Numerical Simulation of High Drag Reduction in a Turbulent Channel Flow with Polymer Additives
NASA Technical Reports Server (NTRS)
Dubief, Yves
2003-01-01
The addition of small amounts of long chain polymer molecules to wall-bounded flows can lead to dramatic drag reduction. Although this phenomenon has been known for about fifty years, the action of the polymers and its effect on turbulent structures are still unclear. Detailed experiments have characterized two distinct regimes (Warholic et al. 1999), which are referred to as low drag reduction (LDR) and high drag reduction (HDR). The first regime exhibits similar statistical trends as Newtonian flow: the log-law region of the mean velocity profile remains parallel to that of the Newtonian ow but its lower bound moves away from the wall and the upward shift of the log-region is a function of drag reduction, DR. Although streamwise fluctuations are increased and transverse ones are reduced, the shape of the rms velocity profiles is not qualitatively modified. At higher drag reductions, of the order of 40-50%, the ow enters the HDR regime for which the slope of the log-law is dramatically augmented and the Reynolds shear stress is small (Warholic et al. 1999; Ptasinski et al. 2001). The drag reduction is eventually bounded by a maximum drag reduction (MDR) (Virk & Mickley 1970) which is a function of the Reynolds number. While several experiments report mean velocity profiles very close to the empirical profile of Virk & Mickley (1970) for MDR conditions, the observations regarding the structure of turbulence can differ significantly. For instance, Warholic et al. (1999) measured a near-zero Reynolds shear stress, whereas a recent experiment (Ptasinski et al. 2001) shows evidence of non-negligible Reynolds stress in their MDR flow. To the knowledge of the authors, only the LDR regime has been documented in numerical simulations (Sureshkumar et al. 1997; Dimitropoulos et al. 1998; Min et al. 2001; Dubief & Lele 2001; Sibilla & Baron 2002). This paper discusses the simulation of polymer drag reduced channel ow at HDR using the FENE-P (Finite Elastic non
An original traffic additional emission model and numerical simulation on a signalized road
NASA Astrophysics Data System (ADS)
Zhu, Wen-Xing; Zhang, Jing-Yu
2017-02-01
Based on VSP (Vehicle Specific Power) model traffic real emissions were theoretically classified into two parts: basic emission and additional emission. An original additional emission model was presented to calculate the vehicle's emission due to the signal control effects. Car-following model was developed and used to describe the traffic behavior including cruising, accelerating, decelerating and idling at a signalized intersection. Simulations were conducted under two situations: single intersection and two adjacent intersections with their respective control policy. Results are in good agreement with the theoretical analysis. It is also proved that additional emission model may be used to design the signal control policy in our modern traffic system to solve the serious environmental problems.
Zargarian, A; Esfahanian, M; Kadkhodapour, J; Ziaei-Rad, S
2016-03-01
In this paper, the effects of cell geometry and relative density on the high-cycle fatigue behavior of Titanium scaffolds produced by selective laser melting and electron beam melting techniques were numerically investigated by finite element analysis. The regular titanium lattice samples with three different unit cell geometries, namely, diamond, rhombic dodecahedron and truncated cuboctahedron, and the relative density range of 0.1-0.3 were analyzed under uniaxial cyclic compressive loading. A failure event based algorithm was employed to simulate fatigue failure in the cellular material. Stress-life approach was used to model fatigue failure of both bulk (struts) and cellular material. The predicted fatigue life and the damage pattern of all three structures were found to be in good agreement with the experimental fatigue investigations published in the literature. The results also showed that the relationship between fatigue strength and cycles to failure obeyed the power law. The coefficient of power function was shown to depend on relative density, geometry and fatigue properties of the bulk material while the exponent was only dependent on the fatigue behavior of the bulk material. The results also indicated the failure surface at an angle of 45° to the loading direction.
Rocket engine numerical simulation
NASA Technical Reports Server (NTRS)
Davidian, Ken
1993-01-01
The topics are presented in view graph form and include the following: a definition of the rocket engine numerical simulator (RENS); objectives; justification; approach; potential applications; potential users; RENS work flowchart; RENS prototype; and conclusions.
Rocket engine numerical simulator
NASA Technical Reports Server (NTRS)
Davidian, Ken
1993-01-01
The topics are presented in viewgraph form and include the following: a rocket engine numerical simulator (RENS) definition; objectives; justification; approach; potential applications; potential users; RENS work flowchart; RENS prototype; and conclusion.
Numerical Propulsion System Simulation
NASA Technical Reports Server (NTRS)
Naiman, Cynthia
2006-01-01
The NASA Glenn Research Center, in partnership with the aerospace industry, other government agencies, and academia, is leading the effort to develop an advanced multidisciplinary analysis environment for aerospace propulsion systems called the Numerical Propulsion System Simulation (NPSS). NPSS is a framework for performing analysis of complex systems. The initial development of NPSS focused on the analysis and design of airbreathing aircraft engines, but the resulting NPSS framework may be applied to any system, for example: aerospace, rockets, hypersonics, power and propulsion, fuel cells, ground based power, and even human system modeling. NPSS provides increased flexibility for the user, which reduces the total development time and cost. It is currently being extended to support the NASA Aeronautics Research Mission Directorate Fundamental Aeronautics Program and the Advanced Virtual Engine Test Cell (AVETeC). NPSS focuses on the integration of multiple disciplines such as aerodynamics, structure, and heat transfer with numerical zooming on component codes. Zooming is the coupling of analyses at various levels of detail. NPSS development includes capabilities to facilitate collaborative engineering. The NPSS will provide improved tools to develop custom components and to use capability for zooming to higher fidelity codes, coupling to multidiscipline codes, transmitting secure data, and distributing simulations across different platforms. These powerful capabilities extend NPSS from a zero-dimensional simulation tool to a multi-fidelity, multidiscipline system-level simulation tool for the full development life cycle.
Confidence in Numerical Simulations
Hemez, Francois M.
2015-02-23
This PowerPoint presentation offers a high-level discussion of uncertainty, confidence and credibility in scientific Modeling and Simulation (M&S). It begins by briefly evoking M&S trends in computational physics and engineering. The first thrust of the discussion is to emphasize that the role of M&S in decision-making is either to support reasoning by similarity or to “forecast,” that is, make predictions about the future or extrapolate to settings or environments that cannot be tested experimentally. The second thrust is to explain that M&S-aided decision-making is an exercise in uncertainty management. The three broad classes of uncertainty in computational physics and engineering are variability and randomness, numerical uncertainty and model-form uncertainty. The last part of the discussion addresses how scientists “think.” This thought process parallels the scientific method where by a hypothesis is formulated, often accompanied by simplifying assumptions, then, physical experiments and numerical simulations are performed to confirm or reject the hypothesis. “Confidence” derives, not just from the levels of training and experience of analysts, but also from the rigor with which these assessments are performed, documented and peer-reviewed.
Numerical Propulsion System Simulation Architecture
NASA Technical Reports Server (NTRS)
Naiman, Cynthia G.
2004-01-01
The Numerical Propulsion System Simulation (NPSS) is a framework for performing analysis of complex systems. Because the NPSS was developed using the object-oriented paradigm, the resulting architecture is an extensible and flexible framework that is currently being used by a diverse set of participants in government, academia, and the aerospace industry. NPSS is being used by over 15 different institutions to support rockets, hypersonics, power and propulsion, fuel cells, ground based power, and aerospace. Full system-level simulations as well as subsystems may be modeled using NPSS. The NPSS architecture enables the coupling of analyses at various levels of detail, which is called numerical zooming. The middleware used to enable zooming and distributed simulations is the Common Object Request Broker Architecture (CORBA). The NPSS Developer's Kit offers tools for the developer to generate CORBA-based components and wrap codes. The Developer's Kit enables distributed multi-fidelity and multi-discipline simulations, preserves proprietary and legacy codes, and facilitates addition of customized codes. The platforms supported are PC, Linux, HP, Sun, and SGI.
Numerical simulation of dusty plasmas
Winske, D.
1995-09-01
The numerical simulation of physical processes in dusty plasmas is reviewed, with emphasis on recent results and unresolved issues. Three areas of research are discussed: grain charging, weak dust-plasma interactions, and strong dust-plasma interactions. For each area, we review the basic concepts that are tested by simulations, present some appropriate examples, and examine numerical issues associated with extending present work.
Numerical Simulation of Nix's Rotation
This is a numerical simulation of the orientation of Nix as seen from the center of the Pluto system. It has been sped up so that one orbit of Nix around Pluto takes 2 seconds instead of 25 days. L...
Numerical simulation of Bootstrap Current
Wu, Yanlin; White, R.B.
1993-05-01
The neoclassical theory of Bootstrap Current in toroidal systems is calculated in magnetic flux coordinates and confirmed by numerical simulation. The effects of magnetic ripple, loop voltage, and magnetic and electrostatic perturbations on bootstrap current for the cases of zero and finite plasma pressure are studied. The numerical results are in reasonable agreement with analytical estimates.
Requirements definition by numerical simulation
NASA Astrophysics Data System (ADS)
Hickman, James J.; Kostas, Chris; Tsang, Kang T.
1994-10-01
We are investigating the issues involved in requirements definition for narcotics interdiction: how much of a particular signature is possible, how does this amount change for different conditions, and what is the temporal relationship in various scenarios. Our approach has been to simulate numerically the conditions that arise during vapor or particulate transport. The advantages of this approach are that (1) a broad range of scenarios can be rapidly and inexpensively analyzed by simulation, and (2) simulations can display quantities that are difficult or impossible to measure. The drawback of this approach is that simulations cannot include all of the phenomena present in a real measurement, and therefore the fidelity of the simulation results is always an issue. To address this limitation, we will ultimately combine the results of numerical simulations with measurements of physical parameters for inclusion in the simulation. In this paper, we discuss these issues and how they apply to the current problems in narcotics interdictions, especially cargo containers. We also show the results of 1D and 3D numerical simulations, and compare these results with analytical solutions. The results indicate that this approach is viable. We also present data from 3D simulations of vapor transport in a loaded cargo container and some of the issues present in this ongoing work.
Numerical simulation of gravel packing
Winterfeld, P.H.; Schroeder, D.E. Jr. )
1992-08-01
To obtain maximum productivity from unconsolidated formations where sand control is required, it is important to understand the mechanics of gravel packing. This paper describes a finite-element, numerical simulator that can predict gravel placement in the perforations and annulus of a wellbore. The equations for the simulator include mass and momentum conservation. Wellbore geometry, physical properties, and fluid and gravel-pack properties are simulator input. Experiments in a 100-ft full-scale wellbore model for three gravel-packing configurations have been successfully simulated. These configurations are a circulating pack with a washpipe, a squeeze pack, and a circulating/squeeze pack with a washpipe and a lower telltale screen. The low cost, speed, and extrapolation capabilities of the numerical simulator will greatly enhance our ability to predict gravel placement in a wellbore.
Numerical simulation of Ulysses nutation
NASA Technical Reports Server (NTRS)
Marirrodriga, C. Garcia; Zeischka, J.; Boslooper, E. C.
1993-01-01
A numerical simulation has been performed on the in-orbit instability of the Ulysses Spacecraft. The thermal excitation from the solar flux, the flexible axial boom and its deployment mechanism have been modeled and analyzed. The simulation shows that the nutation build-up has been originated by the solar input on the axial boom coupled with the system nutation frequency of the spacecraft. The results agree with the observed behavior.
Numerical Simulation of Black Holes
NASA Astrophysics Data System (ADS)
Teukolsky, Saul
2003-04-01
Einstein's equations of general relativity are prime candidates for numerical solution on supercomputers. There is some urgency in being able to carry out such simulations: Large-scale gravitational wave detectors are now coming on line, and the most important expected signals cannot be predicted except numerically. Problems involving black holes are perhaps the most interesting, yet also particularly challenging computationally. One difficulty is that inside a black hole there is a physical singularity that cannot be part of the computational domain. A second difficulty is the disparity in length scales between the size of the black hole and the wavelength of the gravitational radiation emitted. A third difficulty is that all existing methods of evolving black holes in three spatial dimensions are plagued by instabilities that prohibit long-term evolution. I will describe the ideas that are being introduced in numerical relativity to deal with these problems, and discuss the results of recent calculations of black hole collisions.
Numerical Simulation of Protoplanetary Vortices
2003-12-01
UNCLASSIFIED Center for Turbulence Research 81 Annual Research Briefs 2003 Numerical simulation of protoplanetary vortices By H. Lin, J.A. Barranco t AND P.S...planetesimals and planets. In earlier works ( Barranco & Marcus 2000; Barranco et al. 2000; Lin et al. 2000) we have briefly described the possible physical...transport. In particular, Barranco et al. (2000) provided a general mathe- matical framework that is suitable for the asymptotic regime of the disk
Numerical simulation of interplanetary dynamics
NASA Astrophysics Data System (ADS)
Wu, Chin-Chun
This dissertation discusses investigations into the physics of the propagation of solar generated disturbances in the interplanetary medium. The motivation to initiate this study was two-fold: (1) understanding the fundamental physics of the nonlinear interactions of solar generated MHD shocks and non-homogeneous interplanetary medium, and (2) understanding the physics of solar generated disturbance effects on the Earth's environment, (i.e. the solar connection to the geomagnetic storm). In order to achieve these goals, the authors employed two numerical models to encompass these studies. In the first part, a one-dimensional MHD code with adaptive grids is used to study the evolution of interplanetary slow shocks (ISS), the interaction of a forward slow shock with a reverse slow shock, and the interaction of a fast shock with a slow shock. Results show that the slow shocks can be generated by a decreasing density, velocity or temperature perturbation or by a pressure pulse by following a forward fast shock and that slow shocks can propagate over 1 AU; results also show that the ISS never evolves into fast shocks. Interestingly, it is also found that an ISS could be 'eaten up' by an interplanetary fast shock (IFS) catching up from behind. This could be a reason that the slow shock has been difficult to observe near 1 AU. In addition, a forward slow shock could be dissipated by following a strong forward fast shock (Mach number greater than 1.7). In the second part, a fully three-dimensional (3D), time-dependent, MHD interplanetary global model (3D IGM) is used to study the relationship between different forms of solar activity and transient variations of the north-south component, Bx, of the interplanetary magnetic field, IMF, at 1 AU. One form of solar activity, the flare, is simulated by using a pressure pulse at different locations near the solar surface and observing the simulated IMF evolution of Btheta (= -Bx) at 1 AU. Results show that, for a given pressure
Numerical simulation of aneurysm hemodynamics
NASA Astrophysics Data System (ADS)
MacVicar, Stephen; Huynh, Sophia; Rossmann, Jenn
2003-11-01
Rupture of intracranial aneurysms is the leading cause of spontaneous subarachnoid hemorrhage, with high rates of morbidity and mortality. Numerical simulations of flow in a variety of two-dimensional and three-dimensional saccular aneurysm geometries were performed to evaluate possible sites and mechanisms for aneurysm growth and rupture. The governing equations were solved in their finite volume formulation for both steady and pulsatile flows. Recirculation zones and secondary flows were observed in aneurysms and arteries. Regions of elevated and oscillating shear stress were observed, often at the aneurysm's distal shoulder. The influence of several geometric factors, including vessel curvature, branching angle, and aneurysm shape, on flow patterns and fluid mechanical forces was studied, with the goal of assessing the risks posed by given aneurysm geometry.
Rocket Engine Numerical Simulator (RENS)
NASA Technical Reports Server (NTRS)
Davidian, Kenneth O.
1997-01-01
Work is being done at three universities to help today's NASA engineers use the knowledge and experience of their Apolloera predecessors in designing liquid rocket engines. Ground-breaking work is being done in important subject areas to create a prototype of the most important functions for the Rocket Engine Numerical Simulator (RENS). The goal of RENS is to develop an interactive, realtime application that engineers can utilize for comprehensive preliminary propulsion system design functions. RENS will employ computer science and artificial intelligence research in knowledge acquisition, computer code parallelization and objectification, expert system architecture design, and object-oriented programming. In 1995, a 3year grant from the NASA Lewis Research Center was awarded to Dr. Douglas Moreman and Dr. John Dyer of Southern University at Baton Rouge, Louisiana, to begin acquiring knowledge in liquid rocket propulsion systems. Resources of the University of West Florida in Pensacola were enlisted to begin the process of enlisting knowledge from senior NASA engineers who are recognized experts in liquid rocket engine propulsion systems. Dr. John Coffey of the University of West Florida is utilizing his expertise in interviewing and concept mapping techniques to encode, classify, and integrate information obtained through personal interviews. The expertise extracted from the NASA engineers has been put into concept maps with supporting textual, audio, graphic, and video material. A fundamental concept map was delivered by the end of the first year of work and the development of maps containing increasing amounts of information is continuing. Find out more information about this work at the Southern University/University of West Florida. In 1996, the Southern University/University of West Florida team conducted a 4day group interview with a panel of five experts to discuss failures of the RL10 rocket engine in conjunction with the Centaur launch vehicle. The
Numerical simulation of centrifugal casting of pipes
NASA Astrophysics Data System (ADS)
Kaschnitz, E.
2012-07-01
A numerical simulation model for the horizontal centrifugal pipe casting process was developed with the commercial simulation package Flow3D. It considers - additionally to mass, energy and momentum conservation equations and free surface tracking - the fast radial and slower horizontal movement of the mold. The iron inflow is not steady state but time dependent. Of special importance is the friction between the liquid and the mold in connection with the viscosity and turbulence of the iron. Experiments with the mold at controlled revolution speeds were carried out using a high-speed camera. From these experiments friction coefficients for the description of the interaction between mold and melt were obtained. With the simulation model, the influence of typical process parameters (e.g. melts inflow, mold movement, melt temperature, cooling media) on the wall thickness of the pipes can be studied. The comparison to results of pipes from production shows a good agreement between simulation and reality.
Simulating reionization in numerical cosmology
NASA Astrophysics Data System (ADS)
Sokasian, Aaron
2003-11-01
The incorporation of radiative transfer effects into cosmological hydrodynamical simulations is essential for understanding how the intergalactic medium (IGM) makes the transition from a neutral medium to one that is almost fully ionized. I present an approximate numerical method designed to study in a statistical sense how a cosmological density field is ionized by various sets of sources. The method requires relatively few time steps and can be employed with simulations of high resolution. First, I explore the reionization history of Helium II by z < 6 quasars. Comparisons between HeII opacities measured observationally and inferred from our analysis reveal that the uncertainties in the empirical luminosity function provide enough leeway to provide a satisfactory match. A property common to all the calculations is that the epoch of Helium II reionization must have occurred between 3≲
Numerical Simulation of Protoplanetary Vortices
NASA Technical Reports Server (NTRS)
Lin, H.; Barranco, J. A.; Marcus, P. S.
2003-01-01
The fluid dynamics within a protoplanetary disk has been attracting the attention of many researchers for a few decades. Previous works include, to list only a few among many others, the well-known prescription of Shakura & Sunyaev, the convective and instability study of Stone & Balbus and Hawley et al., the Rossby wave approach of Lovelace et al., as well as a recent work by Klahr & Bodenheimer, which attempted to identify turbulent flow within the disk. The disk is commonly understood to be a thin gas disk rotating around a central star with differential rotation (the Keplerian velocity), and the central quest remains as how the flow behavior deviates (albeit by a small amount) from a strong balance established between gravitational and centrifugal forces, transfers mass and momentum inward, and eventually forms planetesimals and planets. In earlier works we have briefly described the possible physical processes involved in the disk; we have proposed the existence of long-lasting, coherent vortices as an efficient agent for mass and momentum transport. In particular, Barranco et al. provided a general mathematical framework that is suitable for the asymptotic regime of the disk; Barranco & Marcus (2000) addressed a proposed vortex-dust interaction mechanism which might lead to planetesimal formation; and Lin et al. (2002), as inspired by general geophysical vortex dynamics, proposed basic mechanisms by which vortices can transport mass and angular momentum. The current work follows up on our previous effort. We shall focus on the detailed numerical implementation of our problem. We have developed a parallel, pseudo-spectral code to simulate the full three-dimensional vortex dynamics in a stably-stratified, differentially rotating frame, which represents the environment of the disk. Our simulation is validated with full diagnostics and comparisons, and we present our results on a family of three-dimensional, coherent equilibrium vortices.
2001 Numerical Propulsion System Simulation Review
NASA Technical Reports Server (NTRS)
Lytle, John; Follen, Gregory; Naiman, Cynthia; Veres, Joseph; Owen, Karl; Lopez, Isaac
2002-01-01
The technologies necessary to enable detailed numerical simulations of complete propulsion systems are being developed at the NASA Glenn Research Center in cooperation with industry, academia and other government agencies. Large scale, detailed simulations will be of great value to the nation because they eliminate some of the costly testing required to develop and certify advanced propulsion systems. In addition, time and cost savings will be achieved by enabling design details to be evaluated early in the development process before a commitment is made to a specific design. This concept is called the Numerical Propulsion System Simulation (NPSS). NPSS consists of three main elements: (1) engineering models that enable multidisciplinary analysis of large subsystems and systems at various levels of detail, (2) a simulation environment that maximizes designer productivity, and (3) a cost-effective, high-performance computing platform. A fundamental requirement of the concept is that the simulations must be capable of overnight execution on easily accessible computing platforms. This will greatly facilitate the use of large-scale simulations in a design environment. This paper describes the current status of the NPSS with specific emphasis on the progress made over the past year on air breathing propulsion applications. Major accomplishments include the first formal release of the NPSS object-oriented architecture (NPSS Version 1) and the demonstration of a one order of magnitude reduction in computing cost-to-performance ratio using a cluster of personal computers. The paper also describes the future NPSS milestones, which include the simulation of space transportation propulsion systems in response to increased emphasis on safe, low cost access to space within NASA's Aerospace Technology Enterprise. In addition, the paper contains a summary of the feedback received from industry partners on the fiscal year 2000 effort and the actions taken over the past year to
2000 Numerical Propulsion System Simulation Review
NASA Technical Reports Server (NTRS)
Lytle, John; Follen, Greg; Naiman, Cynthia; Veres, Joseph; Owen, Karl; Lopez, Isaac
2001-01-01
The technologies necessary to enable detailed numerical simulations of complete propulsion systems are being developed at the NASA Glenn Research Center in cooperation with industry, academia, and other government agencies. Large scale, detailed simulations will be of great value to the nation because they eliminate some of the costly testing required to develop and certify advanced propulsion systems. In addition, time and cost savings will be achieved by enabling design details to be evaluated early in the development process before a commitment is made to a specific design. This concept is called the Numerical Propulsion System Simulation (NPSS). NPSS consists of three main elements: (1) engineering models that enable multidisciplinary analysis of large subsystems and systems at various levels of detail, (2) a simulation environment that maximizes designer productivity, and (3) a cost-effective. high-performance computing platform. A fundamental requirement of the concept is that the simulations must be capable of overnight execution on easily accessible computing platforms. This will greatly facilitate the use of large-scale simulations in a design environment. This paper describes the current status of the NPSS with specific emphasis on the progress made over the past year on air breathing propulsion applications. Major accomplishments include the first formal release of the NPSS object-oriented architecture (NPSS Version 1) and the demonstration of a one order of magnitude reduction in computing cost-to-performance ratio using a cluster of personal computers. The paper also describes the future NPSS milestones, which include the simulation of space transportation propulsion systems in response to increased emphasis on safe, low cost access to space within NASA'S Aerospace Technology Enterprise. In addition, the paper contains a summary of the feedback received from industry partners on the fiscal year 1999 effort and the actions taken over the past year to
Numerical Simulations of Thermobaric Explosions
Kuhl, A L; Bell, J B; Beckner, V E; Khasainov, B
2007-05-04
A Model of the energy evolution in thermobaric explosions is presented. It is based on the two-phase formulation: conservation laws for the gas and particle phases along with inter-phase interaction terms. It incorporates a Combustion Model based on the mass conservation laws for fuel, air and products; source/sink terms are treated in the fast-chemistry limit appropriate for such gas dynamic fields. The Model takes into account both the afterburning of the detonation products of the booster with air, and the combustion of the fuel (Al or TNT detonation products) with air. Numerical simulations were performed for 1.5-g thermobaric explosions in five different chambers (volumes ranging from 6.6 to 40 liters and length-to-diameter ratios from 1 to 12.5). Computed pressure waveforms were very similar to measured waveforms in all cases - thereby proving that the Model correctly predicts the energy evolution in such explosions. The computed global fuel consumption {mu}(t) behaved as an exponential life function. Its derivative {dot {mu}}(t) represents the global rate of fuel consumption. It depends on the rate of turbulent mixing which controls the rate of energy release in thermobaric explosions.
Numerical simulation and nasal air-conditioning
Keck, Tilman; Lindemann, Jörg
2011-01-01
Heating and humidification of the respiratory air are the main functions of the nasal airways in addition to cleansing and olfaction. Optimal nasal air conditioning is mandatory for an ideal pulmonary gas exchange in order to avoid desiccation and adhesion of the alveolar capillary bed. The complex three-dimensional anatomical structure of the nose makes it impossible to perform detailed in vivo studies on intranasal heating and humidification within the entire nasal airways applying various technical set-ups. The main problem of in vivo temperature and humidity measurements is a poor spatial and time resolution. Therefore, in vivo measurements are feasible only to a restricted extent, solely providing single temperature values as the complete nose is not entirely accessible. Therefore, data on the overall performance of the nose are only based on one single measurement within each nasal segment. In vivo measurements within the entire nose are not feasible. These serious technical issues concerning in vivo measurements led to a large number of numerical simulation projects in the last few years providing novel information about the complex functions of the nasal airways. In general, numerical simulations merely calculate predictions in a computational model, e.g. a realistic nose model, depending on the setting of the boundary conditions. Therefore, numerical simulations achieve only approximations of a possible real situation. The aim of this review is the synopsis of the technical expertise on the field of in vivo nasal air conditioning, the novel information of numerical simulations and the current state of knowledge on the influence of nasal and sinus surgery on nasal air conditioning. PMID:22073112
Numerical Simulations of Granular Processes
NASA Astrophysics Data System (ADS)
Richardson, Derek C.; Michel, Patrick; Schwartz, Stephen R.; Ballouz, Ronald-Louis; Yu, Yang; Matsumura, Soko
2014-11-01
Spacecraft images and indirect observations including thermal inertia measurements indicate most small bodies have surface regolith. Evidence of granular flow is also apparent in the images. This material motion occurs in very low gravity, therefore in a completely different gravitational environment than on the Earth. Understanding and modeling these motions can aid in the interpretation of imaged surface features that may exhibit signatures of constituent material properties. Also, upcoming sample-return missions to small bodies, and possible future manned missions, will involve interaction with the surface regolith, so it is important to develop tools to predict the surface response. We have added new capabilities to the parallelized N-body gravity tree code pkdgrav [1,2] that permit the simulation of granular dynamics, including multi-contact physics and friction forces, using the soft-sphere discrete-element method [3]. The numerical approach has been validated through comparison with laboratory experiments (e.g., [3,4]). Ongoing and recently completed projects include: impacts into granular materials using different projectile shapes [5]; possible tidal resurfacing of asteroid Apophis during its 2029 encounter [6]; the Brazil-nut effect in low gravity [7]; and avalanche modeling.Acknowledgements: DCR acknowledges NASA (grants NNX08AM39G, NNX10AQ01G, NNX12AG29G) and NSF (AST1009579). PM acknowledges the French agency CNES. SRS works on the NEOShield Project funded under the European Commission’s FP7 program agreement No. 282703. SM acknowledges support from the Center for Theory and Computation at U Maryland and the Dundee Fellowship at U Dundee. Most simulations were performed using the YORP cluster in the Dept. of Astronomy at U Maryland and on the Deepthought High-Performance Computing Cluster at U Maryland.References: [1] Richardson, D.C. et al. 2000, Icarus 143, 45; [2] Stadel, J. 2001, Ph.D. Thesis, U Washington; [3] Schwartz, S.R. et al. 2012, Gran
Resolution requirements for numerical simulations of transition
NASA Technical Reports Server (NTRS)
Zang, Thomas A.; Krist, Steven E.; Hussaini, M. Yousuff
1989-01-01
The resolution requirements for direct numerical simulations of transition to turbulence are investigated. A reliable resolution criterion is determined from the results of several detailed simulations of channel and boundary-layer transition.
Numerical simulation package for speckle metrology
NASA Astrophysics Data System (ADS)
Kornis, Janos; Bokor, Nandor; Nemeth, Attila
1998-09-01
A computer program package for numerical simulation of speckle phenomena has been developed. It is suitable for simulating both objective and subjective speckle effects in various optical setups. Several simulation results are presented in this paper. The simulations was made in UNIX and Windows NT environment.
Numerical Simulation of Turbulent Fluid Flows
NASA Technical Reports Server (NTRS)
Leonard, A.
1983-01-01
Numerical simulation of turbulent flows is discussed. Computational requirements for the direct simulaton of turbulence, simulation of arbitrary homogeneous flows, an expansion technique for wall bounded flows with application to pipe flow, and possibilities of flow representations or modeling techniques that allow the simulation of high Reynolds number flows with a relatively small number of dependent variables are included.
Numerical simulation of heat exchanger
Sha, W.T.
1985-01-01
Accurate and detailed knowledge of the fluid flow field and thermal distribution inside a heat exchanger becomes invaluable as a large, efficient, and reliable unit is sought. This information is needed to provide proper evaluation of the thermal and structural performance characteristics of a heat exchanger. It is to be noted that an analytical prediction method, when properly validated, will greatly reduce the need for model testing, facilitate interpolating and extrapolating test data, aid in optimizing heat-exchanger design and performance, and provide scaling capability. Thus tremendous savings of cost and time are realized. With the advent of large digital computers and advances in the development of computational fluid mechanics, it has become possible to predict analytically, through numerical solution, the conservation equations of mass, momentum, and energy for both the shellside and tubeside fluids. The numerical modeling technique will be a valuable, cost-effective design tool for development of advanced heat exchangers.
Numerical simulation of conservation laws
NASA Technical Reports Server (NTRS)
Chang, Sin-Chung; To, Wai-Ming
1992-01-01
A new numerical framework for solving conservation laws is being developed. This new approach differs substantially from the well established methods, i.e., finite difference, finite volume, finite element and spectral methods, in both concept and methodology. The key features of the current scheme include: (1) direct discretization of the integral forms of conservation laws, (2) treating space and time on the same footing, (3) flux conservation in space and time, and (4) unified treatment of the convection and diffusion fluxes. The model equation considered in the initial study is the standard one dimensional unsteady constant-coefficient convection-diffusion equation. In a stability study, it is shown that the principal and spurious amplification factors of the current scheme, respectively, are structurally similar to those of the leapfrog/DuFort-Frankel scheme. As a result, the current scheme has no numerical diffusion in the special case of pure convection and is unconditionally stable in the special case of pure diffusion. Assuming smooth initial data, it will be shown theoretically and numerically that, by using an easily determined optimal time step, the accuracy of the current scheme may reach a level which is several orders of magnitude higher than that of the MacCormack scheme, with virtually identical operation count.
Direct Numerical Simulations of Transient Dispersion
NASA Astrophysics Data System (ADS)
Porter, M.; Valdes-Parada, F.; Wood, B.
2008-12-01
Transient dispersion is important in many engineering applications, including transport in porous media. A common theoretical approach involves upscaling the micro-scale mass balance equations for convection- diffusion to macro-scale equations that contain effective medium quantities. However, there are a number of assumptions implicit in the various upscaling methods. For example, results obtained from volume averaging are often dependent on a given set of length and time scale constraints. Additionally, a number of the classical models for dispersion do not fully capture the early-time dispersive behavior of the solute for a general set of initial conditions. In this work, we present direct numerical simulations of micro-scale transient mass balance equations for convection-diffusion in both capillary tubes and porous media. Special attention is paid to analysis of the influence of a new time- decaying coefficient that filters the effects of the initial conditions. The direct numerical simulations were compared to results obtained from solving the closure problem associated with volume averaging. These comparisons provide a quantitative measure of the significance of (1) the assumptions implicit in the volume averaging method and (2) the importance of the early-time dispersive behavior of the solute due to various initial conditions.
Direct numerical simulation of incompressible axisymmetric flows
NASA Technical Reports Server (NTRS)
Loulou, Patrick
1994-01-01
In the present work, we propose to conduct direct numerical simulations (DNS) of incompressible turbulent axisymmetric jets and wakes. The objectives of the study are to understand the fundamental behavior of axisymmetric jets and wakes, which are perhaps the most technologically relevant free shear flows (e.g. combuster injectors, propulsion jet). Among the data to be generated are various statistical quantities of importance in turbulence modeling, like the mean velocity, turbulent stresses, and all the terms in the Reynolds-stress balance equations. In addition, we will be interested in the evolution of large-scale structures that are common in free shear flow. The axisymmetric jet or wake is also a good problem in which to try the newly developed b-spline numerical method. Using b-splines as interpolating functions in the non-periodic direction offers many advantages. B-splines have local support, which leads to sparse matrices that can be efficiently stored and solved. Also, they offer spectral-like accuracy that are C(exp O-1) continuous, where O is the order of the spline used; this means that derivatives of the velocity such as the vorticity are smoothly and accurately represented. For purposes of validation against existing results, the present code will also be able to simulate internal flows (ones that require a no-slip boundary condition). Implementation of no-slip boundary condition is trivial in the context of the b-splines.
Numerical tools for atomistic simulations.
Fang, H.; Gullett, Philip Michael; Slepoy, Alexander; Horstemeyer, Mark F.; Baskes, Michael I.; Wagner, Gregory John; Li, Mo
2004-01-01
The final report for a Laboratory Directed Research and Development project entitled 'Parallel Atomistic Computing for Failure Analysis of Micromachines' is presented. In this project, atomistic algorithms for parallel computers were developed to assist in quantification of microstructure-property relations related to weapon micro-components. With these and other serial computing tools, we are performing atomistic simulations of various sizes, geometries, materials, and boundary conditions. These tools provide the capability to handle the different size-scale effects required to predict failure. Nonlocal continuum models have been proposed to address this problem; however, they are phenomenological in nature and are difficult to validate for micro-scale components. Our goal is to separately quantify damage nucleation, growth, and coalescence mechanisms to provide a basis for macro-scale continuum models that will be used for micromachine design. Because micro-component experiments are difficult, a systematic computational study that employs Monte Carlo methods, molecular statics, and molecular dynamics (EAM and MEAM) simulations to compute continuum quantities will provide mechanism-property relations associated with the following parameters: specimen size, number of grains, crystal orientation, strain rates, temperature, defect nearest neighbor distance, void/crack size, chemical state, and stress state. This study will quantify sizescale effects from nanometers to microns in terms of damage progression and thus potentially allow for optimized micro-machine designs that are more reliable and have higher fidelity in terms of strength. In order to accomplish this task, several atomistic methods needed to be developed and evaluated to cover the range of defects, strain rates, temperatures, and sizes that a material may see in micro-machines. Therefore we are providing a complete set of tools for large scale atomistic simulations that include pre-processing of
Numerical simulation of excited jet mixing layers
NASA Astrophysics Data System (ADS)
Scott, J. N.; Hankey, W. L.
1987-01-01
A numerical simulation of unsteady flow in jet mixing layers, both with and without external excitation, has been performed by solving the time-dependent compressible Navier-Stokes equations. Computations were performed on a CRAY X-MP computer using MacCormick's explicit finite difference algorithm. Different excitation methods were investigated and were shown to be very effective in controlling the well organized periodic production, shedding and pairing of large scale vortex structures. It is found that pressure excitation was generally more effective than temperature excitation, and that grid refinement results in substantial improvement in the resolution of unsteady features. The location and orientation, in addition to the frequency, of the excitation source are shown to have a significant influence on the production and interaction of large scale vortex structures in the jet mixing layer.
Numerical Simulations of Thermographic Responses in Composites
NASA Technical Reports Server (NTRS)
Winfree, William P.; Cramer, K. Elliot; Zalameda, Joseph N.; Howell, Patricia A.
2015-01-01
Numerical simulations of thermographic responses in composite materials have been a useful for evaluating and optimizing thermographic analysis techniques. Numerical solutions are particularly beneficial for thermographic techniques, since the fabrication of specimens with realistic flaws is difficult. Simulations are presented with different ply layups that incorporated the anisotropic thermal properties that exist in each ply. The results are compared to analytical series solutions and thermal measurements on composites with flat bottom holes and delaminations.
Numerical simulations of pendant droplets
NASA Astrophysics Data System (ADS)
Pena, Carlos; Kahouadji, Lyes; Matar, Omar; Chergui, Jalel; Juric, Damir; Shin, Seungwon
2015-11-01
We simulate the evolution of a three-dimensional pendant droplet through pinch-off using a new parallel two-phase flow solver called BLUE. The parallelization of the code is based on the technique of algebraic domain decomposition where the velocity field is solved by a parallel GMRes method for the viscous terms and the pressure by a parallel multigrid/GMRes method. Communication is handled by MPI message passing procedures. The method for the treatment of the fluid interfaces uses a hybrid Front Tracking/Level Set technique which defines the interface both by a discontinuous density field as well as by a local triangular Lagrangian mesh. This structure allows the interface to undergo large deformations including the rupture and coalescence of fluid interfaces. EPSRC Programme Grant, MEMPHIS, EP/K0039761/1.
Numerical Simulation of Nanostructure Growth
NASA Technical Reports Server (NTRS)
Hwang, Helen H.; Bose, Deepak; Govindan, T. R.; Meyyappan, M.
2004-01-01
Nanoscale structures, such as nanowires and carbon nanotubes (CNTs), are often grown in gaseous or plasma environments. Successful growth of these structures is defined by achieving a specified crystallinity or chirality, size or diameter, alignment, etc., which in turn depend on gas mixture ratios. pressure, flow rate, substrate temperature, and other operating conditions. To date, there has not been a rigorous growth model that addresses the specific concerns of crystalline nanowire growth, while demonstrating the correct trends of the processing conditions on growth rates. Most crystal growth models are based on the Burton, Cabrera, and Frank (BCF) method, where adatoms are incorporated into a growing crystal at surface steps or spirals. When the supersaturation of the vapor is high, islands nucleate to form steps, and these steps subsequently spread (grow). The overall bulk growth rate is determined by solving for the evolving motion of the steps. Our approach is to use a phase field model to simulate the growth of finite sized nanowire crystals, linking the free energy equation with the diffusion equation of the adatoms. The phase field method solves for an order parameter that defines the evolving steps in a concentration field. This eliminates the need for explicit front tracking/location, or complicated shadowing routines, both of which can be computationally expensive, particularly in higher dimensions. We will present results demonstrating the effect of process conditions, such as substrate temperature, vapor supersaturation, etc. on the evolving morphologies and overall growth rates of the nanostructures.
NUMERICAL SIMULATIONS OF SPICULE ACCELERATION
Guerreiro, N.; Carlsson, M.; Hansteen, V. E-mail: mats.carlsson@astro.uio.no
2013-04-01
Observations in the H{alpha} line of hydrogen and the H and K lines of singly ionized calcium on the solar limb reveal the existence of structures with jet-like behavior, usually designated as spicules. The driving mechanism for such structures remains poorly understood. Sterling et al. shed some light on the problem mimicking reconnection events in the chromosphere with a one-dimensional code by injecting energy with different spatial and temporal distributions and tracing the thermodynamic evolution of the upper chromospheric plasma. They found three different classes of jets resulting from these injections. We follow their approach but improve the physical description by including non-LTE cooling in strong spectral lines and non-equilibrium hydrogen ionization. Increased cooling and conversion of injected energy into hydrogen ionization energy instead of thermal energy both lead to weaker jets and smaller final extent of the spicules compared with Sterling et al. In our simulations we find different behavior depending on the timescale for hydrogen ionization/recombination. Radiation-driven ionization fronts also form.
The Beam Break-Up Numerical Simulator
Travish, G.A.
1989-11-01
Beam Break-Up (BBU) is a severe constraint in accelerator design, limiting beam current and quality. The control of BBU has become the focus of much research in the design of the next generation collider, recirculating and linear induction accelerators and advanced accelerators. Determining the effect on BBU of modifications to cavities, the focusing elements or the beam is frequently beyond the ability of current analytic models. A computer code was written to address this problem. The Beam Break-Up Numerical Simulator (BBUNS) was designed to numerically solve for beam break-up (BBU) due to an arbitrary transverse wakefield. BBUNS was developed to be as user friendly as possible on the Cray computer series. The user is able to control all aspects of input and output by using a single command file. In addition, the wakefield is specified by the user and read in as a table. The program can model energy variations along and within the beam, focusing magnetic field profiles can be specified, and the graphical output can be tailored. In this note we discuss BBUNS, its structure and application. Included are detailed instructions, examples and a sample session of BBUNS. This program is available for distribution. 50 refs., 18 figs., 5 tabs.
Numerical simulation of gravitational lenses
NASA Astrophysics Data System (ADS)
Cherniak, Yakov
Gravitational lens is a massive body or system of bodies with gravitational field that bends directions of light rays propagating nearby. This may cause an observer to see multiple images of a light source, e.g. a star, if there is a gravitational lens between the star and the observer. Light rays that form each individual image may have different distances to travel, which creates time delays between them. In complex gravitational fields generated by the system of stars, analytical calculation of trajectories and light intensities is virtually impossible. Gravitational lens of two massive bodies, one behind another, are able to create four images of a light source. Furthermore, the interaction between the four light beams can form a complicated interference pattern. This article provides a brief theory of light behavior in a gravitational field and describes the algorithm for constructing the trajectories of light rays in a gravitational field, calculating wave fronts and interference pattern of light. If you set gravitational field by any number of transparent and non- transparent objects (stars) and set emitters of radio wave beams, it is possible to calculate the interference pattern in any region of space. The proposed method of calculation can be applied even in the case of the lack of continuity between the position of the emitting stars and position of the resulting image. In this paper we propose methods of optimization, as well as solutions for some problems arising in modeling of gravitational lenses. The simulation of light rays in the sun's gravitational field is taken as an example. Also caustic is constructed for objects with uniform mass distribution.
Numerical Simulations of High Enthalpy Pulse Facilities
NASA Technical Reports Server (NTRS)
Wilson, Gregory J.; Edwards, Thomas A. (Technical Monitor)
1995-01-01
Axisymmetric flows within shock tubes and expansion tubes are simulated including the effects of finite rate chemistry and both laminar and turbulent boundary layers. The simulations demonstrate the usefulness of computational fluid dynamics for characterizing the flows in high enthalpy pulse facilities. The modeling and numerical requirements necessary to simulate these flows accurately are also discussed. Although there is a large body of analysis which explains and quantifies the boundary layer growth between the shock and the interface in a shock tube, there is a need for more detailed solutions. Phenomena such as thermochemical nonequilibrium. or turbulent transition behind the shock are excluded in the assumptions of Mirels' analysis. Additionally there is inadequate capability to predict the influence of the boundary layer on the expanded gas behind the interface. Quantifying the gas in this region is particularly important in expansion tubes because it is the location of the test gas. Unsteady simulations of the viscous flow in shock tubes are computationally expensive because they must follow features such as a shock wave over the length of the facility and simultaneously resolve the small length scales within the boundary layer. As a result, efficient numerical algorithms are required. The numerical approach of the present work is to solve the axisymmetric gas dynamic equations using an finite-volume formulation where the inviscid fluxes are computed with a upwind TVD scheme. Multiple species equations are included in the formulation so that finite-rate chemistry can be modeled. The simulations cluster grid points at the shock and interface and translate this clustered grid with these features to minimize numerical errors. The solutions are advanced at a CFL number of less than one based on the inviscid gas dynamics. To avoid limitations on the time step due to the viscous terms, these terms are treated implicitly. This requires a block tri
Hybrid Numerical Simulations Of Planetesimal Accretion
NASA Astrophysics Data System (ADS)
Marzari, Francesco; Weidenschilling, S. J.
2006-09-01
The multi-zone simulation code modelling the accretion of planetesimals into planets (Spaute et al. 1991, Icarus 92, 147; Weidenschilling et al. 1997, ICARUS 128, 429) includes a statistical continuum of small bodies in logarithmic mass bins, while large bodies are discrete objects with individual masses and orbits. Formerly, gravitational interactions between large planetary embryos were treated by statistical scattering. The code has now been updated to properly handle the orbits of protoplanets in a deterministic way. The trajectories of the larger bodies are numerically computed with the symplectic integrator SyYMBA. The additional forces acting on the protoplanets due to collisions with smaller planetesimals and their gravitational perturbations, including dynamical friction, as well as gas drag and tidal interaction with the solar nebula, are incorporated in the N-body algorithm by applying a further step in the leap-frog structure of the SyMBA integrator. The changes in the orbital elements of the large bodies, computed in the stochastic part of the code with a Monte Carlo approach, are applied for half a timestep before and after the N-body Hamiltonian propagation as suggested in Lee & Peale (ApJ 567, 596, 2002). With this code we intend to study the effect of dynamical friction on terrestrial planet formation and the accretion of planetary cores in the outer solar system. We will present preliminary results of simulations performed with the updated code.
Boundary acquisition for setup of numerical simulation
Diegert, C.
1997-12-31
The author presents a work flow diagram that includes a path that begins with taking experimental measurements, and ends with obtaining insight from results produced by numerical simulation. Two examples illustrate this path: (1) Three-dimensional imaging measurement at micron scale, using X-ray tomography, provides information on the boundaries of irregularly-shaped alumina oxide particles held in an epoxy matrix. A subsequent numerical simulation predicts the electrical field concentrations that would occur in the observed particle configurations. (2) Three-dimensional imaging measurement at meter scale, again using X-ray tomography, provides information on the boundaries fossilized bone fragments in a Parasaurolophus crest recently discovered in New Mexico. A subsequent numerical simulation predicts acoustic response of the elaborate internal structure of nasal passageways defined by the fossil record. The author must both add value, and must change the format of the three-dimensional imaging measurements before the define the geometric boundary initial conditions for the automatic mesh generation, and subsequent numerical simulation. The author applies a variety of filters and statistical classification algorithms to estimate the extents of the structures relevant to the subsequent numerical simulation, and capture these extents as faceted geometries. The author will describe the particular combination of manual and automatic methods used in the above two examples.
3D Numerical simulations of oblique subduction
NASA Astrophysics Data System (ADS)
Malatesta, C.; Gerya, T.; Scambelluri, M.; Crispini, L.; Federico, L.; Capponi, G.
2012-04-01
In the past 2D numerical studies (e.g. Gerya et al., 2002; Gorczyk et al., 2007; Malatesta et al., 2012) provided evidence that during intraoceanic subduction a serpentinite channel forms above the downgoing plate. This channel forms as a result of hydration of the mantle wedge by uprising slab-fluids. Rocks buried at high depths are finally exhumed within this buoyant low-viscosity medium. Convergence rate in these 2D models was described by a trench-normal component of velocity. Several present and past subduction zones worldwide are however driven by oblique convergence between the plates, where trench-normal motion of the subducting slab is coupled with trench-parallel displacement of the plates. Can the exhumation mechanism and the exhumation rates of high-pressure rocks be affected by the shear component of subduction? And how uprise of these rocks can vary along the plate margin? We tried to address these questions performing 3D numerical models that simulate an intraoceanic oblique subduction. The models are based on thermo-mechanical equations that are solved with finite differences method and marker-in-cell techniques combined with multigrid approach (Gerya, 2010). In most of the models a narrow oceanic basin (500 km-wide) surrounded by continental margins is depicted. The basin is floored by either layered or heterogeneous oceanic lithosphere with gabbro as discrete bodies in serpentinized peridotite and a basaltic layer on the top. A weak zone in the mantle is prescribed to control the location of subduction initiation and therefore the plate margins geometry. Finally, addition of a third dimension in the simulations allowed us to test the role of different plate margin geometries on oblique subduction dynamics. In particular in each model we modified the dip angle of the weak zone and its "lateral" geometry (e.g. continuous, segmented). We consider "continuous" weak zones either parallel or increasingly moving away from the continental margins
Study of Cardiac Defibrillation Through Numerical Simulations
NASA Astrophysics Data System (ADS)
Bragard, J.; Marin, S.; Cherry, E. M.; Fenton, F. H.
Three-dimensional numerical simulations of the defibrillation problem are presented. In particular, in this study we use the rabbit ventricular geometry as a realistic model system for evaluating the efficacy of defibrillatory shocks. Statistical data obtained from the simulations were analyzed in term of a dose-response curve. Good quantitative agreement between our numerical results and clinically relevant values is obtained. An electric field strength of about 6.6 V/cm indicates a fifty percent probability of successful defibrillation for a 12-ms monophasic shock. Our validated model will be useful for optimizing defibrillation protocols.
Numerical simulations of cryogenic cavitating flows
NASA Astrophysics Data System (ADS)
Kim, Hyunji; Kim, Hyeongjun; Min, Daeho; Kim, Chongam
2015-12-01
The present study deals with a numerical method for cryogenic cavitating flows. Recently, we have developed an accurate and efficient baseline numerical scheme for all-speed water-gas two-phase flows. By extending such progress, we modify the numerical dissipations to be properly scaled so that it does not show any deficiencies in low Mach number regions. For dealing with cryogenic two-phase flows, previous EOS-dependent shock discontinuity sensing term is replaced with a newly designed EOS-free one. To validate the proposed numerical method, cryogenic cavitating flows around hydrofoil are computed and the pressure and temperature depression effect in cryogenic cavitation are demonstrated. Compared with Hord's experimental data, computed results are turned out to be satisfactory. Afterwards, numerical simulations of flow around KARI turbopump inducer in liquid rocket are carried out under various flow conditions with water and cryogenic fluids, and the difference in inducer flow physics depending on the working fluids are examined.
Direct Numerical Simulations of Plunging Airfoils
2010-01-07
Schmidt and E Turkel, Numerical Solutions of the Euler Equations by Finite Volume Methods Using Runge-Kutta Time-Stepping Schemes, AIAA paper 81-1259...Ω ( p ∂vj ∂xj − σij ∂v i ∂xj ) dV (4) Definition 1 A numerical scheme to solve the viscous Navier-Stokes equations is said to be Kinetic Energy...Direct Numerical Simulations of Plunging Airfoils Yves Allaneau∗ and Antony Jameson† Stanford University, Stanford, California, 94305, USA This paper
Numerically simulating the sandwich plate system structures
NASA Astrophysics Data System (ADS)
Feng, Guo-Qing; Li, Gang; Liu, Zhi-Hui; Niu, Huai-Lei; Li, Chen-Feng
2010-09-01
Sandwich plate systems (SPS) are advanced materials that have begun to receive extensive attention in naval architecture and ocean engineering. At present, according to the rules of classification societies, a mixture of shell and solid elements are required to simulate an SPS. Based on the principle of stiffness decomposition, a new numerical simulation method for shell elements was proposed. In accordance with the principle of stiffness decomposition, the total stiffness can be decomposed into the bending stiffness and shear stiffness. Displacement and stress response related to bending stiffness was calculated with the laminated shell element. Displacement and stress response due to shear was calculated by use of a computational code write by FORTRAN language. Then the total displacement and stress response for the SPS was obtained by adding together these two parts of total displacement and stress. Finally, a rectangular SPS plate and a double-bottom structure were used for a simulation. The results show that the deflection simulated by the elements proposed in the paper is larger than the same simulated by solid elements and the analytical solution according to Hoff theory and approximate to the same simulated by the mixture of shell-solid elements, and the stress simulated by the elements proposed in the paper is approximate to the other simulating methods. So compared with calculations based on a mixture of shell and solid elements, the numerical simulation method given in the paper is more efficient and easier to do.
Reliability of Complex Nonlinear Numerical Simulations
NASA Technical Reports Server (NTRS)
Yee, H. C.
2004-01-01
This work describes some of the procedure to ensure a higher level of confidence in the predictability and reliability (PAR) of numerical simulation of multiscale complex nonlinear problems. The focus is on relating PAR of numerical simulations with complex nonlinear phenomena of numerics. To isolate sources of numerical uncertainties, the possible discrepancy between the chosen partial differential equation (PDE) model and the real physics and/or experimental data is set aside. The discussion is restricted to how well numerical schemes can mimic the solution behavior of the underlying PDE model for finite time steps and grid spacings. The situation is complicated by the fact that the available theory for the understanding of nonlinear behavior of numerics is not at a stage to fully analyze the nonlinear Euler and Navier-Stokes equations. The discussion is based on the knowledge gained for nonlinear model problems with known analytical solutions to identify and explain the possible sources and remedies of numerical uncertainties in practical computations. Examples relevant to turbulent flow computations are included.
Numerical Simulation of Heliospheric Transients Approaching Geospace
2009-12-01
12/15/08 – 12/14/09 Numerical Simulation of Heliospheric Transients Approaching Geospace Report by Dusan Odstrcil, University of Colorado...simulations of heliospheric transients approaching geospace . The project was supervised by Dr. Dusan Odstrcil at the University of Colorado (CU...plays a key role in the prediction accuracy of heliospheric transients approaching geospace . This report presents main results achieved within the
Numerical propulsion system simulation: An interdisciplinary approach
NASA Technical Reports Server (NTRS)
Nichols, Lester D.; Chamis, Christos C.
1991-01-01
The tremendous progress being made in computational engineering and the rapid growth in computing power that is resulting from parallel processing now make it feasible to consider the use of computer simulations to gain insights into the complex interactions in aerospace propulsion systems and to evaluate new concepts early in the design process before a commitment to hardware is made. Described here is a NASA initiative to develop a Numerical Propulsion System Simulation (NPSS) capability.
Numerical propulsion system simulation - An interdisciplinary approach
NASA Technical Reports Server (NTRS)
Nichols, Lester D.; Chamis, Christos C.
1991-01-01
The tremendous progress being made in computational engineering and the rapid growth in computing power that is resulting from parallel processing now make it feasible to consider the use of computer simulations to gain insights into the complex interactions in aerospace propulsion systems and to evaluate new concepts early in the design process before a commitment to hardware is made. Described here is a NASA initiative to develop a Numerical Propulsion System Simulation (NPSS) capability.
IRIS Spectrum Line Plot - Numeric Simulation
This video is similar to the IRIS Spectrum Line Plot video at http://www.youtube.com/watch?v=E4V_vF3qMSI, but now as derived from a numerical simulation of the Sun by the University of Oslo. Credit...
Numerical Simulation of a Convective Turbulence Encounter
NASA Technical Reports Server (NTRS)
Proctor, Fred H.; Hamilton, David W.; Bowles, Roland L.
2002-01-01
A numerical simulation of a convective turbulence event is investigated and compared with observational data. The numerical results show severe turbulence of similar scale and intensity to that encountered during the test flight. This turbulence is associated with buoyant plumes that penetrate the upper-level thunderstorm outflow. The simulated radar reflectivity compares well with that obtained from the aircraft's onboard radar. Resolved scales of motion as small as 50 m are needed in order to accurately diagnose aircraft normal load accelerations. Given this requirement, realistic turbulence fields may be created by merging subgrid-scales of turbulence to a convective-cloud simulation. A hazard algorithm for use with model data sets is demonstrated. The algorithm diagnoses the RMS normal loads from second moments of the vertical velocity field and is independent of aircraft motion.
Linking Paleomagnetic Observations to Numerical Dynamo Simulations
NASA Astrophysics Data System (ADS)
Constable, C.
2006-05-01
Over the past decade a number of numerical dynamo simulations have successfully mimicked properties considered important for the geomagnetic field. These include predominantly dipolar surface field structures and the ability to reverse polarity, along with some sensitivities to the presence and size of a conductive inner core and to spatial variations in core-mantle boundary conditions. The surface manifestations of geomagnetic excursions and reversals in these models are spatially and temporally variable as in paleomagnetic data. Detailed comparisons with paleosecular variation models lead to less satisfying comparisons in many cases. A huge advantage in studying the geodynamo from a numerical perspective is the detailed knowledge available about physical processes going on throughout the simulated core, instead of non-unique interpretations of inexact and incomplete actual surface observations. The well-known disadvantage to such simulations is that the parameter regime in which they operate is still far from that of Earth (resulting in viscous boundary layers that are too thick) despite concerted efforts to approach the appropriate numerical regime. The importance of these limitations in reproducing Earth-like geomagnetic field variations remains in doubt, but an optimistic view is that although the dynamics at short time scales may not be realistic, one can hope for viable comparisons on sufficiently long time scales, with the definition of sufficiently long dependent on the parameter regime. Both paleomagnetic and numerical studies appear to support the idea that the same kind of processes contribute to very long term secular variations, geomagnetic excursions, and reversals. This work attempts to link the statistical descriptions of long term paleomagnetic observations with physical descriptions from numerical simulations, and identify conditions associated with geomagnetic reversals and excursions.
Numerical Simulation of Aircraft Trailing Vortices
NASA Technical Reports Server (NTRS)
Proctor, Fred H.; Switzer, George F.
2000-01-01
The increase in air traffic is currently outpacing the development of new airport runways. This is leading to greater air traffic congestion, resulting in costly delays and cancellations. The National Aeronautics and Space Administration (NASA) under its Terminal Area Productivity (TAP) program is investigating new technologies that will allow increased airport capacity while maintaining the present standards for safety. As an element of this program, the Aircraft Vortex Spacing System (AVOSS) is being demonstrated in July 2000, at Dallas Ft-Worth Airport. This system allows reduced aircraft separations, thus increasing the arrival and departure rates, while insuring that wake vortices from a leading aircraft do not endanger trailing aircraft. The system uses predictions or wake vortex position and strength based on input from the current weather state. This prediction is accomplished by a semi-empirical model developed from theory, field observations, and relationships derived from numerical wake vortex simulations. Numerical experiments with a Large Eddy Simulation (LES) model are being conducted in order to provide guidance for the enhancement of these prediction algorithms. The LES Simulations of wake vortices are carried out with NASA's Terminal Area Simulation System (TASS). Previous wake vortex investigations with TASS are described. The primary objective of these numerical studies has been to quantify vortex transport and decay in relation to atmospheric variables. This paper summarizes many of the previous investigations with the TASS model and presents some new results regarding the onset of wake vortex decay.
Numerical Simulation of a Tornado Generating Supercell
NASA Technical Reports Server (NTRS)
Proctor, Fred H.; Ahmad, Nashat N.; LimonDuparcmeur, Fanny M.
2012-01-01
The development of tornadoes from a tornado generating supercell is investigated with a large eddy simulation weather model. Numerical simulations are initialized with a sounding representing the environment of a tornado producing supercell that affected North Carolina and Virginia during the Spring of 2011. The structure of the simulated storm was very similar to that of a classic supercell, and compared favorably to the storm that affected the vicinity of Raleigh, North Carolina. The presence of mid-level moisture was found to be important in determining whether a supercell would generate tornadoes. The simulations generated multiple tornadoes, including cyclonic-anticyclonic pairs. The structure and the evolution of these tornadoes are examined during their lifecycle.
Issues in Numerical Simulation of Fire Suppression
Tieszen, S.R.; Lopez, A.R.
1999-04-12
This paper outlines general physical and computational issues associated with performing numerical simulation of fire suppression. Fire suppression encompasses a broad range of chemistry and physics over a large range of time and length scales. The authors discuss the dominant physical/chemical processes important to fire suppression that must be captured by a fire suppression model to be of engineering usefulness. First-principles solutions are not possible due to computational limitations, even with the new generation of tera-flop computers. A basic strategy combining computational fluid dynamics (CFD) simulation techniques with sub-grid model approximations for processes that have length scales unresolvable by gridding is presented.
Numerical Simulation in a Supercirtical CFB Boiler
NASA Astrophysics Data System (ADS)
Zhang, Yanjun; Gaol, Xiang; Luo, Zhongyang; Jiang, Xiaoguo
The dimension of the hot circulation loop of the supercritical CFB boiler is large, and there are many unknowns and challenges that should be identified and resolved during the development. In order to realize a reasonable and reliable design of the hot circulation loop, numerical simulation of gas-solid flow in a supercritical CFB boiler was conducted by using FLUENT software. The working condition of hot circulation loop flow field, gas-solid flow affected by three unsymmetrical cyclones, air distribution and pressure drop in furnace were analyzed. The simulation results showed that the general arrangement of the 600MWe supercritical CFB boiler is reasonable.
Numerical simulations of catastrophic disruption: Recent results
NASA Technical Reports Server (NTRS)
Benz, W.; Asphaug, E.; Ryan, E. V.
1994-01-01
Numerical simulations have been used to study high velocity two-body impacts. In this paper, a two-dimensional Largrangian finite difference hydro-code and a three-dimensional smooth particle hydro-code (SPH) are described and initial results reported. These codes can be, and have been, used to make specific predictions about particular objects in our solar system. But more significantly, they allow us to explore a broad range of collisional events. Certain parameters (size, time) can be studied only over a very restricted range within the laboratory; other parameters (initial spin, low gravity, exotic structure or composition) are difficult to study at all experimentally. The outcomes of numerical simulations lead to a more general and accurate understanding of impacts in their many forms.
Numerical Simulation of Confined Multiple Transverse Jets
2012-06-25
equations. The solutions of three commercial RANS solvers, Fluent, STAR - CCM +, and CFD++, are compared to experimental data and large-eddy simulation...Objective: o Validate commercial CFD codes—Fluent, CFD++, and Star - ccm ++ against experimental data and an LES results o Provide numerical data for...Pairs Diluent Flow X = 2d: X = 5d: X = 10d: Fluent STAR - CCM + CFD++ Axial locations (d = inj. dia.) Experiment LES (ONERA) Distribution A: Approved
Numerical simulation of swept-wing flows
NASA Technical Reports Server (NTRS)
Reed, Helen L.
1991-01-01
The transition process characteristics of flows over swept wings were computationally modelled. The crossflow instability and crossflow/T-S wave interaction are analyzed through the numerical solution of the full three dimensional Navier-Stokes equations including unsteadiness, curvature, and sweep. The leading-edge region of a swept wing is considered in a three-dimensional spatial simulation with random disturbances as the initial conditions.
Numerical simulation of magma energy extraction
Hickox, C.E.
1991-01-01
The Magma Energy Program is a speculative endeavor regarding practical utility of electrical power production from the thermal energy which reside in magma. The systematic investigation has identified an number of research areas which have application to the utilization of magma energy and to the field of geothermal energy. Eight topics were identified which involve thermal processes and which are areas for the application of the techniques of numerical simulation. These areas are: (1) two-phase flow of the working fluid in the wellbore, (2) thermodynamic cycles for the production of electrical power, (3) optimization of the entire system, (4) solidification and fracturing of the magma caused by the energy extraction process, (5) heat transfer and fluid flow within an open, direct-contact, heat-exchanger, (6) thermal convection in the overlying geothermal region, (7) thermal convection within the magma body, and (8) induced natural convection near the thermal energy extraction device. Modeling issues have been identified which will require systematic investigation in order to develop the most appropriate strategies for numerical simulation. It appears that numerical simulations will be of ever increasing importance to the study of geothermal processes as the size and complexity of the systems of interest increase. It is anticipated that, in the future, greater emphasis will be placed on the numerical simulation of large-scale, three-dimensional, transient, mixed convection in viscous flows and porous media. Increased computational capabilities, e.g.; massively parallel computers, will allow for the detailed study of specific processes in fractured media, non-Darcy effects in porous media, and non-Newtonian effects. 23 refs., 13 figs., 1 tab.
On numerical simulation of viscous flows
NASA Astrophysics Data System (ADS)
Ghia, K. N.; Ghia, U.
Numerical simulation methods for viscous incompressible laminar flows are reviewed, with a focus on finite-difference schemes. The approaches to high/moderate-Reynolds-number flows (strong-viscous-interaction model or single sets of equations) and the factors affecting the versatility, reliability, and accuracy of the analysis algorithms are considered; approximate-factorization implicit solution techniques for low-Reynolds-number flows are discussed; and the procedures used in a number of specific problems are indicated.
Direct Numerical Simulation of the Leidenfrost Effect
NASA Astrophysics Data System (ADS)
Tanguy, Sebastien; Rueda Villegas, Lucia; Fluid Mechanics Institute of Toulouse Team
2015-11-01
The development of numerical methods for the direct numerical simulation of two-phase flows with phase changes, is the main topic of this study. We propose a novel numerical method which allows dealing with both evaporation and boiling at the interface between a liquid and a gas. For instance it can occur for a Leidenfrost droplet; a water drop levitating above a hot plate which temperature is much higher than the boiling temperature. In this case, boiling occurs in the film of saturated vapor which is entrapped between the bottom of the drop and the plate, whereas the top of the water droplet evaporates in contact of ambient air. Thus, boiling and evaporation can occur simultaneously on different regions of the same liquid interface or occur successively at different times of the history of an evaporating droplet. Usual numerical methods are not able to perform computations in these transient regimes, therefore, we propose in this paper a novel numerical method to achieve this challenging task. Finally, we present several accurate validations against experimental results on Leidenfrost Droplets to strengthen the relevance of this new method.
Numerical recipes for mold filling simulation
Kothe, D.; Juric, D.; Lam, K.; Lally, B.
1998-07-01
Has the ability to simulate the filling of a mold progressed to a point where an appropriate numerical recipe achieves the desired results? If results are defined to be topological robustness, computational efficiency, quantitative accuracy, and predictability, all within a computational domain that faithfully represents complex three-dimensional foundry molds, then the answer unfortunately remains no. Significant interfacial flow algorithm developments have occurred over the last decade, however, that could bring this answer closer to maybe. These developments have been both evolutionary and revolutionary, will continue to transpire for the near future. Might they become useful numerical recipes for mold filling simulations? Quite possibly. Recent progress in algorithms for interface kinematics and dynamics, linear solution methods, computer science issues such as parallelization and object-oriented programming, high resolution Navier-Stokes (NS) solution methods, and unstructured mesh techniques, must all be pursued as possible paths toward higher fidelity mold filling simulations. A detailed exposition of these algorithmic developments is beyond the scope of this paper, hence the authors choose to focus here exclusively on algorithms for interface kinematics. These interface tracking algorithms are designed to model the movement of interfaces relative to a reference frame such as a fixed mesh. Current interface tracking algorithm choices are numerous, so is any one best suited for mold filling simulation? Although a clear winner is not (yet) apparent, pros and cons are given in the following brief, critical review. Highlighted are those outstanding interface tracking algorithm issues the authors feel can hamper the reliable modeling of today`s foundry mold filling processes.
Numerical Simulation of Fluid Mud Gravity Currents
NASA Astrophysics Data System (ADS)
Yilmaz, N. A.; Testik, F. Y.
2011-12-01
Fluid mud bottom gravity currents are simulated numerically using a commercial computational fluid dynamics software, ANSYS-Fluent. In this study, Eulerian-Eulerian multi-fluid method is selected since this method treats all phases in a multiphase system as interpenetrated continua. There are three different phases in the computational model constructed for this study: water, fluid mud, and air. Water and fluid mud are defined as two miscible fluids and the mass and momentum transfers between these two phases are taken into account. Fluid mud, which is a dense suspension of clay particles and water, is defined as a single-phase non-Newtonian fluid via user-defined-functions. These functions define the physical characteristics (density, viscosity, etc.) of the fluid mud and these characteristics vary with changing suspension concentration due to mass transfer between the fluid mud and the water phase. Results of this two-dimensional numerical model are verified with data obtained from experiments conducted in a laboratory flume with a lock-release set-up. Numerical simulations are currently being conducted to elucidate turbulent entrainment of ambient water into fluid mud gravity currents. This study is motivated by coastal dredge disposal operations.
A Numerical Simulation of the Density Oscilator
NASA Astrophysics Data System (ADS)
Hernandez Zapata, Sergio; Lopez Sanchez, Erick Javier; Ruiz Chavarria, Gerardo
2016-11-01
In this work we carry out a numerical simulation for the dynamics that originates when a fluid (salty water) is located on top of another less dense fluid (pure water) in the presence of gravity. This is an unstable situation that leads to the development of intercalating lines of descending salty water and ascending pure water. Another situation is studied where the fluids are in two containers joined by a small hole. In this case a time pattern of alternating flows develops leading to an oscillator. The study of the velocity field around the hole shows than in a certain interval of time it develops intercalating lines like in the former situation. An interesting result is the fact that when a given fluid is flowing in one direction a vorticity pattern develops in the other fluid. The Navier-Stokes, continuity and salt diffusion equations, are solved numerically in cylindrical coordinates, using a finite difference scheme in the axial and radial directions and a Fourier spectral method for the angular coordinate. On the other hand, the second order Adams-Bashfort method is used for the time evolution. The results are compared to a numerical simulation of a pedestrian oscillator we developed based on the Hebling and Molnar social force model. The authors want to acknowledge support by DGAPA-UNAM (Project PAPIIT IN-115315 "Ondas y estructuras coherentes en dinámica de fluidos".
Numerical Simulation of Two Phase Flows
NASA Technical Reports Server (NTRS)
Liou, Meng-Sing
2001-01-01
Two phase flows can be found in broad situations in nature, biology, and industry devices and can involve diverse and complex mechanisms. While the physical models may be specific for certain situations, the mathematical formulation and numerical treatment for solving the governing equations can be general. Hence, we will require information concerning each individual phase as needed in a single phase. but also the interactions between them. These interaction terms, however, pose additional numerical challenges because they are beyond the basis that we use to construct modern numerical schemes, namely the hyperbolicity of equations. Moreover, due to disparate differences in time scales, fluid compressibility and nonlinearity become acute, further complicating the numerical procedures. In this paper, we will show the ideas and procedure how the AUSM-family schemes are extended for solving two phase flows problems. Specifically, both phases are assumed in thermodynamic equilibrium, namely, the time scales involved in phase interactions are extremely short in comparison with those in fluid speeds and pressure fluctuations. Details of the numerical formulation and issues involved are discussed and the effectiveness of the method are demonstrated for several industrial examples.
Direct numerical simulation of hot jets
NASA Technical Reports Server (NTRS)
Jacob, Marc C.
1993-01-01
The ultimate motivation of this work is to investigate the stability of two dimensional heated jets and its implications for aerodynamic sound generation from data obtained with direct numerical simulations (DNS). As pointed out in our last report, these flows undergo two types of instabilities, convective or absolute, depending on their temperature. We also described the limits of earlier experimental and theoretical studies and explained why a numerical investigation could give us new insight into the physics of these instabilities. The aeroacoustical interest of these flows was also underlined. In order to reach this goal, we first need to succeed in the DNS of heated jets. Our past efforts have been focused on this issue which encountered several difficulties. Our numerical difficulties are directly related to the physical problem we want to investigate since these absolutely or almost absolutely unstable flows are by definition very sensitive to the smallest disturbances and are very likely to reach nonlinear saturation through a numerical feedback mechanism. As a result, it is very difficult to compute a steady laminar solution using a spatial DNS. A steady state was reached only for strongly co-flowed jets, but these flows are almost equivalent to two independent mixing layers. Thus they are far from absolute instability and have much lower growth rates.
Numerical simulation of real-world flows
NASA Astrophysics Data System (ADS)
Hayase, Toshiyuki
2015-10-01
Obtaining real flow information is important in various fields, but is a difficult issue because measurement data are usually limited in time and space, and computational results usually do not represent the exact state of real flows. Problems inherent in the realization of numerical simulation of real-world flows include the difficulty in representing exact initial and boundary conditions and the difficulty in representing unstable flow characteristics. This article reviews studies dealing with these problems. First, an overview of basic flow measurement methodologies and measurement data interpolation/approximation techniques is presented. Then, studies on methods of integrating numerical simulation and measurement, namely, four-dimensional variational data assimilation (4D-Var), Kalman filters (KFs), state observers, etc are discussed. The first problem is properly solved by these integration methodologies. The second problem can be partially solved with 4D-Var in which only initial and boundary conditions are control parameters. If an appropriate control parameter capable of modifying the dynamical structure of the model is included in the formulation of 4D-Var, unstable modes are properly suppressed and the second problem is solved. The state observer and KFs also solve the second problem by modifying mathematical models to stabilize the unstable modes of the original dynamical system by applying feedback signals. These integration methodologies are now applied in simulation of real-world flows in a wide variety of research fields. Examples are presented for basic fluid dynamics and applications in meteorology, aerospace, medicine, etc.
Study on the numerical schemes for hypersonic flow simulation
NASA Astrophysics Data System (ADS)
Nagdewe, S. P.; Shevare, G. R.; Kim, Heuy-Dong
2009-10-01
Hypersonic flow is full of complex physical and chemical processes, hence its investigation needs careful analysis of existing schemes and choosing a suitable scheme or designing a brand new scheme. The present study deals with two numerical schemes Harten, Lax, and van Leer with Contact (HLLC) and advection upstream splitting method (AUSM) to effectively simulate hypersonic flow fields, and accurately predict shock waves with minimal diffusion. In present computations, hypersonic flows have been modeled as a system of hyperbolic equations with one additional equation for non-equilibrium energy and relaxing source terms. Real gas effects, which appear typically in hypersonic flows, have been simulated through energy relaxation method. HLLC and AUSM methods are modified to incorporate the conservation laws for non-equilibrium energy. Numerical implementation have shown that non-equilibrium energy convect with mass, and hence has no bearing on the basic numerical scheme. The numerical simulation carried out shows good comparison with experimental data available in literature. Both numerical schemes have shown identical results at equilibrium. Present study has demonstrated that real gas effects in hypersonic flows can be modeled through energy relaxation method along with either AUSM or HLLC numerical scheme.
Numerical Simulation of Chemically Reacting Flows
2015-09-03
interest to the Air Force. 15. SUBJECT TERMS Numerical methods, Diffusion Flames, Adaptive Gridding, Velocity-Vorticity, Compact Methods 16...robust unst tions, and s ’ unstructur acobian, as g in 2012, th ploy a full convergenc ory-efficien potentially grid adapts , he computat...the multiple-scale discretizations are precomputed (each time the grid adapts ) to save CPU time later during residual formation, and that additional
Numerical simulation of platelet margination in microcirculation
NASA Astrophysics Data System (ADS)
Zhao, Hong; Shaqfeh, Eric
2009-11-01
The adhesion of platelets to vascular walls is the first step in clotting. This process critically depends on the preferential concentration of platelets near walls. The presence of red blood cells, which are the predominant blood constituents, is known to affect the steady state platelet concentration and the dynamic platelet margination, but the underlying mechanism is not well understood to-day. We use a direct numerical simulation to study the platelet margination process, with particular emphasis on the Stokesian hydrodynamic interactions among red cells, platelets, and vessel walls. Well-known mechanical models are used for the shearing and bending stiffness of red cell membranes, and the stiffer platelets are modeled as rigid discoids. A boundary integral formulation is used to solve the flow field, where the numerical solution procedure is accelerated by a parallel O(N N) smooth particle-mesh Ewald method. The effects of red cell hematocrit and deformability will be discussed.
Direct numerical simulation of chemically reacting turbulence
NASA Astrophysics Data System (ADS)
Miyauchi, Toshio; Tanahashi, Mamoru
In this paper, we present two results of direct numerical simulation of chemically reacting flows. One is direct numerical simulation of chemically reacting two-dimensional mixing layer and the other is direct numerical simulation of chemically reacting compressible isotropic turbulence. As for the mixing layer, a low Mach number approximation was used to take into account the variable density effects on the flow fields and to clarify the effects of heat release and density difference of a mean flow. In the case of density difference, expansion and baroclinic torque has a negative contribution to the local vorticity transport in the high density side and a positive contribution in the low density side which results in an asymmetric vortical structure structure. Thes density difference suppresses the growth of mixing layer and causes the overshoot of mean velocity only in the high density side which coincides with an experimental result. Coupling effects of heat release and desnity difference are also investigated. As for the homogeneous turbulence, fully compressible Navier-Stokes equations are solved to clarify the interaction between turbulence and chemical reaction in turbulent diffusion flame. The chemical reaction is suppressed by the increase of heat release because of the decrease of density and local Reynolds number. However, the decay of enstrophy with heat release is slower than that without heat release because of strong baroclinic torque which is generated near the reaction zone. Also, large amount of heat release causes increase in turbulent energy through the pressure dilatation term. The pressure dilatation term shows the periodic fluctuation which has an acoustic time scale. The fluctuation is enhanced by the heat release and travels in the turbulent field as pressure and dilatation waves.
Processing biobased polymers using plasticizers: Numerical simulations versus experiments
NASA Astrophysics Data System (ADS)
Desplentere, Frederik; Cardon, Ludwig; Six, Wim; Erkoç, Mustafa
2016-03-01
In polymer processing, the use of biobased products shows lots of possibilities. Considering biobased materials, biodegradability is in most cases the most important issue. Next to this, bio based materials aimed at durable applications, are gaining interest. Within this research, the influence of plasticizers on the processing of the bio based material is investigated. This work is done for an extrusion grade of PLA, Natureworks PLA 2003D. Extrusion through a slit die equipped with pressure sensors is used to compare the experimental pressure values to numerical simulation results. Additional experimental data (temperature and pressure data along the extrusion screw and die are recorded) is generated on a dr. Collin Lab extruder producing a 25mm diameter tube. All these experimental data is used to indicate the appropriate functioning of the numerical simulation tool Virtual Extrusion Laboratory 6.7 for the simulation of both the industrial available extrusion grade PLA and the compound in which 15% of plasticizer is added. Adding the applied plasticizer, resulted in a 40% lower pressure drop over the extrusion die. The combination of different experiments allowed to fit the numerical simulation results closely to the experimental values. Based on this experience, it is shown that numerical simulations also can be used for modified bio based materials if appropriate material and process data are taken into account.
Numerical Flow Simulation for Complete Vehicle Configurations
1993-09-01
TITLE AND SUBTITLE 5. •uNOING NUMBERS Numerical Field Simulation around complete configuration F49620-90-C- 6. AUTHOR(S) 0027PO006 Bharat K. Soni...2_3 d 71 7. PERFORMING ORGANIZATION NAME(S) AND ADORESS(ES) 8. PERFORMING CRGANIZATION NSF/Engineering Research Center f•r . 5 j 5 ( F i REPORT NUMBER P...AVAILABLE. THE COPY FURNISHED TO DTIC CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY. TABLE OF CONTENTS A bstract
Numerical aspects of compressible turbulence simulations
NASA Astrophysics Data System (ADS)
Honein, Albert Edward
Nonlinear instabilities present a long standing hurdle for compact, high order, non dissipative, finite difference computation of compressible turbulence. The spectral-like accuracy of these schemes, while attractive, results in significant aliasing errors that corrupt the solution. As a result, successful simulations have been limited to moderate Reynolds numbers ( Re) and low-order or upwind schemes with inherent numerical dissipation. However, resorting to dissipative schemes in discretizing the nonlinear terms was shown to have a detrimental effect on turbulence. A recent LES approach is to abandon the subgrid model altogether and rely on the scheme dissipation to mimic the effect of small scales. A dissipative monotone integrated LES (MILES) algorithm based on a multidimensional flux-corrected transport (FCT) algorithm has been developed and tested for decaying compressible isotropic turbulence. Agreement with the benchmark experiments of Comte-Bellot and Corrsin is very sensitive to the parameters involved in the FCT algorithm, while the evolution of thermodynamic fluctuations do not compare well with direct numerical simulations. An under-resolved simulation of inviscid, compressible, isotropic turbulence at low Mach number is chosen as a severe benchmark to investigate the nonlinear stability properties of nondissipative schemes. The behavior of this benchmark is predicted by performing a fully de-aliased spectral simulation on a 32 3 grid with turbulent Mach number of Mto = 0.07. The kinetic energy and thermodynamic fluctuations are found to decay for finite Re, and remain constant at infinite Re for a long time before the occurrence of numerical shocks. Extending the proof of Kraichnan (Journal of the Acoustical Society of America, 27(3), 1955), this inviscid statistical equilibrium is demonstrated to be a consequence of the discrete equivalent of the Liouville theorem of classical statistical mechanics. Several existing non-dissipative methods are
Numerical simulation for fan broadband noise prediction
NASA Astrophysics Data System (ADS)
Hase, Takaaki; Yamasaki, Nobuhiko; Ooishi, Tsutomu
2011-03-01
In order to elucidate the broadband noise of fan, the numerical simulation of fan operating at two different rotational speeds is carried out using the three-dimensional unsteady Reynolds-averaged Navier-Stokes (URANS) equations. The computed results are compared to experiment to estimate its accuracy and are found to show good agreement with experiment. A method is proposed to evaluate the turbulent kinetic energy in the framework of the Spalart-Allmaras one equation turbulence model. From the calculation results, the turbulent kinetic energy is visualized as the turbulence of the flow which leads to generate the broadband noise, and its noise sources are identified.
Numerical simulations of vibrating sessile drop
NASA Astrophysics Data System (ADS)
Kahouadji, Lyes; Chergui, Jalel; Juric, Damir; Shin, Seungwon; Craster, Richard; Matar, Omar
2016-11-01
A vibrated drop constitutes a very rich physical system, blending both interfacial and volume phenomena. A remarkable experimental study was performed by M. Costalonga highlighting sessile drop motion subject to horizontal, vertical and oblique vibration. Several intriguing phenomena are observed such as drop walking and rapid droplet ejection. We perform three-dimensional direct numerical simulations of vibrating sessile drops where the phenomena described above are computed using the massively parallel multiphase code BLUE. EPSRC UK Programme Grant MEMPHIS (EP/K003976/1).
Direct numerical simulation of turbulent mixing.
Statsenko, V P; Yanilkin, Yu V; Zhmaylo, V A
2013-11-28
The results of three-dimensional numerical simulations of turbulent flows obtained by various authors are reviewed. The paper considers the turbulent mixing (TM) process caused by the development of the main types of instabilities: those due to gravitation (with either a fixed or an alternating-sign acceleration), shift and shock waves. The problem of a buoyant jet is described as an example of the mixed-type problem. Comparison is made with experimental data on the TM zone width, profiles of density, velocity and turbulent energy and degree of homogeneity.
Numerical simulation of large fabric filter
NASA Astrophysics Data System (ADS)
Sedláček, Jan; Kovařík, Petr
2012-04-01
Fabric filters are used in the wide range of industrial technologies for cleaning of incoming or exhaust gases. To achieve maximal efficiency of the discrete phase separation and long lifetime of the filter hoses, it is necessary to ensure uniform load on filter surface and to avoid impacts of heavy particles with high velocities to the filter hoses. The paper deals with numerical simulation of two phase flow field in a large fabric filter. The filter is composed of six chambers with approx. 1600 filter hoses in total. The model was simplified to one half of the filter, the filter hoses walls were substituted by porous zones. The model settings were based on experimental data, especially on the filter pressure drop. Unsteady simulations with different turbulence models were done. Flow field together with particles trajectories were analyzed. The results were compared with experimental observations.
Numerical simulation of space UV spectrographs
NASA Astrophysics Data System (ADS)
Yushkin, Maksim; Fatkhullin, Timur; Panchuk, Vladimir; Sachkov, Mikhail; Kanev, Evgeny
2016-07-01
Based on the ray tracing method, we developed algorithms for constructing numerical model of spectroscopic instrumentation. The Software is realized in C ++ using nVidia CUDA technology. The software package consists of three separate modules: the ray tracing module, a module for calculating energy efficiency and module of CCD image simulation. The main objective of this work was to obtain images of the spectra for the cross-dispersed spectrographs as well as segmented aperture Long Slit Spectrograph. The software can be potentially used by WSO-UV project. To test our algorithms and the software package we have performed simulations of the ground cross-dispersed Nasmyth Echelle Spectrometer (NES) installed on the platform of the Nasmyth focus of the Russian 6-meter BTA telescope. The comparison of model images of stellar spectra with observations on this device confirms that the software works well. The high degree of agreement between the theoretical and real spectra is shown.
Numerical Simulations of 1990 Saturn's Giant Storm
NASA Astrophysics Data System (ADS)
Garcia-Melendo, E.; Sanchez-Lavega, A.
2015-12-01
We present here a study of the Saturn's 1990 equatorial major storm based on numerical simulations. Six planetary scale storms, nicknamed as Great White Spots (GWS) have been observed since the nineteenth century, three of them at the equatorial region in 1876 (~ +8º), 1933 (~ +2º), and 1990 (+12º), on the broad prograde equatorial jet where equatorial dynamics dominated producing a storm nucleus, with rapid expansion to the east and west to become a planetary-scale disturbance (Sánchez-Lavega, CHAOS 4, 341-353, 1994). We have detailed information, ground-based CCD imaging and Hubble Space Telescope (HST) data, for the 1990 event. Numerical experiments on the 1990 storm indicate that the onset of the storm can only be reproduced if the Voyager era background zonal flow is used, which suggests that it dominated the circulation dynamics at the storm's outbreak region at that time. We review the possible impact of the 1990 storm on the equatorial jet, storm dynamics, and how it relates to the observed storm morphology and zonal wind measurements derived from HST observations (Barnet et al., Icarus 100, 499-511, 1992). Observations also describe the formation of equatorial planetary waves and instabilities during the disturbance. We discuss the impact of major energy and mass injection by a planetary-scale convective event on the equatorial dynamics following our simulation results.
Direct numerical simulation of turbulent reacting flows
Chen, J.H.
1993-12-01
The development of turbulent combustion models that reflect some of the most important characteristics of turbulent reacting flows requires knowledge about the behavior of key quantities in well defined combustion regimes. In turbulent flames, the coupling between the turbulence and the chemistry is so strong in certain regimes that is is very difficult to isolate the role played by one individual phenomenon. Direct numerical simulation (DNS) is an extremely useful tool to study in detail the turbulence-chemistry interactions in certain well defined regimes. Globally, non-premixed flames are controlled by two limiting cases: the fast chemistry limit, where the turbulent fluctuations. In between these two limits, finite-rate chemical effects are important and the turbulence interacts strongly with the chemical processes. This regime is important because industrial burners operate in regimes in which, locally the flame undergoes extinction, or is at least in some nonequilibrium condition. Furthermore, these nonequilibrium conditions strongly influence the production of pollutants. To quantify the finite-rate chemistry effect, direct numerical simulations are performed to study the interaction between an initially laminar non-premixed flame and a three-dimensional field of homogeneous isotropic decaying turbulence. Emphasis is placed on the dynamics of extinction and on transient effects on the fine scale mixing process. Differential molecular diffusion among species is also examined with this approach, both for nonreacting and reacting situations. To address the problem of large-scale mixing and to examine the effects of mean shear, efforts are underway to perform large eddy simulations of round three-dimensional jets.
Numerical Propulsion System Simulation (NPSS) 1999 Industry Review
NASA Technical Reports Server (NTRS)
Lytle, John; Follen, Greg; Naiman, Cynthia; Evans, Austin
2000-01-01
The technologies necessary to enable detailed numerical simulations of complete propulsion systems are being developed at the NASA Glenn Research Center in cooperation with industry, academia, and other government agencies. Large scale, detailed simulations will be of great value to the nation because they eliminate some of the costly testing required to develop and certify advanced propulsion systems. In addition, time and cost savings will be achieved by enabling design details to be evaluated early in the development process before a commitment is made to a specific design. This concept is called the Numerical Propulsion System Simulation (NPSS). NPSS consists of three main elements: (1) engineering models that enable multidisciplinary analysis of large subsystems and systems at various levels of detail, (2) a simulation environment that maximizes designer productivity, and (3) a cost-effective, high-performance computing platform. A fundamental requirement of the concept is that the simulations must be capable of overnight execution on easily accessible computing platforms. This will greatly facilitate the use of large-scale simulations in a design environment. This paper describes the current status of the NPSS with specific emphasis on the progress made over the past year on air breathing propulsion applications. In addition, the paper contains a summary of the feedback received from industry partners in the development effort and the actions taken over the past year to respond to that feedback. The NPSS development was supported in FY99 by the High Performance Computing and Communications Program.
The Numerical Propulsion System Simulation: An Overview
NASA Technical Reports Server (NTRS)
Lytle, John K.
2000-01-01
Advances in computational technology and in physics-based modeling are making large-scale, detailed simulations of complex systems possible within the design environment. For example, the integration of computing, communications, and aerodynamics has reduced the time required to analyze major propulsion system components from days and weeks to minutes and hours. This breakthrough has enabled the detailed simulation of major propulsion system components to become a routine part of designing systems, providing the designer with critical information about the components early in the design process. This paper describes the development of the numerical propulsion system simulation (NPSS), a modular and extensible framework for the integration of multicomponent and multidisciplinary analysis tools using geographically distributed resources such as computing platforms, data bases, and people. The analysis is currently focused on large-scale modeling of complete aircraft engines. This will provide the product developer with a "virtual wind tunnel" that will reduce the number of hardware builds and tests required during the development of advanced aerospace propulsion systems.
Direct numerical simulation of human phonation
NASA Astrophysics Data System (ADS)
Saurabh, Shakti; Bodony, Daniel
2016-11-01
A direct numerical simulation study of the generation and propagation of the human voice in a full-body domain is conducted. A fully compressible fluid flow model, anatomically representative vocal tract geometry, finite deformation model for vocal fold (VF) motion and a fully coupled fluid-structure interaction model are employed. The dynamics of the multi-layered VF tissue with varying stiffness are solved using a quadratic finite element code. The fluid-solid domains are coupled through a boundary-fitted interface and utilize a Poisson equation-based mesh deformation method. A new inflow boundary condition, based upon a quasi-1D formulation with constant sub-glottal volume velocity, linked to the VF movement, has been adopted. Simulations for both child and adult phonation were performed. Acoustic characteristics obtained from these simulation are consistent with expected values. A sensitivity analysis based on VF stiffness variation is undertaken and sound pressure level/fundamental frequency trends are established. An evaluation of the data against the commonly-used quasi-1D equations suggest that the latter are not sufficient to model phonation. Phonation threshold pressures are measured for several VF stiffness variations and comparisons to clinical data are carried out. Supported by the National Science Foundation (CAREER Award Number 1150439).
Numerical simulation of pump-intake vortices
NASA Astrophysics Data System (ADS)
Rudolf, Pavel; Klas, Roman
2015-05-01
Pump pre-swirl or uneven flow distribution in front of the pump can induce pump-intake vortices. These phenomena result in blockage of the impeller suction space, deterioration of efficiency, drop of head curve and earlier onset of cavitation. Real problematic case, where head curve drop was documented, is simulated using commercial CFD software. Computational simulation was carried out for three flow rates, which correspond to three operating regimes of the vertical pump. The domain consists of the pump sump, pump itself excluding the impeller and the delivery pipe. One-phase approach is applied, because the vortex cores were not filled with air during observation of the real pump operation. Numerical simulation identified two surface vortices and one bottom vortex. Their position and strength depend on the pump flow rate. Paper presents detail analysis of the flow field on the pump intake, discusses influence of the vortices on pump operation and suggests possible actions that should be taken to suppress the intake vortices.
Numerical simulation of premixed turbulent methane combustion
Bell, John B.; Day, Marcus S.; Grcar, Joseph F.
2001-12-14
In this paper we study the behavior of a premixed turbulent methane flame in three dimensions using numerical simulation. The simulations are performed using an adaptive time-dependent low Mach number combustion algorithm based on a second-order projection formulation that conserves both species mass and total enthalpy. The species and enthalpy equations are treated using an operator-split approach that incorporates stiff integration techniques for modeling detailed chemical kinetics. The methodology also incorporates a mixture model for differential diffusion. For the simulations presented here, methane chemistry and transport are modeled using the DRM-19 (19-species, 84-reaction) mechanism derived from the GRIMech-1.2 mechanism along with its associated thermodynamics and transport databases. We consider a lean flame with equivalence ratio 0.8 for two different levels of turbulent intensity. For each case we examine the basic structure of the flame including turbulent flame speed and flame surface area. The results indicate that flame wrinkling is the dominant factor leading to the increased turbulent flame speed. Joint probability distributions are computed to establish a correlation between heat release and curvature. We also investigate the effect of turbulent flame interaction on the flame chemistry. We identify specific flame intermediates that are sensitive to turbulence and explore various correlations between these species and local flame curvature. We identify different mechanisms by which turbulence modulates the chemistry of the flame.
Numerical Simulation of DC Coronal Heating
NASA Astrophysics Data System (ADS)
Dahlburg, Russell B.; Einaudi, G.; Taylor, Brian D.; Ugarte-Urra, Ignacio; Warren, Harry; Rappazzo, A. F.; Velli, Marco
2016-05-01
Recent research on observational signatures of turbulent heating of a coronal loop will be discussed. The evolution of the loop is is studied by means of numerical simulations of the fully compressible three-dimensional magnetohydrodynamic equations using the HYPERION code. HYPERION calculates the full energy cycle involving footpoint convection, magnetic reconnection, nonlinear thermal conduction and optically thin radiation. The footpoints of the loop magnetic field are convected by random photospheric motions. As a consequence the magnetic field in the loop is energized and develops turbulent nonlinear dynamics characterized by the continuous formation and dissipation of field-aligned current sheets: energy is deposited at small scales where heating occurs. Dissipation is non-uniformly distributed so that only a fraction of thecoronal mass and volume gets heated at any time. Temperature and density are highly structured at scales which, in the solar corona, remain observationally unresolved: the plasma of the simulated loop is multi thermal, where highly dynamical hotter and cooler plasma strands are scattered throughout the loop at sub-observational scales. Typical simulated coronal loops are 50000 km length and have axial magnetic field intensities ranging from 0.01 to 0.04 Tesla. To connect these simulations to observations the computed number densities and temperatures are used to synthesize the intensities expected in emission lines typically observed with the Extreme ultraviolet Imaging Spectrometer (EIS) on Hinode. These intensities are then employed to compute differential emission measure distributions, which are found to be very similar to those derived from observations of solar active regions.
Numerical simulations of black-hole spacetimes
NASA Astrophysics Data System (ADS)
Chu, Tony
This thesis covers various aspects of the numerical simulation of black-hole spacetimes according to Einstein's general theory of relativity, using the Spectral Einstein Code developed by the Caltech-Cornell-CITA collaboration. The first topic is improvement of binary-black-hole initial data. One such issue is the construction of binary-black-hole initial data with nearly extremal spins that remain nearly constant during the initial relaxation in an evolution. Another concern is the inclusion of physically realistic tidal deformations of the black holes to reduce the high-frequency components of the spurious gravitational radiation content, and represents a first step in incorporating post-Newtonian results in constraint-satisfying initial data. The next topic is the evolution of black-hole binaries and the gravitational waves they emit. The first spectral simulation of two inspiralling black holes through merger and ringdown is presented, in which the black holes are nonspinning and have equal masses. This work is extended to perform the first spectral simulations of two inspiralling black holes with moderate spins and equal masses, including the merger and ringdown. Two configurations are considered, in which both spins are either anti-aligned or aligned with the orbital angular momentum. Highly accurate gravitational waveforms are computed for all these cases, and are used to calibrate waveforms in the effective-one-body model. The final topic is the behavior of quasilocal black-hole horizons in highly dynamical situations. Simulations of a rotating black hole that is distort ed by a pulse of ingoing gravitational radiation are performed. Multiple marginally outer trapped surfaces are seen to appear and annihilate with each other during the evolution, and the world tubes th ey trace out are all dynamical horizons. The dynamical horizon and angular momentum flux laws are evaluated in this context, and the dynamical horizons are contrasted with the event horizon
History of the numerical aerodynamic simulation program
NASA Technical Reports Server (NTRS)
Peterson, Victor L.; Ballhaus, William F., Jr.
1987-01-01
The Numerical Aerodynamic Simulation (NAS) program has reached a milestone with the completion of the initial operating configuration of the NAS Processing System Network. This achievement is the first major milestone in the continuing effort to provide a state-of-the-art supercomputer facility for the national aerospace community and to serve as a pathfinder for the development and use of future supercomputer systems. The underlying factors that motivated the initiation of the program are first identified and then discussed. These include the emergence and evolution of computational aerodynamics as a powerful new capability in aerodynamics research and development, the computer power required for advances in the discipline, the complementary nature of computation and wind tunnel testing, and the need for the government to play a pathfinding role in the development and use of large-scale scientific computing systems. Finally, the history of the NAS program is traced from its inception in 1975 to the present time.
Direct numerical simulations of vortex ring collisions
NASA Astrophysics Data System (ADS)
Ostilla Monico, Rodolfo; Pumir, Alain; Brenner, Michael
2016-11-01
We numerically simulate the ring vortex collision experiment of Lim and Nickels in an attempt to understand the rapid formation of very fine scale turbulence (or 'smoke') from relatively smooth initial conditions. Reynolds numbers of up to Re = Γ / ν = 7500 , where Γ is the vortex ring circulation and ν the kinematic viscosity of the fluid are reached, which coincide with the highest Reynolds number case of the experiments. Different perturbations to the ring vortex are added, and their effect on the generation and amplification of turbulence is quantified. The underlying dynamics of the vortex core is analyzed, and compared to the dynamics arising from a simple Biot-Savart filament model for the core.
Numerical simulation of transonic flows in diffusers
NASA Technical Reports Server (NTRS)
Liou, M.-S.; Coakley, T. J.; Bergmann, M. Y.
1981-01-01
Numerical simulations were made of two-dimensional transonic flows in diffusers, including flow separation induced by a shock or adverse pressure gradient. The mass-averaged, time-dependent, compressible Navier-Stokes equations, simplified by the thin-layer approximation, were solved using MacCormack's hybrid method. The eddy-viscosity formulation was described by the Wilcox-Rubesin's two-equation, k-omega model. Detailed comparison of the computed results with measurements showed good agreement in all cases, including one with massive separation induced by a strong shock. The computation correctly predicted the details of a distinct lambda shock pattern, closely duplicating the configuration observed experimentally in spark-schlieren photographs.
Numerical aerodynamic simulation facility feasibility study
NASA Technical Reports Server (NTRS)
1979-01-01
There were three major issues examined in the feasibility study. First, the ability of the proposed system architecture to support the anticipated workload was evaluated. Second, the throughput of the computational engine (the flow model processor) was studied using real application programs. Third, the availability reliability, and maintainability of the system were modeled. The evaluations were based on the baseline systems. The results show that the implementation of the Numerical Aerodynamic Simulation Facility, in the form considered, would indeed be a feasible project with an acceptable level of risk. The technology required (both hardware and software) either already exists or, in the case of a few parts, is expected to be announced this year. Facets of the work described include the hardware configuration, software, user language, and fault tolerance.
Numerical Simulations of Acoustically Driven, Burning Droplets
NASA Technical Reports Server (NTRS)
Kim, H.-C.; Karagozian, A. R.; Smith, O. I.; Urban, Dave (Technical Monitor)
1999-01-01
This computational study focuses on understanding and quantifying the effects of external acoustical perturbations on droplet combustion. A one-dimensional, axisymmetric representation of the essential diffusion and reaction processes occurring in the vicinity of the droplet stagnation point is used here in order to isolate the effects of the imposed acoustic disturbance. The simulation is performed using a third order accurate, essentially non-oscillatory (ENO) numerical scheme with a full methanol-air reaction mechanism. Consistent with recent microgravity and normal gravity combustion experiments, focus is placed on conditions where the droplet is situated at a velocity antinode in order for the droplet to experience the greatest effects of fluid mechanical straining of flame structures. The effects of imposed sound pressure level and frequency are explored here, and conditions leading to maximum burning rates are identified.
Numerical simulations of an oblique detonation wave engine
NASA Technical Reports Server (NTRS)
Cambier, Jean-Luc; Adelman, Henry; Menees, Gene P.
1988-01-01
An account is given of the numerical methods employed in a code for the simulation of supersonic combustion, which is then applied to the simulation of attached detonations and flames associated with the oblique-detonation wave supersonic combustor concept. The addition of heat by a detonation wave results in a shorter combustor than can be obtained in more conventional scramjet designs. Pure oblique detonations have been produced in a stoichiometric, uniformly mixed hydrogen/air stream; the wave rotates upstream with energy release, according to simple analytical arguments. Flow visualization maps for Mach number and temperature are presented.
Direct Numerical Simulation of Automobile Cavity Tones
NASA Technical Reports Server (NTRS)
Kurbatskii, Konstantin; Tam, Christopher K. W.
2000-01-01
The Navier Stokes equation is solved computationally by the Dispersion-Relation-Preserving (DRP) scheme for the flow and acoustic fields associated with a laminar boundary layer flow over an automobile door cavity. In this work, the flow Reynolds number is restricted to R(sub delta*) < 3400; the range of Reynolds number for which laminar flow may be maintained. This investigation focuses on two aspects of the problem, namely, the effect of boundary layer thickness on the cavity tone frequency and intensity and the effect of the size of the computation domain on the accuracy of the numerical simulation. It is found that the tone frequency decreases with an increase in boundary layer thickness. When the boundary layer is thicker than a certain critical value, depending on the flow speed, no tone is emitted by the cavity. Computationally, solutions of aeroacoustics problems are known to be sensitive to the size of the computation domain. Numerical experiments indicate that the use of a small domain could result in normal mode type acoustic oscillations in the entire computation domain leading to an increase in tone frequency and intensity. When the computation domain is expanded so that the boundaries are at least one wavelength away from the noise source, the computed tone frequency and intensity are found to be computation domain size independent.
Numerical simulation of turbulent slurry flows
NASA Astrophysics Data System (ADS)
Haghgoo, Mohammad Reza; Spiteri, Reymond J.; Bergstrom, Donlad J.
2016-11-01
Slurry flows, i.e., the flow of an agglomeration of liquid and particles, are widely employed in many industrial applications, such as hydro-transport systems, pharmaceutical batch crystallizers, and wastewater disposal. Although there are numerous studies available in the literature on turbulent gas-particle flows, the hydrodynamics of turbulent liquid-particle flows has received much less attention. In particular, the fluid-phase turbulence modulation due to the particle fluctuating motion is not yet well understood and remains challenging to model. This study reports the results of a numerical simulation of a vertically oriented slurry pipe flow using a two-fluid model based on the kinetic theory of granular flows. The particle stress model also includes the effects of frictional contact. Different turbulence modulation models are considered, and their capability to capture the characteristic features of the turbulent flow is assessed. The model predictions are validated against published experimental data and demonstrate the significant effect of the particles on the fluid-phase turbulence.
Numerical relativity simulations of binary neutron stars
NASA Astrophysics Data System (ADS)
Thierfelder, Marcus; Bernuzzi, Sebastiano; Brügmann, Bernd
2011-08-01
We present a new numerical relativity code designed for simulations of compact binaries involving matter. The code is an upgrade of the BAM code to include general relativistic hydrodynamics and implements state-of-the-art high-resolution-shock-capturing schemes on a hierarchy of mesh refined Cartesian grids with moving boxes. We test and validate the code in a series of standard experiments involving single neutron star spacetimes. We present test evolutions of quasiequilibrium equal-mass irrotational binary neutron star configurations in quasicircular orbits which describe the late inspiral to merger phases. Neutron star matter is modeled as a zero-temperature fluid; thermal effects can be included by means of a simple ideal gas prescription. We analyze the impact that the use of different values of damping parameter in the Gamma-driver shift condition has on the dynamics of the system. The use of different reconstruction schemes and their impact in the post-merger dynamics is investigated. We compute and characterize the gravitational radiation emitted by the system. Self-convergence of the waves is tested, and we consistently estimate error bars on the numerically generated waveforms in the inspiral phase.
NASA Astrophysics Data System (ADS)
El-Asrag, Hossam A.; Ju, Yiguang
2013-04-01
Direct numerical simulations (DNSs) of a stratified flow in a homogeneous compression charge ignition (HCCI) engine are performed to investigate the exhaust gas recirculation (EGR) and temperature/mixture stratification effects on the autoignition of synthetic dimethyl ether (DME) in the negative temperature combustion region. Detailed chemistry for a DME/air mixture is employed and solved by a hybrid multi-time scale (HMTS) algorithm to reduce the computational cost. The effect of ? to mimic the EGR effect on autoignition are studied. The results show that adding ? enhances autoignition by rapid OH radical pool formation (34-46% reduction in ignition delay time) and changes the ignition heat release rates at different ignition stages. Sensitivity analysis is performed and the important reactions pathways affecting the autoignition are specified. The DNS results show that the scales introduced by thermal and mixture stratifications have a strong effect after the low temperature chemistry (LTC) ignition especially at the locations of high scalar dissipation rates. Compared to homogenous ignition, stratified ignitions show similar first autoignition delay times, but 18% reduction in the second and third ignition delay times. The results also show that molecular transport plays an important role in stratified low temperature ignition, and that the scalar mixing time scale is strongly affected by local ignition in the stratified flow. Two ignition-kernel propagation modes are observed: a wave-like, low-speed, deflagrative mode and a spontaneous, high-speed, ignition mode. Three criteria are introduced to distinguish these modes by different characteristic time scales and Damkhöler numbers using a progress variable conditioned by an ignition kernel indicator. The low scalar dissipation rate flame front is characterized by high displacement speeds and high mixing Damkhöler number. The proposed criteria are applied successfully at the different ignition stages and
Numerical simulation of solar coronal magnetic fields
NASA Technical Reports Server (NTRS)
Dahlburg, Russell B.; Antiochos, Spiro K.; Zang, T. A.
1990-01-01
Many aspects of solar activity are believed to be due to the stressing of the coronal magnetic field by footpoint motions at the photosphere. The results are presented of a fully spectral numerical simulation which is the first 3-D time dependent simulation of footpoint stressing in a geometry appropriate for the corona. An arcade is considered that is initially current-free and impose a smooth footpoint motion that produces a twist in the field of approx 2 pi. The footprints were fixed and the evolution was followed until the field relaxes to another current-free state. No evidence was seen for any instability, either ideal or resistive and no evidence for current sheet formation. The most striking feature of the evolution is that in response to photospheric motions, the field expands rapidly upward to minimize the stress. The expansion has two important effects. First, it suppresses the development of dips in the field that could support dense, cool material. For the motions assumed, the magnetic field does not develop a geometry suitable for prominence formation. Second, the expansion inhibits ideal instabilities such as kinking. The results indicate that simple stearing of a single arcade is unlikely to lead to solar activity such as flares or prominences. Effects are discussed that might possibly lead to such activity.
Collisionless microinstabilities in stellarators. II. Numerical simulations
NASA Astrophysics Data System (ADS)
Proll, J. H. E.; Xanthopoulos, P.; Helander, P.
2013-12-01
Microinstabilities exhibit a rich variety of behavior in stellarators due to the many degrees of freedom in the magnetic geometry. It has recently been found that certain stellarators (quasi-isodynamic ones with maximum-J geometry) are partly resilient to trapped-particle instabilities, because fast-bouncing particles tend to extract energy from these modes near marginal stability. In reality, stellarators are never perfectly quasi-isodynamic, and the question thus arises whether they still benefit from enhanced stability. Here, the stability properties of Wendelstein 7-X and a more quasi-isodynamic configuration, QIPC, are investigated numerically and compared with the National Compact Stellarator Experiment and the DIII-D tokamak. In gyrokinetic simulations, performed with the gyrokinetic code GENE in the electrostatic and collisionless approximation, ion-temperature-gradient modes, trapped-electron modes, and mixed-type instabilities are studied. Wendelstein 7-X and QIPC exhibit significantly reduced growth rates for all simulations that include kinetic electrons, and the latter are indeed found to be stabilizing in the energy budget. These results suggest that imperfectly optimized stellarators can retain most of the stabilizing properties predicted for perfect maximum-J configurations.
Numerical simulation of tulip flame dynamics
Cloutman, L.D.
1991-11-30
A finite difference reactive flow hydrodynamics program based on the full Navier-Stokes equations was used to simulate the combustion process in a homogeneous-charge, constant-volume combustion bomb in which an oddly shaped flame, known as a ``tulip flame`` in the literature, occurred. The ``tulip flame`` was readily reproduced in the numerical simulations, producing good agreement with the experimental flame shapes and positions at various times. The calculations provide sufficient detail about the dynamics of the experiment to provide some insight into the physical mechanisms responsible for the peculiar flame shape. Several factors seem to contribute to the tulip formation. The most important process is the baroclinic production of vorticity by the flame front, and this rate of production appears to be dramatically increased by the nonaxial flow generated when the initial semicircular flame front burns out along the sides of the chamber. The vorticity produces a pair of vortices behind the flame that advects the flame into the tulip shape. Boundary layer effects contribute to the details of the flame shape next to the walls of the chamber, but are otherwise not important. 24 refs.
Numerical simulation of tulip flame dynamics
Cloutman, L.D.
1991-11-30
A finite difference reactive flow hydrodynamics program based on the full Navier-Stokes equations was used to simulate the combustion process in a homogeneous-charge, constant-volume combustion bomb in which an oddly shaped flame, known as a tulip flame'' in the literature, occurred. The tulip flame'' was readily reproduced in the numerical simulations, producing good agreement with the experimental flame shapes and positions at various times. The calculations provide sufficient detail about the dynamics of the experiment to provide some insight into the physical mechanisms responsible for the peculiar flame shape. Several factors seem to contribute to the tulip formation. The most important process is the baroclinic production of vorticity by the flame front, and this rate of production appears to be dramatically increased by the nonaxial flow generated when the initial semicircular flame front burns out along the sides of the chamber. The vorticity produces a pair of vortices behind the flame that advects the flame into the tulip shape. Boundary layer effects contribute to the details of the flame shape next to the walls of the chamber, but are otherwise not important. 24 refs.
Numerical simulation of premixed turbulent methane combustion
Day, Marc S.; Bell, John B.; Almgren, Ann S.; Beckner, Vincent E.; Lijewski, Michael J.; Cheng, Robert; Shepherd, Ian; Johnson, Matthew
2003-06-14
With adaptive-grid computational methodologies and judicious use of compressible and low Mach number combustion models, we are carrying out three-dimensional, time-dependent direct numerical simulations of a laboratory-scale turbulent premixed methane burner. In the laboratory experiment, turbulence is generated by a grid located in the throat of a 50mm diameter circular nozzle; swirl is be introduced by four tangential air jets spaced uniformly around the circumference of the nozzle just above the turbulence grid. A premixed methane flame is stabilized above the nozzle in the central core region where a velocity deficit is induced7the swirling flow. The time-dependent flow field inside the nozzle, from the turbulence grid and the high-speed jets, to the nozzle exit plane is simulated using an adaptive-grid embedded-boundary compressible Navier-Stokes solver. The compressible calculation then provides time-dependent boundary conditions for an adaptive low Mach number model of the swirl-stabilized premixed flame. The low Mach model incorporates detailed chemical kinetics and species transport using 20 species and 84 reactions. Laboratory diagnostics available for comparisons include characterizations of the flow field just down stream of the nozzle exit plane, and flame surface statistics, such as mean location, wrinkling and crossing frequencies.
Numerical simulations of capillary barrier field tests
Morris, C.E.; Stormont, J.C.
1997-12-31
Numerical simulations of two capillary barrier systems tested in the field were conducted to determine if an unsaturated flow model could accurately represent the observed results. The field data was collected from two 7-m long, 1.2-m thick capillary barriers built on a 10% grade that were being tested to investigate their ability to laterally divert water downslope. One system had a homogeneous fine layer, while the fine soil of the second barrier was layered to increase its ability to laterally divert infiltrating moisture. The barriers were subjected first to constant infiltration while minimizing evaporative losses and then were exposed to ambient conditions. The continuous infiltration period of the field tests for the two barrier systems was modelled to determine the ability of an existing code to accurately represent capillary barrier behavior embodied in these two designs. Differences between the field test and the model data were found, but in general the simulations appeared to adequately reproduce the response of the test systems. Accounting for moisture retention hysteresis in the layered system will potentially lead to more accurate modelling results and is likely to be important when developing reasonable predictions of capillary barrier behavior.
Numerical Simulations of Disk-Planet Interactions
NASA Astrophysics Data System (ADS)
D'Angelo, Gennaro
2003-06-01
The aim of this thesis is the study the dynamical interactions occurring between a forming planet and its surrounding protostellar environment. This task is accomplished by means of both 2D and 3D numerical simulations. The first part of this work concerned global simulations in 3D. These were intended to investigate large-scale effects caused by a Jupiter-size body still in the process of accreting matter from its surroundings. Simulations show that, despite a density gap forms along the orbital path, Jupiter-mass protoplanets still accrete at a rate on the order of 0.01 Earth's masses per year when they are embedded in a minimum-mass Solar nebula. In the same conditions, the migration time scale due to gravitational torques by the disk is around 100000 years. The second part of the work was dedicated to perform 2D calculations, by employing a nested-grid technique. This method allows to carry out global simulations of planets orbiting in disks and, at the same time, to resolve in great detail the dynamics of the flow inside the Roche lobe of both massive and low-mass planets. Regardless of the planet mass, the high resolution supplied by the nested-grid technique permits an evaluation of the torques, resulting from short and very short range gravitational interactions, more reliable than the one previously estimated with the aid of numerical methods. Likewise, the mass flow onto the planet is computed in a more accurate fashion. Resulting migration time scales are in the range from 20000 years, for intermediate-mass planets, to 1000000 years, for very low-mass as well as high-mass planets. Circumplanetary disks form inside of the Roche lobe of Jupiter-size secondaries. In order to evaluate the consequences of the flat geometry on the local flow structure around planets, 3D nested-grid simulations were carried out to investigate a range of planetary masses spanning from 1.5 Earth's masses to one Jupiter's mass. Outcomes show that migration rates are relatively
Numerical simulation of pulsatile flow in rough pipes
NASA Astrophysics Data System (ADS)
Chin, Cheng; Monty, Jason; Ooi, Andrew; Illingworth, Simon; Marusic, Ivan; Skvortsov, Alex
2016-11-01
Direct numerical simulation (DNS) of pulsatile turbulent pipe flow is carried out over three-dimensional sinusoidal surfaces mimicking surface roughness. The simulations are performed at a mean Reynolds number of Reτ 540 (based on friction velocity, uτ, and pipe radii, δ) and at various roughness profiles following the study of Chan et al., where the size of the roughness (roughness semi-amplitude height h+ and wavelength λ+) is increased geometrically while maintaining the height-to-wavelength ratio of the sinusoidal roughness element. Results from the pulsatile simulations are compared with non-pulsatile simulations to investigate the effects of pulsation on the Hama roughness function, ΔU+ . Other turbulence statistics including mean turbulence intensities, Reynolds stresses and energy spectra are analysed. In addition, instantaneous phase (eg. at maximum and minimum flow velocities) and phase-averaged flow structures are presented and discussed.
A numerical simulation of the Catalina Eddy
Ueyoshi, Kyozo; Roads, J.O.; Alpert, J.
1991-12-31
A shallow cyclonic eddy termed the Catalina Eddy has occasionally been observed during summer in the bight of southern California. The Catalina Eddy occurs within {approximately}100 km from the coastal mountains with a depth typically extending up to the marine inversion level of several hundred meters above sea level and a diameter on the order of 100--200 km. The Catalina Eddy is produced by the interaction between the synoptic-scale northerly flow and the formidable topography along the southern California coast. A favorable synoptic situation that enhances the increased low-level climatological northerly flow along the central California coastline is the presence of the prominent east-west pressure gradient between the subtropical East Pacific high and the inland thermal low over California. Increased northerlies impinging on the San Rafael mountains north of Santa Barbara result in enhanced mesoscale lee troughing in the bight and establishment of a narrow ridge alongshore, leading to establishment of cyclonic vorticity in the bight. This paper describes numerical simulations and predictions of a Catalina Eddy event with a high-resolution multi-level limited area model. The model is initialized and forced at the lateral boundaries by the National Meteorological Center`s (NMC) 2.5{degree} {times} 2.5{degree} global objective analysis and also by NMC`s medium range forecast model (MRF) 1--10 day forecasts. In the authors previous effort to simulate mesoscale disturbances such as the Catalina Eddy the integrations were performed up to 1 model-day utilizing the NMC analysis as fixed lateral boundary conditions. In this paper they describe the results of continuous 5- to 7-day simulations of the Catalina Eddy event of 26--30 June 1988 by utilizing time-dependent lateral boundary conditions obtained from NMC`s global objective analysis as well as NMC`s MRF forecasts.
Numerical simulations of interacting disk galaxies
NASA Technical Reports Server (NTRS)
Noguchi, Masafumi
1990-01-01
Galaxy-galaxy interactions have long attracted many extragalactic astronomers in various aspects. A number of computer simulations performed in the 1970s have successfully reproduced the peculiar morphologies observed in interacting disk galaxies and clarified that tidal deformation explains most of the observed global peculiarities. However, most of these simulations have used test particles in modelling the disk component. Tidal response of a self-gravitating disk remains to be further clarified. Another topic which is intensely discussed at present is the relation between galaxy-galaxy interactions and activity. Many observations suggest that interactions trigger strong starbursts and possibly active galactic nuclei (AGN). However, the detailed mechanism of triggering is not yet clear. It is vital here to understand the dynamics of interstellar gas. In order to understand various phenomena related to galaxy-galaxy interactions (mainly for disk galaxies), the author performed a series of numerical simulations on close galaxy encounters which includes both interstellar gas and self-gravitating disk components. In these simulations, the galaxy model to be perturbed (target galaxy) consists of a halo and a disk. The halo was treated as a rigid spherical gravitational field which is assumed to remain fixed during the interaction. The disk is composed of stars and gas. The stellar disk was constructed by 20000 collisionless particles of the same mass. Those particles move in the halo gravitational field, interacting with each other and with the perturber. Therefore, the self-graviy of the disk is properly taken into account. Stellar particles were initially given circular velocities with small random motions required to stabilize the disk against local axisymmetric disturbances. The gravitational field of the stellar disk was calculated by the particle-mesh scheme (e.g. Hockney and Eastwood 1981). The gaseous component was modelled by the cloud-particle scheme (e
Simulation of guided wave propagation near numerical Brillouin zones
NASA Astrophysics Data System (ADS)
Kijanka, Piotr; Staszewski, Wieslaw J.; Packo, Pawel
2016-04-01
Attractive properties of guided waves provides very unique potential for characterization of incipient damage, particularly in plate-like structures. Among other properties, guided waves can propagate over long distances and can be used to monitor hidden structural features and components. On the other hand, guided propagation brings substantial challenges for data analysis. Signal processing techniques are frequently supported by numerical simulations in order to facilitate problem solution. When employing numerical models additional sources of errors are introduced. These can play significant role for design and development of a wave-based monitoring strategy. Hence, the paper presents an investigation of numerical models for guided waves generation, propagation and sensing. Numerical dispersion analysis, for guided waves in plates, based on the LISA approach is presented and discussed in the paper. Both dispersion and modal amplitudes characteristics are analysed. It is shown that wave propagation in a numerical model resembles propagation in a periodic medium. Consequently, Lamb wave propagation close to numerical Brillouin zone is investigated and characterized.
Numerical simulation of "an American haboob"
NASA Astrophysics Data System (ADS)
Vukovic, A.; Vujadinovic, M.; Pejanovic, G.; Andric, J.; Kumjian, M. R.; Djurdjevic, V.; Dacic, M.; Prasad, A. K.; El-Askary, H. M.; Paris, B. C.; Petkovic, S.; Nickovic, S.; Sprigg, W. A.
2014-04-01
A dust storm of fearful proportions hit Phoenix in the early evening hours of 5 July 2011. This storm, an American haboob, was predicted hours in advance because numerical, land-atmosphere modeling, computing power and remote sensing of dust events have improved greatly over the past decade. High-resolution numerical models are required for accurate simulation of the small scales of the haboob process, with high velocity surface winds produced by strong convection and severe downbursts. Dust productive areas in this region consist mainly of agricultural fields, with soil surfaces disturbed by plowing and tracks of land in the high Sonoran Desert laid barren by ongoing draught. Model simulation of the 5 July 2011 dust storm uses the coupled atmospheric-dust model NMME-DREAM (Non-hydrostatic Mesoscale Model on E grid, Janjic et al., 2001; Dust REgional Atmospheric Model, Nickovic et al., 2001; Pérez et al., 2006) with 4 km horizontal resolution. A mask of the potentially dust productive regions is obtained from the land cover and the normalized difference vegetation index (NDVI) data from the Moderate Resolution Imaging Spectroradiometer (MODIS). The scope of this paper is validation of the dust model performance, and not use of the model as a tool to investigate mechanisms related to the storm. Results demonstrate the potential technical capacity and availability of the relevant data to build an operational system for dust storm forecasting as a part of a warning system. Model results are compared with radar and other satellite-based images and surface meteorological and PM10 observations. The atmospheric model successfully hindcasted the position of the front in space and time, with about 1 h late arrival in Phoenix. The dust model predicted the rapid uptake of dust and high values of dust concentration in the ensuing storm. South of Phoenix, over the closest source regions (~25 km), the model PM10 surface dust concentration reached ~2500 μg m-3, but
Numerical simulation of "An American Haboob"
NASA Astrophysics Data System (ADS)
Vukovic, A.; Vujadinovic, M.; Pejanovic, G.; Andric, J.; Kumjian, M. R.; Djurdjevic, V.; Dacic, M.; Prasad, A. K.; El-Askary, H. M.; Paris, B. C.; Petkovic, S.; Nickovic, S.; Sprigg, W. A.
2013-10-01
A dust storm of fearful proportions hit Phoenix in the early evening hours of 5 July 2011. This storm, an American haboob, was predicted hours in advance because numerical, land-atmosphere modeling, computing power and remote sensing of dust events have improved greatly over the past decade. High resolution numerical models are required for accurate simulation of the small-scales of the haboob process, with high velocity surface winds produced by strong convection and severe downbursts. Dust productive areas in this region consist mainly of agricultural fields, with soil surfaces disturbed by plowing and tracks of land in the high Sonoran desert laid barren by ongoing draught. Model simulation of the 5 July 2011 dust storm uses the coupled atmospheric-dust model NMME-DREAM with 3.5 km horizontal resolution. A mask of the potentially dust productive regions is obtained from the land cover and the Normalized Difference Vegetation Index (NDVI) data from the Moderate Resolution Imaging Spectroradiometer (MODIS). Model results are compared with radar and other satellite-based images and surface meteorological and PM10 observations. The atmospheric model successfully hindcasted the position of the front in space and time, with about 1 h late arrival in Phoenix. The dust model predicted the rapid uptake of dust and high values of dust concentration in the ensuing storm. South of Phoenix, over the closest source regions (~ 25 km), the model PM10 surface dust concentration reached ~ 2500 μg m-3, but underestimated the values measured by the PM10stations within the city. Model results are also validated by the MODIS aerosol optical depth (AOD), employing deep blue (DB) algorithms for aerosol loadings. Model validation included Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO), equipped with the lidar instrument, to disclose the vertical structure of dust aerosols as well as aerosol subtypes. Promising results encourage further research and
Direct Numerical Simulation of Multiphase Flows with Unstable Interfaces
NASA Astrophysics Data System (ADS)
Schillaci, Eugenio; Lehmkuhl, Oriol; Antepara, Oscar; Oliva, Assensi
2016-09-01
This paper presents a numerical model that intends to simulate efficiently the surface instability that arise in multiphase flows, typically liquid-gas, both for laminar or turbulent regimes. The model is developed on the in-house computing platform TermoFluids, and operates the finite-volume, direct numerical simulation (DNS) of multiphase flows by means of a conservative level-set method for the interface-capturing. The mesh size is optimized by means of an adaptive mesh refinement (AMR) strategy, that allows the dynamic re-concentration of the mesh in the vicinity of the interfaces between fluids, in order to correctly represent the diverse structures (as ligaments and droplets) that may rise from unstable phenomena. In addition, special attention is given to the discretization of the various terms of the momentum equations, to ensure stability of the flow and correct representation of turbulent vortices. As shown, the method is capable of truthfully simulate the interface phenomena as the Kelvin-Helmholtz instability and the Plateau-Rayleigh instability, both in the case of 2-D and 3-D configurations. Therefore it is suitable for the simulation of complex phenomena such as simulation of air-blast atomization, with several important application in the field of automotive and aerospace engines. A prove is given by our preliminary study of the 3-D coaxial liquid-gas jet.
Direct Numerical Simulation of Cell Printing
NASA Astrophysics Data System (ADS)
Qiao, Rui; He, Ping
2010-11-01
Structural cell printing, i.e., printing three dimensional (3D) structures of cells held in a tissue matrix, is gaining significant attention in the biomedical community. The key idea is to use desktop printer or similar devices to print cells into 3D patterns with a resolution comparable to the size of mammalian cells, similar to that in living organs. Achieving such a resolution in vitro can lead to breakthroughs in areas such as organ transplantation and understanding of cell-cell interactions in truly 3D spaces. Although the feasibility of cell printing has been demonstrated in the recent years, the printing resolution and cell viability remain to be improved. In this work, we investigate one of the unit operations in cell printing, namely, the impact of a cell-laden droplet into a pool of highly viscous liquids using direct numerical simulations. The dynamics of droplet impact (e.g., crater formation and droplet spreading and penetration) and the evolution of cell shape and internal stress are quantified in details.
The numerical simulation of subsonic flutter
NASA Technical Reports Server (NTRS)
Strganac, Thomas W.; Mitchum, Maria V.; Mook, Dean T.
1987-01-01
The present paper describes a numerical simulation of unsteady, subsonic aeroelastic responses. The technique accounts for aerodynamic nonlinearities associated with angles of attack, vortex-dominated flow, static deformations, and unsteady behavior. The fluid and the wing together are treated as a single dynamic system, and the equations of motion for the structure and flowfield are integrated simultaneously and interactively in the time domain. The method employs an iterative scheme based on a predictor-corrector technique. The aerodynamic loads are computed by the general unsteady vortex-lattice method and are determined simultaneously with the motion of the wing. Two models are used to demonstrate the technique: a rigid wing on an elastic support experiencing plunge and pitch about the elastic axis, and a continuous wing rigidly supported at the root chord experiencing spanwise bending and twisting. The time domain solution coupled with the unsteady vortex-lattice method provides the capability of graphically depicting wing and wake motion. Several graphs that illustrate the time domain behavior of the wing and wake are presented.
Cloud interactions and merging - Numerical simulations
NASA Technical Reports Server (NTRS)
Tao, W.-K.; Simpson, J.
1984-01-01
A total of 48 numerical experiments have been performed to study cloud interactions adn merging by means of a two-dimensional multi-cell model. Two soundings of deep convection during GATE and two different magnitudes of large-scale lifting have been used as the initial conditions and as the main forcing on the model. Over two hundred groups of cloud systems with a life history of over sixty minutes have been generated under the influence of different combinations of the stratification and large-scale lifting. The results demonstrate the increase in convective activity and in amount of precipitation with increased intensity of large-scale lifting. The results also show increased occurrence of cloud merger with increased intensity of large-scale lifting. The most unfavorable environmental conditions for cloud merging are (1) less unstable stratification of the atmosphere and (2) weaker large-scale lifting. A total of fourteen cloud systems qualify as mergers. Two selected cases will be described dynamically and thermodynamically in this paper. Although these cloud mergers have been simulated under the influence of different synoptic-scale conditions, the major physical mechanism related to the cloud merging process is the same as that proposed by Simpson. Cumulus downdrafts and associated cold outflows play a dominant role in the merging process in all cases studied.
Numerical simulations of drainage flows on Mars
NASA Technical Reports Server (NTRS)
Parish, Thomas R.; Howard, Alan D.
1992-01-01
Data collected by Viking Landers have shown that the meteorology of the near surface Martian environment is analogous to desertlike terrestrial conditions. Geological evidence such as dunes and frost streaks indicate that the surface wind is a potentially important factor in scouring of the martian landscape. In particular, the north polar basin shows erosional features that suggest katabatic wind convergence into broad valleys near the margin of the polar cap. The pattern of katabatic wind drainage off the north polar cap is similar to that observed on Earth over Antarctica or Greenland. The sensitivity is explored of Martian drainage flows to variations in terrain slope and diurnal heating using a numerical modeling approach. The model used is a 2-D sigma coordinate primitive equation system that has been used for simulations of Antarctic drainage flows. Prognostic equations include the flux forms of the horizontal scalar momentum equations, temperature, and continuity. Parameterization of both longwave (terrestrial) and shortwave (solar) radiation is included. Turbulent transfer of heat and momentum in the Martian atmosphere remains uncertain since relevant measurements are essentially nonexistent.
Numerical simulation of condensation on structured surfaces.
Fu, Xiaowu; Yao, Zhaohui; Hao, Pengfei
2014-11-25
Condensation of liquid droplets on solid surfaces happens widely in nature and industrial processes. This phase-change phenomenon has great effect on the performance of some microfluidic devices. On the basis of micro- and nanotechnology, superhydrophobic structured surfaces can be well-fabricated. In this work, the nucleating and growth of droplets on different structured surfaces are investigated numerically. The dynamic behavior of droplets during the condensation is simulated by the multiphase lattice Boltzmann method (LBM), which has the ability to incorporate the microscopic interactions, including fluid-fluid interaction and fluid-surface interaction. The results by the LBM show that, besides the chemical properties of surfaces, the topography of structures on solid surfaces influences the condensation process. For superhydrophobic surfaces, the spacing and height of microridges have significant influence on the nucleation sites. This mechanism provides an effective way for prevention of wetting on surfaces in engineering applications. Moreover, it suggests a way to prevent ice formation on surfaces caused by the condensation of subcooled water. For hydrophilic surfaces, however, microstructures may be submerged by the liquid films adhering to the surfaces. In this case, microstructures will fail to control the condensation process. Our research provides an optimized way for designing surfaces for condensation in engineering systems.
Numerical Simulation of nZVI at the Field Scale
NASA Astrophysics Data System (ADS)
Chowdhury, A. I.; Krol, M.; Sleep, B. E.; O'Carroll, D. M.
2014-12-01
Nano-scale zero valent iron (nZVI) has been used at a number of contaminated sites over the last decade. At most of these sites, significant decreases in contaminant concentrations have resulted from the application of nZVI. However, limited work has been completed investigating nZVI mobility at the field-scale. In this study a three dimensional, three phase, finite difference numerical simulator (CompSim) was used to simulate nZVI and polymer transport in a variably saturated site. The model was able to accurately predict the field observed head data without parameter fitting. In addition, the numerical simulator estimated the amount of nZVI delivered to the saturated and unsaturated zones as well as the phase of nZVI (i.e., attached or aqueous phase). The simulation results showed that the injected slurry migrated radially outward from the injection well, and therefore nZVI transport was governed by injection velocity as well as viscosity of the injected solution. A suite of sensitivity analyses was performed to investigate the impact of different injection scenarios (e.g. different volume and injection rate) on nZVI migration. Simulation results showed that injection of a higher volume of nZVI delivered more iron particles at a given distance; however, not necessarily to a greater distance proportionate to the increase in volume. This study suggests that on-site synthesized nZVI particles are mobile in the subsurface and the numerical simulator can be a valuable tool for optimum design of nZVI applications.
Numerical Simulations of Merging Clusters of Galaxies
NASA Astrophysics Data System (ADS)
Roettiger, Kurt; Loken, Chris; Burns, Jack O.
1997-04-01
We present results from three-dimensional numerical simulations of head-on mergers between two clusters of galaxies using a hybrid hydro/N-body code. In these simulations, the gaseous intracluster medium (ICM) is evolved as a massless fluid within a changing gravitational potential defined by the collisionless dark matter component. The ICM is represented by the equations of hydrodynamics which are solved by an Eulerian, finite-difference method. The cluster dark matter component is represented by the N-body particle distribution. A series of simulations have been conducted in which we have systematically varied the cluster-subcluster mass ratio between 8:1 and 1:1. We find that cluster-subcluster mergers result in an elongation of both the cluster dark matter and gas distributions. The dark matter distribution is elongated parallel to the merger axis and accompanied by anisotropy in the dark matter velocity dispersion. Both the elongation and corresponding velocity anisotropy are sustained for more than 5 Gyr after the merger. The elongation of the gas distribution is also generally along the merger axis, although shocks and adiabatic compressions produce elongations perpendicular to the merger axis at various times during the merger. We also find a significant offset between dark matter and gas centroids in the period following core passage. The gasdynamics is also severely affected by the cluster-subcluster merger. In these simulations, the subcluster enters the primary at supersonic speeds initiating bulk flows that can exceed 2000 km s-1. The width of the bulk flows are seen to range between several hundred kiloparsecs to nearly 1 Mpc. We believe the bulk flows can produce the bending of wide-angle tailed (WAT) radio sources. The most significant gasdynamics is seen to subside on timescales of 2 Gyr, although still significant dynamics is seen even after 5 Gyr. The merger-induced gasdynamics may also play a role in the formation of radio halo sources, and
Numerical simulation of plasma processes driven by transverse ion heating
NASA Technical Reports Server (NTRS)
Singh, Nagendra; Chan, C. B.
1993-01-01
The plasma processes driven by transverse ion heating in a diverging flux tube are investigated with numerical simulation. The heating is found to drive a host of plasma processes, in addition to the well-known phenomenon of ion conics. The downward electric field near the reverse shock generates a doublestreaming situation consisting of two upflowing ion populations with different average flow velocities. The electric field in the reverse shock region is modulated by the ion-ion instability driven by the multistreaming ions. The oscillating fields in this region have the possibility of heating electrons. These results from the simulations are compared with results from a previous study based on a hydrodynamical model. Effects of spatial resolutions provided by simulations on the evolution of the plasma are discussed.
Numerical simulation of the SOFIA flowfield
NASA Technical Reports Server (NTRS)
Klotz, Stephen P.
1994-01-01
This report provides a concise summary of the contribution of computational fluid dynamics (CFD) to the SOFIA (Stratospheric Observatory for Infrared Astronomy) project at NASA Ames and presents results obtained from closed- and open-cavity SOFIA simulations. The aircraft platform is a Boeing 747SP and these are the first SOFIA simulations run with the aircraft empennage included in the geometry database. In the open-cavity run the telescope is mounted behind the wings. Results suggest that the cavity markedly influences the mean pressure distribution on empennage surfaces and that 110-140 decibel (db) sound pressure levels are typical in the cavity and on the horizontal and vertical stabilizers. A strong source of sound was found to exist on the rim of the open telescope cavity. The presence of this source suggests that additional design work needs to be performed in order to minimize the sound emanating from that location. A fluid dynamic analysis of the engine plumes is also contained in this report. The analysis was part of an effort to quantify the degradation of telescope performance resulting from the proximity of the port engine exhaust plumes to the open telescope bay.
Numerical simulation of the SOFIA flow field
NASA Technical Reports Server (NTRS)
Klotz, Stephen P.
1995-01-01
This report provides a concise summary of the contribution of computational fluid dynamics (CFD) to the SOFIA (Stratospheric Observatory for Infrared Astronomy) project at NASA Ames and presents results obtained from closed- and open-cavity SOFIA simulations. The aircraft platform is a Boeing 747SP and these are the first SOFIA simulations run with the aircraft empennage included in the geometry database. In the open-cavity runs the telescope is mounted behind the wings. Results suggest that the cavity markedly influences the mean pressure distribution on empennage surfaces and that 110-140 decibel (db) sound pressure levels are typical in the cavity and on the horizontal and vertical stabilizers. A strong source of sound was found to exist on the rim of the open telescope cavity. The presence of this source suggests that additional design work needs to be performed in order to minimize the sound emanating from that location. A fluid dynamic analysis of the engine plumes is also contained in this report. The analysis was part of an effort to quantify the degradation of telescope performance resulting from the proximity of the port engine exhaust plumes to the open telescope bay.
Numerical simulation of Glacial Isostatic Adjustment
NASA Astrophysics Data System (ADS)
Miglio, E.
2015-12-01
In the Earth's crust, stress can be subdivided into tectonic background stress, overburden pressure, and pore-fluid pressure. The superposition of the first two and the variation of the third part are key factors in controlling movement along faults. Furthermore, stresses due to sedimentation and erosion contribute to the total stress field. In deglaciated regions, an additional stress must be considered: the rebound stress, which is related to rebounding of the crust and mantle after deglaciation. During the growth of a continental ice sheet, the lithosphere under the iceload is deformed and the removal of the ice load during deglaciation initiates a rebound process. The uplift is well known in formerly glaciated areas, e.g.North America and Scandinavia, and in currently deglaciating areas, e.g.Alaska, Antarctica, and Greenland. The whole process of subsiding and uplifting during the growth and melting of an iceload and all related phenomena is known as glacial isostatic adjustment. During the process of glaciation, the surface of the lithosphere is depressed underneath the ice load and compressional flexural stresses are induced in the upper lithosphere, whereas the bottom of the lithosphere experiences extensional flexural stresses; an additional vertical stress due to the ice load is present and it decreases to zero during deglaciation. During rebound, flexural stresses relax slowly. These stresses are able to change the original stress directions and regime.In this work we aim to study the effect of the GIA process in the context of petroleum engineering. The main aspect we will focus on is the mathematical and numerical modeling of the GIA including thermal effects. We plan also to include a preliminary study of the effect of the glacial erosion. All these phenomena are of paramount importance in petroleum engineering: for example some reservoir have been depleted due to tilting caused by both GIA, erosion and thermal effects.
Numerical Simulation of Supersonic Gap Flow
Jing, Xu; Haiming, Huang; Guo, Huang; Song, Mo
2015-01-01
Various gaps in the surface of the supersonic aircraft have a significant effect on airflows. In order to predict the effects of attack angle, Mach number and width-to-depth ratio of gap on the local aerodynamic heating environment of supersonic flow, two-dimensional compressible Navier-Stokes equations are solved by the finite volume method, where convective flux of space term adopts the Roe format, and discretization of time term is achieved by 5-step Runge-Kutta algorithm. The numerical results reveal that the heat flux ratio is U-shaped distribution on the gap wall and maximum at the windward corner of the gap. The heat flux ratio decreases as the gap depth and Mach number increase, however, it increases as the attack angle increases. In addition, it is important to find that chamfer in the windward corner can effectively reduce gap effect coefficient. The study will be helpful for the design of the thermal protection system in reentry vehicles. PMID:25635395
Numerical Simulation of Complex Turbomachinery Flows
NASA Technical Reports Server (NTRS)
Chernobrovkin, A. A.; Lakshiminarayana, B.
1999-01-01
An unsteady, multiblock, Reynolds Averaged Navier Stokes solver based on Runge-Kutta scheme and Pseudo-time step for turbo-machinery applications was developed. The code was validated and assessed against analytical and experimental data. It was used to study a variety of physical mechanisms of unsteady, three-dimensional, turbulent, transitional, and cooling flows in compressors and turbines. Flow over a cylinder has been used to study effects of numerical aspects on accuracy of prediction of wake decay and transition, and to modify K-epsilon models. The following simulations have been performed: (a) Unsteady flow in a compressor cascade: Three low Reynolds number turbulence models have been assessed and data compared with Euler/boundary layer predictions. Major flow features associated with wake induced transition were predicted and studied; (b) Nozzle wake-rotor interaction in a turbine: Results compared to LDV data in design and off-design conditions, and cause and effect of unsteady flow in turbine rotors were analyzed; (c) Flow in the low-pressure turbine: Assessed capability of the code to predict transitional, attached and separated flows at a wide range of low Reynolds numbers and inlet freestream turbulence intensity. Several turbulence and transition models have been employed and comparisons made to experiments; (d) leading edge film cooling at compound angle: Comparisons were made with experiments, and the flow physics of the associated vortical structures were studied; and (e) Tip leakage flow in a turbine. The physics of the secondary flow in a rotor was studied and sources of loss identified.
Numerical Simulation of Ferrofluid Flow for Subsurface Environmental Engineering Applications
Oldenburg, Curtis M.; Borglin, Sharon E.; Moridis, George J.
1997-05-05
Ferrofluids are suspensions of magnetic particles of diameter approximately 10 nm stabilized by surfactants in carrier liquids. The large magnetic susceptibility of ferrofluids allows the mobilization of ferrofluid through permeable rock and soil by the application of strong external magnetic fields. We have developed simulation capabilities for both miscible and immiscible conceptualizations of ferrofluid flow through porous media in response to magnetic forces arising from the magnetic field of a rectangular permanent magnet. The flow of ferrofluid is caused by the magnetization of the particles and their attraction toward a magnet, regardless of the orientation of the magnet. The steps involved in calculating the flow of ferrofluid are (1) calculation of the external magnetic field, (2) calculation of the gradient of the external magnetic field, (3) calculation of the magnetization of the ferrofluid, and (4) assembly of the magnetic body force term and addition of this term to the standard pressure gradient and gravity force terms. We compare numerical simulations to laboratory measurements of the magnetic field, fluid pressures, and the two-dimensional flow of ferrofluid to demonstrate the applicability of the methods coded in the numerical simulators. We present an example of the use of the simulator for a field-scale application of ferrofluids for barrier verification.
NUMERICAL NOISE PM SIMULATION IN CMAQ
We have found that numerical noise in the latest release of CMAQ using the yamo advection scheme when compiled on Linux cluster with pgf90 (5.0 or 6.0). We recommend to use -C option to eliminate the numerical noise.
Numerical simulation of seasonal groundwater pumping
NASA Astrophysics Data System (ADS)
Filimonova, Elena; Baldenkov, Mikhail
2015-04-01
Increasing scarcity and contamination of water recourses require innovative water management strategies such as combined water system. The combined water system is a complex technology comprising two separate wells, major catchment-zone well and compensation pumping well, located inside a single stream basin. The major well is supplied by the well's catchment zone or surface flow, thus depleting the stream flow. The pumping rate of a major well is determined by the difference between the current stream flow and the minimum permissible stream flow. The deficiency of the stream flow in dry seasons can be compensated for by the short-term pumping of groundwater. The compensation pumping rate is determined by the difference between water demand and the permissible water withdrawal of the major well. The source for the compensation well is the aquifer storage. The estimation of streamflow depletion caused by compensation pumping is major question to evaluate the efficiency of the combined water system. Short-term groundwater pumping can use aquifer storage instead of catchment-zone water until the drawdown reaches the edge of the stream. Traditionally pumping simulation calculates in two-step procedure. Natural conditions, an aquifer system is in an approximate dynamic equilibrium, describe by steady-state model. A steady-state solution provides an initial heads, a set of flows through boundaries, and used as initial state for transient solutions, when pumping is imposed on an aquifer system. The transient solutions provide the total change in flows through the boundaries. A difference between the transient and steady-state solutions estimates the capture and the streamflow depletion. Numerical modeling of cyclical compensation pumping has special features: the periodic solution, the seasonal changes through the boundaries and the importance even small drawdown of stream level. When seasonality is a modeling feature, traditional approach leads to mistaken values of
Numerical simulation and modeling of combustion in scramjets
NASA Astrophysics Data System (ADS)
Clark, Ryan James
In the last fifteen years the development of a viable scramjet has quickly approached the following long term goals: responsive sub-orbital space access; long-range, prompt global strike; and high-speed transportation. Nonetheless, there are significant challenges that need to be resolved. These challenges include high skin friction drag and high heat transfer rates, inherent to vehicles in sustained, hypersonic flight. Another challenge is sustaining combustion. Numerical simulation and modeling was performed to provide insight into reducing skin friction drag and sustaining combustion. Numerical simulation was used to investigate boundary layer combustion, which has been shown to reduce skin friction drag. The objective of the numerical simulations was to quantify the effect of fuel injection parameters on boundary layer combustion and ultimately on the change in the skin friction coefficient and heat transfer rate. A qualitative analysis of the results suggest that the reduction in the skin friction coefficient depends on multiple parameters and potentially an interaction between parameters. Sustained combustion can be achieved through a stabilized detonation wave. Additionally, stabilizing a detonation wave will yield rapid combustion. This will allow for a shorter and lighter-weight engine system, resulting in less required combustor cooling. A stabilized detonation wave was numerically modeled for various inlet and geometric cases. The effect of fuel concentration, inlet Mach number, and geometric configuration on the stability of a detonation wave was quantified. Correlations were established between fuel concentration, inlet speed, geometric configuration and parameters characterizing the detonation wave. A linear relationship was quantified between the fuel concentration and the parameters characterizing the detonation wave.
Development of Pelton turbine using numerical simulation
NASA Astrophysics Data System (ADS)
Patel, K.; Patel, B.; Yadav, M.; Foggia, T.
2010-08-01
This paper describes recent research and development activities in the field of Pelton turbine design. Flow inside Pelton turbine is most complex due to multiphase (mixture of air and water) and free surface in nature. Numerical calculation is useful to understand flow physics as well as effect of geometry on flow. The optimized design is obtained using in-house special optimization loop. Either single phase or two phase unsteady numerical calculation could be performed. Numerical results are used to visualize the flow pattern in the water passage and to predict performance of Pelton turbine at full load as well as at part load. Model tests are conducted to determine performance of turbine and it shows good agreement with numerically predicted performance.
Direct Numerical Simulations of Sound-Orifice-Boundary Layer Interaction
NASA Astrophysics Data System (ADS)
Zhang, Qi; Bodony, Daniel
2015-11-01
We report on a series of direct numerical simulations (DNS) of the interaction of a monochromatic incident acoustic field with a cavity-backed circular orifice in the presence of laminar and turbulent boundary layers of freestream Mach number 0.5 and momentum thickness Reynolds number 2,300, with application to acoustic liners. The simulations show that the addition of the orifice increases the drag and can induce laminar-to-turbulent transition at sufficiently high acoustic levels. Furthermore, the sound-orifice-boundary layer system support three distinct timescales whose spatial distributions change with the phase of the incident sound. Details of the near-orifice interaction are studied to create a model of the orifice discharge coefficient that is part of a time-domain, nonlinear reduced-order model (ROM) for the liner impedance. Comparisons between the ROM-predicted and DNS-measured near-orifice flow and acoustic impedance are given.
Numerical Simulations of Plasma Based Flow Control Applications
NASA Technical Reports Server (NTRS)
Suzen, Y. B.; Huang, P. G.; Jacob, J. D.; Ashpis, D. E.
2005-01-01
A mathematical model was developed to simulate flow control applications using plasma actuators. The effects of the plasma actuators on the external flow are incorporated into Navier Stokes computations as a body force vector. In order to compute this body force vector, the model solves two additional equations: one for the electric field due to the applied AC voltage at the electrodes and the other for the charge density representing the ionized air. The model is calibrated against an experiment having plasma-driven flow in a quiescent environment and is then applied to simulate a low pressure turbine flow with large flow separation. The effects of the plasma actuator on control of flow separation are demonstrated numerically.
Reliability of numerical wind tunnels for VAWT simulation
NASA Astrophysics Data System (ADS)
Raciti Castelli, M.; Masi, M.; Battisti, L.; Benini, E.; Brighenti, A.; Dossena, V.; Persico, G.
2016-09-01
Computational Fluid Dynamics (CFD) based on the Unsteady Reynolds Averaged Navier Stokes (URANS) equations have long been widely used to study vertical axis wind turbines (VAWTs). Following a comprehensive experimental survey on the wakes downwind of a troposkien-shaped rotor, a campaign of bi-dimensional simulations is presented here, with the aim of assessing its reliability in reproducing the main features of the flow, also identifying areas needing additional research. Starting from both a well consolidated turbulence model (k-ω SST) and an unstructured grid typology, the main simulation settings are here manipulated in a convenient form to tackle rotating grids reproducing a VAWT operating in an open jet wind tunnel. The dependence of the numerical predictions from the selected grid spacing is investigated, thus establishing the less refined grid size that is still capable of capturing some relevant flow features such as integral quantities (rotor torque) and local ones (wake velocities).
Numerical simulation of the non-Newtonian mixing layer
NASA Technical Reports Server (NTRS)
Azaiez, Jalel; Homsy, G. M.
1993-01-01
This work is a continuing effort to advance our understanding of the effects of polymer additives on the structures of the mixing layer. In anticipation of full nonlinear simulations of the non-Newtonian mixing layer, we examined in a first stage the linear stability of the non-Newtonian mixing layer. The results of this study show that, for a fluid described by the Oldroyd-B model, viscoelasticity reduces the instability of the inviscid mixing layer in a special limit where the ratio (We/Re) is of order 1 where We is the Weissenberg number, a measure of the elasticity of the flow, and Re is the Reynolds number. In the present study, we pursue this project with numerical simulations of the non-Newtonian mixing layer. Our primary objective is to determine the effects of viscoelasticity on the roll-up structure. We also examine the origin of the numerical instabilities usually encountered in the simulations of non-Newtonian fluids.
Numerical Simulation Of Cutting Of Gear Teeth
NASA Technical Reports Server (NTRS)
Oswald, Fred B.; Huston, Ronald L.; Mavriplis, Dimitrios
1994-01-01
Shapes of gear teeth produced by gear cutters of specified shape simulated computationally, according to approach based on principles of differential geometry. Results of computer simulation displayed as computer graphics and/or used in analyses of design, manufacturing, and performance of gears. Applicable to both standard and non-standard gear-tooth forms. Accelerates and facilitates analysis of alternative designs of gears and cutters. Simulation extended to study generation of surfaces other than gears. Applied to cams, bearings, and surfaces of arbitrary rolling elements as well as to gears. Possible to develop analogous procedures for simulating manufacture of skin surfaces like automobile fenders, airfoils, and ship hulls.
The Analysis, Numerical Simulation, and Diagnosis of Extratropical Weather Systems
1999-09-30
respectively, and iv ) the numerical simulation and observational validation of high-spatial resolution (~10 km) numerical predictions. APPROACH My approach...satellite and targeted dropwindsonde observations; in collaboration with Xiaolie Zou (Fla. State Univ.), Chris Velden (Univ. Wisc ./CIMMS), and Arlin...Univ. Wisc .), and Arlin Krueger (NASA/GSFC). Analysis and numerical simulation of the fine-scale structure of upper-level jet streams from high- spatial
Using Numerical Modeling to Simulate Space Capsule Ground Landings
NASA Technical Reports Server (NTRS)
Heymsfield, Ernie; Fasanella, Edwin L.
2009-01-01
Experimental work is being conducted at the National Aeronautics and Space Administration s (NASA) Langley Research Center (LaRC) to investigate ground landing capabilities of the Orion crew exploration vehicle (CEV). The Orion capsule is NASA s replacement for the Space Shuttle. The Orion capsule will service the International Space Station and be used for future space missions to the Moon and to Mars. To evaluate the feasibility of Orion ground landings, a series of capsule impact tests are being performed at the NASA Langley Landing and Impact Research Facility (LandIR). The experimental results derived at LandIR provide means to validate and calibrate nonlinear dynamic finite element models, which are also being developed during this study. Because of the high cost and time involvement intrinsic to full-scale testing, numerical simulations are favored over experimental work. Subsequent to a numerical model validated by actual test responses, impact simulations will be conducted to study multiple impact scenarios not practical to test. Twenty-one swing tests using the LandIR gantry were conducted during the June 07 through October 07 time period to evaluate the Orion s impact response. Results for two capsule initial pitch angles, 0deg and -15deg , along with their computer simulations using LS-DYNA are presented in this article. A soil-vehicle friction coefficient of 0.45 was determined by comparing the test stopping distance with computer simulations. In addition, soil modeling accuracy is presented by comparing vertical penetrometer impact tests with computer simulations for the soil model used during the swing tests.
Numerical simulation of turbulent combustion: Scientific challenges
NASA Astrophysics Data System (ADS)
Ren, ZhuYin; Lu, Zhen; Hou, LingYun; Lu, LiuYan
2014-08-01
Predictive simulation of engine combustion is key to understanding the underlying complicated physicochemical processes, improving engine performance, and reducing pollutant emissions. Critical issues as turbulence modeling, turbulence-chemistry interaction, and accommodation of detailed chemical kinetics in complex flows remain challenging and essential for high-fidelity combustion simulation. This paper reviews the current status of the state-of-the-art large eddy simulation (LES)/prob-ability density function (PDF)/detailed chemistry approach that can address the three challenging modelling issues. PDF as a subgrid model for LES is formulated and the hybrid mesh-particle method for LES/PDF simulations is described. Then the development need in micro-mixing models for the PDF simulations of turbulent premixed combustion is identified. Finally the different acceleration methods for detailed chemistry are reviewed and a combined strategy is proposed for further development.
Computer-based numerical simulations of adsorption in nanostructures
NASA Astrophysics Data System (ADS)
Khashimova, Diana
2014-08-01
Zeolites are crystalline oxides with uniform, molecular-pore diameters of 3-14Å. Significant developments since 1950 made production of synthetic zeolites with high purity and controlled chemical composition possible. In powder-form, zeolites are major role-players in high-tech, industrial catalysis, adsorption, and ion exchange applications. Understanding properties of thin-film zeolites has been a focus of recent research. The ability to fine-tune desired macroscopic properties by controlled alteration at the molecular level is paramount. The relationships between macroscopic and molecular-level properties are established by experimental research. Because generating macroscopic, experimental data in a controlled laboratory can be prohibitively costly and time-consuming, reliable numerical simulations, which remove such difficulties, are an attractive alternative. Using a Configurational Biased Monte Carlo (CBMC) approach in grand canonical ensemble, numerical models for pure component and multicomponent adsorption processes were developed. Theoretical models such as ideal (IAST) and real adsorbed solution theory (RAST) to predict mixture adsorption in nanopores were used for comparison. Activity coefficients used in RAST calculations were determined from the Wilson, spreading pressure and COSMO-RS models. Investigative testing of the method on known materials, represented by all-silica zeolites such as MFI (channel type) and DDR (cage type), proved successful in replicating experimental data on adsorption of light hydrocarbons - alkanes, such as methane, ethane, propane and butane. Additionally, adsorption of binary and ternary mixtures was simulated. The given numerical approach developed can be a powerful, cost and time saving tool to predict process characteristics for different molecular-structure configurations. The approach used here for simulating adsorption properties of nanopore materials including process characteristics, may have great potential for
Numerical simulation of in situ bioremediation
Travis, B.J.
1998-12-31
Models that couple subsurface flow and transport with microbial processes are an important tool for assessing the effectiveness of bioremediation in field applications. A numerical algorithm is described that differs from previous in situ bioremediation models in that it includes: both vadose and groundwater zones, unsteady air and water flow, limited nutrients and airborne nutrients, toxicity, cometabolic kinetics, kinetic sorption, subgridscale averaging, pore clogging and protozoan grazing.
Numerical characteristics of quantum computer simulation
NASA Astrophysics Data System (ADS)
Chernyavskiy, A.; Khamitov, K.; Teplov, A.; Voevodin, V.; Voevodin, Vl.
2016-12-01
The simulation of quantum circuits is significantly important for the implementation of quantum information technologies. The main difficulty of such modeling is the exponential growth of dimensionality, thus the usage of modern high-performance parallel computations is relevant. As it is well known, arbitrary quantum computation in circuit model can be done by only single- and two-qubit gates, and we analyze the computational structure and properties of the simulation of such gates. We investigate the fact that the unique properties of quantum nature lead to the computational properties of the considered algorithms: the quantum parallelism make the simulation of quantum gates highly parallel, and on the other hand, quantum entanglement leads to the problem of computational locality during simulation. We use the methodology of the AlgoWiki project (algowiki-project.org) to analyze the algorithm. This methodology consists of theoretical (sequential and parallel complexity, macro structure, and visual informational graph) and experimental (locality and memory access, scalability and more specific dynamic characteristics) parts. Experimental part was made by using the petascale Lomonosov supercomputer (Moscow State University, Russia). We show that the simulation of quantum gates is a good base for the research and testing of the development methods for data intense parallel software, and considered methodology of the analysis can be successfully used for the improvement of the algorithms in quantum information science.
Numerical simulation of hemorrhage in human injury
NASA Astrophysics Data System (ADS)
Chong, Kwitae; Jiang, Chenfanfu; Santhanam, Anand; Benharash, Peyman; Teran, Joseph; Eldredge, Jeff
2015-11-01
Smoothed Particle Hydrodynamics (SPH) is adapted to simulate hemorrhage in the injured human body. As a Lagrangian fluid simulation, SPH uses fluid particles as computational elements and thus mass conservation is trivially satisfied. In order to ensure anatomical fidelity, a three-dimensional reconstruction of a portion of the human body -here, demonstrated on the lower leg- is sampled as skin, bone and internal tissue particles from the CT scan image of an actual patient. The injured geometry is then generated by simulation of ballistic projectiles passing through the anatomical model with the Material Point Method (MPM) and injured vessel segments are identified. From each such injured segment, SPH is used to simulate bleeding, with inflow boundary condition obtained from a coupled 1-d vascular tree model. Blood particles interact with impermeable bone and skin particles through the Navier-Stokes equations and with permeable internal tissue particles through the Brinkman equations. The SPH results are rendered in post-processing for improved visual fidelity. The overall simulation strategy is demonstrated on several injury scenarios in the lower leg.
Numerical simulation of magmatic hydrothermal systems
Ingebritsen, S.E.; Geiger, S.; Hurwitz, S.; Driesner, T.
2010-01-01
The dynamic behavior of magmatic hydrothermal systems entails coupled and nonlinear multiphase flow, heat and solute transport, and deformation in highly heterogeneous media. Thus, quantitative analysis of these systems depends mainly on numerical solution of coupled partial differential equations and complementary equations of state (EOS). The past 2 decades have seen steady growth of computational power and the development of numerical models that have eliminated or minimized the need for various simplifying assumptions. Considerable heuristic insight has been gained from process-oriented numerical modeling. Recent modeling efforts employing relatively complete EOS and accurate transport calculations have revealed dynamic behavior that was damped by linearized, less accurate models, including fluid property control of hydrothermal plume temperatures and three-dimensional geometries. Other recent modeling results have further elucidated the controlling role of permeability structure and revealed the potential for significant hydrothermally driven deformation. Key areas for future reSearch include incorporation of accurate EOS for the complete H2O-NaCl-CO2 system, more realistic treatment of material heterogeneity in space and time, realistic description of large-scale relative permeability behavior, and intercode benchmarking comparisons. Copyright 2010 by the American Geophysical Union.
Material flow data for numerical simulation of powder injection molding
NASA Astrophysics Data System (ADS)
Duretek, I.; Holzer, C.
2017-01-01
The powder injection molding (PIM) process is a cost efficient and important net-shape manufacturing process that is not completely understood. For the application of simulation programs for the powder injection molding process, apart from suitable physical models, exact material data and in particular knowledge of the flow behavior are essential in order to get precise numerical results. The flow processes of highly filled polymers are complex. Occurring effects are very hard to separate, like shear flow with yield stress, wall slip, elastic effects, etc. Furthermore, the occurrence of phase separation due to the multi-phase composition of compounds is quite probable. In this work, the flow behavior of a 316L stainless steel feedstock for powder injection molding was investigated. Additionally, the influence of pre-shearing on the flow behavior of PIM-feedstocks under practical conditions was examined and evaluated by a special PIM injection molding machine rheometer. In order to have a better understanding of key factors of PIM during the injection step, 3D non-isothermal numerical simulations were conducted with a commercial injection molding simulation software using experimental feedstock properties. The simulation results were compared with the experimental results. The mold filling studies amply illustrate the effect of mold temperature on the filling behavior during the mold filling stage. Moreover, the rheological measurements showed that at low shear rates no zero shear viscosity was observed, but instead the viscosity further increased strongly. This flow behavior could be described with the Cross-WLF approach with Herschel-Bulkley extension very well.
A numerical simulation of auroral ionospheric electrodynamics
NASA Technical Reports Server (NTRS)
Mallinckrodt, A. J.
1985-01-01
A computer simulation of auroral ionospheric electrodynamics in the altitude range 80 to 250 km has been developed. The routine will either simulate typical electron precipitation profiles or accept observed data. Using a model background ionosphere, ion production rates are calculated from which equilibrium electron densities and the Hall and Pedersen conductivities may be determined. With the specification of suitable boundary conditions, the entire three-dimensional current system and electric field may be calculated within the simulation region. The results of the application of the routine to a typical inverted-V precipitation profile are demonstrated. The routine is used to explore the observed anticorrelation between electric field magnitude and peak energy in the precipitating electron spectrum of an auroral arc.
Numerical Simulation of Spray Atomization in Supersonic Flows
NASA Astrophysics Data System (ADS)
Wang, Jiangfeng; Liu, Chen; Wu, Yizhao
With the rapid development of the air-breathing hypersonic vehicle design, an accurate description of the combustion properties becomes more and more important, where one of the key techniques is the procedure of the liquid fuel mixing, atomizing and burning coupled with the supersonic crossflow in the combustion chamber. The movement and distribution of the liquid fuel droplets in the combustion chamber will influence greatly the combustion properties, as well as the propulsion performance of the ramjet/scramjet engine. In this paper, numerical simulation methods on unstructured hybrid meshes were carried out for liquid spray atomization in supersonic crossflows. The Kelvin-Helmholtz/Rayleigh-Taylor hybrid model was used to simulate the breakup process of the liquid spray in a supersonic crossflow with Mach number 1.94. Various spray properties, including spray penetration height, droplet size distribution, were quantitatively compared with experimental results. In addition, numerical results of the complex shock wave structure induced by the presence of liquid spray were illustrated and discussed.
Numerical simulation of nonlinear dynamical systems driven by commutative noise
Carbonell, F. Biscay, R.J.; Jimenez, J.C.; Cruz, H. de la
2007-10-01
The local linearization (LL) approach has become an effective technique for the numerical integration of ordinary, random and stochastic differential equations. One of the reasons for this success is that the LL method achieves a convenient trade-off between numerical stability and computational cost. Besides, the LL method reproduces well the dynamics of nonlinear equations for which other classical methods fail. However, in the stochastic case, most of the reported works has been focused in Stochastic Differential Equations (SDE) driven by additive noise. This limits the applicability of the LL method since there is a number of interesting dynamics observed in equations with multiplicative noise. On the other hand, recent results show that commutative noise SDEs can be transformed into a random differential equation (RDE) by means of a random diffeomorfism (conjugacy). This paper takes advantages of such conjugacy property and the LL approach for defining a LL scheme for SDEs driven by commutative noise. The performance of the proposed method is illustrated by means of numerical simulations.
A Computing Cluster for Numerical Simulation
2006-10-23
34Contact and Friction for Cloth Animation", SIGGRAPH 2002, ACM TOG 21, 594-603 (2002). "* [BHTF] Bao, Z., Hong, J.-M., Teran , J. and Fedkiw, R...Simulation of Large Bodies of Water by Coupling Two and Three Dimensional Techniques", SIGGRAPH 2006, ACM TOG 25, 805-811 (2006). "* [ITF] Irving, G., Teran ...O’Brien (2006) "* [TSBNLF] Teran , J., Sifakis, E., Blemker, S., Ng Thow Hing, V., Lau, C. and Fedkiw, R., "Creating and Simulating Skeletal Muscle from the
Numerical simulation of cross field amplifiers
Eppley, K.
1990-01-01
Cross field amplifiers (CFA) have been used in many applications where high power, high frequency microwaves are needed. Although these tubes have been manufactured for decades, theoretical analysis of their properties is not as highly developed as for other microwave devices such as klystrons. One feature distinguishing cross field amplifiers is that the operating current is produced by secondary emission from a cold cathode. This removes the need for a heater and enables the device to act as a switch tube, drawing no power until the rf drive is applied. However, this method of generating the current does complicate the simulation. We are developing a simulation model of cross field amplifiers using the PIC code CONDOR. We simulate an interaction region, one traveling wavelength long, with periodic boundary conditions. An electric field with the appropriate phase velocity is imposed on the upper boundary of the problem. Evaluation of the integral of E{center dot}J gives the power interchanged between the wave and the beam. Given the impedance of the structure, we then calculate the change in the traveling wave field. Thus we simulate the growth of the wave through the device. The main advance of our model over previous CFA simulations is the realistic tracking of absorption and secondary emission. The code uses experimental curves to calculate secondary production as a function of absorbed energy, with a theoretical expression for the angular dependence. We have used this code to model the 100 MW X-band CFA under construction at SLAC, as designed by Joseph Feinstein and Terry Lee. We are examining several questions of practical interest, such as the power and spectrum of absorbed electrons, the minimum traveling wave field needed to initiate spoke formation, and the variation of output power with dc voltage, anode-cathode gap, and magnetic field. 5 refs., 8 figs.
Brush seal numerical simulation: Concepts and advances
NASA Technical Reports Server (NTRS)
Braun, M. J.; Kudriavtsev, V. V.
1994-01-01
The development of the brush seal is considered to be most promising among the advanced type seals that are presently in use in the high speed turbomachinery. The brush is usually mounted on the stationary portions of the engine and has direct contact with the rotating element, in the process of limiting the 'unwanted' leakage flows between stages, or various engine cavities. This type of sealing technology is providing high (in comparison with conventional seals) pressure drops due mainly to the high packing density (around 100 bristles/sq mm), and brush compliance with the rotor motions. In the design of modern aerospace turbomachinery leakage flows between the stages must be minimal, thus contributing to the higher efficiency of the engine. Use of the brush seal instead of the labyrinth seal reduces the leakage flow by one order of magnitude. Brush seals also have been found to enhance dynamic performance, cost less, and are lighter than labyrinth seals. Even though industrial brush seals have been successfully developed through extensive experimentation, there is no comprehensive numerical methodology for the design or prediction of their performance. The existing analytical/numerical approaches are based on bulk flow models and do not allow the investigation of the effects of brush morphology (bristle arrangement), or brushes arrangement (number of brushes, spacing between them), on the pressure drops and flow leakage. An increase in the brush seal efficiency is clearly a complex problem that is closely related to the brush geometry and arrangement, and can be solved most likely only by means of a numerically distributed model.
High order hybrid numerical simulations of two dimensional detonation waves
NASA Technical Reports Server (NTRS)
Cai, Wei
1993-01-01
In order to study multi-dimensional unstable detonation waves, a high order numerical scheme suitable for calculating the detailed transverse wave structures of multidimensional detonation waves was developed. The numerical algorithm uses a multi-domain approach so different numerical techniques can be applied for different components of detonation waves. The detonation waves are assumed to undergo an irreversible, unimolecular reaction A yields B. Several cases of unstable two dimensional detonation waves are simulated and detailed transverse wave interactions are documented. The numerical results show the importance of resolving the detonation front without excessive numerical viscosity in order to obtain the correct cellular patterns.
Numerical simulation of vortex-wedge interaction
NASA Astrophysics Data System (ADS)
Park, Jin-Ho; Lee, Duck-Joo
1994-06-01
Interactions between vortical flows and a solid surface cause one of the primary sources of noise and unsteady loading. The mechanism of the interaction is studied numerically for a single Rankine vortex impinging upon a wedge. An Euler-Lagrangian method is employed to calculate the unsteady, viscous, incompressible flows in two dimensions. A random vortex method is used to describe the vorticity dominant field. A fast vortex method is used to reduce the computational time in the calculation of the convection velocity of each vortex particle. A Schwarz-Christoffel transformation is used to map the numerical domain onto the physical domain. Vortex partical plots, velocity vectors, and streamlines are presented at selected times for both inviscid and viscous interactions. It is observed that the incident rankine vortex distorts and is split by the wedge as it nears and passes the wedge, and the vortices generated from the leading edge toward the underside of the wedge form into a single vortex. The vorticity orientation of the shed vortex is opposite to that of the incident vortex. It is found that the convection velocity of the shed vortex is changed wheen it comes off the leading edge of the wedge, and the strength of the shed vortex varies with the time during the vortex-wedge interaction. This strength variation is presumed to influence the shed vortex convection velocity. The overall features for the interaction agree well with the experimental results of Ziada and Rockwell.
Representation of wells in numerical reservoir simulation
Ding, Y.; Renard, G.; Weill, L.
1995-12-31
In reservoir simulation, linear approximations are generally used for well modeling. However, this type of approximations can be inaccurate for fluid flow calculation in the vicinity of wells leading to incorrect well performance predictions. To overcome such problems, a new well representation has been proposed that uses a ``logarithmic`` type of approximation for vertical wells. In this paper, it is shown how the new well model can be easily implemented in existing simulator through the conventional PI. The relationship between wellbore pressure, wellblock pressure and flow rate is discussed in more detail, especially for the definition of wellblock pressure. Extension of the new approach to off-center wells and to flexible grids are both presented. Through this extension, the equivalence of various gridding techniques for the well model is emphasized. The key element is the accurate calculation of flow components in the vicinity of wells.
Studying Spacecraft Charging via Numerical Simulations
NASA Astrophysics Data System (ADS)
Delzanno, G. L.; Moulton, D.; Meierbachtol, C.; Svyatskiy, D.; Vernon, L.
2015-12-01
The electrical charging of spacecraft due to bombarding charged particles can affect their performance and operation. We study this charging using CPIC; a particle-in-cell code specifically designed for studying plasma-material interactions [1]. CPIC is based on multi-block curvilinear meshes, resulting in near-optimal computational performance while maintaining geometric accuracy. Relevant plasma parameters are imported from the SHIELDS framework (currently under development at LANL), which simulates geomagnetic storms and substorms in the Earth's magnetosphere. Simulated spacecraft charging results of representative Van Allen Probe geometries using these plasma parameters will be presented, along with an overview of the code. [1] G.L. Delzanno, E. Camporeale, J.D. Moulton, J.E. Borovsky, E.A. MacDonald, and M.F. Thomsen, "CPIC: A Curvilinear Particle-In-Cell Code for Plasma-Material Interaction Studies," IEEE Trans. Plas. Sci., 41 (12), 3577 (2013).
Numerical Simulation of Non-Thermal Food Preservation
NASA Astrophysics Data System (ADS)
Rauh, C.; Krauss, J.; Ertunc, Ö.; Delgado, a.
2010-09-01
Food preservation is an important process step in food technology regarding product safety and product quality. Novel preservation techniques are currently developed, that aim at improved sensory and nutritional value but comparable safety than in conventional thermal preservation techniques. These novel non-thermal food preservation techniques are based for example on high pressures up to one GPa or pulsed electric fields. in literature studies the high potential of high pressures (HP) and of pulsed electric fields (PEF) is shown due to their high retention of valuable food components as vitamins and flavour and selective inactivation of spoiling enzymes and microorganisms. for the design of preservation processes based on the non-thermal techniques it is crucial to predict the effect of high pressure and pulsed electric fields on the food components and on the spoiling enzymes and microorganisms locally and time-dependent in the treated product. Homogenous process conditions (especially of temperature fields in HP and PEF processing and of electric fields in PEF) are aimed at to avoid the need of over-processing and the connected quality loss and to minimize safety risks due to under-processing. the present contribution presents numerical simulations of thermofluiddynamical phenomena inside of high pressure autoclaves and pulsed electric field treatment chambers. in PEF processing additionally the electric fields are considered. Implementing kinetics of occurring (bio-) chemical reactions in the numerical simulations of the temperature, flow and electric fields enables the evaluation of the process homogeneity and efficiency connected to different process parameters of the preservation techniques. Suggestions to achieve safe and high quality products are concluded out of the numerical results.
Numerical Simulation of Ion Thruster Optics
NASA Technical Reports Server (NTRS)
Rawlin, Vincent K. (Technical Monitor); Farnell, Cody C.; Williams, John D.; Wilbur, Paul J.
2003-01-01
A three-dimensional simulation code (ffx) designed to analyze ion thruster optics is described. It is an extension of an earlier code and includes special features like the ability to model a wide range of grid geometries, cusp details, and mis-aligned aperture pairs to name a few. However, the principle reason for advancing the code was in the study of ion optics erosion. Ground based testing of ion thruster optics, essential to the understanding of the processes of grid erosion, can be time consuming and costly. Simulation codes that can accurately predict grid lifetimes and the physical mechanisms of grid erosion can be of great utility in the development of future ion thruster optics designed for more ambitious applications. Results of simulations are presented that describe wear profiles for several standard and nonstandard aperture geometries, such as those grid sets with square- or slotted-hole layout patterns. The goal of this paper will be to introduce the methods employed in the ffx code and to briefly demonstrate their use.
Classical MHD shocks: theory and numerical simulation
Pogorelov, Nikolai V.
2005-08-01
Recent results are surveyed in the investigation of the behavior of shocks in ideal magnetohydrodynamics (MHD) and corresponding structures in dissipative/resistive plasma flows. In contrast to evolutionary shocks, a solution of the problem of the nonevolutionary shock interaction with small perturbations is either nonunique or does not exist. The peculiarity of non-ideal MHD is in that some nonevolutionary shocks have dissipative structures. Since this structure is always non-plane, it can reveal itself in problems where transverse perturbations do not exist due to symmetries restrictions. We discuss the numerical behavior of nonevolutionary shocks and argue that they necessarily disappear once the problem is solved in a genuinely three-dimensional statement.
Vector Potential Generation for Numerical Relativity Simulations
NASA Astrophysics Data System (ADS)
Silberman, Zachary; Faber, Joshua; Adams, Thomas; Etienne, Zachariah; Ruchlin, Ian
2017-01-01
Many different numerical codes are employed in studies of highly relativistic magnetized accretion flows around black holes. Based on the formalisms each uses, some codes evolve the magnetic field vector B, while others evolve the magnetic vector potential A, the two being related by the curl: B=curl(A). Here, we discuss how to generate vector potentials corresponding to specified magnetic fields on staggered grids, a surprisingly difficult task on finite cubic domains. The code we have developed solves this problem in two ways: a brute-force method, whose scaling is nearly linear in the number of grid cells, and a direct linear algebra approach. We discuss the success both algorithms have in generating smooth vector potential configurations and how both may be extended to more complicated cases involving multiple mesh-refinement levels. NSF ACI-1550436
Numerical simulation of electrophoresis separation processes
NASA Technical Reports Server (NTRS)
Ganjoo, D. K.; Tezduyar, T. E.
1986-01-01
A new Petrov-Galerkin finite element formulation has been proposed for transient convection-diffusion problems. Most Petrov-Galerkin formulations take into account the spatial discretization, and the weighting functions so developed give satisfactory solutions for steady state problems. Though these schemes can be used for transient problems, there is scope for improvement. The schemes proposed here, which consider temporal as well as spatial discretization, provide improved solutions. Electrophoresis, which involves the motion of charged entities under the influence of an applied electric field, is governed by equations similiar to those encountered in fluid flow problems, i.e., transient convection-diffusion equations. Test problems are solved in electrophoresis and fluid flow. The results obtained are satisfactory. It is also expected that these schemes, suitably adapted, will improve the numerical solutions of the compressible Euler and the Navier-Stokes equations.
Numerical simulation of ac plasma arc thermodynamics
NASA Astrophysics Data System (ADS)
Wu, Han-Ming; Carey, G. F.; Oakes, M. E.
1994-05-01
A mathematical model and approximate analysis for the energy distribution of an ac plasma arc with a moving boundary is developed. A simplified electrical conductivity function is assumed so that the dynamic behavior of the arc may be determined, independent of the gas type. The model leads to a reduced set of non-linear partial differential equations which governs the quasi-steady ac arc. This system is solved numerically and it is found that convection plays an important role, not only in the temperature distribution, but also in arc disruptions. Moreover, disruptions are found to be influenced by convection only for a limited frequency range. The results of the present studies are applicable to the frequnecy range of 10-10(exp 2) Hz which includes most industry ac arc frequencies.
Numerical Simulation of AC Plasma Arc Thermodynamics
NASA Astrophysics Data System (ADS)
Wu, Han-Ming; Carey, G. F.; Oakes, M. E.
1994-05-01
A mathematical model and approximate analysis for the energy distribution of an ac plasma arc with a moving boundary is developed. A simplified electrical conductivity function is assumed so that the dynamic behavior of the arc may be determined, independent of the gas type. The model leads to a reduced set of non-linear partial differential equations which governs the quasi-steady ac arc. This system is solved numerically and it is found that convection plays an important role, not only in the temperature distribution, but also in arc disruptions. Moreover, disruptions are found to be influenced by convection only for a limited frequency range. The results of the present studies are applicable to the frequency range of 10-102 Hz which includes most industry ac arc frequencies.
Numerical Simulation of Liquid Jet Atomization Including Turbulence Effects
NASA Technical Reports Server (NTRS)
Trinh, Huu P.; Chen, C. P.; Balasubramanyam, M. S.
2005-01-01
This paper describes numerical implementation of a newly developed hybrid model, T-blob/T-TAB, into an existing computational fluid dynamics (CFD) program for primary and secondary breakup simulation of liquid jet atomization. This model extend two widely used models, the Kelvin-Helmholtz (KH) instability of Reitz (blob model) and the Taylor-Analogy-Breakup (TAB) secondary droplet breakup by O'Rourke and Amsden to include turbulence effects. In the primary breakup model, the level of the turbulence effect on the liquid breakup depends on the characteristic scales and the initial flow conditions. For the secondary breakup, an additional turbulence force acted on parent drops is modeled and integrated into the TAB governing equation. Several assessment studies are presented and the results indicate that the existing KH and TAB models tend to under-predict the product drop size and spray angle, while the current model provides superior results when compared with the measured data.
Numerical simulations of runaway electron generation in pressurized gases
Levko, D.; Yatom, S.; Vekselman, V.; Gleizer, J. Z.; Gurovich, V. Tz.; Krasik, Ya. E.
2012-01-01
The results of a numerical simulation of the generation of runaway electrons in pressurized nitrogen and helium gases are presented. It was shown that runaway electrons generation occurs in two stages. In the first stage, runaway electrons are composed of the electrons emitted by the cathode and produced in gas ionization in the vicinity of the cathode. This stage is terminated with the formation of the virtual cathode, which becomes the primary source of runaway electrons in the second stage. Also, it was shown that runaway electrons current is limited by both the shielding of the field emission by the space charge of the emitted electrons and the formation of a virtual cathode. In addition, the influence of the initial conditions, such as voltage rise time and amplitude, gas pressure, and the type of gas, on the processes that accompany runaway electrons generation is presented.
Numerical Simulation of Transition in Hypersonic Boundary Layers
2011-02-01
T∗∞=103.6K, flat plate. . . . . . . . . 139 6.1 Boundary layer edge Reynolds number as a function of downstream posi- tion for the computed baseflow...200 7.1 Computational domain used for Temporal Direct Numerical Simulations. 205 7.2 Comparison of base flow profiles at downstream location...the computational methods used for all direct numerical simulations (DNS) discussed in this report are presented. The results for a flat plate (Chapter
Floret Test, Numerical Simulations of the Dent, Comparison with Experiments
Lefrancois, A.; Cutting, J.; Gagliardi, F.; Tarver, C.; Tran, T.
2006-02-14
The Floret test has been developed as a screening test to study the performance of a small amount of HE. Numerical simulations have been performed recently using CTH. The objective of this study is to perform numerical simulations in order to better understand the shock waves interactions, involved in the dent formation. Different 3D wedge configurations have been tested using the Ignition and Growth reactive flow model for the HE receptor with Ls-Dyna.
Numerical simulation of turbulent flows around airfoil and wing
NASA Technical Reports Server (NTRS)
Marx, Yves P.
1990-01-01
During the last years the simulation of compressible viscous flows has received much attention. While the numerical methods were improved drastically, a satisfactory modeling of the Reynolds stresses is still missing. In this paper, after a short description of the numerical procedure used for solving the Reynolds equations, experiments with a promising simple turbulence model are discussed.
Numerical simulation of non-Newtonian free shear flows
NASA Technical Reports Server (NTRS)
Homsy, G. M.; Azaiez, J.
1993-01-01
Free shear flows, like those of mixing layers, are encountered in aerodynamics, in the atmosphere, and in the ocean as well as in many industrial applications such as flow reactors or combustion chambers. It is, therefore, crucial to understand the mechanisms governing the process of transition to turbulence in order to predict and control the evolution of the flow. Delaying transition to turbulence as far downstream as possible allows a gain in energy expenditure while accelerating the transition can be of interest in processes where high mixing is desired. Various methods, including the use of polymer additives, can be effective in controlling fluid flows. The drag reduction obtained by the addition of small amounts of high polymers has been an active area of research for the last three decades. It is now widely believed that polymer additives can affect the stability of a large variety of flows and that dilute solutions of these polymers have been shown to produce drag reductions of over 80 percent in internal flows and over 60 percent in external flows under a wide range of conditions. The major thrust of this work is to study the effects of polymer additives on the stability of the incompressible mixing layer through large scale numerical simulations. In particular, we focus on the two dimensional flow and examine how the presence of viscoelasticity may affect the typical structures of the flow, namely roll-up and pairing of vortices.
The numerical simulation of multistage turbomachinery flows
NASA Technical Reports Server (NTRS)
Adamczyk, J. J.; Beach, T. A.; Celestina, M. L.; Mulac, R. A.; To, W. M.
1990-01-01
The need to account for momentum and energy transport by the unsteady deterministic flow field in modeling the time-averaged flow state within a blade row passage embedded in a multistage compressor is assessed. It was found that, within the endwall regions, large-scale three-dimensional unsteady structures existed which caused significant transport of momentum and energy across the time-averaged stream surface of a stator flow field. These experiments confirmed that the tranport process is dominated by turbulent diffusion in the midspan region. A model was then proposed for simulating this transport process, and a limited study was undertaken to assess its validity.
Numerical Simulations Of Vortex-cloud Interactions On Jupiter
NASA Astrophysics Data System (ADS)
Palotai, Csaba J.; Dowling, T. E.; Chappell, G.
2012-10-01
We have studied the atmospheric physics and dynamics of Jupiter's Great Red Spot (GRS) and BA vortices using the Explicit Planetary hybrid-Isentropic Coordinate (EPIC) model (Dowling et al., 2006. Icarus, 182, 259--273). The model employs an ammonia cycle that includes interactive vapor, cloud and precipitation phases and accounts for latent heating and cooling (Palotai and Dowling, 2008. Icarus, 194, 303--326). The pressure-based coordinate in this version of the EPIC model allows us to use high vertical resolution in our simulations. The typical model configuration uses 45--50 non-uniformly spaced layers ranging from about 10 mb down to 15 bars, with extra resolution placed in the expected ammonia cloud-forming region. The resulting horizontal and vertical cloud and temperature structures in our simulations are in good agreement with observational data. Our model reproduces the relatively cloud-free regions West and Northeast of the GRS and the elevated clouds over the vortex that was observed by the Galileo Near Infrared Mapping Spectrometer (NIMS). The thermal structure of the simulated vortices is being compared to ground-based and spacecraft observations, as well. Fletcher et al. (2010, Icarus, 208, 306--328) discovered inhomogeneities in the horizontal temperature field over the GRS and correlated it to observations of clouds. Our numerical model produces similar inhomogeneities that we overlay on the simulated cloud field for direct comparison with the observations. Data also suggests that clouds cover a larger area over the vortices than the area encircled by their high-velocity collars, the simulated collars in our model reproduce these observations. Additional comparisons with observations and results from our latest findings will be presented. The resulting EPIC model is available as open source software from NASA's PDS Atmospheres Node. This research is supported by NASA's Cassini Data Analysis and Planetary Atmospheres Programs.
Numerical and laboratory simulations of auroral acceleration
Gunell, H.; De Keyser, J.; Mann, I.
2013-10-15
The existence of parallel electric fields is an essential ingredient of auroral physics, leading to the acceleration of particles that give rise to the auroral displays. An auroral flux tube is modelled using electrostatic Vlasov simulations, and the results are compared to simulations of a proposed laboratory device that is meant for studies of the plasma physical processes that occur on auroral field lines. The hot magnetospheric plasma is represented by a gas discharge plasma source in the laboratory device, and the cold plasma mimicking the ionospheric plasma is generated by a Q-machine source. In both systems, double layers form with plasma density gradients concentrated on their high potential sides. The systems differ regarding the properties of ion acoustic waves that are heavily damped in the magnetosphere, where the ion population is hot, but weakly damped in the laboratory, where the discharge ions are cold. Ion waves are excited by the ion beam that is created by acceleration in the double layer in both systems. The efficiency of this beam-plasma interaction depends on the acceleration voltage. For voltages where the interaction is less efficient, the laboratory experiment is more space-like.
Numerical Simulations of the Mechanics of Vitrectomy
NASA Astrophysics Data System (ADS)
Young, Ethan; Eldredge, Jeff; Hubschman, Jean-Pierre
2015-11-01
Vitreous is the clear, gel-like substance that fills the cavity between the lens and retina in the eye. Treating certain eye abnormalities requires removing this substance using a minimally-invasive device called a vitreous cutter. Understanding the behavior of this viscoelastic biofluid during surgeries is essential to improving the effectiveness of the procedure. In this study, three-dimensional computational models of vitreous cutters are investigated using an immersed boundary method paired with a viscoelastic constitutive model. The solver uses a fractional-step method to satisfy continuity and traction boundary conditions to simulate the applied suction. The current work extends previous efforts to accurately model the rheological parameters measured by Sharif-Kashani et al. using the Giesekus constitutive equation [Retina, 2013]. The simulations were used to quantify both the average and time-varying flow rate through the device. Values for flow rate are compared with experimental results from Hubschman et al. [Retina, 2009]. Flow features associated with the cutting dynamics are of particular interest, as is the geometry of the cutter itself. These operational and design changes are a target for improving cutter efficacy while minimizing potential tissue damage.
Numerical Simulations of a Flux Rope Ejection
NASA Astrophysics Data System (ADS)
Pagano, P.; Mackay, D. H.; Poedts, S.
2015-03-01
Coronal mass ejections (CMEs) are the most violent phenomena observed on the Sun. One of the most successful models to explain CMEs is the flux rope ejection model, where a magnetic flux rope is expelled from the solar corona after a long phase along which the flux rope stays in equilibrium while magnetic energy is being accumulated. However, still many questions are outstanding on the detailed mechanism of the ejection and observations continuously provide new data to interpret and put in the context. Currently, extreme ultraviolet (EUV) images from the Atmospheric Imaging Assembly (AIA) on board the Solar Dynamic Observatory (SDO) are providing new insights into the early phase of CME evolution. In particular, observations show the ejection of magnetic flux ropes from the solar corona and how they evolve into CMEs. However, these observations are difficult to interpret in terms of basic physical mechanisms and quantities, thus, we need to compare equivalent quantities to test and improve our models. In our work, we intend to bridge the gap between models and observations with our model of flux rope ejection where we consistently describe the full life span of a flux rope from its formation to ejection. This is done by coupling the global non-linear force-free model (GNLFFF) built to describe the slow low- β formation phase, with a full MHD simulation run with the software MPI-AMRVAC, suitable to describe the fast MHD evolution of the flux rope ejection that happens in a heterogeneous β regime. We also explore the parameter space to identify the conditions upon which the ejection is favoured (gravity stratification and magnetic field intensity) and we produce synthesised AIA observations (171 Å and 211 Å). To carry this out, we run 3D MHD simulation in spherical coordinates where we include the role of thermal conduction and radiative losses, both of which are important for determining the temperature distribution of the solar corona during a CME. Our model of
Numerical thermalization in particle-in-cell simulations with Monte-Carlo collisions
NASA Astrophysics Data System (ADS)
Lai, P. Y.; Lin, T. Y.; Lin-Liu, Y. R.; Chen, S. H.
2014-12-01
Numerical thermalization in collisional one-dimensional (1D) electrostatic (ES) particle-in-cell (PIC) simulations was investigated. Two collision models, the pitch-angle scattering of electrons by the stationary ion background and large-angle collisions between the electrons and the neutral background, were included in the PIC simulation using Monte-Carlo methods. The numerical results show that the thermalization times in both models were considerably reduced by the additional Monte-Carlo collisions as demonstrated by comparisons with Turner's previous simulation results based on a head-on collision model [M. M. Turner, Phys. Plasmas 13, 033506 (2006)]. However, the breakdown of Dawson's scaling law in the collisional 1D ES PIC simulation is more complicated than that was observed by Turner, and the revised scaling law of the numerical thermalization time with numerical parameters are derived on the basis of the simulation results obtained in this study.
Numerical thermalization in particle-in-cell simulations with Monte-Carlo collisions
Lai, P. Y.; Lin, T. Y.; Lin-Liu, Y. R.; Chen, S. H.
2014-12-15
Numerical thermalization in collisional one-dimensional (1D) electrostatic (ES) particle-in-cell (PIC) simulations was investigated. Two collision models, the pitch-angle scattering of electrons by the stationary ion background and large-angle collisions between the electrons and the neutral background, were included in the PIC simulation using Monte-Carlo methods. The numerical results show that the thermalization times in both models were considerably reduced by the additional Monte-Carlo collisions as demonstrated by comparisons with Turner's previous simulation results based on a head-on collision model [M. M. Turner, Phys. Plasmas 13, 033506 (2006)]. However, the breakdown of Dawson's scaling law in the collisional 1D ES PIC simulation is more complicated than that was observed by Turner, and the revised scaling law of the numerical thermalization time with numerical parameters are derived on the basis of the simulation results obtained in this study.
Numerical simulation of synthesis gas incineration
NASA Astrophysics Data System (ADS)
Kazakov, A. V.; Khaustov, S. A.; Tabakaev, R. B.; Belousova, Y. A.
2016-04-01
The authors have analysed the expediency of the suggested low-grade fuels application method. Thermal processing of solid raw materials in the gaseous fuel, called synthesis gas, is investigated. The technical challenges concerning the applicability of the existing gas equipment developed and extensively tested exclusively for natural gas were considered. For this purpose computer simulation of three-dimensional syngas-incinerating flame dynamics was performed by means of the ANSYS Multiphysics engineering software. The subjects of studying were: a three-dimensional aerodynamic flame structure, heat-release and temperature fields, a set of combustion properties: a flare range and the concentration distribution of burnout reagents. The obtained results were presented in the form of a time-averaged pathlines with color indexing. The obtained results can be used for qualitative and quantitative evaluation of complex multicomponent gas incineration singularities.
Numerical simulation of the world ocean circulation
NASA Technical Reports Server (NTRS)
Takano, K.; Mintz, Y.; Han, Y. J.
1973-01-01
A multi-level model, based on the primitive equations, is developed for simulating the temperature and velocity fields produced in the world ocean by differential heating and surface wind stress. The model ocean has constant depth, free slip at the lower boundary, and neglects momentum advection; so that there is no energy exchange between the barotropic and baroclinic components of the motion, although the former influences the latter through temperature advection. The ocean model was designed to be coupled to the UCLA atmospheric general circulation model, for the study of the dynamics of climate and climate changes. But here, the model is tested by prescribing the observed seasonally varying surface wind stress and the incident solar radiation, the surface air temperature and humidity, cloudiness and the surface wind speed, which, together with the predicted ocean surface temperature, determine the surface flux of radiant energy, sensible heat and latent heat.
Numerical aerodynamic simulation facility. Preliminary study extension
NASA Technical Reports Server (NTRS)
1978-01-01
The production of an optimized design of key elements of the candidate facility was the primary objective of this report. This was accomplished by effort in the following tasks: (1) to further develop, optimize and describe the function description of the custom hardware; (2) to delineate trade off areas between performance, reliability, availability, serviceability, and programmability; (3) to develop metrics and models for validation of the candidate systems performance; (4) to conduct a functional simulation of the system design; (5) to perform a reliability analysis of the system design; and (6) to develop the software specifications to include a user level high level programming language, a correspondence between the programming language and instruction set and outline the operation system requirements.
Numerical simulation of tides in Ontario Lacus
NASA Astrophysics Data System (ADS)
Vincent, David; Karatekin, Ozgür
2015-04-01
Hydrocarbons liquid filled lakes has been recently detected on Titan's surface. Most of these lakes are located in the northern latitudes but there is a substantial lake in the southern latitudes: Ontario Lacus. This lake gets our attention because of possible shoreline changes suggested by Cassini flybys over Ontario Lacus between September 2005 (T7) et January 2010 (T65). The shoreline changes could be due to evaporation-precipitation processes but could also be a consequence of tides. Previous studies showed that the maximal tidal amplitudes of Ontario Lacus would be about 0.2m (for an uniform bathymetry of 20m). In this study we simulate tidal amplitude and currents with SLIM (Second-generation Louvain-la-Neuve Ice-ocean Model, http://sites.uclouvain.be/slim/ ) which resolves 2D shallow water equation on an unstructured mesh. Unstructured mesh prevents problems like mesh discontinuities at poles and allows higher accuracy at some place like coast or straits without drastically increasing computing costs. The tide generating force modeled in this work is the gradient of tidal potential due to titan's obliquity and titan's orbital eccentricity around Saturn (other contribution such as sun tide generating force are unheeded). The uncertain input parameters such as the wind direction and amplitude, bottom friction and thermo-physical properties of hydrocarbons liquids are varied within their expected ranges. SAR data analysis can result in different bathymetry according to the method. We proceed simulations for different bathymetries: tidal amplitudes doesn't change but this is not the case for tidal currents. Using a recent bathymetry deduced from most recent RADAR/SAR observations and a finer mesh, the peak-to peak tidal amplitudes are calculated to be up to 0.6 m. which is more than a factor two larger than the previous results. The maximal offshore tidal currents magnitude is about 0.06 m/s.
Numerical simulation of electrospray in the cone-jet mode.
Herrada, M A; López-Herrera, J M; Gañán-Calvo, A M; Vega, E J; Montanero, J M; Popinet, S
2012-08-01
We present a robust and computationally efficient numerical scheme for simulating steady electrohydrodynamic atomization processes (electrospray). The main simplification assumed in this scheme is that all the free electrical charges are distributed over the interface. A comparison of the results with those calculated with a volume-of-fluid method showed that the numerical scheme presented here accurately describes the flow pattern within the entire liquid domain. Experiments were performed to partially validate the numerical predictions. The simulations reproduced accurately the experimental shape of the liquid cone jet, providing correct values of the emitted electric current even for configurations very close to the cone-jet stability limit.
Numerical simulation of baroclinic Jovian vortices
NASA Technical Reports Server (NTRS)
Achterberg, Richard K.; Ingersoll, Andrew P.
1994-01-01
We examine the evolution of baroclinic vortices in a time-dependent, nonlinear numerical model of a Jovian atmosphere. The model uses a normal-mode expansion in the vertical, using the barotropic and first two baroclinic modes. Results for the stability of baroclinic vortices on an f plane in the absence of a mean zonal flow are similar to results of Earth vortex models, although the presence of a fluid interior on the Jovian planets shifts the stability boundaries to smaller length scales. The presence of a barotropic mean zonal flow in the interior stabilizes vortices against instability and significantly modifies the finite amplitude form of baroclinic instabilities. The effect of a zonal flow on a form of barotropic instability produces periodic oscillations in the latitude and longitude of the vortex as observed at the level of the cloud tops. This instability may explain some, but not all, observations of longitudinal oscillations of vortices on the outer planets. Oscillations in aspect ratio and orientation of stable vortices in a zonal shear flow are observed in this baroclinic model, as in simpler two-dimensional models. Such oscillations are also observed in the atmospheres of Jupiter and Neptune. The meridional propagation and decay of vortices on a beta plane is inhibited by the presence of a mean zonal flow. The direction of propagation of a vortex relative to the mean zonal flow depends upon the sign of the meridional potential vorticity gradient; combined with observations of vortex drift rates, this may provide a constraint on model assumption for the flow in the deep interior of the Jovian planets.
Numerical Simulations of Asymmetric Mixing in Planar Shear Flows.
2014-09-26
unsteady shear flows with periodic boundary conditions (Riley & Metcalfe 1980), or in previous simulations of the splitter-plate geometry using either...Soloukhin, AIMA. Riley, 3.3. & Metcalfe , R.W. 1980, Direct Numerical simulation or a Perturbed, Turbulent Mixing Layer, AIAA paper 80-02741, Pasadena
Numerical simulation of aluminum extrusion processes
NASA Astrophysics Data System (ADS)
Hughes, T. J.; Muller, A.
1995-04-01
This presentation describes a research program directed towards the development of automated design procedures for aluminum extrusion technology. The objective is to eliminate costly trial and error by being able to simultaneously design the product, die, billet, and process (e.g.. extrusion temperatures and speeds, uniformizing metal flow, etc.), within constraints of feasibility, and satisfying objectives including, but not limited to, optimizing shape, surface finish, and properties of the product, processing costs, time to market, and full utilization of capabilities. The approach is based on the development of efficient and effective analysis of the whole processing system employing newly developed finite element solution technologies for complex, multi region, multiphysical behavior. Generalizations of these methodologies to include Arbitrary Lagrangian-Eulerian (ALE) mesh descriptions for nonlinear, elastic viscoplastic mechanical constitution equations will allow the faithful modeling of the metal flow within the die system and the accurate attainment of final shape upon exit. Automatic meshing and adaptive remeshing will insure efficient and accurate simulation of the entire forming process. New element technologies facilitating the use of general meshing procedures for difficult metal-forming processes involving a variety of kinematical constraints, such as incompressibility, contact, etc., are utilized. Feature based design methodologies, parametric modeling, and knowledge-based engineering techniques will constitute the fundamental methodologies for representing designs, managing the hierarchy of analysis models, performing model reduction and feature removal, and effectively utilizing design knowledge.
Numerical simulation of the edge tone phenomenon
NASA Technical Reports Server (NTRS)
Dougherty, N. S.; Liu, B. L.; Ofarrell, J. M.
1994-01-01
Time accurate Navier-Stokes computations were performed to study a class 2 (acoustic) whistle, the edge tone, and to gain knowledge of the vortex-acoustic coupling mechanisms driving production of these tones. Results were obtained by solving the full Navier-Stokes equations for laminar compressible air flow of a two dimensional jet issuing from a slit interacting with a wedge. Cases considered were determined by varying the distance from the slit to the wedge. Flow speed was kept constant at 1,750 cm/s as was the slit thickness of 0.1 cm, corresponding to conditions in the experiments of Brown. The analytical computations revealed edge tones to be present in four harmonic stages of jet flow instability over the wedge as the jet length was varied from 0.3 to 1.6 cm. Excellent agreement was obtained in all four edge tone stage cases between the present computational results and the experimentally obtained frequencies and flow visualization results of Brown. Specific edge tone generation phenomena and further confirmation of certain theories and empirical formulas concerning these phenomena were brought to light in this analytical simulation of edge tones.
Numerical simulation of photoexcited polaron states in water
Zemlyanaya, E. V. Volokhova, A. V.; Amirkhanov, I. V.; Puzynin, I. V.; Puzynina, T. P.; Rikhvitskiy, V. S.; Lakhno, V. D.; Atanasova, P. Kh.
2015-10-28
We consider the dynamic polaron model of the hydrated electron state on the basis of a system of three nonlinear partial differential equations with appropriate initial and boundary conditions. A parallel numerical algorithm for the numerical solution of this system has been developed. Its effectiveness has been tested on a few multi-processor systems. A numerical simulation of the polaron states formation in water under the action of the ultraviolet range laser irradiation has been performed. The numerical results are shown to be in a reasonable agreement with experimental data and theoretical predictions.
Direct numerical simulation of curved turbulent channel flow
NASA Technical Reports Server (NTRS)
Moser, R. D.; Moin, P.
1984-01-01
Low Reynolds number, mildly curved, turbulent channel flow has been simulated numerically without subgrid scale models. A new spectral numerical method developed for this problem was used, and the computations were performed with 2 million degrees of freedom. A variety of statistical and structural information has been extracted from the computed flow fields. These include mean velocity, turbulence stresses, velocity skewness, and flatness factors, space time correlations and spectra, all the terms in the Reynolds stress balance equations, and contour and vector plots of instantaneous velocity fields. The effects of curvature on this flow were determined by comparing the concave and convex sides of the channel. The observed effects are consistent with experimental observations for mild curvature. The most significant difference in the turbulence statistics between the concave and convex sides was in the Reynolds shear stress. This was accompanied by significant differences in the terms of the Reynolds shear stress balance equations. In addition, it was found that stationary Taylor-Gortler vortices were present and that they had a significant effect on the flow by contributing to the mean Reynolds shear stress, and by affecting the underlying turbulence.
Feasibility study for a numerical aerodynamic simulation facility. Volume 1
NASA Technical Reports Server (NTRS)
Lincoln, N. R.; Bergman, R. O.; Bonstrom, D. B.; Brinkman, T. W.; Chiu, S. H. J.; Green, S. S.; Hansen, S. D.; Klein, D. L.; Krohn, H. E.; Prow, R. P.
1979-01-01
A Numerical Aerodynamic Simulation Facility (NASF) was designed for the simulation of fluid flow around three-dimensional bodies, both in wind tunnel environments and in free space. The application of numerical simulation to this field of endeavor promised to yield economies in aerodynamic and aircraft body designs. A model for a NASF/FMP (Flow Model Processor) ensemble using a possible approach to meeting NASF goals is presented. The computer hardware and software are presented, along with the entire design and performance analysis and evaluation.
Three-Dimensional Numerical Simulation to Mud Turbine for LWD
NASA Astrophysics Data System (ADS)
Yao, Xiaojiang; Dong, Jingxin; Shang, Jie; Zhang, Guanqi
Hydraulic performance analysis was discussed for a type of turbine on generator used for LWD. The simulation models were built by CFD analysis software FINE/Turbo, and full three-dimensional numerical simulation was carried out for impeller group. The hydraulic parameter such as power, speed and pressure drop, were calculated in two kinds of medium water and mud. Experiment was built in water environment. The error of numerical simulation was less than 6%, verified by experiment. Based on this rationalization proposals would be given to choice appropriate impellers, and the rationalization of methods would be explored.
Numerical simulation of waste tyres gasification.
Janajreh, Isam; Raza, Syed Shabbar
2015-05-01
Gasification is a thermochemical pathway used to convert carbonaceous feedstock into syngas (CO and H2) in a deprived oxygen environment. The process can accommodate conventional feedstock such as coal, discarded waste including plastics, rubber, and mixed waste owing to the high reactor temperature (1000 °C-1600 °C). Pyrolysis is another conversion pathway, yet it is more selective to the feedstock owing to the low process temperature (350 °C-550 °C). Discarded tyres can be subjected to pyrolysis, however, the yield involves the formation of intermediate radicals additional to unconverted char. Gasification, however, owing to the higher temperature and shorter residence time, is more opted to follow quasi-equilibrium and being predictive. In this work, tyre crumbs are subjected to two levels of gasification modelling, i.e. equilibrium zero dimension and reactive multi-dimensional flow. The objective is to investigate the effect of the amount of oxidising agent on the conversion of tyre granules and syngas composition in a small 20 kW cylindrical gasifier. Initially the chemical compositions of several tyre samples are measured following the ASTM procedures for proximate and ultimate analysis as well as the heating value. The measured data are used to carry out equilibrium-based and reactive flow gasification. The result shows that both models are reasonably predictive averaging 50% gasification efficiency, the devolatilisation is less sensitive than the char conversion to the equivalence ratio as devolatilisation is always complete. In view of the high attained efficiency, it is suggested that the investigated tyre gasification system is economically viable.
Numerical simulations of turbulence and mixing induced by submesoscale instabilities
NASA Astrophysics Data System (ADS)
Stamper, Megan; Taylor, John
2015-11-01
Submesoscale features in the upper ocean with horizontal scales between 1-10km have received significant attention in the oceanography community in recent years. Previous work has found that submesoscales play an important role in setting the stratification of the upper ocean, and these scales are associated with large vertical velocities that modify biological productivity. Submesoscales bridge the dynamical gap between the mesoscale (~100km) where the earth's rotation plays a major role, and turbulent overturning scales (~1-10m) where the earth's rotation is not directly felt. Here, we use very high resolution direct numerical simulations (DNS) to explore the interaction and feedbacks between submesoscales and small scale turbulence. In simulations with submesoscale motions generated via symmetric and baroclinic instability, we find that the emergence of secondary instabilities leads to significant small-scale turbulence and mixing, even in the absence of wind and convective forcing. From the DNS results, we quantify the additional mixing, dissipation, and vertical fluxes induced by small scale turbulence, and its feedback on the primary submesoscale instabilities.
High-resolution MRI velocimetry compared with numerical simulations
NASA Astrophysics Data System (ADS)
Edelhoff, Daniel; Walczak, Lars; Henning, Stefan; Weichert, Frank; Suter, Dieter
2013-10-01
Alterations of the blood flow are associated with various cardiovascular diseases. Precise knowledge of the velocity distribution is therefore important for understanding these diseases and predicting the effect of different medical intervention schemes. The goal of this work is to estimate the precision with which the velocity field can be measured and predicted by studying two simple model geometries with NMR micro imaging and computational fluid dynamics. For these initial experiments, we use water as an ideal test medium. The phantoms consist of tubes simulating a straight blood vessel and a step between two tubes of different diameters, which can be seen as a minimal model of the situation behind a stenosis. For both models, we compare the experimental data with the numerical prediction, using the experimental boundary conditions. For the simpler model, we also compare the data to the analytical solution. As an additional validation, we determine the divergence of the velocity field and verify that it vanishes within the experimental uncertainties. We discuss the resulting precision of the simulation and the outlook for extending this approach to the analysis of specific cases of arteriovascular problems.
Numerical simulations of groundwater flow at New Jersey Shallow Shelf
NASA Astrophysics Data System (ADS)
Fehr, Annick; Patterson, Fabian; Lofi, Johanna; Reiche, Sönke
2016-04-01
During IODP Expedition 313, three boreholes were drilled in the so-called New Jersey transect. Hydrochemical studies revealed the groundwater situation as more complex than expected, characterized by several sharp boundaries between fresh and saline groundwater. Two conflicting hypotheses regarding the nature of these freshwater reservoirs are currently debated. One hypothesis is that these reservoirs are connected with onshore aquifers and continuously recharged by seaward-flowing groundwater. The second hypothesis is that fresh groundwater was emplaced during the last glacial period. In addition to the petrophysical properties measured during IODP 313 expedition, Nuclear Magnetic Resonance (NMR) measurements were performed on samples from boreholes M0027, M0028 and M0029 in order to deduce porosities and permeabilities. These results are compared with data from alternative laboratory measurements and with petrophysical properties inferred from downhole logging data. We incorporate these results into a 2D numerical model that reflects the shelf architecture as known from drillings and seismic data to perform submarine groundwater flow simulations. In order to account for uncertainties related to the spatial distribution of physical properties, such as porosity and permeability, systematic variation of input parameters was performed during simulation runs. The target is to test the two conflicting hypotheses of fresh groundwater emplacements offshore New Jersey and to improve the understanding of fluid flow processes at marine passive margins.
Numerical simulation of porosity-free titanium dental castings.
Wu, M; Augthun, M; Schädlich-Stubenrauch, J; Sahm, P R; Spiekermann, H
1999-08-01
The objective of this research was to analyse, predict and control the porosity in titanium dental castings by the use of numerical simulation. A commercial software package (MAGMASOFT) was used. In the first part of the study, a model casting (two simplified tooth crowns connected by a connector bar) was simulated to analyse shrinkage porosity. Secondly, gas pores were numerically examined by means of a ball specimen with a "snake" sprue. The numerical simulation results were compared with the experimental casting results, which were made on a centrifugal casting machine. The predicted shrinkage levels coincided well with the experimentally determined levels. Based on the above numerical analyses, an optimised running and gating system design for the crown model was proposed. The numerical filling and solidification results of the ball specimen showed that this simulation model could be helpful for the explanation of the experimentally indicated gas pores. It was concluded that shrinkage porosity in titanium dental casting was predictable, and it could be minimised by improving the running and gating system design. Entrapped gas pores can be explained from the simulation results of the mould filling and solidification.
Numerical Simulation of SNCR Technology with Simplified Chemical Kinetics Model
NASA Astrophysics Data System (ADS)
Blejchař, T.; Dolníčková, D.
2013-04-01
The paper deals with numerical simulation of SNCR method. For numerical modelling was used CFD code Ansys/CFX. SNCR method was described by dominant chemical reaction, which were look up NIST Chemical database. The reactions including reduction of NOx and concentration change of pollutants, like N2O and CO in flue gas too. Proposed chemical kinetics and CFD model was applied to two boilers. Both simulations were compared with experimental measurements. First simulation was used to validation of chemical mechanism. Second simulation was based on first simulation and it was used to verification of compiled SNCR chemical mechanism. Next the new variant of the reagent penetration lance was proposed and compared with the original variants.
Numerical simulation of wave propagation in cancellous bone.
Padilla, F; Bossy, E; Haiat, G; Jenson, F; Laugier, P
2006-12-22
Numerical simulation of wave propagation is performed through 31 3D volumes of trabecular bone. These volumes were reconstructed from high synchrotron microtomography experiments and are used as the input geometry in a simulation software developed in our laboratory. The simulation algorithm accounts for propagation into both the saturating fluid and bone but absorption is not taken into account. We show that 3D simulation predicts phenomena observed experimentally in trabecular bones : linear frequency dependence of attenuation, increase of attenuation and speed of sound with the bone volume fraction, negative phase velocity dispersion in most of the specimens, propagation of fast and slow wave depending on the orientation of the trabecular network compared to the direction of propagation of the ultrasound. Moreover, the predicted attenuation is in very close agreement with the experimental one measured on the same specimens. Coupling numerical simulation with real bone architecture therefore provides a powerful tool to investigate the physics of ultrasound propagation in trabecular structures.
Numerical simulation of particle laden coaxial turbulent jet flows
NASA Astrophysics Data System (ADS)
Kannaiyan, Kumaran; Sadr, Reza
2010-11-01
The study of coaxial turbulent particle laden jets has been of interest due to its importance in many applications such as industrial burners, and mixing devices. The addition of the second phase to the continuous phase jet can change the already complicated flow pattern and turbulent characteristics of the jets. Albeit the vast research efforts that have been devoted to understand such phenomena, demand for detailed investigation of particle laden flows remains an active area of research. The advent of laser diagnostics has helped to quantify the myriad details of the jet flow fields in more details. In parallel computational fluid dynamics (CFD) can provide additional information by further investigating such flows with an acceptable level of accuracy. In this work, numerical simulations results are presented for the flow and turbulent characteristics of a coaxial jet with and without the dispersed phase. The results are compared with the experimental data measured using Molecular Tagging Velocimetry diagnostic technique. The key objective of this work is to undermine the flow field details that are difficult if not impossible to measure.
Compressible Turbulent Flow Numerical Simulations of Tip Vortex Cavitation
NASA Astrophysics Data System (ADS)
Khatami, F.; van der Weide, E.; Hoeijmakers, H.
2015-12-01
For an elliptic Arndt's hydrofoil numerical simulations of vortex cavitation are presented. An equilibrium cavitation model is employed. This single-fluid model assumes local thermodynamic and mechanical equilibrium in the mixture region of the flow, is employed. Furthermore, for characterizing the thermodynamic state of the system, precomputed multiphase thermodynamic tables containing data for the appropriate equations of state for each of the phases are used and a fast, accurate, and efficient look-up approach is employed for interpolating the data. The numerical simulations are carried out using the Unsteady Reynolds-Averaged Navier-Stokes (URANS) equations for compressible flow. The URANS equations of motion are discretized using an finite volume method for unstructured grids. The numerical simulations clearly show the formation of the tip vortex cavitation in the flow about the elliptic hydrofoil.
Numerical Simulation of Turbulent Flames using Vortex Methods.
1987-10-05
layer," Phys. Fluids , 30, pp. 706-721, 1987. (11) Ghoniem, A.F., and Knio, O.M., "Numerical Simulation of Flame Propagation in Constant Volume Chambers...1985. 4. "Numerical solution of a confined shear layer using vortex methods," The International Symposium on Computational Fluid Dynamics, Tokyo...Symposium on Computational Fluid Dynamics, Tokyo, Japan, September 1985. 8. "Application of Computational Methods in Turbulent Reacting Flow
Numerical simulation of dynamic fracture and failure in solids
Chen, E.P.
1994-05-01
Numerical simulation of dynamic fracture and failure processes in solid continua using Lagrangian finite element techniques is the subject of discussion in this investigation. The specific configurations in this study include penetration of steel projectiles into aluminum blocks and concrete slabs. The failure mode in the aluminum block is excessive deformation while the concrete slab fails by hole growth, spallation, and scabbing. The transient dynamic finite element code LS-DYNA2D was used for the numerical analysis. The erosion capability in LS-DYNA2D was exercised to carry out the fracture and failure simulations. Calculated results were compared to the experimental data. Good correlations were obtained.
Preface to advances in numerical simulation of plasmas
NASA Astrophysics Data System (ADS)
Parker, Scott E.; Chacon, Luis
2016-10-01
This Journal of Computational Physics Special Issue, titled "Advances in Numerical Simulation of Plasmas," presents a snapshot of the international state of the art in the field of computational plasma physics. The articles herein are a subset of the topics presented as invited talks at the 24th International Conference on the Numerical Simulation of Plasmas (ICNSP), August 12-14, 2015 in Golden, Colorado. The choice of papers was highly selective. The ICNSP is held every other year and is the premier scientific meeting in the field of computational plasma physics.
Numerical simulation of tornado wind loading on structures
NASA Technical Reports Server (NTRS)
Maiden, D. E.
1976-01-01
A numerical simulation of a tornado interacting with a building was undertaken in order to compare the pressures due to a rotational unsteady wind with that due to steady straight winds used in design of nuclear facilities. The numerical simulations were performed on a two-dimensional compressible hydrodynamics code. Calculated pressure profiles for a typical building were then subjected to a tornado wind field and the results were compared with current quasisteady design calculations. The analysis indicates that current design practices are conservative.
Numerical simulation of wall-bounded turbulent shear flows
NASA Technical Reports Server (NTRS)
Moin, P.
1982-01-01
Developments in three dimensional, time dependent numerical simulation of turbulent flows bounded by a wall are reviewed. Both direct and large eddy simulation techniques are considered within the same computational framework. The computational spatial grid requirements as dictated by the known structure of turbulent boundary layers are presented. The numerical methods currently in use are reviewed and some of the features of these algorithms, including spatial differencing and accuracy, time advancement, and data management are discussed. A selection of the results of the recent calculations of turbulent channel flow, including the effects of system rotation and transpiration on the flow are included. Previously announced in STAR as N82-28577
Numerical simulation of wall-bounded turbulent shear flows
NASA Technical Reports Server (NTRS)
Moin, P.
1982-01-01
Developments in three dimensional, time dependent numerical simulation of turbulent flows bounded by a wall are reviewed. Both direct and large eddy simulation techniques are considered within the same computational framework. The computational spatial grid requirements as dictated by the known structure of turbulent boundary layers are presented. The numerical methods currently in use are reviewed and some of the features of these algorithms, including spatial differencing and accuracy, time advancement, and data management are discussed. A selection of the results of the recent calculations of turbulent channel flow, including the effects of system rotation and transpiration on the flow are included.
Numerical simulation of transition in wall-bounded shear flows
NASA Technical Reports Server (NTRS)
Kleiser, Leonhard; Zang, Thomas A.
1991-01-01
The current status of numerical simulation techniques for the transition to turbulence in incompressible channel and boundary-layer flows is surveyed, and typical results are presented graphically. The focus is on direct numerical simulations based on the full nonlinear time-dependent Navier-Stokes equations without empirical closure assumptions for prescribed initial and boundary conditions. Topics addressed include the vibrating ribbon problem, space and time discretization, initial and boundary conditions, alternative methods based on the triple-deck approximation, two-dimensional channel and boundary-layer flows, three-dimensional boundary layers, wave packets and turbulent spots, compressible flows, transition control, and transition modeling.
Building Blocks for Reliable Complex Nonlinear Numerical Simulations. Chapter 2
NASA Technical Reports Server (NTRS)
Yee, H. C.; Mansour, Nagi N. (Technical Monitor)
2001-01-01
This chapter describes some of the building blocks to ensure a higher level of confidence in the predictability and reliability (PAR) of numerical simulation of multiscale complex nonlinear problems. The focus is on relating PAR of numerical simulations with complex nonlinear phenomena of numerics. To isolate sources of numerical uncertainties, the possible discrepancy between the chosen partial differential equation (PDE) model and the real physics and/or experimental data is set aside. The discussion is restricted to how well numerical schemes can mimic the solution behavior of the underlying PDE model for finite time steps and grid spacings. The situation is complicated by the fact that the available theory for the understanding of nonlinear behavior of numerics is not at a stage to fully analyze the nonlinear Euler and Navier-Stokes equations. The discussion is based on the knowledge gained for nonlinear model problems with known analytical solutions to identify and explain the possible sources and remedies of numerical uncertainties in practical computations. Examples relevant to turbulent flow computations are included.
Building Blocks for Reliable Complex Nonlinear Numerical Simulations
NASA Technical Reports Server (NTRS)
Yee, H. C.
2005-01-01
This chapter describes some of the building blocks to ensure a higher level of confidence in the predictability and reliability (PAR) of numerical simulation of multiscale complex nonlinear problems. The focus is on relating PAR of numerical simulations with complex nonlinear phenomena of numerics. To isolate sources of numerical uncertainties, the possible discrepancy between the chosen partial differential equation (PDE) model and the real physics and/or experimental data is set aside. The discussion is restricted to how well numerical schemes can mimic the solution behavior of the underlying PDE model for finite time steps and grid spacings. The situation is complicated by the fact that the available theory for the understanding of nonlinear behavior of numerics is not at a stage to fully analyze the nonlinear Euler and Navier-Stokes equations. The discussion is based on the knowledge gained for nonlinear model problems with known analytical solutions to identify and explain the possible sources and remedies of numerical uncertainties in practical computations.
Building Blocks for Reliable Complex Nonlinear Numerical Simulations
NASA Technical Reports Server (NTRS)
Yee, H. C.; Mansour, Nagi N. (Technical Monitor)
2002-01-01
This talk describes some of the building blocks to ensure a higher level of confidence in the predictability and reliability (PAR) of numerical simulation of multiscale complex nonlinear problems. The focus is on relating PAR of numerical simulations with complex nonlinear phenomena of numerics. To isolate sources of numerical uncertainties, the possible discrepancy between the chosen partial differential equation (PDE) model and the real physics and/or experimental data is set aside. The discussion is restricted to how well numerical schemes can mimic the solution behavior of the underlying PDE model for finite time steps and grid spacings. The situation is complicated by the fact that the available theory for the understanding of nonlinear behavior of numerics is not at a stage to fully analyze the nonlinear Euler and Navier-Stokes equations. The discussion is based on the knowledge gained for nonlinear model problems with known analytical solutions to identify and explain the possible sources and remedies of numerical uncertainties in practical computations. Examples relevant to turbulent flow computations are included.
Numerical simulation of double-diffusive finger convection
Hughes, J.D.; Sanford, W.E.; Vacher, H.L.
2005-01-01
A hybrid finite element, integrated finite difference numerical model is developed for the simulation of double-diffusive and multicomponent flow in two and three dimensions. The model is based on a multidimensional, density-dependent, saturated-unsaturated transport model (SUTRA), which uses one governing equation for fluid flow and another for solute transport. The solute-transport equation is applied sequentially to each simulated species. Density coupling of the flow and solute-transport equations is accounted for and handled using a sequential implicit Picard iterative scheme. High-resolution data from a double-diffusive Hele-Shaw experiment, initially in a density-stable configuration, is used to verify the numerical model. The temporal and spatial evolution of simulated double-diffusive convection is in good agreement with experimental results. Numerical results are very sensitive to discretization and correspond closest to experimental results when element sizes adequately define the spatial resolution of observed fingering. Numerical results also indicate that differences in the molecular diffusivity of sodium chloride and the dye used to visualize experimental sodium chloride concentrations are significant and cause inaccurate mapping of sodium chloride concentrations by the dye, especially at late times. As a result of reduced diffusion, simulated dye fingers are better defined than simulated sodium chloride fingers and exhibit more vertical mass transfer. Copyright 2005 by the American Geophysical Union.
Numerical Simulations of the Digital Microfluidic Manipulation of Single Microparticles.
Lan, Chuanjin; Pal, Souvik; Li, Zhen; Ma, Yanbao
2015-09-08
Single-cell analysis techniques have been developed as a valuable bioanalytical tool for elucidating cellular heterogeneity at genomic, proteomic, and cellular levels. Cell manipulation is an indispensable process for single-cell analysis. Digital microfluidics (DMF) is an important platform for conducting cell manipulation and single-cell analysis in a high-throughput fashion. However, the manipulation of single cells in DMF has not been quantitatively studied so far. In this article, we investigate the interaction of a single microparticle with a liquid droplet on a flat substrate using numerical simulations. The droplet is driven by capillary force generated from the wettability gradient of the substrate. Considering the Brownian motion of microparticles, we utilize many-body dissipative particle dynamics (MDPD), an off-lattice mesoscopic simulation technique, in this numerical study. The manipulation processes (including pickup, transport, and drop-off) of a single microparticle with a liquid droplet are simulated. Parametric studies are conducted to investigate the effects on the manipulation processes from the droplet size, wettability gradient, wetting properties of the microparticle, and particle-substrate friction coefficients. The numerical results show that the pickup, transport, and drop-off processes can be precisely controlled by these parameters. On the basis of the numerical results, a trap-free delivery of a hydrophobic microparticle to a destination on the substrate is demonstrated in the numerical simulations. The numerical results not only provide a fundamental understanding of interactions among the microparticle, the droplet, and the substrate but also demonstrate a new technique for the trap-free immobilization of single hydrophobic microparticles in the DMF design. Finally, our numerical method also provides a powerful design and optimization tool for the manipulation of microparticles in DMF systems.
GPU Accelerated Numerical Simulation of Viscous Flow Down a Slope
NASA Astrophysics Data System (ADS)
Gygax, Remo; Räss, Ludovic; Omlin, Samuel; Podladchikov, Yuri; Jaboyedoff, Michel
2014-05-01
Numerical simulations are an effective tool in natural risk analysis. They are useful to determine the propagation and the runout distance of gravity driven movements such as debris flows or landslides. To evaluate these processes an approach on analogue laboratory experiments and a GPU accelerated numerical simulation of the flow of a viscous liquid down an inclined slope is considered. The physical processes underlying large gravity driven flows share certain aspects with the propagation of debris mass in a rockslide and the spreading of water waves. Several studies have shown that the numerical implementation of the physical processes of viscous flow produce a good fit with the observation of experiments in laboratory in both a quantitative and a qualitative way. When considering a process that is this far explored we can concentrate on its numerical transcription and the application of the code in a GPU accelerated environment to obtain a 3D simulation. The objective of providing a numerical solution in high resolution by NVIDIA-CUDA GPU parallel processing is to increase the speed of the simulation and the accuracy on the prediction. The main goal is to write an easily adaptable and as short as possible code on the widely used platform MATLAB, which will be translated to C-CUDA to achieve higher resolution and processing speed while running on a NVIDIA graphics card cluster. The numerical model, based on the finite difference scheme, is compared to analogue laboratory experiments. This way our numerical model parameters are adjusted to reproduce the effective movements observed by high-speed camera acquisitions during the laboratory experiments.
Direct numerical simulation of compressible free shear flows
NASA Technical Reports Server (NTRS)
Lele, Sanjiva K.
1989-01-01
Direct numerical simulations of compressible free shear layers in open domains are conducted. Compact finite-difference schemes of spectral-like accuracy are used for the simulations. Both temporally-growing and spatially-growing mixing layers are studied. The effect of intrinsic compressibility on the evolution of vortices is studied. The use of convective Mach number is validated. Details of vortex roll up and pairing are studied. Acoustic radiation from vortex roll up, pairing and shape oscillations is studied and quantified.
Direct Numerical Simulations of Turbulent Autoigniting Hydrogen Jets
NASA Astrophysics Data System (ADS)
Asaithambi, Rajapandiyan
Autoignition is an important phenomenon and a tool in the design of combustion engines. To study autoignition in a canonical form a direct numerical simulation of a turbulent autoigniting hydrogen jet in vitiated coflow conditions at a jet Reynolds number of 10,000 is performed. A detailed chemical mechanism for hydrogen-air combustion and non-unity Lewis numbers for species transport is used. Realistic inlet conditions are prescribed by obtaining the velocity eld from a fully developed turbulent pipe flow simulation. To perform this simulation a scalable modular density based method for direct numerical simulation (DNS) and large eddy simulation (LES) of compressible reacting flows is developed. The algorithm performs explicit time advancement of transport variables on structured grids. An iterative semi-implicit time advancement is developed for the chemical source terms to alleviate the chemical stiffness of detailed mechanisms. The algorithm is also extended from a Cartesian grid to a cylindrical coordinate system which introduces a singularity at the pole r = 0 where terms with a factor 1/r can be ill-defined. There are several approaches to eliminate this pole singularity and finite volume methods can bypass this issue by not storing or computing data at the pole. All methods however face a very restrictive time step when using a explicit time advancement scheme in the azimuthal direction (theta) where the cell sizes are of the order DelrDeltheta. We use a conservative finite volume based approach to remove the severe time step restriction imposed by the CFL condition by merging cells in the azimuthal direction. In addition, fluxes in the radial direction are computed with an implicit scheme to allow cells to be clustered along the jet's shear layer. This method is validated and used to perform the large scale turbulent reacting simulation. The resulting flame structure is found to be similar to a turbulent diusion flame but stabilized by autoignition at the
Numerical simulation of piezoelectric effect of bone under ultrasound irradiation
NASA Astrophysics Data System (ADS)
Hosokawa, Atsushi
2015-07-01
The piezoelectric effect of bone under ultrasound irradiation was numerically simulated using an elastic finite-difference time-domain method with piezoelectric constitutive equations (PE-FDTD method). First, to demonstrate the validity of the PE-FDTD method, the ultrasound propagation in piezoelectric ceramics was simulated and then compared with the experimental results. The simulated and experimental waveforms propagating through the ceramics were in good agreement. Next, the piezoelectric effect of human cortical bone on the ultrasound propagation was investigated by PE-FDTD simulation. The simulated result showed that the difference between the waveforms propagating through the bone without and with piezoelectricity was negligible. Finally, the spatial distributions of the electric fields in a human femur induced by ultrasound irradiation were simulated. The electric fields were changed by a bone fracture, which depended on piezoelectric anisotropy. In conclusion, the PE-FDTD method is considered to be useful for investigating the piezoelectric effect of bone.
Can numerical simulations accurately predict hydrodynamic instabilities in liquid films?
NASA Astrophysics Data System (ADS)
Denner, Fabian; Charogiannis, Alexandros; Pradas, Marc; van Wachem, Berend G. M.; Markides, Christos N.; Kalliadasis, Serafim
2014-11-01
Understanding the dynamics of hydrodynamic instabilities in liquid film flows is an active field of research in fluid dynamics and non-linear science in general. Numerical simulations offer a powerful tool to study hydrodynamic instabilities in film flows and can provide deep insights into the underlying physical phenomena. However, the direct comparison of numerical results and experimental results is often hampered by several reasons. For instance, in numerical simulations the interface representation is problematic and the governing equations and boundary conditions may be oversimplified, whereas in experiments it is often difficult to extract accurate information on the fluid and its behavior, e.g. determine the fluid properties when the liquid contains particles for PIV measurements. In this contribution we present the latest results of our on-going, extensive study on hydrodynamic instabilities in liquid film flows, which includes direct numerical simulations, low-dimensional modelling as well as experiments. The major focus is on wave regimes, wave height and wave celerity as a function of Reynolds number and forcing frequency of a falling liquid film. Specific attention is paid to the differences in numerical and experimental results and the reasons for these differences. The authors are grateful to the EPSRC for their financial support (Grant EP/K008595/1).
Numerical approaches for multidimensional simulations of stellar explosions
NASA Astrophysics Data System (ADS)
Chen, Ke-Jung; Heger, Alexander; Almgren, Ann S.
2013-11-01
We introduce numerical algorithms for initializing multidimensional simulations of stellar explosions with 1D stellar evolution models. The initial mapping from 1D profiles onto multidimensional grids can generate severe numerical artifacts, one of the most severe of which is the violation of conservation laws for physical quantities. We introduce a numerical scheme for mapping 1D spherically-symmetric data onto multidimensional meshes so that these physical quantities are conserved. We verify our scheme by porting a realistic 1D Lagrangian stellar profile to the new multidimensional Eulerian hydro code CASTRO. Our results show that all important features in the profiles are reproduced on the new grid and that conservation laws are enforced at all resolutions after mapping. We also introduce a numerical scheme for initializing multidimensional supernova simulations with realistic perturbations predicted by 1D stellar evolution models. Instead of seeding 3D stellar profiles with random perturbations, we imprint them with velocity perturbations that reproduce the Kolmogorov energy spectrum expected for highly turbulent convective regions in stars. Our models return Kolmogorov energy spectra and vortex structures like those in turbulent flows before the modes become nonlinear. Finally, we describe approaches to determining the resolution for simulations required to capture fluid instabilities and nuclear burning. Our algorithms are applicable to multidimensional simulations besides stellar explosions that range from astrophysics to cosmology.
A review of numerical simulation of hydrothermal systems.
Mercer, J.W.; Faust, C.R.
1979-01-01
Many advances in simulating single and two-phase fluid flow and heat transport in porous media have recently been made in conjunction with geothermal energy research. These numerical models reproduce system thermal and pressure behaviour and can be used for other heat-transport problems, such as high-level radioactive waste disposal and heat-storage projects. -Authors
Numerical Simulation and Cold Modeling experiments on Centrifugal Casting
NASA Astrophysics Data System (ADS)
Keerthiprasad, Kestur Sadashivaiah; Murali, Mysore Seetharam; Mukunda, Pudukottah Gopaliengar; Majumdar, Sekhar
2011-02-01
In a centrifugal casting process, the fluid flow eventually determines the quality and characteristics of the final product. It is difficult to study the fluid behavior here because of the opaque nature of melt and mold. In the current investigation, numerical simulations of the flow field and visualization experiments on cold models have been carried out for a centrifugal casting system using horizontal molds and fluids of different viscosities to study the effect of different process variables on the flow pattern. The effects of the thickness of the cylindrical fluid annulus formed inside the mold and the effects of fluid viscosity, diameter, and rotational speed of the mold on the hollow fluid cylinder formation process have been investigated. The numerical simulation results are compared with corresponding data obtained from the cold modeling experiments. The influence of rotational speed in a real-life centrifugal casting system has also been studied using an aluminum-silicon alloy. Cylinders of different thicknesses are cast at different rotational speeds, and the flow patterns observed visually in the actual castings are found to be similar to those recorded in the corresponding cold modeling experiments. Reasonable agreement is observed between the results of numerical simulation and the results of cold modeling experiments with different fluids. The visualization study on the hollow cylinders produced in an actual centrifugal casting process also confirm the conclusions arrived at from the cold modeling experiments and numerical simulation in a qualitative sense.
Numerical aerodynamic simulation facility preliminary study: Executive study
NASA Technical Reports Server (NTRS)
1977-01-01
A computing system was designed with the capability of providing an effective throughput of one billion floating point operations per second for three dimensional Navier-Stokes codes. The methodology used in defining the baseline design, and the major elements of the numerical aerodynamic simulation facility are described.
Numerical simulation and experimental observations of initial friction transients
Hughes, D.A.; Weingarten, L.I.; Dawson, D.B.
1995-07-01
Experiments were performed to better understand the sliding frictional behavior between metals under relatively high shear and normal forces. Microstructural analyses were done to estimate local near-surface stress and strain gradients. The numerical simulation of the observed frictional behavior was based on a constitutive model that uses a state variable approach.
Numerical Simulation of the Perrin-Like Experiments
ERIC Educational Resources Information Center
Mazur, Zygmunt; Grech, Dariusz
2008-01-01
A simple model of the random Brownian walk of a spherical mesoscopic particle in viscous liquids is proposed. The model can be solved analytically and simulated numerically. The analytic solution gives the known Einstein-Smoluchowski diffusion law r[superscript 2] = 2Dt, where the diffusion constant D is expressed by the mass and geometry of a…
NUMERICAL SIMULATION OF NATURAL GAS-SWIRL BURNER
Ala Qubbaj
2005-03-01
A numerical simulation of a turbulent natural gas jet diffusion flame at a Reynolds number of 9000 in a swirling air stream is presented. The numerical computations were carried out using the commercially available software package CFDRC. The instantaneous chemistry model was used as the reaction model. The thermal, composition, flow (velocity), as well as stream function fields for both the baseline and air-swirling flames were numerically simulated in the near-burner region, where most of the mixing and reactions occur. The results were useful to interpret the effects of swirl in enhancing the mixing rates in the combustion zone as well as in stabilizing the flame. The results showed the generation of two recirculating regimes induced by the swirling air stream, which account for such effects. The present investigation will be used as a benchmark study of swirl flow combustion analysis as a step in developing an enhanced swirl-cascade burner technology.
Numerical simulation and experimental progress on plasma window
NASA Astrophysics Data System (ADS)
Wang, S. Z.; Zhu, K.; Huang, S.; Lu, Y. R.; Shi, B. L.
2016-11-01
In this paper, a numerical 2D FLUENT-based magneto-hydrodynamic simulation on 3mm plasma window using argon, taken as a windowless vacuum device, was developed. The gas inlet, arc creation and developing and plasma expansion segments are all contained in this model. In the axis-symmetry cathode structure, a set of parameters including pressure, temperature, velocity and current distribution were obtained and discussed. The fluid dynamics of plasma in cavities with different shapes was researched. Corresponding experiments was carried out and the result agrees well to the numerical simulation. The validity of sealing ability of plasma window has been verified. Relevant further research upon deuteron gas as neutron production target is to be continued, considering larger diameter plasma window experimentally and numerically.
Numeric Modified Adomian Decomposition Method for Power System Simulations
Dimitrovski, Aleksandar D; Simunovic, Srdjan; Pannala, Sreekanth
2016-01-01
This paper investigates the applicability of numeric Wazwaz El Sayed modified Adomian Decomposition Method (WES-ADM) for time domain simulation of power systems. WESADM is a numerical method based on a modified Adomian decomposition (ADM) technique. WES-ADM is a numerical approximation method for the solution of nonlinear ordinary differential equations. The non-linear terms in the differential equations are approximated using Adomian polynomials. In this paper WES-ADM is applied to time domain simulations of multimachine power systems. WECC 3-generator, 9-bus system and IEEE 10-generator, 39-bus system have been used to test the applicability of the approach. Several fault scenarios have been tested. It has been found that the proposed approach is faster than the trapezoidal method with comparable accuracy.
Numerical simulation of strained Si/SiGe devices: the hierarchical approach
NASA Astrophysics Data System (ADS)
Meinerzhagen, B.; Jungemann, C.; Neinhüs, B.; Bartels, M.
2004-03-01
Performance predictions for 25 nm strained Si CMOS devices which are based on full-band Monte Carlo (FBMC) device simulations and which are in good agreement with the most recent experimental trends are presented. The FBMC simulator itself is part of a hierarchical device simulation system which allows to perform time-efficient hierarchical hydrodynamic (HD) device simulations of modern SiGe HBTs. As demonstrated below, the accuracy of a such a hydrodynamic-based dc, ac, transient, and noise analysis is comparable to FBMC device simulations. In addition, the new hierarchical numerical noise simulation method is experimentally verified based on a modern rf-CMOS technology of Philips Research. The MC-enhanced simulation accuracy of the hierarchical hydrodynamic and drift diffusion (DD) models can be also exploited for mixed-mode circuit simulations, which is shown by typical power sweep simulations of an industrial rf power amplifier.
Direct numerical simulation of turbulence in a bent pipe
NASA Astrophysics Data System (ADS)
Schlatter, Philipp; Noorani, Azad
2013-11-01
A series of direct numerical simulations of turbulent flow in a bent pipe is presented. The setup employs periodic (cyclic) boundary conditions in the axial direction, leading to a nominally infinitely long pipe. The discretisation is based on the high-order spectral element method, using the code Nek5000. Four different curvatures, defined as the ratio between pipe radius and coil radius, are considered: κ = 0 (straight), 0.01 (mild curvature), 0.1 and 0.3 (strong curvature), at bulk Reynolds numbers of up to 11700 (corresponding to Reτ = 360 in the straight pipe case). The result show the turbulence-reducing effect of the curvature (similar to rotation), leading close to relaminarisation in the inner side; the outer side, however, remains fully turbulent. Prpoer orthogonal decomposition (POD) is used to extract the dominant modes, in an effort to explain low-frequency switching of sides inside the pipe. A number of additional interesting features are explored, which include sub-straight and sub-laminar drag for specific choices of curvature and Reynolds number: In particular the case with sub-laminar drag is investigated further, and our analysis shows the existence of a spanwise wave in the bent pipe, which in fact leads to lower overall pressure drop.
Numerical simulations of a siphon mechanism for quiescent prominence formation
NASA Technical Reports Server (NTRS)
Poland, A. I.; Mariska, J. T.; Klimchuk, J. A.
1986-01-01
Quiescent prominences represent a significant challenge to our understanding of the flow of mass and energy in the outer layers of the solar atmosphere. A small number of quiescent prominences contain as much mass as the entire corona (Athay, 1976). The problem then is how to get that much material into the relatively small volume of a prominence and maintain it at a temperature of 10,000 K in close proximity to material at one million K. The thermal insulation to conduction provided by the magnetic field explains the disparate temperatures. The mass source problem is less well understood. One method for supplying mass to the prominence is to siphon it from the chromosphere. The siphon mechanism begins with a magnetic loop that evolves into a configuration with a gravitational well, such as that described by Kippenhahn and Schluter (1957). This could be formed, for example, by a twist in the magnetic field. A gravitational well could also be formed by a condensation induced sag in the field. This could further enhance the condensation process. Once this well has formed, or as it is forming, the material in the well area of the loop must cool and condense to the point where radiative losses exceed any heat input. Additional material must also flow into the well from the underlying chromosphere to supply the mass required to form the prominence. One example from a series of numerical simulations that were performed to study the formation of quiescent prominences is presented.
Direct Numerical Simulation of Flow Over Passive Geometric Disturbances
NASA Astrophysics Data System (ADS)
Vizard, Alexander
It is well understood that delaying flow separation on a bluff body allows significant drag reduction, which is attractive in many applications. With this in mind, many separation control mechanisms, both active and passive, have been developed and tested to optimize the effects of this phenomenon. Although this idea is generally accepted, the physical occurrences in the near-wall region during transition that lead to separation delay are not well understood. The current study evaluates the impact of both spherical dimples, and sandgrain style roughness on downstream flow by performing direct numerical simulations over such geometries on a zero pressure gradient flat plate. It is shown that although dimples and random roughness of similar characteristic length scales exhibit similar boundary layer characteristics, dimples are more successful in developing high momentum in the vicinity of the wall. Additionally it is shown that increasing the relative size of the rough elements does not increase the near-wall momentum, and is undesirable in controlling separation. Finally, it is shown that the impact of roughness elements on the flow is more immediate, and that, for the case of one row of dimples and an equivalent area of roughness, the roughness patch is more successful in transitioning the near-wall region to a non-laminar state. It can be concluded from variation in the span of the flowfield for a single row of dimples that the size and orientation of the disturbance region is significant to the results.
Three-Dimensional Numerical Simulation of Airflow in Nasopharynx.
NASA Astrophysics Data System (ADS)
Shome, Biswadip; Wang, Lian-Ping; Santare, Michael H.; Szeri, Andras Z.; Prasad, Ajay K.; Roberts, David
1996-11-01
A three-dimensional numerical simulation of airflow in nasopharynx (from the soft palate to the epiglottis) was conducted, using anatomically accurate model and finite element method, to study the influence of flow characteristics on obstructive sleep apnea (OSA). The results showed that the pressure drop in the nasopharynx is in the range 200-500 Pa. Ten different nasopharynx geometries resulting from three OSA treatment therapies (CPAP, mandibular repositioning devices, and surgery) were compared. The results confirmed that the airflow in the nasopharynx lies in the transitional flow regime and thus, a subtle change in the morphology caused by these treatment therapies has a large effect on the airflow. The onset of turbulence can cause as much as 40% of increase in pressure drop. For the transitional flow regime, the k-ɛ turbulence model was found to be the most appropriate model, when compared to the mixing length and the k-ω model, as it correctly reproduces the limiting laminar behavior. In addition, the pressure drop increased approximately as the square of the volumetric flow rate. Supported by NIH.
Numerical Simulation of a Low-Power Hydrazine Arcjet Thruster
NASA Astrophysics Data System (ADS)
Wang, Hai-Xing; Geng, Jin-Yue; Chen, Xi; Pan, Wenxia
A modeling study is conducted to investigate the plasma flow and heat transfer characteristics of low-power (kW class) archeated thrusters (arcjets) with 2:1 hydrogen/nitrogen to simulate decomposed hydrazine as the propellant. The all-speed SIMPLE algorithm is employed to solve the governing equations, which take into account the effects of compressibility, the Lorentz force and Joule heating, as well as the temperature- and pressure-dependence of the gas properties. Typical computed results about the temperature, velocity and Mach number distributions within arcjet thruster are presented for the case with arc current of 9 A and inlet stagnant pressure of 3.3×105 Pa to show the flow and heat transfer characteristics. It is found that the propellant is heated mainly in the near-cathode and constrictor region, with the highest plasma temperature appearing near the cathode tip, and the flow transition from the subsonic to supersonic regime occurs within the constrictor region. The effect of gas viscosity on the plasma flow within arcjet thruster is examined by an additional numerical test using artificially reduced values of gas viscosity. The test results show that the gas viscosity appreciably affects the plasma flow and the performance of the arcjet thruster for the cases with the hydrazine or hydrogen as the propellant. The integrated axial Lorentz force in the thruster nozzle is also calculated and compared with the thrust force of the arcjet thruster. It is found that the integrated axial Lorentz force is much smaller than the thrust force for the low-power arcjet thruster. Modeling results for the NASA 1-kW class arcjet thruster with simulated hydrazine as the propellant are found to be reasonably consistent with available experimental data.
Understanding casing flow in Pelton turbines by numerical simulation
NASA Astrophysics Data System (ADS)
Rentschler, M.; Neuhauser, M.; Marongiu, J. C.; Parkinson, E.
2016-11-01
For rehabilitation projects of Pelton turbines, the flow in the casing may have an important influence on the overall performance of the machine. Water sheets returning on the jets or on the runner significantly reduce efficiency, and run-away speed depends on the flow in the casing. CFD simulations can provide a detailed insight into this type of flow, but these simulations are computationally intensive. As in general the volume of water in a Pelton turbine is small compared to the complete volume of the turbine housing, a single phase simulation greatly reduces the complexity of the simulation. In the present work a numerical tool based on the SPH-ALE meshless method is used to simulate the casing flow in a Pelton turbine. Using improved order schemes reduces the numerical viscosity. This is necessary to resolve the flow in the jet and on the casing wall, where the velocity differs by two orders of magnitude. The results are compared to flow visualizations and measurement in a hydraulic laboratory. Several rehabilitation projects proved the added value of understanding the flow in the Pelton casing. The flow simulation helps designing casing insert, not only to see their influence on the flow, but also to calculate the stress in the inserts. In some projects, the casing simulation leads to the understanding of unexpected behavior of the flow. One such example is presented where the backsplash of a deflector hit the runner, creating a reversed rotation of the runner.
Numerical simulation of premixed H2-air cellular tubular flames
NASA Astrophysics Data System (ADS)
Hall, Carl Alan; Wendell Pitz, Robert
2016-03-01
The detailed flame structure of laminar premixed cellular flames in the tubular domain is simulated in 2D using a fully-implicit primitive variable finite difference formulation that includes multicomponent transport and detailed chemical kinetics. Numerical results for H2/air flames are presented and compared against spatially resolved experimental measurements of temperature and chemical species including atomic H and OH. The experimental results compare well for flame structure and cell number, despite the numerical model under-predicting the peak temperature by 200 K. Numerical experiments were performed to assess the ability for cellular tubular flames to impact experimental and numerical investigations of practical flames. The cellular flame structure is found to provide a highly sensitive geometry that is useful for validating diffusive transport modelling approximations. This capability is exemplified through the development of a simple and accurate approximation for thermal diffusion (i.e. the Soret effect) that is suitable for practical combustion codes.
Collapse of a Liquid Column: Numerical Simulation and Experimental Validation
NASA Astrophysics Data System (ADS)
Cruchaga, Marcela A.; Celentano, Diego J.; Tezduyar, Tayfun E.
2007-03-01
This paper is focused on the numerical and experimental analyses of the collapse of a liquid column. The measurements of the interface position in a set of experiments carried out with shampoo and water for two different initial column aspect ratios are presented together with the corresponding numerical predictions. The experimental procedure was found to provide acceptable recurrence in the observation of the interface evolution. Basic models describing some of the relevant physical aspects, e.g. wall friction and turbulence, are included in the simulations. Numerical experiments are conducted to evaluate the influence of the parameters involved in the modeling by comparing the results with the data from the measurements. The numerical predictions reasonably describe the physical trends.
Visualization of a Numerical Simulation of GW 150914
NASA Astrophysics Data System (ADS)
Rosato, Nicole; Healy, James; Lousto, Carlos
2017-01-01
We present an analysis of a simulation displaying apparent horizon curvature and radiation emitted from a binary black hole system modeling GW-150914 during merger. The simulation follows the system from seven orbits prior to merger to the resultant Kerr black hole. Horizon curvature was calculated using a mean curvature flow algorithm. Radiation data was visualized via the Ψ4 component of the Weyl scalars, which were determined using a numerical quasi-Kinnersley method. We also present a comparative study of the differences in quasi-Kinnersley and PsiKadelia tetrads to construct Ψ4. The analysis is displayed on a movie generated from these numerical results, and was done using VisIt software from Lawrence Livermore National Laboratory. This simulation and analysis gives more insight into the merger of the system GW 150914.
Comparison of experimental results with numerical simulations for pulsed thermographic NDE
NASA Astrophysics Data System (ADS)
Sripragash, Letchuman; Sundaresan, Mannur
2017-02-01
This paper examines pulse thermographic nondestructive evaluation of flat bottom holes of isotropic materials. Different combinations of defect diameters and depths are considered. Thermographic Signal Reconstruction (TSR) method is used to analyze these results. In addition, a new normalization procedure is used to remove the dependence of thermographic results on the material properties and instrumentation settings during these experiments. Hence the normalized results depend only on the geometry of the specimen and the defects. These thermographic NDE procedures were also simulated using finite element technique for a variety of defect configurations. The data obtained from numerical simulations were also processed using the normalization scheme. Excellent agreement was seen between the results obtained from experiments and numerical simulations. Therefore, the scheme is extended to introduce a correlation technique by which numerical simulations are used to quantify the defect parameters.
Numerical simulation of landfill aeration using computational fluid dynamics.
Fytanidis, Dimitrios K; Voudrias, Evangelos A
2014-04-01
The present study is an application of Computational Fluid Dynamics (CFD) to the numerical simulation of landfill aeration systems. Specifically, the CFD algorithms provided by the commercial solver ANSYS Fluent 14.0, combined with an in-house source code developed to modify the main solver, were used. The unsaturated multiphase flow of air and liquid phases and the biochemical processes for aerobic biodegradation of the organic fraction of municipal solid waste were simulated taking into consideration their temporal and spatial evolution, as well as complex effects, such as oxygen mass transfer across phases, unsaturated flow effects (capillary suction and unsaturated hydraulic conductivity), temperature variations due to biochemical processes and environmental correction factors for the applied kinetics (Monod and 1st order kinetics). The developed model results were compared with literature experimental data. Also, pilot scale simulations and sensitivity analysis were implemented. Moreover, simulation results of a hypothetical single aeration well were shown, while its zone of influence was estimated using both the pressure and oxygen distribution. Finally, a case study was simulated for a hypothetical landfill aeration system. Both a static (steadily positive or negative relative pressure with time) and a hybrid (following a square wave pattern of positive and negative values of relative pressure with time) scenarios for the aeration wells were examined. The results showed that the present model is capable of simulating landfill aeration and the obtained results were in good agreement with corresponding previous experimental and numerical investigations.
Non-robust numerical simulations of analogue extension experiments
NASA Astrophysics Data System (ADS)
Naliboff, John; Buiter, Susanne
2016-04-01
Numerical and analogue models of lithospheric deformation provide significant insight into the tectonic processes that lead to specific structural and geophysical observations. As these two types of models contain distinct assumptions and tradeoffs, investigations drawing conclusions from both can reveal robust links between first-order processes and observations. Recent studies have focused on detailed comparisons between numerical and analogue experiments in both compressional and extensional tectonics, sometimes involving multiple lithospheric deformation codes and analogue setups. While such comparisons often show good agreement on first-order deformation styles, results frequently diverge on second-order structures, such as shear zone dip angles or spacing, and in certain cases even on first-order structures. Here, we present finite-element experiments that are designed to directly reproduce analogue "sandbox" extension experiments at the cm-scale. We use material properties and boundary conditions that are directly taken from analogue experiments and use a Drucker-Prager failure model to simulate shear zone formation in sand. We find that our numerical experiments are highly sensitive to numerous numerical parameters. For example, changes to the numerical resolution, velocity convergence parameters and elemental viscosity averaging commonly produce significant changes in first- and second-order structures accommodating deformation. The sensitivity of the numerical simulations to small parameter changes likely reflects a number of factors, including, but not limited to, high angles of internal friction assigned to sand, complex, unknown interactions between the brittle sand (used as an upper crust equivalent) and viscous silicone (lower crust), highly non-linear strain weakening processes and poor constraints on the cohesion of sand. Our numerical-analogue comparison is hampered by (a) an incomplete knowledge of the fine details of sand failure and sand
Image based numerical simulation of hemodynamics in a intracranial aneurysm
NASA Astrophysics Data System (ADS)
Le, Trung; Ge, Liang; Sotiropoulos, Fotis; Kallmes, David; Cloft, Harry; Lewis, Debra; Dai, Daying; Ding, Yonghong; Kadirvel, Ramanathan
2007-11-01
Image-based numerical simulations of hemodynamics in a intracranial aneurysm are carried out. The numerical solver based on CURVIB (curvilinear grid/immersed boundary method) approach developed in Ge and Sotiropoulos, JCP 2007 is used to simulate the blood flow. A curvilinear grid system that gradually follows the curved geometry of artery wall and consists of approximately 5M grid nodes is constructed as the background grid system and the boundaries of the investigated artery and aneurysm are treated as immersed boundaries. The surface geometry of aneurysm wall is reconstructed from an angiography study of an aneurysm formed on the common carotid artery (CCA) of a rabbit and discretized with triangular meshes. At the inlet a physiological flow waveform is specified and direct numerical simulations are used to simulate the blood flow. Very rich vortical dynamics is observed within the aneurysm area, with a ring like vortex sheds from the proximal side of aneurysm, develops and impinge onto the distal side of the aneurysm as flow develops, and destructs into smaller vortices during later cardiac cycle. This work was supported in part by the University of Minnesota Supercomputing Institute.
Graphics interfaces and numerical simulations: Mexican Virtual Solar Observatory
NASA Astrophysics Data System (ADS)
Hernández, L.; González, A.; Salas, G.; Santillán, A.
2007-08-01
Preliminary results associated to the computational development and creation of the Mexican Virtual Solar Observatory (MVSO) are presented. Basically, the MVSO prototype consists of two parts: the first, related to observations that have been made during the past ten years at the Solar Observation Station (EOS) and at the Carl Sagan Observatory (OCS) of the Universidad de Sonora in Mexico. The second part is associated to the creation and manipulation of a database produced by numerical simulations related to solar phenomena, we are using the MHD ZEUS-3D code. The development of this prototype was made using mysql, apache, java and VSO 1.2. based GNU and `open source philosophy'. A graphic user interface (GUI) was created in order to make web-based, remote numerical simulations. For this purpose, Mono was used, because it is provides the necessary software to develop and run .NET client and server applications on Linux. Although this project is still under development, we hope to have access, by means of this portal, to other virtual solar observatories and to be able to count on a database created through numerical simulations or, given the case, perform simulations associated to solar phenomena.
MADNESS: A Multiresolution, Adaptive Numerical Environment for Scientific Simulation
Harrison, Robert J.; Beylkin, Gregory; Bischoff, Florian A.; Calvin, Justus A.; Fann, George I.; Fosso-Tande, Jacob; Galindo, Diego; Hammond, Jeff R.; Hartman-Baker, Rebecca; Hill, Judith C.; Jia, Jun; Kottmann, Jakob S.; Yvonne Ou, M-J.; Pei, Junchen; Ratcliff, Laura E.; Reuter, Matthew G.; Richie-Halford, Adam C.; Romero, Nichols A.; Sekino, Hideo; Shelton, William A.; Sundahl, Bryan E.; Thornton, W. Scott; Valeev, Edward F.; Vázquez-Mayagoitia, Álvaro; Vence, Nicholas; Yanai, Takeshi; Yokoi, Yukina
2016-01-01
MADNESS (multiresolution adaptive numerical environment for scientific simulation) is a high-level software environment for solving integral and differential equations in many dimensions that uses adaptive and fast harmonic analysis methods with guaranteed precision based on multiresolution analysis and separated representations. Underpinning the numerical capabilities is a powerful petascale parallel programming environment that aims to increase both programmer productivity and code scalability. This paper describes the features and capabilities of MADNESS and briefly discusses some current applications in chemistry and several areas of physics.
MADNESS: A Multiresolution, Adaptive Numerical Environment for Scientific Simulation
Harrison, Robert J.; Beylkin, Gregory; Bischoff, Florian A.; Calvin, Justus A.; Fann, George I.; Fosso-Tande, Jacob; Galindo, Diego; Hammond, Jeff R.; Hartman-Baker, Rebecca; Hill, Judith C.; Jia, Jun; Kottmann, Jakob S.; Yvonne Ou, M-J.; Pei, Junchen; Ratcliff, Laura E.; Reuter, Matthew G.; Richie-Halford, Adam C.; Romero, Nichols A.; Sekino, Hideo; Shelton, William A.; Sundahl, Bryan E.; Thornton, W. Scott; Valeev, Edward F.; Vázquez-Mayagoitia, Álvaro; Vence, Nicholas; Yanai, Takeshi; Yokoi, Yukina
2016-01-01
We present MADNESS (multiresolution adaptive numerical environment for scientific simulation) that is a high-level software environment for solving integral and differential equations in many dimensions that uses adaptive and fast harmonic analysis methods with guaranteed precision that are based on multiresolution analysis and separated representations. Underpinning the numerical capabilities is a powerful petascale parallel programming environment that aims to increase both programmer productivity and code scalability. This paper describes the features and capabilities of MADNESS and briefly discusses some current applications in chemistry and several areas of physics.
Numerical simulation of multi-fluid shock-turbulence interaction
NASA Astrophysics Data System (ADS)
Tian, Yifeng; Jaberi, Farhad; Livescu, Daniel; Li, Zhaorui
2017-01-01
Accurate numerical simulation of multi-fluid Shock-Turbulence Interaction (STI) is conducted by a hybrid monotonicity preserving-compact finite difference scheme for a detailed study of STI in variable density flows. Theoretical and numerical assessments of data confirm that all turbulence scales as well as the STI are well captured by the computational method. Comparison of multi-fluid and single-fluid data indicates that the turbulent kinetic energy is amplified more and the scalar mixing is enhanced more by the shock in flows involving two different fluids/densities when compared with those observed in single-fluid flows.
Numerical Simulations of One-dimensional Microstructure Dynamics
Berezovski, M.; Berezovski, A.; Engelbrecht, J.
2010-05-21
Results of numerical simulations of one-dimensional wave propagation in microstructured solids are presented and compared with the corresponding results of wave propagation in given layered media. A linear microstructure model based on Mindlin theory is adopted and represented in the framework of the internal variable theory. Fully coupled systems of equations for macro-motion and microstructure evolution are rewritten in the form of conservation laws. A modification of wave propagation algorithm is used for numerical calculations. It is shown how the initial microstructure model can be improved in order to match the results obtained by both approaches.
Simulation of Laser Additive Manufacturing and its Applications
NASA Astrophysics Data System (ADS)
Lee, Yousub
Laser and metal powder based additive manufacturing (AM), a key category of advanced Direct Digital Manufacturing (DDM), produces metallic components directly from a digital representation of the part such as a CAD file. It is well suited for the production of high-value, customizable components with complex geometry and the repair of damaged components. Currently, the main challenges for laser and metal powder based AM include the formation of defects (e.g., porosity), low surface finish quality, and spatially non-uniform properties of material. Such challenges stem largely from the limited knowledge of complex physical processes in AM especially the molten pool physics such as melting, molten metal flow, heat conduction, vaporization of alloying elements, and solidification. Direct experimental measurement of melt pool phenomena is highly difficult since the process is localized (on the order of 0.1 mm to 1 mm melt pool size) and transient (on the order of 1 m/s scanning speed). Furthermore, current optical and infrared cameras are limited to observe the melt pool surface. As a result, fluid flows in the melt pool, melt pool shape and formation of sub-surface defects are difficult to be visualized by experiment. On the other hand, numerical simulation, based on rigorous solution of mass, momentum and energy transport equations, can provide important quantitative knowledge of complex transport phenomena taking place in AM. The overarching goal of this dissertation research is to develop an analytical foundation for fundamental understanding of heat transfer, molten metal flow and free surface evolution. Two key types of laser AM processes are studied: a) powder injection, commonly used for repairing of turbine blades, and b) powder bed, commonly used for manufacturing of new parts with complex geometry. In the powder injection simulation, fluid convection, temperature gradient (G), solidification rate (R) and melt pool shape are calculated using a heat transfer
Direct Numerical Simulation of the Influence of Plasmas on Turbulent Flows
2006-12-31
the doctoral research of Mr. Shankar Chosh. Publications associated with this work are listed below. " Direct numerical simulation of the thermal...addition. AIAA paper 2003-3862. [4] MAKER, P., TERHUNE, R. & SAVAGE, C. 1963 Proceedings of the Third International Quantum Mechanics Conference, Paris
Numerical simulations of internal wave generation by convection in water.
Lecoanet, Daniel; Le Bars, Michael; Burns, Keaton J; Vasil, Geoffrey M; Brown, Benjamin P; Quataert, Eliot; Oishi, Jeffrey S
2015-06-01
Water's density maximum at 4°C makes it well suited to study internal gravity wave excitation by convection: an increasing temperature profile is unstable to convection below 4°C, but stably stratified above 4°C. We present numerical simulations of a waterlike fluid near its density maximum in a two-dimensional domain. We successfully model the damping of waves in the simulations using linear theory, provided we do not take the weak damping limit typically used in the literature. To isolate the physical mechanism exciting internal waves, we use the spectral code dedalus to run several simplified model simulations of our more detailed simulation. We use data from the full simulation as source terms in two simplified models of internal-wave excitation by convection: bulk excitation by convective Reynolds stresses, and interface forcing via the mechanical oscillator effect. We find excellent agreement between the waves generated in the full simulation and the simplified simulation implementing the bulk excitation mechanism. The interface forcing simulations overexcite high-frequency waves because they assume the excitation is by the "impulsive" penetration of plumes, which spreads energy to high frequencies. However, we find that the real excitation is instead by the "sweeping" motion of plumes parallel to the interface. Our results imply that the bulk excitation mechanism is a very accurate heuristic for internal-wave generation by convection.
The 3-D numerical simulation research of vacuum injector for linear induction accelerator
NASA Astrophysics Data System (ADS)
Liu, Dagang; Xie, Mengjun; Tang, Xinbing; Liao, Shuqing
2017-01-01
Simulation method for voltage in-feed and electron injection of vacuum injector is given, and verification of the simulated voltage and current is carried out. The numerical simulation for the magnetic field of solenoid is implemented, and a comparative analysis is conducted between the simulation results and experimental results. A semi-implicit difference algorithm is adopted to suppress the numerical noise, and a parallel acceleration algorithm is used for increasing the computation speed. The RMS emittance calculation method of the beam envelope equations is analyzed. In addition, the simulated results of RMS emittance are compared with the experimental data. Finally, influences of the ferromagnetic rings on the radial and axial magnetic fields of solenoid as well as the emittance of beam are studied.
NASA Astrophysics Data System (ADS)
Shoev, G. V.; Bondar, Ye. A.; Oblapenko, G. P.; Kustova, E. V.
2016-03-01
Various issues of numerical simulation of supersonic gas flows with allowance for thermochemical nonequilibrium on the basis of fluid dynamic equations in the two-temperature approximation are discussed. The computational tool for modeling flows with thermochemical nonequilibrium is the commercial software package ANSYS Fluent with an additional userdefined open-code module. A comparative analysis of results obtained by various models of vibration-dissociation coupling in binary gas mixtures of nitrogen and oxygen is performed. Results of numerical simulations are compared with available experimental data.
Numerical simulation of electrothermal de-icing systems
NASA Technical Reports Server (NTRS)
De Witt, K. J.; Keith, T. G.; Chao, D. F.; Masiulaniec, K. C.
1983-01-01
Transient simulations of de-icing of composite aircraft components by electrothermal heating have been computed for both one and two-dimensional rectangular geometries. The implicit Crank-Nicolson formulation is used to insure stability of the finite-differenced heat conduction equations and the phase change in the ice layer is simulated using the Enthalpy method. Numerical solutions illustrating de-icer performance for various composite aircraft blades and environmental conditions are presented. Comparisons are made with previous studies and with available experimental data. Initial results using a coordinate mapping technique to describe the actual blade geometry are discussed.
Numerical Simulation of Impact Effects on Multilayer Fabrics
NASA Astrophysics Data System (ADS)
Fahrenthold, Eric
2007-06-01
High strength fabrics provide lightweight impact protection and are employed in a wide range of applications. Examples include body armor for law enforcement and military personnel and orbital debris shielding for the International Space Station. Numerical simulation of impact effects on fabric protection systems is difficult, due to the complex woven structure of the fabric layers and the typical application of fabrics in a multilayer configuration. Recent research has developed new particle-element methods for the simulation of impact effects on multilayer fabrics, applicable over a wide range of impact velocities, for use in body armor and orbital debris shielding applications.
Numerical Simulation of Impact Effects on Multilayer Fabrics
NASA Astrophysics Data System (ADS)
Fahrenthold, Eric; Rabb, Robert; Bohannan, April
2007-12-01
High strength fabrics provide lightweight impact protection and are employed in a wide range of applications. Examples include body armor for law enforcement and military personnel and orbital debris shielding for the International Space Station. Numerical simulation of impact effects on fabric protection systems is difficult, due to the complex woven structure of the fabric layers and the typical application of fabrics in a multilayer configuration. Recent research has applied a new particle-element method to the simulation of impact effects on multilayer fabrics, applicable over a wide range of impact velocities, for use in body armor and orbital debris shielding design applications.
Numerical simulation model for vertical flow in geothermal wells
Tachimori, M.
1982-01-01
A numerical simulation model for vertical flow in geothermal wells is presented. The model consists of equations for the conservation of mass, momentum, and energy, for thermodynamic state of water, for friction losses, for slip velocity relations, and of the criteria for various flow regimes. A new set of correlations and criteria is presented for two-phase flow to improve the accuracy of predictions; bubbly flow - Griffith and Wallis correlation, slug flow - Nicklin et al. one, annular-mist flow - Inoue and Aoki and modified by the author. The simulation method was verified by data from actual wells.
Numerical Simulation of Gleeble Torsion Testing of HSLA-65 Steel
2008-04-01
Simulation of Friction Stir Weld Mictrstructures of a High Strength, Low Alloy Steel (HSLA-65),” Proceedings of the TWI 7th International FSW ...of HSLA-65 Steel by David R. Forrest and Matthew F. Sinfield N SW C C D -6 1- TR –2 00 8/ 02 N um er ic al S im ul at io n of G le eb le T or...Numerical Simulation of Gleeble Torsion Testing of HSLA-65 Steel by David R. Forrest and Matthew F. Sinfield i REPORT DOCUMENTATION PAGE Form
Modified Numerical Simulation Model of Blood Flow in Bend
Liu, X; Zhou, X; Hao, X; Sang, X
2015-01-01
ABSTRACT The numerical simulation model of blood flow in bend is studied in this paper. The curvature modification is conducted for the blood flow model in bend to obtain the modified blood flow model in bend. The modified model is verified by U tube. By comparing the simulation results with the experimental results obtained by measuring the flow data in U tube, it was found that the modified blood flow model in bend can effectively improve the prediction accuracy of blood flow data affected by the curvature effect. PMID:27398727
Numerical Simulation of a Spatially Evolving Supersonic Turbulent Boundary Layer
NASA Technical Reports Server (NTRS)
Gatski, T. B.; Erlebacher, G.
2002-01-01
The results from direct numerical simulations of a spatially evolving, supersonic, flat-plate turbulent boundary-layer flow, with free-stream Mach number of 2.25 are presented. The simulated flow field extends from a transition region, initiated by wall suction and blowing near the inflow boundary, into the fully turbulent regime. Distributions of mean and turbulent flow quantities are obtained and an analysis of these quantities is performed at a downstream station corresponding to Re(sub x)= 5.548 x10(exp 6) based on distance from the leading edge.
GPU accelerated numerical simulations of viscoelastic phase separation model.
Yang, Keda; Su, Jiaye; Guo, Hongxia
2012-07-05
We introduce a complete implementation of viscoelastic model for numerical simulations of the phase separation kinetics in dynamic asymmetry systems such as polymer blends and polymer solutions on a graphics processing unit (GPU) by CUDA language and discuss algorithms and optimizations in details. From studies of a polymer solution, we show that the GPU-based implementation can predict correctly the accepted results and provide about 190 times speedup over a single central processing unit (CPU). Further accuracy analysis demonstrates that both the single and the double precision calculations on the GPU are sufficient to produce high-quality results in numerical simulations of viscoelastic model. Therefore, the GPU-based viscoelastic model is very promising for studying many phase separation processes of experimental and theoretical interests that often take place on the large length and time scales and are not easily addressed by a conventional implementation running on a single CPU.
Numerical simulation of electrified jets: An application to electrospinning
NASA Astrophysics Data System (ADS)
Borzacchiello, D.; Vermiglio, S.; Chinesta, F.; Nabat, S.; Lafdi, K.
2016-10-01
This paper concerns the numerical simulation of electrified jets with application to the electrospinning process for the fabrication of fibers with controllable size, diameter, and cross section shape. Most numerical models used to simulate electrospinning rely on the Upper Convected Maxwell model (UCM) which is fit to model polymer melts. However, in most electrospinning processes the fluid is a polymer solution with a Newtonian solvent that evaporates after the fiber is deposited on the collector. In this work we propose to describe the fluid rheology using Giesekus model, which predicts the properties of polymer solutions more accurately, and show the impact of the rheological model on the prediction of the fiber radius and size.
Numerical aerodynamic simulation program long haul communications prototype
NASA Technical Reports Server (NTRS)
Cmaylo, Bohden K.; Foo, Lee
1987-01-01
This document is a report of the Numerical Aerodynamic Simulation (NAS) Long Haul Communications Prototype (LHCP). It describes the accomplishments of the LHCP group, presents the results from all LHCP experiments and testing activities, makes recommendations for present and future LHCP activities, and evaluates the remote workstation accesses from Langley Research Center, Lewis Research Center, and Colorado State University to Ames Research Center. The report is the final effort of the Long Haul (Wideband) Communications Prototype Plan (PT-1133-02-N00), 3 October 1985, which defined the requirements for the development, test, and operation of the LHCP network and was the plan used to evaluate the remote user bandwidth requirements for the Numerical Aerodynamic Simulation Processing System Network.
Numerical Relativity Simulations for Black Hole Merger Astrophysics
NASA Technical Reports Server (NTRS)
Baker, John G.
2010-01-01
Massive black hole mergers are perhaps the most energetic astronomical events, establishing their importance as gravitational wave sources for LISA, and also possibly leading to observable influences on their local environments. Advances in numerical relativity over the last five years have fueled the development of a rich physical understanding of general relativity's predictions for these events. Z will overview the understanding of these event emerging from numerical simulation studies. These simulations elucidate the pre-merger dynamics of the black hole binaries, the consequent gravitational waveform signatures ' and the resulting state, including its kick velocity, for the final black hole produced by the merger. Scenarios are now being considered for observing each of these aspects of the merger, involving both gravitational-wave and electromagnetic astronomy.
Numerical simulations of a diode laser BPH treatment system
Esch, V; London, R A; Papademetriou, S
1999-02-23
Numerical simulations are presented of the laser-tissue interaction of a diode laser system for treating benign prostate hyperplasia. The numerical model includes laser light transport, heat transport, cooling due to blood perfusion, thermal tissue damage, and enthalpy of tissue damage. Comparisons of the simulation results to clinical data are given. We report that a reasonable variation from a standard set of input data produces heating times which match those measured in the clinical trials. A general trend of decreasing damage volume with increasing heating time is described. We suggest that the patient-to- patient variability seen in the data can be explained by differences in fundamental biophysical properties such as the optical coefficients. Further work is identified, including the measurement and input to the model of several specific data parameters such as optical coefficients, blood perfusion cooling rate, and coagulation rates.
Review of numerical methods for simulation of the aortic root: Present and future directions
NASA Astrophysics Data System (ADS)
Mohammadi, Hossein; Cartier, Raymond; Mongrain, Rosaire
2016-05-01
Heart valvular disease is still one of the main causes of mortality and morbidity in develop countries. Numerical modeling has gained considerable attention in studying hemodynamic conditions associated with valve abnormalities. Simulating the large displacement of the valve in the course of the cardiac cycle needs a well-suited numerical method to capture the natural biomechanical phenomena which happens in the valve. The paper aims to review the principal progress of the numerical approaches for studying the hemodynamic of the aortic valve. In addition, the future directions of the current approaches as well as their potential clinical applications are discussed.
Numerical model for learning concepts of streamflow simulation
DeLong, L.L.; ,
1993-01-01
Numerical models are useful for demonstrating principles of open-channel flow. Such models can allow experimentation with cause-and-effect relations, testing concepts of physics and numerical techniques. Four PT is a numerical model written primarily as a teaching supplement for a course in one-dimensional stream-flow modeling. Four PT options particularly useful in training include selection of governing equations, boundary-value perturbation, and user-programmable constraint equations. The model can simulate non-trivial concepts such as flow in complex interconnected channel networks, meandering channels with variable effective flow lengths, hydraulic structures defined by unique three-parameter relations, and density-driven flow.The model is coded in FORTRAN 77, and data encapsulation is used extensively to simplify maintenance and modification and to enhance the use of Four PT modules by other programs and programmers.
A numerical simulation of flows around a deformable gas bubble
NASA Astrophysics Data System (ADS)
Sugano, Minoru; Ishii, Ryuji; Morioka, Shigeki
1991-12-01
A numerical simulation of flows around a (deformable) gas bubble rising through an incompressible viscous fluid was carried out on a supercomputer Fujitsu VP2600 at Data Processing Center of Kyoto University. The solution algorithm is a modified Marker And Cell (MAC) method. For the grid generation, an orthogonal mapping proposed by Ryskin and Leal was applied. it is assumed that the shape of the bubble and the flow field are axisymmetric.
Numerical Simulations of the Metallicity Distribution in Dwarf Spheroidal Galaxies
Ripamonti, Emanuele; Tolstoy, E.; Helmi, A.; Battaglia, G.; Abel, T.; /KIPAC, Menlo Park
2006-12-12
Recent observations show that the number of stars with very low metallicities in the dwarf spheroidal satellites of the Milky Way is low, despite the low average metallicities of stars in these systems. We undertake numerical simulations of star formation and metal enrichment of dwarf galaxies in order to verify whether this result can be reproduced with ''standard'' assumptions. The answer is likely to be negative, unless some selection bias against very low metallicity stars is present in the observations.
Direct Numerical Simulation of a Shocked Helium Jet
Cloutman, L D
2002-02-01
We present direct numerical simulations of a shock tube experiment in which a cylindrical laminar jet of helium doped with biacetyl is injected into air and subjected to a weak shock wave. Computed species distributions in a planar cross section of the jet are compared to planar laser-induced fluorescence (PLIF) images produced by the experiment. The calculations are in excellent agreement with the experimental images. We find that differential diffusion of species is an important feature of this experiment.
Numerical simulations of a pulsed detonation wave augmentation device
NASA Technical Reports Server (NTRS)
Cambier, Jean-Luc; Adelman, Henry; Menees, Gene P.
1993-01-01
We present here the concept of a hybrid engine for Single Stage To Orbit (SSTO) air-breathing hypersonic vehicle. This concept relies on the use of pulsed detonation waves, both for thrust generation and mixing/combustion augmentation. We describe the principles behind the engine concept, which we call the Pulsed Detonation Wave Augmentor (PDWA). We demonstrate the principles of operation for two possible configurations through numerical simulations. We also attempt a first approximation to engine design, and propose various applications.
Numerical simulation of high-gradient magnetic filtration
NASA Astrophysics Data System (ADS)
Gusev, B. A.; Semenov, V. G.; Panchuk, V. V.
2016-09-01
We have reported on the results of a numerical simulation of high-gradient magnetic filtration of ultradisperse corrosion products from water coolants. These results have made it possible to establish optimal technical characteristics of high-gradient magnetic filters. The results have been used to develop test samples of high-gradient magnetic filters (HGMFs) with different magnetic systems to purify technological water media of atomic power plants from activated corrosion products.
Numerical simulation of flow in the wet scrubber for desulfurization
NASA Astrophysics Data System (ADS)
Novosád, Jan; Vít, Tomáš
2015-05-01
This article deals with numerical simulation of flow and chemical reactions in absorber for desulfurization of flue-gas. The objective of the work is the investigation of effect of different nozzles types and their placement in spray layers. These nozzles distribute lime suspension into flue gas stream. The research includes two types of nozzles and four different arrangements of nozzles and spray layers. Conclusion describes the effect of nozzle types and their arrangements on the suspension concentration in absorber.
Numerical simulation of the BRAMS interferometer in Humain
NASA Astrophysics Data System (ADS)
Martínez Picar, A.; Marqué, C.; Verbeeck, C.; Calders, S.; Ranvier, S.; Gamby, E.; Anciaux, M.; Tetard, C.; Lamy, H.
2016-01-01
The Royal Belgian Institute for Space Aeronomy (BISA) operates a network for radio meteor studies based in Belgium. One of the receiving stations is located in the Humain Radio-Astronomy Station (HuRAS) and consists of an array of five 3-element Yagi antennas. In this paper the results of detailed numerical simulations are presented in order to obtain a first approach for the direction finding capability of this interferometer.
Large eddy simulations and direct numerical simulations of high speed turbulent reacting flows
NASA Technical Reports Server (NTRS)
Givi, P.; Frankel, S. H.; Adumitroaie, V.; Sabini, G.; Madnia, C. K.
1993-01-01
The primary objective of this research is to extend current capabilities of Large Eddy Simulations (LES) and Direct Numerical Simulations (DNS) for the computational analyses of high speed reacting flows. Our efforts in the first two years of this research have been concentrated on a priori investigations of single-point Probability Density Function (PDF) methods for providing subgrid closures in reacting turbulent flows. In the efforts initiated in the third year, our primary focus has been on performing actual LES by means of PDF methods. The approach is based on assumed PDF methods and we have performed extensive analysis of turbulent reacting flows by means of LES. This includes simulations of both three-dimensional (3D) isotropic compressible flows and two-dimensional reacting planar mixing layers. In addition to these LES analyses, some work is in progress to assess the extent of validity of our assumed PDF methods. This assessment is done by making detailed companions with recent laboratory data in predicting the rate of reactant conversion in parallel reacting shear flows. This report provides a summary of our achievements for the first six months of the third year of this program.
NASA Astrophysics Data System (ADS)
Reckinger, Scott J.; Livescu, Daniel; Vasilyev, Oleg V.
2016-05-01
An investigation of compressible Rayleigh-Taylor instability (RTI) using Direct Numerical Simulations (DNS) requires efficient numerical methods, advanced boundary conditions, and consistent initialization in order to capture the wide range of scales and vortex dynamics present in the system, while reducing the computational impact associated with acoustic wave generation and the subsequent interaction with the flow. An advanced computational framework is presented that handles the challenges introduced by considering the compressive nature of RTI systems, which include sharp interfacial density gradients on strongly stratified background states, acoustic wave generation and removal at computational boundaries, and stratification dependent vorticity production. The foundation of the numerical methodology described here is the wavelet-based grid adaptivity of the Parallel Adaptive Wavelet Collocation Method (PAWCM) that maintains symmetry in single-mode RTI systems to extreme late-times. PAWCM is combined with a consistent initialization, which reduces the generation of acoustic disturbances, and effective boundary treatments, which prevent acoustic reflections. A dynamic time integration scheme that can handle highly nonlinear and potentially stiff systems, such as compressible RTI, completes the computational framework. The numerical methodology is used to simulate two-dimensional single-mode RTI to extreme late-times for a wide range of flow compressibility and variable density effects. The results show that flow compressibility acts to reduce the growth of RTI for low Atwood numbers, as predicted from linear stability analysis.
Transient productivity index for numerical well test simulations
Blanc, G.; Ding, D.Y.; Ene, A.
1997-08-01
The most difficult aspect of numerical simulation of well tests is the treatment of the Bottom Hole Flowing (BHF) Pressure. In full field simulations, this pressure is derived from the Well-block Pressure (WBP) using a numerical productivity index which accounts for the grid size and permeability, and for the well completion. This productivity index is calculated assuming a pseudo-steady state flow regime in the vicinity of the well and is therefore constant during the well production period. Such a pseudo-steady state assumption is no longer valid for the early time of a well test simulation as long as the pressure perturbation has not reached several grid-blocks around the well. This paper offers two different solutions to this problem: (1) The first one is based on the derivation of a Numerical Transient Productivity Index (NTPI) to be applied to Cartesian grids; (2) The second one is based on the use of a Corrected Transmissibility and Accumulation Term (CTAT) in the flow equation. The representation of the pressure behavior given by both solutions is far more accurate than the conventional one as shown by several validation examples which are presented in the following pages.
Direct Numerical Simulation of A Shaped Hole Film Cooling Flow
NASA Astrophysics Data System (ADS)
Oliver, Todd; Moser, Robert
2015-11-01
The combustor exit temperatures in modern gas turbine engines are generally higher than the melting temperature of the turbine blade material. Film cooling, where cool air is fed through holes in the turbine blades, is one strategy which is used extensively in such engines to reduce heat transfer to the blades and thus reduce their temperature. While these flows have been investigated both numerically and experimentally, many features are not yet well understood. For example, the geometry of the hole is known to have a large impact on downstream cooling performance. However, the details of the flow in the hole, particularly for geometries similar to those used in practice, are generally know well-understood, both because it is difficult to experimentally observe the flow inside the hole and because much of the numerical literature has focused on round hole simulations. In this work, we show preliminary direct numerical simulation results for a film cooling flow passing through a shaped hole into a the boundary layer developing on a flat plate. The case has density ratio 1.6, blowing ratio 2.0, and the Reynolds number (based on momentum thickness) of incoming boundary layer is approximately 600. We compare the new simulations against both previous experiments and LES.
The numerical simulation based on CFD of hydraulic turbine pump
NASA Astrophysics Data System (ADS)
Duan, X. H.; Kong, F. Y.; Liu, Y. Y.; Zhao, R. J.; Hu, Q. L.
2016-05-01
As the functions of hydraulic turbine pump including self-adjusting and compensation with each other, it is far-reaching to analyze its internal flow by the numerical simulation based on CFD, mainly including the pressure field and the velocity field in hydraulic turbine and pump.The three-dimensional models of hydraulic turbine pump are made by Pro/Engineer software;the internal flow fields in hydraulic turbine and pump are simulated numerically by CFX ANSYS software. According to the results of the numerical simulation in design condition, the pressure field and the velocity field in hydraulic turbine and pump are analyzed respectively .The findings show that the static pressure decreases systematically and the pressure gradient is obvious in flow area of hydraulic turbine; the static pressure increases gradually in pump. The flow trace is regular in suction chamber and flume without spiral trace. However, there are irregular traces in the turbine runner channels which contrary to that in flow area of impeller. Most of traces in the flow area of draft tube are spiral.
Numerical prediction of microstructure and hardness in multicycle simulations
Oddy, A.S.; McDill, J.M.J.
1996-06-01
Thermal-microstructural predictions are made and compared to physical simulations of heat-affected zones in multipass and weaved welds. The microstructural prediction algorithm includes reaustenitization kinetics, grain growth, austenite decomposition kinetics, hardness, and tempering. Microstructural simulation of weaved welds requires that the algorithm include transient reaustenitization, austenite decomposition for arbitrary thermal cycles including during reheating, and tempering. Material properties for each of these phenomena are taken from the best available literature. The numerical predictions are compared with the results of physical simulations made at the Metals Technology Laboratory, CANMET, on a Gleeble 1500 simulator. Thermal histories used in the physical simulations included single-pass welds, isothermal tempering, two-cycle, and three-cycle welds. The two- and three-cycle welds include temper-bead and weaved-weld simulations. A recurring theme in the analysis is the significant variation found in the material properties for the same grade of steel. This affected all the material properties used including those governing reaustenitization, austenite grain growth, austenite decomposition, and hardness. Hardness measurements taken from the literature show a variation of {+-}5 to 30 HV on the same sample. Alloy differences within the allowable range also led to hardness variations of {+-}30 HV for the heat-affected zone of multipass welds. The predicted hardnesses agree extremely well with those taken from the physical simulations.
Wang, Heng; Wu, Jianan; Zhuo, Zihan; Tang, Jintian
2016-04-29
In order to ensure the safety and effectiveness of magnetic induction hyperthermia in clinical applications, numerical simulations on the temperature distributions and extent of thermal damage to the targeted regions must be conducted in the preoperative treatment planning system. In this paper, three models, including a thermoseed thermogenesis model, tissue heat transfer model, and tissue thermal damage model, were established based on the four-dimensional energy field, temperature field, and thermal damage field distributions exhibited during hyperthermia. In addition, a numerical simulation study was conducted using the Finite Volume Method (FVM), and the accuracy and reliability of the magnetic induction hyperthermia model and its numerical calculations were verified using computer simulations and experimental results. Thus, this study promoted the application of computing methods to magnetic induction therapy and conformal hyperthermia, and improved the accuracy of the temperature field and tissue thermal damage distribution predictions.
Efficient numerical simulation of heat storage in subsurface georeservoirs
NASA Astrophysics Data System (ADS)
Boockmeyer, A.; Bauer, S.
2015-12-01
The transition of the German energy market towards renewable energy sources, e.g. wind or solar power, requires energy storage technologies to compensate for their fluctuating production. Large amounts of energy could be stored in georeservoirs such as porous formations in the subsurface. One possibility here is to store heat with high temperatures of up to 90°C through borehole heat exchangers (BHEs) since more than 80 % of the total energy consumption in German households are used for heating and hot water supply. Within the ANGUS+ project potential environmental impacts of such heat storages are assessed and quantified. Numerical simulations are performed to predict storage capacities, storage cycle times, and induced effects. For simulation of these highly dynamic storage sites, detailed high-resolution models are required. We set up a model that accounts for all components of the BHE and verified it using experimental data. The model ensures accurate simulation results but also leads to large numerical meshes and thus high simulation times. In this work, we therefore present a numerical model for each type of BHE (single U, double U and coaxial) that reduces the number of elements and the simulation time significantly for use in larger scale simulations. The numerical model includes all BHE components and represents the temporal and spatial temperature distribution with an accuracy of less than 2% deviation from the fully discretized model. By changing the BHE geometry and using equivalent parameters, the simulation time is reduced by a factor of ~10 for single U-tube BHEs, ~20 for double U-tube BHEs and ~150 for coaxial BHEs. Results of a sensitivity study that quantify the effects of different design and storage formation parameters on temperature distribution and storage efficiency for heat storage using multiple BHEs are then shown. It is found that storage efficiency strongly depends on the number of BHEs composing the storage site, their distance and
Numerical simulation of steady supersonic flow. [spatial marching
NASA Technical Reports Server (NTRS)
Schiff, L. B.; Steger, J. L.
1981-01-01
A noniterative, implicit, space-marching, finite-difference algorithm was developed for the steady thin-layer Navier-Stokes equations in conservation-law form. The numerical algorithm is applicable to steady supersonic viscous flow over bodies of arbitrary shape. In addition, the same code can be used to compute supersonic inviscid flow or three-dimensional boundary layers. Computed results from two-dimensional and three-dimensional versions of the numerical algorithm are in good agreement with those obtained from more costly time-marching techniques.
Towards an Automated Full-Turbofan Engine Numerical Simulation
NASA Technical Reports Server (NTRS)
Reed, John A.; Turner, Mark G.; Norris, Andrew; Veres, Joseph P.
2003-01-01
The objective of this study was to demonstrate the high-fidelity numerical simulation of a modern high-bypass turbofan engine. The simulation utilizes the Numerical Propulsion System Simulation (NPSS) thermodynamic cycle modeling system coupled to a high-fidelity full-engine model represented by a set of coupled three-dimensional computational fluid dynamic (CFD) component models. Boundary conditions from the balanced, steady-state cycle model are used to define component boundary conditions in the full-engine model. Operating characteristics of the three-dimensional component models are integrated into the cycle model via partial performance maps generated automatically from the CFD flow solutions using one-dimensional meanline turbomachinery programs. This paper reports on the progress made towards the full-engine simulation of the GE90-94B engine, highlighting the generation of the high-pressure compressor partial performance map. The ongoing work will provide a system to evaluate the steady and unsteady aerodynamic and mechanical interactions between engine components at design and off-design operating conditions.
Interrogation of numerical simulation for modeling of flow induced microstructure
Joseph, D.D.
1994-12-31
This paper summarizes recent efforts using direct numerical simulations to determine microstructural properties of fluidized suspensions of a few particles. The authors have been studying the motions of a few particles in a viscous fluid by direct numerical simulation at moderate values of the Reynolds number in the 100`s. From these simulations, they find the mechanisms which give rise to lateral migration of particles and turn the broad side of long bodies perpendicular to the stream. They find that a viscous ``stagnation`` point is a point on the body where the shear stress vanishes and the pressure is nearly a maximum. They show how the migration is controlled by stagnation and separation points and go further than before in the discussion of Segre-Silberberg effects of cross-streamline migration in two dimensions. They have analyzed the lift off and steady flight of solid capsules in Poiseuille flows. They do a three-dimensional simulation of steady flow at slow speeds and show that the extensional stresses in a viscoelastic flow change the sign of the normal stress which would exist at points of stagnation in a Newtonian fluid, causing the long side of the body to line up with the stream.
Insight into the physics of foam densification via numerical simulation
NASA Astrophysics Data System (ADS)
Bardenhagen, S. G.; Brydon, A. D.; Guilkey, J. E.
2005-03-01
Foamed materials are increasingly finding application in engineering systems on account of their unique properties. The basic mechanics which gives rise to these properties is well established, they are the result of collapsing the foam microstructure. Despite a basic understanding, the relationship between the details of foam microstructure and foam bulk response is generally unknown. With continued advances in computational power, many researchers have turned to numerical simulation to gain insight into the relationship between foam microstructure and bulk properties. However, numerical simulation of foam microscale deformation is a very challenging computational task and, to date, simulations over the full range of bulk deformations in which these materials operate have not been reported. Here a particle technique is demonstrated to be well-suited for this computational challenge, permitting simulation of the compression of foam microstructures to full densification. Computations on idealized foam microstructures are in agreement with engineering guidelines and various experimental results. Dependencies on degree of microstructure regularity and material properties are demonstrated. A surprising amount of porosity is found in fully-densified foams. The presence of residual porosity can strongly influence dynamic material response and hence needs to be accounted for in bulk (average) constitutive models of these materials.
Numerical Simulation of Liquid Nitrogen Chilldown of a Vertical Tube
NASA Technical Reports Server (NTRS)
Darr, Samuel; Hu, Hong; Schaeffer, Reid; Chung, Jacob; Hartwig, Jason; Majumdar, Alok
2015-01-01
This paper presents the results of a one-dimensional numerical simulation of the transient chilldown of a vertical stainless steel tube with liquid nitrogen. The direction of flow is downward (with gravity) through the tube. Heat transfer correlations for film, transition, and nucleate boiling, as well as critical heat flux, rewetting temperature, and the temperature at the onset of nucleate boiling were used to model the convection to the tube wall. Chilldown curves from the simulations were compared with data from 55 recent liquid nitrogen chilldown experiments. With these new correlations the simulation is able to predict the time to rewetting temperature and time to onset of nucleate boiling to within 25% for mass fluxes ranging from 61.2 to 1150 kg/(sq m s), inlet pressures from 175 to 817 kPa, and subcooled inlet temperatures from 0 to 14 K below the saturation temperature.
Studying Barred Galaxies by Means of Numerical Simulations
NASA Astrophysics Data System (ADS)
Martinez-Valpuesta, Inma
We describe two morphological structures of barred galaxies with the help of numerical simulations. The first one is a feature seen in face-on barred galaxies, the ansae, probably very important dynamically speaking. The second one are the Boxy/Peanut bulges in disc galaxies. They have been associated to stellar bars, and are a result of the secular evolution of barred galaxies. We analyze their properties in a large sample of N-body simulations, using different methods to measure their strength, shape and possible asymmetry, and then inter-compare the results. Some of these methods can be applied to both simulations and observations. In particular, we seek correlations between bar and peanut properties, which, when applied to real galaxies, will give information on bars in edge-on galaxies, and on peanuts in face-on galaxies.
Numerical simulation of radiative heat loss in an experimental burner
Cloutman, L.D.; Brookshaw, L.
1993-09-01
We describe the numerical algorithm used in the COYOTE two-dimensional, transient, Eulerian hydrodynamics program to allow for radiative heat losses in simulations of reactive flows. The model is intended primarily for simulations of industrial burners, but it is not confined to that application. It assumes that the fluid is optically thin and that photons created by the fluid immediately escape to free space or to the surrounding walls, depending upon the application. The use of the model is illustrated by simulations of a laboratory-scale experimental burner. We find that the radiative heat losses reduce the local temperature of the combustion products by a modest amount, typically on the order of 50 K. However, they have a significant impact on NO{sub x} production.
Numerical Simulation of Delamination Growth in Composite Materials
NASA Technical Reports Server (NTRS)
Camanho, P. P.; Davila, C. G.; Ambur, D. R.
2001-01-01
The use of decohesion elements for the simulation of delamination in composite materials is reviewed. The test methods available to measure the interfacial fracture toughness used in the formulation of decohesion elements are described initially. After a brief presentation of the virtual crack closure technique, the technique most widely used to simulate delamination growth, the formulation of interfacial decohesion elements is described. Problems related with decohesion element constitutive equations, mixed-mode crack growth, element numerical integration and solution procedures are discussed. Based on these investigations, it is concluded that the use of interfacial decohesion elements is a promising technique that avoids the need for a pre-existing crack and pre-defined crack paths, and that these elements can be used to simulate both delamination onset and growth.
Numerical simulation of flow separation control by oscillatory fluid injection
NASA Astrophysics Data System (ADS)
Resendiz Rosas, Celerino
2005-07-01
In this work, numerical simulations of flow separation control are performed. The separation control technique studied is called "synthetic jet actuation". The developed code employs a cell centered finite volume scheme which handles viscous, steady and unsteady compressible turbulent flows. The pulsating zero mass jet flow is simulated by imposing a harmonically varying transpiration boundary condition on the airfoil's surface. Turbulence is modeled with the algebraic model of Baldwin and Lomax. The application of synthetic jet actuators is based in their ability to energize the boundary layer, thereby providing significant increase in the lift coefficient. This has been corroborated experimentally and it is corroborated numerically in this research. The performed numerical simulation investigates the flow over a NACA0015 airfoil. For this flow Re = 9 x 105 and the reduced frequency and momentum coefficient are F + = 1.1 and Cmu = 0.04 respectively. The oscillatory injection takes place at 12.27% chord from the leading edge. A maximum increase in the mean lift coefficient of 93% is predicted by the code. A discrepancy of approximately 10% is observed with corresponding experimental data from the literature. The general trend is, however, well captured. The discrepancy is attributed to the modeling of the injection boundary condition and to the turbulence model. A sensitivity analysis of the lift coefficient to different values of the oscillation parameters is performed. It is concluded that tangential injection, F+ ≈ O(1) and the utilized grid resolution around the site of injection are optimal. Streamline fields obtained for different angles of injection are analyzed. Flow separation and attachment as functions of the injection angle and of the velocity of injection can be observed. It is finally concluded that a reliable numerical tool has been developed which can be utilized as a support tool in the optimization of the synthetic jet operation and in the
Numerical simulation of space debris impacts on the Whipple shield
NASA Astrophysics Data System (ADS)
Katayama, M.; Toda, S.; Kibe, S.
1997-06-01
The authors carried out three series of experimental tests of the first bumper perforation and main wall cratering processes directly caused by three types of projectiles with about 2, 4 and 7 km s -1 impact velocities but comparable initial kinetic energies, by using three different accelerators (one-stage powder gun, two-stage light-gas gun and rail gun), for the purpose of investigating space debris hypervelocity impacts onto single-walled Whipple bumper shields [1]. In the present study, after reviewing the numerical simulation method of hydrocode for both Eulerian and Lagrangian descriptions, a number of parametric numerical simulation analyses using multiple material Eulerian methods were performed in order to optimize the material properties of bumper and main wall materials through comparison with experimental results of single target impacts by the projectiles. In particular, the material data on the dynamic fracture phenomena are discussed in detail in the first part. Then a couple of numerical calculations using the interactive Lagrangian rezoning method to simulate the overall impact process against the single walled Whipple shield were performed and compared with the corresponding experimental results. Both results indicated fairly good agreement with each other. Moreover, it was demonstrated that the present method is helpful and efficient in understanding the impact phenomena and fracture mechanism in the space debris hypervelocity impact problem. Finally the multiple material Eulerian method was applied to the same problems modeled by the interactive Lagrangian rezoning method used previously, because the former is much easier to use for almost all users, although it is more diffusive and unclear of material boundaries than the latter. Those two kinds of numerical results also indicated fairly good agreements with each other.
NASA Astrophysics Data System (ADS)
Graham, Jason; Meneveau, Charles
2012-12-01
Simulating turbulent flows over objects characterized by hierarchies of length-scales poses special challenges associated with the cost of resolving small-scale elements. If these are treated as subgrid-scale elements, their effects on the resolved scales must be captured realistically. Most importantly, the associated drag forces must be parameterized. Prior work [S. Chester, C. Meneveau, and M. B. Parlange, "Modeling turbulent flow over fractal trees with renormalized numerical simulation," J. Comput. Phys. 225, 427-448 (2007), 10.1016/j.jcp.2006.12.009] proposed a technique called renormalized numerical simulation (RNS), which is applicable to objects that display scale-invariant geometric (fractal) properties. The idea of RNS is similar to that of the dynamic model used in large eddy simulation to determine model parameters for the subgrid-stress tensor model in the bulk of the flow. In RNS, drag forces from the resolved elements that are obtained during the simulation are re-scaled appropriately by determining drag coefficients that are then applied to specify the drag forces associated with the subgrid-scale elements. The technique has already been applied to model turbulent flow over a canopy of fractal trees [S. Chester, C. Meneveau, and M. B. Parlange, "Modeling turbulent flow over fractal trees with renormalized numerical simulation," J. Comput. Phys. 225, 427-448 (2007), 10.1016/j.jcp.2006.12.009], using a particular set of assumptions in evaluating the drag coefficient. In the current work we introduce a generalized framework for describing and implementing the RNS methodology. Furthermore, we describe various other possible practical implementations of RNS that differ on important, technical aspects related to (1) time averaging, (2) spatial localization, and (3) numerical representation of the drag forces. As part of this study, several RNS formulations are presented and compared. The various models are first implemented and compared in simulations of
Numerical approaches to simulation of multi-core fibers
NASA Astrophysics Data System (ADS)
Chekhovskoy, I. S.; Paasonen, V. I.; Shtyrina, O. V.; Fedoruk, M. P.
2017-04-01
We propose generalizations of two numerical algorithms to solve the system of linearly coupled nonlinear Schrödinger equations (NLSEs) describing the propagation of light pulses in multi-core optical fibers. An iterative compact dissipative second-order accurate in space and fourth-order accurate in time scheme is the first numerical method. This compact scheme has strong stability due to inclusion of the additional dissipative term. The second algorithm is a generalization of the split-step Fourier method based on Padé approximation of the matrix exponential. We compare a computational efficiency of both algorithms and show that the compact scheme is more efficient in terms of performance for solving a large system of coupled NLSEs. We also present the parallel implementation of the numerical algorithms for shared memory systems using OpenMP.
Numerical simulations of clinical focused ultrasound functional neurosurgery
Pulkkinen, Aki; Werner, Beat; Martin, Ernst; Hynynen, Kullervo
2014-01-01
A computational model utilizing grid and finite difference methods was developed to simulate focused ultrasound functional neurosurgery interventions. The model couples the propagation of ultrasound in fluids (soft tissues) and solids (skull) with acoustic and visco-elastic wave equations. The computational model was applied to simulate clinical focused ultrasound functional neurosurgery treatments performed in patients suffering from therapy resistant chronic neuropathic pain. Datasets of five patients were used to derive the treatment geometry. Eight sonications performed in the treatments were then simulated with the developed model. Computations were performed by driving the simulated phased array ultrasound transducer with the acoustic parameters used in the treatments. Resulting focal temperatures and size of the thermal foci were compared quantitatively, in addition to qualitative inspection of the simulated pressure and temperature fields. This study found that the computational model and the simulation parameters predicted an average of 24 ± 13 % lower focal temperature elevations than observed in the treatments. The size of the simulated thermal focus was found to be 40 ± 13 % smaller in the anterior–posterior direction and 22 ± 14% smaller in the inferior–superior direction than in the treatments. The location of the simulated thermal focus was off from the prescribed target by 0.3 ± 0.1 mm, while the peak focal temperature elevation observed in the measurements was off by 1.6 ± 0.6 mm. Although the results of the simulations suggest that there could be some inaccuracies in either the tissue parameters used, or in the simulation methods, the simulations were able to predict the focal spot locations and temperature elevations adequately for initial treatment planning performed to assess, for example, the feasibility of sonication. The accuracy of the simulations could be improved if more precise ultrasound tissue properties (especially of the
Numerical simulations of clinical focused ultrasound functional neurosurgery
NASA Astrophysics Data System (ADS)
Pulkkinen, Aki; Werner, Beat; Martin, Ernst; Hynynen, Kullervo
2014-04-01
A computational model utilizing grid and finite difference methods were developed to simulate focused ultrasound functional neurosurgery interventions. The model couples the propagation of ultrasound in fluids (soft tissues) and solids (skull) with acoustic and visco-elastic wave equations. The computational model was applied to simulate clinical focused ultrasound functional neurosurgery treatments performed in patients suffering from therapy resistant chronic neuropathic pain. Datasets of five patients were used to derive the treatment geometry. Eight sonications performed in the treatments were then simulated with the developed model. Computations were performed by driving the simulated phased array ultrasound transducer with the acoustic parameters used in the treatments. Resulting focal temperatures and size of the thermal foci were compared quantitatively, in addition to qualitative inspection of the simulated pressure and temperature fields. This study found that the computational model and the simulation parameters predicted an average of 24 ± 13% lower focal temperature elevations than observed in the treatments. The size of the simulated thermal focus was found to be 40 ± 13% smaller in the anterior-posterior direction and 22 ± 14% smaller in the inferior-superior direction than in the treatments. The location of the simulated thermal focus was off from the prescribed target by 0.3 ± 0.1 mm, while the peak focal temperature elevation observed in the measurements was off by 1.6 ± 0.6 mm. Although the results of the simulations suggest that there could be some inaccuracies in either the tissue parameters used, or in the simulation methods, the simulations were able to predict the focal spot locations and temperature elevations adequately for initial treatment planning performed to assess, for example, the feasibility of sonication. The accuracy of the simulations could be improved if more precise ultrasound tissue properties (especially of the
Direct and Continuous Numerical Simulations of Bubbly Flows
NASA Astrophysics Data System (ADS)
Lu, Tianshi; Samulyak, Roman; Glimm, James
2003-11-01
We have studied numerically the propagation of linear and nonlinear waves in bubbly flows using direct and continuous approaches. The direct method represents a mixture of gas bubbles in a liquid as a system of one phase domains separated by free interfaces. FronTier, a front tracking hydro code was used for numerical simulations. It is capable of tracking simultaneously a large number of interfaces and resolving their topological changes (the breakup and merger of bubbles) in two- and three-dimensional spaces. The continuous method describes a bubbly fluid as a homogeneous system or pseudofluid that obeys an equation of state of single-component flow. Homogeneous equation of state models based on the Rayleigh-Plesset equation have been developed for the FronTier code. We have compared results of our numerical simulations with theoretical predictions and experimental data on the propagation of shocks and linear sound waves in bubbly fluids. The two methods can be applied to estimate the efficiency of gas bubble mitigation in reducing the cavitation erosion of the container of the Spallation Neutron Source liquid mercury target.
Numerical Simulation of Thin Film Breakup on Nonwettable Surfaces
NASA Astrophysics Data System (ADS)
Suzzi, N.; Croce, G.
2017-01-01
When a continuous film flows on a nonwettable substrate surface, it may break up, with the consequent formation of a dry-patch. The actual shape of the resulting water layer is of great interest in several engineering applications, from in-flight icing simulation to finned dehumidifier behavior modeling. Here, a 2D numerical solver for the prediction of film flow behavior is presented. The effect of the contact line is introduced via the disjoining pressure terms, and both gravity and shear are included in the formulation. The code is validated with literature experimental data for the case of a stationary dry-patch on an inclined plane. Detailed numerical results are compared with literature simplified model prediction. Numerical simulation are then performed in order to predict the threshold value of the film thickness allowing for film breakup and to analyze the dependence of the dynamic contact angle on film velocity and position along the contact line. Those informations will be useful in order to efficiently predict more complex configuration involving multiple breakups on arbitrarily curved substrate surfaces (as those involved in in-flight icing phenomena on aircraft).
Numerical simulation of evaporating liquid jet in crossflow
NASA Astrophysics Data System (ADS)
Soteriou, Marios; Li, Xiaoyi
2014-11-01
Atomization of liquid fuel jets by cross-flowing air is critical to combustor performance. Ability to experimentally probe the fundamentals of this multiscale two phase flows has been hampered by limitations in experimental techniques and the challenges posed by operating conditions. Direct numerical simulation has recently emerged as a promising alternative due to advances in computer hardware and numerical methods. Using this approach, we recently demonstrated the ability to reproduce the physics of atomization of a liquid jet in cross-flow (LJIC) under ambient conditions. In this work we consider this flow in a high temperature environment. The inclusion of evaporation is the major new element. The numerical approach employs the CLSVOF method to capture the liquid-gas interface. Interface evaporation is solved directly with proper treatment of interface conditions and reproduces the relevant species/temperature fields there. A Lagrangian droplet tracking approach is used for the small droplets which are transferred from the Eulerian phase and evaporate using a traditional d2 law model. Other key algorithms of the massively parallelized solver include a ghost fluid method, a multi-grid preconditioned conjugate gradient approach and an adaptive mesh refinement technique. The overall method is verified using canonical problems. Simulations of evaporating LJIC point to the significant effect that evaporation has on the evolution of this flow and elucidate the downstream fuel species patterns.
Towards direct numerical simulation of freely swimming fish.
NASA Astrophysics Data System (ADS)
Curet, Oscar; Patankar, Neelesh; Maciver, Malcolm
2006-11-01
Swimming mechanisms employed by fish are currently inspiring unique underwater vehicles and robotic devices as well as basic science research into the neural control of movement. Key engineering issues include propulsion efficiency, precise motion control and maneuverability. A numerical scheme that simulates the motion of freely swimming fish will be a valuable design and research tool. We are working towards this goal. In particular we are interested in simulating the motion of a gymnotiform fish that swims by producing undulations of a ventral ribbon fin while keeping its body rigid. We model the fish as a rigid body with an attached undulating membrane. In our numerical scheme the key idea is to assume that the entire fluid-fish domain is a fluid. Then we impose two constraints: the first requires that the fluid in the region occupied by the fish body moves rigidly (a fictitious domain approach), and the second requires that the fluid at the location of the fin has the traveling wave velocity of the fin (an immersed boundary approach). Given the traveling wave form of the fin, the objective is for the numerical scheme to give the swimming velocity of the fish by solving the coupled fluid-fish problem. We will present results for the forces generated by a fin attached to a fixed body and preliminary results for freely swimming fish.
A simplified model for TIG-dressing numerical simulation
NASA Astrophysics Data System (ADS)
Ferro, P.; Berto, F.; James, M. N.
2017-04-01
Irrespective of the mechanical properties of the alloy to be welded, the fatigue strength of welded joints is primarily controlled by the stress concentration associated with the weld toe or weld root. In order to reduce the effects of such notch defects in welds, which are influenced by tensile properties of the alloy, post-weld improvement techniques have been developed. The two most commonly used techniques are weld toe grinding and TIG dressing, which are intended to both remove toe defects such as non-metallic intrusions and to re-profile the weld toe region to give a lower stress concentration. In the case of TIG dressing the weld toe is re-melted to provide a smoother transition between the plate and the weld crown and to beneficially modify the residual stress redistribution. Assessing the changes to weld stress state arising from TIG-dressing is most easily accomplished through a complex numerical simulation that requires coupled thermo-fluid dynamics and solid mechanics. However, this can be expensive in terms of computational cost and time needed to reach a solution. The present paper therefore proposes a simplified numerical model that overcomes such drawbacks and which simulates the remelted toe region by means of the activation and deactivation of elements in the numerical model.
Water and heat fluxes in desert soils: 2. Numerical simulations
NASA Astrophysics Data System (ADS)
Scanlon, Bridget R.; Milly, P. C. D.
1994-03-01
Transient one-dimensional fluxes of soil water (liquid and vapor) and heat in response to 1 year of atmospheric forcing were simulated numerically for a site in the Chihuahuan Desert of Texas. The model was initialized and evaluated using the monitoring data presented in a companion paper (Scanlon, this issue). Soil hydraulic and thermal properties were estimated a priori from a combination of laboratory measurements, models, and other published information. In the first simulation, the main drying curves were used to describe soil water retention, and hysteresis was ignored. Remarkable consistency was found between computed and measured water potentials and temperatures. Attenuation and phase shift of the seasonal cycle of water potentials below the shallow subsurface active zone (0.0- to 0.3-m depth) were similar to those of temperatures, suggesting that water potential fluctuations were driven primarily by temperature changes. Water fluxes in the upper 0.3 m of soil were dominated by downward and upward liquid fluxes that resulted from infiltration of rain and subsequent evaporation from the surface. Upward flux was vapor dominated only in the top several millimeters of the soil during periods of evaporation. Below a depth of 0.3 m, water fluxes varied slowly and were dominated by downward thermal vapor flux that decreased with depth, causing a net accumulation of water. In a second simulation, nonhysteretic water retention was instead described by the estimated main wetting curves; the resulting differences in fluxes were attributed to lower initial water contents (given fixed initial water potential) and unsaturated hydraulic conductivities that were lower than they were in the first simulation. Below a depth of 0.3 m, the thermal vapor fluxes dominated and were similar to those in the first simulation. Two other simulations were performed, differing from the first only in the prescription of different (wetter) initial water potentials. These three simulations
Prediction of cavitating flow noise by direct numerical simulation
NASA Astrophysics Data System (ADS)
Seo, Jung H.; Moon, Young J.; Shin, Byeong Rog
2008-06-01
In this study, a direct numerical simulation procedure for the cavitating flow noise is presented. The compressible Navier-Stokes equations are written for the two-phase fluid, employing a density-based homogeneous equilibrium model with a linearly-combined equation of state. To resolve the linear and non-linear waves in the cavitating flow, a sixth-order compact central scheme is utilized with the selective spatial filtering technique. The present cavitation model and numerical methods are validated for two benchmark problems: linear wave convection and acoustic saturation in a bubbly flow. The cavitating flow noise is then computed for a 2D circular cylinder flow at Reynolds number based on a cylinder diameter, 200 and cavitation numbers, σ=0.7-2. It is observed that, at cavitation numbers σ=1 and 0.7, the cavitating flow and noise characteristics are significantly changed by the shock waves due to the coherent collapse of the cloud cavitation in the wake. To verify the present direct simulation and further analyze the sources of cavitation noise, an acoustic analogy based on a classical theory of Fitzpatrik and Strasberg is derived. The far-field noise predicted by direct simulation is well compared with that of acoustic analogy, and it also confirms the f-2 decaying rate in the spectrum, as predicted by the model of Fitzpatrik and Strasberg with the Rayleigh-Plesset equation.
Numerical aerodynamic simulation of the space shuttle ascent environment
NASA Technical Reports Server (NTRS)
Slotnick, Jeff P.; Martin, F. W., Jr.; Buning, P. G.; Chiu, Ing-Tsau; Meakin, R. L.; Obayashi, Shigeru; Rizk, Yehia M.; Ben-Shmuel, S.; Steger, Joseph L.; Yarrow, M.
1989-01-01
After the STS 51-L accident, an extensive review of the Space Shuttle Orbiter's ascent aerodynamic loads uncovered several questionable areas that required further analysis. The insight gained by comparing the Shuttle ascent CFD numerical simulations, obtained by the NASA Ames Space Shuttle Flow Simulation Group, to the current IVBC-3 aerodynamic loads database was instrumental in resolving uncertainties on the Orbiter payload bay doors and fuselage. Initial confidence in the numerical simulations was gained by comparing them with the limited flight data that had been obtained during the Orbiter Flight Test (OFT) program. Current CFD results exist for Mach numbers 0.6, 0.9, 1.05, 1.55, 2.0, and 2.5. Since the pre STS-1 wind tunnel test program (IA-105) often yields considerable differences when compared to STS-5 flight data, the M(sub infinity) = 1.05 transonic case is the most investigated. The IA308 mated-vehicle hot gas plume wind tunnel test, recently completed at AEDC 16T (transonic) and Lewis (hypersonic), is also used to compare with the computation where applicable.
Numerical simulation of microlayer formation in nucleate boiling
NASA Astrophysics Data System (ADS)
Guion, Alexandre; Buongiorno, Jacopo; Afkhami, Shahriar; Zaleski, Stephane
2016-11-01
Numerical simulations of boiling resolve the macroscopic liquid-vapor interface of the bubble, but resort to subgrid models to account for microscale effects, such as the evaporation of the liquid microlayer underneath the bubble. Realistic time-dependent microlayer evaporation models necessitate initialization of the microlayer profile. In the recent simulations published in the literature, missing input data on initial microlayer geometry is replaced by estimated values from separate experimental measurements at similar pressure. Yet, the geometry of the initial microlayer not only depends on pressure for a given set of fluids, but also on bubble growth rate and that dependence is not known a priori. In this work, the Volume-of-Fluid (VOF) method, implemented in the open-source code Gerris (gfs.sf.net), is used to simulate, with unprecedented accuracy, the dynamics of microlayer formation underneath a growing bubble. A large numerical database is generated, yielding the microlayer thickness during the inertia controlled phase of bubble growth as a function of radial distance from the bubble root, time, contact angle, and capillary number associated with bubble growth. No significant dependence on density or viscosity ratios were found.
Numerical simulation of multi-layered textile composite reinforcement forming
Wang, P.; Hamila, N.; Boisse, P.
2011-05-04
One important perspective in aeronautics is to produce large, thick or/and complex structural composite parts. The forming stage presents an important role during the whole manufacturing process, especially for LCM processes (Liquid Composites Moulding) or CFRTP (Continuous Fibre Reinforcements and Thermoplastic resin). Numerical simulations corresponding to multi-layered composite forming allow the prediction for a successful process to produce the thick parts, and importantly, the positions of the fibres after forming to be known. This paper details a set of simulation examples carried out by using a semi-discrete shell finite element made up of unit woven cells. The internal virtual work is applied on all woven cells of the element taking into account tensions, in-plane shear and bending effects. As one key problem, the contact behaviours of tool/ply and ply/ply are described in the numerical model. The simulation results not only improve our understanding of the multi-layered composite forming process but also point out the importance of the fibre orientation and inter-ply friction during formability.
Numerical simulation of multi-layered textile composite reinforcement forming
NASA Astrophysics Data System (ADS)
Wang, P.; Hamila, N.; Boisse, P.
2011-05-01
One important perspective in aeronautics is to produce large, thick or/and complex structural composite parts. The forming stage presents an important role during the whole manufacturing process, especially for LCM processes (Liquid Composites Moulding) or CFRTP (Continuous Fibre Reinforcements and Thermoplastic resin). Numerical simulations corresponding to multi-layered composite forming allow the prediction for a successful process to produce the thick parts, and importantly, the positions of the fibres after forming to be known. This paper details a set of simulation examples carried out by using a semi-discrete shell finite element made up of unit woven cells. The internal virtual work is applied on all woven cells of the element taking into account tensions, in-plane shear and bending effects. As one key problem, the contact behaviours of tool/ply and ply/ply are described in the numerical model. The simulation results not only improve our understanding of the multi-layered composite forming process but also point out the importance of the fibre orientation and inter-ply friction during formability.
NUMERICAL SIMULATIONS OF CORONAL HEATING THROUGH FOOTPOINT BRAIDING
Hansteen, V.; Pontieu, B. De; Carlsson, M.; Guerreiro, N. E-mail: mats.carlsson@astro.uio.no E-mail: bdp@lmsal.com
2015-10-01
Advanced three-dimensional (3D) radiative MHD simulations now reproduce many properties of the outer solar atmosphere. When including a domain from the convection zone into the corona, a hot chromosphere and corona are self-consistently maintained. Here we study two realistic models, with different simulated areas, magnetic field strength and topology, and numerical resolution. These are compared in order to characterize the heating in the 3D-MHD simulations which self-consistently maintains the structure of the atmosphere. We analyze the heating at both large and small scales and find that heating is episodic and highly structured in space, but occurs along loop-shaped structures, and moves along with the magnetic field. On large scales we find that the heating per particle is maximal near the transition region and that widely distributed opposite-polarity field in the photosphere leads to a greater heating scale height in the corona. On smaller scales, heating is concentrated in current sheets, the thicknesses of which are set by the numerical resolution. Some current sheets fragment in time, this process occurring more readily in the higher-resolution model leading to spatially highly intermittent heating. The large-scale heating structures are found to fade in less than about five minutes, while the smaller, local, heating shows timescales of the order of two minutes in one model and one minutes in the other, higher-resolution, model.
An Object Model for a Rocket Engine Numerical Simulator
NASA Technical Reports Server (NTRS)
Mitra, D.; Bhalla, P. N.; Pratap, V.; Reddy, P.
1998-01-01
Rocket Engine Numerical Simulator (RENS) is a packet of software which numerically simulates the behavior of a rocket engine. Different parameters of the components of an engine is the input to these programs. Depending on these given parameters the programs output the behaviors of those components. These behavioral values are then used to guide the design of or to diagnose a model of a rocket engine "built" by a composition of these programs simulating different components of the engine system. In order to use this software package effectively one needs to have a flexible model of a rocket engine. These programs simulating different components then should be plugged into this modular representation. Our project is to develop an object based model of such an engine system. We are following an iterative and incremental approach in developing the model, as is the standard practice in the area of object oriented design and analysis of softwares. This process involves three stages: object modeling to represent the components and sub-components of a rocket engine, dynamic modeling to capture the temporal and behavioral aspects of the system, and functional modeling to represent the transformational aspects. This article reports on the first phase of our activity under a grant (RENS) from the NASA Lewis Research center. We have utilized Rambaugh's object modeling technique and the tool UML for this purpose. The classes of a rocket engine propulsion system are developed and some of them are presented in this report. The next step, developing a dynamic model for RENS, is also touched upon here. In this paper we will also discuss the advantages of using object-based modeling for developing this type of an integrated simulator over other tools like an expert systems shell or a procedural language, e.g., FORTRAN. Attempts have been made in the past to use such techniques.
Experimental Validation of Numerical Simulations for an Acoustic Liner in Grazing Flow
NASA Technical Reports Server (NTRS)
Tam, Christopher K. W.; Pastouchenko, Nikolai N.; Jones, Michael G.; Watson, Willie R.
2013-01-01
A coordinated experimental and numerical simulation effort is carried out to improve our understanding of the physics of acoustic liners in a grazing flow as well our computational aeroacoustics (CAA) method prediction capability. A numerical simulation code based on advanced CAA methods is developed. In a parallel effort, experiments are performed using the Grazing Flow Impedance Tube at the NASA Langley Research Center. In the experiment, a liner is installed in the upper wall of a rectangular flow duct with a 2 inch by 2.5 inch cross section. Spatial distribution of sound pressure levels and relative phases are measured on the wall opposite the liner in the presence of a Mach 0.3 grazing flow. The computer code is validated by comparing computed results with experimental measurements. Good agreements are found. The numerical simulation code is then used to investigate the physical properties of the acoustic liner. It is shown that an acoustic liner can produce self-noise in the presence of a grazing flow and that a feedback acoustic resonance mechanism is responsible for the generation of this liner self-noise. In addition, the same mechanism also creates additional liner drag. An estimate, based on numerical simulation data, indicates that for a resonant liner with a 10% open area ratio, the drag increase would be about 4% of the turbulent boundary layer drag over a flat wall.
Efficient numerical simulation of electron states in quantum wires
NASA Technical Reports Server (NTRS)
Kerkhoven, Thomas; Galick, Albert T.; Ravaioli, Umberto; Arends, John H.; Saad, Youcef
1990-01-01
A new algorithm is presented for the numerical simulation of electrons in a quantum wire as described by a two-dimensional eigenvalue problem for Schroedinger's equation coupled with Poisson's equation. Initially, the algorithm employs an underrelaxed fixed point iteration to generate an approximation which is reasonably close to the solution. Subsequently, this approximate solution is employed as an initial guess for a Jacobian-free implementation of an approximate Newton method. In this manner the nonlinearity in the model is dealt with effectively. The effectiveness of this approach is demonstrated in a set of numerical experiments which study the electron states on the cross section of a quantum wire structure based on III-V semiconductors at 4.2 and 77 K.
Numerical simulation of MHD shock waves in the solar wind
NASA Technical Reports Server (NTRS)
Steinolfson, R. S.; Dryer, M.
1978-01-01
The effects of the interplanetary magnetic field on the propagation speed of shock waves through an ambient solar wind are examined by numerical solutions of the time-dependent nonlinear equations of motion. The magnetic field always increases the velocity of strong shocks. Although the field may temporarily slow down weak shocks inside 1 AU, it eventually also causes weak shocks to travel faster than they would without the magnetic field at larger distances. Consistent with the increase in the shock velocity, the gas pressure ratio across a shock is reduced considerably in the presence of the magnetic field. The numerical method is used to simulate (starting at 0.3 AU) the large deceleration of a shock observed in the lower corona by ground-based radio instrumentation and the more gradual deceleration of the shock in the solar wind observed by the Pioneer 9 and Pioneer 10 spacecraft.
Numerical simulations of a diode laser BPH treatment system
NASA Astrophysics Data System (ADS)
London, Richard A.; Esch, Victor C.; Papademetriou, Stephanos
1999-06-01
Numerical simulations are presented of the laser-tissue interaction of a diode laser system for treating benign prostate hyperplasia. The numerical model includes laser light transport, heat transport, cooling due to blood perfusion, thermal tissue damage, and enthalpy of tissue damage. Comparisons of the stimulation results to clinical data are given. We report that a reasonable variation from a standard set of input data produces heating times which match those measured in the clinical trials. A general trend of decreasing damage volume with increasing heating time is described. We suggest that the patient-to-patient variability seen in the data can be explained by differences in fundamental biophysical properties such as the optical coefficients. Further work is identified, including the measurement and input to the model of several specific data parameters such as optical coefficients, blood perfusion cooling rate, and coagulation rates.
Mechanical characterisation of Dacron graft: Experiments and numerical simulation.
Bustos, Claudio A; García-Herrera, Claudio M; Celentano, Diego J
2016-01-04
Experimental and numerical analyses focused on the mechanical characterisation of a woven Dacron vascular graft are presented. To that end, uniaxial tensile tests under different orientations have been performed to study the anisotropic behaviour of the material. These tests have been used to adjust the parameters of a hyperelastic anisotropic constitutive model which is applied to predict through numerical simulation the mechanical response of this material in the ring tensile test. The obtained results show that the model used is capable of representing adequately the nonlinear elastic region and, in particular, it captures the progressive increase of the rigidity and the anisotropy due to the stretching of the Dacron. The importance of this research lies in the possibility of predicting the graft׳s mechanical response under generalized loading such as those that occur under physiological conditions after surgical procedures.
A Numerical simulation of transition in plane channel flow
NASA Astrophysics Data System (ADS)
Goglia, G.; Biringen, S.
1982-08-01
A numerical simulation of the final stages of transition to turbulence in plane channel flow at a Reynolds number of 7500 is described. Three dimensional, incompressible Navier-Stokes equations are numerically integrated to obtain the time evolution of two and three dimensional finite amplitude disturbances. Computations are performed on the CYBER-203 vector processor for a 32 by 33 by 32 grid. Solutions indicate the existence of structures similar to those observed in the laboratory and which are characteristic of various stages of transition that lead to final breakdown. Details of the resulting flow field after breakdown indicate the evolution of streak-like formations found in turbulent flows. Although the flow field does approach a steady state (turbulent channel flow), implementation of subgrid-scale terms are necessary to obtain proper turbulent statistics.
A Numerical simulation of transition in plane channel flow
NASA Technical Reports Server (NTRS)
Goglia, G.; Biringen, S.
1982-01-01
A numerical simulation of the final stages of transition to turbulence in plane channel flow at a Reynolds number of 7500 is described. Three dimensional, incompressible Navier-Stokes equations are numerically integrated to obtain the time evolution of two and three dimensional finite amplitude disturbances. Computations are performed on the CYBER-203 vector processor for a 32 by 33 by 32 grid. Solutions indicate the existence of structures similar to those observed in the laboratory and which are characteristic of various stages of transition that lead to final breakdown. Details of the resulting flow field after breakdown indicate the evolution of streak-like formations found in turbulent flows. Although the flow field does approach a steady state (turbulent channel flow), implementation of subgrid-scale terms are necessary to obtain proper turbulent statistics.
Direct numerical simulation of turbulent boundary layer with constant thickness
NASA Astrophysics Data System (ADS)
Yao, Yichen; Xu, Chunxiao; Huang, Weixi
2016-11-01
Direct numerical simulation is performed to turbulent boundary layer (TBL) with constant thickness at Reθ = 1420 . Periodic boundary condition is applied in the streamwise direction, and a mean body force equivalent to the convection term in the mean momentum equation is imposed in this direction. The body force is calculated using the published TBL data of Schlatter and Orlu (2010) at Reθ = 1420 . The presently simulated TBL is compared with the conventional TBL and turbulent channel flow at the prescribed Reynolds number. The turbulent statistics agrees well with that of Schlatter and Orlu (2010). The pre-multiplied energy spectra in current simulation also present high similarity with the conventional TBL, while differ obviously with those in turbulent channel. The successful replication of turbulent boundary in the current simulation provides an alternative method for boundary layer simulation with much less computational cost. Meanwhile, in aspect of both turbulent statistics and flow structures, the current results indicate that the differences between turbulent channel and boundary layer flow mainly caused by the discrepancy in driving force distribution rather than the periodic boundary restriction. National Natural Science Foundation of China (Project No. 11490551, 11472154, 11322221, 11132005).
Numerical simulations of drop impact on superhydrophobic structured surfaces
NASA Astrophysics Data System (ADS)
Guzzetti, Davide; Larentis, Stefano; Pugno, Nicola
2011-11-01
During the last decade drop impact dynamics on superhydrophobic surfaces has been intensively investigated because of the incredible properties of water repellency exhibited by this kind of surfaces, mostly inspired by biological examples such as Lotus leave. Thanks to the recent progress in micro-fabrication technology is possible to tailor surfaces wettability defining specific pillar-like structured surfaces. In this work, the behavior of impinging drops on these pillar-like surfaces is simulated, characterizing temporal evolution of droplets contact radius and drop maximal deformation dependence on Weber number. Numerical simulations results are compared with theoretical and experimental results guaranteeing simulation reliability. Fingering patterns obtained from drop impact has been studied obtaining a correlation between number of fingers and Weber number. Drop fragmentation pattern obtained from simulations supports the proposed correlation. Different drop impact outcomes (e.g. rebound, fragmentation) on structured superhydrophobic surfaces are simulated, focusing on the influence of micro-structured surface geometrical pattern. This investigation is relevant in order to define design rules for possible reliable non wettable surfaces. Financial support by Alta Scuola Politecnica.
Numerical simulation of pressure pulsations in Francis turbines
NASA Astrophysics Data System (ADS)
Magnoli, M. V.; Schilling, R.
2012-11-01
In the last decades, hydraulic turbines have experienced the increase of their power density and the extension of their operating range, leading the fluid and mechanical dynamic effects to become significantly more pronounced. The understanding of the transient fluid flow and of the associated unsteady effects is essential for the reduction of the pressure pulsation level and improvement of the machine dynamic behaviour. In this study, the instationary fluid flow through the complete turbine was numerically calculated for an existing Francis machine with high specific speed. The hybrid turbulence models DES (detached eddy simulation) and SAS (scale adaptive simulation) allowed the accurate simulation of complex dynamic flow effects, such as the rotor-stator-interaction and the draft tube instabilities. Different operating conditions, as full load, part load, higher part load and deep part load, were successfully simulated and showed very tight agreement with the experimental results from the model tests. The transient pressure field history, obtained from the CFD (computational fluid dynamics) simulation and stored for each time step, was used as input for the full instationary FEA (finite element analysis) of turbine components. The assessment of the machine dynamic motion also offered the possibility to contribute to the understanding of the pressure pulsation effects and to further increase the turbine stability. This research project was developed at the Institute of Fluid Mechanics of the TU München.
Numerical simulations for plasma-based dry reforming
NASA Astrophysics Data System (ADS)
Snoeckx, Ramses; Aerts, Robby; Bogaerts, Annemie
2012-10-01
The conversion of greenhouse gases (CO2 and CH4) to more valuable chemicals is one of the challenges of the 21st century. The aim of this study is to describe the plasma chemistry occurring in a DBD for the dry reforming of CO2/CH4 mixtures, via numerical simulations. For this purpose we apply the 0D simulation code ``Global/kin,'' developed by Kushner, in order to simulate the reaction chemistry and the actual reaction conditions for a DBD, including the occurrence of streamers. For the chemistry part, we include a chemistry set consisting of 62 species taking part in 530 reactions. First we describe the reaction chemistry during one streamer, by simulating one discharge pulse and its afterglow, to obtain a better understanding of the reaction kinetics. Subsequently, we expand these results to real time scale simulations, i.e., 1 to 10 seconds, where we analyze the effects of the multiple discharges (streamers) and input energy on the conversion and the selectivity of the reaction products, as well as on the energy efficiency of the process. The model is validated based on experimental data from literature.
NASA Astrophysics Data System (ADS)
Martin-Short, R.; Edmiston, J. K.
2015-12-01
Typical hydraulic fracturing operations involve the use of a large quantity of water, which can be problematic for several reasons including possible formation (permeability) damage, disposal of waste water, and the use of precious local water resource. An alternate reservoir permeability enhancing technology not requiring water is cryogenic fracturing. This method induces controlled fracturing of rock formations by thermal shock and has potentially important applications in the geothermal and hydrocarbon industries. In this process, cryogenic fluid—such as liquid nitrogen—is injected into the subsurface, causing fracturing due to thermal gradients. These fractures may improve the formation permeability relative to that achievable by hydraulic fracturing alone. We conducted combined laboratory visualization and numerical simulations studies of thermal-shock-induced fracture initiation and propagation resulting from liquid nitrogen injection in rock and analog materials. The experiment used transparent soda-lime glass cubes to facilitate real-time visualization of fracture growth and the fracture network geometry. In this contribution, we report the effect of overall temperature difference between cryogenic fluid and solid material on the produced fracture network, by pre-heating the glass cubes to several temperatures and injecting liquid nitrogen. Temperatures are monitored at several points by thermocouple and the fracture evolution is captured visually by camera. The experiment was modeled using a customized, thermoelastic, fracture-capable numerical simulation code based on peridynamics. The performance of the numerical code was validated by the results of the laboratory experiments, and then the code was used to study the different factors affecting a cryogenic fracturing operation, including the evolution of residual stresses and constitutive relationships for material failure. In complex rock such as shale, understanding the process of cryogenic
Numerical Simulation of Tangling in Jet Engine Turbines
NASA Astrophysics Data System (ADS)
Cendón, David A.; Erice, Borja; Gálvez, Francisco; Sánchez-Gálvez, Vicente
2012-12-01
The numerical analysis of certain safety related problems presents serious difficulties, since the large number of components present leads to huge finite element models that can only be solved by using large and expensive computers or by making rough approaches to the problem. Tangling, or clashing, in the turbine of a jet engine airplane is an example of such problems. This is caused by the crash and friction between rotor and stator blades in the turbine after an eventual shaft failure. When facing the study of an event through numerical modelling, the accurate simulation of this problem would require the engineer to model all the rotor and stator blades existing in the turbine stage, using a small element size in all pieces. Given that the number of stator and rotor blades is usually around 200, such simulations would require millions of elements. This work presents a new numerical methodology, specifically developed for the accurate modelling of the tangling problem that, depending on the turbine configuration, is able to reduce the number of nodes up to an order of magnitude without losing accuracy. The methodology, which benefits from the cyclic configuration of turbines, is successfully applied to the numerical analysis of a hypothetical tangling event in a turbine, providing valuable data such as the rotating velocity decrease of the turbine, the braking torque and the damage suffered by the blades. The methodology is somewhat general and can be applied to any problem in which damage caused by the interaction between a rotating and static piece is to be analysed.
Numerical Propulsion System Simulation (NPSS): An Award Winning Propulsion System Simulation Tool
NASA Technical Reports Server (NTRS)
Stauber, Laurel J.; Naiman, Cynthia G.
2002-01-01
The Numerical Propulsion System Simulation (NPSS) is a full propulsion system simulation tool used by aerospace engineers to predict and analyze the aerothermodynamic behavior of commercial jet aircraft, military applications, and space transportation. The NPSS framework was developed to support aerospace, but other applications are already leveraging the initial capabilities, such as aviation safety, ground-based power, and alternative energy conversion devices such as fuel cells. By using the framework and developing the necessary components, future applications that NPSS could support include nuclear power, water treatment, biomedicine, chemical processing, and marine propulsion. NPSS will dramatically reduce the time, effort, and expense necessary to design and test jet engines. It accomplishes that by generating sophisticated computer simulations of an aerospace object or system, thus enabling engineers to "test" various design options without having to conduct costly, time-consuming real-life tests. The ultimate goal of NPSS is to create a numerical "test cell" that enables engineers to create complete engine simulations overnight on cost-effective computing platforms. Using NPSS, engine designers will be able to analyze different parts of the engine simultaneously, perform different types of analysis simultaneously (e.g., aerodynamic and structural), and perform analysis in a more efficient and less costly manner. NPSS will cut the development time of a new engine in half, from 10 years to 5 years. And NPSS will have a similar effect on the cost of development: new jet engines will cost about a billion dollars to develop rather than two billion. NPSS is also being applied to the development of space transportation technologies, and it is expected that similar efficiencies and cost savings will result. Advancements of NPSS in fiscal year 2001 included enhancing the NPSS Developer's Kit to easily integrate external components of varying fidelities, providing
Numerical prediction of microstructure and hardness in multicycle simulations
NASA Astrophysics Data System (ADS)
Oddy, A. S.; McDill, J. M. J.
1996-06-01
Thermal-microstructural predictions are made and compared to physical simulations of heat-affected zones in multipass and weaved welds. The microstructural prediction algorithm includes reaustenitization kinetics, grain growth, austenite decomposition kinetics, hardness, and tempering. Microstructural simulation of weaved welds requires that the algorithm include transient reaustenitization, austenite decomposition for arbitrary thermal cycles including during reheating, and tempering. Material properties for each of these phenomena are taken from the best available literature. The numerical predictions are compared with the results of physical simulations made at the Metals Technology Laboratory, CANMET, on a Gleeble 1500 simulator. Thermal histories used in the physical simulations included single-pass welds, isothermal tempering, two-cycle, and three-cycle welds. The two-and three-cycle welds include temper-bead and weaved-weld simulations. A recurring theme in the analysis is the significant variation found in the material properties for the same grade of steel. This affected all the material properties used including those governing reaustenitization, austenite grain growth, austenite decomposition, and hardness. Hardness measurements taken from the literature show a variation of ±5 to 30 HV on the same sample. Alloy differences within the allowable range also led to hardness variations of ±30 HV for the heat-affected zone of multipass welds. The predicted hardnesses agree extremely well with those taken from the physical simulations. Some differences due to problems with the austenite decomposition properties were noted in that bainite formation was predicted to occur somewhat more rapidly than was found experimentally. Reaustenitization values predicted during the rapid excursions to intercritical temperatures were also in good qualitative agreement with those measured experimentally.
Numerical aerodynamic simulation facility preliminary study, volume 1
NASA Technical Reports Server (NTRS)
1977-01-01
A technology forecast was established for the 1980-1985 time frame and the appropriateness of various logic and memory technologies for the design of the numerical aerodynamic simulation facility was assessed. Flow models and their characteristics were analyzed and matched against candidate processor architecture. Metrics were established for the total facility, and housing and support requirements of the facility were identified. An overview of the system is presented, with emphasis on the hardware of the Navier-Stokes solver, which is the key element of the system. Software elements of the system are also discussed.
Diffusive mesh relaxation in ALE finite element numerical simulations
Dube, E.I.
1996-06-01
The theory for a diffusive mesh relaxation algorithm is developed for use in three-dimensional Arbitary Lagrange/Eulerian (ALE) finite element simulation techniques. This mesh relaxer is derived by a variational principle for an unstructured 3D grid using finite elements, and incorporates hourglass controls in the numerical implementation. The diffusive coefficients are based on the geometric properties of the existing mesh, and are chosen so as to allow for a smooth grid that retains the general shape of the original mesh. The diffusive mesh relaxation algorithm is then applied to an ALE code system, and results from several test cases are discussed.
Accurate numerical simulation of short fiber optical parametric amplifiers.
Marhic, M E; Rieznik, A A; Kalogerakis, G; Braimiotis, C; Fragnito, H L; Kazovsky, L G
2008-03-17
We improve the accuracy of numerical simulations for short fiber optical parametric amplifiers (OPAs). Instead of using the usual coarse-step method, we adopt a model for birefringence and dispersion which uses fine-step variations of the parameters. We also improve the split-step Fourier method by exactly treating the nonlinear ellipse rotation terms. We find that results obtained this way for two-pump OPAs can be significantly different from those obtained by using the usual coarse-step fiber model, and/or neglecting ellipse rotation terms.
Numerical simulation of low Prandtl number turbulent mixing
NASA Astrophysics Data System (ADS)
Gibson, C.; Rogers, M.; Chasnov, J.; Petresky, J.
1990-12-01
Numerical simulations of turbulent mixing of strongly diffusive scalar fields were carried out with and without subgrid-scale modeling of the small-scale strain field. For low Reynolds number flows, when the rate of strain field (determined primarily by the small scales) is fully resolved, the scalar microstructure was found to collapse under Batchelor rate-of-strain scaling even for small Prandtl numbers, in agreement with Kerr. For high Reynolds number flows, when small-scale straining is modeled with a subgrid-scale model, the scalar microstructure follows the Batchelor, Howells, and Townsend predictions that the small-scale rate-of-strain is irrelevant.
Numerical simulation of lava flows: Applications to the terrestrial planets
NASA Technical Reports Server (NTRS)
Zimbelman, James R.; Campbell, Bruce A.; Kousoum, Juliana; Lampkin, Derrick J.
1993-01-01
Lava flows are the visible expression of the extrusion of volcanic materials on a variety of planetary surfaces. A computer program described by Ishihara et al. appears to be well suited for application to different environments, and we have undertaken tests to evaluate their approach. Our results are somewhat mixed; the program does reproduce reasonable lava flow behavior in many situations, but we have encountered some conditions common to planetary environments for which the current program is inadequate. Here we present our initial efforts to identify the 'parameter space' for reasonable numerical simulations of lava flows.
Numerical simulation of carbon arc discharge for nanoparticle synthesis
NASA Astrophysics Data System (ADS)
Kundrapu, M.; Keidar, M.
2012-07-01
Arc discharge with catalyst-filled carbon anode in helium background was used for the synthesis of carbon nanoparticles. In this paper, we present the results of numerical simulation of carbon arc discharges with arc current varying from 10 A to 100 A in a background gas pressure of 68 kPa. Anode sublimation rate and current voltage characteristics are compared with experiments. Distribution of temperature and species density, which is important for the estimation of the growth of nanoparticles, is obtained. The probable location of nanoparticle growth region is identified based on the temperature range for the formation of catalyst clusters.
Numerical simulation of fluid flow around a scramaccelerator projectile
NASA Technical Reports Server (NTRS)
Pepper, Darrell W.; Humphrey, Joseph W.; Sobota, Thomas H.
1991-01-01
Numerical simulations of the fluid motion and temperature distribution around a 'scramaccelerator' projectile are obtained for Mach numbers in the 5-10 range. A finite element method is used to solve the equations of motion for inviscid and viscous two-dimensional or axisymmetric compressible flow. The time-dependent equations are solved explicitly, using bilinear isoparametric quadrilateral elements, mass lumping, and a shock-capturing Petrov-Galerkin formulation. Computed results indicate that maintaining on-design performance for controlling and stabilizing oblique detonation waves is critically dependent on projectile shape and Mach number.
Numerical Simulation of a High Mach Number Jet Flow
NASA Technical Reports Server (NTRS)
Hayder, M. Ehtesham; Turkel, Eli; Mankbadi, Reda R.
1993-01-01
The recent efforts to develop accurate numerical schemes for transition and turbulent flows are motivated, among other factors, by the need for accurate prediction of flow noise. The success of developing high speed civil transport plane (HSCT) is contingent upon our understanding and suppression of the jet exhaust noise. The radiated sound can be directly obtained by solving the full (time-dependent) compressible Navier-Stokes equations. However, this requires computational storage that is beyond currently available machines. This difficulty can be overcome by limiting the solution domain to the near field where the jet is nonlinear and then use acoustic analogy (e.g., Lighthill) to relate the far-field noise to the near-field sources. The later requires obtaining the time-dependent flow field. The other difficulty in aeroacoustics computations is that at high Reynolds numbers the turbulent flow has a large range of scales. Direct numerical simulations (DNS) cannot obtain all the scales of motion at high Reynolds number of technological interest. However, it is believed that the large scale structure is more efficient than the small-scale structure in radiating noise. Thus, one can model the small scales and calculate the acoustically active scales. The large scale structure in the noise-producing initial region of the jet can be viewed as a wavelike nature, the net radiated sound is the net cancellation after integration over space. As such, aeroacoustics computations are highly sensitive to errors in computing the sound sources. It is therefore essential to use a high-order numerical scheme to predict the flow field. The present paper presents the first step in a ongoing effort to predict jet noise. The emphasis here is in accurate prediction of the unsteady flow field. We solve the full time-dependent Navier-Stokes equations by a high order finite difference method. Time accurate spatial simulations of both plane and axisymmetric jet are presented. Jet Mach
Numerical simulation of compact intracloud discharge and generated electromagnetic pulse
NASA Astrophysics Data System (ADS)
Babich, L. P.; Bochkov, E. I.; Kutsyk, I. M.
2015-06-01
Using the concept of the relativistic runaway electron avalanche, numerical simulation of compact intracloud discharge as a generator of powerful natural electromagnetic pulses (EMPs) in the HF-UHF range was conducted. We evaluated the numbers of electrons initiating the avalanche, with which the calculated EMP characteristics are consistent with measured ones. The discharge capable of generating EMPs produces runaway electrons in numbers close to those in the source of terrestrial γ-flashes (TGF) registered in the nearest space, which may be an argument for a joint EMP and TGF source.
Numerical simulations of volume holographic imaging system resolution characteristics
NASA Astrophysics Data System (ADS)
Sun, Yajun; Jiang, Zhuqing; Liu, Shaojie; Tao, Shiquan
2009-05-01
Because of the Bragg selectivity of volume holographic gratings, it helps VHI system to optically segment the object space. In this paper, properties of point-source diffraction imaging in terms of the point-spread function (PSF) are investigated, and characteristics of depth and lateral resolutions in a VHI system is numerically simulated. The results show that the observed diffracted field obviously changes with the displacement in the z direction, and is nearly unchanged with displacement in the x and y directions. The dependence of the diffracted imaging field on the z-displacement provides a way to possess 3-D image by VHI.
Numerical Simulations of Static Tested Ramjet Dump Combustor
NASA Astrophysics Data System (ADS)
Javed, Afroz; Chakraborty, Debasis
2016-06-01
The flow field of a Liquid Fuel Ram Jet engine side dump combustor with kerosene fuel is numerically simulated using commercial CFD code CFX-11. Reynolds Averaged 3-D Navier-Stokes equations are solved alongwith SST turbulence model. Single step infinitely fast reaction is assumed for kerosene combustion. The combustion efficiency is evaluated in terms of the unburnt kerosene vapour leaving the combustor. The comparison of measured pressures with computed values show that the computation underpredicts (~5 %) pressures for non reacting cases but overpredicts (9-7 %) for reacting cases.
Numerical simulation in alternating current field measurement inducer design
NASA Astrophysics Data System (ADS)
Zhou, Zhixiong; Zheng, Wenpei
2017-02-01
The present work develops a numerical simulation model to evaluate the magnetic field perturbation of a twin coil alternating current field measurement (ACFM) inducer passing above a surface-breaking crack for the purpose of enhanced crack detection. Model predictions show good agreement with experimental data, verifying the accuracy of the model. The model includes the influence of various parameters, such as core dimensions and core positions on the perturbed magnetic field above a crack. Optimized design parameters for a twin coil inducer are given according to the analysis results, which provide for a greatly improved detection effect.
Numerical and laboratory simulation of fault motion and earthquake occurrence
NASA Technical Reports Server (NTRS)
Cohen, S. C.
1978-01-01
Simple linear rheologies were used with elastic forces driving the main events and viscoelastic forces being important for aftershock and creep occurrence. Friction and its dependence on velocity, stress, and displacement also plays a key role in determining how, when, and where fault motion occurs. The discussion of the qualitative behavior of the simulators focuses on the manner in which energy was stored in the system and released by the unstable and stable sliding processes. The numerical results emphasize the statistics of earthquake occurrence and the correlations among source parameters.
Efficient Parallel Algorithm For Direct Numerical Simulation of Turbulent Flows
NASA Technical Reports Server (NTRS)
Moitra, Stuti; Gatski, Thomas B.
1997-01-01
A distributed algorithm for a high-order-accurate finite-difference approach to the direct numerical simulation (DNS) of transition and turbulence in compressible flows is described. This work has two major objectives. The first objective is to demonstrate that parallel and distributed-memory machines can be successfully and efficiently used to solve computationally intensive and input/output intensive algorithms of the DNS class. The second objective is to show that the computational complexity involved in solving the tridiagonal systems inherent in the DNS algorithm can be reduced by algorithm innovations that obviate the need to use a parallelized tridiagonal solver.
Time-Accurate Numerical Simulations of Synthetic Jet Quiescent Air
NASA Technical Reports Server (NTRS)
Rupesh, K-A. B.; Ravi, B. R.; Mittal, R.; Raju, R.; Gallas, Q.; Cattafesta, L.
2007-01-01
The unsteady evolution of three-dimensional synthetic jet into quiescent air is studied by time-accurate numerical simulations using a second-order accurate mixed explicit-implicit fractional step scheme on Cartesian grids. Both two-dimensional and three-dimensional calculations of synthetic jet are carried out at a Reynolds number (based on average velocity during the discharge phase of the cycle V(sub j), and jet width d) of 750 and Stokes number of 17.02. The results obtained are assessed against PIV and hotwire measurements provided for the NASA LaRC workshop on CFD validation of synthetic jets.
Directly comparing gravitational wave data to numerical relativity simulations: systematics
NASA Astrophysics Data System (ADS)
Lange, Jacob; O'Shaughnessy, Richard; Healy, James; Lousto, Carlos; Zlochower, Yosef; Shoemaker, Deirdre; Lovelace, Geoffrey; Pankow, Christopher; Brady, Patrick; Scheel, Mark; Pfeiffer, Harald; Ossokine, Serguei
2017-01-01
We compare synthetic data directly to complete numerical relativity simulations of binary black holes. In doing so, we circumvent ad-hoc approximations introduced in semi-analytical models previously used in gravitational wave parameter estimation and compare the data against the most accurate waveforms including higher modes. In this talk, we focus on the synthetic studies that test potential sources of systematic errors. We also run ``end-to-end'' studies of intrinsically different synthetic sources to show we can recover parameters for different systems.
Numerical simulations of type-III solar radio bursts.
Li, B; Robinson, P A; Cairns, I H
2006-04-14
The first numerical simulations are presented for type-III solar radio bursts in the inhomogeneous solar corona and interplanetary space, that include microscale quasilinear and nonlinear processes, intermediate-scale driven ambient density fluctuations, and large scale evolution of electron beams, Langmuir and ion sound waves, and fundamental and harmonic electromagnetic emission. Bidirectional coronal emission is asymmetric between the upward and downward directions, and harmonic emission dominates fundamental emission. In interplanetary space, fundamental and/or harmonic emission can be important. Langmuir and ion sound waves are bursty and the statistics of Langmuir wave energy agree well with the predictions of stochastic growth theory.
Reckinger, Scott James; Livescu, Daniel; Vasilyev, Oleg V.
2016-09-02
A comprehensive numerical methodology has been developed that handles the challenges introduced by considering the compressive nature of Rayleigh-Taylor instability (RTI) systems, which include sharp interfacial density gradients on strongly stratified background states, acoustic wave generation and removal at computational boundaries, and stratification-dependent vorticity production. The computational framework is used to simulate two-dimensional single-mode RTI to extreme late-times for a wide range of flow compressibility and variable density effects. The results show that flow compressibility acts to reduce the growth of RTI for low Atwood numbers, as predicted from linear stability analysis.
The CFS-PML in numerical simulation of ATEM
NASA Astrophysics Data System (ADS)
Zhao, Xuejiao; Ji, Yanju; Qiu, Shuo; Guan, Shanshan; Wu, Yanqi
2017-01-01
In the simulation of airborne transient electromagnetic method (ATEM) in time-domain, the truncated boundary reflection can bring a big error to the results. The complex frequency shifted perfectly matched layer (CFS-PML) absorbing boundary condition has been proved to have a better absorption of low frequency incident wave and can reduce the late reflection greatly. In this paper, we apply the CFS-PML to three-dimensional numerical simulation of ATEM in time-domain to achieve a high precision .The expression of divergence equation in CFS-PML is confirmed and its explicit iteration format based on the finite difference method and the recursive convolution technique is deduced. Finally, we use the uniformity half space model and the anomalous model to test the validity of this method. Results show that the CFS-PML can reduce the average relative error to 2.87% and increase the accuracy of the anomaly recognition.
[Numerical flow simulation : A new method for assessing nasal breathing].
Hildebrandt, T; Osman, J; Goubergrits, L
2016-08-01
The current options for objective assessment of nasal breathing are limited. The maximum they can determine is the total nasal resistance. Possibilities to analyze the endonasal airstream are lacking. In contrast, numerical flow simulation is able to provide detailed information of the flow field within the nasal cavity. Thus, it has the potential to analyze the nasal airstream of an individual patient in a comprehensive manner and only a computed tomography (CT) scan of the paranasal sinuses is required. The clinical application is still limited due to the necessary technical and personnel resources. In particular, a statistically based referential characterization of normal nasal breathing does not yet exist in order to be able to compare and classify the simulation results.
Numerical Simulation of Conductivity Gradient-Induced Electrokinetic Flow Instabilities
NASA Astrophysics Data System (ADS)
Bradford, Stephen; Meinhart, Carl
2006-03-01
This research is focused on the electrokinetic flow instabilities observed in long, thin microchannels with conductivity gradients orthogonal to the streamwise direction and applied potential. This situation often occurs in field amplified sample stacking (FASS) and isoelectric focusing, where control of the instabilities is imperative. Alternatively, the inherently chaotic flow patterns can be leveraged to fabricate an efficient micromixer under specific conditions. These instabilities arise from fluid body forces generated by the action of applied electric fields on electrolyte concentration-based conductivity gradients. A model is developed to describe the phenomena in general and applied specifically to thin microchannels with the conductivity gradient perpendicular to the applied field (both DC and AC). A higher-order, depth averaged correlation is proposed to account for the out of plane effects. Numerical simulations performed using COMSOL 3.2 are compared to 2-D and 3-D simulations as well as experimental data for multiple geometries with good agreement.
Convective Self-Aggregation in Numerical Simulations: A Review
NASA Astrophysics Data System (ADS)
Wing, Allison A.; Emanuel, Kerry; Holloway, Christopher E.; Muller, Caroline
2017-02-01
Organized convection in the tropics occurs across a range of spatial and temporal scales and strongly influences cloud cover and humidity. One mode of organization found is "self-aggregation," in which moist convection spontaneously organizes into one or several isolated clusters despite spatially homogeneous boundary conditions and forcing. Self-aggregation is driven by interactions between clouds, moisture, radiation, surface fluxes, and circulation, and occurs in a wide variety of idealized simulations of radiative-convective equilibrium. Here we provide a review of convective self-aggregation in numerical simulations, including its character, causes, and effects. We describe the evolution of self-aggregation including its time and length scales and the physical mechanisms leading to its triggering and maintenance, and we also discuss possible links to climate and climate change.
Numerical Simulation of Reactive Flow in Hot Aquifers
NASA Astrophysics Data System (ADS)
Smith, Leslie
2004-02-01
In recent years, there has been a significant expansion in our ability to model systems that involve the interaction of fluid flow, mass transport, heat transfer, and geochemical reaction in porous media. Such scenarios arise in studies of both fundamental science, such as the effects of thermohaline flow and heat transfer in rift basins, and in the solution of applied problems, such as the response of a geothermal reservoir to the re-injection of cool water. Numerical Simulation of Reactive Flow in Hot Aquifers presents the simulation tools that were developed by a team of researchers based in Germany. This group has a long history in analyzing geothermal systems, but the methods presented can be applied far beyond the study of geothermal reservoirs. The heart of the book is a description of the model SHEMAT. The executable code and a graphical user interface are included with the book.
Numerical simulation of transitional flows with heat transfer
NASA Astrophysics Data System (ADS)
Kožíšek, Martin; Příhoda, Jaromír; Fürst, Jiří; Straka, Petr
2016-06-01
The contribution deals with simulation of internal flows with the laminar/turbulent transition and heat transfer. The numerical modeling of incompressible flow on a heated flat plate was carried out partly by the k-kL-ω model of Walters and Cokljat [1] and partly by the algebraic transition model of Straka and Příhoda [2] connected with the EARSM turbulence model of Hellsten [3]. Transition models were tested by means of the skin friction and the Stanton number distribution. Used models of turbulent heat transfer were compared with the simplest model based on the constant turbulent Prandtl number. The k-kL-ω model is applied for the simulation of compressible flow through the VKI turbine blade cascade with heat transfer.
Numerical simulation of frontogenesis in a moist atmosphere
NASA Technical Reports Server (NTRS)
Hsie, E.-Y.; Anthes, R. A.; Keyser, D.
1984-01-01
This paper describes the effects of condensation and evaporation on mesoscale frontal circulations in a two-dimensional numerical model. Utilizing an explicit scheme for the prediction of water vapor, cloud water and rainwater, the model is used to investigate the interactions between convection and the larger-scale environment. The model results are qualitatively compared with results of theoretical and observational studies, including those from the recent Severe Environmental Storms and Mesoscale Experiment-Atmospheric Variability Experiment (SESAME-AVE). Three major differences are observed in a comparison of the moist and dry simulations: (1) The speed of the upper- and lower-level jets was significantly higher in the moist case, (2) The intensity of the ageostrophic circulations in the moist simulation was much stronger, (3) The vertical velocity field in the moist case was characterized by a banded structure not present in the dry case.
Numerical solutions of atmospheric flow over semielliptical simulated hills
NASA Technical Reports Server (NTRS)
Shieh, C. F.; Frost, W.
1981-01-01
Atmospheric motion over obstacles on plane surfaces to compute simulated wind fields over terrain features was studied. Semielliptical, two dimensional geometry and numerical simulation of flow over rectangular geometries is also discussed. The partial differential equations for the vorticity, stream function, turbulence kinetic energy, and turbulence length scale were solved by a finite difference technique. The mechanism of flow separation induced by a semiellipse is the same as flow over a gradually sloping surface for which the flow separation is caused by the interaction between the viscous force, the pressure force, and the turbulence level. For flow over bluff bodies, a downstream recirculation bubble is created which increases the aspect ratio and/or the turbulence level results in flow reattachment close behind the obstacle.
Numerical simulations of binary black holes with nearly extremal spins
NASA Astrophysics Data System (ADS)
Lovelace, Geoffrey
2010-02-01
There is a significant possibility that astrophysically realistic black holes may have nearly extremal spins (i.e., spins close to 1 in dimensionless units). The prospect of observing the gravitational waves from a binary-black-hole merger with nearly extremal spins motivates the goal of simulating these systems numerically. These simulations must begin with initial data that satisfy the Einstein constraint equations; however, the commonly used methods of generating constraint-satisfying initial data cannot yield data with nearly extremal spins. In this talk, I will describe evolutions of conformally curved binary-black-hole initial data with nearly extremal spins using the Caltech-Cornell-CITA Spectral Einstein Code (SpEC). )
Three dimensional direct numerical simulation of complex jet flows
NASA Astrophysics Data System (ADS)
Shin, Seungwon; Kahouadji, Lyes; Juric, Damir; Chergui, Jalel; Craster, Richard; Matar, Omar
2016-11-01
We present three-dimensional simulations of two types of very challenging jet flow configurations. The first consists of a liquid jet surrounded by a faster coaxial air flow and the second consists of a global rotational motion. These computations require a high spatial resolution and are performed with a newly developed high performance parallel code, called BLUE, for the simulation of two-phase, multi-physics and multi-scale incompressible flows, tested on up to 131072 threads with excellent scalability performance. The method for the treatment of the fluid interfaces uses a hybrid Front Tracking/Level Set technique that defines the interface both by a discontinuous density field as well as by a local triangular Lagrangian mesh. Coriolis forces are taken into account and solved via an exact time-integration method that ensures numerical accuracy and stability. EPSRC UK Programme Grant EP/K003976/1.
Numerical simulations of energy transfer in counter-streaming plasmas
NASA Astrophysics Data System (ADS)
Davis, S. P.; Capdessus, R.; d'Humières, E.; Jequier, S.; Andriyash, I.; Tikhonchuk, V.
2013-03-01
Collisionless shock formation is investigated with large scale fully electromagnetic two-dimensional Particle-in-Cell numerical simulations. Two plasmas are colliding in the center of mass reference frame at sub-relativistic velocities. Their interaction leads to collisionless stochastic electron heating, ion slowing down and formation of a shock front. We focus here on the initial stage of evolution where electron heating is due to the Weibel-like micro-instability driven by the high-speed ion flow. A two stage process is described in the detailed analysis of our simulation results. Filament generation, followed by turbulent mixing, constitute the dominant mechanism for energy repartition. The global properties are illustrated by examination of single filament evolution in terms of energy/particle density and fields.
Numerical simulation of transient hypervelocity flow in an expansion tube
NASA Technical Reports Server (NTRS)
Jacobs, P. A.
1992-01-01
Several numerical simulations of the transient flow of helium in an expansion tube are presented. The aim of the exercise is to provide further information on the operational problems of the NASA Langley expansion tube. The calculations were performed with an axisymmetric Navier-Stokes code based on a finite-volume formulation and upwinding techniques. Although laminar flow and ideal bursting of the diaphragms was assumed, the simulations showed some of the important features seen in the experiments. In particular, the discontinuity in the tube diameter at the primary diaphragm station introduced a transverse perturbation to the expanding driver gas, and this perturbation was seen to propagate into the test gas under some flow conditions. The disturbances seen in the test flow can be characterized as either 'small-amplitude' noise possibly introduced during shock compression or 'large-amplitude' noise associated with the passage of the reflected head of the unsteady expansion.
MASS2, Modular Aquatic Simulation System in Two Dimensions, Theory and Numerical Methods
Perkins, William A.; Richmond, Marshall C.
2007-07-01
The Modular Aquatic Simulation System in Two Dimensions (MASS2) is a two-dimensional, depth-averaged hydrodynamics and transport model. The model simulates time varying distributions of depth-averaged velocities, water surface elevations, and water quality constituents. MASS2 uses a structured, multi-block, boundary-fitted, curvilinear computational mesh, which allows the simulation of very complex riverine or estuarine networks. The blocks may be of varying resolution, which allows high resolution to be used only where needed. MASS2 can simulate a wide variety of hydrodynamic conditions, including supercritical flow and hydraulic jumps. It can also simulate a wide variety of water quality conditions, including sediment, conservative or decaying contaminants, sediment-sorbed contaminants, water temperature, and total dissolved gas. Any number of these constituents may be simulated simultaneously. In addition, transport simulations may be performed using pre-calculated hydrodynamic conditions, allowing long-term transport simulations unencumbered by the more intensive hydrodynamic calculations, or repeated transport simulations without re-simulating hydrodynamics. This report documents the theory and numerical methods used in MASS2. In addition, the results are presented from several of hydrodynamic and transport validation tests to which MASS2 was subjected. The companion user manual documents the application of MASS2.
REBOUNDx: A library for adding additional effects to N-body simulations
NASA Astrophysics Data System (ADS)
Tamayo, Daniel; Rein, Hanno; Shi, Pengshuai
2016-05-01
Many astrophysical applications involve additional perturbations beyond point-source gravity. We have recently developed REBOUNDx, a library for adding such effects in numerical simulations with the open-source N-body package REBOUND. Various implementations have different numerical properties that in general depend on the underlying integrator employed. In particular, I will discuss adding velocity-dependent/dissipative effects to widely used symplectic integrators, and how one can estimate the introduced numerical errors using the operator-splitting formalism traditionally applied to symplectic integrators. Finally, I will demonstrate how to use the code, and how the Python wrapper we have developed for REBOUND/REBOUNDx makes it easy to interactively leverage powerful analysis, visualization and parallelization libraries.
Numerical simulations of non-homogeneous viscoelastic turbulent channel flow
NASA Astrophysics Data System (ADS)
Housiadas, Kostas; Beris, Antony
2004-11-01
The effect of the polymer mixing in turbulent channel flow is studied through numerical simulations, using a spectral technique. In particular, we simulate injection of polymeric material through a slit very close to the wall and parallel to it in pre-established Newtonian turbulent flow. The governing equations consist of the mass conservation, the modified Navier-Stokes equation (in order to take into account the polymer extra-stress), the evolution equation for the conformation tensor and an advection-diffusion equation for the polymer concentration. The injection process is simulated by dividing the computational domain in three different regions: (a) the entrance region where the polymer is introduced (b) the developing region where the polymer is allowed to convect freely interacting/modifying the turbulent flow and (c) the recovering region where we use a reacting sink to force the removal of the polymer from the solvent in order to re-establish the inlet conditions. A fully spectral method is used in order to solve the set of governing equations similar to that developed for homogenous viscoelastic turbulent DNS (Housiadas & Beris, Phys. Fluids, 15, (2003)). Although a significantly improved numerical algorithm has been successfully used before (Housiadas & Beris, to appear in J. Non-Newt. Fluid Mech. (2004)) a further improved version of that algorithm is presented in this work. The new algorithm has enabled us to extend the simulations for much wider range of viscoelasticity parameter values as well as for many viscoelastic models like the FENE-P, Giesekus, Oldroyd-B and the modified Giesekus/FENE-P model. Results for illustrative sets of parameter values are going to be presented.
Magnetic reconnection in numerical simulations of the Bastille day flare
NASA Astrophysics Data System (ADS)
Vincent, A. P.; Charbonneau, P.
2011-12-01
If neither waves nor adiabatic heating due to compression are taken into account, coronal heating may be obtained in numerical simulations from current dissipation inside solar flares. To increase Joule heating locally we used a model for hyper resistivity (Klimas et al., 2004: Journal of Geophysical Research, 109, 2218-2231). Here the change in resistivity is due to small scale (less than 1Mm in our simulations) current density fluctuations. Whenever the current exceeds a cut-off value, magnetic resistivity jumps sharply to reach a maximum locally thus increasing magnetic gradients at the border of the flare. In this way, not only the current increases but also the maximum is slowly displaced and simulations of the full set of 3-D MHD equations show a progression westward as can be seen in SOHO-EIT images of the ''slinky''. In our simulations of the Bastille day flare, most of the reconnection events take place just above the transition and mostly follow the neutral line but it is Spitzer thermal diffusivity together with radiative cooling that illuminates magnetic arcades in a way similar to what can be seen in extreme ultra-violet animations of the slinky.
Real-time numerical simulation of the Carnot cycle
NASA Astrophysics Data System (ADS)
Hurkala, J.; Gall, M.; Kutner, R.; Maciejczyk, M.
2005-09-01
We developed a highly interactive, multi-windows Java applet which made it possible to simulate and visualize within any platform and internet the Carnot cycle (or engine) in a real-time computer experiment. We extended our previous model and algorithm (Galant et al 2003 Heat Transfer, Newton's Law of Cooling and the Law of Entropy Increase Simulated by the Real-Time Computer Experiments in Java (Lecture Notes in Computer Science vol 2657) pp 45-53, Gall and Kutner 2005 Molecular mechanisms of heat transfer: Debye relaxation versus power-law Physica A 352 347-78) to simulate not only the heat flow but also the macroscopic movement of the piston. Since in reality it is impossible to construct a reversible Carnot engine, the question arises whether it is possible to simulate it at least in a numerical experiment? The positive answer to this question which we found is related to our model and algorithm which make it possible to omit the many-body problem arising when many gas particles simultaneously interact with the mobile piston. As usual, the considerations of phenomenological thermodynamics began with a study of the basic properties of heat engines, hence our approach, besides intrinsic physical significance, is also important from the educational, technological and even environmental points of view. .
Laboratory and Numerical Simulations of the Impulsive Penetration Mechanism
NASA Astrophysics Data System (ADS)
Echim, M. M.; Lemaire, J. F.
2000-05-01
Plasma interaction at the interface between the magnetosheath and magnetosphere has been extensively studied during recent years. As a consequence various theoretical models have emerged. The impulsive penetration mechanism initially proposed by Lemaire and Roth as an alternative approach to the steady state reconnection, is a non-stationary model describing the processes which take place when a 3-D solar wind plasma irregularity interacts with the outer regions of the Earth's magnetosphere. In this paper we are reviewing the main features of the impulsive penetration mechanism and the role of the electric field in driving impulsive events. An alternative point of view and the controversy it has raised are discussed. We also review the numerical codes developed to simulate the impulsive transport of plasma across the magnetopause. They have illustrated the relationship between the magnetic field distribution and the convection of solar-wind plasma inside the magnetosphere and brought into perspective non-stationary phenomena (like instabilities and waves) which were not explicitly integrated in the early models of impulsive penetration. Numerical simulations devoted to these processes cover a broad range of approximations, from ideal MHD to hybrid and kinetic codes. The results show the limitation of these theories in describing the full range of phenomena observed at the magnetopause and magnetospheric boundary layers.
Whistler Observations on DEMETER Compared with FWM Numerical Simulations
NASA Astrophysics Data System (ADS)
Compston, A. J.; Cohen, M.; Lehtinen, N. G.; Inan, U.; Linscott, I.; Parrot, M.
2012-12-01
Terrestrial Very Low Frequency (VLF) electromagnetic radiation, which plays an important role in the Van Allen radiation belts, is injected into Earth's plasmasphere from two primary sources: man-made VLF transmitters and lightning discharges. Recent studies have called into question some of the numerical models that simulate radiation injection into the plasmasphere by VLF transmitters: specifically, said models have been shown to overestimate the electromagnetic fields by at least 10 dB when compared to satellite measurements. In this study, we compared lightning-induced whistlers on the low earth orbiting DEMETER satellite with an electromagnetic, frequency domain Full Wave Method (FWM) finite element numerical code. By correlating lightning discharge time, location, and peak current data from the National Lightning Detection Network (NLDN) in the United States with burst mode electromagnetic field measurements of the whistlers on DEMETER, we were able to make an accurate estimate of the field strengths on DEMETER from the FWM simulation results for over 5000 lightning discharges over more than 10 different DEMETER passes during both the day and night. The FWM field estimates match the DEMETER measurements to less than 5 dB.
Numerical Simulation for Mechanism of Airway Narrowing in Asthma
NASA Astrophysics Data System (ADS)
Bando, Kiyoshi; Yamashita, Daisuke; Ohba, Kenkichi
A calculation model is proposed to examine the generation mechanism of the numerous lobes on the inner-wall of the airway in asthmatic patients and to clarify luminal occlusion of the airway inducing breathing difficulties. The basement membrane in the airway wall is modeled as a two-dimensional thin-walled shell having inertia force due to the mass, and the smooth muscle contraction effect is replaced by uniform transmural pressure applied to the basement membrane. A dynamic explicit finite element method is used as a numerical simulation method. To examine the validity of the present model, simulation of an asthma attack is performed. The number of lobes generated in the basement membrane increases when transmural pressure is applied in a shorter time period. When the remodeling of the basement membrane occurs characterized by thickening and hardening, it is demonstrated that the number of lobes decreases and the narrowing of the airway lumen becomes severe. Comparison of the results calculated by the present model with those measured for animal experiments of asthma will be possible.
Novel discretization schemes for the numerical simulation of membrane dynamics
NASA Astrophysics Data System (ADS)
Kolsti, Kyle F.
Motivated by the demands of simulating flapping wings of Micro Air Vehicles, novel numerical methods were developed and evaluated for the dynamic simulation of membranes. For linear membranes, a mixed-form time-continuous Galerkin method was employed using trilinear space-time elements. Rather than time-marching, the entire space-time domain was discretized and solved simultaneously. Second-order rates of convergence in both space and time were observed in numerical studies. Slight high-frequency noise was filtered during post-processing. For geometrically nonlinear membranes, the model incorporated two new schemes that were independently developed and evaluated. Time marching was performed using quintic Hermite polynomials uniquely determined by end-point jerk constraints. The single-step, implicit scheme was significantly more accurate than the most common Newmark schemes. For a simple harmonic oscillator, the scheme was found to be symplectic, frequency-preserving, and conditionally stable. Time step size was limited by accuracy requirements rather than stability. The spatial discretization scheme employed a staggered grid, grouping of nonlinear terms, and polygon shape functions in a strong-form point collocation formulation. The observed rate of convergence was two for both displacement and strain. Validation against existing experimental data showed the method to be accurate until hyperelastic effects dominate.
Influence of clearance model on numerical simulation of centrifugal pump
NASA Astrophysics Data System (ADS)
Wang, Z.; Gao, B.; Yang, L.; Du, W. Q.
2016-05-01
Computing models are always simplified to save the computing resources and time. Particularly, the clearance that between impeller and pump casing is always ignored. But the completer model is, the more precise result of numerical simulation is in theory. This paper study the influence of clearance model on numerical simulation of centrifugal pump. We present such influence via comparing performance, flow characteristic and pressure pulsation of two cases that the one of two cases is the model pump with clearance and the other is not. And the results show that the head decreases and power increases so that efficiency decreases after computing with front and back cavities. Then no-leakage model would improve absolute velocity magnitude in order to reach the rated flow rate. Finally, more disturbance induced by front cavity flow and wear-ring flow would change the pressure pulsation of impeller and volute. The performance of clearance flow is important for the whole pump in performance, flow characteristic, pressure pulsation and other respects.
Numerical grid generation in 3D Euler-flow simulation
NASA Astrophysics Data System (ADS)
Boerstoel, J. W.
1988-04-01
The technical problems with grid generation are analyzed and an overview of proposed solutions is given. The usefulness of grid-generation techniques, for the numerical simulation of Euler (and Navier-Stokes) flows around complex three-dimensional aerodynamic configurations, is illustrated. It is shown that the core of the grid-generation problem is a topology problem. The following remarks are sketched: grid generation is a subtask in a numerical simulation of a flow in industrial and research environments; the design requirements of a grid generation concern the geometrical imput, the desired grid as output, the technical means to control grid resolution and quality and turnaround time performance; the construction of a blocked grid can be subdivided in a block-decomposition task and a grid-point distribution task. A technique for using connectivity relations to define conventions about local coordinate systems in edges, faces and blocks is presented. Experiences are reported and an example concerning a 96-blocked grid around a complex aerodynamic configuration is given. Concepts for improvements in the presented technique are discussed.
Numerical simulation of premixed flame propagation in a closed tube
NASA Astrophysics Data System (ADS)
Kuzuu, Kazuto; Ishii, Katsuya; Kuwahara, Kunio
1996-08-01
Premixed flame propagation of methane-air mixture in a closed tube is estimated through a direct numerical simulation of the three-dimensional unsteady Navier-Stokes equations coupled with chemical reaction. In order to deal with a combusting flow, an extended version of the MAC method, which can be applied to a compressible flow with strong density variation, is employed as a numerical method. The chemical reaction is assumed to be an irreversible single step reaction between methane and oxygen. The chemical species are CH 4, O 2, N 2, CO 2, and H 2O. In this simulation, we reproduce a formation of a tulip flame in a closed tube during the flame propagation. Furthermore we estimate not only a two-dimensional shape but also a three-dimensional structure of the flame and flame-induced vortices, which cannot be observed in the experiments. The agreement between the calculated results and the experimental data is satisfactory, and we compare the phenomenon near the side wall with the one in the corner of the tube.
Constitutive Modeling and Numerical Simulation of Frp Confined Concrete Specimens
NASA Astrophysics Data System (ADS)
Smitha, Gopinath; Ramachandramurthy, Avadhanam; Nagesh, Ranganatha Iyer; Shahulhameed, Eduvammal Kunhimoideen
2014-09-01
Fiber-reinforced polymer (FRP) composites are generally used for the seismic retrofit of concrete members to enhance their strength and ductility. In the present work, the confining effect of Carbon Fiber-Reinforced Polymer (CFRP) composite layers has been investigated by numerical simulation. The numerical simulation has been carried out using nonlinear finite element analysis (FEA) to predict the response behaviour of CFRP-wrapped concrete cylinders. The nonlinear behaviour of concrete in compression and the linear elastic behaviour of CFRP has been modeled using an appropriate constitutive relationship. A cohesive model has been developed for modeling the interface between the concrete and CFRP. The interaction and damage failure criteria between the concrete to the cohesive element and the cohesive element to the CFRP has also been accounted for in the modeling. The response behaviour of the wrapped concrete specimen has been compared with the proposed interface model and with a perfectly bonded condition. The results obtained from the present study showed good agreement with the experimental load-displacement response and the failure pattern in the literature. Further, a sensitivity analysis has been carried out to study the effect of the number of layers of CFRP on the concrete specimens. It has been observed that wrapping with two layers was found to be the optimum, beyond which the response becomes flexible but with a higher load-carrying capacity
Numerical Simulations For the F-16XL Aircraft Configuration
NASA Technical Reports Server (NTRS)
Elmiligui, Alaa A.; Abdol-Hamid, Khaled; Cavallo, Peter A.; Parlette, Edward B.
2014-01-01
Numerical simulations of flow around the F-16XL are presented as a contribution to the Cranked Arrow Wing Aerodynamic Project International II (CAWAPI-II). The NASA Tetrahedral Unstructured Software System (TetrUSS) is used to perform numerical simulations. This CFD suite, developed and maintained by NASA Langley Research Center, includes an unstructured grid generation program called VGRID, a postprocessor named POSTGRID, and the flow solver USM3D. The CRISP CFD package is utilized to provide error estimates and grid adaption for verification of USM3D results. A subsonic high angle-of-attack case flight condition (FC) 25 is computed and analyzed. Three turbulence models are used in the calculations: the one-equation Spalart-Allmaras (SA), the two-equation shear stress transport (SST) and the ke turbulence models. Computational results, and surface static pressure profiles are presented and compared with flight data. Solution verification is performed using formal grid refinement studies, the solution of Error Transport Equations, and adaptive mesh refinement. The current study shows that the USM3D solver coupled with CRISP CFD can be used in an engineering environment in predicting vortex-flow physics on a complex configuration at flight Reynolds numbers.
Direct numerical simulation of turbulent channel flow with permeable walls
NASA Astrophysics Data System (ADS)
Hahn, Seonghyeon; Je, Jongdoo; Choi, Haecheon
2002-01-01
The main objectives of this study are to suggest a proper boundary condition at the interface between a permeable block and turbulent channel flow and to investigate the characteristics of turbulent channel flow with permeable walls. The boundary condition suggested is an extended version of that applied to laminar channel flow by Beavers & Joseph (1967) and describes the behaviour of slip velocities in the streamwise and spanwise directions at the interface between the permeable block and turbulent channel flow. With the proposed boundary condition, direct numerical simulations of turbulent channel flow that is bounded by the permeable wall are performed and significant skin-friction reductions at the permeable wall are obtained with modification of overall flow structures. The viscous sublayer thickness is decreased and the near-wall vortical structures are significantly weakened by the permeable wall. The permeable wall also reduces the turbulence intensities, Reynolds shear stress, and pressure and vorticity fluctuations throughout the channel except very near the wall. The increase of some turbulence quantities there is due to the slip-velocity fluctuations at the wall. The boundary condition proposed for the permeable wall is validated by comparing solutions with those obtained from a separate direct numerical simulation using both the Brinkman equation for the interior of a permeable block and the Navier Stokes equation for the main channel bounded by a permeable block.
A Computational Model for the Numerical Simulation of FSW Processes
NASA Astrophysics Data System (ADS)
Agelet de Saracibar, C.; Chiumenti, M.; Santiago, D.; Cervera, M.; Dialami, N.; Lombera, G.
2010-06-01
In this paper a computational model for the numerical simulation of Friction Stir Welding (FSW) processes is presented. FSW is a new method of welding in solid state in which a shouldered tool with a profile probe is rotated and slowly plunged into the joint line between two pieces of sheet or plate material which are butted together. Once the probe has been completely inserted, it is moved with a small tilt angle in the welding direction. Here a quasi-static, thermal transient, mixed multiscale stabilized Eulerian formulation is used. Norton-Hoff and Sheppard-Wright rigid thermo-viscoplastic material models have been considered. A staggered solution algorithm is defined such that for any time step, the mechanical problem is solved at constant temperature and then the thermal problem is solved keeping constant the mechanical variables. A pressure multiscale stabilized mixed linear velocity/linear pressure finite element interpolation formulation is used to solve the mechanical problem and a convection multiscale stabilized linear temperature interpolation formulation is used to solve the thermal problem. The model has been implemented into the in-house developed FE code COMET. Results obtained in the simulation of FSW process are compared to other numerical results or experimental results, when available.
Numerical Simulation of Acoustic Propagation in a Lined Duct
NASA Astrophysics Data System (ADS)
Biringen, S.; Reichert, R. S.; Yu, J.; Zorumski, W. E.
1996-11-01
An inviscid, spatial time-domain numerical simulation is employed to compute acoustic wave propagation in a duct treated with an acoustic liner. The motivation is to assess the effects on sound attenuation of bias flow passed through the liner for application to noise suppression in jet engine nacelles. Physically, the liner is composed of porous sheets with backing air cavities. The mathematical model lumps the liner presence into a continuous empirical source term which modifies the right-hand side of the momentum equations. Thus, liner effects are felt interior to the domain rather than through boundary conditions. This source term determines the time-domain effects of the frequency-domain resistance and reactance of the liner's component sheets. The source term constants are matched to frequency-domain impedance data via a one-dimensional numerical impedance tube simulation. Nonlinear behavior of the liner at high sound pressure levels is included in the form of the source term. Sound pressure levels and axially transmitted power are computed to assess the effect of various magnitudes of bias flow on attenuation.
Numerical Simulations of Floodplain Heterogeneity Effects on Meanders Migration
NASA Astrophysics Data System (ADS)
Bogoni, M.; Lanzoni, S.; Putti, M.
2014-12-01
Floodplains and sinuous rivers have a close relationship with each other, mutually influencing their evolutions in time and space. The heterogeneity in erosional resistance has a crucial role on meander planform evolution. It depends on external factors, like land use and cover, but also on the composition of the floodplain, which is due to the ancient geological composition and to the processes associated to long-term river migration. In particular, banks erosion and deposition cause a variation of the superficial composition of the soil, therefore the river patterns are influenced by the previous trends. Based on some recent works, the aim of this contribution is to collect numerical information on the relations between meander migration and the heterogeneity of floodplains caused by oxbow lakes. Numerical simulations have been performed to analyze the temporal and spatial behavior of meanders with a range of values of the erosional resistance of the plain. These values are set as a function of some factors: the characteristic grain size of sediment transported by the flow, the deposition age of the sediments, the eventual presence of vegetation on the banks. The statistical analysis of characteristic geometrical quantities of meanders are able to show the dependence of the simulation results on the meander history. In particular we try to answer to the following questions: how do the rivers affect themselves during their spatial and temporal evolution, modifying the distribution of the floodplain erodibility? Do the migration history plays a main role on the meanders migration modeling?
3D EFT imaging with planar electrode array: Numerical simulation
NASA Astrophysics Data System (ADS)
Tuykin, T.; Korjenevsky, A.
2010-04-01
Electric field tomography (EFT) is the new modality of the quasistatic electromagnetic sounding of conductive media recently investigated theoretically and realized experimentally. The demonstrated results pertain to 2D imaging with circular or linear arrays of electrodes (and the linear array provides quite poor quality of imaging). In many applications 3D imaging is essential or can increase value of the investigation significantly. In this report we present the first results of numerical simulation of the EFT imaging system with planar array of electrodes which allows 3D visualization of the subsurface conductivity distribution. The geometry of the system is similar to the geometry of our EIT breast imaging system providing 3D conductivity imaging in form of cross-sections set with different depth from the surface. The EFT principle of operation and reconstruction approach differs from the EIT system significantly. So the results of numerical simulation are important to estimate if comparable quality of imaging is possible with the new contactless method. The EFT forward problem is solved using finite difference time domain (FDTD) method for the 8×8 square electrodes array. The calculated results of measurements are used then to reconstruct conductivity distributions by the filtered backprojections along electric field lines. The reconstructed images of the simple test objects are presented.
Numerical Simulation of Flares in GRB Afterglow Phase
NASA Astrophysics Data System (ADS)
Meliani, Z.; Vlasis, A.; Keppens, R.
2012-07-01
We investigate numerically the various evolutionary phases in the interaction of relativistic shells with its surrounding cold interstellar medium (ISM) and shell-shell interaction. We do this for 1D. This is relevant for gamma-ray bursts (GRBs) and the observed flares, and we demonstrate that, thanks to the AMR strategy, we resolve the internal structure of the shocked shell and ISM matter and shell-shell matter, which will leave its imprint on the GRB afterglow. Also, we perform high resolution numerical simulations of late collisions between two ultra-relativistic shells in order to explore the flares in the afterglow phase of GRB. We examine the case where a cold uniform shell collides with a self-similar Blandford and McKee shell in a constant density environment and consider cases with different Lorentz factor and energy for the uniform shell. We produce the corresponding on-axis light curves and emission images for the afterglow phase and examine the occurrence of optical and radio flares assuming a spherical explosion and a hard-edged jet scenario. For our simulations we use the Adaptive Mesh Refinement version of the Versatile Advection Code (AMRVAC) coupled to a linear radiative transfer code to calculate synchrotron emission. We find steeply rising flare like behavior for small jet opening angles and more gradual rebrightenings for large opening angles. Synchrotron self-absorption is found to strongly influence the onset and shape of the radio flare.
Possible tsunami transmission across the Strait of Gibraltar: numerical simulations
NASA Astrophysics Data System (ADS)
Carbone, V.; Servidio, S.; Vecchio, A.; Anzidei, M.; Guerra, I.
2012-12-01
The possibility that a tsunami, generated as a consequence of the large earthquake in the Atlantic or Pacific ocean, could be recorded by the tide gauge stations located in the Mediterranean has been numerically investigated. In particular, direct numerical simulations of the nonlinear Shallow Water Equations (SWE) have been performed in order to simulate the transmission of large scale waves trough the Strait of Gibraltar. The SWE have wide applications in ocean and hydraulic engineering: tidal flows in estuary and coastal water regions, bore wave propagation, hydraulic jump, open channel flows, and so on. Among all these examples, the application of SWE to tsunamies is indeed one of the most successful. A numerical scheme, based on a Godunov-type method for solving the SWE with source term, has been proposed in Ref. [1]. In contrast to conventional data reconstruction methods based on conservative variables, the water surface level is chosen as the basis for data reconstruction. This provides accurate values of the conservative variables at cell interfaces so that the fluxes can be accurately calculated with a Riemann solver. The surface gradient method can be incorporated into any Godunov-type method which requires data reconstruction. Here, the MUSCL-Hancock finite-volume method has been combined with a body-fitted cut cell mesh [2], which can efficiently treat irregular boundaries while retaining the simplicity of a Cartesian grid implementation. Preliminary results show that incident waves, coming from the free ocean, can enter the Mediterraneum sea, passing trough the Strait. The incoming wave, altough is strongly reduced in intensity, fragmentate because of the bed profile and the interaction with the coasts, producing low ang high frequency disturbances. In agreement with observations (See Ref. [3]), these numerical simulations suggest that large tsunamis can pass through Gibraltar, initiating anomalous fluctuations in the Mediterraneum. [1] J. G. Zhou, D
Detection and thermal description of medicanes from numerical simulation
NASA Astrophysics Data System (ADS)
Picornell, M. A.; Campins, J.; Jansà, A.
2014-05-01
Tropical-like cyclones rarely affect the Mediterranean region but they can produce strong winds and heavy precipitations. These warm-core cyclones, called MEDICANES (MEDIterranean hurriCANES), are small in size, develop over the sea and are infrequent. For these reasons, the detection and forecast of medicanes are a difficult task and many efforts have been devoted to identify them. The goals of this work are to contribute to a proper description of these structures and to develop some criteria to identify medicanes from numerical weather prediction (NWP) model outputs. To do that, existing methodologies for detecting, characterizating and tracking cyclones have been adapted to small-scale intense cyclonic perturbations. First, a mesocyclone detection and tracking algorithm has been modified to select intense cyclones. Next, the parameters that define the Hart's cyclone phase diagram are tuned and calculated to examine their thermal structure. Four well-known medicane events have been described from numerical simulation outputs of the European Centre for Medium-Range Weather Forecast (ECMWF) model. The predicted cyclones and their evolution have been validated against available observational data and numerical analyses from the literature.
Detection and thermal description of medicanes from numerical simulation
NASA Astrophysics Data System (ADS)
Picornell, M. A.; Campins, J.; Jansà, A.
2013-12-01
Tropical-like cyclones rarely affect the Mediterranean region and they can produce strong winds and heavy precipitations. These warm-core cyclones, called MEDICANES (MEDIterranean hurriCANES), are small size, develop over the sea and are infrequent. For these reasons, the detection and forecast of medicanes are a difficult task and many efforts have been devoted to identify them. The goals of this work are to contribute to a proper description of these structures and to develop some criteria to identify medicanes from numerical weather prediction (NWP) model outputs. To do that, existing methodologies for detecting, characterizating and tracking cyclones have been adapted to small-scale intense cyclonic perturbations. First, a mesocyclone detection and tracking algorithm has been modified to select intense cyclones. Next, the parameters that define the Hart's cyclone phase diagram are tuned and calculated to examine their thermal structure. Four well-known medicane events have been described from numerical simulation outputs of the ECMWF model. The predicted cyclones and their evolution have been validated against available observational data and numerical analyses from literature.
Numerical Simulation of Rocket Exhaust Interaction with Lunar Soil
NASA Technical Reports Server (NTRS)
Liever, Peter; Tosh, Abhijit; Curtis, Jennifer
2012-01-01
This technology development originated from the need to assess the debris threat resulting from soil material erosion induced by landing spacecraft rocket plume impingement on extraterrestrial planetary surfaces. The impact of soil debris was observed to be highly detrimental during NASA s Apollo lunar missions and will pose a threat for any future landings on the Moon, Mars, and other exploration targets. The innovation developed under this program provides a simulation tool that combines modeling of the diverse disciplines of rocket plume impingement gas dynamics, granular soil material liberation, and soil debris particle kinetics into one unified simulation system. The Unified Flow Solver (UFS) developed by CFDRC enabled the efficient, seamless simulation of mixed continuum and rarefied rocket plume flow utilizing a novel direct numerical simulation technique of the Boltzmann gas dynamics equation. The characteristics of the soil granular material response and modeling of the erosion and liberation processes were enabled through novel first principle-based granular mechanics models developed by the University of Florida specifically for the highly irregularly shaped and cohesive lunar regolith material. These tools were integrated into a unique simulation system that accounts for all relevant physics aspects: (1) Modeling of spacecraft rocket plume impingement flow under lunar vacuum environment resulting in a mixed continuum and rarefied flow; (2) Modeling of lunar soil characteristics to capture soil-specific effects of particle size and shape composition, soil layer cohesion and granular flow physics; and (3) Accurate tracking of soil-borne debris particles beginning with aerodynamically driven motion inside the plume to purely ballistic motion in lunar far field conditions. In the earlier project phase of this innovation, the capabilities of the UFS for mixed continuum and rarefied flow situations were validated and demonstrated for lunar lander rocket
Numerical simulation of groundwater flooding: An example from the UK.
NASA Astrophysics Data System (ADS)
Hughes, A. G.; Jackson, C. R.; Vounaki, T.; Peach, D. W.; Wheater, H. S.
2008-12-01
The numerical simulation of groundwater flooding is increasingly necessary as the problem is gaining recognition from government bodies and climate change may bring more extreme events. However producing a suitable simulation of groundwater flooding involves many technical challenges. The timescale of the development of the flood can be short, recharge must be calculated correctly, the unsaturated zone must be considered as well as the "usual" suitable simulation of the saturated zone. The latter requires good simulation of absolute as well as relative values, since the timing and extent of the water table reaching the ground surface must be simulated well. All these factors combined with data scarcity makes simulation of groundwater flooding difficult. The Natural Environmental Research Council, in the UK, is funding a consortium to examine the problem of groundwater flooding in the Chalk, a micro-porous fractured limestone, which is an important aquifer for water supply in South-East England. This consortium, consisting of the British Geological Survey, Imperial College and the Centre for Ecology and Hydrology are studying groundwater flooding in the Pang and Lambourn catchments, located 50 kilometres to the west of London. A modelling system is currently under development of simulate the groundwater flooding which occurred in winter 2000/1, winter 2002/3 and summer 2007. The project has taken an existing groundwater flow model to simulate the groundwater flooding that occurred in winter 2000/1. The groundwater flow model, originally developed for another part of the catchment, has been run with daily stress periods as opposed to monthly in the original model. This reduction in the length of the stress period has resulted in a much improved simulation of the groundwater and river baseflow hydrographs during the flooding. Analysis of the time lag between recharge and groundwater rise using the model shows that there is a spatial and a temporal distribution in time
Direct numerical simulation of a combusting droplet with convection
NASA Technical Reports Server (NTRS)
Liang, Pak-Yan
1992-01-01
The evaporation and combustion of a single droplet under forced and natural convection was studied numerically from first principles using a numerical scheme that solves the time-dependent multiphase and multispecies Navier-Stokes equations and tracks the sharp gas-liquid interface cutting across an arbitrary Eulerian grid. The flow fields both inside and outside of the droplet are resolved in a unified fashion. Additional governing equations model the interphase mass, energy, and momentum exchange. Test cases involving iso-octane, n-hexane, and n-propanol droplets show reasonable comparison rate, and flame stand-off distance. The partially validated code is, thus, readied to be applied to more demanding droplet combustion situations where substantial drop deformation render classical models inadequate.
Numerical simulation of immiscible viscous fingering using adaptive unstructured meshes
NASA Astrophysics Data System (ADS)
Adam, A.; Salinas, P.; Percival, J. R.; Pavlidis, D.; Pain, C.; Muggeridge, A. H.; Jackson, M.
2015-12-01
Displacement of one fluid by another in porous media occurs in various settings including hydrocarbon recovery, CO2 storage and water purification. When the invading fluid is of lower viscosity than the resident fluid, the displacement front is subject to a Saffman-Taylor instability and is unstable to transverse perturbations. These instabilities can grow, leading to fingering of the invading fluid. Numerical simulation of viscous fingering is challenging. The physics is controlled by a complex interplay of viscous and diffusive forces and it is necessary to ensure physical diffusion dominates numerical diffusion to obtain converged solutions. This typically requires the use of high mesh resolution and high order numerical methods. This is computationally expensive. We demonstrate here the use of a novel control volume - finite element (CVFE) method along with dynamic unstructured mesh adaptivity to simulate viscous fingering with higher accuracy and lower computational cost than conventional methods. Our CVFE method employs a discontinuous representation for both pressure and velocity, allowing the use of smaller control volumes (CVs). This yields higher resolution of the saturation field which is represented CV-wise. Moreover, dynamic mesh adaptivity allows high mesh resolution to be employed where it is required to resolve the fingers and lower resolution elsewhere. We use our results to re-examine the existing criteria that have been proposed to govern the onset of instability.Mesh adaptivity requires the mapping of data from one mesh to another. Conventional methods such as consistent interpolation do not readily generalise to discontinuous fields and are non-conservative. We further contribute a general framework for interpolation of CV fields by Galerkin projection. The method is conservative, higher order and yields improved results, particularly with higher order or discontinuous elements where existing approaches are often excessively diffusive.
Numerical simulation of drop breakup and coalescence with soluble
NASA Astrophysics Data System (ADS)
Cristini, Vittorio; Lowengrub, John; Zhou, Hua; Macosko, Chris
2003-11-01
In the processing of emulsions and polymer blends, the drop size distributions are determined by two coexisting processes: drop breakup and coalescence. Here we study the effects of surfactants, e.g. block copolymers, on these phenomena and on the shear and normal stress in dilute blends by direct numerical simulation. We use a newly developed 3D adaptive algorithm. A nonlinear equation of state for the surfactant is used and van der Waals forces, which are responsible for coalescence, are included in the numerical method. Surfactants are transported by convection-diffusion on the drop/matrix interface and between the interface and the bulk phases. Our accurate and robust numerical method features parallel computation and adaptive reconstruction of the finite element meshes describing the bulk phases and the interface. We find that surfactants affect strongly the breakup and coalescence mechanisms by introducing nonuniformities in surface tension. The related Marangoni (tangential) stresses at the interface greatly inhibit coalescence but in a nontrivial fashion. At small coverages of surfactant at the interface, the critical capillary number for coalescence (below which coalescence will occur) decreases. However, at larger coverages, the critical capillary number reaches a minimum and then increases again and tends to the value for clean (surfactant-free) interfaces. This behavior was first observed experimentally by Leal and coworkers. In this talk, we demonstrate that this behavior is a consequence of a nontrivial evolution of the Marangoni stresses. We also demonstrate that under certain conditions surfactants enhance coalescence by a totally different mechanism. This surfactant induced coalescence occurs when drops are separating and the surfactant-enriched highly-stretched drop tips interact. Finally, we present preliminary results of simulations that indicate that surfactants have a strong effect on the size of the fragments resulting from drop breakup
Numerical simulations of a filament in a flowing soap film
NASA Astrophysics Data System (ADS)
Farnell, D. J. J.; David, T.; Barton, D. C.
2004-01-01
Experiments concerning the properties of soap films have recently been carried out and these systems have been proposed as experimental versions of theoretical two-dimensional liquids. A silk filament introduced into a flowing soap film, was seen to demonstrate various stable modes, and these were, namely, a mode in which the filament oscillates and one in which the filament is stationary and aligns with the flow of the liquid. The system could be forced from the oscillatory mode into the non- oscillatory mode by varying the length of the filament. In this article we use numerical and computational techniques in order to simulate the strongly coupled behaviour of the filament and the fluid. Preliminary results are presented for the specific case in which the filament is seen to oscillate continuously for the duration of our simulation. We also find that the filament oscillations are strongly suppressed when we reduce the effective length of the filament. We believe that these results are reminiscent of the different oscillatory and non-oscillatory modes observed in experiment. The numerical solutions show that, in contrast to experiment, vortices are created at the leading edge of the filament and are preferentially grown in the curvature of the filament and are eventually released from the trailing edge of the filament. In a similar manner to oscillating hydrofoils, it seems that the oscillating filaments are in a minimal energy state, extracting sufficient energy from the fluid to oscillate. In comparing numerical and experimental results it is possible that the soap film does have an effect on the fluid flow especially in the boundary layer where surface tension forces are large.
Numerical methods for large eddy simulation of acoustic combustion instabilities
NASA Astrophysics Data System (ADS)
Wall, Clifton T.
Acoustic combustion instabilities occur when interaction between the combustion process and acoustic modes in a combustor results in periodic oscillations in pressure, velocity, and heat release. If sufficiently large in amplitude, these instabilities can cause operational difficulties or the failure of combustor hardware. In many situations, the dominant instability is the result of the interaction between a low frequency acoustic mode of the combustor and the large scale hydrodynamics. Large eddy simulation (LES), therefore, is a promising tool for the prediction of these instabilities, since both the low frequency acoustic modes and the large scale hydrodynamics are well resolved in LES. Problems with the tractability of such simulations arise, however, due to the difficulty of solving the compressible Navier-Stokes equations efficiently at low Mach number and due to the large number of acoustic periods that are often required for such instabilities to reach limit cycles. An implicit numerical method for the solution of the compressible Navier-Stokes equations has been developed which avoids the acoustic CFL restriction, allowing for significant efficiency gains at low Mach number, while still resolving the low frequency acoustic modes of interest. In the limit of a uniform grid the numerical method causes no artificial damping of acoustic waves. New, non-reflecting boundary conditions have also been developed for use with the characteristic-based approach of Poinsot and Lele (1992). The new boundary conditions are implemented in a manner which allows for significant reduction of the computational domain of an LES by eliminating the need to perform LES in regions where one-dimensional acoustics significantly affect the instability but details of the hydrodynamics do not. These new numerical techniques have been demonstrated in an LES of an experimental combustor. The new techniques are shown to be an efficient means of performing LES of acoustic combustion
Entropy Splitting for High Order Numerical Simulation of Compressible Turbulence
NASA Technical Reports Server (NTRS)
Sandham, N. D.; Yee, H. C.; Kwak, Dochan (Technical Monitor)
2000-01-01
A stable high order numerical scheme for direct numerical simulation (DNS) of shock-free compressible turbulence is presented. The method is applicable to general geometries. It contains no upwinding, artificial dissipation, or filtering. Instead the method relies on the stabilizing mechanisms of an appropriate conditioning of the governing equations and the use of compatible spatial difference operators for the interior points (interior scheme) as well as the boundary points (boundary scheme). An entropy splitting approach splits the inviscid flux derivatives into conservative and non-conservative portions. The spatial difference operators satisfy a summation by parts condition leading to a stable scheme (combined interior and boundary schemes) for the initial boundary value problem using a generalized energy estimate. A Laplacian formulation of the viscous and heat conduction terms on the right hand side of the Navier-Stokes equations is used to ensure that any tendency to odd-even decoupling associated with central schemes can be countered by the fluid viscosity. A special formulation of the continuity equation is used, based on similar arguments. The resulting methods are able to minimize spurious high frequency oscillation producing nonlinear instability associated with pure central schemes, especially for long time integration simulation such as DNS. For validation purposes, the methods are tested in a DNS of compressible turbulent plane channel flow at a friction Mach number of 0.1 where a very accurate turbulence data base exists. It is demonstrated that the methods are robust in terms of grid resolution, and in good agreement with incompressible channel data, as expected at this Mach number. Accurate turbulence statistics can be obtained with moderate grid sizes. Stability limits on the range of the splitting parameter are determined from numerical tests.
Numerical Methods and Simulations of Complex Multiphase Flows
NASA Astrophysics Data System (ADS)
Brady, Peter
Multiphase flows are an important part of many natural and technological phenomena such as ocean-air coupling (which is important for climate modeling) and the atomization of liquid fuel jets in combustion engines. The unique challenges of multiphase flow often make analytical solutions to the governing equations impossible and experimental investigations very difficult. Thus, high-fidelity numerical simulations can play a pivotal role in understanding these systems. This dissertation describes numerical methods developed for complex multiphase flows and the simulations performed using these methods. First, the issue of multiphase code verification is addressed. Code verification answers the question "Is this code solving the equations correctly?" The method of manufactured solutions (MMS) is a procedure for generating exact benchmark solutions which can test the most general capabilities of a code. The chief obstacle to applying MMS to multiphase flow lies in the discontinuous nature of the material properties at the interface. An extension of the MMS procedure to multiphase flow is presented, using an adaptive marching tetrahedron style algorithm to compute the source terms near the interface. Guidelines for the use of the MMS to help locate coding mistakes are also detailed. Three multiphase systems are then investigated: (1) the thermocapillary motion of three-dimensional and axisymmetric drops in a confined apparatus, (2) the flow of two immiscible fluids completely filling an enclosed cylinder and driven by the rotation of the bottom endwall, and (3) the atomization of a single drop subjected to a high shear turbulent flow. The systems are simulated numerically by solving the full multiphase Navier-Stokes equations coupled to the various equations of state and a level set interface tracking scheme based on the refined level set grid method. The codes have been parallelized using MPI in order to take advantage of today's very large parallel computational
Numerical simulation of observations with GOLF on board SOHO
NASA Astrophysics Data System (ADS)
Garcia, R. A.; Roca Cortes, T.; Regulo, C.
1998-03-01
The main objective of the GOLF Experiment (Global Oscillations at Low Frequencies) on-board the SOHO (Solar and Heliospheric Observatory) space mission is the quantitative knowledge of the internal structure of the Sun by measuring the spectrum of its global oscillations in a wide frequency range (30 nHz to 6 mHz). There is special interest in detecting the low l p- and g-modes (low frequency modes) which penetrate deeply down into the solar core. The instrument chosen is an improved disk-integrated sunlight resonant scattering spectrophotometer. It obtains the line of sight velocity of the integrated visible solar surface by measuring the Doppler shift of the sodium doublet. Mainly, two innovations have been incorporated to standard earth-based similar apparatus (those from the networks IRIS and BISON). First, GOLF samples each line of the sodium doublet in principle at four points on its wings, using an extra small modulated magnetic field. This new information enables an instantaneous calibration of the measured signal and also opens the possibility to correct from the background solar velocity noise. Second, the use of an extra fixed quarter wave plate, placed at the entrance of the instrument, enables a selection of the circularly polarized solar light. Therefore, the disk averaged solar line-of-sight component of the magnetic field can also be obtained. This is considered as a secondary objective of the mission. In order to study the new information available due to these improvements in the apparatus, the necessity of fully understanding it and the need to write the appropriate software to analyze the data, a complete numerical simulation of the experiment has been built. Running the simulation has yielded two series of 12 months long each, one corresponding to a year of maximum solar activity and the other to a year of minimum solar activity. In this paper the numerical simulation of the GOLF experiment is presented, its sensitivity and instrumental
Numerical Simulation of a High-Lift Configuration with Embedded Fluidic Actuators
NASA Technical Reports Server (NTRS)
Vatsa, Veer N.; Casalino, Damiano; Lin, John C.; Appelbaum, Jason
2014-01-01
Numerical simulations have been performed for a vertical tail configuration with deflected rudder. The suction surface of the main element of this configuration is embedded with an array of 32 fluidic actuators that produce oscillating sweeping jets. Such oscillating jets have been found to be very effective for flow control applications in the past. In the current paper, a high-fidelity computational fluid dynamics (CFD) code known as the PowerFLOW(Registered TradeMark) code is used to simulate the entire flow field associated with this configuration, including the flow inside the actuators. The computed results for the surface pressure and integrated forces compare favorably with measured data. In addition, numerical solutions predict the correct trends in forces with active flow control compared to the no control case. Effect of varying yaw and rudder deflection angles are also presented. In addition, computations have been performed at a higher Reynolds number to assess the performance of fluidic actuators at flight conditions.
Direct numerical simulation of free falling sphere in creeping flow
NASA Astrophysics Data System (ADS)
Reddy, Rupesh K.; Jin, Shi; Nandakumar, K.; Minev, Peter D.; Joshi, Jyeshtharaj B.
2010-03-01
In the present study, direct numerical simulations (DNS) are performed on single and a swarm of particles settling under the action of gravity. The simulations have been carried out in the creeping flow range of Reynolds number from 0.01 to 1 for understanding the hindrance effect, of the other particles, on the settling velocity and drag coefficient. The DNS code is a non-Lagrange multiplier-based fictitious-domain method, which has been developed and validated by Jin et al. (2008; A parallel algorithm for the direct numerical simulation of 3D inertial particle sedimentation. In: Conference proceedings of the 16th annual conference of the CFD Society of Canada). It has been observed that the time averaged settling velocity of the particle in the presence of other particles, decreases with an increase in the number of particles surrounding it (from 9 particles to 245 particles). The effect of the particle volume fraction on the drag coefficient has also been studied and it has been observed that the computed values of drag coefficients are in good agreement with the correlations proposed by Richardson and Zaki (1954; Sedimentation and fluidization: part I. Transactions of the Institution of Chemical Engineers, 32, 35-53) and Pandit and Joshi (1998; Pressure drop in packed, expanded and fluidised beds, packed columns and static mixers - a unified approach. Reviews in Chemical Engineering, 14, 321-371). The suspension viscosity-based model of Frankel and Acrivos (1967; On the viscosity of a concentrated suspension of solid spheres. Chemical Engineering Science, 22, 847-853) shows good agreement with the DNS results.
Numerical Simulation of Long-period Surface Wave in Sediments
NASA Astrophysics Data System (ADS)
Li, Yiqiong; Yu, Yanxiang
2016-04-01
Studies have shown that the western Taiwan coastal plain is influenced by long-period ground motion from the 1999 Chi-Chi, Taiwan, earthquake, and engineering structures with natural vibration long-period are damaged by strong surface wave in the western coastal plain. The thick sediments in the western coastal plain are the main cause of the propagation of strong long-period ground motion. The thick sediments similar to in the western coastal plain also exist in northern China. It is necessary to research the effects of thick sediments to long-period ground motion in northern China. The numerical simulation of ground motion based on theoretical seismology is one of important means to study the ground motion. We will carry out the numerical simulation of long-period ground motion in northern China by using the existing tomographic imaging results of northern China to build underground medium model, and adopting finite fault source model for wave input. In the process of simulation, our previous developed structure-preserving algorithm, symplectic discrete singular convolution differentiator (SDSCD), is used to deal with seismic wave field propagation. Our purpose is to reveal the formation and propagation of long-period surface wave in thick sediments and grasp the amplification effect of long-period ground motion due to the thick sediments. It will lay the foundation on providing the reference for the value of the long-period spectrum during determining the ground motion parameters in seismic design. This work has been supported by the National Natural Science Foundation of China (Grant No.41204046, 42574051).
Carbon Dioxide Dispersion in the Combustion Integrated Rack Simulated Numerically
NASA Technical Reports Server (NTRS)
Wu, Ming-Shin; Ruff, Gary A.
2004-01-01
When discharged into an International Space Station (ISS) payload rack, a carbon dioxide (CO2) portable fire extinguisher (PFE) must extinguish a fire by decreasing the oxygen in the rack by 50 percent within 60 sec. The length of time needed for this oxygen reduction throughout the rack and the length of time that the CO2 concentration remains high enough to prevent the fire from reigniting is important when determining the effectiveness of the response and postfire procedures. Furthermore, in the absence of gravity, the local flow velocity can make the difference between a fire that spreads rapidly and one that self-extinguishes after ignition. A numerical simulation of the discharge of CO2 from PFE into the Combustion Integrated Rack (CIR) in microgravity was performed to obtain the local velocity and CO2 concentration. The complicated flow field around the PFE nozzle exits was modeled by sources of equivalent mass and momentum flux at a location downstream of the nozzle. The time for the concentration of CO2 to reach a level that would extinguish a fire anywhere in the rack was determined using the Fire Dynamics Simulator (FDS), a computational fluid dynamics code developed by the National Institute of Standards and Technology specifically to evaluate the development of a fire and smoke transport. The simulation shows that CO2, as well as any smoke and combustion gases produced by a fire, would be discharged into the ISS cabin through the resource utility panel at the bottom of the rack. These simulations will be validated by comparing the results with velocity and CO2 concentration measurements obtained during the fire suppression system verification tests conducted on the CIR in March 2003. Once these numerical simulations are validated, portions of the ISS labs and living areas will be modeled to determine the local flow conditions before, during, and after a fire event. These simulations can yield specific information about how long it takes for smoke and
Validation of numerical models for flow simulation in labyrinth seals
NASA Astrophysics Data System (ADS)
Frączek, D.; Wróblewski, W.
2016-10-01
CFD results were compared with the results of experiments for the flow through the labyrinth seal. RANS turbulence models (k-epsilon, k-omega, SST and SST-SAS) were selected for the study. Steady and transient results were analyzed. ANSYS CFX was used for numerical computation. The analysis included flow through sealing section with the honeycomb land. Leakage flows and velocity profiles in the seal were compared. In addition to the comparison of computational models, the divergence of modeling and experimental results has been determined. Tips for modeling these problems were formulated.
Aspects of Numerical Simulation of Circulation Control Airfoils
NASA Technical Reports Server (NTRS)
Swanson, R. C.; Rumsey, C. L.; Anders, S. G.
2005-01-01
The mass-averaged compressible Navier-Stokes equations are solved for circulation control airfoils. Numerical solutions are computed with a multigrid method that uses an implicit approximate factorization smoother. The effects of flow conditions (e.g., free-stream Mach number, angle of attack, momentum coefficient) and mesh on the prediction of circulation control airfoil flows are considered. In addition, the impact of turbulence modeling, including curvature effects and modifications to reduce eddy viscosity levels in the wall jet (i.e., Coanda flow), is discussed. Computed pressure distributions are compared with available experimental data.
Numerical simulation of a self-propelled copepod during escape
NASA Astrophysics Data System (ADS)
Sotiropoulos, Fotis; Borazjani, Iman; Malkiel, Edwin; Katz, Josef
2008-11-01
Obtaining the 3D flow field, forces, and power is essential for understanding the high accelerations of a copepod during the escap. We carry out numerical simulations to study a free swimming copepod using the sharp-interface immersed boundary, fluid-structure interaction (FSI) approach of Borazjani et al. (J Compu Phys, 2008, 227, p 7587-7620). We use our previous tethered copepod model with a realistic copepod-like body, including all the appendages with the appendages motion prescribed from high-resolution, cinematic dual digital holography. The simulations are performed in a frame of reference attached to the copepod whose velocity is calculated by considering the forces acting on the copepod. The self-propelled simulations are challenging due to the destabilizing effects of the large added mass resulting from the low copepod mass and fast acceleration during the escape. Strongly-coupled FSI with under-relaxation and the Aitken acceleration technique is used to obtain stable and robust FSI iterations. The computed results for the self-propelled model are analyzed and compared with our earlier results for the tethered model.
Numerical Simulation of Flow Field Within Parallel Plate Plastometer
NASA Technical Reports Server (NTRS)
Antar, Basil N.
2002-01-01
Parallel Plate Plastometer (PPP) is a device commonly used for measuring the viscosity of high polymers at low rates of shear in the range 10(exp 4) to 10(exp 9) poises. This device is being validated for use in measuring the viscosity of liquid glasses at high temperatures having similar ranges for the viscosity values. PPP instrument consists of two similar parallel plates, both in the range of 1 inch in diameter with the upper plate being movable while the lower one is kept stationary. Load is applied to the upper plate by means of a beam connected to shaft attached to the upper plate. The viscosity of the fluid is deduced from measuring the variation of the plate separation, h, as a function of time when a specified fixed load is applied on the beam. Operating plate speeds measured with the PPP is usually in the range of 10.3 cm/s or lower. The flow field within the PPP can be simulated using the equations of motion of fluid flow for this configuration. With flow speeds in the range quoted above the flow field between the two plates is certainly incompressible and laminar. Such flows can be easily simulated using numerical modeling with computational fluid dynamics (CFD) codes. We present below the mathematical model used to simulate this flow field and also the solutions obtained for the flow using a commercially available finite element CFD code.
Numerical Simulation of Sickle Cell Blood Flow in the Microcirculation
NASA Astrophysics Data System (ADS)
Berger, Stanley A.; Carlson, Brian E.
2001-11-01
A numerical simulation of normal and sickle cell blood flow through the transverse arteriole-capillary microcirculation is carried out to model the dominant mechanisms involved in the onset of vascular stasis in sickle cell disease. The transverse arteriole-capillary network is described by Strahler's network branching method, and the oxygen and blood transport in the capillaries is modeled by a Krogh cylinder analysis utilizing Lighthill's lubrication theory, as developed by Berger and King. Poiseuille's law is used to represent blood flow in the arterioles. Applying this flow and transport model and utilizing volumetric flow continuity at each network bifurcation, a nonlinear system of equations is obtained, which is solved iteratively using a steepest descent algorithm coupled with a Newton solver. Ten different networks are generated and flow results are calculated for normal blood and sickle cell blood without and with precapillary oxygen loss. We find that total volumetric blood flow through the network is greater in the two sickle cell blood simulations than for normal blood owing to the anemia associated with sickle cell disease. The percentage of capillary blockage in the network increases dramatically with decreasing pressure drop across the network in the sickle cell cases while there is no blockage when normal blood flows through simulated networks. It is concluded that, in sickle cell disease, without any vasomotor dilation response to decreasing oxygen concentrations in the blood, capillary blockage will occur in the microvasculature even at average pressure drops across the transverse arteriole-capillary networks.
Direct Numerical Simulation of a Weakly Stratified Turbulent Wake
NASA Technical Reports Server (NTRS)
Redford, J. A.; Lund, T. S.; Coleman, Gary N.
2014-01-01
Direct numerical simulation (DNS) is used to investigate a time-dependent turbulent wake evolving in a stably stratified background. A large initial Froude number is chosen to allow the wake to become fully turbulent and axisymmetric before stratification affects the spreading rate of the mean defect. The uncertainty introduced by the finite sample size associated with gathering statistics from a simulation of a time-dependent flow is reduced, compared to earlier simulations of this flow. The DNS reveals the buoyancy-induced changes to the turbulence structure, as well as to the mean-defect history and the terms in the mean-momentum and turbulence-kinetic-energy budgets, that characterize the various states of this flow - namely the three-dimensional (essentially unstratified), non-equilibrium (or 'wake-collapse') and quasi-two-dimensional (or 'two-component') regimes observed elsewhere for wakes embedded in both weakly and strongly stratified backgrounds. The wake-collapse regime is not accompanied by transfer (or 'reconversion') of the potential energy of the turbulence to the kinetic energy of the turbulence, implying that this is not an essential feature of stratified-wake dynamics. The dependence upon Reynolds number of the duration of the wake-collapse period is demonstrated, and the effect of the details of the initial/near-field conditions of the wake on its subsequent development is examined.
A simplified DEM numerical simulation of vibroflotation without backfill
NASA Astrophysics Data System (ADS)
Jiang, M. J.; Liu, W. W.; He, J.; Sun, Y.
2015-09-01
Vibroflotation is one of the deep vibratory compaction techniques for ground reinforcement. This method densities the soil and improves its mechanical properties, thus helps to protect people's lives and property from geological disasters. The macro reinforcement mechanisms of vibroflotation method have been investigated by numerical simulations, laboratory and in-situ experiments. However, little attention has been paid on its micro - mechanism, which is essential to fully understand the principle of the ground reinforcement. Discrete element method (DEM), based on discrete mechanics, is more powerful to solve large deformation and failure problems. This paper investigated the macro-micro mechanism of vibroflotation without backfill under two conditions, i.e., whether or not the ground water was considered, by incorporating inter-particle rolling resistance model in the DEM simulations. Conclusions obtained are as follows: The DEM simulations incorporating rolling resistance well replicate the mechanical response of the soil assemblages and are in line with practical observations. The void ratio of the granular soil fluctuates up and down in the process of vibroflotation, and finally reduces to a lower value. It is more efficient to densify the ground without water compared to the ground with water.
Numerical Simulation of a Solar Domestic Hot Water System
NASA Astrophysics Data System (ADS)
Mongibello, L.; Bianco, N.; Di Somma, M.; Graditi, G.; Naso, V.
2014-11-01
An innovative transient numerical model is presented for the simulation of a solar Domestic Hot Water (DHW) system. The solar collectors have been simulated by using a zerodimensional analytical model. The temperature distributions in the heat transfer fluid and in the water inside the tank have been evaluated by one-dimensional models. The reversion elimination algorithm has been used to include the effects of natural convection among the water layers at different heights in the tank on the thermal stratification. A finite difference implicit scheme has been implemented to solve the energy conservation equation in the coil heat exchanger, and the energy conservation equation in the tank has been solved by using the finite difference Euler implicit scheme. Energy conservation equations for the solar DHW components models have been coupled by means of a home-made implicit algorithm. Results of the simulation performed using as input data the experimental values of the ambient temperature and the solar irradiance in a summer day are presented and discussed.
Numerical simulation of plasma transport driven by the Io torus
NASA Technical Reports Server (NTRS)
Yang, Y. S.; Wolf, R. A.; Spiro, R. W.; Dessler, A. J.
1992-01-01
The Rice convection model (RCM) has been modified to a form suitable for Jupiter (RCM-J) to study plasma interchange motion in and near the Io plasma torus. The net result of the interchange is that flux tubes, heavily loaded with torus plasma, are transported outward, to be replaced by tubes containing little low-energy (less than 1 keV) plasma. The process is numerically simulated in terms of time evolution from an initial torus that is longitudinally asymmetric and with gradually decreasing density outward from Io's orbit. In the simulations, the nonlinear stage of the instability characteristically exhibits outreaching fingers of heavily-loaded flux tubes that lengthen at an accelerating rate. The principal finding is that the primary geometrical form of outward transport of torus plasma in Jupiter's magnetosphere is through long, outward-moving fingers of plasma. In the simulations, the fingers mainly form in the active sector of the Io torus (the heavier side of the asymmetric torus), and they are spaced longitudinally roughly 20 deg apart.
Magnetohydrodynamic Numerical Simulations of Magnetic Reconnection in Interstellar Medium
NASA Astrophysics Data System (ADS)
Tanuma, Syuniti
2000-03-01
In this thesis, we perform two-dimensional (2D) resistive magnetohydrodynamic (MHD) numerical simulations of the magnetic reconnection in interstellar medium. Part I is introduction. The motivation of the study is to investigate the origin of hot gas in interstellar medium. A scenario for generating X-ray gas in Galaxy is proposed, and examined by performing 2D MHD simulations with simple assumptions (Part II). The magnetic reconnection triggered by a supernova (Part III) and Parker instability (Part IV) are studied in detail, by performing 2D MHD simulations. Furthermore, the magnetic reconnection is also studied by performing three-dimensional (3D) MHD numerical simulation in (Part V). % Finally, we discuss and summarize the thesis (Parts VI and VII). Part I First, we review observation of Galactic Ridge X-ray Emission (GRXE) and its problems. Second, we describe observation of interstellar magnetic field briefly. Third, we review magnetic reconnection, theoretical models, numerical simulations, observations and experiments, and tearing instability. Forth, Parker instability (undular mode of magnetobuoyancy instability) is mentioned. Finally, we show the purpose of this thesis. Part II We present a scenario for the origin of the hot plasma in Galaxy as a model of strong X-ray emission [sim 3-10 keV; LX(2-10 keV) sim 1038 erg s-1], called GRXE, which has been observed near to the galactic plane. GRXE is thermal emission from a hot component (sim 7 keV) and a cool component (sim 0.8 keV). Observations suggest that the hot component is diffuse, and that it is not escaping away freely. Both what heats the hot component and what confines it in Galactic ridge still remain puzzling, while the cool component is believed to be created by supernovae. We propose a new scenario: the hot component is heated by magnetic reconnection, and confined by a helical magnetic field produced by magnetic reconnection. We solved 2D MHD equations numerically to study how magnetic
Comparing Numerical Spall Simulations with a Nonlinear Spall Formation Model
NASA Astrophysics Data System (ADS)
Ong, L.; Melosh, H. J.
2012-12-01
Spallation accelerates lightly shocked ejecta fragments to speeds that can exceed the escape velocity of the parent body. We present high-resolution simulations of nonlinear shock interactions in the near surface. Initial results show the acceleration of near-surface material to velocities up to 1.8 times greater than the peak particle velocity in the detached shock, while experiencing little to no shock pressure. These simulations suggest a possible nonlinear spallation mechanism to produce the high-velocity, low show pressure meteorites from other planets. Here we pre-sent the numerical simulations that test the production of spall through nonlinear shock interactions in the near sur-face, and compare the results with a model proposed by Kamegai (1986 Lawrence Livermore National Laboratory Report). We simulate near-surface shock interactions using the SALES_2 hydrocode and the Murnaghan equation of state. We model the shock interactions in two geometries: rectangular and spherical. In the rectangular case, we model a planar shock approaching the surface at a constant angle phi. In the spherical case, the shock originates at a point below the surface of the domain and radiates spherically from that point. The angle of the shock front with the surface is dependent on the radial distance of the surface point from the shock origin. We model the target as a solid with a nonlinear Murnaghan equation of state. This idealized equation of state supports nonlinear shocks but is tem-perature independent. We track the maximum pressure and maximum velocity attained in every cell in our simula-tions and compare them to the Hugoniot equations that describe the material conditions in front of and behind the shock. Our simulations demonstrate that nonlinear shock interactions in the near surface produce lightly shocked high-velocity material for both planar and cylindrical shocks. The spall is the result of the free surface boundary condi-tion, which forces a pressure gradient
Understanding disordered systems through numerical simulation and algorithm development
NASA Astrophysics Data System (ADS)
Sweeney, Sean Michael
Disordered systems arise in many physical contexts. Not all matter is uniform, and impurities or heterogeneities can be modeled by fixed random disorder. Numerous complex networks also possess fixed disorder, leading to applications in transportation systems, telecommunications, social networks, and epidemic modeling, to name a few. Due to their random nature and power law critical behavior, disordered systems are difficult to study analytically. Numerical simulation can help overcome this hurdle by allowing for the rapid computation of system states. In order to get precise statistics and extrapolate to the thermodynamic limit, large systems must be studied over many realizations. Thus, innovative algorithm development is essential in order reduce memory or running time requirements of simulations. This thesis presents a review of disordered systems, as well as a thorough study of two particular systems through numerical simulation, algorithm development and optimization, and careful statistical analysis of scaling properties. Chapter 1 provides a thorough overview of disordered systems, the history of their study in the physics community, and the development of techniques used to study them. Topics of quenched disorder, phase transitions, the renormalization group, criticality, and scale invariance are discussed. Several prominent models of disordered systems are also explained. Lastly, analysis techniques used in studying disordered systems are covered. In Chapter 2, minimal spanning trees on critical percolation clusters are studied, motivated in part by an analytic perturbation expansion by Jackson and Read that I check against numerical calculations. This system has a direct mapping to the ground state of the strongly disordered spin glass. We compute the path length fractal dimension of these trees in dimensions d = {2, 3, 4, 5} and find our results to be compatible with the analytic results suggested by Jackson and Read. In Chapter 3, the random bond Ising
Numerical simulation of the radiation environment on Martian surface
NASA Astrophysics Data System (ADS)
Zhao, L.
2015-12-01
The radiation environment on the Martian surface is significantly different from that on earth. Existing observation and studies reveal that the radiation environment on the Martian surface is highly variable regarding to both short- and long-term time scales. For example, its dose rate presents diurnal and seasonal variations associated with atmospheric pressure changes. Moreover, dose rate is also strongly influenced by the modulation from GCR flux. Numerical simulation and theoretical explanations are required to understand the mechanisms behind these features, and to predict the time variation of radiation environment on the Martian surface if aircraft is supposed to land on it in near future. The high energy galactic cosmic rays (GCRs) which are ubiquitous throughout the solar system are highly penetrating and extremely difficult to shield against beyond the Earth's protective atmosphere and magnetosphere. The goal of this article is to evaluate the long term radiation risk on the Martian surface. Therefore, we need to develop a realistic time-dependent GCR model, which will be integrated with Geant4 transport code subsequently to reproduce the observed variation of surface dose rate associated with the changing heliospheric conditions. In general, the propagation of cosmic rays in the interplanetary medium can be described by a Fokker-Planck equation (or Parker equation). In last decade,we witnessed a fast development of GCR transport models within the heliosphere based on accurate gas-dynamic and MHD backgrounds from global models of the heliosphere. The global MHD simulation produces a more realistic pattern of the 3-D heliospheric structure, as well as the interface between the solar system and the surrounding interstellar space. As a consequence, integrating plasma background obtained from global-dependent 3-D MHD simulation and stochastic Parker transport simulation, we expect to produce an accurate global physical-based GCR modulation model. Combined
Large eddy simulations and direct numerical simulations of high speed turbulent reacting flows
NASA Technical Reports Server (NTRS)
Givi, Peyman; Madnia, Cyrus K.; Steinberger, Craig J.
1990-01-01
This research is involved with the implementation of advanced computational schemes based on large eddy simulations (LES) and direct numerical simulations (DNS) to study the phenomenon of mixing and its coupling with chemical reactions in compressible turbulent flows. In the efforts related to LES, a research program to extend the present capabilities of this method was initiated for the treatment of chemically reacting flows. In the DNS efforts, the focus is on detailed investigations of the effects of compressibility, heat release, and non-equilibrium kinetics modelings in high speed reacting flows. Emphasis was on the simulations of simple flows, namely homogeneous compressible flows, and temporally developing high speed mixing layers.
Numerical simulation of a battlefield Nd:YAG laser
NASA Astrophysics Data System (ADS)
Henriksson, Markus; Sjoqvist, Lars; Uhrwing, Thomas
2005-11-01
A numeric model has been developed to identify the critical components and parameters in improving the output beam quality of a flashlamp pumped Q-switched Nd:YAG laser with a folded Porro-prism resonator and polarization output coupling. The heating of the laser material and accompanying thermo-optical effects are calculated using the finite element partial differential equations package FEMLAB allowing arbitrary geometries and time distributions. The laser gain and the cavity are modeled with the physical optics simulation code GLAD including effects such as gain profile, thermal lensing and stress-induced birefringence, the Pockels cell rise-time and component aberrations. The model is intended to optimize the pumping process of an OPO providing radiation to be used for ranging, imaging or optical countermeasures.
Direct numerical simulation of turbulence using GPU accelerated supercomputers
NASA Astrophysics Data System (ADS)
Khajeh-Saeed, Ali; Blair Perot, J.
2013-02-01
Direct numerical simulations of turbulence are optimized for up to 192 graphics processors. The results from two large GPU clusters are compared to the performance of corresponding CPU clusters. A number of important algorithm changes are necessary to access the full computational power of graphics processors and these adaptations are discussed. It is shown that the handling of subdomain communication becomes even more critical when using GPU based supercomputers. The potential for overlap of MPI communication with GPU computation is analyzed and then optimized. Detailed timings reveal that the internal calculations are now so efficient that the operations related to MPI communication are the primary scaling bottleneck at all but the very largest problem sizes that can fit on the hardware. This work gives a glimpse of the CFD performance issues will dominate many hardware platform in the near future.
Numerical Simulation of Dual-Mode Scramjet Combustors
NASA Technical Reports Server (NTRS)
Rodriguez, C. G.; Riggins, D. W.; Bittner, R. D.
2000-01-01
Results of a numerical investigation of a three-dimensional dual-mode scramjet isolator-combustor flow-field are presented. Specifically, the effect of wall cooling on upstream interaction and flow-structure is examined for a case assuming jet-to-jet symmetry within the combustor. Comparisons are made with available experimental wall pressures. The full half-duct for the isolator-combustor is then modeled in order to study the influence of side-walls. Large scale three-dimensionality is observed in the flow with massive separation forward on the side-walls of the duct. A brief review of convergence-acceleration techniques useful in dual-mode simulations is presented, followed by recommendations regarding the development of a reliable and unambiguous experimental data base for guiding CFD code assessments in this area.
Observation and numerical simulation of a convective initiation during COHMEX
NASA Technical Reports Server (NTRS)
Song, J. Aaron; Kaplan, Michael L.
1991-01-01
Under a synoptically undisturbed condition, a dual-peak convective lifecycle was observed with the COoperative Huntsville Meteorological EXperiment (COHMEX) observational network over a 24-hour period. The lifecycle included a multicell storm, which lasted about 6 hours, produced a peak rainrate exceeding 100 mm/hr, and initiated a downstream mesoscale convective system. The 24-hour accumulated rainfall of this event was the largest during the entire COHMEX. The downstream mesoscale convective system, unfortunately, was difficult to investigate quantitatively due to the lack of mesoscale observations. The dataset collected near the time of the multicell storm evolution, including its initiation, was one of the best datasets of COHMEX. In this study, the initiation of this multicell storm is chosen as the target of the numerical simulations.
Numerical Simulation of Gas Leaking Diffusion from Storage Tank
NASA Astrophysics Data System (ADS)
Zhu, Hongjun; Jing, Jiaqiang
Over 80 percents of storage tank accidents are caused by gas leaking. Since traditional empirical calculation has great errors, present work aims to study the gas leaking diffusion under different wind conditions by numerical simulation method based on computational fluid dynamics theory. Then gas concentration distribution was obtained to determine the scope of the security zone. The results showed that gas diffused freely along the axis of leaking point without wind, giving rise to large range of hazardous area. However, wind plays the role of migrating and diluting the leaking gas. The larger is the wind speed, the smaller is the damage and the bigger is the security zone. Calculation method and results can provide some reference to establish and implement rescue program for accidents.
Numerical simulation of high Reynolds number bubble motion
McLaughlin, J.B.
1995-12-31
This paper presents the results of numerical simulations of bubble motion. All the results are for single bubbles in unbounded fluids. The liquid phase is quiescent except for the motion created by the bubble, which is axisymmetric. The main focus of the paper is on bubbles that are of order 1 mm in diameter in water. Of particular interest is the effect of surfactant molecules on bubble motion. Results for the {open_quotes}insoluble surfactant{close_quotes} model will be presented. These results extend research by other investigators to finite Reynolds numbers. The results indicate that, by assuming complete coverage of the bubble surface, one obtains good agreement with experimental observations of bubble motion in tap water. The effect of surfactant concentration on the separation angle is discussed.
Numerical simulation of duct flow with fog droplets
NASA Astrophysics Data System (ADS)
Suryan, Abhilash; Lee, J. K.; Kim, D. S.; Kim, H. D.
2010-12-01
Evaporative cooling is a widely used air cooling technique. In this method, evaporation of a liquid in the surrounding air cools the air in contact with it. In the current investigation, numerical simulations are carried out to visualize the evaporation and dynamics of tiny water droplets of different diameters in a long air duct. The effect of initial droplet size on the temperature and relative humidity distribution of the air stream in the duct is investigated. Three different initial conditions of air are considered to verify the influence of ambient conditions. Droplet spray patterns are also analyzed to identify the suitable locations for the spray nozzles within the duct. The results obtained are displayed in a series of plots to provide a clear understanding of the evaporative cooling process as well as the droplet dynamics within the ducts.
Direct numerical simulation and analysis of shock turbulence interaction
NASA Technical Reports Server (NTRS)
Lee, Sangsan; Lele, Sanjiva K.; Moin, Parviz
1991-01-01
Two kinds of linear analysis, rapid distortion theory (RDT) and linear interaction analysis (LIA), were used to investigate the effects of a shock wave on turbulence. Direct numerical simulations of two-dimensional isotropic turbulence interaction with a normal shock were also performed. The results from RDT and LIA are in good agreement for weak shock waves, where the effects of shock front curvature and shock front unsteadiness are not significant in producing vorticity. The linear analyses predict wavenumber-dependent amplification of the upstream one-dimensional energy spectrum, leading to turbulence scale length scale decrease through the interaction. Instantaneous vorticity fields show that vortical structures are enhanced while they are compressed in the shock normal direction. Entrophy amplfication through the shock wave compares favorably with the results of linear analyses.
Numerical simulation of a radially injected barium cloud
NASA Technical Reports Server (NTRS)
Swift, D. W.; Wescott, E. M.
1981-01-01
Electrostatic two-dimensional numerical simulations of a radially symmetric barium injection experiment demonstrate that ions created by solar UV irradiation are electrostatically bound to the electrons which remain tied to the field lines on which they are created. Two possible instabilities are identified, but neither of them causes the barium plasma cloud to polarize in a way that would permit the plasma to keep up with the neutrals. In a second model, the velocity of the neutrals is allowed to be a function of the azimuthal angle. Here, a portion of the cloud does polarize in a way that allows a portion of the plasma to detach and move outward at the approximate speed of the neutrals. No rapid detachment is found when only the density of the neutrals is given an azimuthal asymmetry.
Numerical simulation of vehicle crashworthiness and occupant protection
NASA Technical Reports Server (NTRS)
Saha, Nripen K.
1993-01-01
Numerical simulation of vehicle crashworthiness and occupant protection are addressed. The vehicle crashworthiness design objectives are to design the vehicle structure for optimum impact energy absorption, and to design the restraint system (seatbelts, airbags, bolsters, etc.) for optimum occupant protection. The following approaches are taken; a major part of the impact energy is to be absorbed by the vehicle structure; the restraint components will provide protection against the remaining crash energy; certain vehicle components are designed to deform under specific types and speeds of impact in a desired mode for sound energy management; structural components such as front side rails, rear rails, door structure and pillars undergo large amounts of deformation; and with properly designed geometry and material these components assist in mitigating the effects of impact.
Fully-resolved numerical simulation of 1024 sedimenting spheres
NASA Astrophysics Data System (ADS)
Prosperetti, Andrea
2005-11-01
The dynamics of a suspension of finite-size particles settling under gravity in a Newtonian fluid is simulated. The ``Physalis'' numerical method is used to fully resolve the flow around the spheres at finite particle Reynolds number, with an elastic-collision model. Of interest in the investigation is the self-organization of the disperse phase and its effect on the sedimenting behavior. Particle clustering and anisotropy are found to be prominent features of the system. The suspension displays preferential orientation at scales comparable to the particle dimension. Fluctuations in the mean particle settling velocity are shown to be intimately linked to the anisotropy of the microstructure. The particle Lagrangian time scale in the direction gravity is larger than in the orthogonal directions and, as a consequence, a similar difference is found between the vertical and horizontal self-diffusion coefficients.
Numerical simulation on snow melting phenomena by CIP method
NASA Astrophysics Data System (ADS)
Mizoe, H.; Yoon, Seong Y.; Josho, M.; Yabe, T.
2001-04-01
A numerical scheme based on the C-CUP method to simulate melting phenomena in snow is proposed. To calculate these complex phenomena we introduce the phase change, elastic-plastic model, porous model, and verify each model by using some simple examples. This scheme is applied to a practical model, such as the snow piled on the insulator of electrical transmission line, in which snow is modeled as a compound material composed of air, water, and ice, and is calculated by elastic-plastic model. The electric field between two electrodes is solved by the Poisson equation giving the Joule heating in the energy conservation that eventually leads to snow melting. Comparison is made by changing the fraction of water in the snow to see its effect on melting process for the cases of applied voltage of 50 and 500 kV on the two electrodes.
Numerical simulation of flow characteristics in micro shock tubes
NASA Astrophysics Data System (ADS)
Zhang, Guang; Setoguchi, Toshiaki; Kim, Heuy Dong
2015-06-01
Recently micro shock tubes have been widely used in many engineering and industrial fields, but the characteristics of unsteady flow are not well known to date in micro shock tubes. Compared to conventional shock tubes with macro scales, flows related to shock waves in micro shock tubes are highly complicated. Stronger viscous and dissipative interactions make shock wave dynamic behaviors significantly different from theoretical predictions. In the present study, a CFD work was applied to the unsteady compressible Navier-Stokes equations which were solved using a fully implicit finite volume scheme. The diaphragm pressure ratio and shock tube diameter were varied to investigate their effects on micro shock tube flows. Different wall boundary conditions were also performed to observe shock wave and contact surface propagation with no slip and slip walls. Detailed flow characteristics at the foot of shock wave and contact surface propagation were known from the present numerical simulations.
Numerical aerodynamic simulation facility feasibility study, executive summary
NASA Technical Reports Server (NTRS)
1979-01-01
There were three major issues examined in the feasibility study. First, the ability of the proposed system architecture to support the anticipated workload was evaluated. Second, the throughput of the computational engine (the flow model processor) was studied using real application programs. Third, the availability, reliability, and maintainability of the system were modeled. The evaluations were based on the baseline systems. The results show that the implementation of the Numerical Aerodynamic Simulation Facility, in the form considered, would indeed be a feasible project with an acceptable level of risk. The technology required (both hardware and software) either already exists or, in the case of a few parts, is expected to be announced this year.
Numerical simulation of the resonantly excited capillary-gravity waves
NASA Astrophysics Data System (ADS)
Hanazaki, Hideshi; Hirata, Motonori; Okino, Shinya
2015-11-01
Capillary gravity waves excited by an obstacle are investigated by a direct numerical simulation. In the flow without capillary effects, it is well known that large-amplitude upstream advancing solitary waves are generated periodically under the resonant condition, i.e., when the phase velocity of the long surface waves and the mean flow velocity agrees. With capillary effects, solutions of the Euler equations show the generation of very short waves further upstream of the solitary waves and also in the depression region downstream of the obstacle. The overall characteristics of these waves agree with the solutions of the forced fifth-order KdV equation, while the weakly nonlinear theory generally overestimates the wavelength of the short waves.
Mathematical analysis and numerical simulation of a model of morphogenesis.
Muñoz, Ana I; Tello, José Ignacio
2011-10-01
We consider a simple mathematical model of distribution of morphogens (signaling molecules responsible for the differentiation of cells and the creation of tissue patterns). The mathematical model is a particular case of the model proposed by Lander, Nie and Wan in 2006 and similar to the model presented in Lander, Nie, Vargas and Wan 2005. The model consists of a system of three equations: a PDE of parabolic type with dynamical boundary conditions modelling the distribution of free morphogens and two ODEs describing the evolution of bound and free receptors. Three biological processes are taken into account: diffusion, degradation and reversible binding. We study the stationary solutions and the evolution problem. Numerical simulations show the behavior of the solution depending on the values of the parameters.
Numerical simulation of electron beam welding with beam oscillations
NASA Astrophysics Data System (ADS)
Trushnikov, D. N.; Permyakov, G. L.
2017-02-01
This research examines the process of electron-beam welding in a keyhole mode with the use of beam oscillations. We study the impact of various beam oscillations and their parameters on the shape of the keyhole, the flow of heat and mass transfer processes and weld parameters to develop methodological recommendations. A numerical three-dimensional mathematical model of electron beam welding is presented. The model was developed on the basis of a heat conduction equation and a Navier-Stokes equation taking into account phase transitions at the interface of a solid and liquid phase and thermocapillary convection (Marangoni effect). The shape of the keyhole is determined based on experimental data on the parameters of the secondary signal by using the method of a synchronous accumulation. Calculations of thermal and hydrodynamic processes were carried out based on a computer cluster, using a simulation package COMSOL Multiphysics.
A numerical simulation of photothermal response in laser medicine
NASA Astrophysics Data System (ADS)
Li, Xiaoxia; Fan, Shifu; Zhao, Youquan; Xiao, Songshan
2004-03-01
In this paper, we reported a numerical solution of laser induced thermal effect in the bio-tissue. The model of photothermal effect and classical Pennes bio-heat transfer equation were introduced. Finite element method (FEM), which was realized by Matlab software, was used to calculate the temperature distribution. He-Ne laser (633 nm) was used to simulate the physical therapy in in vivo skin tissue. Under the cylinder coordinates, the three-dimension (3-D) geometry of tissue was reduced to two-dimension (2-D) computation. The results contained the radial, axial and temperature 3-D color plot. Combining the time animation display was possible. By changing the laser and tissue parameters we can get different results. This will be the initial and indispensable work of the non-destructive evaluation of the laser induced injury.
Numerical simulations for a variable order fractional Schnakenberg model
NASA Astrophysics Data System (ADS)
Hammouch, Z.; Mekkaoui, T.; Belgacem, F. B. M.
2014-12-01
This paper is concerned with the numerical solutions of a variable-order space-time fractional reaction-diffusion model. The space-time fractional derivative is considered in the sense of Riesz-Feller, the system is defined by replacing the second order space derivatives with the variable Riesz-Feller derivatives. The problem is solved by an explicit finite difference method. Finally, simulation results to this problem are presented and discussed. In the original article PDF file, as supplied to AIP Publishing, the name and affiliation of author F. B. M. Belgacem was missing due to a Latex compiling error. This article was updated on 29 January 2015 to correct that error.
Numerical simulation of equatorial plasma bubbles over Cachimbo: COPEX campaign
NASA Astrophysics Data System (ADS)
Carrasco, A. J.; Batista, I. S.; Abdu, M. A.
2014-08-01
The problem of day-to-day variability in onset of equatorial spread F (ESF) is addressed using data from the 2002 COPEX observational campaign in Brazil and numerical modeling. The observational results show that for values of virtual height of the F layer base less than 355 km at around 18:35 LT, and for the prereversal peak enhancement of the vertical plasma drift (Vp) less than 30 m/s, the spread-F (ESF) was absent on four nights over Cachimbo (9.5°S, 54.8°W, dip latitude = -2.1°). In this work we analyze the geophysical conditions for the generation of the irregularities by comparing the nights with and without the ESF. In the comparison a numerical code is used to simulate plasma irregularity development in an extended altitude range from the bottom of the equatorial F layer. The code uses the flux corrected transport method with Boris-Book’s flux limiter for the spatial integration and a predictor-corrector method for the direct time integration of the continuity equation for O+ and the SOR (Successive-Over-Relaxation) method for electric potential equation. The code is tested with different evening eastward electric fields (or vertical drifts Vp < 30 m/s and Vp > 30 m/s) in order to study the influence of the prereversal enhancement in the zonal electric field on plasma bubble formation and development. The code also takes into account the zonal wind, the vertical electric field and the collision frequency of ions with neutrals and the amplitude of initial perturbation. The simulation shows a good agreement with the observational results of the ESF. The results of the code suggest that the instability can grow at the F layer bottomside by the Rayleigh-Taylor mechanism only when the Vp > 30 m/s. In the analyzed cases we have considered the competition of other geophysical parameters in the generation of plasma structures.
Airplane numerical simulation for the rapid prototyping process
NASA Astrophysics Data System (ADS)
Roysdon, Paul F.
Airplane Numerical Simulation for the Rapid Prototyping Process is a comprehensive research investigation into the most up-to-date methods for airplane development and design. Uses of modern engineering software tools, like MatLab and Excel, are presented with examples of batch and optimization algorithms which combine the computing power of MatLab with robust aerodynamic tools like XFOIL and AVL. The resulting data is demonstrated in the development and use of a full non-linear six-degrees-of-freedom simulator. The applications for this numerical tool-box vary from un-manned aerial vehicles to first-order analysis of manned aircraft. A Blended-Wing-Body airplane is used for the analysis to demonstrate the flexibility of the code from classic wing-and-tail configurations to less common configurations like the blended-wing-body. This configuration has been shown to have superior aerodynamic performance -- in contrast to their classic wing-and-tube fuselage counterparts -- and have reduced sensitivity to aerodynamic flutter as well as potential for increased engine noise abatement. Of course without a classic tail elevator to damp the nose up pitching moment, and the vertical tail rudder to damp the yaw and possible rolling aerodynamics, the challenges in lateral roll and yaw stability, as well as pitching moment are not insignificant. This thesis work applies the tools necessary to perform the airplane development and optimization on a rapid basis, demonstrating the strength of this tool through examples and comparison of the results to similar airplane performance characteristics published in literature.
Cascade processes in stratified media: experiment and direct numerical simulation.
NASA Astrophysics Data System (ADS)
Sibgatullin, Ilias; Brouzet, Christophe; Joubaud, Sylvain; Ermanyuk, Evgeny; Dauxois, Thierry
2016-04-01
Internal gravity waves may transfer substantial part of energy in oceans and astrophysical objects, influence the background stratification, and angular momentum. Internal waves can be generated by convection in astrophysical objects, by tidal motion and interaction with orography in oceans. Internal and inertial waves obey similar system of equations. Due to very particular type of dispersive relation and the way internal waves are reflected from surfaces, in confined domains the monochromatic internal waves after sequence of reflections may form closed paths, the "wave attractors" [1]. Presently, linear theory of wave attractors is quite elaborated and a principal interest of research is focused on nonlinear regimes and unstable configurations, overturning events and mixing. We have performed direct numerical simulation of wave attractors which closely reproduces experiments [2] being carried out in Ecole Normal Superior de Lyon (ENS de Lyon). Direct numerical simulation is realized with the help of spectral element approach and code nek5000. Triadic resonance is confirmed as the first instability which appears on the most energetic ray of the attractor at sufficiently large forcing. With further increase of the forcing amplitude the daughter waves also become unstable resulting in a sophisticated cascade process which was first observed experimentally. For very high forcing amplitude interaction of focused waves with the walls results in appearance of small-scale folded structures. Their interaction with principal flow is the subject of further research. 1. Maas, L. R. M. & Lam, F.-P. A., Geometric focusing of internal waves. J. Fluid Mech, 1995,. 300, 1-41 2. Scolan, H., Ermanyuk, E., Dauxois, T., 2013, Physical Review Letters, 110, 234501
Direct numerical simulations of magmatic differentiation at the microscopic scale
NASA Astrophysics Data System (ADS)
Sethian, J.; Suckale, J.; Elkins-Tanton, L. T.
2010-12-01
A key question in the context of magmatic differentiation and fractional crystallization is the ability of crystals to decouple from the ambient fluid and sink or rise. Field data indicates a complex spectrum of behavior ranging from rapid sedimentation to continued entrainment. Theoretical and laboratory studies paint a similarly rich picture. The goal of this study is to provide a detailed numerical assessment of the competing effects of sedimentation and entrainment at the scale of individual crystals. The decision to simulate magmatic differentiation at the grain scale comes at the price of not being able to simultaneously solve for the convective velocity field at the macroscopic scale, but has the crucial advantage of enabling us to fully resolve the dynamics of the systems from first principles without requiring any simplifying assumptions. The numerical approach used in this study is a customized computational methodology developed specifically for simulations of solid-fluid coupling in geophysical systems. The algorithm relies on a two-step projection scheme: In the first step, we solve the multiple-phase Navier-Stokes or Stokes equation in both domains. In the second step, we project the velocity field in the solid domain onto a rigid-body motion by enforcing that the deformation tensor in the respective domain is zero. This procedure is also used to enforce the no-slip boundary-condition on the solid-fluid interface. We have extensively validated and benchmarked the method. Our preliminary results indicate that, not unexpectedly, the competing effects of sedimentation and entrainment depend sensitively on the size distribution of the crystals, the aspect ratio of individual crystals and the vigor of the ambient flow field. We provide a detailed scaling analysis and quantify our results in terms of the relevant non-dimensional numbers.
Numerical simulations of electromagnetic scattering by Solar system objects
NASA Astrophysics Data System (ADS)
Dlugach, Janna M.
2016-11-01
Having been profoundly stimulated by the seminal work of Viktor V. Sobolev, I have been involved in multi-decadal research in the fields of radiative transfer, electromagnetic scattering by morphologically complex particles and particulate media, and planetary remote sensing. Much of this research has been done in close collaboration with other "descendants" of Academician Sobolev. This tutorial paper gives a representative overview of the results of extensive numerical simulations (in the vast majority carried out in collaboration with Michael Mishchenko) used to analyze remote-sensing observations of Solar system objects and based on highly accurate methods of the radiative transfer theory and direct computer solvers of the Maxwell equations. Using the atmosphere of Jupiter as a proving ground and performing T-matrix and radiative-transfer calculations helps demonstrate the strong effect of aerosol-particle shapes on the accuracy of remote-sensing retrievals. I then discuss the application of the T-matrix method, a numerically exact solution of the vector radiative transfer equation, and the theory of coherent backscattering to an analysis of polarimetric radar observations of Saturn's rings. Numerical modeling performed by using the superposition T-matrix method in application to cometary dust in the form of aggregates serves to reproduce the results of polarimetric observations of the distant comet C/2010 S1. On the basis of direct computer solutions of the Maxwell equations, it is demonstrated that all backscattering effects predicted by the low-density theories of radiative transfer and coherent backscattering can also be identified for media with volume packing densities typically encountered in natural and artificial environments. This result implies that spectacular opposition effects observed for some high-albedo atmoshereless Solar system bodies can be attributed to coherent backscattering of sunlight by regolith layers composed of microscopic particles.
Numerical simulation of the drying of inkjet-printed droplets.
Siregar, D P; Kuerten, J G M; van der Geld, C W M
2013-02-15
In this paper we study the behavior of an inkjet-printed droplet of a solute dissolved in a solvent on a solid horizontal surface by numerical simulation. An extended model for drying of a droplet and the final distribution of the solute on an impermeable substrate is proposed. The model extends the work by Deegan, Fischer and Kuerten by taking into account convection, diffusion and adsorption of the solute in order to describe more accurately the surface coverage on the substrate. A spherically shaped droplet is considered such that the model can be formulated as an axially symmetric problem. The droplet dynamics is driven by the combined action of surface tension and evaporation. The fluid flow in the droplet is modeled by the Navier-Stokes equation and the continuity equation, where the lubrication approximation is applied. The rate of evaporation is determined by the distribution of vapor pressure in the air surrounding the droplet. Numerical results are compared with experimental results for droplets of various sizes.
Quantifying paleosecular variation: Insights from numerical dynamo simulations
NASA Astrophysics Data System (ADS)
Lhuillier, F.; Gilder, S. A.
2013-12-01
Numerical dynamo simulations can be used to investigate paleosecular variation of Earth-like magnetic fields over several million-year timescales. Using a set of five numerical models integrated over the equivalent of 40-50 Myr, we generated synthetic data analogous to paleomagnetic data. We show that paleosecular variation among the five models is best discriminated by the relative variability in paleointensity (ɛ_F) and the precision parameter (k) of directions or poles. Whether the geodynamo operated in different regimes in its past can be best tested with these parameters in combination. Roughly one million years of time with 200 time-independent samples is required to achieve convergence of ɛ_F and k. The quantities ɛ_F and k correlate well with the average chron duration (μ_chr), which suggests that excursions and reversals are an integral part of palaeosecular variation. If applicable to the geodynamo, the linear dependence of k on μ_chr could help to predict μ_chr for the Earth during geologic times with no available reversal frequency data; it also predicts much higher average k for directions during superchrons (k ≈ 2500 for the Cretaceous normal superchron) than during actively reversing times (k ≈ 35 for the last 80 Myr). As such high k values are not observed, either this family of dynamo models is not applicable to the geodynamo, or the geodynamo regime acting during superchrons lies statistically within the same energy state as at present.
Numerical simulations of the blood flow through vertebral arteries.
Jozwik, Krzysztof; Obidowski, Damian
2010-01-19
Vertebral arteries are two arteries whose structure and location in human body result in development of special flow conditions. For some of the arteries, one can observe a significant difference between flow rates in the left and the right arteries during ultrasonography diagnosis. Usually the reason of such a difference was connected with pathology of the artery in which a smaller flow rate was detected. Simulations of the flow through the selected type of the vertebral artery geometry for twenty five cases of artery diameters have been carried out. The main aim of the presented experiment was to visualize the flow in the region of vertebral arteries junction in the origin of the basilar artery. It is extremely difficult to examine this part of human circulation system, thus numerical experiments may be helpful in understanding the phenomena occurring when two relatively large arteries join together to form one vessel. The obtained results have shown that an individual configuration and diameters of particular arteries can exert an influence on the flow in them and affect a significant difference between flow rates for vertebral arteries. It has been assumed in the investigations that modelled arteries were absolutely normal, without any pathology. In the numerical experiment, the non-Newtonian model of blood was employed.
Numerical Simulations of Particle Deposition in Metal Foam Heat Exchangers
NASA Astrophysics Data System (ADS)
Sauret, Emilie; Saha, Suvash C.; Gu, Yuantong
2013-01-01
Australia is a high-potential country for geothermal power with reserves currently estimated in the tens of millions of petajoules, enough to power the nation for at least 1000 years at current usage. However, these resources are mainly located in isolated arid regions where water is scarce. Therefore, wet cooling systems for geothermal plants in Australia are the least attractive solution and thus air-cooled heat exchangers are preferred. In order to increase the efficiency of such heat exchangers, metal foams have been used. One issue raised by this solution is the fouling caused by dust deposition. In this case, the heat transfer characteristics of the metal foam heat exchanger can dramatically deteriorate. Exploring the particle deposition property in the metal foam exchanger becomes crucial. This paper is a numerical investigation aimed to address this issue. Two-dimensional (2D) numerical simulations of a standard one-row tube bundle wrapped with metal foam in cross-flow are performed and highlight preferential particle deposition areas.
Numerical Simulation of Bubble Dynamics in Deformable Vessels
NASA Astrophysics Data System (ADS)
Coralic, Vedran; Colonius, Tim
2011-11-01
The growth and collapse of cavitation bubbles has been implicated as a potential damage mechanism leading to the rupture of blood vessels in shock wave lithotripsy (SWL). While this phenomenon has been investigated numerically, the resulting simulations have often assumed some degree of symmetry and have often failed to include a large number of influential physics, such as viscosity, compressibility, surface tension, phase change and fluid-structure interactions. We present here our efforts to explore the role that cavitation bubbles play in the rupture of blood vessels in SWL and to improve upon the current state of the numerical approach. We have developed a three-dimensional, high-order accurate, shock- and interface-capturing, multicomponent flow algorithm that accounts for the effects of viscosity and surface tension. At this time, we omit any effects due to elasticity and instead, as a first step, model tissue as a viscous and stiffened gas. We discuss preliminary results for the Rayleigh and shock-induced collapse of a gas bubble within a blood vessel and characterize the increase in vessel deformation with increasing bubble confinement and proximity to the vessel wall. This research was supported by the National Institutes of Health grant No. 2PO1DK43881.
Numerical simulation of the devolatilization of a moving coal particle
Higuera, F.J.
2009-05-15
The devolatilization of an isolated coal particle moving relative to the surrounding gas is numerically simulated using a competing reaction model of the pyrolysis and assuming that the released volatiles burn in an infinitely thin diffusion flame around the particle or not at all. The temperature of the particle is assumed to be uniform and the effects of the heat of pyrolysis, the intraparticle mass transfer resistance, and the variation of the particle radius are neglected. The effects of the size and velocity of the particle and of the temperature and oxygen mass fraction of the gas on the particle and flame temperature histories, the devolatilization time and the yield of light and heavy volatiles are investigated. The motion of the particle may have an important effect on the shape and position of the flame of volatiles, but it has only a mild effect on the devolatilization process for the particle sizes typical of pulverized coal combustion. This effect increases for large particles or in the absence of radiation. The relative motion enhances the heat transfer between the particle and the gas, causing the devolatilization time to decrease at high gas temperatures and to increase at low gas temperatures. The numerical results are compared with a blowing-corrected Nusselt number correlation often used in heat transfer models of the process. (author)
Numerical simulation of shock/turbulent boundary layer interaction
NASA Technical Reports Server (NTRS)
Biringen, Sedat; Hatay, Ferhat F.
1993-01-01
Most flows of aerodynamic interest are compressible and turbulent. However, our present knowledge on the structures and mechanisms of turbulence is mostly based on incompressible flows. In the present work, compressibility effects in turbulent, high-speed, boundary layer flows are systematically investigated using the Direct Numerical Simulation (DNS) approach. Three-dimensional, time-dependent, fully nonlinear, compressible Navier-Stokes equations were numerically integrated by high-order finite-difference methods; no modeling for turbulence is used during the solution because the available resolution is sufficient to capture the relevant scales. The boundary layer problem deals with fully-turbulent compressible flows over flat geometries. Apart from its practical relevance to technological flows, turbulent compressible boundary layer flow is the simplest experimentally realizable turbulent compressible flow. Still, measuring difficulties prohibit a detailed experimental description of the flow, especially in the near-wall region. DNS studies provide a viable means to probe the physics of compressible turbulence in this region. The focus of this work is to explore the paths of energy transfer through which compressible turbulence is sustained. The structural similarities and differences between the incompressible and compressible turbulence are also investigated. The energy flow patterns or energy cascades are found to be directly related to the evolution of vortical structures which are generated in the near-wall region. Near-wall structures, and mechanisms which are not readily accessible through physical experiments are analyzed and their critical role on the evolution and the behavior of the flow is documented extensively.
Three-dimensional numerical simulations of three-phase flows
NASA Astrophysics Data System (ADS)
Pavlidis, Dimitrios; Xie, Zhizhua; Salinas, Pablo; Pain, Chris; Matar, Omar
2015-11-01
The objective of this study is to investigate the fluid dynamics of three-dimensional three-phase flow problems, such as droplet impact on a gas-liquid interface and bubble rising through a liquid-liquid interface. An adaptive unstructured mesh modelling framework is employed here to study three-phase flow problems, which can modify and adapt unstructured meshes to better represent the underlying physics of multiphase problems and reduce computational effort without sacrificing accuracy. The numerical framework consists of a mixed control volume and finite element formulation, a `volume of fluid' type method for the interface capturing based on a compressive control volume advection method and second-order finite element methods, and a force-balanced algorithm for the surface tension implementation, minimising the spurious velocities often found in such flow simulations. The surface tension coefficient decomposition method has been employed to deal with surface tension pairing between different phases via a compositional approach. Numerical examples of some benchmark tests and the dynamics of three-phase flows are presented to demonstrate the ability of this method. EPSRC Programme Grant, MEMPHIS, EP/K0039761/1.
Numerical simulations of inductive-heated float-zone growth
NASA Technical Reports Server (NTRS)
Chan, Y. T.; Choi, S. K.
1992-01-01
The present work provides an improved fluid flow and heat-transfer modeling of float-zone growth by introducing a RF heating model so that an ad hoc heating temperature profile is not necessary. Numerical simulations were carried out to study the high-temperature float-zone growth of titanium carbide single crystal. The numerical results showed that the thermocapillary convection occurring inside the molten zone tends to increase the convexity of the melt-crystal interface and decrease the maximum temperature of the molten zone, while the natural convection tends to reduce the stability of the molten zone by increasing its height. It was found that the increase of induced heating due to the increase of applied RF voltage is reduced by the decrease of zone diameter. Surface tension plays an important role in controlling the amount of induced heating. Finally, a comparison of the computed shape of the free surface with a digital image obtained during a growth run showed adequate agreement.
Numerical simulation of a compressible vortex-wall interaction
NASA Astrophysics Data System (ADS)
Murugan, T.; De, S.; Sreevatsa, A.; Dutta, S.
2016-05-01
The wall interaction of isolated compressible vortices generated from a short driver section shock tube has been simulated numerically by solving the Navier-Stokes equations in axisymmetric form. The dynamics of shock-free (incident shock Mach number M = 1.36) and shock-embedded (M = 1.57) compressible vortices near the wall has been studied in detail. The AUSM+ scheme with a fifth-order upwind interpolation formula is used for the convective fluxes. Time integration is performed using a low dissipative and dispersive fourth-order six-stage Runge-Kutta scheme. The evolution of primary and wall vortices has been shown using the velocity field, vorticity field, and numerical schlierens. The vortex impingement, shocklets, wall vortices, and their lift-off are clearly identified from the wall pressure time history. It has been observed that the maximum vorticity of the wall vortices reaches close to 30 % of the primary vortex for M = 1.36 and it reaches up to 60 % for M = 1.57. The net pressure force on the wall due to incident shock impingement is dominant compared to the compressible vortex impingement and their evolution.
Numerical Simulation on Zonal Disintegration in Deep Surrounding Rock Mass
Chen, Xuguang; Wang, Yuan; Mei, Yu; Zhang, Xin
2014-01-01
Zonal disintegration have been discovered in many underground tunnels with the increasing of embedded depth. The formation mechanism of such phenomenon is difficult to explain under the framework of traditional rock mechanics, and the fractured shape and forming conditions are unclear. The numerical simulation was carried out to research the generating condition and forming process of zonal disintegration. Via comparing the results with the geomechanical model test, the zonal disintegration phenomenon was confirmed and its mechanism is revealed. It is found to be the result of circular fracture which develops within surrounding rock mass under the high geostress. The fractured shape of zonal disintegration was determined, and the radii of the fractured zones were found to fulfill the relationship of geometric progression. The numerical results were in accordance with the model test findings. The mechanism of the zonal disintegration was revealed by theoretical analysis based on fracture mechanics. The fractured zones are reportedly circular and concentric to the cavern. Each fracture zone ruptured at the elastic-plastic boundary of the surrounding rocks and then coalesced into the circular form. The geometric progression ratio was found to be related to the mechanical parameters and the ground stress of the surrounding rocks. PMID:24592166
Numerical simulation on zonal disintegration in deep surrounding rock mass.
Chen, Xuguang; Wang, Yuan; Mei, Yu; Zhang, Xin
2014-01-01
Zonal disintegration have been discovered in many underground tunnels with the increasing of embedded depth. The formation mechanism of such phenomenon is difficult to explain under the framework of traditional rock mechanics, and the fractured shape and forming conditions are unclear. The numerical simulation was carried out to research the generating condition and forming process of zonal disintegration. Via comparing the results with the geomechanical model test, the zonal disintegration phenomenon was confirmed and its mechanism is revealed. It is found to be the result of circular fracture which develops within surrounding rock mass under the high geostress. The fractured shape of zonal disintegration was determined, and the radii of the fractured zones were found to fulfill the relationship of geometric progression. The numerical results were in accordance with the model test findings. The mechanism of the zonal disintegration was revealed by theoretical analysis based on fracture mechanics. The fractured zones are reportedly circular and concentric to the cavern. Each fracture zone ruptured at the elastic-plastic boundary of the surrounding rocks and then coalesced into the circular form. The geometric progression ratio was found to be related to the mechanical parameters and the ground stress of the surrounding rocks.
Numerical Simulation of a Mist Singlet Oxygen Generator
NASA Astrophysics Data System (ADS)
Endo, Masamori; Muto, Shigeki; Fujioka, Tomoo; Nanri, Kenzo
2002-01-01
A numerical simulation code for a mist singlet oxygen generator (SOG) is developed. Unlike previous SOGs, a mist SOG utilizes fine droplets of basic hydrogen peroxide (BHP) to achieve a stoichiometric reaction with chlorine gas in a single pass through a reaction zone. The numerical model presented in the present paper deals with the depletion of superficial HO2- density and the diffusive redistribution of each droplet, water evaporation, temperature variation of the droplet due to chemical reaction and evaporation, and heat exchange between the gas and liquid phases. Under identical initial conditions, the calculated results are consistent with the results from previous experiments. The heterogeneous quenching probability of O2(1Δ) to the BHP surface (γ) was determined by a comparison between the experimental and calculated results, and was found to be 2× 10-3. The process conditions were then varied to establish the theoretical limit of BHP utilization. For a very small (15 μm) droplet diameter, it was shown that 50% BHP could be utilized with an output of 64% O2(1Δ) yield and 88% Cl2 utilization.
Numerical Simulations on Origin of Galilean Moons' Magnetic Anomalies
NASA Technical Reports Server (NTRS)
Jiao, LiQuo; Kuang, WeiJia; Ma, ShiZhuang
2011-01-01
Galileo mission detected the magnetic anomalies originated from Galilean moons. These anomalies are likely generated in the moons interiors, under the influence of a strong ambient Jovian field. Among various possible generation mechanisms of the anomalies, we focus on magneto-convection and dynamos in the interiors via numerical simulation. To mimic the electromagnetic environment of the moons, we introduce in our numerical model an external uniform magnetic field B(sub 0) with a fixed orientation but varying field strength. Our results show that a finite B(sub 0) can substantially alter the dynamo processes inside the core. When the ambient field strength B(sub 0) increases to approximately 40% of the field generated by the pure dynamo action, the convective state in the core changes significantly: the convective flow decreases by 80% in magnitude, but the differential rotation becomes stronger in much of the fluid layer, leading to a stronger field generated in the core. The field morphologies inside the core tend to align with the ambient field, while the flow patterns show the symmetry-breaking effect under the influence of B(sub 0). Furthermore, the generated field tends to be temporally more stable.
3D Numerical Simulation on the Rockslide Generated Tsunamis
NASA Astrophysics Data System (ADS)
Chuang, M.; Wu, T.; Wang, C.; Chu, C.
2013-12-01
The rockslide generated tsunami is one of the most devastating nature hazards. However, the involvement of the moving obstacle and dynamic free-surface movement makes the numerical simulation a difficult task. To describe both the fluid motion and solid movement at the same time, we newly developed a two-way fully-coupled moving solid algorithm with 3D LES turbulent model. The free-surface movement is tracked by volume of fluid (VOF) method. The two-step projection method is adopted to solve the Navier-Stokes type government equations. In the new moving solid algorithm, a fictitious body force is implicitly prescribed in MAC correction step to make the cell-center velocity satisfied with the obstacle velocity. We called this method the implicit velocity method (IVM). Because no extra terms are added to the pressure Poission correction, the pressure field of the fluid part is stable, which is the key of the two-way fluid-solid coupling. Because no real solid material is presented in the IVM, the time marching step is not restricted to the smallest effective grid size. Also, because the fictitious force is implicitly added to the correction step, the resulting velocity is accurate and fully coupled with the resulting pressure field. We validated the IVM by simulating a floating box moving up and down on the free-surface. We presented the time-history obstacle trajectory and compared it with the experimental data. Very accurate result can be seen in terms of the oscillating amplitude and the period (Fig. 1). We also presented the free-surface comparison with the high-speed snapshots. At the end, the IVM was used to study the rock-slide generated tsunamis (Liu et al., 2005). Good validations on the slide trajectory and the free-surface movement will be presented in the full paper. From the simulation results (Fig. 2), we observed that the rockslide generated waves are manly caused by the rebounding waves from two sides of the sliding rock after the water is dragging
Influence of Ar addition on ozone generation in a non-thermal plasma—a numerical investigation
NASA Astrophysics Data System (ADS)
Chen, Hsin Liang; Lee, How Ming; Chen, Shiaw Huei; Wei, Ta Chin; Been Chang, Moo
2010-10-01
A numerical model based on a dielectric barrier discharge is developed in this study to investigate the influence of Ar addition on ozone generation. The simulation results show good agreement with the experimental data, confirming the validity of the numerical model. The mechanisms regarding how the Ar addition affects ozone generation are investigated with the assistance of a numerical simulation by probing into the following two questions, (1) why the ozone concentration just slightly decreases in the low specific input energy (SIE, the ratio of discharge power to gas flow rate) region even if the inlet O2 concentration is substantially decreased and (2) why the variation of the increased rate of ozone concentration with SIE (i.e. the variation in the slope of ozone concentration versus SIE) is more significant for an O2/Ar mixture plasma. As SIE is relatively low, ozone decomposition through electron-impact and radical attack reactions is less significant because of low ozone concentration and gas temperature. Therefore, the ozone concentration depends mainly on the amount of oxygen atoms generated. The simulation results indicate that the amount of oxygen atoms generated per electronvolt for Ar concentrations of 0%, 10%, 30%, 50% and 80% are 0.178, 0.174, 0.169, 0.165 and 0.166, respectively, explaining why the ozone concentration does not decrease linearly with the inlet O2 concentration in the low SIE region. On the other hand, the simulation results show that increasing Ar concentration would lead to a lower reduced field and a higher gas temperature. The former would lead to an increase in the rate constant of e + O3 → e + O + O2 while the latter would result in a decrease in the rate constant of O + O2 + M → O3 + M and an increase in that of O3 + O → 2O2. The changes in the rate constants of these reactions would have a negative effect on ozone generation, which is the rationale for the second question.
Finite-difference numerical simulations of underground explosion cavity decoupling
NASA Astrophysics Data System (ADS)
Aldridge, D. F.; Preston, L. A.; Jensen, R. P.
2012-12-01
Earth models containing a significant portion of ideal fluid (e.g., air and/or water) are of increasing interest in seismic wave propagation simulations. Examples include a marine model with a thick water layer, and a land model with air overlying a rugged topographic surface. The atmospheric infrasound community is currently interested in coupled seismic-acoustic propagation of low-frequency signals over long ranges (~tens to ~hundreds of kilometers). Also, accurate and efficient numerical treatment of models containing underground air-filled voids (caves, caverns, tunnels, subterranean man-made facilities) is essential. In support of the Source Physics Experiment (SPE) conducted at the Nevada National Security Site (NNSS), we are developing a numerical algorithm for simulating coupled seismic and acoustic wave propagation in mixed solid/fluid media. Solution methodology involves explicit, time-domain, finite-differencing of the elastodynamic velocity-stress partial differential system on a three-dimensional staggered spatial grid. Conditional logic is used to avoid shear stress updating within the fluid zones; this approach leads to computational efficiency gains for models containing a significant proportion of ideal fluid. Numerical stability and accuracy are maintained at air/rock interfaces (where the contrast in mass density is on the order of 1 to 2000) via a finite-difference operator "order switching" formalism. The fourth-order spatial FD operator used throughout the bulk of the earth model is reduced to second-order in the immediate vicinity of a high-contrast interface. Current modeling efforts are oriented toward quantifying the amount of atmospheric infrasound energy generated by various underground seismic sources (explosions and earthquakes). Source depth and orientation, and surface topography play obvious roles. The cavity decoupling problem, where an explosion is detonated within an air-filled void, is of special interest. A point explosion
Parametric Optimization Through Numerical Simulation of VCR Diesel Engine
NASA Astrophysics Data System (ADS)
Ganji, Prabhakara Rao; Mahmood, Al-Qarttani Abdulrahman Shakir; Kandula, Aasrith; Raju, Vysyaraju Rajesh Khana; Rao, Surapaneni Srinivasa
2016-06-01
In the present study, the Variable Compression Ratio (VCR) engine was analyzed numerically using CONVERGE™ Computational Fluid Dynamics code in order to optimize the design/operating parameters such as Compression Ratio (CR), Start of Injection (SOI) and Exhaust Gas Recirculation (EGR). VCR engine was run for 100 % load to test its performance and it was validated for standard configuration. Simulations were performed by varying the design/operating parameters such as CR (18-14), SOI (17°-26° bTDC) and EGR (0-15 %) at constant fuel injection pressure of 230 bar and speed of 1500 rpm. The effect of each of these parameters on pressure, oxides of nitrogen (NOx) and soot are presented. Finally, regression equations were developed for pressure, NOx and soot by using the simulation results. The regression equations were solved for multi objective criteria in order to reduce the NOx and soot while maintaining the baseline performance. The optimized configuration was tested for validation and found satisfactory.
3D Numerical Simulations of the Breakout Model
NASA Astrophysics Data System (ADS)
Choe, G. S.; Cheng, C. Z.; Lee, J.; Lynch, B. J.; Antiochos, S. K.; DeVore, C. R.; Zurbuchen, T. H.
2005-05-01
We present the continuing progress of the numerical simulations of the breakout model for coronal mass ejection initiation. To validate the 3D spherical ARMS code we have run the 2.5D breakout problem and compare the eruption to the published 2D results. The ARMS 2.5D CME also forms a large magnetic island ahead of the erupting plasmoid due to the code's excellent maintenance of equatorial symmetry. Progress on the fully 3D breakout problem is also discussed. To build up enough magnetic free energy for an eruption the active region field must be strong with a steep gradient near the polarity inversion line and the shear must be highly concentrated there. This requires adaptive griding techniques. In the current simulation, the active region to background field ratio is 20-to-1 and the neutral line is long compared to the active region width. We present the evolution of this topology under Br-conserving shearing flow and discuss implications for a 3D eruption. This work is supported by NASA and ONR. BJL is supported by NASA GSRP grant NGT5-50453.
Numerical simulation of linear fiction welding (LFW) processes
Fratini, L.; La Spisa, D.
2011-05-04
Solid state welding processes are becoming increasingly important due to a large number of advantages related to joining ''unweldable'' materials and in particular light weight alloys. Linear friction welding (LFW) has been used successfully to bond non-axisymmetric components of a range of materials including titanium alloys, steels, aluminum alloys, nickel, copper, and also dissimilar material combinations. The technique is useful in the research of quality of the joints and in reducing costs of components and parts of the aeronautic and automotive industries.LFW involves parts to be welded through the relative reciprocating motion of two components under an axial force. In such process the heat source is given by the frictional forces work decaying into heat determining a local softening of the material and proper bonding conditions due to both the temperature increase and the local pressure of the two edges to be welded. This paper is a comparative test between the numerical model in two dimensions, i.e. in plane strain conditions, and in three dimensions of a LFW process of AISI1045 steel specimens. It must be observed that the 3D model assures a faithful simulation of the actual threedimensional material flow, even if the two-dimensional simulation computational times are very short, a few hours instead of several ones as the 3D model. The obtained results were compared with experimental values found out in the scientific literature.
Numerical simulation of ground-based telescope enclosures
NASA Astrophysics Data System (ADS)
Pan, Nian; Ma, Wenli; Huang, Jinlong
2014-11-01
In order to choose enclosure for the next generation telescopes, numerical simulation method was used. Firstly, the telescope, two general kinds of enclosures structure and the external flow field model were established, Then CFD(Computational Fluid Dynamics) technology was used to analyze the wind speed, static pressure, turbulence kinetic energy distribution and eddy around the telescope, when the telescope at two different pointing gestures and the external wind speed at 10m/s. The simulation results showed that when the telescope adapt the retractable enclosure, the wind speed of the main optical path between 6.1 m/s and 9.3 m/s, and the average static pressure (gauge pressure) on the primary mirror between 42.9268 Pa and 37.5579 Pa, however when telescope adapt the hemispherical enclosure, the wind speed of the main optical path between 3.4 m/s and 6.8 m/s, the average static pressure (gauge pressure) on the primary mirror between 12.1387 Pa and 11.105 Pa. Although the wind resistance of the retractable enclosure was lower than the hemispherical enclosure, no eddy generated near the main optical path, it provided the telescope a uniform flow field and ensured the quality of the image of a star. So the retractable enclosure would have better performance than the hemispherical enclosure.
Direct Numerical Simulation of Combustion Using Principal Component Analysis
NASA Astrophysics Data System (ADS)
Owoyele, Opeoluwa; Echekki, Tarek
2016-11-01
We investigate the potential of accelerating chemistry integration during the direct numerical simulation (DNS) of complex fuels based on the transport equations of representative scalars that span the desired composition space using principal component analysis (PCA). The transported principal components (PCs) offer significant potential to reduce the computational cost of DNS through a reduction in the number of transported scalars, as well as the spatial and temporal resolution requirements. The strategy is demonstrated using DNS of a premixed methane-air flame in a 2D vortical flow and is extended to the 3D geometry to further demonstrate the computational efficiency of PC transport. The PCs are derived from a priori PCA of a subset of the full thermo-chemical scalars' vector. The PCs' chemical source terms and transport properties are constructed and tabulated in terms of the PCs using artificial neural networks (ANN). Comparison of DNS based on a full thermo-chemical state and DNS based on PC transport based on 6 PCs shows excellent agreement even for species that are not included in the PCA reduction. The transported PCs reproduce some of the salient features of strongly curved and strongly strained flames. The 2D DNS results also show a significant reduction of two orders of magnitude in the computational cost of the simulations, which enables an extension of the PCA approach to 3D DNS under similar computational requirements. This work was supported by the National Science Foundation Grant DMS-1217200.
Numerical Simulation of Regional Circulation in the Monterey Bay Region
NASA Technical Reports Server (NTRS)
Tseng, Y. H.; Dietrich, D. E.; Ferziger, J. H.
2003-01-01
The objective of this study is to produce a high-resolution numerical model of Mon- terey Bay area in which the dynamics are determined by the complex geometry of the coastline, steep bathymetry, and the in uence of the water masses that constitute the CCS. Our goal is to simulate the regional-scale ocean response with realistic dynamics (annual cycle), forcing, and domain. In particular, we focus on non-hydrostatic e ects (by comparing the results of hydrostatic and non-hydrostatic models) and the role of complex geometry, i.e. the bay and submarine canyon, on the nearshore circulation. To the best of our knowledge, the current study is the rst to simulate the regional circulation in the vicinity of Monterey Bay using a non-hydrostatic model. Section 2 introduces the high resolution Monterey Bay area regional model (MBARM). Section 3 provides the results and veri cation with mooring and satellite data. Section 4 compares the results of hydrostatic and non-hydrostatic models.
Numerical simulations of MREIT conductivity imaging for brain tumor detection.
Meng, Zi Jun; Sajib, Saurav Z K; Chauhan, Munish; Sadleir, Rosalind J; Kim, Hyung Joong; Kwon, Oh In; Woo, Eung Je
2013-01-01
Magnetic resonance electrical impedance tomography (MREIT) is a new modality capable of imaging the electrical properties of human body using MRI phase information in conjunction with external current injection. Recent in vivo animal and human MREIT studies have revealed unique conductivity contrasts related to different physiological and pathological conditions of tissues or organs. When performing in vivo brain imaging, small imaging currents must be injected so as not to stimulate peripheral nerves in the skin, while delivery of imaging currents to the brain is relatively small due to the skull's low conductivity. As a result, injected imaging currents may induce small phase signals and the overall low phase SNR in brain tissues. In this study, we present numerical simulation results of the use of head MREIT for brain tumor detection. We used a realistic three-dimensional head model to compute signal levels produced as a consequence of a predicted doubling of conductivity occurring within simulated tumorous brain tissues. We determined the feasibility of measuring these changes in a time acceptable to human subjects by adding realistic noise levels measured from a candidate 3 T system. We also reconstructed conductivity contrast images, showing that such conductivity differences can be both detected and imaged.
Direct numerical simulations of evaporating droplets in turbulence
NASA Astrophysics Data System (ADS)
Palmore, John; Desjardins, Olivier
2015-11-01
This work demonstrates direct numerical simulations of evaporating two phase flows, with applications to studying combustion in aircraft engines. Inside the engine, liquid fuel is injected into the combustion chamber where it atomizes into droplets and evaporates. Combustion occurs as the fuel vapor mixes with the surrounding flow of turbulent gas. Understanding combustion, therefore, requires studying evaporation in a turbulent flow and the resulting vapor distribution. We study the problem using a finite volume framework to solve the Navier-Stokes and scalar transport equations under a low-Mach assumption [Desjardins et al., J. Comp. Phys., 2008]. The liquid-gas interface is tracked using a conservative level-set method [Desjardins et al., J. Comp. Phys., 2008] which allows for a sharp reconstruction of the discontinuity across the interface. Special care is taken in the discretization of cells near the liquid-gas interface to ensure the stability and accuracy of the solution. Results are discussed for non-reacting simulations of liquid droplets evaporating into a turbulent field of inert gas.
Direct numerical simulation of particle alignment in viscoelastic fluids
NASA Astrophysics Data System (ADS)
Hulsen, Martien; Jaensson, Nick; Anderson, Patrick
2016-11-01
Rigid particles suspended in viscoelastic fluids under shear can align in string-like structures in flow direction. To unravel this phenomenon, we present 3D direct numerical simulations of the alignment of two and three rigid, non-Brownian particles in a shear flow of a viscoelastic fluid. The equations are solved on moving, boundary-fitted meshes, which are locally refined to accurately describe the polymer stresses around and in between the particles. A small minimal gap size between the particles is introduced. The Giesekus model is used and the effect of the Weissenberg number, shear thinning and solvent viscosity is investigated. Alignment of two and three particles is observed. Morphology plots have been created for various combinations of fluid parameters. Alignment is mainly governed by the value of the elasticity parameter S, defined as half of the ratio between the first normal stress difference and shear stress of the suspending fluid. Alignment appears to occur above a critical value of S, which decreases with increasing shear thinning. This result, together with simulations of a shear-thinning Carreau fluid, leads us to the conclusion that normal stress differences are essential for particle alignment to occur, but it is also strongly promoted by shear thinning.
Numerical Simulations of Canted Nozzle and Scarfed Nozzle Flow Fields
NASA Astrophysics Data System (ADS)
Javed, Afroz; Chakraborty, Debasis
2016-06-01
Computational fluid dynamics (CFD) techniques are used for the analysis of issues concerning non-conventional (canted and scarfed) nozzle flow fields. Numerical simulations are carried out for the quality of flow in terms of axisymmetric nature at the inlet of canted nozzles of a rocket motor. Two different nozzle geometries are examined. The analysis of these simulation results shows that the flow field at the entry of the nozzles is non axisymmetric at the start of the motor. With time this asymmetry diminishes, also the flow becomes symmetric before the nozzle throat, indicating no misalignment of thrust vector with the nozzle axis. The qualitative flow fields at the inlet of the nozzles are used in selecting the geometry with lesser flow asymmetry. Further CFD methodology is used to analyse flow field of a scarfed nozzle for the evaluation of thrust developed and its direction. This work demonstrates the capability of the CFD based methods for the nozzle analysis problems which were earlier solved only approximately by making simplifying assumptions and semi empirical methods.
Numerical simulation of linear fiction welding (LFW) processes
NASA Astrophysics Data System (ADS)
Fratini, L.; La Spisa, D.
2011-05-01
Solid state welding processes are becoming increasingly important due to a large number of advantages related to joining "unweldable" materials and in particular light weight alloys. Linear friction welding (LFW) has been used successfully to bond non-axisymmetric components of a range of materials including titanium alloys, steels, aluminum alloys, nickel, copper, and also dissimilar material combinations. The technique is useful in the research of quality of the joints and in reducing costs of components and parts of the aeronautic and automotive industries. LFW involves parts to be welded through the relative reciprocating motion of two components under an axial force. In such process the heat source is given by the frictional forces work decaying into heat determining a local softening of the material and proper bonding conditions due to both the temperature increase and the local pressure of the two edges to be welded. This paper is a comparative test between the numerical model in two dimensions, i.e. in plane strain conditions, and in three dimensions of a LFW process of AISI1045 steel specimens. It must be observed that the 3D model assures a faithful simulation of the actual threedimensional material flow, even if the two-dimensional simulation computational times are very short, a few hours instead of several ones as the 3D model. The obtained results were compared with experimental values found out in the scientific literature.
Direct Numerical Simulation of Turbulent Condensation in Clouds
NASA Technical Reports Server (NTRS)
Shariff, K.; Paoli, R.
2004-01-01
In this brief, we investigate the turbulent condensation of a population of droplets by means of a direct numerical simulation. To that end, a coupled Navier-Stokes/Lagrangian solver is used where each particle is tracked and its growth by water vapor condensation is monitored exactly. The main goals of the study are to find out whether turbulence broadens the droplet size distribution, as observed in in situ measurements. The second issue is to understand if and for how long a correlation between the droplet radius and the local supersaturation exists for the purpose of modeling sub-grid scale microphysics in cloud-resolving codes. This brief is organized as follows. In Section 2 the governing equations are presented, including the droplet condensation model. The implementation of the forcing procedure is described in Section 3. The simulation results are presented in Section 4 together with a sketch of a simple stochastic model for turbulent condensation. Conclusions and the main outcomes of the study are given in Section 5.
Optimization of intramedullary nailing by numerical simulation of fracture healing.
Wehner, Tim; Claes, Lutz; Ignatius, Anita; Simon, Ulrich
2012-04-01
Due to the annular gap between intramedullary (IM) nails and the endosteal surface, high interfragmentary movement can occur under loading. This could prolong the healing time, particularly for thin IM nails that are often used for unreamed IM nailing. The aims of our study were to determine the influence of the nail diameter on the healing time of human tibial shaft fractures and to investigate whether the healing time could be shortened by increasing the stiffness of the implant material. Therefore, a corroborated numerical model for simulating the fracture healing process in humans was used to simulate the healing process of human tibial fractures treated with IM nails. The calculated healing time (up to 71 weeks) was longest for transverse fractures treated with thin IM nails made of titanium. That the healing time was disproportionately long depended on the nail diameter, and could be greatly reduced by using a thicker nail or using steel instead of titanium. To avoid a prolonged healing time, the nail should be thick, and the annular gap should be as narrow as possible. Alternatively, using steel instead of titanium may also help to avoid a prolonged healing time.
Numerical Simulation of the Detonation Propagation in Silicon Carbide Shell
NASA Astrophysics Data System (ADS)
Balagansky, Igor; Terechov, Anton
2013-06-01
Last years it was experimentally shown that in condensed high explosive charges (HE) placed in silicon carbide shell with sound velocity greater than the detonation velocity in HE, there may be observed interesting phenomena. Depending on the conditions, as an increase or decrease of the detonation velocity and pressure on the detonation front can be observed. There is also the distortion of the detonation front until the formation of a concave front. For a detailed explanation of the physical nature of the phenomenon we have provided numerical simulation of detonation wave propagation in Composition B HE charge, which was placed in silicon carbide shell. Modeling was performed with Ansys Autodyn in 2D-axis symmetry posting on an Eulerian mesh. Special attention was paid to selection of the parameters values in Lee-Tarver kinetic equation for HE and choice of constants to describe behavior of the ceramics. For comparison, also we have carried out the modeling of propagation of detonation in a completely similar assembly with brass shell. The simulation results agree well with the experimental data. In particular, in silicon carbide shell distortion of the detonation front was observed. A characteristic feature of the process is the pressure waves propagating in the direction of the axis of symmetry on the back surface of the detonation front.
Numerical simulation of NQR/NMR: Applications in quantum computing.
Possa, Denimar; Gaudio, Anderson C; Freitas, Jair C C
2011-04-01
A numerical simulation program able to simulate nuclear quadrupole resonance (NQR) as well as nuclear magnetic resonance (NMR) experiments is presented, written using the Mathematica package, aiming especially applications in quantum computing. The program makes use of the interaction picture to compute the effect of the relevant nuclear spin interactions, without any assumption about the relative size of each interaction. This makes the program flexible and versatile, being useful in a wide range of experimental situations, going from NQR (at zero or under small applied magnetic field) to high-field NMR experiments. Some conditions specifically required for quantum computing applications are implemented in the program, such as the possibility of use of elliptically polarized radiofrequency and the inclusion of first- and second-order terms in the average Hamiltonian expansion. A number of examples dealing with simple NQR and quadrupole-perturbed NMR experiments are presented, along with the proposal of experiments to create quantum pseudopure states and logic gates using NQR. The program and the various application examples are freely available through the link http://www.profanderson.net/files/nmr_nqr.php.
Direct Numerical Simulation of Transition Due to Traveling Crossflow Vortices
NASA Technical Reports Server (NTRS)
Li, Fei; Choudhari, Meelan M.; Duan, Lian
2016-01-01
Previous simulations of laminar breakdown mechanisms associated with stationary crossflow instability over a realistic swept-wing configuration are extended to investigate the alternate scenario of transition due to secondary instability of traveling crossflow modes. Earlier analyses based on secondary instability theory and parabolized stability equations have shown that this alternate scenario is viable when the initial amplitude of the most amplified mode of the traveling crossflow instability is greater than approximately 0.03 times the initial amplitude of the most amplified stationary mode. The linear growth predictions based on the secondary instability theory and parabolized stability equations agree well with the direct numerical simulation. Nonlinear effects are initially stabilizing but subsequently lead to a rapid growth followed by the onset of transition when the amplitude of the secondary disturbance exceeds a threshold value. Similar to the breakdown of stationary vortices, the transition zone is rather short and the boundary layer becomes completely turbulent across a distance of less than 15 times the boundary layer thickness at the completion of transition.
Numerical simulations of unsteady reactive flows in a combustion chamber
Kailasanath, K.; Gardner, J.H.; Oran, E.S.; Boris, J.P. )
1991-07-01
This paper reports on a potentially important source of large-pressure oscillations in combustors that is an instability induced by the interactions between large-scale vortex structures, acoustic waves, and chemical energy release. To study these interactions, we have performed time-dependent, compressible numerical simulations of the flow field in an idealized ramjet consisting of an axisymmetric inlet and combustor and a choked nozzle. Both reactive and nonreactive flows have been simulated. The nonreactive flow calculations show complex interactions among the natural instability frequency of the shear layer at the inlet-combustor junction and the acoustics of both the inlet and the combustor. Vortex shedding occurs at the natural instability frequency of the shear layer but vortex mergings are affected by the acoustic frequencies of the system. The entire flow oscillates at a low frequency that corresponds to that of a quarter-wave mode in the inlet. For the particular reactive flow case studies, energy release alters the flow field substantially.
Numerical simulation of circular cylinders in free-fall
Romero-Gomez, Pedro; Richmond, Marshall C.
2016-02-01
In this work, we combined the use of (i) overset meshes, (ii) a 6 degree-of-freedom (6- DOF) motion solver, and (iii) an eddy-resolving flow simulation approach to resolve the drag and secondary movement of large-sized cylinders settling in a quiescent fluid at moderate terminal Reynolds numbers (1,500 < Re < 28,000). These three strategies were implemented in a series of computational fluid dynamics (CFD) solutions to describe the fluid-structure interactions and the resulting effects on the cylinder motion. Using the drag coefficient, oscillation period, and maximum angular displacement as baselines, the findings show good agreement between the present CFD results and corresponding data of published laboratory experiments. We discussed the computational expense incurred in using the present modeling approach. We also conducted a preceding simulation of flow past a fixed cylinder at Re = 3,900, which tested the influence of the turbulence approach (time-averaging vs eddy-resolving) and the meshing strategy (continuous vs. overset) on the numerical results. The outputs indicated a strong effect of the former and an insignificant influence of the latter. The long-term motivation for the present study is the need to understand the motion of an autonomous sensor of cylindrical shape used to measure the hydraulic conditions occurring in operating hydropower turbines.
Numerical simulation of a turning alpine ski during recreational skiing.
Hirano, Y; Tada, N
1996-09-01
While downhill snow skiing, recreational alpine skiers enjoy making turning motions with their skis. These motions are mainly induced by skidding, while turning by alpine ski racers is made by carving a trace in the snow. In the present study we treat the turning motions by recreational alpine skiers. This "skidding" turning motion is made possible by centripetal forces acting on the ski and skier dynamic motion systems, with these forces arising due to the skier placing the ski's longitudinal axis at an angle that is inclined away from the velocity vector and edging the ski into the snow. When snow is soft, the edged ski creates a snow impacting force, whereas a snow cutting force occurs when it is hard. Here, we calculate the former force using a three-dimensional water jet analogy, while the latter one using conventional metal cutting theory, after which the corresponding equations of motion for each system are derived and numerically solved. This methodology enables simulating the curvilinear and rotational motion of the ski and skier systems. Resultant simulations quantitatively show for the first time that the resultant radius of curvature of a ski track while downhill skiing is strongly dependent on the location of the ski boot on the ski's longitudinal axis and also on its side-cut (midlength taper).
Numerical Simulation of Flow Through an Artificial Heart
NASA Technical Reports Server (NTRS)
Rogers, Stuart E.; Kutler, Paul; Kwak, Dochan; Kiris, Cetin
1989-01-01
A solution procedure was developed that solves the unsteady, incompressible Navier-Stokes equations, and was used to numerically simulate viscous incompressible flow through a model of the Pennsylvania State artificial heart. The solution algorithm is based on the artificial compressibility method, and uses flux-difference splitting to upwind the convective terms; a line-relaxation scheme is used to solve the equations. The time-accuracy of the method is obtained by iteratively solving the equations at each physical time step. The artificial heart geometry involves a piston-type action with a moving solid wall. A single H-grid is fit inside the heart chamber. The grid is continuously compressed and expanded with a constant number of grid points to accommodate the moving piston. The computational domain ends at the valve openings where nonreflective boundary conditions based on the method of characteristics are applied. Although a number of simplifing assumptions were made regarding the geometry, the computational results agreed reasonably well with an experimental picture. The computer time requirements for this flow simulation, however, are quite extensive. Computational study of this type of geometry would benefit greatly from improvements in computer hardware speed and algorithm efficiency enhancements.
Numerical Simulations of Separated Flows Using Wall-Modeled LES
NASA Astrophysics Data System (ADS)
Vane, Zachary; Ortega, Jason; Salari, Kambiz
2014-11-01
Calculations using an unstructured, wall-modeled large eddy simulation (WMLES) solver are performed for several high Reynolds number test cases of interest. While the equilibrium formulation of this wall-model (Bodart, Larsson & Moin, AIAA 2013-2724) has proven to be accurate for steady, attached boundary layers, its application to non-equilibrium or highly three-dimensional problems has yet to be fully explored. A series of turbulent flows that exhibit boundary layer separation due to the geometries involved in each test case are considered. First, spanwise-periodic simulations for the flow over periodic hills are performed at multiple Reynolds numbers. Next, calculations involving separation caused by three-dimensional bodies are used to generate more complex flow fields and to evaluate the accuracy of the WMLES in the separated wake region downstream. The performance of the WMLES is quantified through comparisons with existing numerical and experimental data sets. The effects of grid resolution and variations in several wall-model parameters are also investigated to determine their influence on the overall calculation.
Numerical simulation of wind sand movement in straw checkerboard barriers.
Huang, Ning; Xia, Xianpan; Tong, Ding
2013-09-01
Straw checkerboard barrier (SCB) is the most representative antidesertification measure and plays a significant role in antidesertification projects. Large-eddy simulation and discrete-particle tracing were used to numerically simulate the wind sand movement inside the straw checkerboard barrier (SCB), study the movement characteristics of sand particles, find the transverse velocities of sand particles and flow field, and obtain the contour of the transverse velocity of coupled wind field within the SCB. The results showed that 1) compared with that at the inlet of the SCB, the sand transport rate inside the SCB greatly decreases and the speed of sand grain movement also evidently drops, indicating that the SCB has very good sand movement preventing and fixing function; 2) within the SCB there exists a series of unevenly distributed eddies of wind sand flow, their strength decreases gradually with increasing the transverse distance; 3) affected by eddies or reflux, sand particles carried by the wind sand flow have to drop forward and backward the two interior walls inside the SCB, respectively, forming a v-shaped sand trough; 4) the sand transport rate gradually decreases with increasing number of SCBs, which reveals that the capacity of the wind field to transport sand particles decreases. This research is of significance in sandstorm and land desertification control.
Comparative Study of Algorithms for the Numerical Simulation of Lattice QCD
Luz, Fernando H. P.; Mendes, Tereza
2010-11-12
Large-scale numerical simulations are the prime method for a nonperturbative study of QCD from first principles. Although the lattice simulation of the pure-gauge (or quenched-QCD) case may be performed very efficiently on parallel machines, there are several additional difficulties in the simulation of the full-QCD case, i.e. when dynamical quark effects are taken into account. We discuss the main aspects of full-QCD simulations, describing the most common algorithms. We present a comparative analysis of performance for two versions of the hybrid Monte Carlo method (the so-called R and RHMC algorithms), as provided in the MILC software package. We consider two degenerate flavors of light quarks in the staggered formulation, having in mind the case of finite-temperature QCD.
Understanding the IGM Absorbers with Numerical Simulations of the WHIM
NASA Astrophysics Data System (ADS)
Hallman, Eric
2010-09-01
The total baryon content of the universe can be deduced both from observations of the cosmic microwave background, and the observed Deuterium to Hydrogen ratio {D/H} through the theory of big-bang nucleosynthesis. Though observations can account for all of the baryons at high redshift, roughly half the baryons are referred to as``missing'' in the low redshift universe since they are not observed in known baryonic structureslike galaxies, clusters, and the Lyman-alpha forest. Cosmological simulations predict that the missing baryons can be found in acosmic web of sheets and filaments that thread the halos, in the ``warm-hot intergalactic medium'' {WHIM} phase {10^5 - 10^7K}. The WHIM gas should be detectable in Ly-alpha or Ly-beta {10^4 K gas} and in shock-heated gas{10^5 - 10^6 K} in Ly-alpha and OVI absorption. Ultraviolet {UV} spectroscopy with the Far Ultraviolet Spectroscopic Explorer {FUSE} and HST has detected IGM absorbers in various metal species and HI along lines of sight to bright quasars that are likely associated with gas in the WHIM phase. This gas may account for the bulk of the missing baryons in the low redshift universe. Using Enzo hydro/N-body grid-based cosmology simulations, we will determine whether there is a unique interpretation given the current IGM absorber observations, and how new observations may provide strong tests of these theories. We propose to, with a suite of high-resolution Enzo simulations and novel analysis techniques, characterize the UV absorbers, and to model observational metrics to compare with the data. In particular, we study the metal diffusion throughout the IGM using various prescriptions for star formation, galaxy formation and thermaland chemical feedback, and study the numerical convergence of these algorithms.
Numerical simulation of flow around a simplified high-speed train model using OpenFOAM
NASA Astrophysics Data System (ADS)
Ishak, I. A.; Ali, M. S. M.; Shaikh Salim, S. A. Z.
2016-10-01
Detailed understanding of flow physics on the flow over a high-speed train (HST) can be accomplished using the vast information obtained from numerical simulation. Accuracy of any simulation in solving and analyzing problems related to fluid flow is important since it measures the reliability of the results. This paper describes a numerical simulation setup for the flow around a simplified model of HST that utilized open source software, OpenFOAM. The simulation results including pressure coefficient, drag coefficient and flow visualization are presented and they agreed well with previously published data. This shows that OpenFOAM software is capable of simulating fluid flows around a simplified HST model. Additionally, the wall functions are implemented in order to minimize the overall number of grid especially near the wall region. This resulted in considerably smaller numbers of mesh resolution used in the current study compared to previous work, which leads to achievement of much reasonable time simulation and consequently reduces the total computational effort without affecting the final outcome.
Rider, William; Kamm, J. R.; Tomkins, C. D.; Zoldi, C. A.; Prestridge, K. P.; Marr-Lyon, M.; Rightley, P. M.; Benjamin, R. F.
2002-01-01
We consider the detailed structures of mixing flows for Richtmyer-Meshkov experiments of Prestridge et al. [PRE 00] and Tomkins et al. [TOM 01] and examine the most recent measurements from the experimental apparatus. Numerical simulations of these experiments are performed with three different versions of high resolution finite volume Godunov methods. We compare experimental data with simulations for configurations of one and two diffuse cylinders of SF{sub 6} in air using integral measures as well as fractal analysis and continuous wavelet transforms. The details of the initial conditions have a significant effect on the computed results, especially in the case of the double cylinder. Additionally, these comparisons reveal sensitive dependence of the computed solution on the numerical method.
Numerical Simulations of Single Flow Element in a Nuclear Thermal Thrust Chamber
NASA Technical Reports Server (NTRS)
Cheng, Gary; Ito, Yasushi; Ross, Doug; Chen, Yen-Sen; Wang, Ten-See
2007-01-01
The objective of this effort is to develop an efficient and accurate computational methodology to predict both detailed and global thermo-fluid environments of a single now element in a hypothetical solid-core nuclear thermal thrust chamber assembly, Several numerical and multi-physics thermo-fluid models, such as chemical reactions, turbulence, conjugate heat transfer, porosity, and power generation, were incorporated into an unstructured-grid, pressure-based computational fluid dynamics solver. The numerical simulations of a single now element provide a detailed thermo-fluid environment for thermal stress estimation and insight for possible occurrence of mid-section corrosion. In addition, detailed conjugate heat transfer simulations were employed to develop the porosity models for efficient pressure drop and thermal load calculations.
Numerical Study of Wake Vortex Interaction with the Ground Using the Terminal Area Simulation System
NASA Technical Reports Server (NTRS)
Proctor, Fred H.; Han, Jongil
1999-01-01
A sensitivity study for the in-ground effect on aircraft wake vortices has been conducted using a validated large eddy simulation model. The numerical results are compared with observed data and show good agreement for vortex decay and lateral vortex transport. The vortex decay rate is strongly influenced by the ground, but appears somewhat insensitive to ambient turbulence. In addition, the results show that the ground can affect the trajectory and descent-rate of a wake vortex pair at elevations up to about 3 b(sub o) (where b(sub o) is the initial vortex separation). However, the ground does not influence the average circulation of the vortices until the cores descend to within about 0.6 b(sub o), after which time the ground greatly enhances their rate of demise. Vortex rebound occurs in the simulations, but is more subtle than shown in previous numerical studies.
Direct numerical simulation of intermittent turbulence in stably stratified plane Couette flow
NASA Astrophysics Data System (ADS)
Mortikov, Evgeny
2016-11-01
This work uses direct numerical simulation approach to investigate intermittent turbulence in stably stratified plane Couette flow for Reynolds numbers, based on the channel height and relative wall speed between top and bottom walls, up to 105. Results show that the transition to intermittent turbulence under strong stratification is associated with the formation of secondary counter-rotating roll-like structures elongated in the spanwise direction and organized in two rows corresponding to lower and upper walls of the channel. The ordering of rolls define spatially confined alternating regions of laminar and turbulent flow. The spanwise length of this vortices increases with the increase of the bulk Richardson number and defines an additional constraint on the computational box size. This study describes direct numerical simulation results in spanwise-extended computational domains, where the turbulent intermittent regime is sustained without relaminarization for sufficiently higher bulk Richardson numbers than previously reported.
Numerical simulation of electrically stimulated osteogenesis in dental implants.
Vanegas-Acosta, J C; Garzón-Alvarado, D A; Lancellotti, V
2014-04-01
Cell behavior and tissue formation are influenced by a static electric field (EF). Several protocols for EF exposure are aimed at increasing the rate of tissue recovery and reducing the healing times in wounds. However, the underlying mechanisms of the EF action on cells and tissues are still a matter of research. In this work we introduce a mathematical model for electrically stimulated osteogenesis at the bone-dental implant interface. The model describes the influence of the EF in the most critical biological processes leading to bone formation at the bone-dental implant interface. The numerical solution is able to reproduce the distribution of spatial-temporal patterns describing the influence of EF during blood clotting, osteogenic cell migration, granulation tissue formation, displacements of the fibrillar matrix, and formation of new bone. In addition, the model describes the EF-mediated cell behavior and tissue formation which lead to an increased osteogenesis in both smooth and rough implant surfaces. Since numerical results compare favorably with experimental evidence, the model can be used to predict the outcome of using electrostimulation in other types of wounds and tissues.
Modeling and numerical simulation of multiflux die in the multilayer co-extrusion process
NASA Astrophysics Data System (ADS)
Mun, Jun Ho; Kim, Ju Hyeon; Mun, Sang Ho; Kim, See Jo
2017-02-01
It is of great importance to understand the stretching and folding mechanism in the multiflux co-extrusion die to get uniform multilayer distribution at the end of die lip in the multilayer co-extrusion processes. In this work, to understand the mechanism of the layer distribution, modeling and numerical simulation were carried out for three-dimensional flow analysis in the multilayer co-extrusion die. The multilayer flow fields were numerically visualized and analyzed on the arbitrary cross-section of the multiflux die. In addition, numerical results for the multiflux die characteristics were obtained for non-Newtonian fluids in terms of power-law index for the cross model, which will be useful for the optimal design of screw and die, simultaneously, in the multilayer co-extrusion process.
Fernández, Miguel A; Zemzemi, Nejib
2010-07-01
This work considers the approximation of the cardiac bidomain equations, either isolated or coupled with the torso, via first order semi-implicit time-marching schemes involving a fully decoupled computation of the unknown fields (ionic state, transmembrane potential, extracellular and torso potentials). For the isolated bidomain system, we show that the Gauss-Seidel and Jacobi like splittings do not compromise energy stability; they simply alter the energy norm. Within the framework of the numerical simulation of electrocardiograms (ECG), these bidomain splittings are combined with an explicit Robin-Robin treatment of the heart-torso coupling conditions. We show that the resulting schemes allow a fully decoupled (energy) stable computation of the heart and torso fields, under an additional hyperbolic-CFL like condition. The accuracy and convergence rate of the considered schemes are investigated numerically with a series of numerical experiments.
Single Droplet on Micro Square-Post Patterned Surfaces – Theoretical Model and Numerical Simulation
Zu, Y. Q.; Yan, Y. Y.
2016-01-01
In this study, the wetting behaviors of single droplet on a micro square-post patterned surface with different geometrical parameters are investigated theoretically and numerically. A theoretical model is proposed for the prediction of wetting transition from the Cassie to Wenzel regimes. In addition, due to the limitation of theoretical method, a numerical simulation is performed, which helps get a view of dynamic contact lines, detailed velocity fields, etc., even if the droplet size is comparable with the scale of the surface micro-structures. It is found that the numerical results of the liquid drop behaviours on the square-post patterned surface are in good agreement with the predicted values by the theoretical model. PMID:26775561
Direct Numerical Simulations of Transitional/Turbulent Wakes
NASA Technical Reports Server (NTRS)
Rai, Man Mohan
2011-01-01
The interest in transitional/turbulent wakes spans the spectrum from an intellectual pursuit to understand the complex underlying physics to a critical need in aeronautical engineering and other disciplines to predict component/system performance and reliability. Cylinder wakes have been studied extensively over several decades to gain a better understanding of the basic flow phenomena that are encountered in such flows. Experimental, computational and theoretical means have been employed in this effort. While much has been accomplished there are many important issues that need to be resolved. The physics of the very near wake of the cylinder (less than three diameters downstream) is perhaps the most challenging of them all. This region comprises the two detached shear layers, the recirculation region and wake flow. The interaction amongst these three components is to some extent still a matter of conjecture. Experimental techniques have generated a large percentage of the data that have provided us with the current state of understanding of the subject. More recently computational techniques have been used to simulate cylinder wakes, and the data from such simulations are being used to both refine our understanding of such flows as well as provide new insights. A few large eddy and direct numerical simulations (LES and DNS) of cylinder wakes have appeared in the literature in the recent past. These investigations focus on the low Reynolds number range where the cylinder boundary layer is laminar (sub-critical range). However, from an engineering point of view, there is considerable interest in the situation where the upper and/or lower boundary layer of an airfoil is turbulent, and these turbulent boundary layers separate from the airfoil to contribute to the formation of the wake downstream. In the case of cylinders, this only occurs at relatively large unit Reynolds numbers. However, in the case of airfoils, the boundary layer has the opportunity to transition
Numerical Simulations of Binary Systems with Matter Companions
NASA Astrophysics Data System (ADS)
Etienne, Zachariah
2011-04-01
With the advent of gravitational wave interferometers such as LIGO, VIRGO, and LISA, a revolution in astronomy and relativistic astrophysics is about to begin. Compact objects---black holes (BHs), neutron stars (NSs), and white dwarfs (WDs)---in binary systems are among the most promising sources of gravitational radiation detectable by these interferometers. In addition, merging compact object binaries with matter companions may also emit a detectable electromagnetic counterpart, leading to an exciting possibility: a simultaneous detection of both gravitational and electromagnetic radiation. Such a detection could lead to breakthroughs in our understanding of matter under extreme conditions, as there are currently many competing ideas about how this matter should behave. Determining the correct one will require careful modeling of the gravitational and electromagnetic waves these systems emit through the late- inspiral, merger, and post-merger stages. During these stages, the effects of high-velocity, strong-field gravitation become paramount, and accurate modeling requires large-scale, fully general relativistic simulations. I will review some of the latest results from fully general relativistic simulations of compact object binaries with matter companions, including NSNSs, BHNSs, and WDNSs. These simulations examine the effects of mass ratio, BH spin, equations of state, and magnetic fields on the gravitational waveforms and possible electromagnetic counterparts. Future work will focus on producing longer gravitational waveforms, incorporating more physics, and inventing new algorithms to efficiently handle the disparate length and timescales.
Numerical Simulation Study of the Sanchiao Fault Earthquake Scenarios
NASA Astrophysics Data System (ADS)
Wang, Yi-Min; Lee, Shiann-Jong
2015-04-01
Sanchiao fault is a western boundary fault of the Taipei basin located in northern Taiwan, close to the densely populated Taipei metropolitan area. Recent study indicated that there is about 40 km of the fault trace extended to the marine area offshore northern Taiwan. Combining the marine and terrestrial parts, the total fault length of Sanchiao fault could be nearly 70 kilometers which implies that this fault has potential to produce a big earthquake. In this study, we analyze several Sanchiao fault earthquake scenarios based on the recipe for predicting strong ground motion. The characterized source parameters include fault length, rupture area, seismic moment, asperity, and slip pattern on the fault plane. According to the assumption of the characterized source model, Sanchiao fault has been inferred to have the potential to produce an earthquake with moment magnitude (Mw) larger than 7.0. Three-dimensional seismic simulation results based upon spectral-element method (SEM) indicate that peak ground acceleration (PGA) is significantly stronger along the fault trace. The basin effect also plays an important role when wave propagates in the Taipei basin which cause seismic wave amplified and prolong the shaking for a very long time. Among all rupture scenarios, the rupture propagated from north to south is the most serious one. Owing to the rupture directivity as well as the basin effects, large PGA (>1g) was observed in the Taipei basin, especially in the northwest side. The results of these scenario earthquake simulations will provide important physically-based numerical data for earthquake mitigation and seismic hazard assessment.
NUMERICAL SIMULATIONS OF CONVERSION TO ALFVEN WAVES IN SUNSPOTS
Khomenko, E.; Cally, P. S. E-mail: paul.cally@monash.edu
2012-02-10
We study the conversion of fast magnetoacoustic waves to Alfven waves by means of 2.5D numerical simulations in a sunspot-like magnetic configuration. A fast, essentially acoustic, wave of a given frequency and wave number is generated below the surface and propagates upward through the Alfven/acoustic equipartition layer where it splits into upgoing slow (acoustic) and fast (magnetic) waves. The fast wave quickly reflects off the steep Alfven speed gradient, but around and above this reflection height it partially converts to Alfven waves, depending on the local relative inclinations of the background magnetic field and the wavevector. To measure the efficiency of this conversion to Alfven waves we calculate acoustic and magnetic energy fluxes. The particular amplitude and phase relations between the magnetic field and velocity oscillations help us to demonstrate that the waves produced are indeed Alfven waves. We find that the conversion to Alfven waves is particularly important for strongly inclined fields like those existing in sunspot penumbrae. Equally important is the magnetic field orientation with respect to the vertical plane of wave propagation, which we refer to as 'field azimuth'. For a field azimuth less than 90 Degree-Sign the generated Alfven waves continue upward, but above 90 Degree-Sign downgoing Alfven waves are preferentially produced. This yields negative Alfven energy flux for azimuths between 90 Degree-Sign and 180 Degree-Sign . Alfven energy fluxes may be comparable to or exceed acoustic fluxes, depending upon geometry, though computational exigencies limit their magnitude in our simulations.
Ab initio molecular simulations with numeric atom-centered orbitals
NASA Astrophysics Data System (ADS)
Blum, Volker; Gehrke, Ralf; Hanke, Felix; Havu, Paula; Havu, Ville; Ren, Xinguo; Reuter, Karsten; Scheffler, Matthias
2009-11-01
We describe a complete set of algorithms for ab initio molecular simulations based on numerically tabulated atom-centered orbitals (NAOs) to capture a wide range of molecular and materials properties from quantum-mechanical first principles. The full algorithmic framework described here is embodied in the Fritz Haber Institute "ab initio molecular simulations" (FHI-aims) computer program package. Its comprehensive description should be relevant to any other first-principles implementation based on NAOs. The focus here is on density-functional theory (DFT) in the local and semilocal (generalized gradient) approximations, but an extension to hybrid functionals, Hartree-Fock theory, and MP2/GW electron self-energies for total energies and excited states is possible within the same underlying algorithms. An all-electron/full-potential treatment that is both computationally efficient and accurate is achieved for periodic and cluster geometries on equal footing, including relaxation and ab initio molecular dynamics. We demonstrate the construction of transferable, hierarchical basis sets, allowing the calculation to range from qualitative tight-binding like accuracy to meV-level total energy convergence with the basis set. Since all basis functions are strictly localized, the otherwise computationally dominant grid-based operations scale as O(N) with system size N. Together with a scalar-relativistic treatment, the basis sets provide access to all elements from light to heavy. Both low-communication parallelization of all real-space grid based algorithms and a ScaLapack-based, customized handling of the linear algebra for all matrix operations are possible, guaranteeing efficient scaling (CPU time and memory) up to massively parallel computer systems with thousands of CPUs.
Hurtado, Pablo I; Garrido, Pedro L
2010-04-01
Most systems, when pushed out of equilibrium, respond by building up currents of locally conserved observables. Understanding how microscopic dynamics determines the averages and fluctuations of these currents is one of the main open problems in nonequilibrium statistical physics. The additivity principle is a theoretical proposal that allows to compute the current distribution in many one-dimensional nonequilibrium systems. Using simulations, we validate this conjecture in a simple and general model of energy transport, both in the presence of a temperature gradient and in canonical equilibrium. In particular, we show that the current distribution displays a Gaussian regime for small current fluctuations, as prescribed by the central limit theorem, and non-Gaussian (exponential) tails for large current deviations, obeying in all cases the Gallavotti-Cohen fluctuation theorem. In order to facilitate a given current fluctuation, the system adopts a well-defined temperature profile different from that of the steady state and in accordance with the additivity hypothesis predictions. System statistics during a large current fluctuation is independent of the sign of the current, which implies that the optimal profile (as well as higher-order profiles and spatial correlations) are invariant upon current inversion. We also demonstrate that finite-time joint fluctuations of the current and the profile are well described by the additivity functional. These results suggest the additivity hypothesis as a general and powerful tool to compute current distributions in many nonequilibrium systems.
NASA Astrophysics Data System (ADS)
Hurtado, Pablo I.; Garrido, Pedro L.
2010-04-01
Most systems, when pushed out of equilibrium, respond by building up currents of locally conserved observables. Understanding how microscopic dynamics determines the averages and fluctuations of these currents is one of the main open problems in nonequilibrium statistical physics. The additivity principle is a theoretical proposal that allows to compute the current distribution in many one-dimensional nonequilibrium systems. Using simulations, we validate this conjecture in a simple and general model of energy transport, both in the presence of a temperature gradient and in canonical equilibrium. In particular, we show that the current distribution displays a Gaussian regime for small current fluctuations, as prescribed by the central limit theorem, and non-Gaussian (exponential) tails for large current deviations, obeying in all cases the Gallavotti-Cohen fluctuation theorem. In order to facilitate a given current fluctuation, the system adopts a well-defined temperature profile different from that of the steady state and in accordance with the additivity hypothesis predictions. System statistics during a large current fluctuation is independent of the sign of the current, which implies that the optimal profile (as well as higher-order profiles and spatial correlations) are invariant upon current inversion. We also demonstrate that finite-time joint fluctuations of the current and the profile are well described by the additivity functional. These results suggest the additivity hypothesis as a general and powerful tool to compute current distributions in many nonequilibrium systems.
Numerical simulation of the falling snow deposition over complex terrain
NASA Astrophysics Data System (ADS)
Wang, Zhengshi; Huang, Ning
2017-01-01
Snow is one of the most dynamic natural elements on the Earth's surface, and the variations in its distribution in time and space profoundly affect the hydrological cycle, climate system, and ecological evolution as well as other natural processes. Most previous studies have paid less attention to the process determining the distribution of snow on the ground as a result of the effect of nonuniform mountain wind on the trajectories of snow particles. In this paper, we present a numerical study on the falling snow deposition process involving snow particles of mixed grain sizes over complex terrain. A three-dimensional large-eddy simulation code was used to predict the wind field by considering the fluid-solid coupling effect, and the Lagrangian particle tracking method was employed to track the movement of each tracking snow particle. The grid resolution and model parameters were determined by the best fit with the field experiment, and the coupling effect between snow particles and wind field was found to be nonnegligible when the drifting snow occurred. In general, the preferential deposition on a single ridge showed a tendency from windward slope toward leeward slope with the increasing advection, while it was hard to describe the snow distribution over complex terrains with a unified deposition model due to the interaction of surrounding topographies and different atmospheric stabilities, and the particle tracking approach was substantially suitable for this issue. Our study significantly improved the understanding of the evolution of snow distributions at high levels of resolution.
Numerical simulation of compressor endwall and casing treatment flow phenomena
NASA Technical Reports Server (NTRS)
Crook, A. J.; Greitzer, E. M.; Tan, C. S.; Adamczyk, J. J.
1992-01-01
A numerical study is presented of the flow in the endwall region of a compressor blade row, in conditions of operation with both smooth and grooved endwalls. The computations are first compared to velocity field measurements in a cantilevered stator/rotating hub configuration to confirm that the salient features are captured. Computations are then interrogated to examine the tip leakage flow structure since this is a dominant feature of the endwall region. In particular, the high blockage that can exist near the endwalls at the rear of a compressor blade passage appears to be directly linked to low total pressure fluid associated with the leakage flow. The fluid dynamic action of the grooved endwall, representative of the casing treatments that have been most successful in suppressing stall, is then simulated computationally and two principal effects are identified. One is suction of the low total pressure, high blockage fluid at the rear of the passage. The second is energizing of the tip leakage flow, most notably in the core of the leakage vortex, thereby suppressing the blockage at its source.
Numerical simulation of burst defects in cold extrusion process
NASA Astrophysics Data System (ADS)
Labergère, C.; Lestriez, P.; Saanouni, K.
2007-05-01
The formation of the central bursts in axisymmetric cold extrusion is numerically simulated by using 2D finite element analysis (FEA) accounting for the mixed isotropic and kinematic hardening together with the ductile damage effect. The coupling between the ductile damage and the elastoplastic constitutive equations is formulated in the framework of the thermodynamics of irreversible processes together with the Continuum Damage Mechanics (CDM) theory. An isotropic ductile damage model is fully coupled with elastoplastic constitutive equations including non linear isotropic and kinematic hardening. A modified ductile damage criterion based on linear combination of the stress tensor invariants is used in order to predict the occurrence of micro-crack initiation as a discontinuous central bursts along the bar axis. The implicit integration scheme of the fully coupled constitutive equations and the Dynamic Explicit resolution scheme to solve the associated initial and boundary value problem are outlined. Application is made to the prediction of the chevron shaped cracks in cold extrusion of a round bar. The effect of various process parameters, as the diameter reduction ratio, the die semi-angle, the friction coefficient and the material ductility, on the central bursts occurrence are discussed.
Rapid Numerical Simulation of Viscous Axisymmetric Flow Fields
NASA Technical Reports Server (NTRS)
Tweedt, Daniel L.; Chima, Rodrick V.
1995-01-01
A two-dimensional Navier-Stokes code has been developed for rapid numerical simulation of axisymmetric flow fields, including flow fields with an azimuthal velocity component. The azimuthal-invariant Navier-Stokes equations in a cylindrical coordinate system are mapped to a general body-fitted coordinate system, with the streamwise viscous terms then neglected by applying the thin-layer approximation. Turbulence effects are modeled using an algebraic model, typically the Baldwin-Lomax turbulence model, although a modified Cebeci-Smith model can also be used. The equations are discretized using central finite differences and solved using a multistage Runge-Kutta algorithm with a spatially varying time step and implicit residual smoothing. Results are presented for calculations of supersonic flow over a waisted body-of-revolution, transonic flow through a normal shock wave in a straight circular duct of constant cross sectional area, swirling supersonic (inviscid) flow through a strong shock in a straight radial duct, and swirling subsonic flow in an annular-to-circular diffuser duct. Comparisons between computed and experimental results are in fair to good agreement, demonstrating that the viscous code can be a useful tool for practical engineering design and analysis work.
Numerical Simulation and Scaling Analysis of Cell Printing
NASA Astrophysics Data System (ADS)
Qiao, Rui; He, Ping
2011-11-01
Cell printing, i.e., printing three dimensional (3D) structures of cells held in a tissue matrix, is gaining significant attention in the biomedical community. The key idea is to use inkjet printer or similar devices to print cells into 3D patterns with a resolution comparable to the size of mammalian cells. Achieving such a resolution in vitro can lead to breakthroughs in areas such as organ transplantation. Although the feasibility of cell printing has been demonstrated recently, the printing resolution and cell viability remain to be improved. Here we investigate a unit operation in cell printing, namely, the impact of a cell-laden droplet into a pool of highly viscous liquids. The droplet and cell dynamics are quantified using both direct numerical simulation and scaling analysis. These studies indicate that although cell experienced significant stress during droplet impact, the duration of such stress is very short, which helps explain why many cells can survive the cell printing process. These studies also revealed that cell membrane can be temporarily ruptured during cell printing, which is supported by indirect experimental evidence.
Direct numerical simulation of reacting scalar mixing layers
NASA Astrophysics Data System (ADS)
de Bruyn Kops, S. M.; Riley, J. J.; Kosály, G.
2001-05-01
Understanding the passive reaction of two chemical species in shear-free turbulence with order unity Schmidt number is important in atmospheric and turbulent combustion research. The canonical configuration considered here is the reacting scalar mixing layer; in this problem two initially separated species mix and react downstream of a turbulence generating grid in a wind tunnel. A conserved scalar in this flow is, with some restrictions, analogous to temperature in a thermal mixing layer, and considerable laboratory data are available on the latter. In this paper, results are reported from high resolution, direct numerical simulations in which the evolution of the conserved scalar field accurately matches that of the temperature field in existing laboratory experiments. Superimposed on the flow are passive, single-step reactions with a wide range of activation energies and stoichiometric ratios (r). The resulting data include species concentrations as a function of three spatial dimensions plus time, and statistical moments and spectra of all species. Several aspects of the flow are investigated here with the conclusions that (1) reactions in which r≠1 are more accurately modeled by frozen and equilibrium chemistry limits than are reactions in which r=1, (2) an existing definition of a reduced Damköhler number that includes temperature and stoichiometry effects is a useful measure of reaction rate, and (3) existing theoretical models for predicting the coherence and phase of fuel-oxidizer cross-spectra and the spectrum of the equilibrium fuel mass fraction when r=1 yield accurate predictions.
Numerical simulation of laser ablation for photovoltaic materials
NASA Astrophysics Data System (ADS)
Stein, P.; García, O.; Morales, M.; Huber, H. P.; Molpeceres, C.
2012-09-01
The objective of this work is to help understanding the impacts of short laser pulses on materials of interest for photovoltaic applications, namely aluminum and silver. One of the traditional advantages of using shorter laser pulses has been the attempt to reduce the characteristic heat affected zone generated in the interaction process, however the complex physical problem involved limitates the integration of simplified physical models in standard tools for numerical simulation. Here the interaction between short laser pulses and matter is modeled in the commercial finite-element software Abaqus. To describe ps and fs laser pulses properly, the two-temperature model (TTM) is applied considering electrons and lattice as different thermal transport subsystems. The Material has been modeled as two equally sized and meshed but geometrically independent parts, representing each the electron and the lattice domain. That means, both domains match in number and position of the respective elements as well as in their shape and their size. The laser pulse only affects the electron domain so that the lattice domain remains at ambient temperature. The thermal connection is only given by the electron-phonon coupling, depending on the temperature difference between both domains. It will be shown, that melting and heat affected zones getting smaller with decreasing pulse durations.
Numerical simulation of aerodynamics and dynamics of wind turbines
NASA Astrophysics Data System (ADS)
Redchyts, Dmytro
2007-11-01
Processes of aerodynamics and dynamics are described by incompressible Reynolds averaged Navier-Stokes equations and the equation of wind turbine rotation. Three one-equation turbulence models SA, SARC and SALSA are used. Incompressible Navier-Stokes equations were solved in time-accurate manner using the method of pseudocompressibility and Rogers-Kwak scheme. The finite-volume approach in generalized coordinates was used. Verification of the developed CFD algorithms and codes is carried out on the problems on flow around fixed and rotating cylinders. Comparison of turbulence models is given for a flow around the NACA 4412 airfoil. Instantaneous streamlines, vorticity fields and hysteresis of the unsteady aerodynamic characteristics are discussed for an oscillating NACA 0015 airfoil. It is shown that SALSA model demonstrates its advantages on massive flow separation and dynamic stall. Results of numerical simulation for wind turbine rotors with different geometrical characteristics and different number of blades are presented. Physical features of the flow near wind turbine blades, such as boundary layer separation and flow interactions between the blades are discussed.
Direct numerical simulation of evaporation-induced particle motion
NASA Astrophysics Data System (ADS)
Hwang, Hochan; Son, Gihun
2015-11-01
A sharp-interface level-set (LS) method is presented for direct numerical simulation (DNS) of evaporation-induced particle motion. The liquid surface is tracked by the LS function, which is defined as a signed distance from the liquid-gas interface. The conservation equations of mass, momentum, energy for the liquid and gas phases and vapor mass fraction for the gas phase are solved accurately imposing the coupled temperature and vapor fraction conditions at the evaporating liquid-gas interface. A dynamic contact angle model is also incorporated into the LS method to account for the change between advancing and receding contact angles at the liquid-gas-solid contact line. The solid surface is tracked by another LS function, which is defined as a signed distance from the fluid-solid interface. The conservation equations for multiphase flows are extended to treat the solid particle as a high-viscosity non-evaporating fluid phase. The velocity inside the solid domain is modified to enforce the rigid body motion using the translational velocity and angular velocity of the particle centroid. The DNS results demonstrate the particle accumulation near the evaporating interface and the contact line pinning and stick-slip motion near the evaporating contact line.
Numerical Simulations of Instabilities in Single-Hole Office Elements
NASA Technical Reports Server (NTRS)
Ahuja, Vineet; Hosangadi, Ashvin; Hitt, Matthew A.; Lineberry, David M.
2013-01-01
An orifice element is commonly used in liquid rocket engine test facilities either as a flow metering device, a damper for acoustic resonance or to provide a large reduction in pressure over a very small distance in the piping system. While the orifice as a device is largely effective in stepping down pressure, it is also susceptible to a wake-vortex type instability that generates pressure fluctuations that propagate downstream and interact with other elements of the test facility resulting in structural vibrations. Furthermore in piping systems an unstable feedback loop can exist between the vortex shedding and acoustic perturbations from upstream components resulting in an amplification of the modes convecting downstream. Such was the case in several tests conducted at NASA as well as in the Ariane 5 strap-on P230 engine in a static firing test where pressure oscillations of 0.5% resulted in 5% thrust oscillations. Exacerbating the situation in cryogenic test facilities, is the possibility of the formation of vapor clouds when the pressure in the wake falls below the vapor pressure leading to a cavitation instability that has a lower frequency than the primary wake-vortex instability. The cavitation instability has the potential for high amplitude fluctuations that can cause catastrophic damage in the facility. In this paper high-fidelity multi-phase numerical simulations of an orifice element are used to characterize the different instabilities, understand the dominant instability mechanisms and identify the tonal content of the instabilities.
Numerical simulation of high speed incremental forming of aluminum alloy
NASA Astrophysics Data System (ADS)
Giuseppina, Ambrogio; Teresa, Citrea; Luigino, Filice; Francesco, Gagliardi
2013-12-01
In this study, an innovative process is analyzed with the aim to satisfy the industrial requirements, such as process flexibility, differentiation and customizing of products, cost reduction, minimization of execution time, sustainable production, etc. The attention is focused on incremental forming process, nowadays used in different fields such as: rapid prototyping, medical sector, architectural industry, aerospace and marine, in the production of molds and dies. Incremental forming consists in deforming only a small region of the workspace through a punch driven by a NC machine. SPIF is the considered variant of the process, in which the punch gives local deformation without dies and molds; consequently, the final product geometry can be changed by the control of an actuator without requiring a set of different tools. The drawback of this process is its slowness. The aim of this study is to assess the IF feasibility at high speeds. An experimental campaign will be performed by a CNC lathe with high speed to test process feasibility and the influence on materials formability mainly on aluminum alloys. The first results show how the material presents the same performance than in conventional speed IF and, in some cases, better material behavior due to the temperature field. An accurate numerical simulation has been performed to investigate the material behavior during the high speed process substantially confirming experimental evidence.
Numerical Simulation of phytoplankton productivity in partially mixed estuaries
Peterson, D.H.; Festa, J.F.
1984-01-01
A two-dimensional steady-state model of light-driven phytoplankton productivity and biomass in partially mixed estuaries has been developed. Effects of variations in river flow, suspended sediment concentration, phytoplankton sinking, self-shading and growth rates on distributions of phytoplankton biomass and productivity are investigated. Numerical simulation experiments show that biomass and productivity are particularly sensitive to variations in suspended sediment concentrations typical of natural river sources and to variations in loss rates assumed to be realistic but poorly known for real systems. Changes in the loss rate term within the range of empirical error (such as from dark bottle incubation experiments) cause phytoplankton biomass to change by a factor of two. In estuaries with adequate light penetration in the water column, it could be an advantage for phytoplankton to sink. Species that sink increase their concentration and form a phytoplankton maximum in a way similar to the formation of the estuarine turbidity maximum. When attenuation is severe, however, sinking species have more difficulty in maintaining their population. ?? 1984.
Numerical Simulation of a Small-Scale Mild Combustor
NASA Astrophysics Data System (ADS)
Veríssimo, A.; Oliveira, R.; Coelho, P. J.; Costa, M.
2012-11-01
This work reports numerical simulations of a small-scale cylindrical combustor operating in the mild combustion regime. Preheated air is supplied by a central nozzle, while the fuel (methane) is injected through 16 holes placed equidistantly in a circumference concentric with the air nozzle. The calculations were carried out using the commercial code Ansys-Fluent. Turbulence was modelled using the realizable k-epsilon model. Two different combustion models were employed, namely the eddy dissipation concept and the joint composition pdf transport model. In both cases, a chemical mechanism comprising 13 transported species and 73 chemical reactions was used, as well as a global single-step reaction. A thorough comparison of the predictions obtained using the pdf transport model and the eddy dissipation concept with detailed experimental data is presented. Both models are able to accurately predict the temperature and the O2 and CO2 molar fractions over most of the combustor, but the temperature field is overestimated in the vicinity of the burner. Discrepancies are found in the prediction of the CO molar fraction, particularly when the eddy dissipation concept is used.
Numerical simulations on the explosive cyclogenesis over the kuroshio current
NASA Astrophysics Data System (ADS)
Xu, Yinlong; Zhou, Mingyu
1999-03-01
In this paper, the Pennsylvania State University-NCAR Mesoscale Model (MM4) is used to investigate the explosive oceanic cyclone of 14-15 March 1988 over the warm Kuroshio Current. A series of numerical simulations on this cyclogenesis indicates that the favorable weather conditions and strong baroclinity in the low- and middle-level are essential to its explosive development. The explosive cyclogenesis occurred over a wide range of sea surface temperatures (SST's), which was then characterized by strong baroclinity, the low-level jet (LLJ) was initially formed under the favorable atmospheric circulation and then this LLJ advected the moisture and heat northward for the explosive development of the cyclone, the LLJ played an important role in the process of cyclogenesis. Sensitivity experiments show that the latent heating was a key factor to explosive cyclogenesis, the latent heating deepened the short-wave trough, which resulted in the rapid intensification of the cyclone; while in the explosive intensification stage and continuous development stage, there was less contribution of local surface processes for the explosion of the cyclone.
Numerical Simulations of Self-Regulated, Star Forming Galactic Disks
NASA Astrophysics Data System (ADS)
Smith, D. C.; Struck, C.
2000-12-01
While star formation feedback models have been used in the study of galaxy formation, the effects of these processes on the global structure of disks have received less attention. We have adapted Hydra, the adaptive particle-particle, particle-mesh with smoothed particle hydrodynamics code by Couchman et al., to include heating processes deriving from star formation in order to study the effects of this heating on the structure of the disk and on the star formation itself. These processes include mechanical heating from strong stellar winds and supernovae, as well as heating due to photoelectric removal of electrons from grains by UV flux from young OB stars. Mechanisms of this type can be implemented in a simple way within the Hydra code, allowing us to study the density and temperature profiles of the gas, the balance among the multiple thermal phases generated in the disk, and the kinematics of the disk. Preliminary results from numerical simulations of star-forming gas disks of late type spirals are presented. Self-regulating effects of star formation on the global structure of the disk are discussed. We describe and compare the results of different star formation criteria and discuss the effects of particle resolution. This study was funded, in part, by a grant from the George Washington Carver Charitable Trust.