additives is discussed to show what the additives are chemically and what functions they perform in the lubrication of various kinds of equipment. Current theories regarding the mode of action of lubricant additives are presented. The additive groups discussed include the following: (1) detergents and dispersants, (2) corrosion inhibitors, (3) antioxidants, (4) viscosity index improvers, (5) pour point depressants, and (6) antifouling agents.

  6. Additions and Improvements to the FLASH Code for Simulating High Energy Density Physics Experiments

    NASA Astrophysics Data System (ADS)

    Lamb, D. Q.; Daley, C.; Dubey, A.; Fatenejad, M.; Flocke, N.; Graziani, C.; Lee, D.; Tzeferacos, P.; Weide, K.

    2015-11-01

    FLASH is an open source, finite-volume Eulerian, spatially adaptive radiation hydrodynamics and magnetohydrodynamics code that incorporates capabilities for a broad range of physical processes, performs well on a wide range of computer architectures, and has a broad user base. Extensive capabilities have been added to FLASH to make it an open toolset for the academic high energy density physics (HEDP) community. We summarize these capabilities, with particular emphasis on recent additions and improvements. These include advancements in the optical ray tracing laser package, with methods such as bi-cubic 2D and tri-cubic 3D interpolation of electron number density, adaptive stepping and 2nd-, 3rd-, and 4th-order Runge-Kutta integration methods. Moreover, we showcase the simulated magnetic field diagnostic capabilities of the code, including induction coils, Faraday rotation, and proton radiography. We also describe several collaborations with the National Laboratories and the academic community in which FLASH has been used to simulate HEDP experiments. This work was supported in part at the University of Chicago by the DOE NNSA ASC through the Argonne Institute for Computing in Science under field work proposal 57789; and the NSF under grant PHY-0903997.

  7. Hydrogen atom addition to the surface of graphene nanoflakes: A density functional theory study

    NASA Astrophysics Data System (ADS)

    Tachikawa, Hiroto

    2017-02-01

    Polycyclic aromatic hydrocarbons (PAHs) provide a 2-dimensional (2D) reaction surface in 3-dimensional (3D) interstellar space and have been utilized as a model of graphene surfaces. In the present study, the reaction of PAHs with atomic hydrogen was investigated by means of density functional theory (DFT) to systematically elucidate the binding nature of atomic hydrogen to graphene nanoflakes. PAHs with n = 4-37 were chosen, where n indicates the number of benzene rings. Activation energies of hydrogen addition to the graphene surface were calculated to be 5.2-7.0 kcal/mol at the CAM-B3LYP/6-311G(d,p) level, which is almost constant for all PAHs. The binding energies of hydrogen atom were slightly dependent on the size (n): 14.8-28.5 kcal/mol. The absorption spectra showed that a long tail is generated at the low-energy region after hydrogen addition to the graphene surface. The electronic states of hydrogenated graphenes were discussed on the basis of theoretical results.

  8. Selectivity descriptors for the Michael addition reaction as obtained from density functional based approaches.

    PubMed

    Madjarova, G; Tadjer, A; Cholakova, Tz P; Dobrev, A A; Mineva, T

    2005-01-20

    Density functional (DF) based numerical approaches for computing orbital and atomic reactivity indices were employed in the study of selectivity descriptors for the 1,4 Michael addition reaction. To this aim, atomic and orbital Fukui indices and atomic softnesses for 2-arylmethylene-1,4-butanolides and N,N-disubstituted phenylacetamides were computed. Further on, these local selectivity descriptors have been rationalized in terms of the Pearson's hard-soft-acid-base principle to explain the observed regioselectivity. It is shown that the methods employed for local (atomic and orbital) reactivity index computations are useful and reliable for prediction of the regioselectivity upon conjugate addition of ambident nucleophiles to 2,3-unsaturated carboxylic esters. All the results reveal similar degree of localization/hardness of the 1,4-butanolides C4 and active alpha-carbon belonging to the N,N-dimethyl-phenylacetamide, while the soft alpha-carbon in LiCH2CN reacts with the soft C2 1,4-butanolide center.

  9. Specific binding of atrial natriuretic factor in brain microvessels

    SciTech Connect

    Chabrier, P.E.; Roubert, P.; Braquet, P.

    1987-04-01

    Cerebral capillaries constitute the blood-brain barrier. Studies of specific receptors (neurotransmitters or hormones) located on this structure can be performed by means of radioligand-binding techniques on isolated brain microvessels. The authors examined on pure bovine cerebral microvessel preparations the binding of atrial natriuretic factor (ANF), using /sup 125/I-labeled ANF. Saturation and competition experiments demonstrated the presence of a single class of ANF-binding sites with high affinity and with a binding capacity of 58 fmol/mg of protein. The binding of /sup 125/I-labeled ANF to brain microvessels is specific, reversible, and time dependent, as is shown by association-dissociation experiments. The demonstration of specific ANF-binding sites on brain microvessels supposes a physiological role of ANF on brain microvasculature. The coexistence of ANF and angiotensin II receptors on this cerebrovascular tissue suggests that the two circulating peptides may act as mutual antagonists in the regulation of brain microcirculation and/or blood-brain barrier function.

  10. Imaging of lymph flow in single microvessels in vivo

    NASA Astrophysics Data System (ADS)

    Galanzha, Ekateryna I.; Ulyanov, Sergey S.; Tuchin, Valery V.; Brill, Gregory E.; Solov'eva, Anastasiya V.

    2000-10-01

    In this study parameters of lymph microcirculation are investigated. The microcirculation was studied on small intestine mesentery in norm and during Dimethyl sulfoxide (DMSO) application. The direct measurement of lymph flow velocity (parameter V) in individual microvessels was based on the technique of light intravital videomicroscopy. The first spectral moments of Doppler signal, characterizing the mean velocities of lymph flow in microvessels (parameter M1), were measured by speckle-interferometrical method. Simultaneously, diameters of lymph microvessels as well as parameters of phasic contractions and valve function of lymphatics were registered. The value of V was very changeable; the mean V was equal to 270+/- 24micrometers /s. The M1 was the varying characteristic of the lymph flow too. The temporal dynamic of M1 was reflected alternating- translation motion of lymph flow. DMSO application during 15 min caused the constriction in a majority of lymphatics and the phasic contractions. DMSO induced lymphostatis in 20% of cases. But the other microvessels responded to the rise of lymph flow velocity. These changes led to the stimulation of drainage function of lymph microcirculation function.

  11. Mechanical behavior of the erythrocyte in microvessel stenosis.

    PubMed

    Zhang, ZhiGuo; Zhang, XiWen

    2011-05-01

    The passage of red blood cells (RBCs) through capillaries is essential for human blood microcirculation. This study used a moving mesh technology that incorporated leader-follower pairs to simulate the fluid-structure and structure-structure interactions between the RBC and a microvessel stenosis. The numerical model consisted of plasma, cytoplasm, the erythrocyte membrane, and the microvessel stenosis. Computational results showed that the rheology of the RBC is affected by the Reynolds number of the plasma flow as well as the surface-to-volume ratio of the erythrocyte. At a constant inlet flow rate, an increased plasma viscosity will improve the transit of the RBC through the microvessel stenosis. For the above reasons, we consider that the decreased hemorheology in microvessels in a pathological state may primarily be attributed to an increase in the number of white blood cells. This leads to the aggregation of RBCs and a change in the blood flow structure. The present fundamental study of hemorheology aimed at providing theoretical guidelines for clinical hemorheology.

  12. Characterization of atrial natriuretic peptide receptors in brain microvessel endothelial cells

    NASA Technical Reports Server (NTRS)

    Whitson, Peggy A.; Huls, M. H.; Sams, Clarence F.

    1989-01-01

    In view of the suggestions by Chabrier et al. (1987) and Steardo and Nathanson (1987) that atrial natriuretic peptide (ANP) may play a role in the fluid homeostasis of the brain, the ANP receptors in primary cultures of bovine brain microvessel endothelian cells were quantitated and characterized. Results of partition binding studies and the effect of cGMP additions indicated the presence of at least two types of ANP receptors, with the majority of the receptors being the nonguanylate cyclase coupled receptors. The presence of at least two ANP receptor types suggests an active role for ANP in regulating brain endothelial cell function.

  13. Additions and improvements to the high energy density physics capabilities in the FLASH code

    NASA Astrophysics Data System (ADS)

    Lamb, D. Q.; Flocke, N.; Graziani, C.; Tzeferacos, P.; Weide, K.

    2016-10-01

    FLASH is an open source, finite-volume Eulerian, spatially adaptive radiation magnetohydrodynamics code that has the capabilities to treat a broad range of physical processes. FLASH performs well on a wide range of computer architectures, and has a broad user base. Extensive high energy density physics (HEDP) capabilities have been added to FLASH to make it an open toolset for the academic HEDP community. We summarize these capabilities, emphasizing recent additions and improvements. In particular, we showcase the ability of FLASH to simulate the Faraday Rotation Measure produced by the presence of magnetic fields; and proton radiography, proton self-emission, and Thomson scattering diagnostics with and without the presence of magnetic fields. We also describe several collaborations with the academic HEDP community in which FLASH simulations were used to design and interpret HEDP experiments. This work was supported in part at the University of Chicago by the DOE NNSA ASC through the Argonne Institute for Computing in Science under field work proposal 57789; and the NSF under Grant PHY-0903997.

  14. Density functional theory study of the effects of alloying additions on sulfur adsorption on nickel surfaces

    NASA Astrophysics Data System (ADS)

    Malyi, Oleksandr I.; Chen, Zhong; Kulish, Vadym V.; Bai, Kewu; Wu, Ping

    2013-01-01

    Reactions of hydrogen sulfide (H2S) with Nickel/Ytrria-doped zirconia (Ni/YDZ) anode materials might cause degradation of the performance of solid oxide fuel cells when S containing fuels are used. In this paper, we employ density functional theory to investigate S adsorption on metal (M)-doped and undoped Ni(0 0 1) and Ni(1 1 1) surfaces. Based on the performed calculations, we analyze the effects of 12 alloying additions (Ag, Au, Al, Bi, Cd, Co, Cu, Fe, Sn, Sb, V, and Zn) on the temperature of transition between clean (S atoms do not adsorb on the surfaces) and contaminated (S atoms can adsorb on the surfaces spontaneously) M-doped Ni surfaces for different concentrations of H2S in the fuel. Predicted results are consistent with many experimental studies relevant to S poisoning of both Ni/YDZ and M-doped Ni/YDZ anode materials. This study is important to understand S poisoning phenomena and to develop new S tolerant anode materials.

  15. Modeling and simulation of illumination effects for evaluation of microvessels of the conjunctiva.

    PubMed

    Wick, C E; Loew, M H; Kurantsin-Mills, J

    1996-09-01

    We present the development of a comprehensive model that was undertaken to determine the relationships between the components of an image and the light intensity values present in the image of the microvessels of translucent tissues such as the bulbar conjunctiva. Experiments were conducted during the modeling process by use of a cylindrical microvessel embedded in a diffuse medium (phantom) on a reflecting background to affirm model components and simulations. The three-dimensional model was reduced to a single illumination plane with four regions of interest and modeled as Lambertian radiators and surfaces. The modeling showed that the top of the cylinder and its immediate vicinity are diffuse reflectors of light from the source plus light reflected from the background. The limbus of the cylinder is a diffuse reflector of the source and background illumination and a specular reflector of background reflections that achieve a high grazing angle with the cylinder. The immediate vicinity of the cylinder receives direct illumination from the source, but the light is partially obscured by the cylinder. The region beyond the shadow of the cylinder is a diffuse reflector of the overhead light. The diffuse medium additionally reflects the source and also attenuates the illumination reaching the other compo- rents of the scene. The direct and reflected illumination at each region of the model was calculated by use of specific geometric relationships. To verify those calculations, we analyzed a video simulation for the effects of different illumination conditions and their contributing elements. Intensity values were calculated from the relative reflectivity data determined from the video signals. The illumination values at the points along the line at the meridian of the cylinder were due to its reflectivity and also that of the medium. Similarly, the values of points distant from the shadow of the cylinder were due to the reflectivity of the background and the medium

  16. Effect of copper addition on density and magnetic susceptibility of lithium borate glasses

    NASA Astrophysics Data System (ADS)

    Kashif, I.; Soliman, A. A.; Farouk, H.; El-Shorpagy, M.; Sanad, A. M.

    2008-11-01

    Glasses of the (100- x) (Li 2O·2B 2O 3)· x CuO system, where x=0, 5, 10, 15, 20, 25 mol%, were prepared by melt quench technique. The glass samples were studied by magnetic susceptibility, density and infrared (IR) spectroscopic measurements. Molar volumes were estimated from density data. IR spectroscopic and density data show that the copper ions play a network modifier role and some ions as a network former by increasing the copper content in the studied glasses. The magnetic susceptibility data show a variable behavior due to the presence of two types of copper ions, cuprous (Cu +) and cupric (Cu 2+), in all samples.

  17. Mechanics and computational simulation of blood flow in microvessels

    PubMed Central

    Secomb, Timothy W.

    2010-01-01

    Blood is a concentrated suspension of red blood cells (RBCs). Motion and deformation of RBCs can be analyzed based on knowledge of their mechanical characteristics. Axisymmetric models for single-file motion of RBCs in capillaries yield predictions of apparent viscosity in good agreement with experimental results for diameters up to about 8 micron. Two-dimensional simulations, in which each RBC is represented as a set of interconnected viscoelastic elements, predict that off-centre RBCs in an 8-micron channel take asymmetric shapes and drift toward the centre-line. Predicted trajectories agree with observations in microvessels of the rat mesentery. An isolated RBC initially positioned near the wall of a 20-micron channel is deformed into an asymmetric shape, migrates away from the wall, and then enters a complex tumbling motion with continuous shape change. Realistic simulation of multiple interacting RBCs in microvessels remains as a major challenge. PMID:21036096

  18. Schwann cell interactions with axons and microvessels in diabetic neuropathy.

    PubMed

    Gonçalves, Nádia P; Vægter, Christian B; Andersen, Henning; Østergaard, Leif; Calcutt, Nigel A; Jensen, Troels S

    2017-03-01

    The prevalence of diabetes worldwide is at pandemic levels, with the number of patients increasing by 5% annually. The most common complication of diabetes is peripheral neuropathy, which has a prevalence as high as 50% and is characterized by damage to neurons, Schwann cells and blood vessels within the nerve. The pathogenic mechanisms of diabetic neuropathy remain poorly understood, impeding the development of targeted therapies to treat nerve degeneration and its most disruptive consequences of sensory loss and neuropathic pain. Involvement of Schwann cells has long been proposed, and new research techniques are beginning to unravel a complex interplay between these cells, axons and microvessels that is compromised during the development of diabetic neuropathy. In this Review, we discuss the evolving concept of Schwannopathy as an integral factor in the pathogenesis of diabetic neuropathy, and how disruption of the interactions between Schwann cells, axons and microvessels contribute to the disease.

  19. Effect of viscoelasticity and RBC migration phenomena in stenotic microvessels

    NASA Astrophysics Data System (ADS)

    Dimakopoulos, Yiannis; Syrakos, Alexandros; Georgiou, Georgios; Tsamopoulos, John

    2014-11-01

    This study deals with the numerical simulation of the hemodynamics in stenotic microvessels. The blood flow in microvessels differs significantly from that in large arteries and veins, because the Red Blood Cells (RBCs) are comparable in size with the radius of the microvessels and, consequently, local effects such as cell interaction and migration are more pronounced. In terms of complexity of the flow, viscoelasticity along with stress-gradient induced migration effects have a more dominant role, which exceeds the viscous, inertial and transient effects. Recently, a non-homogeneous viscoelastic model has been proposed by Moyers-Gonzalez et al. (2008), which can accurately predict the Fahraeus effects. We developed a numerical algorithm for the time-integration of the set of differential equations that arise from the coupling of momentum, mass, and population balances for RBCs and aggregates with the constitutive laws for both species. The simulations show that a cell-depleted layer develops along the vessel wall with an almost constant thickness. Along this layer, the shear stresses are almost Newtonian because of the plasma, but the normal stresses that are exerted on the wall are high due to the contribution of the individual RBCs and rouleaux.

  20. The Recovery of the Density Scale Using a Stochastic Quasi-Realization of Additive Conjoint Measurement.

    ERIC Educational Resources Information Center

    Pelton, Timothy W.; Bunderson, C. Victor

    2003-01-01

    Attempted to illuminate practical limitations on the Rasch model by focusing on the recovery of the density scale through five simulation trials. Results show that when error distributions are insufficient, the results may be ordinal at best, and when error distributions are nonsymmetrical, the positions of items may be biased with respect to the…

  1. Direct stimulation of limbal microvessel endothelial cell proliferation and capillary formation in vitro by a corneal-derived eicosanoid.

    PubMed Central

    Stoltz, R. A.; Conners, M. S.; Gerritsen, M. E.; Abraham, N. G.; Laniado-Schwartzman, M.

    1996-01-01

    12(R)-Hydroxyeicosatrienoic acid (12(R)-HETrE), a corneal epithelial derived inflammatory eicosanoid, elicits blood vessel growth into the avascular cornea in the classical corneal micropocket bioassay. Using an in vivo stimulated angiogenesis assay and 12(R)-HETrE as the angiogenic stimulus, we isolated a homogeneous population of rabbit limbal microvessel endothelial cells, the target for angiogenic factors in the anterior surface of ocular tissues, and analyzed the mitogenic and angiogenic potential of this eicosanoid. 12(R)-HETrE stereospecifically increased cell number by approximately 45%, an effect comparable to that of basic fibroblast growth factor (0.6 nmol/L; 10 ng/ml). This potent mitogenic response was maximal at 0.1 nmol/L. An additive effect (approximately 90% above control) on cell proliferation was observed when 12(R)-HETrE (0.1 nmol/L) and basic fibroblast growth factor (0.6 nmol/L) were added to quiescent cultures of rabbit limbal microvessel endothelial cells. We also show that 12(R)-HETrE, but not 12(S)-HETrE, induces cultured rabbit limbal microvessel endothelial cells to organize themselves as a network of branching cords reminiscent of capillaries. This effect was evident within 48 hours, maximal by 5 days of culture, and paralleled the effect observed with basic fibroblast growth factor. This study describes a novel method for testing site-directed angiogenesis in vitro and further strengthens the angiogenic properties of 12(R)-HETrE by demonstrating a direct effect on limbal microvessel endothelial cells. Images Figure 1 Figure 2 Figure 4 Figure 7 PMID:8546200

  2. Enhancement of intergranular current density of Sm-based oxypnictide superconductors with Sn addition

    NASA Astrophysics Data System (ADS)

    Singh, Shiv Jee; Shimoyama, Jun-ichi; Ogino, Hiraku; Yamamoto, Akiyasu; Kishio, Kohji

    2014-08-01

    A series of Sn-added Sm1111 sintered bulks (SmFeAs(O, F) + xSn x = 0-0.8) was synthesized, and the influence of Sn addition on the superconducting properties of SmFeAs(O, F) was studied. The cell volume (V) slightly increases with Sn addition in the lightly F-doped Sm1111 (SmFeAsO0.88F0.12), suggesting a slight reduction of F concentration in the lattice, whereas there is almost no change in V for the optimally F-doped sample (SmFeAsO0.8F0.2). The transition temperature (Tc) of SmFeAsO0.88F0.12 decreased from 50 to 40 K for x = 0.35, with another maximum at x = 0.27 (Tc = 50 K). On the other hand, SmFeAsO0.8F0.2 remained an almost constant Tc ˜ 56 K up to x = 0.8. Microstructural analysis depicts that the impurity phases in SmFeAsO0.8F0.2 were reduced by Sn addition, resulting in an increase in clean and well connected grain boundaries. Remanent magnetization measurements revealed that Sn addition improved the intergrain Jc at 5 K from 1 × 102 to 1.1 × 104 A cm-2 for SmFeAsO0.8F0.2 and from 4 × 103 to 9.7 × 103 A cm-2 for SmFeAsO0.88F0.12. We believe this superior intergrain Jc to be attributable to the strong intergrain coupling due to grain connectivity improved by the Sn addition.

  3. Indirect additive manufacturing as an elegant tool for the production of self-supporting low density gelatin scaffolds.

    PubMed

    Van Hoorick, Jasper; Declercq, Heidi; De Muynck, Amelie; Houben, Annemie; Van Hoorebeke, Luc; Cornelissen, Ria; Van Erps, Jürgen; Thienpont, Hugo; Dubruel, Peter; Van Vlierberghe, Sandra

    2015-10-01

    The present work describes for the first time the production of self-supporting low gelatin density (<10 w/v%) porous scaffolds using methacrylamide-modified gelatin as an extracellular matrix mimicking component. As porous scaffolds starting from low gelatin concentrations cannot be realized with the conventional additive manufacturing techniques in the abscence of additives, we applied an indirect fused deposition modelling approach. To realize this, we have printed a sacrificial polyester scaffold which supported the hydrogel material during UV crosslinking, thereby preventing hydrogel structure collapse. After complete curing, the polyester scaffold was selectively dissolved leaving behind a porous, interconnective low density gelatin scaffold. Scaffold structural analysis indicated the success of the selected indirect additive manufacturing approach. Physico-chemical testing revealed scaffold properties (mechanical, degradation, swelling) to depend on the applied gelatin concentration and methacrylamide content. Preliminary biocompatibility studies revealed the cell-interactive and biocompatible properties of the materials developed.

  4. CYCLOOXYGENASE PRODUCTS STIMULATE CARBON MONOXIDE PRODUCTION BY PIGLET CEREBRAL MICROVESSELS

    PubMed Central

    Kanu, Alie; Gilpin, David; Fedinec, Alexander L.

    2005-01-01

    Products of arachidonic acid (AA) metabolism by cyclooxygenase (COX) are important in regulation of neonatal cerebral circulation. The brain and cerebral microvessels also express heme oxygenase (HO) that metabolizes heme to carbon monoxide (CO), biliverdin, and iron. The purpose of this study in newborn pig cerebral microvessels was to address the hypothesis that COX products affect HO activity and HO products affect COX activity. AA (2.0-20μM) increased PGE2 measured by RIA and also CO measured by gas chromatography/mass spectrometry (GC-MS). Further, indomethacin (10-4M), that inhibited COX, reduced both AA and heme-induced CO production. Conversely, neither exogenous heme (2×10-6M), that markedly increased CO production, nor the inhibitor of HO, chromium mesoporphyrin, altered PGE2 synthesis. Because AA metabolism by COX generates both prostanoids and superoxides, we determined the effects of the predominant prostanoid and superoxide on CO production. While PGE2 caused a small increase in CO production, xanthine oxidase plus hypoxanthine that produces superoxide strongly stimulated the production of CO by cerebral microvessels. This increase was mildly attenuated by catalase. These data suggest that COX catalyzed AA metabolite(s), most likely superoxide, H2O2, and / or a subsequent reactive oxygen species increases cerebrovascular CO production. This increase appears to be due, at least in part, to the elevation of HO-2 catalytic activity. Conversely, COX activity is not affected by HO-catalyzed heme metabolites. These data suggest that some cerebrovascular functions attributable to COX activity could be mediated by CO. PMID:16446494

  5. Cyclooxygenase products stimulate carbon monoxide production by piglet cerebral microvessels.

    PubMed

    Kanu, Alie; Gilpin, David; Fedinec, Alexander L; Leffler, Charles W

    2006-02-01

    Products of arachidonic acid (AA) metabolism by cyclooxygenase (Cox) are important in regulation of neonatal cerebral circulation. The brain and cerebral microvessels also express heme oxygenase (HO) that metabolizes heme to carbon monoxide (CO), biliverdin, and iron. The purpose of this study in newborn pig cerebral microvessels was to address the hypothesis that Cox products affect HO activity and HO products affect Cox activity. AA (2.0-20 microM) increased prostaglandin E2 (PGE2) measured by radioimmunoassay (RIA) and also CO measured by gas chromatography/mass spectrometry (GC/MS). Further, 10(-4) M indomethacin, which inhibited Cox, reduced both AA and heme-induced CO production. Conversely, neither exogenous 2 x 10(-6) M heme, which markedly increased CO production, nor the inhibitor of HO, chromium mesoporphyrin, altered PGE2 synthesis. Because AA metabolism by Cox generates both prostanoids and superoxides, we determined the effects of the predominant prostanoid and superoxide on CO production. Although PGE2 caused a small increase in CO production, xanthine oxidase plus hypoxanthine, which produces superoxide, strongly stimulated the production of CO by cerebral microvessels. This increase was mildly attenuated by catalase. These data suggest that Cox-catalyzed AA metabolites, most likely superoxide and/or a subsequent reactive oxygen species, increase cerebrovascular CO production. This increase seems to be caused, at least in part, by the elevation of HO-2 catalytic activity. Conversely, Cox activity is not affected by HO-catalyzed heme metabolites. These data suggest that some cerebrovascular functions attributable to Cox activity could be mediated by CO.

  6. Additive Manufacturing of Multifunctional Components Using High Density Carbon Nanotube Yarn Filaments

    NASA Technical Reports Server (NTRS)

    Gardner, John M.; Sauti, Godfrey; Kim, Jae-Woo; Cano, Roberto J.; Wincheski, Russell A.; Stelter, Christopher J.; Grimsley, Brian W.; Working, Dennis C.; Siochi, Emilie J.

    2016-01-01

    Additive manufacturing allows for design freedom and part complexity not currently attainable using traditional manufacturing technologies. Fused Filament Fabrication (FFF), for example, can yield novel component geometries and functionalities because the method provides a high level of control over material placement and processing conditions. This is achievable by extrusion of a preprocessed filament feedstock material along a predetermined path. However if fabrication of a multifunctional part relies only on conventional filament materials, it will require a different material for each unique functionality printed into the part. Carbon nanotubes (CNTs) are an attractive material for many applications due to their high specific strength as well as good electrical and thermal conductivity. The presence of this set of properties in a single material presents an opportunity to use one material to achieve multifunctionality in an additively manufactured part. This paper describes a recently developed method for processing continuous CNT yarn filaments into three-dimensional articles, and summarizes the mechanical, electrical, and sensing performance of the components fabricated in this way.

  7. Magnetic resonance imaging of microvessels using iron-oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Olamaei, N.; Cheriet, F.; Martel, S.

    2013-03-01

    The visualization of microstructures including blood vessels with an inner overall cross-sectional area below approximately 200 μm remains beyond the capabilities of current clinical imaging modalities. But with magnetic resonance (MR) imaging, magnetic entities cause susceptibility artifacts in the images by disrupting the homogeneous magnetic field in a much larger scale than their actual size. As validated in this paper through simulation and in-vitro experiments, these artifacts can serve as a source of contrast, enabling microvessels with an inner diameter below the spatial resolution of any medical imaging modalities to be visualized using a clinical MR scanner. For such experiments, micron-sized agglomerations of iron-oxide (Fe3O4) nanoparticles were injected in microchannels with internal diameters of 200 and 50 μm equivalent to a narrower artery or a larger arteriole, and down to a smaller arteriole, respectively. The results show the feasibility of the proposed method for micro-particle detection and the visualization of microvessels using a 1.5 T clinical MR scanner. It was confirmed that the method is reproducible and accurate at the sub-pixel level.

  8. Quantitative study on appearance of microvessels in spectral endoscopic imaging

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Hiroshi; Saito, Takaaki; Shiraishi, Yasushi; Arai, Fumihito; Morimoto, Yoshinori; Yuasa, Atsuko

    2015-03-01

    Increase in abnormal microvessels in the superficial mucosa is often relevant to diagnostic findings of neoplasia in digestive endoscopy; hence, observation of superficial vasculature is crucial for cancer diagnosis. To enhance the appearance of such vessels, several spectral endoscopic imaging techniques have been developed, such as narrow-band imaging and blue laser imaging. Both techniques exploit narrow-band blue light for the enhancement. The emergence of such spectral imaging techniques has increased the importance of understanding the relation of the light wavelength to the appearance of superficial vasculature, and thus a new method is desired for quantitative analysis of vessel visibility in relation to the actual structure in the tissue. Here, we developed microvessel-simulating phantoms that allowed quantitative evaluation of the appearance of 15-μm-thick vessels. We investigated the relation between the vascular contrast and light wavelength by the phantom measurements and also verified it in experiments with swine, where the endoscopically observed vascular contrast was investigated together with its real vascular depth and diameter obtained by microscopic observation of fluorescence-labeled vessels. Our study indicates that changing the spectral property even in the wavelength range of blue light may allow selective enhancement of the vascular depth for clinical use.

  9. The proteome of mouse brain microvessel membranes and basal lamina

    PubMed Central

    Chun, Hyun Bae; Scott, Michael; Niessen, Sherry; Hoover, Heather; Baird, Andrew; Yates, John; Torbett, Bruce E; Eliceiri, Brian P

    2011-01-01

    The blood–brain barrier (BBB) is a multicellular vascular structure separating blood from the brain parenchyma that is composed of endothelial cells with tight intercellular junctions, surrounded by a basal lamina, astrocytes, and pericytes. Previous studies have generated detailed databases of the microvessel transcriptome; however, less information is available on the BBB at the protein level. In this study, we specifically focused on characterization of the membrane fraction of cells within the BBB to generate a more complete understanding of membrane transporters, tight junction proteins, and associated extracellular matrix proteins that are functional hallmarks of the BBB. We used Multidimensional Protein Identification Technology to identify a total of 1,143 proteins in mouse brain microvessels, of which 53% were determined to be membrane associated. Analyses of specific classes of BBB-associated proteins in the context of recent transcriptome reports provide a unique database to assess the relative contribution of genes at the level of both RNA and protein in the maintenance of normal BBB integrity. PMID:21792245

  10. Bayesian spatiotemporal analysis of zero-inflated biological population density data by a delta-normal spatiotemporal additive model.

    PubMed

    Arcuti, Simona; Pollice, Alessio; Ribecco, Nunziata; D'Onghia, Gianfranco

    2016-03-01

    We evaluate the spatiotemporal changes in the density of a particular species of crustacean known as deep-water rose shrimp, Parapenaeus longirostris, based on biological sample data collected during trawl surveys carried out from 1995 to 2006 as part of the international project MEDITS (MEDiterranean International Trawl Surveys). As is the case for many biological variables, density data are continuous and characterized by unusually large amounts of zeros, accompanied by a skewed distribution of the remaining values. Here we analyze the normalized density data by a Bayesian delta-normal semiparametric additive model including the effects of covariates, using penalized regression with low-rank thin-plate splines for nonlinear spatial and temporal effects. Modeling the zero and nonzero values by two joint processes, as we propose in this work, allows to obtain great flexibility and easily handling of complex likelihood functions, avoiding inaccurate statistical inferences due to misclassification of the high proportion of exact zeros in the model. Bayesian model estimation is obtained by Markov chain Monte Carlo simulations, suitably specifying the complex likelihood function of the zero-inflated density data. The study highlights relevant nonlinear spatial and temporal effects and the influence of the annual Mediterranean oscillations index and of the sea surface temperature on the distribution of the deep-water rose shrimp density.

  11. Temperature and Magnetic Field Dependence of Critical Current Density of YBCO with Varying Flux Pinning Additions (POSTPRINT)

    DTIC Science & Technology

    2010-03-01

    coverage corresponding to M phase 1 nm thickness was found to be necessary to increase compared to YBCO . The op- timal layer thickness for each M phase was...kept constant in this experiment: , Y211 0.8 nm , and [17]. Using the optimal M phase thickness, the YBCO layer was also systematically varied for...AFRL-RZ-WP-TP-2010-2083 TEMPERATURE AND MAGNETIC FIELD DEPENDENCE OF CRITICAL CURRENT DENSITY OF YBCO WITH VARYING FLUX PINNING ADDITIONS

  12. Effect of inorganic salts and glucose additives on dose-response, melting point and mass density of genipin gel dosimeters.

    PubMed

    Al-jarrah, A M; Abdul Rahman, Azhar; Shahrim, Iskandar; Razak, Nik Noor Ashikin Nik Ab; Ababneh, Baker; Tousi, Ehsan Taghizadeh

    2016-01-01

    Genipin gel dosimeters are hydrogels infused with a radiation-sensitive material which yield dosimetric information in three dimensions (3D). The effect of inorganic salts and glucose on the visible absorption dose-response, melting points and mass density of genipin gel dosimeters has been experimentally evaluated using 6-MV LINAC photons. As a result, the addition of glucose with optimum concentration of 10% (w/w) was found to improve the thermal stability of the genipin gel and increase its melting point (Tm) by 6 °C accompanied by a slight decrease of dose-response. Furthermore, glucose helps to adjust the gel mass density to obtain the desired tissue-equivalent properties. A drop of Tm was observed when salts were used as additives. As the salt concentration increased, gel Tm decreased. The mass density and melting point of the genipin gel could be adjusted using different amounts of glucose that improved the genipin gel suitability for 3D dose measurements without introducing additional toxicity to the final gel.

  13. Visfatin Impairs Endothelium-Dependent Relaxation in Rat and Human Mesenteric Microvessels through Nicotinamide Phosphoribosyltransferase Activity

    PubMed Central

    Angulo, Javier; Villalobos, Laura A.; Cercas, Elena; Leivas, Alejandra; Bermejo, Elena; Carraro, Raffaele; Sánchez-Ferrer, Carlos F.; Peiró, Concepción

    2011-01-01

    Visfatin, also known as extracellular pre–B-cell colony–enhancing factor (PBEF) and nicotinamide phosphoribosyltransferase (Nampt), is an adipocytokine whose circulating levels are enhanced in metabolic disorders, such as type 2 diabetes mellitus and obesity. Circulating visfatin levels have been positively associated with vascular damage and endothelial dysfunction. Here, we investigated the ability of visfatin to directly impair vascular reactivity in mesenteric microvessels from both male Sprague-Dawley rats and patients undergoing non-urgent, non-septic abdominal surgery. The pre-incubation of rat microvessels with visfatin (50 and 100 ng/mL) did not modify the contractile response to noradrenaline (1 pmol/L to 30 µmol/L), as determined using a small vessel myograph. However, visfatin (10 to 100 ng/mL) concentration-dependently impaired the relaxation to acetylcholine (ACh; 100 pmol/L to 3 µmol/L), without interfering with the endothelium-independent relaxation to sodium nitroprusside (1 nmol/L to 3 µmol/L). In both cultured human umbilical vein endothelial cells and rat microvascular preparations, visfatin (50 ng/mL) stimulated nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activity, as determined by lucigenin-derived chemiluminiscence. The relaxation to ACh impaired by visfatin was restored by the NADPH oxidase inhibitor apocynin (10 µmol/L). Additionally, the Nampt inhibitor APO866 (10 mmol/L to 10 µmol/L), but not an insulin receptor-blocking antibody, also prevented the stimulation of NADPH oxidase and the relaxation impairment elicited by visfatin. Accordingly, the product of Nampt activity nicotinamide mononucleotide (100 nmol/L to 1 mmol/L) stimulated endothelial NADPH oxidase activity and concentration-dependently impaired ACh-induced vasorelaxation. In human mesenteric microvessels pre-contracted with 35 mmol/L potassium chloride, the endothelium-dependent vasodilation to bradykinin (1 nmol/L to 3 µmol/L) was equally impaired by

  14. Numerical solution of the compressible Navier-Stokes equations using density gradients as additional dependent variables. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Kwon, J. H.

    1977-01-01

    Numerical solution of two dimensional, time dependent, compressible viscous Navier-Stokes equations about arbitrary bodies was treated using density gradients as additional dependent variables. Thus, six dependent variables were computed with the SOR iteration method. Besides formulation for pressure gradient terms, a formulation for computing the body density was presented. To approximate the governing equations, an implicit finite difference method was employed. In computing the solution for the flow about a circular cylinder, a problem arose near the wall at both stagnation points. Thus, computations with various conditions were tried to examine the problem. Also, computations with and without formulations are compared. The flow variables were computed on 37 by 40 field first, then on an 81 by 40 field.

  15. Chronic lead treatment accelerates photochemically induced platelet aggregation in cerebral microvessels of mice, in vivo

    SciTech Connect

    Al Dhaheri, A.H.; El-Sabban, F.; Fahim, M.A.

    1995-04-01

    Effects of two chronic treatment levels with lead on platelet aggregation in cerebral (pial) microcirculation of the mouse were investigated. Exposure to lead was made by subcutaneous injections for 7 days of lead acetate dissolved in 5% glucose solution, vehicle. Two doses of lead were used, a low dose of 0.1 mg/kg and a high dose of 1.0 mg/kg. Adult male mice were divided into three groups, 10 each; one group was injected with vehicle (control), another was injected with the low dose, and the third was injected with the high dose. Additional mice were used for the determination of hematological parameters and for the lead level in serum of the three groups. On the eighth day, platelet aggregation in pial microvessels of these groups of mice was carried out in vivo. Animals were anesthetized (urethane, 1-2 mg/g, ip), the trachea was intubated, and a craniotomy was performed. Platelet aggregation in pial microvessels was induced photochemically, by activation of circulating sodium fluorescein (0.1 mg/25 g, iv) with an intense mercury light. The time required for the first platelet aggregate to appear in pial arterioles was significantly shorter in the lead-treated mice than in control. This effect was in a dose-dependent manner; 113 {+-} 44 sec for low dose and 71 {+-} 18 sec for high dose vs 155 {+-} 25 sec for control, P < 0.02 and P < 0.001, respectively. Between the two lead-treated groups, the high dose significantly (P < 0.05) shortened the time to first aggregate. These data evidenced an increased susceptibility to cerebrovascular thrombosis as a result of exposure to lead. 26 refs., 4 figs., 2 tabs.

  16. Identification of P-glycoprotein co-fractionating proteins and specific binding partners in rat brain microvessels.

    PubMed

    Tome, Margaret E; Schaefer, Charles P; Jacobs, Leigh M; Zhang, Yifeng; Herndon, Joseph M; Matty, Fabian O; Davis, Thomas P

    2015-07-01

    Drug delivery to the brain for the treatment of pathologies with a CNS component is a significant clinical challenge. P-glycoprotein (PgP), a drug efflux pump in the endothelial cell membrane, is a major factor in preventing therapeutics from crossing the blood-brain barrier (BBB). Identifying PgP regulatory mechanisms is key to developing agents to modulate PgP activity. Previously, we found that PgP trafficking was altered concomitant with increased PgP activity and disassembly of high molecular weight PgP-containing complexes during acute peripheral inflammatory pain. These data suggest that PgP activity is post-translationally regulated at the BBB. The goal of the current study was to identify proteins that co-localize with PgP in rat brain microvessel endothelial cell membrane microdomains and use the data to suggest potential regulatory mechanisms. Using new density gradients of microvessel homogenates, we identified two unique pools (1,2) of PgP in membrane fractions. Caveolar constituents, caveolin1, cavin1, and cavin2, co-localized with PgP in these fractions indicating the two pools contained caveolae. A chaperone (Hsc71), protein disulfide isomerase and endosomal/lysosomal sorting proteins (Rab5, Rab11a) also co-fractionated with PgP in the gradients. These data suggest signaling pathways with a potential role in post-translational regulation of PgP activity at the BBB.

  17. Acoustic response of compliable microvessels containing ultrasound contrast agents.

    PubMed

    Qin, Shengping; Ferrara, Katherine W

    2006-10-21

    The existing models of the dynamics of ultrasound contrast agents (UCAs) have largely been focused on an UCA surrounded by an infinite liquid. Preliminary investigations of a microbubble's oscillation in a rigid tube have been performed using linear perturbation, under the assumption that the tube diameter is significantly larger than the UCA diameter. In the potential application of drug and gene delivery, it may be desirable to fragment the agent shell within small blood vessels and in some cases to rupture the vessel wall, releasing drugs and genes at the site. The effect of a compliant small blood vessel on the UCA's oscillation and the microvessel's acoustic response are unknown. The aim of this work is to propose a lumped-parameter model to study the interaction of a microbubble oscillation and compliable microvessels. Numerical results demonstrate that in the presence of UCAs, the transmural pressure through the blood vessel substantially increases and thus the vascular permeability is predicted to be enhanced. For a microbubble within an 8 to 40 microm vessel with a peak negative pressure of 0.1 MPa and a centre frequency of 1 MHz, small changes in the microbubble oscillation frequency and maximum diameter are observed. When the ultrasound pressure increases, strong nonlinear oscillation occurs, with an increased circumferential stress on the vessel. For a compliable vessel with a diameter equal to or greater than 8 microm, 0.2 MPa PNP at 1 MHz is predicted to be sufficient for microbubble fragmentation regardless of the vessel diameter; however, for a rigid vessel 0.5 MPa PNP at 1 MHz may not be sufficient to fragment the bubbles. For a centre frequency of 1 MHz, a peak negative pressure of 0.5 MPa is predicted to be sufficient to exceed the stress threshold for vascular rupture in a small (diameter less than 15 microm) compliant vessel. As the vessel or surrounding tissue becomes more rigid, the UCA oscillation and vessel dilation decrease; however the

  18. Acoustic response of compliable microvessels containing ultrasound contrast agents

    NASA Astrophysics Data System (ADS)

    Qin, Shengping; Ferrara, Katherine W.

    2006-10-01

    The existing models of the dynamics of ultrasound contrast agents (UCAs) have largely been focused on an UCA surrounded by an infinite liquid. Preliminary investigations of a microbubble's oscillation in a rigid tube have been performed using linear perturbation, under the assumption that the tube diameter is significantly larger than the UCA diameter. In the potential application of drug and gene delivery, it may be desirable to fragment the agent shell within small blood vessels and in some cases to rupture the vessel wall, releasing drugs and genes at the site. The effect of a compliant small blood vessel on the UCA's oscillation and the microvessel's acoustic response are unknown. The aim of this work is to propose a lumped-parameter model to study the interaction of a microbubble oscillation and compliable microvessels. Numerical results demonstrate that in the presence of UCAs, the transmural pressure through the blood vessel substantially increases and thus the vascular permeability is predicted to be enhanced. For a microbubble within an 8 to 40 µm vessel with a peak negative pressure of 0.1 MPa and a centre frequency of 1 MHz, small changes in the microbubble oscillation frequency and maximum diameter are observed. When the ultrasound pressure increases, strong nonlinear oscillation occurs, with an increased circumferential stress on the vessel. For a compliable vessel with a diameter equal to or greater than 8 µm, 0.2 MPa PNP at 1 MHz is predicted to be sufficient for microbubble fragmentation regardless of the vessel diameter; however, for a rigid vessel 0.5 MPa PNP at 1 MHz may not be sufficient to fragment the bubbles. For a centre frequency of 1 MHz, a peak negative pressure of 0.5 MPa is predicted to be sufficient to exceed the stress threshold for vascular rupture in a small (diameter less than 15 µm) compliant vessel. As the vessel or surrounding tissue becomes more rigid, the UCA oscillation and vessel dilation decrease; however the

  19. Spectral imaging reveals microvessel physiology and function from anastomoses to thromboses

    NASA Astrophysics Data System (ADS)

    Wankhede, Mamta; Agarwal, Nikita; Fraga-Silva, Rodrigo A.; Dedeugd, Casey; Raizada, Mohan K.; Oh, S. Paul; Sorg, Brian S.

    2010-01-01

    Abnormal microvascular physiology and function is common in many diseases. Numerous pathologies include hypervascularity, aberrant angiogenesis, or abnormal vascular remodeling among the characteristic features of the disease, and quantitative imaging and measurement of microvessel function can be important to increase understanding of these diseases. Several optical techniques are useful for direct imaging of microvascular function. Spectral imaging is one such technique that can be used to assess microvascular oxygen transport function with high spatial and temporal resolution in microvessel networks through measurements of hemoglobin saturation. We highlight novel observation made with our intravital microscopy spectral imaging system employed with mouse dorsal skin-fold window chambers for imaging hemoglobin saturation in microvessel networks. Specifically, we image acute oxygenation fluctuations in a tumor microvessel network, the development of arteriovenous malformations in a mouse model of hereditary hemorrhagic telangiectasia, and the formation of spontaneous and induced microvascular thromboses and occlusions.

  20. Magnetic-nanoparticle-decorated polypyrrole microvessels: toward encapsulation of mRNA cap analogues.

    PubMed

    Kijewska, Krystyna; Jarzębińska, Anita; Kowalska, Joanna; Jemielity, Jacek; Kępińska, Daria; Szczytko, Jacek; Pisarek, Marcin; Wiktorska, Katarzyna; Stolarski, Jarosław; Krysiński, Paweł; Twardowski, Andrzej; Mazur, Maciej

    2013-06-10

    Many phosphorylated nucleoside derivatives have therapeutic potential, but their application is limited by problems with membrane permeability and with intracellular delivery. Here, we prepared polypyrrole microvessel structures modified with superparamagnetic nanoparticles for use as potential carriers of nucleotides. The microvessels were prepared via the photochemical polymerization of the monomer onto the surface of aqueous ferrofluidic droplets. A complementary physicochemical analysis revealed that a fraction of the nanoparticles was embedded in the microvessel walls, while the other nanoparticles were in the core of the vessel. SQUID (superconducting quantum interference device) measurements indicated that the incorporated nanoparticles retained their superparamagnetic properties; thus, the resulting nanoparticle-modified microvessels can be directed by an external magnetic field. As a result of these features, these microvessels may be useful as drug carriers in biomedical applications. To demonstrate the encapsulation of drug molecules, two labeled mRNA cap analogues, nucleotide-derived potential anticancer agents, were used. It was shown that the cap analogues are located in the aqueous core of the microvessels and can be released to the external solution by spontaneous permeation through the polymer walls. Mass spectrometry analysis confirmed that the cap analogues were preserved during encapsulation, storage, and release. This finding provides a foundation for the future development of anticancer therapies and for the delivery of nucleotide-based therapeutics.

  1. Erythrocyte hemodynamics in stenotic microvessels: A numerical investigation

    NASA Astrophysics Data System (ADS)

    Wang, T.; Xing, Z. W.

    2013-10-01

    This paper presents a two-dimensional numerical investigation of deformation and motion of erythrocytes in stenotic microvessels using the immersed boundary-fictitious domain method. The erythrocytes were modeled as biconcave-shaped closed membranes filled with cytoplasm. We studied the biophysical characteristics of human erythrocytes traversing constricted microchannels with the narrowest cross-sectional diameter as small as 3 μm. The effects of essential parameters, namely, stenosis severity, shape of the erythrocytes, and erythrocyte membrane stiffness, were simulated and analyzed in this study. Moreover, simulations were performed to discuss conditions associated with the shape transitions of the cells along with the relative effects of radial position and initial orientation of erythrocytes, membrane stiffness, and plasma environments. The simulation results were compared with existing experiment findings whenever possible, and the physical insights obtained were discussed. The proposed model successfully simulated rheological behaviors of erythrocytes in microscale flow and thus is applicable to a large class of problems involving fluid flow with complex geometry and fluid-cell interactions. Our study would be helpful for further understanding of pathology of malaria and some other blood disorders.

  2. Erythrocyte hemodynamics in stenotic microvessels: A numerical investigation

    NASA Astrophysics Data System (ADS)

    Wang, Tong; Xing, Zhongwen

    2014-03-01

    This paper presents a two-dimensional numerical investigation of deformation and motion of erythrocytes in stenotic microvessels using the immersed boundary-fictitious domain method. The erythrocytes were modeled as biconcave-shaped closed membranes filled with cytoplasm. We studied the biophysical characteristics of human erythrocytes traversing constricted microchannels with the narrowest cross-sectional diameter as small as 3 μm. The effects of essential parameters, namely, stenosis severity, shape of the erythrocytes, and erythrocyte membrane stiffness, were simulated and analyzed in this study. Moreover, simulations were performed to discuss conditions associated with the shape transitions of the cells along with the relative effects of radial position and initial orientation of erythrocytes, membrane stiffness, and plasma environments. The simulation results were compared with existing experiment findings whenever possible, and the physical insights obtained were discussed. The proposed model successfully simulated rheological behaviors of erythrocytes in microscale flow and thus is applicable to a large class of problems involving fluid flow with complex geometry and fluid-cell interactions. Our study would be helpful for further understanding of pathology of malaria and some other blood disorders.

  3. Erythrocyte hemodynamics in stenotic microvessels: a numerical investigation.

    PubMed

    Wang, T; Xing, Z W

    2013-10-01

    This paper presents a two-dimensional numerical investigation of deformation and motion of erythrocytes in stenotic microvessels using the immersed boundary-fictitious domain method. The erythrocytes were modeled as biconcave-shaped closed membranes filled with cytoplasm. We studied the biophysical characteristics of human erythrocytes traversing constricted microchannels with the narrowest cross-sectional diameter as small as 3 μm. The effects of essential parameters, namely, stenosis severity, shape of the erythrocytes, and erythrocyte membrane stiffness, were simulated and analyzed in this study. Moreover, simulations were performed to discuss conditions associated with the shape transitions of the cells along with the relative effects of radial position and initial orientation of erythrocytes, membrane stiffness, and plasma environments. The simulation results were compared with existing experiment findings whenever possible, and the physical insights obtained were discussed. The proposed model successfully simulated rheological behaviors of erythrocytes in microscale flow and thus is applicable to a large class of problems involving fluid flow with complex geometry and fluid-cell interactions. Our study would be helpful for further understanding of pathology of malaria and some other blood disorders.

  4. Flow of Red Blood Cells in Stenosed Microvessels

    PubMed Central

    Vahidkhah, Koohyar; Balogh, Peter; Bagchi, Prosenjit

    2016-01-01

    A computational study is presented on the flow of deformable red blood cells in stenosed microvessels. It is observed that the Fahraeus-Lindqvist effect is significantly enhanced due to the presence of a stenosis. The apparent viscosity of blood is observed to increase by several folds when compared to non-stenosed vessels. An asymmetric distribution of the red blood cells, caused by geometric focusing in stenosed vessels, is observed to play a major role in the enhancement. The asymmetry in cell distribution also results in an asymmetry in average velocity and wall shear stress along the length of the stenosis. The discrete motion of the cells causes large time-dependent fluctuations in flow properties. The root-mean-square of flow rate fluctuations could be an order of magnitude higher than that in non-stenosed vessels. Several folds increase in Eulerian velocity fluctuation is also observed in the vicinity of the stenosis. Surprisingly, a transient flow reversal is observed upstream a stenosis but not downstream. The asymmetry and fluctuations in flow quantities and the flow reversal would not occur in absence of the cells. It is concluded that the flow physics and its physiological consequences are significantly different in micro- versus macrovascular stenosis. PMID:27319318

  5. Neutral amino acid transport across brain microvessel endothelial cell monolayers

    SciTech Connect

    Audus, K.L.; Borchardt, R.T.

    1986-03-01

    Brain microvessel endothelial cells (BMEC) which form the blood-brain barrier (BBB) possess an amino acid carrier specific for large neutral amino acids (LNAA). The carrier is important for facilitating the delivery of nutrient LNAA's and centrally acting drugs that are LNAA's, to the brain. Bovine BMEC's were isolated and grown up to complete monolayers on regenerated cellulose-membranes in primary culture. To study the transendothelial transport of leucine, the monolayers were placed in a side-by-side diffusion cell, and transport across the monolayers followed with (/sup 3/H)-leucine. The transendothelial transport of leucine in this in vitro model was determined to be bidirectional, and time-, temperature-, and concentration-dependent. The transport of leucine was saturable and the apparent K/sub m/ and V/sub max/, 0.18 mM and 6.3 nmol/mg/min, respectively. Other LNAA's, including the centrally acting drugs, ..cap alpha..-methyldopa, L-DOPA, ..cap alpha..-methyl-tyrosine, and baclofen, inhibited leucine transport. The leucine carrier was also found to be stereospecific and not sensitive to inhibitors of active transport. These results are consistent with previous in vitro and in vivo studies. Primary cultures of BMEC's appear to be a potentially important tool for investigating at the cellular level, the transport mechanisms of the BBB.

  6. Flow of Red Blood Cells in Stenosed Microvessels

    NASA Astrophysics Data System (ADS)

    Vahidkhah, Koohyar; Balogh, Peter; Bagchi, Prosenjit

    2016-06-01

    A computational study is presented on the flow of deformable red blood cells in stenosed microvessels. It is observed that the Fahraeus-Lindqvist effect is significantly enhanced due to the presence of a stenosis. The apparent viscosity of blood is observed to increase by several folds when compared to non-stenosed vessels. An asymmetric distribution of the red blood cells, caused by geometric focusing in stenosed vessels, is observed to play a major role in the enhancement. The asymmetry in cell distribution also results in an asymmetry in average velocity and wall shear stress along the length of the stenosis. The discrete motion of the cells causes large time-dependent fluctuations in flow properties. The root-mean-square of flow rate fluctuations could be an order of magnitude higher than that in non-stenosed vessels. Several folds increase in Eulerian velocity fluctuation is also observed in the vicinity of the stenosis. Surprisingly, a transient flow reversal is observed upstream a stenosis but not downstream. The asymmetry and fluctuations in flow quantities and the flow reversal would not occur in absence of the cells. It is concluded that the flow physics and its physiological consequences are significantly different in micro- versus macrovascular stenosis.

  7. In vivo spectral and fluorescence imaging microscopy of tumor microvessel blood supply and oxygenation changes following vascular targeting agent treatment

    NASA Astrophysics Data System (ADS)

    Lee, Jennifer; Kozikowski, Raymond; Molnar, Nikolett; Siemann, Dietmar W.; Sorg, Brian S.

    2012-03-01

    The formation of new microvasculature is essential for a tumor mass to grow. Vascular targeting agents (VTAs), including anti-angiogenic drugs and vascular disrupting agents, aim to either inhibit new vasculature growth or destroy existing vasculature, respectively. Because the mechanisms for anti-angiogenic drugs and vascular disrupting agents are complementary, analysis of these drugs used together is under investigation for the enhanced treatment of tumors in comparison to each treatment alone. The preclinical evaluation of the effects of VTAs on tumor growth in small animal models is vital for the development of effective drugs for clinical use. In vivo hyperspectral imaging microscopy of hemoglobin saturation has been used previously to investigate the efficacy of VTAs through analysis of tumor microvessel oxygenation after drug administration. Combining this imaging modality with first-pass fluorescence angiographic imaging can give additional important information about the vessel morphology and blood flow changes that occur after VTA treatment, thus elucidating the relationship between microvessel structure changes and oxygenation. In this study, we report the combined use of hyperspectral and first pass fluorescence angiographic imaging to examine the relationship between vessel morphology and oxygenation of human prostate cancer tumors in mice following treatment with vascular disrupting agents, OXi4503, and anti-VEGF angiogenesis inhibitor, cediranib. Imaging of the tumors is completed before treatment as well as in the days following treatment.

  8. Characteristics of Okinawan native agu pig spermatozoa after addition of low-density lipoprotein to freezing extender.

    PubMed

    Yamauchi, Shogo; Nakamura, Satoshi; Lay, Khin Mar; Azuma, Toshiyuki; Yakabi, Tatsuro; Muto, Norio; Nakada, Tadashi; Ashizawa, Koji; Tatemoto, Hideki

    2009-10-01

    Technical refinement of boar sperm cryopreservation is indispensable for effective breeding of the rare Okinawan native pig, the Agu. The objective of the present study was to determine whether addition of low-density lipoprotein (LDL) extracted from hen egg yolk to the freezing extender improves the characteristics of cryopreserved Agu spermatozoa. Ejaculated Agu sperm frozen in extender supplemented with 2, 4, 6, 8 or 10% LDL instead of egg yolk was thawed, and the post-thaw sperm characteristics were evaluated. Treatment with 4-8% LDL during cooling and freezing significantly increased the intracellular cholesterol content, as compared to that of sperm frozen in extender containing 20% egg yolk (P<0.05). Higher potential resistance to cell damage from cryoinjury was also observed in sperm frozen in extender supplemented with LDL: the integrities of plasmalemma and DNA, mitochondrial activity and proteolytic activity of the acrosomal content in the post-thaw sperm were superior to those of sperm that were not treated with LDL. Moreover, the percentages of total motile sperm and the extent of rapid progressive motility at 1 and 3 h after incubation were markedly higher in sperm treated with 4 or 6% LDL, and these sperm also had more ATP. However, LDL did not inhibit in vitro sperm penetrability, even though the cholesterol content of post-thaw sperm was higher after treatment with LDL. These findings indicate that addition of 4-6% LDL instead of egg yolk to the freezing extender improves the post-thaw characteristics of Agu sperm by protecting sperm against cold shock damage during cryopreservation.

  9. Selective capture of endothelial and perivascular cells from brain microvessels using laser capture microdissection.

    PubMed

    Kinnecom, Katie; Pachter, Joel S

    2005-12-01

    Laser capture microdissection (LCM) of the major cell types comprising brain microvessels offers a powerful technology to explore the molecular basis of the blood-brain barrier in health and disease. However, the ability to selectively retrieve endothelial or perivascular cells, without cross-contamination from the other, has proven difficult. Additionally, histochemical methods previously described for use with LCM have not allowed for identification of all the different size branches of the microvascular tree. Here, we describe a double immunostaining method, combining bright-field and fluorescence microscopy, and using an extensive dehydration with xylene, to clearly identify and spatially resolve endothelial from perivascular cells within all size microvascular branches in frozen brain sections. LCM of these sections, coupled with RNA analysis by reverse-transcription polymerase chain reaction, revealed that captured endothelial cells show endothelial markers but no detectable markers for astrocytes or smooth muscle cells/pericytes. Conversely, captured astrocytes or smooth muscle cells/pericytes demonstrate their respective markers, but not those of endothelial cells. This approach has applicability to microarray analysis, thereby enabling global gene profiling of the different cell types along the entirety of the brain microvascular tree.

  10. Cathepsin L acutely alters microvessel integrity within the neurovascular unit during focal cerebral ischemia

    PubMed Central

    Gu, Yu-Huan; Kanazawa, Masato; Hung, Stephanie Y; Wang, Xiaoyun; Fukuda, Shunichi; Koziol, James A; del Zoppo, Gregory J

    2015-01-01

    During focal cerebral ischemia, the degradation of microvessel basal lamina matrix occurs acutely and is associated with edema formation and microhemorrhage. These events have been attributed to matrix metalloproteinases (MMPs). However, both known protease generation and ligand specificities suggest other participants. Using cerebral tissues from a non-human primate focal ischemia model and primary murine brain endothelial cells, astrocytes, and microglia in culture, the effects of active cathepsin L have been defined. Within 2 hours of ischemia onset cathepsin L, but not cathepsin B, activity appears in the ischemic core, around microvessels, within regions of neuron injury and cathepsin L expression. In in vitro studies, cathepsin L activity is generated during experimental ischemia in microglia, but not astrocytes or endothelial cells. In the acidic ischemic core, cathepsin L release is significantly increased with time. A novel ex vivo assay showed that cathepsin L released from microglia during ischemia degrades microvessel matrix, and interacts with MMP activity. Hence, the loss of microvessel matrix during ischemia is explained by microglial cathepsin L release in the acidic core during injury evolution. The roles of cathepsin L and its interactions with specific MMP activities during ischemia are relevant to strategies to reduce microvessel injury and hemorrhage. PMID:26198177

  11. Visualization of Microvessels in Skin by Three-Dimensional Ultrasound Microscope

    NASA Astrophysics Data System (ADS)

    Saijo, Y.; Kobayashi, K.; Hozumi, N.; Tanaka, A.; Sakai, S.

    A non-invasive imaging technique capable of visualizing microvessels through epidermis to subdermis has been strongly desired. A PVDF ultrasonic transducer with the central frequency of 100 MHz and the focal length of 3.2 mm was mechanically scanned over the objects by two linear servo motors controlled by a personal computer. A microvessel model was made of a tungsten wire with a diameter of 100-microns and placed in the water tank. The microvessel model was clearly visualized by 3D ultrasound microscope. In cases of skin imaging, conventional echo gel was used as the coupling medium between transducer and skin surface. In vivo 3D skin morphology was also clearly visualized. In dermis, a microvessel may be shown as small, round, lucent echo areas continuously observed in the serial sections. 3D structure of hair-follicle was also visualized from the skin surface to the bud of hair-follicle in dermis. The 3D ultrasound microscope noninvasively provides important information on the distribution of microvessels in skin.

  12. Shear stress variation induced by red blood cell motion in microvessel.

    PubMed

    Xiong, Wenjuan; Zhang, Junfeng

    2010-08-01

    We simulated red blood cells flowing in microvessel to examine the induced wall shear stress variation. A typical peak-valley-peak structure is observed, and it is analyzed in terms of its magnitude, spatial influencing range, and temporal elapsed duration. Effects of red cell deformability, microvessel size, and flow velocity have been investigated. The corresponding variation characters have also been related to cell deformation and flow field. Simulation results show that the variation magnitude is mainly determined by the gap size between cell and vessel wall, while the spatial range of the shear stress variation depends on the cell length as well as the microvessel size. For a certain point on the vessel wall, the shear stress variation lasts a short time at a higher flow velocity, and vice versa. As the cell concentration in the microvessel increases, the shear stress variation structure changes accordingly with the two peaks from two close cells merging together, and eventually only one peak is observed at a hematocrit of 30.72%. However, the effect of hematocrit on the variation magnitude of shear stress is less obvious, and the dynamic nature of shear stress is still significant. This represents the first attempt to study the dynamic shear stress variation on microvessel as red blood cells flow by, and the information obtained in this study could be valuable to relevant research, for example, the mechanotransduction in the endothelia glycocalyx layer.

  13. Acoustic response of compliable microvessels containing ultrasound contrast agents

    PubMed Central

    Qin, Shengping; Ferrara, Katherine W.

    2010-01-01

    The existing models of the dynamics of ultrasound contrast agents (UCAs) have largely been focused on an UCA surrounded by an infinite liquid. Preliminary investigations of a microbubble’s oscillation in a rigid tube have been performed using linear perturbation, under the assumption that the tube diameter is significantly larger than UCA size. In the potential application of drug and gene delivery, it may be desirable to fragment the agent shell within small blood vessels and in some cases to rupture the vessel wall, releasing drugs and genes at the site. The effect of a compliant small blood vessel on the UCA’s oscillation and the microvessel’s acoustic response are unknown. The aim of this work is to propose a lumped-parameter model to study the interaction of a microbubble oscillation and compliable microvessels. Numerical results demonstrate that in the presence of UCAs, the transmural pressure through the blood vessel substantially increases and thus the vascular permeability is predicted to be enhanced. For a microbubble within an 8 to 40 micron vessel with a peak negative pressure of 0.1MPa and a center frequency of 1MHz, small changes in the microbubble oscillation frequency and maximum diameter are observed. When the ultrasound pressure increases, strong nonlinear oscillation occurs, with an increased circumferential stress on the vessel. For a compliable vessel with the range of diameters considered in this work, 0.2 MPa PNP at 1 MHz is predicted to be sufficient for microbubble fragmentation regardless the vessel diameter, however, for a rigid vessel 0.5 MPa PNP at 1 MHz may not be sufficient to fragment the bubbles. For a center frequency of 1MHz, a peak negative pressure of 0.5 MPa is predicted to be sufficient to exceed the stress threshold for vascular rupture in a small (diameter less than 15 μm) compliant vessel. As the vessel or surrounding tissue becomes more rigid, the UCA oscillation and vessel dilation decrease, however the

  14. LIPUS promotes spinal fusion coupling proliferation of type H microvessels in bone

    PubMed Central

    Xu, Ximing; Wang, Fei; Yang, Yahong; Zhou, Xiaoyi; Cheng, Yajun; Wei, Xianzhao; Li, Ming

    2016-01-01

    Low-intensity pulsed ultrasound (LIPUS) has been found to accelerate spinal fusion. Type H microvessels are found in close relation with bone development. We analyzed the role of type H vessels in rat spinal fusion model intervened by LIPUS. It was found LIPUS could significantly accelerate bone fusion rate and enlarge bone callus. Osteoblasts were specifically located on the bone meshwork of the allograft, and were surrounded by type H microvessels. LIPUS could significantly increase the quantity of osteoblasts during spine fusion, which process was coupled with elevated angiogenesis of type H microvessels. Our results suggest that LIPUS may be a noninvasive adjuvant treatment modality in spinal fusion for clinical use. The treatment is recommended for usage for at least one month. PMID:26830666

  15. Fucoidan Extracted from Hijiki Protects Brain Microvessel Endothelial Cells Against Diesel Exhaust Particle Exposure-Induced Disruption.

    PubMed

    Choi, Young-Sook; Eom, Sang-Yong; Kim, In-Soo; Ali, Syed F; Kleinman, Michael T; Kim, Yong-Dae; Kim, Heon

    2016-05-01

    This study was performed to evaluate the protective effects of fucoidan against the decreased function of primary cultured bovine brain microvessel endothelial cells (BBMECs) after exposure to diesel exhaust particles (DEPs). BBMECs were extracted from bovine brains and cultured until confluent. To evaluate the function of BBMECs, we performed a permeability test using cell-by-cell equipment and by Western blot analysis for zonular occludens-1 (ZO-1), which is a tight junction protein of BMECs, and evaluated oxidative stress in BBMECs using the DCFH-DA assay and the CUPRAC-BCS assay. The increased oxidative stress in BBMECs following DEP exposure was suppressed by fucoidan. In addition, permeability of BBMECs induced by DEP exposure was decreased by fucoidan treatment. Our results showed that fucoidan protects against BBMEC disruption induced by DEP exposure. This study provides evidence that fucoidan might protect the central nervous system (CNS) against DEP exposure.

  16. The influence of feed energy density and a formulated additive on rumen and rectal temperature in hanwoo steers.

    PubMed

    Cho, Sangbuem; Mbiriri, David Tinotenda; Shim, Kwanseob; Lee, A-Leum; Oh, Seong-Jin; Yang, Jinho; Ryu, Chaehwa; Kim, Young-Hoon; Seo, Kang-Seok; Chae, Jung-Il; Oh, Young Kyoon; Choi, Nag-Jin

    2014-11-01

    The present study investigated the optimum blending condition of protected fat, choline and yeast culture for lowering of rumen temperature. The Box Benken experimental design, a fractional factorial arrangement, and response surface methodology were employed. The optimum blending condition was determined using the rumen simulated in vitro fermentation. An additive formulated on the optimum condition contained 50% of protected fat, 25% of yeast culture, 5% of choline, 7% of organic zinc, 6.5% of cinnamon, and 6.5% of stevioside. The feed additive was supplemented at a rate of 0.1% of diet (orchard grass:concentrate, 3:7) and compared with a control which had no additive. The treatment resulted in lower volatile fatty acid (VFA) concentration and biogas than the control. To investigate the effect of the optimized additive and feed energy levels on rumen and rectal temperatures, four rumen cannulated Hanwoo (Korean native beef breed) steers were in a 4×4 Latin square design. Energy levels were varied to low and high by altering the ratio of forage to concentrate in diet: low energy (6:4) and high energy (4:6). The additive was added at a rate of 0.1% of the diet. The following parameters were measured; feed intake, rumen and rectal temperatures, ruminal pH and VFA concentration. This study was conducted in an environmentally controlled house with temperature set at 30°C and relative humidity levels of 70%. Steers were housed individually in raised crates to facilitate collection of urine and feces. The adaptation period was for 14 days, 2 days for sampling and 7 days for resting the animals. The additive significantly reduced both rumen (p<0.01) and rectal temperatures (p<0.001) without depressed feed intake. There were interactions (p<0.01) between energy level and additive on ruminal temperature. Neither additive nor energy level had an effect on total VFA concentration. The additive however, significantly increased (p<0.01) propionate and subsequently had lower

  17. The Influence of Feed Energy Density and a Formulated Additive on Rumen and Rectal Temperature in Hanwoo Steers

    PubMed Central

    Cho, Sangbuem; Mbiriri, David Tinotenda; Shim, Kwanseob; Lee, A-Leum; Oh, Seong-Jin; Yang, Jinho; Ryu, Chaehwa; Kim, Young-Hoon; Seo, Kang-Seok; Chae, Jung-Il; Oh, Young Kyoon; Choi, Nag-Jin

    2014-01-01

    The present study investigated the optimum blending condition of protected fat, choline and yeast culture for lowering of rumen temperature. The Box Benken experimental design, a fractional factorial arrangement, and response surface methodology were employed. The optimum blending condition was determined using the rumen simulated in vitro fermentation. An additive formulated on the optimum condition contained 50% of protected fat, 25% of yeast culture, 5% of choline, 7% of organic zinc, 6.5% of cinnamon, and 6.5% of stevioside. The feed additive was supplemented at a rate of 0.1% of diet (orchard grass:concentrate, 3:7) and compared with a control which had no additive. The treatment resulted in lower volatile fatty acid (VFA) concentration and biogas than the control. To investigate the effect of the optimized additive and feed energy levels on rumen and rectal temperatures, four rumen cannulated Hanwoo (Korean native beef breed) steers were in a 4×4 Latin square design. Energy levels were varied to low and high by altering the ratio of forage to concentrate in diet: low energy (6:4) and high energy (4:6). The additive was added at a rate of 0.1% of the diet. The following parameters were measured; feed intake, rumen and rectal temperatures, ruminal pH and VFA concentration. This study was conducted in an environmentally controlled house with temperature set at 30°C and relative humidity levels of 70%. Steers were housed individually in raised crates to facilitate collection of urine and feces. The adaptation period was for 14 days, 2 days for sampling and 7 days for resting the animals. The additive significantly reduced both rumen (p<0.01) and rectal temperatures (p<0.001) without depressed feed intake. There were interactions (p<0.01) between energy level and additive on ruminal temperature. Neither additive nor energy level had an effect on total VFA concentration. The additive however, significantly increased (p<0.01) propionate and subsequently had lower

  18. Cardioscopic observation of subendocardial microvessels in patients with coronary artery disease.

    PubMed

    Uchida, Yasuto; Kanai, Masahito; Maezawa, Yuko; Maezawa, Yoshiro; Shirai, Seiichiro; Nakagawa, Osamu; Uchida, Yasumi

    2011-01-01

    Coronary microvessels play a direct and critical role in determining the extent and severity of myocardial ischemia and cardiac function. However, because direct observation has never been performed in vivo, the functional properties of the individual microvesssels in patients with coronary artery disease remain unknown. Subendocardial coronary microvessels were observed by cardioscopy in 149 successive patients with coronary artery disease (81 with stable angina and 68 with old myocardial infarction). Twenty-four arterial microvessels (AMs) and 27 venous microvessels (VMs) were observed in the left ventricular subendocardium. All 12 AMs and 13 of 14 VMs that were located in normokinetic-to-hypokinetic left ventricular wall segments were filled with blood during diastole and were collapsed during systole. In contrast, 8 of 12 AMs and 9 of 13 VMs that were located in akinetic-to-dyskinetic wall segments were filled with blood during systole and were collapsed during diastole. There were no significant correlations between the timing of blood filling and the severity of coronary stenosis and collateral development. In patients with coronary artery disease, the timing of blood filling of AMs and VMs was dependent on the regional left ventricular contractile state; during diastole when contraction was preserved and during systole when it was not. It remains to be elucidated whether and how blood filling is disturbed in other categories of heart disease.

  19. Quantifying Single Microvessel Permeability in Isolated Blood-perfused Rat Lung Preparation

    PubMed Central

    Kandasamy, Kathirvel; Parthasarathi, Kaushik

    2014-01-01

    The isolated blood-perfused lung preparation is widely used to visualize and define signaling in single microvessels. By coupling this preparation with real time imaging, it becomes feasible to determine permeability changes in individual pulmonary microvessels. Herein we describe steps to isolate rat lungs and perfuse them with autologous blood. Then, we outline steps to infuse fluorophores or agents via a microcatheter into a small lung region. Using these procedures described, we determined permeability increases in rat lung microvessels in response to infusions of bacterial lipopolysaccharide. The data revealed that lipopolysaccharide increased fluid leak across both venular and capillary microvessel segments. Thus, this method makes it possible to compare permeability responses among vascular segments and thus, define any heterogeneity in the response. While commonly used methods to define lung permeability require postprocessing of lung tissue samples, the use of real time imaging obviates this requirement as evident from the present method. Thus, the isolated lung preparation combined with real time imaging offers several advantages over traditional methods to determine lung microvascular permeability, yet is a straightforward method to develop and implement. PMID:25045895

  20. Flow behavior of erythrocytes in microvessels and glass capillaries: effects of erythrocyte deformation and erythrocyte aggregation.

    PubMed

    Suzuki, Y; Tateishi, N; Soutani, M; Maeda, N

    1996-01-01

    Flow behavior of erythrocytes in microvessels and glass capillaries with an inner diameter of 10-50 microns was compared in relation to erythrocyte deformation and erythrocyte aggregation. This study was focused on the formation of a marginal cell-free layer, and the thickness was determined using an image processor. Human erythrocytes were perfused through a part of microvascular networks isolated from rabbit mesentery and through glass capillaries. Erythrocyte deformability was modified by treating erythrocytes with diamide, diazene-dicarboxylic acid bis[N,N-dimethylamide], and erythrocyte aggregation was accelerated by adding dextran (with a molecular weight of 70,400) to the perfusion medium. The thickness of the cell-free layer increased with an increase of the inner diameter of flow channel, with lowering the hematocrit, and with increasing the flow velocity of erythrocytes, in both microvessels and glass capillaries. Furthermore, the thickness of cell-free layer decreased with decreasing erythrocyte deformability, while it increased with accelerating erythrocyte aggregation. However, the alteration of the cell-free layer in response to the changes of these hemorheological conditions was more sensitive in microvessels than in glass capillaries. The present study concludes that flow behavior of erythrocytes in microvessels is qualitatively similar to, but quantitatively different from those in glass capillaries, as far as evaluated by the change of the thickness of the marginal cell-free layer.

  1. Recording of lymph flow dynamics in microvessels using correlation properties of scattered coherent radiation

    SciTech Connect

    Fedosov, I V; Tuchin, Valerii V; Galanzha, E I; Solov'eva, A V; Stepanova, T V

    2002-11-30

    The direction-sensitive method of microflow velocity measurements based on the space - time correlation properties of the dynamic speckle field is described and used for in vivo monitoring of lymph flow in the vessels of rat mesentery. The results of measurements are compared with the data obtained from functional video microscopy of the microvessel region. (laser biology and medicine)

  2. Calponin and caldesmon cellular domains in reacting microvessels following traumatic brain injury.

    PubMed

    Kreipke, Christian W; Morgan, Noah C; Petrov, Theodor; Rafols, Jose A

    2006-05-01

    Calponin (Cp) and caldesmon (Cd) are actin-binding proteins involved in the regulation of smooth muscle (SM) tone during blood vessel contraction. While in vitro studies have reported modifications of these proteins during vessel contractility, their role in vivo remains unclear. Traumatic brain injury (TBI) causes disruption of cerebral microvascular tone, leading to sustained contractility in reacting microvessels and cerebral hypoperfusion. This study aimed to determine the spatial and temporal expressions of Cp and Cd in rat cerebral cortical and hippocampal microvessels post-TBI. Reacting microvessels were analyzed in control, 4, 24, and 48 h post-injury. Single and double immunocytochemical techniques together with semiquantitative analyses revealed a Cp upregulation in SM at all time frames post-TBI; with the protein migrating from SM cytosol to the vicinity of the cell membrane. Similarly, Cd immunoreactivity significantly increased in both SM and endothelial cells (En). However, while Cp and Cd in SM remained elevated, their levels in En returned to normal at 48 h post-TBI. The results suggest that Cp and Cd levels increase while compartmentalizing to specific subcellular domains. These changes are temporally associated with modifications in the cytoskeleton and contractile apparatus of SM and En during blood vessel contractility. Furthermore, these changes may underlie the state of sustained contractility and hypoperfusion observed in reacting microvessels after TBI.

  3. Proteomic and transcriptomic study of brain microvessels in neonatal and adult mice

    PubMed Central

    Porte, Baptiste; Chatelain, Clémence; Hardouin, Julie; Derambure, Céline; Zerdoumi, Yasmine; Hauchecorne, Michèle; Dupré, Nicolas; Bekri, Soumeya; Gonzalez, Bruno; Marret, Stéphane; Cosette, Pascal

    2017-01-01

    Infants born before 29 weeks gestation incur a major risk of preterm encephalopathy and subependymal/intracerebral/intraventricular haemorrhage. In mice, an ontogenic window of haemorrhage risk was recorded up to 5 days after birth in serpine1 knock-out animals. Using proteome and transcriptome approaches in mouse forebrain microvessels, we previously described the remodelling of extracellular matrix and integrins likely strengthening the vascular wall between postnatal day 5 (P5) and P10. Haemorrhage is the ultimate outcome of vessel damage (i.e., during ischaemia), although discreet vessel insults may be involved in the aetiology of preterm encephalopathy. In this study, we examined proteins identified by mass spectrometry and segregating in gene ontology pathways in forebrain microvessels in P5, P10, and adult wild type mice. In parallel, comparative transcript levels were obtained using RNA hybridization microarrays and enriched biological pathways were extracted from genes exhibiting at least a two-fold change in expression. Five major biological functions were observed in those genes detected both as proteins and mRNA expression undergoing at least a two-fold change in expression in one or more age comparisons: energy metabolism, protein metabolism, antioxidant function, ion exchanges, and transport. Adult microvessels exhibited the highest protein and mRNA expression levels for a majority of genes. Energy metabolism–enriched gene ontology pathways pointed to the preferential occurrence of glycolysis in P5 microvessels cells versus P10 and adult preparations enriched in aerobic oxidative enzymes. Age-dependent levels of RNA coding transport proteins at the plasma membrane and mitochondria strengthened our findings based on protein data. The data suggest that immature microvessels have fewer energy supply alternatives to glycolysis than mature structures. In the context of high energy demand, this constraint might account for vascular damage and maintenance

  4. Thrombin Induces Inositol Trisphosphate-Mediated Spatially Extensive Responses in Lung Microvessels.

    PubMed

    Escue, Rachel; Kandasamy, Kathirvel; Parthasarathi, Kaushik

    2017-04-01

    Activation of plasma membrane receptors initiates compartmentalized second messenger signaling. Whether this compartmentalization facilitates the preferential intercellular diffusion of specific second messengers is unclear. Toward this, the receptor-mediated agonist, thrombin, was instilled into microvessels in a restricted region of isolated blood-perfused mouse lungs. Subsequently, the thrombin-induced increase in endothelial F-actin was determined using confocal fluorescence microscopy. Increased F-actin was evident in microvessels directly treated with thrombin and in those located in adjoining thrombin-free regions. This increase was abrogated by inhibiting inositol trisphosphate-mediated calcium release with Xestospongin C (XeC). XeC also inhibited the thrombin-induced increase in the amplitude of endothelial cytosolic Ca(2+) oscillations. Instillation of thrombin and XeC into adjacent restricted regions increased F-actin in microvessels in the thrombin-treated and adjacent regions but not in those in the XeC-treated region. Thus, inositol trisphosphate, and not calcium, diffused interendothelially to the spatially remote thrombin-free microvessels. Thus, activation of plasma membrane receptors increased the ambit of inflammatory responses via a second messenger different from that used by stimuli that induce cell-wide increases in second messengers. Thrombin however failed to induce the spatially extensive response in microvessels of mice lacking endothelial connexin43, suggesting a role for connexin43 gap junctions. Compartmental second messenger signaling and interendothelial communication define the specific second messenger involved in exacerbating proinflammatory responses to receptor-mediated agonists.

  5. The Involvement of Pial Microvessels in Leukocyte Invasion after Mild Traumatic Brain Injury

    PubMed Central

    Shan, Rongzi; Thomasian, Nicole; Chodobski, Adam

    2016-01-01

    The pathophysiological mechanisms underlying mild traumatic brain injury (mTBI) are not well understood, but likely involve neuroinflammation. Here the controlled cortical impact model of mTBI in rats was used to test this hypothesis. Mild TBI caused a rapid (within 6 h post-mTBI) upregulation of synthesis of TNF-α and IL-1β in the cerebral cortex and hippocampus, followed by an increase in production of neutrophil (CXCL1–3) and monocyte (CCL2) chemoattractants. While astrocytes were not a significant source of CXC chemokines, they highly expressed CCL2. An increase in production of CXC chemokines coincided with the influx of neutrophils into the injured brain. At 6 h post-mTBI, we observed a robust influx of CCL2-expressing neutrophils across pial microvessels into the subarachnoid space (SAS) near the injury site. Mild TBI was not accompanied by any significant influx of neutrophils into the brain parenchyma until 24 h after injury. This was associated with an early induction of expression of intercellular adhesion molecule 1 on the endothelium of the ipsilateral pial, but not intraparenchymal, microvessels. At 6 h post-mTBI, we also observed a robust influx of neutrophils into the ipsilateral cistern of velum interpositum (CVI), a slit-shaped cerebrospinal fluid space located above the 3rd ventricle with highly vascularized pia mater. From SAS and CVI, neutrophils appeared to move along the perivascular spaces to enter the brain parenchyma. The monocyte influx was not observed until 24 h post-mTBI, and these inflammatory cells predominantly entered the ipsilateral SAS and CVI, with a limited invasion of brain parenchyma. These observations indicate that the endothelium of pial microvessels responds to injury differently than that of intraparenchymal microvessels, which may be associated with the lack of astrocytic ensheathment of cerebrovascular endothelium in pial microvessels. These findings also suggest that neuroinflammation represents the potential

  6. Effects of wall shear stress and its gradient on tumor cell adhesion in curved microvessels.

    PubMed

    Yan, W W; Cai, B; Liu, Y; Fu, B M

    2012-05-01

    Tumor cell adhesion to vessel walls in the microcirculation is one critical step in cancer metastasis. In this paper, the hypothesis that tumor cells prefer to adhere at the microvessels with localized shear stresses and their gradients, such as in the curved microvessels, was examined both experimentally and computationally. Our in vivo experiments were performed on the microvessels (post-capillary venules, 30-50 μm diameter) of rat mesentery. A straight or curved microvessel was cannulated and perfused with tumor cells by a glass micropipette at a velocity of ~1mm/s. At less than 10 min after perfusion, there was a significant difference in cell adhesion to the straight and curved vessel walls. In 60 min, the averaged adhesion rate in the curved vessels (n = 14) was ~1.5-fold of that in the straight vessels (n = 19). In 51 curved segments, 45% of cell adhesion was initiated at the inner side, 25% at outer side, and 30% at both sides of the curved vessels. To investigate the mechanical mechanism by which tumor cells prefer adhering at curved sites, we performed a computational study, in which the fluid dynamics was carried out by the lattice Boltzmann method , and the tumor cell dynamics was governed by the Newton's law of translation and rotation. A modified adhesive dynamics model that included the influence of wall shear stress/gradient on the association/dissociation rates of tumor cell adhesion was proposed, in which the positive wall shear stress/gradient jump would enhance tumor cell adhesion while the negative wall shear stress/gradient jump would weaken tumor cell adhesion. It was found that the wall shear stress/gradient, over a threshold, had significant contribution to tumor cell adhesion by activating or inactivating cell adhesion molecules. Our results elucidated why the tumor cell adhesion prefers to occur at the positive curvature of curved microvessels with very low Reynolds number (in the order of 10(-2)) laminar flow.

  7. Upward shift of the vortex solid phase in high-temperature-superconducting wires through high density nanoparticle addition

    DOE PAGES

    Miura, Masashi; Maiorov, Boris; Balakirev, Fedor F.; ...

    2016-02-08

    Here, we show a simple and effective way to improve the vortex irreversibility line up to very high magnetic fields (60T) by increasing the density of second phase BaZrO3 nanoparticles. (Y0.77,Gd0.23)Ba2Cu3Oy films were grown on metal substrates with different concentration of BaZrO3 nanoparticles by the metal organic deposition method. We find that upon increase of the BaZrO3 concentration, the nanoparticle size remains constant but the twin-boundary density increases. Up to the highest nanoparticle concentration (n ~ 1.3 × 1022/m3), the irreversibility field (Hirr) continues to increase with no sign of saturation up to 60 T, although the vortices vastly outnumbermore » pinning centers. We find extremely high Hirr, namely Hirr = 30 T (H||45°) and 24 T (H||c) at 65 K and 58 T (H||45°) and 45 T (H||c) at 50K. The difference in pinning landscape shifts the vortex solid-liquid transition upwards, increasing the vortex region useful for power applications, while keeping the upper critical field, critical temperature and electronic mass anisotropy unchanged.« less

  8. Upward shift of the vortex solid phase in high-temperature-superconducting wires through high density nanoparticle addition

    SciTech Connect

    Miura, Masashi; Maiorov, Boris; Balakirev, Fedor F.; Kato, Takeharu; Sato, Michio; Takagi, Yuji; Izumi, Teruo; Civale, Leonardo

    2016-02-08

    Here, we show a simple and effective way to improve the vortex irreversibility line up to very high magnetic fields (60T) by increasing the density of second phase BaZrO3 nanoparticles. (Y0.77,Gd0.23)Ba2Cu3Oy films were grown on metal substrates with different concentration of BaZrO3 nanoparticles by the metal organic deposition method. We find that upon increase of the BaZrO3 concentration, the nanoparticle size remains constant but the twin-boundary density increases. Up to the highest nanoparticle concentration (n ~ 1.3 × 1022/m3), the irreversibility field (Hirr) continues to increase with no sign of saturation up to 60 T, although the vortices vastly outnumber pinning centers. We find extremely high Hirr, namely Hirr = 30 T (H||45°) and 24 T (H||c) at 65 K and 58 T (H||45°) and 45 T (H||c) at 50K. The difference in pinning landscape shifts the vortex solid-liquid transition upwards, increasing the vortex region useful for power applications, while keeping the upper critical field, critical temperature and electronic mass anisotropy unchanged.

  9. Upward shift of the vortex solid phase in high-temperature-superconducting wires through high density nanoparticle addition

    NASA Astrophysics Data System (ADS)

    Miura, Masashi; Maiorov, Boris; Balakirev, Fedor F.; Kato, Takeharu; Sato, Michio; Takagi, Yuji; Izumi, Teruo; Civale, Leonardo

    2016-02-01

    We show a simple and effective way to improve the vortex irreversibility line up to very high magnetic fields (60T) by increasing the density of second phase BaZrO3 nanoparticles. (Y0.77,Gd0.23)Ba2Cu3Oy films were grown on metal substrates with different concentration of BaZrO3 nanoparticles by the metal organic deposition method. We find that upon increase of the BaZrO3 concentration, the nanoparticle size remains constant but the twin-boundary density increases. Up to the highest nanoparticle concentration (n ~ 1.3 × 1022/m3), the irreversibility field (Hirr) continues to increase with no sign of saturation up to 60 T, although the vortices vastly outnumber pinning centers. We find extremely high Hirr, namely Hirr = 30 T (H||45°) and 24 T (H||c) at 65 K and 58 T (H||45°) and 45 T (H||c) at 50K. The difference in pinning landscape shifts the vortex solid-liquid transition upwards, increasing the vortex region useful for power applications, while keeping the upper critical field, critical temperature and electronic mass anisotropy unchanged.

  10. Upward shift of the vortex solid phase in high-temperature-superconducting wires through high density nanoparticle addition

    PubMed Central

    Miura, Masashi; Maiorov, Boris; Balakirev, Fedor F.; Kato, Takeharu; Sato, Michio; Takagi, Yuji; Izumi, Teruo; Civale, Leonardo

    2016-01-01

    We show a simple and effective way to improve the vortex irreversibility line up to very high magnetic fields (60T) by increasing the density of second phase BaZrO3 nanoparticles. (Y0.77,Gd0.23)Ba2Cu3Oy films were grown on metal substrates with different concentration of BaZrO3 nanoparticles by the metal organic deposition method. We find that upon increase of the BaZrO3 concentration, the nanoparticle size remains constant but the twin-boundary density increases. Up to the highest nanoparticle concentration (n ~ 1.3 × 1022/m3), the irreversibility field (Hirr) continues to increase with no sign of saturation up to 60 T, although the vortices vastly outnumber pinning centers. We find extremely high Hirr, namely Hirr = 30 T (H||45°) and 24 T (H||c) at 65 K and 58 T (H||45°) and 45 T (H||c) at 50K. The difference in pinning landscape shifts the vortex solid-liquid transition upwards, increasing the vortex region useful for power applications, while keeping the upper critical field, critical temperature and electronic mass anisotropy unchanged. PMID:26853703

  11. [Effects of biochar addition into soils in semiarid land on water infiltration under the condition of the same bulk density].

    PubMed

    Qi, Rui-Peng; Zhang, Lei; Yan, Yong-Hao; Wen, Man; Zheng, Ji-Yong

    2014-08-01

    Making clear the effects of biochar addition on soil water infiltration process can provide the scientific basis for the evaluation of the influence of biochar application on soil hydrology in semi-arid region. In this paper, through the soil column simulation method in laboratory, the effects of biochar of three sizes (1-2 mm, 0.25-1 mm and ≤ 0.25 mm) at 4 doses (10, 50, 100 and 150 g x kg(-1)) on the cumulative infiltration, the permeability and the stable infiltration rate of two different soils (anthrosol and aeolian sandy soil) were studied. The results showed that the infiltration capacity of the anthrosol was obviously increased compared to the control, however, the one in the aeolian sandy soil was decreased due to the biochar addition. At 100 minutes after infiltration starting, the averaged cumulative infiltration was increased by 25.1% in the anthrosol with comparison to the control. Contrarily, the averaged cumulative infiltration was decreased by 11.1% in the aeolian sandy soil at 15 minutes after infiltration starting. When the dose was the same, biochar with different particle sizes improved the infiltration for the anthrosol, but for the different dose treatments, the particle size of biochar which showed the greatest improvement was different. As for the aeolian sandy soil, the infiltration increased at the dose of 10 g x kg(-1) after the addition of biochar with different particle sizes, while decreased at the higher dose of 50, 100 and 150 g x kg(-1). The cumulative infiltration of the aeolian sandy soil was decreased with the increase in addition amount of biochar with the same particle size, while it was not so for the anthrosol. The determination coefficient fitted by the Philip infiltration model ranged from 0.965 to 0.999, suggesting this model was suitable for the simulation of soil water infiltration process after biochar application. Statistical analysis of main effects showed that the biochar particle size, the biochar addition amount

  12. High critical current density and improved flux pinning in bulk MgB2 synthesized by Ag addition

    NASA Astrophysics Data System (ADS)

    Shekhar, Chandra; Giri, Rajiv; Tiwari, R. S.; Srivastava, O. N.; Malik, S. K.

    2007-02-01

    In the present investigation, we report a systematic study of Ag admixing in MgB2 prepared by solid-state reaction at ambient pressure. All the samples in the present investigation have been subjected to structural/ microstructural characterization employing x-ray diffraction and transmission electron microscopic (TEM) techniques. The magnetization measurements were performed by physical property measurement system. The TEM investigations reveal the formation of MgAg nanoparticles in Ag admixed samples. These nanoparticles may enhance critical current density due to their size (˜5-20nm ) which is compatible with the coherence length of MgB2 (˜5-6nm ). In order to study the flux pinning effect of Ag admixing in MgB2, the evaluation of intragrain critical current density (Jc) has been carried out through magnetic measurements on the fine powdered version of the as synthesized samples. The optimum result on intragrain Jc is obtained for 10at.% Ag admixed sample at 5K. This corresponds to ˜9.23×107A /cm2 in self-field, ˜5.82×107A/cm2 at 1T, ˜4.24×106A/cm2 at 3.6T, and ˜1.52×105A/cm2 at 5T. However, intragrain Jc values for MgB2 sample without Ag admixing are ˜2.59×106, ˜1.09×106, ˜4.53×104, and 2.91×103A /cm2 at 5K in self-field, 1T, 3.6T, and 5T, respectively. The high value of intragrain Jc for Ag admixed MgB2 superconductor has been attributed to the inclusion of MgAg nanoparticles into the crystal matrix of MgB2, which are capable of providing effective flux pinning centers. A feasible correlation between microstructural features and superconducting properties has been put forward.

  13. Highly enhanced in-field critical current density of MgB 2 superconductor by combined addition of burned rice husk and nano Ho 2O 3

    NASA Astrophysics Data System (ADS)

    Vinod, K.; Varghese, Neson; Sundaresan, A.; Syamaprasad, U.

    2010-04-01

    With the aim of improving flux pinning and in-field critical current density [ JC( H)], two physically and chemically different additives - burned rice husk (BRH) and nano Ho 2O 3 were introduced into in situ MgB 2 superconductor. The effects of the above two additives were studied individually and combinedly. Ho 2O 3 decomposed and reacted with B to form HoB 4, without any substitution. BRH caused considerable amount of C substitution at B site and formed Mg 2Si and Mg 2C 3 secondary phases. Addition of Ho 2O 3 improved the JC( H) only marginally, but BRH improved the JC( H) strongly. Combined addition of Ho 2O 3 with BRH was found to be much more effective than their solo addition for the enhancement of JC( H) of MgB 2.

  14. Ultra-high Speed Optical Imaging of Ultrasound-activated Microbubbles in Mesenteric Microvessels

    NASA Astrophysics Data System (ADS)

    Chen, Hong

    Ultrasound contrast agent microbubbles have gained widespread applications in diagnostic and therapeutic ultrasound. Animal studies of bioeffects induced by ultrasound-activated microbubbles have demonstrated that microbubbles can cause microvessel damage. Much scientific attention has been attracted to such microvascular bioeffects, not only because of the related safety concerns, but also because of the potential useful applications of microbubbles in the intravascular delivery of drugs and genetic materials into target tissues. A significant challenge in using microbubbles in medical ultrasound is the lack of knowledge about how the microbubbles behave in blood vessels when exposed to ultrasound and how their interactions with ultrasound cause vascular damage. Although extensive studies were performed in the past to study the dynamics of microbubbles, most of those studies were performed in vitro and did not directly address the clinical environment in which microbubbles are injected into blood vessels. In this thesis work, a synchronized optical-acoustic system was set up for ultrahigh speed imaging of insonated microbubbles in microvessels. The recorded images revealed the formation of microjets penetrating the microbubbles, as well as vessel distention (motion outward against the surrounding tissue) and vessel invagination (motion inward toward the lumen) caused by the expansion and collapse of the microbubbles, respectively. Contrary to current paradigms which propose that microbubbles damage vessels either by distending them or by forming liquid jets impinging on them, microbubbles translation and jetting were in the direction away from the nearest vessel wall; furthermore, invagination typically exceeded distention in arterioles and venules. Vessel invagination was found to be associated with vascular damage. These studies suggest that vessel invagination may be a newly discovered potential mechanism for vascular damage by ultrasound-activated microbubbles

  15. Exogenous arachidonic acid mediates permeability of human brain microvessel endothelial cells through prostaglandin E2 activation of EP3 and EP4 receptors.

    PubMed

    Dalvi, Siddhartha; Nguyen, Hieu H; On, Ngoc; Mitchell, Ryan W; Aukema, Harold M; Miller, Donald W; Hatch, Grant M

    2015-12-01

    The blood-brain barrier, formed by microvessel endothelial cells, is the restrictive barrier between the brain parenchyma and the circulating blood. Arachidonic acid (ARA; 5,8,11,14-cis-eicosatetraenoic acid) is a conditionally essential polyunsaturated fatty acid [20:4(n-6)] and is a major constituent of brain lipids. The current study examined the transport processes for ARA in confluent monolayers of human brain microvascular endothelial cells (HBMEC). Addition of radioactive ARA to the apical compartment of HBMEC cultured on Transwell(®) inserts resulted in rapid incorporation of radioactivity into the basolateral medium. Knock down of fatty acid transport proteins did not alter ARA passage into the basolateral medium as a result of the rapid generation of prostaglandin E2 (PGE2 ), an eicosanoid known to facilitate opening of the blood-brain barrier. Permeability following ARA or PGE2 exposure was confirmed by an increased movement of fluorescein-labeled dextran from apical to basolateral medium. ARA-mediated permeability was attenuated by specific cyclooxygenase-2 inhibitors. EP3 and EP4 receptor antagonists attenuated the ARA-mediated permeability of HBMEC. The results indicate that ARA increases permeability of HBMEC monolayers likely via increased production of PGE2 which acts upon EP3 and EP4 receptors to mediate permeability. These observations may explain the rapid influx of ARA into the brain previously observed upon plasma infusion with ARA. The blood-brain barrier, formed by microvessel endothelial cells, is a restrictive barrier between the brain parenchyma and the circulating blood. Radiolabeled arachidonic acid (ARA) movement across, and monolayer permeability in the presence of ARA, was examined in confluent monolayers of primary human brain microvessel endothelial cells (HBMECs) cultured on Transwell(®) plates. Incubation of HBMECs with ARA resulted in a rapid increase in HBMEC monolayer permeability. The mechanism was mediated, in part

  16. Supplementing High-Density SNP Microarrays for Additional Coverage of Disease-Related Genes: Addiction as a Paradigm

    PubMed Central

    Saccone, Scott F.; Bierut, Laura J.; Chesler, Elissa J.; Kalivas, Peter W.; Lerman, Caryn; Saccone, Nancy L.; Uhl, George R.; Li, Chuan-Yun; Philip, Vivek M.; Edenberg, Howard J.; Sherry, Stephen T.; Feolo, Michael; Moyzis, Robert K.; Rutter, Joni L.

    2009-01-01

    Commercial SNP microarrays now provide comprehensive and affordable coverage of the human genome. However, some diseases have biologically relevant genomic regions that may require additional coverage. Addiction, for example, is thought to be influenced by complex interactions among many relevant genes and pathways. We have assembled a list of 486 biologically relevant genes nominated by a panel of experts on addiction. We then added 424 genes that showed evidence of association with addiction phenotypes through mouse QTL mappings and gene co-expression analysis. We demonstrate that there are a substantial number of SNPs in these genes that are not well represented by commercial SNP platforms. We address this problem by introducing a publicly available SNP database for addiction. The database is annotated using numeric prioritization scores indicating the extent of biological relevance. The scores incorporate a number of factors such as SNP/gene functional properties (including synonymy and promoter regions), data from mouse systems genetics and measures of human/mouse evolutionary conservation. We then used HapMap genotyping data to determine if a SNP is tagged by a commercial microarray through linkage disequilibrium. This combination of biological prioritization scores and LD tagging annotation will enable addiction researchers to supplement commercial SNP microarrays to ensure comprehensive coverage of biologically relevant regions. PMID:19381300

  17. Supplementing High-Density SNP Microarrays for Additional Coverage of Disease-Related Genes: Addiction as a Paradigm

    SciTech Connect

    SacconePhD, Scott F; Chesler, Elissa J; Bierut, Laura J; Kalivas, Peter J; Lerman, Caryn; Saccone, Nancy L; Uhl, George R; Li, Chuan-Yun; Philip, Vivek M; Edenberg, Howard; Sherry, Steven; Feolo, Michael; Moyzis, Robert K; Rutter, Joni L

    2009-01-01

    Commercial SNP microarrays now provide comprehensive and affordable coverage of the human genome. However, some diseases have biologically relevant genomic regions that may require additional coverage. Addiction, for example, is thought to be influenced by complex interactions among many relevant genes and pathways. We have assembled a list of 486 biologically relevant genes nominated by a panel of experts on addiction. We then added 424 genes that showed evidence of association with addiction phenotypes through mouse QTL mappings and gene co-expression analysis. We demonstrate that there are a substantial number of SNPs in these genes that are not well represented by commercial SNP platforms. We address this problem by introducing a publicly available SNP database for addiction. The database is annotated using numeric prioritization scores indicating the extent of biological relevance. The scores incorporate a number of factors such as SNP/gene functional properties (including synonymy and promoter regions), data from mouse systems genetics and measures of human/mouse evolutionary conservation. We then used HapMap genotyping data to determine if a SNP is tagged by a commercial microarray through linkage disequilibrium. This combination of biological prioritization scores and LD tagging annotation will enable addiction researchers to supplement commercial SNP microarrays to ensure comprehensive coverage of biologically relevant regions.

  18. Three-Dimensional Arrangement of Human Bone Marrow Microvessels Revealed by Immunohistology in Undecalcified Sections

    PubMed Central

    Wilhelmi, Verena; Seiler, Anja; Lampp, Katrin; Neff, Andreas; Guthe, Michael; Lobachev, Oleg

    2016-01-01

    The arrangement of microvessels in human bone marrow is so far unknown. We combined monoclonal antibodies against CD34 and against CD141 to visualise all microvessel endothelia in 21 serial sections of about 1 cm2 size derived from a human iliac crest. The specimen was not decalcified and embedded in Technovit® 9100. In different regions of interest, the microvasculature was reconstructed in three dimensions using automatic methods. The three-dimensional models were subject to a rigid semiautomatic and manual quality control. In iliac crest bone marrow, the adipose tissue harbours irregularly distributed haematopoietic areas. These are fed by networks of large sinuses, which are loosely connected to networks of small capillaries prevailing in areas of pure adipose tissue. Our findings are compatible with the hypothesis that capillaries and sinuses in human iliac crest bone marrow are partially arranged in parallel. PMID:27997569

  19. Effect of heat transfer on rotating electroosmotic flow through a micro-vessel: haemodynamical applications

    NASA Astrophysics Data System (ADS)

    Sinha, A.; Mondal, A.; Shit, G. C.; Kundu, P. K.

    2016-08-01

    This paper theoretically analyzes the heat transfer characteristics associated with electroosmotic flow of blood through a micro-vessel having permeable walls. The analysis is based on the Debye-Hückel approximation for charge distributions and the Navier-Stokes equations are assumed to represent the flow field in a rotating system. The velocity slip condition at the vessel walls is taken into account. The essential features of the rotating electroosmotic flow of blood and associated heat transfer characteristics through a micro-vessel are clearly highlighted by the variation in the non-dimensional flow velocity, volumetric flow rate and non-dimensional temperature profiles. Moreover, the effect of Joule heating parameter and Prandtl number on the thermal transport characteristics are discussed thoroughly. The study reveals that the flow of blood is appreciably influenced by the elctroosmotic parameter as well as rotating Reynolds number.

  20. Microvessel reactivity changes in light-diode irradiation of blood (470 to 980 nm)

    NASA Astrophysics Data System (ADS)

    Petrishchev, Nikolai N.; Yantareva, Ludmila I.

    1998-01-01

    The effects of distant light diode irradiation with various spectrums of the trunk vessels on reactivity of microvessels in the small intestine mesentery treated with threshold doses of norepinephrine (NoE) are compared. The character of changes in reactivity of microvessels to NoE was found to depend on the wave length and irradiation dose. Ultraviolet irradiation (470 nm, 0.03 J/sm2) was noticed to increase reactivity of the vessels to NoE (vasoconstriction increase). In green light irradiation (540 nm, 0.3 J/sm2 sm2) no changes in reactivity were observed. Red light irradiation (670 nm, 2.0 J/sm2), infrared particular (980 nm, 1.0 J/sm2), lowered reactivity to NoE. Thus, noninvasive light-diode irradiation of the blood results in different systemic changes of endothelial dependent reactivity of microcirculation due to specify of photochemical processes involved.

  1. Effects of curvature and cell-cell interaction on cell adhesion in microvessels.

    PubMed

    Yan, W W; Liu, Y; Fu, B M

    2010-10-01

    It has been found that both circulating blood cells and tumor cells are more easily adherent to curved microvessels than straight ones. This motivated us to investigate numerically the effect of the curvature of the curved vessel on cell adhesion. In this study, the fluid dynamics was carried out by the lattice Boltzmann method (LBM), and the cell dynamics was governed by the Newton's law of translation and rotation. The adhesive dynamics model involved the effect of receptor-ligand bonds between circulating cells and endothelial cells (ECs). It is found that the curved vessel would increase the simultaneous bond number, and the probability of cell adhesion is increased consequently. The interaction between traveling cells would also affect the cell adhesion significantly. For two-cell case, the simultaneous bond number of the rear cell is increased significantly, and the curvature of microvessel further enhances the probability of cell adhesion.

  2. Complete blockade of the vasorelaxant effects of angiotensin-(1–7) and bradykinin in murine microvessels by antagonists of the receptor Mas

    PubMed Central

    Peiró, Concepción; Vallejo, Susana; Gembardt, Florian; Palacios, Erika; Novella, Susana; Azcutia, Verónica; Rodríguez-Mañas, Leocadio; Hermenegildo, Carlos; Sánchez-Ferrer, Carlos F; Walther, Thomas

    2013-01-01

    The heptapeptide angiotensin-(1–7) is a biologically active metabolite of angiotensin II, the predominant peptide of the renin–angiotensin system. Recently, we have shown that the receptor Mas is associated with angiotensin-(1–7)-induced signalling and mediates, at least in part, the vasodilatory properties of angiotensin-(1–7). However, it remained controversial whether an additional receptor could account for angiotensin-(1–7)-induced vasorelaxation. Here, we used two different angiotensin-(1–7) antagonists, A779 and d-Pro-angiotensin-(1–7), to address this question and also to study their influence on the vasodilatation induced by bradykinin. Isolated mesenteric microvessels from both wild-type and Mas-deficient C57Bl/6 mice were precontracted with noradrenaline, and vascular reactivity to angiotensin-(1–7) and bradykinin was subsequently studied using a small-vessel myograph. Furthermore, mechanisms for Mas effects were investigated in primary human umbilical vein endothelial cells. Both angiotensin-(1–7) and bradykinin triggered a concentration-dependent vasodilatation in wild-type microvessels, which was absent in the presence of a nitric oxide synthase inhibitor. In these vessels, the pre-incubation with the Mas antagonists A779 or d-Pro-angiotensin-(1–7) totally abolished the vasodilatory capacity of both angiotensin-(1–7) and bradykinin, which was nitric oxide mediated. Accordingly, Mas-deficient microvessels lacked the capacity to relax in response to either angiotensin-(1–7) or bradykinin. Pre-incubation of human umbilical vein endothelial cells with A779 prevented bradykinin-mediated NO generation and NO synthase phosphorylation at serine 1177. The angiotensin-(1–7) antagonists A779 and d-Pro-angiotensin-(1–7) equally block Mas, which completely controls the angiotensin-(1–7)-induced vasodilatation in mesenteric microvessels. Importantly, Mas also appears to be a critical player in NO-mediated vasodilatation induced by

  3. Effects of Interleukin-6 on the Expression of Tight Junction Proteins in Isolated Cerebral Microvessels from Yearling and Adult Sheep

    PubMed Central

    Cohen, Susan S.; Min, May; Cummings, Erin E.; Chen, Xiaodi; Sadowska, Grazyna B.; Sharma, Surendra; Stonestreet, Barbara S.

    2013-01-01

    Objectives The blood-brain barrier is a selective diffusion barrier between brain parenchyma and the intravascular compartment. Tight junctions (TJs) are integral components of the blood-brain barrier. Pro-inflammatory cytokines are important in the pathogenesis of brain injury and could modify the protein constituents of TJs. We hypothesized that IL-6 down-regulates key protein constituents of endothelial TJs (e.g., occludin and claudin-5). Methods We examined the effects of IL-6 on TJ protein expression using an in vitro blood-brain barrier model. We isolated microvessels from yearling and adult ovine cerebral cortex and placed them into culture with IL-6 concentrations of 0 (control, phosphate buffered saline), 1, 10, and 100 ng/mL for 24 hours. Cerebral microvessels were harvested, Western immunoblot performed for occludin and claudin-5, densitometry performed, and results expressed as a ratio to control values. Results Western immunoblot analysis showed that treatment with 100 ng/ml of IL-6, but not the lower concentrations, reduced (P<0.05) occludin expression in microvessels from yearling and adult sheep, and claudin-5 in microvessels from adult sheep However, treatment with 10 ng/ml of IL-6 increased claudin-5 in microvessels from yearling sheep. The percent of lactate dehydrogenase released from the microvessels into the surrounding media was not increased by IL-6 treatment, suggesting that the reductions in TJ proteins did not result from cell death. Treatment of adult cerebral cortical microvessels with IL-6 pre-incubated with anti-IL-6 monoclonal antibodies partially attenuated the reduction in claudin-5. Conclusion We conclude that IL-6 modulates tight junction protein expression in cerebral cortical microvessels from yearling and adult sheep. PMID:23867217

  4. Cell-free layer and wall shear stress variation in microvessels.

    PubMed

    Yin, Xuewen; Zhang, Junfeng

    2012-01-01

    In this study, we simulated multiple red blood cells flowing through straight microvessels with the immersed-boundary lattice-Boltzmann model to examine the shear stress variation on the microvessel surface and its relation to the properties of cell-free layer. Significant variation in shear stress has been observed due to the irregular configuration of blood cells flowing near the microvessel wall. A low shear stress is typically found at locations where there is a cell flowing close to the wall, and a large shear stress at locations with a relatively wide gap between cell and wall. This relationship between the shear stress magnitude and the distance between cell and wall has been attributed to the reverse pressure difference developed between the front and rear sides of a cell flowing near the vessel wall. We further studied the effects of several hemodynamic factors on the variation of shear stress, including the cell deformability, the flow rate, and the aggregation among red blood cells. These simulations show that the shear stress variation is less profound in situations with wider cell-free layers, since the reverse pressure difference around the edge cells is less evident, and the influence of this pressure difference on wall shear stress becomes weaker. This study also demonstrates the complexity of the flow field in the gap between cell and wall. More precise experimental techniques are required accurately measure such shear stress variation in microcirculation.

  5. Intratumoral α-SMA enhances the prognostic potency of CD34 associated with maintenance of microvessel integrity in hepatocellular carcinoma and pancreatic cancer.

    PubMed

    Wang, Wen-Quan; Liu, Liang; Xu, Hua-Xiang; Luo, Guo-Pei; Chen, Tao; Wu, Chun-Tao; Xu, Yong-Feng; Xu, Jin; Liu, Chen; Zhang, Bo; Long, Jiang; Tang, Zhao-You; Yu, Xian-Jun

    2013-01-01

    Microvessel density (MVD) as an angiogenesis predictor is inefficient per se in cancer prognosis. We evaluated prognostic values of combining intratumoral alpha-smooth muscle actin (α-SMA)-positive stromal cell density and MVD after curative resection in hypervascular hepatocellular carcinoma (HCC) and hypovascular pancreatic cancer (PC). Tissue microarrays were constructed from tumors of 305 HCC and 57 PC patients who underwent curative resection and analyzed for α-SMA and CD34 expression by immunostaining. Prognostic values of these two proteins and other clinicopathological features were examined. Both low α-SMA density and high MVD-CD34 were associated in HCC with the presence of intrahepatic metastasis and microvascular invasion, and they were related to lymph node involvement and microvascular invasion in PC (p<0.05). Although CD34 alone, but not α-SMA, was an independent prognostic factor for overall survival and recurrence-free survival, the combination of low α-SMA and high CD34 was a predictor of worst prognosis for both types of tumors and had a better power to predict patient death and early recurrence (p<0.01). Furthermore, the results show that distribution of most of the α-SMA-positive cells and vascular endothelial cells overlap, showing major colocalization on vascular walls. Poor microvessel integrity, as indicated by high MVD, together with low perivascular α-SMA-positive cell coverage is associated with early recurrence, unfavorable metastasis, and short survival after tumor resection. This finding highlights the significance of vascular quality in tumor progression, which provides an optimized complement to vascular quantity in prognosis of postoperative patients.

  6. Flow Dynamics and HSPC Homing in Bone Marrow Microvessels.

    PubMed

    Bixel, M Gabriele; Kusumbe, Anjali P; Ramasamy, Saravana K; Sivaraj, Kishor K; Butz, Stefan; Vestweber, Dietmar; Adams, Ralf H

    2017-02-14

    Measurements of flow velocities at the level of individual arterial vessels and sinusoidal capillaries are crucial for understanding the dynamics of hematopoietic stem and progenitor cell homing in the bone marrow vasculature. We have developed two complementary intravital two-photon imaging approaches to determine blood flow dynamics and velocities in multiple vessel segments by capturing the motion of red blood cells. High-resolution spatiotemporal measurements through a cranial window to determine short-time dynamics of flowing blood cells and repetitive centerline scans were used to obtain a detailed flow-profile map with hemodynamic parameters. In addition, we observed the homing of individual hematopoietic stem and progenitor cells and obtained detailed information on their homing behavior. With our imaging setup, we determined flow patterns at cellular resolution, blood flow velocities and wall shear stress in small arterial vessels and highly branched sinusoidal capillaries, and the cellular dynamics of hematopoietic stem and progenitor cell homing.

  7. Changes in endothelial connexin 43 expression inversely correlate with microvessel permeability and VE-cadherin expression in endotoxin-challenged lungs

    PubMed Central

    Kandasamy, Kathirvel; Escue, Rachel; Manna, Jayeeta; Adebiyi, Adebowale

    2015-01-01

    Endothelial barrier restoration reverses microvessel hyperpermeability and facilitates recovery from lung injury. Because inhibiting connexin 43 (Cx43)-dependent interendothelial communication blunts hyperpermeability in single microvessels, we determined whether endothelial Cx43 levels correlate with changes in microvessel permeability during recovery from lung injury. Toward this, bacterial endotoxin was instilled intratracheally into rat lungs, and at different durations postinstillation the lungs were isolated and blood perfused. Microvessel Cx43 expression was quantified by in situ immunofluorescence and microvessel permeability via a fluorescence method. To supplement the immunofluorescence data, protein levels were determined by immunoblots of lung tissue from endotoxin-instilled rats. Immunofluorescence and immunoblot together revealed that both Cx43 expression and microvessel permeability increased above baseline within a few hours after endotoxin instillation but declined progressively over the next few days. On day 5 postendotoxin, microvessel Cx43 declined to negligible levels, resulting in complete absence of intermicrovessel communication determined by photolytic uncaging of Ca2+. However, by day 14, both Cx43 expression and microvessel permeability returned to baseline levels. In contrast to Cx43, expression of microvessel vascular endothelial (VE)-cadherin, a critical determinant of vascular barrier integrity, exhibited an inverse trend by initially declining below baseline and then returning to baseline at a longer duration. Knockdown of vascular Cx43 by tail vein injection of Cx43 shRNA increased VE-cadherin expression, suggesting that reduction in Cx43 levels may modulate VE-cadherin levels in lung microvessels. Together, the data suggest that endotoxin challenge initiates interrelated changes in microvessel Cx43, VE-cadherin, and microvessel permeability, with changes in Cx43 temporally leading the other responses. PMID:26163513

  8. Changes in endothelial connexin 43 expression inversely correlate with microvessel permeability and VE-cadherin expression in endotoxin-challenged lungs.

    PubMed

    Kandasamy, Kathirvel; Escue, Rachel; Manna, Jayeeta; Adebiyi, Adebowale; Parthasarathi, Kaushik

    2015-09-15

    Endothelial barrier restoration reverses microvessel hyperpermeability and facilitates recovery from lung injury. Because inhibiting connexin 43 (Cx43)-dependent interendothelial communication blunts hyperpermeability in single microvessels, we determined whether endothelial Cx43 levels correlate with changes in microvessel permeability during recovery from lung injury. Toward this, bacterial endotoxin was instilled intratracheally into rat lungs, and at different durations postinstillation the lungs were isolated and blood perfused. Microvessel Cx43 expression was quantified by in situ immunofluorescence and microvessel permeability via a fluorescence method. To supplement the immunofluorescence data, protein levels were determined by immunoblots of lung tissue from endotoxin-instilled rats. Immunofluorescence and immunoblot together revealed that both Cx43 expression and microvessel permeability increased above baseline within a few hours after endotoxin instillation but declined progressively over the next few days. On day 5 postendotoxin, microvessel Cx43 declined to negligible levels, resulting in complete absence of intermicrovessel communication determined by photolytic uncaging of Ca(2+). However, by day 14, both Cx43 expression and microvessel permeability returned to baseline levels. In contrast to Cx43, expression of microvessel vascular endothelial (VE)-cadherin, a critical determinant of vascular barrier integrity, exhibited an inverse trend by initially declining below baseline and then returning to baseline at a longer duration. Knockdown of vascular Cx43 by tail vein injection of Cx43 shRNA increased VE-cadherin expression, suggesting that reduction in Cx43 levels may modulate VE-cadherin levels in lung microvessels. Together, the data suggest that endotoxin challenge initiates interrelated changes in microvessel Cx43, VE-cadherin, and microvessel permeability, with changes in Cx43 temporally leading the other responses.

  9. Effect of Inert Gas Additive Species on Cl(2) High Density Plasma Etching of Compound Semiconductors: Part 1. GaAs and GaSb

    SciTech Connect

    Abernathy, C.R.; Cho, H.; Hahn, Y.B.; Hays, D.C.; Jung, K.B.; Pearton, S.J.; Shul, R.J.

    1998-12-23

    The role of the inert gas additive (He, Ar, Xe) to C12 Inductively Coupled Plasmas for dry etching of GaAs and GaSb was examined through the effect on etch rate, surface roughness and near-surface stoichiometry. The etch rates for both materials go through a maximum with Clz 0/0 in each type of discharge (C12/'He, C12/Ar, C12/Xc), reflecting the need to have efficient ion-assisted resorption of the etch products. Etch yields initially increase strongly with source power as the chlorine neutral density increases, but decrease again at high powers as the etching becomes reactant-limited. The etched surfaces are generally smoother with Ax or Xe addition, and maintain their stoichiometry.

  10. Simulation of Deformation and Aggregation of Two Red Blood Cells in a Stenosed Microvessel by Dissipative Particle Dynamics.

    PubMed

    Xiao, Lanlan; Liu, Yang; Chen, Shuo; Fu, Bingmei

    2016-12-01

    The motion of two red blood cells in a stenosed microvessel was simulated using dissipative particle dynamics. The effects of intercellular interaction, red blood cell deformability and the initial cell orientation on the deformation and aggregation of the RBCs and on the flow resistance were investigated. The red blood cell membrane was treated as a three-dimensional coarse-grained network model and the intercellular interaction was modeled by the Morse potential based on a depletion-mediated assumption. It is shown that the flow resistance increases dramatically when the red blood cells enter into the stenosis and decreases rapidly as RBCs move away from the stenosis. Particularly, for a pair of stiffer red blood cells with the initial inclination angle of 90°, the maximum value of the flow resistance is larger; while a higher flow resistance can also come from a stronger aggregation. For a pair of stiffer red blood cells moving parallel to the main flow, when their positions are closer to the vessel wall at the upstream of the stenosis, the flow resistance increases due to the migration to the vessel center at the stenosis. In addition, for a pair of red blood cells with the initial inclination angle of 0°, the flow resistance from the aggregate formed by a pair of red blood cells with a larger deformation is higher.

  11. Lipopolysaccharide-induced apoptosis in transformed bovine brain endothelial cells and human dermal microvessel endothelial cells: the role of JNK.

    PubMed

    Karahashi, Hisae; Michelsen, Kathrin S; Arditi, Moshe

    2009-06-01

    Stimulation of transformed bovine brain endothelial cells (TBBEC) with LPS leads to apoptosis while human microvessel endothelial cells (HMEC) need the presence of cycloheximide (CHX) with LPS to induce apoptosis. To investigate the molecular mechanism of LPS-induced apoptosis in HMEC or TBBEC, we analyzed the involvement of MAPK and PI3K in TBBEC and HMEC. LPS-induced apoptosis in TBBEC was hallmarked by the activation of caspase 3, caspase 6, and caspase 8 after the stimulation of LPS, followed by poly(ADP-ribose) polymerase cleavage and lactate dehydrogenase release. We also observed DNA cleavage determined by TUNEL staining in TBBEC treated with LPS. Herbimycin A, a tyrosine kinase inhibitor, and SP600125, a JNK inhibitor, suppressed the activation of caspases and lactate dehydrogenase release. Moreover, a PI3K inhibitor (LY294002) suppressed activation of caspases and combined treatment with both SP600125 and LY294002 completely inhibited the activation of caspases. These results suggest that the JNK signaling pathway through the tyrosine kinase and PI3K pathways is involved in the induction of apoptosis in LPS-treated TBBEC. On the other hand, we observed sustained JNK activation in HMEC treated with LPS and CHX, and neither ERK1/2 nor AKT were activated. The addition of SP600125 suppressed phosphorylation of JNK and the activation of caspase 3 in HMEC treated with LPS and CHX. These results suggest that JNK plays an important role in the induction of apoptosis in endothelial cells.

  12. The Natural Frequency of Nonlinear Oscillation of Ultrasound Contrast Agents in Microvessels

    PubMed Central

    Qin, Shengping; Ferrara, Katherine W.

    2009-01-01

    Ultrasound Contrast Agent (UCAs) are under intensive investigation for their applications in physiological and molecular imaging and drug delivery. Prediction of the natural frequency of the oscillation of UCAs in microvessels has drawn increasing attention. To our knowledge, the existing models to predict the natural frequency of oscillation of UCAs in microvessels all apply the linear approximation and treat the blood vessel wall as a rigid boundary. In the potential applications of ultrasound imaging drug and gene delivery, the compliance of small vessels may play an important role in the bubble’s oscillation. The goal of this work is to provide a lumped-parameter model to study the natural frequency of nonlinear oscillation of UCAs in microvessels. Three types of the blood vessel conditions have been considered. i.e. rigid vessels, normal compliable vessels and vessels with increasing stiffness that could correspond to tumor vasculature. The corresponding bubble oscillation frequencies in the vessels with radius less than 100 μm are examined in detail. When a bubble with a radius of 4 μm is confined in a compliable vessel (inner radius 5 μm and length 100μm), the natural frequency of bubble oscillation increases by a factor of 1.7 as compared with a bubble in an unbounded field. The natural frequency of oscillation of a bubble in a compliable vessel increases with decreasing vessel size while decreasing with increasing values of vessel rigidity. This model suggests that contrast agent size, blood vessel size distribution and the type of vasculature should be comprehensively considered for choosing the transmitted frequency in ultrasound contrast imaging and drug delivery. PMID:17478030

  13. Photoacoustic simulation of microvessel bleeding: spectral analysis and its implication for monitoring vascular-targeted treatments

    NASA Astrophysics Data System (ADS)

    Fadhel, Muhannad N.; Hysi, Eno; Zalev, Jason; Kolios, Michael C.

    2016-03-01

    The destruction of blood vessels is a commonly used cancer therapeutic strategy. Bleeding consequently follows and leads to the accumulation of blood in the interstitium. Photoacoustic (PA) imaging is well positioned to detect bleeding due to its sensitivity to hemoglobin. After treatment vascular disruption can occur within just a few hours, which leads to bleeding which might be detected using PA to assess therapeutic effectiveness. Deep micro-vessels cannot typically be resolved using acoustic-resolution PA. However, spectral analysis of PA signals may still permit assessment of bleeding. This paper introduces a theoretical model to simulate the PA signals from disrupted vessels using a fractal model. The fractal model uses bifurcated-cylinder bases to represent vascular trees. Vessels have circular absorption cross-sections. To mimic bleeding from blood vessels, the diffusion of hemoglobin from micro-vessels was simulated. The PA signals were computed and in the simulations were detected using a linear array transducer (30 MHz center frequency) for four different vascular trees (at 256 axial spatial locations/tree). The Fourier Transform of each beam-formed PA signal was computed and the power spectra were fitted to a straight line within the -6 dB bandwidth of the receiving transducer. When comparing the power spectra before and after simulated bleeding, the spectral slope and mid-band fit (MBF) parameters decreased by 0.12 dB/MHz and 2.12 dB, while the y-intercept did not change after 1 hour of simulated bleeding. The results suggest that spectral PA analysis is sensitive to changes in the concentration and spatial distribution of hemoglobin in tissue, and changes due to bleeding can be detected without the need to resolve individual vessels. The simulations support the applicability of PA imaging in cancer treatment monitoring by detecting micro-vessel disruption.

  14. Motion of red blood cells near microvessel walls: effects of a porous wall layer

    PubMed Central

    HARIPRASAD, DANIEL S.; SECOMB, TIMOTHY W.

    2013-01-01

    A two-dimensional model is used to simulate the motion and deformation of a single mammalian red blood cell (RBC) flowing close to the wall of a microvessel, taking into account the effects of a porous endothelial surface layer (ESL) lining the vessel wall. Migration of RBCs away from the wall leads to the formation of a cell-depleted layer near the wall, which has a large effect on the resistance to blood flow in microvessels. The objective is to examine the mechanical factors causing this migration, including the effects of the ESL. The vessel is represented as a straight parallel-sided channel. The RBC is represented as a set of interconnected viscoelastic elements, suspended in plasma, a Newtonian fluid. The ESL is represented as a porous medium, and plasma flow in the layer is computed using the Brinkman approximation. It is shown that an initially circular cell positioned close to the ESL in a shear flow is deformed into an asymmetric shape. This breaking of symmetry leads to migration away from the wall. With increasing hydraulic resistivity of the layer, the rate of lateral migration increases. It is concluded that mechanical interactions of RBCs flowing in microvessels with a porous wall layer may reduce the rate of lateral migration and hence reduce the width of the cell-depleted zone external to the ESL, relative to the cell-depleted zone that would be formed if the interface between the ESL and free-flowing plasma were replaced by an impermeable boundary. PMID:23493820

  15. A comparative study of the spatial distribution of mast cells and microvessels in the foetal, adult human thymus and thymoma.

    PubMed

    Raica, Marius; Cimpean, Anca Maria; Nico, Beatrice; Guidolin, Diego; Ribatti, Domenico

    2010-02-01

    Mast cells (MCs) are widely distributed in human and animal tissues and have been shown to play an important role in angiogenesis in normal and pathological conditions. Few data are available about the relationship between MCs and blood vessels in the normal human thymus, and there are virtually no data about their distribution and significance in thymoma. The aim of this study was to analyse the spatial distribution of MCs and microvessels in the normal foetal and adult thymus and thymoma. Twenty biopsy specimens of human thymus, including foetal and adult normal thymus and thymoma were analysed. Double staining with CD34 and mast cell tryptase was used to count both mast cells and microvessels in the same fields. Computer-assisted image analysis was performed to characterize the spatial distribution of MCs and blood vessels in selected specimens. Results demonstrated that MCs were localized exclusively to the medulla. Their number was significantly higher in thymoma specimens as compared with adult and foetal normal specimens respectively. In contrast the microvessel area was unchanged. The analysis of the spatial distribution and relationship between MCs and microvessels revealed that only in the thymoma specimens was there a significant spatial association between MCs and microvessels. Overall, these data suggest that MCs do not contribute significantly to the development of the vascular network in foetal and adult thymus, whereas in thymoma they show a close relationship to blood vessels. This could be an expression of their involvement not only in endothelial cells but also in tumour cell proliferation.

  16. Magnetic targeting in the impermeable microvessel with two-phase fluid model--non-Newtonian characteristics of blood.

    PubMed

    Shaw, Sachin; Murthy, P V S N

    2010-09-01

    The present investigation deals with finding the trajectories of the drug dosed magnetic carrier particle in a microvessel with two-phase fluid model which is subjected to the external magnetic field. The radius of the microvessel is divided into the endothelial glycocalyx layer in which the blood is assumed to obey Newtonian character and a core and plug regions where the blood obeys the non-Newtonian Herschel-Bulkley character which is suitable for the microvessel of radius 50 microm. The carrier particles, bound with nanoparticles and drug molecules are injected into the vascular system upstream from malignant tissue, and captured at the tumor site using a local applied magnetic field. The applied magnetic field is produced by a cylindrical magnet positioned outside the body and near the tumor position. The expressions for the fluidic force for the carrier particle traversing in the two-phase fluid in the microvessel and the magnetic force due to the external magnetic field are obtained. Several factors that influence the magnetic targeting of the carrier particles in the microvasculature, such as the size of the carrier particle, the volume fraction of embedded magnetic nanoparticles, and the distance of separation of the magnet from the axis of the microvessel are considered in the present problem. An algorithm is given to solve the system of coupled equations for trajectories of the carrier particle in the invasive case. The trajectories of the carrier particle are found for both invasive and noninvasive targeting systems. A comparison is made between the trajectories in these cases. Also, the present results are compared with the data available for the impermeable microvessel with single-phase fluid flow. Also, a prediction of the capture of therapeutic magnetic nanoparticle in the impermeable microvasculature is made for different radii, distances and volume fractions in both the invasive and noninvasive cases.

  17. Platelet-mediated adhesion facilitates leukocyte sequestration in hypoxia-reoxygenated microvessels.

    PubMed

    Zheng, Senfeng; Cao, Yanting; Zhang, Wenjian; Liu, Honglin; You, Jia; Yin, Yiqing; Lou, Jinning; Li, Chenghui

    2016-03-01

    Leukocyte transendothelial migration and sequestration are two distinct outcomes following leukocyte adhesion to endothelium during ischemia-reperfusion injury, in which platelets may play a pivotal role. In the present study, we established an in vitro hypoxia-reoxygenation model to mimic ischemia-reperfusion injury and found platelet pre-incubation significantly increased leukocyte adhesion to endothelial cells after hyoxia-reoxygenation (over 67%). Blockade of endothelial-cell-expressed adhesion molecules inhibited leukocyte direct adhesion to endothelial cells, while platelet-mediated leukocyte adhesion was suppressed by blockade of platelet-expressed adhesion molecules. Further experiments revealed platelets acted as a bridge to mediate leukocyte adhesion, and platelet-mediated adhesion was the predominant pattern in the presence of platelets. However, platelet pre-incubation significantly suppressed leukocyte transendothelial migration after hypoxia-reoxygenation (over 31%), which could be aggravated by blockade of endothelial-cell-expressed adhesion molecules, but alleviated by blockade of platelet- expressed adhesion molecules. This would indicate that platelet-mediated adhesion disrupted leukocyte transendothelial migration. An in vivo mesenteric ischemia-reperfusion model demonstrated leukocyte transfusion alone caused mild leukocyte adhesion to reperfused vessels and subsequent leukocyte infiltration, while simultaneous leukocyte and platelet transfusion led to massive leukocyte adhesion and sequestration within reperfused microvessels. Our studies revealed platelets enhanced leukocyte adhesion to endothelial cells, but suppressed leukocyte transendothelial migration. Overall, this leads to leukocyte sequestration in hypoxia-reoxygenated microvessels.

  18. Fabrication of a modular hybrid chip to mimic endothelial-lined microvessels in flow conditions

    NASA Astrophysics Data System (ADS)

    Pitingolo, Gabriele; Vecchione, Raffaele; Falanga, Andrea P.; Guarnieri, Daniela; Netti, Paolo A.

    2017-03-01

    In vitro microvessel models exploiting microfluidic channels have been developed to replicate cardiovascular flow conditions and to more closely mimic the blood vessels by traditionally using plasma or solvent evaporation bonding methods. The drawback of these methods is represented by an irreversible sealing which prevents internal accessibility as well as the reuse of the device. This paper presents a novel, simple, and low cost procedure to fabricate a modular and reusable chip with endotheliazed microvessels in a hybrid configuration based on poly(methyl methacrylate) and polydimethylsiloxane presenting a temporary magnetic bonding. In details, small magnets are embedded in the two poly(methyl methacrylate) substrates each of them carrying a thin polydimethylsiloxane layer which provides enhanced sealing during flow conditions as compared to conventional procedures and makes the microchannels circular as preferred in cell culture. Finally, an endothelial cell layer is formed by culturing brain endothelial bEnd.3 cells inside the proposed microchannels and characterized upon microchannel aperture, demonstrating the preservation of the cell layer.

  19. 3-D visualization and quantitation of microvessels in transparent human colorectal carcinoma [corrected].

    PubMed

    Liu, Yuan-An; Pan, Shien-Tung; Hou, Yung-Chi; Shen, Ming-Yin; Peng, Shih-Jung; Tang, Shiue-Cheng; Chung, Yuan-Chiang

    2013-01-01

    Microscopic analysis of tumor vasculature plays an important role in understanding the progression and malignancy of colorectal carcinoma. However, due to the geometry of blood vessels and their connections, standard microtome-based histology is limited in providing the spatial information of the vascular network with a 3-dimensional (3-D) continuum. To facilitate 3-D tissue analysis, we prepared transparent human colorectal biopsies by optical clearing for in-depth confocal microscopy with CD34 immunohistochemistry. Full-depth colons were obtained from colectomies performed for colorectal carcinoma. Specimens were prepared away from (control) and at the tumor site. Taking advantage of the transparent specimens, we acquired anatomic information up to 200 μm in depth for qualitative and quantitative analyses of the vasculature. Examples are given to illustrate: (1) the association between the tumor microstructure and vasculature in space, including the perivascular cuffs of tumor outgrowth, and (2) the difference between the 2-D and 3-D quantitation of microvessels. We also demonstrate that the optically cleared mucosa can be retrieved after 3-D microscopy to perform the standard microtome-based histology (H&E staining and immunohistochemistry) for systematic integration of the two tissue imaging methods. Overall, we established a new tumor histological approach to integrate 3-D imaging, illustration, and quantitation of human colonic microvessels in normal and cancerous specimens. This approach has significant promise to work with the standard histology to better characterize the tumor microenvironment in colorectal carcinoma.

  20. LASER BIOLOGY AND MEDICINE: Recording of lymph flow dynamics in microvessels using correlation properties of scattered coherent radiation

    NASA Astrophysics Data System (ADS)

    Fedosov, I. V.; Tuchin, Valerii V.; Galanzha, E. I.; Solov'eva, A. V.; Stepanova, T. V.

    2002-11-01

    The direction-sensitive method of microflow velocity measurements based on the space — time correlation properties of the dynamic speckle field is described and used for in vivo monitoring of lymph flow in the vessels of rat mesentery. The results of measurements are compared with the data obtained from functional video microscopy of the microvessel region.

  1. Application of image restoration and three-dimensional visualization techniques to frog microvessels in-situ loaded with fluorescent indicators

    NASA Astrophysics Data System (ADS)

    Pagakis, Stamatis N.; Curry, Fitz-Roy E.; Lenz, Joyce F.

    1993-07-01

    In situ experiments on microvessels require image sensors of wide dynamic range due to large variations of the intensity in the scene, and 3D visualization due to the thickness of the preparation. The images require restoration because of the inherent tissue movement, out-of- focus-light contamination, and blur. To resolve the above problems, we developed an imaging system for quantitative imaging based on a 12 bits/pixel cooled CCD camera and a PC based digital imaging system. We applied the optical sectioning technique with image restoration using a modified nearest neighbor algorithm and iterative constrained deconvolution on each of the 2D optical sections. For the 3D visualization of the data, a volume rendering software was used. The data provided 3D images of the distribution of fluorescent indicators in intact microvessels. Optical cross sections were also compared with cross sections of the same microvessels examined in the electron microscope after their luminal surfaces were labeled with a tracer which was both electron dense and fluorescent. This procedure enabled precise identification of the endothelial cells in the microvessel wall as the principal site of accumulation of the fluorescent calcium indicator, fura-2, during microperfusion experiments.

  2. In-vivo visualization of melanoma tumor microvessels and blood flow velocity changes accompanying tumor growth

    NASA Astrophysics Data System (ADS)

    Ishida, Hiroki; Hachiga, Tadashi; Andoh, Tsugunobu; Akiguchi, Shunsuke

    2012-11-01

    We demonstrate that using micro multipoint laser Doppler velocimetry (μ-MLDV) for noninvasive in-vivo imaging of blood vessels is useful for diagnosing malignant melanomas by comparison with visual diagnosis by dermoscopy. The blood flow velocity in microvessels varied during growth of melanomas transplanted in mouse ears. Mouse ears were observed by μ-MLDV up to 16 days after transplantation. The blood flow velocity in the tumor increased with increasing time and reached maximum of 4.5 mm/s at 9 days, which is more than twice that prior to transplantation. After 12 days, when the lesion had grown to an area of 6.6 mm2, we observed the formation of new blood vessels in the tumor. Finally, when the lesion had an area of 18 mm2 after 16 days, the flow velocity in the tumor decreased to approximately 3.2 mm/s.

  3. Connectivity and critical current density of in-situ processed MgB{sub 2} superconductors: Effect of excess Mg and non-carbon based additives

    SciTech Connect

    Bhadauria, P. P. S.; Gupta, Anurag Kishan, Hari; Narlikar, A. V.

    2014-05-14

    In a sequel to our previous paper (J. Appl. Phys. 113, 036908 (2013)), where we reported comprehensive analysis of inter-grain connectivity (A{sub F}), pinning, percolation threshold (P{sub c}), and anisotropy (γ) in a series of ex-situ processed MgB{sub 2}, we address the same issues in in-situ processed samples. MgB{sub 2} samples with stoichiometric composition, excess Mg (5 wt. %) and further 3 wt. % addition of various non-carbon based additives like nano-Ag, nano-Ni, and YBCO are synthesised by the in-situ route. Detailed investigations of X-ray diffraction, magnetization (M), and resistivity (ρ) as a function of temperature (T) and field (B) in the range 5–300 K and 0–8 T are carried out in all the samples. The resistive superconducting onset T{sub con} ∼ 38.6 ± 0.3 K and offset (where ρ goes to zero) T{sub c0} ∼ 38.1 ± 0.3 K of the samples stay nearly unchanged. The inter-grain connectivity (A{sub F}) of the samples varies between 11%–20%. All the additives result in a critical current density (J{sub c}) higher than the stoichiometric MgB{sub 2} sample, where the highest values (e.g., J{sub c}(1 T, 5 K) ∼ 1.2 × 10{sup 9} A/m{sup 2}) are observed for the sample with 5 wt. % excess Mg. The major findings based on quantitative analysis of ρ (T, B) and J{sub c} (B, T) data in all the samples are: (1) along with previously studied ex-situ samples, the J{sub c}(A{sub F}) shows a significant increase at A{sub F} ∼ 7%; (2) the irreversibility lines lie lower than the characteristic T{sub c0}(B) lines in the B-T phase diagram; (3) a universal core pinning (δl- and/or δT{sub c}- type) mechanism is revealed in the entire T range 5–30 K; and (4) typical values of P{sub c} ∼ 0.57 ± 0.04 is indicative of weak link networks.

  4. The role of NF-kappaB in the angiogenic response of coronary microvessel endothelial cells.

    PubMed Central

    Stoltz, R A; Abraham, N G; Laniado-Schwartzman, M

    1996-01-01

    The activation of nuclear factor (NF)-kappaB by 12(R)-hydroxyeicosatrienoic acid [12(R)-HETrE], an arachidonic acid metabolite with potent stereospecific proinflammatory and angiogenic properties, was examined and its role in the angiogenic response was determined in capillary endothelial cells derived from coronary microvessels. Electrophoretic mobility-shift assay of nuclear protein extracts from cells treated with 12(R)-HETrE demonstrated a rapid and stereospecific time- and concentration-dependent increase in the binding activity of NF-kappaB, which was inhibitable by the antioxidants N-acetylcysteine, butylated hydroxyanisole, and pyrrolidine dithiocarbamate and was partially attenuated by the protein kinase C inhibitors, staurosporine and calphostin C. Neither 12(S)-HETrE nor other related eicosanoids--e.g., 12(R)-HETE, 12(S)-HETE, and leukotriene B4--stimulated the activation of NF-kappaB relative to 12(R)-HETrE, substantiating the claim for a specific receptor-mediated mechanism. 12(R)-HETrE stimulated the formation of capillary-like cords of microvessel endothelial cells distinguishable from a control; this effect was comparable to that observed with basic fibroblast growth factor (bFGF). Inhibition of NF-kappaB activation resulted in inhibition of capillary-like formation of endothelial cells treated with 12(R)-HETrE by 80% but did not affect growth observed with bFGF. It is suggested that 12(R)-HETrE's angiogenic activity involves the activation of NF-kappaB, possibly via protein kinase C stimulation and the generation of reactive oxygen intermediates for downstream signaling. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 Fig. 7 PMID:8610127

  5. Effects of ageing and fitness on skin-microvessel vasodilator function in humans.

    PubMed

    Tew, Garry A; Klonizakis, Markos; Saxton, John M

    2010-05-01

    The impact of cardiopulmonary fitness (VO(2max)) on the age-related decline in skin-microvessel vasodilator function has not been fully established and the inter-relationships among different measures of microvascular vasodilator function are unknown. We used laser Doppler flowmetry to assess relative changes in forearm skin blood flow to various stimuli in three groups of adults: young (n = 15; 27 +/- 2 years), older sedentary (n = 14; 65 +/- 6 years) and older fit (n = 15; 61 +/- 5 years). Local-heating induced and post-occlusive hyperaemia responses were higher in the young and older fit groups compared to the older sedentary group (P < 0.05) and were moderately correlated with VO(2max) in the pooled cohort of older adults (r = 0.49-0.58; P < 0.05). Peak hyperaemia responses to acetylcholine and sodium nitroprusside were higher in young compared to older sedentary adults (P < 0.05) and were not associated with VO(2max) in older adults (P > 0.05). Associations among different measures of microvascular vasodilator function were generally moderate at best. In summary, the local heating and reactive hyperaemia data indicate that the age-related decline in skin-microvessel vasodilator function can be ameliorated through regular aerobic exercise training. As this is not supported by the iontophoresis data, we recommend that, when assessing microvascular function, the use of a single physiological or pharmacological stimulation coupled to laser Doppler flowmetry should be avoided. Finally, the moderate correlations between outcomes probably reflect the distinct mediators that are responsible for the vasodilator response to each test.

  6. Mediastinal micro-vessels clipping during lymph node dissection may contribute to reduce postoperative pleural drainage

    PubMed Central

    Yan, Shi; Wang, Xing; Lv, Chao; Phan, Kevin; Wang, Yuzhao; Wang, Jia; Yang, Yue

    2016-01-01

    Background Postoperative pleural drainage markedly influences the length of postoperative stay and financial costs of medical care. The aim of this study is to retrospectively investigate potentially predisposing factors related to pleural drainage after curative thoracic surgery and to explore the impact of mediastinal micro-vessels clipping on pleural drainage control after lymph node dissection. Methods From February 2012 to November 2013, 322 consecutive cases of operable non-small cell lung cancers (NSCLC) undergoing lobectomy and mediastinal lymph node dissection with or without application of clipping were collected. Total and daily postoperative pleural drainage were recorded. Propensity score matching (1:2) was applied to balance variables potentially impacting pleural drainage between group clip and group control. Analyses were performed to compare drainage volume, duration of chest tube and postoperative hospital stay between the two groups. Variables linked with pleural drainage in whole cohort were assessed using multivariable logistic regression analysis. Results Propensity score matching resulted in 197 patients (matched cohort). Baseline patient characteristics were matched between two groups. Group clip showed less cumulative drainage volume (P=0.020), shorter duration of chest tube (P=0.031) and postoperative hospital stay (P=0.022) compared with group control. Risk factors significantly associated with high-output drainage in multivariable logistic regression analysis were being male, age >60 years, bilobectomy/sleeve lobectomy, pleural adhesion, the application of clip applier, duration of operation ≥220 minutes and chylothorax (P<0.05). Conclusions This study suggests that mediastinal micro-vessels clipping during lymph node dissection may reduce postoperative pleural drainage and thus shorten hospital stay. PMID:27076936

  7. Additive effects of nutritional supplementation, together with bisphosphonates, on bone mineral density after hip fracture: a 12-month randomized controlled study

    PubMed Central

    Flodin, Lena; Sääf, Maria; Cederholm, Tommy; Al-Ani, Amer N; Ackermann, Paul W; Samnegård, Eva; Dalen, Nils; Hedström, Margareta

    2014-01-01

    Background After a hip fracture, a catabolic state develops, with increased bone loss during the first year. The aim of this study was to evaluate the effects of postoperative treatment with calcium, vitamin D, and bisphosphonates (alone or together) with nutritional supplementation on total hip and total body bone mineral density (BMD). Methods Seventy-nine patients (56 women), with a mean age of 79 years (range, 61–96 years) and with a recent hip fracture, who were ambulatory before fracture and without severe cognitive impairment, were included. Patients were randomized to treatment with bisphosphonates (risedronate 35 mg weekly) for 12 months (B; n=28), treatment with bisphosphonates along with nutritional supplementation (40 g protein, 600 kcal daily) for the first 6 months (BN; n=26), or to controls (C; n=25). All participants received calcium (1,000 mg) and vitamin D3 (800 IU) daily. Total hip and total body BMD were assessed with dual-energy X-ray absorptiometry at baseline, 6, and 12 months. Marker of bone resorption C-terminal telopeptide of collagen I and 25-hydroxy vitamin D were analyzed in serum. Results Analysis of complete cases (70/79 at 6 months and 67/79 at 12 months) showed an increase in total hip BMD of 0.7% in the BN group, whereas the B and C groups lost 1.1% and 2.4% of BMD, respectively, between baseline and 6 months (P=0.071, between groups). There was no change in total body BMD between baseline and 12 months in the BN group, whereas the B group and C group both lost BMD, with C losing more than B (P=0.009). Intention-to-treat analysis was in concordance with the complete cases analyses. Conclusion Protein-and energy-rich supplementation in addition to calcium, vitamin D, and bisphosphonate therapy had additive effects on total body BMD and total hip BMD among elderly hip fracture patients. PMID:25045257

  8. Computational analysis on the mechanical interaction between a thrombus and red blood cells: possible causes of membrane damage of red blood cells at microvessels.

    PubMed

    Kamada, Hiroki; Imai, Yohsuke; Nakamura, Masanori; Ishikawa, Takuji; Yamaguchi, Takami

    2012-12-01

    Previous studies investigating thrombus formation have not focused on the physical interaction between red blood cells (RBCs) and thrombus, although they have been speculated that some pathological conditions such as microangiopathic hemolytic anemia (MAHA) stem from interactions between RBCs and thrombi. In this study, we investigated the mechanical influence of RBCs on primary thrombi during hemostasis. We also explored the mechanics and aggravating factors of intravascular hemolysis. Computer simulations of primary thrombogenesis in the presence and the absence of RBCs demonstrated that RBCs are unlikely to affect the thrombus height and coverage, although their presence may change microvessel hemodynamics and platelet transportation to the injured wall. Our results suggest that intravascular hemolysis owing to RBC membrane damage would be promoted by three hemodynamic factors: (1) dispersibility of platelet thrombi, because more frequent spatial thrombus formation decreases the time available for an RBC to recover its shape and enforces more severe deformation; (2) platelet thrombus stiffness, because a stiffer thrombus increases the degree of RBC deformation upon collision; and (3) vessel size and hemocyte density, because a smaller vessel diameter and higher hemocyte density decrease the room for RBCs to escape as they come closer to a thrombus, thereby enhancing thrombus-RBC interactions.

  9. Characterization of atrial natriuretic peptide receptors in brain microvessel endothelial cells

    NASA Technical Reports Server (NTRS)

    Whitson, P. A.; Huls, M. H.; Sams, C. F.

    1991-01-01

    Atrial natriuretic peptide (ANP) binding and ANP-induced increases in cyclic guanosine monophosphate (cGMP) levels have been observed in brain microvessels (Chabrier et al., 1987; Steardo and Nathanson, 1987), suggesting that this fluid-regulating hormone may play a role in the fluid homeostasis of the brain. This study was initiated to characterize the ANP receptors in primary cultures of brain microvessel endothelial cells (BMECs). The apparent equilibrium dissociation constant, Kd, for ANP increased from 0.25 nM to 2.5 nM, and the number of ANP binding sites as determined by Scatchard analysis increased from 7,100 to 170,000 sites/cell between 2 and 10 days of culture following monolayer formation. Time- and concentration-dependent studies on the stimulation of cGMP levels by ANP indicated that guanylate cyclase-linked ANP receptors were present in BMECs. The relative abilities of ANP, brain natriuretic peptide (BNP), and a truncated analog of ANP containing amino acids 5-27 (ANP 5-27) to modulate the accumulation of cGMP was found to be ANP greater than BNP much greater than ANP 5-27. Affinity cross-linking with disuccinimidyl suberate and radiolabeled ANP followed by gel electrophoresis under reducing conditions demonstrated a single band corresponding to the 60-70 kD receptor, indicating the presence of the nonguanylate cyclase-linked ANP receptor. Radiolabeled ANP binding was examined in the presence of various concentrations of either ANP, BNP, or ANP 5-27 and suggested that a large proportion of the ANP receptors present in blood-brain barrier endothelial cells bind all of these ligands similarly. These data indicate both guanylate cyclase linked and nonguanylate cyclase linked receptors are present on BMECs and that a higher proportion of the nonguanylate cyclase linked receptors is expressed. This in vitro culture system may provide a valuable tool for the examination of ANP receptor expression and function in blood-brain barrier endothelial cells.

  10. Similar endothelial glycocalyx structures in microvessels from a range of mammalian tissues: evidence for a common filtering mechanism?

    PubMed

    Arkill, K P; Knupp, C; Michel, C C; Neal, C R; Qvortrup, K; Rostgaard, J; Squire, J M

    2011-09-07

    The glycocalyx or endocapillary layer on the luminal surface of microvessels has a major role in the exclusion of macromolecules from the underlying endothelial cells. Current structural evidence in the capillaries of frog mesentery indicates a regularity in the structure of the glycocalyx, with a center-to-center fiber spacing of 20 nm and a fiber width of 12 nm, which might explain the observed macromolecular filtering properties. In this study, we used electron micrographs of tissues prepared using perfusion fixation and tannic acid treatment. The digitized images were analyzed using autocorrelation to find common spacings and to establish whether similar structures, hence mechanisms, are present in the microvessel glycocalyces of a variety of mammalian tissues. Continuous glycocalyx layers in mammalian microvessels of choroid, renal tubules, glomerulus, and psoas muscle all showed similar lateral spacings at ∼19.5 nm (possibly in a quasitetragonal lattice) and longer spacings above 100 nm. Individual glycocalyx tufts above fenestrations in the first three of these tissues and also in stomach fundus and jejunum showed evidence for similar short-range structural regularity, but with more disorder. The fiber diameter was estimated as 18.8 (± 0.2) nm, but we believe this is an overestimate because of the staining method used. The implications of these findings are discussed.

  11. Addition of four-hundred fifty-five microsatellite marker loci to the high density Gossypium hirsutum TM-1 x G. barbadense 3-79 genetic map

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A high density genetic linkage map plays important roles in understanding genome structure of tetraploid cotton, dissecting economically important traits, identifying molecular markers associated with a trait, and cloning a gene of interest through map-based cloning strategy. Four hundred fifty f...

  12. High-contrast in vivo visualization of microvessels using novel FeCo/GC magnetic nanocrystals.

    PubMed

    Lee, Jin Hyung; Sherlock, Sarah P; Terashima, Masahiro; Kosuge, Hisanori; Suzuki, Yoriyasu; Goodwin, Andrew; Robinson, Joshua; Seo, Won Seok; Liu, Zhuang; Luong, Richard; McConnell, Michael V; Nishimura, Dwight G; Dai, Hongjie

    2009-12-01

    FeCo-graphitic carbon shell nanocrystals are a novel MRI contrast agent with unprecedented high per-metal-atom-basis relaxivity (r(1) = 97 mM(-1) sec(-1), r(2) = 400 mM(-1) sec(-1)) and multifunctional capabilities. While the conventional gadolinium-based contrast-enhanced angiographic magnetic MRI has proven useful for diagnosis of vascular diseases, its short circulation time and relatively low sensitivity render high-resolution MRI of morphologically small vascular structures such as those involved in collateral, arteriogenic, and angiogenic vessel formation challenging. Here, by combining FeCo-graphitic carbon shell nanocrystals with high-resolution MRI technique, we demonstrate that such microvessels down to approximately 100 mum can be monitored in high contrast and noninvasively using a conventional 1.5-T clinical MRI system, achieving a diagnostic imaging standard approximating that of the more invasive X-ray angiography. Preliminary in vitro and in vivo toxicity study results also show no sign of toxicity.

  13. High-Contrast In Vivo Visualization of Microvessels Using Novel FeCo/GC Magnetic Nanocrystals

    PubMed Central

    Lee, Jin Hyung; Sherlock, Sarah P.; Terashima, Masahiro; Kosuge, Hisanori; Suzuki, Yoriyasu; Goodwin, Andrew; Robinson, Joshua; Seo, Won Seok; Liu, Zhuang; Luong, Richard; McConnell, Michael V.; Nishimura, Dwight G.; Dai, Hongjie

    2010-01-01

    FeCo-graphitic carbon shell nanocrystals are a novel MRI contrast agent with unprecedented high per-metal-atom-basis relaxivity (r1 = 97 mM−1 sec−1, r2 = 400 mM−1 sec−1) and multifunctional capabilities. While the conventional gadolinium-based contrast-enhanced angiographic magnetic MRI has proven useful for diagnosis of vascular diseases, its short circulation time and relatively low sensitivity render high-resolution MRI of morphologically small vascular structures such as those involved in collateral, arteriogenic, and angiogenic vessel formation challenging. Here, by combining FeCo-graphitic carbon shell nanocrystals with high-resolution MRI technique, we demonstrate that such microvessels down to ~100 μm can be monitored in high contrast and noninvasively using a conventional 1.5-T clinical MRI system, achieving a diagnostic imaging standard approximating that of the more invasive X-ray angiography. Preliminary in vitro and in vivo toxicity study results also show no sign of toxicity. PMID:19859938

  14. Dispersion characteristics of blood during nanoparticle assisted drug delivery process through a permeable microvessel.

    PubMed

    Shaw, Sachin; Ganguly, Suvankar; Sibanda, Precious; Chakraborty, Suman

    2014-03-01

    Nanoparticle assisted drug delivery holds considerable promise as a means of next generation of medicine that allows for the intravascular delivery of drugs and contrast agents. We analyze the dispersion characteristics of blood during a nanoparticle-assisted drug delivery process through a permeable microvessel. The contribution of molecular and convective diffusion is based on Taylor's theory of shear dispersion. The aggregation of red blood cells in blood flowing through small tubes (less than 40 μm) leads to the two-phase flow with a core of rouleaux surrounded by a cell-depleted peripheral layer. The core region models as a non-Newtonian Casson fluid and the peripheral region acts as a Newtonian fluid. We investigate the influence of the nanoparticle volume fraction, the permeability of the blood vessel, pressure distribution, yield stress and the radius of the nanoparticle on the effective dispersion. We show that the effective diffusion of the nanoparticles reduces with an increase in nanoparticle volume fraction. The permeability of the blood vessels increases the effective dispersion at the inlet. The present study contributes to the fundamental understanding on how the particulate nature of blood influences nanoparticle delivery, and is of particular significance in nanomedicine design for targeted drug delivery applications.

  15. In vivo PIV measurement of red blood cell velocity field in microvessels considering mesentery motion.

    PubMed

    Sugii, Yasuhiko; Nishio, Shigeru; Okamoto, Koji

    2002-05-01

    As endothelial cells are subject to flow shear stress, it is important to determine the detailed velocity distribution in microvessels in the study of mechanical interactions between blood and endothelium. Recently, particle image velocimetry (PIV) has been proposed as a quantitative method of measuring velocity fields instantaneously in experimental fluid mechanics. The authors have developed a highly accurate PIV technique with improved dynamic range. spatial resolution and measurement accuracy. In this paper, the proposed method was applied to images of the arteriole in the rat mesentery using an intravital microscope and high-speed digital video system. Taking the mesentery motion into account, the PIV technique was improved to measure red blood cell (RBC) velocity. Velocity distributions with spatial resolutions of 0.8 x 0.8 microm were obtained even near the wall in the centre plane of the arteriole. The arteriole velocity profile was blunt in the centre region of the vessel cross-section and sharp in the near-wall region. Typical flow features for non-Newtonian fluid were shown. Time-averaged velocity profiles in six cross sections with different diameters were compared.

  16. Measurement of a velocity field in microvessels using a high resolution PIV technique.

    PubMed

    Sugii, Yasuhiko; Nishio, Shigeru; Okamoto, Koji

    2002-10-01

    Because endothelial cells are subject to flow shear stress, it is important to determine the velocity distribution in microvessels during studies of the mechanical interactions between the blood and the endothelium. Particle image velocimetry (PIV) is a quantitative method for measuring velocity fields instantaneously in experimental fluid mechanics. The authors have developed a high-resolution PIV technique that improves the dynamic flow range, spatial resolution, and measurement accuracy. The proposed method was applied to images of the arteriole in the rat mesentery, using an intravital microscope and high-speed digital video system. Taking the mesentery motion into account, the PIV technique was improved to measure red blood cell (RBC) velocity. Velocity distributions with spatial resolutions of 0.8 3 0.8 mm were obtained even near the wall in the center plane of the arteriole. The arteriole velocity profile was blunt in the center region of the vessel cross-section and sharp in the near-wall region. Typical flow features for non-Newtonian fluid are shown.

  17. Brain microvessel cross-presentation is a hallmark of experimental cerebral malaria

    PubMed Central

    Howland, Shanshan W; Poh, Chek Meng; Gun, Sin Yee; Claser, Carla; Malleret, Benoit; Shastri, Nilabh; Ginhoux, Florent; Grotenbreg, Gijsbert M; Rénia, Laurent

    2013-01-01

    Cerebral malaria is a devastating complication of Plasmodium falciparum infection. Its pathogenesis is complex, involving both parasite- and immune-mediated events. CD8+ T cells play an effector role in murine experimental cerebral malaria (ECM) induced by Plasmodium berghei ANKA (PbA) infection. We have identified a highly immunogenic CD8 epitope in glideosome-associated protein 50 that is conserved across rodent malaria species. Epitope-specific CD8+ T cells are induced during PbA infection, migrating to the brain just before neurological signs manifest. They are functional, cytotoxic and can damage the blood–brain barrier in vivo. Such CD8+ T cells are also found in the brain during infection with parasite strains/species that do not induce neuropathology. We demonstrate here that PbA infection causes brain microvessels to cross-present parasite antigen, while non-ECM-causing parasites do not. Further, treatment with fast-acting anti-malarial drugs before the onset of ECM reduces parasite load and thus antigen presentation in the brain, preventing ECM death. Thus our data suggest that combined therapies targeting both the parasite and host antigen-presenting cells may improve the outcome of CM patients. PMID:23681698

  18. Tight junction protein expression and barrier properties of immortalized mouse brain microvessel endothelial cells.

    PubMed

    Brown, Rachel C; Morris, Andrew P; O'Neil, Roger G

    2007-01-26

    Understanding the molecular and biochemical mechanisms regulating the blood-brain barrier is aided by in vitro model systems. Many studies have used primary cultures of brain microvessel endothelial cells for this purpose. However, primary cultures limit the generation of material for molecular and biochemical assays since cells grow slowly, are prone to contamination by other neurovascular unit cells, and lose blood-brain barrier characteristics when passaged. To address these issues, immortalized cell lines have been generated. In these studies, we assessed the suitability of the immortalized mouse brain endothelial cell line, bEnd3, as a blood-brain barrier model. RT-PCR and immunofluorescence indicated expression of multiple tight junction proteins. bEnd3 cells formed barriers to radiolabeled sucrose, and responded like primary cultures to disrupting stimuli. Exposing cells to serum-free media on their basolateral side significantly decreased paracellular permeability; astrocyte-conditioned media did not enhance barrier properties. The serum-free media-induced decrease in permeability was correlated with an increase in claudin-5 and zonula occludens-1 immunofluorescence at cell-cell contracts. We conclude that bEnd3 cells are an attractive candidate as a model of the blood-brain barrier due to their rapid growth, maintenance of blood-brain barrier characteristics over repeated passages, formation of functional barriers and amenability to numerous molecular interventions.

  19. Targeted disruption of deep-lying neocortical microvessels in rat using ultrashort laser pulses

    NASA Astrophysics Data System (ADS)

    Nishimura, Nozomi; Schaffer, Christopher B.; Friedman, Beth; Tsai, Philbert S.; Lyden, Patrick D.; Kleinfeld, David

    2004-06-01

    The study of neurovascular diseases such as vascular dementia and stroke require novel models of targeted vascular disruption in the brain. We describe a model of microvascular disruption in rat neocortex that uses ultrashort laser pulses to induce localized injury to specific targeted microvessels and uses two-photon microscopy to monitor and guide the photodisruption process. In our method, a train of high-intensity, 100-fs laser pulses is tightly focused into the lumen of a blood vessel within the upper 500 μm of cortex. Photodisruption induced by these laser pulses creates injury to a single vessel located at the focus of the laser, leaving the surrounding tissue intact. This photodisruption results in three modalities of localized vascular injury. At low power, blood plasma extravasation can be induced. The vessel itself remains intact, while serum is extravasated into the intercellular space. Localized ischemia caused by an intravascular clot results when the photodisruption leads to a brief disturbance of the vascular walls that initiates an endogenous clotting cascade. The formation of a localized thrombus stops the blood flow at the location of the photodisruption. A hemorrhage, defined as a large extravasation of blood including plasma and red blood cells, results when higher laser power is used. The targeted vessel does not remain intact.

  20. Simulated Two-Dimensional Red Blood Cell Motion, Deformation, and Partitioning in Microvessel Bifurcations

    PubMed Central

    Barber, Jared O.; Alberding, Jonathan P.; Restrepo, Juan M.; Secomb, Timothy W.

    2008-01-01

    Movement, deformation, and partitioning of mammalian red blood cells (RBCs) in diverging microvessel bifurcations are simulated using a two-dimensional, flexible-particle model. A set of viscoelastic elements represents the RBC membrane and the cytoplasm. Motion of isolated cells is considered, neglecting cell-to-cell interactions. Center-of-mass trajectories deviate from background flow streamlines due to migration of flexible cells towards the mother vessel centerline upstream of the bifurcation and due to flow perturbations caused by cell obstruction in the neighborhood of the bifurcation. RBC partitioning in the bifurcation is predicted by determining the RBC fraction entering each branch, for a given partition of total flow and for a given upstream distribution of RBCs. Typically, RBCs preferentially enter the higher-flow branch, leading to unequal discharge hematocrits in the downstream branches. This effect is increased by migration toward the centerline but decreased by the effects of obstruction. It is stronger for flexible cells than for rigid circular particles of corresponding size, and decreases with increasing parent vessel diameter. For unequally-sized daughter vessels, partitioning is asymmetric, with RBCs tending to enter the smaller vessel. Partitioning is not significantly affected by branching angles. Model predictions are consistent with previous experimental results. PMID:18686035

  1. The wall traction induced by flowing red blood cells in model microvessels and its potential mechanotransduction

    NASA Astrophysics Data System (ADS)

    Freund, Jonathan; Vermot, Julien

    2013-11-01

    There is evidence in early embryonic development, even well before advective oxygen transport is important, that the presence of red bloods cells per se trigger essential steps of normal vascular development. For example, showed that sequestration of blood cells early in the development of a mouse, such that the hematocrit is reduced, suppresses normal vascular network development. Vascular development also provides a model for remodeling and angiogenesis. We consider the transient stresses associated with blood cells flowing in model microvessels of comparable diameter to those at early stages of development (6 μm to 12 μm). A detailed simulation tool is used to show that passing blood cells present a significant fluctuating traction signature on the vessel wall, well above the mean stresses. This is particularly pronounced for slow flows (<= 50 μm/s) or small diameters (<= 7 μm), for which root-mean-square wall traction fluctuations can exceed their mean. These events potentially present mechanotranduction triggers that direct development or remodeling. Attenuation of such fluctuating tractions by a viscoelastic endothelial glycocalyx layer is also considered. NSF supported.

  2. Control of in vivo microvessel ingrowth by modulation of biomaterial local architecture and chemistry

    SciTech Connect

    Sanders, Joan E.; Baker, Aaron B.; Golledge, Stephen

    2002-04-01

    We developed a method for controlling local architecture and chemistry simultaneously in biomaterial implants to control microvessel ingrowth in vivo. Porous polypropylene disks (5 mm in diameter and 40 um thick) were plasma-coated with a fluoropolymer and then laser-drilled with 50-*m-diameter holes through their thickness. We then oxidized the disks to create hydroxyl functionality on the exposed polypropylene (inside the holes). Acrylamide was grafted to the hydroxyl groups through polymerization in the presence of activating ceric ions. Staining with toluidine blue O demonstrated that grafting occurred only inside the holes. We used the Hoffman degradation reaction to convert the amide groups of acrylamide to amine groups, and then we used ethylene glycol diglycidyl ether to attach biomolecules of interest inside the holes: secreted protein acidic and rich in cysteine (SPARC) peptide Lys-Gly-His-Lys (KGHK; angiogenic), thrombospondin-2 (TSP; antiangiogenic), or albumin (rat; neutral). In vivo testing in a rat subcutaneous dorsum model for a 3-week interval demonstrated a greater vessel surface area (p = 0.032) and a greater number of vessels (p = 0.043) in tissue local to the holes with KGHKimmobilized disks than with TSP-immobilized disks. However, differences between KGHK-immobilized and albuminimmobilized disks were less significant (p = 0.120 and p = 0.289 for the vessel surface area and number of vessels, respectively). The developed methods have potential applications in biomaterial design applications for which selective neovascularization is desired.

  3. The Effects of Taoren-Honghua Herb Pair on Pathological Microvessel and Angiogenesis-Associated Signaling Pathway in Mice Model of CCl4-Induced Chronic Liver Disease

    PubMed Central

    Xi, Shengyan; Yue, Lifeng; Shi, Mengmeng; Peng, Ying; Xu, Yangxinzi; Wang, Xinrong; Li, Qian; Kang, Zhijun; Li, Hanjing; Wang, Yanhui

    2016-01-01

    Chronic liver disease is one of the most common diseases that threaten human health. Effective treatment is still lacking in western medicine. Semen Persicae (Taoren) and Flos Carthami (Honghua) are known to relieve acute hepatic injury and inflammation, improve microcirculation, and reduce tissue fiber. The aim of our study is to investigate the potential mechanisms of Taoren-Honghua Herb Pair (THHP) in murine model of chronic liver disease caused by Carbon Tetrachloride (CCl4). Mice were randomly divided into seven groups: (1) blank, (2) model, (3) control (colchicine, 0.1 mg/kg), (4) THHP (5.53, 2.67, and 1.33 g/kg), and (5) Tao Hong Siwu Decoction (THSWD) (8.50 g/kg). Histological change and microvessels density were examined by microscopy. Hepatic function, serum fibrosis related factors, and hepatic vascular endothelial growth factor (VEGF) were measured with ELISA. VEGF, kinase insert domain-containing receptor (KDR), Flt-1, and Akt mRNA expression in hepatic tissue were determined with PCR. Tissues of Akt, pAkt, KDR, and Flt-1 were measured with western blotting. Data from this study showed that THHP improved hepatic function and restrained the hepatic inflammation and fibrosis. Its role in inhibiting pathological angiogenesis and hepatic fibrogenesis may be through affecting the angiogenesis-associated VEGF and its upstream and downstream signaling pathways. PMID:27293456

  4. Sexual dimorphism in the permeability response of coronary microvessels to adenosine

    PubMed Central

    Huxley, Virginia H.; Wang, JianJie; Whitt, Stevan P.

    2012-01-01

    Gender influences volume regulation via several mechanisms; whether these include microvascular exchange, especially in the heart, is not known. In response to adenosine (Ado), permeability (Ps)to protein of coronary arterioles of female pigs decreases acutely. Whether Ado induces similar Ps changes in arterioles from males or whether equivalent responses occur in coronary venules of either sex has not been determined. Hypotheses that 1) basal Ps properties and 2) Ps responses to vasoactive stimuli are sex independent were evaluated from measures of Ps to two hydrophilic proteins, α-lactalbumin and porcine serum albumin (PSA), in arterioles and venules isolated from hearts of adult male and female pigs. Consistent with hypothesis 1, basal Ps values of both microvessel types were independent of sex. Contrary to hypothesis 2, Ps responses to Ado varied with sex, protein, and vessel type. Confirming earlier studies, Ado induced a ~20% decrease in Ps to both proteins in coronary arterioles from females. In arterioles from males, Ado did not change Ps for α-lactalbumin (Psα-lactalb, 3 ± 13%) whereas Ps for PSA (PsPSA) decreased by 27 ± 8% (P < 0.005). In venules from females, Ado elevated PsPSA by 44 ± 20% (P < 0.05), whereas in those from males, Ado reduced PsPSA by 24 ± 5% (P < 0.05). The variety of outcomes is consistent with transvascular protein and protein-carried solute flux being regulated by multiple sex-dependent mechanisms in the heart and provides evidence of differences in exchange homeostasis of males and females in health and, likely, disease. PMID:15563527

  5. Effects of hydroxyethylrutosides on the permeability of microvessels in the frog mesentery.

    PubMed Central

    Kendall, S.; Towart, R.; Michel, C. C.

    1993-01-01

    1. We have investigated the effects of a standardised mixture of hydroxyethylrutosides (HR, Venoruton), a mixture of five of its main components (M) and each of the five components separately (7-mono-HR, 7,4'-di-HR, 7,3',4'-tri-HR, 5,7,3',4'-tetra-HR and 7,3'4'-tri HQ) upon the permeability of single perfused capillaries and venules in the mesenteries of pithed frogs. 2. In each experiment, the hydraulic permeability (Lp) of a single perfused microvessel and the effective osmotic pressure (sigma delta pi) exerted by macromolecules across its walls were estimated by a microcclusion technique, first during control perfusion and then in the presence of a known concentration of test substance. 3. HR, M and 7,4'-di-HR reduced Lp in a similar concentration-dependent manner over the range of 1 microgram ml-1 to 1 mg ml-1 (maximum reduction was to 40% of control Lp at 1 mg ml-1). At perfusate concentrations greater than 1 mg ml-1, these substances reduced Lp to a lesser extent. While the four other test substances reduced Lp significantly when their perfusate concentrations equalled or exceeded 100 micrograms ml-1, they were all less potent than 7,4'-di-HR. 4. The reduction in Lp induced by the mixture of flavonoids was only slightly reversed by subsequent perfusion with flavonoid-free solutions. 5. When permeability was increased by perfusing with protein-free solutions, both HR and 7,4'-di-HR reduced and then reversed the increase in Lp in a concentration-dependent manner over the range of 1 microgram ml-1 to 100 micrograms ml-1.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8220880

  6. Effect of thermal additions on the density and distribution of thermophilic amoebae and pathogenic Naegleria fowleri in a newly created cooling lake

    SciTech Connect

    Tyndall, R.L.; Ironside, K.S.; Metler, P.L.; Tan, E.L. ); Hazen, T.C.; Fliermans, C.B. )

    1989-03-01

    Pathogenic Naegleria fowleri is the causative agent of fatal human amoebic meningoencephalitis. The protozoan is ubiquitous in nature, and its presence is enhanced by thermal additions. In this investigation, water and sediments from a newly created cooling lake were quantitatively analyzed for the presence of thermophilic amoebae, thermophilic Naegleria spp., and the pathogen Naegleria fowleri. During periods of thermal additions, the concentrations of thermophilic amoebae and thermophilic Naegleria spp. increased as much as 5 orders of magnitude, and the concentration of the pathogen N. fowleri increased as much as 2 orders of magnitude. Concentrations of amoebae returned to prior thermal perturbation levels within 30 to 60 days after cessation of thermal additions. Increases in the thermophilic amoeba concentrations were noted in Savannah River oxbows downriver from the Savannah River plant discharge streams as compared with oxbows upriver from the discharges. Concentrations of thermophilic amoebae and thermophilic Naegleria spp. correlated significantly with temperature and conductivity. Air samples taken proximal to the lade during periods of thermal addition showed no evidence of thermophilic Naegleria spp. Isoenzyme patterns of the N. fowleri isolated from the cooling lake were identical to patterns of N. fowleri isolated from other sites in the United States and Belgium.

  7. Effect of thermal additions on the density and distribution of thermophilic amoebae and pathogenic Naegleria fowleri in a newly created cooling lake.

    PubMed Central

    Tyndall, R L; Ironside, K S; Metler, P L; Tan, E L; Hazen, T C; Fliermans, C B

    1989-01-01

    Pathogenic Naegleria fowleri is the causative agent of fatal human amoebic meningoencephalitis. The protozoan is ubiquitous in nature, and its presence is enhanced by thermal additions. In this investigation, water and sediments from a newly created cooling lake were quantitatively analyzed for the presence of thermophilic amoebae, thermophilic Naegleria spp., and the pathogen Naegleria fowleri. During periods of thermal additions, the concentrations of thermophilic amoebae and thermophilic Naegleria spp. increased as much as 5 orders of magnitude, and the concentration of the pathogen N. fowleri increased as much as 2 orders of magnitude. Concentrations of amoebae returned to prior thermal perturbation levels within 30 to 60 days after cessation of thermal additions. Increases in the thermophilic amoeba concentrations were noted in Savannah River oxbows downriver from the Savannah River plant discharge streams as compared with oxbows upriver from the discharges. Concentrations of thermophilic amoebae and thermophilic Naegleria spp. correlated significantly with temperature and conductivity. Air samples taken proximal to the lake during periods of thermal addition showed no evidence of thermophilic Naegleria spp. Isoenzyme patterns of the N. fowleri isolated from the cooling lake were identical to patterns of N. fowleri isolated from other sites in the United States and Belgium. PMID:2930172

  8. Correlations of neuronal and microvascular densities in murine cortex revealed by direct counting and colocalization of nuclei and vessels

    PubMed Central

    Tsai, Philbert S.; Kaufhold, John P.; Blinder, Pablo; Friedman, Beth; Drew, Patrick J.; Karten, Harvey J.; Lyden, Patrick D.; Kleinfeld, David

    2016-01-01

    It is well known that the density of neurons varies within the adult brain. In neocortex, this includes variations in neuronal density between different lamina as well as between different regions. Yet the concomitant variation of the microvessels is largely uncharted. Here we present automated histological, imaging, and analysis tools to simultaneously map the locations of all neuronal and non-neuronal nuclei and the centerlines and diameters of all blood vessels within thick slabs of neocortex from mice. Based on total inventory measurements of different cortical regions (~ 107 cells vectorized across brains), these methods revealed: (1) In three dimensions, the mean distance of the center of neuronal somata to the closest microvessel was 14 μm. (2) Volume samples within lamina of a given region show that the density of microvessels does not match the strong laminar variation in neuronal density. This holds for both agranular and granular cortex. (3) Volume samples in successive radii from the midline to the ventral-lateral edge, where each volume summed the number of cells and microvessels from the pia to the white matter, show a significant correlation between neuronal and microvessel densities. These data show that while neuronal and vascular densities do not track each other on the 100 μm scale of cortical lamina, they do track each other on the 1 – 10 mm scale of the cortical mantle. The absence of a disproportionate density of blood vessels in granular lamina is argued to be consistent with the initial locus of functional brain imaging signals. PMID:19923289

  9. Ultrastructural analysis of contractile cell development in lung microvessels in hyperoxic pulmonary hypertension. Fibroblasts and intermediate cells selectively reorganize nonmuscular segments.

    PubMed Central

    Jones, R.

    1992-01-01

    The current study traces the development of contractile cells in the nonmuscular segments of rat lung microvessels in hyperoxic pulmonary hypertension. New intimal cells first develop into a well-defined layer beneath the endothelium and internal to an elastic lamina. Ultrastructurally, these cells are found to be 1) fibroblasts recruited to the vessel wall from the interstitium and 2) intermediate cells, a population of preexisting vascular cells (structurally between a smooth muscle cell and a pericyte). Early in hyperoxia (days 3 through 7), interstitial fibroblasts migrate and align around the smallest vessels in which an elastic lamina is either absent or fragmentary. These cells then are incorporated into the vessel wall by tropoelastin secretion and the formation of an elastic lamina along their abluminal margin. After day 7, the new mural fibroblasts acquire the features of contractile cells, namely a basal lamina, extensive microfilaments, and dense bodies. In other vessels, as early as day 3 of hyperoxia, intermediate cells within the vessel intima begin to acquire the additional filaments and dense bodies of contractile cells. As hyperoxia continues, each cell pathway gives rise to vessels with distinct intimal or medial layers of contractile cells. In this way, thick-walled 'newly muscularized' vessel segments form adjacent to the capillary bed. Images Figure 1 Figure 5 Figure 6 Figure 7 p1500-a Figure 8 Figure 9 Figure 10 Figure 11 Figure 12 Figure 13 Figure 14 Figure 15 PMID:1466406

  10. No Identical "Mesenchymal Stem Cells" at Different Times and Sites: Human Committed Progenitors of Distinct Origin and Differentiation Potential Are Incorporated as Adventitial Cells in Microvessels.

    PubMed

    Sacchetti, Benedetto; Funari, Alessia; Remoli, Cristina; Giannicola, Giuseppe; Kogler, Gesine; Liedtke, Stefanie; Cossu, Giulio; Serafini, Marta; Sampaolesi, Maurilio; Tagliafico, Enrico; Tenedini, Elena; Saggio, Isabella; Robey, Pamela G; Riminucci, Mara; Bianco, Paolo

    2016-06-14

    A widely shared view reads that mesenchymal stem/stromal cells ("MSCs") are ubiquitous in human connective tissues, can be defined by a common in vitro phenotype, share a skeletogenic potential as assessed by in vitro differentiation assays, and coincide with ubiquitous pericytes. Using stringent in vivo differentiation assays and transcriptome analysis, we show that human cell populations from different anatomical sources, regarded as "MSCs" based on these criteria and assumptions, actually differ widely in their transcriptomic signature and in vivo differentiation potential. In contrast, they share the capacity to guide the assembly of functional microvessels in vivo, regardless of their anatomical source, or in situ identity as perivascular or circulating cells. This analysis reveals that muscle pericytes, which are not spontaneously osteochondrogenic as previously claimed, may indeed coincide with an ectopic perivascular subset of committed myogenic cells similar to satellite cells. Cord blood-derived stromal cells, on the other hand, display the unique capacity to form cartilage in vivo spontaneously, in addition to an assayable osteogenic capacity. These data suggest the need to revise current misconceptions on the origin and function of so-called "MSCs," with important applicative implications. The data also support the view that rather than a uniform class of "MSCs," different mesoderm derivatives include distinct classes of tissue-specific committed progenitors, possibly of different developmental origin.

  11. Significant improvement in the critical current density of MgB2 bulks in situ sintered at low temperature by excess Mg addition

    NASA Astrophysics Data System (ADS)

    Ma, Zongqing; Liu, Yongchang; Cai, Qi; Yu, Liming

    2014-01-01

    MgB2 bulks with excess Mg addition were rapidly synthesized by sintering at low temperature in present work. It is found that even after ball milling treatment of original powders, the reaction between Mg and B during subsequent low temperature sintering process was uncompleted within 5 h and there is still some residual Mg. On the other hand, the presence of residual Mg can make the sintering microstructure more homogeneous and dense, and also reduce lattice defects and mechanical strains. All the factors are contributed to the improvement of the grain connectivity in the samples with excess Mg addition sintered at low temperature compared to the reference MgB2 sample sintered at high temperature. Hence, Jc of these prepared samples is enhanced significantly across the whole measured fields. Especially, at 20 K, 2 T, the value of Jc in the 5 h-sintered MgB2 bulk with Mg addition is above 1 × 105 A cm-2. The technique developed in present work is an effective and low-cost way to further enhance Jc in the MgB2 superconductors without using expensive nanometer-size dopants.

  12. In Silico Investigation of Angiogenesis with Growth and Stress Generation Coupled to Local Extracellular Matrix Density

    PubMed Central

    Edgar, Lowell T.; Hoying, James B.; Weiss, Jeffrey A.

    2015-01-01

    Mechanical interactions during angiogenesis, i.e., traction applied by neovessels to the extracellular matrix and the corresponding deformation, are important regulators of growth and neovascularization. We have previously designed, implemented, and validated a coupled model of angiogenesis in which a discrete microvessel growth model interacts with a continuous finite element mesh through the application of local remodeling sprout stresses (Edgar et al. in Biomech Model Mechanobiol, 2014). However, the initial implementation of this framework does not take matrix density into account when determined these remodeling stresses and is therefore insufficient for the study of angiogenesis within heterogeneous matrix environments such as those found in vivo. The objective of this study was to implement sensitivity to matrix density in the active stress generation within AngioFE in order to allow the study of angiogenic growth within a heterogeneous density environment. We accomplished this by scaling active sprout stresses relative to local matrix density using a scaling factor previously determined from experimental data. We then exercised the new functionality of the model by simulating angiogenesis within four different scenarios: homogeneous density, a narrow gap model, and matrix density gradient, and a construct subjected to repeated loading/unloading and preconditioning. These numerical experiments predicted heterogeneous matrix density in the initially homogeneous case, the closure and alignment of microvessels along a low-density gap, the formation of a unique cap-like structure during angiogenesis within a density gradient, and the alignment of microvessels in the absence of applied load due to preconditioning. The result of these in silico investigations demonstrate how matrix heterogeneity affects neovascularization and matrix deformation and provides a platform for studying angiogenesis in complicated and multi-faceted mechanical environments that

  13. Effect of oxyfluorinated multi-walled carbon nanotube additives on positive temperature coefficient/negative temperature coefficient behavior in high-density polyethylene polymeric switches

    SciTech Connect

    Bai, Byong Chol; Kang, Seok Chang; Im, Ji Sun; Lee, Se Hyun; Lee, Young-Seak

    2011-09-15

    Graphical abstract: The electrical properties of MWCNT-filled HDPE polymeric switches and their effect on oxyfluorination. Highlights: {yields} Oxyfluorinated MWCNTs were used to reduce the PTC/NTC phenomenon in MWCNT-filled HDPE polymeric switches. {yields} Electron mobility is difficult in MWCNT particles when the number of oxygen functional groups (C-O, C=O) increases by oxyfluorination. {yields} A mechanism of improved electrical properties of oxyfluorinated MWCNT-filled HDPE polymeric switches was suggested. -- Abstract: Multi-walled carbon nanotubes (MWCNTs) were embedded into high-density polyethylene (HDPE) to improve the electrical properties of HDPE polymeric switches. The MWCNT surfaces were modified by oxyfluorination to improve their positive temperature coefficient (PTC) and negative temperature coefficient (NTC) behaviors in HDPE polymeric switches. HDPE polymeric switches exhibit poor electron mobility between MWCNT particles when the number of oxygen functional groups is increased by oxyfluorination. Thus, the PTC intensity of HDPE polymeric switches was increased by the destruction of the electrical conductivity network. The oxyfluorination of MWCNTs also leads to weak NTC behavior in the MWCNT-filled HDPE polymeric switches. This result is attributed to the reduction of the mutual attraction between the MWCNT particles at the melting temperature of HDPE, which results from a decrease in the surface free energy of the C-F bond in MWCNT particles.

  14. Age-Related Loss in Bone Mineral Density of Rats Fed Lifelong on a Fish Oil-Based Diet Is Avoided by Coenzyme Q10 Addition

    PubMed Central

    Varela-López, Alfonso; Ochoa, Julio J.; Llamas-Elvira, José M.; López-Frías, Magdalena; Planells, Elena; Ramirez-Tortosa, MCarmen; Ramirez-Tortosa, Cesar L.; Giampieri, Francesca; Battino, Maurizio; Quiles, José L.

    2017-01-01

    During aging, bone mass declines increasing osteoporosis and fracture risks. Oxidative stress has been related to this bone loss, making dietary compounds with antioxidant properties a promising weapon. Male Wistar rats were maintained for 6 or 24 months on diets with fish oil as unique fat source, supplemented or not with coenzyme Q10 (CoQ10), to evaluate the potential of adding this molecule to the n-3 polyunsaturated fatty acid (n-3 PUFA)-based diet for bone mineral density (BMD) preservation. BMD was evaluated in the femur. Serum osteocalcin, osteopontin, receptor activator of nuclear factor-κB ligand, ostroprotegerin, parathyroid hormone, urinary F2-isoprostanes, and lymphocytes DNA strand breaks were also measured. BMD was lower in aged rats fed a diet without CoQ10 respect than their younger counterparts, whereas older animals receiving CoQ10 showed the highest BMD. F2-isoprostanes and DNA strand breaks showed that oxidative stress was higher during aging. Supplementation with CoQ10 prevented oxidative damage to lipid and DNA, in young and old animals, respectively. Reduced oxidative stress associated to CoQ10 supplementation of this n-3 PUFA-rich diet might explain the higher BMD found in aged rats in this group of animals. PMID:28241421

  15. Age-Related Loss in Bone Mineral Density of Rats Fed Lifelong on a Fish Oil-Based Diet Is Avoided by Coenzyme Q10 Addition.

    PubMed

    Varela-López, Alfonso; Ochoa, Julio J; Llamas-Elvira, José M; López-Frías, Magdalena; Planells, Elena; Ramirez-Tortosa, MCarmen; Ramirez-Tortosa, Cesar L; Giampieri, Francesca; Battino, Maurizio; Quiles, José L

    2017-02-22

    During aging, bone mass declines increasing osteoporosis and fracture risks. Oxidative stress has been related to this bone loss, making dietary compounds with antioxidant properties a promising weapon. Male Wistar rats were maintained for 6 or 24 months on diets with fish oil as unique fat source, supplemented or not with coenzyme Q10 (CoQ10), to evaluate the potential of adding this molecule to the n-3 polyunsaturated fatty acid (n-3 PUFA)-based diet for bone mineral density (BMD) preservation. BMD was evaluated in the femur. Serum osteocalcin, osteopontin, receptor activator of nuclear factor-κB ligand, ostroprotegerin, parathyroid hormone, urinary F₂-isoprostanes, and lymphocytes DNA strand breaks were also measured. BMD was lower in aged rats fed a diet without CoQ10 respect than their younger counterparts, whereas older animals receiving CoQ10 showed the highest BMD. F₂-isoprostanes and DNA strand breaks showed that oxidative stress was higher during aging. Supplementation with CoQ10 prevented oxidative damage to lipid and DNA, in young and old animals, respectively. Reduced oxidative stress associated to CoQ10 supplementation of this n-3 PUFA-rich diet might explain the higher BMD found in aged rats in this group of animals.

  16. [Effect of taurine on the microvessel exchange function and adrenergic response of veins and arteries in the cat skeletal muscle].

    PubMed

    Kudriashov, Iu A; Denisov, P I

    2001-01-01

    In cats anesthetized with Uretan and perfused with a constant blood volume, Taurine induced responses of neither arterial nor venous vessels of the skeletal muscle but increased the capillary filtration coefficient without any significant change of the capillary pressure in the skeletal muscle's microvessels. Taurine also increased both the constrictor and the dilatory responses of the arterial and venous vessels. The mechanism of the Taurine effects upon the smooth muscle elements of arteries and veins as well as upon proper mechanisms of capillary pressure control and capillary filtration coefficient, seems to be calcium-dependent.

  17. Structural and spectroscopic (UV-Vis, IR, Raman, and NMR) characteristics of anisaldehydes that are flavoring food additives: A density functional study in comparison with experiments

    NASA Astrophysics Data System (ADS)

    Altun, Ahmet; Swesi, O. A. A.; Alhatab, B. S. S.

    2017-01-01

    The molecular structures, vibrational spectra (IR and Raman), electronic spectra (UV-Vis and DOS), and NMR spectra (13C and 1H) of p-anisaldehyde, m-anisaldehyde, and o-anisaldehyde have been studied by using the B3LYP density functional and the 6-311++G** basis set. While p-anisaldehyde has been found to contain two stable conformers at room temperature, m-anisaldehyde and o-anisaldehyde contain four stable conformers. In agreement with the calculated ground-state energetics and small transition barriers, the comparison of the experimental and calculated spectra of the anisaldehydes indicates equilibrium between all conformers at room temperature. However, the two conformers of o-anisaldehyde, in which the methoxy group lies out of the ring plane, are too rare at the equilibrium. The equilibrium conditions of the conformers of the anisaldehyde isomers have been shown readily accessible through UV-Vis and 13C NMR spectral studies but requiring very detailed vibrational analyses. The effect of the solvent has been found to red-shift the electronic absorption bands and to make the anisaldehydes more reactive and soft. Molecular electrostatic potential maps of the anisaldehydes show that their oxygen atoms are the sites for nucleophilic reactivity. Compared with the most sophisticated NBO method, ESP charges have been found mostly reliable while Mulliken charges fail badly with the present large 6-311++G** basis set. The present calculations reproduce not only the experimental spectral characteristics of the anisaldehydes but also reveal their several structural features.

  18. Endothelial surface glycocalyx can regulate flow-induced nitric oxide production in microvessels in vivo.

    PubMed

    Yen, Wanyi; Cai, Bin; Yang, Jinlin; Zhang, Lin; Zeng, Min; Tarbell, John M; Fu, Bingmei M

    2015-01-01

    Due to its unique location, the endothelial surface glycocalyx (ESG) at the luminal side of the microvessel wall may serve as a mechano-sensor and transducer of blood flow and thus regulate endothelial functions. To examine this role of the ESG, we used fluorescence microscopy to measure nitric oxide (NO) production in post-capillary venules and arterioles of rat mesentery under reduced (low) and normal (high) flow conditions, with and without enzyme pretreatment to remove heparan sulfate (HS) of the ESG and in the presence of an endothelial nitric oxide synthase (eNOS) inhibitor, NG-monomethyl-L-arginine (L-NMMA). Rats (SD, 250-300 g) were anesthetized. The mesentery was gently taken out from the abdominal cavity and arranged on the surface of a glass coverslip for the measurement. An individual post-capillary venule or arteriole was cannulated and loaded for 45 min with 5 μM 4, 5-Diaminofluorescein diacetate, a membrane permeable fluorescent indictor for NO, then the NO production was measured for ~10 min under a low flow (~300 μm/s) and for ~60 min under a high flow (~1000 μm/s). In the 15 min after switching to the high flow, DAF-2-NO fluorescence intensity increased to 1.27-fold of its baseline, DAF-2-NO continuously increased under the high flow, to 1.53-fold of its baseline in 60 min. Inhibition of eNOS by 1 mM L-NMMA attenuated the flow-induced NO production to 1.13-fold in 15 min and 1.30-fold of its baseline in 60 min, respectively. In contrast, no significant increase in NO production was observed after switching to the high flow for 60 min when 1 h pretreatment with 50 mU/mL heparanase III to degrade the ESG was applied. Similar NO production was observed in arterioles under low and high flows and under eNOS inhibition. Our results suggest that ESG participates in endothelial cell mechanosensing and transduction through its heparan sulfate to activate eNOS.

  19. Effect of Ni and Pd Addition on Mechanical, Thermodynamic, and Electronic Properties of AuSn4-Based Intermetallics: A Density Functional Investigation

    NASA Astrophysics Data System (ADS)

    Tian, Yali; Zhou, Wei; Wu, Ping

    2016-08-01

    The effects of Ni and Pd addition on the mechanical, thermodynamic, and electronic properties of AuSn4-based intermetallic compounds (IMCs) have been investigated by first-principles calculations to reveal the essence of Au embrittlement. Three kinds of doped (namely Ni-doped, Pd-doped, and Ni/Pd-codoped) IMCs are considered in this work. The polycrystalline elastic properties are deduced from single-crystal elastic constants. It is found that the doped systems together with nondoped AuSn4 are all ductile phases. For Ni-doped AuSn4, the modulus, hardness, brittleness, Debye temperature, and minimum thermal conductivity increase with the Ni fraction, but this is not the case for the Pd-doped material, since Au0.75Pd0.25Sn4 is the more brittle phase. For Au0.5Pd0.25Ni0.25Sn4, the mechanical, thermodynamic, and electronic properties are similar to those of Au0.5Pd0.5Sn4.

  20. MicroRNA-155 Regulates ROS Production, NO Generation, Apoptosis and Multiple Functions of Human Brain Microvessel Endothelial Cells Under Physiological and Pathological Conditions.

    PubMed

    Liu, Yajing; Pan, Qunwen; Zhao, Yuhui; He, Caixia; Bi, Kexia; Chen, Yusen; Zhao, Bin; Chen, Yanfang; Ma, Xiaotang

    2015-12-01

    The microRNA-155 (miR155) regulates various functions of cells. Dysfunction or injury of endothelial cells (ECs) plays an important role in the pathogenesis of various vascular diseases. In this study, we investigated the role and potential mechanisms of miR155 in human brain microvessel endothelial cells (HBMECs) under physiological and pathological conditions. We detected the effects of miR155 silencing on ROS production, NO generation, apoptosis and functions of HBMECs at basal and in response to oxidized low density lipoprotein (ox-LDL). Western blot and q-PCR were used for analyzing the gene expression of epidermal growth factor receptor (EGFR)/extracellular regulated protein kinases (ERK)/p38 mitogen-activated protein kinase (p38 MAPK), phosphatidylinositol-3-kinase (PI3K) and serine/threonine kinase(Akt), activated caspase-3, and intercellular adhesion molecule-1 (ICAM-1). Results showed that under both basal and challenge situations: (1) Silencing of miR155 decreased apoptosis and reactive oxygen species (ROS) production of HBMECs, whereas, promoted nitric oxide (NO) generation. (2) Silencing of miR155 increased the proliferation, migration, and tube formation ability of HBMECs, while decreased cell adhesion ability. (3) Gene expression analyses showed that EGFR/ERK/p38 MAPK and PI3K/Akt were increased and that activated caspase-3 and ICAM-1 mRNA were decreased after knockdown of miR155. In conclusion, knockdown of miR155 could modulate ROS production, NO generation, apoptosis and function of HBMECs via regulating diverse gene expression, such as caspase-3, ICAM-1 and EGFR/ERK/p38 MAPK and PI3K/Akt pathways.

  1. Investigation of the effect of Ag addition on the critical current density of the high-temperature superconductor Nd1.85Ce0.15CuO4

    NASA Astrophysics Data System (ADS)

    Radhikesh Raveendran, N.; Vinod, K.; Amaladass, E. P.; Janaki, J.; Mani, Awadhesh

    2016-07-01

    We have synthesized a Nd1.85Ce0.15CuO4 + Ag composite system with the aim of studying the effect of Ag addition in the electron-doped system Nd1.85Ce0.15CuO4 on its superconducting and magnetic properties. Measurements of magnetization using a vibration sample magnetometer indicate a systematic increase in diamagnetic shielding upon Ag addition. A subsequent analysis of the critical current density using the Bean model indicates a small but significant increase in intra-grain critical current density upon Ag addition. From the study of the dependence of electrical resistivity on the temperature and electrical current, an increase in inter-granular critical current has also been evidenced upon Ag addition. These results correlate well with the earlier reports of a similar improvement in the properties on the hole-doped ceramic superconductor/Ag composites. Possible reasons for the enhancement of JC have been described and discussed. Magnetic characterization by AC susceptibility using a SQUID magnetometer has been presented for a representative composition, which enabled delineation of the inter- and intra-granular transitions.

  2. Methamphetamine, 3,4-methylenedioxymethamphetamine (MDMA) and 3,4-methylenedioxypyrovalerone (MDPV) induce differential cytotoxic effects in bovine brain microvessel endothelial cells.

    PubMed

    Rosas-Hernandez, Hector; Cuevas, Elvis; Lantz, Susan M; Rice, Kenner C; Gannon, Brenda M; Fantegrossi, William E; Gonzalez, Carmen; Paule, Merle G; Ali, Syed F

    2016-08-26

    Designer drugs such as synthetic psychostimulants are indicative of a worldwide problem of drug abuse and addiction. In addition to methamphetamine (METH), these drugs include 3,4-methylenedioxy-methamphetamine (MDMA) and commercial preparations of synthetic cathinones including 3,4-methylenedioxypyrovalerone (MDPV), typically referred to as "bath salts." These psychostimulants exert neurotoxic effects by altering monoamine systems in the brain. Additionally, METH and MDMA adversely affect the integrity of the blood-brain barrier (BBB): there are no current reports on the effects of MDPV on the BBB. The aim of this study was to compare the effects of METH, MDMA and MDPV on bovine brain microvessel endothelial cells (bBMVECs), an accepted in vitro model of the BBB. Confluent bBMVEC monolayers were treated with METH, MDMA and MDPV (0.5mM-2.5mM) for 24h. METH and MDMA increased lactate dehydrogenase release only at the highest concentration (2.5mM), whereas MDPV induced cytotoxicity at all concentrations. MDMA and METH decreased cellular proliferation only at 2.5mM, with similar effects observed after MDPV exposures starting at 1mM. Only MDPV increased reactive oxygen species production at all concentrations tested whereas all 3 drugs increased nitric oxide production. Morphological analysis revealed different patterns of compound-induced cell damage. METH induced vacuole formation at 1mM and disruption of the monolayer at 2.5mM. MDMA induced disruption of the endothelial monolayer from 1mM without vacuolization. On the other hand, MDPV induced monolayer disruption at doses ≥0.5mM without vacuole formation; at 2.5mM, the few remaining cells lacked endothelial morphology. These data suggest that even though these synthetic psychostimulants alter monoaminergic systems, they each induce BBB toxicity by different mechanisms with MDPV being the most toxic.

  3. Velocimetry of red blood cells in microvessels by the dual-slit method: effect of velocity gradients.

    PubMed

    Roman, Sophie; Lorthois, Sylvie; Duru, Paul; Risso, Frédéric

    2012-11-01

    The dual-slit is a photometric technique used for the measurement of red blood cell (RBC) velocity in microvessels. Two photometric windows (slits) are positioned along the vessel. Because the light is modulated by the RBCs flowing through the microvessel, a time dependent signal is captured for each window. A time delay between the two signals is obtained by temporal cross correlation, and is used to deduce a velocity, knowing the distance between the two slits. Despite its wide use in the field of microvascular research, the velocity actually measured by this technique has not yet been unambiguously related to a relevant velocity scale of the flow (e.g. mean or maximal velocity) or to the blood flow rate. This is due to a lack of fundamental understanding of the measurement and also because such a relationship is crucially dependent on the non-uniform velocity distribution of RBCs in the direction parallel to the light beam, which is generally unknown. The aim of the present work is to clarify the physical significance of the velocity measured by the dual-slit technique. For that purpose, dual-slit measurements were performed on computer-generated image sequences of RBCs flowing in microvessels, which allowed all the parameters related to this technique to be precisely controlled. A parametric study determined the range of optimal parameters for the implementation of the dual-slit technique. In this range, it was shown that, whatever the parameters governing the flow, the measured velocity was the maximal RBC velocity found in the direction parallel to the light beam. This finding was then verified by working with image sequences of flowing RBCs acquired in PDMS micro-systems in vitro. Besides confirming the results and physical understanding gained from the study with computer generated images, this in vitro study showed that the profile of RBC maximal velocity across the channel was blunter than a parabolic profile, and exhibited a non-zero sliding velocity at

  4. Optimization of low-frequency low-intensity ultrasound-mediated microvessel disruption on prostate cancer xenografts in nude mice using an orthogonal experimental design

    PubMed Central

    YANG, YU; BAI, WENKUN; CHEN, YINI; LIN, YANDUAN; HU, BING

    2015-01-01

    The present study aimed to provide a complete exploration of the effect of sound intensity, frequency, duty cycle, microbubble volume and irradiation time on low-frequency low-intensity ultrasound (US)-mediated microvessel disruption, and to identify an optimal combination of the five factors that maximize the blockage effect. An orthogonal experimental design approach was used. Enhanced US imaging and acoustic quantification were performed to assess tumor blood perfusion. In the confirmatory test, in addition to acoustic quantification, the specimens of the tumor were stained with hematoxylin and eosin and observed using light microscopy. The results revealed that sound intensity, frequency, duty cycle, microbubble volume and irradiation time had a significant effect on the average peak intensity (API). The extent of the impact of the variables on the API was in the following order: Sound intensity; frequency; duty cycle; microbubble volume; and irradiation time. The optimum conditions were found to be as follows: Sound intensity, 1.00 W/cm2; frequency, 20 Hz; duty cycle, 40%; microbubble volume, 0.20 ml; and irradiation time, 3 min. In the confirmatory test, the API was 19.97±2.66 immediately subsequent to treatment, and histological examination revealed signs of tumor blood vessel injury in the optimum parameter combination group. In conclusion, the Taguchi L18 (3)6 orthogonal array design was successfully applied for determining the optimal parameter combination of API following treatment. Under the optimum orthogonal design condition, a minimum API of 19.97±2.66 subsequent to low-frequency and low-intensity mediated blood perfusion blockage was obtained. PMID:26722279

  5. Optimization of low-frequency low-intensity ultrasound-mediated microvessel disruption on prostate cancer xenografts in nude mice using an orthogonal experimental design.

    PubMed

    Yang, Y U; Bai, Wenkun; Chen, Yini; Lin, Yanduan; Hu, Bing

    2015-11-01

    The present study aimed to provide a complete exploration of the effect of sound intensity, frequency, duty cycle, microbubble volume and irradiation time on low-frequency low-intensity ultrasound (US)-mediated microvessel disruption, and to identify an optimal combination of the five factors that maximize the blockage effect. An orthogonal experimental design approach was used. Enhanced US imaging and acoustic quantification were performed to assess tumor blood perfusion. In the confirmatory test, in addition to acoustic quantification, the specimens of the tumor were stained with hematoxylin and eosin and observed using light microscopy. The results revealed that sound intensity, frequency, duty cycle, microbubble volume and irradiation time had a significant effect on the average peak intensity (API). The extent of the impact of the variables on the API was in the following order: Sound intensity; frequency; duty cycle; microbubble volume; and irradiation time. The optimum conditions were found to be as follows: Sound intensity, 1.00 W/cm(2); frequency, 20 Hz; duty cycle, 40%; microbubble volume, 0.20 ml; and irradiation time, 3 min. In the confirmatory test, the API was 19.97±2.66 immediately subsequent to treatment, and histological examination revealed signs of tumor blood vessel injury in the optimum parameter combination group. In conclusion, the Taguchi L18 (3)(6) orthogonal array design was successfully applied for determining the optimal parameter combination of API following treatment. Under the optimum orthogonal design condition, a minimum API of 19.97±2.66 subsequent to low-frequency and low-intensity mediated blood perfusion blockage was obtained.

  6. Two-photon imaging of cortical surface microvessels reveals a robust redistribution in blood flow after vascular occlusion.

    PubMed

    Schaffer, Chris B; Friedman, Beth; Nishimura, Nozomi; Schroeder, Lee F; Tsai, Philbert S; Ebner, Ford F; Lyden, Patrick D; Kleinfeld, David

    2006-02-01

    A highly interconnected network of arterioles overlies mammalian cortex to route blood to the cortical mantle. Here we test if this angioarchitecture can ensure that the supply of blood is redistributed after vascular occlusion. We use rodent parietal cortex as a model system and image the flow of red blood cells in individual microvessels. Changes in flow are quantified in response to photothrombotic occlusions to individual pial arterioles as well as to physical occlusions of the middle cerebral artery (MCA), the primary source of blood to this network. We observe that perfusion is rapidly reestablished at the first branch downstream from a photothrombotic occlusion through a reversal in flow in one vessel. More distal downstream arterioles also show reversals in flow. Further, occlusion of the MCA leads to reversals in flow through approximately half of the downstream but distant arterioles. Thus the cortical arteriolar network supports collateral flow that may mitigate the effects of vessel obstruction, as may occur secondary to neurovascular pathology.

  7. Hematopoietic Progenitor Cell Rolling in Bone Marrow Microvessels: Parallel Contributions by Endothelial Selectins and Vascular Cell Adhesion Molecule 1

    PubMed Central

    Mazo, Irina B.; Gutierrez-Ramos, Jose-Carlos; Frenette, Paul S.; Hynes, Richard O.; Wagner, Denisa D.; von Andrian, Ulrich H.

    1998-01-01

    We have used intravital microscopy to study physiologically perfused microvessels in murine bone marrow (BM). BM sinusoids and venules, but not adjacent bone vessels, supported rolling interactions of hematopoietic progenitor cells. Rolling did not involve L-selectin, but was partially reduced in wild-type mice treated with antibodies to P- or E-selectin and in mice that were deficient in these two selectins. Selectin-independent rolling was mediated by α4 integrins, which interacted with endothelial vascular cell adhesion molecule (VCAM)-1. Parallel contribution of the endothelial selectins and VCAM-1 is not known to direct blood cell trafficking to other noninflamed tissues. This combination of constitutively expressed adhesion molecules may thus constitute a BM-specific recruitment pathway for progenitor cells analogous to the vascular addressins that direct selective lymphocyte homing to lymphoid organs. PMID:9687524

  8. Albumin modulates S1P delivery from red blood cells in perfused microvessels: mechanism of the protein effect.

    PubMed

    Adamson, R H; Clark, J F; Radeva, M; Kheirolomoom, A; Ferrara, K W; Curry, F E

    2014-04-01

    Removal of plasma proteins from perfusates increases vascular permeability. The common interpretation of the action of albumin is that it forms part of the permeability barrier by electrostatic binding to the endothelial glycocalyx. We tested the alternate hypothesis that removal of perfusate albumin in rat venular microvessels decreased the availability of sphingosine-1-phosphate (S1P), which is normally carried in plasma bound to albumin and lipoproteins and is required to maintain stable baseline endothelial barriers (Am J Physiol Heart Circ Physiol 303: H825-H834, 2012). Red blood cells (RBCs) are a primary source of S1P in the normal circulation. We compared apparent albumin permeability coefficients [solute permeability (Ps)] measured using perfusates containing albumin (10 mg/ml, control) and conditioned by 20-min exposure to rat RBCs with Ps when test perfusates were in RBC-conditioned protein-free Ringer solution. The control perfusate S1P concentration (439 ± 46 nM) was near the normal plasma value at 37 °C and established a stable baseline Ps (0.9 ± 0.4 × 10(-6) cm/s). Ringer solution perfusate contained 52 ± 8 nM S1P and increased Ps more than 10-fold (16.1 ± 3.9 × 10(-6) cm/s). Consistent with albumin-dependent transport of S1P from RBCs, S1P concentrations in RBC-conditioned solutions decreased as albumin concentration, hematocrit, and temperature decreased. Protein-free Ringer solution perfusates that used liposomes instead of RBCs as flow markers failed to maintain normal permeability, reproducing the "albumin effect" in these mammalian microvessels. We conclude that the albumin effect depends on the action of albumin to facilitate the release and transport of S1P from RBCs that normally provide a significant amount of S1P to the endothelium.

  9. Generation of Bioactive Oxylipins from Exogenously Added Arachidonic, Eicosapentaenoic and Docosahexaenoic Acid in Primary Human Brain Microvessel Endothelial Cells.

    PubMed

    Aukema, Harold M; Winter, Tanja; Ravandi, Amir; Dalvi, Siddhartha; Miller, Donald W; Hatch, Grant M

    2016-05-01

    The human blood-brain barrier (BBB) is the restrictive barrier between the brain parenchyma and the circulating blood and is formed in part by microvessel endothelial cells. The brain contains significant amounts of arachidonic acid (ARA), and docosahexaenoic acid (DHA), which potentially give rise to the generation of bioactive oxylipins. Oxylipins are oxygenated fatty acid metabolites that are involved in an assortment of biological functions regulating neurological health and disease. Since it is not known which oxylipins are generated by human brain microvessel endothelial cells (HBMECs), they were incubated for up to 30 min in the absence or presence of 0.1-mM ARA, eicosapentaenoic acid (EPA) or DHA bound to albumin (1:1 molar ratio), and the oxylipins generated were examined using high performance liquid chromatography-tandem mass spectrometry (HPLC/MS/MS). Of 135 oxylipins screened in the media, 63 were present at >0.1 ng/mL at baseline, and 95 were present after incubation with fatty acid. Oxylipins were rapidly generated and reached maximum levels by 2-5 min. While ARA, EPA and DHA each stimulated the production of oxylipins derived from these fatty acids themselves, ARA also stimulated the production of oxylipins from endogenous 18- and 20-carbon fatty acids, including α-linolenic acid. Oxylipins generated by the lipoxygenase pathway predominated both in resting and stimulated states. Oxylipins formed via the cytochrome P450 pathway were formed primarily from DHA and EPA, but not ARA. These data indicate that HBMECs are capable of generating a plethora of bioactive lipids that have the potential to modulate BBB endothelial cell function.

  10. Estrogen Receptor Subtypes Mediate Distinct Microvascular Dilation and Reduction in [Ca2+]i in Mesenteric Microvessels of Female Rat

    PubMed Central

    Mazzuca, Marc Q.; Mata, Karina M.; Li, Wei; Rangan, Sridhar S.

    2015-01-01

    Estrogen interacts with estrogen receptors (ERs) to induce vasodilation, but the ER subtype and post-ER relaxation pathways are unclear. We tested if ER subtypes mediate distinct vasodilator and intracellular free Ca2+ concentration ([Ca2+]i) responses via specific relaxation pathways in the endothelium and vascular smooth muscle (VSM). Pressurized mesenteric microvessels from female Sprague-Dawley rats were loaded with fura-2, and the changes in diameter and [Ca2+]i in response to 17β-estradiol (E2) (all ERs), PPT (4,4′,4′′-[4-propyl-(1H)-pyrazole-1,3,5-triyl]-tris-phenol) (ERα), diarylpropionitrile (DPN) (ERβ), and G1 [(±)-1-[(3aR*,4S*,9bS*)-4-(6-bromo-1,3-benzodioxol-5-yl)-3a,4,5,9b-tetrahydro:3H-cyclopenta(c)quinolin-8-yl]-ethanon] (GPR30) were measured. In microvessels preconstricted with phenylephrine, ER agonists caused relaxation and decrease in [Ca2+]i that were with E2 = PPT > DPN > G1, suggesting that E2-induced vasodilation involves ERα > ERβ > GPR30. Acetylcholine caused vasodilation and decreased [Ca2+]i, which were abolished by endothelium removal or treatment with the nitric oxide synthase blocker Nω-nitro-l-arginine methyl ester (L-NAME) and the K+ channel blockers tetraethylammonium (nonspecific) or apamin (small conductance Ca2+-activated K+ channel) plus TRAM-34 (1-[(2-chlorophenyl)diphenylmethyl]-1H-pyrazole) (intermediate conductance Ca2+-activated K+ channel), suggesting endothelium-derived hyperpolarizing factor–dependent activation of KCa channels. E2-, PPT-, DPN-, and G1-induced vasodilation and decreased [Ca2+]i were not blocked by L-NAME, TEA, apamin plus TRAM-34, iberiotoxin (large conductance Ca2+- and voltage-activated K+ channel), 4-aminopyridine (voltage-dependent K+ channel), glibenclamide (ATP-sensitive K+ channel), or endothelium removal, suggesting an endothelium- and K+ channel–independent mechanism. In endothelium-denuded vessels preconstricted with phenylephrine, high KCl, or the Ca2+ channel activator Bay K

  11. Food additives

    PubMed Central

    Spencer, Michael

    1974-01-01

    Food additives are discussed from the food technology point of view. The reasons for their use are summarized: (1) to protect food from chemical and microbiological attack; (2) to even out seasonal supplies; (3) to improve their eating quality; (4) to improve their nutritional value. The various types of food additives are considered, e.g. colours, flavours, emulsifiers, bread and flour additives, preservatives, and nutritional additives. The paper concludes with consideration of those circumstances in which the use of additives is (a) justified and (b) unjustified. PMID:4467857

  12. Simulated Red Blood Cell Motion in Microvessel Bifurcations: Effects of Cell-Cell Interactions on Cell Partitioning

    PubMed Central

    Barber, Jared O.; Restrepo, Juan M.; Secomb, Timothy W.

    2013-01-01

    Partitioning of red blood cell (RBC) fluxes between the branches of a diverging microvessel bifurcation is generally not proportional to the flow rates, as RBCs preferentially enter the higher-flow branch. A two-dimensional model for RBC motion and deformation is used to investigate the effects of cell-cell mechanical interactions on RBC partitioning in bifurcations. The RBC membrane and cytoplasm are represented by sets of viscoelastic elements immersed in a low Reynolds number flow. Several types of two-cell interactions that can affect partitioning are found. In the most frequent interactions, a `trade-off' occurs, in which a cell entering one branch causes a following cell to enter the other branch. Other types of interactions include `herding,' where the leading cell is caused to enter the same branch as the following cell, and `following,' where the trailing cell is caused to enter the same branch as the leading cell. The combined effect of these cell-cell interactions is a tendency towards more uniform partitioning, which results from the trade-off effect but is reduced by the herding and following effects. With increasing hematocrit, the frequency of interactions increases, and more uniform partitioning results. This prediction is consistent with experimental observations on how hematocrit affects RBC partitioning. PMID:23555330

  13. [Food additives and healthiness].

    PubMed

    Heinonen, Marina

    2014-01-01

    Additives are used for improving food structure or preventing its spoilage, for example. Many substances used as additives are also naturally present in food. The safety of additives is evaluated according to commonly agreed principles. If high concentrations of an additive cause adverse health effects for humans, a limit of acceptable daily intake (ADI) is set for it. An additive is a risk only when ADI is exceeded. The healthiness of food is measured on the basis of nutrient density and scientifically proven effects.

  14. Combination therapy with ONO-KK1-300-01, a cathepsin K inhibitor, and parathyroid hormone results in additive beneficial effect on bone mineral density in ovariectomized rats.

    PubMed

    Ochi, Yasuo; Yamada, Hiroyuki; Mori, Hiroshi; Kawada, Naoki; Tanaka, Makoto; Imagawa, Akira; Ohmoto, Kazuyuki; Kawabata, Kazuhito

    2016-01-01

    This study examined the effects of a novel cathepsin K inhibitor, ONO-KK1-300-01 (KK1-300), used concurrently with parathyroid hormone (PTH) in ovariectomized (OVX) rats. KK1-300 (3 mg/kg, twice daily), alendronate (1 mg/kg, once daily) or vehicle were orally administered to OVX rats for 56 days, starting the day after ovariectomy, followed by combination treatment with or without PTH (3 μg/kg, subcutaneously three times a week) for another 28 days. OVX control animals exhibited a significant increase in both bone resorption (urinary deoxypyridinoline; DPD) and formation markers (serum osteocalcin) as well as microstructural changes associated with decreased bone mineral density (BMD). Combination treatment with KK1-300 and PTH significantly decreased urinary DPD and increased serum osteocalcin, indicating a sustained beneficial effect compared to the effect of each mono-therapy. On the other hand, combination therapy with alendronate and PTH weakened the PTH-induced increase in osteocalcin. In proximal tibia, combination treatment with KK1-300 and PTH increased BMD to a level significantly higher than that achieved following single treatment with KK1-300 or PTH alone. On the other hand, combination treatment with alendronate and PTH failed to produce any significant additive effect on BMD following single treatment with alendronate or PTH alone. Microstructural analysis revealed that the PTH-induced increase in bone formation (MS/BS and BFR/BS) was fully maintained following combination treatment with KK1-300 and PTH, but not following combination treatment with alendronate and PTH. These findings indicate that KK1-300, unlike alendronate, has an additive effect on the preventive action of PTH on bone loss in OVX rats.

  15. Evidence for an additional intracellular site of action of probucol in the prevention of oxidative modification of low density lipoprotein. Use of a new water-soluble probucol derivative.

    PubMed Central

    Parthasarathy, S

    1992-01-01

    Oxidative modification of low density lipoprotein (LDL) renders it more atherogenic. Probucol, a highly nonpolar antioxidant, is transported in lipoproteins, including LDL, and inhibits oxidative modification of LDL in vitro. The ability of probucol to inhibit atherogenesis in the LDL receptor-deficient rabbit has been attributed to its antioxidant effect. We report synthesis of a new water-soluble analogue of probucol that is very effective in preventing cell-induced LDL oxidation. The polar probucol derivative, diglutaryl probucol, is efficiently taken up by endothelial cells and macrophages in culture and is hydrolyzed to release the active antioxidant, probucol. The treated cells, after thorough washing, show a marked decrease in their capacity to oxidize LDL during a subsequent incubation. At high concentrations of the derivative, the cells also released free probucol into the medium. Thus, the effectiveness of probucol in vivo may be related both to its presence in LDL, acting as a nonspecific antioxidant, and to an additional ability to inhibit cell-mediated oxidation of LDL by virtue of its uptake into cells. PMID:1569200

  16. Quantitative analysis of microvessels in rat circumventricular organs and pituitary gland

    SciTech Connect

    Fenstermacher, J.; Gross, P.; Sposito, N.; Pettersen, S.; Blasberg, R.; Patlak, C.; Butler, A.

    1986-03-01

    The cerebral circumventricular organs (CVOs) and pituitary gland (PG) purportedly have dense, highly permeable capillary beds which allow for ready blood-tissue exchange of messenger molecules. Quantitation of various morphological and physiological features of the capillaries with CVOs and PG plus some brain structures which have tight or blood-brain barrier (BBB) capillaries was undertaken in rats using several radiolabeled markers, quantitative autoradiography, image analysis, and light and electron microscopic morphometry. Microvascular blood volumes in CVOs and PG were several times larger than in other brain areas (54-70 ..mu../g and 5-8 ..mu../g, respectively). Capillary density and surface area were generally much greater in CVOs and PG than in gray matter; however the highest values for these two parameters were found for the pituitary neural lobe (NL) and supraoptic nucleus (SON), which has BBB capillaries. The rate of capillary blood flow was highest in NL and was similar in the subfornical organ, median eminence, cerebral cortex and SON (1.5 ml/g/min). The transcapillary exchange of several markers was 200-500 times greater in CVOs and NL than in BBB capillaries.

  17. Food additives

    MedlinePlus

    ... or natural. Natural food additives include: Herbs or spices to add flavor to foods Vinegar for pickling ... Certain colors improve the appearance of foods. Many spices, as well as natural and man-made flavors, ...

  18. KDM4B histone demethylase and G9a regulate expression of vascular adhesion proteins in cerebral microvessels

    PubMed Central

    Choi, Ji-Young; Yoon, Sang-Sun; Kim, Sang-Eun; Ahn Jo, Sangmee

    2017-01-01

    Intercellular adhesion molecule 1 (ICAM1) mediates the adhesion and transmigration of leukocytes across the endothelium, promoting inflammation. We investigated the epigenetic mechanism regulating ICAM1 expression. The pro-inflammatory cytokine TNF-α dramatically increased ICAM1 mRNA and protein levels in human brain microvascular endothelial cells and mouse brain microvessels. Chromatin immunoprecipitation revealed that TNF-α reduced methylation of histone H3 at lysines 9 and 27 (H3K9 and H3K27), well-known residues involved in gene suppression. Inhibition of G9a and EZH2, histone methyltransferases responsible for methylation at H3K9 and H3K27, respectively as well as G9a overexpression demonstrated the involvement of G9a in TNF-α-induced ICAM1 expression and leukocyte adhesion and transmigration. A specific role for KDM4B, a histone demethylase targeting H3K9me2, in TNF-α-induced ICAM1 upregulation was validated with siRNA. Moreover, treating mice with a KDM4 inhibitor ML324 blocked TNF-α-mediated neutrophil adhesion. Similarly, TNF-α-induced VCAM1 expression was suppressed by G9a overexpression and KDM4B knockdown. Collectively, we demonstrated that modification of H3K9me2 by G9a and KDM4B regulates expression of vascular adhesion molecules, and that depletion of these proteins or KDM4B reduces inflammation-induced leukocyte extravasation. Thus, blocking ICAM1 or KDM4B could offer a novel therapeutic opportunity treating brain diseases. PMID:28327608

  19. 3-D microvessel-mimicking ultrasound phantoms produced with a scanning motion system.

    PubMed

    Gessner, Ryan C; Kothadia, Roshni; Feingold, Steven; Dayton, Paul A

    2011-05-01

    Ultrasound techniques are currently being developed that can assess the vascularization of tissue as a marker for therapeutic response. Some of these ultrasound imaging techniques seek to extract quantitative features about vessel networks, whereas high-frequency imaging also allows individual vessels to be resolved. The development of these new techniques, and subsequent imaging analysis strategies, necessitates an understanding of their sensitivities to vessel and vessel network structural abnormalities. Constructing in-vitro flow phantoms for this purpose can be prohibitively challenging, because simulating precise flow environments with nontrivial structures is often impossible using conventional methods of construction for flow phantoms. Presented in this manuscript is a method to create predefined structures with <10 μm precision using a three-axis motion system. The application of this technique is demonstrated for the creation of individual vessel and vessel networks, which can easily be made to simulate the development of structural abnormalities typical of diseased vasculature in vivo. In addition, beyond facilitating the creation of phantoms that would otherwise be very challenging to construct, the method presented herein enables one to precisely simulate very slow blood flow and respiration artifacts, and to measure imaging resolution.

  20. Effect of Hf addition on critical current density of (Y,Eu)Ba2Cu3.6O7-δ thin films prepared by trifluoroacetate metal organic deposition

    NASA Astrophysics Data System (ADS)

    Li, M. Y.; Liu, Z. Y.; Fang, Q.; Guo, Y. Q.; Lu, Y. M.; Bai, C. Y.; Cai, C. B.

    2016-12-01

    The critical current density (Jc) performance of YBCO coated conductors (CCs) under magnetic field has become a considerable limitation for its commercial application in recent years. It is well known that the proper amount of element doping into the CCs is a convenient method to increase flux pinning and then to enhance the Jc. In the present work, we firstly introduce the co-doping of Eu and Hf and study the effect on the performance of YBa2Cu3.6O7-δ thin films. Three types of high temperature superconducting thin films, i.e., YBa2Cu3.6O7-δ, (Y,Eu)Ba2Cu3.6O7-δ and Hf doped (Y,Eu)Ba2Cu3.6O7-δ were prepared on the oxide buffered metallic substrates by using trifluoroacetate metal organic deposition (TFA-MOD). The component and structure of the as-prepared samples were characterized by X-ray diffraction (XRD), scanning electronic microscopy (SEM) and atomic force microscopy (AFM). Superconducting properties were measured with a SQUID magnetometer. It was revealed that the (Y,Eu)Ba2Cu3.6O7-δ thin films exhibit better out-plane and in-plane texture compared with the pure YBa2Cu3.6O7-δ thin film. The Jc of (Y,Eu)Ba2Cu3.6O7-δ thin film was improved compared with pure YBCO thin film. In case of Hf doping, however, the biaxial texture became worse while the in-field Jc performance was enhanced, implying the increase of flux pinning with proper Hf addition.

  1. Potlining Additives

    SciTech Connect

    Rudolf Keller

    2004-08-10

    In this project, a concept to improve the performance of aluminum production cells by introducing potlining additives was examined and tested. Boron oxide was added to cathode blocks, and titanium was dissolved in the metal pool; this resulted in the formation of titanium diboride and caused the molten aluminum to wet the carbonaceous cathode surface. Such wetting reportedly leads to operational improvements and extended cell life. In addition, boron oxide suppresses cyanide formation. This final report presents and discusses the results of this project. Substantial economic benefits for the practical implementation of the technology are projected, especially for modern cells with graphitized blocks. For example, with an energy savings of about 5% and an increase in pot life from 1500 to 2500 days, a cost savings of $ 0.023 per pound of aluminum produced is projected for a 200 kA pot.

  2. Phosphazene additives

    DOEpatents

    Harrup, Mason K; Rollins, Harry W

    2013-11-26

    An additive comprising a phosphazene compound that has at least two reactive functional groups and at least one capping functional group bonded to phosphorus atoms of the phosphazene compound. One of the at least two reactive functional groups is configured to react with cellulose and the other of the at least two reactive functional groups is configured to react with a resin, such as an amine resin of a polycarboxylic acid resin. The at least one capping functional group is selected from the group consisting of a short chain ether group, an alkoxy group, or an aryloxy group. Also disclosed are an additive-resin admixture, a method of treating a wood product, and a wood product.

  3. Association of Maternal Antiangiogenic Profile at Birth With Early Postnatal Loss of Microvascular Density in Offspring of Hypertensive Pregnancies

    PubMed Central

    Yu, Grace Z.; Aye, Christina Y.L.; Lewandowski, Adam J.; Davis, Esther F.; Khoo, Cheen P.; Newton, Laura; Yang, Cheng T.; Al Haj Zen, Ayman; Simpson, Lisa J.; O’Brien, Kathryn; Cook, David A.; Granne, Ingrid; Kyriakou, Theodosios; Channon, Keith M.; Watt, Suzanne M.

    2016-01-01

    Offspring of hypertensive pregnancies are more likely to have microvascular rarefaction and increased blood pressure in later life. We tested the hypothesis that maternal angiogenic profile during a hypertensive pregnancy is associated with fetal vasculogenic capacity and abnormal postnatal microvascular remodeling. Infants (n=255) born after either hypertensive or normotensive pregnancies were recruited for quantification of postnatal dermal microvascular structure at birth and 3 months of age. Vasculogenic cell potential was assessed in umbilical vein endothelial cells from 55 offspring based on in vitro microvessel tube formation and proliferation assays. Maternal angiogenic profile (soluble fms-like tyrosine kinase-1, soluble endoglin, vascular endothelial growth factor, and placental growth factor) was measured from postpartum plasma samples to characterize severity of pregnancy disorder. At birth, offspring born after hypertensive pregnancy had similar microvessel density to those born after a normotensive pregnancy, but during the first 3 postnatal months, they had an almost 2-fold greater reduction in total vessel density (−17.7±16.4% versus −9.9±18.7%; P=0.002). This postnatal loss varied according to the vasculogenic capacity of the endothelial cells of the infant at birth (r=0.49; P=0.02). The degree of reduction in both in vitro and postnatal in vivo vascular development was proportional to levels of antiangiogenic factors in the maternal circulation. In conclusion, our data indicate that offspring born to hypertensive pregnancies have reduced vasculogenic capacity at birth that predicts microvessel density loss over the first 3 postnatal months. Degree of postnatal microvessel reduction is proportional to levels of antiangiogenic factors in the maternal circulation at birth. PMID:27456522

  4. Phenylethynyl Containing Reactive Additives

    NASA Technical Reports Server (NTRS)

    Connell, John W. (Inventor); Smith, Joseph G., Jr. (Inventor); Hergenrother, Paul M. (Inventor)

    2002-01-01

    Phenylethynyl containing reactive additives were prepared from aromatic diamine, containing phenylethvnvl groups and various ratios of phthalic anhydride and 4-phenylethynviphthalic anhydride in glacial acetic acid to form the imide in one step or in N-methyl-2-pvrrolidinone to form the amide acid intermediate. The reactive additives were mixed in various amounts (10% to 90%) with oligomers containing either terminal or pendent phenylethynyl groups (or both) to reduce the melt viscosity and thereby enhance processability. Upon thermal cure, the additives react and become chemically incorporated into the matrix and effect an increase in crosslink density relative to that of the host resin. This resultant increase in crosslink density has advantageous consequences on the cured resin properties such as higher glass transition temperature and higher modulus as compared to that of the host resin.

  5. Phenylethynyl Containing Reactive Additives

    NASA Technical Reports Server (NTRS)

    Connell, John W. (Inventor); Smith, Joseph G., Jr. (Inventor); Hergenrother, Paul M. (Inventor)

    2002-01-01

    Phenylethynyl containing reactive additives were prepared from aromatic diamines containing phenylethynyl groups and various ratios of phthalic anhydride and 4-phenylethynylphthalic anhydride in glacial acetic acid to form the imide in one step or in N-methyl-2-pyrrolidi none to form the amide acid intermediate. The reactive additives were mixed in various amounts (10% to 90%) with oligomers containing either terminal or pendent phenylethynyl groups (or both) to reduce the melt viscosity and thereby enhance processability. Upon thermal cure, the additives react and become chemically incorporated into the matrix and effect an increase in crosslink density relative to that of the host resin. This resultant increase in crosslink density has advantageous consequences on the cured resin properties such as higher glass transition temperature and higher modulus as compared to that of the host resin.

  6. Neuropeptide degradation by large vessel and microvessel-derived endothelial cells in vitro: cell surface catabolism of thyrotropin releasing hormone (TRH).

    PubMed

    Rozental, J M; Kaminska, G; Turner, J; Schwartz, T; Cadahia, V; Brooks, B R

    1989-10-16

    Cell surface ectopeptidase activity of purified, cultured large vessel and microvessel-derived endothelial cells (EC) was studied. Degradation of thyrotropin releasing hormone (TRH), and production of cyclo-His-Pro was significantly increased (P less than 0.001) in large vessel EC compared with microcapillary EC. Since the rate of catabolism in the microvascular capillary bed is 5 times less than that in the large vessel wall, peptide concentrations are likely maintained longer in close proximity to their site of biosynthesis, where they are presumably most active.

  7. A three dimensional model of an ultrasound contrast agent gas bubble and its mechanical effects on microvessels

    PubMed Central

    Hosseinkhah, N.; Hynynen, K.

    2012-01-01

    Ultrasound contrast agents inside a microvessel, when driven by ultrasound, oscillate and induce mechanical stresses on the vessel wall. These mechanical stresses can produce beneficial therapeutic effects but also induce vessel rupture if the stresses are too high. Therefore, it is important to use sufficiently low pressure amplitudes to avoid rupturing the vessels while still inducing the desired therapeutic effects. In this work, we developed a comprehensive three dimensional model of a confined microbubble inside a vessel while considering the bubble shell properties, blood viscosity, vessel wall curvature and the mechanical properties of the vessel wall. Two bubble models with the assumption of a spherical symmetric bubble and a simple asymmetrical bubble were simulated. This work was validated with previous experimental results and enabled us to evaluate the microbubbles’ behaviour and the resulting mechanical stresses induced on the vessel walls. In this study the fluid shear and circumferential stresses were evaluated as indicators of the mechanical stresses. The effects of acoustical parameters, vessel viscoelasticity and rigidity, vessel/bubble size and off-center bubbles on bubble behaviour and stresses on the vessel were investigated. The fluid shear and circumferential stresses acting on the vessel varied with time and location. As the frequency changed, the microbubble oscillated with the highest amplitude at its resonance frequency which was different from the resonance frequency of an unbound bubble. The bubble resonance frequency increased as the rigidity of a flexible vessel increased. The fluid shear and circumferential stresses peaked at frequencies above the bubble’s resonance frequency. The more rigid the vessels were, the more damped the bubble oscillations. The synergistic effect of acoustic frequency and vessel elasticity had also been investigated, since the circumferential stress showed either an increasing trend or a decreasing one

  8. Density Visualization

    ERIC Educational Resources Information Center

    Keiter, Richard L.; Puzey, Whitney L.; Blitz, Erin A.

    2006-01-01

    Metal rods of high purity for many elements are now commercially available and may be used to construct a display of relative densities. We have constructed a display with nine metal rods (Mg, Al, Ti, V, Fe, Cu, Ag, Pb, and W) of equal mass whose densities vary from 1.74 to 19.3 g cm[superscript -3]. The relative densities of the metals may be…

  9. The permeation of dynorphin A 1-6 across the blood brain barrier and its effect on bovine brain microvessel endothelial cell monolayer permeability.

    PubMed

    Sloan, Courtney D Kuhnline; Audus, Kenneth L; Aldrich, Jane V; Lunte, Susan M

    2012-12-01

    Dynorphin A 1-17 (Dyn A 1-17) is an endogenous neuropeptide known to act at the kappa opioid receptor; it has been implicated in a number of neurological disorders, including neuropathic pain, stress, depression, and Alzheimer's and Parkinson's diseases. The investigation of Dyn A 1-17 metabolism at the blood-brain barrier (BBB) is important since the metabolites exhibit unique biological functions compared to the parent compound. In this work, Dyn A 1-6 is identified as a metabolite of Dyn A 1-17 in the presence of bovine brain microvessel endhothelial cells (BBMECs), using LC-MS/MS. The transport of Dyn A 1-6 at the BBB was examined using this in vitro cell culture model of the BBB. Furthermore, the permeation of the BBB by the low molecular weight permeability marker fluorescein was characterized in the presence and absences of Dyn A 1-6.

  10. Combination of Insecticide Treated Nets and Indoor Residual Spraying in Northern Tanzania Provides Additional Reduction in Vector Population Density and Malaria Transmission Rates Compared to Insecticide Treated Nets Alone: A Randomised Control Trial

    PubMed Central

    Protopopoff, Natacha; Wright, Alexandra; West, Philippa A; Tigererwa, Robinson; Mosha, Franklin W; Kisinza, William; Kleinschmidt, Immo; Rowland, Mark

    2015-01-01

    Indoor residual spraying (IRS) combined with insecticide treated nets (ITN) has been implemented together in several sub-Saharan countries with inconclusive evidence that the combined intervention provides added benefit. The impact on malaria transmission was evaluated in a cluster randomised trial comparing two rounds of IRS with bendiocarb plus universal coverage ITNs, with ITNs alone in northern Tanzania. From April 2011 to December 2012, eight houses in 20 clusters per study arm were sampled monthly for one night with CDC light trap collections. Anopheles gambiae s.l. were identified to species using real time PCR Taq Man and tested for the presence of Plasmodium falciparum circumsporozoite protein. ITN and IRS coverage was estimated from household surveys. IRS coverage was more than 85% in two rounds of spraying in January and April 2012. Household coverage with at least one ITN per house was 94.7% after the universal coverage net campaign in the baseline year and the proportion of household with all sleeping places covered by LLIN was 50.1% decreasing to 39.1% by the end of the intervention year. An.gambiae s.s. comprised 80% and An.arabiensis 18.3% of the anopheline collection in the baseline year. Mean An.gambiae s.l. density in the ITN+IRS arm was reduced by 84% (95%CI: 56%-94%, p = 0.001) relative to the ITN arm. In the stratum of clusters categorised as high anopheline density at baseline EIR was lower in the ITN+IRS arm compared to the ITN arm (0.5 versus 5.4 per house per month, Incidence Rate Ratio: 0.10, 95%CI: 0.01–0.66, p-value for interaction <0.001). This trial provides conclusive evidence that combining carbamate IRS and ITNs produces major reduction in Anopheles density and entomological inoculation rate compared to ITN alone in an area of moderate coverage of LLIN and high pyrethroid resistance in An.gambiae s.s. PMID:26569492

  11. Combination of Insecticide Treated Nets and Indoor Residual Spraying in Northern Tanzania Provides Additional Reduction in Vector Population Density and Malaria Transmission Rates Compared to Insecticide Treated Nets Alone: A Randomised Control Trial.

    PubMed

    Protopopoff, Natacha; Wright, Alexandra; West, Philippa A; Tigererwa, Robinson; Mosha, Franklin W; Kisinza, William; Kleinschmidt, Immo; Rowland, Mark

    2015-01-01

    Indoor residual spraying (IRS) combined with insecticide treated nets (ITN) has been implemented together in several sub-Saharan countries with inconclusive evidence that the combined intervention provides added benefit. The impact on malaria transmission was evaluated in a cluster randomised trial comparing two rounds of IRS with bendiocarb plus universal coverage ITNs, with ITNs alone in northern Tanzania. From April 2011 to December 2012, eight houses in 20 clusters per study arm were sampled monthly for one night with CDC light trap collections. Anopheles gambiae s.l. were identified to species using real time PCR Taq Man and tested for the presence of Plasmodium falciparum circumsporozoite protein. ITN and IRS coverage was estimated from household surveys. IRS coverage was more than 85% in two rounds of spraying in January and April 2012. Household coverage with at least one ITN per house was 94.7% after the universal coverage net campaign in the baseline year and the proportion of household with all sleeping places covered by LLIN was 50.1% decreasing to 39.1% by the end of the intervention year. An.gambiae s.s. comprised 80% and An.arabiensis 18.3% of the anopheline collection in the baseline year. Mean An.gambiae s.l. density in the ITN+IRS arm was reduced by 84% (95%CI: 56%-94%, p = 0.001) relative to the ITN arm. In the stratum of clusters categorised as high anopheline density at baseline EIR was lower in the ITN+IRS arm compared to the ITN arm (0.5 versus 5.4 per house per month, Incidence Rate Ratio: 0.10, 95%CI: 0.01-0.66, p-value for interaction <0.001). This trial provides conclusive evidence that combining carbamate IRS and ITNs produces major reduction in Anopheles density and entomological inoculation rate compared to ITN alone in an area of moderate coverage of LLIN and high pyrethroid resistance in An.gambiae s.s.

  12. Fatty acid transport protein expression in human brain and potential role in fatty acid transport across human brain microvessel endothelial cells.

    PubMed

    Mitchell, Ryan W; On, Ngoc H; Del Bigio, Marc R; Miller, Donald W; Hatch, Grant M

    2011-05-01

    The blood-brain barrier (BBB), formed by the brain capillary endothelial cells, provides a protective barrier between the systemic blood and the extracellular environment of the CNS. Passage of fatty acids from the blood to the brain may occur either by diffusion or by proteins that facilitate their transport. Currently several protein families have been implicated in fatty acid transport. The focus of the present study was to identify the fatty acid transport proteins (FATPs) expressed in the brain microvessel endothelial cells and characterize their involvement in fatty acid transport across an in vitro BBB model. The major fatty acid transport proteins expressed in human brain microvessel endothelial cells (HBMEC), mouse capillaries and human grey matter were FATP-1, -4 and fatty acid binding protein 5 and fatty acid translocase/CD36. The passage of various radiolabeled fatty acids across confluent HBMEC monolayers was examined over a 30-min period in the presence of fatty acid free albumin in a 1 : 1 molar ratio. The apical to basolateral permeability of radiolabeled fatty acids was dependent upon both saturation and chain length of the fatty acid. Knockdown of various fatty acid transport proteins using siRNA significantly decreased radiolabeled fatty acid transport across the HBMEC monolayer. Our findings indicate that FATP-1 and FATP-4 are the predominant fatty acid transport proteins expressed in the BBB based on human and mouse expression studies. While transport studies in HBMEC monolayers support their involvement in fatty acid permeability, fatty acid translocase/CD36 also appears to play a prominent role in transport of fatty acids across HBMEC.

  13. Mechanism of the addition of nonenolizable aldehydes and ketones to (Di)metallenes (R(2)X=YR(2), X = Si, Ge Y = C, Si, Ge): a density functional and multiconfigurational perturbation theory study.

    PubMed

    Mosey, Nicholas J; Baines, Kim M; Woo, Tom K

    2002-11-06

    The mechanism of the addition of nonenolizable aldehydes and ketones to group 14 (di)metallenes has been examined through a theoretical study of the addition of formaldehyde to Si=C, Ge=C, Si=Si, Si=Ge, and Ge=Ge bonds at the B3LYP/6-311++G(d,p) and CAS-MCQDPT2/6-31++G(d,p) levels of theory. The reaction pathways located can be grouped as either involving the formation of singlet diradical or zwitterionic intermediates or as concerted processes. Within each group of reaction pathways, several different mechanisms have been located, with not all mechanisms being available to all of the (di)metallenes. It was found that for reactions in which a Si-O bond results (i.e., addition to Si=C, Si=Si, and Si=Ge) both diradical and zwitterionic intermediates are possible; however, the formation of diradical intermediates was not found for reactions that result in the formation of a Ge-O bond (addition to Ge=C and Ge=Ge). The underlying cause of this pathway selectivity is examined, as well as the effect of solvent on the relative energies of the pathways. The results of the study shed light on the cause of experimentally obtained results regarding the mechanism of the reaction of (di)metallenes with nonenolizable ketones and aldehydes.

  14. Planet Hunters. VII. Discovery of a New Low-mass, Low-density Planet (PH3 C) Orbiting Kepler-289 with Mass Measurements of Two Additional Planets (PH3 B and D)

    NASA Astrophysics Data System (ADS)

    Schmitt, Joseph R.; Agol, Eric; Deck, Katherine M.; Rogers, Leslie A.; Gazak, J. Zachary; Fischer, Debra A.; Wang, Ji; Holman, Matthew J.; Jek, Kian J.; Margossian, Charles; Omohundro, Mark R.; Winarski, Troy; Brewer, John M.; Giguere, Matthew J.; Lintott, Chris; Lynn, Stuart; Parrish, Michael; Schawinski, Kevin; Schwamb, Megan E.; Simpson, Robert; Smith, Arfon M.

    2014-11-01

    We report the discovery of one newly confirmed planet (P = 66.06 days, R P = 2.68 ± 0.17 R ⊕) and mass determinations of two previously validated Kepler planets, Kepler-289 b (P = 34.55 days, R P = 2.15 ± 0.10 R ⊕) and Kepler-289-c (P = 125.85 days, R P = 11.59 ± 0.10 R ⊕), through their transit timing variations (TTVs). We also exclude the possibility that these three planets reside in a 1:2:4 Laplace resonance. The outer planet has very deep (~1.3%), high signal-to-noise transits, which puts extremely tight constraints on its host star's stellar properties via Kepler's Third Law. The star PH3 is a young (~1 Gyr as determined by isochrones and gyrochronology), Sun-like star with M * = 1.08 ± 0.02 M ⊙, R * = 1.00 ± 0.02 R ⊙, and T eff = 5990 ± 38 K. The middle planet's large TTV amplitude (~5 hr) resulted either in non-detections or inaccurate detections in previous searches. A strong chopping signal, a shorter period sinusoid in the TTVs, allows us to break the mass-eccentricity degeneracy and uniquely determine the masses of the inner, middle, and outer planets to be M = 7.3 ± 6.8 M ⊕, 4.0 ± 0.9M ⊕, and M = 132 ± 17 M ⊕, which we designate PH3 b, c, and d, respectively. Furthermore, the middle planet, PH3 c, has a relatively low density, ρ = 1.2 ± 0.3 g cm-3 for a planet of its mass, requiring a substantial H/He atmosphere of 2.1+0.8-0.3% by mass, and joins a growing population of low-mass, low-density planets. .

  15. Planet hunters. VII. Discovery of a new low-mass, low-density planet (PH3 C) orbiting Kepler-289 with mass measurements of two additional planets (PH3 B and D)

    SciTech Connect

    Schmitt, Joseph R.; Fischer, Debra A.; Wang, Ji; Margossian, Charles; Brewer, John M.; Giguere, Matthew J.; Agol, Eric; Deck, Katherine M.; Rogers, Leslie A.; Gazak, J. Zachary; Holman, Matthew J.; Jek, Kian J.; Omohundro, Mark R.; Winarski, Troy; Lintott, Chris; Simpson, Robert; Lynn, Stuart; Parrish, Michael; Schawinski, Kevin; Schwamb, Megan E.; and others

    2014-11-10

    We report the discovery of one newly confirmed planet (P = 66.06 days, R {sub P} = 2.68 ± 0.17 R {sub ⊕}) and mass determinations of two previously validated Kepler planets, Kepler-289 b (P = 34.55 days, R {sub P} = 2.15 ± 0.10 R {sub ⊕}) and Kepler-289-c (P = 125.85 days, R {sub P} = 11.59 ± 0.10 R {sub ⊕}), through their transit timing variations (TTVs). We also exclude the possibility that these three planets reside in a 1:2:4 Laplace resonance. The outer planet has very deep (∼1.3%), high signal-to-noise transits, which puts extremely tight constraints on its host star's stellar properties via Kepler's Third Law. The star PH3 is a young (∼1 Gyr as determined by isochrones and gyrochronology), Sun-like star with M {sub *} = 1.08 ± 0.02 M {sub ☉}, R {sub *} = 1.00 ± 0.02 R {sub ☉}, and T {sub eff} = 5990 ± 38 K. The middle planet's large TTV amplitude (∼5 hr) resulted either in non-detections or inaccurate detections in previous searches. A strong chopping signal, a shorter period sinusoid in the TTVs, allows us to break the mass-eccentricity degeneracy and uniquely determine the masses of the inner, middle, and outer planets to be M = 7.3 ± 6.8 M {sub ⊕}, 4.0 ± 0.9M {sub ⊕}, and M = 132 ± 17 M {sub ⊕}, which we designate PH3 b, c, and d, respectively. Furthermore, the middle planet, PH3 c, has a relatively low density, ρ = 1.2 ± 0.3 g cm{sup –3} for a planet of its mass, requiring a substantial H/He atmosphere of 2.1{sub −0.3}{sup +0.8}% by mass, and joins a growing population of low-mass, low-density planets.

  16. Edge chlorination of hexa-peri-hexabenzocoronene investigated by density functional theory and vibrational spectroscopy† †Electronic supplementary information (ESI) available: Description and animations of the vibrational normal modes of HBC and HBC-Cl discussed in the text. See DOI: 10.1039/c5cp07755a Click here for additional data file. Click here for additional data file.

    PubMed Central

    Maghsoumi, Ali; Narita, Akimitsu; Dong, Renhao; Feng, Xinliang; Castiglioni, Chiara

    2016-01-01

    We investigate the molecular structure and vibrational properties of perchlorinated hexa-peri-hexabenzocoronene (HBC-Cl) by density functional theory (DFT) calculations and IR and Raman spectroscopy, in comparison to the parent HBC. The theoretical and experimental IR and Raman spectra demonstrated very good agreement, elucidating a number of vibrational modes corresponding to the observed peaks. Compared with the parent HBC, the edge chlorination significantly alters the planarity of the molecule. Nevertheless, the results indicated that such structural distortion does not significantly impair the π-conjugation of such polycyclic aromatic hydrocarbons. PMID:26912311

  17. Asteroid Densities

    NASA Astrophysics Data System (ADS)

    Britt, D. T.; Yeomans, D.; Housen, K.; Consolmagno, G.

    2005-01-01

    This data set contains a tabulation of asteroid masses, diameters, and bulk densities compiled by D. T. Britt and published in Table 1 of Britt, et al. (2002) [BRITTETAL2002] in the 'Asteroids III' volume.

  18. Effect of combined addition of nano-SiC and nano-Ho2O3 on the in-field critical current density of MgB2 superconductor

    NASA Astrophysics Data System (ADS)

    Varghese, Neson; Vinod, K.; Chattopadhyay, M. K.; Roy, S. B.; Syamaprasad, U.

    2010-01-01

    MgB2 superconducting samples added with nano-Ho2O3 (n-Ho2O3) and/or nano-SiC (n-SiC) have been prepared by an in situ solid state reaction method to investigate and compare the combined and individual effects of n-SiC and n-Ho2O3 on a crystal structure, critical temperature (TC), and critical current density (JC) of MgB2. All the doped samples exhibit significantly enhanced in-field JC and the codoped sample with 2.5 wt % n-Ho2O3 and 5 wt % n-SiC gives the best performance in in-field JC, and the enhancement is around 100 times and 2 times greater than the undoped and monodoped n-SiC samples, respectively, at 5 K and 8 T. For the n-SiC added sample, lattice distortions due to C substitution on the B site and the formation of reacted phase Mg2Si as flux pinners cause enhanced JC up to the maximum field studied (8 T). While in the n-Ho2O3 added sample, a reacted phase HoB4 having a strong magnetic moment forms, without any substitution at the Mg or B site, which acts as a flux pinner in order to enhance the in-field JC. Accordingly the best codoped sample exhibits these combined benefits of n-SiC and n-Ho2O3 in MgB2 superconductor.

  19. Glass fiber addition strengthens low-density ablative compositions

    NASA Technical Reports Server (NTRS)

    Chandler, H. H.

    1974-01-01

    Approximately 15% of E-glass fibers was added to compositions under test and greatly improved char stability. Use of these fibers also reduced thermal strains which, in turn, minimized char shrinkage and associated cracks, subsurface voids, and disbonds. Increased strength allows honeycomb core reinforcement to be replaced by equivalent amount of glass fibers.

  20. Holographic charge density waves

    NASA Astrophysics Data System (ADS)

    Donos, Aristomenis; Gauntlett, Jerome P.

    2013-06-01

    We show that strongly coupled holographic matter at finite charge density can exhibit charge density wave phases which spontaneously break translation invariance while preserving time-reversal and parity invariance. We show that such phases are possible within Einstein-Maxwell-dilaton theory in general spacetime dimensions. We also discuss related spatially modulated phases when there is an additional coupling to a second vector field, possibly with nonzero mass. We discuss how these constructions, and others, should be associated with novel spatially modulated ground states.

  1. An anti-platelet-endothelial cell adhesion molecule-1 antibody inhibits leukocyte extravasation from mesenteric microvessels in vivo by blocking the passage through the basement membrane

    PubMed Central

    1996-01-01

    Platelet-endothelial cell adhesion molecule-1 (PECAM-1, CD31) plays an active role in the process of leukocyte migration through cultured endothelial cells in vitro and anti-PECAM-1 antibodies (Abs) inhibit accumulation of leukocytes into sites of inflammation in vivo. Despite the latter, it is still not clear at which stage of leukocyte emigration in vivo PECAM-1 is involved. To address this point directly, we studied the effect of an anti-PECAM-1 Ab, recognizing rat PECAM-1, on leukocyte responses within rat mesenteric microvessels using intravital microscopy. In mesenteric preparations activated by interleukin (IL)-1 beta, the anti-PECAM-1 Ab had no significant effect on the rolling or adhesion of leukocytes, but inhibited their migration into the surrounding extravascular tissue in a dose-dependent manner. Although in some vessel segments these leukocytes had come to a halt within the vascular lumen, often the leukocytes appeared to be trapped within the vessel wall. Analysis of these sections by electron microscopy revealed that the leukocytes had passed through endothelial cell junctions but not the basement membrane. In contrast to the effect of the Ab in mesenteric preparations treated with IL-1 beta, leukocyte extravasation induced by topical or intraperitoneal administration of the chemotactic peptide formyl-methionyl-leucyl-phenylalanine was not inhibited by the anti-PECAM-1 Ab. These results directly demonstrate a role for PECAM-1 in leukocyte extravasation in vivo and indicate that this involvement is selective for leukocyte extravasation elicited by certain inflammatory mediators. Further, our findings provide the first in vivo indication that PECAM-1 may have an important role in triggering the passage of leukocytes through the perivascular basement membrane. PMID:8691137

  2. Dietary Selenium Supplementation Modulates Growth of Brain Metastatic Tumors and Changes the Expression of Adhesion Molecules in Brain Microvessels.

    PubMed

    Wrobel, Jagoda K; Wolff, Gretchen; Xiao, Rijin; Power, Ronan F; Toborek, Michal

    2016-08-01

    Various dietary agents can modulate tumor invasiveness. The current study explored whether selenoglycoproteins (SeGPs) extracted from selenium-enriched yeast affect tumor cell homing and growth in the brain. Mice were fed diets enriched with specific SeGPs (SeGP40 or SeGP65, 1 mg/kg Se each), glycoproteins (GP40 or GP65, 0.2-0.3 mg/kg Se each) or a control diet (0.2-0.3 mg/kg Se) for 12 weeks. Then, murine Lewis lung carcinoma cells were infused into the brain circulation. Analyses were performed at early (48 h) and late stages (3 weeks) post tumor cell infusion. Imaging of tumor progression in the brain revealed that mice fed SeGP65-enriched diet displayed diminished metastatic tumor growth, fewer extravasating tumor cells and smaller metastatic lesions. While administration of tumor cells resulted in a significant upregulation of adhesion molecules in the early stage of tumor progression, overexpression of VCAM-1 (vascular call adhesion molecule-1) and ALCAM (activated leukocyte cell adhesion molecule) messenger RNA (mRNA) was diminished in SeGP65 supplemented mice. Additionally, mice fed SeGP65 showed decreased expression of acetylated NF-κB p65, 48 h post tumor cell infusion. The results indicate that tumor progression in the brain can be modulated by specific SeGPs. Selenium-containing compounds were more effective than their glycoprotein controls, implicating selenium as a potential negative regulator of metastatic process.

  3. Effect of urotensin II on skin microvessel tone in diabetic patients without heart failure or essential hypertension.

    PubMed

    Zomer, E; de Ridder, I; Kompa, A; Komesaroff, P; Gilbert, Re; Krum, H

    2008-10-01

    Urotensin II (UII) is a potent vasoconstrictor peptide. Increased plasma levels and kidney expression of UII and its receptor have been observed in diabetes mellitus (DM). The aim of the present study was to evaluate the direct effect of exogenous UII on microvascular tone in DM patients compared with healthy controls. Vasoactive effect of UII (10(-12), 10(-9) and 10(-7) mol/L) on skin microvascular tone was evaluated in 12 controls and 12 DM patients (Type 1 or Type 2) without concomitant heart failure or essential hypertension using the non-invasive technique of iontophoresis and laser Doppler velocimetry. In addition, responses to acetylcholine (ACh) and sodium nitroprusside (SNP) were evaluated. Urotensin II dose-dependently dilated skin microvasculature in control subjects (-51.8 +/- 59.4, 138.6 +/- 101.5, 204.2 +/- 115.7 and 207.5 +/- 81.6 arbitrary flux units (AFUs) for MilliQ and 10(-12), 10(-9) and 10(-7) mol/L UII, respectively) and dose-dependently vasoconstricted the microvasculature in DM patients (100.8 +/- 81.2, 46.2 +/- 85.1, 35.4 +/- 81.4 and 26.6 +/- 79.6 AFUs for MilliQ and 10(-12), 10(-9) and 10(-7) mol/L UII, respectively). Blood flow in control subjects and DM patients was differed significantly, with pair-wise comparisons indicating differences for 10(-9) and 10(-7) mol/L UII (P = 0.04 and P = 0.003). Results of blood flow in diet-controlled DM patients (204.7 +/- 193.6, 261.2 +/- 212.8, 256.1 +/- 202.9 and 233.7 +/- 115.9 AFUs for MilliQ and 10(-12), 10(-9) and 10(-7) mol/L UII, respectively) were similar to those in control subjects compared with results for DM patients receiving antidiabetic medication (48.8 + 80.0, -61.4 +/- 49.1, -75.0 +/- 40.0, -91.7 +/- 80.0 AFUs for MilliQ and 10(-12), 10(-9) and 10(-7) mol/L UII, respectively). Between-group significance remained after adjustment for baseline blood pressure values. Acetylcholine vasodilator responses were attenuated in DM patients compared with those in control subjects (1309

  4. Additive Similarity Trees

    ERIC Educational Resources Information Center

    Sattath, Shmuel; Tversky, Amos

    1977-01-01

    Tree representations of similarity data are investigated. Hierarchical clustering is critically examined, and a more general procedure, called the additive tree, is presented. The additive tree representation is then compared to multidimensional scaling. (Author/JKS)

  5. Polyimide processing additives

    NASA Technical Reports Server (NTRS)

    Pratt, J. R.; St. Clair, T. L.; Burks, H. D.; Stoakley, D. M.

    1987-01-01

    A method has been found for enhancing the melt flow of thermoplastic polyimides during processing. A high molecular weight 422 copoly(amic acid) or copolyimide was fused with approximately 0.05 to 5 pct by weight of a low molecular weight amic acid or imide additive, and this melt was studied by capillary rheometry. Excellent flow and improved composite properties on graphite resulted from the addition of a PMDA-aniline additive to LARC-TPI. Solution viscosity studies imply that amic acid additives temporarily lower molecular weight and, hence, enlarge the processing window. Thus, compositions containing the additive have a lower melt viscosity for a longer time than those unmodified.

  6. RHOCUBE: 3D density distributions modeling code

    NASA Astrophysics Data System (ADS)

    Nikutta, Robert; Agliozzo, Claudia

    2016-11-01

    RHOCUBE models 3D density distributions on a discrete Cartesian grid and their integrated 2D maps. It can be used for a range of applications, including modeling the electron number density in LBV shells and computing the emission measure. The RHOCUBE Python package provides several 3D density distributions, including a powerlaw shell, truncated Gaussian shell, constant-density torus, dual cones, and spiralling helical tubes, and can accept additional distributions. RHOCUBE provides convenient methods for shifts and rotations in 3D, and if necessary, an arbitrary number of density distributions can be combined into the same model cube and the integration ∫ dz performed through the joint density field.

  7. Polylactides in additive biomanufacturing.

    PubMed

    Poh, Patrina S P; Chhaya, Mohit P; Wunner, Felix M; De-Juan-Pardo, Elena M; Schilling, Arndt F; Schantz, Jan-Thorsten; van Griensven, Martijn; Hutmacher, Dietmar W

    2016-12-15

    New advanced manufacturing technologies under the alias of additive biomanufacturing allow the design and fabrication of a range of products from pre-operative models, cutting guides and medical devices to scaffolds. The process of printing in 3 dimensions of cells, extracellular matrix (ECM) and biomaterials (bioinks, powders, etc.) to generate in vitro and/or in vivo tissue analogue structures has been termed bioprinting. To further advance in additive biomanufacturing, there are many aspects that we can learn from the wider additive manufacturing (AM) industry, which have progressed tremendously since its introduction into the manufacturing sector. First, this review gives an overview of additive manufacturing and both industry and academia efforts in addressing specific challenges in the AM technologies to drive toward AM-enabled industrial revolution. After which, considerations of poly(lactides) as a biomaterial in additive biomanufacturing are discussed. Challenges in wider additive biomanufacturing field are discussed in terms of (a) biomaterials; (b) computer-aided design, engineering and manufacturing; (c) AM and additive biomanufacturing printers hardware; and (d) system integration. Finally, the outlook for additive biomanufacturing was discussed.

  8. Additive Manufactured Product Integrity

    NASA Technical Reports Server (NTRS)

    Waller, Jess; Wells, Doug; James, Steve; Nichols, Charles

    2017-01-01

    NASA is providing key leadership in an international effort linking NASA and non-NASA resources to speed adoption of additive manufacturing (AM) to meet NASA's mission goals. Participants include industry, NASA's space partners, other government agencies, standards organizations and academia. Nondestructive Evaluation (NDE) is identified as a universal need for all aspects of additive manufacturing.

  9. Density: A Discovery Approach.

    ERIC Educational Resources Information Center

    Rieck, William

    1994-01-01

    Describes an activity that allows students to discover the concept of density and that density is a determining physical property of a pure substance. Makes suggestions to further enhance students' understanding of density. (ZWH)

  10. Polyimide processing additives

    NASA Technical Reports Server (NTRS)

    Fletcher, James C. (Inventor); Pratt, J. Richard (Inventor); St.clair, Terry L. (Inventor); Stoakley, Diane M. (Inventor); Burks, Harold D. (Inventor)

    1992-01-01

    A process for preparing polyimides having enhanced melt flow properties is described. The process consists of heating a mixture of a high molecular weight poly-(amic acid) or polyimide with a low molecular weight amic acid or imide additive in the range of 0.05 to 15 percent by weight of additive. The polyimide powders so obtained show improved processability, as evidenced by lower melt viscosity by capillary rheometry. Likewise, films prepared from mixtures of polymers with additives show improved processability with earlier onset of stretching by TMA.

  11. Polyimide processing additives

    NASA Technical Reports Server (NTRS)

    Pratt, J. Richard (Inventor); St.clair, Terry L. (Inventor); Stoakley, Diane M. (Inventor); Burks, Harold D. (Inventor)

    1993-01-01

    A process for preparing polyimides having enhanced melt flow properties is described. The process consists of heating a mixture of a high molecular weight poly-(amic acid) or polyimide with a low molecular weight amic acid or imide additive in the range of 0.05 to 15 percent by weight of the additive. The polyimide powders so obtained show improved processability, as evidenced by lower melt viscosity by capillary rheometry. Likewise, films prepared from mixtures of polymers with additives show improved processability with earlier onset of stretching by TMA.

  12. Food Additives and Hyperkinesis

    ERIC Educational Resources Information Center

    Wender, Ester H.

    1977-01-01

    The hypothesis that food additives are causally associated with hyperkinesis and learning disabilities in children is reviewed, and available data are summarized. Available from: American Medical Association 535 North Dearborn Street Chicago, Illinois 60610. (JG)

  13. Smog control fuel additives

    SciTech Connect

    Lundby, W.

    1993-06-29

    A method is described of controlling, reducing or eliminating, ozone and related smog resulting from photochemical reactions between ozone and automotive or industrial gases comprising the addition of iodine or compounds of iodine to hydrocarbon-base fuels prior to or during combustion in an amount of about 1 part iodine per 240 to 10,000,000 parts fuel, by weight, to be accomplished by: (a) the addition of these inhibitors during or after the refining or manufacturing process of liquid fuels; (b) the production of these inhibitors for addition into fuel tanks, such as automotive or industrial tanks; or (c) the addition of these inhibitors into combustion chambers of equipment utilizing solid fuels for the purpose of reducing ozone.

  14. Group Sparse Additive Models

    PubMed Central

    Yin, Junming; Chen, Xi; Xing, Eric P.

    2016-01-01

    We consider the problem of sparse variable selection in nonparametric additive models, with the prior knowledge of the structure among the covariates to encourage those variables within a group to be selected jointly. Previous works either study the group sparsity in the parametric setting (e.g., group lasso), or address the problem in the nonparametric setting without exploiting the structural information (e.g., sparse additive models). In this paper, we present a new method, called group sparse additive models (GroupSpAM), which can handle group sparsity in additive models. We generalize the ℓ1/ℓ2 norm to Hilbert spaces as the sparsity-inducing penalty in GroupSpAM. Moreover, we derive a novel thresholding condition for identifying the functional sparsity at the group level, and propose an efficient block coordinate descent algorithm for constructing the estimate. We demonstrate by simulation that GroupSpAM substantially outperforms the competing methods in terms of support recovery and prediction accuracy in additive models, and also conduct a comparative experiment on a real breast cancer dataset.

  15. Additive Manufacturing Infrared Inspection

    NASA Technical Reports Server (NTRS)

    Gaddy, Darrell

    2014-01-01

    Additive manufacturing is a rapid prototyping technology that allows parts to be built in a series of thin layers from plastic, ceramics, and metallics. Metallic additive manufacturing is an emerging form of rapid prototyping that allows complex structures to be built using various metallic powders. Significant time and cost savings have also been observed using the metallic additive manufacturing compared with traditional techniques. Development of the metallic additive manufacturing technology has advanced significantly over the last decade, although many of the techniques to inspect parts made from these processes have not advanced significantly or have limitations. Several external geometry inspection techniques exist such as Coordinate Measurement Machines (CMM), Laser Scanners, Structured Light Scanning Systems, or even traditional calipers and gages. All of the aforementioned techniques are limited to external geometry and contours or must use a contact probe to inspect limited internal dimensions. This presentation will document the development of a process for real-time dimensional inspection technique and digital quality record of the additive manufacturing process using Infrared camera imaging and processing techniques.

  16. Fused Lasso Additive Model

    PubMed Central

    Petersen, Ashley; Witten, Daniela; Simon, Noah

    2016-01-01

    We consider the problem of predicting an outcome variable using p covariates that are measured on n independent observations, in a setting in which additive, flexible, and interpretable fits are desired. We propose the fused lasso additive model (FLAM), in which each additive function is estimated to be piecewise constant with a small number of adaptively-chosen knots. FLAM is the solution to a convex optimization problem, for which a simple algorithm with guaranteed convergence to a global optimum is provided. FLAM is shown to be consistent in high dimensions, and an unbiased estimator of its degrees of freedom is proposed. We evaluate the performance of FLAM in a simulation study and on two data sets. Supplemental materials are available online, and the R package flam is available on CRAN. PMID:28239246

  17. Additives in plastics.

    PubMed Central

    Deanin, R D

    1975-01-01

    The polymers used in plastics are generally harmless. However, they are rarely used in pure form. In almost all commercial plastics, they are "compounded" with monomeric ingredients to improve their processing and end-use performance. In order of total volume used, these monomeric additives may be classified as follows: reinforcing fibers, fillers, and coupling agents; plasticizers; colorants; stabilizers (halogen stabilizers, antioxidants, ultraviolet absorbers, and biological preservatives); processing aids (lubricants, others, and flow controls); flame retardants, peroxides; and antistats. Some information is already available, and much more is needed, on potential toxicity and safe handling of these additives during processing and manufacture of plastics products. PMID:1175566

  18. Additives in plastics.

    PubMed

    Deanin, R D

    1975-06-01

    The polymers used in plastics are generally harmless. However, they are rarely used in pure form. In almost all commercial plastics, they are "compounded" with monomeric ingredients to improve their processing and end-use performance. In order of total volume used, these monomeric additives may be classified as follows: reinforcing fibers, fillers, and coupling agents; plasticizers; colorants; stabilizers (halogen stabilizers, antioxidants, ultraviolet absorbers, and biological preservatives); processing aids (lubricants, others, and flow controls); flame retardants, peroxides; and antistats. Some information is already available, and much more is needed, on potential toxicity and safe handling of these additives during processing and manufacture of plastics products.

  19. Biobased lubricant additives

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fully biobased lubricants are those formulated using all biobased ingredients, i.e. biobased base oils and biobased additives. Such formulations provide the maximum environmental, safety, and economic benefits expected from a biobased product. Currently, there are a number of biobased base oils that...

  20. More Than Additional Space...

    ERIC Educational Resources Information Center

    CEFP Journal, 1973

    1973-01-01

    A much needed addition to the Jamestown Elementary School turned out to be more than an expansion of walls for more space. A new educational program, a limited budget, and a short time line were tackled on a team approach basis and were successfully resolved. (Author)

  1. Density perturbation theory

    SciTech Connect

    Palenik, Mark C.; Dunlap, Brett I.

    2015-07-28

    Despite the fundamental importance of electron density in density functional theory, perturbations are still usually dealt with using Hartree-Fock-like orbital equations known as coupled-perturbed Kohn-Sham (CPKS). As an alternative, we develop a perturbation theory that solves for the perturbed density directly, removing the need for CPKS. This replaces CPKS with a true Hohenberg-Kohn density perturbation theory. In CPKS, the perturbed density is found in the basis of products of occupied and virtual orbitals, which becomes ever more over-complete as the size of the orbital basis set increases. In our method, the perturbation to the density is expanded in terms of a series of density basis functions and found directly. It is possible to solve for the density in such a way that it makes the total energy stationary even if the density basis is incomplete.

  2. 14 CFR 93.129 - Additional operations.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Additional operations. 93.129 Section 93.129 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIR TRAFFIC AND GENERAL OPERATING RULES SPECIAL AIR TRAFFIC RULES High Density Traffic Airports §...

  3. Vinyl capped addition polyimides

    NASA Technical Reports Server (NTRS)

    Vannucci, Raymond D. (Inventor); Malarik, Diane C. (Inventor); Delvigs, Peter (Inventor)

    1991-01-01

    Polyimide resins (PMR) are generally useful where high strength and temperature capabilities are required (at temperatures up to about 700 F). Polyimide resins are particularly useful in applications such as jet engine compressor components, for example, blades, vanes, air seals, air splitters, and engine casing parts. Aromatic vinyl capped addition polyimides are obtained by reacting a diamine, an ester of tetracarboxylic acid, and an aromatic vinyl compound. Low void materials with improved oxidative stability when exposed to 700 F air may be fabricated as fiber reinforced high molecular weight capped polyimide composites. The aromatic vinyl capped polyimides are provided with a more aromatic nature and are more thermally stable than highly aliphatic, norbornenyl-type end-capped polyimides employed in PMR resins. The substitution of aromatic vinyl end-caps for norbornenyl end-caps in addition polyimides results in polymers with improved oxidative stability.

  4. Electrophilic addition of astatine

    SciTech Connect

    Norseev, Yu.V.; Vasaros, L.; Nhan, D.D.; Huan, N.K.

    1988-03-01

    It has been shown for the first time that astatine is capable of undergoing addition reactions to unsaturated hydrocarbons. A new compound of astatine, viz., ethylene astatohydrin, has been obtained, and its retention numbers of squalane, Apiezon, and tricresyl phosphate have been found. The influence of various factors on the formation of ethylene astatohydrin has been studied. It has been concluded on the basis of the results obtained that the univalent cations of astatine in an acidic medium is protonated hypoastatous acid.

  5. Functional Generalized Additive Models.

    PubMed

    McLean, Mathew W; Hooker, Giles; Staicu, Ana-Maria; Scheipl, Fabian; Ruppert, David

    2014-01-01

    We introduce the functional generalized additive model (FGAM), a novel regression model for association studies between a scalar response and a functional predictor. We model the link-transformed mean response as the integral with respect to t of F{X(t), t} where F(·,·) is an unknown regression function and X(t) is a functional covariate. Rather than having an additive model in a finite number of principal components as in Müller and Yao (2008), our model incorporates the functional predictor directly and thus our model can be viewed as the natural functional extension of generalized additive models. We estimate F(·,·) using tensor-product B-splines with roughness penalties. A pointwise quantile transformation of the functional predictor is also considered to ensure each tensor-product B-spline has observed data on its support. The methods are evaluated using simulated data and their predictive performance is compared with other competing scalar-on-function regression alternatives. We illustrate the usefulness of our approach through an application to brain tractography, where X(t) is a signal from diffusion tensor imaging at position, t, along a tract in the brain. In one example, the response is disease-status (case or control) and in a second example, it is the score on a cognitive test. R code for performing the simulations and fitting the FGAM can be found in supplemental materials available online.

  6. Quartz resonator fluid density and viscosity monitor

    DOEpatents

    Martin, Stephen J.; Wiczer, James J.; Cernosek, Richard W.; Frye, Gregory C.; Gebert, Charles T.; Casaus, Leonard; Mitchell, Mary A.

    1998-01-01

    A pair of thickness-shear mode resonators, one smooth and one with a textured surface, allows fluid density and viscosity to be independently resolved. A textured surface, either randomly rough or regularly patterned, leads to trapping of liquid at the device surface. The synchronous motion of this trapped liquid with the oscillating device surface allows the device to weigh the liquid; this leads to an additional response that depends on liquid density. This additional response enables a pair of devices, one smooth and one textured, to independently resolve liquid density and viscosity; the difference in responses determines the density while the smooth device determines the density-viscosity product, and thus, the pair determines both density and viscosity.

  7. Adaptive density estimator for galaxy surveys

    NASA Astrophysics Data System (ADS)

    Saar, Enn

    2016-10-01

    Galaxy number or luminosity density serves as a basis for many structure classification algorithms. Several methods are used to estimate this density. Among them kernel methods have probably the best statistical properties and allow also to estimate the local sample errors of the estimate. We introduce a kernel density estimator with an adaptive data-driven anisotropic kernel, describe its properties and demonstrate the wealth of additional information it gives us about the local properties of the galaxy distribution.

  8. Siloxane containing addition polyimides

    NASA Technical Reports Server (NTRS)

    Maudgal, S.; St. Clair, T. L.

    1984-01-01

    Addition polyimide oligomers have been synthesized from bis(gamma-aminopropyl) tetramethyldisiloxane and 3, 3', 4, 4'-benzophenonetetracarboxylic dianhydride using a variety of latent crosslinking groups as endcappers. The prepolymers were isolated and characterized for solubility (in amide, chlorinated and ether solvents), melt flow and cure properties. The most promising systems, maleimide and acetylene terminated prepolymers, were selected for detailed study. Graphite cloth reinforced composites were prepared and properties compared with those of graphite/Kerimid 601, a commercially available bismaleimide. Mixtures of the maleimide terminated system with Kerimid 601, in varying proportions, were also studied.

  9. Information geometric density estimation

    NASA Astrophysics Data System (ADS)

    Sun, Ke; Marchand-Maillet, Stéphane

    2015-01-01

    We investigate kernel density estimation where the kernel function varies from point to point. Density estimation in the input space means to find a set of coordinates on a statistical manifold. This novel perspective helps to combine efforts from information geometry and machine learning to spawn a family of density estimators. We present example models with simulations. We discuss the principle and theory of such density estimation.

  10. Platelet additive solution - electrolytes.

    PubMed

    Azuma, Hiroshi; Hirayama, Junichi; Akino, Mitsuaki; Ikeda, Hisami

    2011-06-01

    Recent attention to solutions that replace most or all plasma in platelet concentrates, while maintaining satisfactory platelet function, is motivated by the potential of plasma reduction or depletion to mitigate various transfusion-related adverse events. This report considers the electrolytic composition of previously described platelet additive solutions, in order to draw general conclusions about what is required for platelet function and longevity. The optimal concentrations of Na(+) and Cl(-) are 69-115 mM. The presence of both K(+) and Mg(2+) in platelet suspension at nearly physiological concentrations (3-5mM and 1.5-3mM, respectively) is indispensable for good preservation capacity because both electrolytes are required to prevent platelet activation. In contrast to K(+) and Mg(2+), Ca(2+) may not be important because no free Ca(2+) is available in M-sol, which showed excellent platelet preservation capacity at less than 5% plasma concentration. The importance of bicarbonate (approximately 40 mM) can be recognized when the platelets are suspended in additive solution under less than 5% residual plasma concentration.

  11. Histomorphometric Analysis of Angiogenesis using CD31 Immunomarker and Mast Cell Density in Oral Premalignant and Malignant Lesions: A Pilot Study

    PubMed Central

    Jyothsna, M; Rammanohar, M

    2017-01-01

    Introduction Mast cells have been implicated in promoting angiogenesis in malignant tumors of lung, oesophagus and breast, but there are few studies on Oral Squamous Cell Carcinomas (OSCC). Most oral squamous cell carcinomas arise from pre-existing precancerous lesions exhibiting epithelial dysplasia. Aim The present pilot study attempts to compare Mast Cell Density (MCD), Microvessel Density (MVD), Microvessel Area (MVA) histomorphometrically between normal buccal mucosa, severe epithelial dysplasia and OSCC and to correlate the role of mast cells and angiogenesis in tumor progression. Material and Methods The retrospective study was conducted on eight cases of OSCC, eight cases of severe epithelial dysplasia and five cases of normal buccal mucosa. Immunohistochemical staining with anti CD–31, to demonstrate angiogenesis and toluidine blue staining for mast cells were employed. MVA, MVD and MCD were calculated using the measurement tools of the image analysis software and compared between the groups. One way ANOVA (Analysis of Variance) was used for comparing the parameter for multiple groups followed by Games Howell test. To assess the relationship between micro vessel density and mast cell density, Karl Pearson’s correlation was used. Results MCD and MVD increased with disease progression and were statistically higher in OSCC than in severe epithelial dysplasia and normal buccal mucosa (p<0.001). MVA increased from normal to severe dysplasia and decreased from dysplasia to OSCC, may be due to revascularization of tumor tissue. A positive correlation was observed between MCD and MVD in OSCC and dysplasia, though were not statistically significant. Conclusion These findings suggest that mast cells may up regulate angiogenesis in OSCC. MCD and MVD may be used as indicators for disease progression. PMID:28274041

  12. Bone Density Test

    MedlinePlus

    Tests and Procedures Bone density test By Mayo Clinic Staff A bone density test determines if you have osteoporosis — a disease that causes bones to ... your bones could be quite weak. A bone density test enhances the accuracy of calculating your risk ...

  13. Additive composition, for gasoline

    SciTech Connect

    Vataru, M.

    1989-01-10

    An admixture is described that comprises Diesel fuel and an additive composition added thereto which is between about 0.05 to about 2.0 percent by weight of the fuel, the composition comprising: (a) between about 0.05 and 25% relative weight parts of an organic peroxide, and (b) between about 0.1 and 25% relative weight parts of detergent selected from the component group that consists of: (i) fatty amines; (ii) ethoxylated and propoxylated derivatives of fatty amines; (iii) fatty diamines; (iv) fatty imidazlines; (v) polymeric amines and derivatives thereof; (vi) combination of one or more of the (i) through (v) components with carboxylic acid or acids having from three to forth carbon atoms, (c) from about 99.0 to about 50% by weight of a hydrocarbon solvent.

  14. Teardrop bladder: additional considerations

    SciTech Connect

    Wechsler, R.J.; Brennan, R.E.

    1982-07-01

    Nine cases of teardrop bladder (TDB) seen at excretory urography are presented. In some of these patients, the iliopsoas muscles were at the upper limit of normal in size, and additional evaluation of the perivesical structures with computed tomography (CT) was necessary. CT demonstrated only hypertrophied muscles with or without perivesical fat. The psoas muscles and pelvic width were measured in 8 patients and compared with the measurements of a control group of males without TDB. Patients with TDB had large iliopsoas muscles and narrow pelves compared with the control group. The psoas muscle width/pelvic width ratio was significantly greater (p < 0.0005) in patients with TDB than in the control group, with values of 1.04 + 0.05 and 0.82 + 0.09, respectively. It is concluded that TDB is not an uncommon normal variant in black males. Both iliopsoas muscle hypertrophy and a narrow pelvis are factors that predispose a patient to TDB.

  15. New addition curing polyimides

    NASA Technical Reports Server (NTRS)

    Frimer, Aryeh A.; Cavano, Paul

    1991-01-01

    In an attempt to improve the thermal-oxidative stability (TOS) of PMR-type polymers, the use of 1,4-phenylenebis (phenylmaleic anhydride) PPMA, was evaluated. Two series of nadic end-capped addition curing polyimides were prepared by imidizing PPMA with either 4,4'-methylene dianiline or p-phenylenediamine. The first resulted in improved solubility and increased resin flow while the latter yielded a compression molded neat resin sample with a T(sub g) of 408 C, close to 70 C higher than PME-15. The performance of these materials in long term weight loss studies was below that of PMR-15, independent of post-cure conditions. These results can be rationalized in terms of the thermal lability of the pendant phenyl groups and the incomplete imidization of the sterically congested PPMA. The preparation of model compounds as well as future research directions are discussed.

  16. Perspectives on Additive Manufacturing

    NASA Astrophysics Data System (ADS)

    Bourell, David L.

    2016-07-01

    Additive manufacturing (AM) has skyrocketed in visibility commercially and in the public sector. This article describes the development of this field from early layered manufacturing approaches of photosculpture, topography, and material deposition. Certain precursors to modern AM processes are also briefly described. The growth of the field over the last 30 years is presented. Included is the standard delineation of AM technologies into seven broad categories. The economics of AM part generation is considered, and the impacts of the economics on application sectors are described. On the basis of current trends, the future outlook will include a convergence of AM fabricators, mass-produced AM fabricators, enabling of topology optimization designs, and specialization in the AM legal arena. Long-term developments with huge impact are organ printing and volume-based printing.

  17. Sewage sludge additive

    NASA Technical Reports Server (NTRS)

    Kalvinskas, J. J.; Mueller, W. A.; Ingham, J. D. (Inventor)

    1980-01-01

    The additive is for a raw sewage treatment process of the type where settling tanks are used for the purpose of permitting the suspended matter in the raw sewage to be settled as well as to permit adsorption of the dissolved contaminants in the water of the sewage. The sludge, which settles down to the bottom of the settling tank is extracted, pyrolyzed and activated to form activated carbon and ash which is mixed with the sewage prior to its introduction into the settling tank. The sludge does not provide all of the activated carbon and ash required for adequate treatment of the raw sewage. It is necessary to add carbon to the process and instead of expensive commercial carbon, coal is used to provide the carbon supplement.

  18. DENSITY CONTROL IN A REACTOR

    DOEpatents

    Marshall, J. Jr.

    1961-10-24

    A reactor is described in which natural-uranium bodies are located in parallel channels which extend through the graphite mass in a regular lattice. The graphite mass has additional channels that are out of the lattice and contain no uranium. These additional channels decrease in number per unit volume of graphite from the center of the reactor to the exterior and have the effect of reducing the density of the graphite more at the center than at the exterior, thereby spreading neutron activity throughout the reactor. (AEC)

  19. Additive lattice kirigami.

    PubMed

    Castle, Toen; Sussman, Daniel M; Tanis, Michael; Kamien, Randall D

    2016-09-01

    Kirigami uses bending, folding, cutting, and pasting to create complex three-dimensional (3D) structures from a flat sheet. In the case of lattice kirigami, this cutting and rejoining introduces defects into an underlying 2D lattice in the form of points of nonzero Gaussian curvature. A set of simple rules was previously used to generate a wide variety of stepped structures; we now pare back these rules to their minimum. This allows us to describe a set of techniques that unify a wide variety of cut-and-paste actions under the rubric of lattice kirigami, including adding new material and rejoining material across arbitrary cuts in the sheet. We also explore the use of more complex lattices and the different structures that consequently arise. Regardless of the choice of lattice, creating complex structures may require multiple overlapping kirigami cuts, where subsequent cuts are not performed on a locally flat lattice. Our additive kirigami method describes such cuts, providing a simple methodology and a set of techniques to build a huge variety of complex 3D shapes.

  20. Ceramics with Different Additives

    NASA Astrophysics Data System (ADS)

    Wang, Juanjuan; Feng, Lajun; Lei, Ali; Zhao, Kang; Yan, Aijun

    2014-09-01

    Li2CO3, MgCO3, BaCO3, and Bi2O3 dopants were introduced into CaCu3Ti4O12 (CCTO) ceramics in order to improve the dielectric properties. The CCTO ceramics were prepared by conventional solid-state reaction method. The phase structure, microstructure, and dielectric behavior were carefully investigated. The pure structure without any impurity phases can be confirmed by the x-ray diffraction patterns. Scanning Electron Microscopy (SEM) analysis illuminated that the grains of Ca0.90Li0.20Cu3Ti4O12 ceramics were greater than that of pure CCTO. It was important for the properties of the CCTO ceramics to study the additives in complex impedance spectroscopy. It was found that the Ca0.90Li0.20Cu3Ti4O12 ceramics had the higher permittivity (>45000), the lower dielectric loss (<0.025) than those of CCTO at 1 kHz at room temperature and good temperature stability from -30 to 75 °C.

  1. Additive lattice kirigami

    PubMed Central

    Castle, Toen; Sussman, Daniel M.; Tanis, Michael; Kamien, Randall D.

    2016-01-01

    Kirigami uses bending, folding, cutting, and pasting to create complex three-dimensional (3D) structures from a flat sheet. In the case of lattice kirigami, this cutting and rejoining introduces defects into an underlying 2D lattice in the form of points of nonzero Gaussian curvature. A set of simple rules was previously used to generate a wide variety of stepped structures; we now pare back these rules to their minimum. This allows us to describe a set of techniques that unify a wide variety of cut-and-paste actions under the rubric of lattice kirigami, including adding new material and rejoining material across arbitrary cuts in the sheet. We also explore the use of more complex lattices and the different structures that consequently arise. Regardless of the choice of lattice, creating complex structures may require multiple overlapping kirigami cuts, where subsequent cuts are not performed on a locally flat lattice. Our additive kirigami method describes such cuts, providing a simple methodology and a set of techniques to build a huge variety of complex 3D shapes. PMID:27679822

  2. Density functional theory of complex transition densities.

    PubMed

    Ernzerhof, Matthias

    2006-09-28

    We present an extension of Hohenberg-Kohn-Sham density functional theory to the domain of complex local potentials and complex electron densities. The approach is applicable to resonance (Siegert) [Phys. Rev. 56, 750 (1939)] states and other scattering and transport problems that can be described by a normalized state of a Hamiltonian containing a complex local potential. Such Hamiltonians are non-Hermitian and their eigenvalues are in general complex, the imaginary part being inversely proportional to the lifetime of the system. The one-to-one correspondence between complex local potentials nu and complex electron densities rho is established provided that the complex variables are sufficiently close to real local potentials and densities of nondegenerate ground states. We show that the exchange-correlation functionals, contributing to the complex energy, are determined through analytic continuation of their ground-state-theory counterparts. This implies that the exchange-correlation effects on the lifetime of a resonance are, under appropriate conditions, already determined by the functionals of the ground-state theory.

  3. Partition Density Functional Theory

    NASA Astrophysics Data System (ADS)

    Wasserman, Adam

    2012-02-01

    Partition Density Functional Theory (PDFT) is a formally exact method for obtaining molecular properties from self-consistent calculations on isolated fragments [1,2]. For a given choice of fragmentation, PDFT outputs the (in principle exact) molecular energy and density, as well as fragment densities that sum to the correct molecular density. I describe our progress understanding the behavior of the fragment energies as a function of fragment occupations, derivative discontinuities, practical implementation, and applications of PDFT to small molecules. I also discuss implications for ground-state Density Functional Theory, such as the promise of PDFT to circumvent the delocalization error of approximate density functionals. [4pt] [1] M.H. Cohen and A. Wasserman, J. Phys. Chem. A, 111, 2229(2007).[0pt] [2] P. Elliott, K. Burke, M.H. Cohen, and A. Wasserman, Phys. Rev. A 82, 024501 (2010).

  4. Why Density Dependent Propulsion?

    NASA Technical Reports Server (NTRS)

    Robertson, Glen A.

    2011-01-01

    In 2004 Khoury and Weltman produced a density dependent cosmology theory they call the Chameleon, as at its nature, it is hidden within known physics. The Chameleon theory has implications to dark matter/energy with universe acceleration properties, which implies a new force mechanism with ties to the far and local density environment. In this paper, the Chameleon Density Model is discussed in terms of propulsion toward new propellant-less engineering methods.

  5. Martian drainage densities

    USGS Publications Warehouse

    Carr, M.H.; Chuang, F.C.

    1997-01-01

    Drainage densities on Mars range from zero over large areas of volcanic plains to 0.3-0.5 km-1 locally on some volcanoes. These values refer to geologic units, not to drainage basins, as is normal for terrestrial drainage densities. The highest values are close to the lowest terrestrial values derived by similar techniques. Drainage densities were determined for every geologic unit portrayed on the 1:15,000,000 geologic map of Mars. Except for volcanoes the geologic unit with the highest drainage density is the dissected Noachian plains with a drainage density of 0.0074 km-1. The average drainage density for Noachian units is 0.0032 km-1, for Hesperian units is 0.00047 km-1, and for Amazonian units is 0.00007 km-1, excluding the volcanoes. These values are 2-3 orders of magnitude lower than typical terrestrial densities as determined by similar techniques from Landsat images. The low drainage densities, despite a cumulative record that spans billions of years, indicate that compared with the Earth, the channel-forming processes have been very inefficient or have operated only rarely or that the surface is extremely permeable. The high drainage density on volcanoes is attributed to a local cause, such as hydrothermal activity, rather than to a global cause such as climate change. Copyright. Published in 1997 by the American Geophysical Union.

  6. Two new density correlations

    SciTech Connect

    Chien, M.C.H.; Monroy, M.R.

    1986-01-01

    The Liquid density predicted by the Peng-Robinson (P-R) equation of state is often off by 10% or more at temperature and pressure conditions encountered in most reservoirs. To improve the density predictions, two new density correlations have been developed. The first correlation is based on the chain-of-rotators (COR) equation of state and the second is based on the three-parameter Peng-Robinson (PR3) equation of state. The COR correlation is applicable to wider pressure and temperature ranges, but is computationally expensive. It is suited for interpreting fluid-analysis data, where no extensive phase-behavior calculations are needed. On the other hand, the PR3 correlation is more limited in its application range, but is computationally more efficient. It is particularly suited for compositional reservoir simulation where many density calculations are repeatedly carried out. In general, both correlations are comparable to the Standing-Katz correlation for liquid-density calculation and comparable to the P-R equation of state for vapor-density calculation. However, they are superior to the Standing-Katz correlation for liquid mixtures near critical points or liquid mixtures at high pressures. Overall, the COR equation of state gives an average prediction error of 1.9% for liquid densities and 2.7% for vapor densities, and the PR3 gives an average prediction error of less than 2% for both liquid and vapor densities.

  7. Visualization of electronic density

    DOE PAGES

    Grosso, Bastien; Cooper, Valentino R.; Pine, Polina; ...

    2015-04-22

    An atom’s volume depends on its electronic density. Although this density can only be evaluated exactly for hydrogen-like atoms, there are many excellent numerical algorithms and packages to calculate it for other materials. 3D visualization of charge density is challenging, especially when several molecular/atomic levels are intertwined in space. We explore several approaches to 3D charge density visualization, including the extension of an anaglyphic stereo visualization application based on the AViz package to larger structures such as nanotubes. We will describe motivations and potential applications of these tools for answering interesting questions about nanotube properties.

  8. Density-dependent covariant energy density functionals

    SciTech Connect

    Lalazissis, G. A.

    2012-10-20

    Relativistic nuclear energy density functionals are applied to the description of a variety of nuclear structure phenomena at and away fromstability line. Isoscalar monopole, isovector dipole and isoscalar quadrupole giant resonances are calculated using fully self-consistent relativistic quasiparticle randomphase approximation, based on the relativistic Hartree-Bogoliubovmodel. The impact of pairing correlations on the fission barriers in heavy and superheavy nuclei is examined. The role of pion in constructing desnity functionals is also investigated.

  9. Density dependent neurodynamics.

    PubMed

    Halnes, Geir; Liljenström, Hans; Arhem, Peter

    2007-01-01

    The dynamics of a neural network depends on density parameters at (at least) two different levels: the subcellular density of ion channels in single neurons, and the density of cells and synapses at a network level. For the Frankenhaeuser-Huxley (FH) neural model, the density of sodium (Na) and potassium (K) channels determines the behaviour of a single neuron when exposed to an external stimulus. The features of the onset of single neuron oscillations vary qualitatively among different regions in the channel density plane. At a network level, the density of neurons is reflected in the global connectivity. We study the relation between the two density levels in a network of oscillatory FH neurons, by qualitatively distinguishing between three regions, where the mean network activity is (1) spiking, (2) oscillating with enveloped frequencies, and (3) bursting, respectively. We demonstrate that the global activity can be shifted between regions by changing either the density of ion channels at the subcellular level, or the connectivity at the network level, suggesting that different underlying mechanisms can explain similar global phenomena. Finally, we model a possible effect of anaesthesia by blocking specific inhibitory ion channels.

  10. Holographic Dark Energy Density

    NASA Astrophysics Data System (ADS)

    Saadat, Hassan

    2011-06-01

    In this article we consider the cosmological model based on the holographic dark energy. We study dark energy density in Universe with arbitrary spatially curvature described by the Friedmann-Robertson-Walker metric. We use Chevallier-Polarski-Linder parametrization to specify dark energy density.

  11. Density in a Bottle.

    ERIC Educational Resources Information Center

    Roser, Charles E.; McCluskey, Catherine L.

    1998-01-01

    Explains how the Canadian soft drink Orbitz can be used for explorations of density in the classroom. The drink has colored spheres suspended throughout that have a density close to that of the liquid. Presents a hands-on activity that can be easily done in two parts. (DDR)

  12. Variable Density Tunnel

    NASA Technical Reports Server (NTRS)

    1931-01-01

    Variable Density Tunnel in operation. Man at far right is probably Harold J. 'Cannonball' Tuner, longtime safety officer, who started with Curtiss in the teens. This view of the Variable Density Tunnel clearly shows the layout of the Tunnel's surroundings, as well as the plumbing and power needs of the this innovative research tool.

  13. Generalized Expression for Polarization Density

    SciTech Connect

    Lu Wang and T.S. Hahm

    2009-04-23

    A general polarization density which consists of classical and neoclassical parts is system-atically derived via modern gyrokinetics and bounce-kinetics by employing a phase-space Lagrangian Lie-transform perturbation method. The origins of polarization density are further elucidated. Extending the work on neoclassical polarization for long wavelength compared to ion banana width [M. N. Rosenbluth and F. L. Hinton, Phys. Rev. Lett. 80, 724 (1998)], an analytical formula for the generalized neoclassical polarization including both finite-banana-width (FBW) and finite-Larmor-radius (FLR) effects for arbitrary radial wavelength in comparison to banana width and gyroradius is derived. In additional to the contribution from trapped particles, the contribution of passing particles to the neoclassical polarization is also explicitly calculated. Our analytic expression agrees very well with the previous numerical results for a wide range of radial wavelength.

  14. High density fluoride glass calorimeter

    NASA Astrophysics Data System (ADS)

    Xie, Q.; Scheltzbaum, J.; Akgun, U.

    2014-04-01

    The unprecedented radiation levels in current Large Hadron Collider runs, and plans to even increase the luminosity creates a need for new detector technologies to be investigated. Quartz plates to replace the plastic scintillators in current LHC calorimeters have been proposed in recent reports. Quartz based Cherenkov calorimeters can solve the radiation damage problem, however light production and transfer have proven to be challenging. This report summarizes the results from a computational study on the performance of a high-density glass calorimeter. High-density, scintillating, fluoride glass, CHG3, was used as the active material. This glass has been developed specifically for hadron collider experiments, and is known for fast response time, in addition to high light yield. Here, the details of a Geant4 model for a sampling calorimeter prototype with 20 layers, and its hadronic as well as electromagnetic performances are reported.

  15. Bone mineral density test

    MedlinePlus

    ... density test; Bone densitometry; DEXA scan; DXA; Dual-energy x-ray absorptiometry; p-DEXA; Osteoporosis-BMD ... most common and accurate way uses a dual-energy x-ray absorptiometry (DEXA) scan. DEXA uses low- ...

  16. Density on Dry Land.

    ERIC Educational Resources Information Center

    Libarkin, Julie C.; Crockett, Cynthia D.; Sadler, Philip M.

    2003-01-01

    Presents activities to dispel student misconceptions about density, particularly as it applies to buoyancy. Finds that misconceptions fall under three categories: (1) size; (2) shape; and (3) material. (NB)

  17. Critical Density Interaction Studies

    SciTech Connect

    Young, P; Baldis, H A; Cheung, P; Rozmus, W; Kruer, W; Wilks, S; Crowley, S; Mori, W; Hansen, C

    2001-02-14

    Experiments have been performed to study the propagation of intense laser pulses to high plasma densities. The issue of self-focusing and filamentation of the laser pulse as well as developing predictive capability of absorption processes and x-ray conversion efficiencies is important for numerous programs at the Laboratory, particularly Laser Program (Fast Ignitor and direct-drive ICF) and D&NT (radiography, high energy backlighters and laser cutting). Processes such as resonance absorption, profile modification, linear mode conversion, filamentation and stimulated Brillouin scattering can occur near the critical density and can have important effects on the coupling of laser light to solid targets. A combination of experiments have been used to study the propagation of laser light to high plasma densities and the interaction physics of intense laser pulses with solid targets. Nonparaxial fluid codes to study nonstationary behavior of filamentation and stimulated Brillouin scattering at high densities have also been developed as part of this project.

  18. Bone density scan (image)

    MedlinePlus

    ... bone the higher the risk of fractures. A bone scan, along with a patient's medical history, is a ... and whether any preventative treatment is needed. A bone density scan has the advantage of being painless and exposing ...

  19. Nutrient Density Scores.

    ERIC Educational Resources Information Center

    Dickinson, Annette; Thompson, William T.

    1979-01-01

    Announces a nutrient density food scoring system called the Index of Nutritional Quality (INQ). It expresses the ratio between the percent RDA of a nutrient and the percent daily allowance of calories in a food. (Author/SA)

  20. Numerical estimation of densities

    NASA Astrophysics Data System (ADS)

    Ascasibar, Y.; Binney, J.

    2005-01-01

    We present a novel technique, dubbed FIESTAS, to estimate the underlying density field from a discrete set of sample points in an arbitrary multidimensional space. FIESTAS assigns a volume to each point by means of a binary tree. Density is then computed by integrating over an adaptive kernel. As a first test, we construct several Monte Carlo realizations of a Hernquist profile and recover the particle density in both real and phase space. At a given point, Poisson noise causes the unsmoothed estimates to fluctuate by a factor of ~2 regardless of the number of particles. This spread can be reduced to about 1dex (~26 per cent) by our smoothing procedure. The density range over which the estimates are unbiased widens as the particle number increases. Our tests show that real-space densities obtained with an SPH kernel are significantly more biased than those yielded by FIESTAS. In phase space, about 10 times more particles are required in order to achieve a similar accuracy. As a second application we have estimated phase-space densities in a dark matter halo from a cosmological simulation. We confirm the results of Arad, Dekel & Klypin that the highest values of f are all associated with substructure rather than the main halo, and that the volume function v(f) ~f-2.5 over about four orders of magnitude in f. We show that a modified version of the toy model proposed by Arad et al. explains this result and suggests that the departures of v(f) from power-law form are not mere numerical artefacts. We conclude that our algorithm accurately measures the phase-space density up to the limit where discreteness effects render the simulation itself unreliable. Computationally, FIESTAS is orders of magnitude faster than the method based on Delaunay tessellation that Arad et al. employed, making it practicable to recover smoothed density estimates for sets of 109 points in six dimensions.

  1. Atmospheric density models

    NASA Technical Reports Server (NTRS)

    Mueller, A. C.

    1977-01-01

    An atmospheric model developed by Jacchia, quite accurate but requiring a large amount of computer storage and execution time, was found to be ill-suited for the space shuttle onboard program. The development of a simple atmospheric density model to simulate the Jacchia model was studied. Required characteristics including variation with solar activity, diurnal variation, variation with geomagnetic activity, semiannual variation, and variation with height were met by the new atmospheric density model.

  2. Population Density Modeling Tool

    DTIC Science & Technology

    2014-02-05

    of fatalities per loss. (2) where: POCA = Probability of Casualty (fatalities per loss) LCA = Lethal Crash Area of Aircraft (square...miles) Population Density = The average population density within the Potential Crash Area (PCA) (people per square miles) The LCA ...component in equation 2 has been previously calculated in the 3PRAT. The methodology used to determine the LCA is outlined in the report: Crash Lethality

  3. Negative Ion Density Fronts

    SciTech Connect

    Igor Kaganovich

    2000-12-18

    Negative ions tend to stratify in electronegative plasmas with hot electrons (electron temperature Te much larger than ion temperature Ti, Te > Ti ). The boundary separating a plasma containing negative ions, and a plasma, without negative ions, is usually thin, so that the negative ion density falls rapidly to zero-forming a negative ion density front. We review theoretical, experimental and numerical results giving the spatio-temporal evolution of negative ion density fronts during plasma ignition, the steady state, and extinction (afterglow). During plasma ignition, negative ion fronts are the result of the break of smooth plasma density profiles during nonlinear convection. In a steady-state plasma, the fronts are boundary layers with steepening of ion density profiles due to nonlinear convection also. But during plasma extinction, the ion fronts are of a completely different nature. Negative ions diffuse freely in the plasma core (no convection), whereas the negative ion front propagates towards the chamber walls with a nearly constant velocity. The concept of fronts turns out to be very effective in analysis of plasma density profile evolution in strongly non-isothermal plasmas.

  4. Finding network communities using modularity density

    NASA Astrophysics Data System (ADS)

    Botta, Federico; del Genio, Charo I.

    2016-12-01

    Many real-world complex networks exhibit a community structure, in which the modules correspond to actual functional units. Identifying these communities is a key challenge for scientists. A common approach is to search for the network partition that maximizes a quality function. Here, we present a detailed analysis of a recently proposed function, namely modularity density. We show that it does not incur in the drawbacks suffered by traditional modularity, and that it can identify networks without ground-truth community structure, deriving its analytical dependence on link density in generic random graphs. In addition, we show that modularity density allows an easy comparison between networks of different sizes, and we also present some limitations that methods based on modularity density may suffer from. Finally, we introduce an efficient, quadratic community detection algorithm based on modularity density maximization, validating its accuracy against theoretical predictions and on a set of benchmark networks.

  5. Molarity (Aromic Density) of the Elements as Pure Crystals.

    ERIC Educational Resources Information Center

    Pauling, Linus; Herman, Zelek S.

    1985-01-01

    Provides background information for teachers on the atomic density of the elements as pure crystals. Atomic density is defined as the reciprocal of the atomic volume. Includes atomic-density diagrams which were prepared using the atomic-volume values given by Singman, supplemented by additional values for some allotropes. (JN)

  6. Holographic pair and charge density waves

    NASA Astrophysics Data System (ADS)

    Cremonini, Sera; Li, Li; Ren, Jie

    2017-02-01

    We examine a holographic model in which a U (1 ) symmetry and translational invariance are broken spontaneously at the same time. Our construction provides an example of a system with pair-density wave order, in which the superconducting order parameter is spatially modulated but has a zero average. In addition, the charge density oscillates at twice the frequency of the scalar condensate. Depending on the choice of parameters, the model also admits a state with coexisting superconducting and charge-density wave orders, in which the scalar condensate has a uniform component.

  7. Reduced vertebral bone density in hypercalciuric nephrolithiasis

    NASA Technical Reports Server (NTRS)

    Pietschmann, F.; Breslau, N. A.; Pak, C. Y.

    1992-01-01

    Dual-energy x-ray absorptiometry and single-photon absorptiometry were used to determine bone density at the lumbar spine and radial shaft in 62 patients with absorptive hypercalciuria, 27 patients with fasting hypercalciuria, and 31 nonhypercalciuric stone formers. Lumbar bone density was significantly lower in patients with absorptive (-10%) as well as in those with fasting hypercalciuria (-12%), with 74 and 92% of patients displaying values below the normal mean, whereas only 48% of the nonhypercalciuric stone formers had bone density values below the normal mean. In contrast, radial bone density was similar in all three groups of renal stone formers investigated. The comparison of urinary chemistry in patients with absorptive hypercalciuria and low normal bone density compared to those with high normal bone density showed a significantly increased 24 h urinary calcium excretion on random diet and a trend toward a higher 24 h urinary uric acid excretion and a higher body mass index in patients with low normal bone density. Moreover, among the patients with absorptive hypercalciuria we found a statistically significant correlation between the spinal bone density and the 24 h sodium and sulfate excretion and the urinary pH. These results gave evidence for an additional role of environmental factors (sodium and animal proteins) in the pathogenesis of bone loss in absorptive hypercalciuria. In conclusion, our data suggest an osteopenia of trabecular-rich bone tissues in patients with fasting and absorptive hypercalciurias.

  8. Pseudopotentials from electron density

    NASA Astrophysics Data System (ADS)

    Nagy, Á.; Andrejkovics, I.

    1996-05-01

    A method is introduced that allows the construction of pseudopotentials in the density-functional theory. This method is based on a procedure worked out by one of the authors [J. Phys. B 26, 43 (1993); Philos. Mag. B 69, 779 (1994)] for determining Kohn-Sham potentials, one-electron orbitals, and energies from the electron density. The Hartree-Fock densities of Bunge, Barrientos, and Bunge [At. Data Nucl. Data Tables 53, 114 (1993)] are used to obtain the Kohn-Sham potentials of the Li, Na, and K atoms, and then Phillips-Kleinman-type [Phys. Rev. 116, 287 (1959); 118, 1153 (1960)] pseudopotentials are calculated. The arbitrariness of the pseudo-orbital is removed by minimization of the kinetic energy.

  9. How Safe Are Color Additives?

    MedlinePlus

    ... Home For Consumers Consumer Updates How Safe are Color Additives? Share Tweet Linkedin Pin it More sharing ... Consumer Updates RSS Feed Download PDF (380 K) Color additives give the red tint to your fruit ...

  10. Binomial level densities

    NASA Astrophysics Data System (ADS)

    Zuker, A. P.

    2001-08-01

    It is shown that nuclear level densities in a finite space are described by a continuous binomial function, determined by the first three moments of the Hamiltonian, and the dimensionality of the underlying vector space. Experimental values for 55Mn, 56Fe, and 60Ni are very well reproduced by the binomial form, which turns out to be almost perfectly approximated by Bethe's formula with backshift. A proof is given for which binomial densities reproduce the low moments of Hamiltonians of any rank: A strong form of the famous central limit result of Mon and French. Conditions under which the proof may be extended to the full spectrum are examined.

  11. Density matrix perturbation theory.

    PubMed

    Niklasson, Anders M N; Challacombe, Matt

    2004-05-14

    An orbital-free quantum perturbation theory is proposed. It gives the response of the density matrix upon variation of the Hamiltonian by quadratically convergent recursions based on perturbed projections. The technique allows treatment of embedded quantum subsystems with a computational cost scaling linearly with the size of the perturbed region, O(N(pert.)), and as O(1) with the total system size. The method allows efficient high order perturbation expansions, as demonstrated with an example involving a 10th order expansion. Density matrix analogs of Wigner's 2n+1 rule are also presented.

  12. Detergent Additive for Lubricating Oils,

    DTIC Science & Technology

    The Russian patent pertains to a method of producing additives for lubricating oils . A method is known for producing an antiwear additive for... lubricating oils by processing phenols with phosphorus oxychloride, phosphoric acid esters are obtained. In order to give the additive detergent properties

  13. Platelet size and density affect shear-induced thrombus formation in tortuous arterioles

    NASA Astrophysics Data System (ADS)

    Chesnutt, Jennifer K. W.; Han, Hai-Chao

    2013-10-01

    Thrombosis accounts for 80% of deaths in patients with diabetes mellitus. Diabetic patients demonstrate tortuous microvessels and larger than normal platelets. Large platelets are associated with increased platelet activation and thrombosis, but the physical effects of large platelets in the microscale processes of thrombus formation are not clear. Therefore, the objective of this study was to determine the physical effects of mean platelet volume (MPV), mean platelet density (MPD) and vessel tortuosity on platelet activation and thrombus formation in tortuous arterioles. A computational model of the transport, shear-induced activation, collision, adhesion and aggregation of individual platelets was used to simulate platelet interactions and thrombus formation in tortuous arterioles. Our results showed that an increase in MPV resulted in a larger number of activated platelets, though MPD and level of tortuosity made little difference on platelet activation. Platelets with normal MPD yielded the lowest amount of mural thrombus. With platelets of normal MPD, the amount of mural thrombus decreased with increasing level of tortuosity but did not have a simple monotonic relationship with MPV. The physical mechanisms associated with MPV, MPD and arteriole tortuosity play important roles in platelet activation and thrombus formation.

  14. Incorporation of additives into polymers

    DOEpatents

    McCleskey, T. Mark; Yates, Matthew Z.

    2003-07-29

    There has been invented a method for incorporating additives into polymers comprising: (a) forming an aqueous or alcohol-based colloidal system of the polymer; (b) emulsifying the colloidal system with a compressed fluid; and (c) contacting the colloidal polymer with the additive in the presence of the compressed fluid. The colloidal polymer can be contacted with the additive by having the additive in the compressed fluid used for emulsification or by adding the additive to the colloidal system before or after emulsification with the compressed fluid. The invention process can be carried out either as a batch process or as a continuous on-line process.

  15. Material and Optical Densities

    ERIC Educational Resources Information Center

    Gluck, Paul

    2007-01-01

    The bending of a laser beam in a medium with a density and refractive index gradient in the same direction has been described previously. When a transparent container is half filled with a salt or sugar solution and an equal amount of water is floated on top of it, then diffusion will create a concentration gradient from top to bottom. A laser…

  16. Multiple density layered insulator

    DOEpatents

    Alger, Terry W.

    1994-01-01

    A multiple density layered insulator for use with a laser is disclosed wh provides at least two different insulation materials for a laser discharge tube, where the two insulation materials have different thermoconductivities. The multiple layer insulation materials provide for improved thermoconductivity capability for improved laser operation.

  17. Multiple density layered insulator

    DOEpatents

    Alger, T.W.

    1994-09-06

    A multiple density layered insulator for use with a laser is disclosed which provides at least two different insulation materials for a laser discharge tube, where the two insulation materials have different thermoconductivities. The multiple layer insulation materials provide for improved thermoconductivity capability for improved laser operation. 4 figs.

  18. Energy in density gradient

    SciTech Connect

    Vranjes, J.; Kono, M.

    2015-01-15

    Inhomogeneous plasmas and fluids contain energy stored in inhomogeneity and they naturally tend to relax into lower energy states by developing instabilities or by diffusion. But the actual amount of energy in such inhomogeneities has remained unknown. In the present work, the amount of energy stored in a density gradient is calculated for several specific density profiles in a cylindrical configuration. This is of practical importance for drift wave instability in various plasmas, and, in particular, in its application in models dealing with the heating of solar corona because the instability is accompanied with stochastic heating, so the energy contained in inhomogeneity is effectively transformed into heat. It is shown that even for a rather moderate increase of the density at the axis in magnetic structures in the corona by a factor 1.5 or 3, the amount of excess energy per unit volume stored in such a density gradient becomes several orders of magnitude greater than the amount of total energy losses per unit volume (per second) in quiet regions in the corona. Consequently, within the life-time of a magnetic structure such energy losses can easily be compensated by the stochastic drift wave heating.

  19. Low Bone Density

    MedlinePlus

    ... Media Kit NOF Events Blog Advocacy NOF Store Shopping Cart Home › Patients › Diagnosis Information › Bone Density Exam/ ... Media Kit NOF Events Blog Advocacy NOF Store Shopping Cart Contact Us Privacy Policy Legal Disclaimer Medical ...

  20. Additive manufacturing of optical components

    NASA Astrophysics Data System (ADS)

    Heinrich, Andreas; Rank, Manuel; Maillard, Philippe; Suckow, Anne; Bauckhage, Yannick; Rößler, Patrick; Lang, Johannes; Shariff, Fatin; Pekrul, Sven

    2016-08-01

    The development of additive manufacturing methods has enlarged rapidly in recent years. Thereby, the work mainly focuses on the realization of mechanical components, but the additive manufacturing technology offers a high potential in the field of optics as well. Owing to new design possibilities, completely new solutions are possible. This article briefly reviews and compares the most important additive manufacturing methods for polymer optics. Additionally, it points out the characteristics of additive manufactured polymer optics. Thereby, surface quality is of crucial importance. In order to improve it, appropriate post-processing steps are necessary (e.g. robot polishing or coating), which will be discussed. An essential part of this paper deals with various additive manufactured optical components and their use, especially in optical systems for shape metrology (e.g. borehole sensor, tilt sensor, freeform surface sensor, fisheye lens). The examples should demonstrate the potentials and limitations of optical components produced by additive manufacturing.

  1. Additive manufacturing of polymer-derived ceramics

    NASA Astrophysics Data System (ADS)

    Eckel, Zak C.; Zhou, Chaoyin; Martin, John H.; Jacobsen, Alan J.; Carter, William B.; Schaedler, Tobias A.

    2016-01-01

    The extremely high melting point of many ceramics adds challenges to additive manufacturing as compared with metals and polymers. Because ceramics cannot be cast or machined easily, three-dimensional (3D) printing enables a big leap in geometrical flexibility. We report preceramic monomers that are cured with ultraviolet light in a stereolithography 3D printer or through a patterned mask, forming 3D polymer structures that can have complex shape and cellular architecture. These polymer structures can be pyrolyzed to a ceramic with uniform shrinkage and virtually no porosity. Silicon oxycarbide microlattice and honeycomb cellular materials fabricated with this approach exhibit higher strength than ceramic foams of similar density. Additive manufacturing of such materials is of interest for propulsion components, thermal protection systems, porous burners, microelectromechanical systems, and electronic device packaging.

  2. Additive manufacturing of polymer-derived ceramics.

    PubMed

    Eckel, Zak C; Zhou, Chaoyin; Martin, John H; Jacobsen, Alan J; Carter, William B; Schaedler, Tobias A

    2016-01-01

    The extremely high melting point of many ceramics adds challenges to additive manufacturing as compared with metals and polymers. Because ceramics cannot be cast or machined easily, three-dimensional (3D) printing enables a big leap in geometrical flexibility. We report preceramic monomers that are cured with ultraviolet light in a stereolithography 3D printer or through a patterned mask, forming 3D polymer structures that can have complex shape and cellular architecture. These polymer structures can be pyrolyzed to a ceramic with uniform shrinkage and virtually no porosity. Silicon oxycarbide microlattice and honeycomb cellular materials fabricated with this approach exhibit higher strength than ceramic foams of similar density. Additive manufacturing of such materials is of interest for propulsion components, thermal protection systems, porous burners, microelectromechanical systems, and electronic device packaging.

  3. Structure Property Studies for Additively Manufactured Parts

    SciTech Connect

    Milenski, Helen M; Schmalzer, Andrew Michael; Kelly, Daniel

    2015-08-17

    Since the invention of modern Additive Manufacturing (AM) processes engineers and designers have worked hard to capitalize on the unique building capabilities that AM allows. By being able to customize the interior fill of parts it is now possible to design components with a controlled density and customized internal structure. The creation of new polymers and polymer composites allow for even greater control over the mechanical properties of AM parts. One of the key reasons to explore AM, is to bring about a new paradigm in part design, where materials can be strategically optimized in a way that conventional subtractive methods cannot achieve. The two processes investigated in my research were the Fused Deposition Modeling (FDM) process and the Direct Ink Write (DIW) process. The objectives of the research were to determine the impact of in-fill density and morphology on the mechanical properties of FDM parts, and to determine if DIW printed samples could be produced where the filament diameter was varied while the overall density remained constant.

  4. Diet-induced ketosis increases capillary density without altered blood flow in rat brain.

    PubMed

    Puchowicz, Michelle A; Xu, Kui; Sun, Xiaoyan; Ivy, Andre; Emancipator, Doug; LaManna, Joseph C

    2007-06-01

    It is recognized that ketone bodies, such as R-beta-hydroxybutyrate (beta-HB) and acetoacetate, are energy sources for the brain. As with glucose metabolism, monocarboxylate uptake by the brain is dependent on the function and regulation of its own transporter system. We concurrently investigated ketone body influx, blood flow, and regulation of monocarboxylate transporter (MCT-1) and glucose transporter (GLUT-1) in diet-induced ketotic (KG) rat brain. Regional blood-to-brain beta-HB influx (micromol.g(-1).min(-1)) increased 40-fold with ketosis (4.8 +/- 1.8 plasmabeta-HB; mM) in all regions compared with the nonketotic groups (standard and no-fat diets); there were no changes in regional blood flow. Immunohistochemical staining revealed that GLUT-1 density (number/mm2) in the cortex was significantly elevated (40%) in the ketotic group compared with the standard and no-fat diet groups. MCT-1 was also markedly (3-fold) upregulated in the ketotic group compared with the standard diet group. In the standard diet group, 40% of the brain capillaries stained positive for MCT-1; this amount doubled with the ketotic diet. Western blot analysis of isolated microvessels from ketotic rat brain showed an eightfold increase in GLUT-1 and a threefold increase in MCT-1 compared with the standard diet group. These data suggest that diet-induced ketosis results in increased vascular density at the blood-brain barrier without changes in blood flow. The increase in extraction fraction and capillary density with increased plasma ketone bodies indicates a significant flux of substrates available for brain energy metabolism.

  5. Reformulation of Density Functional Theory for N-Representable Densities and the Resolution of the v-Representability Problem

    SciTech Connect

    Gonis, A.; Zhang, X. G.; Stocks, G. M.; Nicholson, D. M.

    2015-10-23

    Density functional theory for the case of general, N-representable densities is reformulated in terms of density functional derivatives of expectation values of operators evaluated with wave functions leading to a density, making no reference to the concept of potential. The developments provide a complete solution of the v-representability problem by establishing a mathematical procedure that determines whether a density is v-representable and in the case of an affirmative answer determines the potential (within an additive constant) as a derivative with respect to the density of a constrained search functional. It also establishes the existence of an energy functional of the density that, for v-representable densities, assumes its minimum value at the density describing the ground state of an interacting many-particle system. The theorems of Hohenberg and Kohn emerge as special cases of the formalism.

  6. Reformulation of Density Functional Theory for N-Representable Densities and the Resolution of the v-Representability Problem

    DOE PAGES

    Gonis, A.; Zhang, X. G.; Stocks, G. M.; ...

    2015-10-23

    Density functional theory for the case of general, N-representable densities is reformulated in terms of density functional derivatives of expectation values of operators evaluated with wave functions leading to a density, making no reference to the concept of potential. The developments provide a complete solution of the v-representability problem by establishing a mathematical procedure that determines whether a density is v-representable and in the case of an affirmative answer determines the potential (within an additive constant) as a derivative with respect to the density of a constrained search functional. It also establishes the existence of an energy functional of themore » density that, for v-representable densities, assumes its minimum value at the density describing the ground state of an interacting many-particle system. The theorems of Hohenberg and Kohn emerge as special cases of the formalism.« less

  7. Uncertainty for Part Density Determination: An Update

    SciTech Connect

    Valdez, Mario Orlando

    2016-12-14

    Accurate and precise density measurements by hydrostatic weighing requires the use of an analytical balance, configured with a suspension system, to both measure the weight of a part in water and in air. Additionally, the densities of these liquid media (water and air) must be precisely known for the part density determination. To validate the accuracy and precision of these measurements, uncertainty statements are required. The work in this report is a revision of an original report written more than a decade ago, specifically applying principles and guidelines suggested by the Guide to the Expression of Uncertainty in Measurement (GUM) for determining the part density uncertainty through sensitivity analysis. In this work, updated derivations are provided; an original example is revised with the updated derivations and appendix, provided solely to uncertainty evaluations using Monte Carlo techniques, specifically using the NIST Uncertainty Machine, as a viable alternative method.

  8. Relative microvessel area of the primary tumour, and not lymph node status, predicts the presence of bone marrow micrometastases detected by reverse transcriptase polymerase chain reaction in patients with clinically non-metastatic breast cancer.

    PubMed

    Benoy, Ina H; Salgado, Roberto; Elst, Hilde; Van Dam, Peter; Weyler, Joost; Van Marck, Eric; Scharpé, Simon; Vermeulen, Peter B; Dirix, Luc Y

    2005-01-01

    elevated relative microvessel area of the primary tumour and the presence of bone marrow micrometastases in breast cancer patients with operable disease, and corroborate the paracrine and endocrine role of interleukin-6 and the involvement of coagulation in breast cancer growth and metastasis.

  9. Enantioselective Michael addition of water.

    PubMed

    Chen, Bi-Shuang; Resch, Verena; Otten, Linda G; Hanefeld, Ulf

    2015-02-09

    The enantioselective Michael addition using water as both nucleophile and solvent has to date proved beyond the ability of synthetic chemists. Herein, the direct, enantioselective Michael addition of water in water to prepare important β-hydroxy carbonyl compounds using whole cells of Rhodococcus strains is described. Good yields and excellent enantioselectivities were achieved with this method. Deuterium labeling studies demonstrate that a Michael hydratase catalyzes the water addition exclusively with anti-stereochemistry.

  10. Enantioselective Michael Addition of Water

    PubMed Central

    Chen, Bi-Shuang; Resch, Verena; Otten, Linda G; Hanefeld, Ulf

    2015-01-01

    The enantioselective Michael addition using water as both nucleophile and solvent has to date proved beyond the ability of synthetic chemists. Herein, the direct, enantioselective Michael addition of water in water to prepare important β-hydroxy carbonyl compounds using whole cells of Rhodococcus strains is described. Good yields and excellent enantioselectivities were achieved with this method. Deuterium labeling studies demonstrate that a Michael hydratase catalyzes the water addition exclusively with anti-stereochemistry. PMID:25529526

  11. Airborne Crowd Density Estimation

    NASA Astrophysics Data System (ADS)

    Meynberg, O.; Kuschk, G.

    2013-10-01

    This paper proposes a new method for estimating human crowd densities from aerial imagery. Applications benefiting from an accurate crowd monitoring system are mainly found in the security sector. Normally crowd density estimation is done through in-situ camera systems mounted on high locations although this is not appropriate in case of very large crowds with thousands of people. Using airborne camera systems in these scenarios is a new research topic. Our method uses a preliminary filtering of the whole image space by suitable and fast interest point detection resulting in a number of image regions, possibly containing human crowds. Validation of these candidates is done by transforming the corresponding image patches into a low-dimensional and discriminative feature space and classifying the results using a support vector machine (SVM). The feature space is spanned by texture features computed by applying a Gabor filter bank with varying scale and orientation to the image patches. For evaluation, we use 5 different image datasets acquired by the 3K+ aerial camera system of the German Aerospace Center during real mass events like concerts or football games. To evaluate the robustness and generality of our method, these datasets are taken from different flight heights between 800 m and 1500 m above ground (keeping a fixed focal length) and varying daylight and shadow conditions. The results of our crowd density estimation are evaluated against a reference data set obtained by manually labeling tens of thousands individual persons in the corresponding datasets and show that our method is able to estimate human crowd densities in challenging realistic scenarios.

  12. Directional Acoustic Density Sensor

    DTIC Science & Technology

    2010-09-13

    fluctuations of fluid density at a point . (2) DESCRIPTION OF THE PRIOR ART [0004] Conventional vector sensors measure particle velocity, v (vx,Vytvz...dipole-type or first order sensor that is realized by measuring particle velocity at a point , (which is the vector sensor sensing approach for...underwater sensors), or by measuring the gradient of the acoustic pressure at two closely spaced (less than the wavelength of an acoustic wave) points as it

  13. High power density targets

    NASA Astrophysics Data System (ADS)

    Pellemoine, Frederique

    2013-12-01

    In the context of new generation rare isotope beam facilities based on high-power heavy-ion accelerators and in-flight separation of the reaction products, the design of the rare isotope production targets is a major challenge. In order to provide high-purity beams for science, high resolution is required in the rare isotope separation. This demands a small beam spot on the production target which, together with the short range of heavy ions in matter, leads to very high power densities inside the target material. This paper gives an overview of the challenges associated with this high power density, discusses radiation damage issues in targets exposed to heavy ion beams, and presents recent developments to meet some of these challenges through different projects: FAIR, RIBF and FRIB which is the most challenging. Extensive use of Finite Element Analysis (FEA) has been made at all facilities to specify critical target parameters and R&D work at FRIB successfully retired two major risks related to high-power density and heavy-ion induced radiation damage.

  14. A novel graded density impactor

    NASA Astrophysics Data System (ADS)

    Winter, R. E.; Cotton, M.; Harris, E. J.; Chapman, D. J.; Eakins, D.

    2014-05-01

    Ramp loading using graded-density-impactors as flyers in gas-gun-driven plate impact experiments can yield new and useful information about the equation of state and the strength properties of the loaded material. Selective Laser Melting, an additive manufacture technique, was used to manufacture a graded density flyer, termed the "bed of nails" (BON). A 2 mm thick × 100 mm diameter solid disc of stainless steel formed a base for an array of tapered spikes of length 6 mm and spaced 1 mm apart. The two experiments to test the concept were performed at impact velocities of 900 m/s and 1100 m/s using the 100 mm gas gun at the Institute of Shock Physics at Imperial College, London. In each experiment a BON flyer was impacted onto a copper buffer plate which helped to smooth out perturbations in the wave profile. The ramp delivered to the copper buffer was in turn transmitted to three tantalum targets of thicknesses 3, 5 and 7 mm, which were mounted in contact with the back face of the copper. Heterodyne velocimetry was used to measure the velocity-time history, at the back faces of the tantalum discs. The wave profiles display a smooth increase in velocity over a period of ~2.5 us, with no indication of a shock jump. The measured profiles have been analysed to generate a stress strain curve for tantalum. The results have been compared with the predictions of the Sandia National Laboratories hydrocode, CTH.

  15. High-resolution tomographic imaging of microvessels

    NASA Astrophysics Data System (ADS)

    Müller, Bert; Lang, Sabrina; Dominietto, Marco; Rudin, Markus; Schulz, Georg; Deyhle, Hans; Germann, Marco; Pfeiffer, Franz; David, Christian; Weitkamp, Timm

    2008-08-01

    Cancer belongs to the primary diseases these days. Although different successful treatments including surgery, chemical, pharmacological, and radiation therapies are established, the aggressive proliferation of cancerous cells and the related formation of blood vessels has to be better understood to develop more powerful strategies against the different kinds of cancer. Angiogenesis is one of the crucial steps for the survival and metastasis formation of malignant tumors. Although therapeutic strategies attempting to inhibit these processes are being developed, the biological regulation is still unclear. This study concentrates on the three-dimensional morphology of vessels formed in a mouse tumor xenograft model post mortem. Synchrotron radiation-based micro computed tomography (SRμCT) could provide the necessary information that is essential for validating the simulations. Using mouse and human brain tissue, the different approaches to extract the vessel tree from SRμCT data are discussed. These approaches include corrosion casting, the application of contrast agents such as barium sulfate, tissue embedding, all of them regarded as materials science based. Alternatively, phase contrast tomography was used, which gave rise to promising results but still not reaches the spatial resolution to uncover the smallest capillaries.

  16. Structural changes in Alzheimer's disease brain microvessels.

    PubMed

    Christov, Alexander; Ottman, J; Hamdheydari, L; Grammas, Paula

    2008-08-01

    Brain microvascular alterations are thought to contribute to the development of stroke and dementia. Structural changes in capillaries of elderly patients correlate positively with advanced age and dementia. The objective of this study is to use laser-induced fluorescence spectroscopy to compare structural (collagen content) and functional (apoptosis) parameters in brain tissues and isolated vessels of AD patients to age-matched controls. Our results show significantly higher fluorescent labeling for apoptosis in AD vessels compared to controls. Also, there is significantly higher autofluorescence (reflecting levels of collagen and other proteins that autofluoresce) in AD brain and vessels compared to controls. Western blot analysis of collagen subtypes shows elevated type I and type III and reduced type IV levels in AD vessels. These data demonstrate that changes in the amount and type of collagen occur in AD brain and suggest that cerebral vessel injury is part of AD pathology.

  17. Writing 3D patterns of microvessels

    PubMed Central

    Juodkazis, Saulius

    2012-01-01

    The laser polymerization capabilities of biocompatible and cross-linkable materials using direct laser writing are discussed. Purpose Cross-disciplinary highlight of synergy between medical applications and laser microfabrication. PMID:22888229

  18. Color Addition and Subtraction Apps

    ERIC Educational Resources Information Center

    Ruiz, Frances; Ruiz, Michael J.

    2015-01-01

    Color addition and subtraction apps in HTML5 have been developed for students as an online hands-on experience so that they can more easily master principles introduced through traditional classroom demonstrations. The evolution of the additive RGB color model is traced through the early IBM color adapters so that students can proceed step by step…

  19. Additive Effects on Asymmetric Catalysis.

    PubMed

    Hong, Liang; Sun, Wangsheng; Yang, Dongxu; Li, Guofeng; Wang, Rui

    2016-03-23

    This review highlights a number of additives that can be used to make asymmetric reactions perfect. Without changing other reaction conditions, simply adding additives can lead to improved asymmetric catalysis, such as reduced reaction time, improved yield, or/and increased selectivity.

  20. Gedanken densities and exact constraints in density functional theory

    SciTech Connect

    Perdew, John P.; Ruzsinszky, Adrienn; Sun, Jianwei; Burke, Kieron

    2014-05-14

    Approximations to the exact density functional for the exchange-correlation energy of a many-electron ground state can be constructed by satisfying constraints that are universal, i.e., valid for all electron densities. Gedanken densities are designed for the purpose of this construction, but need not be realistic. The uniform electron gas is an old gedanken density. Here, we propose a spherical two-electron gedanken density in which the dimensionless density gradient can be an arbitrary positive constant wherever the density is non-zero. The Lieb-Oxford lower bound on the exchange energy can be satisfied within a generalized gradient approximation (GGA) by bounding its enhancement factor or simplest GGA exchange-energy density. This enhancement-factor bound is well known to be sufficient, but our gedanken density shows that it is also necessary. The conventional exact exchange-energy density satisfies no such local bound, but energy densities are not unique, and the simplest GGA exchange-energy density is not an approximation to it. We further derive a strongly and optimally tightened bound on the exchange enhancement factor of a two-electron density, which is satisfied by the local density approximation but is violated by all published GGA's or meta-GGA’s. Finally, some consequences of the non-uniform density-scaling behavior for the asymptotics of the exchange enhancement factor of a GGA or meta-GGA are given.

  1. Density Gradients in Chemistry Teaching

    ERIC Educational Resources Information Center

    Miller, P. J.

    1972-01-01

    Outlines experiments in which a density gradient might be used to advantage. A density gradient consists of a column of liquid, the composition and density of which varies along its length. The procedure can be used in analysis of solutions and mixtures and in density measures of solids. (Author/TS)

  2. Color Addition and Subtraction Apps

    NASA Astrophysics Data System (ADS)

    Ruiz, Frances; Ruiz, Michael J.

    2015-10-01

    Color addition and subtraction apps in HTML5 have been developed for students as an online hands-on experience so that they can more easily master principles introduced through traditional classroom demonstrations. The evolution of the additive RGB color model is traced through the early IBM color adapters so that students can proceed step by step in understanding mathematical representations of RGB color. Finally, color addition and subtraction are presented for the X11 colors from web design to illustrate yet another real-life application of color mixing.

  3. Core Density Turbulence in the HSX Stellarator

    NASA Astrophysics Data System (ADS)

    Deng, C. B.; Brower, D. L.; Anderson, D. T.; Anderson, F. S. B.; Briesemeister, A.; Kumar, S.; Likin, K. M.; Talmadge, J. N.

    2013-10-01

    Density fluctuation measurements on the HSX stellarator reveal broadband turbulence that correlates with plasma density gradient and flow. For quasi-helically symmetric plasmas, significant increases in the turbulent density fluctuations are observed when plasma heating location is moved from on-axis to inboard high-field side. Measurements show that the plasma flow velocity also decreases significantly for off-axis heating. In addition, as the electron-cyclotron-resonance-heating power is decreased, core density fluctuations rise while the plasma parallel flow is reduced. When HSX is operated without quasi-helical symmetry, both plasma flow and turbulence characteristics are little changed. No sensitivity to electron temperature gradient is observed. Increased fluctuation amplitude correlates with both increasing density gradient and reduced flow, suggesting a causal relation. In addition to improved neoclassical confinement, quasi-helical symmetry can also lead to increased flow (and flow shear) in the direction of symmetry along with reduced fluctuations and anomalous transport. Supported by USDOE grants DE-FG03-01ER54615 and DE-FG02-93ER54222.

  4. High Energy Density Capacitors

    SciTech Connect

    2010-07-01

    BEEST Project: Recapping is developing a capacitor that could rival the energy storage potential and price of today’s best EV batteries. When power is needed, the capacitor rapidly releases its stored energy, similar to lightning being discharged from a cloud. Capacitors are an ideal substitute for batteries if their energy storage capacity can be improved. Recapping is addressing storage capacity by experimenting with the material that separates the positive and negative electrodes of its capacitors. These separators could significantly improve the energy density of electrochemical devices.

  5. Discrete density of states

    NASA Astrophysics Data System (ADS)

    Aydin, Alhun; Sisman, Altug

    2016-03-01

    By considering the quantum-mechanically minimum allowable energy interval, we exactly count number of states (NOS) and introduce discrete density of states (DOS) concept for a particle in a box for various dimensions. Expressions for bounded and unbounded continua are analytically recovered from discrete ones. Even though substantial fluctuations prevail in discrete DOS, they're almost completely flattened out after summation or integration operation. It's seen that relative errors of analytical expressions of bounded/unbounded continua rapidly decrease for high NOS values (weak confinement or high energy conditions), while the proposed analytical expressions based on Weyl's conjecture always preserve their lower error characteristic.

  6. Adverse reactions to drug additives.

    PubMed

    Simon, R A

    1984-10-01

    There is a long list of additives used by the pharmaceutical industry. Most of the agents used have not been implicated in hypersensitivity reactions. Among those that have, only reactions to parabens and sulfites have been well established. Parabens have been shown to be responsible for rare immunoglobulin E-mediated reactions that occur after the use of local anesthetics. Sulfites, which are present in many drugs, including agents commonly used to treat asthma, have been shown to provoke severe asthmatic attacks in sensitive individuals. Recent studies indicate that additives do not play a significant role in "hyperactivity." The role of additives in urticaria is not well established and therefore the incidence of adverse reactions in this patient population is simply not known. In double-blind, placebo-controlled studies, reactions to tartrazine or additives other than sulfites, if they occur at all, are indeed quite rare for the asthmatic population, even for the aspirin-sensitive subpopulation.

  7. Radiation Therapy: Additional Treatment Options

    MedlinePlus

    ... SNIPEND SNIPSTART Find A Radiation Oncologist SNIPEND Additional Treatment Options SNIPSTART A A SNIPEND Chemotherapy Medicines prescribed ... such as antibodies, to fight cancer. Novel Targeted Therapies Cancer doctors now know much more about how ...

  8. Calculators and Computers: Graphical Addition.

    ERIC Educational Resources Information Center

    Spero, Samuel W.

    1978-01-01

    A computer program is presented that generates problem sets involving sketching graphs of trigonometric functions using graphical addition. The students use calculators to sketch the graphs and a computer solution is used to check it. (MP)

  9. Food additives and preschool children.

    PubMed

    Martyn, Danika M; McNulty, Breige A; Nugent, Anne P; Gibney, Michael J

    2013-02-01

    Food additives have been used throughout history to perform specific functions in foods. A comprehensive framework of legislation is in place within Europe to control the use of additives in the food supply and ensure they pose no risk to human health. Further to this, exposure assessments are regularly carried out to monitor population intakes and verify that intakes are not above acceptable levels (acceptable daily intakes). Young children may have a higher dietary exposure to chemicals than adults due to a combination of rapid growth rates and distinct food intake patterns. For this reason, exposure assessments are particularly important in this age group. The paper will review the use of additives and exposure assessment methods and examine factors that affect dietary exposure by young children. One of the most widely investigated unfavourable health effects associated with food additive intake in preschool-aged children are suggested adverse behavioural effects. Research that has examined this relationship has reported a variety of responses, with many noting an increase in hyperactivity as reported by parents but not when assessed using objective examiners. This review has examined the experimental approaches used in such studies and suggests that efforts are needed to standardise objective methods of measuring behaviour in preschool children. Further to this, a more holistic approach to examining food additive intakes by preschool children is advisable, where overall exposure is considered rather than focusing solely on behavioural effects and possibly examining intakes of food additives other than food colours.

  10. Perturbation calculation of thermodynamic density of states

    SciTech Connect

    Brown, Greg; Schulthess, Thomas C; Nicholson, Don M; Eisenbach, Markus; Stocks, George Malcolm

    2011-01-01

    The density of states g( ) is frequently used to calculate the temperature-dependent properties of a thermodynamic system. Here a derivation is given for calculating the warped density of states g ( ) resulting from the addition of a perturbation. The method is validated for a classical Heisenberg model of bcc Fe and the errors in the free energy are shown to be second order in the perturbation. Taking the perturbation to be the difference between a first-principles quantum-mechanical energy and a corresponding classical energy, this method can significantly reduce the computational effort required to calculate g( ) for quantum systems using the Wang-Landau approach.

  11. Oblique dust density waves

    NASA Astrophysics Data System (ADS)

    Piel, Alexander; Arp, Oliver; Menzel, Kristoffer; Klindworth, Markus

    2007-11-01

    We report on experimental observations of dust density waves in a complex (dusty) plasma under microgravity. The plasma is produced in a radio-frequency parallel-plate discharge (argon, p=15Pa, U=65Vpp). Different sizes of dust particles were used (3.4 μm and 6.4μm diameter). The low-frequency (f 11Hz) dust density waves are naturally unstable modes, which are driven by the ion flow in the plasma. Surprisingly, the wave propagation direction is aligned with the ion flow direction in the bulk plasma but becomes oblique at the boundary of the dust cloud with an inclination of 60^o with respect to the plasma boundary. The experimental results are compared with a kinetic model in the electrostatic approximation [1] and a fluid model [2]. Moreover, the role of dust surface waves is discussed. [1] M. Rosenberg, J. Vac. Sci. Technol. A 14, 631 (1996) [2] A. Piel et al, Phys. Rev. Lett. 97, 205009 (2006)

  12. Gluon density in nuclei

    SciTech Connect

    Ayala, A.L.; Ducati, M.B.G.; Levin, E.M.

    1996-10-01

    In this talk we present our detailed study (theory and numbers) on the shadowing corrections to the gluon structure functions for nuclei. Starting from rather controversial information on the nucleon structure function which is originated by the recent HERA data, we develop the Glauber approach for the gluon density in a nucleus based on Mueller formula and estimate the value of the shadowing corrections in this case. Then we calculate the first corrections to the Glauber approach and show that these corrections are big. Based on this practical observation we suggest the new evolution equation which takes into account the shadowing corrections and solve it. We hope to convince you that the new evolution equation gives a good theoretical tool to treat the shadowing corrections for the gluons density in a nucleus and, therefore, it is able to provide the theoretically reliable initial conditions for the time evolution of the nucleus-nucleus cascade. The initial conditions should be fixed both theoretically and phenomenologically before to attack such complicated problems as the mixture of hard and soft processes in nucleus-nucleus interactions at high energy or the theoretically reliable approach to hadron or/and parton cascades for high energy nucleus-nucleus interaction. 35 refs., 24 figs., 1 tab.

  13. Bubble formation in additive manufacturing of glass

    NASA Astrophysics Data System (ADS)

    Luo, Junjie; Gilbert, Luke J.; Peters, Daniel C.; Bristow, Douglas A.; Landers, Robert G.; Goldstein, Jonathan T.; Urbas, Augustine M.; Kinzel, Edward C.

    2016-05-01

    Bubble formation is a common problem in glass manufacturing. The spatial density of bubbles in a piece of glass is a key limiting factor to the optical quality of the glass. Bubble formation is also a common problem in additive manufacturing, leading to anisotropic material properties. In glass Additive Manufacturing (AM) two separate types of bubbles have been observed: a foam layer caused by the reboil of the glass melt and a periodic pattern of bubbles which appears to be unique to glass additive manufacturing. This paper presents a series of studies to relate the periodicity of bubble formation to part scan speed, laser power, and filament feed rate. These experiments suggest that bubbles are formed by the reboil phenomena why periodic bubbles result from air being trapped between the glass filament and the substrate. Reboil can be detected using spectroscopy and avoided by minimizing the laser power while periodic bubbles can be avoided by a two-step laser melting process to first establish good contact between the filament and substrate before reflowing the track with higher laser power.

  14. Imaging Breast Density: Established and Emerging Modalities1

    PubMed Central

    Chen, Jeon-Hor; Gulsen, Gultekin; Su, Min-Ying

    2015-01-01

    Mammographic density has been proven as an independent risk factor for breast cancer. Women with dense breast tissue visible on a mammogram have a much higher cancer risk than women with little density. A great research effort has been devoted to incorporate breast density into risk prediction models to better estimate each individual’s cancer risk. In recent years, the passage of breast density notification legislation in many states in USA requires that every mammography report should provide information regarding the patient’s breast density. Accurate definition and measurement of breast density are thus important, which may allow all the potential clinical applications of breast density to be implemented. Because the two-dimensional mammography-based measurement is subject to tissue overlapping and thus not able to provide volumetric information, there is an urgent need to develop reliable quantitative measurements of breast density. Various new imaging technologies are being developed. Among these new modalities, volumetric mammographic density methods and three-dimensional magnetic resonance imaging are the most well studied. Besides, emerging modalities, including different x-ray–based, optical imaging, and ultrasound-based methods, have also been investigated. All these modalities may either overcome some fundamental problems related to mammographic density or provide additional density and/or compositional information. The present review article aimed to summarize the current established and emerging imaging techniques for the measurement of breast density and the evidence of the clinical use of these density methods from the literature. PMID:26692524

  15. Evaluation of certain food additives.

    PubMed

    2015-01-01

    This report represents the conclusions of a Joint FAO/WHO Expert Committee convened to evaluate the safety of various food additives, including flavouring agents, and to prepare specifications for identity and purity. The first part of the report contains a general discussion of the principles governing the toxicological evaluation of and assessment of dietary exposure to food additives, including flavouring agents. A summary follows of the Committee's evaluations of technical, toxicological and dietary exposure data for eight food additives (Benzoe tonkinensis; carrageenan; citric and fatty acid esters of glycerol; gardenia yellow; lutein esters from Tagetes erecta; octenyl succinic acid-modified gum arabic; octenyl succinic acid-modified starch; paprika extract; and pectin) and eight groups of flavouring agents (aliphatic and alicyclic hydrocarbons; aliphatic and aromatic ethers; ionones and structurally related substances; miscellaneous nitrogen-containing substances; monocyclic and bicyclic secondary alcohols, ketones and related esters; phenol and phenol derivatives; phenyl-substituted aliphatic alcohols and related aldehydes and esters; and sulfur-containing heterocyclic compounds). Specifications for the following food additives were revised: citric acid; gellan gum; polyoxyethylene (20) sorbitan monostearate; potassium aluminium silicate; and Quillaia extract (Type 2). Annexed to the report are tables summarizing the Committee's recommendations for dietary exposures to and toxicological evaluations of all of the food additives and flavouring agents considered at this meeting.

  16. [INVITED] Lasers in additive manufacturing

    NASA Astrophysics Data System (ADS)

    Pinkerton, Andrew J.

    2016-04-01

    Additive manufacturing is a topic of considerable ongoing interest, with forecasts predicting it to have major impact on industry in the future. This paper focusses on the current status and potential future development of the technology, with particular reference to the role of lasers within it. It begins by making clear the types and roles of lasers in the different categories of additive manufacturing. This is followed by concise reviews of the economic benefits and disadvantages of the technology, current state of the market and use of additive manufacturing in different industries. Details of these fields are referenced rather than expanded in detail. The paper continues, focusing on current indicators to the future of additive manufacturing. Barriers to its development, trends and opportunities in major industrial sectors, and wider opportunities for its development are covered. Evidence indicates that additive manufacturing may not become the dominant manufacturing technology in all industries, but represents an excellent opportunity for lasers to increase their influence in manufacturing as a whole.

  17. Additively manufactured metallic pentamode meta-materials

    NASA Astrophysics Data System (ADS)

    Hedayati, R.; Leeflang, A. M.; Zadpoor, A. A.

    2017-02-01

    Mechanical metamaterials exhibit unusual mechanical properties that originate from their topological design. Pentamode metamaterials are particularly interesting because they could be designed to possess any thermodynamically admissible elasticity tensor. In this study, we additively manufacture the metallic pentamode metamaterials from a biocompatible and mechanically strong titanium alloy (Ti-6Al-4V) using an energy distribution method developed for the powder bed fusion techniques. The mechanical properties of the developed materials were a few orders of magnitude higher than those of the similar topologies fabricated previously from polymers. Moreover, the elastic modulus and yield stress of the presented pentamode metamaterials were decoupled from their relative density, meaning that the metallic meta-biomaterials with independently tailored elastic and mass transport (permeability) properties could be designed for tissue regeneration purposes.

  18. Aerated concrete with mineral dispersed reinforcing additives

    NASA Astrophysics Data System (ADS)

    Berdov, G. I.; Ilina, L. V.; Mukhina, I. N.; Rakov, M. A.

    2015-01-01

    To guarantee the production of aerated concrete with the lowest average density while ensuring the required strength it is necessary to use a silica component with a surface area of 250-300 m2 / kg. The article presents experimental data on grinding the silica component together with clinker to the optimum dispersion. This allows increasing the strength of non-autoclaved aerated concrete up to 33%. Furthermore, the addition to aerated concrete the mixture of dispersed reinforcing agents (wollastonite, diopside) and electrolytes with multiply charged cations and anions (1% Fe2 (SO4)3; Al2 (SO4)3) provides the growth of aerated concrete strength at 30 - 75%. As a cohesive the clinker, crushed together with silica and mineral supplements should be used. This increases the strength of aerated concrete at 65% in comparing with Portland cement.

  19. Textured-surface quartz resonator fluid density and viscosity monitor

    DOEpatents

    Martin, Stephen J.; Wiczer, James J.; Cernosek, Richard W.; Frye, Gregory C.; Gebert, Charles T.; Casaus, Leonard; Mitchell, Mary A.

    1998-08-25

    A pair of thickness-shear mode resonators, one smooth and one with a textured surface, allows fluid density and viscosity to be independently resolved. A textured surface, either randomly rough or regularly patterned, leads to trapping of liquid at the device surface. The synchronous motion of this trapped liquid with the oscillating device surface allows the device to weigh the liquid; this leads to an additional response that depends on liquid density. This additional response enables a pair of devices, one smooth and one textured, to independently resolve liquid density and viscosity; the difference in responses determines the density while the smooth device determines the density-viscosity product, and thus, the pair determines both density and viscosity.

  20. Additive manufacturing of hybrid circuits

    SciTech Connect

    Bell, Nelson S.; Sarobol, Pylin; Cook, Adam; Clem, Paul G.; Keicher, David M.; Hirschfeld, Deidre; Hall, Aaron Christopher

    2016-03-26

    There is a rising interest in developing functional electronics using additively manufactured components. Considerations in materials selection and pathways to forming hybrid circuits and devices must demonstrate useful electronic function; must enable integration; and must complement the complex shape, low cost, high volume, and high functionality of structural but generally electronically passive additively manufactured components. This article reviews several emerging technologies being used in industry and research/development to provide integration advantages of fabricating multilayer hybrid circuits or devices. First, we review a maskless, noncontact, direct write (DW) technology that excels in the deposition of metallic colloid inks for electrical interconnects. Second, we review a complementary technology, aerosol deposition (AD), which excels in the deposition of metallic and ceramic powder as consolidated, thick conformal coatings and is additionally patternable through masking. As a result, we show examples of hybrid circuits/devices integrated beyond 2-D planes, using combinations of DW or AD processes and conventional, established processes.

  1. Low density microcellular foams

    DOEpatents

    LeMay, James D.

    1991-01-01

    Disclosed is a process of producing microcellular foam which comprises the steps of: (a) selecting a multifunctional epoxy oligomer resin; (b) mixing said epoxy resin with a non-reactive diluent to form a resin-diluent mixture; (c) forming a diluent containing cross-linked epoxy gel from said resin-diluent mixture; (d) replacing said diluent with a solvent therefore; (e) replacing said solvent with liquid carbon dioxide; and (f) vaporizing off said liquid carbon dioxide under supercritical conditions, whereby a foam having a density in the range of 35-150 mg/cc and cell diameters less than about 1 .mu.m is produced. Also disclosed are the foams produced by the process.

  2. Low density microcellular foams

    DOEpatents

    LeMay, J.D.

    1991-11-19

    Disclosed is a process of producing microcellular foam which comprises the steps of: (a) selecting a multifunctional epoxy oligomer resin; (b) mixing said epoxy resin with a non-reactive diluent to form a resin-diluent mixture; (c) forming a diluent containing cross-linked epoxy gel from said resin-diluent mixture; (d) replacing said diluent with a solvent therefore; (e) replacing said solvent with liquid carbon dioxide; and (f) vaporizing off said liquid carbon dioxide under supercritical conditions, whereby a foam having a density in the range of 35-150 mg/cc and cell diameters less than about 1 [mu]m is produced. Also disclosed are the foams produced by the process. 8 figures.

  3. Low density microcellular foams

    DOEpatents

    LeMay, James D.

    1992-01-01

    Disclosed is a process of producing microcellular from which comprises the steps of: (a) selecting a multifunctional epoxy oligomer resin; (b) mixing said epoxy resin with a non-reactive diluent to form a resin-diluent mixture; (c) forming a diluent containing cross-linked epoxy gel from said resin-diluent mixture; (d) replacing said diluent with a solvent therefore; (e) replacing said solvent with liquid carbon dioxide; and (f) vaporizing off said liquid carbon dioxide under supercritical conditions, whereby a foam having a density in the range of 35-150 mg/cc and cell diameters less than about 1 .mu.m is produced. Also disclosed are the foams produced by the process.

  4. Tougher Addition Polyimides Containing Siloxane

    NASA Technical Reports Server (NTRS)

    St. Clair, T. L.; Maudgal, S.

    1986-01-01

    Laminates show increased impact resistances and other desirable mechanical properties. Bismaleamic acid extended by reaction of diaminosiloxane with maleic anhydride in 1:1 molar ratio, followed by reaction with half this molar ratio of aromatic dianhydride. Bismaleamic acid also extended by reaction of diaminosiloxane with maleic anhydride in 1:2 molar ratio, followed by reaction with half this molar ratio of aromatic diamine (Michael-addition reaction). Impact resistances improved over those of unmodified bismaleimide, showing significant increase in toughness. Aromatic addition polyimides developed as both matrix and adhesive resins for applications on future aircraft and spacecraft.

  5. Low density microcellular foams

    DOEpatents

    Aubert, J.H.; Clough, R.L.; Curro, J.G.; Quintana, C.A.; Russick, E.M.; Shaw, M.T.

    1985-10-02

    Low density, microporous polymer foams are provided by a process which comprises forming a solution of polymer and a suitable solvent followed by rapid cooling of the solution to form a phase-separated system and freeze the phase-separated system. The phase-separated system comprises a polymer phase and a solvent phase, each of which is substantially continuous within the other. The morphology of the polymer phase prior to and subsequent to freezing determine the morphology of the resultant foam. Both isotropic and anisotropic foams can be produced. If isotropic foams are produced, the polymer and solvent are tailored such that the solution spontaneously phase-separates prior to the point at which any component freezes. The morphology of the resultant polymer phase determines the morphology of the reusltant foam and the morphology of the polymer phase is retained by cooling the system at a rate sufficient to freeze one or both components of the system before a change in morphology can occur. Anisotropic foams are produced by forming a solution of polymer and solvent that will not phase separate prior to freezing of one or both components of the solution. In such a process, the solvent typically freezes before phase separation occurs. The morphology of the resultant frozen two-phase system determines the morphology of the resultant foam. The process involves subjecting the solution to essentially one-dimensional cooling. Foams having a density of less than 0.1 g/cc and a uniform cell size of less than 10 ..mu..m and a volume such that the foams have a length greater than 1 cm are provided.

  6. Low density microcellular foams

    DOEpatents

    Aubert, James H.; Clough, Roger L.; Curro, John G.; Quintana, Carlos A.; Russick, Edward M.; Shaw, Montgomery T.

    1987-01-01

    Low density, microporous polymer foams are provided by a process which comprises forming a solution of polymer and a suitable solvent followed by rapid cooling of the solution to form a phase-separated system and freeze the phase-separated system. The phase-separated system comprises a polymer phase and a solvent phase, each of which is substantially continuous within the other. The morphology of the polymer phase prior to and subsequent to freezing determine the morphology of the resultant foam. Both isotropic and anisotropic foams can be produced. If isotropic foams are produced, the polymer and solvent are tailored such that the solution spontaneously phase-separates prior to the point at which any component freezes. The morphology of the resultant polymer phase determines the morphology of the resultant foam and the morphology of the polymer phase is retained by cooling the system at a rate sufficient to freeze one or both components of the system before a change in morphology can occur. Anisotropic foams are produced by forming a solution of polymer and solvent that will not phase separate prior to freezing of one or both components of the solution. In such a process, the solvent typically freezes before phase separation occurs. The morphology of the resultant frozen two-phase system determines the morphology of the resultant foam. The process involves subjecting the solution to essentially one-dimensional cooling. Means for subjecting such a solvent to one-dimensional cooling are also provided. Foams having a density of less than 0.1 g/cc and a uniform cell size of less than 10 .mu.m and a volume such that the foams have a length greater than 1 cm are provided.

  7. 76 FR 45541 - Procurement List; Additions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-29

    ... Density, Gusset Cut, Clear, 12x8x22. NSN: 8105-00-NIB-1322--Can Liner, Low Density, Star Seal, Clear, 24x33. NSN: 8105-00-NIB-1323--Can Liner, Low Density, Star Seal, Clear, 33x44. NSN: 8105-00-NIB-1324--Can Liner, Low Density, Star Seal, Clear, 40x48. NPA: Envision, Inc., Wichita, KS....

  8. Nano-Magnets and Additive Manufacturing for Electric Motors

    NASA Technical Reports Server (NTRS)

    Misra, Ajay K.

    2014-01-01

    High power density is required for application of electric motors in hybrid electric propulsion. Potential path to achieve high power density in electric motors include advanced materials, lightweight thermal management, lightweight structural concepts, high power density power electronics, and advanced manufacturing. This presentation will focus on two key technologies for achieving high power density, advanced magnets and additive manufacturing. The maximum energy product in current magnets is reaching their theoretical limits as a result of material and process improvements. Future improvements in the maximum energy product for magnets can be achieved through development of nanocomposite magnets combining the hard magnetic phase and soft magnetic phase at the nanoscale level. The presentation will provide an overview of the current state of development for nanocomposite magnets and the future path for doubling the maximum energy product. The other part of the presentation will focus on the role of additive manufacturing in fabrication of high power density electric motors. The presentation will highlight the potential opportunities for applying additive manufacturing to fabricate electric motors.

  9. Nonparametric entropy estimation using kernel densities.

    PubMed

    Lake, Douglas E

    2009-01-01

    The entropy of experimental data from the biological and medical sciences provides additional information over summary statistics. Calculating entropy involves estimates of probability density functions, which can be effectively accomplished using kernel density methods. Kernel density estimation has been widely studied and a univariate implementation is readily available in MATLAB. The traditional definition of Shannon entropy is part of a larger family of statistics, called Renyi entropy, which are useful in applications that require a measure of the Gaussianity of data. Of particular note is the quadratic entropy which is related to the Friedman-Tukey (FT) index, a widely used measure in the statistical community. One application where quadratic entropy is very useful is the detection of abnormal cardiac rhythms, such as atrial fibrillation (AF). Asymptotic and exact small-sample results for optimal bandwidth and kernel selection to estimate the FT index are presented and lead to improved methods for entropy estimation.

  10. Residual Defect Density in Random Disks Deposits

    PubMed Central

    Topic, Nikola; Pöschel, Thorsten; Gallas, Jason A. C.

    2015-01-01

    We investigate the residual distribution of structural defects in very tall packings of disks deposited randomly in large channels. By performing simulations involving the sedimentation of up to 50 × 109 particles we find all deposits to consistently show a non-zero residual density of defects obeying a characteristic power-law as a function of the channel width. This remarkable finding corrects the widespread belief that the density of defects should vanish algebraically with growing height. A non-zero residual density of defects implies a type of long-range spatial order in the packing, as opposed to only local ordering. In addition, we find deposits of particles to involve considerably less randomness than generally presumed. PMID:26235809

  11. The Additive Property of Energy.

    ERIC Educational Resources Information Center

    Tsaoussis, Dimitris S.

    1995-01-01

    Presents exercises that analyze the additive property of energy. Concludes that if a body has more than one component of energy depending on the same physical quantity, the body's total energy will be the algebraic sum of the components if a linear relationship exists between the energy components and that physical quantity. (JRH)

  12. Tetrasulfide extreme pressure lubricant additives

    SciTech Connect

    Gast, L.E.; Kenney, H.E.; Schwab, A.W.

    1980-08-19

    A novel class of compounds has been prepared comprising the tetrasulfides of /sup 18/C hydrocarbons, /sup 18/C fatty acids, and /sup 18/C fatty and alkyl and triglyceride esters. These tetrasulfides are useful as extreme pressure lubricant additives and show potential as replacements for sulfurized sperm whale oil.

  13. Out of bounds additive manufacturing

    SciTech Connect

    Holshouser, Chris; Newell, Clint; Palas, Sid; Love, Lonnie J.; Kunc, Vlastimil; Lind, Randall F.; Lloyd, Peter D.; Rowe, John C.; Blue, Craig A.; Duty, Chad E.; Peter, William H.; Dehoff, Ryan R.

    2013-03-01

    Lockheed Martin and Oak Ridge National Laboratory are working on an additive manufacturing system capable of manufacturing components measured not in terms of inches or feet, but multiple yards in all dimensions with the potential to manufacture parts that are completely unbounded in size.

  14. Current fluctuations in nonequilibrium diffusive systems: an additivity principle.

    PubMed

    Bodineau, T; Derrida, B

    2004-05-07

    We formulate a simple additivity principle allowing one to calculate the whole distribution of current fluctuations through a large one dimensional system in contact with two reservoirs at unequal densities from the knowledge of its first two cumulants. This distribution (which in general is non-Gaussian) satisfies the Gallavotti-Cohen symmetry and generalizes the one predicted recently for the symmetric simple exclusion process. The additivity principle can be used to study more complex diffusive networks including loops.

  15. Current Fluctuations in Nonequilibrium Diffusive Systems: An Additivity Principle

    NASA Astrophysics Data System (ADS)

    Bodineau, T.; Derrida, B.

    2004-05-01

    We formulate a simple additivity principle allowing one to calculate the whole distribution of current fluctuations through a large one dimensional system in contact with two reservoirs at unequal densities from the knowledge of its first two cumulants. This distribution (which in general is non-Gaussian) satisfies the Gallavotti-Cohen symmetry and generalizes the one predicted recently for the symmetric simple exclusion process. The additivity principle can be used to study more complex diffusive networks including loops.

  16. Validation of transport models using additive flux minimization technique

    NASA Astrophysics Data System (ADS)

    Pankin, A. Y.; Kruger, S. E.; Groebner, R. J.; Hakim, A.; Kritz, A. H.; Rafiq, T.

    2013-10-01

    A new additive flux minimization technique is proposed for carrying out the verification and validation (V&V) of anomalous transport models. In this approach, the plasma profiles are computed in time dependent predictive simulations in which an additional effective diffusivity is varied. The goal is to obtain an optimal match between the computed and experimental profile. This new technique has several advantages over traditional V&V methods for transport models in tokamaks and takes advantage of uncertainty quantification methods developed by the applied math community. As a demonstration of its efficiency, the technique is applied to the hypothesis that the paleoclassical density transport dominates in the plasma edge region in DIII-D tokamak discharges. A simplified version of the paleoclassical model that utilizes the Spitzer resistivity for the parallel neoclassical resistivity and neglects the trapped particle effects is tested in this paper. It is shown that a contribution to density transport, in addition to the paleoclassical density transport, is needed in order to describe the experimental profiles. It is found that more additional diffusivity is needed at the top of the H-mode pedestal, and almost no additional diffusivity is needed at the pedestal bottom. The implementation of this V&V technique uses the FACETS::Core transport solver and the DAKOTA toolkit for design optimization and uncertainty quantification. The FACETS::Core solver is used for advancing the plasma density profiles. The DAKOTA toolkit is used for the optimization of plasma profiles and the computation of the additional diffusivity that is required for the predicted density profile to match the experimental profile.

  17. Evaluation of certain food additives.

    PubMed

    2012-01-01

    This report represents the conclusions of a Joint FAO/WHO Expert Committee convened to evaluate the safety of various food additives, including flavouring agents, with a view to concluding as to safety concerns and to preparing specifications for identity and purity. The first part of the report contains a general discussion of the principles governing the toxicological evaluation of and assessment of dietary exposure to food additives, including flavouring agents. A summary follows of the Committee's evaluations of technical, toxicological and dietary exposure data for five food additives (magnesium dihydrogen diphosphate; mineral oil (medium and low viscosity) classes II and III; 3-phytase from Aspergillus niger expressed in Aspergillus niger; serine protease (chymotrypsin) from Nocardiopsis prasina expressed in Bacillus licheniformis; and serine protease (trypsin) from Fusarium oxysporum expressed in Fusarium venenatum) and 16 groups of flavouring agents (aliphatic and aromatic amines and amides; aliphatic and aromatic ethers; aliphatic hydrocarbons, alcohols, aldehydes, ketones, carboxylic acids and related esters, sulfides, disulfides and ethers containing furan substitution; aliphatic linear alpha,beta-unsaturated aldehydes, acids and related alcohols, acetals and esters; amino acids and related substances; epoxides; furfuryl alcohol and related substances; linear and branched-chain aliphatic, unsaturated, unconjugated alcohols, aldehydes, acids and related esters; miscellaneous nitrogen-containing substances; phenol and phenol derivatives; pyrazine derivatives; pyridine, pyrrole and quinoline derivatives; saturated aliphatic acyclic branched-chain primary alcohols, aldehydes and acids; simple aliphatic and aromatic sulfides and thiols; sulfur-containing heterocyclic compounds; and sulfur-substituted furan derivatives). Specifications for the following food additives were revised: ethyl cellulose, mineral oil (medium viscosity), modified starches and titanium

  18. Thermosphere Density Variability, Drag Coefficients, and Precision Satellite Orbits

    DTIC Science & Technology

    2013-07-29

    complex satellites. 1 Introduction Atmospheric density and drag coefficient modeling have long been among the greatest uncertainties in the...limitation of existing theories for satellite drag coefficients. In addition, the research will examine whether modern computational fluids...2005) gives an introduction to the neutral atmosphere and the time varying effects on the thermospheric and exospheric density. These time varying

  19. Energy density of bloaters in the upper Great Lakes

    USGS Publications Warehouse

    Pothoven, Steven A.; Bunnell, David B.; Madenjian, Charles P.; Gorman, Owen T.; Roseman, Edward F.

    2012-01-01

    We evaluated the energy density of bloaters Coregonus hoyi as a function of fish size across Lakes Michigan, Huron, and Superior in 2008–2009 and assessed how differences in energy density are related to factors such as biomass density of bloaters and availability of prey. Additional objectives were to compare energy density between sexes and to compare energy densities of bloaters in Lake Michigan between two time periods (1998–2001 and 2008–2009). For the cross-lake comparisons in 2008, energy density increased with fish total length (TL) only in Lake Michigan. Mean energy density adjusted for fish size was 8% higher in bloaters from Lake Superior than in bloaters from Lake Huron. Relative to fish in these two lakes, small (175 mm TL) bloaters had higher energy density. In 2009, energy density increased with bloater size, and mean energy density adjusted for fish size was about 9% higher in Lake Michigan than in Lake Huron (Lake Superior was not sampled during 2009). Energy density of bloaters in Lake Huron was generally the lowest among lakes, reflecting the relatively low densities of opossum shrimp Mysis diluviana and the relatively high biomass of bloaters reported for that lake. Other factors, such as energy content of prey, growing season, or ontogenetic differences in energy use strategies, may also influence cross-lake variation in energy density. Mean energy density adjusted for length was 7% higher for female bloaters than for male bloaters in Lakes Michigan and Huron. In Lake Superior, energy density did not differ between males and females. Finally, energy density of bloaters in Lake Michigan was similar between the periods 2008–2009 and 1998–2001, possibly due to a low population abundance of bloaters, which could offset food availability changes linked to the loss of prey such as the amphipods Diporeia spp.

  20. The Frontiers of Additive Manufacturing

    SciTech Connect

    Grote, Christopher John

    2016-03-03

    Additive manufacturing, more commonly known as 3-D printing, has become a ubiquitous tool in science for its precise control over mechanical design. For additive manufacturing to work, a 3-D structure is split into thin 2D slices, and then different physical properties, such as photo-polymerization or melting, are used to grow the sequential layers. The level of control allows not only for devices to be made with a variety of materials: e.g. plastics, metals, and quantum dots, but to also have finely controlled structures leading to other novel properties. While 3-D printing is widely used by hobbyists for making models, it also has industrial applications in structural engineering, biological tissue scaffolding, customized electric circuitry, fuel cells, security, and more.

  1. Decontamination formulation with sorbent additive

    DOEpatents

    Tucker; Mark D. , Comstock; Robert H.

    2007-10-16

    A decontamination formulation and method of making that neutralizes the adverse health effects of both chemical and biological compounds, especially chemical warfare (CW) and biological warfare (BW) agents, and toxic industrial chemicals. The formulation provides solubilizing compounds that serve to effectively render the chemical and biological compounds, particularly CW and BW compounds, susceptible to attack, and at least one reactive compound that serves to attack (and detoxify or kill) the compound. The formulation includes at least one solubilizing agent, a reactive compound, a bleaching activator, a sorbent additive, and water. The highly adsorbent, water-soluble sorbent additive (e.g., sorbitol or mannitol) is used to "dry out" one or more liquid ingredients, such as the liquid bleaching activator (e.g., propylene glycol diacetate or glycerol diacetate) and convert the activator into a dry, free-flowing powder that has an extended shelf life, and is more convenient to handle and mix in the field.

  2. Additive Manufacturing Integrated Energy Demonstration

    SciTech Connect

    Jackson, Roderick; Lee, Brian; Love, Lonnie; Mabe, Gavin; Keller, Martin; Curran, Scott; Chinthavali, Madhu; Green, Johney; Sawyer, Karma; Enquist, Phil

    2016-02-05

    Meet AMIE - the Additive Manufacturing Integrated Energy demonstration project. Led by Oak Ridge National Laboratory and many industry partners, the AMIE project changes the way we think about generating, storing, and using electrical power. AMIE uses an integrated energy system that shares energy between a building and a vehicle. And, utilizing advanced manufacturing and rapid innovation, it only took one year from concept to launch.

  3. Robust stability under additive perturbations

    NASA Technical Reports Server (NTRS)

    Bhaya, A.; Desoer, C. A.

    1985-01-01

    A MIMO linear time-invariant feedback system 1S(P,C) is considered which is assumed to be U-stable. The plant P is subjected to an additive perturbation Delta P which is proper but not necessarily stable. It is proved that the perturbed system is U-stable if and only if Delta P(I + Q x Delta P) exp -1 is U-stable.

  4. Additive Manufacturing Integrated Energy Demonstration

    ScienceCinema

    Jackson, Roderick; Lee, Brian; Love, Lonnie; Mabe, Gavin; Keller, Martin; Curran, Scott; Chinthavali, Madhu; Green, Johney; Sawyer, Karma; Enquist, Phil

    2016-07-12

    Meet AMIE - the Additive Manufacturing Integrated Energy demonstration project. Led by Oak Ridge National Laboratory and many industry partners, the AMIE project changes the way we think about generating, storing, and using electrical power. AMIE uses an integrated energy system that shares energy between a building and a vehicle. And, utilizing advanced manufacturing and rapid innovation, it only took one year from concept to launch.

  5. Nanoengineered Additives for Active Coatings

    DTIC Science & Technology

    2007-04-01

    commercial ad bial activ component from the coating, leading to eventual depletion of the film. Small TPU samples were evaluated using a Kirby - Bauer ...7 Table 5. Summary of 24-hr ASTM E 2180 tests with 1 weight-percent additive in PUr (solvent dispersible) based on 6-log loading of...Noveon X-1150). The ASTM E 2180 test is run in triplicate (Note that alternative ro 1° amines) was suspended in dry tetrahydrofuran (THF) (150 mL) in

  6. Bond additivity corrections for quantum chemistry methods

    SciTech Connect

    Melius, C.F.; Allendorf, M.D.

    2000-03-23

    New bond additivity correction (BAC) methods have been developed for the G2 method, BAC-G2, as well as for a hybrid density functional theory (DFT) Moller-Plesset (MP)2 method, BAC-hybrid. These BAC methods use a new form of BAC corrections, involving atomic, molecular, and bond-wise additive terms. These terms enable one to treat positive and negative ions as well as neutrals. The BAC-G2 method reduces errors in the G2 method due to nearest-neighbor bonds. The parameters within the BAC-G2 method only depend on atom types. Thus the BAC-G2 method can be used to determine the parameters needed by BAC methods involving lower levels of theory, such as BAC-hybrid and BAC-MP4. The BAC-hybrid method is expected to scale well for large molecules. The BAC-hybrid method uses the differences between the DFT and MP2 predictions as an indication of the method's accuracy, whereas the BAC-G2 method uses its internal methods (G1 and G2MP2) to accomplish this. A statistical analysis of the error in each of the methods is presented on the basis of calculations performed for large sets (more than 120) of molecules.

  7. Reversible Oxidative Addition at Carbon.

    PubMed

    Eichhorn, Antonius F; Fuchs, Sonja; Flock, Marco; Marder, Todd B; Radius, Udo

    2017-04-07

    The reactivity of N-heterocyclic carbenes (NHCs) and cyclic alkyl amino carbenes (cAACs) with arylboronate esters is reported. The reaction with NHCs leads to the reversible formation of thermally stable Lewis acid/base adducts Ar-B(OR)2 ⋅NHC (Add1-Add6). Addition of cAAC(Me) to the catecholboronate esters 4-R-C6 H4 -Bcat (R=Me, OMe) also afforded the adducts 4-R-C6 H4 Bcat⋅cAAC(Me) (Add7, R=Me and Add8, R=OMe), which react further at room temperature to give the cAAC(Me) ring-expanded products RER1 and RER2. The boronate esters Ar-B(OR)2 of pinacol, neopentylglycol, and ethyleneglycol react with cAAC at RT via reversible B-C oxidative addition to the carbene carbon atom to afford cAAC(Me) (B{OR}2 )(Ar) (BCA1-BCA6). NMR studies of cAAC(Me) (Bneop)(4-Me-C6 H4 ) (BCA4) demonstrate the reversible nature of this oxidative addition process.

  8. Additive manufacturing of hybrid circuits

    DOE PAGES

    Bell, Nelson S.; Sarobol, Pylin; Cook, Adam; ...

    2016-03-26

    There is a rising interest in developing functional electronics using additively manufactured components. Considerations in materials selection and pathways to forming hybrid circuits and devices must demonstrate useful electronic function; must enable integration; and must complement the complex shape, low cost, high volume, and high functionality of structural but generally electronically passive additively manufactured components. This article reviews several emerging technologies being used in industry and research/development to provide integration advantages of fabricating multilayer hybrid circuits or devices. First, we review a maskless, noncontact, direct write (DW) technology that excels in the deposition of metallic colloid inks for electrical interconnects.more » Second, we review a complementary technology, aerosol deposition (AD), which excels in the deposition of metallic and ceramic powder as consolidated, thick conformal coatings and is additionally patternable through masking. As a result, we show examples of hybrid circuits/devices integrated beyond 2-D planes, using combinations of DW or AD processes and conventional, established processes.« less

  9. Carbon nanotube growth density control

    NASA Technical Reports Server (NTRS)

    Delzeit, Lance D. (Inventor); Schipper, John F. (Inventor)

    2010-01-01

    Method and system for combined coarse scale control and fine scale control of growth density of a carbon nanotube (CNT) array on a substrate, using a selected electrical field adjacent to a substrate surface for coarse scale density control (by one or more orders of magnitude) and a selected CNT growth temperature range for fine scale density control (by multiplicative factors of less than an order of magnitude) of CNT growth density. Two spaced apart regions on a substrate may have different CNT growth densities and/or may use different feed gases for CNT growth.

  10. Understanding the Unique Equatorial Density Irregularities

    DTIC Science & Technology

    2015-04-01

    monitoring devices. In addition, the Low Earth Orbiting (LEO) satellites ion density observations show unique features for the African sector [Hei et al. 2005...installed in Africa [Amory-Mazaudier, et al. 2009] since 2007. Alongside this activity, universities in Africa (e.g. Bahir Dar Uni- versity, Ethiopia...African sector, show unique equatorial iono- spheric structure [Hei et al. 2005]. For example, this region equatorial plasma bubbles, which produce

  11. Fire-Retardant Polymeric Additives

    NASA Technical Reports Server (NTRS)

    Williams, Martha K.; Smith, Trent M.

    2011-01-01

    Polyhydroxyamide (PHA) and polymethoxyamide (PMeOA) are fire-retardant (FR) thermoplastic polymers and have been found to be useful as an additive for imparting fire retardant properties to other compatible, thermoplastic polymers (including some elastomers). Examples of compatible flammable polymers include nylons, polyesters, and acrylics. Unlike most prior additives, PHA and PMeOA do not appreciably degrade the mechanical properties of the matrix polymer; indeed, in some cases, mechanical properties are enhanced. Also, unlike some prior additives, PHA and PMeOA do not decompose into large amounts of corrosive or toxic compounds during combustion and can be processed at elevated temperatures. PMeOA derivative formulations were synthesized and used as an FR additive in the fabrication of polyamide (PA) and polystyrene (PS) composites with notable reduction (>30 percent for PS) in peak heat release rates compared to the neat polymer as measured by a Cone Calorimeter (ASTM E1354). Synergistic effects were noted with nanosilica composites. These nanosilica composites had more than 50-percent reduction in peak heat release rates. In a typical application, a flammable thermoplastic, thermoplastic blend, or elastomer that one seeks to render flame-retardant is first dry-mixed with PHA or PMeOA or derivative thereof. The proportion of PHA or PMeOA or derivative in the mixture is typically chosen to lie between 1 and 20 weight percent. The dry blend can then be melt-extruded. The extruded polymer blend can further be extruded and/or molded into fibers, pipes, or any other of a variety of objects that may be required to be fire-retardant. The physical and chemical mechanisms which impart flame retardancy of the additive include inhibiting free-radical oxidation in the vapor phase, preventing vaporization of fuel (the polymer), and cooling through the formation of chemical bonds in either the vapor or the condensed phase. Under thermal stress, the cyclic hydroxyl/ methoxy

  12. Evaluation of certain food additives.

    PubMed

    2009-01-01

    This report represents the conclusions of a Joint FAO/WHO Expert Committee convened to evaluate the safety of various food additives, including flavouring agents, with a view to recommending acceptable daily intakes (ADIs) and to preparing specifications for identity and purity. The first part of the report contains a general discussion of the principles governing the toxicological evaluation and assessment of intake of food additives (in particular, flavouring agents). A summary follows of the Committee's evaluations of technical, toxicological and intake data for certain food additives (asparaginase from Aspergillus niger expressed in A. niger, calcium lignosulfonate (40-65), ethyl lauroyl arginate, paprika extract, phospholipase C expressed in Pichia pastoris, phytosterols, phytostanols and their esters, polydimethylsiloxane, steviol glycosides and sulfites [assessment of dietary exposure]) and 10 groups of related flavouring agents (aliphatic branched-chain saturated and unsaturated alcohols, aldehydes, acids and related esters; aliphatic linear alpha,beta-unsaturated aldehydes, acids and related alcohols, acetals and esters; aliphatic secondary alcohols, ketones and related esters; alkoxy-substituted allylbenzenes present in foods and essential oils and used as flavouring agents; esters of aliphatic acyclic primary alcohols with aliphatic linear saturated carboxylic acids; furan-substituted aliphatic hydrocarbons, alcohols, aldehydes, ketones, carboxylic acids and related esters, sulfides, disulfides and ethers; miscellaneous nitrogen-containing substances; monocyclic and bicyclic secondary alcohols, ketones and related esters; hydroxy- and alkoxy-substituted benzyl derivatives; and substances structurally related to menthol). Specifications for the following food additives were revised: canthaxanthin; carob bean gum and carob bean gum (clarified); chlorophyllin copper complexes, sodium and potassium salts; Fast Green FCF; guar gum and guar gum (clarified

  13. Density functional theory: Foundations reviewed

    NASA Astrophysics Data System (ADS)

    Kryachko, Eugene S.; Ludeña, Eduardo V.

    2014-11-01

    -geared functionals. These problems are discussed by making reference to ab initio DFT as well as to the local-scaling-transformation version of DFT, LS-DFT. In addition, we examine the question of the accuracy of approximate exchange-correlation functionals in the light of their non-observance of the variational principle. Why do approximate functionals yield reasonable (and accurate) descriptions of many molecular and condensed matter properties? Are the conditions imposed on exchange and correlation functionals sufficiently adequate to produce accurate semi-empirical functionals? In this respect, we consider the question of whether the results reflect a true approach to chemical accuracy or are just the outcome of a virtuoso-like performance which cannot be systematically improved. We discuss the issue of the accuracy of the contemporary DFT results by contrasting them to those obtained by the alternative RDMT and NOFT. We discuss the possibility of improving DFT functionals by applying in a systematic way the N-representability conditions on the 2-RDM. In this respect, we emphasize the possibility of constructing 2-matrices in the context of the local scaling transformation version of DFT to which the N-representability condition of RDM theory may be applied. We end up our revision of HKS-DFT by considering some of the problems related to spin symmetry and discuss some current issues dealing with a proper treatment of open-shell systems. We are particularly concerned, as in the rest of this paper, mostly with foundational issues arising in the construction of functionals. We dedicate the whole Section 4 to the local-scaling transformation version of density functional theory, LS-DFT. The reason is that in this theory some of the fundamental problems that appear in HKS-DFT, have been solved. For example, in LS-DFT the functionals are, in principle, designed to fulfill v- and N-representability conditions from the outset. This is possible because LS-DFT is based on density

  14. The Mozart Effect: Additional Data.

    PubMed

    Hughes, John R.

    2002-04-01

    After the review of the Mozart effect was published in this journal (Hughes JR. Epilepsy Behav 2001;2:369-417), additional data from the music of Haydn and Liszt have been analyzed that may account for the decrease in seizure activity originally reported during Mozart music. Even with these added data Mozart music continued to score significantly higher than the selections from the other six composers in one of the important characteristics of this music, namely, the repetition of the melody. However Haydn's values were second highest among Mozart, J. S. Bach, Wagner, Beethoven, Chopin, and Liszt.

  15. Water based drilling mud additive

    SciTech Connect

    McCrary, J.L.

    1983-12-13

    A water based fluid additive useful in drilling mud used during drilling of an oil or gas well is disclosed, produced by reacting water at temperatures between 210/sup 0/-280/sup 0/ F. with a mixture comprising in percent by weight: gilsonite 25-30%, tannin 7-15%, lignite 25-35%, sulfonating compound 15-25%, water soluble base compound 5-15%, methylene-yielding compound 1-5%, and then removing substantially all of the remaining water to produce a dried product.

  16. Metal Additive Manufacturing: A Review

    NASA Astrophysics Data System (ADS)

    Frazier, William E.

    2014-06-01

    This paper reviews the state-of-the-art of an important, rapidly emerging, manufacturing technology that is alternatively called additive manufacturing (AM), direct digital manufacturing, free form fabrication, or 3D printing, etc. A broad contextual overview of metallic AM is provided. AM has the potential to revolutionize the global parts manufacturing and logistics landscape. It enables distributed manufacturing and the productions of parts-on-demand while offering the potential to reduce cost, energy consumption, and carbon footprint. This paper explores the material science, processes, and business consideration associated with achieving these performance gains. It is concluded that a paradigm shift is required in order to fully exploit AM potential.

  17. Theatre fleet's vital additional capacity.

    PubMed

    2012-11-01

    Vanguard Healthcare's fleet of mobile surgical facilities has been deployed to healthcare sites throughout Europe and beyond for over a decade, providing vital additional clinical capacity when existing buildings are refurbished or upgraded, in the event of flood or fire, or simply to help hospitals cater for rising demand. It is a combination of careful planning, teamwork, and the specialist expertise of Vanguard's personnel--many with a clinical background--that ensures not only each unit's successful installation, but equally its subsequent running, servicing, and maintenance, the company explains.

  18. Shale JP-4 Additive Evaluation

    DTIC Science & Technology

    1986-10-01

    8217. •% . , ’ ,,,r ,% . -- - ,.-. ’ ’ 4,w% %’. " - ,’ . . . * ’, .* . TABLE OF CONTENTS .4q ,4 . * SECTION PAGE I. INTRODUCTION 1 II. TEST PARAMETERS 2 1...42 PRECEDING PAGE BLANK TABLE OF CONTENTS (CON’T) SECT ION PAGE V. CONCLUSIONS 44 REFERENCES 46 APPENDIX A Drum to Test Sample Relationship 47 APPENDIX...B.O.C.L.E. Results 40 vii LIST OF TABLES TABLE PAGE 1 Antioxidants 3 2 Raw Shale/Petroleum Fuel Properties 10 3 Drum Sample Additive Content 13 4

  19. Low-density lipoprotein density determination by electric conductivity.

    PubMed

    Fernández-Higuero, José A; Salvador, Ana M; Arrondo, José L R; Milicua, José Carlos G

    2011-10-15

    The predominance of small dense low-density lipoprotein (LDL) particles is associated with an increased risk of coronary heart disease. A simple but precise method has been developed, based on electrical conductivity of an isopycnic gradient of KBr, to obtain density values of human LDL fraction. The results obtained can distinguish LDL density populations and their subfractions from different patients. These data were corroborated by Fourier transform infrared spectroscopy (FTIR) (structure) and light-scattering analyses (size).

  20. Density limit experiments on FTU

    NASA Astrophysics Data System (ADS)

    Pucella, G.; Tudisco, O.; Apicella, M. L.; Apruzzese, G.; Artaserse, G.; Belli, F.; Bin, W.; Boncagni, L.; Botrugno, A.; Buratti, P.; Calabrò, G.; Castaldo, C.; Cianfarani, C.; Cocilovo, V.; Dimatteo, L.; Esposito, B.; Frigione, D.; Gabellieri, L.; Giovannozzi, E.; Granucci, G.; Marinucci, M.; Marocco, D.; Martines, E.; Mazzitelli, G.; Mazzotta, C.; Nowak, S.; Ramogida, G.; Romano, A.; Tuccillo, A. A.; Zeng, L.; Zuin, M.

    2013-08-01

    One of the main problems in tokamak fusion devices concerns the capability to operate at a high plasma density, which is observed to be limited by the appearance of catastrophic events causing loss of plasma confinement. The commonly used empirical scaling law for the density limit is the Greenwald limit, predicting that the maximum achievable line-averaged density along a central chord depends only on the average plasma current density. However, the Greenwald density limit has been exceeded in tokamak experiments in the case of peaked density profiles, indicating that the edge density is the real parameter responsible for the density limit. Recently, it has been shown on the Frascati Tokamak Upgrade (FTU) that the Greenwald density limit is exceeded in gas-fuelled discharges with a high value of the edge safety factor. In order to understand this behaviour, dedicated density limit experiments were performed on FTU, in which the high density domain was explored in a wide range of values of plasma current (Ip = 500-900 kA) and toroidal magnetic field (BT = 4-8 T). These experiments confirm the edge nature of the density limit, as a Greenwald-like scaling holds for the maximum achievable line-averaged density along a peripheral chord passing at r/a ≃ 4/5. On the other hand, the maximum achievable line-averaged density along a central chord does not depend on the average plasma current density and essentially depends on the toroidal magnetic field only. This behaviour is explained in terms of density profile peaking in the high density domain, with a peaking factor at the disruption depending on the edge safety factor. The possibility that the MARFE (multifaced asymmetric radiation from the edge) phenomenon is the cause of the peaking has been considered, with the MARFE believed to form a channel for the penetration of the neutral particles into deeper layers of the plasma. Finally, the magnetohydrodynamic (MHD) analysis has shown that also the central line

  1. Comparison of density determination of liquid samples by density meters

    NASA Astrophysics Data System (ADS)

    Buchner, C.; Wolf, H.; Vámossy, C.; Lorefice, S.; Lenard, E.; Spohr, I.; Mares, G.; Perkin, M.; Parlic-Risovic, T.; Grue, L.-L.; Tammik, K.; van Andel, I.; Zelenka, Z.

    2016-01-01

    Hydrostatic density determinations of liquids as reference material are mainly performed by National Metrology Institutes to provide means for calibrating or checking liquid density measuring instruments such as oscillation-type density meters. These density meters are used by most of the metrology institutes for their calibration and scientific work. The aim of this project was to compare the results of the liquid density determination by oscillating density meters of the participating laboratories. The results were linked to CCM.D.K-2 partly via Project EURAMET.M.D.K-2 (1019) "Comparison of liquid density standards" by hydrostatic weighing piloted by BEV in 2008. In this comparison pentadecane, water and of oil with a high viscosity were measured at atmospheric pressure using oscillation type density meter. The temperature range was from 15 °C to 40 °C. The measurement results were in some cases discrepant. Further studies, comparisons are essential to explore the capability and uncertainty of the density meters Main text To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCM, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).

  2. High Flow Addition Curing Polyimides

    NASA Technical Reports Server (NTRS)

    Chuang, Kathy C.; Vannucci, Raymond D.; Ansari, Irfan; Cerny, Lawrence L.; Scheiman, Daniel A.

    1994-01-01

    A new series of high flow PMR-type addition curing polyimides was developed, which employed the substitution of 2,2'-bis (trifluoromethyl) -4,4'-diaminobiphenyl (BTDB) for p-phenylenediamine (p -PDA) in a PMR-IL formulation. These thermoset polyimides, designated as 12F resins, were prepared from BTDB and the dimethyl ester of 4,4'- (hexafluo- roisopropylidene) -diphthalic acid (HFDE) with either nadic ester (NE) or p-aminostyrene (PAS) as the endcaps for addition curing. The 12F prepolymers displayed lower melting temperatures in DSC analysis, and higher melt flow in rheological studies than the cor- responding PMR-11 polyimides. Long-term isothermal aging studies showed that BTDB- based 12F resins exhibited comparable thermo-oxidative stability to P-PDA based PMR-11 polyimides. The noncoplanar 2- and 2'-disubstituted biphenyldiamine (BTDB) not only lowered the melt viscosities of 12F prepolymers, but also retained reasonable thermal sta- bility of the cured resins. The 12F polyimide resin with p-aminostyrene endcaps showed the best promise for long-term, high-temperature application at 343 C (650 F).

  3. Fuel Additives: Canada bans MMT

    SciTech Connect

    Sissell, K.

    1997-04-16

    The Canadian Senate voted late last week to ban use of the manganese-based fuel additive MMT, produced only in the US by Ethyl. MMT, which has been sold in Canada for the past 20 years and accounts for about half of Ethyl`s Canadian sales, has been criticized by environmentalists, who have raised public health concerns, and automakers, who say it harms emission control systems. {open_quotes}Canada`s vote is a great victory for public health and the environment,{close_quotes} says Environmental Defense Fund executive director Fred Krupp. {open_quotes}The US should move swiftly to follow suit and suspend sales of MMT until adequate toxicity testing on the additive is completed.{close_quotes} EPA had refused to approve MMT for sale because of health concerns but was compelled to do so by a December 1995 court ruling. Ethyl asserts the ban violates Canada`s obligations under Nafta and says it will file a damage claim with the Nafta arbitration panel.

  4. Additive interaction between heterogeneous environmental ...

    EPA Pesticide Factsheets

    BACKGROUND Environmental exposures often occur in tandem; however, epidemiological research often focuses on singular exposures. Statistical interactions among broad, well-characterized environmental domains have not yet been evaluated in association with health. We address this gap by conducting a county-level cross-sectional analysis of interactions between Environmental Quality Index (EQI) domain indices on preterm birth in the Unites States from 2000-2005.METHODS: The EQI, a county-level index constructed for the 2000-2005 time period, was constructed from five domain-specific indices (air, water, land, built and sociodemographic) using principal component analyses. County-level preterm birth rates (n=3141) were estimated using live births from the National Center for Health Statistics. Linear regression was used to estimate prevalence differences (PD) and 95% confidence intervals (CI) comparing worse environmental quality to the better quality for each model for a) each individual domain main effect b) the interaction contrast and c) the two main effects plus interaction effect (i.e. the “net effect”) to show departure from additive interaction for the all U.S counties. Analyses were also performed for subgroupings by four urban/rural strata. RESULTS: We found the suggestion of antagonistic interactions but no synergism, along with several purely additive (i.e., no interaction) associations. In the non-stratified model, we observed antagonistic interac

  5. Additive manufacturing of RF absorbers

    NASA Astrophysics Data System (ADS)

    Mills, Matthew S.

    The ability of additive manufacturing techniques to fabricate integrated electromagnetic absorbers tuned for specific radio frequency bands within structural composites allows for unique combinations of mechanical and electromagnetic properties. These composites and films can be used for RF shielding of sensitive electromagnetic components through in-plane and out-of-plane RF absorption. Structural composites are a common building block of many commercial platforms. These platforms may be placed in situations in which there is a need for embedded RF absorbing properties along with structural properties. Instead of adding radar absorbing treatments to the external surface of existing structures, which adds increased size, weight and cost; it could prove to be advantageous to integrate the microwave absorbing properties directly into the composite during the fabrication process. In this thesis, a method based on additive manufacturing techniques of composites structures with prescribed electromagnetic loss, within the frequency range 1 to 26GHz, is presented. This method utilizes screen printing and nScrypt micro dispensing to pattern a carbon based ink onto low loss substrates. The materials chosen for this study will be presented, and the fabrication technique that these materials went through to create RF absorbing structures will be described. The calibration methods used, the modeling of the RF structures, and the applications in which this technology can be utilized will also be presented.

  6. High Power Density Motors

    NASA Technical Reports Server (NTRS)

    Kascak, Daniel J.

    2004-01-01

    With the growing concerns of global warming, the need for pollution-free vehicles is ever increasing. Pollution-free flight is one of NASA's goals for the 21" Century. , One method of approaching that goal is hydrogen-fueled aircraft that use fuel cells or turbo- generators to develop electric power that can drive electric motors that turn the aircraft's propulsive fans or propellers. Hydrogen fuel would likely be carried as a liquid, stored in tanks at its boiling point of 20.5 K (-422.5 F). Conventional electric motors, however, are far too heavy (for a given horsepower) to use on aircraft. Fortunately the liquid hydrogen fuel can provide essentially free refrigeration that can be used to cool the windings of motors before the hydrogen is used for fuel. Either High Temperature Superconductors (HTS) or high purity metals such as copper or aluminum may be used in the motor windings. Superconductors have essentially zero electrical resistance to steady current. The electrical resistance of high purity aluminum or copper near liquid hydrogen temperature can be l/lOO* or less of the room temperature resistance. These conductors could provide higher motor efficiency than normal room-temperature motors achieve. But much more importantly, these conductors can carry ten to a hundred times more current than copper conductors do in normal motors operating at room temperature. This is a consequence of the low electrical resistance and of good heat transfer coefficients in boiling LH2. Thus the conductors can produce higher magnetic field strengths and consequently higher motor torque and power. Designs, analysis and actual cryogenic motor tests show that such cryogenic motors could produce three or more times as much power per unit weight as turbine engines can, whereas conventional motors produce only 1/5 as much power per weight as turbine engines. This summer work has been done with Litz wire to maximize the current density. The current is limited by the amount of heat it

  7. Neutron Characterization for Additive Manufacturing

    NASA Technical Reports Server (NTRS)

    Watkins, Thomas; Bilheux, Hassina; An, Ke; Payzant, Andrew; DeHoff, Ryan; Duty, Chad; Peter, William; Blue, Craig; Brice, Craig A.

    2013-01-01

    Oak Ridge National Laboratory (ORNL) is leveraging decades of experience in neutron characterization of advanced materials together with resources such as the Spallation Neutron Source (SNS) and the High Flux Isotope Reactor (HFIR) shown in Fig. 1 to solve challenging problems in additive manufacturing (AM). Additive manufacturing, or three-dimensional (3-D) printing, is a rapidly maturing technology wherein components are built by selectively adding feedstock material at locations specified by a computer model. The majority of these technologies use thermally driven phase change mechanisms to convert the feedstock into functioning material. As the molten material cools and solidifies, the component is subjected to significant thermal gradients, generating significant internal stresses throughout the part (Fig. 2). As layers are added, inherent residual stresses cause warping and distortions that lead to geometrical differences between the final part and the original computer generated design. This effect also limits geometries that can be fabricated using AM, such as thin-walled, high-aspect- ratio, and overhanging structures. Distortion may be minimized by intelligent toolpath planning or strategic placement of support structures, but these approaches are not well understood and often "Edisonian" in nature. Residual stresses can also impact component performance during operation. For example, in a thermally cycled environment such as a high-pressure turbine engine, residual stresses can cause components to distort unpredictably. Different thermal treatments on as-fabricated AM components have been used to minimize residual stress, but components still retain a nonhomogeneous stress state and/or demonstrate a relaxation-derived geometric distortion. Industry, federal laboratory, and university collaboration is needed to address these challenges and enable the U.S. to compete in the global market. Work is currently being conducted on AM technologies at the ORNL

  8. Additives in fibers and fabrics.

    PubMed Central

    Barker, R H

    1975-01-01

    The additives and contaminants which occur in textile fibers vary widely, depending on the type of fiber and the pretreatment which it has received. Synthetic fibers such as nylon and polyester contain trace amounts of contaminants such as catalysts and catalyst deactivators which remain after the synthesis of the basic polymers. In addition, there are frequently a number of materials which are added to perform specific functions in almost all man-made fibers. Examples of these would include traces of metals or metal salts used as tracers for identification of specific lots of fiber, TiO2 or similar materials added as delustrants, and a host of organic species added for such special purposes as antistatic agents or flame retardants. There may also be considerable quantities of residual monomer or small oligomers dissolved in the polymer matrix. The situation becomes even more complex after the fibers are converted into fabric form. Numerous materials are applied at various stages of fabric preparation to act as lubricants, sizing agents, antistats, bleaches, and wetting agents to facilitate the processing, but these are normally removed before the fabric reaches the cutters of the ultimate consumers and therefore usually do not constitute potential hazards. However, there are many other chemical agents which are frequently added during the later stages of fabric preparation and which are not designed to be removed. Aside from dyes and printing pigments, the most common additive for apparel fabrics is a durable press treatment. This generally involves the use of materials capable of crosslinking cellulosics by reacting through such functions as N-methylolated amides or related compounds such as ureas and carbamates. These materials pose some potential hazards due to both the nitrogenous bases and the formaldehyde which they usually release. There is usually also some residual catalyst in fabrics which have received such treatments. Other types of chemical treatments

  9. Density Fluctuations in Liquid Water

    NASA Astrophysics Data System (ADS)

    English, Niall J.; Tse, John S.

    2011-01-01

    The density distributions and fluctuations in grids of varying size in liquid water at ambient pressure, both above the freezing point and in the supercooled state, are analyzed from the trajectories obtained from large-scale molecular dynamics simulations. It is found that the occurrence of low- and high-density regions (LDL and HDL) is transient and their respective residence times are dependent on the size of the simulated system. The spatial extent of density-density correlation is found to be within 7 Å or less. The temporal existence of LDL and HDL arises as a result of natural density fluctuations of an equilibrium system. The density of bulk water at ambient conditions is homogenous.

  10. Non-autoclaved aerated concrete with mineral additives

    NASA Astrophysics Data System (ADS)

    Il'ina, L. V.; Rakov, M. A.

    2016-01-01

    We investigated the effect of joint grinding of Portland cement clinker, silica and carbonate components and mineral additives to specific surface of 280 - 300 m2/kg on the properties (strength, average density and thermal conductivity) of non-autoclaved aerated concrete, and the porosity of the hardened cement paste produced from Portland cement clinker with mineral additives. The joint grinding of the Portland cement clinker with silica and carbonate components and mineral additives reduces the energy consumption of non-autoclaved aerated concrete production. The efficiency of mineral additives (diopside, wollastonite) is due to the closeness the composition, the type of chemical bonds, physical and chemical characteristics (specific enthalpy of formation, specific entropy) to anhydrous clinker minerals and their hydration products. Considering the influence of these additions on hydration of clinker minerals and formation of hardened cement paste structure, dispersed wollastonite and diopside should be used as mineral additives. The hardness and, consequently, the elastic modulus of diopside are higher than that of hardened cement paste. As a result, there is a redistribution of stresses in the hardened cement paste interporous partitions and hardening, both the partitions and aerated concrete on the whole. The mineral additives introduction allowed to obtain the non-autoclaved aerated concrete with average density 580 kg/m3, compressive strength of 3.3 MPa and thermal conductivity of 0.131 W/(m.°C).

  11. An Additive Manufacturing Test Artifact

    PubMed Central

    Moylan, Shawn; Slotwinski, John; Cooke, April; Jurrens, Kevin; Donmez, M Alkan

    2014-01-01

    A test artifact, intended for standardization, is proposed for the purpose of evaluating the performance of additive manufacturing (AM) systems. A thorough analysis of previously proposed AM test artifacts as well as experience with machining test artifacts have inspired the design of the proposed test artifact. This new artifact is designed to provide a characterization of the capabilities and limitations of an AM system, as well as to allow system improvement by linking specific errors measured in the test artifact to specific sources in the AM system. The proposed test artifact has been built in multiple materials using multiple AM technologies. The results of several of the builds are discussed, demonstrating how the measurement results can be used to characterize and improve a specific AM system. PMID:26601039

  12. An Additive Manufacturing Test Artifact.

    PubMed

    Moylan, Shawn; Slotwinski, John; Cooke, April; Jurrens, Kevin; Donmez, M Alkan

    2014-01-01

    A test artifact, intended for standardization, is proposed for the purpose of evaluating the performance of additive manufacturing (AM) systems. A thorough analysis of previously proposed AM test artifacts as well as experience with machining test artifacts have inspired the design of the proposed test artifact. This new artifact is designed to provide a characterization of the capabilities and limitations of an AM system, as well as to allow system improvement by linking specific errors measured in the test artifact to specific sources in the AM system. The proposed test artifact has been built in multiple materials using multiple AM technologies. The results of several of the builds are discussed, demonstrating how the measurement results can be used to characterize and improve a specific AM system.

  13. Optics of progressive addition lenses.

    PubMed

    Sheedy, J E; Buri, M; Bailey, I L; Azus, J; Borish, I M

    1987-02-01

    The optical characteristics of the major progressive addition lenses were measured using an automated lensometer with a specially designed lens holder to simulate eye rotation. Measurements were made every 3 degrees (about 1.5 mm) and graphs of isospherical equivalent lines and isocylinder lines were developed. Generally the near zone of these lenses is narrower and lower than in bifocal or trifocal lenses. Distinct differences exist between the various progressive lenses. The width of the near zone, rate of power progression, amount of unwanted cylinder (level with the distance center), and clarity of the distance zone are compared for the various lenses. The optical measurements demonstrate an apparent trade-off between the size of the cylinder-free area of the lens and the amount of the cylinder.

  14. Density waves in granular flow

    NASA Astrophysics Data System (ADS)

    Herrmann, H. J.; Flekkøy, E.; Nagel, K.; Peng, G.; Ristow, G.

    Ample experimental evidence has shown the existence of spontaneous density waves in granular material flowing through pipes or hoppers. Using Molecular Dynamics Simulations we show that several types of waves exist and find that these density fluctuations follow a 1/f spectrum. We compare this behaviour to deterministic one-dimensional traffic models. If positions and velocities are continuous variables the model shows self-organized criticality driven by the slowest car. We also present Lattice Gas and Boltzmann Lattice Models which reproduce the experimentally observed effects. Density waves are spontaneously generated when the viscosity has a nonlinear dependence on density which characterizes granular flow.

  15. Density Estimation with Mercer Kernels

    NASA Technical Reports Server (NTRS)

    Macready, William G.

    2003-01-01

    We present a new method for density estimation based on Mercer kernels. The density estimate can be understood as the density induced on a data manifold by a mixture of Gaussians fit in a feature space. As is usual, the feature space and data manifold are defined with any suitable positive-definite kernel function. We modify the standard EM algorithm for mixtures of Gaussians to infer the parameters of the density. One benefit of the approach is it's conceptual simplicity, and uniform applicability over many different types of data. Preliminary results are presented for a number of simple problems.

  16. SOP - Determination of Requirement Density

    SciTech Connect

    Reynolds, John G.; Martz, Jr., Harry E.

    2010-10-26

    The purpose of this Standard Operating Procedure (SOP) is to give guidelines on how to determine the density of a sample that will be used as the requirement density. This will be the requirement density of record for the specimens examined by Micro CT and EDS measurements. This density will then be set as the formulation requirement for radiography measurements. This SOP is referred to in TP 48— Preparation of Hydrogen Peroxide/Icing Sugar Specimens for X-ray Measurements by J. G. Reynolds and H. E. Martz.

  17. The surface density of haloes

    NASA Astrophysics Data System (ADS)

    Del Popolo, A.; Lee, Xi-Guo

    We study the correlation between the central surface density and the core radius of the dark matter haloes of galaxies and clusters of galaxies. We find that the surface density within the halo characteristic radius r* is not a universal quantity as claimed by some authors (e.g., Milgrom 2009), but it correlates with several physical quantities (e.g., the halo mass M200, and the magnitude MB). The slope of the surface density-mass relation is 0.18 ± 0.05, leaving small room to the possibility of a constant surface density. Finally, we compare the results with MOND predictions.

  18. Simultaneous density contrast is bidirectional.

    PubMed

    Sun, Hua-Chun; Baker, Curtis L; Kingdom, Frederick A A

    2016-11-01

    Simultaneous density contrast, or SDC, is the phenomenon in which the perceived density of a textured region is altered by a surround of different density (Mackay, 1973). SDC provides an experimental tool to investigate mechanisms of density coding, yet has not been systematically examined. We measured SDC with a 2AFC staircase procedure in which human observers judged which of two patterns, one with and one without a surround, appeared more dense. We used a range of surround densities varying from very sparse to very dense (0-76.8 dots/deg2), and two center test densities (6.4 and 12.8 dots/deg2). Psychometric functions were used to estimate both the points of subjective equality (PSE) and their precision. Unexpectedly we find a bidirectional SDC effect across the five observers: Not only does a denser surround reduce perceived density of the center, but a sparser surround enhances its perceived density. We also show that SDC is not mediated by either contrast-contrast or spatial-frequency contrast. Our results suggest the presence of multiple channels selective for texture density, with lateral inhibitory interactions between them.

  19. High Precision Density Measurements of Single Particles: The Density of Metastable Phases

    SciTech Connect

    Zelenyuk, Alla; Cai, Yong; Chieffo, Logan; Imre, Dan G.

    2005-10-01

    We describe a system designed to measure the size, composition and density of individual particles in real-time. It uses a DMA to select a monodisperse particle population and the single particle mass spectrometer to measure individual particle mass spectrometer to measure individual particle aerodynamic diameter and composition. Mobility and aerodynamic diameters are used to extract particle density. The addition of individual particle density to the mass spectrum is intended to improve the data classification process. In the present paper we demonstrate that the system has the requisite accuracy and resolution to make this approach practicable. We also present a high precision variant that uses an internal calibrant to remove any of the systematic errors and significantly improves the measurement quality. The high precision scheme is most suitable for laboratory studies making it possible to follow slight changes in particle density. An application of the system to measure the density of hygroscopic particles of atmospheric importance in metastable phases near zero relative humidity is presented. The density data are consistent with conclusions reached in a number of other studies that some particle systems of atmospheric significance once deliquesced persist as droplets down to near zero relative humidity.

  20. Serum amyloid A-containing human high density lipoprotein 3. Density, size, and apolipoprotein composition.

    PubMed

    Coetzee, G A; Strachan, A F; van der Westhuyzen, D R; Hoppe, H C; Jeenah, M S; de Beer, F C

    1986-07-25

    Serum amyloid A protein (apo-SAA), an acute phase reactant, is an apolipoprotein of high density lipoproteins (HDL), in particular the denser subpopulation HDL3. The structure of HDL3 isolated from humans affected by a variety of severe disease states was investigated with respect to density, size, and apolipoprotein composition, using density gradient ultracentrifugation, gradient gel electrophoresis, gel filtration, and solid phase immunoadsorption. Apo-SAA was present in HDL particles in increasing amounts as particle density increased. Apo-SAA-containing HDL3 had bigger radii than normal HDL3 of comparable density. Purified apo-SAA associated readily with normal HDL3 in vitro, giving rise to particles containing up to 80% of their apoproteins as apo-SAA. The addition of apo-SAA resulted in a displacement of apo-A-I and an increase in particle size. Acute phase HDL3 represented a mixture of particles, polydisperse with respect to apolipoprotein content; for example, some particles were isolated that contained apo-A-I, apo-A-II, and apo-SAA, whereas others contained apo-A-I and apo-SAA but no apo-A-II. We conclude that apo-SAA probably associates in the circulation of acute phase patients with existing HDL particles, causing the remodeling of the HDL shell to yield particles of bigger size and higher density that are relatively depleted of apo-A-I.

  1. COMBINATION OF DENSITY AND ENERGY MODULATION IN MICROBUNCHING ANALYSIS

    SciTech Connect

    Tsai, Cheng Ying; Li, Rui

    2016-05-01

    Microbunching instability (MBI) has been one of the most challenging issues in the transport of high-brightness electron beams for modern recirculating or energy recovery linac machines. Recently we have developed and implemented a Vlasov solver [1] to calculate the microbunching gain for an arbitrary beamline lattice, based on the extension of existing theoretical formulation [2-4] for the microbunching amplification from an initial density perturbation to the final density modulation. For more thorough analyses, in addition to the case of (initial) density to (final) density amplification, we extend in this paper the previous formulation to more general cases, including energy to density, density to energy and energy to energy amplifications for a recirculation machine. Such semi-analytical formulae are then incorporated into our Vlasov solver, and qualitative agreement is obtained when the semi-analytical Vlasov results are compared with particle tracking simulation using ELEGANT [5].

  2. Density waves in the Calogero model - revisited

    SciTech Connect

    Bardek, V. Feinberg, J. Meljanac, S.

    2010-03-15

    The Calogero model bears, in the continuum limit, collective excitations in the form of density waves and solitary modulations of the density of particles. This sector of the spectrum of the model was investigated, mostly within the framework of collective-field theory, by several authors, over the past 15 years or so. In this work we shall concentrate on periodic solutions of the collective BPS-equation (also known as 'finite amplitude density waves'), as well as on periodic solutions of the full static variational equations which vanish periodically (also known as 'large amplitude density waves'). While these solutions are not new, we feel that our analysis and presentation add to the existing literature, as we explain in the text. In addition, we show that these solutions also occur in a certain two-family generalization of the Calogero model, at special points in parameter space. A compendium of useful identities associated with Hilbert transforms, including our own proofs of these identities, appears in Appendix A. In Appendix B we also elucidate in the present paper some fine points having to do with manipulating Hilbert-transforms, which appear ubiquitously in the collective field formalism. Finally, in order to make this paper self-contained, we briefly summarize in Appendix C basic facts about the collective field formulation of the Calogero model.

  3. Mammographic breast density and serum phytoestrogen levels.

    PubMed

    Lowry, Sarah J; Sprague, Brian L; Aiello Bowles, Erin J; Hedman, Curtis J; Hemming, Jocelyn; Hampton, John M; Burnside, Elizabeth S; Sisney, Gale A; Buist, Diana S M; Trentham-Dietz, Amy

    2012-08-01

    Some forms of estrogen are associated with breast cancer risk as well as with mammographic density (MD), a strong marker of breast cancer risk. Whether phytoestrogen intake affects breast density, however, remains unclear. We evaluated the association between serum levels of phytoestrogens and MD in postmenopausal women. We enrolled 269 women, ages 55-70 yr, who received a screening mammogram and had no history of postmenopausal hormone use. Subjects completed a survey on diet and factors related to MD and provided a blood sample for analysis of 3 phytoestrogens: genistein, daidzein, and coumestrol. We examined whether mean percent MD was related to serum level of phytoestrogens, adjusting for age and body mass index. Genistein and daidzein levels correlated with self-reported soy consumption. Mean percent MD did not differ across women with different phytoestrogen levels. For example, women with nondetectable genistein levels had mean density of 11.0% [95% confidence intervals (CI) = 9.9-12.4], compared to 10.5% (95% CI = 8.0-13.7) and 11.2% (95% CI = 8.7-14.6) for < and ≥ median detectable levels, respectively. In a population with relatively low soy intake, serum phytoestrogens were not associated with mammographic density. Additional studies are needed to determine effects of higher levels, particularly given patterns of increasing phytoestrogen intake.

  4. Additively manufactured porous tantalum implants.

    PubMed

    Wauthle, Ruben; van der Stok, Johan; Amin Yavari, Saber; Van Humbeeck, Jan; Kruth, Jean-Pierre; Zadpoor, Amir Abbas; Weinans, Harrie; Mulier, Michiel; Schrooten, Jan

    2015-03-01

    The medical device industry's interest in open porous, metallic biomaterials has increased in response to additive manufacturing techniques enabling the production of complex shapes that cannot be produced with conventional techniques. Tantalum is an important metal for medical devices because of its good biocompatibility. In this study selective laser melting technology was used for the first time to manufacture highly porous pure tantalum implants with fully interconnected open pores. The architecture of the porous structure in combination with the material properties of tantalum result in mechanical properties close to those of human bone and allow for bone ingrowth. The bone regeneration performance of the porous tantalum was evaluated in vivo using an orthotopic load-bearing bone defect model in the rat femur. After 12 weeks, substantial bone ingrowth, good quality of the regenerated bone and a strong, functional implant-bone interface connection were observed. Compared to identical porous Ti-6Al-4V structures, laser-melted tantalum shows excellent osteoconductive properties, has a higher normalized fatigue strength and allows for more plastic deformation due to its high ductility. It is therefore concluded that this is a first step towards a new generation of open porous tantalum implants manufactured using selective laser melting.

  5. Additive Transforms Paint into Insulation

    NASA Technical Reports Server (NTRS)

    2007-01-01

    Tech Traders Inc. sought assistance developing low-cost, highly effective coatings and paints that created useful thermal reflectance and were safe and non-toxic. In cooperation with a group of engineers at Kennedy Space Center., Tech Traders created Insuladd, a powder additive made up of microscopic, inert gas-filled, ceramic microspheres that can be mixed into ordinary interior or exterior paint, allowing the paint to act like a layer of insulation. When the paint dries, this forms a radiant heat barrier, turning the ordinary house paint into heat-reflecting thermal paint. According to Tech Traders, the product works with all types of paints and coatings and will not change the coverage rate, application, or adhesion of the paint. Other useful applications include feed storage silos to help prevent feed spoilage, poultry hatcheries to reduce the summer heat and winter cold effects, and on military vehicles and ships. Tech Traders has continued its connection to the aerospace community by recently providing Lockheed Martin Corporation with one of its thermal products for use on the F-22 Raptor.

  6. Sustainability Characterization for Additive Manufacturing

    PubMed Central

    Mani, Mahesh; Lyons, Kevin W; Gupta, SK

    2014-01-01

    Additive manufacturing (AM) has the potential to create geometrically complex parts that require a high degree of customization, using less material and producing less waste. Recent studies have shown that AM can be an economically viable option for use by the industry, yet there are some inherent challenges associated with AM for wider acceptance. The lack of standards in AM impedes its use for parts production since industries primarily depend on established standards in processes and material selection to ensure the consistency and quality. Inability to compare AM performance against traditional manufacturing methods can be a barrier for implementing AM processes. AM process sustainability has become a driver due to growing environmental concerns for manufacturing. This has reinforced the importance to understand and characterize AM processes for sustainability. Process characterization for sustainability will help close the gaps for comparing AM performance to traditional manufacturing methods. Based on a literature review, this paper first examines the potential environmental impacts of AM. A methodology for sustainability characterization of AM is then proposed to serve as a resource for the community to benchmark AM processes for sustainability. Next, research perspectives are discussed along with relevant standardization efforts. PMID:26601038

  7. Sustainability Characterization for Additive Manufacturing.

    PubMed

    Mani, Mahesh; Lyons, Kevin W; Gupta, S K

    2014-01-01

    Additive manufacturing (AM) has the potential to create geometrically complex parts that require a high degree of customization, using less material and producing less waste. Recent studies have shown that AM can be an economically viable option for use by the industry, yet there are some inherent challenges associated with AM for wider acceptance. The lack of standards in AM impedes its use for parts production since industries primarily depend on established standards in processes and material selection to ensure the consistency and quality. Inability to compare AM performance against traditional manufacturing methods can be a barrier for implementing AM processes. AM process sustainability has become a driver due to growing environmental concerns for manufacturing. This has reinforced the importance to understand and characterize AM processes for sustainability. Process characterization for sustainability will help close the gaps for comparing AM performance to traditional manufacturing methods. Based on a literature review, this paper first examines the potential environmental impacts of AM. A methodology for sustainability characterization of AM is then proposed to serve as a resource for the community to benchmark AM processes for sustainability. Next, research perspectives are discussed along with relevant standardization efforts.

  8. Dynamics of ultrasonic additive manufacturing.

    PubMed

    Hehr, Adam; Dapino, Marcelo J

    2017-01-01

    Ultrasonic additive manufacturing (UAM) is a solid-state technology for joining similar and dissimilar metal foils near room temperature by scrubbing them together with ultrasonic vibrations under pressure. Structural dynamics of the welding assembly and work piece influence how energy is transferred during the process and ultimately, part quality. To understand the effect of structural dynamics during UAM, a linear time-invariant model is proposed to relate the inputs of shear force and electric current to resultant welder velocity and voltage. Measured frequency response and operating performance of the welder under no load is used to identify model parameters. Using this model and in-situ measurements, shear force and welder efficiency are estimated to be near 2000N and 80% when welding Al 6061-H18 weld foil, respectively. Shear force and welder efficiency have never been estimated before in UAM. The influence of processing conditions, i.e., welder amplitude, normal force, and weld speed, on shear force and welder efficiency are investigated. Welder velocity was found to strongly influence the shear force magnitude and efficiency while normal force and weld speed showed little to no influence. The proposed model is used to describe high frequency harmonic content in the velocity response of the welder during welding operations and coupling of the UAM build with the welder.

  9. Dimensionless numbers in additive manufacturing

    NASA Astrophysics Data System (ADS)

    Mukherjee, T.; Manvatkar, V.; De, A.; DebRoy, T.

    2017-02-01

    The effects of many process variables and alloy properties on the structure and properties of additively manufactured parts are examined using four dimensionless numbers. The structure and properties of components made from 316 Stainless steel, Ti-6Al-4V, and Inconel 718 powders for various dimensionless heat inputs, Peclet numbers, Marangoni numbers, and Fourier numbers are studied. Temperature fields, cooling rates, solidification parameters, lack of fusion defects, and thermal strains are examined using a well-tested three-dimensional transient heat transfer and fluid flow model. The results show that lack of fusion defects in the fabricated parts can be minimized by strengthening interlayer bonding using high values of dimensionless heat input. The formation of harmful intermetallics such as laves phases in Inconel 718 can be suppressed using low heat input that results in a small molten pool, a steep temperature gradient, and a fast cooling rate. Improved interlayer bonding can be achieved at high Marangoni numbers, which results in vigorous circulation of liquid metal, larger pool dimensions, and greater depth of penetration. A high Fourier number ensures rapid cooling, low thermal distortion, and a high ratio of temperature gradient to the solidification growth rate with a greater tendency of plane front solidification.

  10. Children's understanding of additive concepts.

    PubMed

    Robinson, Katherine M; Dubé, Adam K; Beatch, Jacqueline-Ann

    2017-04-01

    Most research on children's arithmetic concepts is based on one concept at a time, limiting the conclusions that can be made about how children's conceptual knowledge of arithmetic develops. This study examined six arithmetic concepts (identity, negation, commutativity, equivalence, inversion, and addition and subtraction associativity) in Grades 3, 4, and 5. Identity (a-0=a) and negation (a-a=0) were well understood, followed by moderate understanding of commutativity (a+b=b+a) and inversion (a+b-b=a), with weak understanding of equivalence (a+b+c=a+[b+c]) and associativity (a+b-c=[b-c]+a). Understanding increased across grade only for commutativity and equivalence. Four clusters were found: The Weak Concept cluster understood only identity and negation; the Two-Term Concept cluster also understood commutativity; the Inversion Concept cluster understood identity, negation, and inversion; and the Strong Concept cluster had the strongest understanding of all of the concepts. Grade 3 students tended to be in the Weak and Inversion Concept clusters, Grade 4 students were equally likely to be in any of the clusters, and Grade 5 students were most likely to be in the Two-Term and Strong Concept clusters. The findings of this study highlight that conclusions about the development of arithmetic concepts are highly dependent on which concepts are being assessed and underscore the need for multiple concepts to be investigated at the same time.

  11. The Probabilistic Admissible Region with Additional Constraints

    NASA Astrophysics Data System (ADS)

    Roscoe, C.; Hussein, I.; Wilkins, M.; Schumacher, P.

    The admissible region, in the space surveillance field, is defined as the set of physically acceptable orbits (e.g., orbits with negative energies) consistent with one or more observations of a space object. Given additional constraints on orbital semimajor axis, eccentricity, etc., the admissible region can be constrained, resulting in the constrained admissible region (CAR). Based on known statistics of the measurement process, one can replace hard constraints with a probabilistic representation of the admissible region. This results in the probabilistic admissible region (PAR), which can be used for orbit initiation in Bayesian tracking and prioritization of tracks in a multiple hypothesis tracking framework. The PAR concept was introduced by the authors at the 2014 AMOS conference. In that paper, a Monte Carlo approach was used to show how to construct the PAR in the range/range-rate space based on known statistics of the measurement, semimajor axis, and eccentricity. An expectation-maximization algorithm was proposed to convert the particle cloud into a Gaussian Mixture Model (GMM) representation of the PAR. This GMM can be used to initialize a Bayesian filter. The PAR was found to be significantly non-uniform, invalidating an assumption frequently made in CAR-based filtering approaches. Using the GMM or particle cloud representations of the PAR, orbits can be prioritized for propagation in a multiple hypothesis tracking (MHT) framework. In this paper, the authors focus on expanding the PAR methodology to allow additional constraints, such as a constraint on perigee altitude, to be modeled in the PAR. This requires re-expressing the joint probability density function for the attributable vector as well as the (constrained) orbital parameters and range and range-rate. The final PAR is derived by accounting for any interdependencies between the parameters. Noting that the concepts presented are general and can be applied to any measurement scenario, the idea

  12. The Reliability of Density Measurements.

    ERIC Educational Resources Information Center

    Crothers, Charles

    1978-01-01

    Data from a land-use study of small- and medium-sized towns in New Zealand are used to ascertain the relationship between official and effective density measures. It was found that the reliability of official measures of density is very low overall, although reliability increases with community size. (Author/RLV)

  13. Instrumentation for bone density measurement

    NASA Technical Reports Server (NTRS)

    Meharg, L. S.

    1968-01-01

    Measurement system evaluates the integrated bone density over a specific cross section of bone. A digital computer converts stored bone scan data to equivalent aluminum calibration wedge thickness, and bone density is then integrated along the scan by using the trapezoidal approximation integration formula.

  14. Density-orbital embedding theory

    SciTech Connect

    Gritsenko, O. V.; Visscher, L.

    2010-09-15

    In the article density-orbital embedding (DOE) theory is proposed. DOE is based on the concept of density orbital (DO), which is a generalization of the square root of the density for real functions and fractional electron numbers. The basic feature of DOE is the representation of the total supermolecular density {rho}{sub s} as the square of the sum of the DO {phi}{sub a}, which represents the active subsystem A and the square root of the frozen density {rho}{sub f} of the environment F. The correct {rho}{sub s} is obtained with {phi}{sub a} being negative in the regions in which {rho}{sub f} might exceed {rho}{sub s}. This makes it possible to obtain the correct {rho}{sub s} with a broad range of the input frozen densities {rho}{sub f} so that DOE resolves the problem of the frozen-density admissibility of the current frozen-density embedding theory. The DOE Euler equation for the DO {phi}{sub a} is derived with the characteristic embedding potential representing the effect of the environment. The DO square {phi}{sub a}{sup 2} is determined from the orbitals of the effective Kohn-Sham (KS) system. Self-consistent solution of the corresponding one-electron KS equations yields not only {phi}{sub a}{sup 2}, but also the DO {phi}{sub a} itself.

  15. The effect of one additional driver mutation on tumor progression.

    PubMed

    Reiter, Johannes G; Bozic, Ivana; Allen, Benjamin; Chatterjee, Krishnendu; Nowak, Martin A

    2013-01-01

    Tumor growth is caused by the acquisition of driver mutations, which enhance the net reproductive rate of cells. Driver mutations may increase cell division, reduce cell death, or allow cells to overcome density-limiting effects. We study the dynamics of tumor growth as one additional driver mutation is acquired. Our models are based on two-type branching processes that terminate in either tumor disappearance or tumor detection. In our first model, both cell types grow exponentially, with a faster rate for cells carrying the additional driver. We find that the additional driver mutation does not affect the survival probability of the lesion, but can substantially reduce the time to reach the detectable size if the lesion is slow growing. In our second model, cells lacking the additional driver cannot exceed a fixed carrying capacity, due to density limitations. In this case, the time to detection depends strongly on this carrying capacity. Our model provides a quantitative framework for studying tumor dynamics during different stages of progression. We observe that early, small lesions need additional drivers, while late stage metastases are only marginally affected by them. These results help to explain why additional driver mutations are typically not detected in fast-growing metastases.

  16. Chronic acceleration and brain density

    NASA Technical Reports Server (NTRS)

    Hoffman, L. F.; Smith, A. H.

    1982-01-01

    Tests carried out on rabbits show that the effect of chronic acceleration is not uniform among the various tissues studied. Although body mass is reduced by the treatment, as expected, no change is apparent in brain mass or in the density of cerebrospinal fluid. Acceleration-induced changes are encountered in tissue density, the myocardium exhibiting a transient increase followed by an exponential decrease toward a limit and the brain showing an arithmetic increase in density with continued exposure to 2.5 G. The data are seen as suggesting that a specific brain load is not a regulated phenomenon and that no physiological processes occur to attenuate the increased load imposed by the hyperdynamic environment. An equation is derived indicating that the stimulus potential per unit of brain load increases with body size, even though brain density decreases and cerebrospinal fluid density increases.

  17. Automatic breast density classification using neural network

    NASA Astrophysics Data System (ADS)

    Arefan, D.; Talebpour, A.; Ahmadinejhad, N.; Kamali Asl, A.

    2015-12-01

    According to studies, the risk of breast cancer directly associated with breast density. Many researches are done on automatic diagnosis of breast density using mammography. In the current study, artifacts of mammograms are removed by using image processing techniques and by using the method presented in this study, including the diagnosis of points of the pectoral muscle edges and estimating them using regression techniques, pectoral muscle is detected with high accuracy in mammography and breast tissue is fully automatically extracted. In order to classify mammography images into three categories: Fatty, Glandular, Dense, a feature based on difference of gray-levels of hard tissue and soft tissue in mammograms has been used addition to the statistical features and a neural network classifier with a hidden layer. Image database used in this research is the mini-MIAS database and the maximum accuracy of system in classifying images has been reported 97.66% with 8 hidden layers in neural network.

  18. Oblique interactions of dust density waves

    SciTech Connect

    Li Yangfang; Wang Zhehui; Hou Lujing; Jiang Ke; Thomas, Hubertus M.; Morfill, Gregor E.; Wu Dejin

    2010-06-16

    Self-excited dust density waves (DDWs) are studied in a striped electrode device. In addition to the usual perpendicularly (with respect to the electrode) propagating DDWs, which have been frequently observed in dusty plasma experiments on the ground, a low-frequency oblique mode is also observed. This low-frequency oblique DDW has a frequency much lower than the dust plasma frequency and its spontaneous excitation is observed even with a very low dust density. It is found that the low-frequency oblique mode can exist either separately or together with the usual perpendicular mode. In the latter case, a new mode arises as a result of the interactions between the perpendicular and the oblique modes. The experiments show that these three modes satisfy the wave coupling conditions in both the frequencies and the wave-vectors.

  19. Oblique interactions of dust density waves

    SciTech Connect

    Wang, Zhelchui; Li, Yang - Fang; Hou, Lujing; Jiang, Ke; Wu, De - Jin; Thomas, Hubertus M; Morfill, Gregor E

    2010-01-01

    Self-excited dust density waves (DDWs) are studied in a striped electrode device. In addition to the usual perpendicularly (with respect to the electrode) propagating DDWs, which have been frequently observed in dusty plasma experiments on the ground, a low-frequency oblique mode is also observed. This low-frequency oblique DDW has a frequency much lower than the dust plasma frequency and its spontaneous excitation is observed even with a very low dust density. It is found that the low-frequency oblique mode can exist either separately or together with the usual perpendicular mode. In the latter case, a new mode arises as a result of the interactions between the perpendicular and the oblique modes. The experiments show that these three modes satisfy the wave coupling conditions in both the frequencies and the wave-vectors.

  20. Additives In Meat and Poultry Products

    MedlinePlus

    ... What is a food additive? What is a "direct" food additive? What is an 'indirect" food additive? ... convenience foods. [ Top of Page ] What is a “direct” food additive? According to the FDA, “Direct food ...

  1. Mean Density Estimation derived from Satellite Constellations

    NASA Astrophysics Data System (ADS)

    Li, A.; Close, S.

    2015-12-01

    With the advent of nanosatellite constellations, we define here a new method to derive neutral densities of the lower thermosphere from multiple similar platforms travelling through same regions of space. Because of similar orbits, the satellites are expected to encounter similar mean neutral densities and hence experience similar drag if their drag coefficients are equivalent. Utilizing free molecular flow theory to bound the minimum possible drag coefficient possible and order statistics to give a statistical picture of the distribution, we are able to estimate the neutral density alongside its associated error bounds. Data sources for this methodology can either be from already established Two Line Elements (TLEs) or from raw data sources, in which an additional filtering step needs to be performed to estimate relevant parameters. The effects of error in the filtering step of the methodology are also discussed and can be removed if the error distribution is Gaussian in nature. This method does not depend on prior models of the atmosphere, but instead is based upon physics models of simple shapes in free molecular flow. With a constellation of 10 satellites, we can achieve a standard deviation of roughly 4% on the estimated mean neutral density. As additional satellites are included in the estimation scheme, the result converges towards the lower limit of the achievable drag coefficient, and accuracy becomes limited by the quality of the ranging measurements and the probability of the accommodation coefficient. Data is provided courtesy of Planet Labs and comparisons are made to existing atmospheric models such as NRLMSISE-00 and JB2006.

  2. Impact of density information on Rayleigh surface wave inversion results

    NASA Astrophysics Data System (ADS)

    Ivanov, Julian; Tsoflias, Georgios; Miller, Richard D.; Peterie, Shelby; Morton, Sarah; Xia, Jianghai

    2016-12-01

    We assessed the impact of density on the estimation of inverted shear-wave velocity (Vs) using the multi-channel analysis of surface waves (MASW) method. We considered the forward modeling theory, evaluated model sensitivity, and tested the effect of density information on the inversion of seismic data acquired in the Arctic. Theoretical review, numerical modeling and inversion of modeled and real data indicated that the density ratios between layers, not the actual density values, impact the determination of surface-wave phase velocities. Application on real data compared surface-wave inversion results using: a) constant density, the most common approach in practice, b) indirect density estimates derived from refraction compressional-wave velocity observations, and c) from direct density measurements in a borehole. The use of indirect density estimates reduced the final shear-wave velocity (Vs) results typically by 6-7% and the use of densities from a borehole reduced the final Vs estimates by 10-11% compared to those from assumed constant density. In addition to the improved absolute Vs accuracy, the resulting overall Vs changes were unevenly distributed laterally when viewed on a 2-D section leading to an overall Vs model structure that was more representative of the subsurface environment. It was observed that the use of constant density instead of increasing density with depth not only can lead to Vs overestimation but it can also create inaccurate model structures, such as a low-velocity layer. Thus, optimal Vs estimations can be best achieved using field estimates of subsurface density ratios.

  3. Anthropogenically-Mediated Density Dependence in a Declining Farmland Bird

    PubMed Central

    Dunn, Jenny C.; Hamer, Keith C.; Benton, Tim G.

    2015-01-01

    Land management intrinsically influences the distribution of animals and can consequently alter the potential for density-dependent processes to act within populations. For declining species, high densities of breeding territories are typically considered to represent productive populations. However, as density-dependent effects of food limitation or predator pressure may occur (especially when species are dependent upon separate nesting and foraging habitats), high territory density may limit per-capita productivity. Here, we use a declining but widespread European farmland bird, the yellowhammer Emberiza citrinella L., as a model system to test whether higher territory densities result in lower fledging success, parental provisioning rates or nestling growth rates compared to lower densities. Organic landscapes held higher territory densities, but nests on organic farms fledged fewer nestlings, translating to a 5 times higher rate of population shrinkage on organic farms compared to conventional. In addition, when parental provisioning behaviour was not restricted by predation risk (i.e., at times of low corvid activity), nestling provisioning rates were higher at lower territory densities, resulting in a much greater increase in nestling mass in low density areas, suggesting that food limitation occurred at high densities. These findings in turn suggest an ecological trap, whereby preferred nesting habitat does not provide sufficient food for rearing nestlings at high population density, creating a population sink. Habitat management for farmland birds should focus not simply on creating a high nesting density, but also on ensuring heterogeneous habitats to provide food resources in close proximity to nesting birds, even if this occurs through potentially restricting overall nest density but increasing population-level breeding success. PMID:26431173

  4. Accurate ab Initio Spin Densities.

    PubMed

    Boguslawski, Katharina; Marti, Konrad H; Legeza, Ors; Reiher, Markus

    2012-06-12

    We present an approach for the calculation of spin density distributions for molecules that require very large active spaces for a qualitatively correct description of their electronic structure. Our approach is based on the density-matrix renormalization group (DMRG) algorithm to calculate the spin density matrix elements as a basic quantity for the spatially resolved spin density distribution. The spin density matrix elements are directly determined from the second-quantized elementary operators optimized by the DMRG algorithm. As an analytic convergence criterion for the spin density distribution, we employ our recently developed sampling-reconstruction scheme [J. Chem. Phys.2011, 134, 224101] to build an accurate complete-active-space configuration-interaction (CASCI) wave function from the optimized matrix product states. The spin density matrix elements can then also be determined as an expectation value employing the reconstructed wave function expansion. Furthermore, the explicit reconstruction of a CASCI-type wave function provides insight into chemically interesting features of the molecule under study such as the distribution of α and β electrons in terms of Slater determinants, CI coefficients, and natural orbitals. The methodology is applied to an iron nitrosyl complex which we have identified as a challenging system for standard approaches [J. Chem. Theory Comput.2011, 7, 2740].

  5. Attractor comparisons based on density

    SciTech Connect

    Carroll, T. L.

    2015-01-15

    Recognizing a chaotic attractor can be seen as a problem in pattern recognition. Some feature vector must be extracted from the attractor and used to compare to other attractors. The field of machine learning has many methods for extracting feature vectors, including clustering methods, decision trees, support vector machines, and many others. In this work, feature vectors are created by representing the attractor as a density in phase space and creating polynomials based on this density. Density is useful in itself because it is a one dimensional function of phase space position, but representing an attractor as a density is also a way to reduce the size of a large data set before analyzing it with graph theory methods, which can be computationally intensive. The density computation in this paper is also fast to execute. In this paper, as a demonstration of the usefulness of density, the density is used directly to construct phase space polynomials for comparing attractors. Comparisons between attractors could be useful for tracking changes in an experiment when the underlying equations are too complicated for vector field modeling.

  6. Maps of current density using density-functional methods

    NASA Astrophysics Data System (ADS)

    Soncini, A.; Teale, A. M.; Helgaker, T.; de Proft, F.; Tozer, D. J.

    2008-08-01

    The performance of several density-functional theory (DFT) methods for the calculation of current densities induced by a uniform magnetic field is examined. Calculations are performed using the BLYP and KT3 generalized-gradient approximations, together with the B3LYP hybrid functional. For the latter, both conventional and optimized effective potential (OEP) approaches are used. Results are also determined from coupled-cluster singles-and-doubles (CCSD) electron densities by a DFT constrained search procedure using the approach of Wu and Yang (WY). The current densities are calculated within the CTOCD-DZ2 distributed origin approach. Comparisons are made with results from Hartree-Fock (HF) theory. Several small molecules for which correlation is known to be especially important in the calculation of magnetic response properties are considered-namely, O3, CO, PN, and H2CO. As examples of aromatic and antiaromatic systems, benzene and planarized cyclooctatetraene molecules are considered, with specific attention paid to the ring current phenomenon and its Kohn-Sham orbital origin. Finally, the o-benzyne molecule is considered as a computationally challenging case. The HF and DFT induced current maps show qualitative differences, while among the DFT methods the maps show a similar qualitative structure. To assess quantitative differences in the calculated current densities with different methods, the maximal moduli of the induced current densities are compared and integration of the current densities to yield shielding constants is performed. In general, the maximal modulus is reduced in moving from HF to B3LYP and BLYP, and further reduced in moving to KT3, OEP(B3LYP), and WY(CCSD). The latter three methods offer the most accurate shielding constants in comparison with both experimental and ab initio data and hence the more reliable route to DFT calculation of induced current density in molecules.

  7. Evaluation of Fibroblast Activation Protein-Alpha (FAP) as a Diagnostic Marker and Therapeutic Target in Prostate Cancer

    DTIC Science & Technology

    2009-12-01

    reactive stroma for survival and growth signals, as well as, the nutritional support necessary for the maintenance of the primary mass. Additionally...reactive fibroblasts, macrophages, and lymphocytes, increase secretion of growth factors, signaling molecules and proteases, induce new blood vessel...through studies demonstrating increases in tumor incidence, growth , and microvessel density using in vivo models. In contrast, other studies have shown

  8. Volcanogenic Massive Sulfide Deposit Density

    USGS Publications Warehouse

    Mosier, Dan L.; Singer, Donald A.; Berger, Vladimir I.

    2007-01-01

    A mineral-deposit density model for volcanogenic massive sulfide deposits was constructed from 38 well-explored control areas from around the world. Control areas contain at least one exposed volcanogenic massive sulfide deposit. The control areas used in this study contain 150 kuroko, 14 Urals, and 25 Cyprus massive sulfide subtypes of volcanogenic massive sulfide deposits. For each control area, extent of permissive rock, number of exposed volcanogenic massive sulfide deposits, map scale, deposit age, and deposit density were determined. The frequency distribution of deposit densities in these 38 control areas provides probabilistic estimates of the number of deposits for tracts that are permissive for volcanogenic massive sulfide deposits-90 percent of the control areas have densities of 100 or more deposits per 100,000 square kilometers, 50 percent of the control areas have densities of 700 or more deposits per 100,000 square kilometers, and 10 percent of the control areas have densities of 3,700 or more deposits per 100,000 square kilometers. Both map scale and the size of the control area are shown to be predictors of deposit density. Probabilistic estimates of the number of volcanogenic massive sulfide deposits can be made by conditioning the estimates on sizes of permissive area. The model constructed for this study provides a powerful tool for estimating the number of undiscovered volcanogenic massive sulfide deposits when conducting resource assessments. The value of these deposit densities is due to the consistency of these models with the grade and tonnage and the descriptive models. Mineral-deposit density models combined with grade and tonnage models allow reasonable estimates of the number, size, and grades of volcanogenic massive sulfide deposits to be made.

  9. Density of very small meteoroids

    NASA Astrophysics Data System (ADS)

    Kikwaya Eluo, Jean-Baptiste

    2015-08-01

    Knowing the density of meteoroids helps to determine the physical structure and gives insight into the composition of their parent bodies. The density of meteoroids can provide clues to their origins, whether cometary or asteroidal. Density helps also to characterize the risk meteoroids may pose to artificial satellites.Ceplecha (1968) calculated the density of small meteoroids based on a parameter KB (meteoroid beginning height) and classified them in four categories (A,B,C,D) with densities going from 2700 to 180 kgm-3.Babadzhanov(2002) applied a model based on quasi-continuous fragmentation (QCF) on 413 photographic Super-Schmidt meteors by solely fitting their light curves. Their densities range from 400 to 7800 kgm-3. Bellot Rubio et al. (2002) analyzed the same 413 photographic meteors assuming the single body theory based on meteoroid dynamical properties and found densities ranging from 400 to 4800 kgm-3. A thermal erosion model was used by Borovicka et al. (2007) to analyze, simultaneously, the observed decelerations and light curves of six Draconid meteors. The density was found to be 300 kgm-3, consistent with the fact that the Draconid meteors are porous aggregates of grains associated with the Jupiter-family-comet 21P/Giacobini-Zinner (Jacchia, L.G., 1950).We used the Campbell-Brown and Koschny (2004) model of meteoroid ablation to determine the density of faint meteoroids from the analysis of both observed decelerations and light curves of meteoroids (Kikwaya et al., 2009; Kikwaya et al., 2011). Our work was based on a collection of six and ninety-two sporadic meteors. The grain masses used in the modeling ranged from 10-12 Kg to 10-9 Kg. We computed the orbit of each meteoroid and determined its Tisserand parameter. We found that meteoroids with asteroidal orbits have bulk densities ranging from 3000-5000 kgm-3. Meteoroids consistent with HTC/NIC parents have bulk densities from 400 kgm-3 to 1600 kg m-3. JFC meteoroids were found to have surprisingly

  10. Breakup Densities of Hot Nuclei

    NASA Astrophysics Data System (ADS)

    Viola, V. E.; Kwiatkowski, K.; Natowitz, J. B.; Yennello, S. J.

    2004-09-01

    Breakup densities of hot 197Au-like residues have been deduced from the systematic trends of Coulomb parameters required to fit intermediate-mass-fragment kinetic-energy spectra. The results indicate emission from nuclei near normal nuclear density below an excitation energy E*/A≲2 MeV, followed by a gradual decrease to a near-constant value of ρ/ρ0˜0.3 for E*/A≳5 MeV. Temperatures derived from these data with a density-dependent Fermi-gas model yield a nuclear caloric curve that is generally consistent with those derived from isotope ratios.

  11. Phenomenological Relativistic Energy Density Functionals

    SciTech Connect

    Lalazissis, G. A.; Kartzikos, S.; Niksic, T.; Paar, N.; Vretenar, D.; Ring, P.

    2009-08-26

    The framework of relativistic nuclear energy density functionals is applied to the description of a variety of nuclear structure phenomena, not only in spherical and deformed nuclei along the valley of beta-stability, but also in exotic systems with extreme isospin values and close to the particle drip-lines. Dynamical aspects of exotic nuclear structure is explored using the fully consistent quasiparticle random-phase approximation based on the relativistic Hartree-Bogoliubov model. Recent applications of energy density functionals with explicit density dependence of the meson-nucleon couplings are presented.

  12. Density in a Planetary Exosphere

    NASA Technical Reports Server (NTRS)

    Herring, Jackson; Kyle, Herbert L.

    1961-01-01

    A discussion of the Opik-Singer theory of the density of a planetary exosphere is presented. Their density formula permits the calculation of the depth of the exosphere. Since the correctness of their derivation of the basic formula for the density distribution has been questioned, an alternate method based directly on Liouville's theorem is given. It is concluded that the Opik-Singer formula seems valid for the ballistic component of the exosphere; but for a complete description of the planetary exosphere, the ionized and bound-orbit components must also be included.

  13. Shearing dynamics and jamming density

    NASA Astrophysics Data System (ADS)

    Olsson, Peter; Vâgberg, Daniel; Teitel, Stephen

    2009-03-01

    We study the effect of a shearing dynamics on the properties of a granular system, by examining how the jamming density depends on the preparation of the starting configurations. Whereas the jamming density at point J was obtained by relaxing random configurations [O'Hern et al, Phys. Rev. E 68, 011306 (2003)], we apply this method to configurations obtained after shearing the system at a certain shear rate. We find that the jamming density increases somewhat and that this effect is more pronounced for configurations produced at smaller shear rates. Different measures of the order of the jammed configurations are also discussed.

  14. Remarkable stereospecific conjugate additions to the Hsp90 inhibitor celastrol

    PubMed Central

    Klaic, Lada; Trippier, Paul C.; Mishra, Rama K.; Morimoto, Richard I.; Silverman, Richard B.

    2011-01-01

    Celastrol, an important natural product and Hsp90 inhibitor with a wide range of biological and medical activities and broad use as a biological probe, acts by an as yet undetermined mode of action. It is known to undergo Michael additions with biological sulfur nucleophiles. Here it is demonstrated that nucleophiles add to the pharmacophore of celastrol in a remarkable stereospecific manner. Extensive characterization of the addition products have been obtained using NMR spectrometry, nuclear Overhauser effects, and density functional theory to determine facial selectivity and gain insight into the orbital interactions of the reactive centers. This stereospecificity of celastrol may be important to its protein target selectivity. PMID:22087583

  15. A real-space stochastic density matrix approach for density functional electronic structure.

    PubMed

    Beck, Thomas L

    2015-12-21

    The recent development of real-space grid methods has led to more efficient, accurate, and adaptable approaches for large-scale electrostatics and density functional electronic structure modeling. With the incorporation of multiscale techniques, linear-scaling real-space solvers are possible for density functional problems if localized orbitals are used to represent the Kohn-Sham energy functional. These methods still suffer from high computational and storage overheads, however, due to extensive matrix operations related to the underlying wave function grid representation. In this paper, an alternative stochastic method is outlined that aims to solve directly for the one-electron density matrix in real space. In order to illustrate aspects of the method, model calculations are performed for simple one-dimensional problems that display some features of the more general problem, such as spatial nodes in the density matrix. This orbital-free approach may prove helpful considering a future involving increasingly parallel computing architectures. Its primary advantage is the near-locality of the random walks, allowing for simultaneous updates of the density matrix in different regions of space partitioned across the processors. In addition, it allows for testing and enforcement of the particle number and idempotency constraints through stabilization of a Feynman-Kac functional integral as opposed to the extensive matrix operations in traditional approaches.

  16. Estimating animal population density using passive acoustics.

    PubMed

    Marques, Tiago A; Thomas, Len; Martin, Stephen W; Mellinger, David K; Ward, Jessica A; Moretti, David J; Harris, Danielle; Tyack, Peter L

    2013-05-01

    Reliable estimation of the size or density of wild animal populations is very important for effective wildlife management, conservation and ecology. Currently, the most widely used methods for obtaining such estimates involve either sighting animals from transect lines or some form of capture-recapture on marked or uniquely identifiable individuals. However, many species are difficult to sight, and cannot be easily marked or recaptured. Some of these species produce readily identifiable sounds, providing an opportunity to use passive acoustic data to estimate animal density. In addition, even for species for which other visually based methods are feasible, passive acoustic methods offer the potential for greater detection ranges in some environments (e.g. underwater or in dense forest), and hence potentially better precision. Automated data collection means that surveys can take place at times and in places where it would be too expensive or dangerous to send human observers. Here, we present an overview of animal density estimation using passive acoustic data, a relatively new and fast-developing field. We review the types of data and methodological approaches currently available to researchers and we provide a framework for acoustics-based density estimation, illustrated with examples from real-world case studies. We mention moving sensor platforms (e.g. towed acoustics), but then focus on methods involving sensors at fixed locations, particularly hydrophones to survey marine mammals, as acoustic-based density estimation research to date has been concentrated in this area. Primary among these are methods based on distance sampling and spatially explicit capture-recapture. The methods are also applicable to other aquatic and terrestrial sound-producing taxa. We conclude that, despite being in its infancy, density estimation based on passive acoustic data likely will become an important method for surveying a number of diverse taxa, such as sea mammals, fish, birds

  17. Estimating animal population density using passive acoustics

    PubMed Central

    Marques, Tiago A; Thomas, Len; Martin, Stephen W; Mellinger, David K; Ward, Jessica A; Moretti, David J; Harris, Danielle; Tyack, Peter L

    2013-01-01

    Reliable estimation of the size or density of wild animal populations is very important for effective wildlife management, conservation and ecology. Currently, the most widely used methods for obtaining such estimates involve either sighting animals from transect lines or some form of capture-recapture on marked or uniquely identifiable individuals. However, many species are difficult to sight, and cannot be easily marked or recaptured. Some of these species produce readily identifiable sounds, providing an opportunity to use passive acoustic data to estimate animal density. In addition, even for species for which other visually based methods are feasible, passive acoustic methods offer the potential for greater detection ranges in some environments (e.g. underwater or in dense forest), and hence potentially better precision. Automated data collection means that surveys can take place at times and in places where it would be too expensive or dangerous to send human observers. Here, we present an overview of animal density estimation using passive acoustic data, a relatively new and fast-developing field. We review the types of data and methodological approaches currently available to researchers and we provide a framework for acoustics-based density estimation, illustrated with examples from real-world case studies. We mention moving sensor platforms (e.g. towed acoustics), but then focus on methods involving sensors at fixed locations, particularly hydrophones to survey marine mammals, as acoustic-based density estimation research to date has been concentrated in this area. Primary among these are methods based on distance sampling and spatially explicit capture-recapture. The methods are also applicable to other aquatic and terrestrial sound-producing taxa. We conclude that, despite being in its infancy, density estimation based on passive acoustic data likely will become an important method for surveying a number of diverse taxa, such as sea mammals, fish, birds

  18. Carbon additives for electrical double layer capacitor electrodes

    NASA Astrophysics Data System (ADS)

    Weingarth, D.; Cericola, D.; Mornaghini, F. C. F.; Hucke, T.; Kötz, R.

    2014-11-01

    Electrochemical double layer capacitors (EDLCs) are inherently high power devices when compared to rechargeable batteries. While capacitance and energy storage ability are mainly increased by optimizing the electrode active material or the electrolyte, the power capability could be improved by including conductive additives in the electrode formulations. This publication deals with the use of four different carbon additives - two carbon blacks and two graphites - in standard activated carbon based EDLC electrodes. The investigations include: (i) physical characterization of carbon powder mixtures such as surface area, press density, and electrical resistivity measurements, and (ii), electrochemical characterization via impedance spectroscopy and cyclic voltammetry of full cells made with electrodes containing 5 wt.% of carbon additive and compared to cells made with pure activated carbon electrodes in organic electrolyte. Improved cell performance was observed in both impedance and cyclic voltammetry responses. The results are discussed considering the main characteristics of the different carbon additives, and important considerations about electrode structure and processability are drawn.

  19. FOREWORD: Special issue on density

    NASA Astrophysics Data System (ADS)

    Fujii, Kenichi

    2004-04-01

    This special issue on density was undertaken to provide readers with an overview of the present state of the density standards for solids, liquids and gases, as well as the technologies developed for measuring density. This issue also includes topics on the refractive index of gases and on techniques used for calibrating hydrometers so that almost all areas concerned with density standards are covered in four review articles and seven original articles, most of which describe current research being conducted at national metrology institutes (NMIs). A review article was invited from the Ruhr-Universität Bochum to highlight research on the magnetic suspension densimeters. In metrology, the determinations of the volume of a weight and the density of air are of primary importance in establishing a mass standard because the effect of the buoyancy force of air acting on the weight must be known accurately to determine the mass of the weight. A density standard has therefore been developed at many NMIs with a close relation to the mass standard. Hydrostatic weighing is widely used to measure the volume of a solid. The most conventional hydrostatic weighing method uses water as a primary density standard for measuring the volume of a solid. A brief history of the determination of the density of water is therefore given in a review article, as well as a recommended value for the density of water with a specified isotopic abundance. The most modern technique for hydrostatic weighing uses a solid density standard instead of water. For this purpose, optical interferometers for measuring the diameters of silicon spheres have been developed to convert the length standard into the volume standard with a small uncertainty. A review article is therefore dedicated to describing the state-of-the-art optical interferometers developed for silicon spheres. Relative combined standard uncertainties of several parts in 108 have been achieved today for measuring the volume and density of

  20. Density and Macroporosity Distribution of Near Earth Asteroids

    NASA Astrophysics Data System (ADS)

    Dotson, Jessie L.; Mathias, Donovan

    2017-01-01

    The density of near earth asteroids is a fundamental property which can illuminate the structure of the asteroid, provide clues about it’s collisional history and is key in assessing the hazard of an impact of an NEA with Earth. A low density can be indicative of a rubble pile structure whereas a higher density can imply a monolith and/or a higher metal content. Unfortunately, measuring the density of asteroids is extremely difficult, has only been attempted for a tiny fraction of NEAs and usually results in measurements with large uncertainties. In the absence of density measurements for a specific object, understanding the range and distribution of likely densities can allow for probabilistic assessments of the population and facilitate estimates of the range of reasonable masses for a specific object. We have developed a candidate macroporosity distribution for near earth asteroids based on measurements of meteorite densities and asteroid densities. The macroporosity of an asteroid can be used to aid extrapolation from meteorite physical properties to asteroid physical properties. In addition, we discuss estimating an asteroid density distribution from the macroporosity distribution.

  1. Density and pair-density scaling for deriving the Euler equation in density-functional and pair-density-functional theory

    SciTech Connect

    Nagy, A.

    2011-09-15

    A link between density and pair density functional theories is presented. Density and pair density scaling are used to derive the Euler equation in both theories. Density scaling provides a constructive way of obtaining approximations for the Pauli potential. The Pauli potential (energy) of the density functional theory is expressed as the difference of the scaled and original exchange-correlation potentials (energies).

  2. High-Density-Tape Casting System

    NASA Technical Reports Server (NTRS)

    Collins, Earl R., Jr.

    1987-01-01

    Centrifuge packs solids from slurry into uniform, dense layer. New system produces tapes of nearly theoretical packing density. Centrifugal system used to cast thin tapes for capacitors, fuel cells, and filters. Cylindrical rotary casting chamber mounted on high-speed bearings and connected to motor. Liquid for vapor-pressure control and casting slurry introduced from syringes through rotary seal. During drying step, liquid and vapor vented through feed tubes or other openings. Laminated tapes produced by adding more syringes to cast additional layers of different materials.

  3. Bulk Density Measurements of Meteorites

    NASA Astrophysics Data System (ADS)

    Wilkison, S. L.; Robinson, M. S.

    1999-03-01

    We present density measurements of meteorites detailing the precision and errors associated with the modified Archimedian method of Consolmagno and Britt. We find that the method is accurate to better than 1%.

  4. Bone Densitometry (Bone Density Scan)

    MedlinePlus

    ... and display the bone density measurements on a computer monitor. top of page How is the procedure performed? ... passed over the area, generating images on a computer monitor. You must hold very still and may be ...

  5. Periodic solar wind density structures

    NASA Astrophysics Data System (ADS)

    Viall, Nicholeen Mary

    2010-01-01

    This dissertation addresses a specific aspect of the Sun-Earth connection: we show that coronal activity creates periodic density structures in the solar wind which convect radially outward and interact with Earth's magnetosphere. First, we analyze 11 years (1995-2005) of in situ solar wind density observations from the Wind spacecraft and find that periodic density structures occur at particular sets of radial length-scales more often than others. This indicates that these density fluctuations, which have radial length-scales of hundreds of megameters, cannot be attributed entirely to turbulence. Next, we analyze their effect on Earth's magnetosphere. Though these structures are not waves in the solar wind rest frame, they appear at discrete frequencies in Earth's reference frame. They compress the magnetosphere as they convect past, driving global magnetospheric oscillations at the same discrete frequencies as the periodic density structures. Last, we investigate source regions and mechanisms of the periodic solar wind density structures. We analyze the alpha particle to proton abundance ratio during events of periodic density structures. In many events, the proton and alpha density fluctuations are anti- correlated, which strongly argues for either temporally or spatially varying coronal source plasma. We examine white light images of the solar wind taken with SECCHI HI1 on the STEREO spacecraft and find periodic density structures as near to the Sun as 15 solar radii. The smallest resolvable periodic structures that we identify are of comparable length to those found at 1 AU, providing further evidence that at least some periodic density structures are generated in the solar corona as the solar wind is formed. Guided by the properties observed during previous studies and the characteristics established through the work presented here, we examine possible candidate mechanisms in the solar corona that can form periodic density structures. We conclude that

  6. Osteocyte density in woven bone.

    PubMed

    Hernandez, C J; Majeska, R J; Schaffler, M B

    2004-11-01

    Woven bone forms rapidly during tissue growth, following injury and in response to certain anabolic stimuli. Functional differences between woven and lamellar bone may be due, in part, to differences in osteocyte density (cells per unit tissue). Woven bone has been estimated to contain four to eight times more osteocytes than lamellar bone, although primary data to support this assertion are limited. Given recent findings implicating osteocytes as regulators of bone remodeling, bone formation and bone volume, such large differences in osteocyte density between woven and lamellar bone may have important consequences. In this study, we compared the density of osteocyte lacunae (lacunae/mm(2) tissue) in rat lamellar bone with that in woven bone formed under several different circumstances. We found that the lacunar density of lamellar cortical bone in the rat (834+/-83 cells/mm2, mean+/-SD) did not differ significantly from that of periosteal woven bone formed via intramembranous osteogenesis, either in response to mechanical loading (921+/-204 cells/mm2) or in the periosteal buttressing region of the fracture callus (1138+/-168 cells/mm2). In contrast, lacunar density of endochondrally derived woven bone in the center (gap) region of fracture callus was nearly 100% greater (1875+/-270 cells/mm2) than in lamellar cortical bone while lacunar density of primary spongiosa of the growth plate was 40% greater (1674+/-228 cells/mm2) than that in lamellar cancellous bone (1189+/-164). These findings demonstrate that lacunar density in woven bone varies depending on skeletal site and developmental history and appears to be elevated in endochondrally derived woven bone adjacent to marrow space. Given the considerable evidence supporting osteocytes as local initiators of bone remodeling, we suggest that woven bone with increased lacunar density may undergo remodeling at an accelerated rate.

  7. Low density metal hydride foams

    DOEpatents

    Maienschein, Jon L.; Barry, Patrick E.

    1991-01-01

    Disclosed is a low density foam having a porosity of from 0 to 98% and a density less than about 0.67 gm/cc, prepared by heating a mixture of powered lithium hydride and beryllium hydride in an inert atmosphere at a temperature ranging from about 455 to about 490 K for a period of time sufficient to cause foaming of said mixture, and cooling the foam thus produced. Also disclosed is the process of making the foam.

  8. Trajectory versus probability density entropy.

    PubMed

    Bologna, M; Grigolini, P; Karagiorgis, M; Rosa, A

    2001-07-01

    We show that the widely accepted conviction that a connection can be established between the probability density entropy and the Kolmogorov-Sinai (KS) entropy is questionable. We adopt the definition of density entropy as a functional of a distribution density whose time evolution is determined by a transport equation, conceived as the only prescription to use for the calculation. Although the transport equation is built up for the purpose of affording a picture equivalent to that stemming from trajectory dynamics, no direct use of trajectory time evolution is allowed, once the transport equation is defined. With this definition in mind we prove that the detection of a time regime of increase of the density entropy with a rate identical to the KS entropy is possible only in a limited number of cases. The proposals made by some authors to establish a connection between the two entropies in general, violate our definition of density entropy and imply the concept of trajectory, which is foreign to that of density entropy.

  9. General performance of density functionals.

    PubMed

    Sousa, Sérgio Filipe; Fernandes, Pedro Alexandrino; Ramos, Maria João

    2007-10-25

    The density functional theory (DFT) foundations date from the 1920s with the work of Thomas and Fermi, but it was after the work of Hohenberg, Kohn, and Sham in the 1960s, and particularly with the appearance of the B3LYP functional in the early 1990s, that the widespread application of DFT has become a reality. DFT is less computationally demanding than other computational methods with a similar accuracy, being able to include electron correlation in the calculations at a fraction of time of post-Hartree-Fock methodologies. In this review we provide a brief outline of the density functional theory and of the historic development of the field, focusing later on the several types of density functionals currently available, and finishing with a detailed analysis of the performance of DFT across a wide range of chemical properties and system types, reviewed from the most recent benchmarking studies, which encompass several well-established density functionals together with the most recent efforts in the field. Globally, an overall picture of the level of performance of the plethora of currently available density functionals for each chemical property is drawn, with particular attention being dedicated to the relative performance of the popular B3LYP density functional.

  10. Relic density and future colliders: inverse problem(s)

    SciTech Connect

    Arbey, Alexandre; Mahmoudi, Farvah

    2010-06-23

    Relic density calculations are often used to constrain particle physics models, and in particular supersymmetry. We will show that the presence of additional energy or entropy before the Big-Bang nucleosynthesis can however completely change the relic density constraints on the SUSY parameter space. Therefore one should be extremely careful when using the relic density to constrain supersymmetry as it could give misleading results, especially if combined with the future collider data. Alternatively, we will also show that combining the discoveries of the future colliders with relic density calculations can shed light on the inaccessible pre-BBN dark time physics. Finally we will present SuperIso Relic, a new relic density calculator code in Supersymmetry, which incorporates alternative cosmological models, and is publicly available.

  11. Interfacial Engineering for Low-Density Graphene Nanocomposites

    DTIC Science & Technology

    2014-07-23

    AFRL-OSR-VA-TR-2014-0192 Interfacial engineering for low- density graphene nanocomposites Micah Green TEXAS TECH UNIVERSITY SYSTEM Final Report 07/23...98) v Prescribed by ANSI Std. Z39.18 14-07-2014 Final April 2011 - March 2014 Interfacial engineering for low- density graphene nanocomposites and... alcohol films and electrospun fibers. The addition of pristine graphene showed substantial increases in strength and modulus at low graphene loading

  12. The mechanical properties of density graded hemp/polyethylene composites

    NASA Astrophysics Data System (ADS)

    Dauvegis, Raphaël; Rodrigue, Denis

    2015-05-01

    In this work, the production and mechanical characterization of density graded biocomposites based on high density polyethylene and hemp fibres was performed. The effect of coupling agent addition (maleated polyethylene) and hemp content (0-30%) was studied to determine the effect of hemp distribution (graded content) inside the composite (uniform, linear, V and Λ). Tensile and flexural properties are reported to compare the structures, especially in terms of their stress-strain behaviors under tensile loading.

  13. Additive Construction using Basalt Regolith Fines

    NASA Technical Reports Server (NTRS)

    Mueller, Robert P.; Sibille, Laurent; Hintze, Paul E.; Lippitt, Thomas C.; Mantovani, James G.; Nugent, Matthew W.; Townsend, Ivan I.

    2014-01-01

    Planetary surfaces are often covered in regolith (crushed rock), whose geologic origin is largely basalt. The lunar surface is made of small-particulate regolith and areas of boulders located in the vicinity of craters. Regolith composition also varies with location, reflecting the local bedrock geology and the nature and efficiency of the micrometeorite-impact processes. In the lowland mare areas (suitable for habitation), the regolith is composed of small granules (20 - 100 microns average size) of mare basalt and volcanic glass. Impacting micrometeorites may cause local melting, and the formation of larger glassy particles, and this regolith may contain 10-80% glass. Studies of lunar regolith are traditionally conducted with lunar regolith simulant (reconstructed soil with compositions patterned after the lunar samples returned by Apollo). The NASA Kennedy Space Center (KSC) Granular Mechanics & Regolith Operations (GMRO) lab has identified a low fidelity but economical geo-technical simulant designated as Black Point-1 (BP-1). It was found at the site of the Arizona Desert Research and Technology Studies (RATS) analog field test site at the Black Point lava flow in adjacent basalt quarry spoil mounds. This paper summarizes activities at KSC regarding the utilization of BP-1 basalt regolith and comparative work with lunar basalt simulant JSC-1A as a building material for robotic additive construction of large structures. In an effort to reduce the import or in-situ fabrication of binder additives, we focused this work on in-situ processing of regolith for construction in a single-step process after its excavation. High-temperature melting of regolith involves techniques used in glassmaking and casting (with melts of lower density and higher viscosity than those of metals), producing basaltic glass with high durability and low abrasive wear. Most Lunar simulants melt at temperatures above 1100 C, although melt processing of terrestrial regolith at 1500 C is not

  14. 14 CFR 93.129 - Additional operations.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ...) AIR TRAFFIC AND GENERAL OPERATING RULES SPECIAL AIR TRAFFIC RULES High Density Traffic Airports § 93... under IFR at a designated high density traffic airport without regard to the maximum number of operations allocated for that airport if the operation is not a scheduled operation to or from a high...

  15. 14 CFR 93.129 - Additional operations.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ...) AIR TRAFFIC AND GENERAL OPERATING RULES SPECIAL AIR TRAFFIC RULES High Density Traffic Airports § 93... under IFR at a designated high density traffic airport without regard to the maximum number of operations allocated for that airport if the operation is not a scheduled operation to or from a high...

  16. 14 CFR 93.129 - Additional operations.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ...) AIR TRAFFIC AND GENERAL OPERATING RULES SPECIAL AIR TRAFFIC RULES High Density Traffic Airports § 93... under IFR at a designated high density traffic airport without regard to the maximum number of operations allocated for that airport if the operation is not a scheduled operation to or from a high...

  17. 14 CFR 93.129 - Additional operations.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ...) AIR TRAFFIC AND GENERAL OPERATING RULES SPECIAL AIR TRAFFIC RULES High Density Traffic Airports § 93... under IFR at a designated high density traffic airport without regard to the maximum number of operations allocated for that airport if the operation is not a scheduled operation to or from a high...

  18. Density Distributions of Cyclotrimethylenetrinitramines (RDX)

    SciTech Connect

    Hoffman, D M

    2002-03-19

    As part of the US Army Foreign Comparative Testing (FCT) program the density distributions of six samples of class 1 RDX were measured using the density gradient technique. This technique was used in an attempt to distinguish between RDX crystallized by a French manufacturer (designated insensitive or IRDX) from RDX manufactured at Holston Army Ammunition Plant (HAAP), the current source of RDX for Department of Defense (DoD). Two samples from different lots of French IRDX had an average density of 1.7958 {+-} 0.0008 g/cc. The theoretical density of a perfect RDX crystal is 1.806 g/cc. This yields 99.43% of the theoretical maximum density (TMD). For two HAAP RDX lots the average density was 1.786 {+-} 0.002 g/cc, only 98.89% TMD. Several other techniques were used for preliminary characterization of one lot of French IRDX and two lot of HAAP RDX. Light scattering, SEM and polarized optical microscopy (POM) showed that SNPE and Holston RDX had the appropriate particle size distribution for Class 1 RDX. High performance liquid chromatography showed quantities of HMX in HAAP RDX. French IRDX also showed a 1.1 C higher melting point compared to HAAP RDX in the differential scanning calorimetry (DSC) consistent with no melting point depression due to the HMX contaminant. A second part of the program involved characterization of Holston RDX recrystallized using the French process. After reprocessing the average density of the Holston RDX was increased to 1.7907 g/cc. Apparently HMX in RDX can act as a nucleating agent in the French RDX recrystallization process. The French IRDX contained no HMX, which is assumed to account for its higher density and narrower density distribution. Reprocessing of RDX from Holston improved the average density compared to the original Holston RDX, but the resulting HIRDX was not as dense as the original French IRDX. Recrystallized Holston IRDX crystals were much larger (3-500 {micro}m or more) then either the original class 1 HAAP RDX or

  19. Effective Management of Secondary User's Density in Cognitive Radio Networks

    NASA Astrophysics Data System (ADS)

    Jiang, Chunxiao; Fan, Shuai; Chen, Canfeng; Ma, Jian; Ren, Yong

    Cognitive radio has emerged as an efficient approach to reusing the licensed spectrums. How to appropriately set parameters of secondary user (SU) plays a rather important role in constructing cognitive radio networks. In this letter, we have analyzed the theoretical value of SUs' density, which provides a standard for controlling the number of SUs around one primary receiver, in order to guarantee that primary communication links do not experience excessive interference. The simulation result of secondary density well matches with the theoretical result derived from our analysis. Additionally, the achievable rate of secondary user under density control is also analyzed and simulated.

  20. Fingerprint recognition using model-based density map.

    PubMed

    Wan, Dingrui; Zhou, Jie

    2006-06-01

    Utilizing more information other than minutiae is much helpful for large-scale fingerprint recognition applications. In this paper, we proposed a polynomial model to approximate the density map of fingerprints and used the model's parameters as a novel kind of feature for fingerprint representation. Thus, the density information can be utilized into the matching stage with a low additional storage cost. A decision-level fusion scheme is further used to combine the density map matching with conventional minutiae-based matching and experimental results showed a much better performance than using single minutiae-based matching.

  1. High energy density redox flow device

    SciTech Connect

    Chiang, Yet-Ming; Carter, W. Craig; Ho, Bryan Y; Duduta, Mihai; Limthongkul, Pimpa

    2014-05-13

    Redox flow devices are described in which at least one of the positive electrode or negative electrode-active materials is a semi-solid or is a condensed ion-storing electroactive material, and in which at least one of the electrode-active materials is transported to and from an assembly at which the electrochemical reaction occurs, producing electrical energy. The electronic conductivity of the semi-solid is increased by the addition of conductive particles to suspensions and/or via the surface modification of the solid in semi-solids (e.g., by coating the solid with a more electron conductive coating material to increase the power of the device). High energy density and high power redox flow devices are disclosed. The redox flow devices described herein can also include one or more inventive design features. In addition, inventive chemistries for use in redox flow devices are also described.

  2. Decreased bacteria density on nanostructured polyurethane.

    PubMed

    Yao, Chang; Webster, Thomas J; Hedrick, Matthew

    2014-06-01

    As is well known, medical device infections are a growing clinical problem with no clear solution due to previous failed attempts of using antibiotics to decrease bacteria functions for which bacteria quickly develop a resistance toward. Because of their altered surface energetics, the objective of the present in vitro study was to create nanoscale surface features on polyurethane (PU) by soaking PU films in HNO3 and to determine bacteria (specifically, S. epidermidis, E. coli, and P. mirabilis) colony forming units after 1 h. Such bacteria frequently infect numerous medical devices. Results provided the first evidence that without using antibiotics, S. epidermidis density decreased by 5 and 13 times, E. coli density decreased by 6 and 20 times, and P. mirabilis density decreased by 8 and 35 times compared to conventional PU and a tissue engineering control small intestine submucosa (SIS), respectively. Material characterization studies revealed significantly greater nanoscale roughness and hydrophobicity for the HNO3-treated nanostructured PU compared to conventional PU (albeit, still hydrophilic) which may provide a rationale for the observed decreased bacteria responses. In addition, significantly greater amounts of fibronectin adsorption from serum were measured on nanorough compared conventional PU which may explain the decreased bacteria growth. In summary, this study provides significant promise for the use of nanostructured PU to decrease bacteria functions without the use of antibiotics, clearly addressing the wide spread problem of increased medical device infections observed today.

  3. Imaginary time density-density correlations for two-dimensional electron gases at high density

    SciTech Connect

    Motta, M.; Galli, D. E.; Moroni, S.; Vitali, E.

    2015-10-28

    We evaluate imaginary time density-density correlation functions for two-dimensional homogeneous electron gases of up to 42 particles in the continuum using the phaseless auxiliary field quantum Monte Carlo method. We use periodic boundary conditions and up to 300 plane waves as basis set elements. We show that such methodology, once equipped with suitable numerical stabilization techniques necessary to deal with exponentials, products, and inversions of large matrices, gives access to the calculation of imaginary time correlation functions for medium-sized systems. We discuss the numerical stabilization techniques and the computational complexity of the methodology and we present the limitations related to the size of the systems on a quantitative basis. We perform the inverse Laplace transform of the obtained density-density correlation functions, assessing the ability of the phaseless auxiliary field quantum Monte Carlo method to evaluate dynamical properties of medium-sized homogeneous fermion systems.

  4. Overview of Food Ingredients, Additives and Colors

    MedlinePlus

    ... pesticides where other legal premarket approval requirements apply. Direct food additives are those that are added to ... and other foods to add texture -- is a direct additive. Most direct additives are identified on the ...

  5. Spin Density Matrices for Nuclear Density Functionals with Parity Violation

    NASA Astrophysics Data System (ADS)

    Barrett, Bruce; Giraud, Bertrand

    2010-11-01

    Within the context of the radial density functional [1], we apply the spin density matrix (SDM) used in atomic and molecular physics [2] to nuclear physics. The vector part of the SDM defines a ``hedgehog'' situation, which exists only if nuclear states contain some amount of parity violation. Thus, looking for the vector profile of the SDM could be used as a test for parity violation in nuclei. The difference between the scalar profile and the vector profile of the SDM will be illustrated by a toy model. [4pt] [1] B. G. Giraud, Phys. Rev. C 78, 014307 (2008).[0pt] [2] A. Goerling, Phys. Rev. A 47, 2783 (1993).

  6. Uniform Additivity in Classical and Quantum Information

    NASA Astrophysics Data System (ADS)

    Cross, Andrew; Li, Ke; Smith, Graeme

    2017-01-01

    Information theory quantifies the optimal rates of resource interconversions, usually in terms of entropies. However, nonadditivity often makes evaluating entropic formulas intractable. In a few auspicious cases, additivity allows a full characterization of optimal rates. We study uniform additivity of formulas, which is easily evaluated and captures all known additive quantum formulas. Our complete characterization of uniform additivity exposes an intriguing new additive quantity and identifies a remarkable coincidence—the classical and quantum uniformly additive functions with one auxiliary variable are identical.

  7. The stability of alloying additions in Zirconium

    NASA Astrophysics Data System (ADS)

    Lumley, S. C.; Murphy, S. T.; Burr, P. A.; Grimes, R. W.; Chard-Tuckey, P. R.; Wenman, M. R.

    2013-06-01

    The interactions of Cr, Fe, Nb, Ni, Sn, V and Y with Zr are simulated using density functional theory. Thermodynamic stabilities of various different Zr based intermetallic compounds, including multiple Laves phase structures and solutions of alloying additions in both α and β-Zr were investigated. The thermodynamic driving forces in this system can be correlated with trends in atomic radii and the relative electronegativities of the different species. Formation energies of Fe, Ni and Sn based intermetallic compounds were found to be negative, and the ZrFe and ZrNi intermetallics were metastable. Most elements displayed negative energies of solution in β-Zr but positive energies in the α-phase, with the exception of Sn (which was negative for both) and Y (which was positive for both). Solutions formed from intermetallics showed a similar trend. Cr -3s23p64s13d5. Fe -4s23d6. Nb -4s24p65s14d4. Ni -4s23d8. Sn -5s25p2. V -3s23p64s23d3. Y -4s24p65s24d1. Zr -4s24p65s24d2. The pseudopotential scheme used is "on-the-fly" generation, in which an isolated all-electron calculation is carried out before the main calculation and used as a starting point to generate a pseudopotential. This was carried out for all pseudopotentials except Cr and V, as the default on-the-fly pseudopotentials for these elements required a much higher cut-off energy. Instead, standard ultrasoft pseudopotentials, as found in the CASTEP pseudopotential library, were used for Cr and V. All pseudopotentials (both on-the-fly and library) are of the ultrasoft type [15], and so are compatible with each-other. Exchange-correlation was modelled using the Perdew, Burke and Ernzerhof formalisation of the Generalised Gradient Approximation [16].A series of simulations were run to establish an appropriate basis set cut-off energy, and the density of sampling in the Brillouin zone. The results were converged to within two decimal places for a cut-off energy of 450 eV and a k-point spacing of 0.003 nm-1. The k

  8. 16 CFR 1102.16 - Additional information.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... PUBLICLY AVAILABLE CONSUMER PRODUCT SAFETY INFORMATION DATABASE Content Requirements § 1102.16 Additional... in the Database any additional information it determines to be in the public interest,...

  9. 16 CFR 1102.16 - Additional information.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... PUBLICLY AVAILABLE CONSUMER PRODUCT SAFETY INFORMATION DATABASE Content Requirements § 1102.16 Additional... in the Database any additional information it determines to be in the public interest,...

  10. 16 CFR 1102.16 - Additional information.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... PUBLICLY AVAILABLE CONSUMER PRODUCT SAFETY INFORMATION DATABASE Content Requirements § 1102.16 Additional... in the Database any additional information it determines to be in the public interest,...

  11. 40 CFR 262.43 - Additional reporting.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) STANDARDS APPLICABLE TO GENERATORS OF HAZARDOUS WASTE Recordkeeping and Reporting § 262.43 Additional... require generators to furnish additional reports concerning the quantities and disposition of...

  12. 40 CFR 262.43 - Additional reporting.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) STANDARDS APPLICABLE TO GENERATORS OF HAZARDOUS WASTE Recordkeeping and Reporting § 262.43 Additional... require generators to furnish additional reports concerning the quantities and disposition of...

  13. 40 CFR 262.43 - Additional reporting.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) STANDARDS APPLICABLE TO GENERATORS OF HAZARDOUS WASTE Recordkeeping and Reporting § 262.43 Additional... require generators to furnish additional reports concerning the quantities and disposition of...

  14. 40 CFR 262.43 - Additional reporting.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) STANDARDS APPLICABLE TO GENERATORS OF HAZARDOUS WASTE Recordkeeping and Reporting § 262.43 Additional... require generators to furnish additional reports concerning the quantities and disposition of...

  15. 40 CFR 262.43 - Additional reporting.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) STANDARDS APPLICABLE TO GENERATORS OF HAZARDOUS WASTE Recordkeeping and Reporting § 262.43 Additional... require generators to furnish additional reports concerning the quantities and disposition of...

  16. Band terminations in density functional theory

    SciTech Connect

    Afanasjev, A. V.

    2008-11-15

    The analysis of the terminating bands has been performed in the relativistic mean field framework. It was shown that nuclear magnetism provides an additional binding to the energies of the specific configuration and this additional binding increases with spin and has its maximum exactly at the terminating state. This suggests that the terminating states can be an interesting probe of the time-odd mean fields provided that other effects can be reliably isolated. Unfortunately, a reliable isolation of these effects is not that simple: many terms of the density functional theories contribute into the energies of the terminating states and the deficiencies in the description of those terms affect the result. The recent suggestion [H. Zdunczuk, W. Satula, and R. A. Wyss, Phys. Rev. C 71, 024305 (2005)] that the relative energies of the terminating states in the N{ne}Z,A{approx}44 mass region given by {delta}E provide unique and reliable constraints on time-odd mean fields and the strength of spin-orbit interaction in density functional theories has been reanalyzed. The current investigation shows that the {delta}E value is affected also by the relative placement of the states with different orbital angular momentum l, namely, the placement of the d (l=2) and f (l=3) states. This indicates the dependence of the {delta}E value on the properties of the central potential.

  17. Saturn's ionosphere - Inferred electron densities

    NASA Astrophysics Data System (ADS)

    Kaiser, M. L.; Desch, M. D.; Connerney, J. E. P.

    1984-04-01

    During the two Voyager encounters with Saturn, radio bursts were detected which appear to have originated from atmospheric lightning storms. Although these bursts generally extended over frequencies from as low as 100 kHz to the upper detection limit of the instrument, 40 MHz, they often exhibited a sharp but variable low frequency cutoff below which bursts were not detected. We interpret the variable low-frequency extent of these bursts to be due to the reflection of the radio waves as they propagate through an ionosphere which varies with local time. We obtain estimates of electron densities at a variety of latitude and local time locations. These compare well with the dawn and dusk densities measured by the Pioneer 11 Voyager Radio Science investigations, and with model predictions for dayside densities. However, we infer a two-order-of-magnitude diurnal variation of electron density, which had not been anticipated by theoretical models of Saturn's ionosphere, and an equally dramatic extinction of ionospheric electron density by Saturn's rings. Previously announced in STAR as N84-17102

  18. Saturn's ionosphere: Inferred electron densities

    NASA Technical Reports Server (NTRS)

    Kaiser, M. L.; Desch, M. D.; Connerney, J. E. P.

    1983-01-01

    During the two Voyager encounters with Saturn, radio bursts were detected which appear to have originated from atmospheric lightning storms. Although these bursts generally extended over frequencies from as low as 100 kHz to the upper detection limit of the instrument, 40 MHz, they often exhibited a sharp but variable low frequency cutoff below which bursts were not detected. We interpret the variable low-frequency extent of these bursts to be due to the reflection of the radio waves as they propagate through an ionosphere which varies with local time. We obtain estimates of electron densities at a variety of latitude and local time locations. These compare well with the dawn and dusk densitis measured by the Pioneer 11 Voyager Radio Science investigations, and with model predictions for dayside densities. However, we infer a two-order-of-magnitude diurnal variation of electron density, which had not been anticipated by theoretical models of Saturn's ionosphere, and an equally dramatic extinction of ionospheric electron density by Saturn's rings.

  19. Paramagnetic ionic liquids for measurements of density using magnetic levitation.

    PubMed

    Bwambok, David K; Thuo, Martin M; Atkinson, Manza B J; Mirica, Katherine A; Shapiro, Nathan D; Whitesides, George M

    2013-09-03

    Paramagnetic ionic liquids (PILs) provide new capabilities to measurements of density using magnetic levitation (MagLev). In a typical measurement, a diamagnetic object of unknown density is placed in a container containing a PIL. The container is placed between two magnets (typically NdFeB, oriented with like poles facing). The density of the diamagnetic object can be determined by measuring its position in the magnetic field along the vertical axis (levitation height, h), either as an absolute value or relative to internal standards of known density. For density measurements by MagLev, PILs have three advantages over solutions of paramagnetic salts in aqueous or organic solutions: (i) negligible vapor pressures; (ii) low melting points; (iii) high thermal stabilities. In addition, the densities, magnetic susceptibilities, glass transition temperatures, thermal decomposition temperatures, viscosities, and hydrophobicities of PILs can be tuned over broad ranges by choosing the cation-anion pair. The low melting points and high thermal stabilities of PILs provide large liquidus windows for density measurements. This paper demonstrates applications and advantages of PILs in density-based analyses using MagLev.

  20. Synthetic inversions for density using seismic and gravity data

    NASA Astrophysics Data System (ADS)

    Blom, Nienke; Boehm, Christian; Fichtner, Andreas

    2017-03-01

    Density variations drive mass transport in the Earth from plate tectonics to convection in the mantle and core. Nevertheless, density remains poorly known because most geophysical measurements used to probe the Earth's interior either have little sensitivity to density, suffer from trade-offs or from nonuniqueness. With the ongoing expansion of computational power, it has become possible to accurately model complete seismic wavefields in a 3-D heterogeneous Earth, and to develop waveform inversion techniques that account for complicated wavefield effects. This may help to improve resolution of density. Here we present a pilot study where we explore the extent to which waveform inversion may be used to better recover density as a separate, independent parameter. We perform numerical simulations in 2-D to investigate under which conditions, and to what extent density anomalies may be recovered in the Earth's mantle. We conclude that density can indeed be constrained by seismic waveforms, mainly as a result of scattering effects at density contrasts. As a consequence, the low-frequency part of the wavefield is the most important for constraining the actual extent of anomalies. While the impact of density heterogeneities on the wavefield is small compared to the effects of velocity variations, it is likely to be detectable in modern regional to global scale measurements. We also conclude that the use of gravity data as additional information does not help to further improve the recovery of density anomalies unless strong a priori constraints on the geometry of density variations are applied. This is a result of the inherent physical non-uniqueness of potential-field inverse problems. Finally, in the limited numerical setup that we employ, we find that the initially supplied anomalies in S- and P-velocity models are of minor importance.